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                                  Introduction 

                          Electronic engineering 

 
 
Electronic components 

Electronics Engineering,  also referred to as Electronic Engineering, is an engineering 
discipline which uses the scientific knowledge of the behavior and effects of electrons to 
develop components, devices, systems, or equipment (as in electron tubes, transistors, 
integrated circuits, and printed circuit boards) that uses electrictity as part of its driving 
force. Both terms denote a broad engineering field that encompasses many subfields 
including those that deal with power, instrumentation engineering, telecommunications, 
and semiconductor circuit design amongst many others. 

The term also covers a large part of electrical engineering degree courses as studied at 
most European universities. In the U.S., however, electrical engineering implies all the 
wide electrical disciplines including electronics. The Institute of Electrical and 
Electronics Engineers is one of the most important and influential organizations for 
electronic engineers. Turkish universities have departments of Electronic and Electrical 
Engineering). 

Terminology 

The name electrical engineering is still used to cover electronic engineering amongst 
some of the older (notably American) universities and graduates there are called electrical 
engineers. The distinction between electronic and electrical engineers is becoming more 
and more distinct. While electrical engineers utilize voltage and current to deliver power, 
electronic engineers utilize voltage and current to deliver information through 
information technology.  

Some people believe the term "electrical engineer" should be reserved for those having 
specialized in power and heavy current or high voltage engineering, while others believe 
that power is just one subset of electrical engineering (and indeed the term "power 
engineering" is used in that industry) as well as "electrical distribution engineering". 
Again, in recent years there has been a growth of new separate-entry degree courses such 



as "information engineering" and "communication systems engineering", often followed 
by academic departments of similar name. 

Most European universities now refer to electrical engineering as power engineers and 
make a distinction between Electrical and Electronics Engineering. Beginning in the 
1980s, the term computer engineer was often used to refer to electronic or information 
engineers. However, Computer Engineering is now considered a subset of Electronics 
Engineering and the term is now becoming archaic.  

 

                            

 

 

 

 

 

 

 

 

 

 



                           Chapter-1 

                    History of Electronic     

                        Engineering 
Electronic engineering as a profession sprang from technological improvements in the 
telegraph industry in the late 1800s and the radio and the telephone industries in the early 
1900s. People were attracted to radio by the technical fascination it inspired, first in 
receiving and then in transmitting. Many who went into broadcasting in the 1920s were 
only "amateurs" in the period before World War I. 

The modern discipline of electronic engineering was to a large extent born out of 
telephone, radio, and television equipment development and the large amount of 
electronic systems development during World War II of radar, sonar, communication 
systems, and advanced munitions and weapon systems. In the interwar years, the subject 
was known as radio engineering and it was only in the late 1950s that the term electronic 
engineering started to emerge. 

The electronic laboratories (Bell Labs in the United States for instance) created and 
subsidized by large corporations in the industries of radio, television, and telephone 
equipment began churning out a series of electronic advances. In 1948, came the 
transistor and in 1960, the IC to revolutionize the electronic industry.  In the UK, the 
subject of electronic engineering became distinct from electrical engineering as a 
university degree subject around 1960. Before this time, students of electronics and 
related subjects like radio and telecommunications had to enroll in the electrical 
engineering department of the university as no university had departments of electronics. 
Electrical engineering was the nearest subject with which electronic engineering could be 
aligned, although the similarities in subjects covered (except mathematics and 
electromagnetism) lasted only for the first year of the three-year course. 

Early electronics 

 
 
1896 Marconi patent 



In 1893, Nikola Tesla made the first public demonstration of radio communication. 
Addressing the Franklin Institute in Philadelphia and the National Electric Light 
Association, he described and demonstrated in detail the principles of radio 
communication. In 1896, Guglielmo Marconi went on to develop a practical and widely 
used radio system. In 1904, John Ambrose Fleming, the first professor of electrical 
Engineering at University College London, invented the first radio tube, the diode. One 
year later, in 1906, Robert von Lieben and Lee De Forest independently developed the 
amplifier tube, called the triode. 

Electronics is often considered to have begun when Lee De Forest invented the vacuum 
tube in 1907 . Within 10 years, his device was used in radio transmitters and receivers as 
well as systems for long distance telephone calls. In 1912, Edwin H. Armstrong invented 
the regenerative feedback amplifier and oscillator; he also invented the superheterodyne 
radio receiver and could be considered the "Father of Modern Radio".  Vacuum tubes 
remained the preferred amplifying device for 40 years, until researchers working for 
William Shockley at Bell Labs invented the transistor in 1947 . In the following years, 
transistors made small portable radios, or transistor radios, possible as well as allowing 
more powerful mainframe computers to be built. Transistors were smaller and required 
lower voltages than vacuum tubes to work.In the interwar years the subject of electronics 
was dominated by the worldwide interest in radio and to some extent telephone and 
telegraph communications. The terms 'wireless' and 'radio' were then used to refer to 
anything electronic. There were indeed few non-military applications of electronics 
beyond radio at that time until the advent of television. The subject was not even offered 
as a separate university degree subject until about 1960. 

Prior to the second world war, the subject was commonly known as 'radio engineering' 
and basically was restricted to aspects of communications and RADAR, commercial 
radio and early television. At this time, study of radio engineering at universities could 
only be undertaken as part of a physics degree. Later, in post war years, as consumer 
devices began to be developed, the field broadened to include modern TV, audio systems, 
Hi-Fi and latterly computers and microprocessors. In the mid to late 1950s, the term radio 
engineering gradually gave way to the name electronic engineering, which then became a 
stand alone university degree subject, usually taught alongside electrical engineering with 
which it had become associated due to some similarities. 

Before the invention of the integrated circuit in 1959, electronic circuits were constructed 
from discrete components that could be manipulated by hand. These non-integrated 
circuits consumed much space and power, were prone to failure and were limited in speed 
although they are still common in simple applications. By contrast, integrated circuits 
packed a large number — often millions — of tiny electrical components, mainly 
transistors, into a small chip around the size of a coin. 

Tubes or valves 

The vacuum tube detector 



The invention of the triode amplifier, generator, and detector made audio communication 
by radio practical. (Reginald Fessenden's 1906 transmissions used an electro-mechanical 
alternator.) The first known radio news program was broadcast 31 August 1920 by station 
8MK, the unlicensed predecessor of WWJ (AM) in Detroit, Michigan. Regular wireless 
broadcasts for entertainment commenced in 1922 from the Marconi Research Centre at 
Writtle near Chelmsford, England. 

While some early radios used some type of amplification through electric current or 
battery, through the mid 1920s the most common type of receiver was the crystal set. In 
the 1920s, amplifying vacuum tubes revolutionized both radio receivers and transmitters. 

Phonographs and radiogrammes 

This is the early name for record players or combined radios and record player 

Television 

In 1928 Philo Farnsworth made the first public demonstration of purely electronic 
television. During the 1930s several countries began broadcasting, and after World War 
II it spread to millions of receivers, eventually worldwide. 

Ever since then, electronics have been fully present in television devices. Nowadays, 
electronics in television have evolved to be the basics of almost every component inside 
TV’s. 

One of the latest and most advance technologies in TV screens/displays has to do entirely 
with electronics principles, and it’s the OLED (organic light emitting diode) displays, and 
it’s most likely to replace LCD and Plasma technologies. 

Radar and radio location 

During World War II many efforts were expended in the electronic location of enemy 
targets and aircraft. These included radio beam guidance of bombers, electronic counter 
measures, early radar systems etc. During this time very little if any effort was expended 
on consumer electronics developments. 

Computers 

History of computing hardware 
 

History of computing hardware 
The history of computing hardware encompasses the hardware, its architecture, and its 
impact on software. The elements of computing hardware have undergone significant 



improvement over their history. This improvement has triggered worldwide use of the 
technology, performance has improved and the price has declined. Computers are 
accessible to ever-increasing sectors of the world's population. Computing hardware has 
become a platform for uses other than computation, such as automation, communication, 
control, entertainment, and education. Each field in turn has imposed its own 
requirements on the hardware, which has evolved in response to those requirements. 

The von Neumann architecture unifies current computing hardware implementations. 
Since digital computers rely on digital storage, and tend to be limited by the size and 
speed of memory, the history of computer data storage is tied to the development of 
computers. The major elements of computing hardware implement abstractions: input, 
output, memory, and processor. A processor is composed of control and datapath. In the 
von Neumann architecture, control of the datapath is stored in memory. This allowed 
control to become an automatic process; the datapath could be under software control, 
perhaps in response to events. Beginning with mechanical datapaths such as the abacus 
and astrolabe, the hardware first started using analogs for a computation, including water 
and even air as the analog quantities: analog computers have used lengths, pressures, 
voltages, and currents to represent the results of calculations. Eventually the voltages or 
currents were standardized, and then digitized. Digital computing elements have ranged 
from mechanical gears, to electromechanical relays, to vacuum tubes, to transistors, and 
to integrated circuits, all of which are currently implementing the von Neumann 
architecture. 

History of computing 

Hardware before 1960 

Hardware 1960s to present 

Hardware in Soviet Bloc countries 

 

Artificial intelligence 

Computer science 

Operating systems 

Programming languages 

Software engineering 



 

Graphical user interface 

Internet 

Personal computers 

Laptops 

Video games 

World Wide Web 

 

Timeline of computing  

 Timeline of computing 2400 BC–1949 
 1950–1979  
 1980–1989  
 1990-1999  
 2000—  
 More timelines...  

 

 

Before computer hardware 

The first use of the word "computer" was recorded in 1613, referring to a person who 
carried out calculations, or computations, and the word continued to be used in that sense 
until the middle of the 20th century. From the end of the 19th century onwards though, 
the word began to take on its more familiar meaning, describing a machine that carries 
out computations. 

Earliest hardware 

Calculator 



Devices have been used to aid computation for thousands of years, using one-to-one 
correspondence with our fingers. The earliest counting device was probably a form of 
tally stick. Later record keeping aids throughout the Fertile Crescent included calculi 
(clay spheres, cones, etc.) which represented counts of items, probably livestock or 
grains, sealed in containers. Counting rods is one example. 

The abacus was used for arithmetic tasks. The Roman abacus was used in Babylonia as 
early as 2400 BC. Since then, many other forms of reckoning boards or tables have been 
invented. In a medieval counting house, a checkered cloth would be placed on a table, 
and markers moved around on it according to certain rules, as an aid to calculating sums 
of money (this is the origin of "Exchequer" as a term for a nation's treasury). 

A number of analog computers were constructed in ancient and medieval times to 
perform astronomical calculations. These include the Antikythera mechanism and the 
astrolabe from ancient Greece (c. 150–100 BC), which are generally regarded as the first 
mechanical analog computers. Other early versions of mechanical devices used to 
perform some type of calculations include the planisphere and other mechanical 
computing devices invented by Abū Rayhān al-Bīrūnī (c. AD 1000); the equatorium and 
universal latitude-independent astrolabe by Abū Ishāq Ibrāhīm al-Zarqālī (c. AD 1015); 
the astronomical analog computers of other medieval Muslim astronomers and engineers; 
and the astronomical clock tower of Su Song (c. AD 1090) during the Song Dynasty. 

The "castle clock", an astronomical clock invented by Al-Jazari in 1206, is considered to 
be the earliest programmable analog computer. It displayed the zodiac, the solar and 
lunar orbits, a crescent moon-shaped pointer traveling across a gateway causing 
automatic doors to open every hour, and five robotic musicians who play music when 
struck by levers operated by a camshaft attached to a water wheel. The length of day and 
night could be re-programmed every day in order to account for the changing lengths of 
day and night throughout the year. 

Scottish mathematician and physicist John Napier noted multiplication and division of 
numbers could be performed by addition and subtraction, respectively, of logarithms of 
those numbers. While producing the first logarithmic tables Napier needed to perform 
many multiplications, and it was at this point that he designed Napier's bones, an abacus-
like device used for multiplication and division. Since real numbers can be represented as 
distances or intervals on a line, the slide rule was invented in the 1620s to allow 
multiplication and division operations to be carried out significantly faster than was 
previously possible. Slide rules were used by generations of engineers and other 
mathematically inclined professional workers, until the invention of the pocket calculator. 
The engineers in the Apollo program to send a man to the moon made many of their 
calculations on slide rules, which were accurate to three or four significant figures. 



 
 
Yazu Arithmometer. Patented in Japan in 1903. Note the lever for turning the gears of the 
calculator. 

German polymath Wilhelm Schickard built the first digital mechanical calculator in 1623, 
and thus became the father of the computing era. Since his calculator used techniques 
such as cogs and gears first developed for clocks, it was also called a 'calculating clock'. 
It was put to practical use by his friend Johannes Kepler, who revolutionized astronomy 
when he condensed decades of astronomical observations into algebraic expressions. An 
original calculator by Pascal (1640) is preserved in the Zwinger Museum. Machines by 
Blaise Pascal (the Pascaline, 1642) and Gottfried Wilhelm von Leibniz (the Stepped 
Reckoner, c. 1672) followed. Leibniz once said "It is unworthy of excellent men to lose 
hours like slaves in the labour of calculation which could safely be relegated to anyone 
else if machines were used." 

Around 1820, Charles Xavier Thomas created the first successful, mass-produced 
mechanical calculator, the Thomas Arithmometer, that could add, subtract, multiply, and 
divide. It was mainly based on Leibniz' work. Mechanical calculators, like the base-ten 
addiator, the comptometer, the Monroe, the Curta and the Addo-X remained in use until 
the 1970s. Leibniz also described the binary numeral system, a central ingredient of all 
modern computers. However, up to the 1940s, many subsequent designs (including 
Charles Babbage's machines of the 1800s and even ENIAC of 1945) were based on the 
decimal system; ENIAC's ring counters emulated the operation of the digit wheels of a 
mechanical adding machine. 

In Japan, Ryoichi Yazu patented a mechanical calculator called the Yazu Arithmometer 
in 1903. It consisted of a single cylinder and 22 gears, and employed the mixed base-2 
and base-5 number system familiar to users to the soroban (Japanese abacus). Carry and 
end of calculation were determined automatically. More than 200 units were sold, mainly 
to government agencies such as the Ministry of War and agricultural experiment stations. 
Yazu invested the profits in a factory to build what would have been Japan's first 
propeller-driven airplane, but that project was abandoned after his untimely death at the 
age of 31. 

1801: punched card technology 

analytical engine 



 
 
Punched card system of a music machine, also referred to as Book music, a one-stop 
European medium for organs 

As early as 1725 Basile Bouchon used a perforated paper loop in a loom to establish the 
pattern to be reproduced on cloth, and in 1726 his co-worker Jean-Baptiste Falcon 
improved on his design by using perforated paper cards attached to one another for 
efficiency in adapting and changing the program. The Bouchon-Falcon loom was semi-
automatic and required manual feed of the program. In 1801, Joseph-Marie Jacquard 
developed a loom in which the pattern being woven was controlled by punched cards. 
The series of cards could be changed without changing the mechanical design of the 
loom. This was a landmark point in programmability. 

In 1833, Charles Babbage moved on from developing his difference engine to developing 
a more complete design, the analytical engine, which would draw directly on Jacquard's 
punched cards for its programming. In 1835, Babbage described his analytical engine. It 
was the plan of a general-purpose programmable computer, employing punch cards for 
input and a steam engine for power. One crucial invention was to use gears for the 
function served by the beads of an abacus. In a real sense, computers all contain 
automatic abacuses (the datapath, arithmetic logic unit, or floating-point unit). His initial 
idea was to use punch-cards to control a machine that could calculate and print 
logarithmic tables with huge precision (a specific purpose machine). Babbage's idea soon 
developed into a general-purpose programmable computer, his analytical engine. While 
his design was sound and the plans were probably correct, or at least debuggable, the 
project was slowed by various problems. Babbage was a difficult man to work with and 
argued with anyone who didn't respect his ideas. All the parts for his machine had to be 
made by hand. Small errors in each item can sometimes sum up to large discrepancies in 
a machine with thousands of parts, which required these parts to be much better than the 
usual tolerances needed at the time. The project dissolved in disputes with the artisan 
who built parts and was ended with the depletion of government funding. Ada Lovelace, 
Lord Byron's daughter, translated and added notes to the "Sketch of the Analytical 
Engine" by Federico Luigi, Conte Menabrea. 



 
 
IBM 407 tabulating machine, (1961) 

A reconstruction of the Difference Engine II, an earlier, more limited design, has been 
operational since 1991 at the London Science Museum. With a few trivial changes, it 
works as Babbage designed it and shows that Babbage was right in theory. The museum 
used computer-operated machine tools to construct the necessary parts, following 
tolerances which a machinist of the period would have been able to achieve. The failure 
of Babbage to complete the engine can be chiefly attributed to difficulties not only related 
to politics and financing, but also to his desire to develop an increasingly sophisticated 
computer. Following in the footsteps of Babbage, although unaware of his earlier work, 
was Percy Ludgate, an accountant from Dublin, Ireland. He independently designed a 
programmable mechanical computer, which he described in a work that was published in 
1909. 

In the late 1880s, the American Herman Hollerith invented the recording of data on a 
medium that could then be read by a machine. Prior uses of machine readable media had 
been for control (automatons, piano rolls, looms, ...), not data. "After some initial trials 
with paper tape, he settled on punched cards..." (Hollerith came to use punched cards 
after observing how railroad conductors encoded personal characteristics of each 
passenger with punches on their tickets.) To process these punched cards, first known as 
"Hollerith cards" he invented the tabulator, and the key punch machines. These three 
inventions were the foundation of the modern information processing industry. His 
machines used mechanical relays (and solenoids) to increment mechanical counters. 
Hollerith's method was used in the 1890 United States Census and the completed results 
were "... finished months ahead of schedule and far under budget". Hollerith's company 
eventually became the core of IBM. IBM developed punch card technology into a 
powerful tool for business data-processing and produced an extensive line of unit record 
equipment. By 1950, the IBM card had become ubiquitous in industry and government. 
The warning printed on most cards intended for circulation as documents (checks, for 
example), "Do not fold, spindle or mutilate," became a motto for the post-World War II 
era. 

 



 
Punched card with the extended alphabet 

Leslie Comrie's articles on punched card methods and W.J. Eckert's publication of 
Punched Card Methods in Scientific Computation in 1940, described techniques which 
were sufficiently advanced to solve differential equations or perform multiplication and 
division using floating point representations, all on punched cards and unit record 
machines. In the image of the tabulator (see left), note the patch panel, which is visible on 
the right side of the tabulator. A row of toggle switches is above the patch panel. The 
Thomas J. Watson Astronomical Computing Bureau, Columbia University performed 
astronomical calculations representing the state of the art in computing. 

