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Preface

Electronic noses and tongues are the products of advanced chemical and physical sciences combined with the intuitive in-
tegration of sensors, microprocessors, advanced informatics, and statistics. They include resistive, optical, electrochemical, 
or piezoelectrical platforms, where a variety of sensing materials (including, among many others, metal oxide semiconduc-
tors, conducting polymers, nanoparticles, phthalocyanines, or enzymes) have been immobilized using numerous different 
techniques.

Some of these devices are available commercially, whereas others are home-grown prototype devices that require 
commercialization. Electronic noses and tongues have been used to characterize components that contribute to sensory 
or compositional profiles, from ripening to harvesting and from storage of raw materials to packaging and consumption. 
Electronic noses and tongues are thus suitable for high-throughput analysis and quality control or for determining the 
nature and extent of spoilage and adulteration. These devices have also been used to ascertain the geographical origins of 
food and mixtures. Devices used to analyze one particular food item can theoretically be adapted for other food items or 
components. This does not just mean redeploying the sensing devices but also the mode of statistical analysis. This includes 
supervised and unsupervised tools such as principal component analysis (PCA), linear discriminant analysis (LDA), partial 
least squares (PLS), and artificial neural networks (ANN). In other words, there is cross-transference of chemistry, phys-
ics, concepts, techniques, findings, and approaches from one food to another. However, finding all this information in a 
coherent and comprehensive text has been a problem because, until now, no publication has attempted to marshal together 
all the relevant information on these important devices in relation to food science. This is addressed in “Electronic Noses 
and Tongues in Food Science.”

Its unique feature is the three parts dedicated to the electronic nose, the electronic tongue, and the combined systems 
of electronic nose and tongue. Part I covers a description of electronic nose systems and their applications to the analysis 
of the volatile composition of different foods and beverages. Part II focuses on the electronic tongue, which has become 
increasingly important over recent years because it can analyze complex liquids, such as wines or milk, by direct immersion 
in the samples and not restricted to the headspace. Part III covers newer developments combining both the electronic nose 
and tongue. Each part presents the main applications in the food industry. Not only classical applications in the fields of 
meat, wine, dairy products, or beers are presented but also other lesser-known applications, such as the detection of gliadins 
or the assessment of the phenolic content in foods.

This book is designed for food scientists, technologists, and food-industry workers, as well as research scientists. Con-
tributions are from leading national and international experts, including those from world-renowned institutions. Readers 
can dip into the book for reference purposes, read any chapter as a standalone treatise, or read it from cover to cover if food 
analysis is an integral part of their day-to-day job.

I must conclude by thanking all those who have contributed to this book, each a recognized expert in their field. I also 
wish to thank Elsevier Publishing for all the guidance on pulling together such an eclectic book. Finally, many thanks to my 
colleagues and PhD students for their help and support!

Professor María Luz Rodríguez Méndez
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Chapter 1

Electronic Noses and Tongues  
in the Food Industry
Krishna Persaud
School of Chemical Engineering and Analytical Science, The University of Manchester, 

Manchester, United Kingdom

1.1 INTRODUCTION

The analysis of food flavors is complicated because of 
several factors. The flavor active compounds are found in 
very low concentrations, ranging from a few hundred parts 
per million for strongly flavored food products to less than 
10 ppm for weakly flavored foods. In development of new 
products, manufacturing quality control, shelf-life control, 
monitoring degradation during transportation and moni-
toring of highly perishable foods, such as fish, the use of 
analytical instruments are important. Monitoring of food 
products in terms of quality and control of production pro-
cesses, such as mixing, heating, drying, cooking, baking, 
extruding, fermenting, and so forth are normally performed 
using physicochemical measurements, that is, pH-value, 
color, concentration of given chemicals or biomolecules 
generally determined by spectroscopy [Fourier transform 
infrared (FTIR), near infrared (NIR), ultraviolet–visible 
(UV–Vis), etc.]. This is due to the lack of reliable odor and 
taste-assessing instruments and the practical problems asso-
ciated with using sensory panels for continuous monitoring 
of aroma or flavor. Headspace gas chromatography (HGC) 
and two-dimensional gas chromatography using different 
types of detectors, for example, mass spectrometry coupled 
to olfactometry (Wardencki et al., 2009) can give detailed 
chemical composition data as well as the information on 
organoleptic qualities of individual volatile compounds 
present in the mixture (Cordero et al., 2015). These types 
of analyses can be very useful in developing new products, 
or for detection of components that may degrade organolep-
tic quality, but are very time consuming and expensive to 
run. While these techniques are useful for analyzing vola-
tile components for compounds involved in taste that are 
dispersed in aqueous medium, often in complex matrices, 
it become much more difficult—high-pressure liquid chro-
matography coupled with electro-spray mass spectrometry 
can give some idea of the chemical composition, but this 

needs to be augmented with other types of measurements 
for different ions, ionic strength, pH, viscosity, and so on, 
that give an overall impression of the food sample.

Despite advances in instrumental analysis, the flavor 
sensations perceived by humans can be measured only by 
sensory tests (Noble, 2006; Simon et al., 2008; Simons and 
Noble, 2003). Three types of sensory testing are common-
ly used, each with a different goal and using participants 
selected using different criteria. These primary kinds of 
sensory tests focus on the existence of overall differences 
among products (discrimination tests), specification of at-
tributes (descriptive analysis), and measuring consumer 
likes and dislikes (affective or hedonic testing). Correct ap-
plication of sensory technique involves correct matching of 
a method to the objective of the tests, and this requires good 
communication between sensory specialists and end users 
of the test results (Lawless, 2013).

The aroma components of the majority of food products 
consist of complex mixtures of chemicals consisting of sev-
eral hundred or thousands of volatile compounds. These, 
together with taste components perceived as salty, sour, 
sweet, bitter, umami, and others combine to give to a food 
its characteristic flavor. Volatiles and flavor compounds 
can originate at every production stage from all food com-
ponents. They are present in the raw materials and they can 
be generated during the food processing as well as during 
food storage (Plutowska and Wardencki, 2007).

Important flavor components that contribute to the per-
ceived organoleptic qualities of foods include aldehydes, al-
cohols, ketones, acids, esters, lactones, phenols, terpenoids, 
sulfur-containing compounds, pyrazines, and amines. Off-
odors and flavors can be generated by bacterial action on 
food substrates, molds, and fungi, and biochemical reac-
tions (enzymatic reactions as well as chemical reactions).

We generally think about flavor as one of the three main 
sensory properties when choosing a particular food; appear-
ance and texture are the other two properties. For humans 



4   PART | I The Electronic Nose

the perception of flavor consists of the sensory combina-
tion and integration of odors, tastes, oral irritation, thermal 
sensations, and mouth feel that originate from a particular 
food (Breslin, 2001; Breslin and Spector, 2008). When we 
describe the aroma of foods, we often use the term “taste” 
to indicate sensations that usually are quite complex and in-
clude to a large extent smell sensations. When we introduce 
food into our mouth, taste receptors located on the surface 
of our tongue are stimulated and send signals to the brain. 
However, at the same time, especially as a result of mastica-
tion, many volatile components are also released, reaching 
the olfactory mucosa through an opening situated on the up-
per wall of the palate. This combination of sensations is what 
makes up “flavor.” The general categorization of flavor can 
be the broad sensations perceived when consuming different 
foods. From a biological point of view the flavor sensation 
can be defined as the perception originated after a substance  
has been taken into the mouth and it is a specific characteristic 
of the substance being perceived (Labows and Cagan, 1993; 
Lawless, 1991). The multisensory integration that makes up 
our perception of flavor is extremely complex and continues 
to be a fascinating field of study for psychologists and biolo-
gists (Auvray and Spence, 2008; Spence, 2015).

The two main sense organs by which flavor is perceived 
are the nose and the mouth. Flavor comes from three differ-
ent sensations: taste, trigeminal (those sensations perceived 
by a human as astringency, pungency, and cooling) sensa-
tions, and aroma. Trigeminal and taste sensations are real-
ized with the presence of food in the mouth. The aroma 
sensation occurs when the molecules of the aromatic com-
pound are detected at the olfactory receptors reaching this 
site by the nasal or oral passageways. Assessing food quality 
is complex, because this translates to assessing appearance, 
color, organoleptic qualities, and for taste—mouth feel and 
so forth that results in determining “liking” or “disliking.”

This assessment is subjective, requiring human noses 
and tongues; typically a trained human panel is required. 
The many different possible flavors are due to interactions 
of chemical compounds with taste, trigeminal sensations, 
or aroma receptors. The characteristic taste of a food is nor-
mally related to a single class of compounds. But, an odor 
is usually elicited by a combination of volatile compounds, 
each of which imparts its own smells. Differences in char-
acteristics of certain aromas can be equated to the varying 
proportions of these volatiles. However, some substances 
contain trace amounts of a few volatile compounds that pos-
sess the characteristic essence of the odor. These are called 
character-impact compounds. One must also realize that the 
chemicals of a single compound class can induce many di-
verse flavors, especially as their concentrations vary.

Sensory evaluation comprises a set of techniques for 
accurate measurement of human responses to foods and 
minimizes the potentially biasing effects of brand identity 
and other information influences on consumer perception. 

As such, it attempts to isolate the sensory properties of the 
foods themselves and provides important and useful infor-
mation to product developers and food scientists about the 
sensory characteristics of their products. Sensory evalua-
tion has been defined as a scientific method used to evoke, 
measure, analyze, and interpret those responses to products 
as perceived through the senses of sight, smell, touch, taste, 
and hearing.

1.1.1 Discrimination Tests

Discrimination tests are used when the sensory specialist 
wants to determine whether two samples are perceptibil-
ity different. It is possible for two samples to be chemi-
cally different in formulation, but for human beings not to 
perceive this difference. Product developers exploit this 
possibility when they reformulate a product by using dif-
ferent ingredients while simultaneously not wanting the 
consumer to detect a difference. If the difference between 
the samples is very large and thus obvious, discrimina-
tion tests are not useful. Therefore, discrimination testing 
is most useful when the differences between the samples 
are slight. Discrimination tests are usually performed when 
there are only two samples. There are a number of different 
tests available, including triangle tests, n-alternative forced 
choice tests, tetrad tests, and polygonal and polyhedral tests 
(O’Mahony, 2013).

1.1.2 Descriptive Analysis

Descriptive sensory analysis is a highly sophisticated tech-
nique that allows the sensory scientists to obtain complete 
sensory descriptions of products. They help identifying un-
derlying ingredient and process variables, and/or determine 
which sensory attributes are important to acceptance. Usu-
ally, descriptive techniques produce objective descriptions 
of products in terms of the perceived sensory attributes. De-
pending on the specific technique used, the description can 
be more or less objective, as well as qualitative or quantita-
tive. Most descriptive methods can be used to define sen-
sory instrumental relationships.

1.1.3 Flavor Profile

Flavor profiling is a consensus technique. The vocabulary 
used to describe the product and the product evaluation itself 
is achieved by reaching agreement among the panel mem-
bers. The flavor profile considers the overall flavor and the 
flavor noted and estimates intensity and amplitude (overall 
impression) of these descriptors. The technique provides a 
tabulation of the perceived flavors, their intensities, their 
order of perception, their aftertastes, and their amplitude. 
If the panelists are trained appropriately, this tabulation is 
reproducible. Using standardized techniques of preparation, 
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presentation, and evaluation, a panel consisting of four to 
six judges are trained to precisely define flavors of a product 
within a specific food category. The food samples are tast-
ed and all perceived notes are recorded for aroma, flavor, 
mouthfeel, and aftertaste. After this exposure, the panelists 
review and refine the descriptors used.

At the completion of the training phase, the panelists 
have defined a frame of reference for expressing the inten-
sities of the descriptors used. The samples are then served 
to the panelists in the same form that they would be served 
to the consumer and the intensities of the perceived flavor 
notes are rated typically on a defined scale. A consensus 
of scores is obtained by discussion and reevaluation of the 
products by the panelists.

It can be seen that sensory evaluation of foods is very 
complex and subject to high variability, and instrumental 
means of carrying out some of these evaluations would be 
most useful to the food industry. The remarkable capabili-
ties of the nose and tongue in detection, recognition, and 
discrimination of complex mixtures of chemicals, together 
with rapid advances in understanding how these systems 
operate has stimulated the imagination and interest of many 
researchers and commercial organizations for the develop-
ment of electronic analogues of the biological systems. This 
chapter focuses on “electronic noses and tongues” as ap-
plied to the food industry. The responses of individual odor 
sensors or taste sensors combined into an array, by which 
each sensor possesses slightly different response selectivity 
and sensitivity toward the sample odors or tastants, when 
combined by suitable mathematical methods, can provide 
information to discriminate between many sample odors 
or tastants and when combined together—flavors. Arrays 
of gas and odor sensors, made using different technologies 
have become known as “electronic noses” and consist of 
three elements: a sensor array which is exposed to the vola-
tiles; conversion of the sensor signals to a readable format; 
and software analysis of the data to produce characteristic 
outputs related to the odor encountered. The output from 
the sensor array may be interpreted via a variety of meth-
ods—principal component analysis, discriminant function 
analysis, cluster analysis, and artificial neural networks—to 
enable discrimination between samples. A similar approach 
is adopted with “electronic tongues,” by which the sensors 
in this case detect chemical species in solution.

1.2 BIOMIMETIC SYSTEMS

Attempts to mimic the “chemical senses” using artificial 
systems are still in the process of development and have 
been evolving over the last few decades. One of the pio-
neers in thinking about the concepts, Dravnieks (1968) 
envisaged an instrument that would inspect samples of 
odorous air and report the intensity and quality of an odor 
without the intervention of a human nose. The ideas of a 

combinatorial approach utilizing arrays of broad specificity 
sensors outlined by Persaud and Dodd (1982) have formed 
the basis of many types of “electronic noses” and “electron-
ic tongues” developed since then. The concepts are based 
broadly on our understanding of biological odor and taste 
transduction mechanisms where large numbers of different 
odor receptor types or taste receptors respond to the same 
chemical stimulus but with different affinities. The result 
is a complex pattern of neural responses that the brain as-
sociates with previously learned stimuli in order to identify 
or discriminate between these chemical stimuli. In order to 
understand these concepts, it is worth spending some time 
understanding some of these biological mechanisms.

1.2.1 Biology of Smell and Taste

The nose is capable of detecting a large repertoire of mol-
ecules—the latest estimates indicate that these may num-
ber over 1 trillion odors (Bushdid et al., 2014). It resembles 
somewhat the concepts inherent in the immune system where 
it is not possible predict what molecules may be encountered 
at any time. These molecular families include aliphatic and 
aromatic molecules with varied carbon backbones and di-
verse functional groups, including aldehydes, esters, ketones, 
alcohols, alkenes, carboxylic acids, amines, imines, thiols, 
halides, nitriles, sulfides, and ethers. With rapid advances 
in molecular biology, we now have a good understanding of 
the transduction processes in the nose and signal-processing 
pathways in the brain that are responsible for detection, dis-
crimination, and recognition of odors (Firestein, 2001).

About 6 to 10 million olfactory sensory neurons (OSN) 
are found in the nasal cavity of mammals. Each of these cells 
is a bipolar neuron where the apical end ends in a knob from 
which protrude a number of cilia that lie in a thin layer of 
mucus on the surface of the olfactory epithelium (Fig. 1.1). 
These cilia contain the sensory transduction mechanisms 
constituting receptor proteins and an enzymatic cascade 
that transforms the energy of an odorant molecule binding 
to the receptor into a neural signal. There is great degree of 
similarity between receptors, but there is a region of hyper-
variability that is associated with the ligand-binding pock-
ets of these proteins. This accounts for the large and diverse 
range of molecules that can be detected by these receptors 
(Firestein, 2001; Mombaerts, 1996, 1999).

The opening of ion channels in the cell membranes when 
an odorant molecule interacts with the receptors causes a 
change in electrical potential in the cell membrane (Chiu 
et al., 1997), leading to generation of action potentials that 
are propagated to the olfactory bulb, a structure in the fore-
brain devoted to the processing of olfactory signals. De-
spite the huge number of olfactory neurons, there are only 
300–400 different types of receptors in humans. Olfactory 
neurons expressing a particular receptor type converge to 
distinct regions in the olfactory bulb called glomeruli. The 
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outputs from this region are specialized cells called mitral 
(M/T) cells that propagate a highly reduced number of sig-
nals to higher parts of the brain—many thousand olfactory 
neurons converge onto the dendrites of between 5 and 25 
mitral cells in each glomerulus. Each ORN type projects into 
one or two glomeruli and a single M/T cell receives input 
from just one type of ORN, expressing the same type of re-
ceptor, and sends its axon to the olfactory cortex. Therefore, 
the first representation of the odor is transduced at the glo-
merular level, to produce a second spatial and very ordered 
pattern, representing its molecular features and distributed 
among a much smaller number of output cells (chemotopic 
coding) (Mombaerts, 1999, 2006; Mori et al., 2006; Mori 
and Sakano, 2011). A combinatorial strategy is adopted by 
the biological system (Gupta et al., 2015; Korsching, 2001; 
Manzini et al., 2014). Most odor molecules are recognized 
by more than one receptor and most receptors recognize 
several odors that may be related by some properties such 
as the size, shape, and charges associated with functional 
groups on the molecule. A particular odor molecule may 
also consist of a number of these “epitopes” or “determi-
nants” that possess some of these features. Thus the recog-
nition of an odorant molecule depends on which receptors 
are activated and to what extent.

While taste sensations have been described for many 
centuries, it is only comparatively recently that the fun-
damental mechanisms underlying taste transduction were 

uncovered (Kinnamon, 2012; Simon et al., 2008; Teeter and 
Brand, 1987). On the tongue are found structures called pa-
pillae that contain taste buds (Fig. 1.2). These papillae have 
different shapes: fungiform found mainly on the anterior of 
the tongue, foliate along the sides, and circumvallate at the 
back of the tongue. Within each taste bud are found approx-
imately 50–100 cells that contain the transduction elements 
associated with taste. Taste receptor cells are not neurons, 
but interrelate with projection neurons that make up the 
taste nerves. In mammals, the taste buds, depending upon 
their location, are innervated by one of several paired crani-
al nerves: the chorda tympani (anterior tongue) and greater 
superficial petrosal (soft palate) branches of the facial nerve 
(CN VII), the glossopharyngeal (CN IX) nerve (posterior 
tongue), and the vagus (CN X) nerve (root of tongue and 
esophagus). The maxillary and mandibular branches of the 
trigeminal nerve (CN V) mediate touch, pain, temperature, 
and other somatosensory sensations throughout the nasal 
and oral epithelia—that is, coolness and fizziness. The 
taste fibers integrate information from taste buds and relay 
this information to the nucleus of the solitary tract of the 
brainstem. The primary taste cortex contains neurons that 
respond best to sweet, sour, bitter, salty, and umami-tasting 
agents, as well as neurons responsive to touch and smell. 
It has direct reciprocal connections with the frontal tempo-
ral, parietal, entorhinal, and orbitofrontal cortexes and other 
cortexes. The entorhinal and orbitofrontal cortex functions 

FIGURE 1.1 The olfactory epithelium consists of OSNs, which are bipolar neurons, sustentacular cells that are glial cells with microvilli, and 
basal cells that are stem cells, from which new OSNs are generated. Each OSN expresses only one of the ∼1000 olfactory receptor genes and the 
axons from all cells expressing that particular receptor converge onto one or a few glomeruli in the olfactory bulb. The glomeruli contain the incoming 
axons of OSNs and the apical dendrites of mitral cells that are the output layer of cells. Mitral axons leaving the OB project to higher brain structures 
including the piriform cortex, hippocampus, and amygdala.
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to interpret tastes and includes memory and cognition. The 
insular cortex is associated with conditioned taste aversions.

The cell membranes of the taste bud cells contain a va-
riety of ion channels that are involved with signal transduc-
tion. Salt taste is transduced via an epithelial sodium ion 
channel (ENaC) that is ubiquitously expressed and function-
al in the anterior part of the tongue. Sour is the taste of acid, 
that is, protons (H+). This taste is complex and is transduced 
through transient receptor potential (TRP) ion channels, but 
there may at least three possible receptor mechanisms: H+ 
blocks K+ ion channels, H+ ions go through ENaC channels, 
or H+ ions go through a proton channel.

Sweet and umami receptors are heteromeric receptors 
made up of a combination of different subunits, coded for by 
a small gene family—T1R. Sweetness receptors are a com-
bination of two types of receptor subunits (T1R2 + T1R3) 
and umami receptors a combination of another set of recep-
tor subunits (T1R1 + T1R3) (Doty, 2012). The bitter re-
ceptors consist of taste-2 receptors (T2Rs). Fifty to eighty 
members are expressed in small subset of all taste papillae. 
T2Rs are membrane bound proteins that are bitterness re-
ceptors (Meyerhof et al., 2011). We still poorly understand 
taste, and other types of receptors that are under investiga-
tion include those involved in the taste of fats (DiPatriz-
io, 2014; Passilly-Degrace et al., 2014). It is clear however 
that like olfactory receptors, taste receptors are capable of 
interacting with many types of substances with different 

affinities, so exhibit broad selectivity in terms of ligands 
that can be detected.

1.3 ELECTRONIC NOSES AND TONGUES

1.3.1 Electronic Noses

So-called “electronic noses” comprise a vapor sampling 
system, an array of chemical sensors, and a method of sig-
nal processing that leads to classification of the responses 
of the chemical sensors. The sensors in an electronic nose 
are desired to have a broad selectivity rather than being 
specific to one type of volatile chemical. The human nose 
can identify many odors that may contain hundreds of indi-
vidual chemical components and, therefore, the sensors for 
an electronic nose should be generalized at the molecular 
level. The desired properties for sensors are high sensitiv-
ity, rapid response, good reproducibility, and reversibility 
to large numbers of chemicals. It is also better for an elec-
tronic nose to be small in size and flexible, able to adapt to 
being exposed to many types of environments, and operate 
at ambient temperatures. The working principle of these in-
struments is based on the employment of an array of differ-
ent nonselective chemical sensors. Each sensor in the array 
is able to detect a range of different odors, not just one, 
with a sensitivity that is different from the sensitivity shown 
by the other elements of the array. Such features make the 

FIGURE 1.2 The tongue showing fungiform, foliate, and circumvallate papillae. These contain taste buds containing a number of sensory cells; 
membrane-bound receptors—sweet taste and umami are transduced by heterodimers of T1R2 and T1R3 subunits, and T1R1 and T1R3 subunits, respec-
tively, while bitter taste is transduced by T2R receptors (not shown). Sour taste involves activation of a type of transient receptor potential channel (TRP), 
while salt taste is transduced via epithelial sodium ion channels in the cell membrane. The signals from taste buds project to the solitary nucleus of the 
brainstem, and then is processed by higher regions of the brain.
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response of the electronic nose dependent on the whole 
range of chemical information contained in an odor. This 
is something similar to what occurs in biological olfaction.

Usually, gas sensors are categorized based on their trans-
duction principle and sensing material. Many different types 
of sensor technologies have been so far deployed (Gutierrez 
and Horrillo, 2014; Vergara and Llobet, 2011; Wilson and 
Baietto, 2009)—these include metal oxide sensors, conduct-
ing polymers, optical sensors, piezoelectric sensors, electro-
chemical sensors, field effect transistors (Feng et al., 2014), 
and more recently olfactory biosensors containing either ol-
factory receptors (Ault and Broach, 2006; Du et al., 2014) 
or odorant-binding proteins (Di Pietrantonio et al., 2013; 
Pelosi et al., 2014; Persaud, 2012) have been utilized. The 
interaction with an analyte induces a physical and/or chemi-
cal change in the chemical sensing layer, which produces a 
signal. The nature of the transduction processes utilized by 
these sensors may include electrical measurements, includ-
ing changes in current, voltage, resistance or impedance, 
electrical fields, and oscillation frequency. Other transduc-
ers involve measurements of mass changes, temperature 
changes or heat generation. Optical sensors measure the 
modulation of light properties or characteristics such as 
changes in light absorbance, polarization, fluorescence, 
and other optical properties. These have been extensively 
reviewed in other publications (Di Natale et al., 2005, 2009; 
Walt and Sternfeld, 2006; Walt, 2010) and will not be de-
scribed in detail here. The choice of sensor is often appli-
cation dependent and are based on response and recovery 
times, sensitivities, detection range, operating limitations, 
physical size, robustness to being poisoned, power con-
sumption, and other factors. However, very few types of 
chemical sensor available respond specifically to a single 
chemical—they tend to show cross-sensitivity to a variety 
of chemicals, but the range of selectivity can be tailored 
so that each type of sensor responds to a different range of 
chemicals. This inherently poor selectivity can be utilized 
to advantage when sensors of different type are combined 
into an array. The cross-reactive sensor array is composed 

of different sensors chosen to respond to a wide range of 
chemical classes and discriminate mixtures of volatile com-
pounds that make up an odor. The outputs from individual 
sensors are processed in such a way in order to produce 
a distinct response pattern reflecting the relative responses 
of all the sensors in the array to a given chemical stimu-
lus. Identification and classification of an analyte mixture 
is accomplished through comparison of this electronic fin-
gerprint of sensor responses against previously learned pat-
terns (Fig. 1.3). Unlike conventional analytical instruments, 
there is no need for separation of a complex mixture into 
individual components and this holistic approach resem-
bles the process found in biological olfaction. Importantly, 
these devices give information that allow comparison or 
discrimination of odors without necessarily having to do a 
chemical analysis of individual components in the mixture. 
There has also been a blurring of instrument technologies 
where “electronic nose” concepts are combined with tradi-
tional analytical instruments; for example, a chromatogram 
may be treated as a set of virtual sensors, or direct injection 
of a mixture of substances into a mass spectrometer with-
out prior separation will produce a complex spectrum that 
can be processed as a “fingerprint” to describe that mix-
ture (Crespo et al., 2012; Moon et al., 2014). Taking this 
to the opposite extreme, modulation of a single sensor can 
produce a virtual sensor array—for example, modulating 
the operational temperature of a single metal oxide sensor 
can process a complex response that can be deconvoluted 
(Amini et al., 2013; Herrero-Carron et al., 2015). On the 
other hand, large arrays of sensors consisting of up to 4096 
sensors have been described and these start to resemble 
more realistically the olfactory receptor system (Beccher-
elli et al., 2010; Bernabei et al., 2012).

While a number of companies were formed to exploit 
“electronic nose” technologies over the last few decades, 
the majority of these have failed. One reason is “oversell-
ing” of what such devices can actually do. In fact they are 
not analytical instruments and neither are they even close 
to the functionality of the biological nose (Boeker, 2014). 

FIGURE 1.3 Electronic nose concepts: sampling, sensor array, signal processing, pattern recognition.
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Another problem has been that of calibration of such instru-
ments, and that of “drift” over time. The latter is associated 
with limitations of the sensor technologies utilized—chang-
es in responses over time due to aging, poisoning, or envi-
ronmental factors, together with changes in the chemical 
analytes that are being assessed. For example, a typical food 
product will change organoleptic characteristics over time 
due to aging, decomposition, or other factors, and different 
batches of a product may have large differences in odor or 
flavor. Nonetheless, there have been real successes in the 
use of these technologies in the food industry that shall be 
described later.

The performance of today’s artificial systems is far from 
that found in biological olfaction. The better performance of 
the latter is due to the great number of receptor neurons and 
to the unique architecture of the olfactory pathway, where 
three main elements, the olfactory epithelium, the olfactory 
bulb and the olfactory cortex, are completely integrated. In 
the artificial olfactory devices, similarly to the brain, the 
signals coming from the sensors are processed in order to 
classify odors. However, this process is carried out using 
mathematical tools. An initial sensor signal preprocessing 
is often performed. Different preprocessing metrics can be 
used with different aims. For example, the time dependence 
of the signal can be removed in order to reduce the amount 
of data that needs to be handled during the phase of pat-
tern recognition. Linearization of the sensor response can 
be performed when the intensity of the odors is important, 
as the sensor response is often nonlinear with increasing 
concentration of analyte. Data reduction techniques, such as 
principal component analysis (PCA), imitating the massive 
convergence of the ORNs to the glomeruli, can also be ap-
plied to the whole sensor array response, in order to reduce 
the data dimensionality (Pearce, 1997a,b).

The data resulting from this first processing step, or 
coming directly from the sensors without any pretreat-
ment, are subjected to pattern recognition (PARC) analysis 
to obtain discrimination and/or classification. During this 
phase, the sensor patterns are compared to known odor pat-
terns, which have been stored in a knowledge base during 
a previous training stage of the device, and, using any of 
the many classification techniques available, identification 
of the stimulus is carried out. Existing sensor arrays imple-
ment the broad and overlapping sensitivity feature exhib-
ited by biological receptors, but it has not yet been possible 
to achieve the same dimensionality and redundancy level 
available in the olfactory epithelium. Current chemical sen-
sor arrays, either homogeneous or heterogeneous, have few 
sensing elements when compared to natural noses.

1.3.2 Sampling

Apart from sensing aspects associated with “electronic nos-
es,” the sampling aspects are often neglected. In order to get 

consistent results from such devices—especially when mea-
suring a complex matrix such as food—much care needs to 
be taken and in fact one complaint often heard is the amount 
of work required for method development for a particular 
application. The techniques that are used are those that have 
been well developed over the years for gas chromatogra-
phy and have been adapted for “electronic nose” detectors 
(Feng et al., 2014; Pillonel et al., 2002).

The simplest technique consists of placing the sample 
into a vial that is then closed and allowing equilibrium to be 
reached between the matrix and the vapor phase. This “stat-
ic headspace” of the vial then constitutes the sample that is 
introduced into the “electronic nose” system. The sample 
temperature, equilibration time, vial size, and sample quan-
tity are parameters that have to be optimized for a particular 
application and often this can be automated.

Instead of a generating a static headspace, the sample 
may be placed into a vial and in this case the vial is purged 
with a continuously flowing gas stream. This in effect strips 
volatile components from the matrix of the sample as there 
is a displacement of the equilibrium between the sample 
matrix and the headspace. This “dynamic headspace” has 
been used to good effect in many applications. The flow 
rate of the gas and the sample temperature needs to be opti-
mized for a particular application.

Often the concentrations of volatile components from 
a sample are very low, and the dynamic headspace method 
may be combined with a preconcentration method such as 
“purge and trap” where the vapor is trapped on an adsor-
bent such as activated carbon, polymers, or inorganic ma-
trices. After sampling the dynamic headspace over a period 
of time, the trap is heated to a high temperature in order to 
discharge the trapped volatiles as a bolus into the electronic 
nose. The flow rate of the gas, the purge rate, and the desorp-
tion temperature are parameters that need to be adjusted for 
a given application (Chai et al., 2008; Chen et al., 2015; del 
Nogal Sanchez et al., 2014; Feng et al., 2014; Lopez-Feria 
et al., 2008; Pillonel et al., 2002; Plutowska et al., 2011).

Solid-phase microextraction (SPME) introduced by 
Pawliszyn et al. (2012) and Pawliszyn (2012) and stir-bar 
adsorption (SBE) are convenient methods that are used to 
preconcentrate a static headspace (Baltussen et al., 2002; 
David and Sandra, 2007). In the former a silica fiber coated 
with an organic polymer is introduced into the headspace 
and this sorbs volatile components from the headspace and 
entraps them. A range of sorbent coatings are available that 
range from hydrophilic to hydrophobic so some selectivity 
in what is extracted from the headspace is under control of 
the user and can be adapted to a particular application. SBE 
uses a similar principle but contains a much larger adsor-
bent surface allowing much greater quantities of volatiles 
to be entrapped. Just like the purge-and-trap method, the 
SPME or SBE is heated to a high temperature to desorb 
volatiles into the electronic nose detector. A variation of 
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this technique uses a needle where the inner surface is coat-
ed with an adsorbent and the vapor is drawn through the 
needle to be entrapped. Fig. 1.4 shows the introduction of 
an SPME fiber into an array of metal oxide sensors for elec-
tronic nose applications.

Apart from these common sampling techniques, spe-
cialized systems exist that are dependent on the detectors 
that utilized in the “electronic nose”; for example, for direct 
inlet mass spectrometry, a membrane is inserted between 
the sample and the inlet of the mass spectrometer, allowing 
controlled introduction of sample volatiles directly into the 
ion source. Sampling techniques are reviewed by Rubiolo 
et al. (2010).

1.3.3 Electronic Tongues

In principle, “electronic tongues” function in a similar 
way to the “electronic nose” (Fig. 1.5). A sensor array 
produces signals that are not necessarily specific for any 
particular chemical species. A pattern of signals is gener-
ated, that can be correlated to certain features or qualities 
of the sample. In this case the sensors operate in an aque-
ous environment and they have different cross-sensitivities 
to various chemical species. Just like the “electronic nose,” 
an appropriate method of multivariate analysis or pattern 
recognition is used to process the signals from the array in 
order to discriminate or classify different samples. As with 
“electronic noses,” a wide variety of sensor technologies 
may be employed. These include conventional ion selec-
tive electrodes, chalcogenide and oxide glasses, noble met-
als, organic polymers, biosensors, ISFETS, optical sensors, 
mass sensors, impedimetric sensors, and others (Baldwin 
et al., 2011; Legin et al., 2004, 2005; Vlasov et al., 2008, 
2010; Winquist et al., 2004). The most common sensors 
used are potentiometric in nature, producing an electri-
cal potential described by the Nernst equation, Eq. (1.1),
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where, E represents the observed cell potential at zero cur-
rent, E0 is the standard cell potential, R the universal gas 
constant, T the absolute temperature in Kelvin, n is the 
charge number of the electrode reaction, F is the Faraday 
constant, and Q is the ratio of ion concentration at the an-
ode to ion concentration at the cathode. They include ion 
selective electrodes. The selectivity of these electrodes is 
described by the Nikolsky–Eisenmann equation, Eq. (1.2),
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where ai and aj are the activity of the primary ion and in-
terfering ion, respectively; k is the selectivity coefficient; 
E0 is the sum of the standard potential of the electrode and 
the junction potential; E is the potential difference for the 
electrochemical cell composed of the ion selective and ref-
erence electrode; and zi and zj are charge numbers of the 
primary and interfering ion, respectively.

Because the matrix containing the analytes of interest 
may be very complex, the biggest problem encountered with 
“electronic tongues” is that of electrode fouling. Potentio-
metric measurements are temperature dependent, and the 
signals may be influenced by solution changes, as well as 
adsorption of solution components on membrane surfaces, 
that can affect the nature of the charge transfer. Hence, care 
needs to be taken to control the temperature of the measure-
ment, washing of the electrodes with solvents to minimize 
the effects of adsorption, using antifouling membranes. 
However, potentiometric measurements are widely used 
because of their simplicity. Toko and coworkers (Tahara  
et al., 2013; Tahara and Toko, 2013; Toko, 2004, 2014;  

E=E0−RTnFlnQ

E=E0+RTziFlnai+∑j(kijaj)zi/zj

FIGURE 1.4 Solid-phase microextraction of a headspace and desorption process of an SPME fiber on to an array of sensors.
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Toko et al., 2014) developed a taste sensor array based on 
electrodes using a lipid/polymer membrane for the trans-
ducer. The composition of the membrane is designed con-
sidering the charges on the membrane surface and hydro-
phobicity on the basis of physicochemical properties of 
substances with each basic taste, and as a result the system 
correlates well with basic taste perception. However, it must 
be realized that these systems in no way resemble the bio-
logical tongue. Unlike the case with potentiometric sensors, 
voltammetric measurements are performed when equilib-
rium is not reached, and the signal obtained is the current–
potential relationship. These methods are particularly use-
ful when trying to obtain measurements from samples that 
contain redox species.

Just like with electronic noses, attention needs to be 
paid to sampling—often static measurements are carried 
out, where the electrodes are inserted into a medium and an 
equilibrium is allowed to be established. On the other hand, 
dynamic flow of analyte medium past the electrodes may 
also give useful information.

1.4 PATTERN RECOGNITION

For both “electronic noses” and “tongues,” pattern recog-
nition algorithms play a large role. The notable advantage 
is the ability to characterize complex mixtures without the 
need to identify and quantify individual components, with-
out the need of highly selective sensors. There are two main 
approaches to pattern recognition: parametric and nonpara-
metric. Parametric methods rely upon obtaining or esti-
mating the probability density function of the parameters 
used to characterize the response of a system. Conversely, 
nonparametric methods require no assumption about the 

fundamental statistical distributions of data. Two types of 
nonparametric learning or classification methods are avail-
able: supervised and unsupervised. Supervised methods in-
volve the learning of data based on advance knowledge of 
the classification, whereas unsupervised methods make no 
prior assumption about the data.

Preprocessing of data is often necessary before pattern 
recognition algorithms can be applied. This may involve 
scaling of data, normalization, removal of redundant data, 
extraction of features that are important to classification, and 
others (Raman et al., 2011; Roeck et al., 2008). If the data 
are high dimensional, for example, when there are a large 
number of sensors in an array, or if virtual sensors are be-
ing utilized from a mass spectrometer or gas chromatograph, 
then principal components analysis is a powerful tool for data 
reduction. It involves forming a covariance matrix between 
variables, and then carrying out a transformation that results 
in extracting eigenvectors and eigenvalues. This analysis pro-
duces principal components that are a linear combination of 
the original variables. Many algorithms are described in the 
literature that are applicable to the classification problems en-
countered using electronic noses and tongues—they include 
independent component analysis (ICA) and linear discrimi-
nant analysis (LDA), learning vector quantization (LVQ), 
self-organizing map (SOM), artificial neural networks of 
a variety of architectures (feed forward–back propagation 
networks, radial basis functions, support vector machines, 
genetic algorithms, and others). All of these methods func-
tion well, but are dependent on the stability of the sensor re-
sponses over time, and consistency in sampling. The strategy 
is to expose the sensor array to a range of different analytes, 
memorize the resulting patterns in a data base, and use this 
a priori knowledge to recognize unknown samples later on.

FIGURE 1.5 Electronic tongue concepts: sampling, sensor array, signal processing, pattern recognition.
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1.5 APPLICATIONS TO THE FOOD 
INDUSTRY

There are a huge number of published applications of elec-
tronic noses and tongues in the food industry. These have 
been extensively reviewed (Ciosek and Wroblewski, 2007; 
Escuder-Gilabert and Peris, 2010; Peris and Escuder-
Gilabert, 2009) and it must be noted that many successes 
are reported in monitoring the quality of foods, beverages, 
and pharmaceuticals. The tasks typically carried out are 
detection and discrimination. They include monitoring the 
quality of black tea, green tea, alcoholic beverages, adul-
teration of olive oil, rancidity of meat, fruit ripening, and 
others. However, it must be also said that many of these 
studies are not readily repeatable, and each researcher has 
had to carry out extensive method development where the 
answers to specific questions could be determined. One ex-
ample is the work carried out by Vestergaard et al. (2007), 
who used an ion mobility-based electronic nose system 
for prediction of sensory quality changes of a meat-based 
pizza topping during storage. They showed that by pro-
jecting two independent data sets of “known” production 
samples and “unknown” samples purchased from a local 
supermarket onto calibration models, evidence was given 
for the predictability of the electronic nose regarding stor-
age time and sensory quality changes during storage. This 
is extremely promising, but if the production parameters 
change or a new recipe is introduced, then it is likely that 
this work of calibration would need to be repeated from 
the beginning.

The important trend recently has been to fuse dif-
ferent sensing technologies together (Gutierrez-Capitan 
et al., 2014; Lvova et al., 2015). The former used different 
microsensors, while Lvova et al. used porphyrin films as 
sensing materials for an electronic tongue, simultaneously 
measuring optical properties, electrochemical amperomet-
ric or potentiometric response to analytes. Cole et al. (2011) 
have combined an electronic nose and tongue together.

It is notable that there are also some extremely 
important findings in terms of correlation of electron-
ic noses and tongues with human sensory perception. 
Haddad et al. (2010) did an interesting experiment. They 
set out to determine whether electronic nose measure-
ments can be linked to olfactory perception. There is 
evidence that the primary perceptual axis of human olfac-
tion is odorant pleasantness. This is reflected in part in 
the physicochemical structure of odorant molecules. They 
tested a hypothesis that an electronic nose can be tuned 
to the pleasantness scale, and then used it to predict the 
pleasantness of novel odors. They found that their system 
consisting of an array of 16 sensors was able to generate 
pleasantness ratings with greater than 80% similarity to 
human ratings and with above 90% accuracy in discrimi-
nating pleasant from unpleasant odors.

1.6 CONCLUSIONS

Electronic noses and tongues have undergone great develop-
ments over the last few decades. The availability of a large 
range of sensor technologies, combined with advances in 
microelectronics, signal processing software, chemometric 
and neural network pattern recognition algorithms, together 
with associated methods for correcting drift in sensors and 
systems, have increasingly made such systems more ro-
bust. Such systems have now become hybrid—fusing many 
types of data together to produce outputs that can now be 
correlated with human sensory perception. Increasingly we 
shall be seeing more and more applications of such systems 
in “online” or “at line” applications in the food industry en-
suring quality and safety of such products.
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Apple Analysis and the Electronic Nose
Guohua Hui
School of Information Engineering, Key Laboratory of Forestry Intelligent Monitoring and Information 

 Technology of Zhejiang Province, Zhejiang A & F University, Linan, China

2.1 INTRODUCTION: APPLE ANALYSIS 
USING AN ELECTRONIC NOSE

In general, random and destructive sampling techniques are 
often used in apple quality evaluation. However, a nonde-
structive and fast test technique needs to be developed for 
assessing apples and other food quality. The developing 
electronic nose (E-nose) is a novel instrument for analyz-
ing, distinguishing, and detecting complex flavor and most 
volatile compounds since 1982. In recent research, various 
types of E-nose have been applied in food quality con-
trol (Schaller et al., 1998), medical diagnosis  (Schiffman 
et al., 1997), and homeland security. It has been widely 
applied for predicting fruit (apple, orange, peach, etc.) ripe-
ness and shelf-life due to its nondestructive sensitivity and 
good repeatability. Meanwhile, E-nose offers an objective, 
accurate, fast, and broad evaluation.

The apple is one of the most frequently consumed com-
modities in our daily life. However, during the process of 
picking, storing, transporting, processing, and packaging, 
apples are easily damaged and they deteriorate. The basic 
requirement of a good quality apple is maintaining the 
appearance, fresh taste, healthy smell, and suitable matu-
rity. The apple’s aroma is a significant indicator of estimat-
ing the apple’s ripeness.

Currently, there are two ways for volatile detection of 
the apple’s flavor. The first is a trained human sensory panel 
named olfactometry, which has a low sensitivity. People can-
not detect volatile compounds without odor. What is more, 
the result is not accurate enough because it will be differ-
ent from person to person and from time to time. The sec-
ond is detected by instruments such as a gas chromatograph 
and mass spectrometer (GC-MS), E-nose. Compared with 
traditional instruments, E-nose exhibits several advantages 
including fast, convenient, nondestructive evaluation of fruit 
quality and ripeness and low cost, easy operation. In this chap-
ter, we briefly summarize several types of E-nose applied in 
nondestructive apple detection, maturity evaluation, predict-
ing shelf life, and so on. Several E-nose commonly used by 
researchers in recent years are listed in Table 2.1.

Changes in the aroma of Royal Gala apples were 
detected using both classical headspace/GC and E-nose 
(Young et al., 1999). The same techniques were also used 
to evaluate stored apples. Various flavor volatile indicators 
can be determined effectively using E-nose equipped with 
multiple sensors that offer great advantages in selectivity 
and sensitivity. Yong used Fox 4000 (Alpha MOS, France) 
fitted with P30/1, P10/1, P10/2, P40/1, P40/2, PA3, P70/0, 
T50/3, PA2, T50/1, T40/1, T70/2, SY/LG, SY/G, SY-cG, 
SY-gW, SY-W, and SY-gCT sensors to evaluate apples. 
The electrical signals were measured at 1 s interval output 
from sensors. Principal component analysis (PCA) results 
showed little discrimination between the first stage apples 
picked before the commercial harvest criteria and the sec-
ond stage picked two days later. The last two stages were 
apparently different from the first two stages. Discriminant 
function analysis (DFA) results for E-nose data showed that 
the four groups were more diffuse after storage. According 
to the results, the two methods mentioned in the article by 
Young et al. (1999) were capable of classifying the storage 
apples into four different harvested groups. However, com-
pared with the classical way, E-nose was faster and much 
less complex.

Model Cyranose 320 E-nose, which contains an array of 
32 carbon black organic polymer composite sensors and can 
function at ambient air temperature, is also used to detect 
the apple’s maturity and defects. Cyranose 320 E-nose is 
relatively stable when exposed to water vapor. PCA, multi-
variate analysis of variance (MANOVA), and discriminant 
analysis (DA) are used to analyze three maturity indexes—
starch, puncture strength, and soluble solids—so we can 
effectively classify apples into immature, mature, and over-
mature groups. The maturity of Gala apples was detected 
by Cyranose 320 E-nose (Pathange et al., 2006). Based on 
the maturity indexes, they obtained an objective evaluation. 
From the results of PCA and DA, we found it is possible to 
categorize Gala apples into three maturity groups by using 
E-nose technology, but we need more training to improve 
E-nose’s practical applicability, such as testing in ware-
houses and monitoring the optimal harvest date.
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Two instruments, Cyranose 320 E-nose and Z-nose, 
were chosen to detect apple spoilage and its volatile profiles 
(Li et al., 2007a). Z-nose, a detecting instrument, consists 
of one capillary column and one surface acoustic wave 
(SAW) sensor. Based on the different solubility of volatile 
compounds and the different time to enter the SAW sen-
sor, the mixture could be separated in the capillary column. 
The data was detected by both instruments to analyze the 
feature-level and the decision-level multisensor data fusion 
models with covariance matrix adaptation evolutionary 
strategy (CMAES). In this way, the detection and classifica-
tion performance for damaged apples will be improved than 
when using individual instruments alone. In the feature-level 
fusion, the optimized algorithm CMAES was used for fea-
ture selection in the fusion process. Two real number coding 
methods and three feature-based fusion schemes were devel-
oped and compared. Results showed that the 48-variable 
coding slightly outperformed the 24-variable coding, when 
search quality, search efficiency, and reduced dimensional-
ity are taken into consideration and dynamic selective fusion 
performed better than the other two schemes. In the decision-
level fusion, the dynamic selective fusion model performed 
best with lower level data fusion. This research provides a 
new multisensor data fusion model to detect spoiled and dis-
eased apples. With improving detection accuracy, this model 
will have much practical application in food storage.

Cyranose 320 E-nose and Z-nose were used to detect 
deterioration in cut and uncut apples (Li et al., 2007b). In 
this research, both E-nose and GC-MS were used. GC-MS 
results showed a good performance in detecting key com-
pounds of apple aroma change between the normal apple 
and the apple exposed to artificially induced damage after 
six days. The data of E-nose and Z-nose were compressed 
by PCA and partial least squares (PLS); after that linear 
discriminant analysis (LDA) and canonical variate analy-
sis (CVA) models were developed on the compressed data. 
The results found that the volatile compounds of undam-
aged and damaged apples would change and become dif-
ferent from each other. Experiment results also showed 
that the number of cuts were related to volatile compound 
emissions, but orientation of cuts were not. Both E-nose 
and Z-nose were capable of detecting effectively. Further-
more, according to the research, the number of sensors was 
successfully reduced by 82% with improving classification 

accuracy. On the other hand, reducing the number of sen-
sors potentially shortens data processing time, reduces cost, 
and even affects accuracy.

Objective quality of “Fuji” apples was assessed by using 
three different sensors: a near-infrared spectrophotometer 
(NIR), a machine vision system (MV), and an E-nose sys-
tem (Zou et al., 2010). E-nose used in this investigation 
consists of a pattern recognition system and a gas sensor 
array containing nine tin-oxide Taguchi-type gas sensors 
manufactured from Figaro. Each sensor generated 4 kinds 
of signals, and there were 36 different signals for 9 sen-
sors. We could establish an online predicting method of the 
rotting stage with the help of an artificial neural network 
model. A decision tree that imitates the quality detection 
process of a three-sensor fusion for apple quality assess-
ment was built (Fig. 2.1). E-nose can detect whether the 
apple quality is good or not from the obtained aroma data 
analyzed by artificial neural network (ANN). NIR provides 
the sugar content; surely, it is better to fuse three sensors. 
The data of multiple linear regression (MLR) showed that 
there was a relationship between sugar content and differ-
ent NIR wavelengths. And machine vision can provide data 
of size, color, shape, and some other image information, to 
classify sweet apples. All the sensors were working at the 
same time. As a result, it demonstrated that a high level of 
three-sensor fusion technique could improve the accuracy 
of quality assessment of apples and classification.

The quality of postharvest apples was evaluated by 
means of an E-nose (Di Natale et al., 2001). This E-nose 
consisted of seven thickness shear mode quartz resona-
tors (TSMR), and detected the quality characteristics of 
 harvested apples with the frequency of 20 MHz. In this 
experiment, E-nose was used to detect defects caused by 
over-ripening (mealiness) and skin damage (cuts), but it 
was more sensitive to the presence of cuts than the mea-
liness. Data was analyzed by PLS, which was used for 
discriminant analysis (PLS-DA). Results showed that the 
increase of mealiness did not change the compounds in 
apple headspace but rather in their concentration. Higher 
concentrations due to the oxidization process in apples from 
skin cuts would produce different compounds and predicted 
the shelf life after analyzing the results.

Determining the optimal harvest date of apples by using 
E-nose was investigated in 2003 (Saevels et al., 2003). The 

TABLE 2.1 Common E-nose Model Used in Apple Detection

Model No. of Sensors Technology

Fox 2000, 3000, and 4000 6, 12, and 18 MOS sensor

PEN2, PEN3 6 MOS sensor

Cyranose 320 32 Conducting polymers

Libranose 8 QCM

TGS 9 Tin-oxide gas sensor
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harvest date was based on five different quartz microbal-
ance (QMB) sensors. However, the PCA on the date of con-
secutive years uncovered the presence of a year effect and 
the PLS was established on the date of both years, so it was 
difficult to build the right model on those results. There-
fore, according to the Streif index, if the cross-validation 
correlation attained results between 0.89 and 0.92, the pre-
diction of apple maturity would be comparably accurate. 
In addition, the soluble solids, firmness, and starch content 
could be measured on the date by using E-nose when the 
cross-validation correlation values were between 0.70 and 
0.80. There would be a good correlation between the E-nose 
detection and apple maturity; the key to this technology was 
the practical use of E-nose. Results might predict the opti-
mal harvest date of apple, but it was expensive and time 
consuming. The technique would become more practical; 
biological variability would be reduced because the sam-
ples could be detected in time.

In another experiment, E-nose and the mass spectrometry- 
based E-nose (MSE-nose) were used to evaluate apple qual-
ity during shelf life (Saevels et al., 2004). Seven QMB 
 sensors were used in Libra nose. At the same time, the results 
were compared with traditional methods such as GC-MS. In 
this experiment, apples were stored at three different stor-
age conditions, and the volatile profile would change every 
several days. Saevels found E-nose measurements showed 
no shelf-life or storage history effect by PCA. However, the 
MSE-nose and GC-MS did. Apples’ volatility was similar if 
stored at ultra low oxygen levels and controlled atmosphere 
conditions, which were different from those stored under 
regular storage. The straight-chained esters and a-farnesene 
were considered to be the main factors to be determined. 
Because the sensors were not sensitive to some differences 
in straight-chained esters of apples stored under the differ-
ent conditions, it was difficult to achieve the desired results 
by using the E-nose alone, but the GC-MS and MSE-nose 
could achieve better results. MSE-nose could offer the apple 
volatile analysis by GC-MS to predict the days of shelf 
life of the apples based on the PLS models.

The characteristics of Fuji apples from different harvest 
dates and storage conditions were detected by the GC and 
E-nose (Echeverría et al., 2004). The “Libranose” E-nose 
has seven QMB sensors with different metals, combined 
with chromatographic measurements to measure the vola-
tility components, and the results showed clear distinctions 
between the apples under the different storage conditions. 
Apples were divided into four different atmospheres, a 
normal cold atmosphere and three controlled atmospheres. 
In PCA, different sensors responded to different volatility 
components of apples under different storage atmospheres, 
the date could only identify the storage periods, days of 
shelf life, and harvest dates but it was difficult to estimate 
the different cold storage atmospheres. So combining the 
GC and E-nose will be more useful in detecting apple stor-
age problems.

The E-nose PEN2 was used to study the effect of natu-
ral antimicrobials to prolong the shelf life of apples (Siroli 
et al., 2014). This E-nose is composed of 10 temperature-
moderated metal oxide sensors (MOS); different sensors 
are sensitive to different volatile molecules. Fresh fruits 
are easily infected with microbials, which lead to a loss of 
sensory quality. In order to increase the shelf-life quality of 
apples, Siroli and Patrignani tried to use natural antimicro-
bials to replace the traditional methods. Citron EO, hexanal, 
2-(E)-hexenal citral, and carvacrol were used either alone or 
in combination. Compared with traditional methods, after 
the treatment, the apples were packaged in medium perme-
ability bags and stored at 6°C. Then E-nose was used to 
determine color and texture analysis. On the basis of PCA 
analysis, the results showed that apples treated with the 
combination of those natural antimicrobials would result in 
good retention of many desirable qualities.

An innovative technology was used to investigate the 
microstructure and olfactory quality of apples through 
PEN3 E-nose commercially produced by Airsense Com-
pany (Airsense Analytics GmbH, Germany). It combined 
the Win Muster and Airsense Analytics (Airsense Analyt-
ics GmbH, Germany) to analyze the olfactory quality of 

FIGURE 2.1 Decision tree for the assessment of the final quality of apples by three sensors.
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apples (Laurienzo et al., 2013). In this experiment, Lau-
rienzo and coworkers wanted to take advantage of natural 
polysaccharides to replace the classical method of dehy-
dration of apples. An environmental scanning electron 
microscope (ESEM) was used to detect structural changes, 
and E-nose was used to detect olfactory characteristics 
about different dried apples. With the different biofilms, 
differences in microstructure of the dehydrated apples 
were found. The packaging with different biofilms also 
influenced the volatility of apples. Hence, the most intact 
cell walls have better retention of olfactory properties, and 
good methods should not damage the cell walls, and the 
olfactory quality of dehydrated apples should be close to 
those of fresh apples.

Almost all of the apple analysis methods using E-nose 
are usually combined with instrument analysis methods, 
such as GC, GC-MS, and high-performance liquid chroma-
tography (HPLC). But these methods exhibit some disad-
vantages because they incur high costs and are time con-
suming. In our experiment, we used the home-made E-nose 
to investigate the apple storage time at room temperature 
(Hui et al., 2013). The E-nose system included three main 
parts: data acquisition unit, sensor array unit, and power 
supply unit. The sensor array consisted of eight semicon-
ductor gas sensors.

Although the PCA method could distinguish the fresh 
and medium apples from overripe apples, it is hard to dis-
criminate between fresh and medium apples. So a new 
method, the signal-to-noise ratio (SNR) spectrum, was 
calculated using stochastic resonance (SR). The prediction 
model of apple storage time was established by the SNR 
maximums (max-SNR) method. The error rate of this model 
was less than 10%. The equation of storage time prediction 
of apple could be described as:

ξ= − + +dx

dt

dV x

dx
MI t C t

( )
( ) ( )

The graphical illustration of SR processing is shown in 
Fig. 2.2.

Experimental results demonstrated that the predicting 
accuracy of this model is 84.62%. This method showed 
many advantages, including easy operation, rapid detection, 

a bargain price, and good repeatability. In fruit quality 
determination, this technology revolution would become 
widely popular.
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Chapter 3

Electronic Nose in Dairy Products
M.T.S.R. Gomes
CESAM & Department of Chemistry, University of Aveiro, Aveiro, Portugal

3.1 INTRODUCTION

Milk is the raw material used in the manufacture of several 
food products. Milk varies with the animal source, its sea-
sonal feeding, and hygiene conditions. It is a highly perish-
able good, and its quality must be controlled from collec-
tion to transport and storage. Milk can be consumed after 
several heat treatments but it can be transformed into many 
other products such as butter and cheese. Off-flavor odors 
are known by consumers as the first alarm signal linked to 
spoilage, and adjectives as sour and rancid are well known. 
Besides being used to detect quality problems, smell is also 
a source of pleasure, and of recognizing familiar quality 
products. Electronic noses can be seen as devices that help 
to achieve product quality certification and classification.

3.2 CHEESE ODOR

Most of the best cheeses are stinky. J.K. Jerome (2009) told 
a hilarious story about a man who sent two cheeses to his 
family. After a journey during which travellers tried to run 
away from the smell, the cheeses were delivered to his wife 
with the recommendation of not eating them before his re-
turn. His wife and children could not stand the smell and 
moved to a hotel, while the charwoman, who was not able 
to perceive the malodor, remained in the house. Later, the 
man tried to get rid of the stinky cheeses, and after a few 
damping locations had been tried, always with complaints 
from the locals, the man buried the cheeses on the beach of 
a seaside town, which gained quite a reputation. Visitors 
commented the strength of the town’s air, and it became 
famous among lung patients. This story shows that the de-
gree of odor perception is not the same for everybody, but 
also that its hedonic component varies according to the cir-
cumstances: What was unpleasant during the journey and 
disgusting on the atmosphere of a house becomes highly 
valuable when linked to health curative properties. This has 
been scientific proven by investigators, who reported that 
subjects rated a test odor more unpleasant when labeled 
as “body odor” than when labeled “cheddar cheese” (De 
Araujo et al., 2005).

There are many stinky cheeses but what is not common 
is to throw them away because of their smell. The smell 
of a camembert is not a fragrance we would like to spread 
throughout the entire house, but it does not repel its many 
lovers. In fact, a consumer would become suspicious in the 
presence of an odorless specimen.

What influences cheese odor? Basically, to prepare a 
cheese, milk is left to become sour, casein aggregates, a gel is 
formed, and whey is separated. So, at first, there is milk from 
cow, ewe, goat, buffalo, camel, or mare. Besides the animal, 
its feed influences the milk’s flavor. Milk for cheese making 
can be raw or pasteurized. Renneting of the milk means the 
addition of enzymes, from animal (eg, extract of calf stomach) 
or from vegetal sources (eg, extract of Cynara cardunculus 
L.), acid, or both. Microorganism cultures, mainly starters of 
lactic acid bacteria, can be added to milk, which becomes es-
pecially important if milk has been pasteurized. The composi-
tion of starter and other microorganisms added depend on the 
type of cheese. Whey is separated (syneresis) and removed. 
With the exception of some fresh cheeses, NaCl is added. 
Ripening or maturation during storage is responsible to large 
biochemical, microbial, chemical, and physical changes, dur-
ing which a great number of flavor compounds are formed. 
In some types of cheese, there are a flora of yeasts, bacteria, 
and molds developing on the rind (Walstra et al., 1999). Tem-
perature and time on each stage of the process alter the final 
product and flavor. The rinds of some cheeses are sometimes 
washed often during ripening with brandy, port, beer, or salt 
water. The particularly pungent smell of the Vieux-Boulogne 
is attributed to its washing with beer.

3.3 ODOR AND CHEMICALS

Analytical instruments can be used to identify volatiles. 
However, not all volatiles are aroma active, or important to 
the human perception of odor. On the other side of the scale, 
we can find mercaptans, from which as few as 40 molecules 
can be enough to produce a strong emotional response.

It is difficult to classify odors based on chemical prop-
erties of molecules. Types of molecules within each odor 
quality can vary much in structure, and identical molecules 
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can display significant odor differences. Enantiomers may 
or may not show differences in odor quality (Schiffman and 
Pearce, 2003).

Odor sensations are often produced not by a single com-
pound but by mixtures where the number of compounds 
easily reach several hundreds. Human capacity to distin-
guish individual compounds from mixtures is however lim-
ited (Schiffman and Pearce, 2003).

Therefore, most odor sensations are produced by mix-
tures of compounds and cannot be attributed to a single one 
(Schiffman and Pearce, 2003). An extensive vocabulary ex-
ists of adjective descriptors, general, as well as specific, to 
a particular field of application.

3.4 ODOR EVALUATION

Consumers have their own odor evaluation system, and 
their own relation between their sensations and product 
quality. Their perception is a combination of physiologi-
cal and memory responses (Croissant et al., 2011) but can 
by no means be ignored. Companies also have their sen-
sory analysis, often mainly oriented to defect detection, but 
also with a component of satisfaction, and where the sim-
ple statement that the product smells to what it is, is by no 
means irrelevant. An inodorous product is regarded as junk 
food. Human judging, even when based on rigid protocols, 
is subjective. Attempts to turn sensory evaluation objective 
included the adoption of a sensory language, protocols for 
recruiting the panelists, and their training. Even so, people 
get tired and are influenced by their state of mind.

Scaling in sensory analysis is possible but it is gener-
ally product specific. The use of a universal intensity scale 
requires longer training (Croissant et al., 2011). The combi-
nation of human nose with gas chromatography (GC-O) al-
lowed adding compound identity information in an attempt 
to understand their significance to the aroma. The human 
sniffer evaluates the aroma as it is eluted from the chro-
matographic column. The use of humans as sniffers leads to 
inconsistencies in smell perceptions, but there are other dif-
ficulties as detection limits are different for instrument and 
humans, possible coelution of poor resolved compounds, 
hot and dry gases at the exit of the GC detector dry the nasal 
mucosa, and the odorants from plastic components interfere 
(Schiffman and Pearce, 2003). Some corrections to these 
problems have been attempted by humidifying the gases 
and eliminating background odors.

3.5 ELECTRONIC NOSE

The electronic nose represents the ultimate attempt to have 
a human-independent evaluation of odor. It is intended to 
identify a mixture of compounds as a whole. It is not in-
tended to identify individual chemicals. It is constituted by 
an array of sensors sensitive to the chemicals of interest, 

but that do not need to be selective. Mainly sensors based 
on metal oxide semiconductors (MOS), metal oxide semi-
conductor field effect transistors (MOSFET), conductive 
polymers (CP), but also acoustic sensors, bulk acoustic 
wave (BAW), usually also named quartz crystal microbal-
ances, and surface acoustic wave (SAW), have been used 
for dairy product evaluation. Arrays including different 
transducers (hybrids) have also been assembled. The instru-
ment is also composed of a sampler, or a sampling introduc-
tion system, and a data processing unit. Pattern recognition 
techniques have been employed to analyze electronic nose 
data. Statistical packages can be helpful for some common 
conventional statistical methods, such as principal compo-
nent analysis (PCA), partial least square (PLS), discrimi-
nant function analysis (DFA), including linear discriminant 
analysis (LDA), cluster analysis, or artificial neural net-
works (ANN).

Most of the electronic noses that can be found in the 
literature do not fit into the previous description, and are 
composed of mass spectrometers hyphenated with gas chro-
matographs. The philosophy behind such instruments is 
much different, as they discriminate chemical compounds 
according to their elution time and the mass-to-charge ratio 
of the molecular ions and their fragments. It is unquestion-
able that after treating the results, differences in odors can 
be found, although many of the detected compounds can be 
irrelevant in terms of smell. Although more than 600 vola-
tile compounds have been identified in cheese, the most 
abundant have little or no odor significance (Curioni and 
Bosset, 2002). Authors speak about the “hijacking” of the 
electronic nose designation from the mass spectrometers 
based systems (Mielle, 1996). Gardner and Bartlett (1994) 
defined an electronic nose as “an instrument, which com-
prises an array of electronic chemical sensors with partial 
specificity and an appropriated pattern recognition system, 
capable of recognising simple or complex odours.” In or-
der to avoid misinterpretation, there are manufacturers of 
electronic noses, devices within the classical Gardner defi-
nition, who are changing the name of their instruments to 
“sensors array technology” (Mielle, 1996).

The ultimate performance of the device depends on all 
its components, and not only on sensors. They are, how-
ever, the heart of the device and must be carefully chosen. 
The previous knowledge on aroma chemical constitution 
and on their role in aroma perception is by no means ir-
relevant and should be considered on its development. 
Sometimes a compound is known to be linked to a specific 
process and for this particular application the electronic 
nose can be replaced by a single selective sensor for that 
target compound. There are also complex processes, as for 
instance rancidity development in butter, where, despite the 
many compounds evolved during the process and present in 
different ratios along the process, a single sensor sensitive 
to many of them was able to follow rancidity development 
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and to  detect distinct phases, perceived by sensory panelists 
(Gaspar and Gomes, 2012). However, it is not uncommon 
that an electronic nose is used when a marker compound 
has been identified, as a selective sensor is hard to develop 
and often not available (Bargon et al., 2003).

The choice of the sensors is critical as they must respond 
to those variables responsible for the differences between 
the specified classes, while for instance their sensitivity to 
humidity should be minimized, as well as drift along time. 
Too many sensors to classify a small number of samples is a 
dangerous situation to which Goodner et al. (2001) alerts, as 
overfitting can create artificial differentiation due to noise.

There are many different prototypes of artificial noses. 
However, consumers need a fully specified instrument, with 
formal specifications concerning analytical figures of merit 
as sensitivity, selectivity, repeatability, and methodologies 
(Mielle, 1996), available for most classical analytical in-
struments. Besides, consumers and inspectors want a “black 
box” able to automatically acquire and interpret data, in or-
der to obtain a rapid classification of the product (Mielle 
et al., 2000). This means a tailored instrument that responds 
to selected questions such as: “Is this cheese made of ewe 
milk?” “Is this a S. Jorge cheese with a cure of 7 months?” 
“How bitter is this cheese?” “Is this cheese produced from 
raw or pasteurized milk?” “Is the rennet vegetal?” “Does 
this odor pattern conform to the specified denomination of 
origin, or is this a fraud?” while industry may want to test 
for differences in smell pattern induced by process changes, 
or look for defects.

3.5.1 Sample Introduction 
and  Preconcentration

Handling and delivery systems can be static, or based on a 
controlled carrier gas which assures a constant flow through 
the entire instrument. Static systems are based on sensor 
readings after a steady-state value has been attained, while 
flow injection systems can use shorter cycles because equi-
librium does not need to be reached, and most important, 
it needs not to be assured. Flow systems are most conve-
nient for sensors, due to their simplicity and short measur-
ing cycles.

Dairy samples have complex matrices, and, for elec-
tronic noses, solvent extraction has been replaced by head-
space analysis. Headspace sampling can be performed 
by admitting a carrier gas to the sample container, which 
drives the vapor to the sensors. With short vapor pulses, it 
is possible to ignore changes in the concentration profile 
 (Nakamoto, 2003). Static headspace involves the sample 
equilibration in a sealed container at controlled tempera-
ture and syringe withdraws through a septum. Dynamic 
headspace, also termed purge and trap (Sides et al., 2000), 
allows the continuously stripping of volatiles by an inert 
gas, and its enrichment in an inert trap. Porous traps such 

as Tenax can be used. Most convenient is the use of a solid-
phase microextraction (SPME) fiber in the headspace of a 
vial containing a known amount of sample, at controlled 
conditions (temperature and stirring rate), for a defined pe-
riod of time. Later compounds are thermal desorbed from 
the stationary phase coating the fused-silica fiber, and 
carried by a neutral flowing gas to the sensors. Although 
SPME could also be used in the direct extraction mode, 
their use in the headspace mode is generally necessary with 
high complex matrices that could damage the fiber. Fiber of 
appropriate polarity and film thickness should be selected, 
and mixed phase coatings are most appropriate. Pérès et al. 
(2001) compared four fibers of different composition used 
in the analysis of volatiles from Camembert, and concluded 
that Carboxen (CAR)/polydimethylsiloxane (PDMS) fiber 
showed particular affinity for the extraction of sulfur com-
pounds and short fatty acids, while PDMS/divinylbenzene 
(DVD) fiber was more efficient than CAR/PDMS fiber to 
extract hexanoic and octanoic acids. DVD/CAR/PDMS fi-
bers are difficult to produce and, according to Pillonel et al. 
(2002), they are sometimes delivered with visible fissures 
in the coating. Sample headspace should be kept as small 
as possible (Sides et al., 2000; Pillonel et al., 2002) in order 
to favor adsorption on the fiber and extraction yield. Tem-
perature should be carefully controlled and chosen, in order 
to avoid artifacts.

3.5.2 Sensors and Sensors Layout

MOS, MOSFET, CP, BAW, or SAW sensors all have their 
advantages and drawbacks. Briefly, MOS and MOSFET sen-
sors operate at high temperatures. MOS sensors can show a 
very good ratio of drift and lifetime in respect to sensitivity, 
but they lack selectivity, and above all, selectivities are not 
very different between different MOS sensors. Besides, they 
are subject to poisoning (Schaller et al., 1998), and precision 
is poor (Wilson and Baietto, 2009). Sensitivity of CP sensors 
is generally one order of magnitude lower than the sensitiv-
ity of MOS sensors (Wilson and Baietto, 2009), but their 
major drawback is their instability (Schaller et al., 2000). 
BAW or SAW sensors can be coated with a huge variety of 
materials, which makes them the best choice in terms of se-
lectivity. Precision is good. However, acoustic sensors usu-
ally require higher volatile concentrations than the other sen-
sor types (Schaller et al., 1998). Integration of different types 
of sensors can be appealing, but it is not much used.

Temperature or humidity changes may lead to drift. 
Causes for drift depend on the type of sensor. It may be 
wise not to include sensors with large variability on the ar-
ray. A sensor with sensitivity to the compounds of interest 
close to zero but with significant noise should be discarded 
because it will degrade the array performance. On the other 
hand, the array should include sufficient sensor diversity in 
order to achieve the desired discrimination.
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Often all sensors are within the same cell and the flow 
carrying the sample will reach each sensor in sequence. 
Fig. 3.1 shows schematically such an arrangement and an 
alternative one, where each sensor is independently housed 
and the flow is divided and directed to each sensor. This 
parallel arrangement allows decreasing cell dimensions 
and optimizing its layout in order to increase sensitivity 
 (Fernandes and Gomes, 2008). Sensitivity is generally re-
garded as independent of position (Nakamoto, 2003), but 
sensitivity of the sensors do depend on their position be-
cause flow division is often uneven as there are preferred 
positions dictated by flow constraints. The layout where 
sensors are located in a series is more common than the par-
allel arrangement, and probably is the layout found in most 
devices whenever nothing is said about layout.

3.6 ELECTRONIC NOSES FOR DAIRY 
PRODUCTS: AN OVERVIEW

Table 3.1 lists a wide selection of the most representative 
electronic noses applied to dairy products and published in 
the literature.

Quality control must start with milk analysis, or even be-
fore, by inspecting animal health. A sampling method to col-
lect the breath of cows has been reported by  Elliott-Martin 

et al. (1997). Those samples were analyzed by a commercial 
electronic nose, with six MOS sensors, and classification of 
cows as healthy or ketotic was correctly predicted in 34 out 
of 38 samples. Electronic noses have also been developed to 
detect bacterial contamination in milk (Magan et al., 2001; 
Sivalingam and Rayappan, 2012; Ali et al., 2003; Korel and 
Balaban, 2002), milk aging, and other problems respon-
sible for off-flavor (Sivalingam and Rayappan, 2012), not 
always successfully (Ali et al., 2003). An electronic nose 
was proposed to determine milk shelf life, based on bacteria 
growth (Labreche et al., 2005). Mastitis is common in dairy 
cows and Eriksson et al. (2005) used a hybrid commercial 
e-nose based on MOSFET, and MOS sensors, and one IR 
CO2 sensor, to discriminate between milk from healthy and 
mastitic cows. Rancid milk (Capone et al., 2000, 2001) and 
also the separation in UHT and pasteurized milk (Capone 
et al., 2001) have been achieved with four or five SnO2 
sensors, although eight BAW coated with porphyrins (Di 
Natale et al., 2000) were also able to detect spoiled milk 
but not to distinguish between UHT and pasteurized milk 
samples. Separation of UHT commercial milk samples 
in normal and anomalous odor was achieved by 10 MOS 
sensors and linear discriminant analysis (Brambilla and 
 Navarotto, 2010). Seasonal variation of milk has also been 
discriminated (Biolatto et al., 2007), as well as synthetic 
milk flavorings from natural milk flavorings and enzyme-
induced milk flavoring (Wang et al., 2010). An electronic 
nose was able to recognize milk products from a particular 
dairy and products with different fat content (Brudzewski 
et al., 2004). Electronic noses have also been used in qual-
ity control of specific products, for instance, to assure that 
the aroma from formula milk is not significantly different 
from the aroma of breast milk (Li et al., 2009). A commer-
cial electronic nose was used not only to discriminate milks 
but also culture dairy products (Collier et al., 2003). Block 
milk is obtained by heating and drying mixtures of milk and 
sugar and it is used in the production of chocolate. Flavor 
components are formed via Maillard reactions and flavor 
depends on the processing. A commercial electronic nose 
composed of 12 conductive polymer-coated sensors was 
used to distinguish between different intermediate prod-
ucts obtained during the block milk processing (Zondervan 
et al., 1999).

Cultured cream butter, sweet cream butter, and cul-
tured butter from sweet cream were differentiated by an 
electronic nose composed of 10 MOS sensors (Lorenzen 
et al., 2013). A different approach was used to follow butter 
rancidity because a single BAW-coated sensor, sensitive to 
all the volatile compounds identified by GC/MS (Gaspar 
and Gomes, 2012), was much more effective on following 
the different stages of butter deterioration. The success of 
the sensor, apart from its sensitivity to all the compounds 
of interest, is mostly due to its relative sensitivities to the 
evolved compounds, since it is more sensitive to minor 

FIGURE 3.1 Sensors arrangement in series and parallel.
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TABLE 3.1 Overview of Electronic Noses Collected from the Literature

Sensor 
Type

No. of 
Sensors

Sample 
 Introduction Layout Commercial

Data 
 Processing Purpose References

MOS 6 Samples collected 
by an especially 
designed breath 
sampler

Series Yes PCA, CA Discriminate cows 
with ketosis

Elliott-Martin 
et al. (1997)

CP 14 Headspace flushed — Yes DFA, CA, 
PCA, ANN

Separate 
unspoiled from 
microbial spoiled 
milk

Magan et al. 
(2001)

MOS 4 Sensors 3 cm 
above milk surface

No, Taguchi 
sensors and a 
ZnO home-
made

PCA Milk quality 
control by 
detecting off-
flavor

Sivalingam 
and Rayappan 
(2012)

BAW 6 Headspace 
sampling by 
plunging a syringe

Series No PCA Discriminate 
contaminated 
milk

Ali et al. 
(2003)

CP 12 Headspace — Yes DFA Classification of 
milk according to 
microbial counts

Korel and 
Balaban 
(2002)

MOS 18 Headspace 
injection

— Yes Norms 
of  sensor 
responses, PCA

Milk shelf life Labreche et al. 
(2005)

CP 28 Headspace and 
stopped flow

— Yes LDA Grouping milks 
by the season

Biolatto et al. 
(2007)

MOSFET, 
MOS, IR 
CO2

10 MOS-
FET, 12 
MOS, 1 IR

Headspace after 
incubation at 60°C

— Yes DPLSR, ANN Separation of 
healthy milk from 
mastitic cow milk

Eriksson et al. 
(2005)

MOS 4 or 5 Headspace 
stripping

Series No PCA Separation 
of UHT and 
pasteurized milk; 
separation by 
rancidity levels

Capone et al. 
(2000, 2001)

BAW 8 Headspace 
injection

Series No PCA Separation of 
spoiled milk sam-
ples; not able to 
separate UHT and 
pasteurized milk

Di Natale 
et al. (2000)

MOS 10 Headspace flushed — Yes PCA, LDA Separate UHT 
milk in normal 
and anomalous 
odor

Brambilla and 
Navarotto 
(2010)

MOS 7 Headspace flushed Series No, Taguchi 
sensors

PCA, SVM 
neural net-
work

Separate milk 
from different 
dairies, and by fat 
content

Brudzewski 
et al. (2004)

MOS, CP 16 (11 
selected)

Headspace 
injection

— Yes PCA Evaluate differ-
ence in aroma 
between formula 
and breast milk

Magan et al. 
(2001)

MOS — Headspace 
injection

— Yes CA Discriminate 
among milks and 
among yogurts

Collier et al. 
(2003)

(Continued )
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Sensor 
Type

No. of 
Sensors

Sample 
 Introduction Layout Commercial

Data 
 Processing Purpose References

MOS 18 Headspace injec-
tion

Series 
in three 
chambers

Yes PCA Differentiate 
between 
synthetic, natural, 
and enzyme milk 
flavoring

Wang et al. 
(2010)

CP 12 Dynamic 
headspace

— Yes ANN, PCA Distinguish differ-
ent intermediate 
products dur-
ing block milk 
 processing

Zondervan 
et al. (1999)

MOS 10 Headspace flushed — Yes PLS-LDA Differentiate 
butter type

Lorenzen 
et al. (2013)

BAW 1 SPME Parallel No Response plot Rancidity of 
butter

Gaspar and 
Gomes (2012)

BAW 2 SPME Parallel No Response plot Discriminate milk 
origin and animal 
renneting

Pais et al. 
(2015)

MOS 6 Headspace flushed Sensors in 
one cell

No, Taguchi 
sensors

DFA Discriminate milk 
origin

Haddi et al. 
(2010)

BAW 4 SPME Parallel No Dendrogram/
response plot

Ewe milk cheese, 
mozzarella, 
Flamengo and 
Brie, Gruyère

Pais et al. 
(2012)

MOS 12 FIA — Yes PCA Modeling 
ripening

Trihaas et al. 
(2005)

CP 14 FIA — Yes PCA Classification in 
ripening stages

Trihaas and 
Nielsen 
(2005a,b)

MOS 8 (3 
optimum 
number)

Headspace 
injection

— Yes PCA Classification 
in commercial 
cheeses—grader 
classes

O’Riordan and 
Delahunty 
(2003a,b)

BAW 12 (1 un-
coated), 6 
are enough

Volatiles were 
pumped

Series No — Ripening stage Bargon et al. 
(2003)

MOSFET 
and MOS

10 
MOSFET, 
12 Taguchi

Headspace injec-
tion

Series Yes PCA, LDA Separation into 
fresh, aged, and 
very aged classes

Benedetti 
et al. (2005)

BAW, MOS-
FET, CP, 
MOS

12 CP + 8 
MOS, 6 
BAW, 10 
MOS-
FET + 5 
MOS

— — Yes, MOS 
sensors were 
the most 
sensitive, but 
suffer from 
poisoning.

— Ripening stage Schaller et al. 
(1999)

MOS 6 Headspace injec-
tion

— Yes ANN Classification of 
Pecorino cheeses 
according to 
ripening and 
manufacture 
technique

Cevoli et al. 
(2011)

MOS 6 Headspace flushed Series Yes CA Test for differ-
ences in cheeses 
when ewes were 
fed with linseed 
enriched diets

Branciari et al. 
(2012)

TABLE 3.1 Overview of Electronic Noses Collected from the Literature (cont.)
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volatiles that become important at a later stage of rancid-
ity development, than to the most abundant compounds that 
increase significantly their concentration at the right begin-
ning of the process. Being composed of a single sensor, it 
cannot be called an electronic nose.

Cheeses are produced from milk from different animals, 
and even from mixed milks from two animal species. Ewe 
milk cheeses tend to be more expensive than cow milk 
cheeses and there is a need to detect frauds. An electronic 
nose based on two piezoelectric quartz crystals coated with 
Carbowax 20M and copper phthalocyanine, respectively, 
was able to distinguish cheeses produced from ewe, goat, or 
cow milk (Pais et al., 2015). This discrimination is based on 
the different composition of volatiles that were adsorbed on 
an SPME fiber and afterward desorbed in an oven and car-
ried by a nitrogen flow to a valve which split and distributed 
the gaseous stream to the sensors. A conventional gas chro-
matogram of the volatiles desorbed from the SPME fiber 
could be used to make the same discrimination after plotting 
the first and third principal components obtained from the 
areas of the peaks corresponding to 50 detected compounds 
(Gomes et al., 2014). An array of six Taguchi MOS sensors 
has already been used with success to discriminate cheeses 
made from goat and cow milk and from mixtures (Haddi 
et al., 2010). In order to evaluate the shelf life of Crescenza 
cheese, an Italian soft cheese, an electronic nose with 22 sen-
sors, 10 MOSFETs, and 12 Taguchi MOS sensors was used 
with linear discriminant analysis (LDA) to classify cheeses 
into fresh, aged, and very aged (Benedetti et al. 2005).

Cheese can be produced from raw milk, or from pasteur-
ized milk, which offers extra protection to the consumer. 
Serra da Estrela cheese, a renowned Portuguese cheese bear-
ing the status of “protected designation of origin (PDO),” is 
produced from raw milk without the addition of any starter 
and it is sold after a typical ripening period of 45 days at 
temperatures of 10°C, conditions at which most pathogen 
microorganisms cannot survive. Although no health prob-
lems have been registered due to this cheese consumption, 
the theme is controversial and the cheese faces some con-
straints to be consumed in Brazil, where cheeses from raw 
milk cannot be produced. Attempts to produce this cheese 
from pasteurized milk results in a product organoleptically 
less appealing (Macedo et al., 1993), which does not hold 
the PDO label. The content of several ketones, and among 
them 2-heptanone, aldehydes, and sulfur compounds has 
been shown to increase with heat treatment of cow’s milk 
(Hougaard et al., 2011). However, the volatile profile of a 
farmhouse Halloumi-type cheese produced with raw milk 
was enriched in relation to the cheese made from pas-
teurized milk and the majority of volatiles, except for the 
previously mentioned compounds, namely aldehydes and 
sulfur compounds, were more abundant. The enhanced 
volatile compounds were mainly acids, alcohols, and esters 
(Hayaloglu and Brechany, 2007).

Important changes in flavor occur during cheese matu-
ration (McSweeney and Sousa, 2000; McSweeney, 2004). 
Flavor and texture depends on the breaking down of fat and 
protein by complex biochemical reactions. The extent of 
changes depends on pH, moisture, salt, temperature, and 
starters present. Cheeses from raw milk ripen more quickly 
than cheeses from pasteurized milk (Cabezas et al., 2007). 
Besides, there is a geographical variability in microbial 
composition of cheeses produced from raw milk (Cabezas 
et al., 2007). Trihaas et al. (2005) and Trihaas and Nielsen 
(2005a,b) followed the volatile composition of Danish blue 
cheese during ripening and tried to classify the cheeses 
by ripening stage, both by GC/MS and with an electronic 
nose. The authors used commercial e-noses, either based 
on 12 MOS sensors (aFOX-300) (Trihaas et al., 2005), or 
14 conducting polymers (BH-114: Bloodhound Sensors 
Lda) (Trihaas and Nielsen, 2005a,b). Analyses on the e-
nose were conducted by flow injection. The classification is 
complicated due to the fact that volatiles are both being pro-
duced and decomposed during ripening, but classification 
was as successful with the e-nose based on the conducting 
polymers as with the GC/MS data. Bargon et al. (2003) fol-
lowed the ripening stage of Emmental cheese, which they 
associate to the evolution of 2-heptanone, with an electronic 
nose composed of 12 BAW sensors, one of them uncoat-
ed and used as a reference. One of the sensors is particu-
larly sensitive to the target compound, and six sensors are 
enough to discriminate between Emmental cheese ripened 
at 3, 8, and 12 months. Previously, Schaller et al. (1999) 
have tested some commercial electronic noses to discrimi-
nate Emmental cheeses with different ripening time, and 
BAW sensors used were insensitive to the differences. The 
MS system showed a very low sensitivity. MOSFET or CP 
sensors did not give good discrimination. The most effi-
cient sensors were the MOS sensors, in spite of suffering 
from poisoning. Schaller and coworkers complained about 
the many technical problems of the available instruments. 
Pecorino cheeses have been classified according to their 
ripening time and manufacturing techniques by a commer-
cial array of six MOS sensors and an artificial neuron net-
work (Cevoli et al., 2011). Cevoli and coworkers claimed to 
have obtained best results with the e-nose rather than with 
SPME-GC/MS. No differences in Peccorino cheese vola-
tiles produced from milk of ewe fed with a normal diet and 
with a diet enriched with extruded linseed have been de-
tected by an electronic nose composed of six MOS sensors 
(Branciari et al., 2012).

Milk coagulation can be made by adding an acid, or 
a rennet. Rennet can have an animal origin, like the one 
obtained from the calf stomach, or a vegetable origin, like 
the one obtained from the thistle flowers of Cynara L., or 
a microbial origin. Proteolytic activity of those rennets var-
ies and even differs according to the animal species from 
which the milk comes (Macedo et al., 1993). Moreover, 
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the enzymes vary in activity among the thistle species 
(Fernández-Salguero and Sanjuán, 1999). Pais et al. (2015) 
succeeded in separating cheeses made with animal rennet 
from cheeses made with other rennets, with the electronic 
nose used to separate cheeses according to the milk origin. 
Coagulation kinetics can be also followed with an uncoated 
piezoelectric quartz crystal (Pais et al., 2015).

GC-O analysis of several cheeses showed that only a 
small number of the many volatile compounds contributes 
significantly to their flavor (Curioni and Bosset, 2002). 
It has been pointed out that the main differences among 
cheese varieties is related to quantitative differences, but 
not related to the concentration of a particular compound, 
rather than on a balance or weighted ratio of the compo-
nents (Curioni and Bosset, 2002). Pais et al. (2012) were 
able to distinguish ewe milk made cheeses from the others 
with two sensors, whereas two other sensors could separate 
three classes of cheeses: mozzarella, Flamengo and Brie, 
and Gruyère, among several other cheeses, irrespectively of 
the place where they have been produced. Ten BAW sen-
sors were used in this work; however, at last, it was found 
that only four of them were useful. Shredded-type pizza 
cheese, Cheddar cheese, mozzarella block cheese, and 
white mold-ripened cheese were separated by applying a 
principal component analysis to the data obtained by mass 
spectrometry (Hong et al., 2012).

O’Riordan and Delahunty (2003a,b) used an electronic 
nose to classify Cheddar cheeses in classes consistent to 
grader commercial practices.

3.7 CONCLUSIONS

There is a great interest for handheld instruments that re-
spond to simple questions posed by food inspectors, general 
consumers, and the dairy industry. Commercial electronic 
noses are designed for general-purpose use and besides se-
lectivity and sensitivity of the sensors in the array do not 
match the needs for a particular application. They include 
redundant sensors, and systems are not fully automated, 
with data processing and statistical analysis to be performed 
by the users. This prevents their widespread use, due to lack 
of successful discrimination of samples and the need of 
skilled operators.

Although the ideal situation would be to have dedi-
cated instruments to perform a particular task, a review of 
the scientific literature shows that, even among scientific 
investigators, most used instruments that are commercial, 
and there are not many scientists building tailor-made e-
noses. Not surprisingly, Taguchi sensors dominate the ap-
plications. Some authors blame the lack of interest of the 
dairy industry to be only interested in mass production and 
not interested in the food industry (Mielle, 1996).

Chemical sensors’ complexity is obvious when we com-
pare with physical sensors and look for their widespread 

in industry and for personal use. Even the most successful 
sensor in the chemical history, the pH electrode, needs fre-
quent calibration. There is a lack of a variety of long-term 
reliable sensors, with low power consumption and with 
sensitivity and detection limits at the level of the human 
nose. The obvious conclusion is that electronic noses did 
not reach their maturity in terms of technological develop-
ment. Mielle’s concerns, as expressed in 1996, that this ma-
turity may not be reached in a short time, is still to come 
(Mielle et al., 2000). In spite of the increasing number of 
publications with electronic noses devoted to dairy product 
classification, there is still no cheap, reliable, foolproof in-
strument available.
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4.1 INTRODUCTION

Coffee is produced from ground-roasted beans with an 
aroma and taste that makes it one of the most popular 
beverages in the world (De Maria et al., 1999). In terms 
of financial value, coffee is the most important agricul-
tural commodity after petroleum (Sunarharum et al., 2014). 
An interesting feature of coffee is the fact that the bever-
age does not have relevant nutritional value, being con-
sumed basically for the stimulatory effect, related to the 
presence of caffeine, and for its pleasing aroma and taste 
(Grosch, 2001). Besides these two fundamental attributes, 
aroma remains the most important consumer parameter and 
warrants thorough investigation from a sensory and compo-
sitional perspective (Sunarharum et al., 2014).

4.2 COFFEE VOLATILE COMPOSITION

The aroma of coffee is formed by an extremely complex 
mixture of numerous volatile compounds that exhibit many 
qualities, different levels of intensity, and different con-
centrations. In this way, the contribution of each of these 
volatiles to the final aroma of coffee is quite varied and 
may also occur as antagonistic and synergistic interactions 
between these different compounds (Moreira et al., 2000). 
The chemical composition of the green coffee bean is quite 
complex and dependent on several factors, such as species, 
cultivars, provenance (climate, soil type, altitude, etc.), 
and agronomic practices (Farah, 2009; Link et al., 2014). 
Table 4.1 illustrates the difference between the chemi-
cal composition of the species Coffea arabica and Coffea 
canephora, which are predominantly used by industry. The 
compounds already present in the bean will be precursors 
for new compounds, which are extremely important for the 
typical aroma of the final beverage (De Maria et al., 1996).

The aroma of green coffee beans is very weak and even 
difficult to be detected by an electronic nose (Rodríguez 
et al., 2010). Therefore, roasting is fundamental to obtain 
the typical coffee aroma. Different time–temperature his-
tories lead to distinct aroma compound profiles, thus a 

 precise control of roasting parameters is required  (Schenker 
et al., 2002). Roasting is induced into the green beans by 
heat energy, hot gases, or hot metallic surfaces from the 
roaster. The first roasting stage is a drying phase, evi-
dently endothermic, during which moisture is eliminated. A 
majority of aroma compounds show the highest increase in 
concentration with bean water content from 2 to 7% (wb). 
The smell of the beans changes to bread-like and the color 
turns yellowish. In the second stage, the actual roasting 
phase, a number of complex pyrolytic reactions starts at 
160°C and peaks at 210°C. These reactions are interrupted 
at the desired point based on the color of the bean or the 
programmed time. The chemical composition of the beans 
is drastically modified, with the release of large amounts 
of carbon dioxide and the formation of many hundreds of 
volatile substances. The ground roast coffee may be avail-
able on the market in different roasting degrees, varying 
in color from very light to very dark (Buffo and Cardelli-
Freire, 2004; Eggers and Pietsch, 2001; Farah, 2009). 
Some of the major volatile groups that impact the aroma of 
roasted coffee and their respective precursors are presented 
in Table 4.2.

Studies on the role of volatiles are very complex because 
different concentrations of the same component could lead 
to diverse sensory characteristics. Therefore, the determi-
nation of the concentration and perception thresholds of 
 volatile compounds in coffee has been shown to be an ardu-
ous task (Mello and Trugo, 2003). The main chemical reac-
tions that occur during roasting include Maillard reactions 
(nonenzymatic browning); phenolic acid and carotenoid 
degradation; Strecker degradation; breakdown of sulfur 
amino acids, hydroxy-amino acids, proline, and hydroxypro-
line; degradation of trigonelline, chlorogenic acids, quinic 
acid, pigments, and lipids; as well as reactions between 
other intermediate products ( Sunarharum et al., 2014). 
Roasting the beans from light to dark increases the sulfu-
rous/roasty, earthy, and smoky notes in the aroma profile 
( Grosch, 2001). Due to variability and the amount of param-
eters that interfere with the aroma of coffee, it is not surpris-
ing that more than 800 different compounds have already 
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been identified (De Maria et al., 1999; Moreira et al., 2000). 
But it is noteworthy that none of these molecules can alone 
be identified as a marker (Pardo et al., 2000). Furthermore, 
the diverse methods used for measuring volatile composition 
may also result in differences between key volatiles of any 
particular coffee sample (Sarrazin et al., 2000;  Sunarharum 
et al., 2014).  Several tables can be found in literature with 
listing key odorants (Grosch, 2001). For example, Table 4.3 
presents the important volatile compounds in medium-
roasted arabica coffee blends from Colombia.

The production and sales of instant coffee have increased 
markedly in most countries. From the roasted coffee, extrac-
tion columns are used in the industrialization of soluble cof-
fee to obtain the water-soluble coffee extract. The soluble 
solids’ content of the extract of coffee is relatively low, 
and therefore, for economic reasons, it is preconcentrated 
in an evaporation process, and subsequently, the remain-
ing water is removed by spray-drying or by freeze-drying. 
The research for the approximation of the soluble coffee 
aroma to the brewed coffee has been constant. In general, 
the goal is to increase the aroma intensity, and for this pur-
pose, the feasibility of using electronic noses has already 
been studied (Clarke, 2001). Eighty-eight important aroma 
compounds were identified in the soluble coffee using 
gas chromatography and mass spectroscopy (GC–MS). 
Methional, furaneol (4-hydroxy-2,5-dimethyl-3-furanone), 
2-furfurylthiol, and isovaleric acid (3-methylbutanoic 
acid) are among the recognized components (Viegas and 
 Bassoli, 2007). There are also other highly volatile mole-
cules whose descriptive sensory is evaluated as a sweetish/
caramel group such as 2,3-butanedione and 2,3-pentanedi-
one. Strecker degradation leads to the formation of several 
of the compounds reported as important in the formation of 

TABLE 4.2 Volatile Groups of Impact in the Aroma of Roasted Coffee (Mello and Trugo, 2003)

Volatile Group Precursors Example

Pyrroles and alkyl pyrroles •	 Amino	acids	+	carbohydrates
•	 Hydroxy-amino	acids

N-methylpyrrole

Furanones •	 Sucrose Dihydro-2-methyl-3(2H)-furanone

Furaldehydes •	 Sucrose
•	 Arabinogalactans

2-Furaldehyde

Alkyl	furans •	 Arabinogalactans
•	 Amino	acids	+	carbohydrates

5-Methyl-2-vinyl	furan

Pyrazines and alkyl pyrazines •	 Hydroxy-amino	acids Methylpyrazine

Acyl	pyrroles •	 Amino	acids	+	carbohydrates 2-Acetyl-1-methylpyrrole

Carbocyclic	compounds •	 Sucrose 3-Methyl-1,2-cyclopentanedione	
	(Cicloteno)

Pyridines •	 Trigonelline
•	 Hydroxy-amino	acids

Pyridine

Phenols •	 Chlorogenic	acid Phenol

TABLE 4.1 Chemical Composition of the Nonvolatile 
Fraction of Green Coffee Beans (Farah, 2009)

Component

Contenta (g/100g Dry Basis)

Coffea arabica
Coffea 
 canephora

Carbohydrates and Fibers

	 Sucrose 6.0–8.0 4.0

	 Reducing	sugars 0.1 0.4

  Polysaccharides 
(arabinogalactan,	mannan,	
and	glucan)

34–44 48–55

	 Lignin 3.0 3.0

 Pectins 2.0 2.0

Nitrogenous Compounds

 Protein 10.0–11.0 11.0–15.0

	 Free	amino	acids 0.5 0.8

	 Caffeine 0.9–1.2 1.5–2.5

	 Trigonelline 0.8–2.0 0.6–0.7

Lipids

	 	Coffee	oil	(triglycerides	
with	unsaponifiables)

16.0 10.0

 Diterpene esters 0.9 0.2

Minerals	(41%	K	and	4%	P) 3.0–4.2 4.4–4.5

Acids and Esters

	 Total	chlorogenic	acids 4.1–7.9 6.1–11.3

	 Aliphatic	acids 1.0 1.0

 Quinic acid 0.4 0.4
aContent varies with cultivars, cultivation climate, soil, methods of 
 analysis, etc.
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the aroma of instant coffee, such as 2-methylbutanal and 
3-methylbutanal, which are sensorially perceived even in 
high dilutions. Many pyrazines resulting from Maillard 
reactions were identified in this same work, and among 
them, one can cite 2,3-dimethyl-pyrazine and 2,6-dimethyl- 
pyrazine.

The GC-MS is by far the most popular technique for 
the identification of volatile compounds in coffee, but this 
methodology is very expensive and laborious (Rodríguez 
et al., 2010). Furthermore, compositional data alone is not 
enough to explain the importance of key compounds and the 
nature of their contribution. Similarly, sensory information 
of coffee aroma properties, in the absence of good quality 
chemical data, cannot be used to explain specific sensory  
attributes. Good quality and comprehensive research that 
matches these properties in coffee to explain the com-
positional basis of coffee aroma is still limited. To fully 
understand the correlation between sensory data (panel of 
experts) and analytical measurements, researchers may use 
multivariate data analysis tools. Despite the wide applica-
tion of multivariate techniques, to correlate compositional 
data with sensory attributes is an arduous task. This problem 
becomes more difficult if the methodology used to collect 
the information is not sufficiently comprehensive and with-
out a high degree of accuracy and precision. Consequently, 
there are few studies to date that correlate physicochemical 
and sensory attributes of coffee aroma by means of multi-
variate tools (Farah et al., 2006; Sunarharum et al., 2014). 
Therefore, a quantitative evaluation and rational design 
method has been needed for the consumer-oriented devel-
opment of coffee drink products (Michishita et al., 2010).

4.3 COFFEE DATA ANALYSIS FOR 
ELECTRONIC NOSE

The electronic nose classifies and discriminates the aroma 
by statistical analyses of sensor resistances (Michishita 
et al., 2010). Therefore, once the data from the individual 
sensors from the array is collected, the electronic nose 
systems require a suitable pre- and postprocessing proce-
dure (Pardo and Sberveglieri, 2005). Apart from outlier 
detection, data preprocessing consists of normalization, 
 possibly some ad hoc data processing (eg, drift compensa-
tion), and feature/parameters extraction or selection (Pardo 
et al., 2000). Diverse features have been extracted from 
the sensor array signals, including steady-state (fractional 
change, relative, difference, and log) and transient (Fourier 
and wavelet descriptors, integral and derivatives) param-
eters (Distante et al., 2002) and even parameters extracted 
from the phase space (ie, the space formed by the time 
response and its first derivative; Falasconi et al., 2005). 
The last feature could be interesting because it takes into 
account both static and dynamic information at the same 

TABLE 4.3 Groups of Volatile Compounds with Similar 
Odor Qualities: Concentrations in Medium-Roasted 
Arabica Coffee Blends from Colombia (Grosch, 2001)

Group/Odorant

Concentration (mg/kg)

Mean Variationa

Sweetish/Caramel Group

Methylpropanal 28.2 24.0–32.3

2-Methylbutanal 23.4 20.7–26.0

3-Methylbutanal 17.8 17.0–18.6

2,3-Butanedione 49.4 48.4–50.8

2,3-Pentanedione 36.2 34.0–39.6

4-Hydroxy-2,5-dimethyl-3(2H)-
furanone

120 112–140

5-Ethyl-4-hydroxy-2-methyl-
3(2H)-furanone

16.7 16.0–17.3

Vanillin 4.1 24.0–32.3

Earthy Group

2-Ethyl-3,5-dimethylpyrazine 0.326 0.249–0.400

2-Ethenyl-3,5-dimethylpyrazine 0.053 0.052–0.053

2,3-Diethyl-5-methylpyrazine 0.090 0.073–0.100

2-Ethenyl-3-ethyl-5-
methylpyrazine

0.017 0.015–0.018

3-Isobutyl-2-methoxypyrazine 0.087 0.059–0.120

Sulfurous/Roasty Group

2-Furfurylthiol 1.70 1.6–1.70

2-Methyl-3-furanthiol 0.064 0.060–0.068

Methional 0.239 0.228–0.250

3-Mercapto-3-methylbutyl	
formate

0.112 0.077–0.130

3-Methyl-2-buten-1-thiol 0.0099 0.0082–0.013

Methanethiol 4.55 4.4–4.7

Dimethy	trisulfide 0.028b

Smoky/Phenolic Group

Guaiacol 3.2 2.4–4.2

4-Ethylguaiacol 1.6 1.42–1.8

4-Vinylguaiacol 55 45–65

Fruity Group

Acetaldehyde 130 120–139

Propanal 17.4b

(E)-b-damascenone 0.226 0.195–0.260

Spicy Group

3-Hydroxy-4,5-dimethyl-2(5H)-
furanone

1.58 1.36–1.90

4-Ethyl-3-hydroxy-5-methyl-
2(5H)-furanone

0.132 0.104–0.160

aLowest and highest values of the samples.
bOnly one sample was analyzed.
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time (Martinelli et al., 2003). In addition, feature extraction 
can produce consistent data for the pattern recognition pro-
cess (Wang et al., 2009). In postprocessing, techniques of 
pattern recognition and classification include principal com-
ponent analysis (PCA), linear discriminant analysis (LDA), 
k-nearest-neighbor (k-NN), partial least squares (PLS), dis-
criminant function analysis (DFA), cluster analysis (CA), 
fuzzy logic (FL), artificial neural network (ANN), support 
vector machines (SVM), and relevance vector machines 
(RVM). Among these techniques, PCA, PLS, LDA, DFA, 
and CA are based on a linear approach; whereas FL, 
ANN, SVM, and RVM are regarded as nonlinear methods 
(Loutfi et al., 2015).

In pattern recognition, the k-NN is a nonparametric 
method used for density estimation and can be extended to 
the problem of classification. The input consists of the k 
closest training examples in the feature space and the output 
is a class membership. A sample is classified by a majority 
vote of its k nearest neighbors (Bishop, 2006). The k-NN 
was employed as a feature selection to analyze roasted cof-
fee ripening (Falasconi et al., 2005).

PCA is a nonsupervised method capable of reducing 
data dimensionality by grouping highly correlated informa-
tion into a new axis system, then finding groups of samples. 
This analysis mathematically transforms the sensor array 
data into orthogonal components, known as principal com-
ponents (PC), which are formed by two matrices known as 
scores and loadings. Scores are projections of samples on 
the new axis, while loadings have the weight information to 
transform the original variable in scores (Wold et al., 1987). 
To the electronic nose, dimensionality reduction is impor-
tant since working with a smaller dimension means a drastic 
reduction in the number of operations during postprocess-
ing. For this purpose, PCA was applied in coffee analysis 
(Pardo and Sberveglieri, 2002, 2005; Romani et al., 2012; 
Wang et al., 2009) and for clustering evaluation (Benedetti 
et al., 2004; Bona et al., 2012; Brudzewski et al., 2012; 
Pardo and Sberveglieri, 2002; Rodríguez et al., 2010; 
Ulmer et al., 1997); to select suitable sensors (Kermani 
et al., 2005; Michishita et al., 2010); to feature selection 
(Pardo et al., 2000); and to optimize the sampling condi-
tions (ie, amount of sample, vial volume, and equilibration 
time for headspace generation; Falasconi et al., 2005).

LDA searches for those vectors in the underlying 
space that best discriminate among classes (rather than 
those that best describe the data). More formally, given 
a number of independent features relative to which the 
data is described, LDA creates a linear combination of 
these, which yields the largest mean differences between 
the desired classes ( Martínez and Kak, 2001). In coffee 
analysis, LDA was applied to classify beans from different 
countries ( Michishita et al., 2010).

Machine learning (ML) techniques are a set of techniques 
based on several statistical principles to perform tasks of 

regression and pattern recognition (Bishop, 2006). Among 
them, the artificial neural networks (ANNs) approach can 
represent complex and nonlinear input–output relationships. 
ANNs have been the target of recent research in several 
areas; Haykin (2008) presents a comprehensive text on the 
subject, covering both its implementation and its applica-
tion. Several types of ML techniques were applied, mainly in 
classification tasks, for coffee analysis including multilayer 
perceptron (MLP; Bona et al., 2011; Kermani et al., 2005; 
Pardo and Sberveglieri, 2002; Pardo et al., 2000;  Rodríguez 
et al., 2010; Romani et al., 2012; Ulmer et al., 1997); general 
regression neural network (GRNN; Romani et al., 2012); 
support vector machines (SVM; Brudzewski et al., 2012; 
Pardo and Sberveglieri, 2005); relevance vector machines 
(RVM; Wang et al., 2009); and fuzzy neural networks (FNN; 
Singh et al., 1996). There are also applications of ANNs for 
cluster analysis using self-organizing maps (SOM; Bona 
et al., 2012) and to correlate sensory evaluation with an 
electronic nose using MLP (Michishita et al., 2010; Pardo 
and Sberveglieri, 2002).

4.4 ELECTRONIC NOSE APPLICATIONS  
IN COFFEE ANALYSIS

The electronic nose has been frequently used for vola-
tiles analysis in foods (Deisingh et al., 2004; Ghasemi- 
Varnamkhasti et al., 2010; Loutfi et al., 2015). Due to the 
complexity of the coffee aroma, already described in the 
previous section, a variety of applications of the electronic 
nose have been carried out in past years.

Actually the evaluation of the degree of coffee roasting is 
mainly based on the empirical final color observation, thus 
it requires well-trained operators with a high degree of skill. 
A portable e-nose (PEN2; Airsense  Analytics,  Germany) 
composed of an array of 10 temperature- moderated metal 
oxide sensors (MOS) was tested as a possibility to the roast-
ing process automation and to set up a more reproducible 
procedure for final coffee bean quality characterization 
(Romani et al., 2012). The PEN2 was combined with an 
ANN to evaluate and predict different roasting degrees on  
the basis of their flavor release. In addition, e-nose data com-
puted with ANN were used to build up provisional models 
for some coffee characteristics (ie, weight loss, moisture, 
density, and color) that are traditionally used to evaluate the 
roasting degree. Different roasting degrees were predicted 
with good accuracy showing high prediction capability for 
both roasting time and coffee quality parameters. In a previ-
ously work, an array of 12 different commercial tin oxide 
gas sensors with partially overlapping sensitivities was used 
to evaluate the effect of different roasting times (Gardner 
et al., 1992). Using a DFA method, the samples were rela-
tively well segmented by degree of roasting. Moreover, the 
authors used the same e-nose to classify three commercial 
types of coffee applying DFA for pattern recognition with 
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up to 90% of correct classification. In a subsequent work, 
the same data set was reevaluated and the classification 
accuracy was improved using an FNN (Singh et al., 1996).

After the roasting and before the packaging step, the 
coffee grains could be stored in batches within suitable 
silos to undergo a process named blend ripening or sea-
soning, which modifies the blend aroma. In order to moni-
tor the coffee quality, an expert coffee taster evaluates the 
beans each day by smelling and drinking a cup of coffee. 
The Electronic Olfactory System EOS835 (SCAMI Imola, 
Italy), equipped with six MOS sensors, was used to evalu-
ate blends made by 12 different types of monocultivar ara-
bica coffee during seasoning (Falasconi et al., 2005). The 
results showed that sampling conditions like vial prepara-
tion (ie, headspace volume and coffee quantity), headspace 
generation time, and even the variation of environmental 
conditions (ie, samples drawn out in the afternoon or in the 
morning) strongly influenced the correct segmentation of 
the samples according to the ripening period. It also showed 
that feature selection is very important because it improves 
the classification. The results obtained bring stronger evi-
dence that the feature extracted in phase space leads to the 
best performance. Besides, the electronic nose, after opti-
mization of the sampling parameters and suitable data pro-
cessing, can be used to monitor the coffee blend during the 
seasoning process for evaluating the optimal ripening time.

The pattern recognition of coffee aroma is another impor-
tant application of the electronic nose, and several works 
have been published since 1991 (Aishima, 1991). An elec-
tronic nose with 32 MOS sensors (AromaScan plc., United 
Kingdom) was applied to 6 sets of popular coffee varieties 
in the USA (Colombian, Turkish, Arabian with southern 
pecan flavor, Arabian with caramel flavor,  Arabian with 
apricot flavor, and Arabian with orange flavor;  Kermani 
et al., 2005). In fact, not all of the sensors respond exclu-
sively to the odorants of interest; therefore, some of the 
sensors can be eliminated from the computations without 
a major loss of information. For these reasons, the authors 
employed a feature extraction technique by PCA. After-
wards, an MLP trained with the  Levenberg–Marquardt  
method and parameters optimized using a genetic algorithm 
was employed to classify the coffees using the electronic 
nose data. For the test set, 98% of the samples were cor-
rectly classified showing that the electronic nose is a reli-
able and fast tool to discriminate coffees with significant 
differences in their aroma profile. For espresso coffee, the 
electronic nose was employed to discriminate four com-
mercial blends with an array composed by four SnO2 thin 
films sensors (Pardo et al., 2000). Coffee was sampled in 
three successive preparations: as beans, ground (powder), 
or liquid (the actual espresso). The measurements of liquid 
coffee did not give satisfactory results, and three out of four 
brands produced confusing results. The influence of humid-
ity was deleterious because it imposes a big random noise 

on the measurements rather than a deterministic drift. For 
the measurements of the coffee beans, after an appropri-
ate feature selection using PCA, an ANN with PCA scores 
as input gave 100% of correct classification. In turn, for 
ground coffee, the collected data presented a strong drift 
that hindered an easy classification. Drift is one of the most 
serious impairments suffered by an e-nose; it makes the 
use of flexible calibration methods, such as ANN, imprac-
tical (Ghasemi-Varnamkhasti et al., 2010). In Pardo et al. 
(2000), a PCA plot of the data showed that for every class, 
the drift could be approximated by a straight line. There-
fore, they first subtracted, for each class separately, the pro-
jection of the data on the first principal component (PC) in 
order to compact each cluster, and then calculated the PCs 
again. Since the drift was ruled out with the removal of the 
first PC, it should be possible to use ANN for a more accu-
rate segmentation, and then 87.5% of correct classification 
was achieved. A recent work evaluated six single varieties 
of arabica beans (Brazil, Ethiopia, Rio Minas, Guatemala, 
and Peru) and the certified Italian espresso blend using 
the Pico-1 electronic nose (Pardo and Sberveglieri, 2002) 
with five semiconductor SnO2 based–thin film sensors. The 
obtained dataset was classified and correlated with panel test 
descriptors using a PCA combined with an MLP. Classifi-
cation performance figures of over 90% and a good correla-
tion were achieved with a hedonic index, but for individual 
quantitative descriptors, the results were not as reliable. In a 
subsequent work, the same data set for espresso coffee was 
classified using SVM and PCA for dimensionality reduc-
tion (Pardo and Sberveglieri, 2005). Pardo and Sberveglieri 
showed how the performance of SVM strongly depends 
on the technique for parameter selection, and that princi-
pal components carrying small variance have an impact on 
SVM performance. More recently, five different blends, the 
same data set described in Pardo and Sberveglieri (2002), 
were discriminated using an electronic nose and RVM with  
PCA for data analysis (Wang et al., 2009). Experimental 
results show that the RVM method is an effective technique 
for the classification of electronic nose data.  Compared 
with SVM, the RVM can provide similar classification 
accuracy with dramatically fewer kernel functions. In addi-
tion, another advantage of the RVM method is that it has 
fewer parameter settings, in which case only one kernel 
parameter is needed.