Computer programming in the punch card era revolved around the computer center. The 
computer users, for example, science and engineering students at universities, would 
submit their programming assignments to their local computer center in the form of a 
stack of cards, one card per program line. They then had to wait for the program to be 
queued for processing, compiled, and executed. In due course a printout of any results, 
marked with the submitter's identification, would be placed in an output tray outside the 
computer center. In many cases these results would comprise solely a printout of error 
messages regarding program syntax etc., necessitating another edit-compile-run cycle. 
Punched cards are still used and manufactured to this day, and their distinctive 
dimensions[41] (and 80-column capacity) can still be recognized in forms, records, and 
programs around the world. 

1930s–1960s: desktop calculators 

Post–Turing machine 

 
 
The Curta calculator can also do multiplication and division 

By the 1900s, earlier mechanical calculators, cash registers, accounting machines, and so 
on were redesigned to use electric motors, with gear position as the representation for the 
state of a variable. The word "computer" was a job title assigned to people who used 



these calculators to perform mathematical calculations. By the 1920s Lewis Fry 
Richardson's interest in weather prediction led him to propose human computers and 
numerical analysis to model the weather; to this day, the most powerful computers on 
Earth are needed to adequately model its weather using the Navier-Stokes equations.[42] 

Companies like Friden, Marchant Calculator and Monroe made desktop mechanical 
calculators from the 1930s that could add, subtract, multiply and divide. During the 
Manhattan project, future Nobel laureate Richard Feynman was the supervisor of the 
roomful of human computers, many of them women mathematicians, who understood the 
differential equations which were being solved for the war effort. Even the renowned 
Stanisław Ulam was pressed into service to translate the mathematics into computable 
approximations for the hydrogen bomb,[43] after the war. 

In 1948, the Curta was introduced. This was a small, portable, mechanical calculator that 
was about the size of a pepper grinder. Over time, during the 1950s and 1960s a variety 
of different brands of mechanical calculator appeared on the market. The first all-
electronic desktop calculator was the British ANITA Mk.VII, which used a Nixie tube 
display and 177 subminiature thyratron tubes. In June 1963, Friden introduced the four-
function EC-130. It had an all-transistor design, 13-digit capacity on a 5-inch (130 mm) 
CRT, and introduced reverse Polish notation (RPN) to the calculator market at a price of 
$2200. The model EC-132 added square root and reciprocal functions. In 1965, Wang 
Laboratories produced the LOCI-2, a 10-digit transistorized desktop calculator that used a 
Nixie tube display and could compute logarithms. 

Advanced analog computers 

analog computer 

 
 
Cambridge differential analyzer, 1938 

Before World War II, mechanical and electrical analog computers were considered the 
"state of the art", and many thought they were the future of computing. Analog computers 
take advantage of the strong similarities between the mathematics of small-scale 
properties—the position and motion of wheels or the voltage and current of electronic 
components—and the mathematics of other physical phenomena,[44] for example, ballistic 



trajectories, inertia, resonance, energy transfer, momentum, and so forth. They model 
physical phenomena with electrical voltages and currents[45][46] as the analog quantities. 

Centrally, these analog systems work by creating electrical analogs of other systems, 
allowing users to predict behavior of the systems of interest by observing the electrical 
analogs.[47] The most useful of the analogies was the way the small-scale behavior could 
be represented with integral and differential equations, and could be thus used to solve 
those equations. An ingenious example of such a machine, using water as the analog 
quantity, was the water integrator built in 1928; an electrical example is the Mallock 
machine built in 1941. A planimeter is a device which does integrals, using distance as 
the analog quantity. Until the 1980s, HVAC systems used air both as the analog quantity 
and the controlling element. Unlike modern digital computers, analog computers are not 
very flexible, and need to be reconfigured (i.e., reprogrammed) manually to switch them 
from working on one problem to another. Analog computers had an advantage over early 
digital computers in that they could be used to solve complex problems using behavioral 
analogues while the earliest attempts at digital computers were quite limited. 

Since computers were rare in this era, the solutions were often hard-coded into paper 
forms such as nomograms,[48] which could then produce analog solutions to these 
problems, such as the distribution of pressures and temperatures in a heating system. 
Some of the most widely deployed analog computers included devices for aiming 
weapons, such as the Norden bombsight[49] and the fire-control systems,[50] such as 
Arthur Pollen's Argo system for naval vessels. Some stayed in use for decades after 
WWII; the Mark I Fire Control Computer was deployed by the United States Navy on a 
variety of ships from destroyers to battleships. Other analog computers included the 
Heathkit EC-1, and the hydraulic MONIAC Computer which modeled econometric 
flows.[51] 

The art of analog computing reached its zenith with the differential analyzer,[52] invented 
in 1876 by James Thomson and built by H. W. Nieman and Vannevar Bush at MIT 
starting in 1927. Fewer than a dozen of these devices were ever built; the most powerful 
was constructed at the University of Pennsylvania's Moore School of Electrical 
Engineering, where the ENIAC was built. Digital electronic computers like the ENIAC 
spelled the end for most analog computing machines, but hybrid analog computers, 
controlled by digital electronics, remained in substantial use into the 1950s and 1960s, 
and later in some specialized applications. But like all digital devices, the decimal 
precision of a digital device is a limitation,[53] as compared to an analog device, in which 
the accuracy is a limitation.[54] As electronics progressed during the twentieth century, its 
problems of operation at low voltages while maintaining high signal-to-noise ratios[55] 
were steadily addressed, as shown below, for a digital circuit is a specialized form of 
analog circuit, intended to operate at standardized settings (continuing in the same vein, 
logic gates can be realized as forms of digital circuits). But as digital computers have 
become faster and use larger memory (for example, RAM or internal storage), they have 
almost entirely displaced analog computers. Computer programming, or coding, has 
arisen as another human profession. 



Digital computation 

 
 
Punched tape programs would be much longer than the short fragment of yellow paper 
tape shown. 

The era of modern computing began with a flurry of development before and during 
World War II, as electronic circuit elements replaced mechanical equivalents and digital 
calculations replaced analog calculations. Machines such as the Z3, the Atanasoff–Berry 
Computer, the Colossus computers, and the ENIAC were built by hand using circuits 
containing relays or valves (vacuum tubes), and often used punched cards or punched 
paper tape for input and as the main (non-volatile) storage medium. 

In this era, a number of different machines were produced with steadily advancing 
capabilities. At the beginning of this period, nothing remotely resembling a modern 
computer existed, except in the long-lost plans of Charles Babbage and the mathematical 
ideas of Alan Turing. At the end of the era, devices like the Colossus computers and the 
EDSAC had been built, and are agreed to be electronic digital computers. Defining a 
single point in the series as the "first computer" misses many subtleties (see the table 
"Defining characteristics of some early digital computers of the 1940s" below). 

Alan Turing's 1936 paper proved enormously influential in computing and computer 
science in two ways. Its main purpose was to prove that there were problems (namely the 
halting problem) that could not be solved by any sequential process. In doing so, Turing 
provided a definition of a universal computer which executes a program stored on tape. 
This construct came to be called a Turing machine; it replaces Kurt Gödel's more 
cumbersome universal language based on arithmetics. Except for the limitations imposed 
by their finite memory stores, modern computers are said to be Turing-complete, which is 
to say, they have algorithm execution capability equivalent to a universal Turing 
machine. 



 
 
Nine-track magnetic tape 

For a computing machine to be a practical general-purpose computer, there must be some 
convenient read-write mechanism, punched tape, for example. With a knowledge of Alan 
Turing's theoretical 'universal computing machine' John von Neumann defined an 
architecture which uses the same memory both to store programs and data: virtually all 
contemporary computers use this architecture (or some variant). While it is theoretically 
possible to implement a full computer entirely mechanically (as Babbage's design 
showed), electronics made possible the speed and later the miniaturization that 
characterize modern computers. 

There were three parallel streams of computer development in the World War II era; the 
first stream largely ignored, and the second stream deliberately kept secret. The first was 
the German work of Konrad Zuse. The second was the secret development of the 
Colossus computers in the UK. Neither of these had much influence on the various 
computing projects in the United States. The third stream of computer development, 
Eckert and Mauchly's ENIAC and EDVAC, was widely publicized. 

George Stibitz is internationally recognized as one of the fathers of the modern digital 
computer. While working at Bell Labs in November 1937, Stibitz invented and built a 
relay-based calculator that he dubbed the "Model K" (for "kitchen table", on which he 
had assembled it), which was the first to calculate using binary form.  

Zuse 

Konrad Zuse 

 
 
A reproduction of Zuse's Z1 computer 



Working in isolation in Germany, Konrad Zuse started construction in 1936 of his first Z-
series calculators featuring memory and (initially limited) programmability. Zuse's purely 
mechanical, but already binary Z1, finished in 1938, never worked reliably due to 
problems with the precision of parts. 

Zuse's later machine, the Z3, was finished in 1941. It was based on telephone relays and 
did work satisfactorily. The Z3 thus became the first functional program-controlled, all-
purpose, digital computer. In many ways it was quite similar to modern machines, 
pioneering numerous advances, such as floating point numbers. Replacement of the hard-
to-implement decimal system (used in Charles Babbage's earlier design) by the simpler 
binary system meant that Zuse's machines were easier to build and potentially more 
reliable, given the technologies available at that time. 

Programs were fed into Z3 on punched films. Conditional jumps were missing, but since 
the 1990s it has been proved theoretically that Z3 was still a universal computer (ignoring 
its physical storage size limitations). In two 1936 patent applications, Konrad Zuse also 
anticipated that machine instructions could be stored in the same storage used for data—
the key insight of what became known as the von Neumann architecture, first 
implemented in the British SSEM of 1948. Zuse also claimed to have designed the first 
higher-level programming language, (Plankalkül), in 1945 (published in 1948) although it 
was implemented for the first time in 2000 by a team around Raúl Rojas at the Free 
University of Berlin—five years after Zuse died. 

Zuse suffered setbacks during World War II when some of his machines were destroyed 
in the course of Allied bombing campaigns. Apparently his work remained largely 
unknown to engineers in the UK and US until much later, although at least IBM was 
aware of it as it financed his post-war startup company in 1946 in return for an option on 
Zuse's patents. 

Colossus 

Colossus computer 

 
 
Colossus was used to break German ciphers during World War II. 

During World War II, the British at Bletchley Park (40 miles north of London) achieved a 
number of successes at breaking encrypted German military communications. The 
German encryption machine, Enigma, was attacked with the help of electro-mechanical 
machines called bombes. The bombe, designed by Alan Turing and Gordon Welchman, 
after the Polish cryptographic bomba by Marian Rejewski (1938), came into use in 1941. 



They ruled out possible Enigma settings by performing chains of logical deductions 
implemented electrically. Most possibilities led to a contradiction, and the few remaining 
could be tested by hand. 

The Germans also developed a series of teleprinter encryption systems, quite different 
from Enigma. The Lorenz SZ 40/42 machine was used for high-level Army 
communications, termed "Tunny" by the British. The first intercepts of Lorenz messages 
began in 1941. As part of an attack on Tunny, Professor Max Newman and his colleagues 
helped specify the Colossus. The Mk I Colossus was built between March and December 
1943 by Tommy Flowers and his colleagues at the Post Office Research Station at Dollis 
Hill in London and then shipped to Bletchley Park in January 1944. 

Colossus was the first totally electronic computing device. The Colossus used a large 
number of valves (vacuum tubes). It had paper-tape input and was capable of being 
configured to perform a variety of boolean logical operations on its data, but it was not 
Turing-complete. Nine Mk II Colossi were built (The Mk I was converted to a Mk II 
making ten machines in total). Details of their existence, design, and use were kept secret 
well into the 1970s. Winston Churchill personally issued an order for their destruction 
into pieces no larger than a man's hand. Due to this secrecy the Colossi were not included 
in many histories of computing. A reconstructed copy of one of the Colossus machines is 
now on display at Bletchley Park. 

American developments 

In 1937, Claude Shannon showed there is a one-to-one correspondence between the 
concepts of Boolean logic and certain electrical circuits, now called logic gates, which 
are now ubiquitous in digital computers. In his master's thesis at MIT, for the first time in 
history, Shannon showed that electronic relays and switches can realize the expressions 
of Boolean algebra. Entitled A Symbolic Analysis of Relay and Switching Circuits, 
Shannon's thesis essentially founded practical digital circuit design. George Stibitz 
completed a relay-based computer he dubbed the "Model K" at Bell Labs in November 
1937. Bell Labs authorized a full research program in late 1938 with Stibitz at the helm. 
Their Complex Number Calculator, completed January 8, 1940, was able to calculate 
complex numbers. In a demonstration to the American Mathematical Society conference 
at Dartmouth College on September 11, 1940, Stibitz was able to send the Complex 
Number Calculator remote commands over telephone lines by a teletype. It was the first 
computing machine ever used remotely, in this case over a phone line. Some participants 
in the conference who witnessed the demonstration were John von Neumann, John 
Mauchly, and Norbert Wiener, who wrote about it in their memoirs. 



 
 
Atanasoff–Berry Computer replica at 1st floor of Durham Center, Iowa State University 

In 1939, John Vincent Atanasoff and Clifford E. Berry of Iowa State University 
developed the Atanasoff–Berry Computer (ABC), The Atanasoff-Berry Computer was 
the world's first electronic digital computer. The design used over 300 vacuum tubes and 
employed capacitors fixed in a mechanically rotating drum for memory. Though the ABC 
machine was not programmable, it was the first to use electronic tubes in an adder. 
ENIAC co-inventor John Mauchly examined the ABC in June 1941, and its influence on 
the design of the later ENIAC machine is a matter of contention among computer 
historians. The ABC was largely forgotten until it became the focus of the lawsuit 
Honeywell v. Sperry Rand, the ruling of which invalidated the ENIAC patent (and several 
others) as, among many reasons, having been anticipated by Atanasoff's work. 

In 1939, development began at IBM's Endicott laboratories on the Harvard Mark I. 
Known officially as the Automatic Sequence Controlled Calculator, the Mark I was a 
general purpose electro-mechanical computer built with IBM financing and with 
assistance from IBM personnel, under the direction of Harvard mathematician Howard 
Aiken. Its design was influenced by Babbage's Analytical Engine, using decimal 
arithmetic and storage wheels and rotary switches in addition to electromagnetic relays. It 
was programmable via punched paper tape, and contained several calculation units 
working in parallel. Later versions contained several paper tape readers and the machine 
could switch between readers based on a condition. Nevertheless, the machine was not 
quite Turing-complete. The Mark I was moved to Harvard University and began 
operation in May 1944. 

ENIAC 

ENIAC 

 
 



ENIAC performed ballistics trajectory calculations with 160 kW of power. 

The US-built ENIAC (Electronic Numerical Integrator and Computer) was the first 
electronic general-purpose computer. It combined, for the first time, the high speed of 
electronics with the ability to be programmed for many complex problems. It could add 
or subtract 5000 times a second, a thousand times faster than any other machine. 
(Colossus couldn't add.) It also had modules to multiply, divide, and square root. High 
speed memory was limited to 20 words (about 80 bytes.) Built under the direction of John 
Mauchly and J. Presper Eckert at the University of Pennsylvania, ENIAC's development 
and construction lasted from 1943 to full operation at the end of 1945. The machine was 
huge, weighing 30 tons, and contained over 18,000 valves. One of the major engineering 
feats was to minimize valve burnout, which was a common problem at that time. The 
machine was in almost constant use for the next ten years. 

ENIAC was unambiguously a Turing-complete device. It could compute any problem 
(that would fit in memory). A "program" on the ENIAC, however, was defined by the 
states of its patch cables and switches, a far cry from the stored program electronic 
machines that evolved from it. Once a program was written, it had to be mechanically set 
into the machine. Six women did most of the programming of ENIAC. (Improvements 
completed in 1948 made it possible to execute stored programs set in function table 
memory, which made programming less a "one-off" effort, and more systematic.) 

Defining characteristics of some early digital computers of the 1940s (In the history of 
computing hardware) 

Name 
First 

operational 
Numeral 
system 

Computing 
mechanism

Programming 
Turing 

complete

Zuse Z3 
(Germany) May 1941 Binary 

Electro-
mechanical

Program-controlled by 
punched film stock 
(but no conditional 
branch) 

Yes 
(1998) 

Atanasoff–
Berry 
Computer (US) 

1942 Binary Electronic 
Not programmable—
single purpose 

No 

Colossus Mark 
1 (UK) 

February 
1944 

Binary Electronic 
Program-controlled by 
patch cables and 
switches 

No 



Harvard Mark 
I – IBM ASCC 
(US) 

May 1944 Decimal
Electro-
mechanical

Program-controlled by 
24-channel punched 
paper tape (but no 
conditional branch) 

No 

Colossus Mark 
2 (UK) 

June 1944 Binary Electronic 
Program-controlled by 
patch cables and 
switches 

No 

ENIAC (US) July 1946 Decimal Electronic 
Program-controlled by 
patch cables and 
switches 

Yes 

Manchester 
Small-Scale 
Experimental 
Machine (UK) 

June 1948 Binary Electronic 
Stored-program in 
Williams cathode ray 
tube memory 

Yes 

Modified 
ENIAC (US) 

September 
1948 

Decimal Electronic 

Program-controlled by 
patch cables and 
switches plus a 
primitive read-only 
stored programming 
mechanism using the 
Function Tables as 
program ROM 

Yes 

EDSAC (UK) May 1949 Binary Electronic 
Stored-program in 
mercury delay line 
memory 

Yes 

Manchester 
Mark 1 (UK) 

October 
1949 

Binary Electronic 

Stored-program in 
Williams cathode ray 
tube memory and 
magnetic drum 
memory 

Yes 



CSIRAC 
(Australia) 

November 
1949 

Binary Electronic 
Stored-program in 
mercury delay line 
memory 

Yes 

First-generation von Neumann machines 

 
Design of the von Neumann architecture (1947) 

Even before the ENIAC was finished, Eckert and Mauchly recognized its limitations and 
started the design of a stored-program computer, EDVAC. John von Neumann was 
credited with a widely circulated report describing the EDVAC design in which both the 
programs and working data were stored in a single, unified store. This basic design, 
denoted the von Neumann architecture, would serve as the foundation for the worldwide 
development of ENIAC's successors. In this generation of equipment, temporary or 
working storage was provided by acoustic delay lines, which used the propagation time 
of sound through a medium such as liquid mercury (or through a wire) to briefly store 
data. A series of acoustic pulses is sent along a tube; after a time, as the pulse reached the 
end of the tube, the circuitry detected whether the pulse represented a 1 or 0 and caused 
the oscillator to re-send the pulse. Others used Williams tubes, which use the ability of a 
television picture tube to store and retrieve data. By 1954, magnetic core memory was 
rapidly displacing most other forms of temporary storage, and dominated the field 
through the mid-1970s. 