Another possible application of an e-nose is to deter-
mine the forgery of coffee. The forgery could be made, for 
example, by mixing two different quality coffee brands: a 
mediocre product and a high-quality coffee type. Adding a 
small amount of low-quality grains to high-quality grains 
does not change the smell significantly, and therefore, is 
very difficult to discover the forgery. Very similar samples 
accentuate the problems of low sensitivity and instability of 
measurement associated with the change of environmental 
parameters, limiting the e-nose application. To overcome 
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this problem, it was proposed using the differential sig-
nals of the two identical arrays of semiconductor sensors 
(Brudzewski et al., 2012). This solution differs significantly 
from the classical approaches to electronic noses, because 
two identical arrays of sensors are applied and only differ-
ential signals of both the arrays are processed in the pat-
tern recognition system. In this way, the negative effect of 
the bias and baseline changes, resulting from the changing 
environmental conditions, are suppressed. In the mentioned  
work, both sensor arrays are composed of 12 MOS of Figaro 
series: 2xTGS2600-B00, 2xTGS2602-C00, TGS2610-C00, 
TGS2610-D00, TGS2611-C00, TGS2611-E00, 2xTGS2612- 
D00, and 2xTGS2620-C00 (Figaro, USA). The differential 
electronic nose in tandem with SVM obtained low classifica-
tion errors (0.21%) to classify arabica and robusta blends. 
Using a classical e-nose with a single array of sensors, the 
average recognition error was equal to 2.95%, showing that 
the application of sensors working in a differential mode 
increased the sensitivity of the measurement  system and 
made it less susceptible to a change of the environmental 
conditions, since these changes are compensated for in the 
differential signal.

The electronic nose could be a very useful technique 
to support sensory evaluation because of its ability to 
acquire qualitative, low-cost, real-time measures of volatile 
compounds (Michishita et al., 2010; Pardo and Sberveg-
lieri, 2002). The cup tests are performed by tasters; thus, 
this way of conducting quality control is very subjective, 
depending on the skill of the taster. Moreover, not all the 
tasters are able to find every defect in a cup of coffee. This 
problem can sometimes cause a loss of money and time due 
to a lack of standardization of cupping tests. But it could be 
solved by making a classification of coffee grains based on 
a more reliable instrumental analysis to identify defects in 
cups as the tasters do, but based on patterns of training ris-
ing, in this way, the influence of external factors (Rodríguez 
et al., 2010). The e-nose aFOX4000 (Alpha MOS, France), 
equipped with 18 MOS sensors contained in three cham-
bers, was employed to analyze espresso beverage from six 
different arabica coffee beans (Brazil, Ethiopia, Guatemala, 
Colombia, Indonesia, and Tanzania) with three roasting 
degrees (light, medium, and dark; Michishita et al., 2010). 
The retronasal aroma simulator effluent gas was submitted 
to sensory evaluation and to e-nose aFOX4000; the sen-
sor resistances and four sensory descriptors (roast, sweet, 
soy sauce, and earthy) were correlated using an ANN. The 
high correlation obtained between sensory scores and sen-
sor array data showed that the e-nose was a useful tool to 
predict the results of sensory evaluation for aroma because 
the sample volume and human work needed for analysis 
were less than that for sensory evaluation, and the replica-
tion of analysis was relatively easy. Another work shows 
the application of an electronic nose called A-NOSE in the 
cupping tests for the detection and classification of defects 

(Rodríguez et al., 2010). The A-NOSE was developed at 
the University of Pamplona (Colombia) and the device is 
composed of a matrix of eight metal oxide gas sensors man-
ufactured by Figaro (TGS-813, TGS-842, TGS-823, and 
TGS-800; Figaro, USA) and FIS (SP-12A, SP-31, SP-AQ3, 
and ST-31; FIS, Japan). The analysis included the compari-
son of some types of Excelso coffee (ie, coffee of excellent 
export quality) and Pasillas coffee (ie, coffee with many 
defects, which do not comply with the export standards). 
The defects detected in coffee cupping are often caused by a 
defect in the coffee beans; these defects are identified visu-
ally, but the degree of impact depends on the percentage of 
defects found in a given sample. The sensitivity obtained 
by the gas sensors was good, and the selectivity shown by 
the equipment was adequate. In addition, data processing 
with PCA and neural networks was successful. A previous 
work showed that the pattern of the sensor responses gener-
ated by the electronic nose could be used for performing 
triangle tests in two similar brands of 100% arabica cof-
fee (Benedetti et al., 2004). Among discriminative tests, the 
triangle test is the most widely used test in food industries 
to determine whether the difference between two products 
is significantly perceptible. In practice, three samples are 
presented—two are alike, one is different—and the panel-
ist is asked to select the odd sample. These sensorial tests 
require a panel of several people and is generally very time 
consuming and labor intensive for routine quality control 
application (Dutcosky, 2013). For comparison of an elec-
tronic nose with the sensory evaluation of coffee by triangle 
test, the analyses were performed using the e-nose 3320 Lab 
Emission Analyzer (Applied Sensor, Sweden;  Benedetti 
et al., 2004). The e-nose’s sensor bank is composed of  
23 different sensors of which 10 sensors are MOSFET,  
12 Taguchi MOS-type sensors, and 1 humidity sensor. The 
MOSFET sensors are divided into two arrays of five sen-
sors each, one operating at 140°C and the other at 170°C, 
while the MOS sensors are mounted in a separate chamber 
and kept between 400 and 500°C during the entire process. 
While considering data obtained by the e-nose, all the rep-
licates of the two coffee samples are correctly classified 
(100% of the time) showing that the device can differentiate 
similar samples only from the gas headspace components. 
On the other hand, no significant difference was detected 
between the two coffee samples by the sensory panel. From 
this work, the analytical utility of the electronic nose is evi-
dent so it can be used for the evaluation of different types of 
coffee, similar to the classical triangle test evaluation tech-
nique, but with greater speed and better performance.

For instant coffee, the e-nose was also applied to aroma 
pattern recognition using a PEN2 equipment (Airsense Ana-
lytics, Germany) to clustering and classification of seven 
different brands of soluble coffee (Bona et al., 2011, 2012). 
It was possible to correctly classify all samples, and the 
clustering methodology showed a clear separation between 
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the classes. The PEN2 application for coffee indicated that 
two sensors were not sensitive to the aromatic profile of the 
analyzed samples. Furthermore, for the remaining sensors, 
there is a high correlation between the signal allowing the 
separation in three related groups (Bona et al., 2012; Romani 
et al., 2012). A similar distribution was obtained when an 
electronic nose with the same sensors, brand, and model 
was used for wheat (Zhang et al., 2007). Moreover, when 
a very complex mixture is analyzed (eg, coffee), the sensor 
responses are strongly correlated (Falasconi et al., 2005). 
It is therefore possible to infer that the correlation pattern 
is a result of the partial specificity of each sensor and is 
not related to the type of sample analyzed. When using the 
PEN2, the tester can use only one sensor of each group, 
thus reducing the redundant information for the multivari-
ate methodology applied for e-nose data analysis. The more 
“orthogonality” the sensors show, the higher the obtained 
discriminative performance of the array. With significantly 
enhanced “orthogonality,” more information is available, 
and also when different sensing principles, that is, differ-
ent transducers, are combined. To improve the “orthogonal-
ity,” an electronic nose was used to discriminate different 
coffee brands and mixtures using a hybrid modular sensor 
system with MOS and MOSFET sensors combined with 
polymer-coated quartz microbalance (QMB), humidity, and 
temperature sensors (Ulmer et al., 1997). Values and units 
of the different sensor response signals are not comparable 
if different transducers are chosen. Hence, standardization 
is necessary; this was done by subtracting the average and 
dividing by the standard deviation of the sensor signals 
in all calibration measurements. Using plots of the PCA 
scores, a full separation of all coffee beans is not possible 
by using only one type of sensor. On the other hand, for 
the hybrid sensor system, all samples were clearly separated 
and the classification was possible.

4.5 CONCLUSION AND FUTURE 
CHALLENGES

In this chapter the major contributions of an electronic nose 
for coffee analysis was outlined. It is clear that the utility 
of using e-noses in an industrial context is high, and most 
works have in fact shown cooperation with industrial part-
ners who made the samples and conditions of use available. 
The question remains: Why is there an absence of electronic 
noses in industrial processes? There are several  reasons 
for the reluctance of the uptake of e-noses in an industrial 
context. First, their sensing ability is heavily affected by 
environmental factors: humidity and background noise, 
general drift caused by temperature, sensor variations, and 
sensor poisoning. To overcome these limitations, a set of 
actions should be developed. On the materials side, major 
focus must be given to the design and development of drift-
free sensors that can be used reliably over a long period, 

and new material for achieving better selectivity. On the 
software side, researchers must apply the newly available 
linear and nonlinear algorithms based on the statistical 
learning theory to compensate for the core problems of sta-
bility and reliability of the sensors. Nonetheless, the future 
of the electronic nose seems promising because research-
ers throughout the world are increasing their attempts to 
develop innovative instrumental techniques and pattern 
recognition tools.
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5.1 INTRODUCTION

Bakery products are a large family of popular foods, con-
sumed by a wide range of people, due to their varied taste, 
relatively long shelf-life and low cost. They are charac-
terized by recipes mainly based on wheat or other cereal 
flours, blended with other ingredients.

The process employed for their production can also vary 
a lot, providing different textures and sensory characteris-
tics to the final products. The main common operations in 
the production of bakery products are ingredient metering, 
dough mixing, shape forming, baking, cooling, and packag-
ing. Each of the aforementioned processing steps is of equal 
importance in determining the final characteristics of this 
food product category. There are many factors that contrib-
ute to the quality of bakery products; the latter is generally 
judged on the basis of their appearance characteristics, tex-
ture, color, taste, and aroma. Among them, aroma profile 
is one of the most important attributes, being an important 
indicator of product quality and conformity, and influenc-
ing consumer acceptance and preferences.

The odor perception of a product is caused by several 
different volatile compounds and their relative amounts in 
the headspace determine the perceived odor (Heiniö, 2006). 
Aroma analysis in baked products first involves the extrac-
tion of volatiles from the food matrix, followed by the sepa-
ration, identification, and quantification of the most relevant 
ones. To extract the aroma compounds from baked goods, 
besides traditional solvent extraction and simultaneous 
distillation-extraction (SDE), headspace analysis approach-
es (dynamic, purge-and-trap, or static analysis) and sorptive 
extraction techniques, such as solid-phase microextraction 
(SPME), have been applied (Paraskevopoulu, 2009). The 
identification and quantitative determination of aroma vola-
tiles of bakery products is generally performed by GC–MS, 
which allows testers to solve most chromatographic over-
lapping problems. GC-olfactometry analysis has also been 
used for bakery products (Rychlik and Grosch, 1996). 
Recently, proton-transfer-reaction-MS (PTR-MS), which 

is a simple, fast sampling, highly sensitive method, was 
successfully used to monitor volatile changes in cheese 
crackers during storage (Pozo-Bayón et al., 2009), in dough 
and bread, and volatiles produced from yeasts in a ferment-
ed food matrix (Makhoul et al., 2014). However, many of 
these analytical methods are time and labor intensive,  ex-
pensive, require skilled personnel to operate the equipment 
and to interpret the analytical results.

Chemical analyses of flavor compounds in bakery prod-
ucts can be combined with the sensory analysis. In general, 
the sensory traits of bakery products are determined by de-
scriptive analysis, which gives a comprehensive view of the 
most important perceived product attributes (Heiniö, 2006). 
The vocabulary used is characteristic of each specific prod-
uct and the selected attributes of their sensory profiles de-
scribe the odor, appearance, flavor, and texture, of which 
the last three are considered the most important features for 
cereal products (Heiniö, 2006). Different basic tests are fre-
quently used to compare products and to determine whether 
they are different from each other or not (Cayot, 2007). 
These sensory methods need a group of well-trained asses-
sors and several established attributes in order to provide 
reliable results without being subjected to individual break-
down or variation of sensitivity; such requirements are time 
consuming and, in some cases, could cause serious problems 
to some industries and laboratories (Sinesio et al., 2000). In 
the particular case of bakery products, the complexity of 
the matrices and aroma profiles sometimes limits the dis-
criminating ability and perception of panelists, or the vola-
tiles’ concentrations can be close to or below the judges’ 
detection limit (Yang et al., 2013). Therefore, an instrument 
such as the electronic nose (e-nose), with recognized high 
sensitivity, can proficiently provide complementary data to 
those attained with human sensory panels, can often replace 
a panel of human experts, and can perform odor assessment 
on a continuous basis, with reduced time and costs as com-
pared to the aforementioned analytical techniques.

E-noses have been successfully applied to food and 
beverages analysis for process monitoring, shelf-life 
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 investigation, freshness evaluation, authenticity assessment, 
flavor and aroma identification, and other quality control 
studies (Peris and Escuder-Golabert, 2009; Deisingh, 2010). 
However, there are few e-nose researches focused on the 
study of aroma profiles of bakery products, since most works 
have been addressed to the different methods for the isola-
tion and identification of their volatile compounds (VOCs).

This chapter provides a description of the main factors 
influencing VOCs generation in bakery products and their 
composition, with a focus on the main e-nose applications 
on bakery and cereal products.

5.2 FACTORS AFFECTING THE AROMA 
OF BAKERY PRODUCTS

The development of aroma in bakery products is due to a 
very large number of VOCs, which are related to ingredi-
ent quality and ratios (formulation), as well as their interac-
tions. The peculiar aromatic characteristics of ingredients 
undergo several changes during dough-processing steps, 
including hydration, kneading, fermentation, baking, and 
postbaking treatments (Fig. 5.1).

During processing, these compounds are generated by 
enzymatic activity, fermentation, lipid oxidation, and ther-
mal reactions (Rehman and Awan, 2011).

A brief description of the effects of some factors on the 
formation and release of aroma compounds in bakery prod-
ucts and their impact on product quality is provided in the 
following sections.

5.2.1 Effect of Ingredients/Formulation

The VOCs’ composition of bakery products’ aroma varies ac-
cording to the type of ingredients, recipes, and aroma precur-
sors used in their formulations. Different cereal and legume 

flours play a significant role in the generation of distinctive 
aroma and flavor in both leavened and unleavened bakery 
products; on the contrary, the contribution of wheat flour to 
the final flavor in bread making has been estimated to be small 
(Cho and Peterson, 2010) and has been also related to flour 
extraction rate (Rehman and Awan, 2011). Other ingredients 
(such as yeast, salt, dairy products, fats, sugars, sweetening 
agents, eggs, emulsifiers, spices, fruits, and nuts) greatly con-
tribute to the final organoleptic characteristics of the different 
bakery products. The ingredients of baked foods are the main 
aroma precursor reactants (ie, sugars, proteins, lipids, and 
water) and have a strong impact on the principal reactions 
occurring during product making, such as Maillard reaction 
(MR), caramelization, and lipid oxidation. Water absorption 
in the matrix affects also dough rheological characteristics, 
which in turn affects color, aroma, and flavor development.

The effect of fatty matter and eggs on lipid oxidation 
and VOCs’ release during elaboration of sponge cake was 
recently studied (Maire et al., 2013). The authors reported 
that lipid oxidation takes place during mixing and beating 
of ingredients into the dough; the presence of active en-
zymes (ie, lipoxygenases) in the raw material (especially 
flour), together with air incorporation during beating, could 
induce early lipid oxidation (Maire et al., 2013). When 
making bread and other similar products, the intensity and 
duration of kneading is one of the most important steps for 
the generation of aroma precursors by enzymatic activity. In 
fact, the concentration of some aldehydes (such as hexenal) 
in the breadcrumb has been found to be proportional to the 
intensity of kneading (Cayot, 2007).

5.2.2 Effect of Fermentation

In the production of bakery products, the fermenta-
tion conditions can widely vary, depending on the type 

FIGURE 5.1 Scheme of the main factors that contribute to the generation and modification of volatile compounds in bakery products.
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of dough fermentation (by yeast and/or lactic bacteria or 
chemical/physical leavening agents) and process condi-
tions. The microbial fermentation is the best in terms of 
aromatic characteristics developed in bakery products. The 
metabolic activities of yeast and bacteria initiate the fer-
mentation process that produces organic acids, alcohols, es-
ters, ketones, and aldehydes in fermented bakery products. 
Some of these chemical compounds further react to produce 
a variety of new aroma components during baking.

Sourdough fermentation is a traditional form of leavening 
used in the manufacturing of bread, cakes, and crackers. The 
sourdoughs are dominated by a complex microflora composed 
of yeasts and lactic acid bacteria (LAB), which play a signifi-
cant role in the production of bread volatiles and nonvolatile 
flavor and aroma compounds (Rehman and Awan, 2011). 
These leavening agents produce gases (mainly CO2), a wide 
range of aroma precursors that will be involved in cooking 
reactions, and other VOCs that will remain in the final baked 
products, contributing to their aromatic characteristics.

The composition of aroma VOCs is not influenced only 
by microbial composition, but is also affected by the inter-
active effects among types of bread-making process and 
ingredients used for the dough production (Rehman and 
Awan, 2011). Processing conditions (such as proofing time 
and temperature) and slackness of sourdough may affect  
the aroma volatiles. Long fermentation times can produce 
intense proteolysis and high amounts of free amino acids, 
which can act as precursors of Strecker aldehydes, mainly re-
sponsible for “malty” notes (Cayot, 2007). In general, low fer-
mentation temperatures lead to longer fermentation times and 
produce a more appealing flavor (Rehman and Awan, 2011).

5.2.3 Effect of Baking

Baking can be defined as the process that transforms dough 
into a food with unique sensorial features (Purlis, 2010).

The greatest amount of aroma substances is formed dur-
ing baking, due to thermal reactions such as MR between 
reducing sugars and amino acids, caramelization of sugars 
and lipid thermooxidation (Rehman and Awan, 2011; Cho 
and Peterson, 2010; Heiniö, 2006). MR and caramelization 
are catalyzed by a low–medium moisture level and the high 
temperature reached at the product surface during baking 
(Purlis, 2010).

Physicochemical changes occurring in dough during 
baking are very complex and take place following specific 
kinetics, depending on heating conditions and water activ-
ity. The main transformations induced by cooking are wa-
ter evaporation, protein denaturation, starch gelatinization/
destruction, browning and surface coloration (mostly due 
to MR), dough expansion, and thermal expansion of gas 
cells formed during mixing (Chevallier et al., 2000; Man-
ley, 2001). In the baking process, the viscoelastic dough 
is transformed into a solid-like baked item. This process 

determines the final physical characteristics of products, in-
cluding dimensions, weight, and moisture content. During 
the cooking process, a typical evolution of the aroma profile 
takes place. In the initial baking stages, heating produces 
an increase in the volatility of the distinctive aromas of raw 
food that derive from the ingredients used for their formula-
tion. Thereafter, cooking involves the genesis and release 
of new VOCs produced by chemical reactions occurring in 
the food matrix. Finally, pyrolysis reactions (ie, MR and 
Strecker degradation) take place on the food surface with 
the formation of specific VOCs (Ward et al., 2002). There-
fore, the aroma profile initially correlated to the raw matrix 
composition changes to a great extent, becoming very com-
plex, in terms of type and quantity of aroma VOCs, at the 
end of the cooking process.

5.2.4 Effect of Aging

The deterioration of the aroma quality of bakery products 
during aging is due to the loss of some of the most important 
odor compounds and the formation of off-flavors also origi-
nated from lipid oxidation. After baking, some VOCs (such 
as pyrazines) disappear very rapidly by evaporation from 
the crust (Cayot, 2007). Aroma deterioration and changes 
may then result from volatilization of desired aroma and fla-
vor components and development of undesired off-flavors 
(eg, from oxidative degradation), but compound migration 
between food matrix phases can also influence their stabil-
ity (Heiniö, 2006; Yang et al., 2013).

The desirable alcohol smell of yeast is lost, the wheaty 
odor is reduced, and the leftover doughy or starchy aromas 
become unpleasant. The texture of the crumb becomes firmer 
and drier, whereas the texture of the crust becomes soft and 
leathery. In bakery products, the decrease in the flavor quali-
ty and a general staling reduces consumer acceptance, which 
is mainly caused by crumb changes rather than those result-
ing from microbial spoilage (Rehman and Awan, 2011).

5.2.5 Factors Affecting Volatiles’ Release

It is well known that texture and microstructure of food 
systems impact the retention and release of aroma com-
pounds during processing and storage (de Roos, 2003; 
Yang et al., 2012, 2013). Water loss, composition, size, and 
texture are the major factors that affect the aroma retention 
in bakery products (de Roos, 2006).

The release of volatile flavor compounds from baked 
products is controlled by the compounds’ volatility in the 
product (thermodynamic factor) and the resistance to mass 
transfer from the product to air (kinetic factor); the latter is 
affected by the macro- and microstructure of the product. In 
complex solid and partly solid products, flavor compounds 
are entrapped in the hydrophilic or in the lipid phase across 
the matrix (de Roos, 2006). The food system can influence 
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aroma release by physicochemical mechanisms, such as 
oil–water and water–air partition. With a relatively dry 
matrix, the rate and extent of hydration during eating will 
depend on the matrix composition, which may affect aroma 
release (Rehman and Awan, 2011).

In general, most organic flavor compounds are easily 
adsorbed and solubilized in lipids, depending on their li-
pophilic character. Proteins present in the matrix may in-
fluence the volatility of flavor compounds via weak Van 
der Waals interactions or by the formation of amides, es-
ters, and salts. Polysaccharides can hinder the volatility of 
certain compounds, whereas other carbohydrates (such as 
monosaccharides and disaccharides) may cause a salting-
out effect (Ampuero and Bosset, 2003).

5.3 COMPOSITION OF VOLATILE 
COMPOUNDS IN BAKERY PRODUCTS

Numerous researches have been carried out to study and 
depict bakery products’ flavor using diverse instrumen-
tal analytical methods for compound identification. In 
general, the most important chemical functional groups 
involved in their aroma are aldehydes, alcohols, ketones, 
esters, acids, pyrazines, and pyrrolines, together with small 
amounts of hydrocarbons, furans, and lactones (Rehman 
and Awan, 2011). The composition of the volatile fraction 
can be greatly impacted by ingredients (such as the type 
and quality of vegetable oil), as observed in “taralli,” a 
typical Italian snack food (Giarnetti et al., 2012; Caponio 
et al., 2013), in which more than 40 VOCs were detected. 
Grape marc extract, used for enrichment of functional bis-
cuits, led to increased levels of some esters and aldehydes 
generated by fermentative activities, furans related to MR 
and lipid-derived compounds (Pasqualone et al., 2014); 
these VOCs resulted in a differentiation of the product sen-
sory profile, but without defect detection. In biscuits for-
mulated with green tea extract (GTE), hexanal was used as 
marker of lipid oxidation, showing that GTE was an effec-
tive inhibitor of hydroperoxide decomposition (Mildner-
Szkudlarz et al., 2009). Partial replacement of wheat flour 
by soy protein isolate (SPI at 10% level) in cookies resulted 
in the highest yield (13.57%) of pyranones, the key odor-
ants of cookies (Mohnsen et al., 2009).

During the fermentation process, acetaldehyde and di-
acetyl are produced together with alcohols and acetates 
(Hansen and Hansen, 1996). Bakery yeast starters produce 
characteristic VOCs in the dough [hydrocarbons (alkenes), 
carbonyls (esters, aldehydes, ketones), alcohols, carboxylic 
acids, some furan derivatives, and sulfur-containing com-
pounds] (Rehman et al., 2006), which can affect the final 
product profile.

As the baking process starts, the rising temperature 
causes evaporation of highly volatile aroma compounds 

(acetaldehyde and diacetyl), so the presence of the lat-
ter is distinctive of the initial steps of baking process. 
VOCs produced during fermentation have also been de-
tected in toasted bread, but only diacetyl has been found 
to significantly contribute to the bread smell (Rychlik 
and Grosch, 1996). MR products (such as pyrazines, pyr-
roles, furans, and sulfur-containing compounds) and lipid 
degradation products (such as alkanals, 2-alkenals, and 
2,4-alkadienals) have been found in high-temperature pro-
cessed cereal products (Parker et al., 2000). More than 
540 VOCs have been detected in bread, but only a small 
portion actually contributed to its desirable aroma proper-
ties (Cho and Peterson, 2010). In fact, the volatile profile 
of partially baked bread is mainly constituted by Strecker 
aldehydes, 2,3-butanedione (diacetyl), 1-propanol, and 
2-methylpropanol (Poinot et al., 2007). But diacetyl and 
2,3-pentanedione (MR and sugar degradation products, 
respectively) are responsible for a buttery taste, related to 
rancidity (Caponio et al., 2013). The primary odorants that 
contribute to the flavor of wheat bread crust have been re-
ported to be different from those of the bread crumb (Cho 
and Peterson, 2010); in particular, 2-acetyl-1-pyrroline has 
been suggested to be the key odorant of the crust, as well 
as of the cracker-like odor and the roasty odor at the begin-
ning of wheat bread toasting (Rychlik and Grosch, 1996). 
The caramel-like smelling 4-hydroxy-2,5-dimethyl-3(2H)-
furanone is mainly produced under medium browning con-
ditions of wheat bread toasting, while concentrations of 
pyridines and pyrazines can change by a factor of 2–10 de-
pending on the toasting degree (Rychlik and Grosch, 1996).

The aroma compounds change during aging of bak-
ery products, favoring the formation and accumulation of 
off-flavors generated by lipid oxidation and/or spoilage. 
In crackers (Pozo-Bayón et al., 2009; Mandić et al., 2013) 
and oatcakes (with and without rosemary extract) (Cognat 
et al., 2014) that had been subjected to storage, the VOCs’ 
profile was mainly characterized by aldehydes that derived 
from fatty acid auto-oxidation. In stored cookies supple-
mented with increasing SPI level, the appearance and ac-
cumulation of lipid-derived products was delayed, possibly 
as a consequence of the higher formation of MR products, 
since they have been shown to act as free radical scavengers 
(Mohnsen et al., 2009). Microbial spoilage (by bacteria, 
yeast, and fungi) and enzymatic spoilage (by lipoxygenase) 
can be differentiated from one another and from unspoiled 
bread by the generated VOCs’ profile, before detecting vis-
ible marks of spoilage (Needham et al., 2005); among 59 
identified VOCs, some of them were found to be produced 
by all spoilage types, while others were only generated by 
individual ones (such as pentanol produced only after 24 h 
spoilage by Pichia anomala).

Despite the large number of VOCs that have been detect-
ed in baked cereal products, not all of them have the same 
impact on the final aroma. The extent of their contribution 
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will depend on their concentration as well as on their odor-
ant power, which is related to their odor threshold (the mini-
mum quantity of a compound that must be present to be 
detected by olfaction) (Cayot, 2007).

5.4 E-NOSE APPLICATIONS IN BAKERY 
AND CEREAL PRODUCTS

Several applications of the e-nose technique on various as-
pects of bakery products and food grains have been studied. 
Feast (2001) published an overview of potential applica-
tions of e-nose in cereals.

For bakery products and related raw materials, differ-
ent types of e-nose systems, together with techniques for 
data processing and analysis, have been used for testing 
and discriminating aroma volatiles from different flours 
and ingredients utilized in formulation, processing op-
erations (such as fermentation and baking), and storage 
conditions. A greater number of e-nose applications are 
focused on the rapid discrimination of VOCs for early de-
tection of spoilage and fungal growth in cereal grains, and 
also in correlation with the presence of harmful contami-
nants, such as mycotoxins.

This chapter reviews some of these e-nose applications, 
which are also summarized in Table 5.1.

TABLE 5.1 Applications of E-Nose to Bakery Products and Cereal Grains

Purpose (Sample) E-Nose Gas Sensor Array Systema References

Ingredient Differentiation

Bread MOS Sapirstein et al. (2012)

Bread MOS Torri et al. (2013)

Biscuits MOS Romani et al. (2006)

Infant cereal foods MOS/CP Li et al. (2010)

Baking Stage Differentiation

Bread baking aromas MOS Ponzoni et al. (2008)

Biscuits MOS Romani et al. (2012)

Differentiation for Quality Aspects

Toasted bread MOSFET/MOS Piazza et al. (2008)

Wheat flours MOS Adams et al. (2011)

Aging

Bread SnO2 Botre and Gharpure (2006)

Wheat MOS Zhang et al. (2007)

Rice MS-based e-nose Sung et al. (2014)

Microorganism Detection

Bread CP Keshri et al. (2002)

Bread CP Needham et al. (2005)

Bakery product analogs MS-based e-nose Vinaixa et al. (2004)

Bakery product analogs MS-based e-nose Marín et al. (2007)

Paddy and maize MOS Wang et al. (2014)

Mycotoxin Detection

Barley MOSFET/SnO2 Olsson et al. (2002)

Durum wheat MOS Abramson et al. (2005)

Maize MOS Gobbi et al. (2011)

Durum wheat MOS Lippolis et al. (2014)

Lipid Oxidation

Oatmeal product MOS Wessling et al. (2001)

aMOS, metal oxide semiconductors; MOSFET, metal oxide semiconductor field effect transistors; CP, conducting polymers; SnO2, tin oxide semiconductors; 
and MS, mass spectrometry.
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5.4.1 Differentiation for Formulation  
and Ingredients

Some studies have been carried out to demonstrate the abil-
ity of e-nose to discriminate VOCs’ composition and the 
final aroma of bakery products according to differences in 
one or more ingredients in their formula.

Sapirstein et al. (2012) reported that an e-nose having 
12 metal oxide sensors (MOS) was able to differentiate be-
tween VOCs from refined and whole wheat bread samples, 
whose composition varied due to differences in flour, made 
with either white or red bran types. Moreover, Sapirstein and 
coworkers wanted to determine if the discrimination results 
could have been affected by the nature/presentation of samples 
(crust, crumb, or whole slice). Bread crust and crumb were 
better discriminated than whole bread types, probably due to 
the VOCs’ blending. In another study, the sensory character-
istics of six groups of bread, obtained with flours from differ-
ent old versus modern organic common wheat varieties and 
treated with or without mycorrhizal factor, were compared by 
means of a sensory descriptive analysis, image analysis, and 
an e-nose composed of 10 MOS (Torri et al., 2013). The che-
mometric statistical analysis highlighted that e-nose was able 
to differentiate the groups of whole wheat bread samples as 
much as the sensory panel; moreover, e-nose examination was 
more efficient in predicting sensory variables of bread types 
than image analysis, except for the texture traits.

Romani et al. (2006) tried to discriminate the aroma pro-
files of differently formulated commercial biscuit types, pro-
duced by the same company, by using an e-nose equipped with 
10 MOS sensors. Only in some cases e-nose responses were 
able to discriminate samples, especially when the latter were 
formulated with a high amount of butter, orange, or chocolate 
flavorings. Some raw ingredients were also analyzed but, in 
this case, the e-nose was unable to detect similarities between 
biscuits and their corresponding single ingredients, probably 
because of the great changes in the VOCs’ composition due to 
baking, which increases the volatility of peculiar compounds 
deriving from raw ingredients and involves the genesis of new 
and more similar VOCs. However, the results reported in this 
paper referred to a limited number of data and could only be 
used as a preliminary proof of concept.

Li et al. (2010) examined the aroma quality of different 
commercial rice and barley infant cereals, by means of an 
e-nose with an array of MOS or conducting polymer (CP) 
sensors. E-nose responses were able to evaluate similarities 
and differences in aroma quality of infant cereal formulas 
compared with that of breast milk, which was used as a con-
trol and gold standard.

5.4.2 Baking Stage Differentiation

The rapid detection of a whole set of VOCs or key aromas 
during baking can be of crucial importance at an industrial 

level with respect to the final quality of bakery products. 
Ponzoni et al. (2008) used a low-cost custom-built e-nose 
system, based on a resistance to period converter readout 
system that is suitable to handle a wide range of resistance 
values, to detect five bread-baking synthetic key aromas. 
The aromas were distinguished on the basis of their chemi-
cal nature (acetaldehyde, diacetyl, pyridines, and pyrazines) 
and discriminated in relation to the baking-process stages.

Romani et al. (2012) studied the evolution of the fla-
vor release of lab-made biscuits at different cooking times 
(0–12 min) by means of an e-nose equipped with 10 MOS 
sensors. The e-nose allowed the discrimination among raw, 
under-cooked, well-cooked, and over-cooked biscuits. Sim-
ilar and complementary information was obtained consider-
ing both e-nose data and traditional physicochemical cook-
ing indexes (moisture, color, texture). The obtained results 
showed the suitability of e-nose to monitor online changes 
in the biscuit’s aroma and cooking level, thus allowing both 
the improvement of aroma quality of final products and the 
optimization of the technological parameters.

5.4.3 Differentiation for Quality 
Characteristics

E-nose has been combined with other analytical techniques 
in order to better detect and differentiate bakery and cereal 
products according to some quality characteristics, impor-
tant for the final consumption or for the use as high-quality 
ingredients.

Consumer preferences of dry bakery products are main-
ly related to their texture and aroma release. These qual-
ity characteristics can interact differently depending on the 
matrix structure organization (de Roos, 2003). In a study by 
Piazza et al. (2008), texture characteristics of toasted sliced 
breads were correlated with the release of VOCs that de-
velop after matrix crushing. In this work, the analysis of 
aroma VOCs was performed by an e-nose equipped with 
23 different sensors [1 humidity sensor, 10 metal oxide 
semiconductor-field effect transistors (MOS-FET), and 
12 MOS]. Combining some mechanical parameters (ob-
tained by means of an acoustic–mechanical technique) with 
responses of selected sensors, Piazza and coworkers effi-
ciently classified sliced bread samples, evidencing that the 
structural dissimilarities between them reflected the aroma 
release differences. It was therefore concluded that the effi-
ciency of texture/aroma description was improved by com-
bining these techniques.

In another study, Adams et al. (2011) used an e-nose 
with 6 MOS sensors to differentiate the aroma intensity 
and quality of flours obtained from diverse wheat variet-
ies grown in the same or different locations. Moreover, e-
nose results were compared with the contents of phenolic 
acids, flavonoids, and total pigments in the flours, which 
were analyzed by high-performance liquid chromatography 
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(HPLC). E-nose responses proved to be able to effectively 
discriminate the studied samples and were significantly and 
positively correlated with several phenolic acid contents.

5.4.4 Detection of Aroma Changes  
During Aging

Botre and Gharpure (2006) used a four tin-oxide sensors ar-
ray and self-organized map (SOM)-based e-nose system for 
the evaluation of bread aroma changes (alcohol, CO2, and 
other flavor compounds) due to staling, during 3 weeks of 
storage. The system developed was able to accurately predict 
the bread state as either fresh or stale. In the same research, 
the authors successfully classified three different bread 
brands.

E-nose was also used to detect the quality changes of 
different cereal products during storage. Zhang et al. (2007) 
employed an e-nose with 10 MOS sensors to evaluate 5 
wheat samples stored for different periods of time. The 
wheat samples were stored in granaries at room tempera-
ture and between 50 and 60% RH for 5 years. Thanks to 
an optimization of the sensor array by multivariate analysis 
of variance and loading analysis, e-nose successfully dis-
criminated the aged wheat samples according to the storage 
duration.

In a more recent work, Sung et al. (2014) used a mass 
spectrometry (MS)-based e-nose to screen and qualitatively 
evaluate rice samples stored at four different temperatures 
for 4 months. Rice was also tested for fat acidity and sen-
sory characteristics. Flavor volatile profiles determined by 
e-nose changed according to the storage time and tempera-
ture, with a parallel increase in fat acidity and a decrease of 
sensory characteristics. The MS e-nose system was thus able 
to distinguish with excellent sensitivity and selectivity the 
modifications in rice quality related to volatile-producing 
metabolic activities, during storage at different conditions.

5.4.5 Detection of Off-Flavors From 
Microbial Spoilage, Mycotoxins Presence, 
and Lipid Oxidation

Microorganisms induce the release of undesirable flavors 
during storage and the formation of unwanted metabolites 
such as mycotoxins in cereal grains used for the formulation 
of cereal-based foods and bakery products. Fungal spoilage, 
even at early stages, generally coincides with an increase of 
CO2, carbonyl compounds, and other VOCs that can be eas-
ily monitored by e-nose.

Early detection of qualitative changes in VOCs produc-
tion in bread analogs contaminated by molds was investi-
gated over a period of 72 h by using an e-nose system with 
a 14 CP sensor array (Keshri et al., 2002). Volatile produc-
tion patterns were compared to those generated by hydro-
lytic enzyme activity, as well as to the fungal population 

increase. The e-nose system was able to detect early mold 
spoilage and to differentiate between uncontaminated and 
differently contaminated bread samples.

In a similar study, Needham et al. (2005) used a CP-
based e-nose to detect and differentiate microbial spoilage, 
caused by inoculated bacteria, yeast, and fungi, in modeled 
bread after 48 h, before the occurrence of visible spoilage. 
E-nose was able to discriminate bread samples on the ba-
sis of VOCs’ profiles from different microbial spoilage, 
enzymatic spoilage (caused by added lipoxygenase), and 
unspoiled bread.

A more sophisticated analytical approach (SPME cou-
pled to an MS-based e-nose) was used by Vinaixa et al. 
(2004) for early detection of fungal growth in bakery prod-
uct analogs and to accurately predict early fungal spoilage 
in bakery products inoculated with different mold species 
(Marín et al., 2007). The MS e-nose responses were highly 
and positively correlated with the ergosterol content, as index 
of fungal spoilage estimation. Moreover, e-nose recorded 
signals and ergosterol levels were used to build prediction 
models of bakery product spoilage in less than 7 days.

Moldy status of paddy and maize samples were mea-
sured by Wang et al. (2014) with an e-nose system with 8 
MOS sensors, during 6 days of storage at room temperature. 
High environmental humidity was used to induce different 
moldy levels. The processed e-nose responses were able to 
clearly distinguish and discriminate samples. Moldy status 
predicting models were also developed.

Specific fungal volatile metabolites were identified as 
indicators of mycotoxins’ content in cereals. In particular, 
Olsson et al. (2002) showed the possibility to predict ochra-
toxin A (OA) and deoxynivalenol (DON) levels in naturally 
contaminated barley samples using the VOCs detected and 
quantified by either GC–MS or e-nose with MOSFET and 
SnO2 sensors. The barley samples were also analyzed for 
moisture content, fungal contamination, ergosterol content, 
and OA and DON levels. Using the VOCs detected and 
quantified by either GC–MS or e-nose, Olsson and cowork-
ers were able to predict DON levels with a higher accuracy 
than OA levels, since different VOCs were either positively 
or negatively correlated with DON.

Abramson et al. (2005) monitored odor volatile evolu-
tion in durum wheat samples at different initial moisture 
content (16 and 20%), during 20 weeks storage, as an in-
dicator of microbial infection, ergosterol, and micotoxin 
formation. Nine of the 12 e-nose MOS chemosensors were 
able to distinguish between VOCs, as well as to track their 
changes in wheat samples. Moreover, the responses of some 
specific chemosensors showed a good correlation with OA, 
citrinin, and ergosterol in the wheat sample at 20% initial 
moisture content.

An e-nose based on a 6 MOS sensors array has also been 
employed to diagnose fungal contamination in maize cul-
tures inoculated in Fusarium species and to detect and predict 
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 fumonisin contents above and below the legal limits (Gobbi 
et al., 2011). E-nose was able to perform a rapid screening 
and a correct prediction of fumonisin levels in maize samples.

In another study by Lippolis et al. (2014), an e-nose based 
also on MOS sensors was successfully used to rapidly dis-
criminate and classify large numbers of durum wheat samples 
with different DON contents (from <1000 to >2500 mg/kg), 
allowing to reduce the number of HPLC analysis. Moreover, 
an SPME/GC–MS method was developed to characterize the 
VOCs associated to the DON content.

The response of an e-nose can also be utilized as a fin-
gerprint of off-flavor VOCs associated with lipid oxidation 
during storage, which can lead to organoleptic deteriora-
tion of some cereal products. In a study by Wessling et al. 
(2001), the oxidative stability of a commercial high-fat 
oatmeal product packed in four low-density polyethylene 
(LDPE) films (with diverse incorporated antioxidants into 
the polymers) was determined during storage by GC–MS 
and MOS-based e-nose. No significant changes in hexanal 
levels were observed, while the e-nose was able to detect 
variations in VOCs’ profile (probably ascribable to early ox-
idation products) among samples and during storage time. 
Wessling and coworkers concluded that e-nose is a sensitive 
method for early detection of some oxidative variations in 
oatmeal during storage.

5.5 CONCLUSIONS

Most of the results of the studies reported in this chapter 
prove that e-nose can be very useful for evaluating different 
quality aspects of cereal and bakery products. In particular, 
e-nose has demonstrated to be a rapid and sensitive mean 
for controlling and monitoring some important processing 
steps of bakery products, for predicting and early detecting 
fungal spoilage, mycotoxin contamination and deterioration 
phenomena in raw materials and bakery products, also dur-
ing storage. Therefore, among methods based on odor clas-
sification for determining the quality of cereals and bakery 
products, e-nose represents a useful alternative to replace 
and/or reduce the analysis for routine quality control, even 
though it does not provide a precise quantification and, in 
most cases, the obtained results need confirmation.

All the aforementioned results are promising and further 
studies are required to optimize the technology of chemo-
sensors, with higher sensitivity and discriminatory power, in 
order to improve the recognition performance of e-nose and 
its potentiality and suitability for evaluating odor volatiles’ 
characteristics in bakery products and related raw materials.
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6.1 INTRODUCTION

Nowadays, expert and consumer panels are used widely to 
assess the quality of fruit. They can be considered human 
sensors to quantitatively measure the quality attributes of 
the product. The advantage of both expert and consumer 
panels is that they address the quality attributes of fruit and 
vegetables similarly to the ultimate consumer. However, 
even when obtained by a well-trained quantitative descrip-
tive expert panel, scores are prone to large variability and 
may drift over time, the capacity of the panel is limited to 
typically 6–8 objects per session, the procedure is slow, and 
the cost is high.

Quality attributes can be objectively measured by both 
destructive and nondestructive techniques. Nondestructive 
techniques are often fast and have the particular advantage 
that the measurement procedure does not affect the char-
acteristics of the fruit. The immediate benefit is that such 
techniques can be used for grading individual fruit and veg-
etables with respect to quality prior to sale. Because of the 
large biological variability of the quality attributes of fruit 
and vegetables, grading individual products is essential to 
meeting consumers’ expectations. Color and size grading by 
visual inspection has been used for ages to remove products 
that would not meet the minimal requirements for quality 
and to simultaneously enhance uniformity. Over the years, 
this has been automated, and high-speed grading lines using 
sensors for external quality attributes, such as color, size, 
and appearance are now used widely by growers, coopera-
tives, and packing houses worldwide. The advent of non-
destructive methods to measure internal quality attributes, 
such as texture properties or flavor, opened up exciting new 
marketing possibilities for horticultural products, provided, 
that the properties they measure correspond to their human 
analogues. Nondestructive techniques are also very useful 
for developing models of changes in quality attributes dur-
ing postharvest storage, to optimize postharvest processes.

Among the different strategies for nondestructively 
assessing internal quality indicators in fruit, electronic 
noses have been receiving continuous attention. The pioneer 
studies, which date back from the late 1990s, established 
that electronic nose systems were very promising for 
nondestructively determining fruit quality for a number of 
reasons:

l They are based on inexpensive, nonspecific solid-state 
sensors, which are sensitive to the volatile compounds 
emitted both by climacteric and nonclimacteric fruit 
during ripening, shelf life, or cold storage. In particular, 
such sensors can be made very sensitive to ethylene (the 
ripening hormone in climacteric fruit, such as apples, 
peaches, bananas, etc.).

l Damage to fruit is often used as a criterion of quality (ie, 
rust fungi, formation of cork, bitter pit, insect damage, 
etc.). Diseases may result in telltale volatile fingerprints 
emitted by fruit, even at early stages when external 
damages are not yet visible. When properly trained, the 
electronic nose could help to discriminate healthy from 
diseased fruit in those early stages.

l The electronic nose is an instrument able to recognize, 
sort, and categorize volatile fingerprint patterns 
emitted by fruit. Rather than identifying and quanti-
fying a restricted set of chemical compounds just like 
instrumental methods do, the electronic nose relies on 
pattern recognition performed on the fuzzy information 
generated by the interaction between the array of non-
specific gas sensors and the complex mixture of vola-
tiles emitted by fruit. In that sense this instrument works 
more closely to the principles of a sensory panel than 
any other instrument does.

l Once an electronic nose has been trained, it does not 
necessarily require a skilled operator and can obtain the 
results in a few seconds. Additionally, in contrast with 
expert and consumer panels, such a system would never 
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get tired of assessing fruit, which translates into a high-
quality assessment throughout.

l Given the high flexibility that exists in the configuration 
of electronic noses (from desktop to portable and even 
hand-held configurations), the system may find applica-
tion at any point of the production, logistics, and vend-
ing chain of fresh fruit. These potential applications 
consist of, but are not necessarily limited to, helping 
the farmer to decide the optimal time of harvest, sorting 
fruit at packing industries, continuously monitoring of 
fruit during cold storage and transport, monitoring fruit 
during shelf life, or helping consumers to pick fruit ac-
cording to their preferences.

Despite the sustained efforts conducted for over 20 
years now, the use of electronic nose technology for assess-
ing fruit quality still happens at the laboratory level and for 
research purposes mostly. This chapter reviews how the 
electronic nose technology and applications for fruit moni-
toring have evolved in these 20 years.

6.2 ELECTRONIC NOSES FOR 
MONITORING THE RIPENESS STAGE 
OF FRUIT

The concept of electronic nose was coined in the early 
1990s. A few years later Benady et al. (1995) and Simon 
et al. (1996) were the first to study the use of electronic 
noses for assessing the ripeness stage of fruit. Two years 
later, Maul et al. (1998) experimented with a commercially 
available Electronic Nose (e-NOSE 4000 from Neotronics 
Scientific Inc., USA), which consisted of 12 conductive 
polymers. This electronic nose proved useful at predicting 
in a nondestructive way, the number of days after harvest 
tomatoes would need exposure to ethylene for showing evi-
dent external symptoms of ripening. The predictive models 
were based on linear discriminant function analysis (DFA).

Later, Llobet et al. (1999) studied the effectiveness of 
different preprocessing techniques and neural pattern rec-
ognition engines for category discovering and classification 
of the ripeness stage of bananas and apples. In this paper, 
electronic noses comprised a limited number (four) of com-
mercially available, resistive, metal oxide gas sensors. In 
general, the conductance of sensors was found to increase as 
the fruit ripened, which was associated to an increase in the 
number and the concentration of volatiles emitted by fruit 
as the ripening process progressed. No attempts for opti-
mizing the type and number of sensors to integrate the ar-
ray were made in these initial studies. Sample delivery was 
deliberately simple to assess the resilience of the electronic 
nose system to the presence of gas compounds in the back-
ground, the origin of which was exogenous to the process to 
be monitored (the evolution of fruit ripeness). That is why 
only two plastic vessels were used: The fruit to be monitored  

was placed in one of these two vessels (the sample vessel) 
and the other was kept empty (the reference vessel).  During 
a measurement, a dynamic headspace sampling of the sam-
ple vessel was performed by pumping air from the sample 
vessel into the sensor chamber. The air pumped from the 
sample chamber into the sensor chamber was continuously 
replaced by air from the room. Immediately after the mea-
surement phase, a cleaning phase started, which consisted 
of pumping air from the reference vessel into the sensor 
chamber. Similarly, the air pumped from the reference 
chamber into the sensor chamber was continuously replaced 
by air from the room. This allowed for regaining the base-
line value of the sensors. The reasons for implementing this 
measurement procedure are twofold. The sample and refer-
ence chambers are identical and this enables to ensure that 
the electronic nose is responding to the volatiles emitted by 
fruit rather than to any residual smell of the plastic vessels. 
Exogenous volatile compounds present in the room equally 
influence both fruit responses and the baseline. In principle, 
the difference between the baseline and response signals 
would depend on the fruit only. In these pioneering stud-
ies, the pattern recognition (PARC) engines of the electronic 
noses employed for assessing fruit ripeness consisted of 
different neural network paradigms, such as the multilayer 
 perceptron (MLP), the learning vector quantization (LVQ), 
or the fuzzy ARTMAP. All these algorithms implement a 
supervised learning strategy and, therefore, training vectors 
should be assigned a category (ie, a ripeness stage) before 
they can be actually used. Given the relatively low number 
of samples (and of measurements) available in these initial 
studies, the use of alternative and well-established instru-
mental techniques for categorizing ripeness could not be 
envisaged. Instead, unsupervised clustering methods, such 
as principal component analysis, self-organizing maps, or 
c-means clustering were explored for category discovering. 
These helped to classify samples in a few, relatively broad, 
ripeness stages that ranged from “green” to “overripe.” Even 
though the clustering methods considered work on different 
principles, these methods gave consistent results. In other 
words, the ripeness stage attributed to a given sample did not 
suffer from significant variations depending on the cluster-
ing method employed. Once any measurement in the mea-
surement database had been tagged with a ripeness stage, the 
training and evaluation of the PARC of the electronic nose 
could be envisaged. Given the limited number of samples 
available, re-sampling techniques, such as the leave-one-out 
cross validation or the bootstrap method were implemented 
in an attempt to correctly estimate the success rate in the 
classification according to the ripeness stage.

With apples and bananas, Llobet and coworkers 
explored the use of the fuzzy ARTMAP, the LVQ, and 
the MLP neural networks for classifying their stage of 
ripeness. Similar accuracies above 90% were reached in 
the classification using fuzzy ARTMAP or the LVQ. It was  
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found that these performances compared favorably with 
that achieved with back-propagation trained MLPs (slight-
ly above 80%). The time needed for training the fuzzy 
ARTMAP was found to be typically more than an order of 
magnitude less than those for back-propagation MLP and 
LVQ. The generalization ability of the trained networks 
to the prediction of the state of ripeness of new, unknown 
samples was also investigated and it was found that the 
networks had a good performance, providing 90% accura-
cy in the classification of patterns belonging to previously 
trained categories. If a new category for which the net-
work had not been trained occurred during testing, fuzzy 
ARTMAP and LVQ associated these patterns with classes 
that were the nearest to the actual state of ripeness and that 
were already known. Finally, the superior ability of fuzzy 
ARTMAPs to perform incremental learning without forget-
ting previously learned patterns was demonstrated in these 
applications, when it significantly outperformed LVQ and 
MLP, even in the presence of added noise.

However, in these initial studies, the sampling process 
was far too manual and rather slow. These inherent limi-
tations made such systems difficult to adopt by the fruit 
industry or in real commercial applications. Additionally, 
further work to assess the long-term reliability of the system 
was needed because the effects of sensor drift on its accu-
racy were completely overlooked.

Young et al. (1999) compared the use of headspace gas 
chromatography coupled to mass spectrometry (headspace-
GC/MS) and a commercially available electronic nose (the 
FOX 4000) from AlphaMOS (France) for sorting Royal 
Gala apples according to their ripeness stage. This system 
comprised 18 metal oxides (resistive gas sensors). Accord-
ing to the GC/MS study, 10 volatile compounds emitted 
from apples (acetates, alcohols, and aldehydes) could be 
identified, which showed evolution in their concentration 
levels as a function of the moment of harvest and number 
of storage days. Two data clustering models were built em-
ploying linear discriminant function analysis (DFA) on data 
gathered from the electronic nose and the GC/MS system, 
respectively. From the results, it was derived that the elec-
tronic nose slightly outperformed the GC/MS system and 

this was attributed to the higher sensitivity of metal oxide 
gas sensors to the volatile compounds released by fruit. Un-
fortunately, sample conditioning involved obtaining disks 
of the apple cortical tissue and, therefore, both the GC/MS 
and the electronic nose measurements implied the destruc-
tive testing of apples in this particular application.

Brezmes et al. (2000) employed a significantly higher 
number of samples in their analysis. Their experimental 
design included destructive testing of some fruit samples 
along the ripening process, which comprised estimating 
firmness, pH, and soluble solids employing a hand pen-
etrometer, a desktop pH-meter, and a hand refractrometer, 
respectively. This strategy enabled them to follow the evo-
lution of samples during the entire ripening process and 
also to sort them in three categories (green, ripe, and over-
ripe). A manual static headspace sampling technique was 
implemented (Fig. 6.1), which included a step for allowing 
volatile compounds emitted from fruit to concentrate in the 
headspace of a large fruit vessel that could accommodate 
many fruit samples (ie, either peaches, pears, or apples). 
After the concentration phase, a fraction of the headspace 
was injected using an airtight chromatographic syringe into 
the sensor chamber. In a similar way to the previous stud-
ies, an arbitrary number of commercially available metal 
oxide gas sensors (ie, 12) were used to integrate the array. 
Fig. 6.2 shows how the sensor response increases with 
shelf-life days. Unlike in previous works, however, addi-
tional information, namely fruit weight and surface, were 
input to the back propagation-trained, MLP neural network 
engine of the electronic nose. This was done because it was 
considered that, besides the actual ripeness stage of fruit, 
variations in the total weight and surface of the fruit intro-
duced in the concentration chamber would significantly 
affect the amount of volatiles present in its headspace af-
ter a fixed, always constant, time slot. Indeed, the inclusion 
of weight and surface information was used by the PARC 
engine as normalization factors that significantly improved 
the success rate in the discrimination of the ripeness stage 
of peaches, pears, and apples. Additionally, during the 
optimization of the PARC engine, a sensor pruning strategy 
was implemented. This consisted of using cross-validation  

FIGURE 6.1 A highly manual electronic nose to measure ripeness in climacteric fruit using a concentration chamber.
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techniques with a reduced set of samples for assessing 
whether removing sensors from the array would help im-
proving the success rate in classification. It was found that 
using seven (peaches), two (pears), and one (apples) gas 
sensors together with weight and surface data would lead 
to the best results. Sensor pruning helps adapting the sen-
sor array to the headspace generated by each specific fruit 
(eg, by removing redundant, irrelevant or noisy sensors), 
lowers the dimensionality of the PARC engine, and thus 
diminishes the risk of overfitting. A rather crude, three-
category classification of fruit (green, ripe, and overripe) 
was attempted and while the success rate for peaches and 
pears approached 90%, it reached 73% only for apples, 

most probably because the sensors employed were not well 
adapted to the volatiles or the volatile concentrations found 
in the headspace of the latter.

Later, Brezmes et al. (2001) designed a 21-element 
metal oxide gas sensors array together with a fully auto-
mated dynamic headspace sampling and delivery system to 
assess the ripeness stage of Pink Lady apples along their 
shelf life. Fig. 6.3 details the general scheme of the system. 
Once more the gas sensors used were commercially avail-
able and destructive methods were employed to objectively 
identify the ripeness stage of apples (firmness, pH, and 
starch index). The main objective of the paper was to study 
whether the electronic nose would be able to accurately pre-
dict the results of the three destructive ripeness assessment 
methods. Indeed, by employing the responses of the sensor 
array to the headspace of apples and by building and cross-
validating partial least squares models it was found a fair 
correlation between the responses of the electronic nose and 
the values of firmness and pH (Fig. 6.4, correlation coef-
ficients higher than 0.93 and 0.84, respectively). However, 
a very important aspect of the paper is devoted to answer 
the following question: since metal oxide gas sensors are 
known to suffer from significant response drift, is the elec-
tronic nose really following the ripening process of fruit or 
simply responding to sensor drift? Ripening of fruit is a pro-
cess that is largely related to time. It is generally assumed 
that the ripening process leads to a monotonic increase in 
the concentration of volatile compounds emitted by fruit 
and this should translate in a monotonic increase in sensor 
response (eg, increase in conductance change for resistive 
metal oxide gas sensors). Therefore, it is very important to 
closely monitor sensor drift to assess whether the results 
are achieved from the ripening process of the fruit alone or 
sensor drift is responsible for achieving meaningful results. 
This very important aspect had been completely overlooked 
in previous studies about fruit ripeness monitoring. Calibra-
tion measurements employing ethanol, a volatile compound 
to which the sensors were very responsive, which was not 
present in the headspace of the apples, were performed 
on a daily basis along the entire process implemented for 

FIGURE 6.3 General scheme of a highly automated electronic nose.

FIGURE 6.2 Sensors increase monotonously as shelf-life fruit begins 
ripening after harvest.



Electronic Noses for Monitoring the Quality of Fruit    Chapter | 6    53

monitoring the evolution of ripeness of Pink Lady apples. 
Different clustering algorithms, such as principal component 
analysis (PCA) or fuzzy ARTMAP were used to  identify 
whether similar clustering patterns occurred for calibration 
measurements and apple measurements, because that would 
clearly indicate the influence of sensor drift. It was found 
that 7 of the 21 sensors integrating the array were seriously 
affected by drift. When the response of these seven sensors 
affected by drift were used, the ethanol calibration measure-
ment of a given day clustered together with apple measure-
ments of that same day as it is shown in Fig. 6.5. Once these 
drifting sensors had been removed from the electronic nose 
array, a last check was performed, which consisted of using 
the ethanol calibration measurements to build and validate 
partial least squares models for predicting firmness and pH. 
The fact that these calibration responses resulted complete-
ly uncorrelated to firmness or pH clearly indicated that the 
14 remaining sensors were not affected by significant re-
sponse drift, at least during the timeframe of the experiment 
(∼1 month). Finally, Brezmes et al. (2005) extended their 
study to other cultivars (ie, pears, nectarines, and peaches) 
showing that the electronic nose had good potential for pre-
dicting the optimal time of harvest, the ripeness stage of 
fruit along their shelf life, and also some quality parameters 
of fruit. Despite these good results, a few important open 
questions for improving the system were identified, such 
as devising a straightforward procedure for detecting and 

correcting sensor drift. Additionally, the calibration of the 
system for a given cultivar should take a few measurements 
only and be accurate, at least, for some consecutive cam-
paigns. Finally, the measurement cycle should be faster in 
order to increase throughput.

Herrmann et al. (2002) made an original contribution to 
the field by developing sensors specifically designed for mon-
itoring the postharvest ripeness stage of apples. When apple 
aldehydes are present, the mass of the coated quartz crystal 
microbalances (QCM) increases, which results in a measur-
able negative shift in the resonant frequency of the QCM. 
Herrmann and coworkers showed that their sensors could 
reversibly detect the target molecule with a 20 ppm limit of 
detection and some selectivity. They measured artificially 
generated concentrations of aldehydes diluted in nitrogen but, 
at that time, they did not apply their system to monitoring real 
apples. Later, Echeverría et al. (2004) reached similar results 
while studying the postharvest ripening of Fuji apples. In 
that particular case, they used also an array of QCM sensors 
but coated with different films (metalloporphyrins) than 
those used by Herrmann and coworkers. They could identify 
ethyl-2-methylbutanoate as a key volatile for following the 
postharvest ripening of Fuji apples.

Saevels et al. (2003) took a close look at the effects of 
the cultivar and the campaign on the ability of electronic 
nose models to predict the optimal time for harvesting fruit. 
So far, any study had considered assessing postharvest  

FIGURE 6.4 Electronic nose measurements correlate very well with firmness, somehow with acidity (pH) and they are almost uncorrelated to 
starch index values during shelf life.
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quality of single cultivars, for example, a given variety of 
apples, and of a single harvest year. The questions that Sae-
vels and coworkers addressed were the following:

l Would a model for predicting the quality of a variety of 
apples perform similarly with a different variety of apples?

l Would a model for predicting the quality of a variety 
of apples, which was built employing samples from a 
given harvest year, perform similarly with the same va-
riety of apples from a different harvest year?

Results clearly indicated that inter-cultivar variability 
prevented the electronic nose from performing well when it 
was asked to make predictions for a variety of apples based 
on the knowledge gained from the other variety of apples 
considered. Even when the electronic nose was trained with 
samples from the two apple varieties, the prediction ability 
of the system degraded in comparison to that of the system 
specifically trained for a single variety. Therefore, the an-
swer to the first question above is no. This has serious im-
plications for industrial use of the electronic nose system, 
because every year new varieties of apples are developed 
and marketed and results indicate that specific calibration 

would be needed for every single new variety to be moni-
tored. Predictive models were also affected by a year effect. 
Indeed, it was impossible to accurately predict the maturity 
for harvest of apples if they had been harvested in a different 
year than the apples used for training the electronic nose. 
However, when samples from two consecutive harvest cam-
paigns were used to train the electronic nose, the instrument 
was able to accurately predict the maturity for harvest of ap-
ples from both campaigns. Therefore, although the answer 
for the second question above is also no, from a practical 
point of view, the electronic nose shows good potential for 
estimating the quality of a given fruit variety along different 
harvest years provided that the system is trained on samples 
spanning through the whole set of harvest years.

6.3 ELECTRONIC NOSES FOR ASSESSING 
THE POSTHARVEST QUALITY OF FRUIT

Once harvested, fruits are subject to senescence in which dif-
ferent biochemical processes continuously change the orig-
inal composition of the fruit until it becomes unmarketable. 
Despite all the care that is taken at handling, postharvest 

FIGURE 6.5 Calibration measurements (labeled CAL) follow a drift pattern that needs to be corrected.
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treatment remains a potential source of defect in fruits. Di 
Natale et al. (2001) studied the use of an electronic nose to 
detect postharvest defects in apples, namely, mealiness and 
the presence of skin cuts. The electronic nose comprised 
a seven-element sensor array of QCMs coated with metal-
loporphyrins, already described in Section 6.2. Apples with 
two degrees of mealiness (ripe and overripe) and with one 
and two cuts (cuts were produced with a tool that resulted 
in gauged and reproducible cuts) together with defect-free 
apples were measured by the QCM electronic nose. Given 
the fact that apple samples belonged to crisp categories 
(eg, having one, two, or no cuts), a partial least squares–
discrimination analysis (PLS–DA) was implemented as a 
PARC engine. Since the total number of samples and mea-
surements available was not very high, discriminant models 
were built and validated using the leave-one-out cross-
validation approach. Under these conditions, the electronic 
nose was found to be able to detect mealiness and skin dam-
age. The electronic nose was more sensitive to the presence 
of cuts than to the mealiness. This was attributed to the fact 
that increased mealiness did not change the nature of the 
volatile compounds found in the headspace of fruit. It only 
affected their concentration. On the other hand, skin cuts, 
apart from resulting in higher concentration of volatiles in 
the headspace due to direct flesh exposure, also trigger oxi-
dation processes that produce new compounds.

Tan et al. (2005) addressed the detection of internal 
freeze damage in two different varieties of oranges employ-
ing an electronic nose and dynamic headspace sampling. 
The electronic nose consisted of a commercially available, 
32-element, carbon-black polymer composite array (Cyra-
nose 320; Cyrano Sciences, Pasadena, CA, USA). The 
PARC engine consisted of a canonical discriminant analysis 
for performing a binary classification of fruit (ie, sound or 
freeze-damaged). To estimate the success rate in classifica-
tion, a leave-one-out cross-validation approach was imple-
mented. Orange samples belonged to Cutter Valencia and 
Olinda Valencia. Freeze damage was produced artificially 
by storing fruit under freezing conditions for a controlled 
period of time. Freeze-damaged fruit had internal dam-
age but externally they were undistinguishable from sound 
fruit. Specific prediction models worked similarly well for 
both cultivars and the success rate in the discrimination be-
tween freeze-damaged and sound oranges was about 72%.

Li et al. (2009) studied the use of an electronic nose to 
detect rot in mangoes. Rot in fruit is caused by bacteria and, 
more often, by fungi and results in skin lesions. The number 
and the size of skin lesions increase when rot worsens. The 
organoleptic properties of fruit degrade when affected by 
the disease. Li and coworkers employed a commercially 
available instrument the zNose (7100 Fast GC Analyzer, 
Electronic Sensor Technology, New Bury Park, CA, 
USA) to analyze the headspace of mangoes to detect the 
occurrence of rot. This equipment is a miniature,  high-speed 

gas  chromatograph, containing a short separation column, 
an uncoated (ie, broadly selective) surface acoustic wave 
(SAW) sensor as detector, and support electronics. Before 
the volatile compounds from the headspace of mangoes 
reach the detector, they are partially separated by the short 
column. The time a given component remains in the column 
is recorded as its retention time, which is supposed to be 
unique for each specific chemical. In fact, due to the short 
length of the separation column, many compounds may not 
be resolved and are coeluted to the detector. The derivative 
of the frequency signal is used as a quantitative measure-
ment of the quantity of the chemical(s). An advantage of the 
zNose is that results are obtained much faster than in stan-
dard chromatography, which uses long separation columns. 
PLS and the variable importance for projection (VIP) were 
used to identify which peaks of the zNose could be used for 
predicting rot. In the end, a single peak could be used for as-
sessing the presence of rot in mangoes with a 90% success 
rate in the classification. These results are encouraging for 
industrial use of this method in packinghouses for sorting 
fruit. However, in this study the diseased mangoes already 
showed the presence of visible lesions (rots) at side or stem 
ends and it would be worth investigating whether the meth-
od is sensitive enough to detect diseased fruit at very early 
stages, before the onset of skin lesions.

Li et al. (2010) employed an electronic nose comprising 
several conducting polymer sensors to assess fungal con-
tamination in blueberries. In their experiment, ripe organic 
rabbiteye blueberries were hand-harvested and rinsed three 
times in distilled water to remove any residue before in-
oculation. Blueberries were punctured with a sterile needle 
on its stem side to create a slight wound to facilitate in-
fection. Blueberries were infected with three types of fungi 
responsible for frequent diseases (ie, Botrytis cinerea, Col-
letotrichum gloeosporioides, and Alternaria sp.). Berries 
started to show signs of fungal growth on their surfaces 
on 6–10 days after inoculation and this is when electronic 
nose measurements started. The commercially available 
Cyranose 320 (Cyrano Sciences, Pasadena, CA, USA) was 
used to sense the headspace of the three different types of 
inoculated samples together with a fourth control group, 
consisting of healthy, ripe blueberries having undergone the 
same rinsing procedure and puncture as inoculated samples, 
but which were not inoculated. A Bayesian classifier was 
trained and cross-validated with the responses of the elec-
tronic nose, which reached a 90% of correct classification 
of blueberries in the four categories (healthy and three types 
of fungi). The main problem associated to this study was 
the fact that it was necessary to wait for the headspace of 
blueberries to build up for 12 h to improve the reproduc-
ibility and reliability of the results. Pallottino et al. (2012) 
performed a similar study on Valencia oranges inoculated 
with Penicillium digitatum and Penicillium italicum. The 
electronic nose comprised a seven-element sensor array of  
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QCMs coated with metalloporphyrins. Four types of sam-
ples were available, which corresponded to healthy oranges 
and three inoculated categories with increasing inoculation 
intensity. The PARC engine was based on cross-validated 
PLS–DA. When a four-category classification was attempt-
ed, the success rate in classification was rather poor (about 
50%). When specific models were built for two-category 
classification (ie, healthy or inoculated), the success rate 
in classification ranged between 73 and 82% for lightly 
inoculated oranges and heavily inoculated oranges, respec-
tively. Gruber et al. (2013) reached similar conclusions on 
 Penicillium digitatum inoculated oranges, the headspace 
of which was monitored with a four-element conductive 
polymer array. These results indicate that the electronic 
nose could be applied in the identification of fungal strains 
in storage rooms, especially when the infection occurs in 
small percentages that are not easily identifiable by classic 
methodologies of inspection.

Demir et al. (2011) studied the use of an electronic nose 
to assess the occurrence of impacts during packaging of blue-
berries. A commercially available electronic nose, the EN 
4000 (EEV Inc., Amsford, NJ, USA), equipped with 12 con-
ducting polymer sensors was used. To simulate the intensity 
of impacts, blueberries harvested at the same ripeness state 
were split in three different groups. Those belonging to the 
control group were not impacted; the other two groups were 
dropped from 200 mm distance into a picking bucket having 
either a plastic lug (soft impact) or a steel plate (hard impact) 
at the bottom. These impacts did not result in skin rupture 
or leakage after treatment or during storage. The headspace 
of impacted and control blueberries was measured with 
the electronic nose starting from two days after impact and 
discriminant function analysis was implemented and cross-
validated to classify blueberries according to impact inten-
sity. At day 2, 80% of the samples were correctly classified 
and from day 10 onward, the success rate in classification 
raised to about 90%. According to these results, it seems 
possible to objectively classify the bruising intensity of the 
fruit using an electronic nose provided that the storage time 
(or shipping time) were known. The electronic nose sam-
pling time was sufficiently rapid for permitting the analysis 
of subsamples for quality control but was too slow to enable 
real-time determination during packing.

6.4 MASS SPECTROMETRY–BASED 
ELECTRONIC NOSES AND SENSOR 
FUSION TECHNIQUES

A MS–based electronic nose consists of a gas chromatograph 
coupled to a mass spectrometer in which the separation col-
umn of the chromatograph has been either by-passed or kept 
heated to such a high temperature that all the compounds 
input at the injection port of the gas chromatograph are coe-
luted at the output. These compounds are then ionized and 

complex mass-charge spectra are obtained at the detector of 
the mass spectrometer. These spectra consist of multivariate 
information that may be processed by a wide spectrum of 
pattern recognition (PARC) methods, including those usu-
ally found in gas sensor–based e-noses. These instruments 
combine the reliability and stability of classical instrumental 
analysis methods and the speedy operation of standard elec-
tronic noses, since the time-consuming gas chromatography 
separation step is no longer used. From a conceptual point 
of view, MS and standard electronic noses share the same 
approach because they do not intend to identify and quantify 
every component in a complex mixture of volatiles. Saevels 
et al. (2004) employed such an instrument to analyze the 
quality of apples during shelf life. The performance of an 
MS electronic nose was compared against that of a seven-
element QCM sensor array electronic nose. Both instruments 
were trained for predicting the number of days of shelf life 
for Jonagold apples that had been kept under cold storage. 
The collection of volatiles from the headspace of fruit was 
performed employing a solid-phase microextraction fiber. 
The volatiles trapped at the fiber were desorbed either at the 
sensor chamber of the QCM electronic nose or at the in-
jection port of the MS instrument. The MS electronic nose 
gave slightly better results than the QCM system at predict-
ing fruit firmness and estimating days of shelf life of apples. 
Similarly to standard electronic noses, MS-based instru-
ments would need specific calibration for every different 
cultivars and these calibrations would be also sensitive to the 
year of harvest. The same group (Berna et al., 2004) stud-
ied cultivar differences and postharvest ripening of tomatoes 
employing the same experimental methods and instruments 
just described. They found that the MS electronic nose per-
formed better than their QCM electronic nose at discriminat-
ing between the two tomato varieties studied (Tradiro and 
Clotilde). This discrimination was attributed to the higher 
contents of volatile components derived from the aliphatic 
amino acids metabolism and because of the lower terpenoids 
content of Tradiro in comparison to Clotilde tomatoes. Both 
instruments were able to follow the shelf life of tomatoes. 
However, the MS electronic nose was more accurate at pre-
dicting the initial days of shelf life.

The main differences between electronic nose configura-
tions are based on the sensing technology behind them. Nev-
ertheless, most systems share a common feature: They only 
use a single detection technology. That is why it comes as no 
surprise that several studies report on the use of more than 
one electronic nose for the same study, expecting to increase 
the suitability of the combination for the purpose envisaged.

Li et al. (2007) reported a very exhaustive study on the use 
of two different electronic noses to detect defects on apples. 
As mentioned before, each commercial electronic nose usually 
uses only one type of detection technology and using systems 
from different vendors can increase the chance of success for 
a given task. In their case, they used an E-nose and a zNose.
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The E-nose (Smith Detection, Herts, UK) consists of 32 
internal thin-film carbon-black polymer composite sensors, 
which can function at ambient air temperature. The zNose 
has been described before and comprises a capillary column 
and a SAW sensor.

In their study, Red “Delicious” apples were purchased 
from a local grocery store and were intentionally damaged 
by inducing a 10 mm deep cross-slice cut on the top. These 
damaged apples were exposed to room air for deterioration 
development. The measurements were conducted every 
other day from day 4 to 14 after the cut treatment. Other 
apples without the cut treatment were considered “healthy” 
apples. Apple samples were kept in room air for 6 h to reach 
the ambient air temperature before each test. Apples were 
maintained at room air temperature (20 ± 1°C) for 48 h 
between each measurement. A 2 L glass jar was used as a 
headspace gas concentration chamber, sealed by a plastic 
cap with a Teflon septum. The E-nose was used to sample 
volatile compounds emitted by the apples by inserting a 
50 mm long snout needle into the 5 mm hole in the lid of the 
glass jar. The zNose was equipped with a 5 cm long sam-
pling needle at the inlet, which was inserted into the con-
centration chamber for sampling. The sampling time was 
10 s, during which the gas sample was released from the 
trap inside the system and carried over the column (DB-5) 
in a helium flow of 3 cm3/min. Sampling was conducted at 
three different seasons: Mar., Jun., and Sep.

To fuse the data, two main strategies were proposed. 
Fig. 6.6 shows the two different approaches that differ in 
which stage the data fusion takes place:

1. Feature-level fusion: Features were first extracted by us-
ing PCA from each source of data (E-nose and zNose). 
These features were concatenated into a single feature 
vector, which in turn was used as input to an artificial 
neural network for classification.

2. Decision-level fusion: Data from each sensor individu-
ally was used to perform an identity declaration and the 
identity declarations provided by the individual sensors 
were combined using a Bayesian network decision-level 
fusion technique.

First, a PCA was used for feature extraction from raw 
data from each electronic nose. Then a probabilistic neural 
network (PNN) was designed for feature-based data fusion 
models. When fusing data, there are two issues that need to 
be addressed. The first one is the normalization of variables, 
which can easily be done with autoscaling, pareto scaling, 
or mean centering, depending on the nature of the data. This 
is a very well-studied problem and numerous solutions have 
been proposed. The second problem is trickier; it is called 
the “curse of dimensionality” problem. When training or fit-
ting a mathematical model, it is always important to make 
that model as parsimonious as possible. To do so, the fewer 
parameters used to describe each measurement, the better. 
Of course, there is a lower limit since the training procedure 
has to be learned by the system. But, if too many variables 
are used, we can overtrain the system, which indeed pro-
duces a lack of generalization when new measurements (not 
used during training) are executed.

Li et al. (2007) as well as other authors (Di Natale 
et al., 2002; Boilot et al., 2003) used variable selection 
methods mostly based in genetic algorithms (GA). Dif-
ferent studies have benchmarked the performance of such 
approaches and the best option uses integer chromosomes, 
opposed to binary chromosomes, since they select fewer 
variables with a higher performance rate in validation (us-
ing samples or measures not used for training previously).

For example, in the study by Li et al. (2007), it was found 
that simply adding the E-nose and zNose raw data together 
in nonselective feature fusion worsened the classification 
results: the 32.5% error rate from the fused data was higher 
than from the E-nose (15%) and the zNose (23%) individu-
ally. In contrast, the GA-based method called “dynamic se-
lective fusion,” which jointly selected useful features from 
the E-nose and zNose, greatly improved the system perfor-
mance with a zero classification error rate.

Comparing the feature-level and decision-level data fu-
sion models, the dynamic selective feature-level data fusion 
achieved better performance (an average 1.5% error rate) 
than the decision-level data fusion (an 11% error rate). The 
decision-level fusion’s performance depends on the perfor-
mances of the two instruments. By using soft evidence from 

FIGURE 6.6 Two different strategies to fuse data from two different electronic noses: feature extraction fusion and identity declaration fusion.
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BP classifiers, Bayesian network fusion can improve the 
individual sensors’ performance by 2%. These results sup-
ported the claim that generally better accuracy is obtained 
by fusing information closer to the source.

6.5 OUTLOOK AND CONCLUSIONS

The success of any approach to assess the quality attri-
butes of fruit and vegetables critically depends on how 
their measurement principle mimics the way humans per-
ceive a particular property. In that sense, electronic noses 
are well positioned because their basic philosophy is to use 
bio-inspired strategies to assess the quality of fruit from the 
standpoint of the final consumer.

On the other hand, due to the intrinsic variability of fruit, 
techniques that measure nondestructively one piece at a time 
are far more useful because measuring globally a complete 
batch will not ensure the quality of each individual.

Therefore, if each fruit unit is to be measured separately, 
commercially viable techniques require very fast and highly 
automated measurements. In order to fulfill these require-
ments, electronic nose sensors need to increase sensitivity 
around three orders of magnitude, so that a preconcentra-
tion time for each sample is not needed. Newer generations 
of chemoresistive sensors based on nanotechnologies can 
be the key enabler technology to fulfill this condition, since 
their sensitivity has already reached that goal.

Other desirable improvements in sensors include repro-
ducibility, faster response times, and immunity to ambient 
factors such as temperature and humidity.

Finally, software should be improved to minimize training 
and calibration efforts while maximizing generalization, both 
in application to different cultivars and different campaigns.
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7.1 INTRODUCTION

Meat is a major source of protein in the human diet and 
is rich in minerals. It is one of the most widely consumed 
food product in the world. The Midwest has a huge market 
share in the meat industry economy of the United States. 
However, meat products perish extremely fast due to im-
proper handling and storage. Over time, the quality of meat 
deteriorates due to the breakdown of the nutrients present 
in meat. This causes changes in color, texture, and odor. 
When the animal is alive, the microbial count is negligible 
or even absent (Chung, 1991). However, when the animal 
is slaughtered, microorganisms find their way into the car-
cass and lodge inside them until conditions become favor-
able for their growth. Intrinsic and extrinsic factors such 
as temperature, relative humidity, water activity, oxygen 
concentration, and exposure to light are some of the condi-
tions, which favor the growth of microorganisms and subse-
quently cause unwanted physicochemical changes in meat. 
Consumption of spoiled meat products causes a variety of 
health risks to the human population. Also, microorganisms 
deteriorate meat quality and cause safety hazards resulting 
in significant economic losses. About 76 million food-borne 
illnesses occur each year in the USA, whereas the European 
Food Safety Authority reports that about 15% of the popula-
tion of Europe become ill every year as a result of consum-
ing unsafe food (Falasconi et al., 2012). Based on a USDA 
report, out of the total food-borne illnesses believed to oc-
cur, nearly 5 million cases of illnesses and 4000 deaths may 
be associated with meat and poultry products contaminated 
with pathogenic bacteria (Dewaal, 1996). The annual costs 
encountered in dealing with these food-borne illnesses in 
the United States ranges from $5 billion to $6 billion, with 
more than 66% of this cost alone being attributed to meat 
and poultry products (Dewaal, 1996). Hence, the govern-
ment is looking for various avenues by which a safe, reli-
able, rapid, and economical meat quality inspection system 
could be developed and implemented.

Electronic noses (e-noses) which are intelligent quality 
sensors (IQS) simulate the operation of human olfactory 
sensory system is one of the approaches being looked into 
for “sniffing” out the volatile organic compounds (VOCs) 
emitted from food products due to the action of microorgan-
isms. Depending on the VOCs detected, information on the 
quality of the food product may be obtained to an appre-
ciable degree of confidence. Although cheap, reliable, and 
robust sensors have been developed for various industrial ap-
plications, the use of these sensors to specific food products 
have to be tested, perfected, and miniaturized. Like every 
human having his or her own characteristic odor being emit-
ted, stored meat emits gases which, when analyzed, can give 
information about the status of the stored meat and, to an 
extent, the condition of the meat. Various conditions like the 
age, breed, diet, health, sex of the animal, and storage condi-
tions influence the type of VOCs emitted. This adds to the 
complexity of developing an E-nose system that is reliable 
and consistent for meat applications. With the help of appro-
priate chemometric techniques, the smell patterns obtained 
from the sensing system can be processed to give an output, 
which gives information on the status of the food product.

For developing an effective electronic nose system to 
identify presence of spoilage or pathogenic microorganisms 
in meat, there has to be a strong understanding of the nature 
of VOCs being emitted by the meat product. This helps in de-
signing the e-nose system based on the target VOC and devel-
oping a reliable validation system. There is quite a lot of in-
formation regarding the volatile gases emitted from the action 
of various spoilage bacteria in beef (Chung, 1991; Jackson 
et al., 1992; King et al., 1993; Intarapichet and Bailey, 1993). 
Various researchers have also highlighted the use of e-nose 
techniques to train and identify the volatile gases emitted 
from food substances (Schaller et al., 1998; Balasubramanian 
et al., 2012; Wilson, 2013). However, very few or little infor-
mation is available on the use of e-nose to identify the vola-
tiles emitted due to the action of pathogenic bacteria.
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For the development of an e-nose system, three major 
components need to be integrated together—a sampling 
system, a detection system, and a data processing system 
(Peris and Escuder-Gilabert, 2009). This chapter focuses on 
the development of E-nose systems for meat applications 
and reviews the work done in the past by a variety of re-
searchers.

7.2 SAMPLING, IDENTIFICATION, 
AND ANALYSIS OF MEAT VOLATILES

Beef during storage emits various VOCs due to chemical 
changes occurring within as a result of the action of micro-
organisms and enzymes present. These VOCs can be quali-
tatively and quantitatively identified fairly accurately using 
analytical instruments such as a gas chromatograph (GC) 
coupled with a mass spectrometer (MS). Such information 
obtained can provide information on the condition of the 
stored beef and determine whether it has crossed the thresh-
old for safe human consumption or not. Use of GC–MS 
requires sufficient expertise and development of a reliable 
analysis method is time consuming. Also, the instrument 
cost for operation and maintenance is high. Hence, alternate 
rapid sensing techniques, which are user friendly, accurate, 
sensitive, and reliable, would be a good choice for sensing 
volatiles from stored food products. This is where e-nose 
systems will be a popular choice.

7.2.1 Volatiles Sampling

Sampling of the VOCs is critical in obtaining desired re-
sults using the e-nose system. Proper sampling techniques 
also help in developing validation techniques that will help 
in training the developed e-nose system to target the de-
sired “indicator” VOCs and boost the power of the nose. 
GC–MS is by far the most widely used tool for validating 
the performance of an e-nose system. Before being intro-
duced into the GC, a suitable method has to be selected for 
sampling the VOCs. Static headspace and dynamic head-
space samplings are the two ways in which the headspace 
samples are introduced into the GC. Static headspace sam-
pling technique saves time and money and hence, is pre-
ferred. For complex substances like biological materials, 
which differ in molecular weight, polarity, and volatility, 
headspace sampling is the fastest and cleanest method for 
analyzing volatile compounds. This method also is easy to 
operate and can be used for a variety of sample matrices 
(Pawliszyn, 2002). Solid-phase microextraction (SPME) is 
one of the widely used techniques for volatile preconcentra-
tion and sampling. SPME sampling is rapid and does not 
require elaborate sample preparation.

Table 7.1 summarizes some of the characteristics of 
SPME filaments and the GC–MS columns used by various 
researchers for analyzing volatiles from meat headspace 
(Balasubramanian and Panigrahi, 2011). The time shown in 

Table 7.1 is strictly the time required for extraction and the 
time required for programming the GC–MS method. It can 
be seen that a sufficiently long time is required for analyz-
ing the headspace, which could be minimized drastically 
by using appropriate intelligent sensors. For e-nose systems 
apart from dynamic and static sampling methods coupled 
with SPME, stir-bar sorptive extraction (SBSE), inside nee-
dle dynamic extraction (INDEX), and membrane introduc-
tory mass spectrometry (MIMS) are other methods used to 
introduce the VOC into the sensing chamber of the e-nose 
system (Peris and Escuder-Gilabert, 2009).

7.2.2 Volatile Compounds in Beef

Various researchers have conducted studies on the vola-
tile compounds emitted from beef (Wick et al., 1967; In-
tarapichet and Bailey, 1993; Jackson et al., 1992; King 
et al., 1993). From their research, valuable information on 
the VOCs emitted from beef can be extracted. It is very dif-
ficult to pinpoint the exact composition of the volatiles in 
beef. This is because the amount and composition of the vol-
atiles emitted is not uniform for every animal and depends 
largely on the age, sex, breed, environmental conditions, 
feed, and the anatomy of the animal studied (Chung, 1991). 
Raw meat does not have strong flavor but cooking of meat 
increases the flavor. Flavor development seems to be due 
to the thermal degradation of sugars, amino acids, nucleo-
tides, and oxidation of fat. According to these authors, hy-
drocarbons do not contribute significantly to the flavor of 
meat, whereas aldehydes are considered to be potential fla-
vor components in meat. Alcohols, carboxylic acids, esters, 
lactones, furans, pyridines, pyrazines, hydrogen sulfide, and 
other sulfide-containing compounds are some of the group 
of volatile compounds identified in raw, boiled, and roasted 
beef (Wick et al., 1967; Ramarathnam et al., 1991, 1993). 
Among the volatiles identified, hydrocarbons made up the 
largest proportion, followed by sulfur-containing com-
pounds, aldehydes, ketones, and alcohols. Many sulfur com-
pounds like dimethyl sulfide, methyl mercaptan, dimethyl 
disulfide, propylene sulfide, and hydrogen sulfide were also 
frequently noticed, and mentioned in literature (Intarapichet 
and Bailey, 1991; King et al., 1993; Stutz, 1978). Esters, 
which were also commonly noticed during beef spoilage, 
were attributed due to the presence of fatty acids and alco-
hols like ethanol and methanol. Methyl acetate and ethyl ac-
etate were the two common esters noticed during beef spoil-
age. Aromatic amino acids and other amino acids were the 
source for the presence of aromatic compounds and a lot of 
nitrogen compounds identified in beef headspace. The pre-
viously mentioned compounds can be used as potential in-
dicator compounds for identifying meat spoilage. Acetone, 
methyl ethyl ketone, dimethyl sulfide, and dimethyl disul-
fide were found to be suitable indicator compounds for meat 
spoilage (Stutz, 1978). Esters, ethanol, and aromatic com-
pounds were not suitable indicator compounds, which were 
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TABLE 7.1 Column and SPME Filament Characteristics Used by Various Researchers for Meat Analysis

References Sample
Sampling 
Procedure

SPME 
Filament 
Polarity Column Used

Coating on 
Column

Column 
Polarity

Total Time of 
Analysis (min)

Ogihara et al. 
(2000)

Salmonella-
infected 
ground beef

SPME
PDMS
CARB/PDMS
PDMS/DVB

Nonpolar
Bipolar
Polar

DB-624
30 m ×  0.53 mm

3 mm
94% dimethyl 
polysiloxane

Medium 
polarity

92 (10a + 82b)

Intarapichet 
and Bailey 
(1993)

Ground beef Tenax trap NA Fused silica  
(SE-54)
50 m ×  0.3 mm

5% phenyl-
methyl silicone
0.52 mm

Nonpolar

Jackson et al. 
(1992)

MAP beef 
Strip loins

Tenax trap NA Silica capillary 
column (5 CB)  
25 m × 0.32 mm

5 mm NA

Arnold and 
Senter (1998)

Processed 
poultry

SPME
PDMS

Nonpolar Capillary column 
(DB-1)
60 m ×  0.25 mm

0.25 mm
100% dimethyl 
polysiloxane

Nonpolar 65 (30 + 35)

Senter et al. 
(2000)

Raw chicken SPME
CARB/PDMS

Bipolar 60 m × 0.32 mm
DB-1 column

5 mm
100% dimethyl 
polysiloxane

Nonpolar 30 (6 + 24)

Morita et al. 
(2003)

Fish Distillation and 
solvent extrac-
tion

NA DB-WAX
60 m × 0.25 mm

0.25 mm Polar 184 (120 + 64)

Specht and 
Bates (1994)

Shallow fried 
beef

Tenax trap NA DB-1
60 m ×  0.25 mm

0.25 mm
100% dimethyl  
polysiloxane

Nonpolar 54 (16 + 38)

Drumm and 
Spanier (1991)

Cooked beef Steam 
distillation-
extraction

NA HP-5
50 m × 0.32 mm

0.52 mm
5% phenyl and 
95% dimethyl 
polysiloxane

Nonpolar 417 (285 + 132)

Ruiz et al. 
(1998)

Dry-cured 
ham

SPME
PDMS

Nonpolar 30 m ×  0.25 mm
Restek

1 mm
5% phe-
nyl-95% di-
methyl siloxane

Nonpolar 105 (60 + 45)

Gianelli et al. 
(2002)

Dry-cured 
ham

SPME
PDMS
CARB/PDMS
DVB/CARB/
PDMS

Nonpolar
Bipolar
Polar

DB-624
30 m × 0.25 
(identification)
DB-624
60 m ×  0.32 mm 
(quantification)

94% dimethyl 
polysiloxane
1.4 mm
94% dimethyl 
polysiloxane
1.8 mm

Midpolar

Midpolar

352 (300 + 52)

Insausti et al. 
(2002)

MAP beef 
strip loins

Purge and trap NA HP-5
50 m ×  0.32 mm

1.05 mm
5% phenyl and 
95% dimethyl 
polysiloxane

Nonpolar 69 (16+53)

Gorraiz et al. 
(2002)

Vacuum 
packed
MAP cooked 
beef

Tenax trap NA HP-5
50 m ×  0.32 mm

1.05 mm
5% phenyl and 
95% dimethyl 
polysiloxane

Nonpolar 53 (10 + 43)

NA, not applicable.
aIndicates time of extraction of volatiles using SPME/Tenax/purge and trap/distillation.
bIndicates time of GC–MS oven program.
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also agreed upon by other researchers (Intarapichet and Bai-
ley, 1991, 1993; King et al., 1993) apart from Stutz (1978).

King et al. (1993) identified and quantified volatiles 
present in raw beef. Two fractions of volatiles were extract-
ed by supercritical carbon dioxide. One fraction consisted 
of the lipid-like condensable fraction and the other con-
sisted of the noncondensable volatile fraction. The volatile 
fraction had a higher concentration of hydrocarbons (over 
30% of total volatiles), especially the heavier ones (C17–
C22). Diterpenoids, alkylbenzenes, alkylnaphthalenes, and 
also long-chain fatty acids were present only in the volatile 
sample. For the condensable lipid fraction, aldehydes were 
the major components, constituting over 40% of the total 
volatiles. Ketones were present in a lesser amount in the 
noncondensable volatile fraction when compared with the 
lipid fraction (condensable). The origin of 1,2-benzenedi-
carboxylic acid alkyl esters in the chromatogram was not 
certain. Because these compounds are often used as poly-
meric plasticizers, King et al. (1993) suspected its migration 
from the plastic wrapping to the food. An interesting fact 
reported by Jackson et al. (1992) was that a large number 
of volatile compounds originated from the packaging mate-
rial. This is interesting because we have to now consider 
the packaging material too before analyzing the volatiles 
emitted from beef.

7.2.3 Volatiles Associated With the Growth 
of Microbial Flora

During meat storage, various spoilage and pathogenic mi-
croorganisms act upon these substrates and break down 
the food system resulting in its spoilage and subsequent 
bad odor. There is information from literature indicating 
that the various microorganisms have their own character-
istic volatile compound being emitted if they are present 
(Chung, 1991; Intarapichet and Bailey, 1991). So, this can 
be used as a tool to identify the presence of that particu-
lar organism in beef without any cumbersome food analy-
sis technique. Meat spoilage is accompanied by a buildup 
of free fatty acid content, change in the pH of the meat, a 
change in the oxidation–reduction potential of the meat, and 
a buildup of nitrogen compounds.

Intarapichet and Bailey (1991, 1993) and Stutz (1978) 
have studied the VOCs produced by spoilage bacteria from 
commercial ground beef. They identified 186 compounds 
from their study. The major microorganisms they identi-
fied in their study were Lactobacillus, Brochothrix ther-
mosphacta, Lactococcus, Psuedomonads, Moraxella, and 
Citrobacter species (Table 7.2). Pseudomonas was the 
dominant species identified in the meat samples (Intara-
pichet and Bailey, 1991, 1993). Volatile sulfur compounds 

TABLE 7.2 Significant Volatile Compounds Associated with Some Selected Spoilage Microorganisms Identified by 
Intarapichet and Bailey (1991, 1993)

Species Significant Compounds Comments

Pseudomonas Methanethiol
Dimethylsulfide
Dimethyldisulfide
Dimethyltrisulfide
Methylthioacetate
Acetoin
Diacetyl

Chiefly sulfur compounds

Brochothrix Ethylacetate
3-Methylbutyl 3-methyl butyrate
2-Methyl isopentanoate
3-Methyl-1-butanol acetate
2-Methylpropanol
2-Methylbutanol
3-Methylbutanol
2-Methylpropanal
2-Methylbutanal
3-Methylbutanal
Acetoin
Diacetyl

Mostly esters were produced

Lactococcus 1-Butanol
1-Pentanol
2-Methylbutanol
3-Methylbutanol
2-Methylbutanal
3-Methylbutanal
Acetoin
Diacetyl

Mostly alcohols were produced



Possible Application of Electronic Nose Systems for Meat Safety: An Overview   Chapter | 7    63

(like methyl sulfide, dimethyl sulfide, dimethyl disulfide, 
and hydrogen sulfide) are some of the most commonly oc-
curring compounds due to the action of spoilage microor-
ganisms in meat products (Intarapichet and Bailey, 1993) 
(Tables 7.3 and 7.4).

Senecal et al. (2002) studied the volatile gases emit-
ted by the growth of pathogenic and spoilage microorgan-
isms on selected agar medium, simulating the conditions 
of model protein- and carbohydrate-based foods. For Sal-
monella typhimurium, a pathogenic bacterium causing most 
of the food poisonings, the specific VOCs obtained were 
primary alcohols, secondary alcohols, and methyl ketones. 
Escherichia coli, another important pathogen, produced an 
extremely prominent “indole” peak during their growth on 
tryptic soy yeast agar (TSYA), which was absent during the 
growth of the other pathogens and spoilage-producing or-
ganisms. This amino acid (indole) could be used as a mark-
er compound for the detection of the presence of E. coli in 
food products. Roth et al. (1970) have reported the excre-
tion of indole during early exponential growth phase of Ba-
cillus alvei present in acid-hydrolyzed casein medium. This 
is an interesting finding, which could be investigated further 
for identifying indole as a potential “biomarker” in foods. 
The ability of SPME to detect volatiles at concentrations in 
the parts per billion levels could make this technique one 
of the important tools for developing rapid detectors (sens-
ing tools) for food safety applications. The development of 
biosensors, e-nose technology, and the rapid development 
of the nanobiotechnology and nanoengineering sectors have 
addressed the need for developing standard validation tools 
to help in validating the sensor technologies developed. 
SPME preconcentration along with GC–MS fits this role 
perfectly.

7.3 ELECTRONIC NOSE SYSTEMS

The e-nose or an artificial olfactory system is analogous 
to a human olfactory system in operation and can be used 
as an analytical tool for the analysis of flavor compounds. 
However, the artificial olfactory system does not give any 
information about the compounds causing the aroma or 
about their identity. The aroma/odor is judged by analyzing 
the aroma or smell pattern. With the aid of appropriate pat-
tern recognition techniques, like artificial neural networks 
(ANNs), the capability of the e-nose for recognizing similar 
aroma patterns or distinguishing it from other samples is 
enhanced (Siegmund and Pfannhauser, 1999). The principle 
of an artificial nose system or e-nose systems typically rely 
on an array of conducting polymer or metal oxide–based 
chemosensors, with partial specificity and capable of rec-
ognizing simple or complex odors. Effective hardware sys-
tems coupled with a reliable and consistent software system 
are the key components in the design of any e-nose sys-
tem. Hardware components consist of an array of sensors, 

allied electronics, pumps, air conditioners, flow control-
lers, and software for controlling and monitoring the hard-
ware components, data preprocessing, statistical analysis, 
and so forth, together comprising an artificial nose system. 
While combining these components together to develop 
an artificial nose system, reproducibility and repeatability 
of the system should be the watchwords. Once developed 
and trained, the e-nose system can detect or differentiate 
between samples within a matter of minutes. A compre-
hensive list of various techniques that can be employed 
for sensing the presence of microorganisms has been listed 
elsewhere (Arora et al., 2006). Almost all of the techniques 
listed have a detection time of more than 1 h and require 
skilled personnel to operate. An e-nose system, on the other 
hand, once trained and validated for a specific task, for ex-
ample, detection of Salmonella in beef, does not require a 
trained operator to be used.

7.3.1 Types of Sensors

There are four major technologies currently used in the 
commercially available e-noses. Of these four technologies, 
metal oxide semiconductors (MOS) and metal oxide semi-
conductor field effect transistors (MOSFET) operate at high 
temperatures and are classified as hot sensors. These sen-
sors are less sensitive to moisture with less carryover from 
one measurement to another. The other two technologies, 
conducting organic conductive polymers (CP) and piezo-
electric crystals [bulk acoustic wave (BAW) and surface 
acoustic wave (SAW) sensors] operate at low temperatures 
and are categorized as cold sensors.

MOS and CP sensors are widely used in electronic nose 
applications for meat sensing. MOS sensors consist of a 
ceramic substance coated with a semiconducting metal ox-
ide film and are heated to temperatures between 200 and 
650°C. The semiconductor coating is either an n-type or a 
p-type semiconductor and the response of these sensors to 
a target gas is in the form of change in resistance (Galdikas 
et al., 2000). According to Schaller et al. (1998), MOS sen-
sors are highly sensitive to ethanol and may be poisoned by 
compounds like sulfur and weak acids. This is of particular 
interest, because when the compounds in meat products are 
broken down, ethanol, sulfur-containing compounds, and 
organic acids, which result in esters and ethers, are some 
of the chief volatiles being released into the headspace of a 
meat package. This might adversely affect the sensor sen-
sitivity and reproducibility. CP sensors exhibit a change of 
resistance when gas is adsorbed by the sensor (Balasubra-
manian et al., 2004). These sensors have a substrate over 
which an organic polymer–sensing element is deposited. 
This sensing element is deposited between two gold-plated 
electrodes by an electrochemical deposition method. When 
the volatile gases are absorbed on the surface of the con-
ducting polymer, the voltage applied between the electrodes 
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TABLE 7.3 Summary of Volatile Analytes Produced by Microorganisms Related to Meat Products Growing in Meat and Other Model Food Systems

Product SPME Sampling Mode SPME Fiber Chief Analytes Identified References

Salmonella enteritidis,  
E. coli, L. monocytogenes, 
Klebsiella pneumoniae, 
Pseudomonas aeruginosa 
in TSB

Static headspace sampling 100 mm PDMS P. aeruginosa produced 3-methyl-1-butanol and phenethyl 
alcohol, S. enteritidis produced ethanol, 3-methyl-1-butanol, 
decanol, dodecanol, 1-propanol, tetradecanol, E. coli 
produced indole, ethanol, decanol, octanol and 1-propanol, L. 
monocytogenes produced ethanol, 3-methyl butanol, dodecanol, 
K. pneumoniae produced ethanol, 3-methyl-1-butanol, decanol, 
dodecanol, tetradecanol, 1-propanol

Arnold and Senter 
(1998)

S. typhimurium in 
tryptic soy yeast agar 
(TSYA)

Static headspace sampling 50/30 mm DVB/CARB/PDMS Primary alcohols (1-octanol, 1-decanol), secondary alcohols 
(2-undecanol, 2-tridecanol), methyl ketones (2-nonanone, 
2-undecanone), 3-methyl-1-butanol

Senecal et al. (2002)

S. typhimurium in 
tryptone yeast NaCl 
super-broth

Static headspace sampling 65 mm PDMS/DVB Hydrogen sulfide, ethanol, carbon disulfide, dimethyl 
cyclopropane, 1-propanol

Siripatrawan (2008)

S. typhimurium in 
alfalfa sprouts—glass 
vial

Static headspace sampling 75 mm CARB/PDMS Dimethyl sulfide, carbon disulfide, heptane, acetic acid, ethyl 
acetate, methyl alcohol, ethyl benzene, 1-pentanol, 3-octanone, 
3-octanol, 1-hepten-3-ol

Siripatrawan and 
Harte (2007)

E. coli O157:H7 in 
TSYA

Static headspace sampling 50/30 mm DVB/CARB/PDMS Indole, 1-decene Senecal et al. (2002)

E. coli in tryptone yeast 
NaCl super-broth

Static headspace sampling 65 mm PDMS/DVB Dimethyl disulfide, ethanol, 2-nonanone, 2-heptanone, indole, 
pentyl cyclopropane

Siripatrawan (2008)

P. aeruginosa in TSYA Static headspace sampling 50/30 mm DVB/CARB/PDMS 1-undecene, 2-nonanone, 2-octanol, 3,7-dimethyl (E)(*)-2,6,-oc-
tadiene-1-ol

Senecal et al. (2002)

Penicillium species on 
Petri dishes

Static headspace sampling 100 mm PDMS
85 mm PA

Mono and sesqui-terpene hydrocarbons, geosmin, 2-methyliso-
borneol, isopentyl alcohol

Nilsson et al. (1996)

Shigella sonnei in TSA Static headspace sampling 50/30 mm DVB/CARB/PDMS Methanethiol, dimethyl sulfide Warren et al. (2007)

E. coli, S. sonnei, 
S. typhimurium, 
K. pneumoniae, 
Bacillus cereus, L. 
monocytogenes,  
S. aureus in TSB

Static headspace sampling 100 mm PDMS 1 Octanol, 1-decanol, dodecanol, 2 undecanone, 2-tridecenone, 
indole (E. coli), 1 octanol, 1-decanol, dodecanol, 2-nonanone, 
1-undecene, 2-undecanone, 2-tridecanone (S. sonnei), 1 octanol, 
1-decanol, dodecanol (S. typhimurium), 1 octanol, 1-decanol,  
dodecanol, 2-nonanone, 1-undecene, 2-undecanone,  
2-tridecanone, 2-tridecenone (K. pneumoniae), 2-undecanone, 
dimethyl disulfide (B. cereus), 2-undecanone, 2-tridecenone, 
dimethyl trisulfide (L. monocytogenes), 2-tridecenone, dimethyl 
disulfide (S. aureus)

Elgaali et al. (2002)

S. aureus, P. aeruginosa 
in blood agar

Static headspace sampling 50/30 mm DVB/CARB/PDMS Isovaleric acid, 2-methyl butyric acid, isobutyric acid, 1-hydroxy 
2-propanone, 1-hydroxy 2-butanone, butyric acid, 4-methylhexa-
noic acid (S. aureus), 2-amino-acetophenone, dimethyl disulfide, 
undecene, dimethyl sulfide (P. aeruginosa)

Preti et al. (2009)

DVB, divinylbenzene; PA, polyacrylate; TSB, tryptic soy broth; PDMS, polydimethylsiloxane; TSA, tryptic soy agar; CARB, carboxen; and TSYA, tryptic soy yeast agar.
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changes and because of this, there is a change of resistance. 
This change of resistance is sensed and delivered as the out-
put. These sensors are very sensitive to polar compounds. 
Although CP-based sensors show more drift (Annor-
Frempong et al., 1998), these sensors have an advantage 
in that they can be used at ambient temperatures. But due 
to their low operating temperatures (<50°C), these sensors 
are very sensitive to moisture. Their lifetime is very short, 
which may be due to the oxidation of the sensor or due to 
contact resistances developed between the polymer and the 
electrodes because of the action of the volatile compounds. 
A common aspect of the MOS, CP, MOSFET, and quartz 
crystal microbalance sensors is the fact that these sensors 
are sensitive to polar compounds and hence, to water va-
por (Haugen and Kvaal, 1998). During meat storage, the 
headspace above the meat samples is filled with a greater 
percentage of water vapor due to a relatively high water 
activity of the meat. This issue can be tackled either by ad-
justing the humidity of the carrier gas to be same as the 
humidity of the sample headspace or to adjust the humid-
ity of the carrier gas to a maximum value. Another way of 
addressing this issue is to get the signals from samples of 
purified water adjusted to the same humidity as the meat 
headspace and then making a water background correction 
by simply subtracting the obtained water responses from the 
signal obtained from the real meat samples (Haugen and 
Kvaal, 1998). Overall, Haugen and Kvaal (1998) summed 
up their review by indicating that the sampling of the head-
space is the most critical part of analysis. The other factors, 
which contribute toward obtaining reliable results using an 
e-nose are the sample headspace temperature, equilibration 
time, sample quantity, and sample surface area.

7.3.2 Analysis of Collected Data

Smell patterns obtained from the e-nose sensors are ana-
lyzed using various statistical and neural network tools. The 
data obtained from the e-nose experiments can be used ei-
ther for prediction or for classification of unknown samples. 

When the data from the e-nose system is used to differenti-
ate between meat samples being “safe” or “unsafe” for con-
sumption or being of “good” or “bad” quality, classification 
techniques are used. Prediction techniques are more diffi-
cult especially since the output is to predict the presence 
of microorganism present (in log cgu/mL or log cfu/g) or 
predict a time period when the stored meat will spoil. With 
biological systems as unpredictable as meat, prediction 
data analysis methods need to be robust and tested rigor-
ously to have a reliable e-nose system. Pattern recognition 
techniques like principal component analysis (PCA), partial 
least squares regression (PLSR), functional discriminant 
analysis (FDA), cluster analysis, fuzzy logic, or ANNs are 
widely used for recognizing the smell patterns in e-nose ap-
plications. Except ANN methods, the other pattern recogni-
tion routines just mentioned are based on a linear approach. 
Because gas sensor data typically follows a nonlinear pat-
tern, nonlinear methods for data analysis would be a better 
approach to give robust and reliable results and increase the 
power of the e-nose system. In the case of biological ma-
terials like meat, where the variation between samples are 
large, a linear approach of data analysis would not be the 
appropriate method to obtain consistent and reliable results. 
In such cases, a combination of statistical methods with 
neural networks would be the right approach toward build-
ing a sound classification or prediction model.

7.3.2.1 Preprocessing Techniques
The performance of an e-nose system is as good as its input 
data. If data/signals obtained from the sensors have a great 
deal of variance or interference (noise), then the classifi-
cation and prediction algorithms will not perform properly 
and will give misleading results. Preprocessing the data 
helps in reducing this noise and boosts the differentiation 
capability of the e-nose. Caution should be employed not 
to overdo preprocessing because that will also distort the 
output obtained from the data processing algorithms. Vari-
ous preprocessing techniques like binomial smoothing, av-
eraging, normalization, and autoscaling have been used to 

TABLE 7.4 Detection Limits of Various Electronic-Based Biomolecular Techniques for Detecting Food-Borne Pathogens 
as Listed by Arora et al. (2006)

S. No. Detection Technique Organism Assay Time Detection Limit

1 E-nose Pseudomonas aureofaciens 1–2 min ppm to ppb

2 Immunosensors S. typhimurium 15 min 20 cfu/mL

S. aureus 150 s 104–105 cfu/mL

E. coli O157:H7 ∼7 min 104–105 cfu/mL

L. monocytogenes ∼20 min 107 cfu/mL

3 DNA biosensor E. coli ∼40 cfu/mL

4 Nanomaterials-based sensing E. coli ∼30 min 2.67 × 10−2 cfu/mL

ppm, parts per million; ppb, parts per billion.
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preprocess the signals obtained (Pinheiro et al., 2002; Bala-
subramanian et al., 2004). Pinheiro et al. (2002) stated that 
the common preprocessing technique applied to the data 
prior to principal component analysis (PCA) was autoscal-
ing. By autoscaling the individual data are mean-centered 
and divided by its standard deviation for rescaling with unit 
variance. This helps to prevent high sensor responses from 
dominating the analysis (Pinheiro et al., 2002). By using 
principal components as inputs to a neural network, there 
is a fairly high chance of reducing collinearity in the data 
(Haugen and Kvaal, 1998).

7.3.2.2 Classification Techniques
Annor-Frempong et al. (1998) studied the response of an 
e-nose to various intensities of “boar taint.” They validated 
their results from the e-nose with that obtained from a sen-
sory panel and a GC. While analyzing their data, they first 
used a canonical correlation approach to visualize the re-
lationship between the GC measurements of two indicator 
odor compounds with those from the e-nose measurements 
or sensory panel measurements. Later, Annor-Frempong 
et al. (1998) employed a multivariate discriminant analy-
sis method to classify the odors based on Fisher’s linear 
discriminant function. This supervised pattern recognition 
routine was employed to classify the boar taint based on 
concentrations and responses. By their approach they ob-
tained a 90% correct classification rate in the training data 
set for classification based on concentrations and about 
53% for the testing data set. However, they obtained 100% 
correct classification based on responses for the training 
set data and 84.2% correct classification for the testing set 
data by using nonlinear neural network-based classifica-
tion techniques. Recently, El Barbri et al. (2009) report a 
100% classification accuracy while using an e-nose system 
for identifying sardines’ freshness based on support vec-
tor machines (SVM), nonlinear data analysis technique for 
data analysis.

Boothe and Arnold (2002) performed PCA on the data 
obtained from a metal oxide–based e-nose. They reported 
that the PCA maps were able to differentiate (classify) 
the smell patterns obtained from different poultry meat 
samples (fresh and stored) and also between the samples 
stored at different temperatures. However, Siegmund and 
Pfannhauser (1999) reported PCA did not differentiate be-
tween cooked chicken meat samples, which were stored for 
24–48 h at 4°C, and the samples, which were stored for less 
than 24 h. They therefore performed PCA analysis of the 
discriminant factors between the different data classes. This 
procedure minimized variances between the data sets and 
maximized the Euclidean distances between the data sets, 
resulting in a better separation. By this mathematical pro-
cedure, Siegmund and Pfannhauser (1999) achieved better 

differentiation between samples stored at different times. 
Arnold and Senter (1998) analyzed the VOCs emitting from 
poultry by different bacteria species using an e-nose and a 
GC–MS. They found the percentage area under the curve for 
a select number of predominant volatiles and reported them 
for each species of bacteria, which were inoculated in the 
poultry meat. The smell patterns, which were obtained from 
the 32 sensors in the e-nose, was reduced into two dimen-
sions using multiple discriminant analysis technique. These 
patterns were then analyzed by cluster analysis (Sammon 
mapping) and then plotted as a map. An ANN was used to 
classify the smell print data. Finally, the data obtained from 
the e-nose and the GC–MS was used to compare the gases 
emitted from the different bacteria species. Their research 
showed promising results justifying the use of an e-nose for 
classifying food products, depending on their quality.

Ridgway et al. (1999) used a variety of statistical pro-
cedures like stepwise multiple linear regression, nonlinear 
partial least squares regression (NPLS), linear discrimi-
nant analysis (LDA), and analysis of variance (ANOVA) 
techniques to classify their data obtained from an e-nose 
to detect the infestation of mites in wheat. These statis-
tical procedures were performed with and without vari-
able reduction by PCA. From the sensor signals (in the 
form of change in resistance) obtained, they extracted five 
features: maximum deflection from the baseline (diver-
gence), rate of increase in response on sampling (absor-
bance), rate of decrease in response on purging (desor-
bance), ratio of absorbance to desorbance (ratio), and area 
under the response curve (area). They obtained a classi-
fication accuracy of 83% for samples with and without 
mite infestation. Overall, they concluded that use of non-
linear techniques like ANNs could improve the discrimi-
nation of samples.

Neely et al. (2001) used an e-nose to distinguish be-
tween different types of meat. Their nose was equipped 
with semiconducting polymer film (14 in number) sen-
sors. The data from the e-nose was analyzed by the linear 
discriminant analysis method. The underlying technique 
employed by this method for discrimination was to form 
linear functions of the data to maximize the ratio of the 
between-group sum of squares to the within-group sum of 
squares. These linear functions were orthogonal. After the 
linear functions were computed, the classification process 
was done by finding out the Euclidean distance of an ob-
servation from the group of centroids, projected onto the 
subspace defined by a subset of the linear functions (Neely 
et al., 2001). The observation was then assigned to the 
closest group. To evaluate the performance of this method, 
the “leave-one-out” cross-validation method of estimat-
ing the centroids was used. Their tests showed that their 
e-nose classified the meat types accurately. The ability of 
an e-nose consisting of six metal oxide sensors to classify 
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between E. coli O157:H7 and non-E. coli O157:H7 strains 
was studied (Younts et al., 2002). Each sensor was sen-
sitive to a particular element: alcohol, ammonia, air con-
taminants, hydrogen sulfide, relative humidity, and tem-
perature. Younts et al. (2002) calculated the sensitivity and 
the specificity of their instrument to determine the perfor-
mance of their nose in differentiating between the different 
strains of E. coli. The data from the sensors were fed into a 
back propagation neural network (BPNN). They concluded 
that the specificity and the sensitivity of the instrument var-
ied depending on the output value used to classify the gas 
signatures. Overall, it was observed that the sensitivity in-
creased with decreasing output value, while the specificity 
was observed to decrease.

Many times, if the sample size is small, then building 
a reliable prediction or classification model could be dif-
ficult. Similarly, even with adequate samples, it is critical 
to build a reliable and robust model that could perform 
satisfactorily in real-world conditions. Several techniques 
such as the leave-one-out (a variant of leave-k-out) method 
and the bootstrap method have been used for this purpose. 
The bootstrap procedure has been applied along with vari-
ous other statistical procedures (Parke et al., 1999; Serneels 
and Van Espen, 2005) and ANNs (Gismondi et al., 2002) 
to analyze environmental, biological, and biomedical prob-
lems. Schaffner (1994) utilized the bootstrap technique to 
simulate multiple growth rate measurements of Listeria 
monocytogenes and Yersinia enterocolitica from single 
set of experiments. The bootstrap technique has been suc-
cessfully applied along with the PLS method to identify 10 
types of microorganisms (Serneels and Van Espen, 2005). 
They obtained a misclassification percentage of 3.5% using 
this method.

A single bootstrap sample is created by randomly draw-
ing “n” observations with replacement from the original 
sample set. The classification developed on each bootstrap 
sample was validated against the original sample (data set) 
and the associated estimates of error of prediction were de-
termined. For “N” bootstrap samples, the average estimates 
of error of prediction was further calculated. As this error of 
prediction is reported to be biased, the following method, as 
proposed by Efron and Tibshirani (1993) was used to deter-
mine the refined bootstrap estimator (error).

1. First, use the original sample as both the training (O) 
and validation set (O*). Let the error rate for this test be 
Err (O, O*).

2. Next, compute the error rate for both training (B) and 
validation (B*). Let this error rate be denoted by Err (B, 
B*).

3. Finally, use the bootstrap sample as the training set and 
the original sample as the validation set. Compute the 
error. Let this error be Err (B, O*).

4. The bias or optimism of the simple bootstrap analysis is 
now defined as the difference between Err (B, O*) and 
Err (B, B*) averaged over the “N” bootstrap samples. 
The refined bootstrap estimator is now given by the op-
timism added to Err (O, O*).

7.3.2.3 Prediction Techniques
Gardner et al. (1998) described the prediction technique 
employed for predicting the type of bacteria growth phase 
from the data obtained from an e-nose. They extracted nine 
features from the signals obtained from each sensor in the 
e-nose, and developed BPNN prediction models. They 
also studied the effect of unnormalized and normalized 
(standard normalization, vector array normalization, and 
autoscaling) sensor responses on the models developed. 
Their model could predict the growth phase of the bacte-
ria with an accuracy of 81%. While predicting the type of 
bacteria, their model gave a prediction accuracy of 100% 
in predicting the presence of Staphylococcus aureus. The 
presence of E. coli could be predicted with an accuracy of 
92.2 %. Out of the nine features they extracted from the 
sensor response, the model which worked the best giving 
an accuracy of around 96% was obtained using the feature 
“minimum output,” which determines the minimum sensor 
response in volts corresponding to the reference air cycle/
sample inlet cycle combined with standard normalization 
of this feature (all data corresponding to the “minimum 
output” feature were normalized so that they lie in between 
0 and +1).

Winquist et al. (1998) used the BPNN technique to ana-
lyze their data obtained and make predictions regarding the 
quality of selected food materials stored over a given period 
of time. They found that the prediction accuracy improved 
when the storage time increased. It was reasoned that the 
emission of more gases with increased storage time caused 
the prediction to improve. Blixt and Borch (1999) followed 
a multivariate regression analysis approach (PLS) to devel-
op mathematical models to predict the degree of spoilage 
in vacuum-packaged beef. They used information related 
to the sensorial traits (like acidic, sulfurous, and spoilage 
odors) and the sensor signals to obtain the weighted regres-
sion coefficients and the r2 values from the PLSR analysis. 
The best prediction model they developed with the data col-
lected had an r2 value of 0.94. Qu et al. (2001) describe in 
detail how they performed a PCA of the data they obtained 
from an e-nose after obtaining samples from swine barns. 
They identified three principal components and used these 
components as inputs for the ANN. They used an adaptive 
logic network (ALN) neural network approach in their re-
search. The performance of the developed ALN was quan-
tified by calculating the parameters’ root of mean square 
error (RMSE) and mean absolute percentage error (MAPE). 
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They concluded that their ALN was well trained and could 
predict the odor concentration with less than 20% mean ab-
solute percentage error. Lou and Nakai (2001) reported a 
detailed study about the use of an ANN-based model for 
predicting the bacterial growth phase in modified atmo-
sphere packaged cooked meat products. They used both 
response surface methodology (RSM) and a back propaga-
tion neural network (BPNN) approach to build models for 
predicting the maximum specific growth rate and the lag 
phase of Lactobacillus sake. It was noticed that the BPNN-
based model showed a greater accuracy than that of RSM. 
For developing the neural network model, the data obtained 
was preprocessed by normalization, that is, the data was 
converted between (0, 1) for sigmoidal transformation or 
between (−1, 1) for hyperbolic transformation. However, 
Lou and Nakai (2001) employed a sigmoidal transforma-
tion with a slight offset, thus transforming the data between 
(0.1, 0.9). The parameters used for comparing the two mod-
els were the root mean squares error (provides informa-
tion of how consistent the model will be in the long run), 
the average absolute percentage error (a nondimensional 
quantity which provides a basis for quantitative compari-
son among several attempted models), the average absolute 
error (same function as that of the average absolute percent-
age error but is used when the absolute of the target value 
is small), and the determination coefficient (R2). In addition 
to these parameters, the neural network model was assessed 
for its sensitivity by computing the following criterion: the 
variable sensitivity error (indicates the performance of the 
developed network if that variable is unavailable), the vari-
able sensitivity ratio (the ratio of the variable sensitivity er-
ror and the error of the network when all the variables are 
available), and the ANN geometry (relates to the number 
of layers and the number of neurons which make up the 
layers). Overall, they concluded their study with a series of 
plots indicating that the BPNN model was more accurate in 
prediction than the response surface methodology (RSM) 
model. The higher accuracy observed in the ANN model 
was attributed to its ability to take into account the nonlin-
ear characteristics of the data.

Table 7.5 gives an overall view of the various predic-
tion and classification techniques used by researchers in 
analyzing data obtained from the e-nose system to ana-
lyze the quality/safety of meat products. Prediction and 
classification accuracies as high as >90% can be obtained 
using multivariate or ANN techniques. Combining sensor 
data from different types of e-nose systems, the “sensor 
fusion” approach (Balasubramanian et al., 2012) and us-
ing higher-order statistical techniques like independent 
component analysis (ICA) (Balasubramanian et al., 2008) 
are some approaches that have been used in the recent 
past to boost the discriminatory power of the e-nose sys-
tem to identify the presence of S. typhimurium in stored 
beef strip loins.

7.4 CHALLENGES AND FUTURE 
DIRECTION

Electronic noses have been used in a variety of applications 
including meat quality and safety applications. The direc-
tion of electronic nose systems is toward miniaturization, 
improved repeatability and reproducibility, and the use of 
smart nanoscale materials for selectivity and improved sen-
sitivity. Recent research suggests that the electronic nose 
systems combined with robust chemometrics could provide 
a greater degree of reliability on meat classification com-
parable to those obtained using traditional time-consuming 
microbial analytical methods. However, numerous chal-
lenges have to be addressed to make these systems reli-
able in real-world conditions. One of challenges is to se-
lect a robust type of sensor with a high specificity toward 
the compounds of interest in a particular application. The 
compounds of interest are generally a small part of a com-
plex background including water vapor and carbon dioxide. 
This can be compared literally to “finding a needle in a hay-
stack.” The background volatiles interfere and reduce the 
sensing ability of sensors. Also, loss of selectivity and sen-
sitivity of these sensors to the compounds of interest over 
time is a major challenge. One way to overcome these chal-
lenges is to move toward developing low-cost disposable 
sensors. Advancements in nanotechnology and sensory fab-
rication could definitely be helpful in taking the electronic 
nose technology to the next level. The other challenge is to 
develop a robust calibration model from a relatively small 
number of samples for meat quality and safety applications. 
This is further complicated by fact that native microflora 
of meat is dependent on the explicit conditions like stor-
age temperature, relative humidity, and the handling of the 
meat. Further, implicit meat conditions like age and the sex 
and breed of the animal also contribute to the variations in 
the composition of headspace volatiles. Consequently, pre-
cision of the statistical and neural network classification 
and prediction models developed could be compromised.

Much progress is still needed in order to use the elec-
tronic nose technology as a reliable tool in real-world appli-
cations. Presently, the application of electronic nose technol-
ogy for meat quality and safety is only limited to feasibility 
studies validated using only a few number of samples. On 
the other hand, it is very expensive to conduct a long-term 
study with a large number of samples to evaluate the technol-
ogy in terms of repeatability and reproducibility. Numerous 
research reports have been published so far to demonstrate 
the theoretical and practical applications of electronic nose 
technology to predict meat quality and safety. With the meat 
industry and government cooperation and support, it is time 
for the researchers to fine-tune the technologies for practical 
and specific applications. This will require cooperative ef-
forts between academics, government, and the meat industry 
to ensure a safe and quality meat supply.
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TABLE 7.5 Data Processing Techniques Used by Various Researchers for Meat-Sensing-Based E-Nose Systems

Target Sensor Type Features Used in Model Model Type
Data Analysis 
Technique Used

Results Obtained 
(Best) References

Sardines freshness Metal oxide Change in conductance, 
dynamic slope of conductance

Classification using 
PCA, microbiological 
results

Support vector 
machines (SVM) 
(nonlinear)

100% classification 
accuracy

El Barbri et al. (2009)

Prediction using PCA Partial least square 
(PLS) (nonlinear)

Correlation coefficient 
(R) between 0.90  
and 0.91

Presence of 
formaldehyde in  
octopus samples

Metal oxide Sensor resistance in air, sensor 
response over time, and sensor 
desorption rate

Classification Discriminant function 
analysis (DFA)

93.1% classification 
accuracy

Zhang et al. (2009)

Minced pork freshness Metal oxide Sensor resistances Classification LDA 100% accuracy in 
recognizing meat from 
same supplier

Musatov et al. (2010)

Minced beef stored 
aerobically and under 
modified atmospheric 
packaging

Quartz crystal 
microbalance

PCA Classification SVM 81% accuracy Papadopoulou et al. 
(2011)

Beef freshness during 
storage

Metal oxide Sensor resistances selected by 
LDA, stepwise-LDA, PCA, and 
Mahalanobis distance (MD)

Prediction BPNN and generalized 
regression neural net-
work (GRNN)

GRNN performed 
the best with LDA as 
the feature extraction 
method for predicting 
storage time, 
micropopulation, and 
sensory scores

Hong et al. (2012)

Predicting bacterial 
counts in chilled pork

Metal oxide Sensor resistances between 6 
and 50 s

Prediction PLS-SVM R = 0.88 Wang et al. (2012)

Adulteration of minced 
mutton by pork

Metal oxide Sensor resistances selected by 
stepwise- linear discriminant 
analysis (LDA), PCA, loading 
analysis

Classification Canonical discriminant 
analysis (CDA) and 
Bayes discriminant 
analysis (BDA)

92.44% by using CDA 
and features selected 
by stepwise-LDA

Tian et al. (2013)

Prediction using 
features extracted by 
stepwise-LDA

PLS, MLR (multiple 
linear regression), 
BPNN

R = 0.976 by BPNN

Total volatile basic 
nitrogen as an indicator 
of pork freshness

Metal oxide Maximum resistance value  
of each sensor

Prediction BPNN R = 0.6495 by BPNN Huang et al. (2014)
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8.1 INTRODUCTION

The appearance of agricultural products is a crucial benchmark 
that ultimately affects final consumer choice (Kays, 1991). 
The variables contributing to appearance are the size, shape, 
form, color, freshness condition, and absence of visual 
 defects (Costa et al., 2011). However, in the last decades, it 
has emerged that, in addition to the subjective appearance 
evaluation of agricultural products, volatile organic com-
pounds (VOCs) play a key role in agro-industrial processes 
and all food-related sciences and technologies. Indeed VOCs 
are at the origin of food aroma and flavor, and hence, their 
content and composition directly influence food perception 
and acceptability by consumers (El Hadi et al., 2013).

Each food product has a characteristic aroma depend-
ing on the combination between concentration and threshold 
of perception of the individual VOCs. However, due to the 
complex nature of VOCs profiles, their evolution in time and 
the interaction with people continuously changes during the 
food production chain, that is, at the crop stage, during fruit 
ripening and maturation, and in food processing and storage 
( Biasioli et al., 2011). Therefore, it is now well established that 
VOCs can be successfully used as a  noninvasive tool for food 
quality characterization (including consumer  acceptability) 
and for process monitoring in the agro- industrial production 
chains (Aparicio and  Harwood, 2013).

The human perception of volatile compounds is of great 
importance in evaluating food quality. The olfactory system 
binds together odor molecules and can detect odors at a parts 
per trillion level using between 10 and 100 million receptors  

(Deisingh et al., 2004). Its disadvantage is that no two brains 
are alike, and the same brain may react differently in situa-
tions depending on the individual’s health, mood, or envi-
ronment, making the data subjective ( Baldwin et al., 2011). 
In this sense, substantial efforts have been made to improve 
aroma detection for quality control of agricultural products 
through analytical methods (Lozano et al., 2006). Gas chro-
matography is currently considered the reference method 
for VOCs analyses in food, but despite its high sensitivity 
[with suitable pretreatment and preconcentration stages, gas 
chromatography mass spectrometry (GC–MS) systems can 
reach detection limits as low as 0.1 pptv], this technique 
is expensive and time consuming (Biasioli et al., 2011). 
Therefore, alternative technologies have been developed, 
mainly operating on a principle similar to the human nose, 
such as the electronic nose (e-nose) and the proton trans-
fer reaction–mass spectrometry based on a time-of-flight 
mass spectrometer (PTR–TOF–MS; Ionicon, Innsbruck, 
 Austria). These instruments clearly do not replace but pro-
vide complete conventional analyses of volatile compounds 
by sensory methods and by traditional analytical techniques 
(Schaller et al., 1998; Taiti et al., 2015a).

The e-nose is an instrument, which comprises an array 
of electronic chemical sensors with partial specificity and an 
 appropriate pattern recognition system, capable of recogniz-
ing simple or complex odors (Gardner and Bartlett, 1994). 
This is a nonspecific instrument able to identify  differences 
in VOCs but not able to identify chemical compounds. 
 Normally it is not sufficiently accurate to monitor changes 
in VOC profiles. On the other hand, the PTR–TOF–MS,  
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 compared with the e-nose, allows rapid detection and real-
time analysis of VOCs, enabling compounds’ identifications 
and monitoring during the food chain (Biasioli et al., 2011; 
Sulzer et al., 2012). Its first version was initially used to study 
VOCs into the air, being now grown exponentially and used 
for a wide range of applications (Lindinger and Jordan, 1998).

Traditionally both products’ and production processes’ 
quality control are performed via physicochemical measure-
ments (mainly spectroscopic), notwithstanding the extreme 
importance of aroma as a conformity indicator (Ampuero 
and Bosset, 2003). Therefore, e-noses and PTR–TOF–MS 
have been used to assess the smell of various agricultural 
products, such as olive oil (Taurino et al., 2002), fruit (Taiti 
et al., 2015b), vinegar (Anklam et al., 1998), vegetables 
(Taiti et al., 2015a), and apples (Soukoulis et al., 2013). In-
deed, both e-nose and PTR–TOF–MS measure the VOCs 
by directly sampling the air to be examined, without any 
preliminary sampling preparation. Both instruments re-
quire a multivariate data analysis for the interpretation of 
the complex data sets. This aspect will be examined in the 
“multivariate approaches” section.

Foodstuff freshness, particularly the determination of 
shelf life, is another application suitable for these instru-
ments (Labreche et al., 2005). Also, for postharvest quality 
control and maintenance, such technologies offer the great 
opportunity for detecting specific volatile biomarkers at ear-
ly stage of deterioration (Pallottino et al., 2012; Soukoulis 
et al., 2013). In fact, the use of VOC production patterns, 
specific for different food spoilage microorganisms, would 
permit a company to take full advantage in order to prevent 
fruit losses during storage and transport, by making adequate 
decisions (enabling remedial measures for dynamic control), 
for example, in the case of changing a harbor destination to 
the nearest one, for a rapid commercialization of goods.

The multiple uses of these tools in the agricultural field, 
and particularly postharvest quality control and cultivar 
classification, will be displayed focusing mainly on ap-
plications regarding citrus fruits and dairy products. Two 
technical sections on PTR–TOF–MS and multivariate ap-
proaches will be reported.

8.2 ELECTRONIC NOSE APPLICATION  
TO CITRUS FRUITS

Nowadays the attention to e-nose technology application to 
citrus fruit has greatly grown. This is due to the need of a 
rapid and early detection of the metabolic alterations owing 
to fungal pathologies and a reliable and accurate method, 
able to implement and manage an effective monitoring sys-
tem as a part of a quality assurance program.

The most common and serious diseases which occur 
in Italy during storage and marketing, as well as in many 
other countries, with the consequence of significant eco-
nomic losses, are green and blue molds, incited  respectively 

by Penicillium digitatum Sacc. and Penicillium italicum 
Wehmer. These two destructive fungi attack severely blood 
oranges and lemons picked in late winter and early spring. 
Minor decay such as sour rot (Geotrichum citri-aurantii 
Link ex Pers.) and brown rot (Phytophthora spp.) can be-
come a problem if heavy rain falls in the last stages of fruit 
growth (Lanza and Strano, 2009).

When citrus fruit are wounded, they produce a range 
of VOCs, such as limonene, b-myrcene, a-pinene, sabi-
nene, acetaldehyde, ethanol, ethylene, and CO2. Most of 
them have pronounced stimulatory effect on germination of 
Penicilli spores, representing an early indication of the up-
coming deterioration (Droby et al., 2008). Moreover fungi 
produce volatile compounds as they start colonizing a sub-
strate (Kaminski et al., 1974). These volatile fingerprints 
vary with individual microorganisms being characteristic 
and different from those produced by bacteria. Mold spoil-
age, altering flavor, odor, appearance, as well as shelf life 
of citrus fruit render the product unsafe and unacceptable. 
When sporulation covers the fruit, it is easy to avoid the 
consumption, but this is difficult at early deterioration stag-
es. For this reason, more efficient and standardized methods 
for quality control of citrus fruit are needed.

E-nose technology, based on semiselective gas sensor 
arrays for the detection of VOCs, have provided many ben-
efits to a variety of industries, including food, packaging, 
and biomedical ones. Most research efforts related to e-nose 
employment have been concentrated primarily on aroma 
analysis and quality control of different products such as 
meat, grains, coffee, mushrooms, cheese, sugar, fish, and 
beverages (like beer and orange juice), on various process-
ing conditions. E-nose technology was compared to the con-
ventional technique headspace solid-phase microextraction 
(SPME)–GC–MS, by linear discriminant analysis (LDA) 
of volatile compounds measured by both instruments, with 
the purpose of solving authenticity problems concerning 
citrus juices’ origin (Reinhard et al., 2008). Encouraging 
results were obtained in terms of reliability, reproducibility, 
sensitivity, and applicability of both technologies. E-nose 
was evaluated for its capacity to differentiate unpasteurized 
and pasteurized orange juice samples processed at three dif-
ferent regimes, obtaining, only in some cases, satisfactory 
results in distinguishing the different juices (Bazemore and 
Rouseff, 1998). The efficacy of e-nose was studied to eval-
uate and classify three types of commercial orange juice 
samples (Shaw et al., 2000). Using a discriminant analysis, 
the e-nose was compared to headspace gas chromatogra-
phy (HSGC) showing a lower classification ability. Shaw 
and coworkers considered the two analytical techniques 
complementary, since they obtained different separation 
patterns, concluding that an additional volatile constituent 
not quantified by HSGC influenced the electronic sensors.

Other studies on citrus fruit using e-nose technol-
ogy regarded the metabolic changes as a consequence of 
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respiration, transpiration, and/or fermentation of fruit dur-
ing storage. Although the postharvest fungal disease detec-
tion of citrus under cold storage conditions is important, 
few publications are present.

The aroma variation of oranges was studied during a 
storage period of a month by principal component analy-
sis (PCA) and partial least squares discriminant analysis 
(PLS-DA; Di Natale et al., 2001). Results have evidenced 
a good sensitivity and resolution of e-nose sensors to mea-
sure the aroma of decay of oranges and to correctly predict 
the storage days. The possibility to detect the presence of 
the volatile compounds released by Penicillium spp. on sin-
gle fruit, previously inoculated (1 × 107 conidia/mL), after 
6 days, using a commercial e-nose was studied (Menesatti 
et al., 2006). The results about a commercial e-nose’s capa-
bility to discriminate between lemon and oranges noncon-
taminated and contaminated with P. digitatum spores was 
reported (Pallottino et al., 2009, 2012). Moreover, the early 
detection of low volatile compounds’ production was as-
sessed in infected citrus fruit, placed in controlled environ-
ment (Fig. 8.1), in combination with a PLS-DA (Menesatti 
et al., 2013). Results evidenced high specificity and sensi-
tivity of all the models tested and low levels of infection 
obtained high percentages of correct classification.

Recently, it was evaluated the efficacy of an e-nose, 
composed of four sensors made of different organic con-
ductive polymers, for a fast and early detection of fungal ac-
tivity and fruit biodeterioration on oranges inoculated with 
P. digitatum (Gruber et al., 2013). The results demonstrated 
that the instrument was able to carry out an analysis time in 
40 s and significant responses were found after only 24 h of 

incubation; a very useful result considering the advantages 
that the food industry could receive from the application of 
a rapid response technique in quality control.

8.3 ELECTRONIC NOSE APPLICATION  
TO DAIRY PRODUCTS

The e-nose was defined as “an instrument which comprises 
an array of electronic chemical sensors with partial specific-
ity and an appropriate pattern recognition (PR) system, ca-
pable of recognizing simple or complex odours” (Gardner 
and Bartlett, 1994). Sensor arrays and PR tend to predict 
the quality of a sample without providing hard data with 
respect to composition and concentration (Krantz-Rülcker 
et al., 2001). Therefore, the main applications to milk and 
dairy products are shown.

The e-nose is able to discriminate the pure milk from 
adulterated milk. E-nose was used in order to discriminate 
among three types of regularly distributed skimmed milk 
such as pure, added with reconstituted milk, and watered 
milk, applying both LDA and PCA (Yu et al., 2007). More-
over, the measurement generated by the e-nose can be 
used to detect both bacteria growth in milk and its shelf 
life (Labreche et al., 2005). The sensors’ response was as-
sociated with features of milk flavor, changing over time, 
related with the bacterial load. Moreover, an e-nose “real-
time operating system” was developed for raw milk qual-
ity discrimination assessing the concentrations of different 
VOCs due to microbial contamination and chemical reac-
tions (Sivalingam and Rayappan, 2012).

FIGURE 8.1 E-nose and PC used for testing, connected to the blank box (BB), where pathogen was absent, and the sample box (SB) containing 
a defined percentage of inoculated fruit placed among sound fruit.
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Concerning the applications on cheese, the e-nose, based 
on metal oxide semiconductor (MOS) sensors coupled with 
ANN (artificial neural network), was used to for the clas-
sification of Pecorino cheese according to its ripening time 
and processing (Cevoli et al., 2011). E-nose technology 
was easily adapted also in monitoring the smell changes oc-
curring during the ripening process of Danish blue cheese 
( Trihaas and Nielsen, 2005). Another application that 
may be considered successful is the evaluation of cheese 
shelf life. E-nose was adopted by Benedetti et al. (2005) 
to analyze the complex evolution of the aroma profile of 
 Crescenza cheese in order to define the proper shelf-life 
range. The change of the fingerprint during storage is a use-
ful criterion to define or confirm the hypothesis of shelf-life 
dating. In another experiment, the evaluation of the odor 
profile by the e-nose system allowed an objective and rapid 
measurement of volatiles that could be easily related to the 
shelf life for routine quality control of fresh cow stretched-
curd cheese, as well as sheep and goat cheese obtained from 
a small dairy in Sicily (Conte et al., 2011).

E-nose was utilized in order to recognize the origin 
of the cheese on a nutritional or geographical basis. 
Examination of milk from cows, grazing Alpine clo-
ver, and red fescue pastures, demonstrated the success-
ful use of this device for routine control analysis as a 
tool for the recognition of the animals’ diet botanical 
origin for protected designation of origin (PDO) dairy 

products (Falchero et al., 2009). Moreover, a study on 
the volatile compounds of Emmental cheese of differ-
ent origins demonstrated the suitability of e-nose as tool 
to identify the geographical origin of this cheese: PCA 
achieved 90 and 91% of correct classifications for the 
cheese from Switzerland or other regions, respectively 
(Pillonel et al., 2003).

Several studies compared the e-nose to panelists for 
cheese evaluation by the triangular test. E-nose evaluation 
was comparable with that of the triangular test in a study 
aimed to identify the flavor characteristics of sheep cheeses 
made with raw milk or thermized milk added with starters, 
and milk from animals fed with different amount of extrud-
ed linseed (Branciari et al., 2009).

In the last decade, the Research unit for the extensive 
animal husbandry (CREA-ZOE) used the e-nose for its 
quick ability of discrimination, not requiring any samples’ 
pretreatment. Most of the results are under publication.

Some results are reported as follows.

1. Milk classification: The e-nose was able to discrimi-
nate milk from three species (cow, sheep, and goat). In 
Fig. 8.2, the samples from different species (sheep and 
goat) are classified and placed distant, while within the 
species, breeds are placed nearby.

2. Classification for age of cheese: The e-nose has distinctly 
differentiated Scamorza cheeses 15 days old compared 

FIGURE 8.2 LDA, where milk samples are well separated for species and breeds.
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to the cheeses produced the same day but after 30 days 
of ripening.

3. Shelf life of mozzarella cheese: The e-nose clearly sub-
divided into two classes of 0 and 5 days old samples of 
mozzarella cheese, but only those produced by artisan 
dairies; this is likely due to industrial technology effects 
on shelf-life.

4. Differentiation of fresh and frozen products: The olfac-
tory prints of fresh and frozen mozzarella cheeses were 
compared. The e-nose was able to distinguish the fresh 
mozzarella from that frozen and thawed. GC–MS analy-
sis showed a significantly different composition of the 
volatile compounds (acetoin, limonene, eucalyptol, and 
p-cymene) in the fresh cheese compared to the frozen 
one. While the e-nose rapidly showed the differences, 
the GC–MS allowed understanding the causes.

5. Watered milk discrimination: A trial compared milk 
with watered milk samples at 20–50 and 100%. E-nose 
could distinguish the different samples, although the 
discrimination was lower among the samples with lower 
percentages of water.

6. Differentiation on diet supplementation: The e-nose was 
able to correctly classify the milk samples on a con-
centrate supplementation basis (linseed, destoned olive 
cake, sunflower seed, etc.).

Although e-nose does not identify the volatile com-
pounds, it does perform comparisons, and after adequate 
statistical analyzes, it indicates whether the sample be-
longs to the same class of samples. Consequently, it is less 
complete than the GC–MS, but it is faster and cheaper and 
does not require any particularly skilled operator or sample 
preparation.

8.4 PTR–TOF–MS TECHNOLOGY  
AND ITS APPLICATIONS

The PTR–MS is an innovative tool that enables the real-
time separation and quantification of VOCs in complex gas 
mixtures, from trace levels up to parts per million (for more 
details, see Lindinger and Jordan, 1998; Blake et al., 2009). 
Very briefly, the common version of the PTR–MS consists 
of a hollow cathode ion source that produces an intense and 
pure H3O

+ ion beam driven by a homogeneous, relatively 
high, electrical field through a drift-tube reactor, where the 
volatile mixture to be measured is directly admitted, usually 
without any pretreatment, and where eventually all vola-
tile compounds are ionized by proton transfer from H3O

+, 
and the protonated VOCs will then be mass analyzed (for 
more detailed technical information, see Blake et al., 2009). 
H3O

+ is a suitable reagent ion for detection of VOCs in air 
because most VOCs undergo an efficient proton-transfer 
reaction with H3O

+, whereas the major component of clean 
air does not, given that their reaction with H3O

+ is not 

 thermodynamically favorable. The key advantages of these 
instruments that have considerably boosted its use in a wide 
range of fields (including in food science and technology), 
are: (1) an unprecedented number of VOCs can be mea-
sured simultaneously with very high time resolution within 
a large dynamic range (Jordan et al., 2009) and (2) there is 
no need for pretreatment of the sample (Jordan et al., 2009; 
Blake et al., 2009). In addition, the PTR–MS bases its oper-
ation on the concept of a soft chemical ionization to proton-
ate volatile compounds with a proton affinity higher than the 
water one (proton affinity of H2O: 166.5 kcal/mol); indeed 
H3O

+ does react with most VOCs at relatively low energies, 
resulting in a lower degree of fragmentation when compared 
with chemical ionization through more energetic reactions 
or hard ionization techniques such as electron ionization 
mass spectrometry (Lindinger and Jordan, 1998; Jordan 
et al., 2009). However, the PTR–MS is a one-dimensional  
analytical method and only the nominal mass-to-charge 
 ratio of the protonated parent ion can be determined, there-
fore, resulting in difficulties or the inability to unambigu-
ously identify the studied VOCs (Jordan et al., 2009). To 
overcome some of the limitations of the PTR–MS, recently 
it was coupled to a high-resolution TOF mass analyzer that, 
unlike the PTR–MS that couples to the reaction tube of the 
PTR a quadrupole for the separation of the masses, uses an 
electric field to accelerate the ions and a detector to measure 
their speed (Blake et al., 2009). This has enabled a higher 
sensitivity (down to single digit parts per trillion volume), 
time resolution (0.1 s), and a higher mass resolution that al-
lows the discrimination between isobaric peaks at a center 
of mass separation (Jordan et al., 2009; Blake et al., 2009). 
The analytical potential of PTR–MS has further increased; 
thanks to the recent coupling of PTR–MS instruments with 
switchable reagent ion system that can produce, through 
the hollow cathode source, different parent ions (eg, H3O

+, 
NO+, and +O2 ; Jordan et al., 2009). The different ioniza-
tion induced by different precursor ions not only allows, in 
some cases, the separation of isomeric compounds (Sulzer 
et al., 2012), but also enables the ionization of molecules 
with a proton affinity lower than water, and therefore not 
seen by proton transfer ionization (Blake et al., 2009).

Thanks to these technical features, the PTR–TOF–MS 
has a high analytical throughput, which provides mass 
spectra with a high informational content and a high time 
resolution (Blake et al., 2009). These features make this in-
strument particularly suited to online analysis of dynamic 
flavor release (both in vitro and in vivo) from diverse food 
matrices along the food-to-fork production chain (ie, from 
plants and crops to food processing and storage and, even-
tually, during food consumption; Biasioli et al., 2011). Fol-
lowing its technological developments in the last decade, 
the PTR–MS is now considered an established method for 
the rapid, nondestructive VOCs’ detection in a wide range 
of fields, including the entire food-to-fork chain, as  clearly 

O2+



78   PART | I The Electronic Nose

shown by the number of studies conducted in the food re-
search area (Fig. 8.3; Biasioli et al., 2011; Sánchez Del 
Pulgar et al., 2013). As a result, the PTR–MS–TOF has 
been extensively used for classification studies of a broad 
range of food products, ranging from bread, truffle, coffee, 
olive oil, dry-cured hams, and intact fruits to their deriva-
tives (Sánchez Del Pulgar et al., 2013; Gloess et al., 2014; 
Taiti et al., 2015a,b). As a clear example of the potenti-
alities of this instrument in VOCs detections and analyses 
along most stages of the food-to-fork production chain, the 
PTR–TOF–MS was recently used to discriminate between 
coffees from different origins that were roasted to different 
roast degrees and along varying time temperature roasting 
profiles (Gloess et al., 2014). In another instance, the PTR–
MS–TOF analyses enabled the discrimination of  Iberian 
dry-cured hams based on the rearing systems, based on the 
volatile profile emitted by hams from pigs fattened out-
doors on acorn and pasture or on high-oleic concentrated 
feed (Sánchez Del Pulgar et al., 2013). Remarkably the po-
tentialities of this instrument are likely to expand further 
from the analyses along food-to-fork chain. Indeed with this 
instrument it is not only possible to monitor in real-time 
VOC releases, key in aroma perception, from food during 
eating or drinking (Romano et al., 2014), but it is also pos-
sible to evaluate the long-term effects of different diets by 
PTR–MS breath analysis (Aprea et al., 2012). For exam-
ple, the PTR–MS–TOF was used to pinpoint and identify 
markers related to diet and specific pathologic conditions in 
rats with dietary-induced nonalcoholic steatohepatitis and 
modifications induced by coffee addition to the diet (Aprea 
et al., 2012).

8.5 MULTIVARIATE APPROACHES

Data from e-nose and PTR–TOF technologies are multi-
variate. Those technologies are expensive (sometimes very 
expensive); so for this reason the data set produced is pre-
cious and should be processed with adequate and informa-
tive techniques. Unfortunately this is not always the case.

A number of statistical analyses have been used for 
the application, from the simple, such as, for example, the 
graphical representation of the individual sensor  outputs 
with time (polar plots or spider plots), to multivariate 
ordination representation (such as PCA) and hierarchi-
cal clustering, to the most sophisticated approaches, such 
as class-modeling and neural networks (Hodgins and 
 Sirnmonds, 1995).

Multivariate ordination techniques are unsupervised 
techniques which are (and should mainly be) used as ex-
ploratory data analyses. Ordination techniques put in order 
the objects, described by multivariate variables, so that 
similar objects are near each other and dissimilar objects 
are farther from each other. These relationships between 
the objects, on each of several axes (one for each variable), 

are then characterized numerically and/or by graphically 
outputs (Johnson and Wichern, 1992). The mostly used ap-
proach, based on eigenvalues and eigenvectors, is the PCA.

Also cluster analysis or clustering is an unsupervised 
technique; this task is grouping a set of objects, described 
by multivariate variables in such a way that objects in the 
same group (cluster) are more similar to each other than to 
those in other clusters. The most common way to represent 
hierarchical clustering is by a dendrogram. A dendrogram 
is computed from a matrix of distances (or similarities) us-
ing different kinds of algorithms (simple linkage, complete 
linkage, etc.)

Discriminant and classification analyses answer to the 
general question: “Which is the most probable category in 
which object O could belong (or could be classified)?” This 
general question expects the presence of at least two catego-
ries (groups or clusters), and the object could belong to one 
and just one group. Discriminant analyses are supervised 
techniques used to distinguish distinct sets of observations 
and allocate new observations to previously defined groups. 
The most commonly used discriminant analyses are LDA, 
the quadratic discriminant analysis (QDA), and the discrim-
inant function analysis (DFA). Other most sophisticated 
techniques, such as the soft independent modeling of class 
analogy (SIMCA) and the partial least squares (PLS), could 
be (and often are) used only in the classification fashion.

The problem stems for the number of data points needed 
to adequately represent a data set with a high number of fea-
tures; it is quite possible that within high dimensional data, 
clusters exist in separate subspaces. All classifiers can suffer 
from the curse (Scott et al., 2006). For these reasons, class-
modeling approaches have been recently developed and 
applied. Multivariate class-modeling techniques answer to 
the general question of whether an object O, stated of class 
A, really belong to class A (Forina et al., 2008;  Abramo 
et al., 2015). This is a typical question that is addressed in 
the traceability of PDO foods or in multivariate quality con-
trol. On the contrary, the classification techniques assign 
objects to one of the classes in the problem. For example, 
LDA assigns an object to the class with the maximum pos-
terior probability (Biasioli et al., 2003). However, these 
classification techniques are not very useful in the control  
of quality, variety, origin, or genuineness of a sample 
when considering their VOC profiles (Granitto et al., 2007; 
 Cappellin et al., 2011). Nevertheless, almost all research 
papers on food control use classification techniques; fur-
thermore, also when a class-modeling technique is applied, 
the attention is focused on its classification performance 
rather than on its modeling characteristics. Class-model-
ing techniques calculate the “prediction probability” with 
a classification threshold for each modeled class. Using a 
class-modeling approach, it is possible to attribute objects 
not only into one or more classes, but also to none (ie, in 
this case, the object is an outlier) (Abramo et al., 2015).
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FIGURE 8.3 Schematic representation of sample analyses and classification using the PTR–TOF–MS. This technique allows rapid and nondestructive VOCs detection throughout the 
entire food-to-fork chain (eg, fruits) without any sample pretreatment. The large data set produced by the PTR–TOF–MS is then later used to extrapolate analytical information regarding the 
product and for classification using different multivariate analyses.
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ANNs are used to estimate or approximate functions 
that can depend on a large number of inputs and are gener-
ally unknown. ANNs are generally presented as systems of 
interconnected “neurons,” which can compute values from 
inputs and are capable of learning thanks to their  adaptive 
nature. ANNs are particularly useful in performing for  
nonlinear responses (Baldwin et al., 2011).

All discriminant, class-modeling, and ANNs are super-
vised techniques. Supervised approaches are affected by 
overfitting. For this reason, two different kinds of strate-
gies should be applied to the statistical analytical proce-
dure. The first strategy is cross-validation, that is commonly 
used. This approach cross-validates splitting the data into 
groups, named CV (cross-validated) groups. This procedure 
involves the removal of one CV group in a random way 
from the data set, and the model is built with the remain-
ing samples, then the removed CV group is included in the 
model and the class membership of the samples belonging 
to the CV group is predicted. This process is applied until 
all the CV groups are removed once. The performances are 
calculated during the cross-validation technique and at least 
the model was built using the whole data set. The second 
strategy to avoid overfitting is partitioning. Unfortunately 
this strategy is not commonly used. This strategy separates 
the data set into at least two groups, one to build and cross-
validate the model and the second to internally to test the 
model. The methodologies used for partitioning are based 
on random sampling or using specific algorithms (Kennard 
and Stone, 1969; Galvão et al., 2005). Random sampling is 
the most used approach, but this kind of approach should be 
applied many times on the same data set so the results could 
be complex.

8.6 FUTURE TRENDS

Currently, most of the traditional measuring techniques used 
to determine food quality are destructive (eg, texture, firm-
ness, total soluble solids, acidity, color score, juice content) 
and involve random sampling, which increases the likelihood 
of an incorrect evaluation. Thus, nondestructive techniques, 
based on aroma characteristics, can offer the possibility to 
optimize food quality assessments.

E-nose technology is attractive for several reasons; 
however, there are still few industrial applications (Loutfi 
et al., 2015). This is mostly due to the difficulties in repro-
ducibility of the sensors and the need of pattern recogni-
tion algorithms, which can manage the signal analyses. The 
progress in e-nose technology requires and coincides with 
an increased understanding of the biological mechanisms of 
human olfactory system and, with further research, a wider 
application of e-nose technology in the food industry is pre-
dictable for the future. For instance, the e-nose technology 
shows promise for future applications in early, rapid, and 

nondestructive tests to monitor continuously the qualitative 
conditions of perishable goods stored. Indeed, hypothetical-
ly, the e-nose could be successfully applied in cold storage 
rooms, as a nondestructive and noncontact indirect technol-
ogy for the early diagnosis of fruit molds and to prevent the 
spread of fungal growth during storage and transport.

In the last decade, the PTR–MS tools have also emerged 
as new and promising tools that can guarantee food analyses 
with high informational content and a high time resolution. 
These two key features make this technology particularly 
suited to the online analysis of dynamic flavor releases from 
diverse food matrices along the food-to-fork production 
chain. Indeed, the PTR–MS represents a noninvasive tool 
capable of providing fingerprint for agro-industrial product 
characterization (eg, based on genetics or origin) and on the 
other hand, provides quantitative and qualitative informa-
tion on the VOCs involved during food production, process-
ing, and consumption. In conclusion, PTR–MS will play a 
pivotal role in future understanding of the food production 
and consumption processes, opening new promising fields 
of application in food research, thus providing key elements 
to improve food production processes and enhance food 
consumer acceptability.
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9.1 INTRODUCTION

Virgin olive oil is the olive oil obtained directly from ol-
ives and solely by mechanical means under conditions that 
do not lead to alter the oil composition. Solvent extraction, 
re-esterification processes, and the blending with other veg-
etable oils is prohibited (EEC, 1991).

Chemical and sensorial quality standard allow to dis-
criminate olive oils into three groups, namely, extra virgin 
(EVOO), virgin (VOO), and lampante (LOO). The quality 
of the oil is strictly correlated with that of the fruits, primar-
ily, by the harvesting systems, the techniques of extraction, 
the kneading of the olive paste, and the separation of the 
oily phase. EVOO contains a great number of volatile and 
nonvolatile compounds, including phenolic compounds re-
sponsible for its fragrant and peculiar flavors. These sub-
stances also contribute to the stability of the oil.

Volatile compounds present in VOO have been exten-
sively studied (Olias et al., 1993; Flath et al., 1973). More 
than 280 compounds have been identified in the volatile 
fraction of VOO. They include hydrocarbons, alcohols, 
aldehydes, ketones, acids, esters, ethers, furan derivatives, 
thiophene derivatives, pyranones, thiols, and pyrazines 
(Angerosa et al., 1999; Guth and Grosch, 1993; Solinas 
et al., 1987). However, only a fraction of them is present at 
concentrations higher than their odor threshold limit and, 
thus, contributes to the resulting aroma of olive oil. The 
qualitative composition of EVOO obtained from healthy 
fruit, harvested at the proper ripening stage, and with cor-
rect extraction techniques results in a typical aroma profile 
(Kiritsakis and Min 1989; Salch et al., 1995). This profile 
is primarily derived from the decomposition of linoleic and 
linolenic acid through the lipoxygenase pathway, which 
generates C6 volatiles aldehydes and alcohols, such as 
hexanal, (E)-2-hexenal, (Z)-3-hexenal, hexan-1-ol, (Z)-
3-hexen-1-ol, hexyl acetate, and (Z)-3-hexenyl acetate to-
gether with a few of C5 aldehydes, ketones, and alcohols 
(Olias et al., 1993). Therefore, the quantitative analysis of 
the aroma profile of EVOO is a way to monitor changes in 

the linoleic and linolenic acid composition or modification 
of the lipoxygenase activity, which in turn may reveal oil of 
poor quality.

Among the techniques used to determine the aroma pro-
file of olive oils, the most important is the sensory evalu-
ation because it is directly connected to the consumers’  
organoleptic judgment of oil quality (EEC, 2002). However, 
sensory evaluations generally lack precision and reproduc-
ibility. In addition, methods based on trained panels are 
time consuming, tedious, and expensive and they are not 
always available. For this purpose, advancements of ana-
lytical instruments have stimulated researchers to develop 
new methods for the evaluation of sensory qualities of fats 
and oils (Guadarrama et al., 2000).

Gas chromatography provides a rapid accurate means of 
determining the fatty acid distribution of VOO. This tech-
nique is essential for product development, process control, 
and marketing because it is well known that the physical, 
chemical, and nutritional characteristics of oils are influ-
enced by the fatty acid composition and their esterification 
with glycerol. The cost of the instrumentation, the need of 
high-purity and hazardous gas carriers, the extensive pre-
liminary samples treatments and derivatization, the need of 
frequent calibrations, and the need of trained personnel lim-
it the use of such technique to qualified laboratories only.

An alternative analytical approach that tried to overcome 
the aforementioned drawbacks was introduced at the begin-
ning of the 1990s with the concept of “electronic nose.” Elec-
tronic noses were novel analytical devices intended to the 
rapid and untrained analysis of aroma profile. Gardner and 
Bartlett (1993) defined the electronic nose as “an instrument, 
which comprises an array of electronic chemical sensors with 
partial specificity and appropriate pattern-recognition system, 
capable of recognizing simple or complex odors.” Nowa-
days, several commercial intelligent gas sensor array instru-
ments are now available on the market covering a variety of 
chemical sensor principles, system design, and data analy-
sis techniques. Operationally, an electronic nose is a “sens-
ing system” comprised of three parts: a sampling system, a  
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detector producing an array of signals correlated with the 
chemical composition of a gas, vapor, or odor, and an appro-
priate pattern classification system.

In this chapter, we present the analyses conducted on 
the EVOO with two different commercial electronic noses, 
respectively, an electronic nose based on metal oxide semi-
conductors (MOS) and metal oxide semiconductor field 
effect transistors (MOSFET) gas sensors and an electronic 
nose based on proton transfer reaction-mass spectrometry 
(PTR-MS). In the following sections, the basic principle of 
these two systems will be presented, followed by a review 
of the pattern recognition techniques used to translate their 
analytical signal into quality attributes. Finally, four case 
studies employing these techniques on relevant research 
questions in olive oil technology will be discussed.

9.1.1 Electronic Noses Based on  
MOS/MOSFET Gas Sensors

Former electronic noses were assembled with an array of 
various kinds of gas sensors. Nowadays there are four main 
technologies to produce gas sensors: MOS, MOSFET, con-
ducting organic polymers (CP), and piezoelectric crystals 
(bulk acoustic wave, BAW; surface acoustic wave, SAW). 
Other sensors, such as fiber optic, electrochemical and bi-
metal sensors, are still in developmental stage and may be 
integrated in the next generation of the electronic noses. 
In all cases, electronic noses based on gas sensors aim to 
create an array of a specific sensing elements to provide a 
characteristic fingerprint of the product’s aroma (Mannino 
et al., 2007). Such gas sensor arrays should be sensitive 
toward chemical compounds similarly to the human nose, 
respond to different compounds present in the headspace of 
the sample, and be highly stable, reproducible, and reliable. 
Unlike gas chromatographs, electronic noses should show 
short reaction and recovery time and guarantee easy calibra-
tion and simple data interpretation. Furthermore, electronic 
noses should be portable and have reduced footprint and 
power requirements (Schaller et al., 1998).

The first electronic nose presented here consists of a com-
mercial apparatus (model 3320 Applied Sensor Lab Emis-
sion Analyzer, Applied Sensor Co., Linkoping, Sweden),  
comprising an automatic sampler carousel, a detector  
unit equipped with MOS and MOSFET sensors, and soft-
ware for data recording and pattern recognition. Twen-
ty-two sensors compose the sensor array: 10 sensors are 
MOSFET and 12 are MOS. The MOSFET sensors are di-
vided into two arrays of five sensors each, one array op-
erating at 140°C and the other at 170°C, while the MOS 
are kept at 400–500°C during all the process phases. The 
automatic sampling system supports a carousel of 12 sites 
for loading the samples and permits the control of internal 
temperature. The analysis is performed on aliquots of 1 g 
of sample, which is introduced in 40 mL Pirex® vials with 

a pierceable silicon/Teflon disk on the cap. The assay starts 
with the incubation of the sample at 40°C for 10 min for 
headspace equilibration. Then, an automatic syringe sam-
ples the headspace and a pump transfers the volatile com-
pounds over the sensor surfaces. Signal recording lasts after 
60 s. Each sensor is then exposed to filtered air at a constant 
flow rate (60 mL/min) to bring the gas sensor signal back 
to the baseline.

9.1.2 Electronic Noses Based on Proton 
Transfer Reaction-Mass Spectrometry

The simplest type of mass spectrometry based e-nose con-
sists of a gas chromatograph-mass spectrometer device 
where a short capillary column is employed as a transfer 
line to the mass spectrometer. Similarly to classic electronic 
noses, this type of instrument provides a fingerprint of the 
analyzed sample, which can be used for classification or pro-
cess monitoring purposes (Pérez Pavón et al., 2006). Over 
the years, other MS-based techniques have been developed 
with the aim to increase the informational content of the 
analytical output. A particular successful example of this 
technical advancement is represented by PTR-MS, which 
allows rapid, direct, and highly sensitive online monitor-
ing of volatile organic compounds (VOCs) in food (Biasioli  
et al., 2003; Cappellin et al., 2013; Aprea et al., 2006). PTR-
MS has been described in detail by Lindinger and coworkers  
(Lindinger et al., 1998a, 1998b). A typical PTR-MS out-
put consists of a mass spectrum, composed by several mass 
peaks, having different mass-to-charge ratios and intensi-
ties. First introduced by Lindinger and coworkers (Hansel 
et al., 1995) as a multipurpose gas analyzer, PTR-MS now 
counts a wealth of applications in the food sector (Biasioli 
et al., 2011a). A detailed description of the PTR-MS work-
ing principle was reviewed recently (Biasioli et al., 2011b). 
Briefly, in PTR-MS, the gaseous sample is introduced at a 
constant flow through a heated transfer line (Fig. 9.1). The 
gaseous mixture then reacts with a pure beam of hydronium 
ions (H3O

+); most compounds will then undergo the follow-
ing reaction:

H3O
+ + M → H2O + MH+

As in other MS-based techniques, ionization is essential 
to the following separation and detection steps, performed 
by the mass analyzer. Many types of ionization techniques 
have been developed, involving chemical reactions, plas-
ma, laser, and so forth; one of the benefits of proton transfer 
using hydronium ion is that the reaction is thermodynami-
cally favored with most VOCs, while most inorganic vola-
tile species (including oxygen and nitrogen) do not undergo 
protonation, thus allowing the direct analysis of VOCs 
present in trace amounts in air without the use of a dilution 
buffer. Another key advantage of proton transfer lies in its 
character of soft ionization. This implies that most analytes 
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are protonated without undergoing further fragmentation, 
providing key information as to the compound of origin.

9.1.3 Pattern Recognition and Human 
Stimuli Analogy

It must be pointed out that any electronic nose methodolo-
gy, regardless of the signal transduction principle, provides 
a useful fingerprint connected with the quality, authenticity, 
or processing only if supported by an appropriate multivari-
ate statistical technique. Pattern recognition routines like 
principal component analysis (PCA), cluster analysis (CA), 
partial least squares (PLS), linear discriminant analysis 
(LDA), and artificial neural network (ANN) are needed to 
translate the chemical information provided by each of the 
gas sensors of the electronic nose into new macrovariables, 
which can be used to express the EVOO quality grade, the 
geographical origin, the health status of the olives, the pres-
ence of extraneous products, or the shelf-life status. The 
translation of chemical signals into quality attributes is the 
same activity performed by the brain following to the chem-
ical perception of stimuli cells. As aroma compounds come 
directly through the nasal passages, they excite a number 
of stimulus-responsive receptors hosted in millions of sens-
ing cells comprised within the olfactory epithelium. Each 
receptor uniquely interacts with odorous molecules. Stimu-
lation of these receptors is translated into the language of 
the nervous system. Hence, through the human experiences, 
the brain becomes trained to associate specific patterns of 
neural messages into quality attributes. This experience is 
then used to predict or judge the quality of novel samples. 
Similarly, electronic noses, regardless of the sensor type or 
mechanism of signal transduction, emulate the pattern rec-
ognition activity exerted by the brain. The electronic nose 

reacts to the sample and produces electrical signals that are 
correlated with its aroma profile. A computer reads the pat-
tern of signals, and interprets them with some form of “in-
telligent” pattern classification algorithm.

9.2 CASE STUDY 1: EVALUATION OF 
OXIDATION STATUS IN VIRGIN OLIVE OILS

EVOO presents a complex flavor, which can be greatly af-
fected by the storage conditions. Oxidation processes af-
fected by air, heat, light, and metals are mainly responsible 
for the change in the aromatic profile of olive oils (Angerosa  
et al., 1999; Morales et al., 1997). Consequently, it is a mat-
ter of great concern for the olive oil industry to preserve the 
positive attributes of EVOO from production to bottling, up 
to purchasing.

Nowadays, there are different methods used and/or pro-
posed for evaluating the oxidative deterioration of olive oil. 
Among the routine methods, there are the peroxide value 
(PV), which determines the amount of primary oxidation 
products (meqO2/kg) and ultraviolet light absorption at 232 
and 270 nm (K232, K270, and ∆K), that measures the forma-
tion of conjugated dienes and trienes due to the formation of 
secondary oxidation products. According to the European 
Commission (EEC, 1991; EEC, 2003) and the International 
Olive Oil Council (IOOC, 2001) regulations, the EVOO ox-
idation level is assessed by the PV and spectrophotometric 
absorbance, defining the following limits: PV ≤ 20 meq/kg 
and K270 ≤ 0.22, and ∆K ≤ 0.01. The EEC legislation also 
considers that the value of K232 must be ≤ 2.4. Neverthe-
less, these methods supply only limited information as to 
the level of olive oil oxidation.

In recent years, high-performance liquid chromatogra-
phy (HPLC) and gas chromatography coupled with mass 

FIGURE 9.1 Schematic representation of a PTR-MS. (Reprinted with permission from Blake et al., 2004. Copyright 2004 American Chemical 
Society.)
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spectrometry (GC–MS) were applied to detect changes in 
the chemical composition of olive oil during storage. HPLC 
with different detection systems has been used for hydro-
peroxide analysis (Oshima et al., 1996). GC–MS was used 
to detect hydroxylated fatty acids and volatile compounds 
originated from hydroperoxide degradation (Morales 
et al., 1997) and to identify the products of triglyceride oxi-
dation (Rovellini et al., 1998).

However, these techniques are complex to perform or 
to interpret, expensive and time consuming, and generally 
highlight only one or a few aspects of the oxidation process, 
giving only partial information about the extent of the pro-
cess. On the other hand, the olive oil industry needs to be 
able to know quickly the level of oil oxidation in order to 
predict its remaining shelf life. Moreover, consumers ex-
pect manufacturers and retailers to provide products of high 
quality and look for quality seals and brands. Therefore, the 
development of innovative analytical tools able to execute 
fast and reliable quality checks on EVOO is required.

This study reports the potential of electronic nose based 
on gas sensor array, in combination with multivariate statis-
tical analysis for evaluating the oxidation level, that is, oil 
quality at bottling time, storage in real-life conditions and 
without applying an accelerated thermooxidation process. 
For this study, 61 VOO from typical cultivars of Garda re-
gion were packaged in glass bottles and stored in the light 
for 1 year and in the dark for 1 or 2 years, 1 year being gen-
erally considered the maximum storage period from bot-
tling to consumption. This approach could represent a faster 
recognition tool for monitoring olive oil oxidation since it is 
characterized by simplicity of sample preparation.

The oils were analyzed before and after storage, using 
both chemical methods and electronic nose technique. In the 

literature, there are several examples that demonstrate the 
possibility of using an electronic nose for the characteriza-
tion of vegetable oils (Gan et al., 2005; Martin et al., 1999), 
while information about the use of an electronic nose to 
predict shelf life of vegetable oils or to monitoring oil oxi-
dation under real-life storage conditions are very limited 
(Cosio et al., 2007; Shen et al., 2001).

The 61 EVOOs were analyzed before storage. They pre-
sented an acidity ranging from 0.1 to 0.3, and PVs from 3 
to 6; spectrophotometric indices K232 and K270 ranged from 
0.8 to 1.4 and from 0.08 to 0.15, respectively, whereas ∆K 
was always lower than 0.01. The same samples were then 
analyzed after 1 year of storage under dark (class 1), under 
light (class 2), and after 2 years under dark (class 3). All 
samples of the three classes presented an acidity value low-
er than 0.4, PV from 16 to 22 (class 1), from 17 to 61 (class 
2), and from 17 to 39 (class 3). Most samples had K232, 
K270, and ∆K above the lower limits. At the end of their 
storage period, all VOO were also analyzed by electronic 
nose. The response of the electronic nose is characteristic 
of each sensor and depends on the concentration and the 
profile of the volatile compounds present in the olive oil. 
The signal obtained with the electronic nose (22 sensors), 
together with the classical chemical determinations (5 pa-
rameters) calculated at the end of the sample storage pe-
riod were considered all together and analyzed by means of 
PCA. The first principal component and the second princi-
pal component were enough to display the data structure, 
since they explained 61% of the total variance. Examining 
the score plot (Fig. 9.2) in the area defined by the first two 
principal components, a separation of the samples into three 
groups was found according to the different storage condi-
tions and storage periods. Only a few samples belonging  

FIGURE 9.2 PCA on autoscaled data: score plot. Classes are shown with different symbols.
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to class 3 were projected in the middle of class 1, but this 
does not affect the effectiveness of the plot. Furthermore, 
based on the position of each group in the plot, it was pos-
sible to assign a particular meaning to each component.

The first component was able to separate the oil sam-
ples belonging to class 3 (characterized by negative values) 
from all other samples, that is, the first component was able 
to characterize the samples on the basis of the storage pe-
riod. In fact, samples belonging to class 3 were character-
ized by a storage period of two years, while all the other 
samples by a storage period of only one year. On the second 
principal component, oil samples of class 2 had negative 
values, while all other samples had positive values, that is, 
the second principal component was able to describe the 
samples on the basis of the storage conditions. In fact, class 
2 samples were stored under light, while all other samples 
under dark.

Finally, a sample belonging to class 1 appeared far from 
its class space in the score plot. This sample, labeled in the 
score plot as sample no. 10, was characterized by the high-
est scores on the first and the second component. As de-
scribed before, the meaning of each component is related 
to the quality of the storage period and conditions. The 
highest positive scores on the two components were associ-
ated to the best storage situation, that is, conservation under 
dark for one year. The behavior of sample no. 10 confirmed 
this hypothesis. In fact, all values of the classical chemical 
parameters for this sample respected the law limits and al-
lowed it to be considered as EVOO. All other samples of 
class 1 could not be considered as EVOO since they had just 
UV values or PV values higher than the law limit.

Since the data structure analysis gave a good sample 
characterization, a classification model was built. LDA 

analysis was applied to the complete data set to separate 
the three described classes. LDA applied set gave a recog-
nition percentage of 100%, while only one oil sample was 
not correctly classified in the validation procedure. Even if 
this model performed a good classification result, the clas-
sification after selection of a minimum number of variables 
was also considered. For this reason and in order to sim-
plify the classification model by reducing the number of 
the considered variables, LDA was repeated by consider-
ing only the electronic nose data. The classification model 
gave again 100% correct classification for three classes and 
also during the leave-one-out cross-validation, all samples 
were correctly classified (cross-validation error rate of 0%). 
The discriminant scores for the classification model with 
the electronic nose features (Fig. 9.3) showed a clear class 
separation. As expected, the classification model gave the 
same results as before, that is, a recognition percentage of 
100%.

Since an equal classification performance was obtained 
by considering only the electronic nose sensors, it is evident 
that chemical analyses were not required in order to achieve 
a better sample discrimination, that is, chemical analyses 
did not improve the classification model.

In conclusion, chemical parameters where not rel-
evant when the LDA classification method was applied. 
In fact, it has been shown how by removing chemical 
analysis, the classification performance is preserved and 
a more applicable model is obtained. The final classifica-
tion model built by means of the electronic nose sensors 
was able to describe the samples’ storage conditions and 
could represent a simpler, faster, and cheaper recognition 
tool, since a minor number of variables must be deter-
mined.

FIGURE 9.3 LDA classification model with the electronic nose sensors: discriminant scores. Classes are shown with different symbols.
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9.3 CASE STUDY 2: CLASSIFICATION 
OF EVOOs

The quality and uniqueness of specific EVOOs is the re-
sult of different factors such as cultivar, environment, and 
cultural practices. Moreover, an important act of legislation 
(EEC, 1992) allows the European protected denomination 
of origin (PDO) labeling of some European EVOOs with 
the names of the areas where they are produced. This des-
ignation guarantees that the quality of the product is closely 
linked to its geographical origin. PDO olive oils are consid-
ered the best among EVOOs based on their authenticity and 
specified organoleptic characteristics. Therefore, PDO olive 
oils have a much higher market price and are therefore sub-
ject to frauds: the addition of refined oils and/or the market-
ing of oils from one region as those from another. Consum-
ers are also more and more oriented toward purchasing food 
products of a certified authenticity and geographical origin.

In the present study, EVOO Garda “Bresciano” has been 
considered: this is a product made in the Garda Lake, a cir-
cumscribed area in the north Italian region of Lombardia and 
distinguished as PDO since 1997. Detailed percentages of 
specified cultivar olives, cultural practices, circumscribed 
geographical production areas, and chemical and sensorial 
properties are required in order to obtain the PDO label, as 
indicated in the Production Disciplinary. However, at present 
no analytical parameters exist that enable the Garda PDO oil 
to be distinguished from similar products of other regions. 
The development of precise methods for the classification of 
oils is becoming very important for the assignment of a “de-
nomination of origin” trademark. Since official analysis of 
VOOs involves a series of several determinations of chemi-
cal and physical constant that will be of little use in the geo-
graphical certification of the oil samples, reliable methods of 
authentication of oil geographical origin are essential.

A variety of analytical methodologies have been proposed 
for the authentication of vegetable oils, including gas chro-
matographic analysis (Webster et al., 1999; Cert et al., 2000), 
nuclear magnetic resonance (Rezzi et al., 2005; Sacco 
et al., 2000), and mass spectrometry (Caruso et al., 2000). 
These techniques usually require time-consuming measure-
ments, sample preparation, and a qualified staff. The necessity 
of quick and simple methods has addressed the present study 
to the use of an electronic nose to characterize the origin of 
PDO Garda EVOO. Moreover, main compounds, mainly car-
bonyl compounds, alcohols, esters and hydrocarbons, were 
found in the volatile fraction of VOO (Flath et al., 1973). 
These volatile compounds, stimulating the olfactive recep-
tors, in the human nose are responsible for the whole aroma 
of the VOO; similarly in the electronic nose a variety of sen-
sors interact differently with the odors of the sample. Volatile 
components of olive oil are considered as a key for quality and 
authentication control; consequently they are of a big interest. 
In the literature, there are several examples that demonstrate 

the possibility of using an electronic nose for the quality con-
trol of olive oil aroma (Guadarrama et al., 2000). The com-
bination of electronic nose fingerprinting with multivariate 
analysis also provides an original approach to study the pro-
file of olive oil in relation to its geographical origin (Ballabio 
et al., 2006; Cosio et al., 2006).

In the present study, EVOOs have been studied by means 
of an electronic nose and by classical chemical parameters.

The data set has included 53 samples of monovarietal 
EVOOs obtained from several olive cultivars and grown in 
5 different regions: Garda, 36 samples; Spain, 6 samples; 
Sardinia, 5 samples; Campania, 4 samples; Abruzzo, 2 sam-
ples. The sampling has included also 19 commercial and 
multivarietal EVOOs: 3 samples labeled as Garda PDO, 
produced with cultivars allowed by the Garda Production 
Disciplinary; 3 samples of Garda, not labeled as PDO; and 
13 samples collected on the market, produced with un-
known cultivars. All these commercial samples have been 
used only to test the classification model.

The quality of EVOO is determined by analytical pa-
rameters: free acidity, peroxide value, K232, K270, and ∆K, 
according to legislation (EEC, 1991; IOOC, 2001). All of 
the analyzed samples have respected the law limits and con-
sequently can be considered EVOOs. Total phenols have 
also been determined for all the samples, in order to verify a 
possible correlation with their geographical origin. For the 
same reason, the oil samples have been analyzed by means 
of electronic nose, which could be able to detect the pres-
ence of volatile compounds in olive oils.

All data collected from the electronic nose were com-
pared and elaborated, together with the chemical param-
eters. As a first step, principal component analysis (PCA) 
was carried out using the complete data set. Then, classifi-
cation technique (LDA) was applied.

PCA was performed on the autoscaled data in order to 
provide partial visualization of the data set in a reduced di-
mension. The two principal components represent 79% of 
the total variance. Examining the score plot (Fig. 9.4) in the 
area defined by the first two principal components, a clear 
separation of the samples into five groups was found ac-
cording to the region of origin.

In order to characterize EVOO samples into the five men-
tioned classes, a supervised pattern recognition method was 
applied. LDA applied to the complete data set gave a recogni-
tion percentage of 100% for all EVOOs (error rate 0%), while 
during the leave-one-out cross-validation, some samples were 
not correctly classified (cross-validation error rate of 7.55%).

Finally, the classification model was applied to a new set of 
electronic nose data, that is, the 19 commercial and multivarietal  
EVOOs. Fig. 9.5 shows the predictive ability of LDA model. It 
can be seen that all the samples came from Garda were correct-
ly classified, whereas the multivarietal EVOOs were distrib-
uted among the other classes due probably to its characteristic 
of being a mixture of oils from different geographical areas.
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FIGURE 9.4 PCA on autoscaled data: score plot. Groups are shown with different symbols.

FIGURE 9.5 Projection of monovarietal EVOOs, commercial and multivarietal EVOOs predicted by the LDA model. 
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This study clearly shows that it is possible to differen-
tiate and classify EVOOs from different geographical ar-
eas by using a commercial electronic nose and by applying 
multidimensional chemometric techniques.

In conclusion, there is a growing emphasis and consen-
sus that intelligent sensor array or electronic noses are most 
effective in the quality control of raw and manufactured 
products, for example, determination of food freshness and 
maturity monitoring, shelf-life investigations, authenticity 
assessments of products, and even microbial pathogen de-
tection and environmental control.

This application area is particularly important because 
the e-nose can be trained to recognize hazardous chemicals 
as well as odors. Furthermore, with respect to the human 
nose, the e-nose does not fatigue as easily, is less costly, and 
can easily be transported. It also holds the promise of being 
much cheaper, smaller, and easier to use and maintain than 
a mass spectrometer.

9.4 CASE STUDY 3: CLASSIFICATION 
OF EVOO SAMPLES BY PTR-MS

The discrimination capability of PTR-MS are discussed 
next in connection with MS-e-nose based on PTR-MS. Dif-
ferent olive oils were submitted to accelerate thermal oxida-
tion and compared to their untreated counterparts. PTR-MS 
was able to discriminate between oxidized and nonoxidized 
samples, as determined by means of partial least square-
discriminant analysis (PLS-DA). Employing multivariate 
calibration techniques, mass spectral fingerprints could 
also be correlated with the degree of oxidation, as ex-
pressed by the peroxide value. Based on the mass spectra 
of pure standards, some mass peaks correlating with the de-
gree of oxidation could be assigned to known degradation 
products. This was the case with peak m/z 111, attributed 
to octanal, a known product of the oxidative breakdown of 
oleic acid (Aprea et al., 2006; Cappellin et al., 2013). This 

is a representative example of the capability of PTR-MS to 
generate data that go beyond the mere fingerprint. PTR-MS 
was also applied to the solution of more complex problems 
of olive oil classification, such as the determination of the 
country or the cultivar of origin (Araghipour et al., 2008; 
Ruiz-Samblás et al., 2012).

9.5 CASE STUDY 4: PROCESS 
MONITORING BY PTR-MS

As observed for traditional electronic noses, PTR-MS offers 
the possibility to perform real-time monitoring of reactions 
and processes. This is easily exemplified by an experiment 
(Aprea et al., 2008) where an olive oil sample was connected 
to the instrument inlet, gradually heated to 77°C and contin-
uously monitored. Fig. 9.6 shows typical evolution profiles 
for three mass peaks, tentatively attributed to t-2-hexenal, 
hexanal, and nonanal. The former two carry herbaceous and 
fruity notes, while the latter is commonly linked to disagree-
able fatty, paint-like, and waxy odors; all compounds are gen-
erated from fatty acids, either by enzymatic breakdown or 
by autoxidation. Fig. 9.6 shows how the signal attributed to 
nonanal gradually increases, while t-2-hexenal and hexanal 
show a more complex pattern. Hence, nonanal is probably 
formed during the accelerated thermal oxidation, while the 
other two carbonyls are already present in the sample; their 
abundance in the headspace first increases due to heating, 
whereas in a further stage the overall trends are the product 
of the progressive evaporation caused by the constant stream 
of air applied to the sample, together with the gradual forma-
tion, due to oxidative breakdown. The two separate reactions 
are represented in Fig. 9.6 in the case of hexanal by means of 
a continued and dashed line, respectively.

In another application (Vezzaro et al., 2011) the PTR-
MS technology was applied at different stages to the off-line 
measurement of the olive oils obtained from different tech-
nological processes, involving the use of nitrogen-saturated 

FIGURE 9.6 Online monitoring of the thermal oxidation of olive oil, heated to 77°C. The figure depicts the time evolution of selected mass peaks, 
tentatively attributed to volatile compounds. The continuous and dashed line represent the two separate contributes to the hexanal signal, corresponding 
to the reactions of formation and evaporation, respectively.
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atmosphere. In this case, the analysis of mass spectral fin-
gerprints allowed for the follow-up of the various processes. 
Overall, these examples demonstrate the effectiveness of 
PTR-MS as process analysis technique. Moreover, the data 
thus generated can serve to the calculation of reaction rates 
of oxidation reactions or partition coefficient of various 
VOCs.
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Chapter 10

Rapeseed Analysis by an Electronic Nose
Aleksander Kubiak
Department of Food Science and Department of Process Engineering and Equipment, University of Warmia 

and Mazury in Olsztyn, Olsztyn, Poland

10.1 INTRODUCTION

Rapeseed is a source of edible oil with health-promoting nu-
tritional properties. The increasing demand for biodiesel as 
a renewable energy source has boosted rapeseed oil produc-
tion. This tendency was strengthened in 2007 by the European 
Commission’s goal to increase the volume of fuels produced 
from renewable sources to 10% by 2020. The European Union 
is presently the largest rapeseed producer in the world.

The only parameter inspected in rapeseed trade turnover 
is the moisture content. This analysis is conducted by infra-
red spectrometry, which is not able to detect the presence of 
moldy or burnt rapeseed in the analyzed sample. Specific 
tests, such as the determination of ergosterol (a good in-
dicator of mold infestation), also require special scientific 
equipment, such as high-performance liquid chromatogra-
phy (HPLC). Species of mold developed on rapeseed pro-
duce a range of volatile organic compounds (VOCs) such 
as: alcohols, esters, aldehydes, ketones, terpenes, and sulfur 
compounds (Magan and Evans, 2000). The mixture of these 
chemicals creates a typical musty or moldy smell, which is 
the main indicator of mold infestation for humans.

In food-processing plants, rapeseed quality is most of-
ten assessed by a panel of trained experts. Nonetheless, this 
method is not objective and is characterized by low repeat-
ability. Efforts are increasingly often being made to objectiv-
ize and automate this evaluation, for example, through us-
ing electronic nose technology. Rapid, robust, and efficient 
instrumental analysis methods for the evaluation of rapeseed 
quality would be of interest not only for edible oil producers, 
but also for farmers who could immediately and independent-
ly judge the quality of their rapeseed (Kubiak et al., 2012).

Electronic nose technology enables an objective evalua-
tion of raw material aroma in the food industry. It has been 
successfully applied in the quality assessment of cocoa 
beans (Olunloyo et al., 2011), rice (Xu et al., 2014), corn 
seeds (Paolesse et al., 2006), as well as seeds of wheat, rye, 
barley, and oats (Börjesson et al., 1996). The classification 
systems used for qualitative evaluation are mainly based on 

the analysis of headspace composition of analyzed samples 
by an array of sensors. The multidimensional databases cre-
ated by the sensors are used for classification based on sta-
tistical methods (Balasubramanian et al., 2007), fuzzy sets 
(Perrot et al., 2006), and different types of neural networks 
(Jonsson et al., 1997). Table 10.1 compares the various 
types of electronic noses used to assess seed material qual-
ity in the food industry.

The most frequently used statistical methods for elec-
tronic nose data analysis are: principal component analysis 
(PCA) (Xu et al., 2014; Olunloyo et al., 2011; Campag-
noli et al., 2009; Falasconi et al. 2005), linear (LDA) or 
quadratic discriminant analysis (QDA) (Balasubramanian 
et al., 2007), and cluster analysis (CA) (Janzen et al., 2006). 
Neural networks were also used for electronic nose data 
analysis. These networks are capable of modeling the prop-
erties of a nonlinear system, as observed between the input 
and output layers. They are useful tools for food safety and 
quality analyses, as well as predicting physical, chemical, 
functional, and sensory properties of food products during 
processing and distribution (Huang et al., 2007). Neural net-
works are able to learn through experience (like people), and 
they have found many applications in identifying informa-
tion encoded in signals generated by the electronic nose sen-
sors. The ability to generalize (obtaining the correct network 
response in a situation when input data has never been used 
for network training before) makes neural networks power-
ful tools to predict the quality of examined products using an 
electronic nose. In most situations, the diversity of types of 
neural networks available, the quantity of variables, the in-
ternal structure parameters, and the teaching rules and their 
specificity require an individual approach to each problem.

A measuring system consisting of 15 sensors: 10 metal 
oxide semiconductor field effect transistor (MOSFET) sen-
sors, four metal oxide (MOX) sensors, and one carbon di-
oxide (CO2) sensor, were used for the microbiological eval-
uation of wheat, oats, barley, and rye (Jonsson et al., 1997). 
Gas samples were collected from the headspace of seeds 
heated to 50°C and then pumped into a measuring  chamber. 
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All signals generated by 15 sensors were used as input data 
into a three-layer neural network consisting of 15 input 
 neurons—10 neurons in the hidden layer and 1–4 neurons 
in the output layer, depending on the number of classes 
identified by a given network. By using a back propagation 
neural network (BPNN) with a 15–10–4 structure, it was 
possible to identify 100% of four different odors charac-
teristic for oats (healthy, moldy, and two types of musty 
aroma defined as light and strong). However, such accu-
rate identification was not achieved for samples of small 
amounts (from 1 to 10%) of moldy barley and moldy rye 
seeds mixed with healthy grains. The identification effec-
tiveness was 60 and 80% for barley and rye, respectively. 
The results of identification by a neural network with a 
structure of 15–10–1 for wheat seed samples containing 
different amounts of ergosterol showed a high correlation 
(R2 = 0.88) with the actual degree of wheat seed infection 
by mold.

A similar system (consisting of 15 sensors and a neu-
ral network) was applied to examine changes in the odor 
of wheat, barley, and oats (Börjesson et al., 1996). The 
neural network had the following structure: fifteen neu-
rons in the input layer and two hidden layers consisting of 
six and four neurons and two or more elements in the out-
put layer. The identification results were comparable with 
the identification carried out by a panel of experts, who 
evaluated the odor of the examined samples according to 

the following scale: normal, musty, moldy, acidic, sour, 
burnt, and extraneous. The best identification rate (near-
ly 90%) of the examined seed samples was reached for 
two classes: normal seeds and other seeds (musty, moldy, 
acidic, sour, burnt, and extraneous). However, the rate of 
correct identification of the same samples, when more 
classes were analyzed, did not exceed 75% (Börjesson 
et al., 1996).

The changes in the odor of wheat seed stored for 5 
successive years was also assessed by an electronic nose 
equipped with a matrix consisting of 10 MOX-type sen-
sors, of which only 5 were used for final calculations after 
optimization (Zhang et al., 2007). Two structures of neural 
networks were tested: a 5–11–5 structure, where signals 
generated by 5 sensors were the input vector, and a 10–21–5 
structure, where the input vector consisted of signals from 
all 10 sensors. Better recognition results were obtained for 
the first network, in which the accuracy was 100% for the 
teaching sequence and 96% for the test sequence. For a net-
work using all signals generated by MOX-type sensors, the 
accuracy reached 99% for the teaching sequence and 88% 
for the test sequence (Zhang et al., 2007).

Although the results presented in the quoted papers are 
quite good, the analyzed data did not consider other factors 
affecting the odor composition of seeds. The networks are 
completely “unprotected” against fraud, for example, by in-
termixing seeds originating from crops harvested in  different 

TABLE 10.1 Comparison of Electronic Nose Solutions to Assess the Quality of Various Seed Materials Used  
in the Food Industry

Seed Material Type Matrix of Sensors Used in Tests Data Analysis Method References

Microbiological evaluation of 
wheat, rye, barley, and oats

15 sensors: 10 MOSFET sensors, 
4 MOX sensors, 1 CO2 sensor

BPNN 15–10–x where x depending 
on the number of identified classes

Jonsson et al. (1997)

Microbiological evaluation of 
wheat, barley, and oats

15 sensors: 10 MOSFET sensors, 
4 MOX sensors, 1 CO2 sensor

Four-layer BPNN of two different 
structures: 15–6–4–4 and 15–6–4–2

Börjesson et al. (1996)

Corn seeds infested by fungi 8 QMB sensors PCA and partial least squares 
discriminant analysis (PLS-DA)

Paolesse et al. (2006)

Wheat seeds infected by Fusarium 6 MOX-type sensors PCA Presicce et al. (2006)

Barley seeds infected by Fusarium 32 CP sensors (Cyranose 320TM, 
Cyrano Sciences, USA)

LDA and QDA Balasubramanian 
et al. (2007)

Wheat seeds with different storage 
periods

10 MOX sensors before 
optimization and 5 MOX sensors 
after optimization

PCA and two models of MLP neural 
networks: 10–21–5 and 5–11–5

Zhang et al. (2007)

Aflatoxin in corn seed 10 MOX sensors PCA Campagnoli et al. 
(2009)

Identification of rice infestation 
by pests

10 MOX sensors (PEN3, Airsence 
Analytics GmbH, Germany)

PCA, LDA, probabilistic neural 
networks (PNN), and BPNN

Xu et al. (2014)

Cocoa beans 6 MOX sensors PCA and BPNN Olunloyo et al. (2011)

Coffee ripening 6 MOX sensors PCA and k-NN method Falasconi et al. (2005)
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years or when a mixture of healthy and  microbiologically 
infected seeds (in different concentrations) is subject to as-
sessment.

10.2 QUALITY ASSESSMENT CRITERIA 
FOR RAPESEED

Rapeseed quality assessment is generally carried out at 
each processing stage: during harvest, transport, and stor-
age in elevators, until final processing of these seeds in 
the oil plant. Rapeseed should have proper color, be free 
from extraneous odors and pests, and satisfy the assumed 
quality requirements. Example images of rapeseeds differ-
ing in microbiological infestation extent are presented in 
Fig. 10.1.

The main criterion for rapeseed evaluation by a panel 
of experts is to identify seed samples characterized by a 
musty odor, a fermentation odor, or a burnt odor. A musty 
odor is generated as a result of developing mold and fungi. 
A fermentation odor is connected with the growth of bac-
terial microflora. A burnt odor results from an incorrect 
rapeseed drying process. When even slightly microbiologi-
cally infested or burnt rapeseed is released for production, 
the quality of produced oil will be deteriorated (Cejpek 
et al., 1998). In order to verify this, additional, expensive, 
and labor-consuming laboratory tests must be conducted us-
ing specialist test equipment, including HPLC (Mińkowski 
et al., 2011), gas chromatography with a mass spectrometer 
(GC–MS) (Cejpek et al., 1998), or UV–VIS spectropho-
tometers, to estimate chlorophyll dye content (Rotkiewicz 
et al., 2002). Moreover, the rapeseed oil contained in seeds 
which have been mechanically damaged is exposed to oxi-
dation and becomes rancid, which also changes its odor. 
Although other chemical methods are used to determine 
the oxidation state of fats, including peroxide value (PV), 
anisidine value (AV), and TBARS (thiobarbituric acid reac-
tive substances) (Mildner-Szkudlarz et al., 2007), a panel 

of experts is still the main method of rapeseed oil rancidity 
degree evaluation.

10.3 IDENTIFICATION 
OF MICROBIOLOGICALLY INFESTED 
AND BURNT RAPESEED USING 
AN ELECTRONIC NOSE EQUIPPED WITH 
CONDUCTING POLYMER SENSORS

Rapeseed with a musty and fermented odor was identified by 
an electronic nose and a panel of experts (Kubiak and Mik-
rut, 2005). The rapeseed samples (200 g) with diverse mois-
ture content (5% for seeds with natural odor) and rapeseed 
samples with a moisture content ranging from 13 to 34% 
were analyzed. The samples were kept at a temperature of 
20°C and were evaluated by a panel of experts after 24 and 
72 h. The experts’ task was to qualify the examined samples 
into one of three classes: seeds with natural odor, seeds with 
a musty odor, and seeds with a fermented odor. The quality of 
the same rapeseed samples was also assessed by a Cyranose 
320 electronic nose (Cyrano Science, Pasadena, California, 
USA) equipped with 32 conducting polymer (CP) sensors. 
The polymer sensors were nonspecific to any particular 
gas, but each sensor had a certain degree of affinity toward 
specific chemical or volatile compounds (Balasubramanian 
et al., 2007). The sensor responses obtained as a 32-sensor 
matrix were used for further analysis carried out with neu-
ral networks and the k-nearest neighbor (k-NN) method. The 
neural networks were implemented with PRTools software 
(Duin, 2000). The output layer of the network consisted of 
three neurons corresponding to the number of classes, which 
were identified by a given network (rapeseed: healthy, musty, 
and fermented) and the number of elements in the hidden 
layer changed from 3 to 30. Three different sequences were 
used in the computations, consisting of the sensory spectra 
obtained for rapeseed with  different moisture contents and 

FIGURE 10.1 Images of rapeseed samples differing in the extent of microbiological infestation. (a) Healthy seeds with natural odor and  
(b) rapeseeds with musty odor with visible seed infestation by mold.
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storage times. The computations carried out for each of 
these three successive sequences were used as the teaching 
sequence. Each time, the other two sequences were used as 
the test sequences. The best identification results (Fig. 10.2) 
for odor samples were reached for the neural network with a 
structure of 32–12–3, taught by a set formed on the basis of 
rapeseed odor spectra for seeds with diverse moisture con-
tent, obtained after 72 h of storage. The network successfully 
identified rapeseed samples stored for a shorter time, for ex-
ample, after 24 h, as well as rapeseed samples with odor de-
termined by rapeseed with a moisture content other than the 
samples used to build the teaching sequence. Identification 
accuracy for the three types of seed odors: natural, musty, 
and fermented, obtained by the neural network for the test 
sequence of the same moisture content was 100%, and only 
67% for the test sequence, in which seeds with higher mois-
ture contents were used. Only once the neural network iden-
tified seeds with a natural odor as seeds with a musty odor. 
In all other cases, erroneous recognitions concerned odors of 
musty or fermented seeds. Rapeseed odor identification for 
the same data using the k-nearest neighbor method was 92% 
for the teaching sequence and 94 and 75% for test sequences 
No. 1 and No. 3, respectively (Fig. 10.2).

The moisture content of rapeseed depends on the weath-
er conditions, the date harvested, and the harvest method. 
The moisture content of rapeseed harvested at an optimal 
time and in good weather conditions should not exceed 9%, 
whereas the moisture content of rapeseed harvested during 
heavy rain may even exceed 20%. A high rapeseed moisture 
content requires almost immediate drying. If this process is 
carried out at the wrong drying parameters (too high drying 
air temperature, incorrect flow rate, and duration of mate-
rial kept in the drying zone) or using a dryer of obsolete 
design, the dried material is exposed to the risk of burning. 
Burnt rapeseed is useless for processing purposes and add-
ing even a small amount of burnt rapeseed to healthy rape-
seed may result in a deteriorated oil quality and an increase 
in the presence of potentially carcinogenic substances, such 

as polycyclic aromatic hydrocarbons (PAHs) in crude oil 
(Cejpek et al., 1998).

The problem of identifying the following seed types: mi-
crobiologically infested seeds, burnt seeds, and burnt seeds 
mixed with healthy seeds, was discussed in another publica-
tion (Kubiak and Mikrut, 2006). The authors used the sen-
sory spectra of 32 conducting polymers (Cyranose 320). The 
material used in this research study consisted of samples of 
rapeseed with varying moisture contents, ranging from 5% 
for the reference sample (natural smell), 13% for a rapeseed 
sample with a moldy smell, to 34% for rapeseed samples ex-
hibiting a fermented smell. Additionally, burnt rapeseed sam-
ples of varying composition, starting from 100, 10, and 5% 
down to 1%, were analyzed. Two types of software for neural 
network implementation were used for data analysis using 
the NeuralWorks Professional II/Plus version 5.52 software 
package (NeuralWare, Pasadena, United States of America) 
and the PRTools software package. Additionally, in order to 
compare the obtained results with the classical method, an-
other option of PRTools was also employed, which allowed 
the recognition of the same data using the k-NN method. In 
the calculations, four different data sets were used with dif-
ferent representation of each type of smell: natural, moldy, 
fermented, and burnt. The proper selection of data represen-
tation can play a key role in the recognition of burnt rapeseed 
samples (Kubiak and Mikrut, 2006). When a set with 10% 
burnt rapeseed was applied as a learning set for the neural 
network using NeuralWorks Professional II/Plus version 5.52 
software, the recognition rate of the rapeseed smell by the 
network (with the number of elements in the hidden layer 
varying between 3 and 30) averaged about 93%. The recog-
nition accuracy for a set with 100% burnt rapeseed used as a 
test set averaged 74%. The majority of the recognition errors 
in the test set were caused by the erroneous recognition of 
the burnt smell (100%) as a moldy smell. However, when a 
set with 100% burnt rapeseed was applied as a learning set, 
the recognition rate for a test set with 10% burnt rapeseed 
averaged 71%. For this  combination of sample sets, most of 

FIGURE 10.2 Comparison of identification results for the teaching sequence and two test sequences obtained for the optimal BPNN 32–12–3 
and the k-NN method.
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the recognition errors in the test set were caused by the er-
roneous recognition of burnt rapeseed (10% concentration) 
as seeds with a natural smell. A similar tendency with a lower 
level of average recognition was observed for the same data 
sets implemented in the PRTools software package for neural 
network and k-NN calculations. Poor recognition results for 
the burnt rapeseed samples forced Kubiak and Mikrut (2006) 
to increase the representation of burnt rapeseed sample in the 
teaching set (No. 2). A modified teaching set was used in the 
next stage of the calculations. The representation of the burnt 
rapeseed was increased by an additional 15 spectra, collected 
for burnt rapeseed with a 100% concentration. To test the new 
neural network, the two new sets were applied using burnt 
rapeseed percentages of 5% (No. 3) and 1% (No. 4). Fig. 10.3 
presents a comparison of the identification results for the 
teaching sequence and two test sequences obtained for the 
optimal neural network calculated with NeuralWorks soft-
ware, PRTools software, and the k-nearest neighbor method. 
The recognition rate for the neural network calculated with 
the NeuralWorks software reached 97% for the test set with 
a 5% representation of burnt rapeseed (test set No. 3), which 
was slightly worse than the recognition rate for test set No. 
4 (98%) in which the representation of burnt seeds was 1%. 
The average recognition reliability achieved for the neural 
networks implemented in the PRTools software was 93% for 
both test sets (No. 3 and No. 4). The average recognition rate 
achieved by the k-nearest neighbor method was 93% for test 
set No. 3 and 92% for test set No. 4.

10.4 IDENTIFICATION 
OF MICROBIOLOGICALLY INFESTED AND 
BURNT RAPESEED USING AN ELECTRONIC 
NOSE EQUIPPED WITH METAL OXIDE AND 
QUARTZ MICROBALANCE SENSORS

One of the challenging problems of rapeseed commodity 
turnover is the detection of small amounts (below 10%) of 
moldy or burnt rapeseed mixed with the healthy seeds. This 

situation may be inadvertently created by the mixing of 
sound rapeseed with burnt, musty, or moldy rapeseed during 
transport and its distribution into silos for storage. Attempt-
ed fraud by diluting burnt or moldy rapeseed with sound 
rapeseed should also be considered (Kubiak et al., 2012). 
Due to rapeseed production process diversification in Eu-
rope, the detection of relatively small amounts of rapeseed 
contamination may be additionally obstructed as a result of 
odor differences between individual rapeseed varieties and 
different cultivation areas. These differences are primarily 
connected with agrotechnical practices during rapeseed cul-
tivation (the volume and type of fertilizers and pesticides 
applied), harvest time, and rapeseed maturity. Additionally, 
plant genetics and plant hormones strongly influence the 
biosynthesis pathways responsible for the release of volatile 
compounds (Baietto and Wilson, 2015).

The aroma changes caused by adding a small amount 
of mold or burnt rapeseed in four rapeseed varieties har-
vested during the same season from two different loca-
tions (three varieties in Poland and one variety in Bel-
gium) were investigated (Kubiak et al., 2012). Samples 
with different levels of moldy rapeseed were specially 
prepared to reach 1, 3, 5, and 10% moldy seed concentra-
tions in sound rapeseed. A similar procedure was applied 
to samples of burnt rapeseed to reach the following lev-
els of concentration: 1, 3, 5, and 10%. For aroma evalu-
ation of the contaminated samples, the instrument setup 
consisted of a VOCmeter electronic nose (AppliedSensor 
GmbH, Reutlingen, Germany) connected to a headspace 
sampler G1883 (Agilent Technologies, Cernusco, Italy) 
equipped with four MOX and eight quartz microbalance 
sensors (QMB). The results of the classification of all 
rapeseed samples with different concentrations of moldy 
seeds were analyzed by discriminant function analysis 
(DFA). DFA performed on the data of individual rapeseed 
varieties allowed a clear discrimination of sound rapeseed 
samples from both samples containing different levels of 
moldy or burnt rapeseed. However, the increased vari-
ability introduced into the merged data sets resulting from  

FIGURE 10.3 Comparison of identification results for the teaching sequence and two test sequences obtained for the optimal neural network 
calculated with NeuralWare and PRTools software as well as the k-NN method.
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differences in the varieties of Polish  rapeseed and geo-
graphical and climatic conditions (by applying the Belgian 
rapeseed variety) caused more ambiguity in the results  
of the data evaluation (Fig. 10.4). A low percentage of 
sound samples were misclassified, leading to false posi-
tive assignments and a few faulty samples were assigned 
to the class of sound rapeseed samples. Misclassifications 
occurred predominantly among the different contamina-
tion levels. For quick and impartial evaluation of rape-
seed quality by an electronic nose, a “threshold” analysis 
could be a solution (Kubiak et al., 2012). The use of the  

threshold method is based on the assumption that, as a 
practical matter, it is more important to identify faulty 
rapeseed and to separate it from sound rapeseed than to 
identify the particular type of deficiency. The total per-
centage of samples correctly classified in the experiments 
(both sound and faulty, including moldy rapeseed at all 
contamination levels) exceeded 98.6%. Even more favor-
able was the threshold analysis of burnt rapeseed samples, 
where none of the investigated samples were misclassi-
fied, indicating the high potential of electronic nose tech-
nology to evaluate rapeseed quality (Kubiak et al., 2012).

FIGURE 10.4 Comparison of identification results obtained by DFA classification. (a) Single Polish rapeseed varieties with a small amount of 
moldy rapeseed; (b) single Polish rapeseed varieties with a small amount of burnt rapeseed; (c) three Polish rapeseed varieties with a small amount of 
moldy rapeseed; (d) three Polish rapeseed varieties with a small amount of burnt rapeseed; (e) four rapeseed varieties (three Polish and one Belgian) with 
a small amount of mold rapeseed; and (f) four rapeseed varieties (three Polish and one Belgian) with a small amount of burnt rapeseed.
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10.5 IDENTIFICATION OF 
MICROBIOLOGICALLY INFESTED 
RAPESEED CARRIED OUT USING AN 
ELECTRONIC NOSE EQUIPPED WITH 
COLORIMETRIC ODOR SENSORS

Colorimetric odor microsensors are matrixes of several 
dozen metalloporphyrin sensors applied onto a hydrophobic 
membrane and closed in a tight measuring capsule. Each 
sensor has different characteristics, which makes them react 
differently to volatile compounds in the tested gas sample. 
The main advantage of colorimetric odor microsensors is 
that by analyzing the color changes of each sensor, the odor 
profiles of the tested compounds can be developed (Ku-
biak, 2014). Colorimetric odor sensors were used in medi-
cine (Mazzone et al., 2007), chemistry (Janzen et al., 2006; 
Bang et al., 2008), and food processing (Zhang et al., 2006; 
Zhang and Suslick, 2007; Lim et al., 2008). The methodol-
ogy of analyzing changes in microsensor color used in the 
majority of the publications is based on analyzing the dif-
ferences in pictures taken before and after a microsensor ar-
ray is exposed to an analyte. Subsequently, the average val-
ues for the color components (R, G, B) for each sensor were 
calculated and a 3N-dimensional vector was created (where 
N is the number of colorimetric microsensors), which 
showed the extent of the color changes of all the sensors. 
The quantities were subsequently analyzed with standard 
statistical techniques, such as PCA (Suslick et al., 2004) or 

CA (Janzen et al., 2006). Colorimetric sensor arrays were 
also used for rapeseed quality evaluation (Kubiak, 2014). 
Examples of differential images of colorimetric sensor ar-
rays recorded during the first 24 h for the rapeseed sample 
with a natural odor are presented in Fig. 10.5.

The changes in the color of colorimetric odor sensors re-
corded during the first 5 days of the experiment for rapeseed 
with an elevated water content from 7 to 16% are presented 
in Fig. 10.6.

Due to the strongly nonlinear nature of the registered 
changes in individual RGB color components, the results 
obtained were analyzed using the BPNN. For data analy-
sis, the “threshold” analysis was applied in which the val-
ues obtained from the output layer of neural network were 
compared with a certain threshold value (Kubiak, 2014). 
When the value of the neural response was higher than the 
threshold value, it was regarded as recognition, else it was 
regarded as an absence of recognition.

An analysis of the results (Kubiak, 2014) obtained for 
the training set shows that 96% recognition of healthy 
rapeseed and 100% recognition of musty rapeseed can be 
achieved at the threshold value of 0.4. Such good results 
were achieved with a relatively low level of rejections (2%). 
It was found that for the same threshold value in the test 
sequence, the network recognized 100% of healthy seeds 
and 98% of infested seeds. For the threshold of 0.5, the 
network recognized 100% of healthy and 100% of musty 
( microbiologically affected) rapeseeds. The level of no 

FIGURE 10.5 Examples of differential images recorded for a sample with an odor typical of healthy rapeseed (water content, 7%). (a) 0–5 min; 
(b) 0–1 h; and (c) 0–24 h.

FIGURE 10.6 Examples of differential images recorded during the first 120 h of the experiment for rapeseed samples with a water content of 
16%. (a) 0–1 h; (b) 0–16 h; and (c) 0–120 h.
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 recognition (rejections) for these threshold values was 5% 
for both the teaching sequence and the test sequence.

Since three rapeseed cultivars with different moisture 
contents were studied, which could also result in different 
levels of infestation, the 94% recognition effectiveness in the 
test sequence for rapeseed with a characteristic healthy odor 
and 98% for a musty odor may be regarded as satisfactory. 
With an additional criterion of the threshold analysis, it is 
even possible to increase the level of recognition to 100% for 
rapeseed with a healthy or musty odor. Thanks to the appli-
cation of the threshold analysis, it was possible to determine 
the threshold value necessary to obtain 100% recognition 
combined with information on the number of rejected sam-
ples. Additionally, knowing the threshold value, data on the 
recognition confidence can be evaluated. This approach of 
data analysis allows for the utilization of the electronic nose 
in industrial applications for rapeseed quality evaluation.

10.6 SUMMARY AND PROSPECTS

Signals generated by the matrix of electronic nose sensors re-
quire extraction of uncorrelated features of the examined sig-
nals and choosing an appropriate strategy for their selection. 
In most publications, this is done through trial and error, and 
only in some cases are all features systematically searched 
through in order to eliminate excess representation and obtain 
optimal results. In most studies presented in literature, rape-
seed quality was assessed in a static manner, involving the 
need to analyze a considerable number of samples and to ap-
ply an appropriate algorithm for sample taking. The selection 
of an appropriate method, types, and structures of neural net-
works (and network teaching and testing algorithms) fully al-
lows for their use when assessing the quality of grainy materi-
als. Very often, the level of correct recognition of an examined 
grainy material ranged between 80 and 98%, which is a very 
good result for such inhomogeneous material as grain cereal 
seeds. It is hard to expect results reaching 100% because it is 
impossible for a random sample (minimum several hundred 
seeds) to have properties comparable to the data used for net-
work teaching. The material itself can also vary, depending on 
its variety and the agrotechnical conditions it was cultivated 
under, which should be the subject of further research.
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11.1 INTRODUCTION

Rice (Oryza sativa L.) is one of the most important staple 
food crops in the world other than wheat and corn. More 
than half of the world’s population depends on rice for 
their living, particularly in Southeast Asia, China, and 
India (Dorosh and Wailes, 2010). Several categories of rice 
include brown rice, long grain, medium/short grain, par-
boiled rice, aromatic rice, and glutinous rice. Brown rice is 
produced by removing the outer husks, while white rice 
is processed by removing the whole husk.

Amylose is an important starch in rice for energy stor-
age, which is more resistant to digestion. Long-grain rice 
that contains more amylose is considered to be high-quality 
rice because of its physical appearance, and it contributes 
about 75% of the world’s rice market (Wailes, 2005). 
Whereas the medium/short-grain rice contains less amylose 
and accounts for only 12% of the market. However, brown 
rice contains more nutritional components, such as dietary 
fibers, phatic acids, and vitamin B and E than white rice 
(Champagne et al., 2004). Aromatic rice variety is usually 
preferred by consumers for its good quality that includes 
fineness, shape, color, aroma, taste, and flavor (Choudhury 
et al., 2001). Usually consumers prefer to choose aromatic 
rice for festival and special occasions due to its high demand 
and good quality. The glutinous rice contains low amylose, 
making it sticky once cooked and is very popular in Asia.

11.2 QUALITY OF RICE

The quality of rice is influenced by various factors such as 
cultivated location, climatic conditions, genetics, and post-
harvest activities (Champagne, 2008). The quality charac-
teristic is judged by the physical appearance such as size, 
shape, color, and cleanliness that determine the market 
grade (Bergman et al., 2004). The milling and processing 
that determine the percentage of moisture content, broken 
rice, and foreign materials also influence the grade of rice 

(Shi et al., 2000). Some other quality attributes include rice 
cooking texture, aroma, taste, flavor, brightness, amylase 
content, and nutritional content (Manawthukha, 2005). 
Other features such as rice fat acidity characteristics are 
also considered because a high level of rice fat acidity will 
reduce the market demand (Lam and Proctor, 2003).

Rice is cultivated geographically between 50 and 
35 degree latitude in various locations of the world, from 
lowland to hill top (Swaminathan, 1999). Basically, rice 
plants require a high temperature (25°C) during daytime 
and a low temperature (21°C) at night during the ripening 
stage for good aroma and kernel development (Dela Cruz 
et al., 1989). Rice variety selection is dependent on the area 
in which the crop grows from extremely wet conditions, to 
conditions with salinity to conditions of droughts and des-
erts (Swaminathan, 1999). Yoshihashi (2004) claim that in-
tensified cultivation for stable rice production needs good 
irrigation systems, a consistent labor supply, and effective 
soil fertilizer.

Postharvest activities that influence the rice qual-
ity include the storage condition and duration, the drying 
technique, the enrichment process, and packaging mate-
rial (Wongpornchai et al., 2004). The storage condition, 
time, temperature, and humidity should be controlled to 
minimize the effect on the rice quality such as flavor and 
aroma (Wongpornchai et al., 2004). The rice development 
programs through the cultivation and selection consider the 
nature of genotype, genetic, and local agroecological condi-
tions for improvement of plant cultivar characteristics and 
its scale (Rahman et al., 2007). The programs study the dif-
ferent morphology and metabolic activity in the growing 
stage to enhance rice quality and yield ability. The process 
will select cultivars that possess good aroma, taste, and 
physical appearance (size, shape, and color) that are pre-
ferred by consumers (Choudhury et al., 2001).

Existing yet demanding issues in the rice industry are 
quality control, mislabeling, grading, and adulteration of 
different types of rice. For these reasons, the industry is 
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currently using standard grades based on the market crite-
ria to identify the grain. Several stages of inspections may 
take place during handling operations to identify the grain 
type and quality. Hence, it is more difficult and complicat-
ed to inspect the grain varietals’ purity than other factors, 
such as aroma, flavor, size, color, and cleanliness. In order 
to overcome the predicament, a nondestructive and faster 
technique for rice assessment and easy handling is required.

11.3 CLASSIFICATION METHOD OF RICE

11.3.1 Nondestructive Testing

Nondestructive testing (NDT) is a system that has no physi-
cal contact with rice sample. Several NDT techniques are 
used to classify rice, namely nuclear magnetic resonance 
(NMR), machine vision, and acoustic and electronic nose. 
The NMR technique uses electromagnetic waves for rice 
sample quantitative analysis, while the machine vision 
method uses images to identify the rice varieties based on 
the silhouette image and color. The NMR method that uses 
the field strength and acoustic technique exploits the vi-
bration properties to determine the quality of rice sample, 
whereas the electronic nose technique can be applied to 
identify different types of rice based on their sample odor 
or specifically known as volatile compounds.

11.3.2 Human Sensory Panel

The human sensory panel method performs rice quality as-
sessment based on the aroma characteristic and is commonly 
employed due to strong consumer preferences (Fitzgerald 
and Hall, 2008). Normally rice is consumed without any 
seasoning, which makes the original sensory properties 
important for classification purposes (Champagne, 2008). 
Usually, the panels will inspect, inhale the sample rice aro-
ma, and/or taste the cooked rice during the classification 
process. In order to perform effectively, the panel needs 
to attend proper training as well as comply with detailed 
and lengthy procedures. The panels are prone to fatigue, 
especially when the number of samples increases, and the 
findings are sometimes inconsistent (Pearce et al., 2003). 
Furthermore, the human aging process and illness may also 
affect human sensory panel assessment performance.

11.3.3 Chemical Analysis

The Fourier transform infrared method is used to identify 
the rice sample functional group. Most of the aromatic mol-
ecules have between one or two polar functional groups 
because molecules with more polar functional groups are 
generally not volatile (Strike et al., 1999).

The compounds are mainly characterized by their 
chemical structure and constituent functional groups, 

such as heterocyclic systems, double bonds, and aromatic 
rings. These characteristics contribute to the overall shape 
of the molecule that produces a specific aroma or flavor 
(Gardner and Bartlett, 1999). They often have delocalized 
conjugated electron structure typical of the benzene ring. 
However, many other compounds of unknown chemical 
structure are generically referred to as being aromatic 
because of their volatile nature or particular aromas and 
flavors (Wilson et al., 2001).

The analysis of rice’s volatile compounds can be per-
formed using gas chromatography–mass spectrometry 
(GC–MS) method. There are over 300 volatile compounds 
being identified from various aromatic and nonaromatic 
rice varieties (Widjaja et al., 1996). The analysis identifies  
the main volatile compound of rice as the 2-acetyl-1-pyrroline 
(2AP), which acts as the biomarker (Zeng et al., 2008).  
The 2AP biochemical pathway was identified as the gene 
for the aromatic of the rice varieties (Chen et al., 2008). The 
biomarker is detected in raw and cooked rice and is associ-
ated with the unique popcorn-like aroma. Other compounds 
are lipid oxidation products, such as hexanal, octanal, 
and pentane. The presence of these compounds in certain 
quantity will decrease the rice aromatic property and have 
a negative impact on consumer acceptance (Monscoor and 
Proctorc, 2004; Zeng et al., 2008; Champagne, 2008). Good 
rice cultivar should have high levels of 2AP and low levels 
of lipid oxidation compounds.

However, this method requires a detailed procedure and 
is costly (Monscoor and Proctorc, 2004). The method iden-
tifies and quantifies the sample rice volatile compounds and 
is therefore inappropriate for practical daily applications 
(Zheng et al., 2009).

11.3.4 Other Methods

The polymerase chain reaction (PCR) method uses micro-
satellite markers for the rice sample analysis. The restric-
tion fragment length polymorphism (RFLP) method needs 
precise probes for the target deoxyribonucleic acid (DNA) 
systems to identify genetic markers in rice cultivar. The 
randomly amplified polymorphic DNA (RAPD) markers 
method allows the identification of genomic variation with-
out prior knowledge of DNA fingerprint to reveal the differ-
ences among rice cultivar. The DNA molecular marker pro-
vides information to decide the distinctiveness of varieties 
and their ranking according to the number of close relatives 
and phylogenetic position.

However, most of these methods are quite costly, re-
quire detailed procedures, and are generally difficult to as-
sess the rice sample accordingly. Consequently, the rice 
industries are in need of robust methods with good repro-
ducibility and precision. The portable testing instrument 
will become the development trend of technology to over-
come this problem.
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11.4 ELECTRONIC NOSE FOR RICE

Electronic nose (e-nose) is a nondestructive intelligent 
electronic sensing instrument, which mimics the human 
olfactory system to detect, discriminate, and classify odor 
samples (Leffingwell, 2002). The instrument is suitable for 
a NDT technique that produces a qualitative output. The 
rapid development of the instrument has been driven by its 
potential applications, including food quality assurance, fra-
grance identification, environmental monitoring, and plant 
disease control (Pearce et al., 2003; Mahmoudi, 2009). The 
instrument basically consists of the sensing chamber, array 
of sensors, signal processing, and pattern recognition. The 
sensor chamber will accommodate the array of sensors to 
interact in a control environment with the odor samples. The 
array of sensors will translate the changes in electrochem-
istry interaction with the samples into electrical signals 
such as current or voltage. When the sensor is exposed to a 
sample odor, it will induce a reversible physical or chemi-
cal change in the sensing material and cause a change in 
the output (Amamcharla, 2008). The signal conditioning 
will acquire the sensor responses; then isolate, amplify, 
and compensate the signal for linearization; and then elimi-
nate noise or drift effect (Pearce et al., 2003). The resulting 
output signals are being processed using pattern recognition 
methods to discriminate or classify rice odor samples. The 

instrument is sensitive and fast in response to the different 
rice aroma (Patrycja and Wojciech, 2006). This will mini-
mize the exposure to potentially harmful grain dusts, espe-
cially during in situ measurement (Cheaupun et al., 2003). 
The technique is appropriate to complement the human sen-
sory panel for rice odor assessment applications. The e-nose 
will overcome some of the limitations of human sensory 
panel testing for being fast, reliable, and consistent in quali-
ty classification of grains (Zheng et al., 2009). This includes 
assessment in the discrimination and classification of rice 
samples, and identification of rice mold contamination and 
rice plant disease as shown in Table 11.1.