 
 
Magnetic core memory. Each core is one bit. 

EDVAC was the first stored-program computer designed; however it was not the first to 
run. Eckert and Mauchly left the project and its construction floundered. The first 
working von Neumann machine was the Manchester "Baby" or Small-Scale 
Experimental Machine, developed by Frederic C. Williams and Tom Kilburn at 
University of Manchester in 1948; it was followed in 1949 by the Manchester Mark 1 
computer, a complete system, using Williams tube and magnetic drum memory, and 
introducing index registers. The other contender for the title "first digital stored program 
computer" had been EDSAC, designed and constructed at the University of Cambridge. 
Operational less than one year after the Manchester "Baby", it was also capable of 



tackling real problems. EDSAC was actually inspired by plans for EDVAC (Electronic 
Discrete Variable Automatic Computer), the successor to ENIAC; these plans were 
already in place by the time ENIAC was successfully operational. Unlike ENIAC, which 
used parallel processing, EDVAC used a single processing unit. This design was simpler 
and was the first to be implemented in each succeeding wave of miniaturization, and 
increased reliability. Some view Manchester Mark 1 / EDSAC / EDVAC as the "Eves" 
from which nearly all current computers derive their architecture. Manchester 
University's machine became the prototype for the Ferranti Mark 1. The first Ferranti 
Mark 1 machine was delivered to the University in February, 1951 and at least nine 
others were sold between 1951 and 1957. 

The first universal programmable computer in the Soviet Union was created by a team of 
scientists under direction of Sergei Alekseyevich Lebedev from Kiev Institute of 
Electrotechnology, Soviet Union (now Ukraine). The computer MESM (МЭСМ, Small 
Electronic Calculating Machine) became operational in 1950. It had about 6,000 vacuum 
tubes and consumed 25 kW of power. It could perform approximately 3,000 operations 
per second. Another early machine was CSIRAC, an Australian design that ran its first 
test program in 1949. CSIRAC is the oldest computer still in existence and the first to 
have been used to play digital music. 

Commercial computers 

In October 1947, the directors of J. Lyons & Company, a British catering company 
famous for its teashops but with strong interests in new office management techniques, 
decided to take an active role in promoting the commercial development of computers. 
By 1951 the LEO I computer was operational and ran the world's first regular routine 
office computer job. On 17 November 1951, the J. Lyons company began weekly 
operation of a bakery valuations job on the LEO (Lyons Electronic Office). This was the 
first business application to go live on a stored program computer. 

In June 1951, the UNIVAC I (Universal Automatic Computer) was delivered to the U.S. 
Census Bureau. Remington Rand eventually sold 46 machines at more than $1 million 
each ($8.2 million as of 2009). UNIVAC was the first "mass produced" computer; all 
predecessors had been "one-off" units. It used 5,200 vacuum tubes and consumed 125 
kW of power. It used a mercury delay line capable of storing 1,000 words of 11 decimal 
digits plus sign (72-bit words) for memory. A key feature of the UNIVAC system was a 
newly invented type of metal magnetic tape, and a high-speed tape unit, for non-volatile 
storage. Magnetic media is still used in almost all computers. 

In 1952, IBM publicly announced the IBM 701 Electronic Data Processing Machine, the 
first in its successful 700/7000 series and its first IBM mainframe computer. The IBM 
704, introduced in 1954, used magnetic core memory, which became the standard for 
large machines. The first implemented high-level general purpose programming 
language, Fortran, was also being developed at IBM for the 704 during 1955 and 1956 
and released in early 1957. (Konrad Zuse's 1945 design of the high-level language 



Plankalkül was not implemented at that time.) A volunteer user group, which exists to 
this day, was founded in 1955 to share their software and experiences with the IBM 701. 

 
 
IBM 650 front panel 

IBM introduced a smaller, more affordable computer in 1954 that proved very popular. 
The IBM 650 weighed over 900 kg, the attached power supply weighed around 1350 kg 
and both were held in separate cabinets of roughly 1.5 meters by 0.9 meters by 1.8 
meters. It cost $500,000 ($3.96 million as of 2009) or could be leased for $3,500 a month 
($30 thousand as of 2009). Its drum memory was originally 2,000 ten-digit words, later 
expanded to 4,000 words. Memory limitations such as this were to dominate 
programming for decades afterward. Efficient execution using drum memory was 
provided by a combination of hardware architecture: the instruction format included the 
address of the next instruction; and software: the Symbolic Optimal Assembly Program, 
SOAP, assigned instructions to optimal address (to the extent possible by static analysis 
of the source program). Thus many instructions were, when needed, located in the next 
row of the drum to be read and additional wait time for drum rotation was not required. 

In 1955, Maurice Wilkes invented microprogramming, which allows the base instruction 
set to be defined or extended by built-in programs (now called firmware or microcode). It 
was widely used in the CPUs and floating-point units of mainframe and other computers, 
such as the IBM 360 series. 

IBM introduced its first magnetic disk system, RAMAC (Random Access Method of 
Accounting and Control) in 1956. Using fifty 24-inch (610 mm) metal disks, with 
100 tracks per side, it was able to store 5 megabytes of data at a cost of $10,000 per 
megabyte ($80 thousand as of 2009). (As of 2008, magnetic storage, in the form of hard 
disks, costs less than two cents per megabyte). 



Second generation: transistors 

computer architecture and von Neumann architecture 

 
 
A bipolar junction transistor 

By the early 1950s transistors started to become available, offering the possibility of 
building cheaper and faster computers. Initially the only devices available were 
germanium point-contact transistors, which although less reliable than the vacuum tubes 
they replaced had the advantage of consuming far less power. The first transistorised 
computer was built at the University of Manchester and was operational by 1953; a 
second version was completed there in April 1955. The later machine used 200 transistors 
and 1,300 solid-state diodes and had a power consumption of 150 watts. However, it still 
required valves to generate the clock waveforms at 125 kHz and to read and write on the 
magnetic drum memory, whereas the Harwell CADET operated without any valves by 
using a lower clock frequency, of 58 kHz when it became operational in February 1955. 
Problems with the reliability of early batches of point contact and alloyed junction 
transistors meant that the machine's mean time between failures was about 90 minutes, 
but this improved once the more reliable bipolar junction transistors became available. 

The bipolar junction transistor (BJT) was invented in 1947. If no electrical current flows 
through the base-emitter path of a bipolar transistor, the transistor's collector-emitter path 
blocks electrical current (and the transistor is said to "turn full off"). If sufficient current 
flows through the base-emitter path of a transistor, that transistor's collector-emitter path 
also passes current (and the transistor is said to "turn full on"). Current flow or current 
blockage represent binary 1 (true) or 0 (false), respectively. From 1955 onwards bipolar 
junction transistors replaced vacuum tubes in computer designs, giving rise to the 
"second generation" of computers. Compared to vacuum tubes, transistors have many 
advantages: they are less expensive to manufacture and are much faster, switching from 
the condition 1 to 0 in millionths or billionths of a second. Transistor volume is measured 
in cubic millimeters compared to vacuum tubes' cubic centimeters. Transistors' lower 
operating temperature increased their reliability, compared to vacuum tubes. 
Transistorized computers could contain tens of thousands of binary logic circuits in a 
relatively compact space. 

Initially, it was believed that very few computers would ever be produced or used. This 
was due in part to their size, cost, and the skill required to operate or interpret their 
results. Transistors greatly reduced computers' size, initial cost, and operating cost. 



Typically, second-generation computers were composed of large numbers of printed 
circuit boards such as the IBM Standard Modular System each carrying one to four logic 
gates or flip-flops. A second generation computer, the IBM 1401, captured about one 
third of the world market. IBM installed more than one hundred thousand 1401s between 
1960 and 1964— This period saw the only Italian attempt: the Olivetti ELEA, produced 
in 110 units. 

 
 
This RAMAC DASD is being restored at the Computer History Museum 

Transistorized electronics improved not only the CPU (Central Processing Unit), but also 
the peripheral devices. The IBM 350 RAMAC was introduced in 1956 and was the 
world's first disk drive. The second generation disk data storage units were able to store 
tens of millions of letters and digits. Multiple Peripherals can be connected to the CPU, 
increasing the total memory capacity to hundreds of millions of characters. Next to the 
fixed disk storage units, connected to the CPU via high-speed data transmission, were 
removable disk data storage units. A removable disk stack can be easily exchanged with 
another stack in a few seconds. Even if the removable disks' capacity is smaller than 
fixed disks,' their interchangeability guarantees a nearly unlimited quantity of data close 
at hand. But magnetic tape provided archival capability for this data, at a lower cost than 
disk. 

Many second generation CPUs delegated peripheral device communications to a 
secondary processor. For example, while the communication processor controlled card 
reading and punching, the main CPU executed calculations and binary branch 
instructions. One databus would bear data between the main CPU and core memory at the 
CPU's fetch-execute cycle rate, and other databusses would typically serve the peripheral 
devices. On the PDP-1, the core memory's cycle time was 5 microseconds; consequently 
most arithmetic instructions took 10 microseconds (100,000 operations per second) 
because most operations took at least two memory cycles; one for the instruction, one for 
the operand data fetch. 

During the second generation remote terminal units (often in the form of teletype 
machines like a Friden Flexowriter) saw greatly increased use. Telephone connections 
provided sufficient speed for early remote terminals and allowed hundreds of kilometers 
separation between remote-terminals and the computing center. Eventually these stand-



alone computer networks would be generalized into an interconnected network of 
networks—the Internet. 

Post-1960: third generation and beyond 

history of computing hardware (1960s–present) and history of general purpose CPUs 

 
 
Intel 8742 eight-bit microcontroller IC 

The explosion in the use of computers began with "third-generation" computers, making 
use of Jack St. Clair Kilby's and Robert Noyce's independent invention of the integrated 
circuit (or microchip), which later led to the invention of the microprocessor, by Ted 
Hoff, Federico Faggin, and Stanley Mazor at Intel. The integrated circuit in the image on 
the right, for example, an Intel 8742, is an 8-bit microcontroller that includes a CPU 
running at 12 MHz, 128 bytes of RAM, 2048 bytes of EPROM, and I/O in the same chip. 

During the 1960s there was considerable overlap between second and third generation 
technologies. IBM implemented its IBM Solid Logic Technology modules in hybrid 
circuits for the IBM System/360 in 1964. As late as 1975, Sperry Univac continued the 
manufacture of second-generation machines such as the UNIVAC 494. The Burroughs 
large systems such as the B5000 were stack machines, which allowed for simpler 
programming. These pushdown automatons were also implemented in minicomputers 
and microprocessors later, which influenced programming language design. 
Minicomputers served as low-cost computer centers for industry, business and 
universities. It became possible to simulate analog circuits with the simulation program 
with integrated circuit emphasis, or SPICE (1971) on minicomputers, one of the 
programs for electronic design automation (EDA). The microprocessor led to the 
development of the microcomputer, small, low-cost computers that could be owned by 
individuals and small businesses. Microcomputers, the first of which appeared in the 
1970s, became ubiquitous in the 1980s and beyond. Steve Wozniak, co-founder of Apple 
Computer, is credited with developing the first mass-market home computers. However, 
his first computer, the Apple I, came out some time after the MOS Technology KIM-1 
and Altair 8800, and the first Apple computer with graphic and sound capabilities came 
out well after the Commodore PET. Computing has evolved with microcomputer 
architectures, with features added from their larger brethren, now dominant in most 
market segments. 



Systems as complicated as computers require very high reliability. ENIAC remained on, 
in continuous operation from 1947 to 1955, for eight years before being shut down. 
Although a vacuum tube might fail, it would be replaced without bringing down the 
system. By the simple strategy of never shutting down ENIAC, the failures were 
dramatically reduced. Hot-pluggable hard disks, like the hot-pluggable vacuum tubes of 
yesteryear, continue the tradition of repair during continuous operation. Semiconductor 
memories routinely have no errors when they operate, although operating systems like 
Unix have employed memory tests on start-up to detect failing hardware. Today, the 
requirement of reliable performance is made even more stringent when server farms are 
the delivery platform. Google has managed this by using fault-tolerant software to 
recover from hardware failures, and is even working on the concept of replacing entire 
server farms on-the-fly, during a service event. 

In the twenty-first century, multi-core CPUs became commercially available. Content-
addressable memory (CAM) has become inexpensive enough to be used in networking, 
although no computer system has yet implemented hardware CAMs for use in 
programming languages. Currently, CAMs (or associative arrays) in software are 
programming-language-specific. Semiconductor memory cell arrays are very regular 
structures, and manufacturers prove their processes on them; this allows price reductions 
on memory products. When the CMOS field effect transistor-based logic gates 
supplanted bipolar transistors, computer power consumption could decrease dramatically 
(A CMOS Field-effect transistor only draws significant current during the 'transition' 
between logic states, unlike the substantially higher (and continuous) bias current draw of 
a BJT). This has allowed computing to become a commodity which is now ubiquitous, 
embedded in many forms, from greeting cards and telephones to satellites. Computing 
hardware and its software have even become a metaphor for the operation of the 
universe. 

An indication of the rapidity of development of this field can be inferred by the history of 
the seminal article. By the time that anyone had time to write anything down, it was 
obsolete. After 1945, others read John von Neumann's First Draft of a Report on the 
EDVAC, and immediately started implementing their own systems. To this day, the pace 
of development has continued, worldwide. 

 

In 1941, Konrad Zuse presented the Z3, the world's first functional computer. After the 
Colossus computer in 1943, the ENIAC (Electronic Numerical Integrator and Computer) 
of John Presper Eckert and John Mauchly followed in 1946, beginning the computing 
era. The arithmetic performance of these machines allowed engineers to develop 
completely new technologies and achieve new objectives. Early examples include the 
Apollo missions and the NASA moon landing. 

Transistors 



The invention of the transistor in 1947 by William B. Shockley, John Bardeen and Walter 
Brattain opened the door for more compact devices and led to the development of the 
integrated circuit in 1959 by Jack Kilby. 

Microprocessors 

In 1969, Ted Hoff conceived the commercial microprocessor at Intel and thus ignited the 
development of the personal computer. Hoff's invention was part of an order by a 
Japanese company for a desktop programmable electronic calculator, which Hoff wanted 
to build as cheaply as possible. The first realization of the microprocessor was the Intel 
4004, a 4-bit processor, in 1969, but only in 1973 did the Intel 8080, an 8-bit processor, 
make the building of the first personal computer, the MITS Altair 8800, possible. The 
first PC was announced to the general public on the cover of the January 1975 issue of 
Popular Electronics. Mechatronics would have a good fortune in the near future. 

Electronics 

In the field of electronic engineering, engineers design and test circuits that use the 
electromagnetic properties of electrical components such as resistors, capacitors, 
inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, 
which allows the user of a radio to filter out all but a single station, is just one example of 
such a circuit. 

In designing an integrated circuit, electronics engineers first construct circuit schematics 
that specify the electrical components and describe the interconnections between them. 
When completed, VLSI engineers convert the schematics into actual layouts, which map 
the layers of various conductor and semiconductor materials needed to construct the 
circuit. The conversion from schematics to layouts can be done by software (see 
electronic design automation) but very often requires human fine-tuning to decrease 
space and power consumption. Once the layout is complete, it can be sent to a fabrication 
plant for manufacturing. 

Integrated circuits and other electrical components can then be assembled on printed 
circuit boards to form more complicated circuits. Today, printed circuit boards are found 
in most electronic devices including televisions, computers and audio players. 

 

 

                                   

 



Chapter-2 

Electromagnetism & Photoelectric Effect  

                   

 

 

                    Electromagnetism 
Electromagnetism is the physics of the electromagnetic field, a field that exerts a force 
on particles with the property of electric charge and is reciprocally affected by the 
presence and motion of such particles. 

A changing magnetic field produces an electric field (this is the phenomenon of 
electromagnetic induction, the basis of operation for electrical generators, induction 
motors, and transformers). Similarly, a changing electric field generates a magnetic field. 

The magnetic field is produced by the motion of electric charges, i.e., electric current. 
The magnetic field causes the magnetic force associated with magnets. 

The theoretical implications of electromagnetism led to the development of special 
relativity by Albert Einstein in 1905; and from this it was shown that magnetic fields and 
electric fields are convertible with relative motion as a four vector and this led to their 
unification as electromagnetism. 

History 

While preparing for an evening lecture on 21 April 1820, Hans Christian Ørsted 
developed an experiment that provided surprising evidence. As he was setting up his 
materials, he noticed a compass needle deflected from magnetic north when the electric 
current from the battery he was using was switched on and off. This deflection convinced 
him that magnetic fields radiate from all sides off of a wire carrying an electric current, 
just as light and heat do, and that it confirmed a direct relationship between electricity 
and magnetism. 

At the time of discovery, Ørsted did not suggest any satisfactory explanation of the 
phenomenon, nor did he try to represent the phenomenon in a mathematical framework. 



However, three months later he began more intensive investigations. Soon thereafter he 
published his findings, proving that an electric current produces a magnetic field as it 
flows through a wire. The CGS unit of magnetic induction (oersted) is named in honor of 
his contributions to the field of electromagnetism. 

His findings resulted in intensive research throughout the scientific community in 
electrodynamics. They influenced French physicist André-Marie Ampère's developments 
of a single mathematical form to represent the magnetic forces between current-carrying 
conductors. Ørsted's discovery also represented a major step toward a unified concept of 
energy. 

This unification, which was observed by Michael Faraday, extended by James Clerk 
Maxwell, and partially reformulated by Oliver Heaviside and Heinrich Hertz, is one of 
the accomplishments of 19th century Mathematical Physics. It had far-reaching 
consequences, one of which was the understanding of the nature of light. Light and other 
electromagnetic waves take the form of quantized, self-propagating oscillatory 
electromagnetic field disturbances called photons. Different frequencies of oscillation 
give rise to the different forms of electromagnetic radiation, from radio waves at the 
lowest frequencies, to visible light at intermediate frequencies, to gamma rays at the 
highest frequencies. 

Ørsted was not the only person to examine the relation between electricity and 
magnetism. In 1802 Gian Domenico Romagnosi, an Italian legal scholar, deflected a 
magnetic needle by electrostatic charges. Actually, no galvanic current existed in the 
setup and hence no electromagnetism was present. An account of the discovery was 
published in 1802 in an Italian newspaper, but it was largely overlooked by the 
contemporary scientific community. 

The electromagnetic force 

Electromagnetic force 

The force that the electromagnetic field exerts on electrically charged particles, called the 
electromagnetic force, is one of the fundamental forces. The other fundamental forces 
are strong nuclear force (which holds atomic nuclei together), the weak nuclear force and 
the gravitational force. All other forces are ultimately derived from these fundamental 
forces. 