11.4.1 Classifying the Rice Sample

The e-nose was used for the inspection and screening of 
rice samples quality (Li, 2000; Ke-xin et al., 2014; Sung 
et al., 2014). Tran et al. (2004) analyzed the tastes (e-nose 
or tongue) for brown and milled rice of several milling 
yields and were able to differentiate between raw and 
cooked samples. The instrument was used as a rapid tech-
nique in differentiating rice samples (Zheng et al., 2009). 
An embedded sensor system was included in the instru-
ment to study the deterioration of grains under different 
stress by performing different analysis (Deshpande and 
Shaligram, 2010). The developed instrument was then 

TABLE 11.1 Research on the Application of Electronic Nose and Rice

Research Title Authors

Discrimination of two types of basmati rice Li (2000)

Analysis of the tastes of brown rice and milled rice with different milling yields 
using a taste sensing system

Tran et al. (2004)

Rapid identification of rice samples using an electronic nose Zheng et al. (2009)

Embedded E-nose application to sense the food grain storage condition Deshpande and Shaligram (2010)

An electronic nose system for aromatic rice classification Abdullah (2011)

Regression model on electronic nose data from aromatic rice samples Jana et al. (2012)

Research on the application of electronic nose in discriminating rice varieties Huichun et al. (2013)

Optical electronic nose based on porphyrin and phthalocyanine thin films for 
rice flavor classification

Palasuek et al. (2014)

Mass spectrometry-based electric nose system for assessing rice quality during 
storage at different temperatures

Sung et al. (2014)

Correlation between physicochemical properties and eating qualities of rice Ke-Xin et al. (2014)

Identification of grain mildewing with ANN pattern recognition software based 
on VB and MATLAB

Zhao et al. (2008)

Rapid identification of rice samples using an electronic nose Zheng et al. (2009)

Identification of early moldy rice samples by PCA and PNN Wu et al. (2012)

Paddy and maize moldy status characterization using electronic nose Wang et al. (2014)

Discrimination of plant volatile signatures by an electronic nose: a potential 
technology for plant pest and disease monitoring

Laothawornkitkul et al. (2008)

Discrimination of different types of damage in rice plants by electronic nose Zhou and Wang (2011)



106   PART | I The Electronic Nose

used for aromatic rice classification (Abdullah, 2011; Jana 
et al., 2012). The instrument was also used for rice odor 
evaluation to distinguish different rice varieties and species 
(Huichun et al., 2013; Palasuek et al., 2014).

11.4.2 Rice Pests and Mold Contamination

Rice mold could produce toxic substances, which is un-
suitable for human consumption as it can cause aller-
gic reactions and diseases. So a fast, reliable, real-time 
analysis method for rice mold status monitoring is re-
quired (Wang et al., 2014). The e-nose was used to detect 
the pests in the rice samples by acquiring the odor using 
headspace sampling. Then pattern recognition was used 
to classify the different rice sample mold status. The tech-
nique minimized the exposure to toxic substances in rice 
during the sampling process. Mildewed rice was assessed 
by using a smell autoanalysis system. (Zhao et al., 2008). 
The instrument was used to differentiate between dam-
aged and undamaged rice by analyzing the odor sample 
(Zheng et al., 2009). Pattern recognition methods were 
effectively used to classify different degrees of moldy 
rice in the early stage by using different levels of mildew 
data on rice samples (Wu et al., 2012). The instrument 
was also used to distinguish paddy and maize samples 
for different mold status. The pattern recognition model 
was able to predict the samples with a high accuracy rate 
(Wang et al., 2014).

11.4.3 Rice Plant Disease

Rice plant diseases are caused by microbes that will de-
crease the crop yield. Rice plants would produce pest-
induced volatile compounds, which the e-nose can be used 
for plant insect monitoring (Laothawornkitkul et al., 2008). 
Pests like the brown plant-hoppers can cause infestation 
that would damage rice plants. The instrument was used to 
discriminate the different volatile profiles emitted by unin-
fested rice plants (Zhou and Wang, 2011).

11.5 DATA ANALYSIS

The electronic nose array sensors produce a specific multi-
variate time-series response. The nature of data depends on 
several factors such as ambient volatile compounds, tem-
perature, and humidity. The relevant chemical information 
from the sample data will be analyzed using a chemometric 
technique that applies mathematical, statistical, and graphi-
cal approaches. These pattern recognition techniques use 
multivariate analysis to discriminate data from the instru-
ment’s array of sensors simultaneously. The process uses 
either a statistical or intelligent classification technique to 
recognize, distinguish, and classify the odor sample data 
qualitatively or quasiquantitatively, which is vital for the 
instrument.

Before these data can be analyzed, a preprocessing tech-
nique is applied. The preprocessing of data will enhance 
the quality of sensor responses by removing redundant and 
irrelevant information. The process also filters outliers and 
compensates noise and drift variation, while retaining much 
of important data (Arshak et al., 2003). The process includes 
feature selection, baseline manipulation, and normalization 
to make it appropriate for the pattern recognition analysis.

The sensor response is time-dependent data. They 
consist of the initial dynamic slope response or transient 
responses and the steady-state response for both sniffing and 
purging processes. Feature selection selects a certain region 
of the sensor responses that contain relevant information for 
the pattern recognition. Most of the developed electronic 
noses are used to measure static or steady-state responses 
to extract the features of the sample response (Lozano 
et al., 2008). Recent studies have shown that the use of 
both transient and steady-state signals are better than using 
exclusively steady-state signal (Trincavelli et al., 2009). 
However, the transient signal techniques include the ampli-
tude, curve fitting, fast Fourier transform (FFT) coefficients 
and the wavelet transform, which needs a longer time to 
achieve a sample recognition rate compared with steady-
state signals (Szczurek and Maciejewska, 2013).

The baseline manipulation is a data manipulation tech-
nique based on the difference between reference or back-
ground and sample sensor responses. This option reduces 
the dominance of sensors that have high response levels, 
which minimize the effect of temperature, humidity, and 
temporal drifts (Gardner and Bartlett, 1999). The refer-
ence normally is the ambient air or a gas such as nitrogen. 
The baseline manipulation data that contains the relevant 
information will enhance the instrument performance.

The normalization technique is used to rescale the sen-
sor responses to make them fit for pattern recognition pro-
cessing. The option reduces the effects of sensory domi-
nance, sample concentration, and an outlier. This enhances 
the raw data, which will reduce the computational errors 
(Gardner and Bartlett, 1994).

Finally, before the analysis is performed, data shall 
be checked for normality. The normality test is used to 
investigate whether data is normally distributed (parametric) 
or not normally distributed (nonparametric). Among the 
available tests include Kolmogorov–Smirnov, Lilliefor, and 
Jarque–Bera methods (Razali and Wah, 2011). The data or 
features distribution are also being used in the pattern rul-
ing, especially when outliers are present (González, 2007). 
The use of the correct classification technique according to 
its correct nature is to ensure the validation of the result.

11.5.1 Discrimination and Classification 
of Rice

There are several multivariate data analysis techniques for 
discrimination and classification, which can be categorized 
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into supervised versus unsupervised, or, parametric or non-
parametric. For this analysis, focus is given to the supervised 
and nonparametric approaches which include the k-nearest 
neighbors (k-NN), support vector machines (SVM), multi-
layer perceptron (MLP), and radial basis function (RBF). 
The k-NN is a technique for classifying samples based on 
the closest distance to the training model. The simple ma-
chine learning algorithms are based on the distance between 
the unknown sample and the training model. Squared Eu-
clidean has been chosen for distance measurement since it 
gives a better performance even if the number of k is small 
(Bonet et al., 2008).

SVM is used to develop the individual hypothesis. SVM 
is a popular algorithm applied in the learning machine. It 
can be used for classification, regression, and other learning 
tasks (Chih-Chung and Chih-Jen, 2011). The technique is 
capable of learning high-dimensional space with few train-
ing data (Chih-Chung and Chih-Jen, 2011). The basic con-
cept of SVM is to search for an optimal separation in the hy-
perplane, where it can separate instances into two classes.

MLP is the most popular type of supervised artificial 
neural network (ANN) due to its simplicity and performance 
(Svozil et al., 1997). A typical structure has three layers; 
one input layer, one hidden layer, and one output layer. 
Each layer is fully connected to the earlier layer and has no 
other connection (Nelson and Illingworth, 1991). The input 
layer is connected with each of the instrument sensors. The 
activation function is used to transform the result of limiting 
the permissible amplitude to some finite value and pass it to 
the next layer. Some of the popular activation functions are 
the linear function, the hyperbolic tangent activation func-
tion, and the sigmoid activation function.

RBF is a type of supervised ANN that uses transmis-
sion of information in a forward approach. The architecture 
consists of one input layer, one hidden layer, and one output 
layer. The technique approximation capabilities are based 
on the superposition of local models on the response sys-
tem. The output layer only computes a linear combination 
of the activation of the neurons in the hidden layer. The 
activation of each neuron depends on the distance of the 
input vector to the prototype represented by the neuron. The 
radial activation function provides a nonlinear method of 
interpolating between the numbers of diverse fields (Brown 
and Harris, 1994). The technique always converges to the 
same point when trained with the orthogonal least squares 
algorithm. The advantage is that the network has decent 
global features with no local minima problem and good es-
timate value. This technique is widely used for modeling 
and classification application (Lin et al., 2013).

11.5.2 Validation and Error Estimation

The validation process will characterize the pattern recogni-
tion prediction model. The process evaluates the model’s 
ability to perform recognition and classification of the 

unknown samples. The predictive ability of the instrument 
is evaluated based on the accuracy rate of correct classifica-
tion of the unknown samples (Berrueta et al., 2007). This 
will prove that the classification models are able to perform 
the classification task. The validation can be performed ei-
ther using external or cross-validation. The external vali-
dation uses separate data sets for training and testing. The 
cross-validation tends to use part of the data for training, 
while using another part of the data for testing the model 
(Berrueta et al., 2007).

The LOO method is one of the most widely used cross-
validation approaches. The LOO method will remove 
one sample at a time from the training data and considers 
the remaining n − 1 samples as a test data (Basheer and 
Hajmeer, 2000). The validation method process will predict 
the classification performance based on the test data. The 
holdout method is based on random sampling without 
replacement. This method is a simple cross-validation 
technique used for model evaluation. In this method, the 
instances for the training set are selected randomly from the 
main data set and the remaining instances are selected in 
the testing data set (Kuncheva, 2004). The k-fold method is 
based on training data subsets drawn without replacement. 
This method splits the entire data set into k-blocks and each 
classifier is trained only on k − 1 blocks, while the remain-
ing block is used for testing (Polikar, 2006).

11.6 RICE ANALYSIS: COMPARISON 
OF PERFORMANCE USING THREE 
DIFFERENT E-NOSES

Several settings that should be considered before the exper-
iment is performed include the rice sample, the e-nose spe-
cific parameter settings, and the environmental conditions.

11.6.1 Sample Selection and Preparation

For this experiment, 17 different types of rice were select-
ed. Of these, the samples were grouped into four categories 
known as ordinary rice (Calrose, Jati, and Jasmine), aromat-
ic or milled rice (Maswangi, MRQ76, MRQ88, Jasmine, 
and Australia), brown rice (Fiona, Jasmine, Maswangi, 
MRQ76, MRQ88), and others (Moghul Basmathi, Herba 
Faiza, Thai Red, and local glutinous). Milled and brown 
rice of Maswangi, MRQ76, and MRQ88 were originated 
and cultivated at the Malaysia Agriculture Research and 
Development Institution (MARDI) Station. All the rice was 
stored in air-tight stainless steel containers to ensure no bias 
toward the storage effect.

The experiments were implemented in a closed laboratory. 
The laboratory temperature (22°C) and humidity (70%) were 
measured using hydrometer 506-HI from Testo UK. The con-
trolled environment will minimize humidity and temperature 
variation during the experiment to ensure data repeatability.
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About 50 g of each rice sample was weighed using an 
electronic balance and poured into a tin canister as shown 
in Fig. 11.1. The tin canister was wrapped tightly with a 
paraffin film wrapper. The sample was left idle for 10 min 
at room temperature for the sample to reach the equilibrium 
state before the experiment was performed.

11.6.2 The Electronic Noses

The experiments were performed using three different por-
table electronic noses: PNE3, Cyranose 320, and a custom-
made InSniff. The instrument’s main components include 
a sampling chamber, a sensing unit, an embedded control 
algorithm, and pattern recognition. The instruments are 
connected to a computer through serial or wireless com-
munication. Each uses common sampling tools with unique 
operating procedure. Once data acquisition is completed, 
the acquired data will be used to analyze the odor samples.

11.6.2.1 Cyranose 320
Cyranose 320 is a portable system from Smith Detection™ 
(Pasadena, CA, USA), consisting of 32 individual polymer 
sensors mixed with carbon-black composite. The polymer 
sensors are potentiometric sensors configured as an array. 
They are made up of various conducting polymers to sense 
a variety of volatile compounds. When the polymer sensors 
are exposed to an odor sample, each of its sensor array ab-
sorbs its specialized volatile compounds and swells like a 
sponge. During swelling, the distance between the conduc-
tive carbon-black particles increases and hence, increasing 
the resistance of the composite, which is measured as the 
sensor response. The PC Nose software is used to set up the 
instrument parameters, record, and analyze the acquired data.

11.6.2.2 PEN3
The PEN3 is a portable electronic nose from Win Muster 
Airsense (WMA) Analytics Inc., Germany. The instrument 
comprises of a sampling tool, a chamber consisting of an 

array of sensors, and pattern recognition software (Win 
Muster v.1.6.2.14) for data acquisition. The sensor arrays 
are made up of 10 different metal oxide sensors (MOS). The 
sensor responses to specific volatile compounds indicated 
by the change of metal coating material conductivity. The 
measurement procedure and acquired data of the sensor 
response are controlled by Win Muster v.1.6.2.14 software.

11.6.2.3 InSniff
Intelligent Sniffer (InSniff) is a portable electronic nose de-
veloped by UniMAP (Universiti Malaysia Perlis), Malay-
sia. It consists of 12 different MOS used to detect specific 
gases or volatile compounds. This sensor would respond to 
odor samples in volatile forms and convert it to electrical 
signals. The signals based on the electrical resistance of 
the sensor are proportionate to the samples’ concentration. 
The sensors’ response signals are measured by the biasing 
circuit voltage divider and are known as chemical “finger-
prints.” The measurement procedure and the acquired data 
of the sensor response are controlled by a custom-devel-
oped graphic user interface (GUI) program. The GUI pro-
gram was developed using Visual Basic software version 
6.0 from Microsoft (VB6.0).

11.6.3 Electronic Noses’ Parameter Setting

The instruments applied static headspace sampling tech-
nique. The headspace gas was pumped into the sensor cham-
ber at a constant rate via a Teflon-tubing connected to the 
instrument front-end during the data acquisition process.

Prior to the sample measurement, all electronic noses 
were subjected to preconditioning. Both PEN3 and InSniff 
electronic noses were switched on and conditioned for at 
least 30 min. For Cyranose 320, the sensor chamber was set 
to equilibrate at 30°C. The settings for the sampling process 
were set as in Table 11.2. In this work, preliminary experi-
ments were performed to determine the optimal setup for 
the data acquisition process.

FIGURE 11.1 Electronic noses setup for volatile compound evaluation of different types of rice.
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The data acquisition process consists of a manual se-
quence of operations that includes purging and measuring. 
Before the sampling process, the instrument was purged us-
ing ambient air (filtered through activated charcoal) to en-
sure the instruments’ sensor values are at baseline. During 
the measurement process, the headspace odor samples were 
pumped into the instruments’ sensing chamber at a constant 
rate via Teflon tubing connected to the instrument’s nozzle. 
Then the odor or volatile compounds in the sensing cham-
ber were exposed and interacted with the sensor array. Once 
the sensor responses were stable, data were measured and 
recorded.

After the measurement process of each sampling, the 
instrument was again purged using ambient air (filtered 
through activated charcoal) to clean the sensor array for a 
period of time. This will allow the sensor array to recover 
to a stable state (the baseline value). The air filter used was 
made of activated carbon granules and had a large surface 
area, making it effective in removing a wide range of vola-
tile organic compounds and moisture in the ambient air.

The instruments’ baseline was measured prior to sample 
measurements and stored for later analysis. Each sample 
measurement was conducted in two different batches of 
samples and data acquisition measurements were replicated 
at least 10 times. In total, Cyranose 320 collected 4765 data 
measurements, while PEN 3 collected 6124 and InSniff 
collected 5955. During the data acquisition process, real-
time data will be logged into a computer and later processed 
using MATLAB 2010 version 7 software.

11.7 RESULTS AND DISCUSSIONS

In this section, we discuss the experimental results using 
different classifiers such as MLP, SVM, k-NN, and RBF 
to classify 17 samples of rice according to 4 categories. 
The classification accuracy of each classifier is validat-
ed and compared, using three different error estimation 
approaches including LOO, holdout, and k-fold approach-
es. For the holdout approach, we partitioned the valida-
tion set using 60% of the available sample, while for the 
k-fold approach, we let k = 10 folds. In order to evaluate 

the validated classification accuracy of different classifiers 
for different error estimation approaches, the analyses for 
holdout and k-fold were executed five times and the overall 
results were presented within a certain range. The LOO ap-
proach was executed only once because the analysis was 
quite time demanding.

11.7.1 Cyranose 320 Data Analysis

Fig. 11.2 shows the correct classification rate of four dif-
ferent classifiers with respect to different error estimation 
approaches for four types of rice. It appears that SVM is the 
most consistent classifier across different error estimation 
techniques. The results of 100% correct classification for 
each error estimation method clearly proved SVM to be the 
best classifier. The second best classifier is k-NN based on 
the correct classification rates, followed by MLP and RBF. 
From the perspective of the error estimation approaches, it 
seems that LOO gave the most stable results across different 
classifiers. The results obtained by the LOO method con-
firmed this finding. For instance, this method provides the 
least error for MLP (0.02%), SVM (0%), k-NN (0%), and 
RBF (0.69%). Even though this method was executed only 
once, the average error rate scores for holdout and k-fold 
methods were still higher than that of the LOO method. The 
next best error estimation is presumably k-fold followed by 
the holdout method.

11.7.2 PEN3 Data Analysis

Findings for PEN3 were almost the same with those for 
Cyranose and InSniff. SVM consistently appeared to be 
the most powerful classifier for all three sensors and for 
all the error estimation approaches. Error rate for LOO re-
mained perfect, however, the error rates for holdout and k-
fold for MLP, k-NN, and RBF were recorded higher than 
those for Cyranose 320 and InSniff. Again, across all types 
of error estimation, k-NN is considered as the second best 
classifier, followed by RBF and MLP. The identification 
rate degraded a lot when holdout and k-fold were applied to 
validate the classification accuracy. From the viewpoint of 

TABLE 11.2 Parameter Settings for All the Applied Electronic Noses

Cyranose 320 PEN3 InSniff

Cycle Time (s)
Pump Speed 
(mL/min) Time (s)

Pump Speed 
(mL/min) Time (s)

Pump Speed 
(mL/min)

Sampling setting Baseline 60 120 30 400 30 400

Sample draw 60 120 60 400 10 400

Idle time 3 — — — 80 —

Purge 120 120 120 400 60 400
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error estimation approaches, the LOO method proved to be 
better than the others. The k-fold is still considered reliable 
for error estimation since at most only 0.23% error was 
committed across all the classifiers, whereas the holdout ap-
proach gave 2.28% error specifically for the MLP classifier. 
These results are illustrated in Fig. 11.3.

Generally, the best classifier for all the three sensors data 
appears to be SVM, followed by k-NN, RBF, and MLP. 
However, for Cyranose 320, MLP is better than RBF. The 
best error estimator turned out to be the LOO method with 
mostly perfect identification, except for Cyranose using 
MLP and RBF classifiers as well as the PEN3 for the MLP 
classifier. The second best classifier generally is k-fold, 
followed by the holdout method based on the error rate score 
across all the classifiers.

11.7.3 InSniff Data Analysis

Fig. 11.4 illustrates the identification rates of four types 
of rice using InSniff. From the perception of classifier, it 
seems that again SVM recorded the highest correct classifi-
cation rates with no error for each error estimation method. 
Then, k-NN emerges as the next best classifier with the er-
ror rate of 0.01% for the holdout and the k-fold methods, 
respectively. This is followed by MLP and RBF for error 
estimation using the holdout method with the difference of 
0.03%. However, if k-fold was applied, RBF turned out to 
be better than MLP with a 0.2% difference in error. Gener-
ally, the best error estimation that suits the classification of 
InSniff data is the LOO approach with no error, followed 
by holdout and k-fold approaches with an error rate at most 
0.05 and 0.25%, respectively.

FIGURE 11.3 Validated correct classification rate of MLP, SVM, k-NN, and RBF using LOO, holdout, and k-fold error estimation for PEN3 
data.

FIGURE 11.2 Validated correct classification rate of MLP, SVM, k-NN, and RBF using LOO, holdout, and k-fold error estimation for Cyra-
nose 320 data.
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11.8 CONCLUSIONS

The objective of this study is to classify 4 groups of 17 
types of rice using 3 different portable electronic noses. The 
discrimination of these rice types was performed using four 
different classification approaches—MLP, SVM, k-NN, 
and RBF. In these approaches, the aim was to find the best 
classifiers that can produce the least classification error. 
Three different error estimation techniques were applied 
for each classifier—namely, LOO, holdout, and k-fold. The 
findings of the analyses show that generally the best clas-
sification result can be obtained using SVM with the LOO 
error estimation approach. However, k-NN, RBF, and MLP 
also yielded reasonable results. It suggests that LOO is the 
best error estimation technique for rice classification. These 
findings imply the successful application of ordinary por-
table electronic noses in classifying different types of rice 
into their correct groups. It also proves that all the applied 
electronic noses are able to identify different types of rice 
with good classification performances. Furthermore, the ap-
plication of the electronic noses can also be used for rice 
plant disease and rice mold detection. The application of 
these instruments may offer good potential in enhancing the 
production and may also increase rice yield.
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Chapter 12

Electronic Noses for the Quality Control 
of Spices
Thomas Hübert, Carlo Tiebe, Ulrich Banach
Bundesanstalt für Materialforschung und –prüfung (BAM), Berlin, Germany

12.1 INTRODUCTION TO SPICES AND 
CULINARY HERBS

Spices are parts of plants, for example, buds and flowers, 
seeds and fruits, herbs and leafs, roots and rhizomes, bulbs 
and barks, which are added to foodstuffs due to their natural 
flavoring, their aromatizing, and coloring properties. Spices 
can improve digestibility of food and extend the shelf life of 
food because of their antimicrobial or antioxidant proper-
ties. There exist a great variety of herbs and spices, in use 
for thousands of years (Peter, 2001). The European Spice 
Association (ESA) listed over 45 important herbs and spic-
es (ESA, 2014). More than 2 million tons of spices, most of 
them from India, were worldwide produces per annum. The 
most important spices include chillies and pepper, cumin, 
ginger, cinnamon, and nutmeg.

The flavor of spices is a sensory impression and caused 
by many volatile organic compounds, which can be con-
centrated by solvent extraction or water steam distillation 
in hydrophobic liquids, so-called essential or ethereal oils. 
Most of the aroma compounds are terpenes (eg, pinenea), 
sesquiterpenes (eg, caryophyllene), terpenoids, or unsatu-
rated cyclic (phenolic) compounds. Artificial aroma com-
pounds, also called natural-identical, that is, chemically 
defined substances with aroma properties, prepared by 
chemical syntheses or biotechnical methods are not consid-
ered in this chapter.

The properties of spices, such as flavor, color, and pun-
gency varies among cultivars, species, and harvests. The 
aroma compounds may be subject to chemical reactions, 
resulting in changes of its flavor during ripeness, harvest, 
treatments (eg, drying, fermentation), and transportation. 
The properties of spices change during storage influenced 
by temperature, humidity, and light. Evaporation of flavor-
ings, autooxidation, enzymatic browning, and microbio-
logical processes are responsible for changes in properties. 

Many spices are highly sensitive to fluctuating pH levels, 
and rapidly break down chemically in the presence of light 
and oxidizing agents. Therefore, a quality control of spices 
is indispensable in the logistic chain from the producer, to 
the trader, to the supplier, to the seller. Minimum quality 
requirements are stipulated in a document by the ESA and 
the International Organisation of Spice Trade Association 
(IOSTA, 2008). Substantial contributions to the quality as-
sessment of spices can be delivered by electronic noses be-
cause they are not very cost-intensive devices. In most cases, 
electronic noses were deployed together with other methods 
of sensory analysis (olfactometry) as well as of chemical and 
biological analysis. These well-established methods, which 
are needed as a reference and for calibration of electronic 
noses, are briefly reviewed in this chapter.

12.2 CLASSICAL METHODS OF SPICE 
ANALYSIS

The odor and taste of spices is analyzed and assessed by a 
panel of trained persons in a defined smelling and tasting test 
(ISO, 2007, 2012). The descriptive analysis is used to assess 
spice characteristics; floral, herbal, spicy, or earthy. Also the 
intensity of the flavor is tested by quantitative descriptive 
analysis, for example, in a scale from 0 to 6. These meth-
ods are described in several publications and normalized in 
standards (Derndorfer and Baierl, 2006; DIN, 1997, 2014). 
However, critical investigation of sensory analysis indicates 
there are large uncertainties about these methods, which re-
strict their potential use as reference for machined olfaction 
(Boeker, 2007).

The chemical compounds that primarily establish the 
characteristic flavor are found in the essential oil of the 
spices. The quantity of essential oil is commonly a mea-
sure of the spice quality. A classical steam distillation pro-
cedure for the determination of volatile oil in spices is used 

a Many of these compounds exist as isomers. For details of this structural differences and their impact on flavor, see the cited references.
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(ISO, 2008). The extracted essential oil can be analyzed by 
high-performance liquid chromatography equipped with a 
UV detector (HPLC–UV) (Berger, 2007; Ötles, 2008). The 
analysis of flavor-giving volatile organic compounds in the 
headspace of a spice sample can be performed by gas chro-
matography using a flame ionization detector (GC–FID) or 
mass spectrometer (GC–MS) (IOFI 2012). These methods 
were also used for detection of unwanted contaminations 
such as pesticides.

Gas chromatographic–olfactometry (GC–olfactometry) 
combines the separation of flavoring compounds from a 
mixture and their identification according to the retention 
time with an olfactoric description (Blum, 1999). Thor-
oughly trained personnel sniff the volatiles emerging at 
different retention times from an exit port of the GC and 
deliver appropriate smell descriptions.

Further quality parameters such as the content of ash, 
moisture, water activity, and bulk density have to be deter-
mined according to agreed methods. The water content has 
to be determined because the moisture content in spices has 
an influence on odor and taste as well as on stability against 
microbiological infestation.

Spices as natural products are in contact with their en-
vironment and can be contaminated with toxin-producing 
microorganisms. To evaluate the microbiological infesta-
tion, the colony counting method is applied and the number 
of colony-forming units (CFU) per mass after incubation is 
determined.

All these methods are performed discontinuously in a 
laboratory, requiring equipment and qualified personnel, 
and are time consuming.

12.3 DEPLOYMENT OF ELECTRONIC 
NOSES FOR SPICE ANALYSIS

An electronic nose—a device for machined olfaction—is 
essentially a multi-gas sensor. It can only differentiate, 
identify, or quantify gases or gas mixtures. It becomes an 
electronic nose only if it can provide information about 
the odor of a gas mixture. A correlation to odor can be 
built by using reference data derived from the human 
sense of smell.

For the evaluation of the results from spice analysis by 
electronic noses, it should be considered that the smell and 
taste senses of humans are based on a multitude of chemo-
receptors, developed and adapted for specific functions over 
thousands of years. Smell analogous measurement and the 
automated simulation of the sense of smell are complex. 
Additionally, it is challenging to analyze a large number of 
compounds with varying concentrations which constitute a 
single flavor.

The user of an electronic nose should be aware that 
the deployment of an electronic nose for an odor analysis 
demands in many cases, an expensive and tedious 

preinvestigation to prove the applicability along with a sys-
tematic method development and validation.

One of the first investigations on spices was published 
in 2000 (Nitz, 2000), highlighting on the basis of selected 
examples, the possibilities and limitations of application of 
a sensor system for detection and/or quantitative evaluation 
of flavors, to quantitatively elucidate aroma compositions, 
flavors, and off-flavors. Until now, about 40 investigations 
on spices and herbs using electronic nose were published 
according to a search in “web of science.” Table 12.1 is a 
compilation of applications by electronic noses for spice 
analysis. Even if flavor description was not provided, the 
investigations contributed to quality control of spices.

12.4 CASE STUDIES FOR THE ANALYSIS 
OF SPICES

12.4.1 Identification of Different Types 
of Spices

The capability to differentiate between different types of 
spices was demonstrated in a study by Zhang et al. (2003). 
An electronic nose based on 12 conducting polymers (CP) 
was used to distinguish among 4 types of spices (basil, car-
damom, pepper, and turmeric were purchased from the local 
store). The discrimination analysis with neuronal networks 
with multilayer perception (ANN) was applied for data 
analysis. The results showed that the applied mathematical 
methods delivered in 4 min a correct recognition of the spices 
from 60–100%.

A further investigation was performed to evaluate sev-
eral of Thai herbs (Ayudhaya et al., 2009). The essential oils 
 volatilized from selected fresh herbs were compared using a 
low-cost electronic nose containing 10 metal oxide semicon-
ducting sensors (MOX). The signal response of the electronic 
nose was evaluated by principal component analysis (PCA). 
PCA clearly distinguished all the samples. In cross- validation, 
more than 97% of the groups were correctly classified.

Discrimination among six complex odors from saf-
fron, spearmint, cumin seed, cinnamon, golpar (Heracleum 
persicum), and thyme was performed using a single generic 
tin oxide gas sensor (Hossein-Babaei and Amini, 2014). 
The sensor underwent four step-like temperature jumps in a 
test period of 4 s. Linear discriminant analysis (LDA) was 
used for mapping the preprocessed sensor data in a three-
dimensional feature space. Tests over 6 months show that 
the odor discrimination is aging drift-proof.

12.4.2 Red Pepper

Red pepper is a term for spices of the genus Capsicum L. 
It describes the fruits of flowering plants of the nightshade 
family Solanaceae, native in South America. The fruit of 
Capsicum plants occurs in several varieties with different 
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TABLE 12.1 Overview on Deployment of Electronic Noses for Spice Analysis

Deployment Electronic Nose

SourcesTask Case Study Sensing Elements Data Evaluation

1 Identification of 
different types of spice

Basil, cardamom, pepper, and 
turmeric

12 CP ANN Zhang et al. (2003)

Thai herbs 10 MOX PCA Ayudhaya et al. (2009)

Saffron, spearmint, cumin 
seed, cinnamon, golpar 
(Persian hogweed), thyme

1 MOX, thermal 
cycling

LDA Hossein-Babaei and 
Amini (2014)

Ternary model spice mixtures 12 CP ANN Zhang et al. (2005a,b)

2 Identification of the 
origin

4 pepper samples of different 
regions of India

12 MOX PCA Mamatha and Prakash 
(2011)

13 saffron from different 
countries

27 MOX PCA Carmona et al. (2006)

8 saffron samples of different 
brand and country

5 MOX
10 MOX

PA, SVM
PCA

Tahri et al. (2015)
This paper

8 cumin samples of different 
countries

5 MOX PA, PCA, SVM Ravi et al. (2013)

8 samples of essential oil from 
coriander

12 MOX PCA Ravi et al. (2007)

8 garlic samples 8 QMB eight + 8 
MOX

LDA Baby et al. (2009)

3 Differentiate between 
different quality of 
spice samples

8 samples of cumin from India 12 MOX PCA Ravi et al. (2013)

Oregano essential oil from 
different plant species

MOSFET + MOX PCA Seregely and 
Novak 2005

3 cardamom samples from 
different regions of India

PCA Ghosh et al. (2012)

Garlic 6 MOX PA Tamaki et al. (2008)

E. splendens flavored oils 6 MOX PCA Chung and Lee (2002)

Cnidium officiale PCA Lee and Chung (2002)

Eurycoma longifolia extracts QMB PCA Islam et al. (2006)

P. frutescens L. discriminate 
three different cultivars

10 MOSFET + 12 
MOX

PCA Laureati et al. (2010)

4 Differentiate purgency Ground red pepper 12 CP DFA Korel et al. (2002)

Powdered red pepper MS DFA Soo et al. (2010)

Black pepper powder and 
essential oil

12 MOX PCA Mamatha and Prakash 
(2011)

5 Identification of 
adulterations

Spice mixtures for saveloy and 
sausages and garlic powder

30 MOX
IMS

LDA
PCA

Banach et al. (2009)

Black pepper IMS PCA Tiebe et al. (2014)

6 Identification of 
contaminations

Mold’s growth on sweet 
pepper

38 MOX LDA This paper

Mold’s growth on nutmeg 38 MOX
IMS

LDA
PCA

This paper

7 Indication of 
treatments

Milling of black, white, and 
green pepper

6 MOX PCA Liu et al. (2013)

Gamma-irradiation of Korean 
red pepper powder

12 MOX PCA Lee et al. (2004)

Electron beam radiation of two 
cumin powders and red chilli 
powder

SAW PCA Sanyal et al. (2014)

Irradiated garlic SAW PCA Kim et al. (2014)
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composition of the aroma-giving ingredients. It has a vari-
ety of names depending on the origin and type, such as red 
pepper, cayenne pepper, chilli and pepperoni. Slightly spicy 
species are bell or sweet pepper and paprika.

The alkaloid capsaicin and minor capsaicinoid sub-
stances create the burning sensation by irritation when it 
comes in contact with mucous membranes. The content of 
these components in the fruits ranges from 0.01% (bell pep-
per) to 10% (hot chilli).

An electronic nose based on 12 conductive polymers 
was used to discriminate ground red pepper samples ob-
tained from local retail markets in Izmir, Turkey, by head-
space volatiles (Korel et al., 2002). Samples of the dif-
ferent ground red pepper were characterized with high 
HPLC to determine the capsaicin, dihydrocapsaicin, and 
total capsaicinoid amounts. Scoville scores, a measure 
of pungency, was determined by means of sensory tests 
(ISO, 1995). A linear correlation between the amount of 
capsaicinoids and the Scoville scores was observed. Elec-
tronic nose data obtained from the different red pepper 
samples were analyzed using discriminant function analy-
sis (DFA) as a pattern recognition technique. An overall 
correct classification rate of pepper varieties by electronic 
nose of 91% was obtained.

An electronic nose was used for an assessment of grad-
ing pungency on powdered red pepper (Soo et al., 2010). 
Mild and powdered pungent red peppers were mixed at con-
centrations of 0, 25, 50, 75, and 100%. The mixtures were 
analyzed using a mass spectrometer-based electronic nose. 
Discriminant function analysis (DFA) was conducted on 
electronic nose data. The discriminant function first (DF1) 
score values decreased with increasing amount of powdered 
red pepper with a pungent taste. Discriminant function sec-
ond (DF2) score values moved from the negative position 
into the positive position with increasing the amount of red 
pepper powder. The results obtained by an MS-based elec-
tronic nose agreed with that of the HPLC, indicating an in-
crease in concentration of capsaicin.

Capsicum can be infested by mold fungi that produce 
mycotoxins. The mold growth starts after an incubation 
time of one to two days, increases, reaches a maximum, and 
decreases due to a lack of consumable matter. This cyclic 
mold growth can be detected from the presence of gaseous 
metabolites, so-called microbial volatile organic compounds 
(MVOC) (Tiebe et al., 2009). The molds produce various 
volatile compounds of different type and quantity, depend-
ing on their variety and growth cycles. In order to investigate 
this phenomena, a powder of sweet red pepper (Capsicum 
annuum) was inoculated with the mold species Aspergil-
lus flavus. Gas samples were taken from the headspace of 
the infested spices and analyzed by an electronic nose with 
a chip array of 38 sensing elements, based on gas sensi-
tive semiconductive tin oxide (KAMINA-type). The data 
evaluation of the measured the changes in resistance of the 

sensing elements of the electronic nose by LDA permitting 
a differentiation between samples of different stages of mold 
growth of A. flavus on sweet pepper. The results showed that 
the electronic nose can be used for detection of mold in spice 
samples and that the mold’s growth can be indicated after 
an incubation time in a very early state before it becomes 
visible. In addition, a headspace analysis was performed by 
GC–MS and the characteristic volatile metabolites from the 
mold’s growth, such as butanol, 2-methylpropanol, methyl-
furan, and acetic acid, were identified.

12.4.3 Black Pepper

The fruits of pepper (Piper nigrum L.), a shrub of the Piper-
aceae family, is an extensively used spice. Green pepper is 
the unripe and fast-dried fruit; black pepper is also unripe 
fruit, which developed a black skin by cooking and drying. 
White pepper is the ripe fruit without colored skin; orange 
and red peppers are specifically prepared from ripe fruit.

Essential for the pungency of pepper are piperine, and 
the piperine derivatives piperettine and piperyline. The 
amount of essential oil, which also gives the flavor, is about 
2.5% in white pepper, and in green pepper and black pep-
per up to 4.8%. The essential oils contain terpene such as 
caryophyllene, caren and limonene, pinene, sabinene, and 
linanool. Further components are rotundone, a sesquiter-
pene, which contributes to the pepper aroma.

Four pepper samples from different regions and their 
extracted essential oils were investigated using an elec-
tronic nose, a sensory analysis for flavor and odor profile, 
as well as GC–MS (Mamatha et al., 2008; Mamatha and 
Prakash, 2011). The flavor profile of pepper powder and of 
the essential oils clearly differentiates one sample from the 
three other samples. The electronic nose pattern confirmed 
the results from sensory and GC–MS data. The intensity of 
pepper pungency was estimated by sensory and instrumental 
analysis, and by using an electronic nose. The sample with 
lower spicy and pungency odor attributes and a lower Sco-
ville index was clearly identified by electronic nose analysis.

Adulterations of pure pepper powder can occur on the 
market. An investigation was performed using ion mobil-
ity spectrometry (IMS) and an electronic nose in order to 
identify falsification. Black Brazilian pepper and a sample 
blend by addition of 10% of mustard flour were investigated 
(Tiebe et al., 2014). The sensor responses of the electronic 
nose were used for linear discriminant analysis. Fig. 12.1 
shows the LDA scores of four pepper samples—black Bra-
zilian pepper as the reference sample, adulterated black 
Brazilian pepper (10% mustard flour), and black and white 
Indonesian pepper. The first two discriminant axes capture 
84.4% of the variance. The LDA indicates a clear separation 
of the four pepper samples. There is discrimination between 
the Brazilian pepper sample and the adulterated sample as 
well as the samples of white and black Indonesian pepper.
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12.4.4 Nutmeg

The seed of the tree Myristica fragrans delivers the nutmeg 
surrounded by seed coat, called mace. The content of essen-
tial oil of nutmeg is in the range of 5–13%. The character-
istic aroma results from the terpenes, such as pinene, sabi-
nene, limonene, borneol, terpineol, eugenol and isoeugenol, 
camphene, and phellandrene.

Unfortunately, nutmeg is, in many cases, infested by 
molds that produce carcinogenic aflatoxins. In order to 
study mold infestation, nutmeg powder was infested with 
Penicillium verruculosum. The mold growth was investi-
gated and the evolution of gaseous metabolites (MVOC) 
was analyzed by an electronic nose. The data evaluation of 
the measured changes in resistance of an electronic nose 
containing 38 semiconductive sensing elements by LDA 
permits a differentiation between the samples of different 
stages of mold growth. Fig. 12.2 shows the LDA plot of 
headspace above nutmeg infested in a period of 9 days.

The results of the electronic nose investigations show 
that MVOC can be detected in an early state of mold growth 
even when mycelium growth was not visible.

12.4.5 Saffron

Saffron (Crocus sativus L.) is a flower from the Iridaceae 
family, native from Greece to Southwest Asia. Each flower 
has three crimson stigmas, which are used as a spice and a 
coloring agent. Saffron is among the world’s most costly 
spices by weight because 1 kg requires about 110,000–

170,000 flowers. The orange or red color results primarily 
from crocin. More than 150 compounds were detected, sig-
nificant among which were the aroma-yielding  compounds; 
safranal and picrocrocin.

An analysis of the volatile fractions of saffron from dif-
ferent origin was performed with an electronic nose and 
GC–MS (Carmona et al., 2006). The electronic nose con-
tains 27 commercial available gas-sensing elements based 
on metal oxides. Sensor responses were displayed in polar 
plot and data analysis was done using PCA that takes into 
account the first 10 coefficients of the fast Fourier transform 
of the curves as the input variable. The electronic nose was 
capable to differentiate between the countries where saffron 
samples originated with a confidence of 90%. This coin-
cides with the results from GC–MS, which is capable of 
differentiating saffron by its origin.

In a further study on saffron samples from different ori-
gins and harvest, an electronic nose containing 10 semicon-
ductive metal oxide sensors was used. The data obtained 
were analyzed using LDA analysis and plotted in Fig. 12.3. 
The results clearly distinguished the saffron samples from 
Syria and Iran from those of Morocco (Tallouine). Compa-
rable results were recently obtained by Tahri et al. (2015), 
using a voltammetric tongue and an electronic nose based 
on a five-sensor array (MOX).

Hence, these studies gives further evidence that the elec-
tronic nose could be useful for the discrimination of saffron 
origins and could provide an alternative to the traditional 
analytical methods.

FIGURE 12.1 LDA results of electronic nose response on pure Brazilian and Indonesian pepper and adulteration with 10% mustard flour.
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12.4.6 Cumin

The flowering plant (Cumin cyminum L.) from the family 
of Apiaceae. Ground cumin is used as a flavoring agent in a 
number of ethnic cuisines. The chemical entities which pri-
marily establish its characteristic pungent flavor are found 
in the essential oil of cumin. The flavor comes in particular 
from cuminaldehyde, cuminic alcohol, pyrazines, terpinene, 
safranal, cymene, and pinene.

An investigation of eight samples of cumin essential 
oils grown in different regions of India was carried out by 
GC–MS, GC–olfactometry, sensory profiling, and elec-
tronic nose techniques (Ravi et al., 2013). The main aroma 
components were identified by GC–MS headspace analysis. 
Sensory odor profiling indicated that two samples had 

 significantly higher intensity of floral, cumin-like, and citrus 
aroma notes. These two samples that slightly differ in chem-
ical composition were also separated from the other samples 
by electronic nose investigations and PCA signal analysis.

12.4.7 Cardamom

The fruits of cardamom (Elettaria cardamonum L.), a plant 
of the Zingiberaceae family, are used as a flavoring agent 
and drug in traditional medicine. Today, Guatemala is the 
largest producer of cardamom, which is one of the most 
highly priced spices in the world. The essential oil of the 
fruit contains above all terpenylacetat, terpineol, mycrene, 
limonene, linalylacetat, linalool, sabinene, cineol, and hy-
droxycinnamon acid.

FIGURE 12.3 LDA plot of electronic nose investigations from seven saffron samples.

FIGURE 12.2 LDA plot of electronic nose data from head-space analysis of nutmeg infested with P. verruculosum during 9 days.
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An aroma quality estimation was performed on three 
clone-specific cardamom samples by electronic nose 
(Ghosh et al., 2012). The PCA showed three distinct clus-
ters in the plot of the first two principal components PC1 
91.6% and PC2 6.8%. The study demonstrated the rapid dif-
ferentiation of samples and quality estimation of cardamom 
by electronic nose.

12.4.8 Coriander

Coriander (Coriandrum sativum L.) is a plant from the 
family of Apiaceae. Seeds and the herb of coriander, both 
of which are used as spice or a medicinal plant. It contains 
flavoring compounds such as linalool, geraniol, pinen, lim-
onene, geranylacetat, terpinen, and borneol.

An electronic nose with metal oxide semiconducting 
sensing elements was deployed for the investigation of 
coriander essential oil samples from eight regions of India 
(Ravi et al., 2007). The results of headspace investigation 
were analyzed by PCA showing the discrimination in odor 
profile of coriander samples of different regions. The PCA 
mapping clearly distinguished the samples in relation to 
their dominant volatile compounds determined by GC–
MS headspace analysis. This is in agreement with results 
from quantitative descriptive sensory analysis and from 
GC–olfactometry investigations.

12.4.9 Oregano

Oregano (Origanum vulgare L.) is a spice and medical plant 
from the Lamiaceae family. Over 60 different compounds 
have been identified with the primary ones being thymol 
and carvacrol. Further components are p-cymene, caryo-
phyllene, spathulenol, germacrene-D, fenchyl alcohol and 
terpineol, terpinene, pinene, and limonene.

The herbs of four Origanum species (three Origanum 
vulgare subspecies hirtum and O. vulgare) that had grown 
in the same season were examined by GC and electronic 
nose (Horvath et al., 2002). The subspecies hirtum clones 
contained a higher amount of essential oil (3–4%) in com-
parison to O. vulgare (0.2%) in full flower. Regarding the 
essential oil components, all samples had the same quan-
tity of carvacrol, while one selected subspecies hirtum line 
showed significantly more cymene and terpinene. The com-
plex of aromatics was different for all selected lines accord-
ing to distinct sensor signals of the electronic nose.

A parallel quality investigation of various oregano spe-
cies was performed by sensory analysis, gas chromatog-
raphy, and electronic nose using PCA for data evaluation 
( Novak et al., 2003). The GC analysis of essential oil iden-
tified main components and revealed differences between 
plant species (O. vulgare subsp. hirtum and O. majorana). 
The instrumental and human sensory analysis showed simi-
lar results and varieties of oregano species (O. majorana) 

could be well distinguished on the basis of their complex 
aroma, whereas their gas chromatograms did not show 
characteristic differences.

The essential oil of oregano samples and dried root 
samples of lovage (Levisticum officinale) harvested at dif-
ferent times and from the 2- and 3-year-old population were 
investigated as a comparative analysis with electronic nose 
which consisted of metal oxide silicon field effect transis-
tor (MOSFET) sensors and metal oxide sensors (Seregely 
and Novak, 2005). The sensor responses were evaluated by 
PCA, canonical discriminant analysis (CDA). The best sep-
aration was achieved by combination of both methods. In 
all cases, more than 90% of cross-validated grouped cases 
were classified correctly.

12.4.10 Garlic

The onion from garlic (Allium sativum L.) and sometimes 
seeds as well as sprouts are used as spice and medication. 
The sulfur-containing allicin, which is the characteristic 
garlic compound, is formed from the odorless alliin by 
cracking the garlic cell structure.

The possibility to characterize the garlic odor in vitro 
(in head space) and in vivo (breath from a person who in-
gested garlic) using electronic nose was demonstrated by 
Tamaki et al. (2008). The electronic nose based on an ar-
ray of metal oxide semiconductor sensors can differentiate 
between the various garlic-associated odors corresponding 
to the different origins, or to different processes, that is, raw 
or heat-treated.

The correlation between volatile compounds identified 
by gas chromatography and the responses of human percep-
tion in sensory analysis are discussed. Results showed that 
odor sensor data by electronic nose were easier to obtain 
and were well correlated with both GC and sensory analysis.

An electronic nose was used to study the odor profile 
of eight garlic samples from different origin (Baby et al., 
2009). Samples were oven-dried or treated specifically 
(lyophilization in liquid nitrogen) to preserve flavor. The 
electronic nose consisted of two sensor system modules, 
one contained eight polymer-coated quartz microbalance 
(QMB) sensing elements and the other had eight semicon-
ductive tin oxide sensing elements. Sensor signals were 
processed statistically by LDA. Pattern recognition and 
multivariate analysis of the electronic nose data were able 
to separate the garlic cultivars easily. Lyophilized, oven-
dried, and humidified specimen samples also were clearly 
discriminated.

12.4.11 Exotic Herbs

Essential oils from seeds of black-caraway (Nigella sa-
tiva L.) were investigated by gas chromatography, olfac-
tometry sensor profile analysis and an electronic nose with 
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18 MOX sensors using PCA for differentiation of 5 samples 
(Zawirska-Wojtasiak, 2010). Further investigations were 
performed on herbs and their essential oils, typically used 
in Asia for flavoring food or for traditional medicine, such 
as Elsholtzia splendens (Chung and Lee, 2002), Cnidium 
officinale (Lee and Chung, 2002; Islam et al., 2006), and 
Perilla frutescens L. (Laureati et al., 2010). Electronic nos-
es based on metal oxide sensors or quartz crystal microbal-
ances (QCM) were used. PCA was deployed for data analy-
sis to differentiate between samples of different cultivars 
and shelf life.

12.4.12 Processing of Spices

Spices are processed after harvest by drying, fermentation, 
milling, and chemical treatment (eg, fumigation) and ra-
diation for conservation, flavor development, conditioning, 
and packaging. All of these processes have an impact on the 
quality parameter of spices and need to be monitored.

The electronic nose was deployed in a study to com-
pare the effects of cryogenic grinding and hammer milling 
on the flavor attributes of black, white, and green pepper 
(Liu et al., 2013). Pattern recognition based on electronic 
nose data supported sensory and instrumental findings. 
The flavor attributes analyzed by headspace solid-phase 
microextraction (HS–SPME) and GC–MS, and sensory 
evaluation showed that cryogenic grinding resulted in mini-
mal damage to the color, flavor, and sensory attributes of 
the spices. Cryogenic grinding was also better than hammer 
milling in preserving the main potent aroma constituents. 
However, it was found that the flavor quality of ground pep-
per was decreased during storage.

Spices as a natural product can be exposed to micro-
bial contamination during harvesting and storage. They 
may contain soil-borne bacteria, fungi, and insects because 
many of them are dried in the open air. Therefore, spices 
and herbs are currently treated with ionizing radiation to 
eliminate microbial contamination. Treatment with ion-
izing energy seems to be more effective against bacteria 
than thermal and chemical treatments, and it does not leave 
chemical residues in the food product.

The effect of gamma-irradiation on color, pungency, and 
volatiles of Korean red pepper powder (C. annuum L.) was 
investigated (Lee et al., 2004). The red pepper powder was 
irradiated by a gamma radiation dose up to 7 kGy. The effect 
of gamma-irradiation on color, pungency, and volatiles was 
investigated using various methods and an electronic nose 
with metal oxide sensors. An irradiation dose of 7 kGy of 
red pepper powder reduced the population of bacteria and 
fungi effectively without affecting major quality factors. The 
red color of irradiated pepper powder was not significantly 
different from that of the nonirradiated sample. Pungency 
of irradiated red pepper powder was not changed. Odor 
profiles were classified into irradiated dose levels of 0, 3, 

5, and 7 kGy by PCA and multivariate analysis of variance 
was performed. A difference in odor might result from the 
disappearance of some volatiles. Moreover, it appears that 
the irradiation of packaging material induced new substance 
formation, which migrated into the red pepper powder.

For the investigation of the impact of electron beam ir-
radiation on cumin and red pepper, an electronic nose based 
on surface acoustic wave (SAW) sensors, as well as FTIR 
and EPR spectroscopy, was applied (Sanyal et al., 2014). 
Two different cumin powders and red chilli powder all 
from India were irradiated with doses of 6, 10, and 14 kGy. 
Different fingerprints of the polar plot were obtained in 
the irradiated spice samples compared to the nonirradiated 
ones. The PCA technique was used to get a clearer trend 
of the numerical data. A clear distinction between nonir-
radiated and irradiated samples was observed for all the 
samples. The most promising results were found for red 
chilli powder.

An electronic nose was used for the identification of fro-
zen crushed garlic samples produced in Korea and China 
(Kim et al., 2014). The samples were irradiated (electron-
beam and gamma-rays) with 1, 4, and 7 kGy. It was shown 
that irradiation treatments unequivocally reduced the mi-
crobial populations with dose increments and a microbio-
logical screening effectively differentiated the nonirradiated 
and irradiated samples. The electronic nose positively dif-
ferentiated the odor patterns of samples based on PCA.

12.4.13 Spice Mixtures

The mixing of spices is an old tradition and classical mix-
tures such as curry or chilli powder and many local mixtures 
are in common use. The quality of spice mixtures may differ 
because of amount and quality of various components. Dis-
tinct changes in composition of spice mixtures, which were 
not easily detectable, can be indicated and documented by 
electronic nose investigations.

Ternary model spice mixtures were investigated by 
Zhang et al. (2005a,b). The samples were presented to an 
electronic nose with 12 conducting polymers. Data analysis 
was performed using neuronal networks with multilayer 
perception. Basil, cinnamon, and garlic were mixed in 
different compositions and analyzed an electronic nose. The 
results showed that mixtures of the three spices in different 
quantities could be identified. Both sensory and gas chro-
matography analysis were performed. The accuracy and 
efficiency of gas chromatography and sensory methods in 
predicting spice mixture compositions were investigated 
and compared with those of an electronic nose. Triangle 
tests were performed to estimate different thresholds for 
spice mixtures. It was found that the prediction errors and 
thresholds of the electronic nose methods were lower than 
those of sensory analysis. The GC method provided a more 
accurate but much less efficient prediction.
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Electronic noses can be deployed to determine differ-
ences between original and product adulterations of spice 
mixtures. This was demonstrated for two different spice 
mixtures delivered from Kahler Gewürze GmbH, Germany 
(Banach et al., 2009). The first sample was a “saveloy” spice 
mixture and the fraud contained an admixture of 20% of a 
curry spice. The second was a “sausages” spice mixture and 
the adulteration contained 80% original spices and 20% of 
garlic powder. Original and adulteration always had the same 
color. The volatile organic compounds in headspace of spice 
mixtures were detected by GC–MS to validate the differenc-
es in composition. The amount of these components differed 
in the original and the adulterated samples of spice mixtures. 
An electronic nose with a chip array of 38 sensing elements 
was applied. The results of an LDA analysis are shown in 
Fig. 12.4. The results obtained from a headspace detection of 
volatile organic compounds by electronic nose demonstrated 
that a clear discrimination of spice mixtures was possible.

12.5 CONCLUSIONS

Electronic noses were successfully applied for headspace 
analysis of spices. It was demonstrated in many investiga-
tions that electronic noses can contribute to the character-
ization of spices and spice mixtures in order to

l distinguish spices and spice mixtures
l differentiate by origin, growth seasons, and processing
l indicate adulteration from original
l detect mold infestation

Electronic noses can be used as a fast screening method 
to provide information about the product quality. However, 
it needs samples and methods for reference, careful train-
ing, and complex calibration to consider influencing and 
disturbing effects as well as the possible limitations of the 

instrumentation. The correlation to classical chemical anal-
ysis methods is always advisable. Machined olfaction meth-
ods are capable to support the sensory analysis; however, 
they cannot yet substitute them.
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Chapter 13

Tea and the Use of the Electronic Nose
Runu Banerjee(Roy)*, Rajib Bandyopadhyay*, Bipan Tudu*, Nabarun Bhattacharyya**
*Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India; **Centre 

for Development of Advanced Computing, Kolkata, India

13.1 INTRODUCTION

Tea is an aromatic beverage prepared from the leaves of the 
tea plant, Camellia sinensis, and is the most widely con-
sumed beverage in the world. Teas are classified into three 
major categories according to the manufacturing process, 
namely (1) unfermented green tea, (2) partially fermented 
Oolong tea, and (3) fully fermented black tea. The planta-
tion of tea is highly season specific and climate dependent. 
Tea leaves are plucked from the field and brought to the 
processing plants where they undergo several processing 
stages and finished tea is produced. India is famous for 
production of black tea, whereas green tea is produced in 
countries like China and Japan. Other major tea-producing 
countries are Sri Lanka, Kenya, and Taiwan.

A review of the international standards published by the 
International Organization for Standardization (ISO) on tea 
reveals that the quality assessment methods of black tea by 
chemical analysis, using instruments such as gas chroma-
tography–mass spectroscopy (GC–MS), high-performance 
liquid chromatography (HPLC), and other instruments, are 
quite established and have been in practice for several years. 
However, noninvasive, online, fast, low-cost, user-friendly, 
and practical deployable solutions for day-to-day use by the 
tea industries are still not available. The standards related 
to tea published by the ISO are given in Table 13.1 (www.
iso.org).

In the tea industry, quality analysis of tea is carried out 
by expert tea tasters. Even though this is an established 
practice, the method is definitely not very accurate and 
depends upon the professional acumen, mood, and other 
personal factors of the tea taster. Also, chemical analysis 
techniques are expensive and time consuming and expert 
operators are required for the operation of the sophisticated 
instruments. The advent of the electronic nose has opened 
the way to a new analytical approach, which consists of an 
array of gas sensors with different selectivity patterns, sig-
nal handling, pattern recognition, and decision strategy; it 
has the capability to eliminate the drawbacks of the human 
tasters and the chemical analysis methods.

Considerable applications of the electronic nose have 
already been carried out on meat, grains, coffee, mush-
rooms, cheese, sugar, fish, beer, and other beverages, as 
well as on the quality evaluation of food-packaging mate-
rial. “Electronic nose” applications have multiplied several 
times in recent years. The reliability of these applications 
is mainly based on the selectivity properties of the sensors 
composing the array and on the stability of their charac-
teristics. In general, the electronic nose has wide applica-
tions in agriculture, biomedicine, automobiles, aerospace, 
environmental concerns, food, the military, pharmaceu-
tics, explosives, and in various other fields (Bhattacharyya 
et al., 2008a; Brezmes et al., 2001; Di Natale et al., 2001; 
Boilot et al., 2000; Young et al., 2003; Capua et al., 2009).

13.2 TEA CHEMISTRY

The most important constituents of tea are catechins. These 
are colorless, odorless, soluble substances that have low 
molecular weight and constitute about 25% of total dry 
matter. These substances are oxidized by polyphenol oxi-
dase or plant ferment during the fermentation process in tea 
manufacturing (Willson and Clifford, 1992). Also known 
as the oxidizable matter of tea, the catechins absorb oxygen 
with the help of enzymes. Once the oxygen is absorbed, 
catechins begin to form larger molecules through condensa-
tion, causing changes in color and some nonvolatile com-
pounds such as theaflavins (TF) and thearubigins (TR) are 
produced (Obanda et al., 2001). The two major quality at-
tributes of tea—strength and color—are dependent on the 
oxidizable matter present in the leaf. The next important 
constituents in tea leaves are enzymes. These enzymes play 
a vital part in the oxidation process as organic catalysts. 
These enzymes are of two types, namely, tea polyphenol 
oxidase and pectase. Tea polyphenol oxidase is the more 
important of the two. Another constituent of tea leaf is 
caffeine, which is 2.5–4.5% of the volume of tea leaves. 
This colorless and bitter compound is responsible for the 
stimulating properties of tea liquor. Briskness of brewed tea 
is largely dependent on the caffeine content of the leaves. 

http://www.iso.org/
http://www.iso.org/
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Pectine is another constituent and is a type of gelatizing 
substance found in the cell walls of tea leaf. It splits into 
pectic acid and methyl alcohol due to the action of pectase. 
Pectic acid helps to retain the quality of brewed tea.

The characteristic of odor of brewed tea depends upon 
certain aromatic substances that are volatile in nature. These 
substances, in turn, are made up of essential oils and a few 
others like amino acids. At the time of fermentation, ortho-
quinon combines with the amino acids and supplements the 
aroma of tea liquor.

Chemical composition of tea shoot varies with agro-
climatic conditions, producing regions, agricultural practices, 
and the type of plants. As a result of extensive research, Tea 
Research Association (TRA), Tocklai, Assam, India, has 
identified chemical compounds available in black tea shoots 
(Bhuyan and Borah, 2001). Table 13.2 presents the important 
compounds responsible for the color, taste, and aroma of tea.

13.3 TRADITIONAL BLACK TEA QUALITY 
EVALUATION TECHNIQUES

This section presents some commonly used techniques em-
ployed for black tea quality assessment in tea industry:

1. Chemical analysis methods: These methods are very ac-
curate and most scientific as high-end instruments that 
are used for analyzing the chemical composition of tea 
vapor and liquor. The instruments used for this purpose 
are GC, HPLC, and GC–MS. Although these instrumen-
tal methods of analysis yield high accuracy, they suffer 
from some distinctive shortcomings because the meth-
ods are time consuming and expensive and require elab-
orate sample preparation and expert manpower. Apart 
from these shortcomings, a major disadvantage of these 
methods is that these instruments can perform only a 
single attribute analysis at any given moment of time. 

TABLE 13.1 List of ISO Standards Related to Tea

ISO Standard Details

ISO 1572:1980 Tea—Preparation of ground sample of known dry matter content

ISO 1573:1980 Tea—Determination of loss in mass at 103°C

ISO 1575:1987 Tea—Determination of total ash

ISO 1576:1988 Tea—Determination of water-soluble ash and water-insoluble ash

ISO 1577:1987 Tea—Determination of acid-insoluble ash

ISO 1578:1975 Tea—Determination of alkalinity of water-soluble ash

ISO 1839:1980 Tea—Sampling

ISO 3103:1980 Tea—Preparation of liquor for use in sensory tests

ISO 3720:1986 Black tea—Definition and basic requirements

ISO 6078:1982 Black tea—Vocabulary

ISO 6079:1990 Instant tea in solid form—Specification

ISO 6770:1982 Instant tea—Determination of free-flow and compacted bulk densities

ISO 7513:1990 Instant tea in solid form—Determination of moisture content (loss in mass at 103°C)

ISO 7514:1990 Instant tea in solid form—Determination of total ash

ISO 7516:1984 Instant tea in solid form—Sampling

ISO 9768:1994 Tea—Determination of water extract

ISO 9884-1:1994 Tea sacks—Specification—Part 1: Reference sack for palletized and containerized transport of tea

ISO 9884-2:1999 Tea sacks—Specification—Part 2: Performance specification for sacks for palletized and containerized 
transport of tea

ISO 10727:2002 Tea and instant tea in solid form—Determination of caffeine content—Method using high-performance liquid 
chromatography

ISO 11286:2004 Tea—Classification of grades by particle size analysis

ISO 14502-1:2005 Determination of substances characteristic of green and black tea—Part 1: Content of total polyphenols in 
tea—Colorimetric method using Folin–Ciocalteu reagent

ISO 14502-2:2005 Determination of substances characteristic of green and black tea—Part 2: Content of catechins in green 
tea—Method using high-performance liquid chromatography

ISO 15598:1999 Tea—Determination of crude fibre content
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These instruments are installed in big industrial houses 
and laboratories.

2. Sensory evaluation: In this case, an expert panel, called 
“tea tasters,” is engaged to judge the quality of tea. They 
evaluate the finished tea against the attributes like ap-
pearance, taste, flavor, and aroma. In this evaluation 
process, they assign a score in the scale of 1 to 10 against 
each attribute of the sample under testing. Although this 
method is practiced in the tea industry, it has some un-
avoidable limitations like (1) subjectivity, (2) lack of re-
peatability, and (3) dependence on the mental state of 
the taster (fatigue, adaptation, etc.).

13.4 BLACK TEA PROCESSING—A BRIEF 
OVERVIEW

Black tea processing is performed through a few sequential 
operations: (1) plucking, (2) withering, (3) preconditioning, 
(4) cut-tear-curl (CTC), (5) fermentation, and (6) drying, as 
shown in Fig. 13.1.

The quality of the leaf depends upon the delivery and 
skill with which plucking is performed. Conventionally, 
only the bud with first and second leaves is plucked. The 
larger and coarser leaves are left on the bush. Plucked 

leaves are brought to the withering process where leaf mois-
ture content is reduced by the blowing of air. The plucked 
tea leaves are spread over the withering troughs of a bed 
size approximately 20 × 100 ft. at a thickness of about 20–
25 cm and air is blown through the tea leaves (Mahanta and 
Baruah, 1989). The cell structures of the withered leaves are 
disrupted by rotating vanes of specially designed machines 
in the preconditioning process. Thin membranes around the 
vacuole of the leaf cells are ruptured during the process, 
separating polyphenols and enzymes within the leaves. The 
CTC process comprises of cut, tear, and curl operations. 
In CTC machines, withered and preconditioned leaves are 
fed into a gap between two rollers having circumferential 
cutting edges and running at differential speeds. Physical 
parameters of finished black tea, like the dimension of tea 
particles and granular mix of finished bulk, may be modu-
lated by varying the pitch of the rollers and the gap between 
the rollers. After the leaf cells have been ruptured by the 
previous processes, the fermentation process starts. The 
leaves are exposed to air and the oxidation process starts. 
The green leaves attain coppery brown color and a fragrant 
aroma starts to emanate. Thereafter, the leaves enter the 
drying process where they are subjected to a blast of hot air 
provided by means of a furnace. The factors that influence 

TABLE 13.2 Biochemical Compounds Present in Tea

Biochemical Compounds in Tea Responsible for Color

Compounds Color

Theaflavins Yellowish brown

Thearubigins Reddish brown

Flavonol glycosides Light yellow

Pheophorbide Brownish

Pheophytin Blackish

Carotene Yellow

Biochemical Compounds in Tea Responsible for Taste

Compounds Taste

Polyphenol Astringent

Amino acids Brothy

Caffeine Bitter

Theaflavins Astringent

Thearubigin Ashy and slight astringent

Biochemical Compounds in Tea Responsible for Aroma

Compounds Flavor

Linalool, linalool oxide Sweet

Geraniol, phenylacetaldehyde Floral

Nerolidol, benzaldehyde, phenyl ethanol Fruity

Trans-2-hexenal, n-hexanal, cis-3-hexenol, grassy, b-ionone Fresh flavor
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the process of drying are: (1) temperature of the air, (2) rate 
of feed, (3) run-through time, and (4) volume of air within 
the drying chamber.

Deactivation of enzymes, reduction of moisture, mod-
erate development of black/brown appearance of tea, con-
version of chlorophyll to pheophytin, degradation of lipids, 
and formation of some flavored components, and loss of 
some highly volatile components are a few of the numerous 
biochemical changes that occur during the drying process 
(Wickremasinghe et al., 1979).

13.4.1 Smell of Black Tea

The smell of tea depends upon certain volatile aromatic 
substances developed during the fermentation process. 
Fermentation is the most crucial of all the processes, since 
aroma and flavor are developed in this process through mul-
tidimensional biochemical pathways. These volatile sub-
stances are made up of essential oils and a few other factors 
such as amino acids (Co and Sanderson, 1970). During the 
process of fermentation, amino acids combine with ortho-
quinon, which is an oxidized form of catechin, and play the 
most important role for the black tea aroma.

The smell of teas in the fermentation process changes 
progressively as the process proceeds. Age-old empirical 
knowledge in black tea processing in India has established 
the fact that odor emanating in the fermentation process 
travels through two defined peaks of intense emission of 
volatiles with much reduced intensity of emission dur-
ing intermediate spans during the fermentation time for 
black tea. Such smell peaks are popularly termed as “First 
Nose” and “Second Nose” in Indian tea industry parlance. 

Experienced floor supervisors can detect such distinct peaks 
of intense volatile emission by manually smelling the teas.

As soon as the “Second Nose” is detected, the super-
visors call the end to the fermentation process. These so-
called “First Nose” and “Second Nose” peaks are not only 
very sharp and prominent, but also very much short lived 
(Motoda, 1979). It is quite possible that the supervisors 
may not always be able to detect such short-lived bursts of 
odor peaks by their olfactory senses. In the event of such 
inadvertent mistakes on the part of floor operators/ super-
visors, the tea produced will be either underfermented or 
overfermented. Such an age-old process, though empirical, 
is being practised by the Indian tea industries from time im-
memorial. Such practices definitely are highly subjective, 
unreliable, and prone to human mistakes and thus often 
lead to production of inferior quality tea due to over- or 
underfermentation. The black tea fermentation monitoring 
process and optimum fermentation time detection using 
electronic nose technology was reported by Bhattacharya 
et al. (2007a,b, 2008b).

13.5 LITERATURE SURVEY ON 
ELECTRONIC NOSE-BASED TEA QUALITY 
EVALUATION

So far, several research groups have demonstrated the appli-
cability of electronic nose technology for tea quality evalu-
ation. The applications may be classified into two groups: 
(1) analysis on finished tea and (2) monitoring during the 
fermentation stage. This section presents the research re-
ports on tea quality evaluation employing the electronic 
nose.

FIGURE 13.1 Stages of black tea processing.
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Pioneering work had been done by Dutta et al. (2003) 
in the field of tea using the electronic nose, where the ef-
ficacy of electronic nose systems in classifying black tea 
aroma and flavor in different processing stages was estab-
lished. For data analysis, fuzzy C-means (FCM), principal 
component analysis (PCA), self-organizing map (SOM), 
learning vector quantization (LVQ), multilayer perceptron 
(MLP), and other neural network topologies are explored in 
this work. Several researchers attempted to classify differ-
ent grades of tea employing electronic nose (Bhattacharyya 
et al., 2004; Kashwan and Bhuyan, 2005; Yang et al., 2006; 
Yu and Wang, 2007; Yu et al., 2008). Bhattacharyya et al. 
(2008a,b) in two different papers presented the design of 
the electronic nose with commercial metal oxide sensor 
(MOS) sensors for black tea quality discrimination and 
a method for enhancement of sensitivity of measurement 
employing an illumination heating and raking process. Yu 
et al. (2009a,b) studied tea storage time and tea grade for 
green tea, using the MOS-based electronic nose. Evalua-
tion of a particular flavor of green tea was studied using 
the electronic nose in Yang et al. (2009). In another study 
of black tea classification employing the electronic nose 
(Tudu et al., 2009a), an incremental radial basis function 
of the neural network was proposed for data analysis. The 
incremental learning ability can be of great benefit by au-
tomatically including the newly presented patterns in the 
training data set without affecting the class integrity of 
the previously trained system. For application in black tea 
grade discrimination (Tudu et al., 2009b), another attempt 
was made to correlate the multisensor aroma pattern of the 
electronic nose with a sensory panel (tea tasters) evalua-
tion, and for classifying, an incremental learning fuzzy 
model was proposed. The algorithm was tested in some tea 
gardens of northeast India, and the results were presented. 
In another study (Sipos et al.,  2011), the performance of 
sensory panel was evaluated using two different approach-
es, namely, gravity center area/perimeter (GCAP) and 
compare ranks with random numbers (CRRN). In a study 
(Zhang et al., 2011), the capacity of an electronic nose (E-
nose, PEN2) to classify tea quality grades was investigat-
ed. Three groups of tea with different quality grades were 
harvested at different times. Principal component analysis 
(PCA) and artificial neural network (ANN) were employed 
for data analysis. These results indicate that the electronic 
nose could be successfully used for the detection of teas 
of different quality grades and ages. In order to optimize 
the performance of the electronic nose and to make it ap-
plication specific, a rough set theory was used for selecting 
the most relevant and nonredundant feature from data sets 
(Bag et al., 2011). The performance of the electronic nose 
was further enhanced (Kaur et al., 2012) using a dynamic 
social impact theory-based optimizer (SITO) along with 
PCA and support vector machine (SVM).The performance 
of SVM was further validated (Chen et al., 2011) in order 

to compare four grades of green tea. In another study (Qin 
et al., 2013), MOS sensor-based electronic nose was used 
to distinguish the differences between different grades of 
green and black teas. With a portable electronic nose, the 
classification of three different fermentation degrees of tea 
(ie, green tea, black tea, and Oolong tea) was studied (Chen 
et al., 2013). In a recent study (Mirasoli et al., 2014), the 
electronic nose was used for evaluation of change in green 
tea quality during long-term storage and the electronic nose 
was found to classify correctly unknown samples as “aged” 
or “not aged.” In another recent work (Torri et al.,  2014), 
an electronic nose was employed to study the volatile emis-
sions of leaf samples belonging to the basic Chinese teas 
(white, yellow, green, oolong, black, and Pu-erh) with those 
of their respective infusions and an interesting observation 
was reported that the leaf aroma was not transferred fully 
into the beverage.

As already mentioned, fermentation process in tea man-
ufacturing plays the key role in determining the quality of 
finished tea. At the time of fermentation, the grassy smell of 
the leaves changes to the floral smell due to some complex 
chain of biochemical reactions inside the tea leaf and the 
greenish color changes into the coppery brown. We men-
tion here a few research reports on monitoring the aroma 
during the fermentation process with the electronic nose.

The monitoring of volatile components of the black 
tea during the fermentation process was studied with a 
MOS sensor array-based electronic nose (Bhattacharyya 
et al., 2007a). An electronic nose was used for the detec-
tion of optimum fermentation time during tea processing 
(Bhattacharyya et al., 2007b). A study on real-time smell 
monitoring of black tea during the fermentation process us-
ing an electronic nose was performed for prediction of the 
correct fermentation time (Bhattacharyya et al., 2008c). In 
this study, along with optimum fermentation time, the de-
tection of the existence of different smell stages during the 
fermentation runs of black tea processing was studied.

Presently, research is going on to fabricate sensors that 
would be more sensitive and selective to the volatile or-
ganic and aromatic compounds of tea. In this direction, 
there are few research reports on coated quartz crystal mi-
crobalance (QCM) sensors for estimating the most impor-
tant aroma producing compounds in tea—linalool (Sharma 
et al., 2014) and geraniol (Sharma et al., 2015). The coating 
materials are selected or synthesized in order to achieve bet-
ter sensitivity and selectivity toward these tea chemicals.

The research reports previously mentioned indicates 
that there are quite a few groups in different parts of the 
world working in the area of electronic nose technology 
exclusively for tea. Their findings show the potential and 
promise of the instrument to be used in the tea production 
units well as in the tea-tasting centers where aroma plays 
a crucial role either in controlling some process param-
eters or estimating the quality of the product. Table 13.3 
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TABLE 13.3 Major Research Publications on Application of Electronic Nose for Tea (2003–2014)

Sample Type of Study
Sensor 
System Data Processing Algorithm

Year of 
Publication References

Black tea Discrimination between the 
flavors of different tea samples

MOS PCA, FCM, SOM, MLP, LVQ, RBF, 
PNN

2003 Dutta et al. (2003)

Black tea Characterization and 
classification of six clonal 
varieties of orthodox black tea

MOS PCA, BP-MLP 2004 Bhattacharyya 
et al. (2004)

Black tea Discrimination and 
classification of electronic 
nose response data for different 
flavors of tea and spice

MOS PCA, MLP, RBF, LVQ 2005 Kashwan and 
Bhuyan, (2005)

Tea Classification of tea New bionic olfactory neural 
network model based on the KIII 
set in the K-set hierarchy

2006 Yang et al. (2006)

Green tea Classification of tea quality 
grade with four LongJing green 
tea

MOS BP–MLP, PCA, linear discriminant 
analysis (LDA)

2007 Yu and Wang 
(2007)

Black tea Estimation of optimum 
fermentation time

MOS 2-Norm method, Mahalanobis 
distance method (MDM)

2007 Bhattacharyya 
et al. (2007a)

Black tea Monitoring the volatile 
components of the black tea 
during fermentation process 
and detection of the optimum 
fermentation time on the basis 
of peaks in the sensor outputs

MOS PCA, SVD 2007 Bhattacharyya 
et al. (2007b)

Black tea Smell peak prediction during 
fermentation

MOS SOM, time delay neural network 
(TDNN)

2008 Bhattacharyya 
et al. (2008c)

Green tea Gradation of different green tea 
samples

MOS PCA, LDA 2008 Yu et al. (2008)

Black tea Selection of appropriate 
sensors for black tea aroma 
and development of a taster-
specific computational model 
for objective prediction of tea 
quality scores

MOS PCA, BP–MLP, PNN, RBF 2008 Bhattacharyya 
et al. (2008a)

Black tea Performance of electronic nose 
improved with illumination 
heating and physical raking of 
the sample

MOS BP–MLP, PNN 2008 Bhattacharyya 
et al. (2008b)

Black Tea Quality evaluation of black tea MOS Incremental RBF network 2009 Tudu et al. 
(2009a)

Black Tea Classification of black tea MOS Incremental Fuzzy Logic 2009 Tudu et al. 
(2009b)

Green tea Identification of tea storage time MOS PCA, LDA, BP–MLP 2009 Yu et al. (2009a)

Green tea Identification of coumarin-
enriched Japanese green 
teas and evaluation of their 
particular flavor

MOS PCA, cluster analysis (CA) 2009 Yang et al. (2009)

Green tea Quality grade identification MOS PCA, LDA, BP–MLP 2009 Yu et al. (2009b)

Sri Lankan black 
tea

Evaluation of the performance 
of a sensory panel using a novel 
method with electronic nose

MOS PCA, LDA, PLS, SOM 2011 Sipos et al. (2011)

Green tea Detection of teas of different 
quality grades and ages

PEN-2 PCA, ANN 2011 Zhang et al. 
(2011)
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summarizes the research reports on the use of the electronic 
nose for tea applications.

13.6 CASE STUDY

A case study with the development and customization of an 
electronic nose is presented in this section (Bhattacharyya 
et al., 2008a). The instrument uses Figaro gas sensors for 
tea quality estimation. The following considerations were 
the basic guiding philosophy for development of the sys-
tem:

1. The system should be user friendly and easy to operate 
so that individuals in the tea industry can use the system.

2. The modular approach can be employed for hardware 
and software design for ease of integration.

The instrument consists of (1) a sensor array, (2) an odor 
delivery system using a micropump, mass flow controller, 
and solenoid valves, (3) PC-based data acquisition, and 
(4) olfaction software.

13.6.1 Selection of Sensors

The most important part of electronic olfaction process is 
odor capture and associated sensor technology. Any sensor 
that responds reversibly to chemicals in the gas or vapor 
phase has the potential to be a part in an array of sensors in 
an electronic nose. Therefore, in this research of tea aroma 
detection, an array of MOS sensors from Figaro, Japan 
(www.fiagrosensor.com) was used in the experimental 
setup. MOS have a number of features like high sensitivity, 
high stability, reliability over a long period, and very good 
reversibility. The sensing element for such sensors is tin 
dioxide (SnO2), which has a low conductivity in clean 
air. In the presence of detectable vapor, the conductivity 
of the sensor increases depending on the concentration 
of odor molecules in the vapor. The output of the sensors 
is processed by a signal conditioning circuit for signal 
amplification, buffering, and signal conversion.

In order to select the appropriate sensors adequately 
sensitive to black tea aroma, the following major flavor 

Black Tea Optimization of sensor in an 
array of electronic nose

MOS Rough set theory 2011 Bag et al. (2011)

Green tea Discrimination of four grades 
of green tea

PCA, k-nearest neighbor (k-NN), 
artificial neural network (ANN), 
SVM

2011 Chen et al. (2011)

Black tea Identifying the optimum time 
intervals of the EN sensor array 
response

MOS SITO and moving window time 
slicing in conjunction with PCA 
and SVM

2012 Kaur et al. (2012)

Green and black 
tea

To distinguish the difference 
among different grade teas

MOS Partial least square (PLS) regres-
sion

2013 Qin et al. (2013)

Three different fer-
mentation degrees 
of tea

Classification of tea cat-
egory according to different 
fermentation degrees

Porphy-
rins, me-
tallopor-
phyrin 
materi-
als

LDA 2013 Chen et al. (2013)

Green tea Evaluation of the quality 
changes in commercial green 
tea leaves during a long-term 
storage

MOS PCA, LDA 2014 Mirasoli et al. 
(2014)

Different catego-
ries of tea

Differentiate between different 
categories of tea using 
electronic nose

MOS PCA 2014 Torri et al. (2014)

Black tea Detection of linalool in black 
tea

QCM Correlated with GC–MS analysis 2014 Sharma et al. 
(2014)

Black tea Detection of geraniol in black 
tea

QCM Correlated with GC–MS analysis 2015 Sharma et al. 
(2015)

Sample Type of Study
Sensor 
System Data Processing Algorithm

Year of 
Publication References

http://www.fiagrosensor.com/


132   PART | I The Electronic Nose

compounds in black tea, as given in Table 13.3, were col-
lected from Tea Research Association, India. The sensors 
considered for black tea classification were TGS-816, TGS-
823, TGS-831, TGS-832, TGS-2600, TGS-2610, TGS-
2611, and TGS-2620 of Figaro Engineering Inc. Seven 
important volatile organic compounds of black tea of con-
centration 50 ppm were used to excite each of the MOS 
sensors in an experiment. The changes in sensor resistance 
∆R RS S  were measured very precisely.

Although sensor selection was based on sensitivity 
analysis with a handful of major aroma determinants, there 
would be contribution of other volatiles on the sensor re-
sponses when exposed to tea flavors. But our specific ob-
jective in this study was to track the overall effect of these 

volatiles on the sensor array and investigate the correlation 
of the multisensor output data with sensory evaluation.

Responses of all the sensors to the chemicals listed in 
Table 13.4 are graphically shown in Fig. 13.2. The details 
of the electronic nose setup along with the pattern recogni-
tion unit is presented in Bhattacharyya et al. (2008a).

The final sensor set, therefore, comprises of the five 
sensors—TGS-823, TGS-832, TGS-2600, TGS-2610, and 
TGS-2611.

During the experimental studies with the electronic 
nose, it has been observed that brewed tea liquor could 
not be used due to presence of water vapor in the head-
space. Therefore, only dry tea leaves are used in the sam-
ple holder for headspace generation and sampling. But the 

∆RS

TABLE 13.4 ∆R
S  Values for Individual Sensors When Exposed to Specific Tea Chemicals

Sl. No.
Names of 
Chemicals

TGS 2610 
(1)

TGS 2620 
(2)

TGS 2611 
(3)

TGS 2600 
(4)

TGS 816 
(5)

TGS 831 
(6)

TGS 832 
(7)

TGS 823 
(8)

1. 2-Phenyl-
ethanol

0.21 0.05 0.24 0.26 0.02 0.01 0.35 0.39

2. Benzaldehyde 0.03 0.01 0.23 0.17 0.03 0.01 0.19 0.51

3. b-Ionone 0.06 0.04 0.42 0.40 0.03 0.03 0.78 0.74

4. Geraniol 0.04 0.05 0.16 0.13 0.01 0.01 0.22 0.39

5. Linalool 0.23 0.07 0.59 0.49 0.09 0.06 0.95 0.87

6. Linalool oxide 0.15 0.06 0.62 0.58 0.02 0.07 0.97 0.89

7. Terpeniol 0.07 0.04 0.41 0.36 0.02 0.03 0.65 0.74

∆RS/RS

FIGURE 13.2 Sensor’s response to individual chemicals.
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volatile emission from dry tea being considerably low, sen-
sor outputs have been observed to be significantly small. 
On the other hand, tea scientists have established that op-
timum volatile emission takes place from the tea at around 
60°C ± 5°C. In fact, good flavor of brewed tea is caused 
due to rise in temperature of the tea by addition of boiling 
water to it. To resolve this conflicting requirement, a novel 
method of heating of the sample under test using optical 
energy from commonly used miniature halogen lamps has 
been developed along with simple motorized mechanical 
agitation system of tea samples within the sample holder.

With this setup, extensive experimentation had been car-
ried for tea quality, both for finished tea and in fermenta-
tion level. We present here the results of classification of 48 
samples of 4 different grades collected from tea gardens of 
north and northeast India, namely, Singbulli, MinFTGFOP, 
Sungama, and Chamong. For each sample, 10 replicated 
measurements were taken. For our experiments, one expert 
tea taster was deputed to provide a taster’s mark to the sam-
ples in a scale of 1–10 and the range of the scores assigned 
for these samples were from 5 to 9.

The experimental conditions are given as follows:

l Amount of each sample = 40 g
l Temperature = 60°C ± 3°C
l Headspace generation time = 30 s
l Collection time = 100 s

l Purging time = 100 s
l Airflow rate = 5 mL/s

13.6.2 Results and Discussions

As a first step to identify underlying clusters in the electron-
ic nose signatures, the data obtained were analyzed using 
principal component analysis (PCA). In view of the capa-
bility of neural networks to learn input–output relation from 
a training data set, the neural network was chosen for tea 
classification and three topologies, for example, the back-
propagation multilayer perceptron (BP–MLP) method, the 
radial basis function (RBF), and the probabilistic neural 
network (PNN) were considered.

The PCA plot in Fig. 13.3 clearly points out the exis-
tence of distinct clusters of electronic nose patterns with 
respect to the tea tasters’ scores.

Further, the neural network analysis was carried out with 
480 observations (48 samples × 10 replicated measure-
ments). Of these patterns, 60% from each class have been 
used for training, and the remaining 40% of these patterns 
were used for testing. For these 40% samples, the predicted 
quality scores by the trained neural network model were 
compared with the aroma scores of the tea tasters. It was 
observed that the percentage accuracies of prediction with 
the three topologies of the neural network (BP–MLP, RBF, 
and PNN) were 84.21, 83.11, and 79.43%, which clearly 

FIGURE 13.3 PCA plot of four varieties of tea sample with electronic nose.
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establishes the efficacy of the electronic nose instrument 
(Banerjee et al., 2012).

13.7 CONCLUSIONS

The focus of this chapter has been on tea samples with the 
electronic nose and the research findings so far are quite en-
couraging even with the nonspecific MOS sensors in the ar-
ray. There is a vast scope of research as very little has been 
done for this aromatic agroproduct. Opportunities prevail 
in the development of new sensors with more specificity 
as well as in the overall system design. During tea process-
ing, aroma plays a very important role in optimizing dif-
ferent parameters during the processing of the leaves and 
electronic nose, if tuned properly for these applications may 
usher a new paradigm in monitoring and controlling the tea 
processes. Although tea is a flavored compound, aroma, 
taste, and appearance are other major attributes for its qual-
ity. So, along with the electronic nose, application of the 
electronic tongue and the electronic eye should give better 
quality judgment for tea. A few research publications are 
already published in this direction.
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14.1 INTRODUCTION

Wine is one of the most complex alcoholic beverages with 
more than 1000 of volatile components identified in its 
headspace ranging from a few parts per billion to a few 
percents in weight, mainly alcohols, esters, ketones, acids, 
ethers, aldehydes, terpenes, lactones, sulfur-, nitrogen-, car-
bonyl-, phenolic-compounds. Hence, the feature extraction 
procedure results elaborated to qualitatively and quantita-
tively assess the wine aroma profile. Due to high econom-
ic value of the wine-product for some worldwide typical 
geographical areas and annexed sociocultural reasons, the 
development of analytical methods and pattern recognition 
systems for wines’ classification is extremely important, 
mainly for the assignment of a trademark such as protected 
designation of origin (PDO), controlled denomination of 
origin (CDO), and protected geographic indication (PGI) 
for quality wines. In this context, useful analytical systems 
coupled to pattern recognition methods serve for wines’ 
identification and, consequently, to protect the trademarked 
quality wines and to prevent their illegal adulteration.

The detection of aroma and the quality control of wine 
can be assessed by different analytical methods for the 
identification of the organoleptic properties of the products. 
In fact, the classical methods of chemical analysis such as 
gas and liquid chromatography, mass spectrometry, nuclear 
magnetic resonance, and spectrophotometry are highly re-
liable and suitable for these purposes, but these analytical 
techniques are of high cost, long processability, and low in 
situ and online measurableness.

The human nose is currently used commercially to test 
a diverse range of products. Highly skilled, trained human 
panels have been used to evaluate the odors produced from 
food products, such as the wine, in order to determine its 
quality (Horrillo et al., 2007). The practical application of 
human nose as a smell assessment instrument is severely 
limited by the fact that our sense of smell is subjective, gets 
tired easily, and is therefore difficult to use. Consequently, 
there is considerable need for an instrument that could mim-
ic the human sense of smell and be used in routine industrial 

applications. E-noses are attractive for a number of signifi-
cant features: the relatively fast assessment of headspace, 
the qualitative representation or signature of an aroma, and 
the use of cheap sensors to be integrated in production pro-
cesses. Despite these features, there are still relatively few 
applications of e-noses adopted in the wine industry. This 
could be attributed to difficulties in robustness, selectivity, 
and reproducibility of the sensors and to the need for pattern 
recognition algorithms. Nonetheless, the use of e-noses is 
rapidly expanding and notable achievements, relevant for 
the food industry, have been achieved in the last few years. 
Furthermore, this progress coincides with an increased un-
derstanding of the biological mechanisms behind the hu-
man olfactory system (Loutfi et al., 2015). However, there 
is much research still to be done especially with regard to 
new materials and sensors technology, data processing, 
interpretation of results, and validation studies (Peris and 
Escuder-Gilabert, 2009).

The main purposes of this chapter are: to offer the reader 
a review of the different technologies involved the e-nose 
field applied to the wine industry and to serve as a guide 
for future applications and development since the main dif-
ficulties and future perspectives in this field are discussed.

14.2 ELECTRONIC NOSES OPERATION

An accepted definition of an e-nose was given by Gardner 
in 1999 and restricts the term to those types of sensor array 
systems that are specifically used to sense odorous molecules 
in an analogous manner to the human nose. However, the ar-
chitecture of an e-nose has much in common with multisen-
sor systems designed for the detection and quantification of 
individual components in a simple gas or vapor mixture. A 
simple flowchart of the typical structure of an e-nose for wine 
applications is shown in Fig. 14.1. It generally consists of an 
aroma extraction technique, which switches the reference air 
and the sample; an array of chemical sensors which transforms 
the aroma into electrical signals; an instrumentation system to 
measure the sensor signal; and a pattern recognition system to 
identify and classify the aroma of the measured samples in the 
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classes previously learned when using supervised learning or 
perform by itself the classification in unknown classes (Hor-
rillo et al., 2007).

It uses currently a number of individual sensors (typically 
4–100) whose selectivities toward different molecules’ over-
lap. The response from a chemical sensor is usually mea-
sured as the change of some physical parameter, for example, 
conductivity, frequency, or current. The response times for 
these devices range from seconds up to a few minutes. By 
teaching a computer (or hardware) to recognize different pat-
terns, it should now be able to classify the wine aroma be-
longing to the different classes of learned aromas or patterns.

14.2.1 Sampling Methods

The aroma extraction system or sampling method carries the 
aromatic compounds from the wine samples to the sensor 
chamber. Several aroma extraction techniques are usually 
used for e-noses in wine applications (Lozano et al., 2007b). 
The most common are static headspace (HS) (Penza and 
Cassano, 2004), purge and trap (P&T) (Santos et al., 2004), 
and solid-phase microextraction (SPME) (Guadarrama 
et al., 2001; Lozano et al., 2008b), among others.

In the HS method, a thermodynamic equilibrium is al-
lowed between the liquid sample and its vapor phase and 
then it is extracted and transferred to the sensors by a con-
stant flow of an inert gas to prevent wine oxidation. HS is 
widely used for its simplicity and reproducibility. The main 
drawback of this method is the extraction of high amounts of 
water and ethanol that can interfere with the sensor response.

The P&T method is based on the transport of volatiles com-
pound to a trap by means of an inert gas and the subsequent 
thermal desorption. This method has the advantage of increas-
ing the selectivity and sensitivity toward wine compounds, 
thus increasing the discrimination capability of the e-nose.

The SPME method consists of the extraction of analytes 
from the matrix through the adsorption on a silica fiber cov-
ered by a sorbent material. Desorption is achieved by tem-
perature or by organic solvents.

Comparisons between methods are a further subject of 
study. Two types of purging, trapping methods and four 
types solid-phase microextraction methods were compared 
in Lozano et al. (2008a,b). Aside from the sample han-
dling, the sample itself may be preprocessed such as in the 
analysis of the quality of wine and beer; the preprocess-
ing procedure of dehydration and dealcoholization helped 
the e-nose to classify aromas to a better extent (Ragazzo-
Sanchez et al., 2005).

14.2.2 Sensors

The core of an e-nose for wine applications consists of an 
array of gas sensors useful for the analysis of the aroma of 
wine samples. Most common are conductive sensors (Smyth 
and Cozzolino, 2013), to which two types of materials are 
commonly used: metal oxides (MOX) (Santos et al., 2004) 
and conducting polymers (CP) (Guadarrama et al., 2001). 
Apart from conductive sensors, gas detection has also been 
done using optical sensors (Elosua et al., 2012) and gravi-
metric sensors, such as quartz microbalance (QMB) sensors 
(Di Natale et al., 2004) and surface acoustic wave sensors 
(SAW) (García et al., 2006).

Semiconductor metal-oxide-based gas sensors have 
been studied for many years; despite this, further research is 
ongoing mainly to improve their sensitivity, selectivity, and 
stability. Sputtering, thermal vacuum deposition, chemical 
vapor deposition (CVD), and sol–gel process are the most 
widely used deposition techniques for the sensitive layers. 
They are deposited either as a thick or thin film over differ-
ent types of substrates, mainly ceramic or silicon. Although 
they are strongly affected by water and ethanol, coupling 
with selective extraction techniques, using calibration 
methods and careful design allow e-noses based on them a 
great discrimination power.

Conducting polymer gas sensors exhibit interesting prop-
erties that make them useful for gas sensors: room tempera-
ture operation, easy to prepare, and quick response, among 
others. They experiment changes in their electrical resistance 

FIGURE 14.1 Block diagram of an e-nose for wine discrimination.
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when exposed to different volatile species. Most used sensors 
in wine discrimination are based on the following conducting 
polymers: polypyrrole, poly-N-methylpyrrole, polyaniline, 
and polythiophene, and their derivatives. In spite of some 
promising perspectives, these sensors lack specificity, show a 
limited reproducibility, and display a marked cross- sensitivity 
to water vapor.

Quartz crystal microbalance sensors essentially weigh 
the amount of gas or vapor interacting with a sensing layer 
coated on a microbalance. SAW sensors work in a similar 
way; the vapor is sorbed by the sensitive layer, resulting in 
a mass increase which modifies the surface wave velocity 
in the device. Several materials are used as sensitive layers 
in both cases. The ones most used are phthalocyanines, cy-
clodextrins, organometallic compounds, and rubber polymers 
as polyepichlorohydrin (PECH), polyetherurethane (PEUT), 
polybutadiene (PBD), and polydimethylsiloxane (PDMS).

14.2.3 Data Acquisition

The instrumentation system of an e-nose measures the sen-
sor chemical signals and converts them to electrical signals 
amplifying and conditioning them, if necessary. The signal 
must be converted into a digital format to be processed by a 
computer for further signal and data analysis. Several meth-
ods are used for acquiring the data for use in further blocks: 
microprocessors and microcontrollers combined with A/D 
converters, digital multimeters and counters combined with 
multiplexers connected to computers and data acquisition 
cards. The choice of the technology to use depends on the 
requirements of size, power, type of sensors used, and ap-
plication of the designed e-nose. One of the critical features 
of the data acquisition system is the resolution obtained in 
the measurements that depends directly on the resolution 
selected in the analog to digital converters used.

14.2.4 Data Processing

The multivariate information obtained by the sensor array 
can be sent to a display so a human can read that informa-
tion and do an action or an analysis. Also that information, 
that is an electronic fingerprint of the volatile compound 
measured, can be sent to a computer to perform an auto-
mated analysis and emulate the human nose. This auto-
mated analysis usually comes from methods of statistical 
pattern recognition, neural networks, and chemometrics. 
Data processing systems are composed by several stages 
of processing multivariate data. In the first, the sensor data 
are preprocessed. In this sense, the data curves are usually 
smoothed, drift is compensated, outliers are eliminated, and 
also extracting of descriptive parameters can be done in 
this phase. In the second stage, an extraction or a selection 
of the features that will be used by the pattern recogniz-
ing method is done. In the third part, a classifier is used to 

decide to which class the measured sample belongs. The 
final stage is to validate the model with additional data to 
estimate its accuracy. Choosing an inappropriate classifica-
tion algorithm could result in poor results, either because 
the algorithm lacks sufficient plasticity to model nonlinear 
data, or because a highly plastic model was overtrained on 
an insufficient number of training data. A recent manuscript 
(Marco and Gutierrez-Galvez, 2012) reviews the advances 
made in recent years in signal and data processing for ma-
chine olfaction and chemical sensing.

14.2.5 Electronic Noses for Wine  
Discrimination

An e-nose for wine discrimination must collect several gen-
eral requirements. First, the choice of a suitable extraction 
procedure to qualitatively and quantitatively represent the 
wine original aroma. Moreover, the samples management 
must be done avoiding wine evolution. In other words, it 
can be difficult to obtain a representative extract of the wine 
which has not been altered or degraded in any way. One of 
the main problems that researchers have to face when they 
are designing an e-nose for wine is the influence of water 
and ethanol. In this sense, it is preferable to use sampling 
systems that could eliminate this influence or sensors with 
low sensitivity to them or those saturated at low concentra-
tions. An additional problem is the presence of sulfur com-
pounds in wine, which cause poisoning of the sensors and 
an important degradation in their characteristics. Moreover, 
sensors of the array and the measurement parameters should 
be optimized in order to offer the best discrimination of the 
samples to analyze. Concerning the instrumentation, the ac-
quisition of the sensor signals with a high signal-to-noise 
ratio and resolution is a key aspect to obtain an optimal data 
for further analysis. Another important aspect related with 
the electronics is the control of the parameters of the e-nose: 
flows, temperatures, reference voltages, and so forth, should 
be carefully controlled with the minimum error in order not 
to alter the environment of measurement. Finally, the suc-
cessful design of a data processing system requires a careful 
consideration of the various issues involved in processing 
multivariate data. Special attention must be paid to drift 
compensation algorithms, recalibration procedures, and ro-
bust classifiers when they are applied to the wine field.

As an example of a specific development of an e-nose for 
wine discrimination is presented in (Lozano et al., 2014). It 
shows the development of an in situ and online e-nose in-
stalled in a wine cellar of Madrid O.D. for the continuous 
measurement of the wine evolution (Fig. 14.2). The sys-
tem has a novel sampling method that extracts the aroma 
directly from the tanks where wine is stored; and it auto-
matically carries the volatile compounds to the sensor cell 
with the advantage of making continuous monitoring of the 
wine without the need of taking samples. The whole system 
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is fully automated and controlled by the computer and can 
be supervised on the Internet. This system was also able to 
differentiate both wines and to detect the controlled altera-
tions produced in the same ones (oxidization, correction of 
volatile acidity, pH, etc.) along 9 months. Correlation coef-
ficients near to 1 are obtained in the prediction of several 
VOCs concentrations determined by GC–MS. This system 
could contribute for detecting off-odors and warning the 
wine expert to correct it as soon as possible, preventing the 
wine spoilage and improving its final quality.

There are some commercial general-purpose e-noses that 
have been used in wine applications. Some examples are: 
A32S Aromascan (Pinheiro et al., 2005); HERACLES (Yu 
et al., 2014); FOX 2000, 3000, and 4000 (Ragazzo-Sanchez 
et al., 2006, 2008; Berna et al., 2008); PEN-3 (Macías 
et al., 2013); Cyranose 320 (Ragazzo-Sanchez et al., 2005); 
and Znose (Duarte-Mermoud and Beltran, 2009).

14.3 WINE APPLICATIONS OF 
ELECTRONIC NOSES

Since the development of the “so-called” e-noses, the 
amount of publications in the area of artificial olfaction 
is more than 12,000 articles and they have been applied 
to several fields summarized in several review papers 
(Smyth and Cozzolino, 2013; Loutfi et al., 2015) and 

books (Pearce et al., 2006; Gardner and Bartlett, 1999). 
As a general rule, the discrimination of the wines is not 
an easy task due to the complexity and heterogeneity of 
its headspace. However, the classification of the wines 
is very important because of high economic value of the 
wine-product, to protect the quality wines, to prevent il-
legal adulteration of wines, to guarantee the wine quality 
in import–export market, and to control beverage process-
ing. Huge quantities of applications of e-noses have been 
described for wine-producing industry and were summa-
rized in Table 14.1 and some of them are described in the 
following sections.

14.3.1 Wine Aroma and Wine Classification

Wine is a very complex commercial product, which can 
vary greatly in aroma and flavor according to the large pos-
sible variations in its production. The formation and trans-
formation of organic acids at must fermentation and wine 
production are of great importance in wine making. Bio-
chemical processes caused by yeast enzymes are significant 
to achieve better quality of wine. Organic acids also protect 
wine against bacterial diseases. However, high content of 
some acids badly influences wine flavor.

The qualitative and quantitative analyses of the most dom-
inant aromas and flavors evolve from the headspace of wine, 

FIGURE 14.2 E-nose for wine discrimination installed in an experimental wine cellar.
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TABLE 14.1 Electronic Noses and Their Wine Applications

Application Sensor Technologya Number of Sensors
Data Processing 
Algorithm References

Oxygen level, phenolic 
content in red wines

MOX 14 PLS-DA Rodriguez-Mendez et al. 
(2014)

Wine compounds 
solution

MOX 2 PCA Wongchoosuk et al. 
(2009)

CP (Aromascan) 32 PCA Pinheiro et al. (2005)

Red wine aging MOX 10 PCA, LDA, CA Wei et al. (2014)

MOX 9 PCA, Tucker3 Prieto et al. (2012)

MOX 4 PLS-DA Apetrei et al. (2012)

MOX 16 PCA, RBFNN Santos et al. (2011)

MOX 16 PCA, RBFNN Lozano et al. (2008a)

FID (HERACLES) 1 PCA, DA Yu et al. (2014)

Acetic acid in wine MOX (PEN-3) 10 PCA, MLP Macías et al. (2013)

MOX 4 PCA, RBFNN Lozano et al. (2011)

Influence of wine 
bottle closures

MOX 15 PCA, PLS-DA Prieto et al. (2011)

Wine spoilage, off -flavors Potentiometric 5 PCA, CLA Gil-Sánchez et al. (2011)

MOX (FOX 3000) 12 PCA, CLA Cabañes et al. (2009)

MOX (FOX 4000) 18 PCA, DFA Ragazzo-Sanchez et al. 
(2009)

MOX (FOX 3000), MS 12, 1 PLS Berna et al. (2008)

MS 1 PCA, PLS Cynkar et al. (2007)

1 PLS Martí et al. (2003)

Discrimination between 
wines with special 
grape treatments (dried, 
sprayed, …)

CP (Cyranose) 32 PCA, CDA Zoecklein et al. (2011)

QMB (QMB6) 6 ANOVA, CDA, PCA Martin et al. (2008)

MOX (FOX 4000) 18 PCA Ragazzo-Sanchez et al. 
(2005)

CP (Cyranose) 32 ANOVA, PCA Devarajan et al. (2011)

QMB 8 Lopez de Lerma et al. 
(2012)

Alcoholic fermentation MOX 10 PCA Buratti et al. (2011)

Wine classification MS 1 PCA, PLS Cozzolino et al. (2010)

MOX 16 PCA, PNN Santos et al. (2004)

SAW 8 DFA, PCA McKellar et al. (2005)

MOX (FOX 3000) 12 PCA Martí et al. (2004)

MS 1 PCA, PLS, ICA Di Natale et al. (2004)

QMB 8 PCA, BPANN Penza and Cassano 
(2004)

MOX 4 PCA, PLS, RSR Capone et al. (2013)

MOX 8–10 KIII ANN Fu et al. (2012)

QMB 8 PCA García-Martínez et al. 
(2011)

EP 12 PCA Guadarrama et al. (2001)

Threshold detection of 
aromatic compounds

MOX 16 PCA, PNN Santos et al. (2010)

MOX 16 PCA, PNN Arroyo et al. (2009)

(Continued )
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namely, dimethylamine (DMA), trimethylamine (TMA), eth-
yl octanoate, 1-hexanol, ethanethiol, and ethyl acetate.

Arroyo et al. (2009) have assessed the quality of wine 
using an e-nose comprising of 16 tin oxide thin film based 
sensors. The same e-nose has been used to detect the main 
aromas in red and white wines (Lozano et al., 2006). In a 
study by Lozano et al. (2005), 29 typical aromas in white 
wine grouped in different families (floral, fruity, microbio-
logical, herbaceous, and chemical) were recognized with 
an e-nose. Fig. 14.3 shows an example the PCA score plot 
of fruity aromas. Some papers also address the discrimi-
nation among different brands or types of wine (Lozano 
et al., 2006; Penza and Cassano, 2004).

14.3.2 Off-Odors and Frauds Detection

Quality of a wine can be affected by positive and negative 
quality factors, such as off-odors. Quick and accurate iden-
tification of off-odors are advantageous to both winemakers 
and wine merchants. For the winemaker, early remedial ac-
tion often can correct the situation before the fault becomes 
serious or irreversible. Some of the most important off-
odors producing compounds in wine are acetic acid (Macías 
et al., 2013; Lozano et al., 2011), ethyl acetate, cork-related 

and sulfur compounds (Santos et al., 2010). E-nose tech-
niques have also been used to detect defects or spoilage, for 
example, caused by high concentrations of 4-ethylphenol 
and 4-ethylguaiacol (Berna et al., 2008; Cynkar et al., 2007); 
2,4,6-trichloroanisole; and oct-1-en-3-ol (Martí et al., 2003; 
Ragazzo-Sanchez et al., 2009).

Another interesting application of e-nose technology 
is the detection of wine fraud in which there are attempts 
at misleading the wine drinker (and/or wine collector) into 
believing that he or she has bought a different/better product 
than is actually the case. Adulteration is the common 
word for many kinds of food and beverage fraud. Wine 
adulteration can be committed through dilution with water, 
addition of alcohol or other substances, and blending with, or 
replacement by, wine of a lesser quality. E-nose technology 
offers the possibility of realizing in situ analysis of wines 
and has been shown able to detect adulteration of wine 
with ethanol, methanol, and other substances (Penza and 
Cassano, 2004). Apart from such adulteration, wine fraud 
can be committed through misinformation about the wine, 
such as mislabeling related with the origin of the grapes 
and/or wine and the winemaking process. In this field, 
e-noses have been used to discriminate geographical origin 
(Cynkar et al., 2010; Berna et al., 2009; Duarte-Mermoud 

Application Sensor Technologya Number of Sensors
Data Processing 
Algorithm References

Geographical classifica-
tion

MS 1 PCA, SLDA, PLS-DA Cynkar et al. (2010)

MOX (Fox 3000) 12 LDA Berna et al. (2009)

SAW (Znose) 1 LDA Duarte-Mermoud and 
Beltran (2009)

MOX (PEN2) 10 PCA, LDA Buratti et al. (2004)

MOX 14 Rodriguez-Mendez et al. 
(2004)

Wine evolution 
monitoring

MOX 16 PCA, PNN Lozano et al. (2014)

CP (Aromascan) 32 PCA Pinheiro et al. (2002)

Grape variety 
classification

MOX 16 PCA, PNN Aleixandre et al. (2009)

MOX 16 PCA, PNN Lozano et al. (2007a)

MOX 16 PCA, PNN Aleixandre et al. (2008)

MOX 16 PCA, PNN Lozano et al. (2007b)

MOX 14 PCA Villanueva et al. (2006)

MS 1 PCA, PLS, LDA Cozzolino et al. (2005)

Aroma prediction, 
correlation

MS 1 PCA, PLS Cozzolino et al. (2008)

MOX 16 PNN Lozano et al. (2007a)

MOX 16 PNN Aguilera et al. (2012)

MOX 16 PNN Lozano et al. (2006)

MOX 16 PNN Lozano et al. (2005)

MOX 12 GA Buratti et al. (2007)
aCommercial models in brackets.

TABLE 14.1 Electronic Noses and Their Wine Applications (cont.)
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and Beltran, 2009; Buratti et al., 2004; Rodriguez-Mendez 
et al., 2004) and they can also be used to detect frauds in 
differentiating traditionally aged wines from artificially 
aged wines (Santos et al., 2011).

14.3.3 Grape Variety Classification and 
Special Grape Treatments

An important characteristic, which determines the flavor 
and character of a wine, and hence its quality, is the grape 
variety from which it is produced. Since the grape variety 
is responsible for different aromas in wines, the discrimina-
tion of the variety of grapes used in the wine elaboration can 
be achieved with machine olfaction technology. A study by 
Aleixandre et al. (2009) presented the analysis and classifi-
cation of different wines depending simultaneously on their 
denomination of the origin and the grape variety.

There have been many studies (Lozano et al., 2007a,b; 
Aleixandre et al., 2008; Villanueva et al., 2006; Cozzolino 
et al., 2005) that showed different experiments of e-nose 
prototypes used for grape variety classification (Airén, 
Chardonnay, Macabeo, Malvar, Pardina, Riesling, and Gr-
enache, Mencía, Prieto Picudo, Syrah, Tempranillo, Tinta 
del País, Tinta de Toro).

Special grape treatments refer to applications of e-noses  
to differentiate volatiles of grapes and wines treated 
with an aqueous ethanol spray (Zoecklein et al., 2011; 
Martin et al., 2008), dealcoholization of samples (Ragazzo-
Sanchez et al., 2005), the effect of grapevine canopy side 
(Devarajan et al., 2011), and the effects of sun-drying and 
dehydration (Lopez de Lerma et al., 2012).

14.3.4 Wine Elaboration Process 
Monitoring and Wine Aging

The wine elaboration process, including wine aging in oak 
barrels, is critical for obtaining quality wines. Oak barrels 
are commonly used in the aging of wine and spirits be-
cause of the barrel’s positive effects in their sensory char-
acteristics. The identification of wine elaboration (Lozano 
et al., 2014) and aging process has a great importance for 
origin denominations for control of frauds. As an example, 
an e-nose was used for recognition and detection of wine 
aging (Lozano et al., 2008a): the same wine was aged in 
different types of oak barrel (French and American oak) and 
during different lengths of time (0, 3, 6, and 12 months); 
Fig. 14.4 shows the results in a PCA plot. Another appli-
cation is the discrimination of wine samples according to 
aging type: in an oak barrel or in stainless steel tanks with 
the addition of small oak wood pieces (Prieto et al., 2012; 
Santos et al., 2011).

14.3.5 Comparison with Other Techniques

Comparative studies among the responses from electronic 
nose and traditional wine analysis techniques dates back to 
the early 1990s.There has been a twofold motivation for de-
veloping such correlations: mainly with human panels and 
gas-chromatography and mass-spectrometry analysis. The 
quantifying method must perform some kind of regression 
analysis to establish a predictive model from the feature vec-
tor coming from the gas sensor responses to another set of 
continuous dependent variables, such as gas concentration. 

FIGURE 14.3 PCA plot of the measurements of fruity aromas in white wine. (With permission from Elsevier Science.)
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The regression can be of several types. One of the more 
common situations is the monitoring of a process variable 
(eg, quality level, gas concentration …) associated with an 
analyte into a mixture of unknown compounds or to make 
a sensory analysis in which the dependent variable is the 
response of a human sensory panel to the same analytes 
(eg, intensity, hedonic tone …). PCR and PLS are some 
of the regression methods that can be used to solve those 
problems.

The works that are most prevalent in sensor comparison 
with panels are related to wine quality testing. This is rather 
expected due to the rich and varied qualifiers often used in 
the wine industry. Arroyo et al. investigated a homemade 
e-nose and 25 human tasters trained to classify 17 differ-
ent aromas, which are used to discriminate the quality of 
wine. It was found that human tasters performed better in 
identifying certain aromas (Arroyo et al., 2009). However, 
an e-nose subsequently developed by Santos et al. (2010) 
was found to be better in detecting the specific thresholds 
of typical red wine compounds such as ethyl acetate and eu-
genol and white wine compounds such as hexanol and ethyl 
octanoate. In another study, the success rate of an e-nose 
was compared to a sensory panel and a GC–MS through 
28 wine samples. All the sensor signals were referenced to 
the signal from a mixture of ethanol (12% v/v and distilled 
water) for drift reduction and compensating ethanol effects. 
It was found that the results provided by the e-nose em-
ploying PLS regression algorithm corresponded better to 
the sensory panel results than to the predictions of GC–MS 
(Lozano et al., 2007a). Fig. 14.5 shows the estimated values 
of sensory panel attributes versus real values by PLS.

14.4 CONCLUSIONS AND FUTURE 
TRENDS

This chapter has attempted to provide information about 
recent advancements in the e-nose applications in the wine 
field, according to the four basic blocks of these devices: 
sampling systems, gas sensors, data acquisition, and sig-
nal processing. The main problems encountered in wine 
applications and the main features and differences with 
general-purpose e-noses have also been revised. The main 
applications found in the literature have also been reviewed 
(Table 14.1).

The concept “e-nose” is very attractive since researchers 
have attempted to mimick the mammalian sense of olfac-
tion without its subjective component. In any case, e-noses 
are not commonly used in wine industrial processes. Some 
reasons could be related with the traditional and familiar 
sense of the wine industry. However, most of the well-
known problems (robustness, selectivity, and reproducibil-
ity) of e-noses applied to wine must be solved.

First, there is no an ideal sampling method. The choice 
of the procedure depends on the objective of the study, as 
well as the matrix and the sensitivity of the analytical meth-
od. On the detector’s side, major focus must be given to 
the design and development of drift-free sensors that can be 
used reliably over long temporal horizons, which could be 
a convincing factor for the wine industry when considering 
using such a device. Consequently, the internal drift influ-
encing factors like crystalline structure variation, grain size 
variations, grain boundary effects, uniformity in the dopant 
concentrations, perfect contact materials, and thickness of 

FIGURE 14.4 PCA score plot of measurements of wine samples aged in French and American oak barrels for 0, 3, 6, and 12 months. (With 
permission from Elsevier Science.)
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the sensing elements should be addressed. Nanotechnology 
will decisively influence the miniaturization and cheapen-
ing of e-noses, integrating gas sensors in smart devices, and 
creating large sensor networks.

Second, advanced instrumentation and electronics 
combined with advanced and miniaturized sensors could be 
applied to new fields in the entire wine production chain: 
from the vineyard (small sensor motes forming part of 
self-organizing sensor networks for control and monitor 
environmental parameters) to the end consumer (eg, in the 
corks to report the status of the wine) through the stages of 
transport and distribution. The integration of gas sensors in 
smart devices, RFID (radio frequency identification) tags, 

and other devices will contribute, as other technologies 
have some years ago, to widely extend artificial olfaction 
to millions of users.

Third, the signal and data processing is the last compo-
nent of an e-nose technology. While the basic methodology 
to build qualitative or quantitative prediction models is firm-
ly established, there are still limited literature regarding the 
use of signal and data processing to improve the robustness 
of the systems. The need to compensate for sensor drift, hu-
midity, and the selectivity requiring that an e-nose is trained 
to recognize specific patterns representing odors is a very 
important issue in artificial olfaction. Another problem of 
the advance in this field is that the developed techniques 

FIGURE 14.5 Sensory panel attributes estimated by PLS model (y) versus real values (x). (With permission from Elsevier Science.)
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published are not available to the scientific community for 
testing and improving them. In a similar line of thought, 
data sets are not available like those that have occurred in 
other related fields, in order to compare the performance of 
the algorithm developed. We hope, in a near future, to see 
free codes and data sets properly documented, available for 
the scientific community.

Novel and amazing applications of e-noses are expected 
in the field of wine in the coming years that benefit both 
winemakers and users. It will be necessary to develop ro-
bust systems for long time measurements that can be easily 
maintained, and do not require expert technicians for han-
dle. This is the main challenge for the e-nose community.
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Electronic Tongue Principles  
and Applications in the Food Industry
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15.1 INTRODUCTION

Food distribution and its safety are very actual problems 
of the modern society. While in advanced nations 
overconsumption is continuously growing, and it is 
especially pronounced in the food industry sector, in the other 
part of the globe, the famine is still a horrifying reality even 
nowadays. The security in food sector is required to ensure 
the availability of food, uniform distribution, quality, and 
safety. The latter depend on product chemical composition, 
physical properties, the level of microbiological and toxic 
contamination, and storage conditions; these are regulated 
by ISO 22000 standards (www.iso.org) and Hazard Analysis 
and Critical Control Points (HACCP) (http://www.fda.gov/
Food/GuidanceRegulation/HACCP/).

Nowadays consumers have become more and more se-
lective and demanding in regards of their diet. The taste and 
the quality of food are the primary tools for the consumer 
to express his or her preferences. The increased consumer 
requirements of food quality and safety issues have resulted 
to the development of new techniques for food authentica-
tion. However, most of these techniques are time consuming 
and require sophisticated apparatuses and skilled personnel 
(Pico, 2012). Due to these limitations, alternative analytical 
methods should be provided. A brilliant example of such 
an alternative approach for food assessment is an applica-
tion of electronic tongue multisensory systems mimicking 
the human gustatory system functioning. The e-tongue is 
capable of determining food quantitative composition and 
recognizing (identifying, classifying, discriminating) dif-
ferent food tastes. Moreover, the artificial sensorial assess-
ment of analyzed food products can be easily correlated to 
human perception. The modern electronic tongues permit to 
perform a fast and nondestructive evaluation of food quality 
both in the laboratory environment, and in online analyses 
during the industrial food manufacturing process. Several 
comprehensive reviews on e-tongue applications for food-
stuff analysis have been previously published (Sĺiwinśka 

et al., 2014; Escuder-Gilabert and Peris, 2010). There are 
several commercially available systems on the market, 
such as, a-Astree from AlphaMOS (France), the Insent® 
electronic taste sensing system from Anritsu Corp. (Japan), 
multiarray chemical sensor from McScience (Korea), and 
the E-tongue from Sensor Systems (St. Petersburg, Russia). 
These artificial taste systems, as well as home-made devices 
developed by different research groups, were intensively 
utilized and continue to meet a growing interest for various 
food assessment tasks.

In this chapter the principles and implementation of 
artificial taste systems for foodstuff analysis performed in 
the last 5 years are reviewed. The main attention is given 
to the analysis of solid foodstuffs, and such important flu-
ids as milk and edible vegetable oils, whereas the bever-
ages’ assessment will be discussed in other chapters of this 
book.

15.2 ELECTRONIC TONGUE DEFINITION 
AND PRINCIPLES

According to the IUPAC definition, an electronic tongue is 
“a multisensor system, which consists of a number of low-
selective sensors and uses advanced mathematical procedures 
for signal processing based on Pattern Recognition and/or 
Multivariate data analysis …” (Vlasov et al., 2005). Among 
the sensor types employed in the modern electronic tongue 
systems are electrochemical such as voltammetric (Men 
et al., 2013, 2014; Apetrei et al., 2013; Wei and Wang, 
2011a,b, 2013; Rodríguez-Méndez et al., 2009; Ruiz-Rico 
et al., 2013; Campos et al., 2010, 2013; Medina-Plaza 
et al., 2014), potentiometric (Tortora et al., 2009; Dias 
et al., 2014; Hruskar et al., 2010a,b; Lvova et al., 2012;  
Gil et al., 2011; Major et al., 2011; Zakaria et al., 2011; 
Escriche et al., 2012; Sousa et al., 2014; Kutyła-Olesiuk et al., 
2013a), impedimetric, or capacitive sensors (Angkawisittpan 
and Manasri, 2012; Ulloa et al., 2013) sensors, optical 
sensors (Tortora et al., 2009), enzyme-based biosensors 
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 (Medina-Plaza et al., 2014), and hybrid or hyphenated 
devices (Tortora et al., 2009; Apetrei et al., 2010; Haddi 
et al., 2013; Bougrini et al., 2014; Zakaria et al., 2011; 
Kutyła-Olesiuk et al., 2013b).

The concept of the e-tongue has been advanced in recent 
years and along with nonspecific chemical sensors imple-
mentation in the arrays of specific ion-selective electrodes 
(Lvova et al., 2012; Zakaria et al., 2011; Kutyła-Olesiuk 
et al., 2013a,b), and the application of novel future extrac-
tion techniques (Wei and Wang, 2011b; Ulloa et al., 2013) 
were reported. The global information obtained from the 
e-tongue is still utilized to obtain a digital fingerprint of 
product gustatory characteristics, but also concrete pa-
rameters and the contents of specific compounds can be 
determined by the appropriate choice of sensors and che-
mometric techniques. A measurement performed by artifi-
cial sensing systems generates a vast volume of data; these 
data are then used to treat with chemometric methods. The 
most often applied techniques are artificial neural networks 
(ANN), principal component analysis (PCA), cluster and 
hierarchical cluster analysis (CA, HCA), support vector 
machine (SVM), various regression methods: partial least 
squares (PLS), multiple linear regression (MLR), and prin-
cipal component regression (PCR). The detailed descrip-
tion of these chemometric methods can be found elsewhere 
(Sĺiwinĺka et al., 2014).

The various sensing materials are employed in e-tongue 
technology, among them are metallic sensors (Wei and Wang, 
2011a,b; Bougrini et al., 2014; Ruiz-Rico et al., 2013; Es-
criche et al., 2012; Campos et al., 2013; Tian et al., 2013), car-
bon-paste (Apetrei and Apetrei, 2014; Apetrei et al., 2010; 
Bougrini et al., 2014; Rodríguez-Méndez et al., 2009), chal-
cogenide glass electrodes (Zakaria et al., 2011), polymeric 
films (Toyota et al., 2011a,b; Yasuura et al., 2014; Ciosek 
et al., 2015; Jaĺczyk et al., 2010; Tortora et al., 2009; Lvova 
et al., 2012; Kutyła-Olesiuk et al., 2013a), molecular im-
printed polymers (Bueno et al., 2014), and multitransduc-
tion coatings (Tortora et al., 2009). In the next sections, 
some selected applications of e-tongue technology based on 
these materials in food industry are presented.

15.3 SAMPLE PRETREATMENT 
REQUIREMENTS FOR FOOD ANALYSIS  
BY E-TONGUE

While previously electronic tongue devices were mainly 
used to analyze liquids, recently there have been much 
research on the assessment of solid, oily, fibrous, or 
nonaqueous foodstuffs. In this relation, e-tongue analysis 
meets several application problems concerned with 
the sample state and particular pretreatment procedure 
requirements. Thus, the solid food samples should be 
transformed into the appropriate phase state in order to be 
properly measured (and physically enter in close contact 

with sensitive materials). For instance, solid foods should 
be crushed or minced (Campos et al., 2010, 2013; Tian 
et al., 2013; Kutyła-Olesiuk et al., 2013b); the cold samples 
must be heated to the sensor operation temperature, the 
hot ones—cooled, nonuniform—homogenized by stirring 
of sonication (Rodríguez-Méndez et al., 2009; Ulloa 
et al., 2013), and so forth. Moreover, considering that 
most types of sensors applied in the modern e-tongue 
systems operate mainly in a liquid phase (and even more 
often, in aqueous media), the sample wetting, dilution, 
and/or extraction with “sensor-friendly” solvents are 
required (Men et al., 2013; Dias et al., 2014; Apetrei and 
Apetrei, 2013; Haddi et al., 2013; Wei and Wang, 2011b, 
2014; Ulloa et al., 2013). These processes are similar to 
the preprocessing that the human mouth applies to a food 
while eating: the mastication to diminish the food pieces 
size, the insalivation to start initial food transformation with 
saliva enzymes that prepare it for the further passage to the 
digestion tract, and the tasting that occurs on the particular 
tongue zones, sensitive to the five basic tastes.

15.4 TASTE AND TASTE COMPOUNDS 
DISCRIMINATION BY E-TONGUE

The flavor assessment and the taste-determining compounds 
detection were and still remain one of the most common 
applications of e-tongue systems since the very first reports 
dated in the early 1990s (Hayashi et al., 1990). The five 
basic tastes influencing the overall flavor of food are sweet, 
salty, bitter, sour, and umami (or delicious). Recently 
a kokumi term has been introduced to describe product 
“complexity,” “mouthfulness,” and “long-lastingness.” The 
molecules responsible for basic tastes are sugars bearing 
carbonyl groups for sweetness, mainly sodium ions for 
saltiness, hydrogen ions for sourness, and monosodium 
glutamate that is often introduced in foodstuffs to enhance 
the “appetitive” umami taste. A plenty of compounds and 
among them many natural toxins have bitter taste; that is 
why, in order to provide natural protection reaction, the 
human tongue is extremely sensitive to bitterness. One of 
the reference bitter-tasting compounds is quinine. The most 
potent kokumi substance known to date is a peptide molecule 
composed of glutamine, valine, and glycine amino acids.

In the past, the attempts to correlate the basic taste com-
pounds content to food flavor were not in general successful, 
since the taste sensation is a complex process determined by 
the combination of several chemical, physicochemical, and 
biological parameters of food (Rosenthal, 1999). Neverthe-
less, the basic taste compounds are often used to calibrate 
artificial sensing systems for qualitative monogustatory 
characterization tasks. Thus, Toyota et al. (2011a,b) have 
studied in details the sweetness responsible compounds 
detection in food, and developed the sweetness sensors to 
be applied in the taste sensing system for nonelectrolytes 
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(sugars and sugar alcohols) and positively charged artificial 
sweetener compounds, like aspartame (Yasuura et al., 2014). 
An application of interdigital capacitor e-tongue for deter-
mination of sugar content in sugar solutions was reported 
by Angkawisittpan and Manasri (2012). Other applications 
are related to the bitterness intensity evaluations of drags 
(Liu et al., 2014a) and dairy protein hydrolysates (Newman 
et al., 2014), an assessment and comparison of umami taste 
coming from different flavor enhancers (Yang et al., 2013), 
discrimination of pharmaceutical formulations, and evalu-
ation of the masking effect of active ingredient (normally 
bitter) in drugs by the addition of sweeteners and fla-
vors (Ciosek et al., 2015; Guhmann et al., 2012; Jańczyk 
et al., 2010; Eckert et al., 2014).

15.5 APPLICATION AREAS IN FOOD

15.5.1 Olive and Vegetable Oils

Being one of the most consumed foodstuffs, vegetable oils, 
and in particular olive oils, have been actively assessed 
by multisensory systems over the last two decades, and 
still now the interest to vegetable oils analysis by artificial 
sensing systems is high. Traditionally the artificial 
olfaction systems, electronic noses, were mainly applied 
for the vegetable oils aroma assessment (Pico, 2012). The 
e-tongues’ use was much less due to the experimental 
problems related to the obligatory sample pretreatment: 
the oils’ should be extracted or diluted with hydrophilic 
solvents in order to permit a proper functioning of 
electrochemical sensors utilized in e-tongue. Due to 
the large variety of brands and trademarks of vegetable 
oils in the market, the main applications of electronic 
tongue systems for oils analysis are: the identification of 
the oil plant source material (Men et al., 2013; Tortora 
et al., 2009), the brand and/or geographical origin 
uniformity control (Haddi et al., 2013; Dias et al., 2014), 
the insurance of a product quality without adulterations 
(Tortora et al., 2009; Apetrei and Apetrei, 2014; Men 
et al., 2014), the identification of different oil components 
and their content quantification (Tortora et al., 2009; 
Rodriguez-Mendez et al., 2008), and the taste assessment 
(Dias et al., 2014; Apetrei et al., 2010).

Thus, Men et al. (2013) have reported a voltammetric 
e-tongue based on singular Au working electrode for classi-
fication of different types of edible oil coming, respectively, 
from corn, sunflower, soybeans, sesame, and peanuts. The 
oil samples were extracted with deionized water at 30°C 
for 5 min, and the aqueous phase was then analyzed with 
e-tongue. The system could discriminate all oils; the best 
identification result was obtained with PCA. Lately the 
same e-tongue device in combination with e-nose com-
prising commercial TGS Figaro gas sensors was applied to 
detect the blending ratio of the old frying oil and the new 

edible oil in the process of fried food manufacturing (Men 
et al., 2014).

The Portuguese and Spanish oils obtained from single 
olive cultivars were analyzed by means of a potentiometric 
e-tongue system comprising 40 screen-printed potentiomet-
ric sensors modified with cross-sensitive PVC membranes 
doped with different preestablished mass combinations 
of four lipidic additives by Dias et al. (2014). Polar com-
pounds from each oil were extracted using a hydroethanolic 
solution (H2O:EtOH, 80:20 v/v). Oils were correctly clas-
sified according to olive cultivar and e-tongue sensitivity 
was greater than 97%. Moreover, the system ability to sense 
polar compounds present in olive oils gave a possibility to 
assess indirectly the organoleptic properties like bitterness, 
astringency, or pungency.

An electronic tongue system based on square wave 
voltammetry and carbon paste sensors modified with ed-
ible oils was applied by Apetrei and Apetrei (2014) for the 
detection of adulterations of an extra virgin olive oil with 
different percentages of sunflower oil, soybean oil, and corn 
oil. A possibility to classify correctly the adulterated oils 
when the concentration level of adulterant oil was between 
5 and 10% and to evaluate polyphenol’s content was shown. 
Previously the same authors (Apetrei and Apetrei, 2013) 
have reported the detection of phenolic content of extra 
virgin olive oils by array of polypyrrole modified screen 
printed electrodes.

In our previous work, the vegetable oils of different plant 
sources (seed and olive) were tested by  opto-potentiometric 
e-tongue, based on porphyrin-doped multitransduction 
sensors to detect possible defects or falsifications (Tortora 
et al., 2009). The oils have been extracted by methyl and 
ethyl alcohols (500 mL of oil with 3 mL of alcohol). Oil 
extract (100 mL) was injected in 0.01 M background KCl 
carrier solution flowing with 1 mL/min rate through the 
transparent measurement cell. The same sensing film pro-
duced during the analysis the optical and potentiometric 
responses, and the data obtained from array were treated 
simultaneously and gave a clear oil’s discrimination. More-
over, the application of multitransduction e-tongue has per-
mitted the possibility to monitor the content of linolenic, 
linoleic, l-glutamic, and l-ascorbic acids in oils (Fig. 15.1).

The application of hyphenated artificial sensing systems 
simultaneously employing e-nose, e-tongue, and e-eye were 
reported recently for the characterization of olive oils with 
different degree of bitterness (Apetrei et al., 2010) and for 
improved classification of Moroccan virgin olive oils (Haddi 
et al., 2013). In particular, in Apetrei et al. (2010), the com-
bination of e-nose based on metal oxide (MOX) gas sen-
sors, voltammetric e-tongue with carbon paste electrodes 
modified with olive oils, and e-eye based on transmittance 
spectra, recorded using a series of LEDs in the range from 
780 to 380 nm, gave a clear discrimination of 25 extra virgin 
olives in function of olive variety. A root mean square error 
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of prediction (RMSEP) was lower than 0.099. The correla-
tions among the electronic panel data and oil bitterness index 
(scored by a panel of experts), and the polyphenolic content 
(measured by chromatographic methods) were established 
by PLS method and the correlation coefficients higher than 
0.9 were found both in calibration and validation. A low 
level of abstraction data fusion was applied in Haddi et al. 
(2013) to merge the data from e-nose composed from five 
commercial MOX sensors and voltammetric e-tongue based 
on platinum, gold, glassy carbon, and indium tin oxide (ITO) 
electrodes for correct identification of five Moroccan virgin 
olive oils according to their geographical origin. For elec-
trochemical measurements, oils were dissolved in dichloro-
methane containing tetrabutyl-ammonium tetrafluoroborate 
as supporting electrolyte and analyzed at 30°C using a water 
bath. The capability of discrimination of hyphenated system 
was superior to the two instruments taken separately.

15.5.2 Milk and Dairy Products

The dairy industry produces a wide spectrum of products, 
comprising many types of milk, yogurts and other 
fermented drinks, soft and aged cheeses, and sour creams. 
Many fermentation techniques, microorganisms, and food 
additives are used in dairy industry, and several types of raw 
milk coming from different mammal animals are utilized. 
The necessity to maintain the product uniformity, to 
guarantee the freshness, and to avoid adulterations brings to 
the growing number of electronic tongue applications 
to dairy products analysis (Wei and Wang, 2011b; Wei 
et al., 2013a,b; Hruskar et al., 2010a,b; Bougrini et al., 2014; 
Lvova et al., 2012).

Thus, Wei and Wang (2011b) have developed a voltam-
metric e-tongue composed of five metallic electrodes to 
detect the residues of six different antibiotics in bovine 
milk. Antibiotics may pass into milk from animals that are 
routinely medicated to promote growth and for therapeu-
tic and prophylactic reasons. The detection of antibiotics 
in raw milk is important, since they may negatively influ-
ence the further milk fermentation or even provoke aller-
gies in consumers. Milk samples were spiked with antibi-
otic samples (1 mg was dissolved in 100 mL of DMSO and 
then diluted to 100 mL solutions with milk). The possibility 
was demonstrated to clearly distinguish bovine milk adul-
terated with different antibiotics by discriminant function 
analysis (DFA) method was demonstrated. The quantitative 
prediction of antibiotics concentration was performed by 
PLS with all the correlation coefficients R2 over 0.9. Lately 
the same research group has reported a direct application 
of voltammetric e-tongue based on four metallic electrodes 
(Au, Ag, Pt, Pd) to monitor the quality and storage time 
of 26 samples of pasteurized milk at seven different times 
spread over 72 h after unsealing (Wei et al., 2013b) and for 
the evaluation of varieties of set yogurts and their physical 
properties (Wei et al., 2013a).

The comparison of two methods, sensory analysis and 
aAstree potentiometric e-tongue based on chemical field-
effect transistors (chemFETs), for monitoring changes and 
classification of commercial brands of probiotic fermented 
milk of different flavors was performed by Hruskar et al. 
(2010a). The appearance, consistency, color, odor, and 
flavor evaluated by trained panelists were correlated with 
e-tongue response over the 20-day period of milk storage 
on two different temperatures (+4 and +25°C) by means of 

FIGURE 15.1 PCA score plot of combined opto-potentiometric ET system response toward several oil components. (Reprinted from Tortora 
et al., 2009, with permission from Elsevier.)
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ANN and PLS methods. The possibility of e-tongue to clas-
sify probiotic fermented milk according to flavor, to moni-
tor degradation during storage, and to predict the sensory 
characteristics and their relationship to the milk quality was 
demonstrated. Another application of aAstree e-tongue 
was reported for simultaneous determination of ethanol, 
acetaldehyde, diacetyl, lactic acid, acetic acid, and citric 
acid content in 40 samples of probiotic fermented milk 
(Hruskar et al., 2010b). The data obtained from E-tongue 
were correlated by ANN to the amounts of milk compo-
nents determined by enzymatic method through reaction 
with corresponding enzymes.

A combination of voltammetric e-tongue consisted of 
four metallic working electrodes (Pt, Au, Ag, and glassy 
carbon) and of a hybrid e-nose (composed from home-made 
and commercial MOX sensors, temperature probe, and hu-
midity sensor) was applied to differentiate pasteurized milk 
brands and to recognize their storage time by Bougrini et al. 
(2014). Before performing measurements, the milk samples 
were allowed to reach ambient temperature and analyzed 
without any other pretreatment by e-tongue and e-nose. 
Treated separately, the e-tongue data have permitted a clear 
distinction of the milk brands on the first storage day, lead-
ing to 80.8% of the total variance. The combination of the 
e-nose and e-tongue data (midlevel abstraction fusion was 
applied) yielded PCA classification of all the milk storage 
days (Fig. 15.2). The SVM applied to fused data provided 
a complete identification of pasteurized milk storage days.

Previously we reported an application of multisensory 
systems for “in vitro” monitoring of salt release from model 
domestic soft cheeses during digestion in artificial gut sys-
tem and for discrimination among commercial Italian moz-
zarella cheeses produced from bovine and buffalo milk on 

the base of their salinity (Lvova et al., 2012). The amount of 
Na+ was evaluated by high-performance liquid chromatog-
raphy (HPLC) technique and compared to the data from two 
ion-selective electrodes (ISE) sensitive to sodium (Na-ISE 1, 
from Metrohm IonAnalysis, and home-made Na-ISE 2 based 
on monensin dodecyl ester) and ISE array comprising five 
home-made ISEs for chloride, potassium, ammonia, calcium, 
and nitrate. It was found the better performance of ISE array 
for Na+ content determination in comparison to singular se-
lective sensors. A PLS result for Na+ predicted with ISE array 
had a correlation coefficient 0.952, slope 0.887, and RMSEP 
14.4 mM. Moreover, the salinity of commercial mozzarella 
cheese samples, and utilized milk type (bovine or cow), were 
satisfactorily determined with the ISE array. For this 2 g of 
fresh mozzarella cheese or of partially digested cheese sam-
pled from an artificial mouth or different compartments of 
the artificial gut system were reduced in fragments (if need-
ed) and extracted with 10 mL of distilled water. The solid part 
was centrifuged and 1 mL of liquid extract was collected and 
utilized for further sensory analysis. In total, 87.5% of moz-
zarella cheeses were correctly identified (Fig. 15.3).

15.5.3 Fish and Meat

The accurate quality and safety control of foodstuffs rich 
of proteins, providing nutritious health care compounds, 
meat and seafoods in particular, has received much 
attention due to the extreme importance of such products 
in a balanced diet. The freshness is the major issue in 
the fish and meat market industry, and multisensory 
analysis has been found an effective tool for shelf-life and 
postmortem time monitoring. Several works related to the 
e-tongue systems application for fish freshness control 

FIGURE 15.2 PCA score plot for 5 storage days for “Jawda” pasteurized milk measurements gathered with the hybrid e-nose and the voltam-
metric e-tongue. (Reprinted from Bougrini et al., 2014, with permission from Elsevier.)



156   PART | II The Electronic Tongue

(Rodríguez-Méndez et al., 2009; Apetrei et al., 2013; Han 
et al., 2014), quality assessment (Ruiz-Rico et al., 2013), 
and taste (Liu et al., 2014b) were previously reported. Thus, 
Rodríguez-Méndez et al. (2009) have detected the different 
amines (ammonia, dimethylamine, trimethylamine, 
cadaverine, and histamine) during the Cyprinid family 
fish spoilage process by arrays of voltammetric carbon 
paste and screen-printed electrodes (SPEs), modified with 
phthalocyanines. The PCA identification and partial least 
squares discriminant analysis (PLS-DA) evaluation of fish 
freshness and determination the fish postmortem period was 
performed. Prior to measurement, 1 g of the fish muscle 
was cut, extracted by 5 min sonication in 25 mL of a 0.1 M 
KCl; the liquid phase was separated by filtration and used 
in e-tongue measurements. The same research group has 
demonstrated recently an utility of polypyrrole-modified 
SPEs in voltammetric e-tongue for the Pontic shad fish 
freshness monitoring (Apetrei et al., 2013).

An application of voltammetric e-tongue, including 
metallic electrodes grouped in two arrays, one made up of 
noble metals (Ir, Rh, Pt, Au) and another of nonnoble ones 
(Ag, Co, Cu, Ni) for shelf-life assessment of fresh cod fish 
was reported by Ruiz-Rico et al. (2013). Electronic tongue 
measurements were performed directly on each fish sample 
at room temperature (Fig. 15.4). The total volatile basic ni-
trogen (TVB-N), pH, moisture, ATP-related compounds, 
mesophilic bacteria, and Enterobacteriaceae counts were 
evaluated by standard techniques and correlated to e-tongue 
data. A successful PLS fitting was obtained for TVB-N and 
mesophilic bacteria, two of the main fish spoilage indices 
thus confirming the potential usefulness of the voltammet-
ric tongue for assessing cod spoilage.

In plenty of tasks, electronic tongues are often used 
for classification applications rather than evaluation of 
taste. For taste assessment, an interesting research aimed 
to isolate and study the structural properties of flavor pep-
tides from raw, cultured puffer fish muscle was reported 
by Liu et al. (2014b). Different fractions of fish muscle 
were isolated and the flavor peptides contained in these 
fractions were assigned the possibility to elicit different 
tastes (umami, bitter, kokumi, etc.) according to the pep-
tide structures, which were identified by matrix-assisted 
laser desorption/ ionization time-of-flight mass spectrom-
etry (MALDI–TOF–MS) method.

Gil et al. (2011) have applied an array composed by 
Au, Ag, Cu, Zn, Pb, and graphite potentiometric elec-
trodes for the monitoring of the pork loin freshness over 
a 10-day period storage under refrigeration. Data gather-
ing in meat was carried out by sticking the set of elec-
trodes and the reference electrode directly on the meat 
slice sample. At every measurement the new meat piece 
was analyzed. Data were taken for no less than 5 min in 
order to allow the electrodes to reach the equilibrium. A 
remarkable correlation was observed between e-tongue 
data and K-index (measures the variation in the adenosine 
triphosphate, ATP, degradation products) through PLS re-
gression. Additionally, PCA and ANN analyses showed 
that is was possible to determine the meat postmortem 
time. The same research team has reported the applica-
tion of e-tongue based on pulse voltammetry and com-
posed of a set of noble (Au, Pt, Rh, Ir, Ag) and nonnoble 
(Ni, Co, Cu) electrodes for detection of chloride, nitrite 
and nitrate concentrations in brines and in minced meat 
(Campos et al., 2010).

FIGURE 15.3 PLS-DA discrimination of 16 mozzarella cheeses made of buffalo and cow milk. (Reprinted from Lvova et al., 2012, with permission 
from Elsevier.)
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15.5.4 Honey

The nutritional and therapeutic values of honey make 
it one of the most appreciable natural products. The 
characterization of commercial honey is required to satisfy 
the consumers’ demands. Being a viscous mixture of 
hundreds of components, honey meets several difficulties 
during its characterization, related to the necessity of 
samples’ pretreatment and components separation, which 
are rather complex and expensive. As an alternative to 
standard instrumental methods, several applications of 
electronic tongue for honey’s analysis were previously 
reported (Wei and Wang, 2011a, 2014; Major et al., 2011; 
Zakaria et al., 2011; Ulloa et al., 2013; Escriche et al., 2012; 
Sousa et al., 2014). The main focus of these works was 
on honey’s botanical origin tracing and geographical 
classification. The common pretreatment procedure for 
honey prior to e-tongue analysis is a dissolution in water (hot 
or room temperature) and further measurements of obtained 
samples. For instance, Wei and Wang (2011a) reported a 
possibility to discriminate deferent monofloral honey by 
metallic voltammetric e-tongue and PCA according to 
their floral origins. More recently the same authors have 
compared the ability of previously mentioned voltammetric 
e-tongue to the performance of a-Astree potentiometric 
e-tongue to trace both floral and geographical origins of 
monofloral honey (Wei and Wang, 2014). Both devices 
were correctly able to forecast honey’s categories by PLS, 
PCR, and least squared-support vector machine (LS-SVM) 
methods, and the regression models for predicting the four 
types of honey of different geographical origins by the 
e-tongue were very stable.

Major et al. (2011) have demonstrated the utility of a-
Astree e-tongue for botanical classification of 12 samples 
of acacia, chestnut, and honeydew honey by PCA, ANN, 
and canonical correlation analysis (CCA) modeling; addi-
tionally the physicochemical parameters of honey such as 
electrical conductivity (0.999), acidity (0.997), water con-
tent (0.994), invert sugar content (0.988), and total sugar 
content (0.979) were evaluated by ANN correlation of 

e-tongue data to the reference values determined by tradi-
tional methods.

Zakaria et al. (2011) have performed the discrimination of 
honey coming from different botanical origins and monitored 
their adulterations with sugar by separated and fused mea-
surements with Cyranose 320 (Smith DetectionTM) e-nose 
and chalcogenide-based potentiometric e-tongue made up of 
seven distinct ion-selective sensors from Sensor Systems (St. 
Petersburg, Russia). The highest classification score (94.44%) 
was observed by probabilistic neural network (PNN) when 
applying sensor fusion. Ulloa et al. (2013) have reported a 
successful discrimination of four commercial brands of Por-
tuguese honey according to their botanical origin by fusion 
of impedance electronic tongue and UV–Vis–NIR spectros-
copy assisted by PCA and CA chemometric techniques. The 
e-tongue consisted of four working electrode plates of alumi-
num, gold, platinum, and ITO. The capacitance (C, nF), con-
ductance (G, mS), and conductance/angular frequency ratio 
data were collected from e-tongue; data were preprocessed to 
find response curve fitting coefficient features that were then 
applied for the honey’s classification together with spectros-
copy fitted data and analyzed with multiway PCA (MPCA) 
yielding 100% classification. It was shown that fused data 
was better to determine the floral origin of honey varieties 
than when using e-tongue and especially spectroscopic data 
separately.

Escriche et al. (2012) made an attempt to classify the 
honey samples in three different states according to the ap-
plied thermal treatments (raw, liquefied, and pasteurized) 
by means of potentiometric electronic tongue based on 
various metals (Au, Ag, and Cu) and metallic compounds 
(Ag2O, AgCl, Ag2CO3, and Cu2O) electrodes. No satisfac-
tory discrimination was found; instead, the PCA and ANN 
analysis showed that e-tongue is useful to classify honey 
by its botanical origin. A remarkable PLS correlation be-
tween the e-tongue response and honey’s physicochemical 
parameters such as color by Pfund scale (R2 = 0.958), lumi-
nosity (R2 = 0.935), and diastase activity (R2 = 0.926) were 
found. Another potentiometric e-tongue based on 20 cross-
selective lipid membranes was applied for classification of 

FIGURE 15.4 Electronic tongue measurement on the cod samples. (Reprinted from Ruiz-Rico et al., 2013, with permission from Elsevier.)
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65 monofloral Portuguese honey (Sousa et al., 2014). The 
multisensor system was printed in both sides of a PVC 
board using a print-screen technique (Fig. 15.5). It was 
demonstrated that after a preliminary selection of honey ac-
cording their colors (white, amber, and dark) e-tongue was 
able to correctly classify honey with a high variability in 
floral origin.

15.5.5 Fruits and Vegetables

An assessment of fruits and vegetables’ freshness, 
sweetness, and quantitative evaluation of several nutrient 
components, antioxidants, and vitamins’ content is another 
area of multisensory systems employment. Among different 
fruits, grapes are especially important since they are starting 
product of wine. The grapes analysis is often focused to 
evaluation of phenolic antioxidants. Thus, Medina-Plaza 
et al. (2014) have reported a e-tongue system formed by 
nanostructured voltammetric biosensors based on phenol 
oxidases (tyrosinase and laccase) for the discrimination 
of grapes of different varieties according to their phenolic 
content. The sensors were prepared by incorporation of 
enzymes into Langmuir–Blodgett (LB) film of arachidic 
acid (AA) doped with lutetium bisphthalocyanine (LuPc2) 

as electron mediator. The grape samples were tested in 
form of musts diluted 50% in water. The PCA scores 
plot has demonstrated that bioelectronic tongue is able to 
discriminate phenols according to the number of phenolic 
groups attached to the structure and satisfactory discriminate 
among five grape varieties (Fig. 15.6).

Campos et al. (2013) reported the use of a metallic 
voltammetric e-tongue to monitor the ripeness of seven 
Spanish grape varieties. The grapes were crushed after col-
lection and the juice separated from the pulp was analyzed. 
A good PLS predictive ability of e-tongue for total acidity 
and sugar content with errors under 15% was reported.

The group of Wang employed a-Astree potentiometric 
e-tongue and voltammetric metallic e-tongue for the dis-
crimination of preserved licorice apricots (Tian et al., 2013) 
and evaluation of firmness and sugar content in pears of dif-
ferent cultivars (Wei and Wang, 2013). The apricots were 
softened in deionized water, minced, and the supernatant 
was measured by E-tongue after centrifugation. For peer 
analysis the juices squeezed from the middle part of a fruit 
and filtered using double-decked filter papers were tested.

Kutyła-Olesiuk et al. (2013a) have used a flow-through 
analytical system based on miniaturized ISE array to evalu-
ate the effect of lead accumulation in maize leaves. The 

FIGURE 15.6 PCA scores plot of the different varieties of grapes. T, Tempranillo; G, Garnacha; C, Cabernet; M, Mencia; and PP, Prieto Picudo. 
(Reprinted from Medina-Plaza et al., 2014, with permission from Elsevier.)

FIGURE 15.5 Multisensor system for honey discrimination. (Reprinted from Sousa et al., 2014, with permission from Elsevier.)
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leaves harvested from 3 to 4-week-old plants were exposed 
to 5–10 mM lead nitrate solutions for 24 h and then lyophi-
lized. For potentiometric measurements, the plant material 
(0.2 g of dry weight) was mixed with 0.3 mL of 96% H2SO4 
and 10 mL of 30% hydrogen peroxide and then tested in 
flow-through mode. It was demonstrated that the developed 
e-tongue system with PLS-DA could be a potential tool for 
the estimation of the cultivation conditions of plants during 
bioindication or phytoremediation. The same researchers 
employed a hybrid electronic tongue in the qualitative and 
quantitative analysis of aqueous extracts obtained from raw 
and dried apples prepared by different drying techniques 
(Kutyła-Olesiuk et al., 2013b). The system included five 
potentiometric ISEs, Au and glucose oxidase (GOx) based 
amperometric sensors, spectrophotometric and conducto-
metric measurements. It was shown that the combination 
of the data from various measurement techniques leads to 
improved differentiation of the dried apple extract samples 
compared to separate methods.

15.5.6 Other Food-Related E-Tongue 
Applications

Other recent applications of e-tongue related to the food analysis 
deal with specific protein profiling (Bueno et al., 2014), 
bacteria and/or food pathogens detection (Escriche et al., 2012; 
Poshtiban et al., 2013), allergens screening (Peres et al., 2011), 
and pet food control (Eves et al., 2013).

15.6 CONCLUSIONS

An application of electronic tongue systems based on 
chemical sensors or hyphenated techniques for food 
assessment represents the evident advantage of ease of 
use and low costs. The speed analyses, minimal sample 
preparation required, the possibility of the automation, and 
fast, effective screening of large numbers of formulations in 
a short period of time make e-tongue a promising substitute 
technology to sensory analysis performed by testers. 
Moreover, the electronic tongue approach represents a fast 
and nondestructive way to evaluate food quality not only 
in the laboratory environment, but also during the online 
food manufacturing process and may provide additional 
quantitative information on specific food constituents.
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16.1 INTRODUCTION

The sense of humans is obscure and subjective. Let us sup-
pose the situation where a boy, his father, and his grand-
mother drink green tea. The boy says “this green tea is 
bitter,” whereas his father says “it is mild,” but his grand-
mother says “this tea is not bitter.” These different re-
sponses occur due to the difference of the acceptable range 
(capacity) of bitterness of each person. In other words, the 
criterion of each person’s taste is based on a different scale. 
Furthermore, the taste is determined by a number of factors, 
including the five senses (sight, hearing, touch, taste, and 
odor) as well as food habit and dietary culture.

Sensory evaluation has been made to estimate the tastes 
of samples so far. This method has several problems such as 
low objectivity, low reproducibility, the stress possibly im-
posed on panelists, and the significant cost of selecting and 
training panelists. It is difficult to carry out sensory evalu-
ations because of the potential for medication side effects 
in the medical and pharmaceutical field. On the other hand, 
quantitative analysis using gas and liquid chromatography 
cannot be used to estimate the intensity of each basic taste. 
Therefore, objective methods of evaluating tastes without 
using the aforementioned human sensory systems have at-
tracted attention. The development of objective methods of 
evaluating taste contributes greatly to the better qualities of 
foods and beverages and the compliance of drug products.

In this chapter, the principle of the taste sensor, that is, 
electronic tongue with global selectivity, and its application 
to beer measurement are explained in detail.

16.2 TASTE SENSOR—ELECTRONIC 
TONGUE WITH GLOBAL SELECTIVITY

A taste sensor comprises several kinds of electrodes, on 
which a lipid/polymer membrane is pasted, and can dis-
criminate, identify, and quantify the taste of foods or drug 
products; that is, it provides a “scale of taste” (Habara and 
Toko, 2006; Kobayashi et al., 2010; Tahara and Toko, 2013; 

Toko, 1996, 2000a,b, 2013; Toko et al., 2013). It is now 
commercialized as Taste Sensing Systems SA402B and TS-
5000Z and used throughout the world; TS-5000Z and its 
sensor electrodes are shown in Fig. 16.1a,b, respectively. 
The taste sensor utilizing lipid/polymer membranes is a 
kind of electronic tongue. It was developed in 1989 by the 
patent application and introduced in an academic paper in 
1990 (Hayashi et al., 1990). It has been applied to many 
kinds of foods such as beer (Ikezaki et al., 1991; Tahara 
and Toko, 2013; Toko, 2000b; Toko et al., 1994), coffee 
(Fukunaga et al., 1996; Ishiwaki, 2013), sake (Arikawa 
et al., 1996; Iiyama et al., 1996), milk (Mizota et al., 2009; 
Yamada et al., 1997), green tea (Hayashi et al., 2010, 2008; 
Ikezaki et al., 1997), black tea (Hayashi et al., 2013; 
Uchiyama et al., 2011), wine (Baldacci et al., 1998; 
Totsuka, 2013), soy sauce (Iiyama et al., 2000), miso (soy-
bean paste) (Imamura et al., 1996), salts (Chen et al., 2010), 
meat (Chikuni et al., 2010; Sasaki et al., 2005), and rice 
(Tran et al., 2004, 2005), and has also been used to mea-
sure the taste of amino acids (Akitomi et al., 2013; Mi-
yanaga et al., 2004; Toko and Fukusaka 1997) and medi-
cines (Harada et al., 2010; Takagi et al., 2001, 1998; Uchida 
et al., 2001, 2013).

The taste sensor has a new concept of global selectivity, 
which means the decomposition of a chemical substance 
into taste qualities and their quantification, rather than the 
discrimination of individual chemical substances (Anand 
et al., 2007; Habara and Toko, 2006; Kobayashi et al., 2010; 
Tahara and Toko, 2013; Toko, 1996, 2000a,b, 2013; Toko 
et al., 2013; Riul et al., 2007). As a result, the taste sensor 
responds consistently to the same taste, similarly to the hu-
man tongue. The property that each sensor electrode is not 
specific to each chemical substance is one of the notice-
able properties of electronic tongues (Anand et al., 2007; 
Citterio and Suzuki, 2008; del Valle, 2010; Escuder-Gilabert 
and Peris, 2010; Ghasemi-Varnamkhasti et al., 2010; 
Latha and Lakshmi, 2012; Riul et al., 2007; Savage, 2012; 
Winquist, 2008; Woertz et al., 2011a,b), which is similar to 
biological receptors in the gustatory system. The features 
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of electronic tongues for measuring liquid using multiple 
sensor arrays to measure liquid are (1) low selectivity and 
high cross-selectivity instead of high selectivity and (2) the 
capability of statistically analyzing the outputs from mul-
tiple sensors. These features (ie, low selectivity, high cross-
selectivity and statistical analysis) are similar to those of 
electronic noses for measuring gas.

The human taste receptors do not necessarily recognize 
individual chemical substances. Each of the receptors for 
the five basic taste qualities (saltiness, sweetness, bitter-
ness, sourness, and umami) simultaneously receives mul-
tiple chemical substances. It means the human gustatory re-
ceptors have a semiselective property or global selectivity. 
In chemical analysis methods such as liquid and gas chro-
matography, therefore, it is practically impossible to mea-
sure the taste of foods containing several hundred types of 
taste substances. In addition, there are interactions between 
different tastes and between taste substances; for example, 
the bitterness of coffee is suppressed by adding sugar and a 
synergistic effect for umami can be obtained by mixing two 
kinds of umami substances represented by amino acids and 
nucleotide-derived substances.

The taste sensor is an electronic tongue with global se-
lectivity as previously mentioned. It is composed of several 
kinds of sensor electrodes, and hence a multicomponent 
analysis is sometimes utilized in a similar way; however, 
each electrode of the taste sensor is specific to each taste 
in principle.

Let us briefly review the history of development and im-
provement of taste sensor about this point. The first model of 
taste sensing system SA401 was put on the market in 1993 
following the research results in 1990 (Hayashi et al., 1990) 
obtained by Toko’s group. The taste sensor at this stage was 
capable of the classification of various foods and beverages. 
However, there were some problems to overcome on the 
taste sensor membranes. Each of the membranes had low 
selectivity to similar taste substances, and hence all the sen-
sor outputs had be analyzed together by such a multivariate 
analysis as the principal component analysis (PCA). PCA 
is one of the powerful mathematical techniques used to 
obtain useful information by reducing a large number of 
variables to as few alternative variables as possible without 
losing information. However, the data resulting from PCA 
cannot be interpreted uniquely as taste information unless 
information on taste qualities for all samples is given before 
the analysis. In other words, discrimination and identifica-
tion of foods and beverages are possible using multivariate 
analyses, but taste evaluation for the development of food 
and beverage products cannot be made.

To overcome this problem, each lipid/polymer mem-
brane was required to respond more selectively to chemi-
cal substances with a similar taste and to recognize dif-
ferent taste qualities by itself. Lipid/polymer membranes 
were improved drastically in order to achieve these points 

(Kobayashi et al., 2010). As a result, each membrane can re-
spond to a similar taste in a similar way, but can respond to 
a different taste in a different way. Each independent sensor 
electrode is now developed for measuring each taste quality 
(sourness, saltiness, bitterness, umami, sweetness, astrin-
gency). Several kinds of membranes have been developed 
for measuring sweetness and bitterness because there are 
a large number of compounds with various chemical struc-
tures and sizes in sweet and bitter substances. Three kinds 
of membranes have been fabricated specifically for sweet 
substances because there are three types of substances with 
different chemical structures and sizes as represented by 
sugars (glucose, sucrose), positively charged high-potency 
sweetener (aspartame), and negatively charged high-
potency sweetener (saccharine sodium, acesulfame potas-
sium) (Toyota et al., 2011; Yasuura et al., 2014a,b).

Four kinds of bitterness sensors have been developed for 
measuring acidic bitter materials, bitter hydrochloride salts, 
and basic bitter materials from the same reason (Kobayashi 
et al., 2010; Tahara and Toko, 2013; Toko, 2013; Toko 
et al., 2013). The bitterness sensor C00, as shown in detail 
later, has high sensitivity and selectivity to, for example, 
iso-a-acid, which produces a bitter taste in beer. This sensor 
membrane includes a positively charged lipid that can in-
teract selectively with negatively charged bitter substances, 
which is also called acidic bitter substances. On the other 
hand, the bitterness sensors BT0, AC0, and AN0 contain a 
negatively charged lipid to interact with basic bitter sub-
stances that are positively charged. The bitterness sensor 
BT0 has been developed to highly and selectively respond 
to such bitter substances utilized mainly in the medical field 
(Kobayashi et al., 2010; Tahara and Toko, 2013; Toko, 2013; 
Toko et al., 2013).

Among the improvements of taste sensors, an invention 
of the CPA (change of membrane potential caused by ad-
sorption of chemical substances) measurement is notable 
(Habara and Toko, 2006; Ikezaki et al., 1997; Kobayashi 
et al., 2010; Tahara and Toko, 2013; Toko, 2013; Toko 
et al., 2013). The CPA measurement enables us to estimate 
the aftertaste felt by humans. The term “CPA” originates 
from “change in membrane potential caused by adsorp-
tion of taste substances onto the membrane.” The CPA 
measurement has a large merit to selectively measure the 
taste due to adsorptive substances such as bitterness and 
umami (Habara and Toko, 2006; Hara et al., 2014; Ikezaki 
et al., 1997; Kobayashi et al., 2010; Tahara and Toko, 2013; 
Toko, 2013; Toko et al., 2013, 2014). The amount of ad-
sorption is affected by two factors, that is, the surface 
charge density and the hydrophobicity of the membrane. 
The CPA value is also affected by two factors, that is, the 
surface charge density of the membrane and the amount of 
adsorption (Toko et al., 2014).

The taste sensor is required to detect the interaction be-
tween taste substances or taste qualities; one of the typical 
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interactions is suppression of bitterness due to sweet sub-
stances or bitter-masking agents. The suppression was 
detected successfully (Takagi et al., 1998, 2001) and this 
result is utilized for development of medicines (Harada 
et al., 2010; Toko, 2013). A familiar phenomenon we ex-
perience is a mellow effect of fat. The foodstuffs industry 
uses many edible oils in order to improve flavor and making 
the foodstuffs more palatable. The taste sensor clarified that 
bitterness and astringency is decreased by addition of ed-
ible oil to taste solutions, and that oil selectively suppress-
es bitterness and astringency, making foods taste milder 
(Kobayashi et al., 2010).

16.3 SEVEN KINDS OF TASTE QUALITIES

We will briefly summarize here the physiological knowl-
edge of taste. The taste perceived by us is composed of five 
kinds of basic taste qualities: sourness, saltiness, sweet-
ness, bitterness, and umami (Kawamura and Kare, 1987; 
Pfaffmann, 1959). The fifth taste, “umami,” is sometimes 
called savoriness by many people from its property (strictly 
speaking, it is not the same) and is acknowledged as an in-
dependent taste found by a Japanese scientist (Kawamura 
and Kare, 1987). Sweetness is produced by sugar, glucose, 
and artificial sweetener, and generally becomes our source 
of energy. Saltiness is produced by cations such as sodium 
ions; however, anions also contribute to saltiness because 
we perceive a similar saltiness, but a different taste, if anion 
species are changed.

Sourness, a taste typical to vinegar, is caused by hydro-
gen ions generated from citric acid, acetic acid, and hydro-
chloric acid, for example. It activates metabolism, but gen-
erally is a signal of rot.

Bitterness gives a warning of toxicity. There are many 
kinds of chemical substances tasting bitter, as represented 
by caffeine, theobromine, quinine, and isohumulon. The 
iso-a-acid contained in hops is usually a mixture of mainly 

cis- and trans-isohumulone. Alcohol drinks, represented 
by beer, contain several kinds of bitter substances as previ-
ously mentioned.

Umami is the taste produced typically by monosodium 
glutamate (MSG) contained in seaweeds. Other typical 
umami substances are disodium inosinate (IMP) mainly 
contained in fish and meat and disodium guanylate (GMP) 
contained in mushrooms. Umami plays the role of supply-
ing indispensable amino acids and nucleotides to our bod-
ies. There is a synergistic enhancing effect in the coexis-
tence of MSG and IMP (or GMP), which is characteristic 
to umami.

The other two kinds of taste are pungency and 
astringency. Chemical compounds that taste pungent are 
received at sensory receptors that are sensitive to tempera-
ture and pain. They are not received at taste receptors in 
gustatory cells. The major pungent compounds are allyl iso-
thiocyanate, capsaicin, and piperine. Astringency is caused 
by polyphenol, mainly tannin. These compounds are said to 
mainly stimulate pain receptors. In the physiological mean-
ing, astringency is similar to bitterness; hence, astringency 
is not strictly distinguished from bitterness, and the total 
strength of these tastes is considered to be important in 
some coffee makers.

16.4 MATERIALS AND METHODS  
IN THE BEER MEASUREMENT

The taste sensor, that is, the taste sensing system shown 
in Fig. 16.1, consists of several (at most, eight) kinds of 
working electrode with a lipid/polymer membrane used to 
receive taste substances, a handle, and a data processing 
unit. The working electrode has a structure of an Ag/AgCl 
electrode and the inner solution (3.3 M KCl saturated AgCl) 
contained in a polyvinyl chloride hollow rod, with which 
a lipid/polymer membrane is attached. Measurement using 
the taste sensor is based on the potentiometric principle, and 

FIGURE 16.1 (a) Taste sensing system TS-5000Z (Intelligent Sensor Technology, Inc.) and (b) the used electrodes.
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hence, the electric potentials between working electrodes 
for taste sensing and a reference electrode are measured. 
These electrodes use a silver wire coated with AgCl. The 
electric potential of the lipid/polymer membrane changes 
by both electrostatic interaction with taste substances and 
their physicochemical adsorption.

Table 16.1 summarizes five kinds of lipid/polymer 
membranes used in the sensor electrodes for beer analy-
sis, in which the composition of lipids and plasticizers are 
shown. The composition of the lipid/polymer membrane 
is designed by considering the membrane electric charge 
density and the hydrophobicity on the basis of physico-
chemical properties of substances with each basic taste; the 
membrane electric potential changes when, for example, 
bitter substances are adsorbed onto the membrane owing 
to the electrostatic and hydrophobic interactions, whereas it 
changes when protons bind to the functional groups of lipid 
molecules appearing at the membrane surface in the case 
of sourness. As a result, a bitterness sensor, that is, a sensor 
electrode to measure bitterness, is relatively hydrophobic 
with a lower content of charged lipids. A saltiness sensor, 
that is, a sensor electrode to measure saltiness, is relatively 
hydrophilic with a higher content of charged lipids and 
can easily induce the electrostatic interaction with ions. 
This bitterness sensor that was so fabricated responds to 
acidic bitter substances contained in beer, green tea, black 
tea, Oolong tea, coffee, and wine (Kobayashi et al., 2010; 
Tahara and Toko, 2013; Toko, 2013). The detection limit 
for iso-a-acid is about 0.001 wt%, which is close to the hu-
man threshold. While the membranes for five taste quali-
ties (sourness, saltiness, bitterness, umami, astringency) are 
shown in Table 16.1, the membranes for sweetness elicited 
by sugars or artificial sweeteners have been also developed 
(Toyota et al., 2011; Yasuura et al., 2014a,b).

The procedure for fabricating a taste sensor electrode is 
as follows:

1. The necessary types and amount of lipid(s) and 
plasticizer(s) are added to tetrahydrofuran (THF) and 
mixed for 1 h.

2. Polyvinyl chloride is added to this solution and then 
mixed for another 1 h.

3. The mixture is poured into a petri dish to dry it at room 
temperature for 3 days.

4. As result, a lipid/polymer membrane approximately 
200 mm thick is created in the dish, and then is attached 
to the surface of a sensor probe using THF as an adhe-
sive.

5. After 2 days of drying, the taste sensor electrode is com-
plete.

This membrane fabricated as previously indicated can 
be used about 3000 times. The measurement is made as fol-
lows: first, the sensor electrodes are immersed in the first 
reference solution (30 mM KCl, 0.3 mM tartaric acid), and 
the membrane potential for the reference solution (reference 
potential), Vr, is measured. Next, the sensor electrodes are 
immersed in the sample solution (“beer” in the present case) 
for 30 s, and the membrane potential (Vs) is measured; the 
difference, Vs − Vr, is defined as the relative value, which 
corresponds to usual taste felt by humans. Then, the sen-
sor electrodes are again immersed in the second reference 
solution (30 mM KCl, 0.3 mM tartaric acid) for 30 s, and 
the membrane potential for the second reference solution is 
measured again (Vr’), and the difference between Vr’ and 
Vr, that is, Vr’ − Vr, is defined as the CPA value, which cor-
responds to aftertaste experienced by humans. Finally, the 
membrane is rinsed with a sensor rinsing solution (100 mM 
KCl, 10 mM KOH, 30 vol% ethanol). This procedure is re-
peated five times for each sample, and the averages of the 
relative values and CPA values in the second measurement 
to the fifth measurement are used as the relative value and 
CPA value of each sample, respectively.

The CPA value is affected by two factors, that is, the 
surface charge density of the membrane and the amount of 
adsorption. It is shown that iso-a-acid molecules, typical to 
bitterness of beer, are adsorbed onto both the surface and 
interior of the lipid/polymer membrane of bitterness sen-
sor, which has the low lipid content (Toko et al., 2014). The 
distribution coefficient (logD) of iso-a-acid is around 0.4 

TABLE 16.1 Chemical Composition of Lipid/Polymer Membrane of Sensor Electrode for Each Taste Quality

Taste Sensor 
Electrode Taste Lipid Plasticizer

AAE Umami sensor Phosphoric acid di(2-ethylhexyl) ester, trioctylmetyl-
ammonium chloride

Dioctyl phenylphosphonate

CT0 Saltiness sensor Tetradodecylammonium bromide 1-hexadecanol Dioctyl phenylphosphonate

CA0 Sourness sensor Phosphoric acid di(2-ethylhexyl) ester, oleic acid, 
trioctylmetylammonium chloride

Dioctyl phenylphosphonate

C00 Bitterness sensor (for acidic 
bitter materials)

Tetradodecylammonium bromide 2-Nitrophenyl octyl ether

AE1 Astringency sensor Tetradodecylammonium bromide Dioctyl phenylphosphonate
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at weak acidic and neutral pH values. Therefore, it is very 
natural that iso-a-acid is adsorbed into the hydrophobic part 
of the lipid/polymer membrane of bitterness sensor, which 
was fabricated so that it might become hydrophobic, as pre-
viously mentioned.

Transformation of the sensor output to the sensory value 
felt by humans is very easy because the threshold (ie, sen-
sitivity) of sensor output is near the human threshold for 
each taste quality, and furthermore the response increases 
with logarithm of the concentration of taste substances in 
a similar way to humans. The magnitude of sensor output 
is larger for taste substances for which humans feel stron-
ger taste. These facts imply that the linear transformation 
enables us to get the taste information, that is, the sensory 
value of each taste.

As the Weber–Fechner law states, the relationship be-
tween a stimulus and the corresponding perceived intensity 
is logarithmic (Pfaffmann, 1959). In this context, the small-
est detectable increase for the gustatory sense is about 20% 
(Schutz and Pilgrim, 1957). Therefore, we have defined 
“taste information” on the basis of sensor outputs and their 
characteristics. Let us consider the case of saltiness as an 
example. The saltiness sensor shows a slope 50 mV/decade 
with the NaCl concentration (Kobayashi et al., 2010). When 
the 1% NaCl concentration increases by 20%, it becomes 
1.2%. Furthermore, this 1.2% concentration increases by 
20%, and then it becomes 1.44%. This 20% increase in the 
concentration equals the smallest detectable increase for 
humans, and keeps constant on a logarithmic scale. There-
fore, it is reasonable that the 20% increase is defined as 1 
unit. This relationship leads to a slope 0.25 unit/mV; this 
conversion factor provides taste information for “saltiness” 
by its multiplication with the saltiness sensor output.

Each conversion factor for each taste sensor electrode 
can be thus calculated as the slope of a 10-fold concentra-
tion difference between the reference solution and a cor-
responding solution, which is one of the standard samples.

16.5 ANALYSIS OF BEER

Let us review briefly the results on beer reported previously 
using the taste sensor (Ikezaki et al., 1991; Toko, 2000b; Toko 
et al., 1994) before explaining the results obtained using the 
above mentioned method and sensor electrodes. Since the 
sensor membranes in this age (Ikezaki et al., 1991; Toko, 
2000b; Toko et al., 1994) have no selectivity to individual 
taste quality, the response to beer is simply shown as an 
electric-potential pattern constructed from eight outputs of 
eight sensor electrodes. Fifteen brands of beer were mea-
sured (Ikezaki et al., 1991), and discrimination of beer was 
attempted. Three discrimination methods using squared Eu-
clidean distance, standardized squared Euclidean distance, 
and Bayesian probability were adopted. As a result, the 
accuracy rate was 94.6, 100, and 100%, respectively. This 
good result is due to the fact that the standard deviation of 

sensor output is from 0.2 to 0.3 mV, whereas the difference 
between different brands of beer amounts to over 2 mV. In 
another paper (Toko et al., 1994), 36 brands of beer were 
measured. Discrimination of beer was easy from the same 
reasons as the previous study.

Expression of the taste such as rich, light, sharp, and mild 
is also possible by the comparison between the sensor outputs 
and the sensory tests by humans, as outlined by Toko (2000). 
The rich or light taste may arise from the concentrations of 
alcohol, hops, and so on. The PCA was applied to the output 
pattern. Comparison with human taste sense implied that PC1 
corresponds to rich taste and light taste, and PC2 to sharp taste 
and mild taste. A high correlation of sensor output with the 
alcohol content of beer was obtained. A good linear relation-
ship between the sensor output and human sensory evaluation 
(rich taste) was also confirmed. Furthermore, high correla-
tions with pH and the bitter value estimated from iso-a-acid 
were obtained. These results first implied the usefulness of the 
taste sensor for quantifying human sensory expressions and 
physicochemical quantities in beer.

Let us return to the subject using a new set of sensor 
membranes listed in Table 16.1. Fig. 16.2 shows the tran-
sient responses of five kinds of sensor electrodes (AAE, 
CT0, CA0, C00, and AE1 in Table 16.1). We can see that 
the measurement is completed within 1 s, and that the slow 
changes occur with time. While this slow change is largest 
for astringency, it can be considered to occur with a process 
of the slow adsorption of astringent substances onto/into the 
membrane; in fact, the adsorption of astringent substances 
is confirmed, and a large amount of substances penetrates 
into the membrane (Hara et al., 2014).

Fig. 16.3 shows the taste pattern constructed from five 
axes of sourness (CA0), umami (AAE), bitterness (C00), 
aftertaste of bitterness (CPA of C00), and aftertaste of 
umami (CPA of AAE) for six brands of beer such as Bud-
weiser, Sapporo Yebisu, Bass Pale Ale, Heineken, Kronen-
bourg1664, and Carlsberg. The taste was evaluated using 
the linear transformation of sensor output obtained from the 
measurement for 30 s as previously mentioned. The taste of 
Budweiser wass taken as the origin. The aftertaste of uma-
mi caused a sort of richness felt by humans.

We can see that six brands of beer each showed different 
taste patterns. The standard deviations of sourness, umami, 
bitterness, aftertaste of bitterness, and aftertaste of umami 
for Carlsberg were 0.05, 0.01, 0.11, 0.12, and 0.10, respec-
tively, while those for Sapporo Yebisu were 0.02, 0.05, 
0.02, 0.13, and 0.10, in that order. Discrimination of each 
beer was easy because of these small standard deviations. 
The properties of their tastes resulted as follows: Heineken 
and Kronenbourg1664 showed a similar taste pattern with 
strong sourness and relatively strong bitterness. Bass Pale 
Ale showed a taste pattern that was smaller but similar to 
the patterns for Heineken and Kronenbourg1664. Sapporo 
Yebisu had very strong bitterness and comparatively strong 
richness, and Carlsberg had relatively strong bitterness but 
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weak sourness. Budweiser showed fresh taste indicated by 
the weakest aftertaste of bitterness.

Fig. 16.4 shows a taste map of beer expressed by 
two axes of bitterness and sourness, obtained from the 
output of taste sensor. We can see the taste of beer in 
the world distributes in the wide range. Sapporo Yebisu, 
which is recognized as beer with strong bitterness from 
old days, tastes strongly bitter. The taste map shows that 
Budweiser tastes moderate, and that some brands of beer 
such as Kronenbourg1664, Bass Pale Ale, Castlemaine 
XXXX, and Moosehead Lager taste sour. Guinness and 
Mythos have relatively strong bitterness and sourness. 
The taste map provides the visualized information of 

taste as well as the discrimination of products. In this 
way, we can glance at the taste results received from the 
tongue using the taste sensor.

16.6 CONCLUSIONS

The taste sensor has resulted in a new concept of global 
selectivity. Discrimination of minute differences of molecu-
lar structures may not be important but the transformation 
of molecular information contained in interactions of sub-
stances with biological membranes into several kinds rep-
resented by taste intensities and qualities is important. The 
taste sensor makes this possible.

FIGURE 16.3 Taste pattern for six brands of beer.

FIGURE 16.2 Transient response of the sensor electrode to beer.
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Taste of beer was quantified and at the same time the 
discrimination of beer was made using the taste sensor 
comprised of lipid/polymer membranes. Strict quality 
control is required in food and beverage industries. The 
taste sensor can play an important role in detecting deterio-
rated taste qualities, as reviewed (Habara and Toko, 2006; 
Kobayashi et al., 2010; Tahara and Toko, 2013; Toko, 2013; 
Toko et al., 2013). In addition to evaluating deterioration, 
the taste sensor can detect differences between product 
lots (Habara and Toko, 2006; Kobayashi et al., 2010; 
Tahara and Toko, 2013; Toko, 2013; Toko et al., 2013). 
A portable taste sensor has also been developed (Tahara 
et al., 2011, 2013), and will be applied for measurement 
of foods including beer anytime and everywhere. The taste 
sensor chip consists of a reference electrode and multi-
ple working electrodes fabricated on polycarbonate sub-
strates, polyimide double-faced tapes, and partitions. The 
taste sensor is one of the devices that provides an objec-
tive measure (scale of taste) to the ambiguous sense of 
taste. Taste becomes objective as well as other subjective 

quantities such as weight and length, which has already 
become objective by development of the corresponding 
method and device.

Therefore, the taste sensor can be used to provide taste 
information (kind and intensity of taste) to consumers and 
as an effective marketing tool in the food industry as well as 
to compare specific products with competitive products to 
determine the consumers’ preference. At present, it is used 
not only for quality management but also for providing taste 
information for products as an added value. Moreover, the 
arbitrary tastes that we like can easily be created by uti-
lizing the database obtained from measurements using the 
taste sensor. On the basis of this concept, coffee provided 
by Japan Airlines was designed using the taste sensor. As 
easily understood, manually making coffee with a desired 
taste would be a time-consuming trial-and-error task. How-
ever, the taste sensor enables us to accurately create a de-
sired taste in a short period of time.

The taste sensor can be utilized to produce a new food 
or control the quality of foods as previously mentioned; 

FIGURE 16.4 Taste map of beer.
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furthermore, we can improve the taste easily using the taste 
sensor. Suppose that we measure a food that does not taste 
very good using the taste sensor. In this case, we can eas-
ily improve the taste on the basis of data in the taste sen-
sor’s archive. Of course, it is desirable for the palatability 
to be evaluated by also taking into account the history, food 
culture, and ethnicity concerned. Therefore, a mathemati-
cal formula to express the food score must contain these 
factors.

There are “musical scores” in our sense of hearing, and 
hence we can reproduce the music of, for example, Mozart 
or Beethoven today. If we can invent “food scores” in the 
sense of taste, in a way similar to musical scores, we should 
be able to preserve and transmit food scores, and then re-
produce the taste of the desired foods anywhere and at any 
time. The spread of the Internet has enabled consumers to 
easily search for products that meet their requirements and 
expectations. This tendency will increase in the field of 
taste, and hence, the taste sensor will become more effec-
tive tools.

Humans perceive tastes by the tongue and also compre-
hensively sense tastes on the basis of information on the 
five senses, including odor, texture, visual appearance, and 
sound. Further study will develop an integrated biosensor 
system for the five senses to enable us to visualize the five 
senses, quantify the quality (palatability and safety), con-
struct a quality information database, and develop a quality 
description tool of foods, as illustrated in Fig. 16.5. It will 
open a new world represented by a knowledge-based soci-
ety on foods, a health and longevity society, and ultrarealis-
tic communication.
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17.1 INTRODUCTION

Coffee is the most widely consumed beverage in the world, 
with an estimated 2 billion cups drunk daily (http://www.
ico.org/about_coffee.asp). The effects of its regular con-
sumption on health are of public interest, since coffee is 
a complex beverage containing several bioactive molecules 
that cause biological effects not limited to their biochemical 
actions. Caffeine is its most studied compound, but there 
are other compounds known to exhibit antioxidant proper-
ties and free radical scavenging activity, such as phenolic 
compounds (chlorogenic acids), diterpenes (cafestol and 
kahweol), and melanoidins (high molecular weight ni-
trogenous; Frost-Meyer and Logomarsino, 2012; Moreira 
et al., 2012; O’Keefe et al., 2013; Preedy, 2014). Various 
benefits may be obtained from regular consumption of cof-
fee, for instance, in reducing the risk of infections, diabetes 
mellitus type 2, hypertension, and even obesity and depres-
sion (O’Keefe et al., 2013; Preedy, 2014). It may also act 
as an anticancer and neuroprotective agent (Preedy, 2014).

Some effects from regular consumption of coffee are 
attributed to specific substances. For instance, caffeine is 
believed to act as a stimulant to the nervous system and 
a cognitive performance improver, as well as a protective 
agent against dementia and Alzheimer’s disease. Inges-
tion of 3–5 cups of coffee a day at midlife was associated 
with a reduction in the risk of dementia/Alzheimer’s dis-
ease by ∼65% at late life (Eskelinen and Kivipelto, 2010; 
Valls-Pedret et al., 2012). Caffeine can also be used to 
manage motor and nonmotor symptoms in Parkinson’s 
disease (Prediger, 2010). Chlorogenic acid, another im-
portant substance in coffee, can present antiplatelet and 
antithrombotic effects besides hypocholesterolemic ef-
fect, which leads to atheroscleroprotective, cardioprotec-
tive, and hepatoprotective functions. Chlorogenic acid 

possesses a potent antihepatitis B virus activity and glu-
cose regulation among other benefits (Wan et al., 2013; 
Fuentes et al., 2014; Preedy, 2014).

There are also problems for human health associated 
with coffee consumption. For instance, coffee can cause 
sleep disorders due to stimulant effects from caffeine. Other 
substances in coffee, such as cafestol and kahweol, can act 
as cholesterol raising, although possess a chemopreventa-
tive potential (Butt and Sultan, 2011; Singh et al., 2014). An 
association has been suggested between caffeine consump-
tion (more than 151 mg/day) during pregnancy with both an 
increase in spontaneous abortion incidence and a decrease 
of infant weight at birth.

Overall, it seems that for adults the moderate consump-
tion of 3–4 cups a day, that is, 300–400 mg of caffeine, there 
is little evidence of risks and some evidence of benefits for 
health (Preedy, 2014).

17.2 COFFEE ANALYSIS

The large consumption of coffee makes it one of the most 
important and valuable commodities, and therefore im-
proving its taste is of great interest to the food industry 
(Preedy, 2014). Its characteristic flavor is derived from the 
grain, which is related to its varieties and influenced by ag-
ricultural treatment, drying procedures, fermentation, roast-
ing, grinding, and packaging. Hence, an efficient quality 
control requires tools to monitor aspects that affect its fla-
vor, in addition to considering new trends in consumption, 
for example, the use of coffee capsules, pods, and different 
machines (Várvölgyi et al., 2015). On the other hand, detec-
tion and quantification of specific substances, for example, 
adulterants and bioactive molecules such as caffeine, chlo-
rogenic acid, and polyphenols, are becoming increasingly 
important.

http://www.ico.org/about_coffee.asp
http://www.ico.org/about_coffee.asp
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17.3 ELECTRONIC TONGUES USING 
ELECTROCHEMICAL TECHNIQUES

17.3.1 Coffee Discrimination

Pioneering papers on the analysis of coffee samples using 
electronic tongues (e-tongues) were published indepen-
dently by two research groups in the 1990s. Fukunaga et al. 
(1996) published a paper entitled “Quantification of taste of 
coffee using sensor with global selectivity” in which a com-
mercial taste-sensing system (SA401) of Anritsu Corp. was 
employed. The sensor array comprised seven electrodes 
made with lipid membranes as illustrated in Table 17.1. 
The principle of detection used was potentiometry, with 
the electrical potential being measured relative to the value 
obtained for coffee from Salvador (taken as the reference, 
ie, zero). The lipid membranes were made from polyvinyl 
chloride (PVC), the plasticizer dioctyl phenylphosphonate, 
and the lipid of interest, all mixed in a test tube in tetrahy-
drofuran. The mixtures were dried in a glass plate and kept 
at ca. 30°C. Finally, the lipid membranes were fitted to the 
seven hollow-cylinder electrodes.

The taste of 11 samples of coffee from different origins 
was analyzed, as follows: Salvador (CS), Brazil (Santos 
No. 2), Guatemala (SHB), Jamaica (Blue Mountain No. 2), 
Hawaii Kona (Extra Fancy), Kenya (AA), Tanzania (AA), 
Colombia (Excelso), Indonesia Mandheling (Grade 1), 
Indonesia (WIB 1), and Indonesia (AP 1). Upon applying 
the statistical tool of principal component analysis (PCA) 
to the results, it was possible to distribute the response 
electric potential patterns for 11 coffee samples on a two-
dimensional plane, as shown in Fig. 17.1. The contribution 
rates of original data to PC1 and PC2 were 82.2 and 13.8%, 
respectively. This means that coffee taste can be quantified 
by at least two independent parameters, proven to be re-
lated to bitterness and acidity. Indeed, authors correlated 
the response electric potential of the taste sensor with data 
from a panel of nine human experts, who classified the cof-
fee samples according to their acidity and bitterness. The 

correlation coefficients were 0.98 for acidity using channel 
2 and 0.94 for bitterness using channel 5.

Legin et al. (1997) reported on “Tasting of beverages us-
ing an electronic tongue” in which five types of coffee were 
analyzed using an e-tongue made with 21 potentiometric 
sensors. Details on the preparation of the sensing units can 
be found in the paper by Vlasov and Bychkov (1987). The 
samples were natural coffee (Tchibo, Manhattan, and Ara-
bica) and instant coffee (Nescafe). PCA was also used to 
visualize the data generated by the 21-sensor array in a two-
dimensional space. The results in Fig. 17.2 demonstrate 
good separation for all coffee samples, with natural coffees 
being distinguished from the instant coffees. Furthermore, 
distinction could be made of Nescafe coffee prepared us-
ing different technologies: “freeze dry” for Gold and “spray 
dry” for Classic.

In the work by Várvölgyi et al. (2015), a commercial 
device named Alpha Astree e-tongue (Alpha MOS, Tou-
louse, France) was used to distinguish between pure ori-
gin and blended coffee samples. This e-tongue comprised 

TABLE 17.1 Lipids Used in the Electrode Membranes

Channel Lipid

1 Dioctyl phosphate (DOP)

2 DOP:TOMA = 9:1

3 DOP:TOMA = 5:5

4 DOP:TOMA = 3:7

5 Trioctyl methyl ammonium chloride (TOMA)

6 Oleic acid

7 Oleyl amine

Electrodes in channels 2–4 were hybrid membranes mixed according to 
the molar ratio specified in the table.

FIGURE 17.1 PCA plot obtained with the results from the response 
electric potential for 11 samples of coffee from different origins.

FIGURE 17.2 PCA plot of different branches of natural and instant 
(Nescafe) coffees analyzed by an e-tongue.
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seven modified ISFET (ion sensitive–field effect transistor) 
potentiometric transducers with different organic coatings. 
The coffee samples were originated from Brazil, India, and 
Colombia (referred to as Columbia in the original paper), 
besides a blend of these three coffees. Four of the samples 
were espresso type (coded E Brazil, E India, E Columbia, 
and E blend), two were of long type (espresso coffee with 
much more water), and one of which was decaffeinated 
(coded L blend and L decaff). PCA was used as a statisti-
cal tool to reduce the number of variables measured by the 
seven sensors. Fig. 17.3 shows that the e-tongue was able 
to distinguish between espresso and long type coffees. It 
could also separate pure origin from blended coffee. Among 
the espresso group, E Columbia and E blend samples were 
found to be similar, consistent with specifications from the 
manufacturer (Várvölgyi et al., 2015).

17.3.2 Detection and Quantification of 
Specific Substances in Coffee

The evaluation and quantification of specific substances in 
real samples, including distinct brands of coffee, have been 
carried out through electrochemical techniques that are 
simpler, faster, and cheaper. Other characterization meth-
ods are chromatography, mass spectrometry, UV–vis and 
FTIR spectroscopy, and nuclear magnetic resonance (Khoo 
et al., 2013). Table 17.2 summarizes the literature on the 
use of electrochemical methods to determine the concen-
tration of caffeine and chlorogenic acid in coffee samples. 
Results mentioned in Table 17.2 are briefly described in the 
following paragraphs, where we included figures of merit 

for the performance of the various sensors, for the sake of 
comparison.

Pizzariello et al. (1999) developed a potentiometric bi-
osensor based on a glass membrane electrode, which is pH 
sensitive. For standard samples (not real), the biosensor 
achieved the following performance: the response was 
proportional to caffeine concentration between 0 and 
4 mg/mL, with a time of analysis between (2 ± 4) min 
and detection limit of 0.6 mg/L. The potentiometric 
response of the biosensor was reproducible and up to ten 
samples could be analyzed per hour. The biosensor per-
formance for caffeine in espresso coffee (real samples) 
was evaluated comparing its results with those obtained 
using high-performance liquid chromatography (HPLC). 
The concentrations of caffeine obtained by both method-
ologies for decaffeinated, Arabica, and Robusta samples 
are presented in Table 17.2. Mersal (2012) applied square 
wave voltammetry to determine caffeine using a pseudo 
carbon paste microelectrode prepared by mixing graphite 
powder with paraffin wax. For standard samples, caffeine 
could be detected in the linear range from 1 × 10−6 to 
1 × 10−3mol/L, with 3.03 × 10−7 standard deviation, a 
correlation coefficient of 0.999, and a detection limit of 
3.48 × 10−7mol/L. The reproducibility was examined 
through ten successive measurements in a sample con-
taining 1 × 10−4mol/L caffeine, with an observed 0.3% 
relative standard deviation. The method was applied to 
determine caffeine concentration in distinct real samples 
such as tea, coffee, and Coca-Cola.

Square wave voltammetry was used to determine caffeine 
concentration using a glassy carbon electrode modified with 

FIGURE 17.3 PCA plot for the data of espresso and long type coffee samples analyzed by an e-tongue (PC2–PC1).
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multiwall carbon nanotubes (Gupta et al., 2013). For stan-
dard samples, the sensor was able to determine caffeine in a 
wide concentration range, from 10 to 500 mmol/L, reaching 
a detection limit of 3.52 × 10−3mol/L, limit of quantifica-
tion of 11.73 × 10−3 mmol/L, and sensitivity of 48.54 mA 
(mmol/L)−1. The method was then applied to determine 

caffeine concentration in real samples such as tea leaves 
(Mohani tea leaves), coffee (instant coffee of Nescafe Sun-
rise), cold drink (Mountain Dew), pharmaceutical prepara-
tions, and urine samples.

The concentration of caffeine in soluble coffee, teas, 
and energy drinks could be determined without any sample 

TABLE 17.2 Summary of the Literature Devoted to Determine Caffeine and Chlorogenic Acid Concentrations  
in Coffee Samples Using Distinct Electrochemical Methods

Coffee Sample Concentration Technique References

Espresso decaffeinated Caffeine 0.27 ± 0.04 mg/mL Potentiometry Pizzariello et al. (1999)

0.35 ± 0.05 mg/mL HPLC

Espresso Arabica 1.00 ± 0.06 mg/mL Potentiometry

1.41 ± 0.07 mg/mL HPLC

Espresso robusta 2.56 ± 0.12 mg/mL Potentiometry

2.32 ± 0.15 mg/mL HPLC

Coffee 163 mg/L Square-wave voltammetry Mersal (2012)

Instant coffee of Nescafe 
Sunrise

96.44 ± 0.03 mg/gm Square-wave voltammetry Gupta et al. (2013)

Soluble coffee 82 mg/L Differential pulse voltam-
metry

Khoo et al. (2013)

Sachet of Nescafé 229.5 mM Differential pulse voltam-
metry (bare GCE)

Carolina Torres et al. 
(2014)

220.3 mM Differential pulse voltam-
metry (Nafion/GCE)

233.2 mM Labeled

Instant coffee 64.1±2.5 mg/L Differential pulse adsorp-
tive stripping voltammetry

Tyszczuk-Rotko and 
Beczkowska (2015)

65.5 ± 1.9 mg/L Spectrophotometry

Coffee 25.50 ± 1.82 mg/g Square-wave adsorptive 
stripping voltammetry

Yardım et al. (2013)

Vacuum–packed, roasted, 
and ground coffee 
(strong A)

Chlorogenic acid 446.7 ± 0.1 mg/L Square-wave voltammetry de Carvalho et al. (2008)

444.8 ± 0.1 mg/L Capillary electrophoresis 
method

Vacuum–packed, roasted, 
and ground coffee 
(strong B)

544.3 ± 0.1 mg/L Square-wave voltammetry

545.0 ± 0.1 mg/L Capillary electrophoresis 
method

Vacuum-packed, roasted, 
and ground coffee 
(traditional C)

552.8 ± 0.1 mg/L Square-wave voltammetry

522.7 ± 0.1 mg/L Capillary electrophoresis 
method

Vacuum–packed, roasted, 
and ground coffee 
(traditional D)

755.0 ± 0.1 mg/L Square-wave voltammetry

746.5 ± 0.1 mg/L Capillary electrophoresis 
method

Coffee Add: 3.63 mg/mL
Found: 3.7 ± 0.1 mg/mL

Differential pulse voltam-
metry (standard addition 
method)

Santos et al. (2011)

Add: 9.08 mg/mL
Found: 8.9 ± 0.1 mg/mL

Add: 10.89 mg/mL
Found: 10.5 ± 0.2 mg/mL
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pretreatment with differential pulse voltammetry, in which 
the modified electrodes were made of electrochemically 
reduced graphene oxide (ERGO; Khoo et al., 2013). The 
ERGO modified electrode was used in real samples due to 
its higher sensitivity to the oxidation of caffeine in standard 
samples, compared to electrodes prepared with graphite 
oxide (GPO) or graphene oxide (GO). The concentration 
range at which the sensors could be used to determine caf-
feine in standard samples was between 50 and 300 mmol/L. 
In a similar work based on differential pulse voltamme-
try, Carolina Torres et al. (2014) detected caffeine using a 
glassy carbon electrode (GCE) with the surface modified 
with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, 
or multiwalled carbon nanotubes. The unmodified GCE 
presented the best analytical properties. For instance, de-
tection limits were (128 ± 6) and (38.9 ± 3.7) nmol/L, re-
spectively, for GCE modified with Nafion and unmodified 
electrodes. However, the GCE modified with Nafion was 
recommended for sensing experiments involving detection 
of caffeine in real samples due to its ability to minimize 
ascorbate interference. In this case, the effect of interfering 
compounds, such as ascorbic acid, glucose, sucrose, and 
fructose, usually found in samples containing caffeine, was 
investigated by both bare GCE and GCE modified with Na-
fion. These two electrodes were then applied to determine 
caffeine concentration in three pharmaceutical preparations 
(tablets of Ilvico, Gurosan, and Dolviran) and three types 
of beverages (sachet of Nescafé, Coca-Cola, and Redbull). 
The results for coffee are given in Table 17.2, which also 
contain the labeled values for the commercial products.

The differential pulse adsorptive stripping voltammetry  
is another technique exploited to determine caffeine concen-
trations, where the working electrode consists of a glassy 
 carbon electrode modified with a lead film recovered by a 
Nafion layer (Tyszczuk-Rotko and Bęczkowska, 2015). For 
standard samples, the calibration graphs were linear from 
5 × 10−8 to 5 × 10−6mol/L (peak 1 = 0.86 V) and from 
5 × 10−7 to 1 × 10−5mol/L (peak 2 = 1.40 V). The corre-
lation coefficients (R2) were 0.9997 (peak 1 = 0.86 V) and 
0.9999 (peak 2 = 1.40 V), and the detection limits were 
1.7 × 10−8mol/L (peak 1 = 0.86 V) and 2.2 × 10−7mol/L 
(peak 2 = 1.40 V). The electrode-to-electrode reproducibility 
was verified for three modified electrodes prepared indepen-
dently and a relative standard deviation of 4.2% was obtained 
for measurements performed for a 1 × 10−6mol/L caffeine 
solution. The method was then applied to determine caffeine 
concentration in 10 commercially available caffeine bever-
ages. The results for coffee could be compared with data ob-
tained using UV–vis absorption spectroscopy.

As for determination of chlorogenic acid in coffee 
samples, we were able to find two papers dedicated spe-
cifically for this task. de Carvalho et al. (2008) used square 
wave voltammetry with a modified carbon paste electrode, 
obtained by mixing a tetranuclear copper(II) complex to 

graphite powder and then mineral oil. The tetranuclear 
copper(II) can mimic the active site of catechol oxidase 
complex, thus leading to a biomimetic sensor. For stan-
dard samples, the latter presented a linear regime in the 
concentration range from 5.0 × 10−6 to 1.45 × 10−4mol/L 
(r = 0.9985), with a detection limit of 8.0 × 10−7mol/L. The 
biomimetic sensor was very stable (250 days; 640 determi-
nations) and reproducible with relative standard deviation 
of 10.0%. For real samples, four kinds of coffee (vacuum-
packed roasted and ground coffee) obtained from local su-
permarkets were analyzed in triplicate. The results from the 
biomimetic sensor, illustrated in Table 17.2, were compared 
to those obtained with the capillary electrophoresis method.

In the other paper, differential pulse voltammetry was used 
with a molecularly imprinted sensor (Santos et al., 2011). The 
sensor was assembled by depositing an imprinted siloxane 
film, prepared by sol–gel process, onto an Au bare electrode 
surface. For standard samples, the sensor presented selectiv-
ity toward chlorogenic acid, a linear response (peak current) 
from 5.0 × 10−7mol/L to 1.4 × 10−5mol/L, and a detection 
limit of 1.48 × 10−7mol/L. Four real samples, including cof-
fee, black tea, green tea, and mate tea, were analyzed. The 
results for coffee are given in Table 17.2.

Caffeine and chlorogenic acid were determined simul-
taneously using cyclic and adsorptive stripping voltam-
metry, with a boron-doped diamond electrode (Yardım 
et al., 2013). The limits of detection for standard samples 
were 0.107 mg/mL (5.51 × 10−7mol/L) for caffeine and 
0.448 mg/mL (1.26 × 10−6mol/L) for chlorogenic acid. 
The practical application of this method was tested in com-
mercially available beverage samples such as coffee and en-
ergy drinks using the spike/recovery method. The concen-
trations found for caffeine and polyphenol content in coffee, 
energy drinks, and cola were also determined. According 
to Yardım et al., the results are within the legal limits es-
tablished by the Turkish Food Codex and agree with the 
amount displayed on the label by the manufacturer (coffee: 
25–54 mg/g; beverages: ≤ 150 mg/L).

17.4 ELECTRONIC TONGUES USING 
ELECTRICAL IMPEDANCE

Impedance spectroscopy has been an important tool to in-
vestigate mass transport, bulk polymers, biological and 
interfacial effects, and surface corrosion (Barsoukov and 
Macdonald, 2005). It has also been used in e-tongues 
(Riul et al., 2003; Smyth and Cozzoino, 2013), some of 
which were applied in coffee analysis (Riul et al., 2003; 
Ferreira et al., 2007). These e-tongues had sensing units 
made with ultrathin films of distinct materials deposited 
onto gold interdigitated electrodes (IDEs). Some advan-
tages of e-tongues based on impedance spectroscopy are 
that they have no need of a reference electrode and el-
evated sensitivity to electrolytes and nonelectrolytes due 
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to the ultra-thin nature of the transducers. The drawbacks 
are mainly associated with the need of computational 
methods to readjust the setup when a sensing unit has to 
be replaced.

An e-tongue based on impedance spectroscopy was able 
to distinguish 36 coffee samples having distinct global qual-
ity (GQ) scores assigned by trained coffee tasters. With re-
gression models proposed in the machine learning area, it 
was possible to predict GQ within ± 0.3 when compared 
with expert human tasters, quite promising for coffee analy-
sis (Ferreira et al., 2007).

Microfluidic devices began to appear recently (Jaces-
ko et al., 2005; Daikuzono et al., 2015), paving the way 
for integrations in clinical, environmental, foodstuff, and 
pharmaceutical applications. An impedance-based mi-
crofluidic e-tongue containing an array of sensing units 
was especially designed to receive layer-by-layer (LbL) 
films inside the microchannels, which are made with 
polydimethylsiloxane (PDMS) sealed onto gold IDEs 
(Daikuzono et al., 2015). The films were adsorbed by se-
quentially passing polyelectrolytes into the microchan-
nels. After deposition of the multilayers, the individual 
sensing units could be easily integrated, as illustrated in 
Fig. 17.4. This offers a series of advantages, including 
the use of only microliters for sampling and discharge 
and a large decrease in the time of analysis. Most im-
portantly, it is possible to exploit such easy integra-
tion for producing sensor arrays with tailored multiple 
 functionalities.

Further experimental details of the impedance-based 
microfluidic e-tongue are as follows. The PDMS micro-
channels were 490 mm wide, 50 mm high, and 12.5 mm 
long, being sealed onto gold IDEs (30 pairs of fingers, 
40 mm wide, 3 mm long, and 40 mm apart from each 
other) using plasma oxygen. The microchannels and IDEs 
were fabricated at the Brazilian Nanotechnology National 
Laboratory (LNNano). The LbL films were obtained from 
polyallylamine chloride (PAH) in the cationic layers, 

while the anionic layers consisted of poly(3,4-ethyenedi
oxythiophene):poly(styrenesulfonate) (PEDOT:PSS), or 
polypyrrole (PPy) or nickel phthalocyanine (NiTsPc). In 
each microchannel a 5-bilayer LbL film was deposited, 
thus forming the e-tongue setup. As a proof-of-principle, 
the microfluidic e-tongue was used to distinguish electro-
lyte and nonelectrolyte substances, corresponding to the 
basic tastes (Daikuzono et al., 2015).

In addition, this microfluidic e-tongue was employed to 
analyze Brazilian coffees obtained at local supermarkets. 
The samples were chosen due to their distinct characteris-
tics of quality and production. Fig. 17.5 shows the PCA plot 
for the data taken in triplicate at 5 kHz for seven distinct 
coffees, using ∼200 mL for each sample. The frequency 
was chosen in order to avoid interfacial effects that occur 
at lower frequencies and the resonance in the circuit due to 
the geometry of the IDEs used. Coffees with similar qual-
ity features were grouped closed to each other and similar 
samples displayed score values with the same sign indicat-
ing that most of the variances observed are attributed to 
physical characteristics moving the data in the same way 
throughout PC1.

Considering the simplicity involved in such analysis, 
namely the use of only four sensing units and avoiding 
prohibitive costs of a trained panel of human experts, the 
system brings all benefits from microfluidics. The latter 
include low cost, small amounts of samples, and the pos-
sibility to fabricate lab-on-a-chip devices. One can now 
envisage running complex analytical systems with high 
efficiency, paving the way for future developments and 
applications.
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FIGURE 17.4 Experimental setup integrating individual sensing 
units of a microfluidic impedance based e-tongue.

FIGURE 17.5 PCA plot for the data obtained with Brazilian coffees 
of distinct global quality features analyzed by a microfluidic e-tongue, 
with measurements taken at 5 kHz.
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18.1 INTRODUCTION

Food allergy is an adverse, abnormal immune-mediated 
reaction to a certain food or food ingredient that appears in 
susceptible individuals, often requiring a strict avoidance of 
their ingestion (Amaya-González et al., 2013). Sometimes, 
people exhibit food sensitivity, including intolerance that 
is a nonimmune-mediated reaction. The incidence of these 
disorders is difficult to assess and the percentage of people 
self-perceived as food intolerant (up to 25%) is very dif-
ferent from that of confirmed cases (less than 3%). Most 
allergens are proteins that must be detected along the food 
chain, posing a real challenge for the development of ana-
lytical methods. Gliadin is a heat-stable allergen, known 
as the alcohol-soluble fraction of gluten, being the anti-
genic protein of wheat responsible for celiac disease. The 
ratio of gliadin to total gluten varies with the food matrix. 
The gliadin content usually corresponds to half of the glu-
ten content (Peres et al., 2011), although this value is not 
consensual (EFSA, 2004; Tranquet et al., 2012). A daily 
intake of 100 mg of gliadin can induce clinical symptoms in 
celiac patients, being the prevalence of celiac disease (clas-
sical, oligosymptomatic, and silent forms) in children and 
adults around 1:200 in Europe (EFSA, 2004). Therefore, 
a threefold definition of gluten-free foods was proposed 
(EFSA, 2004): (1) foods in which ingredients do not con-
tain any prolamin from wheat or Triticum species with a 
gluten level not exceeding 20 mg/kg (or ppm); (2) those 
consisting of ingredients which have been rendered “gluten-
free” with a gluten level not exceeding 200 mg/kg; and (3) 
those resulting from a mixture of ingredients with a gluten 
level not exceeding 200 mg/kg. It should be noticed that 
the values previously mentioned are only indicative since 
there is not enough information to make a final decision on 

them. More recently, foods labeled as “very low gluten” or 
“gluten-free” must have gluten content lower than 100 and 
20 mg/kg, respectively (Nassef et al., 2008; OJEU, 2009; 
Zeltner et al., 2009). However, commercial foods labeled as 
gluten-free may be contaminated by gluten in the range of 
20–200 ppm (Collin et al., 2004; Scognamiglio et al., 2014).

Several commercial analytical tools have been devel-
oped, namely to detect gliadin/gluten, most of them rely-
ing in immunoassays, both competitive for hydrolyzed 
food and sandwich formats for complete proteins (Amaya-
González et al., 2013). Moreover, emerging electrochemi-
cal techniques such as aptasensors and electronic tongues 
(e-tongues) have also been reported (Amaya-González 
et al., 2014; Meirinho et al., 2015; Peres et al., 2011).

18.2 GLIADINS AND THE CELIAC DISEASE

The celiac disease is classified as an autoimmune disease 
of the small intestine induced in genetically susceptible 
individuals that is caused by the ingestion of gluten pro-
teins, which are important components of commonly used 
food sources like wheat, rye, and barley (Bai et al., 2013; 
Shan et al., 2002). The introduction of gluten-rich foods in 
the human diet led to the development of disease related 
to gluten exposure (Sapone et al., 2012; Troncone and 
Jabri, 2011). These reactions are not restricted to celiac 
disease, but also include nonceliac gluten sensitivity and 
wheat allergy, which combined affect about 10% of the 
general population (Battais et al., 2003, 2005; Lammers 
et al., 2014; Williams et al., 2010; Woodward, 2010). More-
over, they represent distinct pathophysiological reactions to 
gluten ingestion, with differing clinical presentations, sero-
logical markers, and long-term treatments (Bai et al., 2013; 
Briani et al., 2008; Ciclitira et al., 2005b). Although current 
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research attempts to elucidate the frontiers between these 
reactions, their differences can be difficult to discriminate.

In the case of celiac patients, the exposure to gluten in-
duces an inflammatory response that ultimately will lead to 
the destruction of the villous structure of the intestine (Shan 
et al., 2002; Williams et al., 2010; Woodward, 2010). It 
usually appears in early childhood with pronounced symp-
toms such as chronic diarrhea, abdominal distension, and 
failure to thrive. In some patients, symptoms are only re-
vealed later in life and these may include fatigue, diarrhea, 
and weight loss due to malabsorption, anemia, and neuro-
logical symptoms (Ciclitira and Moodie, 2003). Celiac dis-
ease is a life-long disease and if untreated, it is associated 
with increased morbidity and mortality. Despite its high 
prevalence and severe symptoms, the only effective therapy 
is a strict dietary abstinence from the previously mentioned 
food grains (Briani et al., 2008; Fric et al., 2011; Tye-Din 
et al., 2010; Sapone et al., 2012).

Gluten is the main structural protein complex present 
in wheat with equivalent toxic proteins found in rye and 
barley (Sapone et al., 2012). The amino acid composition 
of gluten peptides with a high percentage of glutamine (up 
to 35%) and proline (15–20%) is unique (Fric et al., 2011). 
Immune-reactive protein fractions of gluten comprise glia-
dins and glutenins, with gliadins containing monomeric 
proteins and glutenins containing aggregated proteins 
(Bittner et al., 2008). Gliadins are complex glycoproteins 
rich in proline and glutamine (Lammers et al., 2014). Due 
to their structure, the intestinal enzymes cannot completely 
degrade the proteins. Actually, it is well known that undi-
gested or partly digested gliadins can affect a broad range of 
human cells (eg, inhibit cell growth, induce apoptosis, and 
alter redox equilibrium).

The celiac disease is a model autoimmune disease, in 
which, contrarily to many other autoimmune diseases, the 
trigger (gluten), the tight genetic junction (HLA antigens: 
DQ2 and DQ8), as well as the primary autoimmune reaction 
[autoantibodies to tissue transglutaminase (tTG)] are known 
(Fric et al., 2011; Sollid et al., 2012; Tye-Din et al., 2010). 
This knowledge represents an advantage in the development 
of new diagnosis and treatment methods, as well as for the 
development of food analytical techniques that can easily 
and accurately detect the presence of gluten-related toxic 
protein fractions, such as gliadins. Indeed, the main clinical 
issues in the management of celiac disease are that the di-
agnostics are suboptimal and invasive, and that patients 
must rely on a complex, costly, and life-long therapy (Tye-
Din et al., 2010). While intestinal biopsy is still considered 
the gold standard for diagnosing celiac disease, the pres-
ence of highly specific autoantibodies in patient serum has 
been clinically used as a marker for screening candidates 
for duodenal biopsy (Bizzaro et al., 2012; Ciclitira and 
Moodie, 2003; Williams et al., 2010; Woodward, 2010). 
Additionally, the relevance of antibody assessment in 

predicting celiac disease has increased along with the num-
ber of patients with minor or atypical symptoms.

As previously mentioned, from the human diseases re-
lated to gluten exposure, the best known are mediated by 
the adaptive immune system and include celiac disease and 
wheat allergy (Battais et al., 2003). In both conditions, the 
reaction to gluten is mediated by T-cell activation in the gas-
trointestinal mucosa (Han et al., 2013; Sapone et al., 2012). 
However, in wheat allergy, it is the cross-linking of immu-
noglobulin IgE by repeat sequences in gluten peptides that 
triggers the release of chemical mediators. Contrarily, the 
celiac disease is an autoimmune disorder as demonstrated 
by specific serologic autoantibodies [tTG and antiendomy-
sium antibodies (EMA)] (Han et al., 2013). Besides these 
two conditions, there are cases of gluten reactions in which 
neither allergic nor autoimmune mechanisms are involved. 
These are generally defined as gluten sensitivity. Individu-
als exhibiting gluten sensitivity are unable to tolerate glu-
ten and develop an adverse reaction different from the one 
observed in patients with celiac disease, that is, without 
damage in the small intestine (Bai et al., 2013; Troncone 
and Jabri, 2011). Although the symptoms may be similar to 
those associated with celiac disease, no tTG autoantibodies 
or other specific celiac-related antibodies are found.

Although a gluten-free diet is prescribed to patients 
suffering from diseases related to gluten exposure, this 
does not mean that they cannot tolerate gluten at all, as 
their clinical sensitivity varies significantly (Ciclitira 
et al., 2005a; Hischenhuber et al., 2005). Some individu-
als cannot tolerate trace amounts of gluten, whereas  others 
appear to tolerate large amounts. In the standard Western 
European gluten-free diet, some gluten is accepted as a 
contaminant in wheat starch (Kupper, 2005). This starch 
improves the baking quality and palatability of the gluten-
free diet and it is tolerated by most celiac patients (Collin 
et al., 2004; Fido et al., 1997; Goesaert et al., 2005; Peraaho 
et al., 2003). In other countries, such as United States of 
America, for example, wheat starch is not recommended. 
The US National Food Authority has decided that the  label 
“gluten-free” can only be used for foods that contain no 
gluten at all (Kupper, 2005). Therefore, foods that contain 
wheat starch should be labeled as “low-gluten” (Fasano and  
Catassi, 2001). The proposed standard as formulated by the 
WHO/FAO organization Codex Alimentarius, has one limit 
at 0.02% for “rendered gluten-free” food, and another at 
0.002% for “naturally gluten-free food” (Bai et al., 2013; 
Hischenhuber et al., 2005; Niewinski, 2008). These differ-
ent practices reflect the fact that we do not know the exact 
limit of gluten intake that is tolerated long term without 
harmful effects by patients with celiac disease as a group 
(Ciclitira et al., 2005a). The acceptable gluten dose per 
day is still under debate, although the scientific and medi-
cal communities have suggested that around 50 mg/day is 
safe (Hischenhuber et al., 2005). As a reference, the normal 
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gluten intake by healthy individuals is about 13 g/day (Van 
Overbeek et al., 1997). Research indicates no significant 
differences in susceptible individuals undergoing a strict 
wheat starch-containing, gluten-free diet versus a naturally 
gluten-free diet (Kupper, 2005).

In summary, the awareness of the gluten-related diseas-
es, its dietary restrictions, and the impact of adhering to a 
gluten-free diet warrant further research. Also, reliable de-
tection and quantification methods for food allergens, such 
as gluten proteins, are required to ensure compliance with 
food labeling and to improve consumer protection.

18.3 SENSOR DEVICES FOR GLIADIN 
AND/OR GLUTEN DETECTION IN FOODS

The availability of fast, sensitive, and reliable analytical 
methods to detect specific food risks, ensuring food safety 
for people susceptible or intolerant to some food substances 
that may be allergens like gliadins is of huge importance 
and a real need. Indeed, in a recently market survey carried 
out in the United States (Sharma et al., 2015), it was re-
ported that 3.6% of the gluten-free labeled foods evaluated 
contained 5.8–554 ppm of gluten, and 1.1% of those foods 
had gluten contents greater than the regulatory threshold 
(20 ppm). The limitations (eg, nonportability; strict operat-
ing conditions; and required highly qualified trained tech-
nicians) associated to the high-cost and time-consuming 
traditional methods (eg, gel or capillary electrophoresis, 
high-performance liquid chromatography, polymerase 
chain reaction) have encouraged the development of emerg-
ing sensor-based technologies. Nevertheless, it should be 
stated that those traditional techniques are complementary 
and sensitive tools that are commonly used to confirm the 
results of the immunological officially accepted methods 
(Rosell et al., 2014).

18.3.1 Factors Affecting Gliadins/Gluten 
Analysis

There are two issues that can make gluten analysis difficult, 
namely, the extraction yield of gliadin from the food samples 
and the use of a correct gliadin standard. These two factors 
may limit the development and/or implementation of novel 
analytical approaches for gluten-free food analysis (Rosell 
et al., 2014). Gluten extraction from processed foods is not 
an easy task, since, in some cases, during the food process-
ing, high temperatures are used that contribute to the forma-
tion of isopeptide bonds between amino and carboxamide 
groups of the protein residues or to the formation of protein 
aggregates making gluten analysis quite difficult. There-
fore, to ensure a complete extraction of both prolamins and 
glutenins, several cocktail recovery solutions have been 
proposed (Garcia et al., 2005; Mena et al., 2012), although 
some of them, namely those using b-mercaptoethanol, may 

be incompatible with some immunological-based tech-
niques. On the other hand, in gluten analysis, the use of the 
most adequate standard plays an important role. The stan-
dard should be as representative as possible of the gluten 
proteins to be analyzed. Some standards are available, such 
as The Working Group on Prolamin Analysis and Toxicity 
(PWG) gliadin standard (Van Eckert et al., 2006). Neverthe-
less, its use is not consensual. Some authors have suggested 
that it would be more correct to use a hydrolyzed standard 
combined with a competitive assay to quantify peptides of 
partially hydrolyzed gluten in fermented wheat, rye, and 
barley products (Comino et al., 2012, 2013;  Gessendorfer 
et al., 2009; Mena et al., 2012; Rosell et al., 2014).

Regardless of these pertinent questions, several works 
have reported the development of sensor-based analytical 
methodologies toward the detection of gliadins in food-
stuffs using commercial gliadin or gluten standards and ex-
traction approaches based on the use of aqueous–ethanolic 
solutions.

18.3.2 Immuno- and Aptasensors 
for Gliadin/Gluten Detection in Foods

In recent years, several optical and electrochemical 
biosensors, including immunosensors and aptasensors, have 
been developed to detect gliadin in food matrices, namely to 
evaluate gluten-free foods, since the amount of gluten must 
be lower than 20 mg/kg (or ppm), according to the legal 
requirements (Nassef et al., 2008; OJEU, 2009; Zeltner 
et al., 2009). De Stefano et al. (2006) used an optical sen-
sor with a recombinant glutamine-binding protein to detect 
traces of gluten in food. Nassef et al. (2008) proposed an 
electrochemical immunosensor, based on the use of an an-
tibody raised against the putative immunodominant celiac 
disease epitope, to measure the gliadin content in foods. De-
tection limits between 5.5 and 11.6 ng/mL (or ppb) could 
be achieved. Labelless impedimetric and antigliadin Fab-
based amperometric immunosensors were also developed 
by Nassef et al. (2009), showing gliadin detection limits of 
3.23 ng/mL. Mairal et al. (2009) developed a microfluo-
rimeter with a disposable polymer chip with a gliadin de-
tection limit of 4.1 ng/mL, by detecting the emission of a 
fluorophore-labeled monoclonal antigliadin antibody upon 
 excitation with light. Laube et al. (2011) developed an 
electrochemical magneto immunosensor, coupled or not to 
 ELISA, allowing the quantification of gliadin or small glia-
din fragments in natural or pretreated food samples with de-
tection limits ranging from 1.2 to 24.2 ng/mL (depending on 
the food matrix). Chu and Wen (2013) developed a sensitive 
liposomal fluorescence immunoassay with immunomag-
netic beads for the detection and quantification of gliadin 
in gluten-free foods with a detection limit of 0.6 mg/mL (or 
ppm), although slight cross-reactions with barley and rye 
were found. Although the immunosensor technology seems 
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promising, limitations like long-term stability, surface ef-
fects, and interferences resulting from complex sample 
matrices are major concerns (Neves et al., 2010). Also, 
finding a single antibody able to react with different glia-
din and glutenin subunits with similar affinity, as well as 
with prolamins from different cereals and from modified 
gluten is very challenging (Tranquet et al., 2012). Thus, due 
to the complexity of gluten proteins, the quantification of 
the total gluten content in foods is extrapolated from the 
gliadin concentration, assuming a constant gliadin–glutenin 
ratio equal to 1 within all samples (Tranquet et al., 2012). 
Gluten composition depends on multiple parameters such 
as the species, cultivars, agronomical conditions, as well 
as on the products processing (Wieser and Koehler, 2009). 
Therefore, some authors (Van Eckert et al., 2010; Wieser 
and Koehler, 2009) have suggested that the next step could 
be the use of a mixture of antibodies that could recognize 
gliadin and glutenin subunits at similar degrees. Still, the 
development of such assays, with two or more antibodies, 
is complex and may be expensive (Tranquet et al., 2012).

Hence, recently aptamers against hydrophobic immu-
notoxic peptides from gliadin from wheat that also recog-
nize celiac disease related proteins from barley, rye, and 
oat have been investigated (Amaya-González et al., 2013; 
Pinto et al., 2014). Fernández et al. (2012) developed an 
electrochemical genosensor for the detection of a specific 
DNA sequence that encodes an immunogenic fragment 
of gliadin, being achieved a detection limit of 0.001 mM. 
More recently, Amaya-González et al. (2014) reported a 
competitive electrochemical magneto-assay without cross-
reactivity with nontriggering celiac disease proteins from 
soya, rice, or maize. This device enabled the detection of 
0.5 ppb in diluted gliadin standard solutions, which corre-
sponds to a detection limit of 0.5 ppm of gluten, consider-
ing the dilution factor and assuming that gliadin constitutes 
50% of gluten.

18.3.3 Electronic Tongue

Although optical and electrochemical immuno- and aptas-
ensors proved to be a potentially fast and practical tool to 
accurately detect possible gliadin/gluten contamination of 
gluten-free labeled foods, their development has been very 
demanding, requiring a considerable amount of consum-
ables, equipment, and skilled technicians. A possible and 
simpler alternative has been proposed by Peres et al. (2011) 
and is based on the use of an all solid-state potentiomet-
ric e-tongue with 36 polymeric membranes, not coupled to 
any antibody against gliadin, or aptamer against any immu-
notoxic peptides from gliadin. The device comprised two-
sensor arrays, being the membranes prepared with organic 
compounds containing long carbon chain with different 
functional groups (lipid additive compounds). Each mem-
brane contained polyvinyl chloride (PVC) as polymeric 

matrix, a plasticizer, and a sensor additive. The multisen-
sor device enabled the semiquantitative discrimination of 
aqueous–ethanolic (30:70, v/v) mixtures, containing pre-
established levels of dissolved gliadin standard, chosen in 
order to mimic food aqueous–ethanolic extracts of gluten-
free, low-gluten content, or gluten-containing foodstuffs 
(<20; 20–200; and >200 mg/kg of gluten equivalent, as-
suming a gliadin/gluten ratio equal to 0.5) with a sensi-
tivity of around 80%, corresponding to a gliadin detection 
limit around 1–2 mg/kg. Also, e-tongue was successfully 
applied to real samples, being able to correctly classify 
more than 80% of the gluten-free or gluten-containing 
foodstuffs evaluated.

The successful performance reported by the research 
team (Peres et al., 2011) may be tentatively explained based 
on the chemical composition of the polymeric membranes 
applied on the e-tongue. Indeed, the lipid polymeric mem-
branes used contain hydrophobic and hydrophilic groups 
allowing the interaction with several chemical compounds 
(electrolytes and nonelectrolytes) via electrostatic or hy-
drophobic interactions (Kobayashi et al., 2010; Toyota 
et al., 2011a,b; Yasuura et al., 2014a,b). Hydrogen bonds 
or electrostatic interactions may also arise in the presence 
of mediating electrolyte substances, between carboxyl 
or phosphate groups in the lipid/polymer membrane and 
vicinal  hydroxyl groups of the target molecules (Toyota 
et al., 2011b). Furthermore, it is accepted that lipids in-
teract with proteins during gluten formation; thus, lipids 
could enhance the formation of large complex aggregates 
involving both gliadin and glutenin proteins (Carcea and 
 Schofield, 1996). Besides, it is known that nonpolar lip-
ids can be associated with glutenins through either hy-
drophobic interactions or hydrogen bonds, whereas polar 
lipids containing phosphate groups preferentially interact 
with gliadin (McCann et al., 2009). Moreover, when lipid/ 
polymer membranes are applied for protein detection, 
namely gliadin, that does not bind directly, it is expected 
that their behavior could mimic that of protein–lipid inter-
actions occurring in biological membranes, where unspe-
cific hydrophobic association or electrostatic interactions 
between protein and lipid head groups occur (Thomas and 
Glomset, 1999; Zhao and Lappalainen, 2012).