The electromagnetic force is the one responsible for practically all the phenomena 
encountered in daily life, with the exception of gravity. All the forces involved in 
interactions between atoms can be traced to the electromagnetic force acting on the 
electrically charged protons and electrons inside the atoms. This includes the forces we 
experience in "pushing" or "pulling" ordinary material objects, which come from the 
intermolecular forces between the individual molecules in our bodies and those in the 
objects. It also includes all forms of chemical phenomena, which arise from interactions 
between electron orbitals. 



Classical electromagnetism 
Classical electromagnetism (or classical electrodynamics) is a branch of theoretical 
physics that studies consequences of the electromagnetic forces between electric charges 
and currents. It provides an excellent description of electromagnetic phenomena 
whenever the relevant length scales and field strengths are large enough that quantum 
mechanical effects are negligible (see quantum electrodynamics). Fundamental physical 
aspects of classical electrodynamics are presented e.g. by Feynman, Leighton and Sands, 
Panofsky and Phillips, and Jackson. 

The theory of electromagnetism was developed over the course of the 19th century, most 
prominently by James Clerk Maxwell. For a detailed historical account, consult Pauli, 
Whittaker, and Pais. 

Ribarič and Šušteršič considered a dozen open questions in the current understanding of 
classical electrodynamics; to this end they studied and cited about 240 references from 
1903 to 1989. The outstanding problem with classical electrodynamics, as stated by 
Jackson, is that we are able to obtain and study relevant solutions of its basic equations 
only in two limiting cases: »... one in which the sources of charges and currents are 
specified and the resulting electromagnetic fields are calculated, and the other in which 
external electromagnetic fields are specified and the motion of charged particles or 
currents is calculated... Occasionally, ..., the two problems are combined. But the 
treatment is a stepwise one -- first the motion of the charged particle in the external field 
is determined, neglecting the emission of radiation; then the radiation is calculated from 
the trajectory as a given source distribution. It is evident that this manner of handling 
problems in electrodynamics can be of only approximative validity.« As a consequence, 
we do not yet have physical understanding of those electromechanical systems where we 
cannot neglect the mutual interaction between electric charges and currents, and the 
electromagnetic field emitted by them. Despite of a century long effort, there is as yet no 
generally accepted classical equation of motion for charged particles, as well as no 
pertinent experimental data, cf. 

Lorentz force 

Lorentz force 

The electromagnetic field exerts the following force (often called the Lorentz force) on 
charged particles: 

where all boldfaced quantities are vectors: F is the force that a charge q experiences, E is 
the electric field at the location of the charge, v is the velocity of the charge, B is the 
magnetic field at the location of the charge. 

The electric field E 



Electric field 

The electric field E is defined such that, on a stationary charge: 

where q0 is what is known as a test charge. The size of the charge doesn't really matter, as 
long as it is small enough as to not influence the electric field by its mere presence. What 
is plain from this definition, though, is that the unit of E is N/C, or newtons per coulomb. 
This unit is equal to V/m (volts per meter), see below. 

The above definition seems a little bit circular but, in electrostatics, where charges are not 
moving, Coulomb's law works fine. So what we end up with is: 

where n is the number of charges, qi is the amount of charge associated with the ith 
charge, ri is the position of the ith charge, r is the position where the electric field is 
being determined, and ε0 is a universal constant called the permittivity of free space. 

Note: the above is just Coulomb's law, divided by q1, adding up multiple charges. 

Changing the summation to an integral yields the following: 

where ρ is the charge density as a function of position, runit is the unit vector pointing 
from dV to the point in space E is being calculated at, and r is the distance from the point 
E is being calculated at to the point charge. 

Both of the above equations are cumbersome, especially if one wants to calculate E as a 
function of position. There is, however, a scalar function called the electrical potential 
that can help. Electric potential, also called voltage (the units for which are the volt), 
which is defined thus: 

where φE is the electric potential, and s is the path over which the integral is being taken. 

Unfortunately, this definition has a caveat. From Maxwell's equations, it is clear that is 
not always zero, and hence the scalar potential alone is insufficient to define the electric 
field exactly. As a result, one must resort to adding a correction factor, which is generally 
done by subtracting the time derivative of the A vector potential described below. 
Whenever the charges are quasistatic, however, this condition will be essentially met, so 
there will be few problems. 

From the definition of charge, one can easily show that the electric potential of a point 
charge as a function of position is: 

where q is the point charge's charge, r is the position, and rq is the position of the point 
charge. The potential for a general distribution of charge ends up being: 

where ρ is the charge density as a function of position, and r is the distance from the 
volume element dV. 



Note well that φ is a scalar, which means that it will add to other potential fields as a 
scalar. This makes it relatively easy to break complex problems down in to simple parts 
and add their potentials. Taking the definition of φ backwards, we see that the electric 
field is just the negative gradient (the del operator) of the potential. Or: 

From this formula it is clear that E can be expressed in V/m (volts per meter). 

Electromagnetic waves 

Electromagnetic waves 

A changing electromagnetic field propagates away from its origin in the form of a wave. 
These waves travel in vacuum at the speed of light and exist in a wide spectrum of 
wavelengths. Examples of the dynamic fields of electromagnetic radiation (in order of 
increasing frequency): radio waves, microwaves, light (infrared, visible light and 
ultraviolet), x-rays and gamma rays. In the field of particle physics this electromagnetic 
radiation is the manifestation of the electromagnetic interaction between charged 
particles. 

General field equations 

Jefimenko's equations and Liénard-Wiechert Potentials 

As simple and satisfying as Coulomb's equation may be, it is not entirely correct in the 
context of classical electromagnetism. Problems arise because changes in charge 
distributions require a non-zero amount of time to be "felt" elsewhere (required by special 
relativity). Disturbances of the electric field due to a charge propagate at the speed of 
light. 

For the fields of general charge distributions, the retarded potentials can be computed and 
differentiated accordingly to yield Jefimenko's Equations. 

Retarded potentials can also be derived for point charges, and the equations are known as 
the Liénard-Wiechert potentials. The scalar potential is: 

where q is the point charge's charge and r is the position. rq and v are the position and 
velocity of the charge, respectively, as a function of retarded time. The vector potential is 
similar: 

These can then be differentiated accordingly to obtain the complete field equations for a 
moving point particle. 

 



 The photoelectric effect 

Photoelectric effect 
The photoelectric effect is a phenomenon in which electrons are emitted from matter 
(metals and non-metallic solids, liquids, or gases) after the absorption of energy from 
electromagnetic radiation such as X-rays or visible light. The emitted electrons can be 
referred to as photoelectrons in this context. The effect is also termed the Hertz Effect, 
due to its discovery by Heinrich Rudolf Hertz, although the term has generally fallen out 
of use. Hertz observed and then showed that electrodes illuminated with ultraviolet light 
create electric sparks more easily. 

The photoelectric effect takes place with photons with energies from about a few 
electronvolts to, in some cases, over 1 MeV. At the high photon energies comparable to 
the electron rest energy of 511 keV, Compton scattering, another process, may take place, 
and above twice this (1.022 MeV) pair production may take place. 

Study of the photoelectric effect led to important steps in understanding the quantum 
nature of light and electrons and influenced the formation of the concept of wave–particle 
duality. 

The term may also, but incorrectly, refer to related phenomena such as the 
photoconductive effect (also known as photoconductivity or photoresistivitity), the 
photovoltaic effect, or the photoelectrochemical effect which are, in fact, distinctly 
different. 

Introduction and early historical view 

When a surface is exposed to electromagnetic radiation above a certain threshold 
frequency (typically visible light for alkali metals, near ultraviolet for other metals, and 
vacuum or extreme ultraviolet for non-metals), the light is absorbed and electrons are 
emitted. In 1902, Philipp Eduard Anton von Lenard observed that the energy of 
individual emitted electrons increased with the frequency, or color, of the light. This 
appeared to be at odds with James Clerk Maxwell's wave theory of light, which was 
thought to predict that the electron energy would be proportional to the intensity of the 
radiation. In 1905, Einstein solved this apparent paradox by describing light as composed 
of discrete quanta, now called photons, rather than continuous waves. Based upon Max 
Planck's theory of black-body radiation, Einstein theorized that the energy in each 
quantum of light was equal to the frequency multiplied by a constant, later called Planck's 
constant. A photon above a threshold frequency has the required energy to eject a single 
electron, creating the observed effect. This discovery led to the quantum revolution in 
physics and earned Einstein the Nobel Prize in 1921. 

Modern view 



It has been shown that it is not necessary for light to be "quantized" to explain the 
photoelectric effect. The most common way physicists calculate the probability of 
ejecting an electron uses what is known as Fermi's golden rule. Although based upon 
quantum mechanics, the method treats a light quantum as an electromagnetic wave that 
causes an atom and its constituent electrons to transition from one energy state 
("eigenstate") to another. It is also important to note that the particle nature of light 
cannot explain the dependence on polarization with regard to the direction electrons are 
emitted, a phenomenon that has been considered useful in gathering polarization data 
from black holes and neutron stars.. Nonetheless, the notion that the photoelectric effect 
demonstrates the particle nature of light persists in many introductory textbooks. 

Traditional explanation 

The photons of a light beam have a characteristic energy determined by the frequency of 
the light. In the photoemission process, if an electron within some material absorbs the 
energy of one photon and thus has more energy than the work function (the electron 
binding energy) of the material, it is ejected. If the photon energy is too low, the electron 
is unable to escape the material. Increasing the intensity of the light beam increases the 
number of photons in the light beam, and thus increases the number of electrons emitted, 
but does not increase the energy that each electron possesses. Thus the energy of the 
emitted electrons does not depend on the intensity of the incoming light, but only on the 
energy of the individual photons. (This is true as long as the intensity is low enough for 
non-linear effects caused by multiphoton absorption to be insignificant. This was a given 
in the age of Einstein, well before lasers had been invented.) 

Electrons can absorb energy from photons when irradiated, but they usually follow an 
"all or nothing" principle. All of the energy from one photon must be absorbed and used 
to liberate one electron from atomic binding, or the energy is re-emitted. If the photon 
energy is absorbed, some of the energy liberates the electron from the atom, and the rest 
contributes to the electron's kinetic energy as a free particle. 

Experimental results of the photoelectric emission 

1. For a given metal and frequency of incident radiation, the rate at which 
photoelectrons are ejected is directly proportional to the intensity of the incident 
light.  

2. For a given metal, there exists a certain minimum frequency of incident radiation 
below which no photoelectrons can be emitted. This frequency is called the 
threshold frequency.  

3. For a given metal of particular work function, increase in frequency of incident 
beam increases the intensity of the photoelectric current.  

4. Above the threshold frequency, the maximum kinetic energy of the emitted 
photoelectron is independent of the intensity of the incident light but depends on 
the frequency of the incident light.  

5. The time lag between the incidence of radiation and the emission of a 
photoelectron is very small, less than 10–9 second.  



6. The direction distribution of emitted electrons peaks in the direction of 
polarization (the direction of the electric field) of the incident light, if it is linearly 
polarized.  

Equations 

In effect quantitatively using Einstein's method, the following equivalent equations are 
used (valid for visible and ultraviolet radiation): 

Energy of photon = Energy needed to remove an electron + Kinetic energy of the emitted 
electron 

Algebraically: 

where 

 h is Planck's constant,  

 f is the frequency of the incident photon,  

 φ = hf0 is the work function (sometimes denoted W instead), the minimum 
energy required to remove a delocalised electron from the surface of any given 
metal,  

 is the maximum kinetic energy of ejected electrons,  
 f0 is the threshold frequency for the photoelectric effect to occur,  

 m is the rest mass of the ejected electron, and  

 vm is the speed of the ejected electron.  

Since an emitted electron cannot have negative kinetic energy, the equation implies that if 

the photon's energy (hf) is less than the work function (φ), no electron will be emitted. 

According to Einstein's special theory of relativity the relation between energy (E) and 

momentum (p) of a particle is , where m is the rest mass of the particle and c is the 
velocity of light in a vacuum. 

Three-step model 

In the X-ray regime, the photoelectric effect in crystalline material is often decomposed 
into three steps: 

1. Inner photoelectric effect (see photodiode below). The hole left behind can give 
rise to auger effect, which is visible even when the electron does not leave the 
material. In molecular solids phonons are excited in this step and may be visible 
as lines in the final electron energy. The inner photoeffect has to be dipole 
allowed. The transition rules for atoms translate via the tight-binding model onto 



the crystal. They are similar in geometry to plasma oscillations in that they have 
to be transversal.  

2. Ballistic transport of half of the electrons to the surface. Some electrons are 
scattered.  

3. Electrons escape from the material at the surface.  

In the three-step model, an electron can take multiple paths through these three steps. All 
paths can interfere in the sense of the path integral formulation. For surface states and 
molecules the three-step model does still make some sense as even most atoms have 
multiple electrons which can scatter the one electron leaving. 

History 

Early observations 

In 1839, Alexandre Edmond Becquerel observed the photoelectric effect via an electrode 
in a conductive solution exposed to light. In 1873, Willoughby Smith found that selenium 
is photoconductive. 

Hertz's spark gaps 

In 1887, Heinrich Hertz observed the photoelectric effect and the production and 
reception of electromagnetic (EM) waves. He published these observations in the journal 
Annalen der Physik. His receiver consisted of a coil with a spark gap, where a spark 
would be seen upon detection of EM waves. He placed the apparatus in a darkened box to 
see the spark better. However, he noticed that the maximum spark length was reduced 
when in the box. A glass panel placed between the source of EM waves and the receiver 
absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. When 
removed, the spark length would increase. He observed no decrease in spark length when 
he substituted quartz for glass, as quartz does not absorb UV radiation. Hertz concluded 
his months of investigation and reported the results obtained. He did not further pursue 
investigation of this effect, nor did he make any attempt at explaining how this 
phenomenon was brought about. 

Stoletov: the first law of photoeffect 

In the period from February 1888 and until 1891, a detailed analysis of photoeffect was 
performed by Aleksandr Stoletov with results published in 6 works; four of them in 
Comptes Rendus, one review in Physikalische Revue (translated from Russian), and the 
last work in Journal de Physique. First, in these works Stoletov invented a new 
experimental setup which was more suitable for a quantitative analysis of photoeffect. 
Using this setup, he discovered the direct proportionality between the intensity of light 
and the induced photo electric current (the first law of photoeffect or Stoletov's law). One 
of his other findings resulted from measurements of the dependence of the intensity of the 
electric photo current on the gas pressure, where he found the existence of an optimal gas 



pressure Pm corresponding to a maximum photocurrent; this property was used for a 
creation of solar cells. 

JJ Thomson: electrons 

In 1899, J. J. Thomson investigated ultraviolet light in Crookes tubes. Influenced by the 
work of James Clerk Maxwell, Thomson deduced that cathode rays consisted of 
negatively charged particles, later called electrons, which he called "corpuscles". In the 
research, Thomson enclosed a metal plate (a cathode) in a vacuum tube, and exposed it to 
high frequency radiation. It was thought that the oscillating electromagnetic fields caused 
the atoms' field to resonate and, after reaching a certain amplitude, caused a subatomic 
"corpuscle" to be emitted, and current to be detected. The amount of this current varied 
with the intensity and colour of the radiation. Larger radiation intensity or frequency 
would produce more current. 

Radiant energy 

Rays falling on insulated conductor connected to a capacitor: the capacitor charges 
electrically. 

Nikola Tesla described the photoelectric effect in 1901. He described such radiation as 
vibrations of aether of small wavelengths which ionized the atmosphere. On November 5, 
1901, he received the patent US685957, Apparatus for the Utilization of Radiant Energy, 
that describes radiation charging and discharging conductors. This was done by using a 
metal plate or piece of mica exposed to "radiant energy". Tesla used this effect to charge 
a capacitor with energy by means of a conductive plate, making a solar cell precursor. 
The radiant energy threw off with great velocity minute particles (i.e., electrons) which 
were strongly electrified. The patent specified that the radiation (or radiant energy) 
included many different forms. These devices have been referred to as "Photoelectric 
alternating current stepping motors". 

In practice, a polished insulated metal plate or other conducting-body in radiant energy 
(e.g. sunlight) will gain a positive charge as electrons are emitted by the plate. As the 
plate charges positively, electrons form an electrostatic force on the plate (because of 
surface emissions of the photoelectrons), and "drain" any negatively charged capacitors. 
As the rays or radiation fall on the insulated conductor (which is connected to a 
capacitor), the condenser will indefinitely charge electrically. 

Von Lenard's observations 

In 1902, Philipp Lenard observed the variation in electron energy with light frequency. 
He used a powerful electric arc lamp which enabled him to investigate large changes in 
intensity, and had sufficient power to enable him to investigate the variation of potential 
with light frequency. His experiment directly measured potentials, not electron kinetic 
energy: he found the electron energy by relating it to the maximum stopping potential 
(voltage) in a phototube. He found that the calculated maximum electron kinetic energy is 



determined by the frequency of the light. For example, an increase in frequency results in 
an increase in the maximum kinetic energy calculated for an electron upon liberation - 
ultraviolet radiation would require a higher applied stopping potential to stop current in a 
phototube than blue light. However Lenard's results were qualitative rather than 
quantitative because of the difficulty in performing the experiments: the experiments 
needed to be done on freshly cut metal so that the pure metal was observed, but it 
oxidised in a matter of minutes even in the partial vacuums he used. The current emitted 
by the surface was determined by the light's intensity, or brightness: doubling the 
intensity of the light doubled the number of electrons emitted from the surface. Lenard 
did not know of photons. 

Einstein: light quanta 

Albert Einstein's mathematical description in 1905 of how the photoelectric effect was 
caused by absorption of quanta of light (now called photons), was in the paper named 
"On a Heuristic Viewpoint Concerning the Production and Transformation of Light". 
This paper proposed the simple description of "light quanta", or photons, and showed 
how they explained such phenomena as the photoelectric effect. His simple explanation 
in terms of absorption of discrete quanta of light explained the features of the 
phenomenon and the characteristic frequency. Einstein's explanation of the photoelectric 
effect won him the Nobel Prize in Physics in 1921. 

The idea of light quanta began with Max Planck's published law of black-body radiation 
("On the Law of Distribution of Energy in the Normal Spectrum". Annalen der Physik 4 
(1901)) by assuming that Hertzian oscillators could only exist at energies E proportional 
to the frequency f of the oscillator by E = hf, where h is Planck's constant. By assuming 
that light actually consisted of discrete energy packets, Einstein wrote an equation for the 
photoelectric effect that fitted experiments. It explained why the energy of photoelectrons 
were dependent only on the frequency of the incident light and not on its intensity: a low-
intensity, high-frequency source could supply a few high energy photons, whereas a high-
intensity, low-frequency source would supply no photons of sufficient individual energy 
to dislodge any electrons. This was an enormous theoretical leap, but the concept was 
strongly resisted at first because it contradicted the wave theory of light that followed 
naturally from James Clerk Maxwell's equations for electromagnetic behaviour, and more 
generally, the assumption of infinite divisibility of energy in physical systems. Even after 
experiments showed that Einstein's equations for the photoelectric effect were accurate, 
resistance to the idea of photons continued, since it appeared to contradict Maxwell's 
equations, which were well-understood and verified. 