To further evaluate and verify the possible interaction of 
the lipidic membranes toward gliadin or gluten from wheat, 
a new e-tongue was built. The electrochemical device con-
sisted of a print-screen potentiometric array (Fig. 18.1), 
with 20 chemical sensors, with cross-sensitivity lipidic 
membranes and relative plasticizer-additive compositions 
(Table 18.1) identical to those previously used by the re-
search team for gliadin qualitative and semiquantitative 
detection (Peres et al., 2011). Plasticizer bis(2-ethylhexyl)
phthalate was replaced by dioctyl phenylphosphonate and 
the additives bis(2-ethylhexyl)phosphate and tridodecyl-
methylammonium chloride were not included in the new 
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electrochemical device tested, since in a preliminary study 
sensors containing those compounds showed low response 
toward gliadin and other proteins (data not shown). Final-
ly, each lipidic membrane contained PVC (≈32%), as the 
polymeric matrix, and a combination of each of the five 
plasticizers used (≈65%) and the four additive compounds 
(≈3%), as shown in Table 18.1. An identification code was 
used for each lipidic membrane, containing the letter S as 
the sensor followed by two numbers (the first identifying 

the plasticizer, from 1 to 5, and the latter the additive, from 
1 to 4) separated by a punctuation mark (comma).

The e-tongue signal profiles were recorded in alkaline 
aqueous–ethanolic solutions (pH≈12; 30:70 v/v) containing 
standard gliadin (from Sigma-Aldrich) or gluten (from 
Sigma-Aldrich, protein content >80%), varying from 
+86.1 to +151.0 mV and +82.7 to +142.4 mV, respectively. 
In general, for all sensors, the corrected signal poten-
tial ∆ = −E E E[ (mV) ]dissolved protein

0
solvent
0  increased with the [∆E(mV)=Edissolvedprotein0−Esolvent0]

FIGURE 18.1 Screen-printed scheme with conductive resin silver of the e-tongue multisensor device, containing 20 lipid/polymeric membranes, 
used for potentiometric analysis of aqueous–ethanolic gliadin or gluten standard solutions (surface isolated with acrylic resin).

TABLE 18.1 Sensors Used in the E-Tongue: Identification of the Plasticizer and Additive Compounds Used in Each 
Lipidic-Polymeric Membrane

ID No.a Name Chemical Formula

Plasticizer compoundb

1 Bis(1-butylpentyl) adipate [-(CH2)2COOCH[(CH2)3CH3]2]2

2 Dibutyl sebacate [-(CH2)4CO2(CH2)3CH3]2

3 2-Nitrophenyl-octyl ether O2NC6H4O(CH2)7CH3

4 Tris(2-ethylhexyl) phosphate [CH3(CH2)3CH(C2H5)CH2O]3P(O)

5 Dioctyl phenylphosphonate C6H5P(O)[O(CH2)7CH3]2

Additive compoundc

1 Octadecylamine CH3(CH2)17NH2

2 Oleyl alcohol CH3(CH2)7CH═CH(CH2)7CH2OH

3 Methyltrioctylammonium chloride [CH3(CH2)6CH2]3N(Cl)CH3

4 Oleic acid CH3(CH2)7CH═CH(CH2)7COOH
aSensor identification number.
bAll plasticizers were SelectophoreTM grade from Fluka, with purity ≥97%.
cAll additives were from Fluka, with purity ≥97%.
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gliadin or gluten content, because their responses evaluated 
in dynamic concentration ranges as can be seen in Fig. 18.2 
(gliadin: 10–1000 ppm; gluten: 15–1000 ppm).

Linear correlations were obtained by plotting the sen-
sors’ signals against decimal logarithm of the concentrations 
[∆E(mV) = a + b × log10 (C, ppm)], although for different 
concentration intervals (Table 18.2 and Fig. 18.3). All sen-
sors showed a quantitative response toward gliadin concen-
tration (0.967 ≤ R ≤ 0.997) enabling the quantification of 
gliadin in standard solutions. For more complex matrices, 
such as foodstuffs, the possible quantification of gliadin 
content must be experimentally evaluated, but it is expected 
that the use of multivariate regression models (linear or non-
linear) based on a subset of the most informative sensors 
(chosen using a heuristic or a metaheuristic variable selec-
tion algorithm) will overcome possible modeling difficul-
ties, namely due to signal interferences (Dias et al., 2014).

The results clearly show the capability of the e-tongue to 
quantify gliadin and, although only standard solutions were 
analyzed, a potential application to real samples can be fore-
seen. It should be noticed that, if gluten concentrations were 
converted into apparent gliadin contents (assuming a glia-
din–glutenin ratio equal to 1) similar regression equations 
would be obtained for the dependence of ∆E with log10(C), 
independently if the assays were made with gliadin or gluten 
solutions, as also exemplified in Fig. 18.3 for two e-tongue 
sensors (S1:4 and S4:4). This result suggests that, in prin-
ciple, the lipidic membranes are responding preferentially to 
gliadin over glutenin proteins. This apparent preference may 
be tentatively explained taking into account that: (1) glutenin 
has a greater average molecular weight (70–90 kDa) com-
pared to gliadin (30–50 kDa) (Wieser, 2008), which may 
favor the gliadin possible adsorption over glutenin and (2) 
lipidic membranes used preferentially interact with gliadin 

FIGURE 18.2 The e-tongue corrected signal profiles (∆E, mV) variation with increasing concentration levels of gliadin (10–1000 ppm) or gluten 
(15–1000 ppm) in aqueous–ethanolic standard solutions (pH≈12).
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over glutenin proteins due to their polarity and presence of 
a phosphate group in some of them (McCann et al., 2009). 
A more detailed analysis of the results, shown in Table 18.2, 
indicate that apparently the type of additive has less influ-
ence in the potentiometric signal responses than the type 
of plasticizer. Indeed, two plasticizers [tris(2-ethylhexyl) 
phosphate and dioctyl phenylphosphonate] gave the best 
correlations, which was expected due to the presence of the 
phosphate group that enhances the gliadin–lipid interaction 
(McCann et al., 2009).

Globally, from the results reported by Peres et al. (2011) 
and those obtained in this work, both based on the use of 
 potentiometric e-tongues with lipid/polymeric membranes, 
it can be inferred that this electrochemical approach ex-
hibits a sensitivity of 1–3 ppm (≈2–6 ppm of gluten), 
which is quite satisfactory since an analytical method 
with a sensitivity of 10 ppm is suitable for gluten detec-
tion (Zeltner et al., 2009). Moreover, the e-tongue fulfills 
the requirements of gluten-free, low-gluten content, or 
gluten-containing food label verification, enabling gliadin 
content quantification in a wide dynamic range, varying 
from 3 to 1000 ppm. However, this quantitative potential 
must be further investigated by applying the device to real 

food samples. Nonetheless, this work together with the pre-
vious one (Peres et al., 2011) may be viewed as a proof-of-
principle that a potentiometric e-tongue with lipidic mem-
branes may be used as a practical, fast, simple, and sensitive 
tool toward the detection of  gliadin.

18.4 CONCLUSIONS AND FINAL 
REMARKS

Several analytical techniques have been reported for gliadin 
detection in food samples. Recently, the use of sensors gained 
an increased attention, namely immunosensors and aptasen-
sors, which exhibit gliadin detection limits (3 ppb–0.6 ppm, 
depending on the technique) much lower than the regulatory 
gluten threshold allowed in gluten-free foodstuffs (<10 ppm 
of equivalent gliadin). Nevertheless, these high-sensitive 
techniques are usually far beyond the economic and techni-
cal possibilities of the majority of the food industries, namely 
micro- and small familiar enterprises, reducing its routine 
application. Hence, in recent years the research team has de-
veloped electrochemical devices for gliadin detection in food 
samples. The potentiometric e-tongues developed have exhib-
ited a suitable sensitivity toward gliadin (1–3 ppm) enabling 

TABLE 18.2 Parameters of the Linear-Logarithm Regressions and Dynamic Concentration Ranges for Each Sensor (S1:1 
to S5:4) of the Potentiometric E-Tongue [∆E(mV) = a + b × log10 (C, ppm)]

Sensor ID No.a
Gliadin Gluten

Concentration Range (ppm) Rb Concentration Range (ppm) Rb

S1:1 [10, 320] 0.967 [15, 570] 0.999

S1:2 [10, 320] 0.992 [15, 570] 0.995

S1:3 [10, 560] 0.997 [15, 1000] 0.993

S1:4 [10, 1000] 0.993 [15, 1000] 0.996

S2:1 [80, 1000] 0.991 [100, 820] 0.989

S2:2 [36, 1000] 0.994 [15, 1000] 0.996

S2:3 [80, 1000] 0.993 [15, 820] 0.96

S2:4 [36, 810] 0.996 [15, 820] 0.997

S3:1 [3, 810] 0.982 [15, 820] 0.990

S3:2 [3, 560] 0.997 [15, 820] 0.984

S3:3 [80, 1000] 0.992 [100, 820] 0.975

S3:4 [10, 560] 0.996 [15, 570] 0.825

S4:1 [10, 1000] 0.997 [190, 570] 0.991

S4:2 [10, 1000] 0.996 [190, 570] 0.974

S4:3 [3, 1000] 0.996 [190, 820] 0.994

S4:4 [10, 1000] 0.999 [190, 1000] 0.991

S5:1 [10, 1000] 0.995 [190, 1000] 0.960

S5:2 [36, 1000] 0.995 [190, 1000] 0.990

S5:3 [36, 1000] 0.994 [190, 1000] 0.984

S5:4 [36, 810] 0.993 [190, 1000] 0.979
aSensor identification code number based on the information given in Table 18.1.
bCorrelation coefficient.
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its quantification, as well as the qualitative or semiquantita-
tive discrimination of foods based on their gluten content and 
according to the legal thresholds. The satisfactory e-tongue 
performance suggests this device as a promising routine tool 
for gliadin detection in foodstuffs. Finally, the gliadin quan-
tification capability could be attributed to the polar character 
of the lipidic/polymeric membranes applied in the e-tongue, 
and also to the presence of the phosphate group in some of 
the membranes. Nevertheless, a wider study is required, in-
cluding the validation of the methodology using different 
liquid and food samples. Also, a future work should include 
the use of nonpolar lipidic membranes in the e-tongue since 
they preferentially interact with glutenins, enabling the direct 
quantification of the gluten content, thus avoiding the contro-
versial use of the gliadin–glutenin ratio equal to 1 to extrapo-
late the gluten concentration.
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Chapter 19

Electronic Tongues Applied to Grape 
and Fruit Juice Analysis
Cecilia Jiménez-Jorquera, Manuel Gutiérrez-Capitán
Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, Spain

19.1 INTRODUCTION

The increasing interest on a sustainable and high-quality 
production in agriculture and food industry has promoted 
the development of more automated and precise analyti-
cal systems for monitoring. Besides, optimized process 
control is essential to address safety rules and to maintain 
the commercial viability of an end product. This implies, 
among other aspects, a rapid assessment of the chemical 
and physical properties of raw materials, process streams, 
and end products. The industry of fruit juices is one of the 
most growing among foodstuff industry. Fruit juices are 
consumed worldwide, not only for their flavor, taste, and 
freshness, but also due to their beneficial health effects 
when consumed regularly.

Quality of fruit juice is checked throughout the pro-
duction process. After extraction and concentration, some 
physicochemical parameters are checked like the sugar 
level, which is measured in degrees Brix, acidity, citrus oil 
level, pulp level, pulp cell integrity, color, viscosity, as well 
as the microbiological contamination. The final juice prod-
uct is evaluated in terms of subjective qualities like flavor 
and texture by a sensory panel. These analyses are currently 
performed with conventional techniques and in some cases 
sophisticated instrumentation that are time consuming and 
require costly laboratory equipment. On the other hand, for 
sensory analysis, panels of trained technicians are required, 
which involves a considerable amount of resources, time, 
and money and it suffers from some drawbacks, like, for 
example, discrepancies due to human fatigue or stress, and 
clearly cannot be used for online measurements. Therefore, 
the implementation of analytical systems in fruit juice pro-
cessing and quality control that could improve the actual 
instrumentation and will permit freshness evaluation, shelf 
life, authenticity assessment and quantitative analysis would 
be relevant. Multisensor systems combined with chemomet-
ric tools, also called electronic tongues, are especially suit-
able for this purpose (Escuder-Gilabert and Peris, 2010).

An electronic tongue (e-tongue) can be defined as an 
analytical instrument comprising an array of nonspecific 
chemical sensors with cross-sensitivity to different com-
pounds and an appropriate chemometric tool for data pro-
cessing. The sensor array produces a signal pattern that can 
be correlated to certain features or qualities of the sample 
(Vlasov et al., 2005). These systems are able to imitate the 
taste sense but also to perform classification and discrimina-
tion, qualitative analysis, and quantitative analysis of mul-
tiple components simultaneously. They have demonstrated 
their reliability and versatility in a broad range of fields, 
such as clinical diagnostics (Gutierrez et al., 2008b), envi-
ronmental monitoring (Rudnitskaya et al., 2001), agro-food 
analysis (Gutierrez et al., 2008a), control of industrial pro-
cesses (Winquist et al., 2005), and pharmaceutical analysis 
(Gutes et al., 2007), by using different types of sensors, es-
pecially electrochemical ones. However, it is in food quality 
and safety control where the applicability of these multisen-
sor systems has been most extended (Baldwin et al., 2011).

Regarding commercial electronic tongues, currently there 
are two in the market. One is the a-Astree, manufactured by 
Alpha MOS, France (Alpha MOS, 2014). This device com-
prises a 16-position autosampler and an advanced chemomet-
ric software package containing various pattern recognition 
analysis modules like principal component analysis (PCA), 
partial least squares (PLS), discrimination function analysis 
(DFA), and soft independent modeling of class analogy (SIM-
CA). The detectors consist of an array of seven ion-selective 
field effect transistors (ISFETs) fabricated at the IMB-CNM 
(Spain) and coated with different polymer membranes. This 
e-tongue is mainly applied to the pharmaceutical industry to 
study drug formulations from the standpoint of taste. Other ap-
plications reported with the a-Astree are to foodstuff like tea, 
coffee, and fruit analysis described in this chapter. The other 
commercial e-tongue is the result of the research lead by Pro-
fessor Toko from the University of Tokyo, Japan, in the nine-
ties. The  TS-5000Z taste sensing system from the company 
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Intelligent Sensor Technology (INSENT), Japan, is based on 
an array of potentiometric sensors with lipid membranes able 
to recognize the basic tastes (INSENT, 2014). This equipment 
is also applied to food and pharmaceutical analysis.

Data treatment is a key issue to  obtain a significant result 
from an electronic tongue ( Esbensen, 2001). The signals 
recorded by the sensors have a high complexity due to the 
presence of cross-interference and matrix effect responses. 
Therefore, multivariate chemometric methods can be used 
to simplify the analysis, thus enabling the “fingerprinting” 
of each sample. The election of one or other method will 
depend on the application. Basically, there are three types 
of results that can be of interest: data exploration, sample 
classification, and multidetermination. The multivariate 
exploratory techniques are mainly unsupervised, given 
that no labels are imposed to the data matrix before the 
treatment. The paradigmatic example of these methods is 
the PCA (Correia and Ferreira, 2007). PCA reduces the 
dimensionality of the original data matrix, retaining the 
maximum amount of variability and information within 
the data. PCA is one of the most frequently used che-
mometric tools, mainly due to its very attractive features 
such as generation of a 2D or 3D graph that captures the 
largest percentage of the original variance. Other typical 
exploratory method is the cluster analysis (CA) used also 
to identify groups or clusters of similar samples. Next, the 
supervised statistical techniques are known for provid-
ing classification indices to a large set of samples and/
or response variables (Berrueta et al., 2007). Supervised 
techniques include linear discriminant analysis (LDA), 
partial least squares-discriminant analysis (PLS-DA), k-
nearest neighbor (k-NN), or SIMCA. Later algorithms are 
a recommended method in food-authenticity applications 
given their capacity of characterizing individual classes in 
a totally independent way and defining an enclosed class 
space based on a statistical confidence level. Finally, the 
multidetermination of continuous properties or parameters 
are modeled and predicted by regression methods, among 
which PLS regression, multiple linear regression (MLR), 
and principal component regression (PCR) are the most 
common. Although the algorithms are essentially differ-
ent, these three multivariate calibration techniques pro-
duce regression models for linear systems. This means 
that the relationship between the parameters to determine 
and the variables corresponds to a linear equation. There-
fore, these techniques are especially suitable for ampero-
metric or spectrometric measurements. For nonlinear data 
like that from voltammetric and potentiometric sensors, 
there is another version of PLS called nonlinear PLS (NL-
PLS) where the relationship includes a polynomial func-
tion. On the other hand, artificial neural network (ANN) 
is a powerful chemometric tool, suited for modeling both 
linear and nonlinear systems and for constructing both 
calibration and classification models. It is probably the 

most versatile tool for multivariate analysis because virtu-
ally all parameters within the architecture of an ANN can 
be changed, producing a large number of models for the 
same problem. However, this is a method more difficult 
to optimize in order to obtain a good calibration model 
(Richards et al., 2002).

In this chapter, the use of e-tongues based on chemical 
sensors applied to fruit juice analysis and their combina-
tion with other type of devices like e-noses is reviewed. The 
organization of this chapter has been done according to the 
type of fruit analyzed. Taking into account this criterion, 
this chapter includes four sections devoted to orange juice 
and combinations of different beverages; apple juice; other 
fruits like strawberry, apricot, and tomato juice; and finally 
grape juice.

19.2 ORANGE JUICE AND 
COMBINATIONS OF DIFFERENT 
BEVERAGES

The group of Professor Legin from St. Petersburg Uni-
versity, Russia, was one of the precursors of the e-tongue 
concept in Europe. This group, in collaboration with the 
group of Professor D’Amico from the University of Rome, 
Italy, developed an electronic tongue based on two types 
of potentiometric sensors: ion-selective electrodes (ISE) 
based on PVC membranes and sensors based on chalco-
genide vitreous materials, with enhanced cross-sensitivities 
 (Legin et al., 1997). An array of 18–21 sensors was ap-
plied to several beverages (soft drinks, tea, coffee, mineral 
 water, beer) and orange juice and in particular to monitor 
the process of aging of orange juices during 1 week and 
under two temperature conditions. Using a PCA plot, three 
different phases of orange juice evolution with time were 
distinguished with a good performance: the first phase after 
the first 5 h of package opening, indicating a rapid evolution 
of juice composition; the second phase for the next hours 
until 122 h, indicating slow variation of composition; and 
the third phase at the 7th day corresponding to the deteriora-
tion of the juice. Other works using potentiometric sensors 
were those from the group of Professor Wróblewski from 
the Warsaw University of Technology, Poland. The first 
paper (Ciosek et al., 2004a) describes the use of an array 
of 16 ISEs with conventional membranes for ions (ie, Ca2+, 
NH4

+, Na+, Cl−, HCO3
−) and partially selective membranes 

containing mixtures of ionophores and a pH electrode. Five 
local brands of orange juice were analyzed with PCA show-
ing that three brands were easily distinguished from each 
other and the other two brands were partially overlapped 
(Fig. 19.1). These juices were analyzed lately with a su-
pervised method like PLS-DA and compared with previous 
results with PCA, demonstrating that both methods pre-
sented similar results (Ciosek et al., 2005). A flow-through 
electronic tongue system based on miniaturized  solid-state 
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sensors including some chemically  modified ISFETs 
(CHEMFETs) was developed by the same group (Ciosek 
et al., 2006). The miniaturization of the electronic tongue 
using an integrated sensor array was also described. Planar 
solid-state microelectrodes based on a typical printed cir-
cuit board technology, coated with different metal pastes, 
and modified with PVC membranes were used. Five brands 
of orange juice were analyzed and data treated with PLS 
obtaining a good classification (Ciosek et al., 2007). Here 
miniaturization was indicated as advantageous for the use 
in portable systems.

The group of Professor D’Amico reported an array of 
six metallic potentiometric sensors (copper, tin, iron, alu-
minum, brass, and stainless steel) together with a pH glass 
electrode. By using the nonsupervised PCA model, this 
system was able to distinguish the different juices tested: 
peach, orange, pineapple, and grape. Besides, by using the 
supervised SIMCA, it was also able to classify the juices 
according to the manufacturer (Lvova et al., 2006).

The group of Professor Del Valle from the Universitat 
Autònoma de Barcelona (UAB), Spain, has developed sev-
eral e-tongue systems using all solid-state potentiometric 
sensors and PVC-based membranes. In the reference by 
Gallardo et al. (2005) was described a system formed by 
6 ISEs able to classify 36 orange-based drinks according 
to the natural orange fruit content. Another e-tongue using 
a biosensor array of glucose oxidase enzymatic sensors 
containing in the membrane different amounts of metal-
lic catalysts and using the sequential injection analysis 
(SIA) technique was described for quantitative analysis 
of glucose and ascorbic acid in fruit juice samples (Gutes 
et al., 2006). Using ANN for data treatment, the system 
demonstrated a good ability to determine glucose with a 
good accuracy; meanwhile the error obtained for ascorbic 

acid was too high. This error was attributed to the oxida-
tion of ascorbic acid with time.

A more recent paper from Professor Machado group, 
from the University of Porto, Portugal, describes the use of 
an array of 36 all solid-state ISE with lipo/polymeric PVC 
membranes for the discrimination of juice soft drinks— 
orange, pineapple, mango, peach and strawberry, and mix-
tures of all them—according to the fruit juice content (Dias 
et al., 2011). Using LDA the authors classified four groups 
of juices with contents from 50 to <5% of juice with only 
4 of the electrodes. Besides, quantitative analysis of fruc-
tose and glucose content of these fruit juices with PLS and 
MLR was performed with 16 electrodes. Reference data 
was obtained from high-performance liquid chromatogra-
phy (HPLC), obtaining a good correlation between both 
methods.

One of the first works on electronic tongues was from 
Winquist and coworkers from the University of Linköping, 
Sweden. They developed voltammetric sensors and ap-
plied electronic tongues to different foodstuff (Winquist 
et al., 1997). According to the authors, the voltammetric 
technique has insufficient selectivity for specific analysis 
in complex media with several redox components due to  
the difficulties of signal discrimination. This drawback  
can be exploited by an e-tongue since the huge informa-
tion contained in a voltammogram can be analyzed with 
multivariate methods. The first developed electronic tongue 
contained only two metal electrodes (Pt and Au). Beverages 
like orange and apple juice, orange still drink, and milk were 
analyzed. Using  differential pulse voltammetry technique 
and PCA for data treatment, this simple e-tongue was able 
to markedly differentiate the orange juice from the orange 
still drink. The aging process of orange juices was also stud-
ied and the results indicated the capability of these systems 

FIGURE 19.1 PCA scores plot for five brands of orange juice. (Reprinted from Ciosek et al., 2005, copyright 2005, with permission from Elsevier.)
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to distinguish between the first hours of aging, related to the 
evaporation of volatile compounds and aged samples due 
to oxidation processes (ie, ascorbic acid oxidation). This 
system was later improved with four working electrodes of 
gold, iridium, platinum, and rhodium and applied to differ-
ent fruit—kiwi, orange, peaches—and tomato juice classi-
fications (Holmin et al., 2001). In this work the large data 
sets obtained with the voltammetric scans were treated with 
compression methods like wavelet transformation (WT) 
and hierarchical PCA (HPCA). The results demonstrated 
that the samples were clearly separated by the type of fruit 
and even Dutch and Spanish origin of tomato fruit was dis-
tinguished. Another voltammetric e-tongue using Pt, Au, 
and poly(3,4-ethylenedioxythiophene) (PEDOT)-modified 
electrodes was described lately for orange juice classifi-
cation among other fruit juices—orange, pear, peach, and 
apricot juices—and differentiation of orange juice brands. 
It was demonstrated that the PEDOT electrode had supe-
rior discriminant ability than the bare metallic electrodes 
for differentiating between fruit juice types and also brands 
of orange juice (Martina et al., 2007). However, after each 
sample measurement, the membrane of this electrode was 
degraded and had to be changed.

As reported, the majority of groups working on e-
tongues are using the same type of sensors. A few works 
have been described regarding the use of arrays of differ-
ent sensors (ie, optical and electrochemical) or even the 
combination of an e-nose and an e-tongue increasing the 
potentiality of these devices. The group of Gardner from 
the United Kingdom developed a combined e-nose and e-
tongue based on surface acoustic wave (SAW) sensors for 

liquids and CHEMFETs for gases. These later sensors are 
modified with conducting polymeric membranes contain-
ing carbon nanospheres. Here the most significant result 
was the discrimination of samples of orange juice from 
those of milk and water using the combination of gas and 
liquid sensors (Cole et al., 2011). The fusion of data from an 
e-tongue based on six PVC-membrane potentiometric sen-
sors, an e-nose based on five tin oxide-based gas sensors 
(Toguschi gas sensors), and a humidity sensor has recently 
been described (Haddi et al., 2014). In this application, 
the set of samples used had a high variability: a total of 
46 samples of fruit juice (pear, apple, orange, mango, pine-
apple, multivitamin, etc.) from 4 different brands and with 
different percentages of fruit content. These samples were 
measured and treated with PCA. According to the results, 
the e-tongue was able to discriminate among the different 
fruit juices, but the fusion with the e-nose improved notably 
the results. In Fig. 19.2, the 3D PCA plot for this fusion 
approach is shown. As can be seen, this representation ex-
plains the 86.37% of the total variance and the eleven fruit 
juices from different manufacturers (A, B, C, and D) were 
well distinguished. Only the samples from C_Apple and 
C_Orange were overlapped.

The Astree e-tongue from Alpha MOS has been also ap-
plied to orange juice analysis. As reported in Baldwin et al. 
(2011), the e-tongue was able to separate between juices 
from fruit harvested from healthy trees and those harvested 
from Huanglongbing (HLB)-infected trees, which were 
symptomatic for the disease (small, green, and lopsided 
fruit) or asymptomatic (normal-looking fruit). These results 
were comparable with those from a trained sensory panel. 

FIGURE 19.2 Three-dimensional scores plot for 11 fruit juices with data fusion from e-nose and e-tongue. (Reprinted from Haddi et al., 2014, 
copyright 2014, with permission from Elsevier.)



Electronic Tongues Applied to Grape and Fruit Juice Analysis   Chapter | 19    193

This instrument, combined with an e-nose from Applied 
Sensor, Sweden, was also used to study the differences 
between treatments of various processes for fruit preserva-
tion (Hartyáni et al., 2011). Two treatment methods were 
tested: pulsed electric field (PEF) and high hydrostatic pres-
sure (HHP) and compared with typical heat treatment for 
preservation. Results demonstrated that there were differ-
ences between fruit juices treated with these two methods. 
The Astree e-tongue was also applied to the analysis of six 
brands of orange beverages containing a low percentage of 
fruit juice (Liu et al., 2012). This paper described the use 
of several chemometric tools like PCA, CA, and SIMCA 
and established the optimal number of sensors for classify-
ing the samples according to the five basic taste descriptors. 
The results demonstrated that PCA and CA models permit-
ted the differentiation of two brands; meanwhile the other 
brands were not clearly separated.

19.3 APPLE JUICE

The first paper related to the application of electronic 
tongues to apple juice analysis was that from Winquist et al. 
(1997), described previously. An evolution of this first con-
cept was presented by the same group in 2002 incorporat-
ing a third working electrode, based on rhodium, and com-
bined with a flow injection analysis (FIA) system (Winquist 

et al., 2002). By using the PCA technique, it was possible 
to discriminate between three different juice classes: pure 
juice, juice that was made from concentrated, and apple still 
drinks as shown in Fig. 19.3.

A potentiometric sensor array was also developed to ana-
lyze apple juices. Concretely, the responses of ISEs based 
on PVC membranes with different ionic selectivity were 
used to construct a PCA model able to classify 10 differ-
ent brands of apple juice (Ciosek et al., 2004b). However, 
the more significant result of this work was the description 
of a new statistical procedure for reducing the number of 
sensors in the array. It is well known that one of the most 
important steps in a multivariable analysis is the election 
of the variables (sensors) that will generate the best model. 
Once the classification is performed, the methodology con-
sists on quantifying the ability of each individual sensor to 
discriminate between different classes of samples. The idea 
is to obtain the maximum information of the sample, but 
with the minimum number of sensors in order to simplify 
the experimental setup and the model management, as well 
as to reduce redundant and unsubstantial information. In this 
case, the original 16-ISEs array was reduced to 9-ISEs, pro-
viding similar or even better discrimination of juice samples.

The Astree electronic tongue was also tested for apple 
juices. Results from this device combined with the electron-
ic nose Prometheus, also from Alpha MOS, were correlated 

FIGURE 19.3 A PCA score plot for different samples of apple juices. JB, JD, JX, and JS are different pure juices; CB, CJ, CK, and CR are samples 
from concentrated juice and diluted with distilled water; and SL, SM, and SF are different apple still drinks. (Adapted from Winquist et al., 2002, copyright 
2002, with permission from Elsevier.)
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to the human sensory assessments and consumer accep-
tance. The results demonstrate that the hybrid combination 
of electrochemical and gas sensors can be a useful tool to 
predict up to 32 attributes used to describe the taste of apple 
juices (Bleibaum et al., 2002). Kovacs and coworkers cor-
related the measurements of the instrument with some taste 
attributes, like “apple taste,” “sweet taste,” or “sour taste.” 
Not only the PCA model was able to follow the tendency 
obtained by the sensory evaluation, but also a good PLS pre-
diction model was obtained for the quantification of “apple 
taste” (Kovacs et al., 2011). The Astree e-tongue was also 
used to investigate the effect of high-power ultrasound and 
pasteurization on the characteristics of pure (100%) apple 
juice and 50% apple nectar. These two methods of preserv-
ing fruit juices produce changes in the chemical composition 
that the Astree e- tongue was able to detect and to differenti-
ate from the untreated samples (Simunek et al., 2013).

19.4 OTHER FRUIT JUICES

There are several applications to tomato juice using data 
fusion of commercial equipments, concretely the As-
tree e-tongue and the PEN2 e-nose (Airsense Analytics, 
 Schwerin, Germany), which is composed of 10 metal oxide 
semiconductors (MOS) of different chemical composition 
and thickness to provide selectivity toward volatile com-
pounds (Hong et al., 2014). The most interesting results in 
this study were the use of adulterated samples with 10, 20, 
and 30% w/w of overripe tomato juice. By using analysis of 
variance (ANOVA) of selected variables and PCA, the fu-
sion approach presented the best results, as can be observed 
in Fig. 19.4. The three groups of adultered samples and the 
control were perfectly differentiated. Besides, the results 
proved that it is possible to measure the freshness of fruits 
used for juice elaboration.

The Astree system was also used to analyze apricot 
juices from three Hungarian varieties: Gönczi, Ceglédi, 
and Pannónia. The results demonstrated that the e-tongue 
is a promising tool for monitoring the effects of posthar-
vest techniques on the fruit-ripening process (controlled 
atmosphere storage or the treatment with 1-methylcyclo-
propene as a preservative). Besides, the classification of 
apricot varieties using DA and the determination of corre-
lation between e-tongue, chemical properties, and sensory 
analysis were successful (Kantor et al., 2008). Also the 
Astree e-tongue was applied to strawberry juice analysis, 
but in this case in combination with the PEN2 E-nose (Qiu 
et al., 2014). This work presented an interesting study with 
five types of strawberry juices based on different process-
ing approaches for preservation (microwave pasteurization, 
steam blanching, high-temperature short-time pasteuriza-
tion, frozen-thawed, and freshly squeezed). In conclusion, 
the Astree system reached a higher accuracy rate compared 
to PEN2, both in the qualitative analysis (classification of 
the juices) and in the quantitative analysis [multidetermi-
nation of these parameters of quality control: vitamin C, 
pH, total soluble solid (TSS), total acid (TA), and TSS/TA 
ratio]. The data fusion of the two systems offered a slight 
advantage in the LDA classification and PLS regression.

19.5 GRAPE JUICES

The characterization and identification of the juice obtained 
from Vitis vinifera grapes (addressed to consumption) is a 
necessary task in viticulture. The grape quality control per-
mits the enologists to decide the procedure of wine elabo-
ration. For example, the control of grapes’ ripeness by the 
sugar content, defined as the degrees Brix, as well as the 
probable volumetric alcoholic degree (VAD), is of vital in-
terest to decide the date of the grape harvest. Moreover, the 

FIGURE 19.4 PCA plot for four tomato juice groups unadulterated and three adulterated groups: 10, 20, and 30% of overripe tomato based 
on ANOVA selected fusion dataset. (Reprinted from Hong et al., 2014, copyright 2014, with permission from Elsevier.)
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total acidity of the grape juice allows calculating the ripening 
index of the fruit. On the other hand, the complexity of the 
grape juice is significant as a sample, given its rapid changes 
in the chemical composition (sugars, ethanol, pH, amino ac-
ids), physical properties (turbidity, density, color), and vari-
etal aromas. For that reason, grape juice requires rapid and 
reliable measurements in order to actuate in an efficient way 
during the elaboration process. Nowadays, the characteriza-
tion and authenticity of grape juices is carried out with the 
analysis of the protein fingerprint or the residual DNA (Le 
Bourse et al., 2010). These methods are time consuming and 
require complex and expensive equipment. For this reason, 
the use of e-tongues would be advantageous.

The first paper describing an e-tongue system applied to 
grape juice analysis was reported by the group of Jimenez-
Jorquera from IMB-CNM, Spain (Moreno i Codinachs 
et al., 2008). The multisensor e-tongue system described was 
based on integrated arrays of ISFET sensors and interdigi-
tated electrode (IDE) structures (Codinachs et al., 2008). Six 
ISFET sensors were modified with polymeric membranes 
sensitive to ions Na+, K+, Ca2+, NH4

+, and Cl− and other six 
with chalcogenide glass membranes sensitive to heavy met-
al ions (Pb2+, Cd2+, Cu2+, Tl+, Ag+). Both multisensor chips 
contained also a pH ISFET and they were implemented in a 
FIA system. By using a PCA model, the samples showed a 
clear clustering for the four grape varieties analyzed (Airen, 
Macabeu, Malvasia, and Chardonnay) and by using the PLS 
technique, it was possible to determine the degrees Brix, the 
probable VAD, pH, and total acidity with a relative error 
below 10% for all the predictions.

Last e-tongue was improved including other types of 
sensors in order to obtain the maximum information about 
the grape juices. This hybrid e-tongue was constituted by 
seven ISFET potentiometric sensors sensitive to pH, com-
mon ions and generic ones, a conductivity sensor, a redox 

potential (ORP) sensor (both with a Pt 4-electrode configu-
ration), and two amperometric electrodes: a gold (Au) mi-
croelectrode and a microelectrode for sensing electrochemi-
cal oxygen demand (EOD). Besides, an optofluidic system 
consisting on a multiple internal reflection (MIR) system 
fabricated by soft lithography was incorporated in order to 
obtain information about the color of the sample. Photo-
graphs of the chips used, the probe with a chip encapsulat-
ed, and the MIR system are shown in Fig. 19.5. This array of 
sensors was applied to the classification and characterization 
of white grape juices from three reference varieties (Albariño, 
Muscat, and Palomino) using the PCA technique. The distri-
bution of these samples in a 2D plot, which explained 59% 
of variability, is shown in Fig. 19.6a. These three genotypes 
were selected as reference because their grape juices pres-
ent extreme or intermediate characteristics. For example, 
Muscat à Petit Grains Blanc has a high aromatic intensity, 
while Palomino produces a neutral juice with low acidity, and 
Albariño presents intermediate juice characteristics between 
the other two grapes and a high acidity. A more detailed study 
of the PCA model for the loading plot demonstrated that the 
PC 1, which distinguished Albariño, is constituted basi-
cally by the pH ISFET and a set of variables related with 
the oxidoreduction properties. On the other hand, the optical 
and ionic variables had more importance in the PC 2 load-
ing plot, which separated Muscat from Palomino. The same 
variables were used to construct a SIMCA model in order to 
study in more detail the feasibility of the hybrid electronic 
tongue to distinguish between different grape juices. Once 
the model for the three reference varieties was performed, 
a set of 22 new juices were interpolated. In Fig. 19.6b, the 
Coomans diagram for the classification of the Albariño and 
Muscat models is depicted. The prediction values are shown 
with a probability of 95%. In the x-axis of Fig. 19.6b, the 
distance to the Albariño model is shown. Grape juices that 

FIGURE 19.5 Picture of the microsensors used. (a) Chips corresponding to electrochemical sensors and (b) optical MIR system. (Reprinted from 
Gutierrez-Capitan et al., 2013, copyright 2013, with permission from American Chemical Society.)
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are placed between 0 and 3 on the x-axis belong to Albariño. 
In the y-axis, the distance of the samples to the Muscat model 
is shown. Hence, grape juices that are placed between 0 and 
3 on the y-axis belong to Muscat. Samples that are placed in 
the area corresponding to x, y > 3 do not belong to any of 
these models. On the other hand, juices that are located in 
the area x, y < 3 of the plot belong to both models. As can 
be observed, the results demonstrated that the Albariño and 
Muscat juices were located inside their respective models and 
well distinguished from the other grape varieties (Gutierrez-
Capitan et al., 2013). Here the variety Catalan Blanco is per-
fectly separated from the others. This variety comes from a 
hybrid genotype; therefore, its characteristics are clearly dif-
ferentiated from the other grape genotypes.

A new e-tongue containing biosensors was reported 
in Medina-Plaza et al. (2014). The array was formed 
by five carbon paste electrodes modified with different 

metalophthalocyanines as electron mediators. Besides, in 
the surface of these 5 electrodes, the enzymes tyrosinase 
and glucose oxidase were immobilized, obtaining a set of 15 
different combinations that provide both global and specific 
information of the sample. By using a PCA model, the e-
tongue system was capable of distinguishing grapes of five 
different varieties harvested in 2012 in the Ribera de Duero 
appellation according to the sugar and polyphenolic content.

19.6 CONCLUSION

The application of e-tongues to fruit juice analysis has been 
described extensively by the majority of groups working in 
this field. Different E-tongues based on sensors have dem-
onstrated their capability to perform several accomplish-
ments like discrimination of fruit juices among other types 
of beverages and among several fruit types; differentiation 

FIGURE 19.6 (a) PCA results for the grape juices reference samples of Albariño, Muscat à Petit Grains Blanc, and Palomino. (b) Coomans diagrams for the clas-
sification in the Albariño and Muscat models. (Reprinted from Gutierrez-Capitan et al., 2013, copyright 2013, with permission from American Chemical Society.)



Electronic Tongues Applied to Grape and Fruit Juice Analysis   Chapter | 19    197

of commercial brands; assessment of aging for open pack-
ages of fruit juice; detection of presence of adulterant com-
pounds (ie, addition of ripe fruit); detection of percentage of 
fruit content in still beverages; and fruit cultivar type clas-
sification and grape variety. Besides, these devices are able 
to classify fruit juices according to taste descriptors defined 
by an expert panel. E-tongues are also able to perform quan-
titative analysis of parameters like ascorbic acid, glucose, 
fructose, citric acid, and the parameters related to quality of 
grapes, which are of critical importance to assess the quality 
of juices and the wine elaboration.

Regarding the use of analytical devices, the potentio-
metric and voltamperometric sensors have been the most 
used. These sensors have been combined with other kinds 
of sensors like conductivity and optical sensors or e-noses. 
These later devices have contributed to extend the analysis 
and exploration of samples according to their volatile con-
tent and aromatic attributes.

The application of hybrid e-tongues to fruit analysis has 
evidenced the interest on using different kinds of sensors. 
This fact is especially remarkable for grape juice analy-
sis. Here the use of microsensors fabricated with micro-
electronic technology allows both qualitative analysis and 
quantitative analysis with good correlation with standard 
techniques. The use of miniaturized sensors introduces also 
the option to miniaturize the e-tongue and consequently the 
portability of the system and the capability to perform field 
analysis.

It is remarkable the work described by several groups 
using the commercial Astree e-tongue to study different 
fruit juices’ applications, above all those addressed to clas-
sify the fruit juice organoleptic descriptors and the correla-
tion with sensory panels. The feasibility of this device dem-
onstrates the high performance of the sensor technology 
used, based on ISFET sensors, combined with a customer 
software developed by the company Alpha MOS.
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20.1 INTRODUCTION

Two techniques for determining freshness (and, therefore, 
spoilage) of meat and fish have been traditionally used. One 
is a sensory test conducted by a panel of experts who con-
trol the various organoleptic attributes of the corresponding 
sample. The other involves determining the concentration 
of certain chemical or biochemical bioanalytes known to 
correlate with food spoilage.

20.1.1 Sensory Analysis

A sensory analysis was the first method used by humans for 
assessing freshness, and it is still one of the most important 
methods applied in the fish and meat sector. Properly per-
formed sensory methods are a rapid accurate tool that pro-
vides unique food information (Martinsdóttir et al., 2001).

20.1.2 Analytical Techniques

Among available analytical techniques, measuring bacterial 
counts is one of the most commonly used procedures for de-
termining fish and meat freshness (Kaneki et al., 2004). Mea-
suring volatile amines from decarboxylation of amino acids 
is also an indicator of freshness (Vida-Carou et al., 1990). 
Regarding biochemical procedures, determination of con-
centrations of adenosine triphosphate (ATP) and some 
ATP degradation products, such as adenosine diphosphate 
(ADP), inosinic acid (IMP), inosine (Ino), and hypoxanthine 
(Hx), has been widely used as a relatively simple method 
to monitor fish and meat spoilage. The evolution of these 
nucleotides and the combination of their concentrations in 
the so-called K-value [Eq. (20.1)] (Saito et al., 1959) have 
been found to be closely related with postmortem time.

K(%)
(Ino+ Hx)

(ATP+ ADP+ AMP+ IMP+ Ino+ Hx)
100= (20.1)

However, these traditional techniques (ie, sensory tests) 
and chemical or biochemical determinations of the concen-
tration of target bioindicators, are slow and time consum-
ing, and need trained personnel or relatively sophisticated 
tools. This somewhat limits the application of these pro-
cedures in industry as they are not suitable for rapid moni-
toring, are relatively expensive and time consuming, and 
are generally for in-laboratory use only. One major effect 
is that these methods cannot evaluate correct meat fresh-
ness when sold on the market. In fact, the development of 
simple, undemanding, and nondestructive new analytical 
tools, which would also be low cost and could be applied to 
a wide range of situations for monitoring food freshness, is 
still an unresolved goal.

Based on these concepts, several attempts have been 
made to use techniques to assess fish or meat freshness in 
a simple, undemanding way. Some of these techniques are:

l Image analysis. Image processing systems play an in-
creasingly important role in food quality evaluations as 
they maintain accuracy and consistency while eliminat-
ing the subjectivity of manual inspections. Image tech-
niques, for instance, based on short-wavelength near-in-
frared (SW-NIR) spectroscopy have been used to predict 
the freshness of chicken breasts (Grau et al., 2011). Sur-
face inspection by image analysis has also been used for 
monitoring the quality of fish samples (Kroeger, 2003).

l Chromogenic sensor. Arrays based on several chro-
mogenic indicators capable of changing color due to a 
reaction with volatile compounds produced on packed 
fish or meat samples have also been reported as an indi-
cation of meat (Salinas et al., 2014) and fish freshness 
( Zaragozá et al., 2012).

l Biosensors. Analytical devices based on biological rec-
ognition elements (such as an enzymes, antibodies, etc.) 
coupled to a chemical or physical transducer. They have 
also been used for meat or fish monitoring. For instance, 

K(%)=(Ino+Hx)(ATP+ADP+AMP+IMP+Ino+Hx)100
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Hernández-Cázares et al. (2010) used an enzymatic 
sensor with immobilized diamine oxidase to determine 
the content of total amines in dry-fermented sausages. 
Biosensors have also been used for determining fish 
freshness (Frébort et al., 2000).

l Texture measurements. Texture has also been found to 
change with the evolution of meat and fish freshness 
(Macagnano et al., 2005). In most cases, measurements 
of firmness and the parameters extracted from the stress 
relaxation curves correlate well with the sensory attri-
butes and dehydration or water loss.

20.2 ELECTRONIC TONGUES

As a complementary procedure to these methods, the elec-
tronic tongue (e-tongue) concept emerges for meat and fish 
freshness and/or spoilage assessment. This is a tool that has 
been recently introduced, and was inspired by the mode in 
which mammals recognize food through senses of taste. 
Use of e-tongues is especially appealing when characteriz-
ing complex attributes of the whole sample is an important 
issue. E-tongues do not use specific, but nonspecific, sen-
sors. These are nevertheless able to respond differentially to 
a group of related chemical species, whose global response 
can relate with certain parameters or characteristics. Non-
specific sensors are usually integrated into an array, and 
their response is commonly analyzed by suitable pattern 
recognition algorithms. Note that e-noses have also been 
developed for fish and meat spoilage assessments (Musatov 
et al., 2009; El Barbri et al., 2007), but are not reviewed 
herein.

An easy way to build up an e-tongue is to employ a set of 
electrodes and follow potentiometric or voltammetric elec-
trochemical techniques. In fact, several electronic tongues 
based on electrochemical sensors have been developed. 
Among them, those which rely on potentiometric measure-
ments have been widely used by employing, for instance, 
ion-selective electrodes. One alternative to avoid employ-
ing membrane-containing sensors is to use simple metallic 
wires as suitable electrodes in e-tongue devices. E-tongues 
with metallic electrodes are very simple to prepare and easy 
to use. Responses with these electrodes in the potentiomet-
ric mode are based on the spontaneous polarization of met-
als and other elements in the presence of certain chemical 
species. Simple metallic electrodes have also been used to 
design voltammetric e-tongues.

E-tongues were initially developed for measurements 
in liquid samples where contact between electrodes and 
sample is no problem. In particular, the first applications 
in foods focused on the qualitative analysis of beverages, 
such as wine, juice, milk, and water (Escuder-Gilabert and 
Peris, 2010). However, increasing interest has been recently 
shown in the potential use of e-tongues in solid samples, 
such as meat and fish. In particular, one field of interest is 

monitoring meat and fish spoilage, typically under refrig-
eration. These food items are solid, but have a high water 
content. Therefore, they are perishable and have a very lim-
ited useful commercial life. Presence of water also makes 
the use of e-tongues suitable in these samples, where close 
contact between electrodes and samples normally needs to 
be achieved.

As stated previously, the response of the electrodes used 
in e-tongues is quite nonspecific. Thus, to draw conclusions, 
the employment of multivariate analysis techniques, such as 
a principal component analysis (PCA), is necessary. Many 
studies that report the application of e-tongues for fish and 
meat spoilage have attempted to correlate the electrochemi-
cal data obtained from the tongue with certain physical, 
chemical, or biological parameters that are commonly used 
to assess meat or fish spoilage. In such cases, supervised 
techniques [eg, partial least square (PLS)] or artificial neu-
ral networks [ANN, eg, multilayer perceptron (MLP-ANN) 
and Fuzzy Artmap] tend to be used.

Later we will provide details of the use of potentiomet-
ric and voltammetric e-tongues in studies into meat and fish 
spoilage. Some examples of the utilization of impedance 
spectroscopy, in which a multivariate analysis was applied 
to obtain a correlation between electronic data and spoilage, 
are included.

20.3 MEAT AND FISH SPOILAGE 
ASSESSMENT USING E-TONGUES

This section provides a description of the most significant 
contributions made in the e-tongue field for determining 
freshness and spoilage of meat and fish. The narrative is 
provided according to the electrochemical technique used: 
potentiometry, voltammetry, and impedance spectroscopy.

20.3.1 Potentiometric E-Tongues

The potentiometric electrochemical technique measures the 
potential generated spontaneously between an active elec-
trode and a reference electrode.

20.3.1.1 Meat Spoilage Studies
One of the first works to have employed a potentiometric e-
tongue to determine meat freshness was done using an array 
of nonspecific electrodes of different materials (ie, Pt, CuS, 
and Ag2S) (Kaneki et al., 2004). The authors took measure-
ments with these electrodes on pork meat samples over 
6 days. Then they related these data with certain chemical 
and biochemical determinations using PCA and multiple 
regression analysis (MRA) techniques. They observed that 
the potential of the electrodes diminished according to not 
only the formation of putrescine and dimethyl sulfide, but 
also to the increase in the bacterial counts produced by meat 
putrefaction.
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Some of us have conducted several studies on pork 
freshness analyses using an e-tongue based on a family 
of simple metallic electrodes. It is known that metal elec-
trodes produce a different potential according to the nature 
of both the metal and the sample, and their response has 
been reported to be related to the redox potential (Soto 
et al., 2006). For this specific application in meat spoilage 
studies, metallic electrodes were used as rods (0.8 mm in 
diameter), which were easily inserted into meat tissue to 
establish a close contact between the electrodes and the 
sample. Gil et al. (2010) employed a set of six electrodes 
(Au, Ag, Cu, Pb, Zn, and C), which were applied to monitor 
pork freshness under refrigeration over 12 days. At the same 
time, pork meat spoilage was followed by the determina-
tion of certain chemical and biochemical parameters: pH, 
microbial count, and concentrations of IMP, Ino, and Hx. 
Data were studied by artificial neural networks: MLP-ANN 
and Fuzzy-Artmap. A correlation between these parameters 
and the e-tongue data was achieved by a PLS analysis (Gil 
et al., 2011).

20.3.1.2 Fish Spoilage Studies
A similar e-tongue, also with rod-shaped metallic elec-
trodes, was used to monitor fish freshness. Barat et al. 
(2008) first demonstrated the good correlation between 
aqueous solutions with a different pH, redox potential and 
cysteine concentrations, and the electric potential of silver 
and gold electrodes. Based on these studies, the authors ex-
tended their work to crushed and whole sea bream samples. 
Gil et al. (2007) demonstrated that the e-tongue was able to 
classify a certain fish sample as being apt for consumption, 
doubtful, and non apt by MLP-ANN (Fig. 20.1) and Fuzzy 
Artmap networks.

In another work, potentiometric measurements were 
correlated with biochemical analyses done on sea bream us-
ing a similar e-tongue. In particular, changes in the concen-
tration of ATP-related compounds IMP, Ino, and Hx (de-
termined by HPLC), versus the postmortem period for sea 

bream samples were studied. Gil et al. (2008b) found that 
the potentiometric data measured with the e-tongue corre-
lated well with the K-value [Eq. (20.1)].

In addition to rod-shaped electrodes, the same authors 
tested the potential use of flat electrodes on sea bream. Elec-
trodes were built using screen printing thick-film techniques 
from pastes with different active elements (Martínez-Máñez 
et al., 2005). A good relationship was observed between the 
responses of electrodes with various physicochemical pa-
rameters related with fish spoilage, including a correlation 
with the concentration of several biogenic amines, such as 
histamine, tyramine, and cadaverine (Gil et al., 2008a).

Heising et al., focused on using an ion-selective elec-
trode for ammonium and its potential application as a fresh-
ness indicator in cod (Gadus morhua) samples. The results 
correlated with changes in total volatile basic nitrogen 
(TVB-N) values and tetramethylammonium concentrations 
(Heising et al., 2012).

Zhang et al. (2012) utilized a commercially available e-
tongue (Alpha Mos) and MALDI-TOF/TOF MS/MS stud-
ies to identify the peptides responsible for puffer fish taste 
(Takifugu obscurus). The same commercial e-tongue was 
used to study spoilage of Parabramis pekinensis, and mea-
surements were taken at the same time to detect TVB-N 
and total viable counts (TVC) (Han et al., 2014a). A good 
relation between chemical and e-tongue data was observed 
by PLS and support vector regression (SVR). Han et al. 
(2014b) combined the same e-tongue with an electronic 
nose (based on nine metal oxide semiconductor gas sen-
sors) and ran a chemometric analysis for qualitative fish 
freshness discrimination.

20.3.2 Voltammetric E-Tongues

Another widely used electrochemical method in e-tongues 
is voltammetry. In this technique, a specific varying electric 
potential is applied to a set of electrodes with a three-wire 
potentiostat system. Then the electrical current flowing 

FIGURE 20.1 Perceptron artificial neural network outputs for three possible states of fish for consumption.
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through the electrodes is monitored. The measured current 
is proportional to the applied potential and the presence 
of both electroactive and nonelectroactive species in the 
sample. A number of parameters (number of pulse, ampli-
tude of pulse, etc.) can easily be selected by this technique. 
Basically, two types of voltammetry are used in e-tongues: 
cyclic and pulse voltammetry. Fig. 20.2a shows, by way 
of example, a typical set of pulses applied to the sample. 
Fig. 20.2b displays the corresponding electrical current 
flowing through a certain electrode. This electrochemical 
response is a fingerprint that correlates with the presence 
of certain electroactive and nonelectroactive species in 
 solution.

20.3.2.1 Meat Spoilage Studies
The application of voltammetry-based e-tongues to meat 
pieces is difficult because the electrode assembly usually 
has a flat surface, which hinders close contact being made 
with the meat sample. So it not surprising that there are 
very few examples in this area. In this context, Noh et al. 
(2011) used cyclic voltammetry as a suitable method to de-
termine beef loin freshness during cold storage using an in-
terdigitated electrode composed of gold electrodes printed 
on a silicon wafer. They found that the shape of the cyclic 
voltammogram changed from a roundish curve to a shapely 
curve with longer storage periods.

20.3.2.2 Fish Spoilage Studies
The application of voltammetric e-tongues in studies on fish 
for spoilage determination is relatively recent. In this field, 
Rodríguez-Méndez et al. (2009) performed a seminal study 
which attempted to correlate the response given by an ar-
ray of voltammetric sensors with fish freshness. They used 
an array of screen-printed electrodes (SPE) and another ar-
ray formed by classic carbon paste electrodes (CPE). The 
arrays of voltammetric sensors were chemically modified 

with phthalocyanines. The sensors showed good sensitiv-
ity to model solutions of biogenic amines (ie, ammonia, di-
methylamine, trimethylamine, cadaverine, and histamine), 
which considerably influenced the electrochemical behav-
ior of electrodes. The pattern of responses given by the ar-
ray was successfully applied to evaluate fish freshness and 
to determine the postmortem period. The study showed that 
the signals provided by classical CPE were better resolved 
and displayed better sensor-to-sensor reproducibility than 
SPE. The same research group extended their study of fish 
freshness monitoring by introducing multisensory systems 
based on carbon screen printed electrodes modified with 
polypyrrole and doped with different doping agents (Ape-
trei et al., 2013). The system was applied to monitor fish 
freshness of pontic shad (Alosa pontica). An increase in the 
signal currents associated with biogenic amines was ob-
served with more storage days.

A homemade voltammetric e-tongue (Fig. 20.3), formed 
by four noble (Au, Pt, Ir, Rh) and four nonnoble (Ag, Cu, 
Ni, Co) metallic electrodes (Alcañiz et al., 2012), was 
applied to monitor fresh cod (G. morhua) spoilage, and 
also in a shelf-life assessment in cold storage (Ruiz-Rico 
et al., 2013). For this purpose, physicochemical and micro-
bial analyses were carried out, and measurements were also 
taken with the e-tongue. The voltammetric tongue was able 
to discriminate between fresh and spoiled fish. The statisti-
cal models obtained with the e-tongue measurements suc-
cessfully predicted certain physicochemical and microbial 
parameters, such as TVB-N and mesophilic bacteria counts.

20.3.3 Electrochemical Impedance 
 Spectroscopy

Electrochemical impedance spectroscopy studies a sys-
tem’s response to the application of a small amplitude 
alternate current signal with different frequencies. Custom-
arily, the user selects both frequencies (normally between 

FIGURE 20.2 (a) The applied potentials and (b) the current response of Variable Amplitude Pulse Voltammetry (VAPV).
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1 and 1 MHz) and the amplitude of sinusoidal voltage sig-
nals. For each frequency, the electronic equipment gener-
ates the corresponding sinusoidal voltage waveform, which 
is applied to the electrode. The current and voltage signals 
at the electrode are then sampled and the collected data are 
sent to the computer, where a Fourier analysis is performed 
to determine their amplitude and phase. From these data, 
the module and phase of the sample’s equivalent imped-
ance for the current frequency are calculated. The obtained 
data can be plotted on two graphs, the module plot and the 
phase plot, where the values of the impedance module and 
phase versus frequency are plotted (Fig. 20.4). The results 
are usually discussed according to the study done of the 
shape of the modulus and phase graphs. Another approach 
consists in considering the value of each module and phase 
as vector data to perform a multivariate analysis. In this 
case, although only one electrode is usually used, data are 
analyzed as if the number of electrodes were the same as the 
frequencies used.

20.3.3.1 Meat Spoilage Studies
Impedance spectroscopy has been widely used to determine 
meat spoilage. Salvat et al. (1997) compared the impedance 
technique with a standard plating method to detect aerobic 
bacteria (Pseudomonas ssp.) associated with poultry meat 
decay. Impedance spectroscopy has been applied by Damez 
et al. (2008) to study the electrical anisotropy behavior of 
beef meat during maturation to early assessment of meat 
aging. In particular, these authors worked according to the 
concept that a simple measurement of electrical and dielec-
tric parameters can be linked to meat fiber strength. Dielec-
tric properties have also been used by Castro-Giráldez et al. 
to estimate the spoilage progress of pork meat. A PCA has 
been employed to describe relations between meat’s physi-
cal/biochemical parameters and dielectric parameters (Cas-
tro-Giráldez et al., 2011). They obtained good correlations 

between dielectric properties and some texture-related ag-
ing parameters, such as hardness and chewiness.

A portable system for measuring impedance spectrosco-
py, capable of working with 50 frequencies between 1 and 
1 MHz, has been recently developed by some of us (Masot 
et al., 2010). This equipment incorporated two types of elec-
trodes: a coaxial needle (Fig. 20.5), used to determine salt 
content in different samples (Garcia-Breijo et al., 2008); a 
double electrode (Fig. 20.5). The device was employed to 
analyze the quality of whole pieces of pork ham (De Jesús 
et al., 2014). Impedance data were able to discriminate be-
tween altered and unaltered dry-cured hams. A tendency to 
classify between deep spoilage and swollen hams was also 
shown by the authors.

Impedance spectroscopy has also been used to deter-
mine moisture content in porcine meat (Yang et al., 2013). 
This meat, which has a high moisture content, allows mi-
crobes to multiply easily, which may cause meat spoilage. 
Several porcine pieces were evaluated by a four-terminal 
electrode portable impedance spectroscopy system. The re-
sults indicated a good relationship between impedance pa-
rameters and moisture content, as determined by standard 
chemical methods.

20.3.3.2 Fish Spoilage Studies
Impedance spectroscopy was one of the first electrochemi-
cal techniques applied to determine fish spoilage; indeed, 
an electronic device able to measure changes in impedance 
at different frequencies was used for measuring fish fresh-
ness some decades ago (Jason and Richards, 1975). Niu and 
Lee (2000) used impedance spectroscopy in fish samples 
and correlated data from dielectric properties with physi-
cochemical parameters. These authors used a frequency 
sweep ranging from 0.1 to 100 kHz to measure dielectric 
changes in various fish species (ie, carp, herring, and sea 
bass) while the fish were stored after death. The authors 

FIGURE 20.3 Electrodes and voltammetry equipment built at IDM of UPV.
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found that changes in the phase angle and admittance were 
the best freshness indicators. Based on these studies, four 
freshness classifications were defined for all the tested fish 
species. Using virtual instrument technology and an imped-
ance analysis, Zhang et al. (2009) developed a measurement 
system to study freshwater fish silver carp during storage 
(180 h) with an ANN model.

One proposed way to summarize impedance studies is 
to use the Q-value, Q = (ZL − ZH)100/ZH, where ZL and ZH 

are impedances of samples at certain frequencies (usually 1 
and 16 kHz, respectively) measured at two different volt-
ages (6 and 9 V). A high correlation between the Q-value 
and certain parameters was assessed and used to determine 
fish freshness (Zhang et al., 2011). They also employed the 
Q-value to differentiate fresh fish from frozen-thawed fish. 
Studies on two freshwater fish species lasting 10 days were 
carried out. This author found that the impedances of fresh 
and frozen-thawed fish decreased as frequency increased, 

FIGURE 20.5 Impedance spectroscopy electrodes: double electrode (DE) and coaxial needle electrode (CN).

FIGURE 20.4 Impedance spectroscopy measurement process.
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and that Q-values lowered as storage time increased. How-
ever, the Q-values of fresh fish were higher than those of 
frozen-thawed fish (Zhang et al., 2010). This method was 
also used to achieve a correlation between the electrical 
conductivity of a gutted fish body and bighead carp quality 
(Aristichthys nobilis) stored at 0 and 3°C (Zhu et al., 2013).

Using the impedance spectroscopy equipment devel-
oped by some of us (vide ante), several assays have been 
performed to differentiate between fresh and frozen-thawed 
fish. Samples of fresh salmon and others frozen at −18°C or 
for two freezing cycles were analyzed (Fernández-Segovia 
et al., 2012). In general, no significant differences in mois-
ture, total volatile basic nitrogen, pH, texture parameters, 
K-value, or microbial counts between the different samples 
were observed. This revealed that the freezing process, stor-
age time, or number of freezing cycles did not affect the 
physicochemical parameters of fish samples, except for 
water-holding capacity, which was significantly lower in all 
the frozen samples versus fresh salmon. The authors found 
that it was possible to differentiate fresh salmon from fro-
zen-thawed samples by taking impedance measurements. 
However, no discrimination was achieved for the samples 
stored at −18°C or for those submitted to different freezing 
cycles. They also suggested that impedance spectroscopy 
can be used to assess damage to fish tissue as a result of the 
freezing process, and to permit the detection of fraud, for 
example, frozen-thawed products sold as fresh fish.

A similar goal, that is, differentiating between fresh 
and thawed fish, has been pursued using two different elec-
trodes (ie, a double electrode and an arrowhead electrode) 
(Fuentes et al., 2013). Fuentes and coworkers found that 
the freezing process did not affect moisture, pH, TVB-N, or 
microbial quality. However, it provoked a slight degrada-
tion of IMP, a slight increase in the TBA index, and reduced 
water-holding capacity; it also affected several textural 

parameters. All these changes were also detected with im-
pedance spectroscopy measurements using the double elec-
trode. In fact, the system was able to differentiate fresh sea 
bream from frozen-thawed samples (Fig. 20.6). In contrast, 
arrowhead electrodes were unable to discriminate between 
different sample types. The frozen storage time had no ef-
fect on either the evaluated microbial and physicochemi-
cal parameters or the electrical properties of muscle. The 
potential use of electrical impedance has also been inves-
tigated to differentiate thawed sea bass fillets (Dicentrar-
chus labrax) that had been previously subjected to different 
freezing conditions (Vidaček et al., 2012).

Impedance spectroscopy has been recently used for pre-
dicting freshness of sea bream (Pérez-Esteve et al., 2014). 
The system was particularly able to classify raw matter 
into six groups according to composition differences, and 
to classify those samples stored for times of between 0 and 
15 days into different groups according to degree of fresh-
ness. Different physical and chemical parameters (ie, mois-
ture, fat, pH, and TVB-N) were also determined. The PLS 
statistical analyses allowed the creation of a model that cor-
related impedance data with TVB-N content.

The previous examples were run at low frequencies (up 
to 1 MHz). However, attempts to use higher frequencies 
have also been made. In particular, it has been reported that 
deteriorative biochemical and microbiological processes 
during the gradual spoilage of meat and fish tissue can in-
fluence the dielectric properties in a microwave frequency 
region. In this region, the complex interactions of water, 
solutes, and structure-forming proteins are systematically 
changed by death and decay (Kent et al., 2007). By way 
of example, Castro-Giráldez et al. (2010) used the dielec-
tric spectra within the microwave range (0.5–20 GHz) to 
detect quality defects in postmortem porcine muscle. This 
study revealed that dielectric properties at two frequencies 

FIGURE 20.6 (a) Module values and (b) phase values of the impedance spectrum of fresh salmon and frozen-thawed salmon samples.
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(0.5 and 10 GHz) proved to be a useful tool for determining 
meat quality classes soon after slaughter.

20.4 CONCLUSIONS

This chapter provides a description of works on the ap-
plication of e-tongues to monitor freshness and spoilage 
of meat and fish samples. Despite the undoubted interest 
shown in the food industry, these applications have not be-
come commonplace given the difficulty of taking measure-
ments on solid foods. Nevertheless, research works have 
demonstrated that the use of electronic tongues in this field 
is potentially strong. Of the three electrochemical tech-
niques discussed in this chapter, impedance spectroscopy 
offers more examples and has obtained the best results, 
especially for fish freshness monitoring. In most cases, a 
good correlation between the physicochemical and micro-
bial parameters and the data obtained from e-tongues has 
been obtained, which strongly suggests that this technique 
can be a useful tool in assessing the shelf life of meat and 
fish samples.
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Chapter 21

Milk and Dairy Products Analysis by Means 
of an Electronic Tongue
Patrycja Ciosek
Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland

21.1 INTRODUCTION

Electronic tongues (e-tongues)a are sensor arrays coupled 
with numerical procedures, which are capable of distin-
guishing various liquids employing the concept of partial 
selectivity/cross-sensitivity. The pattern of the sensor array 
responses serves as a fingerprint or barcode for the analyzed 
sample. The identification of the measured samples is usu-
ally a classification task; therefore, there has been a trend 
to use artificial intelligence and information visualization 
methods to extract important information from sensor re-
sponses (Ciosek and Wróblewski, 2007a; Riul et al., 2010). 
Most e-tongues, both commercial versions as well as those 
in the R&D phase (laboratory versions), are composed of 
three elements: an automatic sampler (although it is not a 
necessary component), an array of chemical sensors with 
different selectivity patterns, and software in a form of an 
appropriate algorithm for processing the obtained signals 
and revealing the results of analysis (Fig. 21.1; Peris and 
Escuder-Gilabert, 2013).

Such architecture of these systems allows for many suc-
cessful applications in the analysis of various foodstuffs 
such as wines, fruit juices, coffee, milk, and beverages 
(Escuder-Gilabert and Peris, 2010). Among those, espe-
cially challenging are samples with high protein content, 
like milk and milk products, which can affect sensor perfor-
mances. Nevertheless, until now, there have been numerous 
attempts to analyze milk and dairy products by means of 
e-tongue systems (Table 21.1), as they are a very attractive 
alternative to traditionally used techniques because they 
are related with the low cost of analysis, the simplicity of 
measurements, and applicability to online conditions. Such 
applications include the analysis of taste and flavor, fresh-
ness evaluation, microbial growth monitoring, origin recog-
nition, adulteration detection, quality control studies, and 
process monitoring—they are all reviewed and discussed in 
the following sections of this chapter.

21.2 ANALYSIS OF TASTE AND FLAVOR

The first publication on electronic tongue dates back to 
1990, when Toko and coworkers described so-called mul-
tichannel taste sensor (Hayashi et al., 1990; Fig. 21.1). Five 
years later the same group also presented for the first time 
application of e-tongue technology to milk analysis (Toko 
et al., 1995). Taste sensor with global selectivity was com-
posed of several kinds of lipid/polymer membranes for 
transforming information about taste substances into an 
electric signal. The output showed various pattern responses 
for chemical substances of different taste qualities, such as 
saltiness, bitterness, and sourness (Toko, 1998; Fig. 21.2).

The taste of milk could be therefore characterized quan-
titatively, providing the objective scale for the human sen-
sory expression. The output of the taste sensor showed high 
correlations with richness determined by the human panel 
and the degree of protein denaturation (Toko et al., 1995). 
In the following publications, the same device was used for 
taste analysis of milk samples prepared under various con-
ditions of homogenization or UHT treatment. Milk heated 
at 100°C for different processing times (0, 1, 5, 15, 30 min) 
was successfully discriminated using the taste senor, where-
as significant discrimination was possible between only 
two, 0 and 30 min, treatments by the human sensory evalu-
ations (Toko, 1996). Another example of higher sensitivity 
of a taste sensor in comparison to the human sense of taste 
was the detection of slight changes occurring in milk dur-
ing homogenization (Yamada et al., 1997). Sensory evalua-
tion by the human panel for expressing “richness” showed 
that there were no significant differences among the milk 
samples treated with different homogenization pressure. On 
the other hand, it was possible to discriminate the samples 
by means of the taste sensor because its response patterns 
were very different below and above 100 kg/cm2 of the 
homogenization pressure, which was related with the dif-
ferent distribution of the fat globule size below and above 

a. All abbreviations are explained in Table 1.
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FIGURE 21.1 Various e-tongue setups used for milks and dairy products analysis. (a) Taste sensor based on multichannel electrode; (b) ISE array for batch measurements; (c) Flow-through 
cell for SSE array; (d) Modular flow-through cell with miniaturized ISEs; (e) Voltammetric cell based on various metal working electrodes; (f) Integrated array of SSEs; (g) Hybrid e-tongue. (Adapt-
ed from Toko, 1996; Winquist et al., 1998,© IOP Publishing. Reproduced with permission. All rights reserved; Winquist et al., 2000; Ciosek and Wróblewski, 2007b, 2008; Witkowska et al., 2010.)
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TABLE 21.1 Analysis of Various Milk Samples and Dairy Products by Means of E-Tongues

Sensing Unit Pattern Recognition Procedure Application References

Potentiometric e-tongues

Taste sensor—set of electrodes with lipid 
membranes

Direct analysis of potentiometric 
response

Quantitative description of taste of milk as an effect of heat 
treatment for pasteurization/sterilization purposes

Toko et al. (1995)

Taste sensor—multichannel electrode with 
lipid membranes

Direct analysis of potentiometric 
response, PCA

Quantitative description of taste of milk Toko (1996, 1998, 2000, 2004)

Taste sensing system SA401 (Anritsu Co., 
Lt, Japan)

Direct analysis of potentiometric 
response, PCA

Discrimination of milk samples treated with different 
homogenization pressure

Yamada et al. (1997)

Taste sensor—multichannel electrode with 
lipid membranes

Direct analysis of potentiometric 
response

Taste of UHT milk after various exposure to light Mizota et al. (2009)

Taste sensor—multichannel electrode with 
lipid membranes

Direct analysis of potentiometric 
response

Taste of milk from breastfeeding mothers with or without 
mastitis

Yoshida et al. (2014)

Taste sensing system SA402B (Intelligent 
Sensor Technology, Japan)

Direct analysis of potentiometric 
response

Taste of bovine milk whey protein Sano et al. (2005)

Screen-printed multichannel taste sensor PCA Discrimination between fresh and spoiled milk, 
monitoring of milk quality deterioration during storage

Sim et al. (2003)

ISE array (ion-selective and partially 
selective electrodes)

Direct analysis of potentiometric 
response patterns, PCA, ANN

Classification of milks according to brand/dairy origin Ciosek et al. (2004)

SSE array in flow-through cell (ion-
selective and partially selective electrodes)

Direct analysis of potentiometric 
response patterns, PCA, ANN, PLS-DA

Classification of milks according to brand/dairy origin Ciosek and Wróblewski (2007b); 
Ciosek et al. (2006b)

SSE array in flow-through cell (ion-
selective and partially selective electrodes)

Direct analysis of potentiometric 
response patterns, PCA, SVM network

Classification of milks according to brand/dairy origin, 
discrimination of milks of various fat content

Ciosek et al. (2006a)

ISE array (ion-selective and partially 
selective electrodes)

Direct analysis of potentiometric 
response patterns, PCA, k-NN, PLS, 
SIMCA, BPNN, PNN, LVQ network

Classification of milks according to brand/dairy origin Ciosek and Wróblewski (2006); 
Ciosek et al. (2006c)

Integrated array of SSEs Direct analysis of potentiometric 
response patterns, PLS-DA

Classification of milks according to brand/dairy origin Ciosek and Wróblewski (2008)

SSE array in modular flow-through cell 
(ion-selective and partially selective 
electrodes)

PLS Monitoring of methane fermentation with whey as a 
substrate: discrimination between fermentation times, 
prediction of chemical oxygen demand and volatile fatty 
acid contents

Buczkowska et al. (2010)

ISE array in modular flow-through cell 
(ion-selective and partially selective)

PLS Monitoring of methane fermentation with whey as a 
substrate: discrimination between fermentation times, 
prediction of chemical oxygen demand and volatile fatty 
acid contents

Witkowska et al. (2010)

ISE array PLS Monitoring of fermentation process of starting culture for 
light cheese production: detection of “abnormal” operating 
conditions, determination of citric, lactic, and orotic acid in 
the fermentation media, determination of peptide profiles

Esbensen et al. (2004)

(Continued)



212   PA
R

T
 |

 II The Electronic Tongue

Sensing Unit Pattern Recognition Procedure Application References

ISE array PCA, SIMCA, LDA Discrimination between milks from healthy and infected 
with bovine mastitis glands

Mottram et al. (2007)

ISFET array (a-Astree e-tongue, Alpha 
MOS, France)

PCA, CDA Soya milk discrimination Kovács et al. (2009)

ISFET array (a-Astree e-tongue, Alpha 
MOS, France)

PCA Recognition of different milk and yogurt samples from 
different producers, discrimination between various dairy 
products from one manufacturer

Hruškar et al. (2009)

ISFET array (a-Astree e-tongue, Alpha 
MOS, France)

PCA, ANN, PLS Monitoring of changes in probiotic fermented milk 
during storage, classification of probiotic fermented milk 
according to flavor and taste

Hruškar et al. (2010b)

ISFET array (a-Astree e-tongue, Alpha 
MOS, France)

ANN Determination of ethanol, acetaldehyde, diacetyl, lactic 
acid, acetic acid, and citric acid content in probiotic 
fermented milk

Hruškar et al. (2010a)

ISFET array (a-Astree e-tongue, Alpha 
MOS, France)

DFA Discrimination between coconut milk protein powder 
samples stored at different conditions

Naik et al. (2013)

ISFET array (a-Astree e-tongue, Alpha 
MOS, France)

PLS, PCA Estimation of bitter taste of dairy protein hydrolysates Newman et al. (2014a,b)

SCE array PCA, LDA Detection of goat milk adulteration with bovine milk Dias et al. (2009)

Voltammetric e-tongues

Voltammetric cell with 2 working 
electrodes (Au, Pt), application of large 
and small amplitude pulsed voltammetry

PCA Discrimination between milks and other beverages, 
monitoring of aging processes of milk when stored at room 
temperature

Winquist et al. (1997)

Voltammetric cell with 5 working 
electrodes (Au, Ir, Pd, Pt, Rh) application of 
pulsed voltammetry

PCA, PLS, ANN Monitoring of deterioration of the quality of milk due to 
microbial growth when stored at room temperature

Winquist et al. (1998)

Voltammetric e-tongue Wavelet transform, PCA, MDC Monitoring of bacteriological growth Robertsson and Wide (2004)

Voltammetric cell with 4 working 
electrodes (Au, Pt, Rh, stainless steel)

PCA Process control in dairy industry: detection of different 
sources of milk coming into the process, monitoring of 
cleaning process

Winquist et al. (2005)

Voltammetric cell with 2 working 
electrodes (Au and Au modified with a 
Prussian blue film), application of cyclic 
voltammetry

PCA Evaluation of milk adulteration, discrimination between 
milks of various fat content

Paixão and Bertotti (2009)

Voltammetric cell with 5 working 
electrodes (Au, Pt, Ag, Pd, Ti), application 
of MLAPV

PCA, DFA, PCR, PLS, LS-SVM Detection of antibiotic residues in bovine milk, 
determination of concentration of antibiotics

Wei and Wang (2011)

Voltammetric cell with 4 working 
electrodes (Au, Ag, Pt, Pd), application of 
MRPV and MSPV

PCA, CA, PLS, LS-SVM Monitoring of quality change and storage time of unsealed 
pasteurized milk, estimation of bacterial count, acidity and 
viscosity changes during storage

Wei et al. (2013b)

TABLE 21.1 Analysis of Various Milk Samples and Dairy Products by Means of E-Tongues (cont.)
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Sensing Unit Pattern Recognition Procedure Application References

Voltammetric cell with 6 working 
electrodes (Au, Pt, Pd, W, Ti, Ag), 
application of MLAPV

PCA, Kernel PCA, LLE, Sammon 
mapping

Classification of milk powder solutions by means of the 
storage time

Tian et al. (2013)

Voltammetric cell with 4 working 
electrodes (Au, Ag, Pt, Pd), application of 
MHPV, MRPV, MSPV

PCA, DFA, PLS-DA Discrimination between various categories of set yogurt Wei et al. (2013a)

Other sensing principles: e-tongues based on acoustic sensors and e-tonges with SPR detection

SH-SAW array PCA Discrimination between milk samples with different fat 
content, monitoring of aging processes of milk

Cole et al. (2002)

SH-SAW array PCA Analysis the bacterial load in cow’s milk Gardner (2005)

Array of combinatorial cross-reactive 
receptors with SPR detection

PCA Discrimination among animal-based and plant-based 
milks, deterioration of UHT milk quality

Genua et al. (2014); Garçon 
et al. (2014)

Sensor fusion: hybrid e-tongues and combined e-tongue and e-nose systems

Hybrid e-tongue—combination of 
conductivity, potentiometry (pH, CO2, 
Cl− ISEs) and voltammetry (6 working 
electrodes: Au, Ir, Pd, Pt, Re, Rh)

PCA, ANN Classification of milks fermented by various types of 
microorganisms

Winquist et al. (2000)

Combined e-tongue (SH-SAW) and E-nose 
(ChemFETs) system

PCA Discrimination of milks according to fat level Cole et al. (2011)

Combined E-tongue (voltammetric cell 
with 4 working electrodes: Pt, Au, glassy 
carbon, Ag) and E-nose (8 MOS sensors) 
system

PCA, SVM Determination of aging time and brand of milks Bougrini et al. (2014)

Combined E-tongue (Taste Sensing System 
SA402, Intelligent Sensor Technology, 
Japan) and E-nose (Fox 3000, Alpha MOS, 
France) system

Direct analysis of potentiometric 
response , PCA

Sensory attributes of raw milk and UHT milk Mizota et al. (2008)

Abbreviations: SSE, solid-state electrode; SCE, solid-contact electrode; SH-SAW, shear horizontal surface acoustic wave sensor, MLAPV, multifrequency large-amplitude pulse voltammetry; MRPV, multifrequency 
rectangle pulse voltammetry; MSPV, multifrequency staircase pulse voltammetry; MHPV, multifrequency hackle pulse voltammetry; PCA, principal components analysis; PCR, principal components regression; 
ANN, artificial neural network; SVM, support vector machine; k-NN, k-nearest neighbor; PLS, partial least squares; PLS-DA, PLS-discriminant analysis; SIMCA, soft independent modeling of class analogy; BPNN, 
back-propagation neural network; LVQ, learning vector quantization; PNN, probabilistic neural network; LDA, linear discriminant analysis; CDA, canonical discriminant analysis; DFA, discriminant function 
analysis; MDC, minimum distance classifier; LS-SVM, least squares-SVM; LLE, locally linear embedding.
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this pressure. Similar sensitivity toward taste changes was 
observed in the case of temperature treatment. Five types 
of milk, including ultra-high temperature (UHT) processed 
milk and four types of reconstituted milk were prepared by  
combining raw milk, skim milk powder, and butter. Dif-
ferent pasteurization methods (indirect heating and direct 
heating) were performed, which resulted in types of milk 
that were analyzed by a taste sensor, an odor sensor, and 
sensory evaluation. It was observed that, to add richness, 
it was effective to use raw milk and use a plate-type UHT 
pasteurizer with indirect heating. To give a finish with a 
plain flavor, it was effective to use a steam infusion-type 
UHT pasteurizer with direct heating. Correlation between 
the “cooked flavor” and “saltiness” determined by the hu-
man panel and the taste sensor output was noticed (Mizota 
et al., 2008). Influence of light exposure, a physical factor, 
on the taste of milk was investigated in Mizota et al. (2009). 
UHT processed milk packaged in cartons of five different 
colors had been stored under fluorescent light for 10 days, 

and then evaluated by the human panel and instrumental 
analysis. The results of the sensory evaluation confirmed 
that black carton was the most effective in preventing off-
flavor due to light and that the milk in the white carton had 
the highest off-flavor. No difference in the flavor was found 
in the case of milk stored in red, blue, and green cartons. The 
correlation between taste sensor response values and sen-
sory evaluation scores or hexanal amounts determined by 
GC–MS was high. It was suggested that hexanal content is 
an effective indicator of off-flavor, which can be objectively 
evaluated by taste sensor analysis (Mizota et al., 2009).

Taste assessment with the use of e-tongue technology 
was performed also for other kinds of milk than bovine 
milk; human milk and soya milk (Yoshida et al., 2014; 
Kovács et al., 2009). The refusal of infants to suckle from a 
breast that is inflamed with mastitis suggests that the taste of 
the milk is changed. The taste of milk from breast-feeding 
mothers with or without mastitis was compared in Yoshida 
et al. (2014). The intensity of four basic tastes—sourness, 

FIGURE 21.2 Taste sensor response patterns toward sour and salty substances. (Adapted from Toko, 1998 © IOP Publishing. Reproduced with 
permission. All rights reserved.)
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saltiness, bitterness, and umami—of breast milk from 24 
healthy mothers and from 14 mothers with mastitis was 
determined objectively using a taste sensor. It was found 
that the transition from colostrum to mature milk was ac-
companied by changes in the taste of the milk, such as de-
creased saltiness and umami and increased bitterness and 
sourness. Umami and saltiness increased in milk from in-
flamed breasts because contents of sodium, glutamate, and 
guanosine monophosphate were increased in such cases 
(Yoshida et al., 2014).

The objective of the research described in Kovács et al. 
(2009) was to compare the taste attributes of different com-
mercial soya drinks and to determine the effect of different 
ingredients and processing technologies on the taste attri-
butes of soya products. The results of the a-Astree e-tongue 
(Alpha MOS, France) measurements revealed that this in-
strument is able to determine the effect of the applied tech-
nology and to distinguish soya milk samples according to 
sensory preferences. It also showed that the taste attributes 
of soya juice made from hulled soybeans was beneficial for 
the taste attributes relative to that of the juice made of not-
hulled soybeans.

Probiotics, which are living nonpathogenic microor-
ganisms exerting a positive influence on the host’s health 
or physiology, can be obtained in a form of probiotic fer-
mented milk. Taste of such products plays a crucial role 
in consumer preferences. According to that, research for 
the objective characterization of milk probiotics taste was 
conducted (Hruškar et al., 2010a,b). For classification of 
probiotic fermented milk according to flavor, the a-Astree 
e-tongue was applied. The samples of plain, strawberry, 
apple-pear, and forest-fruit probiotic fermented milk were 
stored for 20 days at 2 different temperatures and monitored 
by the e-tongue and a human sensory panel. Various pattern 
recognition techniques were adapted for the analysis of sen-
sor array responses: principal components analysis (PCA) 
for monitoring changes occurring in probiotic fermented 
milk in time; artificial neural network (ANN) for the clas-
sification of probiotic fermented milk during storage and 
according to flavor; and partial least squares (PLS) and 
ANN to estimate and predict the sensory panel evaluation 
results and thus the quality of the probiotic fermented milk 
measured by consumer (Hruškar et al., 2010b). The same 
research group reported in (Hruškar et al., 2010a) the ap-
plication of the same instrument for simultaneous determi-
nation of ethanol, acetaldehyde, diacetyl, lactic acid, acetic 
acid, and citric acid content in probiotic fermented milk—
the same type samples as in (Hruškar et al., 2010b). The 
highest correlation (0.967) and lowest standard deviation 
of error for the training and testing subsets were obtained 
for the estimation of ethanol content. The ANN models for 
acetic acid, citric acid, lactic acid, and diacetyl concentra-
tion determination also exhibited good prediction capability 

with slightly higher prediction errors. The model for acet-
aldehyde determination exhibited low accuracy of predic-
tion, which was most likely caused by low sensitivity of 
the potentiometric sensor array to acetaldehyde. Therefore, 
it was concluded that this method exhibited great potential 
as a tool in the rapid determination of aroma compounds in 
probiotic fermented milk (Hruškar et al., 2010a).

Bovine milk whey protein is produced as a by-product 
from cheese and butter manufacturing and can be used for 
food processing and as an additive for nutritional fortifi-
cation (it has high nutritional value; Sano et al., 2005). It 
elicits no taste stimulation; however, it interacts with vari-
ous flavor compounds. This effect was investigated with 
the use of the taste sensing system SA402B (Intelligent 
Sensor Technology, Japan). It was confirmed that the as-
tringency of these proteins increased with the increase in 
protein concentration, and they elicited strong astringency 
at 10 mg/mL under acidic conditions. The taste sensor 
gave specific values for whey proteins at pH 3.5, which 
corresponded well to those obtained by the sensory anal-
ysis. Elicitation of astringency induced by whey protein 
under acidic conditions is probably caused by aggregation 
and precipitation of protein molecules in the mouth (Sano 
et al., 2005).

Bovine milk proteins obtained in dairy industry can 
be processed in order to improve their properties (eg, they 
can be hydrolyzed). The incorporation of dairy protein hy-
drolysates (DPH) into foods has numerous benefits over 
nonhydrolyzed protein because they exhibit improved solu-
bility and gelatin-forming abilities, and are a rich source of 
 bioactive peptides. However, such additions can elicit bit-
terness that can develop as a result of the hydrolysis process 
(due to the alteration of the native protein structures to yield 
short-chained peptides with exposed hydrophobic amino 
acids). This phenomenon can be evaluated by sensory 
analysis using a human taste panel; however, it can present 
difficulties in implementation during the research and de-
velopment phase of DPH products. The difficulties are that 
the process is time consuming and needs a large quantity of 
food grade to sample, which is difficult in the early stage 
of laboratory development. There is also a risk of micro-
bial or chemical contamination at the lab production level. 
As an alternative, an e-tongue could be employed. First, the 
potential of the a-Astree e-tongue to be used in bitterness 
screening of various DPHs was shown by Newman et al. 
(2014a). Later, 19 DPHs were analyzed by e-tongue, size 
exclusion chromatography, and reverse phase HPLC and 
the results were correlated with their bitterness intensity as 
scored by a trained sensory panel. It was found that PLS 
models constructed with the e-tongue and HPLC data had 
the potential to be used for prediction of bitterness and thus 
reducing the reliance on sensory analysis in DPHs for future 
food research (Newman et al., 2014b).
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21.3 FRESHNESS EVALUATION, AGING, 
AND MICROBIAL GROWTH MONITORING

A few years after the appearance of potentiometric sensor 
arrays used mainly for taste evaluation, the voltammetric 
e-tongue was presented by Winquist et al. (1997, 1998). 
They pointed out that voltammetry had been extensively 
used in analytical chemistry due to several important ad-
vantages: very high sensitivity, versatility, simplicity, and 
robustness. Besides, this technique offers a wide range of 
various measurement modes, including cyclic, stripping, 
and pulse voltammetry, as well as the possibility of using 
different types of metals for the working electrode. Depend-
ing on the techniques and electrodes used, various aspects 
of information on the measured sample can be obtained 
(Winquist et al., 1997). The voltammetric e-tongue based 
on five wires of different metals as working electrodes, ref-
erence and auxiliary electrodes, to which pulsed voltamme-
try was applied, were allowed to follow the deterioration of 
the quality of milk due to microbial growth when milk was 
stored at room temperature. The deterioration process could 
clearly be followed on the PCA plot (Fig. 21.3). However, it 
was emphasized that there are many phenomena occurring 

during the storage of milk apart from microbial growth, 
which could affect the performantd: the oxidation of fatty 
acids, the evaporation of volatile compounds, and the ad-
sorption of proteins to the electrode surface. Nevertheless, 
the prediction of the course of bacterial growth in the milk 
samples with the use of PLS and ANNs provided satisfac-
tory correctness (Winquist et al., 1998).

The problem of extracting the important information 
from a complex response of a voltammetric e-tongue was 
addressed in Robertsson and Wide (2004). For this purpose, 
a wavelet transform was used—the amount of data to be 
analyzed was significantly reduced without loss of impor-
tant information. The obtained approximation coefficients, 
extracted as features, were used for classification with the 
use of a minimum distance classifier (MDC), which led to 
appropriate monitoring of bacteriological growth in milk 
(Robertsson and Wide, 2004). The classification ability of 
the voltammetric e-tongue can be also enhanced with the 
use of appropriate measurement mode [eg, multifrequency 
rectangle pulse voltammetry—MRPV, multifrequency 
staircase pulse voltammetry—MSPV (Wei et al., 2013b); 
multifrequency large-amplitude pulse voltammetry—
MLAPV (Tian et al., 2013)]; and appropriate classifiers 

FIGURE 21.3 Monitoring of aging process of milk by voltammetric e-tongue. (Adapted from Winquist et al., 1997.)
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[eg, least squares-support vector machine—LS-SVM (Wei 
et al., 2013b), Kernel PCA, locally linear embedding—
LLE, Sammon mapping (Tian et al., 2013)]. Voltammetric 
cell with four working electrodes was applied to monitor the 
quality and storage time of unsealed pasteurized milk (Wei 
et al., 2013b). Two potential waveforms, MRPV and MSPV, 
were applied to the working electrodes in this study. Total 
areas under the corresponding curves were applied as char-
acteristic data, which were evaluated by PCA and CA. The 
results indicated that the milk samples of different storage 
time could be successfully classified. Furthermore, the total 
bacterial count and viscosity properties were predicted by 
PLS analysis and LS-SVM and better results were obtained 
by the latter one (Wei et al., 2013b). The voltammetric e-
tongue based on MLAPV was also applied to the classifica-
tion of five milk powder solutions by means of the storage 
time. To the analysis of the obtained data, three nonlinear 
multivariate data analysis methods were proposed: Kernel 
PCA, LLE, and Sammon mapping (Tian et al., 2013). The 
results indicated that the three nonlinear procedures were 
able to extract the useful information from the raw data and 
thus exhibited a better performance than PCA, so they can 
be promising for voltammetric e-tongue data processing 
(Tian et al., 2013).

For monitoring of the aging processes of various milks, 
potentiometric sensor arrays were also applied; the a- Astree 
e-tongue (Naik et al., 2013; Hruškar et al., 2010b) and the 
screen printed disposable taste sensor (Sim et al., 2003). 
The latter was used to analyze two types of commercial 
milk; UHT and pasteurized milk. This device was found to 
be able to discriminate reliably between fresh and spoiled 
milk and to follow the deterioration of the milk quality 
when it was stored at room temperature (Sim et al., 2003). 
The storage study of coconut protein powder (CPP) was 
performed with an a-Astree e-tongue (Naik et al., 2013). 
Coconut skim milk and insoluble protein are two major by-
products in the production of virgin coconut oil. Coconut 
skim milk was homogenized along with insoluble protein 
and spray dried to obtain a value-added product—CPP. The 
samples were kept under different conditions (refrigerated 
[control], ambient and accelerated), and withdrawn periodi-
cally at designated intervals of 15 or 30 days. The e-tongue 
showed no significant difference in attributes of CPP during 
the storage period of 2 months (Naik et al., 2013). The same 
e-tongue was applied to the monitoring of changes in pro-
biotic fermented milk during storage (Hruškar et al., 2010b, 
described in Section 21.2).

The design and characterization of shear horizontal 
surface acoustic wave (SH-SAW) devices for the analy-
sis of liquid samples were described in Cole et al. (2002) 
and Gardner (2005). They were fabricated on LiTaO3 and 
LiNbO3 substrates. The design consisted of a dual delay 
line configuration where one delay line is metallized and 

shielded and the other is left electrically active. Simulta-
neous measurements of both mechanical properties and 
electrical parameters of the liquid under test are therefore 
achieved. Apart from mass loading and viscosity, it is possi-
ble to determine permittivity and conductivity of the liquid 
under test. These parameters can be related to taste proper-
ties. The analysis of signals of SH-SAW devices revealed 
discrimination between fresh and spoiled milk on a PCA 
plot (Cole et al., 2002) and allowed for determination of 
bacterial load in cow’s milk (Gardner, 2005).

Recently, a new type of e-tongue based on SPR was 
presented (Genua et al., 2014; Garçon et al., 2014). It em-
ploys an array of nonspecific and cross-reactive combinato-
rial receptors prepared by mixing two small molecules in 
varying and controlled proportions and allowing the mix-
tures to self-assemble on the SPR prism surface (Genua 
et al., 2014). Using only two small molecules as building 
blocks (lactose and sulfated lactose), an array of combina-
torial cross-reactive receptors was prepared and combined 
with an optical detection system—SPR imaging. The ob-
tained device generated unique 2D continuous evolution 
profiles and 3-D continuous evolution landscapes, based on 
which device the differentiation of complex mixtures was 
performed with the use of PCA. The preliminary experi-
ments that were devoted to the monitoring of the deterio-
ration of UHT milk in time demonstrated its potential for 
quality control applications (Genua et al., 2014).

A combined approach based on a two multisensor sys-
tems (the hybrid e-nose and a voltammetric e-tongue) was 
presented in Bougrini et al. (2014). Additional chemical in-
formation on the sample is gained in this case thanks to the 
analysis of both the solution and its headspace. The aim of 
this system was exact recognition of storage time of milk 
with the use of the support vector machine (SVM). Results 
obtained by the data fusion approach outperformed the clas-
sification results of the e-nose and the e-tongue taken in-
dividually. This study can be generalized to various food 
products where quality is based on the perception of both 
taste and flavor (Bougrini et al., 2014).

21.4 FERMENTATION MONITORING 
AND ANALYSIS OF FERMENTED MILK 
PRODUCTS

The fermentation of dairy foods represents one of the oldest 
techniques for food preservation. Fermented milk products, 
that is, cultured milk products, are dairy foods fermented 
with various lactic acid bacteria. This process not only 
increases the shelf-life of the product, but also allows for 
enhancing the taste and improves the digestibility of milk. 
However, fermentation processes are often sensitive to even 
slight changes of conditions that may result in unaccept-
able end-product quality. Therefore, detecting unfavorable 
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deviations from a normal process run should be fulfilled as 
early as possible because of economic reasons. For this pur-
pose, various traditional analytical techniques can be em-
ployed, which, however, need expensive instrumentation, 
experienced operators, and complex sample preparation. As 
an alternative multisensor system, including e-tongues can 
be used for allowing rapid and relatively inexpensive qual-
ity control during fermentation process (Peris and Escuder-
Gilabert, 2013).

One example is the e-tongue based on potentiometric 
sensor array that was applied to qualitative and quantita-
tive monitoring of a batch fermentation process of starting 
culture for light cheese production (Esbensen et al., 2004). 
Process control charts were built on the basis of sensor array 
output combined with PLS, while measuring sensor respons-
es during a standard fermentation run. Control charts were 
allowed then to detect samples from fermentation batches 
running under “abnormal” operating conditions (created by 
setting process parameters outside recommended limits). 
Moreover, the high capability of the e-tongue to quantify 
concentrations of important organic acids (citric, lactic, and 
orotic) in the investigated fermentation media was noticed, 
as well as high correlation between peptide profiles deter-
mined using HPLC and the e-tongue output. These results 
demonstrated that the e-tongue system is a promising tool 
for fermentation process monitoring and quantitative analy-
sis of growth media (Esbensen et al., 2004).

A hybrid electronic tongue based on a combination of 
potentiometry, voltammetry, and conductivity was used for 
classification of six different types of fermented milk (yo-
gurt, kefir, etc.; Winquist et al., 2000). Using ion-selective 
electrodes, pH, carbon dioxide, and chloride ion concentra-
tions were measured. The voltammetric electronic tongue 
consisted of six working electrodes of different metals and 
an Ag/AgCl reference electrode. The various nature of the 
microorganisms in the different fermentations was reflected 
on PCA plots both for potentiometric and voltammetric 
measurements (Fig. 21.4). It was expected that the com-
bination of information obtained from these various tech-
niques, that is, the realization of hybrid e-tongue, should 
result in a better description of the sample and this effect 
was observed, then the hybrid tongue could separate all six 
samples (Fig. 21.4; Winquist et al., 2000).

Classification of six categories of set yogurt was a task 
for the voltammetric e-tongue comprised of four working 
electrodes. Various potential waveforms (multi-frequency 
hackle pulse voltammetry—MHPV, MRPV, MSPV) were 
applied (Table 21.1; Wei et al., 2013a). The total areas 
under the corresponding curves obtained in three frequen-
cies were treated as the characteristic values processed by 
PCA and discriminant function analysis (DFA) for catego-
ry classification. Voltammetric e-tongue based on MSPV 
combined with PCA presented the best separation abil-
ity in classifying the six categories of yogurt. Satisfactory 

recognition capability was confirmed by the application of 
PLS-discriminant analysis (PLS-DA) for category predic-
tion. Additionally, good correlation between physical prop-
erties of yogurt samples such as surface stress and viscidity 
and e-tongue output was observed (Wei et al., 2013a).

Finally, for monitoring of taste and important compo-
nents changes in probiotic fermented milk during storage, 
the a-Astree e-tongue was applied (Hruškar et al., 2010a,b; 
described in Section 21.2). The same device was applied for 
classification of five brands of yogurt (Hruškar et al., 2009).

21.5 ESTIMATION OF FAT CONTENT

The fat content of milk is the amount of milk made up by 
butterfat—if fat content is higher, the milk has more nu-
tritional energy per cup. To reduce the fat content of milk, 
usually all of the fat is removed and then the required quan-
tity returned. Fat content can also be altered by selective 
breeding and genetic modification of cows. For determina-
tion of fat content in milk, various tests can be applied, for 
example, Babcock test. However, it can be also determined/
estimated by means of e-tongues, which would be especial-
ly desirable in the case of process monitoring as an easy-to-
implement method with online control. For such purposes, 
the flow-through e-tongue based on potentiometric solid-
state electrodes was developed (Ciosek et al., 2006a). Their 
signals formed an input to the SVM neural network without 
a preprocessing stage. The results of the classification of 
milk by brand and by fat content proved the proposed sys-
tem to be very efficient; therefore, the method could find ap-
plications in the food industry for checking the parameters 
of the produced milk, in quality control in dairies, and for 
the monitoring of milk preparation (Ciosek et al., 2006a).

The disposable, integrated e-tongue for estimation of 
fat content was constructed with gold CD-R and copper 
sheets substrates (Paixão and Bertotti, 2009). The sensing 
elements were gold, copper, and gold surface modified with 
a layer of Prussian blue. The separated clusters obtained 
on a PCA plot indicated that milk samples could be clearly 
differentiated. One of the possible mechanisms to explain 
this discrimination is associated with different levels of ad-
sorption on the surface of the working electrodes caused 
by changes in fat content of the milk samples (Paixão and 
Bertotti, 2009).

Discrimination between milks of various fat content 
was also possible with the use of SH-SAW-based e-tongue 
(described in Section 21.3). Moreover, this device was ca-
pable to estimate fat content in the range 0.1–4.0% (Cole 
et al., 2002). The same device was coupled with an elec-
tronic nose based on ChemFET sensors; by combining two 
types of microsensors, an artificial flavor sensing system 
was developed. Initial tests conducted with milk of differ-
ent fat content resulted in 100% discrimination using PCA 
(Cole et al., 2011).
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21.6 CLASSIFICATION ACCORDING TO 
DAIRY ORIGIN/BRAND

Classification of milks according to its origin, and therefore 
the recognition of its characteristic properties related with 
processing and taste, serves as a model task in the perfor-
mance check during the development of new architectures 

of e-tongue sensor arrays and new numerical procedures 
for e-tongue pattern recognition units. A potentiometric e-
tongue based on selective and partially selective ISEs was 
applied to qualitative analysis of various brands of milk—
the tests of the system were performed using products of the 
same brand, but with different manufacture dates (and thus 
comparable in terms of taste). This procedure also allowed 

FIGURE 21.4 Combination of voltammetric, potentiometric, and conductivity measurements in hybrid electronic tongue for better discrimina-
tion of fermented milk products. (Adapted from Winquist et al., 2000.)
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to avoid overfitting of the classification model and to capture 
the true data structure. The sensor array’s responses were 
processed by PCA and ANN, which resulted in very high 
classification correctness. A sufficient database for beverage 
recognition was constructed by samples from only two dif-
ferent manufacturer lots. In this way, the real working con-
ditions of the e-tongue were evaluated (Ciosek et al., 2004; 
Ciosek and Wróblewski, 2007b). The same types of chemo-
sensitive membranes were applied in an array of miniatur-
ized potentiometric sensors—solid-state electrodes working 
in flow-through mode (Fig. 21.1). Again, the fusion of ion-
selective and partially selective microelectrodes with PCA 
and ANN processing of sensor responses led to the recogni-
tion of brands of milks with high correctness (Ciosek and 
Wróblewski, 2007b; Ciosek et al., 2006b).

New construction of a potentiometric e-tongue for the 
classification of milks originating from various producers 
was based on an integrated array of microelectrodes fab-
ricated from epoxy-glass laminate (Fig. 21.1; Ciosek and 
Wróblewski, 2008). Also in this case, PVC membranes 
with various additives were used as chemosensitive layers 
to obtain selective and partially selective sensors. The de-
veloped sensor array coupled with PLS-DA was capable of 
recognizing milk samples with high correctness. Moreover, 
the application of miniaturized reference electrode, based 
on ionic liquid and integrated on the same substrate, also 
provided satisfactory results, which could be helpful in the 
future construction of handheld electronic tongue systems 
(Ciosek and Wróblewski, 2008).

Another potentiometric system—the a-Astree e-
tongue—was also evaluated by checking its discrimination 
ability in the recognition of milk samples from different 
producers. The outputs of ISFETs forming sensor array 
were processed with the use of PCA resulting in satisfac-
tory discrimination between five brands of milk (Hruškar 
et al., 2009). Combined e-tongue and e-nose device (de-
scribed in Section 21.3) based on a voltammetric cell with 
four working electrodes and eight MOS sensors, was ap-
plied to the discrimination between five milk brands. 3D 
PCA plots revealed appropriate recognition ability of this 
system (Bougrini et al., 2014).

Classification accuracy of e-tongues can be  significantly 
improved using appropriate numerical methods for the 
analysis of sensor array responses. This effect was studied 
extensively and the results were presented in various papers 
(Ciosek et al., 2006a,c; Ciosek and Wróblewski, 2006). 
Potentiometric sensor array responses were processed with 
the use of various linear and nonlinear procedures: SVM 
(Ciosek et al., 2006a), k-nearest neighbors—k-NN (Ciosek 
and Wróblewski, 2006; Ciosek et al., 2006c), PLS (Ciosek 
and Wróblewski, 2006), soft independent modeling of 
class analogy—SIMCA (Ciosek and Wróblewski, 2006), 
back propagation neural network—BPNN (Ciosek and 
Wróblewski, 2006; Ciosek et al., 2006c), learning vector 

quantization—LVQ (Ciosek and Wróblewski, 2006), prob-
abilistic neural network—PNN (Ciosek et al., 2006c). 
 Classification accuracy in the model task of milk brand 
recognition was compared and some analogies with gen-
eral rules referring to electronic nose were found. LVQ net-
works were proved to exhibit the best performance. Their 
further advantages, such as fast training and robustness, 
make them the suggested pattern classifiers for sensor array 
data (Ciosek and Wróblewski, 2006).

21.7 INDUSTRY-ORIENTED 
APPLICATIONS

Due to their ruggedness and simplicity, electrochemical 
e-tongues are especially suitable for online monitoring of 
industrial processes. The first voltammetric e-tongue, spe-
cially designed for use in the dairy industry, was presented 
in 2005 (Winquist et al., 2005). It consisted of four working 
electrodes made of various metals embedded in PEEK™. 
It was mounted in a housing of stainless steel, which was 
inserted in the process line for direct online measurements. 
There are a number of flavor categories of milk such as sour, 
salty, fishy (trimethylamine), blueberry, unclean, oxidized, 
rancid, and chemical; in addition, there can be taste from 
the cattle’s food such as ensilage, clover, and hay, which 
has a seasonal variation. There is always a risk that milk 
from one farm can contaminate part or all of the shipment 
transported to the dairy plant in a single tank truck. An even 
greater risk is if off-flavor milk enters a storage silo in the 
dairy plant and contaminates a large volume of raw milk. 
Therefore, the voltammetric e-tongue was used to follow 
different sources of milk coming into the process and to 
monitor the cleaning process. The results showed that milk 
from different sources, and thus also having different qual-
ity properties, could be distinguished. This opens up the 
possibility for monitoring off-flavors in the incoming milk 
and it makes e-tongue a valuable security tool to prevent 
economic loss (Winquist et al., 2005).

The adulteration of goat milk with bovine milk is quite 
frequent, due to the seasonal fluctuations of the production 
of goat milk and to its higher price. Therefore, it is important 
to establish and validate easy and reliable methodologies that 
can be used to detect this kind of adulterations. Although 
various methods such as HPLC, immunological assays, 
and immunochromatography were proposed in recent years 
for the detection and/or quantification of milk and cheese 
adulterations, they are very time consuming and expensive, 
requiring complex pretreatment of the samples, specialized 
equipment, and qualified personal. Therefore, the develop-
ment of an e-tongue that could be used in the dairy indus-
try by cheese makers to evaluate in a simpler, faster, more 
economical way and in real time the possible adulterations 
of their “raw material” is of major importance. An array of 
cross-sensitive solid contact electrodes was applied to the 
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detection of goat milk adulteration with bovine milk (Dias 
et al., 2009). The applied linear discriminant analysis (LDA) 
model could distinguish between raw skim milk groups 
(goat, cow, and goat/cow) with an overall sensitivity and 
specificity of 97 and 93%, respectively. Furthermore, cross-
validation showed that the model was able to correctly clas-
sify unknown milk samples with a sensitivity and specificity 
of 87 and 70%, respectively (Dias et al., 2009). Detection of 
adulteration of milk with hydrogen peroxide was possible 
with the use of a disposable voltammetric electronic tongue 
(Paixão and Bertotti, 2009; described in Section 21.5).

The quality of milk introduced to the dairy plant is also 
checked from a microbiological point of view. Bovine mas-
titis is the inflammation of the bovine mammary gland, 
caused by pathogen infection. This disease is one of the 
largest production concerns in the dairy industry, due to 
high cost associated with lost yield, discarded milk, cost of 
veterinarian treatment, the herdsman’s time, and extended 
calving intervals. Mastitis milk contains both pathogens 
and bacterial toxins; therefore, its consumption increases 
the risk of ingestion and transmission of pathogens and 
ingestion of toxins. Thus, the detection of the clinical in-
fectious disease is a legal requirement for milk for human 
consumption in most developed countries. In robotic milk-
ing systems, mastitis detection is currently performed by 
a combination of human inspection of animals, by electri-
cal conductivity, and by analysis of changes in milk yield. 
However, still early warning is not reliable with sensors and 
software currently on the market. As an alternative, an e-
tongue based on an ISE sensor array was proposed for the 
discrimination between milk secretions from infected and 
healthy glands (Mottram et al., 2007). It was demonstrated 
that the multisensor system could distinguish between con-
trol and clinically determined mastitis milk samples. The 
sensitivity and specificity of the sensor system (93 and 
96%, correspondingly) showed an improvement over con-
ductivity (56 and 82%, correspondingly).

Antimicrobial agents are routinely administered to food-
producing animals to promote growth as well as for thera-
peutic and prophylactic reasons. However, the passage of 
antibiotics into milk from medicated animals influences the 
quality of raw milk and such residues constitute a potential 
risk to the consumer, causing allergies and creating possible 
resistance of microorganisms to the introduced antibiotics 
(Wei and Wang, 2011). Moreover, the residues can lead to 
considerable losses in fermented products such as cheese or 
yogurt (eg, they inhibit the bacterial fermentation process-
es). A voltammetric e-tongue was developed to detect six 
antibiotic residues in bovine milk: chloramphenicol, eryth-
romycin, kanamycin sulfate, neomycin sulfate, streptomy-
cin sulfate, and tetracycline HCl. The samples contained 
spiked residues at four concentration levels: 0.5, 1, 1.5, and 
2 maximum residue limits. They were classified on the ba-
sis of e-tongue responses processed with the use of PCA 

and DFA. Three regression models—principal components 
regression (PCR), PLS, and LS-SVM—were used for the 
prediction of antibiotics concentrations. All the regression 
models performed well, and PCR had the most stable re-
sults (Wei and Wang, 2011).

Various byproducts of the dairy industry, such as whey 
or whey proteins, are used as additives in many processed 
foods, including breads, crackers, commercial pastry, and 
animal feed. Whey protein is often sold as a nutritional 
supplement and can be applied as a fertilizer or flour con-
ditioner. Whey can be also applied as a substrate in meth-
ane fermentation. During this biotechnological process, 
also known as anaerobic digestion, waste is transformed by 
microorganisms under anaerobic conditions and valuable 
biogas is produced. The process itself, its duration, and the 
quantity of biogas achieved depend on the raw material and 
bacteria used as an inoculum. There are many factors that 
can disturb the process itself, or slow it down (eg, an in-
crease in volatile fatty acids and a decrease in the pH of bulk 
solution subsequently inhibits the methanogensis step and 
leads to process failure). The interdependence of the differ-
ent microbial groups involved in anaerobic digestion is the 
main cause of the process instability. Therefore, there is a 
need to monitor fermentation not only by pH measurement 
or biogas analysis, but also by more detailed observation 
of the liquid phase in the bioreactor. For such a purpose, 
flow-through arrays of potentiometric electrodes were ap-
plied (solid-state planar electrodes or miniaturized ISE with 
classical architecture; Buczkowska et al., 2010; Witkowska 
et al., 2010). Whey fermentation was observed by study-
ing two main factors—volatile fatty acid (VFA) content and 
chemical oxygen demand (COD)—that were determined 
with the use of classical off-line methods. The monitoring 
performed by e-tongue allowed for satisfactory determina-
tion of VFA level and COD, and thus evaluation of fermen-
tation stage (Fig. 21.5). The applied flow-through sensor 
array is applicable for online process control, and its mod-
ular architecture is advantageous when composing a sen-
sor set and regarding its future applications (Buczkowska 
et al., 2010; Witkowska et al., 2010).

Another example of the possible use of e-tongues in the 
dairy industry is the analysis of dairy by-products and pro-
tein hydrolysates. The taste of bovine milk whey protein 
produced as a by-product from cheese and butter manu-
facturing was studied with the use of a taste sensor (Sano 
et al., 2005). The taste of dairy protein hydrolysates was esti-
mated by a-Astree e-tongue (Newman et al., 2014a, 2014b; 
both applications described in Section 21.2).

21.8 CONCLUSIONS

In this chapter, various aspects and possibilities of using e-
tongue methodology to milk and dairy products analysis were 
presented and discussed. It was shown that the multisensor 
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approach allows for wide adaptability of such systems to 
various qualitative/semiquantitative/quantitative tasks, even 
when such challenging samples (with high protein content) 
are analyzed. Simplicity of measurements, the low cost of 
analysis, and the possibility to perform the analysis in real 
time and online make e-tongues a very attractive alterna-
tive to traditionally used techniques. Two e-tongue systems 
commercially available, such as the taste sensing system and 
the a-Astree e-tongue, are usually applied to taste sensing 
of milk and classification/recognition of various milk prod-
ucts. Most of studies presented in this chapter employing 
prototype versions of e-tongues indicate for much wider 
area of applications: freshness evaluation, microbial growth 
monitoring, quality control studies, and detection of adul-
terations. Moreover, last ten years evidenced that there is a 
trend to elaborate e-tongues for industry applications, espe-
cially process monitoring. For such purposes, many research 
on the coupling of e-tongues with distributed expert systems 
for the advanced in-line monitoring of food production pro-
cesses, and the application of various flow-based e-tongues 
will be probably conducted in the next few years.

Nevertheless, it must be remarked that the main chal-
lenge now is the production of sensor arrays with very re-
peatable electrochemical properties, minor ageing effects, as 
well as minimization of irreversible binding of substances to 
chemosensitive layers of sensors, which leads to some cali-
bration instability. Other important missing aspects are the 
lack of long-term studies, sometimes nonreliable  validation 
that influences the estimation of predictive ability of the de-
veloped systems, and almost none interlaboratory studies 
(Ciosek and Wróblewski, 2007a; Riul et al., 2010; Peris and 
Escuder-Gilabert, 2013; Escuder-Gilabert and Peris, 2010). 
However, there is no doubt that e-tongues may be used for 

the resolution of various complex analytical problems and 
since this is quite a new methodology, following develop-
ment of such systems not only for milk and dairy products 
analysis is expected.
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22.1 INTRODUCTION

Fermented foods are “those foods that have been subjected 
to the action of micro organisms or enzymes so that desir-
able biochemical changes cause significant modification in 
the food” (Campbell-Platt, 1994). Fermentation is a conver-
sion of complex organic substances, mostly carbohydrates, 
into simpler compounds by the action of microorganisms 
such as bacteria, yeasts, or molds. From the chemical per-
spective, fermentation consists of a series of reactions cata-
lyzed with enzymes in the living cells. Fermentation is one 
of the oldest methods of the food processing and preser-
vation, increasing the nutritious value of food, making it 
more digestible, making it tastier, or preventing its spoilage, 
or all of them. The most widespread examples have been 
the use of lactic acid bacteria for production of cheese and 
other dairy and yeasts for alcoholic fermentations and bread 
(Ross et al., 2002). For millennia, fermented food was arti-
sanal small-scale products relying on the experience handed 
down the generations. Modern fermented food manufactur-
ing, with some exceptions such as cocoa fermentations, is 
as sophisticated and controlled as any industry.

The active compounds of all fermentation processes, the 
enzymes, are very sensitive to environmental conditions. 
Even a small uncontrolled change in composition, pH, tem-
perature, and pressure can alter cell metabolism and change 
radically process efficiency and productivity and can even 
render the process unprofitable. Being a typical biotechno-
logical process, fermentation is susceptible to all the issues 
common to this field: poor batch-to-batch reproducibil-
ity, unexpected process deviations, inconstant end- product 
quality. These problems can be minimized or avoided 
through establishment of appropriate chemical monitoring 
of a process that can provide for well-timed operation deci-
sions. However, analytical tools for the online process con-
trol remain relatively primitive until now. It is worth noting 
that lack of analytical instruments is a common problem for 

all biotechnological industries, despite the fact that products 
worth billions of dollars are produced through fermentation 
processes annually. Lack of online sensors for the monitor-
ing of the fermentation processes is commonly stressed in 
the literature (Vojinovic et al., 2006; Clementschitsch and 
Bayer, 2006). The only chemical parameters being routine-
ly measured in the bioreactors are pH, redox potential, and 
pO2 (Schugerl, 2001; Harms et al., 2002). Although these 
parameters are crucial for the fermentation process, they 
are not always sufficient for effective process control and 
quite often are not related to the quality of the end product. 
The lack of chemical information about the process may 
lead to the fermentation being run under suboptimal condi-
tions, batch contamination, and so forth, all of which result 
in the unacceptable end-product quality and rather heavy 
economical losses. Timely identification of the problems 
would allow traditional laboratory analysis in offline mode 
in spite of being rather informative takes a lot of time due to 
various sample pretreatment procedures and involvement of 
complex analytical equipment.

Several analytical instruments have been proposed for 
online monitoring of the fermentation processes, the most 
important of which are near-infrared (NIR) spectroscopy 
and image analysis (Vojinovic et al., 2006; Schugerl, 2001; 
Scarff et al., 2006; Sonnleitner, 2013). Both techniques are 
nondestructive and rapid and require no sample preparation, 
which makes them quite attractive for the real-time process 
follow-up. Being noncontact techniques, both NIR and im-
age analysis are devoid of such problems as contamina-
tion of the probe by the broth compounds and sterilization. 
NIR spectroscopy is currently widely used in agricultural, 
food, and pharmaceutical industries as a quality control tool 
given that problems with instrumental drift and calibration 
stability have been solved. Artificial vision or image analy-
sis makes use of images collected using a charge-coupled 
device (CCD) or other type of camera. This is a new tech-
nique that has not yet been widely applied in the industry. 
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Both NIR spectroscopy and image analysis require relative-
ly complex statistical methods for the data processing and 
modeling, especially in the case of image analysis. It should 
be noted that wider application of NIR in the biotechno-
logical industry is impeded by the complexity of analyzed 
media and the fact that only relatively high concentrations 
can be quantified using this technique.

Another analytical instrument, which is particularly suit-
able for the tasks of online or at-line process monitoring, is 
an electronic tongue. According to the IUPAC definition, 
“The electronic tongue is an analytical instrument compris-
ing an array of nonspecific, low-selective, chemical sensors 
with high stability and cross-sensitivity to different species 
in solution, and an appropriate method of pattern recognition 
and/or multivariate calibration for data processing” (Vlasov 
et al., 2005). The electronic tongue shares advantages of the 
chemical sensors such as the possibility to perform measure-
ments in real-time, easy automation of measurements and the 
relative simplicity and low price of the required instrumenta-
tion. Besides, the electronic tongues allow overcoming some 
of the chemical sensors’ limitations such as insufficient selec-
tivity in the multicomponent media.

The purpose of this chapter is to review the review ap-
plications of electronic tongues to the monitoring of food 
fermentation processes.

22.2 REQUIREMENTS FOR THE SENSORS 
FOR BIOPROCESS MONITORING

The main requirements for the sensors to be applicable to 
the fermentation monitoring can be summarized as fol-
lows. They should be able to provide information about 
concentrations/ parameters of interest in real time and do 
not compromise sterility of the process. Different approach-
es may be implemented with the aim to obtain real-time 
 information about the fermentation process. Sensors can be 
placed inside the bioreactor (in situ sensors) or a sample can 
be taken from the bioreactor and analyzed in the close prox-
imity to the process. In situ sensors appear to be the more 
attractive option, which is, however, the most difficult to 
implement in practice. In situ sensors should be capable of 
functioning during prolonged periods of time (at least for the 
duration of the process) without external interventions. That 
is, sensors should not suffer from fouling of its surface by 
the biomaterial, primarily proteins, and should not require 
recalibration for the duration of the bioprocess. Further-
more, sensors must endure rather extreme conditions during 
the sterilization without deterioration of its characteristics. 
While the latter concern has been addressed and several 
sterilizable probes can be found on the market, fouling and 
baseline drift remain problematic. Not surprisingly, a very 
limited number of in situ chemical sensors are currently used 
for fermentation monitoring, mainly already mentioned pH, 
redox, and O2 probes (Schugerl, 2001; Harms et al., 2002).

At-line or online sensors appear to be more feasible so-
lutions as they allow to carry out cleaning, conditioning, 
and recalibration of the sensors, when necessary, and elimi-
nate the need for sterilization. Implementation of sensors 
in flow-injection (FIA) or sequential-injection (SIA) setup 
permits to automate all analytical steps including cleaning, 
calibration, and measurements. Due to their low response 
time, the high sampling frequency, versatility, and flexibil-
ity, the FIA and SIA systems established them as a key tool 
for bioprocess monitoring (Harms et al., 2002).

Furthermore, sensors should be able to measure sub-
stances of interest in the range of their variation during the 
process that is to have adequate dynamic ranges and de-
tection limits. Sensors should possess sufficient selectivity 
toward measured substances to be capable of carrying out 
determination in the complex environment such as fermen-
tation broth where several other compounds are present of-
ten in high concentrations. The latter represent the biggest 
challenge as most chemical sensors, as well as other types 
of probes such as NIR spectroscopy, suffer from insuffi-
cient selectivity in multicomponent media. This led to the 
introduction of the “soft sensors” concept also referred to as 
“software” or “virtual” sensors as a possible solution (Lu-
ttmann et al., 2012). “Soft sensors” are defined as a com-
bination of relatively nonspecific but accessible measuring 
tool with sensor signal evaluation models. In practice, “soft 
sensors” allow us to use easily accessible online data for 
the estimation of other variables that are otherwise either 
difficult to measure or only measured at low frequency. Al-
ternatively, soft sensors can also be used with the purpose of 
performing fault detection and diagnosis of the bioprocess. 
In the field of chemical sensors and biosensors, “soft sen-
sors” are called electronic tongues, the definition of both 
being very similar (Vlasov et al., 2005).

Sensors based on a variety of transduction principles are 
used in the electronic tongue systems, including electrochem-
ical (potentiometric, amperometric, impedimetric), gravimet-
ric (surface-acoustic wave, quartz crystal microbalance, etc.), 
and optical (fluorescence, etc.) (Legin et al., 2003; del Val-
le, 2010; Rudnitskaya and Legin, 2008). For the fermentation 
monitoring, only potentiometric, optical, and hybrid com-
bining potentiometric with amperometric electronic tongues 
have been employed. Types of chemical sensors used in the 
electronic tongue systems together with detected analytes and 
process parameters are listed in Table 22.1.

22.3 MODEL FERMENTATION 
SOLUTIONS

When dealing with analysis of complex multicomponent 
media, such as different biotechnological solutions, it 
makes sense to approach the problem by studying model 
solutions first. In this way, appropriate measuring proce-
dures can be established and possible interferences for the 
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analytes and parameters of interest can be clarified. Appli-
cation of potentiometric electronic tongue to the analysis of 
model solutions closely mimicking the composition of the 
broths from the fermentation with filamentous fungi Asper-
gillus niger was described in Legin et al. (2004). A. niger is 
widely employed in food biotechnology, in particular in the 
production of citric acid (Grewal and Kalra, 1995). During 
the fermentation process, fungi consume glucose and am-
monium from the culture media to produce organic acids, 
such as citric, oxalic, pyruvic, and some other substances 
such as polyols. The electronic tongue was applied for po-
tentiometric measurements in 22 model solutions whose 
compositions were following the course of typical fermen-
tation in time. The data for modeling were obtained from 
the measurements in real fermentation broth samples per-
formed with standard analytical techniques such as high-
performance liquid chromatography (HPLC). Solutions 
contained a constant background of inorganic salts such as 
potassium chloride and dihydrogen phosphate, magnesium 

sulfate, and trace elements, whereas the content of citrate, 
pyruvate, oxalate, glucose, glycerol, mannitol, erythritol, 
and ammonium chloride was changed in a relevant range 
to mimic the progress of fermentation. Moreover the influ-
ence of a sodium azide addition on sensor response was also 
investigated. This substance is normally added to the broth 
to stop the microbial activity and to “freeze” chemical com-
position of the media for analysis. It was shown that a po-
tentiometric electronic tongue can provide for simultaneous 
quantitative assessment of ammonium, oxalate, and citrate 
content in simulated fermentation media of A. niger. The 
studied concentration ranges of the components were 0.4–
14 mM for ammonium, 0.5–5.5 mM for citrate, and 2.6–
62.2 mM for oxalate. Mean relative errors of prediction of 
these components were 6, 6, and 8%, correspondingly. Data 
processing was done using two different regression tech-
niques: partial least squares (PLS) and back propagation ar-
tificial neural networks (BP–ANN), the latter provided for 
higher precision since it can effectively deal with nonlinear 

TABLE 22.1 Sensors for the Electronic Tongues and Electronic Noses

Transduction Mode Sensing Materials Analytes/Parameters Fermentation Process

Potentiometric Plasticized organic 
polymers modified by 
ionophores, chalcogenide 
glasses

Organic acids, ammonia Citric acid production by A. niger, model 
solutions (Legin et al., 2004)

Acetic acid, optical density Model E. coli fermentation (Turner et al., 
2003)

Octanoic acid 2-Heptanone production by 
P. roqueforti (Lomborg et al., 2008)

Recognition of microorganisms, 
growth stages

Model fermentation of the fungi, yeasts, 
and bacteria (Soderstrom et al., 2005a)

Organic acid, deviation of the 
process from normal operating 
conditions

Fermentation of the starting culture for 
the cheese production (Esbensen et al., 
2004)

Amino acids, total acidity Miso production (Imamura et al., 1996)

Ethanol, titratable acidity Sake production (Arikawa et al., 1996)

Titratable acidity, fermentation time Kimchi maturation (Kim et al., 2005)

Voltammetric Noble metals (Au, Ir, Pt, 
and Rh)

Ergosterol; recognition of 
microorganisms, growth stages

Model fermentation of the fungi, 
yeasts, and bacteria (Soderstrom et al., 
2003a,b; Soderstrom et al., 2005a,b)

Hybrid Potentiometric 
(plasticized PVC, 
redox) + voltammetric 
(glass carbon)

Total acidity, process duration 
prediction, contamination 
identification

Citric acid production by A. niger 
(Kutyła-Olesiuk et al., 2014)

Process stages recognition, process 
duration prediction

Beer fermentation (Kutyła-Olesiuk et al., 
2014)

Potentiometric (plasticized 
PVC, chalcogenide 
glasses) + voltammetric 
(noble metals)

Recognition of microorganisms, 
growth stages

Model fermentation of the fungi, yeasts, 
and bacteria (Soderstrom et al., 2005a)

Optical SPR Discrimination of different 
fermentation times

Sake fermentation (Nanto et al., 1999)

Vinegar production (Nanto et al., 2002)
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sensor response induced by high concentration of interfer-
ing ions. The content of all three components of interest can 
also be quantified in the presence of 10 mM sodium azide.

Noteworthy, later on it was shown that analysis of real 
fermentation samples from citric acid production with A. 
niger is also fully possible by means of an electronic tongue 
system consisting of potentiometric and voltammetric sen-
sors (Kutyła-Olesiuk et al., 2014). The measurements were 
performed in offline mode.

Another example of dealing with model fermentations 
was provided in Turner et al. (2003). In this study, the po-
tentiometric electronic tongue system was applied for quan-
tification of dry weight content, optical density, and acetic 
acid in broth samples taken from the model fermentation 
process (not intended for real production of some substanc-
es) with Escherichia coli. Recombinant strains of these 
bacteria are widely employed, for example, for synthesis of 
heterologous (foreign) proteins for pharmaceutical indus-
try. With the help of the potentiometric multisensory sys-
tem of 21 sensors, it was possible to track the fermentation 
progress in the broth sampled with certain time intervals 
in the course of 10-h-long fermentation. Particular atten-
tion was paid to the analysis of acetic acid content, which is 
an unwanted byproduct of glucose metabolism in bacteria 
and increased levels of this substance can lead to inhibition 
of protein production in the recombinant strain. Reference 
data on acetic acid concentration were obtained from HPLC 
measurements. The mean relative error (MRE) in prediction 
of acetate from electronic tongue response was 11%. Taking 
into account the time of analysis with multisensor system 
(3 min instead of the time-consuming HPLC procedures),  
this can be considered a promising result. Another interest-
ing outcome of the study is the observed correlation be-
tween the optical density and the electronic tongue response 

(Fig. 22.1). Optical density is an important indicator of bio-
mass growth in the media. MRE for optical density analy-
sis was 13%. Obviously optical density of the fermentation 
broth depends a lot on its chemical composition and this 
is why such correlation can be established, thus convert-
ing potentiometric sensors into the “optical” instrument. 
The study also reports on the possibility of dry weight es-
timation in fermentation samples with an electronic tongue 
(MRE 16%).

Various fungi and yeast species may be employed in the 
fermentation processes, but they also may act as contami-
nants of the fermentation cultures and foods. Thus, a ge-
neric experiment looking at the capability of the electronic 
tongue system to distinguish different species grown in the 
same conditions is of interest. A series of works reported 
applications of the voltammetric and potentiometric elec-
tronic tongues to the recognition and growth monitoring 
of microbial species including fungi, yeasts, and bacteria. 
Voltammetric electronic tongue comprising four noble 
metal working electrodes (gold, iridium, platinum, and rho-
dium) was used for the monitoring of the growth of Asper-
gillus oryzae and quantification of ergosterol, compounds 
produced exclusively by fungi (Soderstrom et al., 2003a). 
Measurements were carried out in the three electrode 
scheme using differential pulse voltammetry. The elec-
tronic tongue was capable of detecting mold growth after 
ca. 40 h after inoculation and has shown good correlation 
with ergosterol content in fermentation broths. The same 
setup was applied to the recognitions of six microbial spe-
cies (three fungi, one yeast, and two bacteria) grown at the 
same conditions (Soderstrom et al., 2003b). They could be 
differentiated by the electronic tongue after the logarithmic 
growth stage is reached, which was ca. after 30 h after in-
oculation. The same voltammetric setup and potentiometric 

FIGURE 22.1 Estimation of optical density in fermentation media from the electronic tongue response. (Reprinted from Turner et al., 2003, with 
permission from Elsevier.)
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electronic tongue comprising 20 sensors with plasticized 
PVC and chalcogenide glass membranes was applied to 
the recognition and growth monitoring of the four Asper-
gillus species (A. flavus, A. oryzae, A. ochraceus, and A. 
versicolor) and the yeast Zygosaccharomyces bailii (Soder-
strom et al., 2005a). Both electronic tongues were capable 
to distinguish cultures grown to the stationary stage (7 days 
for molds and 4 days for yeast), except A. flavus and A. 
oryzae. Both electronic tongues could follow the growth 
of two molds (A. flavus and A. ochraceus) and the yeast. 
Voltammetric electronic tongue was found to be more sensi-
tive to the later growth stages being capable to discriminate 
broth sampled 48 h and 27 h after inoculation for mold and 
yeast, respectively. The potentiometric electronic tongue 
was more sensitive to the changes in the broth occurring in 
the beginning fermentation being capable to recognize sam-
ples taken before inoculation and in the beginning of log 
growth phase, that is, sampled 24 and 48 h after inoculation 
for molds and 14 and 27 h for yeast. Superior performance 
was obtained after merging of the data from two devices, 
which allowed to differentiate broths sampled during the 

entire growth process (Fig. 22.2a) as well as discriminate 
three species at the beginning of the stationary growth phase 
(Fig. 22.2b).

Recognition of A. flavus and Penicillium commune 
grown in different media (malt, sucrose, and glucose) as 
well as monitoring of their growth were carried, using the 
same setup of the voltammetric electronic tongue (Soder-
strom et al., 2005b). Similarly to the results previously de-
scribed, the electronic tongue was capable of discriminat-
ing broths at the later stages of growth, in this case, 7 and 
10 days after inoculation, while samples taken before 1 and 
3 days after inoculation could not be distinguished.

22.4 FOOD ADDITIVES

In the last decades biotechnological advancements have 
gained importance in the production of food additives and 
flavorings. The number of compounds produced using 
biotechnology is increasing exponentially, replacing such 
processes of the manufacturing of food additives as ex-
tractions from the natural sources and chemical synthesis. 

FIGURE 22.2 (a) Discrimination of A. ochraceus broths sampled at different growth stages (0, 24, 48, and 72 h and 7 days) and (b) discrimination 
of broths of two molds (A. ochraceus and A. flavus) and yeast (Z. bailii) sampled in the beginning of the log growth phase, that is, after 24 and 14 h of 
inoculation, correspondingly. The PLS score plot was produced using merged data from two electronic tongues. (Reprinted from Soderstrom et al., 2005a, 
with permission from Elsevier.)
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Biotechnology has the advantages of being less expensive 
than extraction and producing compounds that are closer 
to the natural counterparts (ie, the same enantiomers as 
encountered in nature) than chemical synthesis. Biotech-
nologically produced compounds include food pigments 
(phycocyanin, lutein, b-carotene, astaxantin, etc.), polyun-
saturated fatty acids (eicosapentaenoic acid, docosahexae-
noic acid, g-linolenic acid), organic acids (citric, lactic, ace-
tic, tartaric, l-glutamic acid), vitamins, and volatile flavor 
compounds (Chen, 2004; Schrader, 2007; Gounaris, 2010).

The first industrial fermentation process aimed at the 
production of the food additive production was production 
of citric acid by the A. niger. It was implemented in the 
beginning of the 20th century and remains to this day the 
main commercial source of this acid. Besides citric acid, 
A. niger is also employed in the fermentation processes for 
production of other organic acids and enzymes, hence the 
interest for the monitoring of this fungi fermentation. Quan-
titative analysis of the model solutions imitating broths 
from A. niger fermentation was previously described (Legin 
et al., 2004). Analysis of the solutions from the real fermen-
tation process of citric acid production by A. niger using 
the hybrid electronic tongue has been reported in Kutyła-
Olesiuk et al. (2014). Hybrid electronic tongue comprised 
12 potentiometric sensors with plasticized PVC membranes 
with different ionophores, glass pH, and metallic redox 
electrode and voltammetric glass carbon electrode. Fer-
mentation follow-up, detection of the culture contamina-
tion by the yeast Saccharomyces cerevisiae ca. 25 h after, 
and quantification of total acidity were done (Fig. 22.3). It 
was observed that for this application, the hybrid electronic 
tongue performed better compared to only potentiometric 
or voltammetric sensors alone. Analysis with the electronic 
tongue was performed offline; that is, fermentation broth 

was sampled and frozen at −20°C, thawed, and analyzed 
simultaneously.

An electronic tongue was applied to the detection of  
octanoic acid in broths from an industrial fed-batch culti-
vation of Penicillium roqueforti for production of “natural” 
2- heptanone (Lomborg et al., 2008). 2-Heptanone is an im-
portant aroma compound in Roquefort cheese and is there-
fore used as blue cheese flavoring in the products like salad 
dressings, soups, and crackers. Biosynthesis of 2-heptanone 
is the most effective at the intermediate concentrations of 
the octanoic acid, in the range of 5–10 mM. Thus, close 
monitoring of octanoic acid catabolism with the aim to 
maintain its concentration constant is desirable. Electronic 
tongue comprising six anion-sensitive sensors with plasti-
cized PVC membranes was calibrated using broth samples 
from four fermentation runs, using octanoic acid concentra-
tion determined by HPLC as a reference. Validation of the 
obtained PLS calibration model using samples from fifth 
fermentation run has shown that prediction errors were sim-
ilar for the calibration and validation samples.

22.5 FOOD FERMENTATIONS

Various types of fermentations are widely applied in the 
food industry for production of different food products 
and drinks. Applications of the electronic tongues to the 
monitoring of these processes are discussed in this chapter, 
except alcoholic fermentation, which will be described in 
Chapter 28 Alcoholic Fermentation Using Electronic Nose 
and Electronic Tongue of this book.

In Imamura et al. (1996), an electronic tongue system 
based on eight polymeric plasticized membranes was ap-
plied for monitoring of miso (soybean paste) fermentation 
and storage. The response of the sensors was found to be 

FIGURE 22.3 The PLS-DA plot of chemical images of the samples collected during the standard and infected fermentation process (data 
 obtained using hybrid ET). (Reprinted from Kutyła-Olesiuk et al., 2014, with permission from Elsevier.)
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correlated with content of amino acids and with titratable 
acidity, which gives a possibility to assess the ripeness of 
the product. It was also possible to discriminate between 
three different kinds of miso according to their composi-
tion. It is noteworthy that in this research the authors did not 
apply some dimensionality reduction methods (eg, princi-
pal component analysis) and all discussion was done in the 
original data space of eight sensors.

Two types of the electronic tongues have been applied to 
the monitoring of sake fermentation. A potentiometric elec-
tronic tongue was used for the quantification of ethanol and 
titratable acidity in sake mash samples (Arikawa et al., 1996). 
Samples from the brewery fermentation tanks were centri-
fuged before analysis and the measurements were performed 
in supernatants. Individual sensors from the array were able 
to track the growth of the ethanol content through the course 
of fermentation (19 days). A multiple linear regression model 
based on responses of two particular sensors of the array was 
able to predict titratable acidity in sake mash with reasonable 
precision. An array of four surface plasmon resonance sen-
sors with hydrophobic organic Langmuir–Blodget sensitive 
layer was employed for the determination of the sake fermen-
tation time (Nanto et al., 1999). The system was capable of 
distinguishing sake fermented for 5, 14, and 23 days.

The same four sensor system was used to determine 
the fermentation time of vinegar (Nanto et al., 2002). Dis-
crimination of the vinegar samples fermented for 1, 7, and 
14 days was possible.

Fermentation of the starting culture used for cheese 
production was addressed in the study by Esbensen et al. 
(2004). Measurements in samples taken from 5 normal and 
3 abnormal fermentations were performed with a sensor ar-
ray comprising 30 potentiometric sensors with polymeric 
and chalcogenide glass membranes. Using the PLS (pro-
jection on latent structure) regression of the sensors’ re-
sponse against elapsed fermentation time, it was possible to 

produce control charts to judge on the type of analyzed pro-
cess (normal vs. abnormal) at the early stage. The example 
of this chart is given in Fig. 22.4. Since abnormal process 
runs lead to serious economic losses in industry the sug-
gested monitoring approach appears to be very attractive.

The report by Kim et al. (2005) describes the application 
of sensor array composed by eight polymeric membrane 
electrodes to follow the ripening of kimchi, a traditional 
Korean dish made of fermented vegetables. The response of 
the sensors was strongly correlated with titratable acidity, 
which increased during kimchi ripening, consequently, with 
fermentation time (Fig. 22.5).

The report by Kutyła-Olesiuk et al. (2012) describes the 
application of a hybrid multisensor system comprised of 
11 potentiometric microsensors (10 with plasticized PVC 
membranes and one silicon redox sensor) and voltammetric 
microsensor with Au working electrode for monitoring of 
beer fermentation (Ziółkowski et al., 2013). Samples were 
taken from homemade beer fermentation: fermentation re-
action itself and maturation of beer. It was shown that the 
electronic tongue system can follow both the fermentation 
and the aging processes. Prediction of the fermentation 
duration was also possible. The fusion of two types of the 
data (from potentiometric and from voltammetric sensors) 
allowed for improvement of the classification capability of 
the system.

22.6 CONCLUSIONS

Biomimetic sensor systems for liquid analysis, such as 
electronic tongues, represent a novel approach to the ap-
plication of chemical sensors combining a biologically in-
spired architecture with latest achievements in the sensor 
science itself. They possess all the advantages of the chemi-
cal sensors such as rapid measurements, possibility of easy 
automation of the sensor setup, and relatively simple and 

FIGURE 22.4 Predicted absolute fermentation time for three “abnormal”  (32, 33, and 36) fermentation runs and one “normal” (38) run, plot-
ted on the corresponding absolute time control chart. PLS calibration model based on four “normal” batches was used for producing control chart and 
predicting fermentation time for test samples. (Reprinted from Esbensen et al., 2004, with permission from Springer.)
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inexpensive instrumentation. At the same time, the use of 
systems instead of discrete sensors allows dealing success-
fully with such traditional problems of the discrete sensors 
as insufficient selectivity in the multicomponent media.

Electronic tongues offer the possibility to performing 
recognition and classification, and quantification of sev-
eral components simultaneously in the fermentation broths. 
Thus, the electronic tongues can be employed for the pro-
cess follow-up: to measure quantitatively content of some 
components and, at the same time, to assess the state of 
the process and its correspondence to the normal operation 
conditions. Several successful applications of the electronic 
tongues to food fermentation monitoring were reported in 
the literature during the last two decades. However, these 
applications are still confined to the laboratory. Transfer to 
this instrument to the industry is hindered by practical is-
sues arising with sensor use in the multicomponent media 
such as sensors’ contamination and, consequently, drift of 
their characteristics as well as necessity of regular recali-
bration. Evidently, these important practical issues must be 
addressed to make electronic tongues widely applicable to 
the routine fermentation monitoring in industry.
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23.1 INTRODUCTION

Electronic tongues (E-tongues) are novel analytical systems 
based on multisensory devices that develop applications in 
the analysis of samples of complex nature, in the recogni-
tion of their characteristic properties, or in the equivalent 
estimation of human taste perception (Ciosek and Wro-
blewski, 2007; del Valle, 2010; Riul et al., 2010). E-tongues 
have as main advantages their ability to provide comprehen-
sive information of a sample with reduced effort, within a 
few seconds, and simultaneously detecting a large spectrum 
of compounds, all in one step.

Besides the wide variety of applications dealing with 
those reported in different fields (Ciosek and Wroblews-
ki, 2007; del Valle, 2010; Riul et al., 2010), there are two 
key factors that determine the information obtained by 
those; that is, the type of sensors forming the sensor array 
and the chemometric tool used to process the high dimen-
sionality data which is generated. On the one hand, between 
the different families of chemosensors that may form the 
E-tongue, potentiometric, voltammetric, or impedimetric 
sensors are the main variants used (del Valle, 2010), al-
though optical or piezoelectric sensors might also be used. 
Furthermore, one of the recent advances in the design of 
E-tongues has been the incorporation of biosensors into the 
sensor array in order to tackle new application fields or to 
improve the existing ones; this approach has been named 
BioE-tongue (Tønning et al., 2005). Besides, it is even pos-
sible to combine the responses obtained from different sen-
sor families, a strategy known as data fusion (Klein, 2004). 
On the other hand, within the whole range of chemometric 
tools that can be used, we can classify those according to the 
extracted information and the learning machine tool used 
(Richards et al., 2002). Namely, in the former case we will 
distinguish between qualitative and quantitative analysis, 
depending on the type of information that the processing 
tool allows us to extract; whereas in the latter, a distinction 

is made between supervised and unsupervised methods, de-
pending on whether they are trying to find hidden structures 
in unlabeled data or inferring a response model from a prio-
ri known training data. Therefore, methods are categorized 
according to the information provided to the learning tool 
during the processing of the data.

Up to now, one of the major fields of application of 
E-tongues (and electronic noses) has been food and beverage 
analysis (Ciosek and Wroblewski, 2007; Escuder-Gilabert 
and Peris, 2010; Riul et al., 2010). Most of the applications 
described include the identification and classification of 
beverages and food variants, or perceptions of food qual-
ity or variety, even as a means to provide an automated 
equivalent to a sensory panel of human experts (Deisingh 
et al., 2004; Escuder-Gilabert and Peris, 2010; Scampicchio 
et al., 2008).

In this direction, among the different types of samples 
analyzed, special attention has been attracted toward wine 
and its related products (Zeravik et al., 2009). From the 
 analytical point of view, wine is a complex mixture of 
diverse substances which exhibit considerable influence 
on its taste and characteristics. Among their constituents, 
phenolic content is important given their antioxidant prop-
erties (acting as free radical scavengers and inhibitors of 
lipoprotein oxidation (Sánchez-Moreno et al., 1999)) and 
their simultaneous effect in wine organoleptic and sensorial 
properties (Ribéreau-Gayon et al., 2006).

E-tongues have been successfully applied to the analysis 
of wines and musts. On this respect, reported publications 
are aimed mainly to discrimination of samples of different 
varieties/origins (ie, classification tasks) (Gay et al., 2010; 
Gutiérrez et al., 2010a; Riul et al., 2004), to prediction of 
certain chemical properties (eg, total acidity, organic acids, 
ionic composition or phenolic compounds, between oth-
ers) (Gay et al., 2010; Legin et al., 2003) or taste attributes 
in comparison to a sensory panel (Cetó et al., 2015).  
Besides, there are also some interesting works focused 
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on the detection of inappropriate handling practices or 
adulteration processes (Gutiérrez et al., 2010b; Parra 
et al., 2006), the use of alternative aging methods (Gay 
et al., 2010), and the monitoring of alcoholic fermentation 
(Buratti et al., 2011).

Among the different applications reported, this chapter 
will specifically focus on E-tongues usage for the analysis 
of phenolic compounds in wine. This beverage  contains 
a wide variety of phenol-related molecules, which may 
depend on the type of grape, harvest, elaboration, and ag-
ing. On that account, in the next sections we will first 
provide an overview of the more significant contribu-
tions found in the literature, then we will better illustrate 
E-tongues capabilities with selected applications carried 
out in our laboratories devoted to the analysis of phenolic 
compounds in wine.

23.2 EXAMPLES ON THE LITERATURE

Many variants of E-tongues have already been used for the 
detection of phenolic compounds, including the use of sen-
sors of potentiometric (Rudnitskaya et al., 2010a), voltam-
metric (Gutés et al., 2005) and impedimetric nature (Oli-
vati et al., 2009). Moreover, E-tongues have not only been 
applied to wine, but also to beer  (Polshin et al., 2010), oil 
(Apetrei et al., 2010), tea (Papieva et al., 2011), or different 
fruit juices or cocoa (Huang et al., 2014), as well as other 
beverages. However, as previously stated, in this chapter we 
will focus in their applications toward wine samples.

On that account and focusing on the key parameters al-
ready discussed (namely, the type of sensors and the chemo-
metric tool), different types of sensors have been employed 
to tackle phenolic compounds determination. Therefore, 
the sensor array does not represent a limitation by itself, 
although best results have been achieved through the use of 
voltammetric sensors; more specifically, with voltammet-
ric biosensors, an approach known as BioE-tongue (Cetó 
et al., 2012a). However, the use of voltammetric (bio)—
sensors is one of the most complex cases given the more 
elaborated nature of the sensors used and the high dimen-
sionality of the considered signals which hinder its treat-
ment, usually requiring the usage of a preprocessing stage 
(Cetó et al., 2013). This preprocessing, normally a feature 
extraction step, is needed to reduce the complexity of the 
input signal while preserving the relevant information; 
this in addition allows avoiding redundancy in input data, 
reducing training time, and obtaining a model with better 
modeling accuracy, higher robustness plus better general-
ization ability and easier operation and understanding (Cetó 
et al., 2013).

Moreover, we can also distinguish between qualitative 
and quantitative approaches, that is, the ones that address 
the classification or discrimination of samples based on its 
phenolic content, and the ones that focus on the quantita-

tive determination of phenolic compounds. In the latter, we 
might also distinguish between three different scenarios, 
namely, the quantification of total phenolic content in the 
form of a global index, the quantification of total phenolic 
subgroups/families content (eg, tannins and/or anthocya-
nins) and the simultaneous quantification of selected indi-
vidual phenolic compounds.

In this sense, most of the reported E-tongue works 
focus on the determination of total phenolic content (the 
first scenario), concretely toward the prediction of the 
two global indices most commonly employed: the Folin– 
Ciocalteu index (FC) and the UV polyphenol index (I280) 
(Waterhouse, 2001). The first one is a colorimetric assay 
that  measures the amount of phenolics (usually expressed 
as equivalents of gallic acid) needed to inhibit the oxida-
tion of the Folin–Ciocalteu reagent (a mixture of phospho-
molybdate and phosphotungstate, which are reduced to the 
respective oxides). The second index is a direct measure-
ment of the absorbance of the sample at 280 nm, which is 
related to phenolic concentration since all phenolic com-
pounds absorb UV light, and also present some absorbance 
at 280 nm. As said, many examples reporting the corre-
lation with one of those indexes (or both) can be found 
in the literature (Cetó et al., 2012c; Verrelli et al., 2007). 
Although in many cases those works are not limited to total 
phenolics index quantification, but to more complex sce-
narios like the works described later, and just the quanti-
fication of those indexes are a first approach to prove the 
capabilities of the system. Among the analytical methods, 
electroanalytical techniques are of special interest, given 
the antioxidant activity of phenolics is directly related to 
their electrochemical properties.

As for the first type of application, dealing with the clas-
sification of samples, we can find some reports that tackle 
the discrimination of individual phenolic compounds (Gay 
Martín et al., 2012), but also some that relate those to the 
discrimination of different grape varieties (Medina-Plaza 
et al., 2014) or to the bitter (Rudnitskaya et al., 2010a) and 
astringent taste (Puech et al., 2007), in all cases departing 
from phenolics content.

Moving forward to the second scenario, and in be-
tween the total and the individual quantification of spe-
cific phenolic compounds, there are some works focus-
ing in the correlation of E-tongue measurements with the 
quantification of some specific phenolic subgroups. That 
is, phenolic compounds in wine include a large group of 
chemical species: phenolic acids, stilbenoids, flavonols, 
dihydroflavonols, anthocyanins (the red pigments in the 
grapes), flavanol monomers (catechins), and flavanol 
 polymers  (proanthocyanidins), which can be broadly sep-
arated into two main categories: flavonoids and nonfla-
vonoids (Ribéreau-Gayon et al., 2006). Within the more 
important ones, flavonoids include the anthocyanins and 
tannins (relevant in the structure, body and taste of wine); 
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whereas nonflavonoids include the stilbenoids such as 
resveratrol, and phenolic acids such as benzoic, caffeic, 
and cinnamic acids. Hence, applications can be developed 
focusing on the quantification of any of those groups of 
species. In this matter, some interesting works are the ones 
reported by Professor Rodríguez-Méndez’s team, which 
dealt with the correlation with catechins, anthocyanins, 
or tannins content (Gay et al., 2010; Rodriguez-Mendez 
et al., 2014), or also another work in which qualitative dis-
crimination between the tannins subfamily was achieved 
(Puech et al., 2007).

Lastly, in what can be considered the more difficult 
and complex of the discussed approaches, there is the in-
dividual quantification of different phenolic compounds, 
which represents an application comparable to much more 
complex analytical techniques such as high-performance 
liquid chromatography (HPLC). Although being the less 
explored field, and still requiring of some advances to ful-
fill industry requirements, there are very promising works 
that deserve special attention. In this direction, correla-
tion of E-tongues measurements with individual phenolic 
acids such as gallic and caffeic acids has been reported, 
either from wine (Kirsanov et al., 2012) or from its cork 
(Rudnitskaya et al., 2006), but also to a total of 6 different 
compounds from a list of 15 different ones (Rudnitskaya 
et al., 2010b).

At this point it would be interesting to point out that 
E-tongues might be considered an attractive alternative to 
conventional methods, with many advantages over those 
such as low-cost, portability, or fast-response, between 
other interesting characteristics, which might even allow 
to perform on-field measurements, even at the vineyard. 
E-tongues can therefore add an aspect of versatility because 
they can carry out both the determination of total phenolic 
content as well as the individual speciation of either specific 
groups of those or individual compounds. This represents 
an advantage by itself because the same device might al-
low both tasks without the requirement of heavy laboratory 
equipment, while with conventional methods each of those 
might be achieved separately. That is, on one hand, we have 
methods such as Folin–Ciocalteu index, which yields a total 
phenol content value, but does not discriminate between in-
dividual phenols; while on the other hand, we have methods 
such as HPLC or GC (gas chromatography), which allow 
the speciation of phenols, but do not measure the total con-
tent. Even if we are trying to calculate the total content from 
the sum of the individual compounds measured by chro-
matographic methods, the latter appears to be inferior. This 
could be partially explained by the lack of data on phenolic 
compounds in the literature, and also in food composition 
tables, but also by the difficulty to  measure certain pheno-
lics by chromatographic methods and the reactivity of the 
Folin–Ciocalteu assay with nonphenolic reducing com-
pounds, prone to its overestimation.

23.3 VOLTAMMETRIC BIOE-TONGUE

In order to better illustrate the capabilities of E-tongues in 
this field, this chapter will now present some applications 
carried out in our laboratories devoted to the analysis of 
phenolic compounds in wine (Fig. 23.1); steeply going from 
the quantification of total phenolic content to the individual 
identification of certain individual phenolics. Therefore, 
demonstrating that, with an appropriate set of samples and 
training of the system, an E-tongue might be able to provide 
both types of information. Additionally, what is even more 
interesting, not requiring any extra samples measurement 
step, as recorded responses might just be used as input into 
the different built models.

More specifically, in the first example, the quantifica-
tion of total phenolic content in wine samples employing 
a BioE-tongue will be presented, that is, with a sensor 
array formed by voltammetric enzyme-modified biosen-
sors; in a next step, individual discrimination of phenolic 
compounds will be tackled, thanks to the BioE-tongue’s 
superior performance. In this account, qualitative dis-
crimination will be first evaluated, then, in a more com-
plex approach, the quantitative determination of individ-
ual phenolic compounds in ternary mixtures will also be 
described.

23.3.1 Sensor Array

The voltammetric (bio)sensors used were bulk-modified 
graphite-epoxy composites, which is the usual configura-
tion of our laboratories (Céspedes et al., 1996). In this way, 
an array of four (bio)sensors was prepared comprising one 
blank electrode plus three different bulk-modified ones, us-
ing bare graphite C and adding as modifiers enzymes such 
as tyrosinase and laccase, and copper nanoparticles.

In our case, tyrosinase and laccase were chosen as the 
enzymes employed to detect the phenolic compounds. 
These enzymes belong to the class of copper-containing 
oxidases, which catalyze the reduction of molecular oxygen 
by different phenolic electron donors. In those reactions, the 
oxygen is reduced directly to water without the intermediate 
formation of hydrogen peroxide. Similarly, copper nanopar-
ticles were chosen given that both tyrosinase and laccase are 
copper-containing enzymes. Then, it was thought that some 
catalytic effect could be derived from those, a hypothesis 
that was confirmed when observing the sensor’s response 
(Fig. 23.2).

23.3.2 Measurements

Electrochemical experiments were carried out at room 
temperature under quiescent conditions in a multi-
channel configuration, without performing any sample 
pretreatment or physical regeneration of the working elec-
trodes. In this sense, to prevent any accumulative effect 
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of impurities on the working electrode surfaces, an elec-
trochemical cleaning stage was done between each mea-
surement by applying a higher conditioning potential in 
a cell containing distilled water (Cetó et al., 2011). This 
step minimized electrode fouling and recovered the origi-
nal signal (baseline).

23.3.3 Chemometric Analysis

Chemometric analysis was done by specific routines writ-
ten by the authors in MATLAB, using its Neural Network 
Toolbox. Particularly, principal component analysis (PCA) 
was used for qualitative analysis of the results, while quan-
titative analysis was achieved by means of artificial neural 
networks (ANNs).

Furthermore, due to the large dimensionality of the 
generated data, a preprocessing stage for data reduction, 
employing fast Fourier transform (FFT) was also per-
formed (Cetó et al., 2013). The main objective of this step 
is to decrease the dimensionality and complexity of the 
electrochemical signatures while preserving the relevant 
information, what in addition allows to gain advantages 
in training time, to avoid redundancy in input data and 
to obtain a model with better generalization ability (Cetó 
et al., 2013).

23.3.4 Voltammetric Responses

An extract of the typical response profile of the employed 
BioE-tongue array is presented in Fig. 23.2. As expected 
from an array aimed to phenolic compounds detection, 
a clear voltammetric response toward them (with cur-
rents increasing as their concentration increases) can be 
seen (Fig. 23.2a, b), besides still showing a differenti-
ated response toward different individual compounds 
(Fig. 23.2c, d). Moreover, also demonstrating the im-
provement derived from the use of biosensors, as, for ex-
ample, the higher signal attained with those, especially in 
the region close to 0 V.

Therefore, the proposed BioE-tongue generates enough 
rich data that can be a useful departure point for the mul-
tivariate calibration model; that is, obtaining differentiated 
signals for the different electrodes, and with those being re-
lated to the phenomena under study. However, due to the 
complexity of the departure data, a preprocessing step for 
data compression will be required prior to its modeling as 
previously described.

23.3.5 Total Phenolic Content

As for the first attempt, the quantification of total phenolic 
content in wine was undertaken. The reason was to begin 

FIGURE 23.1 Processing scheme of the electronic tongue approach. Samples are measured employing the sensor array, and obtained responses are 
then preprocessed and entered to the chemometric model, which allows the prediction of the desired outputs, either qualitative or quantitative parameters.
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with what might represent the easiest of the discussed sce-
narios, given the lower selectivity requirements; afterwards, 
the complexity of the different studies would be increased 
gradually up to achieving the individual quantification of 
specific phenolic compounds.

In this direction, the set of samples considered for this 
first study was formed by a total of 29 wine samples of dif-
ferent varieties and from different Spanish regions in or-
der to obtain a data set with sufficiently differentiated  total 
 phenolic content, as well as from different harvests and 
grape varieties. Additionally, and for comparison purposes, 
its total phenolic content was assessed spectrophotometri-
cally with the reference method (the more common one), 
namely Folin–Ciocalteu index (Waterhouse, 2001). Hence, 
the goal was the correlation between E-tongue measure-
ments and that index.

The set of samples was then measured with the voltam-
metric BioE-tongue and obtained responses were prepro-
cessed employing FFT, using the obtained coefficients as 
inputs to the ANN model in order to achieve the prediction 
of the total phenolic indexes in wines. First, a significant 
effort was needed to optimize the operation details that 
 determine the ANN configuration; this is a trial-and-error 
process, where several parameters (training algorithms, 
number of hidden layers, transfer functions, etc.) are 
 fine-tuned in order to find the best configuration that opti-
mizes the performance of the model. This optimization pro-
cedure is usually carried out by employing a subset of the 
samples considered, keeping some of them aside to evaluate 
its actual performance. Therefore, this step is important be-
cause this division can lead to biased results, depending on 
the specific subdivision of the data. To this aim, accuracy 

FIGURE 23.2 (a, b) Example of the responses obtained with the BioE-tongue for certain arbitrary wine samples with graphite-epoxy sensor and tyrosi-
nase biosensor, respectively; Folin–Ciocalteu indexes are expressed in equivalents of gallic acid; (c, d) voltammetric responses obtained with the BioE-
tongue for certain phenolic compounds stock solutions with tyrosinase biosensor and copper nanoparticle modified sensor, respectively. (Reprinted from 
Cetó et al., 2012a, with permission from Elsevier.)
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of the generated model was evaluated by employing the re-
peated random subsampling validation method (Molinaro 
et al., 2005), training with 80% of the data (23 samples) and 
testing with the remaining 20% (6 samples). In this way, 
train/test data subdivision was repeated randomly 29 times 
(as many times as samples, similar to k-fold method) in or-
der to ensure that the model’s accuracy is good enough and 
BioE-tongue performance does not depend on the specific 
subsets used. Then, once all responses from all the con-
structed models were obtained, predicted values by each 
model were grouped, depending if they were used in the  
training process or in the testing subset (again, similar to  
k-fold method). Finally, average values for each sample were 
calculated, allowing us to calculate model uncertainties and 
to obtain unbiased average data (Riu and Bro, 2003).

Next, comparison graphs of predicted versus expected 
indexes were built, both for training and testing subsets, to 
check the model prediction ability (Fig. 23.3). As can be ob-
served, a good trend was obtained for the Folin–Ciocalteu 
index, with regression lines almost indistinguishable from 
the theoretical ones and small confidence intervals for each 
of the predictions. Regression parameters were also calcu-
lated, and as expected from the comparison graphs, fitted 
comparison lines were close to the ideal values, with inter-
cepts close to 0 and slopes and correlation coefficients close 
to 1, meaning there were no significant differences between 
expected and calculated index values.

Therefore, these results demonstrated how E-tongues 
can represent an alternative to standard methods that provide 

polyphenol global indexes, with advantages over those such  
as a reduction in analysis time, avoiding sample pretreat-
ment (proper dilution factor), and the use of reagents 
(Folin–Ciocalteu reagent and sodium carbonate). It also al-
lows the simultaneous determination of the global index, as 
well as other indexes such as the I280, the trolox equivalent 
antioxidant capacity (TEAC), or tannins and anthocyanins 
phenolic subfamilies, with proper training of the system 
(Gay et al., 2010).

23.3.6 Individual Discrimination of 
 Phenolic Compounds

Nowadays there is an increasing demand for highly sensi-
tive, selective, and fast-response analytical methods that, 
apart from being able to provide a global index of the total 
phenolic content, are also able to carry out their individual 
determination (Ignat et al., 2011). In this respect, despite 
the huge efforts being carried out in this field, the separa-
tion and quantification of individual phenolic compounds 
remains difficult; particularly the simultaneous determina-
tion of different chemical subgroups.

Fig. 23.4 shows the majority of phenolic compounds 
present in wine. Phenolics in wine originate from ben-
zoic acid (gallic acid), cinammic acid (caffeic and fe-
rulic acids), stilbenes, flavonols (quercetin) and flava-
nols (catechin), as well as some other condensed forms 
(Ribéreau-Gayon et al., 2006). Given that wine is a signifi-
cant source of polyphenols in the diet, the characterization 

FIGURE 23.3 Modeling ability of the optimized FFT–ANN. Sets adjustments of expected versus obtained Folin–Ciocalteu indexes for (a) training 
and (b) testing subsets, respectively. The dashed line corresponds to the theoretical diagonal line. Results provided correspond to the average of the values 
obtained for each sample after 29 repeated calculations, done with random division of samples for train/test subsets each time. Uncertainties calculated at 
the 95% confidence level. (Reprinted from Cetó et al., 2012a, with permission from Elsevier.)
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and determination of phenolic compounds in wine is an 
important concern in this field. Phenolic compounds in 
wine can reach values of 4 g/L in the heaviest red wines 
(Frankel et al., 1995), and have been claimed, especially 
thanks to their antioxidant properties, to have beneficial 
properties of protecting low-density lipoprotein (LDL) 
levels more effectively than other antioxidants, such as 
alfa-tocopherol, and then being more effective protec-
tive agents against arteriosclerosis (Sánchez-Moreno 
et al., 1999). Other phenolic compounds existing in wine, 
for example, quercetin or resveratrol, have been claimed 
to display anticancer effects (Angst et al., 2013). Pheno-
lic compounds are also important for their organoleptic 
properties, giving astringency, odor, and savor to wine 
(Ribéreau-Gayon et al., 2006); they are similarly impor-
tant in exactly this role for many other vegetal food prod-
ucts (like olive oil, tea, coffee, or other fruit products).

Thus, the beverage industry may find important advan-
tages if fast, easy methods are available for polyphenol 
characterization. In this direction, the next examples will 
attempt the individual discrimination of different pheno-
lics; first, through the qualitative analysis of different wine-
spiked samples with different individual compounds as a 
first approach to evaluate the capabilities of the BioE-tongue 

in such task, and second toward the simultaneous determi-
nation of ternary mixtures of majority species.

23.3.6.1 Qualitative Discrimination
Prior to proceeding to the quantification of the phenolics 
mixtures, we need to confirm that differentiated responses 
have been obtained for the different compounds and that the 
wine matrix does not represent a problem by itself, hence 
generating enough rich data that can be a useful departure 
point for the multivariate calibration model.

To confirm this differentiated behavior and to assess 
the ability of the BioE-tongue to discriminate between 
them, a first qualitative attempt was carried out by ana-
lyzing some spiked wine samples with a small quantity  
(ca. 36 mg/L) of typical phenolics normally present in the 
samples; concretely, considered compounds were: gallic 
acid, (±)-catechin, p-coumaric acid, caffeic acid, catechol, 
phenol, m-cresol, ferulic acid, chlorogenic acid, and querce-
tin (Fig. 23.4). Besides, raw wine (nonspiked) and replicat-
ed samples were considered and analyzed randomly to be 
sure that (dis)similarities observed in the PCA plot are not a 
consequence of the order in which samples were analyzed.

Hence, a total set of 55 samples distributed in 11 classes 
were analyzed with the BioE-tongue array, and obtained 

FIGURE 23.4 Structure of some phenolic compounds present in wine. (a) Gallic acid, (b) catechin, (c) p-coumaric acid, (d) caffeic acid, (e) catechol, 
(f) phenol, (g) m-cresol, (h) ferulic acid, (i) chlorogenic acid, and (j) quercetin.
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responses were processed by means of FFT for its compres-
sion and PCA to obtain a better visualization of the data 
variability and check if the samples group together accord-
ing to the spiked phenolic compound.

The PCA score plot is shown in Fig. 23.5, where the 
obtained patterns evidence that samples are grouped ac-
cording to the spiked phenolic compound, with clusters that 
clearly separate all the samples. The accumulated explained 
variance with the three first PCs was ca. 99.2%, a huge val-
ue that guarantees that almost all the variance contained in 
the original data is now represented with these new three 
variables.

Analyzing the plot more deeply it can be seen how wine 
appears in the central position, from which spiked samples 
group around. On the right side (with negative values for 
PC1), we find the major phenolics found in wine (clus-

ters I–IV); while on the other side (with positive values for 
PC1), and closer to each other, we find the remaining stud-
ied compounds, which are usually less abundant. Besides, 
it should also be taken into account that the position of the 
clusters will also be highly related to the different affinity of 
the enzymes toward each of the compounds.

23.3.6.2 Quantitative Mixtures Resolution
Given the trend observed in the previous study case, the 
next step was to move from qualitative to quantitative dis-
crimination; that is, to achieve the individual determination 
of each of the phenolics in their mixtures. Concretely, in 
this case, toward the simultaneous determination of caf-
feic acid, catechol, and catechin mixtures because these 
are three of the major phenolic compounds found in wine 
(Ribéreau-Gayon et al., 2006).

To this aim, BioE-tongue performance was first evalu-
ated for a set of 27 manually prepared standards based on a 
33 cubic design used to establish the response model (train-
ing subset) (Cetó et al., 2012b), plus 10 additional samples 
distributed randomly among it and used to evaluate its per-
formance (testing subset), that is, a total set of 37 samples. 
Using this set of samples, the ANN model was adjusted, 
and comparison graphs of predicted versus expected con-
centrations for each of the three phenols were built to evalu-
ate its modeling and prediction capabilities (Fig. 23.6). 
Then, regression parameters were also calculated, and as 
expected from the comparison graphs, a good linear trend 
was  attained for all the cases, with results obtained for both 
subsets close to the ideal values, that is, with slopes and 
correlation coefficients close to 1 and intercepts close to 0, 
with all of them included in the confidence intervals.

Once that the BioE-tongue performance for the resolu-
tion of phenolics mixtures was proven using standards, and 
in order to test its applicability to real samples, some wine 
samples were again spiked with variable amounts of the 

FIGURE 23.6 Modeling ability of the optimized FFT-ANN for (, solid line) the training subset, (○, dotted line) the test subset, and (◊, short-dashed 
line) the wine samples. Set adjustments of obtained versus expected concentrations for caffeic acid, catechol, and (±)-catechin (left to right). The dashed 
line corresponds to theoretical diagonal line, and error bars correspond to five different retrainings with random reinitialization of weights. (Adapted from 
Cetó et al., 2012b, with permission from the Royal Society of Chemistry.)

FIGURE 23.5 Score plot of the first three components obtained after 
PCA analysis of the spiked wine samples corresponding to: (0) wine, (I) 
gallic acid, (II) (±)-catechin, (III) p-coumaric acid, (IV) caffeic acid, (V) 
catechol, (VI) phenol, (VII) m-cresol, (VIII) ferulic acid, (IX) chlorogenic 
acid, and (X) quercetin.
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three phenolics considered. Employing the same ANN ar-
chitecture with the leave-one-out cross-validation method, 
forced by the reduced number of samples and to ensure that 
each sample in the set is used in the validation step, the sys-
tem was retrained. Then, prediction capability of the ANN 
model for wine samples was evaluated. As before, compari-
son graphs of predicted versus expected concentrations for 
the three determined phenols were built (Fig. 23.6); again, 
obtaining a good trend for the three phenolics, with regres-
sion lines almost indistinguishable from the theoretical ones.

23.4 CONCLUSIONS

Electronic tongues have been proven to be a promising tool 
for the analysis of phenolic compounds, either for the de-
termination of its total content or for the speciation of indi-
vidual compounds or groups of compounds, thus, provid-
ing a fast-response and low-cost method for blind samples 
characterization, and really suitable as a screening method 
for quality control.

Besides representing an attractive alternative to conven-
tional methods, with many advantages over those such as its 
low-cost, portability, or fast-responses, between others. One 
of the main benefits of E-tongues lies in their ability to carry 
out both the determination of total phenolic content as well as 
the individual speciation of either specific groups of those or 
individual compounds. Therefore, this represents an advan-
tage because the same device might allow both tasks without 
requiring heavy laboratory equipment, whereas with conven-
tional methods each task might be achieved separately.

In this fashion, E-tongues represent a response to the 
demand of new analytical methods with high sensitivity, 
good selectivity, and fast response needed to meet new chal-
lenges in food analysis. In addition, E-tongues have become 
a technique extremely simple in operation, able to easily 
overcome limitations found with classical approaches in 
sensor research, allowing its usage without any sample pre-
treatment and thus representing an interesting alternative to 
more sophisticated methods as with the chromatographies.
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24.1 INTRODUCTION

The exotic aroma and refreshing taste of tea makes it one 
of the most consumed beverages in the world. The taste and 
aroma quality of tea is the result of subtle and multidimen-
sional contribution of innumerable chemical constituents 
present in the tea. While the volatile compounds define the 
quality of aroma, the nonvolatile compounds determine the 
taste and cup character of tea liquor. It is known that nearly 
700 volatile compounds constitute the tea aroma and large 
numbers of nonvolatile compounds are responsible for taste 
formation in tea liquor (Wood and Roberts, 1964).

Regarding the taste of tea liquor, the most important 
group of compounds present in green tea leaves are poly-
phenols. These are bioactive compounds with diverse bio-
logical properties as they act as antifeedants, antioxidants, 
phytoalexins, attractants for pollinators, contributors to 
plant pigmentation, and protective agents against UV light. 
These compounds possess one or more aromatic rings bear-
ing single or multiple hydroxyl groups and possess wide 
structural variations ranging from that of a simple phenolic 
molecule to those of complex high molecular mass poly-
mers (Balasundram et al., 2006). Polyphenols are divided 
into several classes according to the number of phenol rings 
that they contain and the structural elements that bind these 
rings to one another. The main groups of polyphenols are: 
flavonoids, phenolic acids, tannins, stilbenes, and lignans. 
Flavonoids are the most widely found phytochemical with 
strong antioxidant and antistress properties. They are found 
to be beneficial for human health. The flavonoids may be 
structurally classified into flavonols, flavones, flavanones, 
flavanols (or catechins), isoflavones, flavanonols, and an-
thocyanidins. The polyphenols constitute 25–30% of a 
fresh tea shoot and are known to produce a pungent astrin-
gent taste in tea liquor. The most important polyphenols 

present in tea leaves leading to the formation of taste com-
pounds in tea are flavan-3-ols (Obanda et al., 2001; Owuor 
et al., 2006), namely,

1. catechin (C)
2. epicatechin (EC)
3. epigallocatechin (EGC)
4. epicatechin-3-gallate (ECG)
5. epigallocatechin-3-gallate (EGCG)

These compounds differ in their chemical structure, 
electrochemical behavior, and astringency contribution in 
tea liquor. They can be categorized according to the hy-
droxyl groups on the B-ring (C, EC, and ECG are dihydrox-
ilated, while EGC and EGCG have trihydroxilated B-ring) 
or as gallated or nongallated catechins (C, EC, and EGC are 
nongallated, while ECG and EGCG are gallated). However, 
the simple, nongallated tea catechins EC, EGC, and C are 
not as astringent as the gallated catechins ECG and EGCG.

The objective of tea processing steps is to initiate essen-
tial chemical reactions at every stage of processing so that 
the polyphenols in green tea leaves are maximally trans-
formed to desirable taste inducing compounds. The mois-
ture induced stress on tea leaves during withering activates 
principal oxidative enzymes like the polyphenol oxidase 
(PPO) and peroxidase (PO). The conditions for the most 
important chemical reactions are set up during this stage. 
The catechins are localized in the vacuoles of plant cells, 
while the oxidative enzymes are associated with the chlo-
roplasts. During the leaf maceration stage, the catechins 
come in contact with the oxidizing enzymes. The oxidative 
transformations of catechins start immediately from this 
step and gain momentum during the fermentation stage. 
The primary oxidation pathway involves the transformation 
of the phenolic substances to quinones. The quinones are 
again converted (condensation and polymerization) into a 
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group of compounds called the theaflavins (TF) and thearu-
bigins (TR). The low molecular weight variants (fractions) 
of TF and TR are initially produced and are converted into 
high molecular weight variants as the fermentation process 
is prolonged. TR is also converted from TF at the later part 
of fermentation. TF and TR are the characteristic pigments 
with dominant taste contributory properties and are pro-
duced during processing. In other words, these compounds 
are responsible for imparting color and taste to tea. The 
schematic of reaction pathways for the formation of TF and 
TR from catechins during the oxidation (fermentation pro-
cess) of tea manufacture is presented in Fig. 24.1.

TFs are low molecular weight compounds and golden 
yellow in color, while TRs are high molecular weight com-
pounds and orange brown in color. These pigments are re-
sponsible for taste, strength, brightness, and color of black 
tea. It is known that TF and TR are the most important 
chemical compounds in tea liquor since the taste attributes 
like “briskness” and “strength” are mainly contributed by 
these two classes of compounds (Roberts, 1962). A signifi-
cant relationship has been established between TF content 
and the price of tea (Roberts, 1958, 1962; Hilton and El-
lis, 1972).

The quality of crush-tear-curl (CTC) type of tea is de-
termined by the taste and color of its infusion. In this light, 
the presence of TF and TR directly influences the quality 
of CTC tea.

The presence of TF contributes to astringency and 
brightness of tea liquor, whereas the presence of TR is 
known to increase mostly the ashy taste with a slight im-
provement in astringency and reduction in brightness. TF 
constitute about 0.5–2% of dry weight depending on the 
processing parameters of tea, while TR constitute about 
6–18% of dry weight. TF imparts briskness and brightness, 
while TR contributes to the mouth feel (thickness) and color 
of the tea (Biswas et al., 1973; Obanda et al., 2004). It may 
be noted that TR has an ashy taste and is only slightly as-
tringent, while TF is astringent enough to affect the overall 
astringency of liquor and contribute to differences among 

quality of various clones. In other words, the taste thresh-
old of TF is much lower than that of TR and polyphenols 
(Scharbert et al., 2004b). Spectrophotometric and human 
sensory panel studies suggest that TF content correlates 
positively with liquor brightness. The TR content, however, 
is found to relate negatively with liquor brightness (Roberts 
and Smith, 1963; Ngure et al., 2009). Although the concen-
trations of other chemicals like caffeine and amino acids 
also contribute to the quality of finished tea, the concen-
trations of TF and TR have much greater influence on the 
desirable qualities such as brightness, briskness, depth of 
color, strength, mouth feel, and overall quality of finished 
tea (Roberts, 1958, 1962; Biswas et al., 1971; Ramaswa-
my, 1962; Hazarika et al., 2002). The optimum taste percep-
tion of tea liquor is the result of delicate and subtle contribu-
tion of the previously mentioned biochemical components. 
As an example, high concentrations of polyphenols or TR 
deteriorate the taste of tea liquor. The TFs are the most im-
portant compounds that directly affect the taste of tea liquor 
in a positive manner.

It may thus be understood that the tea biochemicals like 
TF and TR have a very distinct effect on the palate of tea 
liquor and the estimation of their concentrations will give a 
consistent idea about the quality of CTC tea. It is therefore 
imperative to explore rapid quantification of those com-
pounds using an electronic tongue (e-tongue), considering 
the fact that it has been previously used to analyze the tea 
samples.

24.2 ELECTRONIC TONGUE FOR TEA:  
THE CURRENT STATE OF ART

An electronic tongue is a biologically inspired sensory-
electrical system in which the responses from electrodes 
with overlapping selectivities are recorded and interpreted 
using intelligent multivariate statistical models. The sample 
analytes from natural sources are typically characterized 
by a complex chemical matrix of innumerable compounds. 
In general, a large number of electrochemical sensors are 

FIGURE 24.1 Biochemical reactions during black tea fermentation process. EGC, Epigalocatechin; EC, epicatechin; ECQ, epigalocatechin- 
quinones; EGCQ, epicatechin gallate-quinones; TF, theaflavins; TF1, intermediate theaflavins; TR, thearubigins; and R1–R6, reaction serial numbers.
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available for specific detection of various chemicals. How-
ever, the feasibility of using such specific electrodes for 
each type of compound is severely limited by the sheer 
number of chemicals that constitute the analytes from natu-
ral sources (eg, tea). Under such situations, the electrodes 
with overlapping selectivity yield information about most 
of the compounds but with different levels of sensitivities. 
The multivariate statistical methods are employed to extract 
the desired quantity of interest from the electrical signatures 
obtained from the electrodes.

Until now, various types of e-tongues had been proposed 
for tea applications, with the operating principles encom-
passing potentiometry, voltammetry, amperometry, impe-
dometry, and fluorometry. Initially, Ivarsson et al. (2001) 
proposed a voltammetric e-tongue made of three noble metal 
wire electrodes for the discrimination of various food sam-
ples, including nine different types of tea samples. Ivarsson 
and coworkers investigated different types of control wave-
forms for probing the tea extracts used as an electrolyte and 
resorted to the multivariate statistical method of principal 
component analysis (PCA) for illustrating that the response 
of e-tongue was different for each type of tea sample. Lvo-
va et al. (2003) then used a potentiometric e-tongue system 
consisting of a solid-state disposable polymeric membrane 
based on carbon paste electrodes for classification of three 
different varieties of Korean green teas. The estimation of 
major tea compounds such as caffeine, tannic acid, sugars, 
l-arginine, theanine, and glutamic acid in real tea samples 
had been made possible using such a potentiometric sen-
sor array. Subsequently, an amperometric e-tongue with 
noble metal working electrodes made into a flow-through 
sample-cell arrangement was used to differentiate among 
four varieties of tea; namely, two types of green tea, black, 
and oolong tea (Scampicchio et al., 2006). A mathematical 
model was developed from the e-tongue response and sen-
sory analysis to predict the astringency of those tea samples. 
A potentiometric taste sensor array based on gate modified 
field effect transistors were used for estimation of caffeine 
and catechins in green tea (Chen et al., 2010). Good de-
tection accuracies were obtained with multivariate calibra-
tion models. A novel e-tongue based on the principles of 
electrochemical impedometry was proposed by Bhondekar 
et al. (2010) for tea liquor. It was shown that by using such 
a system, chemical characterization of tea liquor is feasible 
in terms of various operating frequencies and the type of 
working electrodes. An e-tongue based on the principle of 
fluorometry has been proposed (Chang et al. 2010). The 
sample solutions were irradiated by UV light and the result-
ing intensity of fluorescence was detected to determine the 
concentration of tea amino acid and tannins for subsequent 
taste assessment of umami and astringency of real tea sam-
ples. However, the quality prediction of tea infusion using 
an e-tongue was first proposed by Palit et al. (2010a). The 
instrument was calibrated in terms of the human generated 

quality scores from 1 to 10 and it was used to classify differ-
ent grades of tea based on the taste of tea infusion.

24.3 OBJECTIVES AND PHILOSOPHY

The objective of this chapter is to describe the application 
of a voltammetric e-tongue for the estimation of important 
biochemicals that affect the taste quality of black CTC tea. 
The two groups of compounds selected for our study are TF 
and TR. The quantification of TF fractions have also been 
explored because these are better quality indicators of tea. 
The significance of the work described in this chapter may 
be supported by the fact that the reference quality scores 
used for calibration of e-tongue data models in the previ-
ous work (Palit et al., 2010a) contained the uncertainties 
of human perceptions. It is therefore imperative to describe 
the quality of tea by e-tongue in terms of the concentra-
tion of TF and TR. The analysis steps leading to the de-
tection method discussed shall also justify the applicability 
of e-tongue for quality estimation of tea samples in terms 
of chemical parameters that convey a better and consistent 
idea about quality. The sections that follow describe the  
e-tongue setup, and two case studies that illustrate the fea-
sibility of e-tongue for this topic. Case study I discusses the 
estimation of total TF and TR in tea liquor with reference 
values determined by a UV-visible spectrophotometer. Case 
study II describes the estimation of four TF fractions along 
with total TF (calculated as the sum of all TF fractions pres-
ent in tea liquor), where the reference values have been de-
termined using high-performance liquid chromatography 
(HPLC).

24.4 THE VOLTAMMETRIC ELECTRONIC 
TONGUE SETUP

Fig. 24.2 describes various components of a voltammetric 
electronic tongue used in this study. The three major com-
ponents of this e-tongue system are:

1. an electrode array acting as a transducer for sensing the 
chemicals in test sample

2. the hardware interface module cum measurement circuit
3. the software module residing in a personal computer

A working electrode array of five different noble met-
als—gold, iridium, palladium, platinum, and rhodium—was 
used in this study. The electrodes were circularly arranged 
around the reference electrode with a radius of 12 mm. This 
was done to reduce the effect of solution resistance as com-
pared to the currents due to redox reactions on the total cur-
rent response. A stainless steel counter electrode along with 
an Ag/AgCl reference electrode (saturated KCL, Gamry 
Instruments Inc., USA) was used.

A multielectrode potentiostat based on the three elec-
trode principle was developed for applications with tea 
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samples. The pulse parameters (ie, pulse amplitude se-
quence and pulse width), and the circuit parameters (ie, 
gain and time constant of input filters) were systematically 
optimized after extensive experiments with tea samples.

The responsibility of the software module is the execu-
tion of sequence control steps for operating the hardware 
interface module and recording their measurements. The 
software module also performs the processing, presenta-
tion, and analysis of the measured data. The hardware in-
terface module generates the control voltages specified by 
the software module, routes these voltage sequences to the 
electrochemical cell, and also measures the resulting elec-
trical response from the electrodes. The data acquisition 
system performs the necessary analog to digital conversions 
and vice versa. It also generates the control voltages, while 
the associated electronic circuitry applies these voltages to 
the electrodes after necessary processing. The electrical re-
sponse from the electrode array are processed and measured 
by the analog circuits and subsequently digitized by the data 
acquisition system before being forwarded to the software 
module for data analysis purposes.

24.5 CASE STUDY I: ESTIMATION OF 
TOTAL THEAFLAVINS AND THEARUBIGINS 
IN BLACK TEA (GHOSH ET AL., 2012)

The experiment started with the procurement of 46 differ-
ent tea samples over 2 seasons (Apr.–May and Sep.–Oct.). 
The TF and TR contents of the samples were analytically 
determined using a UV–Vis spectrophotometer and the 
same samples were presented to the e-tongue for collection 

of electronic responses. The experimental steps are sum-
marized in Fig. 24.3.

The tea liquor samples for collecting the response of  
e-tongue was prepared by boiling 200 mL of deionized water  
poured over 1 g of dry tea. The solution was allowed to brew 
for 10 min, after which it was stirred well to uniformly mix 
the extract with water. The samples were then presented to 
the e-tongue at room temperature. The potentiostat section 
of the e-tongue generated a large amplitude pulse waveform 
varying from +0.8 to −0.2 V in small user-defined steps of 
100 mV that was applied to sample through the working 
electrodes connected one at a time. The working electrodes 
were selected sequentially by a switching circuit. The volt-
age equivalent of output current from the test sample was 
applied to the data acquisition card, where it was collect-
ed and stored for data analysis. At room temperature, 38 
responses were recorded for each of the 46 tea samples. 
Thus, a data matrix of size 3470 × 1748 was obtained for 
data analysis. The complete large amplitude pulse voltam-
metric (LAPV) response waveform thus consisted of 3470 
(694 × 5 = 3470) data points.

The raw data set needs preprocessing for condens-
ing the information content in terms of fewer data points 
and suitable conditioning of data for enhancing the per-
formance of data analysis procedures. The preprocessing 
stages followed were mean-centering of each waveform 
and feature extraction using the sixth level wavelet trans-
form with Haar as the mother wavelet (Palit et al., 2010b) 
to obtain 55 transformed variables. The data set after fea-
ture extraction became 55 × 1748. PCA score plots pre-
sented in Fig. 24.4  indicates clustering tendencies among 

FIGURE 24.2 The working schematic of the electronic tongue and the component modules.
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the samples responses with similar TF and TR values. The 
colors of markers indicate the observations corresponding 
to tea samples with the concentration of TF/TR within a 
specified range as presented in the plot legend.

The first two principal component directions, PC1 and 
PC2, cumulatively contribute 93% variance, while that for 
TR has been found to be 95.8%. It may be deduced from the 
PCA plots that there is a complex and nonlinear interaction 
between the e-tongue response and the TF, TR content. The 
use of nonlinear, powerful and efficient models is essential 
not only to differentiate among the clusters but also to develop 
a regression model from these localized distributions of data.

In order to develop the prediction models, three data 
modeling techniques were implemented using partial least 
squares regression (PLSR) (Wold et al., 2001), support vec-
tor regression (SVR) (Haykin, 2001), and back-propagation 
neural networks (BPNN) (Haykin, 2001) with two types of 
weight optimization algorithms, gradient descent and back 
propagation neural network (GD-BPNN) and scaled conju-
gate gradient (SCG-BPNN) (Moller, 1993). A large number 
of parameter optimization steps for all the data modeling 
techniques over repeated independent trials revealed that 
a three layer BPNN trained by a SCG-BPNN algorithm 
produced best results. In order to evaluate the efficacy of 

FIGURE 24.3 The steps for the prediction of TF and TR.
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developed models, the following performance parameters 
were calculated during the testing phase of model develop-
ment:

1. CF: correlation factor between predicted and actual  value
2. WPA: worst prediction accuracy
3. MPA: mean prediction accuracy
4. MSEP: mean square error for prediction
5. SDPE: standard deviation for prediction error

The results obtained with best models developed using 
SCG-BPNN for TF and TR are presented in Table 24.1.

It may be stated at this point that the SCG algorithm 
was chosen as it was reported to be effective for large 
scale optimization (Moller, 1993) as result of which it de-
velops more efficient and accurate architectures. It may 
be observed that the prediction model developed for TF 
produced a correlation factor of 0.98 along with minimum 
and mean accuracy of 78.72 and 96.5%, respectively with 
respect to the spectrophotometric estimations. Regarding 
the development of prediction model for TR, the minimum 
and mean accuracy was found to be 87.99 and 97.93%, 
respectively. The developed model produced better map-
pings with correlation factors of 0.98 and 0.97 for TF and 
TR, respectively.

The above results indicate that a voltammetric e-tongue 
could be applied to determine the approximate TF and TR 
content in tea. However further researches are required to 
identify and predict the concentrations of other biochemi-
cal compounds affecting the quality of tea, improve the 
separation among responses by optimizing the selection 
of electrodes and modify the experimental procedures for 
optimization of experimental conditions for better sensing 
performance.

24.6 CASE STUDY II: ESTIMATION 
OF THEAFLAVIN FRACTIONS FROM 
ELECTRONIC TONGUE RESPONSE

In some cases total TF levels do not correlate with the sen-
sory analysis. This has led to the research regarding the TF 
fractions. It was found that the TF fractions correlate with 
sensory analysis better than total TF. The TF composition 
of black tea is dominated by four fractions:

1. simple theaflavin (TF)
2. theaflavin-3-gallate (TF-3-g)
3. theaflavin-39-gallate (TF-39-g)
4. theaflavin-3,39-digallate (TF-3,39-dg)

TABLE 24.1 Prediction Results of TF and TR by Voltammetric Electronic Tongue

Target Architecture CF WPA (%) MPA (%) MSEP SDPE R2

TF 55-55-1 0.98 78.72 96.50 0.005 0.07 0.96

TR 55-45-1 0.97 87.99 97.93 0.17 0.41 0.94

FIGURE 24.4 Plots of electronic tongue responses showing clusters with values of (a) TF and (b) TR.
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These TF fractions are produced due to the oxidative 
dimerization of simple (dihydroxilated) catechins and gallo 
(trihydroxilated) catechins as shown in Eqs. (24.1)–(24.4):

+ →EC EGC TF (24.1)

+ →EC EGCG TF- 3 - g (24.2)

+ →ECG EGC TF- 3 - g' (24.3)

+ →ECG EGCG TF- 3,3 - dg' (24.4)

The galloyation of TF affect the astringency taste of 
the molecules in increasing order. Thus, the TF digallates 
containing two gallate groups are most astringent followed 
by TF monogallates and simple TF. It was found that the 
astringency ratio of TF-3,39-dg:TF-3-g:TF-39-g:TF is 
6.4:2.22:2.22:1 (Owuor et al., 2006). But the astringency 
contributions of individual TF do not contribute in terms of 
their micro-molecular amounts but according to the ratio of 
their total activity values (TAV) (Scharbert et al., 2004b). 
The TAV is defined as the quotient of the actual concen-
tration in tea and the human taste detection thresholds in 
water. The TAV figure thus correlates more aptly with the 
sensory analysis. The estimation of the TF fractions are also 
important, considering the fact that the relative amounts of 
these fractions vary according to geography (McDowell 
et al., 1991). For example, in Kenyan black tea the amount 
of simple TF > TF-3-g > TF-3,39-dg > TF-39-g (Owuor 
and Obanda, 1995). On the other hand, Assam black tea 
produces highest amount of TF-3,39-dg, while simple TF 
is produced in a highest amount in Ceylon tea (Scharbert 
et al., 2004a). Estimation of TF fractions may thus explain 
the disparity between sensory and biochemical analysis 
leading to the development of a general metric regarding 
tea quality encompassing geographical variations.

The objective of this section is to investigate the effect 
of these fractions on the e-tongue response and whether a 
voltammetric e-tongue can be used to estimate the concen-
tration of TF fractions.

As a part of experimental procedure, total 40 tea sam-
ples were collected over 2 seasons (Oct.–Nov. 2013). The 
concentrations of four TF fractions present in these tea 

samples [simple TF, TF-3-g, TF-39-g, TF-3,39-dg, and total 
TF (sum of estimated fractions)] were determined in milli-
gram per gram (dry weight) using HPLC analysis following 
a standard method (Sabhapondit et al., 2014) and the same 
samples were presented to the e-tongue for the development 
of calibration models.

The tea liquor samples for e-tongue were prepared by 
boiling 150 mL of ultrapure water poured over 0.9 g of 
dry tea. The solution was allowed to brew for 10 min, af-
ter which it was stirred well to uniformly mix the extract 
with water. The samples were filtered using nonabsorbant 
cotton and allowed to cool down to room temperature. The 
potentiostat section of the previously mentioned e-tongue 
was used to apply a large amplitude pulse waveform vary-
ing from −0.9 to +0.9 V in small user-defined steps of 0.1 
V to the sample through one working electrode at a time. 
Then 1488 data points were collected at the sampling rate of 
1 KHz from each of the five electrodes. The complete large 
amplitude pulse voltammetric (LAPV) response waveform 
thus consisted of 7400 (1480 × 5 = 7400) data points. 
Twenty-five replicated responses were recorded for each of 
the 40 tea samples. Thus, a data matrix of size 7400 × 1000 
was obtained for data analysis. In order to perform the fea-
ture extraction step, the following features were selected 
from each pulse response segment:

1. the current value at the onset of the response pulse
2. current value at the end of the response pulse
3. the time constant of pulse roll-off from initial to final 

current value

Thus, from the whole response spanning 7400 sample 
points, only 540 data points were obtained.

In this study, the calibration models were developed us-
ing PLSR method. The model performance was tested using 
the leave-one-out cross-validation (LOOCV) method where 
the parameter value of an unknown sample was obtained 
from the PLSR model calibrated by the parameter values of 
the remaining 39 samples. Five different models were de-
veloped corresponding to four TF fractions and a total TF. 
The optimum number of PLS components were determined 
by repeated trials. The results of LOOCV are summarized 
in Table 24.2.

EC+EGC→TF

EC+EGCG→TF-3-g

ECG+EGC→TF-3'-g

ECG+EGCG→TF-3,3'-dg

TABLE 24.2 Summary of LOOCV Results for Prediction of TF Fractions Over 40 Tea Samples Using a Voltammetric 
 Electronic Tongue

Biochemical Parameters Average Accuracy Over 40 Samples (%) Optimum Number of PLS Components

Simple TF 87.08 6

TF-3-g 84.02 26

TF-39-g 90.96 22

TF-3,39-dg 91.77 22

Total TF 90.12 24
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It may be observed that the average accuracy of predic-
tion is above 85% except for TF-3-g, which is 84%. The 
most notable results have been obtained nearly at 92% for 
TF-3,39-dg. This result is significant, considering the fact 
that TF digallates are most abundant in Assam CTC tea, 
followed by TF-39-monogallates. The prediction accuracy 
concerning simple TF is also encouraging, considering the 
fact that Darjeeling, Ceylon, and Kenyan tea have greater 
amounts of simple TF followed by TF-monogallates. It may 
thus be expected that e-tongue responses may be influenced 
by the TF digallates and its higher contribution in overall 
astringency. This experiment again proves that total TF is 
quantifiable by an e-tongue even at the sample level cross-
validation procedure.

24.7 CONCLUSIONS

In this chapter, a voltammetric electronic tongue based on 
an array of noble metal electrodes has been described for 
the detection of quality affecting biochemicals in black tea. 
Two groups of compounds— the TF and the TR—contrib-
ute significantly to the taste and appearance of the tea liquor 
and the e-tongue described here has been shown to detect 
not only the amount of these two groups of compounds but 
also their fractions using suitable data processing steps. To 
validate this point, the experiments were carried out in two 
steps. First, the response of the e-tongue was correlated 
with the spectrophotometer where total TF and TR concen-
trations were determined. The prediction models were de-
veloped with neural networks from the e-tongue response. 
It may be observed that the predictions of the developed 
data models agree with the spectrophotometric estimations 
at accuracy of over 95%. In the second part, the response 
of e-tongue was correlated with the HPLC instrument. The 
HPLC instrument was used to determine the concentrations 
of four TF fractions. The data model developed from the 
e-tongue response again agreed with the actual estimations 
by 90% accuracy. Interestingly, the best accuracy has been 
obtained for the prediction of TF digallate and TF monogal-
late indicating the dominant effect of astringent compounds 
in the modeling performance. The results positively imply 
the feasibility of applying the described methodology using 
even a noble metal electrode array for the stated purpose. 
Further research may be carried out toward the develop-
ment of customized electrodes sensitive to the target com-
pounds in order to improve the modeling performances, 
propeling the electronic tongue technology toward cheap, 
objective, consistent, and rapid quality analysis of black tea.
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Electronic Tongues
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25.1 INTRODUCTION

25.1.1 Taste Sensing in Nature

Gustation and olfaction are the natural senses used to clas-
sify the chemical composition changes in the environment 
of living organisms, which might be vital information about 
the danger or the quality of food. The capabilities of these 
analytical systems has been therefore important to the evo-
lution of life on Earth. Both the sensations of smell and of 
taste deal with a hard analytical task: to distinguish an enor-
mous variety of chemicals. The goal to classify a large num-
ber of different odorants or taste molecules with relatively 
few sensitive elements has been brilliantly accomplished by 
the integration of receptors with broad overlapping speci-
ficities, and successive signal processing by pattern rec-
ognition in the brain, yielding very broad quantitative and 
qualitative analytical information.

Optimized by evolution, the gustation system of most 
living organisms can identify chemical compounds (taste 
molecules) of diverse molecular structures with high sensi-
tivity and accuracy. The taste buds are found in thousands 
on the human tongue with a few on the soft palate, the 
inner surface of the cheek, pharynx, and epiglottis of the 
larynx (Deisingh et al., 2004). A single taste bud contains 
up to 100 taste cells, responsible for all 5 basic taste sensa-
tions, that is, sweet, sour, bitter, salty, and umami (savory 
or glutamate), containing the corresponding receptors. 
The reversible binding of taste molecules to receptors at 
the taste cells (Adler et al., 2000; Matsunami et al., 2000) 
as a gustation primary process produces an input signal, 
which in turn produces a cascade of transduction events 
with information output toward perception in the gustatory 
cortex of brain (Scott, 2005). The full perception of hu-
man taste is a merging of five basic tastes with a descrip-
tive taste contribution from the olfactory information of the 
food aroma. Different taste receptors have cross- reactivity 
toward the same taste molecules (Zhang et al., 2003), 

ensuring a platform of  sensitive elements with distributed 
semi-specificity with the same functional principle as for 
the olfactory system.

25.1.2 Artificial Taste Sensing

The understanding of the process of human olfaction and 
gustation accomplished in the past few decades has in-
spired the ambitious idea to mimic the natural sensing 
systems in order to elaborate analytical systems with simi-
lar performance as the natural predecessors. This has led 
to a new strategy in chemical analysis; instead of specific 
 recognition-based quantification, it is in many applications 
advantageous to determine quality parameters. The ap-
proach overcomes the disadvantages of sensors operating 
due to specific chemical recognition, which include isola-
tion of a recognition element responsible for the high speci-
ficity and the integration with an appropriate and effective 
signal transducer, while maintaining the recognition activ-
ity during and after device assembly. The avoidance of a 
very specific recognition element led to the creation of a 
robust, high throughput and versatile platform for chemical 
analysis. This has been achieved in analogy with the human 
senses (Fig. 25.1) by the creation of an array of semise-
lective sensors with overlapping specificities and with dif-
ferentiated responses toward different analytes of complex 
samples, accompanied with signal processing and pattern 
recognition, which enables a rational decision.

The complex signal obtained from the array is inter-
preted with multivariate data analysis (MVDA) (Gouma 
et al., 2004; Jurs et al., 2000; Winquist et al., 2004), that 
is, different types of algorithms as mathematical tools to 
extract useful information from large data sets. Some of 
the most common are principal component analysis (PCA), 
clustering systems such as hierarchical cluster analysis 
(CA), linear discriminant analysis (LDA), partial least 
squares (PLS), and artificial neural networks (ANN).
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25.2 THE E-TONGUE

Two strategies have been utilized for the development of 
analytical systems similar to olfaction and gustation. The 
so-called taste sensor (Taniguchi et al., 1999; Toko, 1996) 
follows the human gustation and mimics the five basic 
tastes. Alternatively, the e-tongue (Di Natale et al., 1996; 
Winquist et al., 1997) and the electronic nose (e-nose) 
(Gardner and Bartlett, 1994; Winquist et al., 1993) mimic 
the sensing process and analyze the chemical properties 
of the sample in liquid and gaseous phases, respectively, 
which is more equivalent to the taste impression of food 
entering the mouth as the combination of taste and smell. 
The chemical properties assessed by e-tongue and e-nose 
do not necessarily correlate with the human perception. In 
this chapter, the e-tongue will be considered.

Artificial sensation systems consist of three integrated 
parts: (1) a sensing unit, which transforms chemical infor-
mation from the interaction reaction as an input signal to 
an electronic read-out output, (2) a signal-processing unit, 
which collects the responses during the measurements and 
supplies preprocessed signal to (3) a pattern recognition 
system, which compares the processed response with a li-
brary of profiles of known substances.

Decoding the chemical energy of the interaction be-
tween the sensing unit and the analytes into a primary signal 

output, the array of sensing elements determines the per-
formance of the whole analytical system. E-tongue instru-
ments rely on available analytical technologies operating in 
the liquid phase. The most common ones are based on elec-
trochemical techniques such as voltammetry, potentiometry, 
and conductometry, which require the use of electrodes in 
the liquid phase in order to establish a measurement circuit. 
The currents passing through the electrodes or the potential 
difference between them are affected by analyte reactions, 
which creates the primary read-out signal of e-tongues 
based on ion selective electrodes (Di Natale et al., 1997) or 
voltammetry (Winquist et al., 1997). Conductivity changes 
of conducting polymers due to the interactions with analyte 
molecules fabricated onto electrode surfaces were also uti-
lized for e-tongue elaboration (Sangodkar et al., 1996). An 
array of ion-selective field effect transistors (ISFET) with 
overlapping selectivities has been utilized in a commercial 
e-tongue instrument, for example, Astree (Alpha MOS). 
Optical methods based on measurement of light absor-
bance (Fries et al., 2011) or fluorescence (Sohn et al., 2005; 
Szurdoki et al., 2000) have also been utilized for e-tongue 
instrument elaboration. Shifts of resonance frequencies of 
piezoelectric crystals as a result of interaction between the 
membrane and an analyte in a liquid media was utilized for 
e-tongues (Rabe et al., 2003). The use of surface plasmon 

FIGURE 25.1 Analogy of human gustation and artificial taste sensing technology.
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resonance for differential sensing in liquid media was also 
reported (Nanto et al., 2002).

The subsequent analysis of the data, obtained as the pri-
mary response of the sensor array, starts with a preprocess-
ing step of drift compensation and response normalization 
(Dymerski et al., 2011). The choice of preprocessing, from 
the available techniques of statistical analysis, depends on 
the type of the system and the data obtained. The first ap-
proach for the classification of samples with significant dif-
ference is usually a graphical presentation of the response 
data in different diagrams (polar diagram, histogram, etc.) 
(Dymerski et al., 2011). More advanced methods of analysis 
are based on statistical handling of data for feature extrac-
tion and finding of the most important parameters. There are 
many multivariate methods that can be utilized, for example, 
PCA, PLS, CA, canonical correlation analysis (CCA), dis-
criminate function analysis, multidimensional scaling, and 
LDA (Dymerski et al., 2011; James et al., 2005). Alterna-
tively, the data processing systems based on the principles 
of the human nervous system, that is, ANN, constructed as 
hardware or software models can be employed for the data 
analysis where the distribution is completely unidentified 
(Dymerski et al., 2011; Haugen and Kvaal, 1998).

The e-tongue can be used for the detection of dangerous 
or poisonous compounds, which is one of the main con-
cerns of drinking water analysis. Moreover, e-tongue detec-
tion is also elaborated as a platform for robust monitoring 
of quality parameters in general, that is, a global quality 
monitoring system.

25.3 DRINKING WATER QUALITY

Sustainable and safe supplies of drinking water are world-
wide challenges with the potential to improve the quality of 
life of billions of people (UNESCO, 2012). Improvement 
of water resource management, increase of the access to 
safe drinking water, and basic sanitation are critical for the 
achievement of the goals to reduce child mortality, improve 
maternal health, and reduce the burden of waterborne dis-
eases (United Nations, 2012). From a societal point of view, 
the problem of supplying secure and safe drinking water has 
been given increasing attention recently, both on national 
and international levels. The EU Water Framework Direc-
tive (The European Union, 2000), being implemented by all 
EU member states, addresses the management and protec-
tion of water supplies.

In general, the greatest microbial risks are associated 
with ingestion of water that is contaminated with human 
or animal (including bird) feces. Feces can be a source 
of pathogenic bacteria, viruses, protozoa, and helminthes 
(World Health Organization, 2008). Fecal-related substanc-
es, such as domestic sewage water, are therefore good mark-
ers for pathogenic microorganisms in the drinking water. 
Drinking water can also be contaminated with raw water 

for natural reasons or by antagonistic purpose (terrorist 
threats), which opens the concept of drinking water safety 
and security.

Even developed countries have drinking water con-
cerns—for example, a recent sewage water contamination 
of a drinking water supply in Östersund, Sweden, 2010; the 
erroneous connection of the sewage water pipe to the drink-
ing network in the city of Nokia, Finland, 2007; and the ac-
cidental release of large amounts of alumina sulfate in Cam-
elford, United Kingdom, 1998—which in all cases resulted 
in thousands of affected people and considerable costs for 
the society. It has been concluded (Lindberg et al., 2011) 
that apart from the suffering of the 27,000 people who sick-
ened in Östersund, a cost for the society of 24 million Euro 
can be estimated. Pathogenic microorganisms causing wa-
terborne outbreaks by drinking water contamination include 
bacteria (Campylobacter and pathogenic E. coli) (Szewzyk 
et al., 2000), viruses (Norovirus) (Maunula et al., 2005), and 
protozoa parasites (Cryptosporidium and Giardia) (Mack-
enzie et al., 1994).

25.4 THE E-TONGUE FOR DRINKING 
WATER ANALYSIS

Being a complement to e-nose instruments’ measuring in 
the gas phase, the e-tongue sensing technology is highly ef-
fective for applications where it is more advantageous to 
measure directly in the liquid phase, for example, when the 
ionic composition changes or redox active nonvolatile com-
pounds are present. The e-tongue sensing technology is of 
special relevance for the detection of water pollution (Di 
Natale et al., 1997) and a variety of electrochemical and 
optical methods have been developed for this application. 
Electrochemical methodology opens the possibility for 
operation in high turbidity media for raw or surface water 
analysis, which is an advantage when comparing with opti-
cal methods. Thus, monitoring of both water supplies and 
drinking water has been extensively developed by e-tongue 
technology (Riul et al., 2010).

25.4.1 Monitoring of Tap Water Quality

Drinking water quality can thus be monitored with e-tongue 
instruments. Full water works processes can be monitored 
with voltammetric e-tongues for the detection of quality 
changes (Lindquist and Wide, 2001; Winquist, 2008; Win-
quist et al., 2004). The raw water, which is the untreated 
water, is taken either from surface (river or lake) or from 
ground water (natural or drilled wells). The raw water nor-
mally has significant color changes due to the seasonal 
and weather variations. At a first stage of drinking water 
production, chemical precipitation by aluminum sulfate 
is performed to get rid of small particles. From the first 
stage of production, the water is transported to a sand filter 
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operating with a fast flow (so-called fast filter) to remove 
the rest of the particles. Further processing is performed at 
a slow flow rate through a biological active slow sand filter 
to get rid of germs and flavors. Finally, after the addition of 
sodium hypochlorite and sodium hydroxide to kill the rest 
of the germs and to adjust the pH value, the water is trans-
ported out to the distribution network. The whole drinking 
water production has been monitored with a voltammetric 
e-tongue based on four metal electrodes (gold, iridium, 
platinum, and rhodium) and followed by the classification 
by PCA (Krantz-Rulcker et al., 2001). A similar strategy of 
primary signal collection has been utilized for the e-tongue 
developed with subsequent data compression by wavelet 
transform together with different wavelet selection algo-
rithms and utilized for drinking water monitoring (Arturs-
son and Holmberg, 2002). A similar concept has also been 
developed for field tests of drinking water quality monitor-
ing in a flow (Lindquist and Wide, 2004).

A fast drinking water quality assessment has been im-
plemented with e-tongue measurements (Iliev et al., 2006) 
based on voltammetric primary signal read-out on gold and 
platinum wires with respect to a stainless-steel counter- 
reference electrode. A fuzzy clustering technique was used 
for the classification of good and bad quality samples from 
a training set. Further online classification of the measured 
response for unknown samples to three clusters (good, un-
certain, and bad) yielding a decision about the water quality 
to the user in a simple way in the form of “traffic light” 
signals. The developed system showed satisfactory perfor-
mance (Table 25.1) with correct classification for 90% of 
the drinkable water (green light), 100% of the undrinkable 
river water (red light), and 87% of the boiled river water 
(bad quality drinkable, yellow light). The undrinkable mix-
tures of river and tap waters were between the red (79%) 
and yellow (21%) clusters. The developed monitoring plat-
form revealed a satisfactory performance since none of the 
undrinkable water samples were classified as drinkable.

Quality variations of the raw water may be due to high 
amounts of microorganisms or industrial contaminants. 
These disturbances accompanied with unpleasant odor 
and/or taste do generally not possesses a health risk, if 
the raw water is processed properly in the drinking water 

production plant. Mechanical damage of the inner coating 
of pipes of the distribution net may cause discoloring and 
unpleasant taste, which in most cases is harmless for the 
health. Contamination of the drinking water may also occur 
due to mixing with water from an external source as a result 
of natural causes, such as an effect of flooding due to heavy 
rain showers, by industrial accidents such as the erroneous 
connections in the distribution network or for antagonistic 
purposes. In Camelford (UK), large levels of alumina sul-
fate were accidentally added to the drinking water in 1998 
(David and Wessely, 1995), leading to nausea, vomiting, and 
other symptoms. In Tel Aviv (Israel), ammonia was spilled 
into the main waterline in 2001 (Winston et al., 2003), caus-
ing high pH and turbidity levels in the drinking water. Vari-
ous model contaminations of drinking water (NaCl, NaN3, 
NaHSO3, NaOCl, ascorbic acid, and yeast suspension) have 
been used and classified with voltammetric e-tongues with 
PCA and PLS data processing (Winquist et al., 2011).

Remote monitoring of drinking water quality has 
been implemented with an e-tongue network (Eriksson 
et al., 2011) utilizing the voltammetric primary signal from 
an array of three working electrodes (gold, platinum, and 
rhodium) with respect to a stainless-steel counter-reference 
electrode. Potential pulses with different amplitudes were 
applied onto the working electrodes, which resulted in the 
appearance of current transients containing analytical infor-
mation about the monitored media (Fig. 25.2). In particular, 
the size and shape of the obtained current transients were 
affected by the pulse amplitude and the concentration of the 
substances undergoing electrode reactions and of the ions 
in the media as well as their diffusion characteristics. Signal 
processing was carried out by feature extraction followed by 
PCA with a remote personal computer via Internet, which 
opens the possibility for remote monitoring of drinking wa-
ter and surface water quality. A probability density function 
was utilized as an evaluation criteria to distinguish different 
signal anomalies due to water pollution from the normal 
(harmless) variations in the drinking water characteristics 
due to natural variations in temperature, flow velocity of 
the water, pH, turbidity, and residual chlorine. The strongest 
impact came from the temperature variations, which were 
taken into account by introducing a temperature sensor.  

TABLE 25.1 Results of the Classification of Water Samples.

Water Sample Green (%) Yellow (%) Red (%)

Tap (drinkable, good quality) 90 7 3

River (undrinkable) 0 0 100

Boiled river (drinkable, bad quality) 10 87 3

Mixture of river and tap (undrinkable) 0 21 79

Source: Reproduced from Iliev et al. (2006), with permission from Elsevier.
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The detection of drinking water contaminations was suc-
cessfully performed by an algorithm without any confusion 
by the temperature variations (Figs. 25.3 and 25.4). The 
elaborated e-tongue instrument provided a fast alarm and a 
network of such sensors can be effectively utilized for the 
determination of the contaminated part of the distribution 

network, for the forecast of the pollution spreading and for 
the identification of the location of the pollution source.

Complex conductivity measurements have been used for 
e-tongue monitoring of drinking water quality and the clas-
sification of potable and nonpotable water samples (Oliveira 
et al., 2013). An array of six interdigitated microelectrodes 

FIGURE 25.2 (a) Excitation voltages (top) and resulting current responses (bottom) in a typical measurement of noncontaminated drinking water in a 
pilot system with similar properties as the real drinking water distribution system. (b) Current response due to one of the voltage pulses in (a). The positive 
current transient is due to the sudden increase in voltage and the negative current transient to the sudden decrease. The exact shape of the current transients 
depends on several parameters, such as the type and concentration of substances added to the drinking water. F1–F4 are examples of features that are 
extracted from the sensor signals. (Reproduced from Eriksson et al., 2011, with permission from Elsevier.)

FIGURE 25.3 (a) The first principal component (PC) of extracted features of the rhodium electrode signals and temperature measurement data. At the 
end of the measurement, three pulses of different pollutants are added: H2SO4 (changing the pH from 8.2 to 7.1), NaOH (changing the pH from 8.2 to 
8.4), and, finally, 0.5 % sewage water. (b) The first 9 h from the 12 h data set of (a) (the training part) have first been used to train a statistical model for 
change detection. The model is then applied to the final 3 h of the data set of (a) (the validation part). Since the pollution measurements do not fit the 
model well, they appear very unlikely, and therefore deviate strongly from the background level. (Reproduced from Eriksson et al., 2011, with permission 
from Elsevier.)
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modified with a film of poly(lactic acid)/carbon nanotube 
composites of different ratios of components were used for 
complex conductivity measurements as a primary signal 
of the instrument, further classified with PCA. The drink-
ing water samples were successfully classified from water 
samples contaminated by heavy metal ions and traces of 
pesticides.

25.4.2 Mineral Water Analysis

An array of 29 potentiometric sensors of different materi-
als and data processing with PCA has been combined for 
the construction of an e-tongue (Legin et al., 1999). The 
classification of seven Italian commercial mineral waters 
was successfully achieved. Moreover, the quantification 
of some components of mineral waters has been done with 
e-tongue. Contamination with a strawberry, as a model of 
organic matter, was detected with the developed instrument.

A disposable array of all-solid-state ion selective elec-
trodes (ISE) has been developed by screen-printing with 
carbon ink doped by an inorganic redox compound (Prus-
sian blue) with subsequent modification by polymer mem-
branes of different selectivities toward cations and anions 
(Lvova et al., 2002). Potentiometry was used as the primary 
signal read-out of the e-tongue. Classification of tap and 
commercial drinking waters in a flow cell was done with 
PCA, PLS, and principal component regression. A taste 
map for commercial drinking waters has furthermore been 
developed.

An array of nine nonspecific all-solid-state ISE for dif-
ferent cations has been employed as a platform for e-tongue 
elaboration (Gallardo et al., 2005) with PCA processing. 
Operating in both batch and flow injection modes, the in-
strument was trained by a variety of solutions of known 

compositions. Satisfactory classification was achieved for 
23 commercial mineral waters (Fig. 25.5).

An array of five metal electrodes (Au, Ag, Pt, Cu, and 
Zn) has been utilized for the construction of a potentio-
metric e-tongue with signal processing by PCA (Labrador 
et al., 2009). The instrument has been used for the quali-
tative and quantitative assessment of the concentrations of 
chloride, sulfate, and bicarbonate anions in eight mineral 
waters of different geographical origins. The training step 
was performed with solutions of pure salts, their mixtures, 
and some mineral water samples. Quantitative prediction 
was achieved by utilizing PLS.

An array of six independent ion selective field effect 
transistors has been developed on a single chip and utilized 
as an e-tongue for the classification of commercial drinking 
water by means of PCA (Moreno i Codinachs et al., 2008). 
Simultaneous read-out of multiple sensors was enabled 
by electrical isolation of the devices by trenches and by 
p-n junctions. Selectivity toward different ions was estab-
lished by modification of the sensors with different organic 
 membranes.

An array of different ISE has been utilized for the fab-
rication of an e-tongue with parallel statistical analysis 
by PCA and discriminate function analysis. A successful 
classification of Tunisian waters was achieved (Sghaier 
et al., 2009).

A potentiometric e-tongue has been developed on an 
array of ISE (Men et al., 2009). A primary signal was op-
timized by independent component analysis and LDA. A 
learning vector quantization model was utilized for the 
classification of five samples of mineral water. It was 
shown that the proposed classification approach sur-
passed the performance of the traditional self-organizing 
map algorithm.

FIGURE 25.4 Classification of the different pollutants added to the drinking water with PCA. Drinking water (blue) is the reference medium. 
Addition of sewage water (0.25%, black) results in data taking off in a completely different direction than those of NaOH [0.3% (pH increases from 7.7 to 
9.4), green] and H2SO4 [0.4 % (pH decreases from 7.7 to 7.0), red]. (Reproduced from Eriksson et al., 2011, with permission from Elsevier.)
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Mineral, spring, and tap water samples from different 
geographic origins has been classified by a commercial 
potentiometric e-tongue (Alpha Astree II, Alpha MOS, 
France) and compared with the results of a sensory panel 
evaluation and chemical analysis (inductively coupled with 
plasma atomic emission spectroscopy and ion chromatog-
raphy) (Sipos et al., 2012). PCA and hierarchical cluster 
analysis as unsupervised methods and LDA as a supervised 
technique were used for the statistical analysis. A reliable 
classification was not achieved with any of the utilized 
techniques for different water samples from the same geo-
graphical origin. In particular, waters sold under different 
brand names but originating from the same region could not 
be distinguished with the aforementioned set of advanced 
analytical techniques. On the other hand, water samples ob-
tained from different regions were effectively classified. Si-
multaneous application of analytical, e-tongue, and sensory 
techniques showed good correlation in the data clustering. 
A collective use of these different technologies is recom-
mended for quality control of food products.

The cost-effective technology of screen-printing 
has been utilized for the fabrication of a potentiometric  
e-tongue with an array of twelve electrodes developed 
from conducting printable inks (based on RuO2, C, Ag, Ni, 
Cu, Au, Pt, and Al) (Martinez-Manez et al., 2005a). The 
classification of five natural Spanish waters, tap, and os-
mosized waters has been achieved with a 93% success rate 
with PCA and ANN utilizing the so-called adaptive reso-
nance theory for prediction of subsequent steps from the 

prior actions (fuzzy ARTMAP) (Figure 25.6). Further de-
velopment of this concept has led to the elaboration of a 
portable e-tongue on an array of 18 potentiometric sensors 
developed by screen-printing (Garcia-Breijo et al., 2011). 
Five Spanish natural waters, sparkling water, and tap water 
has been studied. The data analysis system consisted of a 
pattern recognition algorithm implemented on a micropro-
cessor system (Microchip PIC18F4550). The utilized data 
analysis algorithms allow fast, real-time operation on a por-
table instrument with a limited amount of memory, with 
high accuracy of classification. Only a few pattern recogni-
tion algorithms can fulfill each of these requirements and 
of these three pattern recognition algorithms were used.  
(1) Multilayer feed-forward (MLFF) is the most popular 
type of ANN and is based on three layers of neurons (in-
put, hidden, and output). It requires a training stage, where 
the weight of each neuron is defined, followed by a valida-
tion stage. (2) Fuzzy ARTMAP network (see the previous 
description). (3) Linear discriminant analysis (LDA) is a 
probabilistic parametric classification technique maximiz-
ing the variance between categories and minimizing the 
variance within categories, by means of a data projection 
from a high- to low-dimensional space. Different techniques 
of training were employed for all three algorithms imple-
mented on the microchip in order to obtain the optimum 
architecture for the network. All algorithms were compared 
by their recognition rates for drinking water classification. 
MLFF, fuzzy ARTMAP, and LDA showed  recognition rates 
of 76.2, 76.2, and 82.5%, respectively. The recognition rates 

FIGURE 25.5 PC1 versus PC2 scores plot of the PCA performed to data from mineral waters. Groupings are (I), mineral waters; (II), sparkling 
mineral waters; (III), added CO2 mineral waters; and (IV) lemonades. (Reproduced from Gallardo et al., 2005, with permission from Elsevier.)
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increase with an increase of the number of samples for the 
training. However, the amount of memory use is different 
for the three networks when increasing the number of train-
ing samples. The memory use for MLFF and LDA does not 
increase with the increasing number of training samples, 
but MLFF requires many more training samples. On the 
contrary, requiring the most memory use, fuzzy ARTMAP 
showed an increase of the memory use with increasing of 
the number of training samples. Therefore, LDA was iden-
tified as the best pattern recognition algorithm and was 
implemented on the microcontroller.

25.5 CONCLUSIONS AND  
FUTURE ASPECTS

The continued contamination threats and an increased need 
for quality monitoring will guide the progress of e-tongue 
measurement technologies applied for drinking water anal-
ysis. The ever-increasing data handling and analysis capa-
bilities are expected to lead to the creation of global systems 
for remote monitoring of drinking water.

Being an important drinking water resource, surface 
waters require a high level of control due to the possible 
contaminations by xenobiotic chemicals and pathogenic 
microbes originating from various anthropogenic sources. 
To take efficient measures against surface water pollution, 
relevant source assessment is required. The concept of an-
thropogenic burden markers, that is, environmentally stable 
and source-specific substances quantitatively representing 

the contamination, has appeared recently for the purpose 
of finding contamination pathways (Buerge et al., 2009; 
Takada and Eganhouse, 1998). Chemical markers possess 
a higher source specificity and higher stability compared to 
the bacterial markers. Revealing a quantitative correlation 
between concentration in natural raw water and anthropo-
genic burden by domestic wastewater, caffeine is consid-
ered as a potential chemical marker for domestic wastewa-
ter contamination (Seiler et al., 1999). Up to date, the most 
promising markers are the xenobiotics with high stability 
toward biodegradation (Nakada et al., 2008). Antibiotics 
might be used as nonanthropogenic pollution markers in 
surface waters, but are also important for wastewater moni-
toring. An ideal marker for the detection of domestic waste-
water in natural waters (groundwater) is the sulfonamide-
family sweetener acesulfame, which has been detected 
in several tap water samples from Switzerland (Buerge 
et al., 2009). The highest concentrations of acesulfame in 
groundwater were observed in areas with significant in-
filtration of river water receiving considerable discharges 
from wastewater treatment plants. The appearance of diesel 
and the petrochemical hydrocarbons in the raw water inlet 
of waterworks, as a result of leakages from boats and spill-
age, can cause an odor appearance in tap water (Hedström 
et al., 2009). Here too, the unique operational properties 
of e-tongue instruments in combination with possibilities 
of detection and classification of anthropogenic markers 
are expected to be highly valuable in the future for precise 
drinking water quality monitoring.

FIGURE 25.6 Principal component analysis (PCA) score plot for different waters. Data is shown from five different trials. The PC axes are calcu-
lated to lie along lines of diminishing levels of variance in the data set. (Reproduced from Martinez-Manez et al., 2005b, with permission from Elsevier.)
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Electronic Tongues for the Organoleptic 
Characterization of Wines
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26.1 INTRODUCTION

Wine is an alcoholic beverage, consisting of several hun-
dreds of components in different ranges of concentrations. 
The quality control is usually carried out by trained experts 
that evaluate the organoleptic properties of wines (flavor, 
taste, and color). Such evaluation is accomplished along the 
elaboration process as well as in the final product. Wines 
are also characterized by traditional chemical techniques 
that provide information about specific parameters. From 
the analytical point of view, the chemical analysis of wines 
is a challenging task due to the complexity of the mixture. 
Moreover, chemical differences between wines with dis-
tinct organoleptic characteristics often rely in minute dif-
ferences in the concentration of certain compounds. The 
situation becomes even more complex because the synergy 
between groups of compounds often has a stronger influ-
ence in the organoleptic characteristics than individual 
compounds (Jackson, 2014).