Einstein's work predicted that the energy of individual ejected electrons increases linearly 
with the frequency of the light. Perhaps surprisingly, the precise relationship had not at 
that time been tested. By 1905 it was known that the energy of photoelectrons increases 
with increasing frequency of incident light and is independent of the intensity of the light. 
However, the manner of the increase was not experimentally determined until 1915 when 
Robert Andrews Millikan showed that Einstein's prediction was correct. 



Effect on wave–particle question 

The photoelectric effect helped propel the then-emerging concept of the dualistic nature 
of light, that light simultaneously possesses the characteristics of both waves and 
particles, each being manifested according to the circumstances. The effect was, at the 
time, thought to be impossible to understand in terms of the classical wave description of 
light, as the energy of the emitted electrons did not depend on the intensity of the incident 
radiation. Classical theory was believed to predict that the electrons could 'gather up' 
energy over a period of time, and then be emitted. For such a classical theory to work a 
pre-loaded state would need to persist in matter. The idea of the pre-loaded state was 
discussed in Millikan's book Electrons (+ & –) and in Compton and Allison's book X-
Rays in Theory and Experiment. 

Uses and effects 

Photodiodes and phototransistors 

Solar cells (used in solar power) and light-sensitive diodes use a variant of the 
photoelectric effect, but not ejecting electrons out of the material. In semiconductors, 
light of even relatively low energy, such as visible photons, can kick electrons out of the 
valence band and into the higher-energy conduction band, where they can be harnessed, 
creating electric current at a voltage related to the bandgap energy. 

Photomultipliers 

These are extremely light-sensitive vacuum tubes with a photocathode coated onto part 
(an end or side) of the inside of the envelope. The photocathode contains combinations of 
materials such as caesium, rubidium and antimony specially selected to provide a low 
work function, so when illuminated even by very low levels of light, the photocathode 
readily releases electrons. By means of a series of electrodes (dynodes) at ever-higher 
potentials, these electrons are accelerated and substantially increased in number through 
secondary emission to provide a readily-detectable output current. Photomultipliers are 
still commonly used wherever low levels of light must be detected. 

Image sensors 

Video camera tubes in the early days of television used the photoelectric effect; newer 
variants used photoconductive rather than photoemissive materials. 

Silicon image sensors, such as charge-coupled devices, widely used for photographic 
imaging, are based on a variant of the photoelectric effect, in which photons knock 
electrons out of the valence band of energy states in a semiconductor, but not out of the 
solid itself. 

The gold-leaf electroscope 



 
The gold leaf electroscope. 

Gold-leaf electroscopes are designed to detect static electricity. Charge placed on the 
metal cap spreads to the stem and the gold leaf of the electroscope. Because they then 
have the same charge, the stem and leaf repel each other. This will cause the leaf to bend 
away from the stem. The electroscope is an important tool in illustrating the photoelectric 
effect. Let us say that the scope is negatively charged throughout. There is an excess of 
electrons and the leaf is separated from the stem. But if we then shine high-frequency 
light onto the cap, the scope discharges and the leaf will fall limp. This is because the 
frequency of the light shining on the cap is above the cap's threshold frequency. The 
photons in the light have enough energy to liberate electrons from the cap, reducing its 
negative charge. This will discharge a negatively charged electroscope and further charge 
a positive electroscope. 

However, if the EM radiation hitting the metal cap does not have a high enough 
frequency, (its frequency is below the threshold value for the cap) then the leaf will never 
discharge, no matter how long one shines the low-frequency light at the cap. 

Photoelectron spectroscopy 

Since the energy of the photoelectrons emitted is exactly the energy of the incident 
photon minus the material's work function or binding energy, the work function of a 
sample can be determined by bombarding it with a monochromatic X-ray source or UV 
source (typically a helium discharge lamp), and measuring the kinetic energy distribution 
of the electrons emitted. 

Photoelectron spectroscopy is done in a high-vacuum environment, since the electrons 
would be scattered by significant numbers of gas atoms present (e.g. even in low-pressure 
air). 

The concentric hemispherical analyser (CHA) is a typical electron energy analyzer, and 
uses an electric field to divert electrons different amounts depending on their kinetic 



energies. For every element and core (atomic orbital) there will be a different binding 
energy. The many electrons created from each of these combinations will show up as 
spikes in the analyzer output, and these can be used to determine the elemental 
composition of the sample. 

Spacecraft 

The photoelectric effect will cause spacecraft exposed to sunlight to develop a positive 
charge. This can get up to the tens of volts. This can be a major problem, as other parts of 
the spacecraft in shadow develop a negative charge (up to several kilovolts) from nearby 
plasma, and the imbalance can discharge through delicate electrical components. The 
static charge created by the photoelectric effect is self-limiting, though, because a more 
highly-charged object gives up its electrons less easily. 

Moon dust 

Light from the sun hitting lunar dust causes it to become charged through the 
photoelectric effect. The charged dust then repels itself and lifts off the surface of the 
Moon by electrostatic levitation. This manifests itself almost like an "atmosphere of 
dust", visible as a thin haze and blurring of distant features, and visible as a dim glow 
after the sun has set. This was first photographed by the Surveyor program probes in the 
1960s. It is thought that the smallest particles are repelled up to kilometers high, and that 
the particles move in "fountains" as they charge and discharge. 

Night vision devices 

Photons hitting a gallium arsenide plate in night vision devices cause the ejection of 
photoelectrons due to the photoelectric effect. These are then amplified into a cascade of 
electrons that light up a phosphor screen. 

Cross section 

The photoelectric effect is simply an interaction mechanism conducted between photons 
and atoms. However, this mechanism does not have exclusivity in interactions of this 
nature and is one of 12 theoretically possible interactions . As noted in the prologue; 
Compton scattering and pair production are an example of two other competing 
mechanisms. Indeed, even if the photoelectric effect is the favoured reaction for a 
particular single-photon bound-electron interaction, the result is also subject to statistical 
processes and is not guaranteed, albeit the photon has certainly disappeared and a bound 
electron has been excited (usually K or L shell electrons at nuclear (gamma ray) 
energies). The probability of the photoelectric effect occurring is measured by the cross 

section of interaction, σ. This has been found to be a function of the atomic number of 
the target atom and photon energy. A crude approximation, for photon energies above the 
highest atomic binding energy, is given by : 



Where n is a number which varies between 4 and 5. (At lower photon energies a 
characteristic structure with edges appears, K edge, L edges, M edges, etc.) The obvious 
interpretation follows that the photoelectric effect rapidly decreases in significance, in the 
gamma ray region of the spectrum, with increasing photon energy, and that photoelectric 
effect is directly proportional to atomic number. The corollary is that high-Z materials 
make good gamma-ray shields, which is the principal reason that lead (Z = 82) is a 
preferred and ubiquitous gamma radiation shield  [Kno99]. 

Units 

Electromagnetic units are part of a system of electrical units based primarily upon the 
magnetic properties of electric currents, the fundamental SI unit being the ampere. The 
units are: 

 ampere (current)  
 coulomb (charge)  
 farad (capacitance)  
 henry (inductance)  
 ohm (resistance)  
 volt (electric potential)  
 watt (power)  
 tesla (magnetic field)  

In the electromagnetic cgs system, electrical current is a fundamental quantity defined via 
Ampère's law and takes the permeability as a dimensionless quantity (relative 
permeability) whose value in a vacuum is unity. As a consequence, the square of the 
speed of light appears explicitly in some of the equations interrelating quantities in this 
system. 

SI electromagnetism units  

v • d • e 

Symbol Name of Quantity Derived Units Unit Base Units 

I Electric current 
ampere (SI base 
unit) 

A A (= W/V = C/s) 

Q Electric charge coulomb C A·s 



U, ΔV, 
Δφ; E 

Potential difference; 
Electromotive force 

volt V J/C = kg·m2·s−3·A−1 

R; Z; X 
Electric resistance; 
Impedance; Reactance 

ohm Ω V/A = kg·m2·s−3·A−2 

ρ Resistivity ohm metre Ω·m kg·m3·s−3·A−2 

P Electric power watt W V·A = kg·m2·s−3 

C Capacitance farad F C/V = kg−1·m−2·A2·s4 

E Electric field strength volt per metre V/m N/C = kg·m·A−1·s−3 

D Electric displacement field
Coulomb per square 
metre 

C/m2 A·s·m−2 

ε Permittivity farad per metre F/m kg−1·m−3·A2·s4 

χe Electric susceptibility (dimensionless) - - 

G; Y; B 
Conductance; Admittance; 
Susceptance 

siemens S Ω−1 = kg−1·m−2·s3·A2 

κ, γ, σ Conductivity siemens per metre S/m kg−1·m−3·s3·A2 

B 
Magnetic flux density, 
Magnetic induction 

tesla T 
Wb/m2 = kg·s−2·A−1 = 
N·A−1·m−1 

Φ Magnetic flux weber Wb V·s = kg·m2·s−2·A−1 



H Magnetic field strength ampere per metre A/m A·m−1 

L, M Inductance henry H 
Wb/A = V·s/A = 
kg·m2·s−2·A−2 

μ Permeability henry per metre H/m kg·m·s−2·A−2 

χ Magnetic susceptibility (dimensionless) - - 

Electromagnetic phenomena 

With the exception of gravitation, electromagnetic phenomena as described by quantum 
electrodynamics account for almost all physical phenomena observable to the unaided 
human senses, including light and other electromagnetic radiation, all of chemistry, most 
of mechanics (excepting gravitation), and of course magnetism and electricity. 

Network analysis 

Network graphs: matrices associated with graphs; incidence, fundamental cut set and 
fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network 
theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta 
transformation. Steady state sinusoidal analysis using phasors. Linear constant coefficient 
differential equations; time domain analysis of simple RLC circuits, Solution of network 
equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port 
network parameters: driving point and transfer functions. State equatioons for networks. 

Electronic devices and circuits 

Electronic devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier 
transport in silicon: diffusion current, drift current, mobility, resistivity. Generation and 
recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, 
MOS capacitor, MOSFET, LED, p-i-n and avalanche photo diode, LASERs. Device 
technology: integrated circuit fabrication process, oxidation, diffusion, ion implantation, 
photolithography, n-tub, p-tub and twin-tub CMOS process. 

Analog circuits: Equivalent circuits (large and small-signal) of diodes, BJTs, JFETs, and 
MOSFETs. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability 
of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential, 
operational, feedback and power. Analysis of amplifiers; frequency response of 
amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for 



oscillation; single-transistor and op-amp configurations. Function generators and wave-
shaping circuits, Power supplies. 

Digital circuits: of Boolean functions; logic gates digital IC families (DTL, TTL, ECL, 
MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers 
and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. 
Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor 8086: 
architecture, programming, memory and I/O interfacing.  

Signals and systems 

Definitions and properties of Laplace transform, continuous-time and discrete-time 
Fourier series, continuous-time and discrete-time Fourier Transform, z-transform. 
Sampling theorems. Linear Time-Invariant (LTI) Systems: definitions and properties; 
causality, stability, impulse response, convolution, poles and zeros frequency response, 
group delay, phase delay. Signal transmission through LTI systems. Random signals and 
noise: probability, random variables, probability density function, autocorrelation, power 
spectral density, function analogy between vectors & functions. 

Control systems 

Basic control system components; block diagrammatic description, reduction of block 
diagrams - Mason's rule. Open loop and closed loop (negative unity feedback) systems 
and stability analysis of these systems. Signal flow graphs and their use in determining 
transfer functions of systems; transient and steady state analysis of LTI control systems 
and frequency response. Analysis of steady-state disturbance rejection and noise 
sensitivity. 

Tools and techniques for LTI control system analysis and design: root loci, Routh-
Hurwitz stability criterion, Bode and Nyquist plots. Control system compensators: 
elements of lead and lag compensation, elements of Proportional-Integral-Derivative 
controller (PID). Discretization of continuous time systems using Zero-order hold (ZOH) 
and ADC's for digital controller implementation. Limitations of digital controllers: 
aliasing. State variable representation and solution of state equation of LTI control 
systems. Linearization of Nonlinear dynamical systems with state-space realizations in 
both frequency and time domains. Fundamental concepts of controllability and 
observability for MIMO LTI systems. State space realizations: observable and 
controllable canonical form. Ackerman's function for state-feedback pole placement. 
Design of full order and reduced order estimators.  

Communications 

Analog communication systems: amplitude and angle modulation and demodulation 
systems, spectral analysis of these operations, superheterodyne noise conditions. 



Digital communication systems: pulse code modulation (PCM), [[Differential Pulse 
Code Modulation (DPCM), Delta modulation (DM), digital modulation schemes-
amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter 
receivers, bandwidth consideration and probability of error calculations for these 
schemes, GSM, TDMA. 

Education and training 

Electronics engineers typically possess an academic degree with a major in electronic 
engineering. The length of study for such a degree is usually three or four years and the 
completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, 
Bachelor of Applied Science, or Bachelor of Technology depending upon the university. 
Many UK universities also offer Master of Engineering (MEng) degrees at undergraduate 
level. 

The degree generally includes units covering physics,chemistry,mathematics, project 
management and specific topics in electrical engineering. Initially such topics cover 
most, if not all, of the subfields of electronic engineering. Students then choose to 
specialize in one or more subfields towards the end of the degree. 

Some electronics engineers also choose to pursue a postgraduate degree such as a Master 
of Science (MSc), Doctor of Philosophy in Engineering (PhD), or an Engineering 
Doctorate (EngD). The Master degree is being introduced in some European and 
American Universities as a first degree and the differentiation of an engineer with 
graduate and postgraduate studies is often difficult. In these cases, experience is taken 
into account. The Master's degree may consist of either research, coursework or a mixture 
of the two. The Doctor of Philosophy consists of a significant research component and is 
often viewed as the entry point to academia. 

In most countries, a Bachelor's degree in engineering represents the first step towards 
certification and the degree program itself is certified by a professional body. After 
completing a certified degree program the engineer must satisfy a range of requirements 
(including work experience requirements) before being certified. Once certified the 
engineer is designated the title of Professional Engineer (in the United States, Canada and 
South Africa), Chartered Engineer or Incorporated Engineer (in the United Kingdom, 
Ireland, India and Zimbabwe), Chartered Professional Engineer (in Australia) or 
European Engineer (in much of the European Union). 

Fundamental to the discipline are the sciences of physics and mathematics as these help 
to obtain both a qualitative and quantitative description of how such systems will work. 
Today most engineering work involves the use of computers and it is commonplace to 
use computer-aided design programs when designing electronic systems. Although most 
electronic engineers will understand basic circuit theory, the theories employed by 
engineers generally depend upon the work they do. For example, quantum mechanics and 
solid state physics might be relevant to an engineer working on VLSI but are largely 
irrelevant to engineers working with macroscopic electrical systems. 



Licensure, certification, and regulation 

Some locations require a license for one to legally be called an electronics engineer, or an 
engineer in general. For example, in the United States and Canada "only a licensed 
engineer may seal engineering work for public and private clients".  This requirement is 
enforced by state and provincial legislation such as Quebec's Engineers Act.  In other 
countries, such as Australia, no such legislation exists. Practically all certifying bodies 
maintain a code of ethics that they expect all members to abide by or risk expulsion.  In 
this way these organizations play an important role in maintaining ethical standards for 
the profession. Even in jurisdictions where licenses are not required, engineers are subject 
to the law. For example, much engineering work is done by contract and is therefore 
covered by contract law. In cases where an engineer's work fails he or she may be subject 
to the tort of negligence and, in extreme cases, the charge of criminal negligence.  An 
engineer's work must also comply with numerous other rules and regulations such as 
building codes and legislation pertaining to environmental law. 

In locations where licenses are not required, professional certification may be 
advantageous. 

Professional bodies 

Professional bodies of note for electrical engineers include the Institute of Electrical and 
Electronics Engineers (IEEE) and the Institution of Electrical Engineers (IEE),now the 
Institution of Engineering and Technology(IET). The IEEE claims to produce 30 percent 
of the world's literature in electrical/electronic engineering, has over 370,000 members, 
and holds more than 450 IEEE sponsored or cosponsored conferences worldwide each 
year. 

Modern electronic engineering 

Electronic engineering in Europe is a very broad field that encompasses many subfields 
including those that deal with, electronic devices and circuit design, control systems, 
electronics and telecommunications, computer systems, embedded software etc. Many 
European universities now have departments of electronics that are completely separate 
from their respective departments of electrical engineering. 

 

 

 

 



                              Chapter-3    

     Signal processing, Telecommunications             

         Engineering & Control engineering 
 

Electronics engineering has many subfields. This section describes some of the most 
popular subfields in electronic engineering. Although there are engineers who focus 
exclusively on one subfield, there are also many who focus on a combination of 
subfields.  

Signal processing  

It deals with the analysis and manipulation of signals. Signals can be either analog, in 
which case the signal varies continuously according to the information, or digital, in 
which case the signal varies according to a series of discrete values representing the 
information 

Signal processing is an area of applied mathematics that deals with operations on or 
analysis of signals, in either discrete or continuous time to perform useful operations on 
those signals. Depending upon the application, a useful operation could be control, data 
compression, data transmission, denoising, prediction, filtering, smoothing, deblurring, 
tomographic reconstruction, identification, classification, or a variety of other operations. 

Signals of interest can include sound, images, time-varying measurement values and 
sensor data, for example biological data such as electrocardiograms, control system 
signals, telecommunication transmission signals such as radio signals, and many others. 

History 

According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal 
processing can be found in the classical numerical analysis techniques of the 17th 
century. They further state that the "digitalization" or digital refinement of these 
techniques can be found in the digital control systems of the 1940s and 1950s.  

Mathematical topics embraced by signal processing 

 Linear signals and systems, and transform theory  
 Probability and stochastic processes  
 Programming  



 Calculus and analysis  
 Vector spaces and linear algebra  
 Numerical methods  
 Functional analysis  
 Optimization  
 Statistical decision theory  
 Iterative methods  

Categories of signal processing 

 Analog signal processing — for signals that have not been digitized, as in 
classical radio, telephone, radar, and television systems. This involves linear 
electronic circuits such as passive filters, active filters, additive mixers, 
integrators and delay lines. It also involves non-linear circuits such as 
compandors, multiplicators (frequency mixers and voltage-controlled amplifiers), 
voltage-controlled filters, voltage-controlled oscillators and phase-locked loops.  

 Discrete time signal processing — for sampled signals that are considered as 
defined only at discrete points in time, and as such are quantized in time, but not 
in magnitude. Analog discrete-time signal processing is a technology based on 
electronic devices such as sample and hold circuits, analog time-division 
multiplexers, analog delay lines and analog feedback shift registers. This 
technology was a predecessor of digital signal processing, see below, and is still 
used in advanced processing of gigahertz signals. The concept of discrete-time 
signal processing also refers to a theoretical discipline that establishes a 
mathematical basis for digital signal processing, without taking quantization error 
into consideration.  

 Digital signal processing — for signals that have been digitized. Processing is 
done by general-purpose computers or by digital circuits such as ASICs, field-
programmable gate arrays or specialized digital signal processors (DSP chips). 
Typical arithmetical operations include fixed-point and floating-point, real-valued 
and complex-valued, multiplication and addition. Other typical operations 
supported by the hardware are circular buffers and look-up tables. Examples of 
algorithms are the Fast Fourier transform (FFT), finite impulse response (FIR) 
filter, Infinite impulse response (IIR) filter, Wiener filter and Kalman filter.  

Fields of signal processing 

 Statistical signal processing — analyzing and extracting information from signals 
based on their statistical properties  

 Audio signal processing — for electrical signals representing sound, such as 
speech or music  

 Speech signal processing — for processing and interpreting spoken words  
 Image processing — in digital cameras, computers, and various imaging systems  
 Video processing — for interpreting moving pictures  
 Array processing — for processing signals from arrays of sensors  



 

For analog signals, signal processing may involve the amplification and filtering of audio 
signals for audio equipment or the modulation and demodulation of signals for 
telecommunications. For digital signals, signal processing may involve the compression, 
error checking and error detection of digital signals. 

Telecommunications engineering  

It deals with the transmission of information across a channel such as a co-axial cable, 
optical fiber or free space. 

Transmissions across free space require information to be encoded in a carrier wave in 
order to shift the information to a carrier frequency suitable for transmission, this is 
known as modulation. Popular analog modulation techniques include amplitude 
modulation and frequency modulation. The choice of modulation affects the cost and 
performance of a system and these two factors must be balanced carefully by the 
engineer. 

Once the transmission characteristics of a system are determined, telecommunication 
engineers design the transmitters and receivers needed for such systems. These two are 
sometimes combined to form a two-way communication device known as a transceiver. 
A key consideration in the design of transmitters is their power consumption as this is 
closely related to their signal strength. If the signal strength of a transmitter is insufficient 
the signal's information will be corrupted by noise 

Telecommunications engineering or telecom engineering is a major field within 
electronic engineering. Telecom engineers come in a variety of different types from basic 
circuit designers to strategic mass developments. A telecom engineer is responsible for 
designing and overseeing the installation of telecommunications equipment and facilities, 
such as complex electronic switching systems to copper telephone facilities and fiber 
optics. Telecom engineering also overlaps heavily with broadcast engineering. 

Telecommunications is a diverse field of engineering including electronics, civil, 
structural, and electrical engineering as well as being a political and social ambassador, a 
little bit of accounting and a lot of project management. Ultimately, telecom engineers 
are responsible for providing the method that customers can get telephone and high speed 
data services. 

Telecom engineers use a variety of different equipment and transport media available 
from a multitude of manufacturers to design the telecom network infrastructure. The most 
common media, often referred to as plant in the telecom industry, used by 
telecommunications companies today are copper, coaxial cable, fiber, and radio. 

Telecom engineers are often expected, as most engineers are, to provide the best solution 
possible for the lowest cost to the company. This often leads to creative solutions to 



problems that often would have been designed differently without the budget constraints 
dictated by modern society. In the earlier days of the telecom industry massive amounts 
of cable were placed that were never used or have been replaced by modern technology 
such as fiber optic cable and digital multiplexing techniques. 

Telecom engineers are also responsible for keeping the records of the companies’ 
equipment and facilities and assigning appropriate accounting codes for purposes of taxes 
and maintenance. As telecom engineers responsible for budgeting and overseeing 
projects and keeping records of equipment, facilities and plant the telecom engineer is not 
only an engineer but an accounting assistant or bookkeeper (if not an accountant) and a 
project manager as well. 

Telecom equipment engineer 

A telecom equipment engineer is an electronics engineer that designs equipment such as 
routers, switches, multiplexers, and other specialized computer/electronics equipment 
designed to be used in the telecommunication network infrastructure. 

Central-office engineer 

A Central-office engineer is responsible for designing and overseeing the implementation 
of telecommunications equipment in a central office (CO for short), also referred to as a 
wire center or telephone exchange. A CO engineer is responsible for integrating new 
technology into the existing network, assigning the equipments location in the wire center 
and providing power, clocking (for digital equipment) and alarm monitoring facilities for 
the new equipment. The CO engineer is also responsible for providing more power, 
clocking, and alarm monitoring facilities if there isn’t currently enough available to 
support the new equipment being installed. Finally, the CO Engineer is responsible for 
designing how the massive amounts of cable will be distributed to various equipment and 
wiring frames throughout the wire center and overseeing the installation and turn up of all 
new equipment. 

As structural engineers, CO engineers are responsible for the structural design and 
placement of racking and bays for the equipment to be installed in as well as for the plant 
to be placed on. 

As electrical engineers, CO engineers are responsible for the resistance, capacitance, and 
inductance (RCL) design of all new plant to ensure telephone service is clear and crisp 
and data service is clean as well as reliable. Attenuation and loop loss calculations are 
required to determine cable length and size required to provide the service called for. In 
addition power requirements have to be calculated and provided for to power any 
electronic equipment being placed in the wire center. 

Outside-plant engineer 



Outside plant (OSP) engineers are also often called Field Engineers as they often spend a 
great deal of time in the field taking notes about the civil environment, aerial, above 
ground, and below ground. OSP Engineers are responsible for taking plant (copper, fiber, 
etc.) from a wire center to a distribution point or destination point directly. If a 
distribution point design is used then a cross connect box is placed in a strategic location 
to feed a determined distribution area. 

The cross-connect box, also known as a service area interface is then installed to allow 
connections to be made more easily from the wire center to the destination point and ties 
up fewer facilities by not having dedication facilities from the wire center to every 
destination point. The plant is then taken directly to its destination point or to another 
small closure called a pedestal where access can also be gained to the plant if necessary. 
These access points are preferred as they allow faster repair times for customers and save 
telephone operating companies large amounts of money. 

The plant facilities can be delivered via underground facilities, either direct buried or 
through conduit or in some cases laid under water, via aerial facilities such as telephone 
or power poles, or via microwave radio signals for long distances where either of the 
other two methods is too costly. 

As structural engineers, OSP egineers are responsible for the structural design and 
placement of cellular towers and telephone poles as well as calculating pole capabilities 
of existing telephone or power poles new plant is being added onto. Structural 
calculations are required when boring under heavy traffic areas such as highways or 
when attaching to other structures such as bridges. Shoring also has to be taken into 
consideration for larger trenches or pits. Conduit structures often include encasements of 
slurry that needs to be designed to support the structure and withstand the environment 
around it (soil type, high traffic areas, etc.). 

As electrical engineers, OSP engineers are responsible for the resistance, capacitance, and 
inductance (RCL) design of all new plant to ensure telephone service is clear and crisp 
and data service is clean as well as reliable. Attenuation and loop loss calculations are 
required to determine cable length and size required to provide the service called for. In 
addition power requirements have to be calculated and provided for to power any 
electronic equipment being placed in the field. Ground potential has to be taken into 
consideration when placing equipment, facilities, and plant in the field to account for 
lightning strikes, high voltage intercept from improperly grounded or broken power 
company facilities, and from various sources of electromagnetic interference. 

As civil engineers, OSP egineers are responsible for drawing up plans, either by hand or 
using Computer Aided Drafting (CAD) software, for how telecom plant facilities will be 
placed. Often when working with municipalities trenching or boring permits are required 
and drawings must be made for these. Often these drawings include about 70% or so of 
the detailed information required to pave a road or add a turn lane to an existing street. 
Structural calculations are required when boring under heavy traffic areas such as 
highways or when attaching to other structures such as bridges. As Civil Engineers 



Telecom Engineers provide the modern communications backbone for all technological 
communications distributed throughout civilizations today. 

Unique to Telecom Engineering is the use of air core cable which requires an extensive 
network of air handling equipment such as compressors, manifolds, regulators and 
hundreds of miles of air pipe per system that connects to pressurized splice cases all 
designed to pressurize this special form of copper cable to keep moisture out and provide 
a clean signal to the customer. 

As Political and Social Ambassador, the OSP Engineer is the telephone operating 
companies’ face and voice to the local authorities and other utilities. OSP Engineers often 
meet with municipalities, construction companies and other utility companies to address 
their concerns and educate them about how the telephone utility works and operates. 
Additionally, the OSP Engineer has to secure real estate to place outside facilities on such 
as an easement to place a cross connect box on. 

Control engineering 

 
 
Control systems play a critical role in space flight 

Control engineering is the engineering discipline that applies control theory to design 
systems with predictable behaviors. The engineering activities focus on the mathematical 
modeling of systems of a diverse nature. 

Overview 

Modern day control engineering (also called control systems engineering) is a relatively 
new field of study that gained a significant attention during twentieth century with the 
advancement in technology. It can be broadly defined as practical application of control 



theory. Control engineering has an essential role in a wide range of control systems from 
a simple household washing machine to a complex high performance F-16 fighter 
aircraft. It allows one to understand a physical system in terms of its inputs, outputs and 
various components with different behaviors using mathematical modeling, control it in a 
desired manner with the controllers designed using control systems design tools, and 
implement the controller on the physical system employing available technology. A 
system can be mechanical, electrical, fluid, chemical, financial and even biological, and 
the mathematical modeling, analysis and controller design shall be done using control 
theory in one or many of the time, frequency and complex-s domains depending on the 
nature of the control system design problem. 

Before it emerged as a unique discipline, control engineering was practiced as a part of 
mechanical engineering and control theory was studied as a part of electrical engineering, 
since electrical circuits can often be easily described using control theory techniques. In 
the very first control relationships, a current output was represented with a voltage 
control input. However, not having proper technology to implement electrical control 
systems, designers left with the option of less efficient and slow responding mechanical 
systems. A very effective mechanical controller that is still widely used in some hydro 
plants is the governor. Later on, previous to modern power electronics, process control 
systems for industrial applications were devised by mechanical engineers using 
pneumatic and hydraulic control devices, many of which are still in use today. 

There are two major divisions in control theory, namely, classical and modern, which 
have direct implications over the control engineering applications. The scope of classical 
control theory is limited to single-input and single-output (SISO) system design. The 
system analysis is carried out in time domain using differential equations, in complex-s 
domain with Laplace transform or in frequency domain by transforming from complex-s 
domain. All the systems are assumed to be second order, single variable, and the higher 
order system responses and multivariable effects are ignored. A controller designed using 
classical theory usually requires on-site tuning due to design approximations. Yet, due to 
the easiness in physical implementation of the controller designs over the controllers 
designed using modern control theory, these controllers are preferred in most of the 
industrial applications. Most popular controllers that come under classical control 
engineering are PID controller. In contrast, modern control theory is strictly carried out in 
complex-s domain or in frequency domain, and can deal with multi-input and multi-
output (MIMO) systems. This overcomes the limitations in classical control theory to be 
used in sophisticate control systems design problems such as fighter aircraft control. In 
modern controls a system is represented in terms of a set of first order differential 
equations defined using state variables. Nonlinear, multivariable, adaptive and robust 
control theories come under this division. Being fairly new, modern control theory has 
many areas yet to be explored. Scholars like Rudolf E. Kalman and Aleksandr Lyapunov 
are well known among the people who have shaped modern control theory. 

Originally control engineering was all about continuous systems. Development of 
computer control tools, posed a requirement of discrete control system engineering 
because the communications between the computer-based digital controller and the 



physical system are governed by a computer clock. The equivalent to Laplace transform 
in the discrete domain is the z-transform. Today many of the control systems are 
computer controlled and they consist of both digital and analogue components. 
Therefore, at the design stage either digital components are mapped into the continuous 
domain and the design is carried out in the continuous domain, or analogue components 
are mapped in to discrete domain and design is carried out there. The first of these two 
methods is more commonly encountered in practice because many industrial systems 
have many continuous systems components, including mechanical, fluid, biological and 
analogue electrical components, with a few digital controllers. 

At many universities, control engineering courses are taught in electrical and electronic 
engineering, mechanical engineering, and aerospace engineering; in others it is connected 
to computer science, as most control techniques today are implemented through 
computers, often as embedded systems (as in the automotive field). The field of control 
within chemical engineering is often known as process control. It deals primarily with the 
control of variables in a chemical process in a plant. It is taught as part of the 
undergraduate curriculum of any chemical engineering program, and employs many of 
the same principles in control engineering. Other engineering disciplines also overlap 
with control engineering, as it can be applied to any system for which a suitable model 
can be derived. 

Control engineering has diversified applications that include science, finance 
management, and even human behavior. Students of control engineering may start with a 
linear control system course dealing with the time and complex-s domain, which requires 
a thorough background in elementary mathematics and Laplace transform (called 
classical control theory). In linear control, the student does frequency and time domain 
analysis. Digital control and nonlinear control courses require z transformation and 
algebra respectively, and could be said to complete a basic control education. From here 
onwards there are several sub branches. 

Control systems 

Control engineering is the engineering discipline that focuses on the modeling of a 
diverse range of dynamic systems (e.g. mechanical systems) and the design of controllers 
that will cause these systems to behave in the desired manner. Although such controllers 
need not be electrical many are and hence control engineering is often viewed as a 
subfield of electrical engineering. However, the falling price of microprocessors is 
making the actual implementation of a control system essentially trivial. As a result, 
focus is shifting back to the mechanical engineering discipline, as intimate knowledge of 
the physical system being controlled is often desired. 

Electrical circuits, digital signal processors and microcontrollers can all be used to 
implement Control systems. Control engineering has a wide range of applications from 
the flight and propulsion systems of commercial airliners to the cruise control present in 
many modern automobiles. 



In most of the cases, control engineers utilize feedback when designing control systems. 
This is often accomplished using a PID controller system. For example, in an automobile 
with cruise control the vehicle's speed is continuously monitored and fed back to the 
system which adjusts the motor's torque accordingly. Where there is regular feedback, 
control theory can be used to determine how the system responds to such feedback. In 
practically all such systems stability is important and control theory can help ensure 
stability is achieved. 

Although feedback is an important aspect of control engineering, control engineers may 
also work on the control of systems without feedback. This is known as open loop 
control. A classic example of open loop control is a washing machine that runs through a 
pre-determined cycle without the use of sensors. 
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       Instrumentation Engineering &    

             Computer Engineering 

 

Instrumentation engineering deals with the design of 
devices to measure physical quantities such as pressure, flow and temperature. These 
devices are known as instrumentation. 

The design of such instrumentation requires a good understanding of physics that often 
extends beyond electromagnetic theory. For example, radar guns use the Doppler effect 
to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier-
Seebeck effect to measure the temperature difference between two points. 

Often instrumentation is not used by itself, but instead as the sensors of larger electrical 
systems. For example, a thermocouple might be used to help ensure a furnace's 
temperature remains constant. For this reason, instrumentation engineering is often 
viewed as the counterpart of control engineering. 

 

Instrumentation 



 
 
A control post of a steam turbine. 

 
 
Pneumatic PID controller. 

Instrumentation is the branch of engineering that deals with measurement and control. 

An instrument is a device that measures or manipulates variables such as flow, 
temperature, level, or pressure. Instruments include many varied contrivances which can 
be as simple as valves and transmitters, and as complex as analyzers. Instruments often 
comprise control systems of varied processes. The control of processes is one of the main 
branches of applied instrumentation. 



Control instrumentation includes devices such as solenoids, valves, circuit breakers, and 
relays. These devices are able to change a field parameter, and provide remote or 
automated control capabilities. 

Transmitters are devices which produce an analog signal, usually in the form of a 4–20 
mA electrical current signal, although many other options using voltage, frequency, or 
pressure are possible. This signal can be used to control other instruments directly, or it 
can be sent to a PLC, DCS, SCADA system, or other type of computerized controller, 
where it can be interpreted into readable values and used to control other devices and 
processes in the system. 

Instrumentation plays a significant role in both gathering information from the field and 
changing the field parameters, and as such are a key part of control loops. 

Measurement 

Instrumentation can be used to measure certain field parameters (physical values): 

These measured values include: 

 pressure, either differential or static  
 flow  
 temperature - Temperature_measurement  
 level - Level Measurement  
 density  
 viscosity  
 radiation  
 current  
 voltage  
 inductance  
 capacitance  
 frequency  
 resistivity  
 conductivity  
 chemical composition  
 chemical properties  
 various physical properties  

Control 



 
 
Control valve. 

In addition to measuring field parameters, instrumentation is also responsible for 
providing the ability to modify some field parameters. 

Some examples include: 

Device Field Parameter(s) 

Valve Flow, Pressure 

Relay Voltage, Current 

Solenoid Physical Location, Level

Circuit breaker Voltage, Current 

Instrumentation engineering 

Instrumentation engineering is the engineering specialization focused on the principle 
and operation of measuring instruments which are used in design and configuration of 
automated systems in electrical, pneumatic domains etc. They typically work for 
industries with automated processes, such as chemical or manufacturing plants, with the 
goal of improving system productivity, reliability, safety, optimization and stability. To 
control the parameters in a process or in a particular system Microprocessors , Micro 



controllers ,PLCs etc are used. But their ultimate aim is to control the parameters of a 
system. 

Instrumentation technologists and mechanics 

Instrumentation technologists, technicians and mechanics specialize in troubleshooting 
and repairing and maintenance of instruments and instrumentation systems. This trade is 
so intertwined with electricians, pipefitters, power engineers, and engineering companies, 
that one can find him/herself in extremely diverse working situations. An over-arching 
term, "Instrument Fitter" is often used to describe people in this field, regardless of any 
specialization. 

Computer Engineering 
Computer engineering deals with the design of computers and computer systems. This 
may involve the design of new hardware, the design of PDA's or the use of computers to 
control an industrial plant. Computer engineers may also work on a system's software. 
However, the design of complex software systems is often the domain of software 
engineering, which is usually considered a separate discipline. 

Desktop computers represent a tiny fraction of the devices a computer engineer might 
work on, as computer-like architectures are now found in a range of devices including 
video game consoles and DVD players.  