To obtain a complete picture of the composition of wines, 
a combination of analytical techniques is needed. Usually, 
the number of parameters to be analyzed is simplified as a 
function of the aim. Therefore, only a few parameters are 
periodically checked. Among them, the most common are: 
soluble solids, reducing sugars, alcoholic degree, pH, total 
and volatile acidity, sulfur dioxide, color, polyphenol in-
dex, and organic acids. Deeper analysis carried out by chro-
matography or spectroscopy can give information about 
other compounds (carbohydrates, acids, alcohols, phenolic 
compounds, inorganic constituents, and other minor flavor 
components) (Smyth and Cozzoino, 2013). The analysis of 
wines requires the development of technologies able to de-
tect simultaneously a large spectrum of compounds provid-
ing global information about the sample instead of informa-
tion about specific components.

In recent years, electronic tongues (e-tongues) have been 
developed. They are based on the combination of nonspecific 
chemical sensors with partial sensitivity (cross-sensitivity) to 

different components. The response of the sensor array to-
ward a certain sample is a collection of signals that can be 
related to certain features or qualities of the sample using the 
appropriate software. E-tongues are normally used to give 
qualitative answers about the sample studied and only in 
some cases to predict the concentration of individual species 
(Zeravik et al., 2009; Riul et al., 2010; Baldwin et al., 2011; 
Tahara and Toko, 2013; Lvova et al., 2013; Sliwinska 
et al., 2014).

This chapter describes the state of the art of the  e-tongues 
showing the different types of sensors used in the analysis of 
wines. Current applications in oenology are presented and 
the possible future applications in this field are discussed.

26.2 PRINCIPLES OF E-TONGUES

According to the IUPAC, an e-tongue is a multisensor sys-
tem, which consists of a number of low-selective sensors 
and cross-sensitivity to different species in solution, and an 
appropriate method of pattern recognition and/or multivari-
ate calibration for data processing (Vlasov et al., 2005).

26.2.1 Multisensor Systems

The heart of any e-tongue is the array of sensors. Much ef-
fort has gone into developing new sensors with improved 
characteristics. Sensors used in e-tongues can use several 
measurement principles including mass, optical, or elec-
trochemical transduction. Electrochemical sensors (in-
cluding potentiometric, amperometric, voltammetric, and 
impedimetric sensors) are the most widely used sensing 
units in e-tongues because of their specificity, high sen-
sitivity, short response time, and simple operation (Del 
Valle, 2010;  Kimmel et al., 2012). In potentiometric sen-
sors, a working electrode covered with a membrane is im-
mersed in the studied solution. A potential is then created 
at the membrane/solution interphase, which depends on the 
 nature of the electrode material and on the composition of 
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the solution. Potentiometric sensors can be prepared from 
different  materials, membranes, and techniques (Ciosek and 
Wróblewski, 2011). Silicon planar technology can be used 
to fabricate miniaturized devices using different transducer 
structures: ion selective field effect transistors (ISFETS), 
light addressable potentiometric sensor (LAPS), or micro 
ion selective electrodes (mISE) (Bratov et al., 2010).  Arrays 
of potentiometric sensors with different selectivity and 
sensitivity have been successfully used to analyze wines 
(Paolesse et al., 2008; Zeravik et al., 2009).

Amperometric and voltammetric sensor arrays have 
also attracted considerable attention for the analysis of 
wines (Parra et al., 2004; Scampicchio et al., 2008; Win-
quist, 2008). In such sensors, a bias voltage is applied, while 
the current is measured. Voltammograms show peaks asso-
ciated with the oxidation and reduction of the molecules 
present in the solution and their intensity is proportional to 
the concentration. The system is versatile because differ-
ent electrode materials and excitation functions can be ap-
plied (eg, cyclic voltammetry, pulse voltammetry, or square 
wave voltammetry).

The modification of the electrode surface with electro-
active and electrocatalytic materials (eg, phthalocyanines, 
perylenes, conducting polymers, or nanoparticles) gives the 
electrodes improved selectivity (Parra et al., 2004, 2006a; 
Rodriguez-Mendez et al., 2008). Voltammograms show 
redox peaks associated with both—the electrode and the 
solution. Simultaneously, the interactions between the 
electrode and the solution improve extraordinarily the se-
lectivity of the electrodes. Such interactions include among 
others: (1) the oxidant or reducing character of the solu-
tion that can modify the oxidation potential of the electrode 
material; (2) the electrocatalytic activity of the electrode 
material that can facilitate the  oxidation of the compounds 
solved in the test solution; (3) the acid or basic character 
of the solution can protonate/deprotonate the electrode; 
(4) the nature and concentration of ions present in the 
 solution that diffuse inside the sensing layer to maintain 
the electroneutrality.

Impedance spectroscopy has also been used as a trans-
duction method to analyze wines. Electrodes modified with 
various organic materials (including conducting polymers, 
perylenes, phthalocyanines, or carbon nanotubes) have 
demonstrated their capability to detect molecules present in 
wines (Volpati et al., 2012).

Finally, multitransduction systems are increasingly 
more popular, since they combine different classes of 
sensors that provide complementary information (Balda-
cci et al., 1998; Di Natale et al., 2000; Rodríguez-Méndez 
et al., 2004; Gutiérrez et al., 2010; Lvova et al., 2015).

More recently, bioelectrochemical sensors have been 
successfully introduced in sensor arrays. These systems 
have been called bioelectronic tongues and have attracted 
an increasing interest because they combine the advantages 

of classical arrays, which provide global information about 
the sample, with the typical specificity of biosensors (Zer-
avik et al., 2009; Toko, 2013). The enzymes incorporated in 
arrays dedicated to the analysis of wines include phenoloxi-
dases specific for the detection of phenols (eg, tyrosinase, 
laccase, or peroxidase; Cetó et al., 2014a) and enzymes spe-
cific for the detection of sugars (glucose oxidase or fructose 
dehydrogenase; Gutierrez-Capitán et al., 2014; Medina-
Plaza et al., 2014a ).

Nanotechnology can help significantly to improve the 
sensitivity and the response time of sensors and biosensors 
(Medina-Plaza et al., 2014b). On one hand, nanotechnol-
ogy provides new nanomaterials (nanoparticles, nanocar-
bons, etc.) with improved electrocatalytic properties (Cetó 
et al., 2014b; Orozco et al., 2009). On the other hand, tra-
ditional sensing materials can be deposited as nanostruc-
tured films, using self-assembling monolayer (SAM), layer 
by layer (LbL), or the Langmuir–Blodgett (LB) techniques 
(Arrieta et al., 2003; Riul et al., 2004). Such films show 
enhanced surface-to-volume ratios that increase the sensi-
tivity of the sensors.

LbL, SAM, or the LB techniques are of special inter-
est in the field of biosensors, since using these methods, 
enzymes can be immobilized in lipidic layers with struc-
tures similar to those of the biological membranes. This 
biomimetic environment can help to preserve the function-
ality of the enzyme (Apetrei et al., 2011; Medina-Plaza 
et al., 2014b).

The key step in e-tongues is to select the most suitable 
sensors for each application. Secondly, the sensors com-
bined in an array configuration must show cross-selectivity 
(ie, be sensitive toward different species) or at least must 
show cross-sensitivity (ie, react toward the same compounds 
but with different intensity). The combination of  responses 
can be related to certain features or characteristics of the 
samples by means of pattern recognition routines.

26.2.2 Multivariate Data Treatment

The pattern recognition techniques consist of four sequen-
tial stages: signal preprocessing, dimensionality reduction, 
prediction, and validation. The signal preprocessing pre-
pares the feature vector for future processing. It includes 
compensation for sensor drift, scaling of the data, and ex-
tracting representative parameters. The intrinsic complex-
ity, richness, and cross-selectivity of the signals generated 
by voltammetric sensor arrays are an advantage because the 
data set contains meaningful information about the sample. 
At the same time, this complexity can result in difficulty of 
processing the data. One solution is to simplify the high di-
mensionality and to employ a feature extraction stage such 
as the wavelet transformation (WT) (Winquist, 2008), the 
kernel method (Parra et al., 2004), or genetic algorithms 
(Prieto et al., 2013).
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A dimensionality reduction stage projects this initial 
feature onto a lower dimensional space. This is usually done 
using a nonsupervised technique such as principal compo-
nent analysis (PCA). Using PCA, it is possible to discrimi-
nate between samples with different characteristics.

The resulting low dimensional feature vector is the one 
used to solve a given prediction problem, typically classi-
fication, regression, or clustering. Classification tasks ad-
dress the problem of identifying an unknown sample and to 
assign it to a certain set of previously learned categorized 
samples. Typical classification models used in e-tongues 
are linear discriminant analysis (LDA), soft independent 
modeling of class analogy (SIMCA), support vector ma-
chines (SVM), or artificial neural networks (ANN). In re-
gression tasks, the goal is to establish a predictive model 
from a set of independent variables (eg, sensor responses) 
to a second set of variables that are the properties of the 
sample analyzed (eg, concentration, quality). They are usu-
ally carried out using partial least squares (PLS) regression 
models (Kirsanov et al., 2012). Finally, in a clustering task, 
the goal is to learn the structural relationships between dif-
ferent samples.

26.3 E-TONGUES DEDICATED TO THE 
QUALITY CONTROL OF WINES

Each wine has a different chemical composition that de-
pends on the variety and maturity of grape, on the extraction 
of different components into the grape juice, and also, on 

the subsequent reactions occurring during the vinification, 
the postfermentation treatments, and during wine aging 
(Fig. 26.1). The chemical composition has a direct effect on 
the organoleptic properties of wines.

In spite of the fact that e-tongues do not measure 
mouth feels or human perceptions, as they respond to 
chemical compounds, they have been used to analyze or 
control different steps of the wine production, from the 
evaluation of the quality of grapes to the analysis of the 
bottled product.

26.3.1 Analysis of the Quality of Grapes 
(Step 1) and Pressing (Step 2)

The maturity and quality of grapes is typically established 
on the basis of their sugar content. The phenol content 
also changes with ripening. E-tongues using ISFETS 
(Moreno-Codinachs et al., 2008) or voltammetric biosen-
sors (Medina-Plaza et al., 2014a) can discriminate grapes 
according to their variety and vintage. They can also be 
used to evaluate the sugar and the phenolic content of 
 mature grapes.

During maceration, the contact between must and skins 
increases the concentration of phenols in wine. The ex-
traction of phenols can be improved using grape-pressing 
techniques such as Flash Release. A voltammetric e-tongue 
was able to detect the increase in the phenol concentration 
after use of Flash Release and microoxygenation (Prieto 
et al., 2011).

FIGURE 26.1 Scheme of the elaboration process of wines and steps where e-tongues have been used.
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26.3.2 Fermentation (Steps 3 and 4)

Wine is the product resulting from the fermentation of fresh 
grape juice or must. In the fermentation of white wines, 
bacteria present in the skin of grapes transform sugars in 
ethanol. Vinification of red wines requires two sequential 
fermentations. The alcoholic fermentation (transformation 
of glucose in ethanol) is followed by the malolactic fer-
mentation where malic acid is transformed in lactic acid. 
Fermentations require a careful control of the operation 
conditions since small deviations (ie, in the temperature) 
can result in unwanted organoleptic characteristics (Peris 
and Escuder-Gilabert, 2013). Parameters usually measured 
to control the alcoholic fermentation are temperature and 
density. In malolactic fermentation, malic acid concentra-
tion must be monitored periodically. Because fermentation 
is a turbulent process, it is difficult to monitor it using an e-
tongue. In spite of the difficulties, it has been demonstrated 
that e-tongues can monitor fermentations in several food 
products (ie, dairy products). However, only a few reports 
have been published in the field of wines. For instance, a 
potentiometric e-tongue combined with an electronic nose 
and optical measurements has been used to follow the ki-
netics of the fermentation process of eight musts with ac-
ceptable correlations with sugar consumption and alcohol 
production (Buratti et al., 2011).

26.3.3 Aging in Barrels (Step 5)

Traditionally, red wines are aged in oak barrels about 1 to 
2 years before bottling. The organoleptic characteristics of 
wines are influenced by the retention and release of volatile 
compounds by lees during the aging process. The length of 
time that a wine is kept in a barrel improves the quality of 
wine. The porosity of the oak facilitates diffusion of minute 
amounts of oxygen into the barrel. The geographic origin of 
the oak and the degree of toast of the wood can also induce 
different flavors. The oxidative aging in barrels is followed 
by an aging in bottles that occurs in a reductive environ-
ment and that improves the organoleptic characteristics.

An e-tongue formed by potentiometric sensors was used 
to classify Port wines of different ages (from 2 to 70 years) 
(Rudnitskaya et al., 2007). The e-tongue predicted the 
Port wine age with accuracy similar to that obtained using 
chemical analysis data. In a following work, the potentio-
metric e-tongue was used to analyze Madeira wines pro-
duced from different varieties of grape and aging duration. 
It was demonstrated that the effect of age was more signifi-
cant for the e-tongue than the variety of grape (Rudnitskaya 
et al., 2010).

A voltammetric e-tongue based on chemically modi-
fied electrodes has been successfully applied to monitor the 
 aging of red wines and to discriminate wines aged in oak 
barrels of different origin (French, Lithuanian, or American) 

and toasting level. The array of voltammetric sensors has 
been able to follow the changes experienced by red wines 
aged in oak barrels after 3 and 6 months of aging (Parra 
et al., 2006b).

Aging in oak barrels requires long times with a high 
cost. For this reason, recently, innovative aging methods 
have been developed. One of these techniques consists in 
accelerating the aging of wines by soaking pieces of wood 
of different sizes (chips or staves) in micro-oxygenated 
stainless-steel tanks. A voltammetric e-tongue has been 
used to detect the use of such practices. In the early stages 
of aging, the e-tongue was able to discriminate between 
wines aged with traditional and alternative methods due to 
the faster rate of aging caused by chips or staves. The effect 
of the size and of the type of the pieces of wood could also 
be evaluated. After 5 months of aging, the use of alternative 
methods could be no longer detected. However, when the 
aging continued in a reducing atmosphere (bottled wines), 
the e-tongue could discriminate wines aged in oak bar-
rels from those previously treated with oak chips (Apetrei 
et al., 2007; Gay et al., 2010).

26.3.4 Bottling (Step 6)

The stoppers used as closures are traditionally made of natu-
ral cork. They are ideal to seal liquid and gas while allowing 
diffusion of minute amounts of oxygen from the outside. 
Natural stoppers are associated with high-quality wines. 
The wine industry has now available polymeric stoppers 
with controlled porosity able to deliver known and repro-
ducible amounts of oxygen into bottles through the closures 
(controlled oxygen transfer rate: OTR). Recently, the effect 
of this nanooxygenation has been successfully analyzed us-
ing an e-tongue (Prieto et al., 2011). It was demonstrated 
that the e-tongue is more sensitive to the different OTRs 
than the electronic nose (Rodriguez-Mendez et al., 2014).

26.3.5 Evaluation of the  
Final Product (Step 7)

The final step in aging wines occurs in the reductive envi-
ronment provided by bottles. E-tongues have been able to 
monitor the aging in bottle and to evaluate the changes in 
the organoleptic properties that occur naturally (improving 
the quality of wines), but can also detect unwanted changes 
due, for instance, to inappropriate storage or cork damage.

26.3.5.1 Evaluation of the Organoleptic 
 Properties Produced by the Variety of Grape, 
Vintage, Appellation, etc
The grape variety from which a wine is produced deter-
mines the flavor and organoleptic characteristics of the final 
product. Moreover, each appellation establishes the grape 
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varieties that can be grown and other quality parameters, as 
well as the oenological manipulations permitted or coup-
ages accepted. In addition, each winemaker has his own 
method to elaborate wines (eg, crushing, use of yeast, tem-
perature control, etc.). There are thousands of grape variet-
ies and oenological techniques producing a large number 
of different wine styles having its own distinct flavors and 
characteristics. On the top of this, the weather conditions 
influence the quality of each vintage. Finally, as the aging 
continues in the bottle, the chemical composition and or-
ganoleptic properties change with time, improving the bou-
quet. Too long or inappropriate storage conditions can spoil 
the wine.

The number of variables is so high that the training of an 
e-tongue requires the use of experimental wines purposely 
elaborated for this particular use.

Arrays of potentiometric chemical sensors have been 
extensively used to analyze wines. For instance, they were 
used to discriminate Italian wines (20 samples of Barbera 
d’Asti and 36 samples of Gutturnio wine) from the same 
appellation and vintage but from different vineyards (Legin 
et al., 1999, 2003). Arrays of all-solid-state potentiometric 
sensors covered with PVC membranes containing porphy-
rins discriminated Italian white wines of Verdicchio appel-
lation (Verrelli et al., 2007a). A set of 14 Madeira wines 
produced from 4 varieties (Bual, Malvasia, Verdelho, and 
Tinta Negra Mole) that were 3, 6, 10, and 17 years old was 
analyzed using an array of 26 potentiometric sensors with 
plasticized PVC and chalcogenide glass membranes. It was 
found that effects of age, grape variety, and their interaction 
were significant for the HPLC data set and only the effect 
of age was significant for the e-tongue data (Rudnitskaya 
et al., 2010).

An ISFETs-based array was suitable to distinguish grape 
types and vintage of wine samples (Artigas et al., 2003; 
Moreno-Codinachs et al., 2008). Multiparametric systems 
combining different types of sensors (ISFETs, conductivity, 
redox potential, and amperometric) are also a good alterna-
tive capable of characterizing and classifying monovarietal 
white wines according to the grape variety and geographi-
cal origin (Gutiérrez et al., 2010).

Amperometric detection combined with an electronic 
nose could classify Italian wines having different denomi-
nations of origin and produced in enclosed geographical 
areas (Buratti et al., 2007).Voltammetric measurements 
using electrodes modified with phthalocyanines have been 
widely used to discriminate wines of different Spanish re-
gions (Rioja, Rueda, Ribera de Duero) and aging ( Parra 
et al., 2004; Rodríguez-Méndez et al., 2004). The array 
was extended to 12 sensors modified with 3 families of 
electroactive materials (phthalocyanines, conducting poly-
mers and perylenes) and used to analyze monovarietal 
wines from four Spanish regions (Ribera de Duero, Toro, 
Bierzo, and Cigales). The same samples were elaborated 

in vintages ranging from 1998 to 2000. The system easily 
classified wines according to the variety of grape, whereas 
differences from vintage to vintage were less marked (Parra 
et al., 2006c; Rodriguez-Mendez et al., 2008). Using also 
voltammetric techniques, an array of electrodes modified 
with phthalocyanines or nanoparticles has been applied 
to the classification of cava wines based on their different 
 aging times (Cetó et al., 2015).

Impedimetric gold interdigitated sensors modified with 
conducting polymers/lipids and chitosan can also correctly 
distinguish red wines, according to the vintage, vineyard, 
brand, and storage conditions (Riul et al., 2004).

Introducing biosensors in the array can improve the 
performance of the e-tongues. However, combining biosen-
sors in a multisensor configuration is difficult since each 
enzyme has its optimal working conditions, requiring par-
ticular immobilization conditions and appropriate electron 
mediators. In spite of the difficulties, there is an increas-
ing interest toward the application of bioelectronic tongues 
to the analysis of wines. For instance, graphite–epoxy 
voltammetric biosensors containing tyrosinase or laccase 
have demonstrated their utility to analyze cava wines (Cetó 
et al., 2014b). Carbon paste electrodes modified with tyrosi-
nase, laccase, and glucose oxidase, using phthalocyanines 
as electron mediators, have been able to discriminate grape 
juices prepared from different varieties of grapes (Medina-
Plaza et al., 2014a).

26.3.5.2 Monitoring Spoilage
Potentiometric e-tongues have been used to monitor the 
spoilage of wines that was also followed by the titrable 
(total) acidity (Gil-Sanchez et al., 2011). Similarly, an e-
tongue composed of “all-solid-state” potentiometric sensors 
was able to monitor the levels of acetic acid in white wines, 
indicating the wine spoilage process (Verrelli et al., 2007b).

26.3.5.3 Detection of Frauds and  Adulterations
Wine producers must follow the practices specified by their 
appellations and by their national and international regula-
tions. Wine adulteration can be committed through dilution 
with water, addition of alcohol or other substances, blend-
ing with, or replacement by, wine of a lesser quality or elab-
orated from varieties of grapes from a different region, and 
by using forbidden aging methods. As demonstrated in the 
previous paragraphs, e-tongues can be used to discriminate 
wines elaborated using different grapes and techniques. 
This ability can be applied in the control of frauds, comple-
menting the traditional analytical techniques.

In fact, a voltammetric e-tongue could detect model 
fraudulent red wines obtained by adding a range of forbid-
den adulterants (ethanol, tartaric acid, tannic acid, SO2, 
acetic acid, sucrose, and ethanol) (Parra et al., 2006c). 
Similarly, using miniaturized potentiometric sensors, wine 
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defects caused by H2S, SO2, and acetic acid were identified 
in artificial wines (Verrelli et al., 2007b).

26.4 ASSESSMENT OF CHEMICAL 
PARAMETERS

E-tongues are holistic systems that provide global infor-
mation about a sample instead of information of particular 
components. For this reason, most papers devoted to the 
evaluation of wines using e-tongues deal only with classifi-
cation tasks using PCA. However, the signals provided by 
the sensor array are correlated with the chemical composi-
tion of the sample. The analysis of the data matrix with ade-
quate chemometric tools can provide information of partic-
ular parameters (Kirsanov et al., 2012; Oliveri et al., 2010). 
Total polyphenols, sugar content, total and volatile acidity, 
pH, etc. can be predicted from the e-tongue responses. PLS 
regression is the most widely used method to obtain cali-
bration models for numerical predictions of various quality 
parameters. Although good correlations can be found using 
different types of e-tongues, when interpreting the results, 
it has to be taken into account that the number of samples 
used to establish the mathematical models is usually low. 
This is due to the difficulty of having available large sets 
of well-controlled and characterized wines, which must be 
purposely prepared for these studies. The main advantage is 
that, once calibrated, e-tongues can predict several chemi-
cal parameters simultaneously.

Potentiometric, ISFETs, amperometric, voltammetric, 
and impedimetric sensors have been used for this task. Each 
type of transduction has its own characteristics and advan-
tages.

Potentiometric sensors are particularly suitable to quan-
tify the presence of ions (eg, acidity, calcium, or heavy met-
als), although the membrane potential can be also produced 
by the presence of other components. For instance, using a 
potentiometric e-tongue, total and volatile acidity, pH, etha-
nol content, tartaric acid, sulfur dioxide, total polyphenols, 
and glycerol have been quantified in Italian wines with pre-
cision within 12% (Legin et al., 2003).

Two arrays of metalloporphyrins-based gas and liquid 
sensors were able to quantify the following parameters in a 
red wine: sugar, acidity, pH, tartaric, malic and lactic acids, 
polyphenols, antocyans, and ions (Ca, Mg, and K). Results 
demonstrate the capability of such systems to be trained ac-
cording to the behavior of a practical panel of tasters (Di 
Natale et al., 2000, 2004).

Porphyrin-based potentiometric sensors were used to 
detect alcohols in beverages (Lvova et al., 2006). This sys-
tem was also chosen for quantitative analysis of dry white 
wines of “Verdicchio” appellation. A satisfactory correla-
tion between results of wine analysis performed by certi-
fied methods and e-tongue response has been obtained 
for SO2, l-malic acid, and total phenols index (Verrelli 

et al., 2007a). A miniaturized version of this device identi-
fied wine defects caused by H2S, SO2, and acetic acid as 
markers in artificial wines (Verrelli et al., 2007b).

An e-tongue formed by potentiometric sensors with 
plasticized PVC and glass membranes was capable of de-
tecting the following components in Madeira wines (mean 
relative error in cross-validation is shown in the parenthe-
ses): tartaric (8%), citric (5%), formic (12%), protocatehuic 
(5%), vanillic (18%), and sinapic (14%) acids, catechin 
(6%), vanillin (12%), and trans-resveratrol (5%) (Rudnits-
kaya et al., 2010). Similarly, an e-tongue based on a poten-
tiometric platform was used to analyze 36 white wines from 
New Zealand, to assess the contents of free and total sulfur 
dioxide, total acidity, ethanol, pH, and some phenolics (Kir-
sanov et al., 2012). A multiparametric analyzer based on 
ISFET sensors was used to measure pH, calcium, and potas-
sium, necessary to control the tartaric stabilization of wines 
(Artigas et al., 2003). The combination of electrochemical 
microsensors and a colorimetric optofluidic system has 
been able to quantify several sample parameters of interest 
in wine quality control (Gutiérrez et al., 2010; Gutierrez-
Capitán et al., 2014).

Voltammetric and amperometric sensors are sensitive 
to the electroactive species present in the studied solution. 
This is particularly interesting for the analysis of wines be-
cause they contain a large number of compounds with redox 
activity. They include polyphenols, which are responsible 
of the antioxidant properties of wines, sugars (which have 
a reducing character), and other compounds such as sul-
fites, which are added to stabilize wines. For instance, an e-
tongue based metallic electrodes with a pulse voltammetry 
has been used to detect bisulfites (Labrador et al., 2009). 
When the sensing units are modified with electrocatalytic 
materials, the intensity of the signals increases, improving 
the sensitivity in this way (Arrieta et al., 2003).

Several papers have been published in which Spanish 
wines have been characterized by chemical analysis and us-
ing an e-tongue based on voltammetric electrodes modified 
with electrocatalytic materials. Correlations with 24 chemi-
cal parameters were established. The e-tongue was demon-
strated to be particularly useful to estimate the polyphenolic 
content of wines (measured as the total polyhenol index), 
with specific phenolic compounds (as measured by chro-
matography) with color parameters (measured by spectros-
copy) and acidity (pH or total acidity) (Apetrei et al., 2007; 
Parra et al., 2004; Prieto et al., 2011; Rodriguez-Mendez 
et al., 2014).

Other electrocatalytic modifiers such as ferrocene or 
nanoparticles have also been successfully incorporated in 
voltammetric sensors, and have been employed to estimate 
the antioxidant capacity of wines (Cetó et al., 2012, 2014a; 
Del Valle, 2010).

The accuracy of the predictions can be improved by includ-
ing biosensors in the array. The specificity enzyme-substrate  
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facilitates the assessment of parameters such as phenols 
(when including phenol oxidases), or sugars (when includ-
ing glucose oxidase or fructose dehydrogenase) (Gutierrez- 
Capitán et al., 2014). Several immobilization methods 
or electron mediators have been tested, but bioelectronic 
tongues are at the beginning of their development in the field 
of wines.

26.5 PREDICTION OF SCORES GIVEN BY 
A PANEL OF EXPERTS

One of the final goals in e-tongues is to find correlations be-
tween the electronic signals and the scores given by a panel 
of experts. This is a complex task, due to the complexity 
of human perceptions. The human gustatory sense detects 
substances with taste, and also perceives mouthfeel (astrin-
gency, heat, viscosity, etc.) that contributes to the percep-
tion as well. Unlike the human systems, e-tongues base 
their evaluations on the analysis of chemical compounds 
whatever they are taste or tasteless species. Thus, it is man-
datory to keep in mind that an absolute taste description is 
not possible from an e-tongue point of view.

In the field of wines, it is particularly difficult to es-
tablish correlations between the scores given by a panel 
and the output of e-tongues. First, wines are extremely 
complex mixtures; second, in many cases, the intensity of 
a perception is not correlated with the concentration of a 
certain compound. In addition, the scores given by a panel 
of  experts evaluate how pleasant is the flavor, but the per-
ception is not linearly related to a compound or a family of 
compounds. For instance, high scores in sourness are given 
to wines with an intermediate acid concentration (not high, 
not low). In other words, linear mathematical models are 
not the most appropriate models. In spite of the difficulties, 
several works have reported good correlations with sensory 
scores using PLS regression and potentiometric (Di Natale 
et al., 2004; Kirsanov et al., 2012; Legin et al., 2003), am-
perometric (Buratti et al., 2007), or voltammetric sensors 
(Cetó et al., 2015; Gay et al., 2010). Further research is 
needed in this field.

26.6 CONCLUSIONS AND  
FUTURE TRENDS

E-tongues based on different sensing principles (poten-
tiometry, voltammetry, etc.) can be a valuable tool to be 
used together with classical quality control techniques. 
During production, they could be used to carry out rou-
tine analysis, helping the oenologists to make key deci-
sions regarding harvesting, crushing, fermentation, type of 
barrel to be used for the aging, among many other deci-
sions. They could be used to control the quality of the end 
product but also by official organisms to detect frauds and 
illegal practices.

The absolute taste description is not possible from an 
e-tongue point of view, but they provide an objective re-
sponse that does not depend on physiological conditions or 
personal preferences; they do not show fatigue (as human 
taste testers do). So, e-tongues are valuable tools to com-
plement the information obtained by chemical or sensorial 
analysis.

Future strategies will include the design of arrays formed 
by new materials with improved selectivity, sensitivity, and 
catalytic properties. Advances in bioelectronic tongues are 
also expected, incorporating new enzymes or combinations 
of more than one active molecule and developing new im-
mobilization methods.

The most important advances in the performance of 
electrochemical sensors and biosensors will be linked to 
nanotechnology. Efforts have to be made to develop new 
nanostructured sensors while lowering the fabrication 
costs.

Efforts must also be made to introduce these instruments 
in cellars and in the list of recommended analytical tools 
 established by national and international commissions.
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27.1 INTRODUCTION

Olive oil is an extract from olive fruits. It is obtained by trit-
urating the olives and pressing of the paste produced. The 
juice obtained from the olive paste is a mixture of water 
and oil. This juice is unstable and when the two phases are 
separated, the oily phase results in virgin olive oil (VOO). 
When VOO is extracted from ripened and healthy olive 
fruits (Olea europaea L.) and suitably processed and stored, 
it shows a characteristic flavor that is highly appreciated by 
consumers (Gunstone, 2002).

Extra virgin olive oil (EVOO) is a natural oil, rich in 
vitamin E (a robust antioxidant), pigments (responsible 
with greenish or yellowish colors, chlorophylls and carot-
enoids), and polyphenols, which give stability, aroma, and 
taste of olive oils (Aparicio and Harwood, 2013). Pigments 
and polyphenols are healthy, beneficial compounds that are 
excellent protectors of cardiovascular vessels in the human 
body (Dai and Mumper, 2010). In conclusion, the olive oil 
is much more than one fat type because it is a complex of 
useful substances for human health.

27.1.1 Compounds Related to the  
Taste of Olive Oils

Olive oil contains a high proportion of triglycerides 
together with small amounts of free fatty acids, mono-
glycerides,  diglycerides, hydrocarbons, sterols, and phe-
nolic compounds. Minor compounds are very important 
for the stability, aroma, and taste of olive oil. In addi-
tion, quantitative analysis of these compounds is useful 
for authentication and detection of fraud and adulteration 
(Boskou, 2006).

Sensory assessment was introduced for the standard-
ization of the VOO market in 1970. In this regard, the ac-
ceptance of extra virgin olive oil by consumers has been 
often related to the flavor, which includes taste and odor. 
The main VOO taste attributes are bitterness, pungency, and 
astringency. These attributes are concerned with the pres-
ence of secondary metabolites from the class of phenolic 
compounds, which originate from those existing in the olive 
fruit. The composition related to the phenolic compounds 
from olive fruits are quantitatively and qualitatively differ-
ent depending on its cultivar, farming practices, water avail-
ability, temperature, etc. (Monteleone and Langstaff, 2014).

Phenolic compounds, as broad term, refer to a large 
number of compounds (more than 8000), widely dispersed 
throughout the plants. They are characterized by having at 
least one phenolic moiety, conjugated or not (Aparicio and 
Harwood, 2013).

Most of phenolic compounds are produced in plants as 
secondary metabolites via the shikimic acid pathway. The 
biosynthesis of phenolic compounds is catalyzed by phe-
nylalanine ammonia lyase and the substrate is phenylala-
nine, an aromatic amino acid.

Phenolic compounds are categorized into nine groups 
(Dey and Harborne, 1989):

l phenols, phenolic acids, phenylacetic acids
l lignans
l lignins
l flavonoids
l cinnamic acids, coumarins, isocoumarins, and  chromones
l tannins
l benzophenones, xanthones, and stilbenes
l quinones
l betacyanins.



278   PaRT | III Combined Nose and Tongue

Other phenolic compounds, based on the number and 
arrangement of their carbon atoms, are found in two catego-
ries (Crozier et al., 2006):

l flavonoids (flavonols, flavones, flavan-3-ols, anthocy-
anidins, flavanones, isoflavones and others)

l nonflavonoids (phenolic acids, hydroxycinnamates, stil-
benes, and others)

The polyphenol content differs from VOO to VOO. Wide 
ranges were reported in the literature (50–1000 mg/kg)  
but the values are usually between 100 and 300 mg/kg 
(Apetrei and Apetrei, 2013). The cultivar, the system of 
extraction, and the conditions of olive oil processing are 
critical factors for the content of polyphenols. Polyphenolic 
compounds are important for the flavor (taste and aroma) 
as well as the stability of olive oil. When polyphenolic con-
tent  exceeds 300 mg/kg, the VOO may have a bitter taste 
( Therios, 2009).

Phenolic compounds principally found in VOO are pre-
sented in Table 27.1.

Several phenolic acids such as vanillic, ferulic, syringic, 
cinnamic, protocatechuic, p-hydroxybenzoic, caffeic, p- and 
o-coumaric, and gallic acid were identified and quantified 
in VOO. In all cases, the quantities are lower than 1 mg/kg 
of VOO. Phenolic acids are associated with the color and 
the organoleptic attributes (flavor and astringency) of VOO 
(Bendini et al., 2007).

A direct relationship between polyphenols and olive 
oil pungency has been assessed. For instance, ligstroside 
aglycon is related to the burning sensation found in many 
VOOs. Some phenolic compounds are responsible for the 
tasting perception of bitterness. The intensity of bitter-
ness is related to the olive fruit varieties and the ripening 
stage. Polyphenols with a bitter taste are present in higher 
quantities in VOOs obtained from unripe fruits (Andrewes 
et al., 2003).

Among the many phenolic compounds, the oleosides 
(secoiridoides) are specificly for the Oleaceae family. With-
in Olea europea L. fruits, the main phenolic compounds 
are oleuropein, demethyl oleuropein (the acid derivative of 

TABLE 27.1 Phenolic Compounds in VOO

Class Compound Chemical Structure

Benzoic acids and 
 derivatives

3-Hydroxybenzoic acid

p- Hydroxybenzoic acid

3,4-Dihydroxybenzoic acid  
(protocatechuic acid)

2,5-Dihydroxybenzoic acid (gentisic acid)

Vanillic acid Gallic acid

Syringic acid
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Class Compound Chemical Structure

Cinnamic acids and 
derivatives

o-Coumaric acid

p-Coumaric acid

Cinnamic acid

Caffeic acid

Ferulic acid Sinapinic acid

Phenyl ethyl alcohols

Tyrosol [(p-hydroxyphenyl)ethanol] or p-HPEA Hydroxytyrosol [(3,4-dihydroxyphenyl)ethanol] or 3,4-DHPEA

Other phenolic acids 
and  derivatives

p-Hydroxyphenylacetic acid 3,4-Dihydroxyphenylacetic acid

4-Hydroxy-3-methoxyphenylacetic acid

(Continued)

TABLE 27.1 Phenolic Compounds in VOO (cont.)
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Class Compound Chemical Structure

3-(3,4-Dihydroxy-
phenyl)  propanoic 
acid

Dialdehydic forms of 
 secoiridoids

Decarboxymethyl oleuropein aglycon

Decarboxymethyl ligstroside aglycon
Secoiridoid aglycons

Oleuropein aglycon Ligstroside aglycon

Aldehydic form of oleuropein aglycon (R-OH) Aldehydic form ligstroside aglycon (R-H)
Secoiridoids

Oleuropein

Verbacoside

TABLE 27.1 Phenolic Compounds in VOO (cont.)
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oleuropein), ligstroside, and verbascoside (Vazquez-Martin 
et al., 2012).

Oleuropein belongs to the group of compounds named 
secoiridoids, which are present in high quantities in the 
plants from the family of Olearaceae. The presence of oleu-
ropein and its content are related to the ripening stage of 
the olive fruit. Moreover, oleuropein contributes to the bitter 
sensory perception (Kranz et al., 2010).

Secoiridoids of VOO in aglyconic forms originate 
from the corresponding glycosides found in olive fruits by 
hydrolysis. The process is biocatalyzed by b- glucosidases 
during crushing and malaxation of olives. The most 
abundant secoiridoids of VOO are the dialdehydic form 
of elenolic acid bonded to tyrosol or hydroxytyrosol and 
an isomer of the oleuropein aglycon (Table 27.1; Apetrei 
et al., 2004).

Class Compound Chemical Structure

Flavonols

(+)-Taxifolin

Flavones

Apigenin
(R1-OH, R2-H)

Luteolin
(R1-OH, R2-OH)

Lignans

(+)-Pinoresinol
(R = H)

(+)-1-Acetoxypinoresinol
(R = OCOCH3)

(+)-1-Hydroxypinoresinol
(R = OH)

Hydroxyisochromans

1-Phenyl-6,7-dihydroxyisochroman 
 (R1, R2-H)

1-(3’-Methoxy-4’-hydroxy)phenyl-6,7-dihydroxyisochroman
(R1-OH, R2-OCH3)

TABLE 27.1 Phenolic Compounds in VOO (cont.)
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27.1.2 Compounds Related to the  
aroma of Olive Oils

More than two hundred of compounds have been identified 
in the volatile fraction of VOOs. As reported in the litera-
ture, diverse volatile compounds exist in olive oil including 
hydrocarbons, alcohols, aldehydes, ketones, acids, esters, 
ethers, furan derivatives, thiophene derivatives, pyranones, 
thiols, and pyrazines.

From this huge number of volatile compounds, only 
some of them contribute to the flavor of virgin olive oils 
resulting in both positive and negative sensorial attributes.

The studies for determining the qualitative composition 
of odorants present in VOOs have demonstrated similar re-
sults. Meanwhile, the quantitative composition of aroma 
compounds has revealed high discrepancies among VOOs 
of different varieties (Guadarrama et al., 2000; Apetrei 
et al., 2010). VOO obtained in optimal conditions contains 
principally volatiles derived from linoleic and linolenic acid 
decomposition through the lipoxygenase pathway (Angero-
sa et al., 1999).

The most abundant compounds are hexanal, (E)-2- 
hexenal, (Z)-3-hexenal, hexan-1-ol, (Z)-3-hexen-1-ol, 
 hexyl-acetate, and (Z)-3-hexenyl acetate. In addition to 
these volatiles, auto-oxidation products of fatty acids (oleic, 
linoleic, and linolenic), mainly aldehydes and ketones, are 
present in VOO. Biochemical transformations of amino 
acids such as phenylalanine, isoleucine, or valine, provide 
alcohols, and esters that can potentially contribute to the 
aroma of olive oil (Clodoveo et al., 2014).

As found in Kalua et al. (2007) and Lanzotti and 
 Taglialatela-Scafati (2000), the following compounds pri-
marily contribute to basic flavor notes:

l green: (Z)-3-hexenal, (E)-2-hexenal, (E)-3-hexen-1-ol, 
(E)-2-hexen-1-ol, (Z)-3-hexen-1-ol

l fruity: ethyl 2-methylbutyrate, ethyl isobutyrate, ethyl 
cyclohexylcarboxylate, (E)-2- hexenal, hexyl acetate, 
(Z)-3-hexenyl acetate, ethyl 2-methylpropanoate

l fatty: heptanal, (E)-2-nonenal, (E)-2-octenal, (Z)-3-non-
enal, (E)-2-decenal

l blackcurrant: 4-methoxy-2-methyl-2-butanethiol
l grassy: hexanal, (Z)-3-hexen-1-ol
l soapy: nonanal, octanal
l deep fried: 2,4-decadienal
l sweet: phenyl acetaldehyde, hexyl acetate
l astringent-bitter: (E)-2-hexen-1-ol, (E)-2-hexenal

Numerous volatile compounds have been found in 
VOOs with poor quality. Some of these volatile compounds 
give rise to sensory defects when they are present at high 
levels. Acids, esters, alcohols, aldehydes, and ketones are 
mainly responsible for the most frequent off-flavors de-
veloped in VOO. The major contributors to the so-called 
fusty off-flavor are ethyl butanoate, propanoic, and butanoic 

acids. Also, 1-octen-3-ol and 1-octen-3-one are responsible 
for the mustiness-humidity VOO off-flavor, which is a char-
acteristic for the oils obtained from fruits piled under humid 
conditions for several days, giving rise to the development 
of various kinds of fungi (Tanouti et al., 2012).

The main volatiles producing the rancid off-flavor are 
aldehydes, which are the decomposition products of linole-
nic, linoleic, and oleic acid hydroperoxides. Also, the chief 
odorants that contribute to the winey-vinegary off-flavor are 
acetic acid, 3-methylbutan-1-ol, and ethyl acetate (Morales 
et al., 1997).

The phenolic composition is not exclusively circum-
scribed to express the taste sensory descriptors since certain 
volatile phenolic compounds (guaiacol, 4-ethylguaiacol, 
4-ethylphenol, 4-vinylguaiacol, 4-vinyl phenol) are associ-
ated with fusty and musty undesirable odors (Moran and 
Rajah, 1994).

27.2 ELECTRONIC NOSES aND 
ELECTRONIC TONGUES EMPLOYED  
IN OLIVE OILS

Many efforts were carried out to develop instrumental meth-
ods capable of determining the components responsible for 
the flavor of olive oils and to remove the subjectivity and 
other disadvantages coming from the sensory evaluation 
by human sensory panels. Generally, volatile compounds 
are determined by gas chromatography–mass spectrometry 
(GC–MS) (Angerosa et al., 1995; Kesen et al., 2013).

In recent years, significant efforts have been devoted to 
the development of the electronic nose and the electronic 
tongue as fast, efficient, and reliable testing methods mim-
icking the human sense of olfaction and of taste.

The electronic nose consists of an array of gas sen-
sors with different selectivity, a signal collecting unit, 
and suitable pattern recognition software (Gardner and 
Bartlett, 1999). These systems are also called olfaction in-
struments, capable of discriminating among a wide variety 
of simple and complex odors.

Electronic tongues are defined as sensors arrays capable 
of distinguishing among very similar liquids employing the 
concept of global selectivity, where the response of sensors 
provides a fingerprint for the analyzed sample. Data acquisi-
tion systems and appropriate multivariate data analyses are 
also included in e-tongue technology (Vlasov et al., 2005).

The heart of any electronic nose or electronic tongue is 
the sensor array. Selection of sensor technology relies on 
many factors related to the nature of the analyte, the nature 
of the sample evaluation, and the condition of the analysis.

All types of sensors interact with the gas to be measured 
when volatile compounds flow over the sensor. In the case 
of the electronic tongue, the sensors are immersed in the 
liquid sample and the interaction take place at the interface 
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of the solid–liquid. Due to these interactions, some physical 
and chemical properties of the sensitive layer are modified.

A wide variety of gas sensors are currently used for the 
development of electronic noses based on different mate-
rials (conducting polymers, metal oxides, metal-insulator 
semiconductor field effect transistors, etc.) and detection 
principles (piezoelectric, electrochemical, optical, calo-
rimetric sensors, etc.). The sensors that are used to detect 
the molecules of chemicals are based on the measure-
ment principles such as electrical, thermal, optical, and 
mass changes. In recent years, novel technologies such 
as mass spectrometry and ion mobility spectrometry have 
been introduced in the field of electronic nose as given in 
 Table 27.2 (Patel, 2014).

The sensors used for construction of electronic 
tongues work based on several principles, including 
mass detection, optical transduction, or electrochemis-
try (Baldwin et al., 2011; Pearce et al., 2003; Smyth and 
 Cozzolino, 2013).

Among the various principles of detection, electro-
chemical techniques (potentiometry, voltammetry) and im-
pedance spectroscopy are the most widely used approaches. 
The sensitive materials used for development of the sen-
sors are very different including phthalocyanine, conduct-
ing polymers, metals, plasticized polyvinyl chloride (PVC) 
containing lipid membranes, and chalcogenide glasses.

Special attention is paid to the deposition of sensi-
tive material onto solid substrate because the sensitivity 
is related to morphology of surface. Sensitive materials 
were included on/onto sensor sensitive element by differ-
ent methods such as carbon paste, thin films (produced by 
layer-by-layer technique, Langmuir–Blodgett technique, 
electrochemical deposition, etc.), and membranes (Ape-
trei, 2012; Apetrei and Apetrei, 2013; Cetó et al., 2014; 
Gutiérrez-Capitán et al., 2013; Riul et al., 2010).

The concept of the electronic tongue was extended by 
using biosensors capable of molecular recognition, with 

different applications. These systems were called bioelec-
tronic tongues (Zeravik et al., 2009).

The electronic nose and the electronic tongue are widely 
used for analysis of VOOs, as well as for monitoring flavor 
(taste and odor) changes (Apetrei, 2012; Apetrei and Ape-
trei, 2013; Cetó et al., 2014; Gutiérrez-Capitán et al., 2013; 
Riul et al., 2010; Zeravik et al., 2009).

Use of fusion technology between the electronic nose 
and the electronic tongue could enhance the capability and 
improve the quality of information about VOO samples un-
der study. Fig. 27.1 illustrates the block diagram of the fu-
sion system. The integration of the electronic nose and the 
electronic tongue in a system is possible and the principal 
drawback is the different time required for measurements, 
with the analysis with the electronic nose being slower.

The fusion of data obtained can be followed by the data 
analysis. Usually, the data analysis includes reduction of di-
mensionality (by principal component analysis), discrimi-
nation, and classification (by discriminant analysis, partial 
least squares discriminant analysis, soft independent mod-
eling of class analogy, etc.), and multivariate correlations 
(partial least squares correlation, partial least square regres-
sion, etc.) (Brereton, 2007).

27.3 FUSION OF ELECTRONIC NOSES 
aND ELECTRONIC TONGUES IN THE 
aNaLYSIS OF OLIVE OILS

Smell and taste are two different sensing systems but most 
of the time, an interaction between both systems takes place 
to provide the perception of flavor. Hornung and Enns 
(1986) suggested that “although the smell and taste interact 
with one another to a great extent, we probably do not taste 
anything that has not been influenced the olfactory sense.” 
In contrast, the smell sensation affects the olfactory system, 
but to a lesser amount. Perception of flavor is influenced 

TABLE 27.2 Principle, Magnitude, and Type of Sensors Used for Electronic Nose

Detection Principle Magnitude Sensor Sensitive Material

Conductometric Resistance/conductance Metal oxide gas sensor (SnO2, GaO)

Potentiometric Voltage Ion selective field-effect transistor Catalytic metals

Capacitive Capacitance/charge Humidity sensor Polymeric materials

Amperometric Current Electrochemical cell Solid or liquid electrolytes

Calorimetric Heat/temperature Pellistor gas sensor Catalyst-loaded ceramic

Gravimetric Mass change (frequency shift) Piezoelectric or surface acoustic 
wave (SAW) sensors

Organic or inorganic film layers

Optical Pathlength/absorption UV-Vis, infrared detector Organic dyes

Resonant Frequency Surface plasmon

Fluorescent Intensity Fiber optic Fluorescent-light emission material
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by all the other senses, producing an enormous information 
flow, which is needed to be processed.

The collection of data that comes from diverse sensors 
creates complementary description about the product. In-
tegration of information resulting from different analyti-
cal tools is called data fusion, which includes processing 
huge multivariate signals with different origins (Ouyang 
et al., 2014). This idea has attracted much interest around 
the world to consider for olive oil authentication. Among 
the diverse analytical techniques applied to olive oil au-
thentication in the last decade, fusion of electronic tongue 
and electronic nose as two kinds of fast, noninvasive, non-
destructive, and reliable approaches has been widely used. 
In the literature, data fusion of numerous methods such as 
spectroscopy, image analysis, electronic nose, electronic 
tongue, chemical analysis, ultrasound, and other analytical 
methods for many kinds of foods and specifically for ol-
ive oil authentication have been reported (Reid et al., 2006; 
Ghasemi-Varnamkhasti et al., 2010; Cole et al., 2011; Ca-
sale et al., 2012; Peris and Escuder-Gilabert, 2013; Ouyang 
et al., 2014; Haddi et al., 2014).

Chemosensors systems such as electronic noses and 
electronic tongues have grown in interest and application 
over the last decades in parallel with the implementation of 
the chemometrics tools.

Recently, there have been attempts for fusion of elec-
tronic noses and electronic tongues in order to achieve the 
improved classifications for olive oil. An electronic nose 
and electronic tongue fusion system was found to notice-
ably enhance classification properties. It can be expected 
that the fusion of electronic tongue and electronic nose 
is useful, mainly for such measurement circumstances in 
which the changes are important in both the liquid and gas 
phases. Fusion of electronic nose and electronic tongue to 
olive oil analysis is the focus of this chapter; it is worth 

mentioning there are few reports on the fusion of electronic 
nose and electronic tongue for the olive oil authentication 
and characterization.

Di Natale et al. (2001) designed and developed a fusion 
data system in order to define the olive oil characteristics. 
They emphasized that due to the complex nature of olive 
oil, data fusion of different sensors would lead to better 
evaluation of this product.

Since olive oil has a complex nature, the use of just elec-
tronic tongue or electronic nose data in many applications 
can be inadequate. Olive oil quality as one of the most im-
portant edible oils around the world has been considered 
by fusion of e-noses and tongues. In a study, an electronic 
nose and electronic tongue fusion system coupled with 
multivariate techniques have been successfully employed 
to  recognize the geographical origin and the distinctive-
ness of specific extra virgin olive oils (Cosio et al., 2006). 
Experiments were performed with a commercial electronic 
nose that consisted of three parts: an automatic sampling 
apparatus, a detector unit including the array of sensors, and 
software (Senstool) for data recording and processing. The 
automatic sampling system provides a carousel of 12 sites 
for loading the samples and allows controlling the internal 
temperature. Twenty-two different sensors were included 
in the sensor array: 10 sensors were metal oxide semi-
conductor field effect transistors (MOSFET) and 12 were 
 Taguchi type sensors (metal oxide semiconductors—MOS). 
Also, the electronic tongue system was developed based on 
the flow injection analysis (FIA) with two amperometric 
 detectors. The detection units of the electronic tongue con-
sisted of a reference (Ag/AgCl saturated) electrode, a work-
ing electrode (a dual and a single glassy carbon electrode, 
respectively), and a platinum counter electrode. In the 
flow system developed, a carrier solution is continuously 
pumped through the amperometric detectors and the olive 

FIGURE 27.1 The block diagram of the fusion between the electronic nose and the electronic tongue.



Olive Oil and Combined Electronic Nose and Tongue    Chapter | 27    285

oil samples are then injected into the flow stream. Ampero-
metric detectors present in the system provide the oxidation 
of electroactive compounds at the working electrode, while 
a constant potential is applied. They concluded that the fu-
sion system could show a reliable recognition device for the 
classification of the geographical origin of extra virgin olive 
oils from a restricted area. The classification model devel-
oped by the selected electronic nose sensors seems more re-
liable than the model developed with all the variables, both 
for cross-validation and test results. Based on their results, 
the classification model built with the electronic tongue 
sensors provides suitable results, but its prediction capabili-
ties are worse than those of the electronic nose.

In another study on olive oil, Cosio et al. (2007) tried to 
find the feasibility of the classification of olive oil samples 
stored in different conditions and periods using the elec-
tronic nose and electronic tongue fusion system combined 
with chemometrics tools. Chemical parameters and elec-
tronic tongue data were not correlated in the linear discrimi-
nant analysis model. Indeed, it was revealed that classifica-
tion accuracy is preserved by removing chemical analysis 
and electronic tongue sensors leading to more applicable 
model. According to the results reported, the electronic 
nose data was used to build the final classification model. 
The model could describe the olive oil storage conditions 
and show simple and fast classification tool. The authors 
found the fusion system to be promising in olive oil indus-
try applications.

The first work on the fusion of three senses (taste, odor, 
and vision) to olive oil characterization was reported by 
Apetrei et al. (2010), who conducted a work to recognize 
the organoleptic characteristics of 25 extra virgin olive oils 
from different varieties and with different bitterness degree. 
For this purpose, an electronic panel comprising an elec-
tronic eye, an electronic nose, and an electronic tongue was 
developed. In the case of the electronic eye, the transmit-
tance spectra were recorded using a series of light-emitting 
diodes (LEDs) covering the range from 780 to 380 nm and 
for the electronic tongue measurements from carbon paste 
electrodes modified with olive oils were fabricated, while 
13 MOS-based sensors were selected and introduced in 
sensor chamber. As performed in experimental protocol, 
2 g of the olive oil sample were placed in 10 mL vials. 
Then, the vials were thermostated at 40°C during 15 min 
in slow agitation, followed by an equilibrium stabilization 
step of 10 min. A representative sample of the headspace 
was collected using an automatic system and injected into 
the sensor chamber using a carrier gas flow (synthetic air 
at 100 mL/min). The sensor chamber was maintained at a 
constant temperature (50°C) and under a constant flow of 
synthetic air. The resistance changes were recorded using a 
data acquisition card. The data obtained from the electronic 
nose, the electronic tongue, and the electronic eye were then 
fused and analyzed. According to the report, individual data 

did not show good results, but after data fusion, satisfac-
tory characterization was found among the VOO samples. 
Fig. 27.2 shows the responses of individual systems toward 
some VOO samples and some results of data analysis.

Fusion of the electronic nose, the electronic tongue, and 
the electronic eye was later performed to analyze other food 
products (Ouyang et al., 2014).

In another research effort, a low-cost electronic nose was 
fused with a simple electronic tongue system to  recognize 
the five virgin olive oils from different geographical areas 
of Morocco (Haddi et al., 2013). The electrochemical ex-
periments were accomplished in a usual electrochemical 
cell comprising a three-electrode system and an electronic 
nose including a 5 MOS sensor array was used. The sig-
nals and voltammograms were recorded as illustrated in 
Fig. 27.3.

The data of both electronic systems were extracted and 
then fused. A nonlinear chemometric technique called the 
support vector machine (SVM) was addressed for data 
analysis. As mentioned in their report because of the rela-
tively small number of measurements, leave-one-out cross- 
validation approaches were implemented to estimate the 
true success rate that could be achieved with the SVMs. The 
results showed satisfactory distinct classification.

27.4 FUTURE TRENDS aND PERSPECTIVE

Electronic tongues and noses are generally comprised 
of a few to tens of sensors. Reducing the number of the 
sensors and relevant methods have been underscored ear-
lier (Ciosek et al., 2004). By reduction of the irrespective 
variables, the sensor array can improve the discrimina-
tion capability among different groups of the samples. 
Quantitative arrangement of recognition capability of the 
array before and after reducing of number of the sensors 
is necessary to carry out further classification tasks. This 
approach should be addressed in future studies and the re-
sults could be used in any fusion of electronic noses and 
tongues to characterize the quality of olive oils with high 
success rates.

Application of electronic noses and tongues are very 
helpful in the olive oil industry. Nevertheless, the detection 
capability of the sensors primarily is influenced by adsorb-
ability or catalysis of those sensitive materials to particu-
lar odors and ions. Although important achievements have 
been reported, this approach still has restrictions in sensitiv-
ity and specificity, in comparison with the biology binding 
of specific odorants and tastants to the olfactory and taste 
receptor cells (Pearce, 1997). Thus, the study of fusion of 
the olfactory and taste is still at an early stage. Only a few 
kinds of electronic nose and electronic tongue fusion sys-
tems are in commercial use. For that reason, the research on 
fusion of artificial olfactory and taste systems is still very 
important for the future development.
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Online fusion of electronic nose and electronic tongue 
can play a key role in the automation of olive oil quality 
evaluation and control. In the near future when the basic 
challenges of the fusion sensors have been solved, we will 
see more online electronic nose and electronic tongue fu-
sion systems in the olive oil industry. For each applica-
tion, however, technical problems have to be rectified for 
implementation of online fusion systems. Because, in some 

cases, electronic nose and electronic tongue fusion systems 
cannot get complete information on the olive oil quality in-
dicators, a combination of different approaches may pro-
vide a robust method of olive authentication. In this regard, 
richer information is obtained to augment the capability of 
the system. Thus, the electronic nose and electronic tongue 
fusion system coupled with innovative instruments would 
probably provide an effective method to olive oil quality 

FIGURE 27.2 (a) Electronic spectra of Picual samples P1 and P2; (b) Sensor array response in the presence of aromas of the sample A5; (c) Square-
wave voltammetric curves (forward scan) of sensors modified with Picual samples P1 (•–•–•), P2 (- ••-•• -), P3 (—), and P4 (- - -) immersed in aqueous 
solution 0.1 mol/L KCl; (d) PLS-DA scores plot of data fusion corresponding to the classification of oil according their olive variety; (e) Coomans plot 
from SIMCA classification. The classes modeled are oil belonging to Hojiblanca and Arbequina. The solid lines accounts for the 95% probability bound-
aries; “o” test samples, Picual; “+” model samples, Arbequina; “×” model samples, Hojiblanca.
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authentication (Ghasemi-Varnamkhasti et al., 2010). More 
recently, an innovative and emerging type of electronic nose 
and tongue, that is, a bioelectronic nose and a bioelectronic 
tongue, were introduced in which biosensors as sensing ele-
ments are employed (Ghasemi-Varnamkhasti et al., 2011).

A novel kind of an electronic nose called an electronic 
mucosa that tries to mimic nasal chromatograph effect 

with more useful information content in such a way that 
a higher level of recognition compared with the existing 
electronic nose systems could be developed. A typical 
electronic mucosa as an innovative instrument is shown 
in Fig. 27.4, in which three large arrays of sensors with 
a two retentive columns have been combined (Che Harun 
et al., 2009).

FIGURE 27.3 Dual-column concept with large sensor arrays OV-1, nonpolar stationary phase; CB-20M, Carbowax, a polar stationary phase. 
(With kind permission from Che Harun et al., 2009.)

FIGURE 27.4 (a) Time responses of the electronic nose used with an array of five TGS (815, 822, 824, 825, 842) sensors toward exposures to the VOO 
volatiles; (b) Cyclic voltammograms obtained by electronic tongue used with the four electrodes; ITO, indium tin oxide; Pt, platinum; Au, gold; GC, 
glassy carbon. (With kind permission from Haddi et al., 2013.)
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In e-mucosa, all sensors give spatial information as 
done in a regular electronic nose, but with many sensors. 
The second and third arrays give other temporal profiles, 
which are different from each other and the first array 
(Ghasemi-Varnamkhasti and Aghbashlo, 2014). In elec-
tronic mucosa, when an odor signal passes through down 
a microchannel, an absorbent coating provides a delay akin 
to the work of the mucous layer in the nasal cavity. This 
absorbent material selectively does a delay in the odor sig-
nal, consequently, the generation of an odor/coating certain 
time delay. It is worth noting that the partitioning impact 
is to some extent such as a traditional gas. Until now, no 
application of electronic mucosa has been reported to ol-
ive oil analysis applications. This device can be addressed 
for olive oil quality assurance and control to provide more 
effective information on the oil quality indicators. Data fu-
sion as an advanced approach can also be considered to get 
more complete and accurate information compared with 
individual sources of data (Aghbashlo et al., 2014). How-
ever, advanced chemometric tools should be included in 
the system to analyze the data gathered (Brereton, 2007; 
Otto, 2007). Such an idea might be practical in olive oil 
industries in the near future.
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Chapter 28

Alcoholic Fermentation Using Electronic 
Nose and Electronic Tongue
Susanna Buratti, Simona Benedetti
Department of Food, Environmental and Nutritional Science, University of Milan, Milan, Italy

28.1 INTRODUCTION

Fermentation is one of the oldest preservative technologies 
with the aim to ensure that food is maintained at an accept-
able level of quality from the time of manufacture to the 
time of consumption. Fermentation, as a food preservation 
technique, can be traced back to thousands of years ago. It is 
thought that the art of cheese making was developed as far 
back as 8000 years ago between Tigris and the Euphrates 
rivers in Iraq (Fox, 1993). Alcoholic fermentation involved 
in winemaking and brewing developed during the period 
2000–4000 BC by the Egyptians and Sumerians.

Food fermentation has four main purposes: the develop-
ment of a diversity of flavors, aromas, and textures in food 
substrates; the preservation of food through the develop-
ment of lactic acid, alcohol, and acetic acid; the biologi-
cal enrichment of food with proteins, essential amino acids, 
and vitamins; and the elimination of antinutrients.

Alcoholic fermentation is a complex biochemical pro-
cess involving interactions between yeasts, bacteria, and 
fungi. During the alcoholic fermentation yeasts utilize sug-
ars (glucose and fructose) and other constituents as sub-
strates for their growth, converting these to ethanol, carbon 
dioxide, and other metabolic byproducts that contribute to 
the chemical composition and sensory quality of the fer-
mented foodstuffs (Graham and Gilliam, 1993). Alcoholic 
fermentation is the basis for the manufacturing of alcoholic 
beverages such as wine and beer.

Wine is a natural product resulting from a number of 
biochemical reactions, which begin during ripening of the 
grapes and continue during harvesting, alcoholic fermenta-
tion, clarification, and bottling. Many of these reactions are 
due to a large variety of molds, bacteria, and yeasts present 
on grapes’ surface (Torija et al., 2001).

Apart from the principal wine yeast, Saccharomyces 
cerevisiae, spontaneous alcoholic fermentation is a com-
plex process carried out by the sequential action of different 

yeast genera and species, found on the grapes, in the must, 
and in the wine (Heard and Fleet, 1988).

Beer is the most popular alcoholic beverage, and 
 probably one of the oldest manufactured by humans. The 
brewing process is based on the fermentation of starch, 
commonly derived from cereal grain such as barley, wheat, 
maize, and rice, in part malted. Most beers are flavored 
with hop ( Humulus lupulus), which adds bitterness and 
aroma also acting as a natural preservative (De Keukeleire 
et al., 1992; Tanimura and Mattes, 1993).

The byproducts of fermentation are aromas and flavors, 
whose evaluation is very important since they determine 
the quality of alcoholic beverages, positively or negatively 
affecting their sensorial properties. The flavor of alcoholic 
beverages is composed by a very large number of com-
pounds; more than 1000 volatile compounds have been 
identified and most of them are produced by yeasts during 
fermentation (Nykänen, 1986).

Wine flavor includes compounds originating from the 
grapes (varietal flavor), compounds formed during the ex-
traction and conditioning of must (prefermentative flavor), 
other compounds produced by yeasts and bacteria during 
alcoholic and malolactic fermentation (fermentative flavor), 
and compounds produced during the aging process (postfer-
mentative flavor), as reviewed by Schreier (1979), Boulton 
et al. (1995), and Rapp (1998). Volatiles identified in wine 
are usually dominated by the main fermentation products: 
ethanol and carbon dioxide, which contribute little to wine 
flavor, conversely organic acids, higher alcohols, esters, and 
to a lesser extent acetaldehyde constitute the main group 
of compounds that form the “fermentation bouquet” (Rapp 
and Versini, 1991).

In a highly competitive market, wineries and brewers 
need to invest more in technology to increase productivity 
and to optimize product quality. Control of fermentation 
is generally considered as a prerequisite to determine the 
quality of alcoholic beverages; in this context, fermentation 
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monitoring is a growing need, which calls for fast methods 
providing real-time information in order to assure an effec-
tive control at all stages of the process.

Online fermentation monitoring is a promising method 
for improving fermentation control because it is much more 
accurate than manual measurements and it makes pos-
sible new control strategies in which the operative condi-
tions are adapted to the fermentation proceeding. Several 
methods for online fermentation monitoring have been pro-
posed: density measurement (El-Haloui et al., 1988), etha-
nol concentration (Warriner et al., 2002), and CO2 produced 
(Corrieu et al., 1997). Some authors have tried to develop 
methods for measuring specific fermentation products us-
ing biosensors (Mello and Kubota, 2002; Mao et al., 2008). 
Others have investigated the feasibility of simultaneous 
monitoring of several products by Fourier transform–infra-
red spectroscopy (FT–IR) (Zeaiter et al., 2006).

One of the most promising directions for the develop-
ment of rapid, low-cost, and nondestructive methods is the 

application of sensor systems, whose speed and online capa-
bilities meet the demand of automation and continuous pro-
cess control. Electronic nose (e-nose) and electronic tongue  
(e-tongue) are technological attempts to mimic the  function 
of human senses. Both devices consist of a chemical sen-
sor array coupled with an appropriate pattern recognition 
system able to interpret complex signals from sensors and 
produce a fingerprint of the product. The strength of both 
devices include their high sensitivity and that they are easy 
to use. Many applications of e-nose and e-tongue to moni-
tor the fermentation processes have been published; some 
of them are interesting reviews (Escuder-Gilabert and 
Peris, 2010; Peris and Escuder-Gilabert, 2013; Rudnitskaya 
and Legin, 2008). One in particular describes the applica-
tion of an e-nose in brewery for beer quality assessment 
(Ghasemi-Varnamkhasti et al., 2011). Some works reported 
in literature concern the application of the e-nose and the 
e-tongue to alcoholic fermentation monitoring. The main 
features of these applications are reported in Table 28.1.

TABLE 28.1 Main Application of E-Nose and E-Tongue in Alcoholic Fermentation Monitoring

Samples Aim Sampling Sensors Data Analysis References

E-nose Wine-must Monitoring of aroma 
during fermentation

Online–Offline 32 CPs (A32S 
AromaScan)

PCA Pinheiro et al. 
(2002)

Process control in wine 
fermentation

Offline 6 Taguchi sensors by 
Figaro

PCA Maciejewska 
et al. (2006)

Discrimination of 
partially fermented 
wines

Offline 8 QMB PCA Garcia-Martinez 
et al. (2011)

Quantification of 
alcohol during red 
wine fermentation

Offline 10 MOS PCR and PLSR Zhang et al. 
(2012)

E-nose development 
for fermentation 
monitoring

Offline 2 MOS—1 electrolyte 
sensor (Wi-Nose)

ANN Linehan et al. 
(2010)

Wine spoilage caused 
by Brettanomyces

Offline MS (Hewlett Packard) PCA, PLS, and 
SLDA

Cynkar et al. 
(2007)

Comparison of e-nose 
and MS e-nose for 
Brettanomyces spoilage

Offline MS (Hewlett Packard) 
and 12 MOS (Fox 
3000)

PLS Berna et al. 
(2008)

Synthetic 
media 
containing 
S. cerevisiae

Monitoring of 
physiological changes 
in fermentation 
processes

Online 4 MOS and 10 
MOSFET

ANN and PLS Bachinger and 
Mandenius 
(2001)

Identification of two 
strains along alcoholic 
fermentation

Online 18 MOS (Fox 4000) PCA and DFA Calderon-
Santoyo et al. 
(2010)

Beer Monitoring of draft beer 
fermentation process

Offline 7 MOS PCA Phechakul and 
Sutthinet (2014)

E-tongue Beer Monitoring of beer 
fermentation

Offline 10 Potentiometric and 
3 voltammetric sensors

PLS–DA and 
MLR

Kutyla-Olesiuk 
et al. (2012)

E-nose and 
E-tongue

Wine-must Monitoring of wine-must 
fermentation

Offline EDU/10 MOS (PEN2), 
lipidic sensor (SA 402B)

PCA Buratti et al. 
(2011)



Alcoholic Fermentation Using Electronic Nose and Electronic Tongue   Chapter | 28    293

28.2 E-NOSE APPLICATIONS

Several works reported in Table 28.1 concern the application 
of the e-nose to the monitoring of flavor and aroma com-
pounds produced during the alcoholic fermentation process; 
as can be observed, electrochemical sensors, mainly metal 
oxide semiconductor (MOS), metal oxide semiconductor 
field-effect transistor (MOSFET), and conducting polymers 
(CPs), are the most used. Additionally, the mass spectrom-
etry (MS) based e-nose has been used in this research area. 
Regarding the data processing, classical statistical methods 
such as principal component analysis (PCA), artificial neu-
ral network (ANN), and partial least square (PLS) regres-
sion are widely used.

Pinheiro et al. (2002) studied the aroma production dur-
ing wine-must fermentation by means of a commercially 
available e-nose with an array of 32 organic CPs sensors. 
This work discussed the e-nose feasibility for the online 
and real-time monitoring of the muscatel aroma evolution 
during fermentation. The authors demonstrated that with-
out sample pretreatment the e-nose could only perceive the 
ethanol production. By a selective enrichment step using or-
ganophilic pervaporation, the e-nose was able to detect the 
aroma compounds even in presence of ethanol, making it 
possible to discriminate between samples according to their 
aromatic fingerprint.

A similar work was performed on Tokaj wine fermenta-
tion monitored with gas sensor measurements, traditional 
instrumental methods, and human sensory evaluation (Ma-
ciejewska et al., 2006). Gas sensor measurements were per-
formed with a homemade device consisting of 6 Taguchi  
gas sensors. The collected data were processed with PCA 
and the first principal component (PC1) scores were found 
highly correlated with alcohol content, volatile acidity, and to  
a less extent with ethylacetate concentration in fermented 
medium. Additionally, the PC1 scores strongly correlated 
with human sensory assessment of odor and flavor pro-
duced during wine fermentation. Therefore, the potential of 
gas sensor array for providing useful information for wine 
fermentation control was pointed out.

An interesting contribution (Garcia-Martinez et al., 2011) 
deals with the discrimination of partially fermented sweet 
wines by means of gas chromatographic (GC) and e-nose 
analyses. The e-nose was developed and assembled at the 
University of Tor Vergata (Rome) and the array was com-
posed of 8 quartz microbalances (QMBs) sensors. Fermen-
tation tests were conducted with two S. cerevisiae strains 
selected for their tolerance to high osmotic pressures and 
ethanol concentration. PCA applied to e-nose data allowed 
the discrimination between fermented and unfermented 
musts, but the discrimination between wines obtained by 
the two selected S. cerevisiae strains was not possible. PCA 
applied to GC data showed a clear discrimination between 
wines produced by the two yeast strains when 2,3-butane-
diol and glycerol were removed from the PCA elaboration.

Near infrared (NIR) spectroscopy and e-nose were used 
to predict the alcohol production during red wine fermen-
tation (Zhang et al., 2012). Calibration models were de-
veloped between instrumental data and chemical analyses 
using the principal component regression (PCR) and the 
partial least squares regression (PLSR). Good correlations 
(r > 0.99) were obtained for both the models developed on 
NIR and e-nose data. Combining NIR and e-nose, the model 
can be optimized and the prediction accuracy improved. Al-
though the measurements were carried out in offline mode, 
this study demonstrated that NIR spectroscopy and e-nose 
can be used as online, fast, and nondestructive techniques to 
provide in-time information about the fermentation process 
and to assure the quality of final products.

Linehan et al. (2010) developed an e-nose, called Wi-
Nose, to provide the wine industry with a lightweight, com-
pact, and accurate sensing device for wine fermentation 
monitoring. The sensor array was composed of 3 sensors:  
2 MOS sensors for the detection of ethanol and 1 electro-
lyte sensor for the detection of carbon dioxide. Wi-Nose 
was successfully designed to examine the fermentation 
with the help of ANN. The goal was to train the neural net-
work to classify the fermentation in three stages: the first 
stage or aerobic fermentation, the second stage or anaerobic 
fermentation, and the third stage or malolactic fermenta-
tion. The best training resulted in an accuracy of 100% for 
all stages.

During the fermentation process, unpleasant taints 
are produced by Brettanomyces yeasts spoilage. The two 
 components of the taint are 4-ethylphenol (4EP) and 4-eth-
ylguaiacol (4EG). Typically, the taints are described as 
“barnyard,” “sweaty saddle,” and “Band-aid,” when pres-
ent in the red wine at concentration of several hundred mi-
crograms per liter. The existing procedure to evaluate the 
spoilage due to Brettonomyces are time consuming and ex-
pensive, so there is a need for a rapid and low-cost screen-
ing method to monitor this type of spoilage. In this way 
Cynkar et al. (2007) used a MS-based e-nose to monitor 
the Brettanomyces spoilage in 213 Australian red wines. 
The MS e-nose data elaborated by chemometric meth-
ods, such as PCA, PLS, and stepwise linear discriminant 
analysis (SLDA) resulted in an acceptable discrimination 
between spoiled and unspoiled wines. Furthermore, Berna 
et al. (2008) compared the performance of two techniques, 
the MOS sensors based e-nose and the MS e-nose, for the 
prediction of Brettanomyces spoilage on 46 Australian red 
wines purchased from retail outlets. GC–MS was used for 
quantification and prediction purposes. Following ethanol 
removal and solid-phase microextration (SPME) sample 
handling, the detection limits of MOS e-nose were 44 mg/L 
for 4EP and 98 mg/L for 4EG; these values were signifi-
cantly lower than the human sensory thresholds. PLS re-
gression of e-nose data against known levels of 4EP and 
4EG showed that MOS e-nose was unable to identify 
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Brettanomyces spoilage reliably because of the response of 
MOS sensors to inter-sample variation in VOCs other than 
4EP and 4EG. The MS e-nose performed significantly bet-
ter than the MOS e-nose in quantifying ethylphenols, and 
its performance is acceptable for concentrations of 4EP 
higher than 20 mg/L. Correlation coefficients (r) of 0.97 
and 0.98 were obtained between concentrations of 4EP and 
4EG estimated by MS e-nose and by conventional GC–MS.

Bachinger and Mandenius (2001) presented an online 
approach for noninvasive monitoring of physiological 
changes in fermentation processes using an e-nose equipped 
with 10 MOSFET sensors, 4 MOS sensors, and 1 infrared 
(IR) sensor measuring CO2 concentration. The responses of 
gas sensors in monitoring the composition of the bioreactor 
headspace produced by two different cultures (S. cerevisiae 
and Escherichia coli) are used to obtain a semiquantitative 
representation of the physiological state of the cultures. 
E-nose data showed that physiological variables such as 
growth rate, substrate uptake, and product formation can 
be monitored. Because of the semiquantitative nature of the 
approach, the method is not suited for process development 
purposes. However, the possibilities of an online and non-
destructive measurement procedure make it a simple and 
fast method for the monitoring of industrial bioprocesses.

A commercially available e-nose composed with 8 
MOS sensors was tested to monitor alcoholic fermentation 
of two S. cerevisiae strains (ICV-K1 and T306), well known 
for their use in enology (Calderon-Santoyo et al., 2010). 
Samples were dealcoholized by a patented back-flush tech-
nique (Ragazzo-Sanchez et al., 2004), and the e-nose was 
applied to investigate online alcoholic fermentation and to 
discriminate the two different yeasts. The two strains were 
characterized by a very similar tendency in biomass or etha-
nol production during fermentation. The e-nose was able to 
establish a kinetic of the aroma production that can be as-
sociated with the fermentation phases. The PCA of e-nose 
responses appeared to be mainly influenced by fermenta-
tion phases. In particular, the PCA score plot showed three 
different clusters: the first one is composed by the measure-
ments carried out during the lag and fast growth phases, 
the second was attributed to the main aroma compounds re-
lease stage, and the third one was related to the progressive 
deceleration phase. After a specific data treatment limiting 
the influence of time, discriminant factorial analysis (DFA) 
was carried out on normalized data and was able to clearly 
identify differences between the two yeast strains and the 
overall performance achieved was 83.5%.

Finally, Phechakul and Sutthinet (2014) monitored beer 
fermentation by an e-nose composed of 7 MOS sensors. 
The fermentation process of Thailand’s commercial draft 
beer was studied in this work. Measurements were per-
formed every hour for 10 days and the PCA technique was 
used for data processing in order to evaluate the aroma evo-
lution during the fermentation period. The proposed system 

would be useful to ensure a quality standard of the produc-
tion process.

28.3 E-TONGUE APPLICATIONS

E-tongue has been successfully applied to the monitoring of 
several components produced during the fermentation pro-
cesses. Regarding sensors, the most used are potentiometric 
(especially ion-selective electrode based on PVC mem-
branes, chalcogenide glass, and artificial lipid membranes) 
and voltammetric (Peris and Escuder-Gilabert, 2013;  
Rudnitskaya and Legin, 2008). Only a few works regard-
ing the alcoholic fermentation monitoring can be found in 
literature (Table 28.1). Therefore, it could be useful to re-
view e-tongue applications on other types of fermentation 
processes since such applications are more numerous, the 
analytical approach is similar, and the produced compounds 
are often the same.

An e-tongue comprising 21 potentiometric sensors with 
both chalcogenide glass and PVC plasticized membranes 
was used for offline measurements of batch E. coli fer-
mentations (Turner et al., 2003). The e-tongue was able to 
monitor the changes in media composition as fermentation 
proceeded; in particular, the increase in organic acids, espe-
cially acetic acid, was detected and the biomass dry weight 
was predicted with good accuracy.

A potentiometric e-tongue consisting of 8 chemical 
 sensors based on PVC plasticized membranes with en-
hanced cross-selectivity to inorganic cations and organic 
acid anions, and a standard pH electrode was applied to 
analyze a simulated media for Aspergillus niger fermenta-
tion (Legin et al., 2004). The e-tongue was able to evaluate 
ammonium, citrate, and oxalate content in simulated me-
dia similar to real samples involving A. niger fermentation. 
Data processing using ANN provided average prediction er-
rors lower than 8%. ANN produced better results than PLS 
in the data fitting for ammonium and citrate concentration, 
probably due to the nonlinear dependence between sensor 
potentials and concentration.

Imamura et al. (1996) used a multichannel taste sensor 
system with 8 different lipidic membranes for monitoring 
the changes in the taste of miso (Japanese soybean paste) 
during the fermentation process. It was found that the re-
sponse of two sensors increased linearly with the number of 
days of miso fermentation. Moreover, satisfactory correla-
tion coefficients (r > 0.87–0.88) between the sensor output 
and two chemical parameters (amino acid contents and ti-
trable acidity) were obtained.

In the work by Kim et al. (2005), a homemade mul-
tichannel taste sensor comprising of 8 potentiometric   
chemical sensors with PVC plasticized membranes was ap-
plied to the monitoring of Kimchi fermentation (a Korean 
traditional pickle fermented with lactic acid bacteria). Sam-
ples were matured for 10 days at three storage temperatures 
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(4, 10, and 25°C) and during fermentation titrable acidity, 
which is a maturation index of various pickles, was deter-
mined. It was found that the sensor responses increased 
during the fermentation period at the three storage tem-
peratures. When the sensor data were elaborated by PCA, 
the PC1 scores were mostly correlated with the values of 
titrable acidity.

An e-tongue based on 30 potentiometric chemical 
sensors with chalcogenide glass and solvent polymeric 
membranes was applied to the monitoring of a batch fer-
mentation process of a starting culture for light cheese pro-
duction (Esbensen et al., 2004). Process control charts were 
built on the e-tongue responses by using PLS regression. 
The control charts allowed the detection of fermentations 
running under “normal” and “abnormal” operation condi-
tions. Moreover the e-tongue capability to quantify organic 
acids (citric, lactic, and orotic) in the fermentation media 
was demonstrated with average prediction error in the range 
of 5–13%. The correlation between peptide profile deter-
mined by HPLC and e-tongue data was also established.

Regarding the alcoholic fermentation, Kutyla-Olesiuk 
et al. (2012) monitored beer fermentation by using a hybrid 
e-tongue combining both potentiometric and voltammetric 
sensors. The applied sensor array consisted of 10 minia-
turized ion-selective sensors and silicon-based 3-electrode 
transducers. The analysis was performed on homemade 
beer during two stages of production: fermentation and beer 
maturation. The obtained results were processed by PLS 
and PLS–discriminant analysis (PLS–DA). For potentio-
metric data, voltammetric data, and combined potentiomet-
ric and voltammetric data, comparison of the classification 
ability was conducted. The obtained results demonstrated 
that the developed hybrid e-tongue (combination of poten-
tiometric and voltammetric sensors) provided lower clas-
sification error of samples according to their fermentation 
and maturation time.

28.4 E-NOSE AND E-TONGUE 
APPLICATIONS

The monitoring of time-related changes occurring dur-
ing  alcoholic fermentation was investigated by Buratti 
et al. (2011) and Buratti and Giovanelli (2011). In these 
works infrared spectroscopy, in both near and mid regions 
(FT-NIR and MIR spectroscopy), e-nose and e-tongue were 
 applied and combined with multivariate statistical methods 
to monitor red wine fermentation in order to classify sam-
ples on the basis of their fermentation stages and to predict 
chemical parameters.

Eight microfermentation trials were carried out at 
controlled temperature using active dry yeast inoculum 
(S. cerevisiae) and were conducted in Valtellina region 
(Northern Italy) during the 2008 and 2009 vintage, on 
Nebbiolo grapes ecotype Chiavennasca. For each trial, 

samplings were performed at subsequent times during fer-
mentation. In order to follow the evolution of chemical 
parameters during must-wine fermentation, glucose, fruc-
tose, ethanol, and glycerol were evaluated by HPLC. The 
spectroscopic techniques were used to investigate molecu-
lar changes, while e-nose and e-tongue evaluated the aroma 
and taste profile during alcoholic fermentation.

E-nose measurements were performed with a commer-
cial device, operating with an array of sensors, combined 
with the enrichment and desorption unit (EDU), a micropro-
cessor-controlled device capable of automatically trapping 
and thermally desorbing the sample headspaces and able 
to remove the major volatile compounds not important for 
odor (ie, CO2 and ethanol). The sensor array was composed 
of 10 metal oxide semiconductor (MOS) type chemical sen-
sors: W1C (aromatic), W5S (broadrange), W3C (aromatic), 
W6S (hydrogen), W5C (aromatic-aliphatics), W1S (broad-
methane), W1W (sulfur-organic), W2S (broad-alcohol), 
W2W (sulfur-chlorinate), and W3S (methane-aliphatics).

E-tongue analysis was performed with a commercial 
taste-sensing system. The detecting part consisted of work-
ing sensors whose surface is combined with artificial lipid 
membranes having different response properties to chemi-
cal substances based on their taste.

During microfermentation trials, sugar consumption 
and ethanol and glycerol production were modeled by the 
 Gompertz equation (Zwietering et al., 1991) in order to fol-
low the kinetics of fermentation parameters.

PCA was applied to spectral, e-nose and e-tongue data, 
as an exploratory tool, to uncover modifications during 
fermentation. Linear and quadratic discriminant analysis 
(LDA and QDA) were applied in order to obtain classifica-
tion models. Genetic algorithms (GA) were used to select 
the subset of spectral ranges, e-nose and e-tongue variables 
that maximize the predictive power of the classification 
models. When dealing with NIR and MIR spectra, discrimi-
nant analysis was calculated on PCA scores.

PCA results on NIR and MIR spectral data showed a 
satisfactory distribution of the samples according to the fer-
mentation time for each microfermentation trial. The inten-
sity loadings put in evidence that the main wavenumbers 
responsible of the sample separation were associated with 
the combination band of C–H (4454–4250 cm-1) related 
to carbohydrates in the near region, and with the C–O and 
C–C bonds (1087–1045 cm-1) of ethanol and carbohydrates 
in the medium region.

The evolution of the taste and aroma profile during fer-
mentation was evaluated by e-tongue and e-nose. Fig. 28.1 
shows the PCA score plot (a) and the loading plot (b) of the 
data collected by e-tongue on a microfermentation trial.

Considering the score plot (Fig. 28.1a), the taste evo-
lution is evident along the PC1, must-wine samples are 
distributed from left to right according to the fermentation 
time. By the loading plot (Fig. 28.1b), it is evident that at 
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the beginning of process (t0) sample was characterized by 
a poor taste; during fermentation (t5–t6) the taste evolves 
and samples were discriminated by the aftertaste astrin-
gency; at the end of fermentation (t10–t14), wine samples 
were perceived as more bitter and astringent and were also 
characterized by saltiness and sourness. The taste of red 
wines depends on the phenolic compounds contained in the 
grape skin and seeds. During alcoholic fermentation, antho-
cyanins, flavan-3-ols, and tannins are transferred to wine by 
diffusion and the extraction rate depends on their molecu-
lar size, relative solubility, and location in the berry. From 
the literature it is known that the increase of bitterness and 
astringency perceived throughout must-wine fermentation 
is mainly due to the diffusion of these compounds (Work-
man, 2001; Workman and Weyer, 2008). Furthermore, as 
evidenced by the e-tongue, the taste of wine is affected by 
nonphenolic components such as ethanol, glycerol, salts, 
and acids, which are formed or extracted during fermenta-
tion (Sims and Bates, 1994; Workman and Weyer, 2008).

Fig. 28.2 displays the PCA score plot (a) and loading 
plot (b) of e-nose data collected on a microfermentation 
trial.

The score plot (Fig. 28.2a) shows the distribution 
of must-wine samples along PC1 and PC2 according to 

fermentation time and the main fermentation stages. From 
the loading plot (Fig. 28.2b), it can be noticed that at the 
beginning of fermentation (t0) must volatiles were per-
ceived by WC sensors specific in particular for the aromatic 
compounds. During the high fermentation rate (t5–t10), 
the aroma evolves rapidly and the evolution was perceived 
by WS sensors (W2S, W3S, W5S, W6S) characterized by 
a broad range sensitivity. Finally, at the end of fermenta-
tion (t11–t14), wine was discriminated by W1S and W1W 
sensors, which are sensitive to many terpenes and sulfur 
organic compounds. From the literature, it is known that 
the alcoholic fermentation generates the majority of vola-
tile compounds present in wine: acids, alcohols, and esters 
(Gonzalez-Marzano et al., 2004).

For the classification analysis, all samples were divided 
into three stages according to the evolution of chemical pa-
rameters: beginning of fermentation, class 1; high fermenta-
tion rate, class 2; and end of fermentation, class 3.

Table 28.2 reported the characteristics of the classifica-
tion models selected as the best (highest values of correctly 
classified samples in cross-validation) and the variables in-
volved in each model.

For NIR and MIR data, QDA models were characterized 
by a high percentage of correct classification in validation 

FIGURE 28.1 PCA on e-tongue data. (a) Score plot and (b) loading plot of a microfermentation trial in the plane defined by the first two principal 
components.
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showing that the spectroscopic techniques are useful to pre-
dict the fermentation stages in agreement with the evolu-
tion of chemical parameters. The LDA model selected for 
e-tongue had an acceptable accuracy (84% of correct classi-
fication in validation), showing that the taste is an important 
parameter to define the quality of the product. Furthermore, 
the model is only composed by two variables, astringency 
and bitterness, useful to predict in a rapid and simple way 
the fermentation stage of must-wine samples and to give 

important information about the taste evolution. Even if the 
QDA model selected for e-nose had the lowest percentage 
of correct classification (76%), the e-nose device is useful 
to follow the evolution of the aroma profile during fermen-
tation and to define the quality of wine.

In conclusion, the applicability of e-nose and e-tongue 
to monitor the alcoholic fermentation has been reviewed 
and discussed. The presented works demonstrated that these 
devices perform qualitative and quantitative determination 

FIGURE 28.2 PCA on e-nose data. (a) Score plot and (b) and loading plot of a microfermentation trial in the plane defined by the first two principal 
components.

TABLE 28.2 Characteristics of the Classification Models

Applied Method Model
NERa

Cross-Validation (%) Model Variables

NIR GA-PCA-QDA 93 5939.9–5905.2; 4485.8–4451.1; 4408.7–4373.9; 
4370.1–4335.4; 4331.5–4296.8; 4254.4–4219.7b

MIR GA-PCA-QDA 91 2989.6–2970.3; 1396.4–1377.1; 1257.5–1238.3; 
1188.1–1168.8b

E-nose GA-QDA 76 W5C, W1W, W1S, W3S, W1C

E-tongue GA-LDA 84 Astringency, Bitterness
aNon error rate.
bSpectral range (cm−1).
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of compounds produced during fermentation and are suit-
able to follow the fermentation giving information about the 
quality of the final products. Moreover, these nondestruc-
tive techniques are of particular interest due to some impor-
tant advantages respect to the classical analytical methods 
such as rapidity, simplicity, possibility of easy automation, 
and applicability for routine analysis also in online mode.

Although only a few works on the application of 
e-tongue and e-nose to the alcoholic fermentation monitor-
ing can be found in literature, the presented results seem to 
be very promising to allow the continuous control of the 
fermentation process.
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29.1 INTRODUCTION

Wine is a beverage obtained by fermentation of grapes and 
it represents one of the oldest alimentary products known 
by humanity for more than 8000 years. The first evidences 
of wine production have been found in Georgia and Iran, 
in the 6000–5000 BC historical period, and later the grape 
wine and winemaking culture spread from Egypt to China 
(McGovern, 2007). In some regions, the winemaking pro-
cess has been applied to fruits other than grapes and in this 
case the drink obtained is called fruit wine, indicating what 
has been used for the production (eg, rice wine, widely 
 distributed in the Asian region, apple wine, pomegranate 
wine, etc.).

It is interesting to note that wine is arrived nowadays 
almost without changes: while many foodstuffs have under-
gone variations in their ingredients and/or preparation pro-
cedures and some others have been completely left behind, 
with plenty of new formulations and food ingredients in use 
at present, the modern grape wine remains very similar to 
the one our ancesters knew. In fact, modern viticulture and 
oenology still refers to the ancient Greek practices, pre-
served and later evolved during the Roman empire.

The organoleptic properties of wine, such as the taste 
and flavor, are determined by a great number of wine com-
ponents arising from grape and/or formed during the fer-
mentation process. More than 800 compounds have been 
characterized in wine and their abundance of compounds 
depends on the grape variety and origin, on the viticultural 
practices, such as blending, specific aging, and, in particu-
lar, on the nature of yeast used in fermentation, as well as on 
the postproduction treatment and storage (Jackson, 2008). 
The standard analytical methods of wine analysis are based 
on wet chemistry procedures (Amerine and Ough, 1974; 
Ough and Amerine, 1988) or instrumental methods, involv-
ing separation techniques, such as high-performance  liquid 

chromatography (HPLC) or gas chromatography (GC) 
combined with mass spectrometry (MS) (Flamini and Tral-
di, 2009), and optical techniques, such as Fourier transform 
infrared (FTIR) spectroscopy (Sun, 2009). For example, the 
WineScan™ FOSS analyser permits a rapid and accurate 
detection of a tenth of wine compounds optically active 
in the mid-infrared spectral region (www.foss.it). These 
techniques provide information on individual wine compo-
nents, but they cannot give a global assessment, such as, the 
wine’s flavor or quality, due to the synergistic interaction of 
several chemical compounds present in the complex chemi-
cal matrix represented by wine; moreover, the equipment 
applied is quite costly and requires calibration procedures, 
involving the employment of skilled personnel.

For this reason the involvement of a trained expert 
human panel remains indispensable in the wine analysis. 
However, the human perception of wine organoleptic char-
acteristics is very subjective, determined not only by skills, 
but also by the mood and the physical state of the panelist. 
The number of tests that the panel may perform is limited to 
a few assessments per day, due to the saturation of tongue 
receptors. Moreover, the training of panelists is a long-last-
ing and expensive step.

The wine industry, however, requires to monitor time-
related changes occurring during wine fermentation and ag-
ing to ensure the uniformity within a brand and to avoid 
falsifications. All these requirements can be fulfilled by the 
application of chemical sensor arrays mimicking the human 
senses, such as the electronic nose (e-nose), the electronic 
tongue (e-tongue), and recently the electronic eye (e-eye), 
which have demonstrated their utility for rapid and inex-
pensive assessment of different chemical matrices, and, 
among them, wine in particular (Lvova et al., 2013).

These devices complement the information obtained 
from the instrumental analytical methods (performed, for 

http://www.foss.it/
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example, by LC–MS or GC–MS methods), since they 
 cannot provide information about the exact composition of 
the analyte, but they can give a global evaluation of the ana-
lyzed matrix. Further advantages lie in a cheap and easy-to-
operate analysis, often requiring little or no sample prepara-
tion, and they can be used in-line to obtain quick results, 
so allowing remediation procedures. With these character-
istics, they can provide a rapid classification of samples of 
different quality or brand, and also the quantitative determi-
nation of several parameters.

Plenty of researches devoted to the application of these 
systems for wine analysis have been previously reported 
and several comprehensive reviews have been published in 
the past (Röck et al., 2008; Tahara and Toko, 2013; Bratov 
et al., 2010; del Valle, 2010). A comprehensive review on 
microtechnology-based hyphenated higher-order devices, 
employing sensors with different transduction principles 
integrated in the same sensing platform (but not fused for 
the same sensing layer), has also been reported (Hierlemann 
and Gutiérrez-Osuna, 2008), while a dual-mode sensing 
platform, where the same sensing material is exploited in 
the contemporaneous optical-potentiometric transduction, 
has been recently reported (Lvova et al., 2015).

More recently, the biological inspiration has created an 
approach that could boost the performances of these arrays 
in food analysis: in the flavor assessment humans apply as 
much as possible the combination of our senses to recog-
nize the object of interest. In the same way, for chemical 
sensors the combination of several sensing techniques may 
significantly improve the resolving power of the resulting 
combined device, Fig. 29.1.

Moreover, the performance of the resulting analytical sys-
tem may benefit of the employment of different transduction 
principles in the same device. In this way, the hybrid systems 
based on the simultaneous application of e-tongue, e-nose, 
and e-eye could provide sensitive and specific capabilities for 
a wide range of target analytes and unknown samples, which 
are currently difficult to detect with the existing technologies.

The correct exploitation of these combined systems re-
quires an appropriate data analysis. Standard chemometric 
approaches, typical for multicomponent data treatment, are 
based on uniform and balanced data sets to guarantee the 
satisfactory treatment results. This aspect becomes par-
ticularly important in the case of combined sensor arrays, 
where the signals of the various sensors differ in terms of 
magnitude and unit of measurement and then they cannot 
be immediately compared. A method for the standardiza-
tion of data is then necessary to ensure an equal treatment 
of the different sensor signals. A simple classical method is 
the normalization of the signals in order to reduce them to 
zero-mean and unitary variance.

The fusion of signals from different sensors can be ap-
proached from a different point of view. In particular, dif-
ferent levels of data fusion can be applied, these methods 
can be classified as a low level of abstraction, mid level of 
abstraction, and a high level of abstraction. Most often a 
low-level approach is used. This approach consists in the 
simple collection of data obtained by different sensors in  
order to form a single data matrix, where the number of rows 
is equal to the number of analyzed samples and the number 
of columns is equal to the total number of sensors signals 
(eg, potentials or currents and optical densities measured 
for every sensing layer) (Ruhm, 2007; Boilot et al., 2003).

In the mid-level fusion approach, the individual sensors 
are grouped in arrays and the signals are preprocessed in 
order to take advantage of the array properties. This method 
is naturally applied when sensor arrays, such as different 
electronic noses or electronic tongues, are used together in 
the same application. The most popular feature of the ex-
traction method is the principal component analysis (PCA). 
In this case, the signals of the individual sensors of each 
array are replaced by the scores of the PCA.

The previous approach is further developed in the 
high level of abstraction where the data of each array are 
individually analyzed and then the results obtained by 
each model are combined together to provide a thorough 

FIGURE 29.1 The schematic presentation of human senses functioning versus chemical sensors approach. (Reprinted with permission from Lvova 
et al., 2015.)
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 description of the measured sample. This approach seems 
to better mimic the working mechanism of natural senses 
that cooperate together to form a global perception of the 
experienced reality.

The exploitation of these combined systems in wine 
analyses is a field still not completely developed, although 
it is becoming more popular in the last few years. In 
 Table 29.1, the different examples reported in the literature 
have been summarized and these studies are reviewed in 
this chapter, according to the different devices combined.

29.2 E-NOSE AND E-TONGUE

The seminal idea of combining e-nose and e-tongue devices 
for the analysis of complex chemical matrices started to be 
explored at the end of the 1990s (Toko et al., 1998; Wide 
et al., 1998; Winquist et al., 1999). Although one of the 
first works on combined e-nose and e-tongue was reported 
to be related on wine analysis (Rong et al., 2000), but it 
also analyzed other alcoholic beverages, the first applica-
tion came from the collaboration of the Tor Vergata Sen-
sor Group and chemical sensors laboratory of St. Peters-
burg State University (Di Natale et al., 2000). In this work, 

 metalloporphyrin-based liquid and gas sensor arrays were 
exploited for both headspace and liquid phase analysis of 
red wine samples having the same denomination, Guttur-
nio, from a north Italy region.

The e-nose was constituted by an array of quartz crys-
tal microbalances, coated by thin films of different metal-
loporphyrins deposited by the spray casting technique. The 
 potentiometric e-tongue was formed by six polymeric mem-
brane electrodes, using metalloporphyrins as ionophore, 
and a conventional glass pH electrode. The exploitation of 
the same sensing material gave the possibility to control the 
sensor characteristics for both phases. No sample treatment 
was necessary and the data obtained from the combined 
array were compared with those of the chemical analysis, 
with the aim to explore if some compound particularly 
influenced the sensor array responses. The data obtained 
clearly showed that the e-nose and e-tongue gave comple-
mentary information on the samples and that a satisfying 
estimation of several wine parameters could be obtained us-
ing the artificial sensor system.

In a subsequent work (Di Natale et al., 2004), a simi-
lar combined e-nose and e-tongue system was used to 
analyze 36 different wines produced in the 2001 vintage 

TABLE 29.1 Examples of the Application of Electronic Noses and Tongues for Determination of Aroma and Taste in 
Wine Samples

Application Wine Types Method/Tecnique References

Analysis of the wine spoilage Red and white Spanish wine Potentiometric e-tongue and humid e-nose Gil-Sánchez et al. (2011)

Quality evaluation Chinese rice wines E-eye (colorimeter), e-tongue (liquid 
cross-selective sensors), and e-nose 
(metal-oxide gas sensors)

Ouyang et al. (2014)

Fermentation monitoring Italian wine FT-NIR, FT-IR spectrometers, e-tongue 
(potentiometric array sensors), and e-nose 
(array of metal oxide semiconductor)

Buratti et al. (2011)

Organoleptic characteristics Red wines vinified using 
different extraction techniques 
and micro-oxygenation 
methods and bottled using 
different closures

E-eye (UV–Vis Spectrophotometer), 
e-tongue (voltammetric carbon paste 
electrodes), and e-nose (array MOX)

Apetrei et al. (2012)

Discrimination of wines Red wines prepared from Vitis 
vinifera (var. Grenache)

E-nose (MOX) and e-tongue (voltammetric 
carbon paste electrodes)

Rodriguez-Mendez 
et al. (2014)

Red wine aging monitoring Spanish red wine E-nose (based on resistive MOX sensors), 
e-tongue (based on voltammetric sensors), 
and e-eye (based on CIE Lab coordinates)

Prieto et al. (2011)

Differentiate and classify 
Barbera DOC wines

North italian DOC wine Portable e-nose (PEN2—metal oxide 
semiconductor) and amperometric 
e-tongue (flow injection analysis)

Buratti et al. (2004)

Descriptors of Italian red dry 
wines of different DOC

Italian dry red wines of 
different denominations and 
vineyards

Portable e-nose (PEN2) and e-tongue (flow 
injection analysis with two amperometric 
detectors)

Buratti et al. (2007)

Wine analysis Red wines E-nose (porphyrin-based quartz 
microbalances sensor array) and e-tongue 
(potentiometric sensors)

Di Natale et al. (2004)
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of the  Lombardia region (north of Italy). In this case, the 
potentiometric electrodes of the e-tongue were function-
alized with thin films of metalloporphyrins deposited by 
electropolymerization technique. The e-nose and e-tongue 
data were compared with those obtained from chemical and 
sensorial analysis, to study the potential correlations among 
the different analytical approaches. The study showed that 
the combination of the e-nose and e-tongue offered bet-
ter performances for the wine analysis and that the artifi-
cial sensing system was able to mimic the evaluation of a 
panel of trained human testers of several wine descriptors 
(Fig. 29.2).

A different combined system, constituted by an ampero-
metric e-tongue and a commercial e-nose, was exploited for 
the analysis of four types of Barbera wines, produced in 
the northern region of Italy, with the aim to characterize 
and recognize the wines according to their denominations 
of origin (Buratti et al., 2004). In this case, the data of the 
combined e-nose and e-tongue were compared with those 
of chemical analysis and color evaluation.

In this work the commercial e-nose was a portable de-
vice (PEN2), composed of 10 metal oxide (MOX) semicon-
ductor chemical sensors, equipped with a preconcentrator 
and a thermal desorber system. The e-tongue was consti-
tuted of two amperometric detectors coupled to a flow in-
jection analysis system, with the wine samples delivered 
by dilution in a methanol/acetate buffer (70:30) carrier 

 solution. The system was able to correctly differentiate Bar-
bera wines according to their DOC (the Italian controlled 
denomination of origin) characteristic, with a small cross-
validation error rate.

The same artificial sensorial system was later applied, 
together with spectrophotometric methods, to predict sen-
sorial descriptors of Italian red dry wines of different DOC 
(Buratti et al., 2007), demonstrating a good accuracy in the 
prediction of most of the sensorial parameters evaluated.

More recently, the same group has reported the applica-
tion of a panel composed of an e-tongue, an e-nose, FT-NIR, 
and FT-IR spectrometers to monitor the microfermentation  
of wine (Buratti et al., 2011). While the e-nose was the same 
of the previous studies, the e-tongue in this work was the 
taste-sensing system commercial device, based on poten-
tiometric sensors. In this work, the spectroscopic technique 
was used to study molecular changes, while the e-nose and 
e-tongue evaluated the evolution of the aroma and taste pro-
file during the must-wine fermentation.

A combined system, composed of a potentiometric e-
tongue and a humid e-nose, has also been applied for the 
analysis of the deterioration of wine in contact with air (Gil-
Sánchez et al., 2011). The potentiometric e-tongue was built 
with thick-film serigraphic techniques, using commercially 
available resistances and conductors for hybrid electronic 
circuits, that is, Ag, Au, Cu, Ru, AgCl, and C. The humid 
e-nose had an innovative design to respect the traditional 

FIGURE 29.2 Scatter plot of the 14 sensorial descriptors estimated by a PLS model built on the nose and tongue data set. (Reprinted with 
 permission from Di Natale et al., 2004.)
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arrays and wanted to emulate the working mechanism of the 
natural olfaction system, mimicking the wet environment 
of the nasal mucosa. This humid e-nose was composed of 
four electrodes, such as a pH glass electrode; aluminum, 
platinum, and graphite wires; and an Ag–AgCl reference 
electrode. The e-nose detected the volatiles originated by 
the wine samples and then dissolved in a moistened cloth 
bag (Fig. 29.3).

The e-tongue and the humid e-nose were exploited to 
monitor the spoilage of three Spanish wines (two red wines 
and one white wine) in contact with air after opening their 
bottles. The measurements were made up to 48 days after 
the bottle opening. The total acidity of the wines were con-
temporaneously made as a control of the sample spoilage. 

While the data analysis of the individual arrays showed a 
reduced discriminatory ability of the temporal evolution 
of the spoiled wines, indicating that the sample discrimi-
nation was not simply correlated with the increase of the 
wine acidity, the combined device demonstrated the ability 
to monitor the evolution of wine samples in the course of 
time (Fig. 29.4).

29.3 THE HYBRID E-TONGUE

In a slightly different approach, a hybrid system, where 
an e-tongue was combined with a optofluidic colorimet-
ric system, has been proposed for wine analysis (Gutiérrez 
et al., 2010, 2011a). Different from the previous examples, 

FIGURE 29.3 Set-up of the humid e-nose. (Reprinted with permission from Gil-Sánchez et al., 2011.)

FIGURE 29.4 PCA score plot obtained by combination of measurements of the e-tongue and the humid e-nose on two red wines (RA, RB) and 
a white wine (W). (Reprinted with permission from Gil-Sánchez et al., 2011.)
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where both headspace (e-nose) and liquid phase (e-tongue) 
of the wine matrices contributed to the final result, in this 
case only the liquid phase was analyzed, joining an electro-
chemical and a colorimetric analysis of the wine samples, 
and for this reason the resulting device has been named a 
hybrid e-tongue. The system was composed of an array of 
four different kind of electrochemical sensors: six ion-sensi-
tive field effect transistors (ISFETs), a conductivity sensor, 
a redox potential sensor, and two amperometric electrodes. 
The colorimetric analysis was performed by optofluidic 
system using fiber optics connected to a spectrometer. This 
hybrid e-tongue system was first tested for the characteriza-
tion of red wines (Gutiérrez et al., 2010) and then for the 
quantification of the percentage of grape varieties in both 
red and white wines (Gutiérrez et al., 2011a,b). The results 
obtained showed that the hybrid e-tongue was effectively 
able to discriminate both red and white wine according to 
their grape variety composition and year of vintage, dem-
onstrating a potential usefulness for the variety analysis in 
wine industry.

29.4 THE ELECTRONIC PANEL

A more complete system, called an “electronic panel” for 
wine assessment, has also been reported by Rodríguez- 
Méndez et al. (2004, 2014), Prieto et al. (2011), and Ape-
trei et al. (2012). The combined system is formed by an 
e-nose, based on array of commercial MOX sensors, a 
voltammetric e-tongue, based on the carbon paste elec-
trodes (CPEs) modified with bisphthalocyanines, semi-
conducting polymers and perylenes, and an e-eye, which 
collected the transmittance spectra, recorded using 11 
LEDs (covering the 780–380 nm spectral region) and cal-
culating the CIELab coordinates. This electronic panel 
has been exploited for different scopes in wine analy-
sis. In the first work  (Rodríguez-Méndez et al., 2004), 
the combined system was applied to discriminate six red 
Spanish wines prepared using the same variety of grape 
(Tempranillo), but differing in their geographic origins 
and aging stages. The data analysis showed that the three 
independent devices offered uncorrelated information on 
the analyzed samples and their integration strongly in-
creased the discrimination capability of the overall sys-
tem, making the electronic panel suitable for the wine 
characterization.

The electronic panel was used to evaluate the influence of 
molecular oxygen interaction with wine samples on their or-
ganoleptic characteristics, both before ( micro-oxygenation) 
and after bottling (nano-oxygenation) (Prieto et al., 2011). 
The experiments were performed on red wines having dif-
ferent polyphenols contents, depending on the  vinification 
procedure adopted for their production. The influence of 
the different closures on the oxygenation transmission rates 
were also evaluated by the electronic panel. The solid-phase 

microextraction (SPME) technique was used to transfer the 
wine headspace into the e-nose chamber, with the aim to in-
crease the concentration of the volatile organic compounds 
(VOC) presence in the wine flavor, and contemporaneously 
to reduce the ethanol and water content. Both ethanol and 
water, in fact, are not useful for the wine discrimination, 
since they are always present in the analyzed samples, but 
they can overwhelm the detection of the other VOCs, due 
their high concentrations. No sample treatment was neces-
sary for both e-tongue and e-eye measurements. The three 
devices gave noncorrelated information on the analyzed 
samples, with the e-nose and e-eye more related to the clo-
sure influence and the e-tongue to the antioxidant character 
of the wine. As a result, the electronic panel showed a sig-
nificant improvement of the discrimination performances, 
taking advantages of the overall independent information 
furnished by the individual components.

The same system was later exploited to monitor the red 
wine aging, with the aim to distinguish among the traditional 
wine aging process in oak barrels to respect the addition of 
oak chips in wines stored in stainless-steel tanks (Apetrei 
et al., 2012). The system was able to follow the change of the 
overall chemical composition of the wine samples, accord-
ing to their different maturation environment, so allowing the 
discrimination of wines with the same origin, but different 
aging processes. The wine samples were also analyzed by the 
standard chemical analysis, to evaluate the chemical compo-
sition changes due to the aging process. The results obtained 
showed the possibility to use the electronic panel to predict 
the method exploited for the wine maturation; although the 
same discrimination could be possible by chemical analysis, 
it is worth noting that the electronic panel, giving a global as-
sess of the target sample, can offer several advantages, such 
as, for example, the rapidity of the analysis, minimal pre-
treatment of the sample, single measure, and so on.

More recently the electronic panel, this time composed 
by the e-nose and e-tongue, was applied for the evalua-
tion oxygen exposure levels and polyphenolic content of 
red wines (Rodríguez-Méndez et al., 2014). Twenty-five 
chemical parameters of the analyzed wines were obtained 
by traditional chemical analysis and related to the chemical 
composition of the wines, such as the polyphenols’ content, 
pigments, and oxygen amount. The results obtained showed 
a good correlation between the responses obtained by the 
electronic panel and the chemical parameters measured by 
chemical analysis, demonstrating that the combined device 
could offer also quantitative data related to chemical compo-
sition, other than a global assessment of the analyzed wines.

Following a similar approach, the exploitation of a hybrid 
system was also tested for the quality assessment of Chi-
nese rice wine samples (Ouyang et al., 2014). The system 
was composed by three commercial devices, an e-eye (Col-
orQuest XE colorimeter), an e-nose (Airsense  Analytics 
PEN3), and an e-tongue (aAstree Alpha M.O.S), with the 
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aim to mimic the integration of the human senses in the glob-
al evaluation of wine. Seventy-five samples of a Chinese rice 
wine brand were analyzed with the combined system, with-
out sample pretreatment. To explore the correlation of the 
electronic panel results with the human sense evaluation, the 
rice wine samples have been evaluated also by a trained hu-
man panel test, which assigned the score sensory attributes 
to the analyzed samples in three variables crossed percep-
tion: color, aroma, and taste. In this work, particular atten-
tion was devoted to the data analysis and the results obtained 
demonstrated that the multisensor’s data fusion developed 
efficiently to mimic the performances of human tests, mak-
ing the system promising for the exploitation in the real field.
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