Computer Engineering (also called Electronic and Computer Engineering , or 
Computer Systems Engineering) is a discipline that combines both Electrical 
Engineering and Computer Science. Computer engineers usually have training in 
electrical engineering, software design and hardware-software integration instead of only 
software engineering or electrical engineering. Computer engineers are involved in many 
aspects of computing, from the design of individual microprocessors, personal 
computers, and supercomputers, to circuit design. This field of engineering not only 
focuses on how computer systems themselves work, but also how they integrate into the 
larger picture. 

Usual tasks involving computer engineers include writing software and firmware for 
embedded microcontrollers, designing VLSI chips, designing analog sensors, designing 
mixed signal circuit boards, and designing operating systems. Computer engineers are 
also suited for robotics research, which relies heavily on using digital systems to control 
and monitor electrical systems like motors, communications, and sensors. 

Computer engineering as an academic discipline 



The first accredited computer engineering degree program in the United States was 
established at Case Western Reserve University in 1971; as of October 2004 there were 
170 ABET-accredited computer engineering programs in the US. 

Due to increasing job requirements for engineers, who can design and manage all forms 
of computer systems used in industry, some tertiary institutions around the world offer a 
bachelor's degree generally called computer engineering. Both computer engineering and 
electronic engineering programs include analog and digital circuit design in their 
curricula. As with most engineering disciplines, having a sound knowledge of 
mathematics and sciences is necessary for computer engineers. 

In many institutions, computer engineering students are allowed to choose areas of in-
depth study in their junior and senior year, as the full breadth of knowledge used in the 
design and application of computers is well beyond the scope of an undergraduate degree. 
The joint IEEE/ACM Curriculum Guidelines for Undergraduate Degree Programs in 
Computer Engineering defines the core knowledge areas of computer engineering as 

 Algorithms  
 Computer architecture and organization  
 Computer systems engineering  
 Circuits and signals  
 Database systems  
 Digital logic  
 Digital signal processing  
 Electronics  
 Embedded systems  
 Human-computer interaction  
 Interactive Systems Engineering  
 Operating systems  
 Programming fundamentals  
 Social and Professional issues  
 Software engineering  
 VLSI design and fabrication  

The breadth of disciplines studied in computer engineering is not limited to the above 
subjects but can include any subject found in engineering. 

 

Algorithm 
This is an algorithm that tries to figure out why the lamp doesn't turn on and tries to fix it 
using the steps. Flowcharts are often used to graphically represent algorithms. 



In mathematics, computing, linguistics, and related subjects, an algorithm is a finite 
sequence of instructions, logic, an explicit, step-by-step procedure for solving a problem, 
often used for calculation and data processing and many other fields. It is formally a type 
of effective method in which a list of well-defined instructions for completing a task, will 
when given an initial state, proceed through a well-defined series of successive states, 
eventually terminating in an end-state. The transition from one state to the next is not 
necessarily deterministic; some algorithms, known as probabilistic algorithms, 
incorporate randomness. 

A partial formalization of the concept began with attempts to solve the 
Entscheidungsproblem (the "decision problem") posed by David Hilbert in 1928. 
Subsequent formalizations were framed as attempts to define "effective calculability" 
(Kleene 1943:274) or "effective method" (Rosser 1939:225); those formalizations 
included the Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935, Alonzo 
Church's lambda calculus of 1936, Emil Post's "Formulation 1" of 1936, and Alan 
Turing's Turing machines of 1936–7 and 1939. 

 

Etymology 

Al-Khwārizmī, Persian astronomer and mathematician, wrote a treatise in 825 AD, On 
Calculation with Arabic Numerals. (See algorism). It was translated into Latin in the 12th 
century as Algoritmi de numero Indorum (al-Daffa 1977), whose title was likely intended 
to mean "Algoritmi on the numbers of the Indians", where "Algoritmi" was the 
translator's rendition of the author's name; but people misunderstanding the title treated 
Algoritmi as a Latin plural and this led to the word "algorithm" (Latin algorismus) 
coming to mean "calculation method". The intrusive "th" is most likely due to a false 
cognate with the Greek ἀριθμός (arithmos) meaning "number". 

Why algorithms are necessary: an informal definition 

While there is no generally accepted formal definition of "algorithm", an informal 
definition could be "a process that performs some sequence of operations." For some 
people, a program is only an algorithm if it stops eventually. For others, a program is 
only an algorithm if it stops before a given number of calculation steps. 

A prototypical example of an "algorithm" is Euclid's algorithm to determine the 
maximum common divisor of two integers (X and Y) which are greater than one: We 
follow a series of steps: In step i, we divide X by Y and find the remainder, which we call 
R1. Then we move to step i + 1, where we divide Y by R1, and find the remainder, which 
we call R2. If R2=0, we stop and say that R1 is the greatest common divisor of X and Y. If 
not, we continue, until Rn=0. Then Rn-1 is the max common division of X and Y. This 
procedure is known to stop always and the number of subtractions needed is always 
smaller than the larger of the two numbers. 



We can derive clues to the issues involved and an informal meaning of the word from the 
following quotation from Boolos & Jeffrey (1974, 1999) (boldface added): 

No human being can write fast enough or long enough or small enough to list all members of an 
enumerably infinite set by writing out their names, one after another, in some notation. But 
humans can do something equally useful, in the case of certain enumerably infinite sets: They can 
give explicit instructions for determining the nth member of the set, for arbitrary finite n. 
Such instructions are to be given quite explicitly, in a form in which they could be followed by a 
computing machine, or by a human who is capable of carrying out only very elementary 
operations on symbols (Boolos & Jeffrey 1974, 1999, p. 19) 

The words "enumerably infinite" mean "countable using integers perhaps extending to 
infinity." Thus Boolos and Jeffrey are saying that an algorithm implies instructions for a 
process that "creates" output integers from an arbitrary "input" integer or integers that, in 
theory, can be chosen from 0 to infinity. Thus we might expect an algorithm to be an 
algebraic equation such as y = m + n — two arbitrary "input variables" m and n that 
produce an output y. As we see in Algorithm characterizations — the word algorithm 
implies much more than this, something on the order of (for our addition example): 

Precise instructions (in language understood by "the computer") for a "fast, 
efficient, good" process that specifies the "moves" of "the computer" (machine or 
human, equipped with the necessary internally-contained information and 
capabilities) to find, decode, and then munch arbitrary input integers/symbols m 
and n, symbols + and = ... and (reliably, correctly, "effectively") produce, in a 
"reasonable" time, output-integer y at a specified place and in a specified format.  

The concept of algorithm is also used to define the notion of decidability. That notion is 
central for explaining how formal systems come into being starting from a small set of 
axioms and rules. In logic, the time that an algorithm requires to complete cannot be 
measured, as it is not apparently related with our customary physical dimension. From 
such uncertainties, that characterize ongoing work, stems the unavailability of a 
definition of algorithm that suits both concrete (in some sense) and abstract usage of the 
term. 

Formalization 

Algorithms are essential to the way computers process information. Many computer 
programs contain algorithms that specify the specific instructions a computer should 
perform (in a specific order) to carry out a specified task, such as calculating employees’ 
paychecks or printing students’ report cards. Thus, an algorithm can be considered to be 
any sequence of operations that can be simulated by a Turing-complete system. Authors 
who assert this thesis include Savage (1987) and Gurevich (2000): 

...Turing's informal argument in favor of his thesis justifies a stronger thesis: every algorithm can 
be simulated by a Turing machine (Gurevich 2000:1)...according to Savage [1987], an algorithm 
is a computational process defined by a Turing machine. (Gurevich 2000:3) 



Typically, when an algorithm is associated with processing information, data is read from 
an input source, written to an output device, and/or stored for further processing. Stored 
data is regarded as part of the internal state of the entity performing the algorithm. In 
practice, the state is stored in one or more data structures. 

For any such computational process, the algorithm must be rigorously defined: specified 
in the way it applies in all possible circumstances that could arise. That is, any 
conditional steps must be systematically dealt with, case-by-case; the criteria for each 
case must be clear (and computable). 

Because an algorithm is a precise list of precise steps, the order of computation will 
always be critical to the functioning of the algorithm. Instructions are usually assumed to 
be listed explicitly, and are described as starting "from the top" and going "down to the 
bottom", an idea that is described more formally by flow of control. 

So far, this discussion of the formalization of an algorithm has assumed the premises of 
imperative programming. This is the most common conception, and it attempts to 
describe a task in discrete, "mechanical" means. Unique to this conception of formalized 
algorithms is the assignment operation, setting the value of a variable. It derives from the 
intuition of "memory" as a scratchpad. There is an example below of such an assignment. 

Termination 

Some writers restrict the definition of algorithm to procedures that eventually finish. In 
such a category Kleene places the "decision procedure or decision method or algorithm 
for the question" (Kleene 1952:136). Others, including Kleene, include procedures that 
could run forever without stopping; such a procedure has been called a "computational 
method" (Knuth 1997:5) or "calculation procedure or algorithm" (Kleene 1952:137); 
however, Kleene notes that such a method must eventually exhibit "some object" (Kleene 
1952:137). 

Minsky makes the pertinent observation, in regards to determining whether an algorithm 
will eventually terminate (from a particular starting state): 

But if the length of the process is not known in advance, then "trying" it may not be decisive, 
because if the process does go on forever — then at no time will we ever be sure of the answer 
(Minsky 1967:105). 

As it happens, no other method can do any better, as was shown by Alan Turing with his 
celebrated result on the undecidability of the so-called halting problem. There is no 
algorithmic procedure for determining of arbitrary algorithms whether or not they 
terminate from given starting states. The analysis of algorithms for their likelihood of 
termination is called termination analysis. 

See the examples of (im-)"proper" subtraction at partial function for more about what can 
happen when an algorithm fails for certain of its input numbers — e.g., (i) non-



termination, (ii) production of "junk" (output in the wrong format to be considered a 
number) or no number(s) at all (halt ends the computation with no output), (iii) wrong 
number(s), or (iv) a combination of these. Kleene proposed that the production of "junk" 
or failure to produce a number is solved by having the algorithm detect these instances 
and produce e.g., an error message (he suggested "0"), or preferably, force the algorithm 
into an endless loop (Kleene 1952:322). Davis does this to his subtraction algorithm — 
he fixes his algorithm in a second example so that it is proper subtraction (Davis 
1958:12-15). Along with the logical outcomes "true" and "false" Kleene also proposes the 
use of a third logical symbol "u" — undecided (Kleene 1952:326) — thus an algorithm 
will always produce something when confronted with a "proposition". The problem of 
wrong answers must be solved with an independent "proof" of the algorithm e.g., using 
induction: 

We normally require auxiliary evidence for this (that the algorithm correctly defines a mu 
recursive function), e.g., in the form of an inductive proof that, for each argument value, the 
computation terminates with a unique value (Minsky 1967:186). 

Expressing algorithms 

Algorithms can be expressed in many kinds of notation, including natural languages, 
pseudocode, flowcharts, and programming languages. Natural language expressions of 
algorithms tend to be verbose and ambiguous, and are rarely used for complex or 
technical algorithms. Pseudocode and flowcharts are structured ways to express 
algorithms that avoid many of the ambiguities common in natural language statements, 
while remaining independent of a particular implementation language. Programming 
languages are primarily intended for expressing algorithms in a form that can be executed 
by a computer, but are often used as a way to define or document algorithms. 

There is a wide variety of representations possible and one can express a given Turing 
machine program as a sequence of machine tables (see more at finite state machine and 
state transition table), as flowcharts (see more at state diagram), or as a form of 
rudimentary machine code or assembly code called "sets of quadruples" (see more at 
Turing machine). 

Sometimes it is helpful in the description of an algorithm to supplement small "flow 
charts" (state diagrams) with natural-language and/or arithmetic expressions written 
inside "block diagrams" to summarize what the "flow charts" are accomplishing. 

Representations of algorithms are generally classed into three accepted levels of Turing 
machine description (Sipser 2006:157): 

 1 High-level description:  

"...prose to describe an algorithm, ignoring the implementation details. At this 
level we do not need to mention how the machine manages its tape or head"  



 2 Implementation description:  

"...prose used to define the way the Turing machine uses its head and the way that 
it stores data on its tape. At this level we do not give details of states or transition 
function"  

 3 Formal description:  

Most detailed, "lowest level", gives the Turing machine's "state table".  
For an example of the simple algorithm "Add m+n" described in all three levels.  

Computer algorithms 

In computer systems, an algorithm is basically an instance of logic written in software by 
software developers to be effective for the intended "target" computer(s), in order for the 
software on the target machines to do something. For instance, if a person is writing 
software that is supposed to print out a PDF document located at the operating system 
folder "/My Documents" at computer drive "D:" every Friday at 10PM, they will write an 
algorithm that specifies the following actions: "If today's date (computer time) is 'Friday,' 
open the document at 'D:/My Documents' and call the 'print' function". While this simple 
algorithm does not look into whether the printer has enough paper or whether the 
document has been moved into a different location, one can make this algorithm more 
robust and anticipate these problems by rewriting it as a formal CASE statement or as a 
(carefully crafted) sequence of IF-THEN-ELSE statements. For example the CASE 
statement might appear as follows (there are other possibilities): 

CASE 1: IF today's date is NOT Friday THEN exit this CASE instruction ELSE  
CASE 2: IF today's date is Friday AND the document is located at 'D:/My 
Documents' AND there is paper in the printer THEN print the document (and exit 
this CASE instruction) ELSE  
CASE 3: IF today's date is Friday AND the document is NOT located at 'D:/My 
Documents' THEN display 'document not found' error message (and exit this 
CASE instruction) ELSE  
CASE 4: IF today's date is Friday AND the document is located at 'D:/My 
Documents' AND there is NO paper in the printer THEN (i) display 'out of paper' 
error message and (ii) exit.  

Note that CASE 3 includes two possibilities: (i) the document is NOT located at 'D:/My 
Documents' AND there's paper in the printer OR (ii) the document is NOT located at 
'D:/My Documents' AND there's paper in the printer. 

The sequence of IF-THEN-ELSE tests might look like this: 

TEST 1: IF today's date is NOT Friday THEN done ELSE TEST 2:  
TEST 2: IF the document is located at 'D:/My Documents' THEN display 
'document not found' error message ELSE TEST 3:  



TEST 3: IF there is NO paper in the printer THEN display 'out of paper' error 
message ELSE print the document.  

These examples' logic grants precedence to the instance of "NO document at 'D:/My 
Documents' ". Also observe that in a well-crafted CASE statement or sequence of IF-
THEN-ELSE statements the number of distinct actions -- 4 in these examples: do 
nothing, print the document, display 'document not found', display 'out of paper' -- equals 
the number of cases. 

Because a computational machine equipped with unbounded memory and the ability to 
execute CASE statements or a sequence of IF-THEN-ELSE statements together with just 
a few other instructions is Turing complete, anything that is computable will be 
computable by this machine. Thus this form of algorithm is fundamental to computer 
programming in all its forms (see more at McCarthy formalism). 

Implementation 

Most algorithms are intended to be implemented as computer programs. However, 
algorithms are also implemented by other means, such as in a biological neural network 
(for example, the human brain implementing arithmetic or an insect looking for food), in 
an electrical circuit, or in a mechanical device. 

Example 

 
 
An animation of the quicksort algorithm sorting an array of randomized values. The red 
bars mark the pivot element; at the start of the animation, the element farthest to the right 
hand side is chosen as the pivot. 

One of the simplest algorithms is to find the largest number in an (unsorted) list of 
numbers. The solution necessarily requires looking at every number in the list, but only 
once at each. From this follows a simple algorithm, which can be stated in a high-level 
description English prose, as: 

High-level description: 

1. Assume the first item is largest.  



2. Look at each of the remaining items in the list and if it is larger than the largest 
item so far, make a note of it.  

3. The last noted item is the largest in the list when the process is complete.  

(Quasi-)formal description: Written in prose but much closer to the high-level language 
of a computer program, the following is the more formal coding of the algorithm in 
pseudocode or pidgin code: 

Algorithm LargestNumber 
  Input: A non-empty list of numbers L. 
  Output: The largest number in the list L. 
 
  largest ← L0 
  for each item in the list L≥1, do 
    if the item > largest, then 
      largest ← the item 
  return largest 

 "←" is a loose shorthand for "changes to". For instance, "largest ← item" means that the value of 
largest changes to the value of item.  

 "return" terminates the algorithm and outputs the value that follows.  

For a more complex example of an algorithm, see Euclid's algorithm for the greatest 
common divisor, one of the earliest algorithms known. 

Algorithmic analysis 

It is frequently important to know how much of a particular resource (such as time or 
storage) is required for a given algorithm. Methods have been developed for the analysis 
of algorithms to obtain such quantitative answers; for example, the algorithm above has a 
time requirement of O(n), using the big O notation with n as the length of the list. At all 
times the algorithm only needs to remember two values: the largest number found so far, 
and its current position in the input list. Therefore it is said to have a space requirement of 
O(1), if the space required to store the input numbers is not counted, or O(n) if it is 
counted. 

Different algorithms may complete the same task with a different set of instructions in 
less or more time, space, or 'effort' than others. For example, a binary search algorithm 
will usually outperform a brute force sequential search when used for table lookups on 
sorted lists. 

Abstract versus empirical 

The analysis and study of algorithms is a discipline of computer science, and is often 
practiced abstractly without the use of a specific programming language or 
implementation. In this sense, algorithm analysis resembles other mathematical 
disciplines in that it focuses on the underlying properties of the algorithm and not on the 
specifics of any particular implementation. Usually pseudocode is used for analysis as it 



is the simplest and most general representation. However, ultimately, most algorithms are 
usually implemented on particular hardware / software platforms and their algorithmic 
efficiency is eventually put to the test using real code. 

Empirical testing is useful because it may uncover unexpected interactions that affect 
performance. For instance an algorithm that has no locality of reference may have much 
poorer performance than predicted because it thrashes the cache. 

Classification 

There are various ways to classify algorithms, each with its own merits. 

By implementation 

One way to classify algorithms is by implementation means. 

 Recursion or iteration: A recursive algorithm is one that invokes (makes 
reference to) itself repeatedly until a certain condition matches, which is a method 
common to functional programming. Iterative algorithms use repetitive constructs 
like loops and sometimes additional data structures like stacks to solve the given 
problems. Some problems are naturally suited for one implementation or the 
other. For example, towers of Hanoi is well understood in recursive 
implementation. Every recursive version has an equivalent (but possibly more or 
less complex) iterative version, and vice versa.  

 Logical: An algorithm may be viewed as controlled logical deduction. This notion 
may be expressed as: Algorithm = logic + control (Kowalski 1979). The logic 
component expresses the axioms that may be used in the computation and the 
control component determines the way in which deduction is applied to the 
axioms. This is the basis for the logic programming paradigm. In pure logic 
programming languages the control component is fixed and algorithms are 
specified by supplying only the logic component. The appeal of this approach is 
the elegant semantics: a change in the axioms has a well defined change in the 
algorithm.  

 Serial or parallel or distributed: Algorithms are usually discussed with the 
assumption that computers execute one instruction of an algorithm at a time. 
Those computers are sometimes called serial computers. An algorithm designed 
for such an environment is called a serial algorithm, as opposed to parallel 
algorithms or distributed algorithms. Parallel algorithms take advantage of 
computer architectures where several processors can work on a problem at the 
same time, whereas distributed algorithms utilize multiple machines connected 
with a network. Parallel or distributed algorithms divide the problem into more 
symmetrical or asymmetrical subproblems and collect the results back together. 
The resource consumption in such algorithms is not only processor cycles on each 
processor but also the communication overhead between the processors. Sorting 
algorithms can be parallelized efficiently, but their communication overhead is 



expensive. Iterative algorithms are generally parallelizable. Some problems have 
no parallel algorithms, and are called inherently serial problems.  

 Deterministic or non-deterministic: Deterministic algorithms solve the problem 
with exact decision at every step of the algorithm whereas non-deterministic 
algorithms solve problems via guessing although typical guesses are made more 
accurate through the use of heuristics.  

 Exact or approximate: While many algorithms reach an exact solution, 
approximation algorithms seek an approximation that is close to the true solution. 
Approximation may use either a deterministic or a random strategy. Such 
algorithms have practical value for many hard problems.  

By design paradigm 

Another way of classifying algorithms is by their design methodology or paradigm. There 
is a certain number of paradigms, each different from the other. Furthermore, each of 
these categories will include many different types of algorithms. Some commonly found 
paradigms include: 

 Divide and conquer. A divide and conquer algorithm repeatedly reduces an 
instance of a problem to one or more smaller instances of the same problem 
(usually recursively) until the instances are small enough to solve easily. One 
such example of divide and conquer is merge sorting. Sorting can be done on each 
segment of data after dividing data into segments and sorting of entire data can be 
obtained in the conquer phase by merging the segments. A simpler variant of 
divide and conquer is called a decrease and conquer algorithm, that solves an 
identical subproblem and uses the solution of this subproblem to solve the bigger 
problem. Divide and conquer divides the problem into multiple subproblems and 
so the conquer stage will be more complex than decrease and conquer algorithms. 
An example of decrease and conquer algorithm is the binary search algorithm.  

 Dynamic programming. When a problem shows optimal substructure, meaning 
the optimal solution to a problem can be constructed from optimal solutions to 
subproblems, and overlapping subproblems, meaning the same subproblems are 
used to solve many different problem instances, a quicker approach called 
dynamic programming avoids recomputing solutions that have already been 
computed. For example, the shortest path to a goal from a vertex in a weighted 
graph can be found by using the shortest path to the goal from all adjacent 
vertices. Dynamic programming and memoization go together. The main 
difference between dynamic programming and divide and conquer is that 
subproblems are more or less independent in divide and conquer, whereas 
subproblems overlap in dynamic programming. The difference between dynamic 
programming and straightforward recursion is in caching or memoization of 
recursive calls. When subproblems are independent and there is no repetition, 
memoization does not help; hence dynamic programming is not a solution for all 
complex problems. By using memoization or maintaining a table of subproblems 
already solved, dynamic programming reduces the exponential nature of many 
problems to polynomial complexity.  



 The greedy method. A greedy algorithm is similar to a dynamic programming 
algorithm, but the difference is that solutions to the subproblems do not have to be 
known at each stage; instead a "greedy" choice can be made of what looks best for 
the moment. The greedy method extends the solution with the best possible 
decision (not all feasible decisions) at an algorithmic stage based on the current 
local optimum and the best decision (not all possible decisions) made in a 
previous stage. It is not exhaustive, and does not give accurate answer to many 
problems. But when it works, it will be the fastest method. The most popular 
greedy algorithm is finding the minimal spanning tree as given by Kruskal.  

 Linear programming. When solving a problem using linear programming, 
specific inequalities involving the inputs are found and then an attempt is made to 
maximize (or minimize) some linear function of the inputs. Many problems (such 
as the maximum flow for directed graphs) can be stated in a linear programming 
way, and then be solved by a 'generic' algorithm such as the simplex algorithm. A 
more complex variant of linear programming is called integer programming, 
where the solution space is restricted to the integers.  

 Reduction. This technique involves solving a difficult problem by transforming it 
into a better known problem for which we have (hopefully) asymptotically 
optimal algorithms. The goal is to find a reducing algorithm whose complexity is 
not dominated by the resulting reduced algorithm's. For example, one selection 
algorithm for finding the median in an unsorted list involves first sorting the list 
(the expensive portion) and then pulling out the middle element in the sorted list 
(the cheap portion). This technique is also known as transform and conquer.  

 Search and enumeration. Many problems (such as playing chess) can be 
modeled as problems on graphs. A graph exploration algorithm specifies rules for 
moving around a graph and is useful for such problems. This category also 
includes search algorithms, branch and bound enumeration and backtracking.  

 The probabilistic and heuristic paradigm. Algorithms belonging to this class fit 
the definition of an algorithm more loosely.  

1. Probabilistic algorithms are those that make some choices randomly (or pseudo-
randomly); for some problems, it can in fact be proven that the fastest solutions 
must involve some randomness.  

2. Genetic algorithms attempt to find solutions to problems by mimicking biological 
evolutionary processes, with a cycle of random mutations yielding successive 
generations of "solutions". Thus, they emulate reproduction and "survival of the 
fittest". In genetic programming, this approach is extended to algorithms, by 
regarding the algorithm itself as a "solution" to a problem.  

3. Heuristic algorithms, whose general purpose is not to find an optimal solution, but 
an approximate solution where the time or resources are limited. They are not 
practical to find perfect solutions. An example of this would be local search, tabu 
search, or simulated annealing algorithms, a class of heuristic probabilistic 
algorithms that vary the solution of a problem by a random amount. The name 
"simulated annealing" alludes to the metallurgic term meaning the heating and 
cooling of metal to achieve freedom from defects. The purpose of the random 
variance is to find close to globally optimal solutions rather than simply locally 



optimal ones, the idea being that the random element will be decreased as the 
algorithm settles down to a solution.  

By field of study 

Every field of science has its own problems and needs efficient algorithms. Related 
problems in one field are often studied together. Some example classes are search 
algorithms, sorting algorithms, merge algorithms, numerical algorithms, graph 
algorithms, string algorithms, computational geometric algorithms, combinatorial 
algorithms, machine learning, cryptography, data compression algorithms and parsing 
techniques. 

Fields tend to overlap with each other, and algorithm advances in one field may improve 
those of other, sometimes completely unrelated, fields. For example, dynamic 
programming was originally invented for optimization of resource consumption in 
industry, but is now used in solving a broad range of problems in many fields. 

By complexity 

Algorithms can be classified by the amount of time they need to complete compared to 
their input size. There is a wide variety: some algorithms complete in linear time relative 
to input size, some do so in an exponential amount of time or even worse, and some 
never halt. Additionally, some problems may have multiple algorithms of differing 
complexity, while other problems might have no algorithms or no known efficient 
algorithms. There are also mappings from some problems to other problems. Owing to 
this, it was found to be more suitable to classify the problems themselves instead of the 
algorithms into equivalence classes based on the complexity of the best possible 
algorithms for them. 

By computing power 

Another way to classify algorithms is by computing power. This is typically done by 
considering some collection (class) of algorithms. A recursive class of algorithms is one 
that includes algorithms for all Turing computable functions. Looking at classes of 
algorithms allows for the possibility of restricting the available computational resources 
(time and memory) used in a computation. A subrecursive class of algorithms is one in 
which not all Turing computable functions can be obtained. For example, the algorithms 
that run in polynomial time suffice for many important types of computation but do not 
exhaust all Turing computable functions. The class of algorithms implemented by 
primitive recursive functions is another subrecursive class. 

Burgin (2005, p. 24) uses a generalized definition of algorithms that relaxes the common 
requirement that the output of the algorithm that computes a function must be determined 
after a finite number of steps. He defines a super-recursive class of algorithms as "a class 
of algorithms in which it is possible to compute functions not computable by any Turing 



machine" (Burgin 2005, p. 107). This is closely related to the study of methods of 
hypercomputation. 

Legal issues 

Algorithms, by themselves, are not usually patentable. In the United States, a claim 
consisting solely of simple manipulations of abstract concepts, numbers, or signals does 
not constitute "processes" (USPTO 2006), and hence algorithms are not patentable (as in 
Gottschalk v. Benson). However, practical applications of algorithms are sometimes 
patentable. For example, in Diamond v. Diehr, the application of a simple feedback 
algorithm to aid in the curing of synthetic rubber was deemed patentable. The patenting 
of software is highly controversial, and there are highly criticized patents involving 
algorithms, especially data compression algorithms, such as Unisys' LZW patent. 

History: Development of the notion of "algorithm" 

Origin of the word 

The word algorithm comes from the name of the 9th century Persian mathematician Abu 
Abdullah Muhammad ibn Musa al-Khwarizmi whose works introduced Indian numerals 
and algebraic concepts. He worked in Baghdad at the time when it was the centre of 
scientific studies and trade. The word algorism originally referred only to the rules of 
performing arithmetic using Arabic numerals but evolved via European Latin translation 
of al-Khwarizmi's name into algorithm by the 18th century. The word evolved to include 
all definite procedures for solving problems or performing tasks. 

Discrete and distinguishable symbols 

Tally-marks: To keep track of their flocks, their sacks of grain and their money the 
ancients used tallying: accumulating stones or marks scratched on sticks, or making 
discrete symbols in clay. Through the Babylonian and Egyptian use of marks and 
symbols, eventually Roman numerals and the abacus evolved (Dilson, p.16–41). Tally 
marks appear prominently in unary numeral system arithmetic used in Turing machine 
and Post-Turing machine computations. 

Manipulation of symbols as "place holders" for numbers: algebra 

The work of the ancient Greek geometers, Persian mathematician Al-Khwarizmi (often 
considered the "father of algebra" and from whose name the terms "algorism" and 
"algorithm" are derived), and Western European mathematicians culminated in Leibniz's 
notion of the calculus ratiocinator (ca 1680): 

"A good century and a half ahead of his time, Leibniz proposed an algebra of 
logic, an algebra that would specify the rules for manipulating logical concepts in 



the manner that ordinary algebra specifies the rules for manipulating numbers" 
(Davis 2000:1)  

Mechanical contrivances with discrete states 

The clock: Bolter credits the invention of the weight-driven clock as “The key invention 
[of Europe in the Middle Ages]", in particular the verge escapement (Bolter 1984:24) that 
provides us with the tick and tock of a mechanical clock. “The accurate automatic 
machine” (Bolter 1984:26) led immediately to "mechanical automata" beginning in the 
thirteenth century and finally to “computational machines" – the difference engine and 
analytical engines of Charles Babbage and Countess Ada Lovelace (Bolter p.33–34, 
p.204–206). 

Jacquard loom, Hollerith punch cards, telegraphy and telephony — the 
electromechanical relay: Bell and Newell (1971) indicate that the Jacquard loom (1801), 
precursor to Hollerith cards (punch cards, 1887), and “telephone switching technologies” 
were the roots of a tree leading to the development of the first computers (Bell and 
Newell diagram p. 39, cf. Davis 2000). By the mid-1800s the telegraph, the precursor of 
the telephone, was in use throughout the world, its discrete and distinguishable encoding 
of letters as “dots and dashes” a common sound. By the late 1800s the ticker tape (ca 
1870s) was in use, as was the use of Hollerith cards in the 1890 U.S. census. Then came 
the Teletype (ca. 1910) with its punched-paper use of Baudot code on tape. 

Telephone-switching networks of electromechanical relays (invented 1835) was behind 
the work of George Stibitz (1937), the inventor of the digital adding device. As he 
worked in Bell Laboratories, he observed the “burdensome’ use of mechanical calculators 
with gears. "He went home one evening in 1937 intending to test his idea... When the 
tinkering was over, Stibitz had constructed a binary adding device". (Valley News, p. 13). 

Davis (2000) observes the particular importance of the electromechanical relay (with its 
two "binary states" open and closed): 

It was only with the development, beginning in the 1930s, of electromechanical 
calculators using electrical relays, that machines were built having the scope 
Babbage had envisioned." (Davis, p. 14).  

Mathematics during the 1800s up to the mid-1900s 

Symbols and rules: In rapid succession the mathematics of George Boole (1847, 1854), 
Gottlob Frege (1879), and Giuseppe Peano (1888–1889) reduced arithmetic to a sequence 
of symbols manipulated by rules. Peano's The principles of arithmetic, presented by a 
new method (1888) was "the first attempt at an axiomatization of mathematics in a 
symbolic language" (van Heijenoort:81ff). 

But Heijenoort gives Frege (1879) this kudos: Frege’s is "perhaps the most important 
single work ever written in logic. ... in which we see a " 'formula language', that is a 



lingua characterica, a language written with special symbols, "for pure thought", that is, 
free from rhetorical embellishments ... constructed from specific symbols that are 
manipulated according to definite rules" (van Heijenoort:1). The work of Frege was 
further simplified and amplified by Alfred North Whitehead and Bertrand Russell in their 
Principia Mathematica (1910–1913). 

The paradoxes: At the same time a number of disturbing paradoxes appeared in the 
literature, in particular the Burali-Forti paradox (1897), the Russell paradox (1902–03), 
and the Richard Paradox (Dixon 1906, cf. Kleene 1952:36–40). The resultant 
considerations led to Kurt Gödel’s paper (1931) — he specifically cites the paradox of 
the liar — that completely reduces rules of recursion to numbers. 

Effective calculability: In an effort to solve the Entscheidungsproblem defined precisely 
by Hilbert in 1928, mathematicians first set about to define what was meant by an 
"effective method" or "effective calculation" or "effective calculability" (i.e., a 
calculation that would succeed). In rapid succession the following appeared: Alonzo 
Church, Stephen Kleene and J.B. Rosser's λ-calculus, (cf. footnote in Alonzo Church 
1936a:90, 1936b:110) a finely-honed definition of "general recursion" from the work of 
Gödel acting on suggestions of Jacques Herbrand (cf. Gödel's Princeton lectures of 1934) 
and subsequent simplifications by Kleene (1935-6:237ff, 1943:255ff). Church's proof 
(1936:88ff) that the Entscheidungsproblem was unsolvable, Emil Post's definition of 
effective calculability as a worker mindlessly following a list of instructions to move left 
or right through a sequence of rooms and while there either mark or erase a paper or 
observe the paper and make a yes-no decision about the next instruction (cf. 
"Formulation I", Post 1936:289-290). Alan Turing's proof of that the 
Entscheidungsproblem was unsolvable by use of his "a- [automatic-] machine"(Turing 
1936-7:116ff) -- in effect almost identical to Post's "formulation", J. Barkley Rosser's 
definition of "effective method" in terms of "a machine" (Rosser 1939:226). S. C. 
Kleene's proposal of a precursor to "Church thesis" that he called "Thesis I" (Kleene 
1943:273–274), and a few years later Kleene's renaming his Thesis "Church's Thesis" 
(Kleene 1952:300, 317) and proposing "Turing's Thesis" (Kleene 1952:376). 

Emil Post (1936) and Alan Turing (1936-7, 1939) 

Here is a remarkable coincidence of two men not knowing each other but describing a 
process of men-as-computers working on computations — and they yield virtually 
identical definitions. 

Emil Post (1936) described the actions of a "computer" (human being) as follows: 

"...two concepts are involved: that of a symbol space in which the work leading 
from problem to answer is to be carried out, and a fixed unalterable set of 
directions.  

His symbol space would be 



"a two way infinite sequence of spaces or boxes... The problem solver or worker 
is to move and work in this symbol space, being capable of being in, and 
operating in but one box at a time.... a box is to admit of but two possible 
conditions, i.e., being empty or unmarked, and having a single mark in it, say a 
vertical stroke.  
"One box is to be singled out and called the starting point. ...a specific problem is 
to be given in symbolic form by a finite number of boxes [i.e., INPUT] being 
marked with a stroke. Likewise the answer [i.e., OUTPUT] is to be given in 
symbolic form by such a configuration of marked boxes....  
"A set of directions applicable to a general problem sets up a deterministic 
process when applied to each specific problem. This process will terminate only 
when it comes to the direction of type (C ) [i.e., STOP]." (U p. 289–290) See 
more at Post-Turing machine  

Alan Turing’s work (1936, 1939:160) preceded that of Stibitz (1937); it is unknown 
whether Stibitz knew of the work of Turing. Turing’s biographer believed that Turing’s 
use of a typewriter-like model derived from a youthful interest: “Alan had dreamt of 
inventing typewriters as a boy; Mrs. Turing had a typewriter; and he could well have 
begun by asking himself what was meant by calling a typewriter 'mechanical'" (Hodges, 
p. 96). Given the prevalence of Morse code and telegraphy, ticker tape machines, and 
Teletypes we might conjecture that all were influences. 

Turing — his model of computation is now called a Turing machine — begins, as did 
Post, with an analysis of a human computer that he whittles down to a simple set of basic 
motions and "states of mind". But he continues a step further and creates a machine as a 
model of computation of numbers (Turing 1936-7:116). 

"Computing is normally done by writing certain symbols on paper. We may 
suppose this paper is divided into squares like a child's arithmetic book....I assume 
then that the computation is carried out on one-dimensional paper, i.e., on a tape 
divided into squares. I shall also suppose that the number of symbols which may 
be printed is finite....  
"The behavior of the computer at any moment is determined by the symbols 
which he is observing, and his "state of mind" at that moment. We may suppose 
that there is a bound B to the number of symbols or squares which the computer 
can observe at one moment. If he wishes to observe more, he must use successive 
observations. We will also suppose that the number of states of mind which need 
be taken into account is finite...  
"Let us imagine that the operations performed by the computer to be split up into 
'simple operations' which are so elementary that it is not easy to imagine them 
further divided" (Turing 1936-7:136).  

Turing's reduction yields the following: 

"The simple operations must therefore include:  
"(a) Changes of the symbol on one of the observed squares  



"(b) Changes of one of the squares observed to another square within L squares of 
one of the previously observed squares.  

"It may be that some of these change necessarily invoke a change of state of mind. The 
most general single operation must therefore be taken to be one of the following: 

"(A) A possible change (a) of symbol together with a possible change of state of 
mind.  
"(B) A possible change (b) of observed squares, together with a possible change 
of state of mind"  
"We may now construct a machine to do the work of this computer." (Turing 
1936-7:136)  

A few years later, Turing expanded his analysis (thesis, definition) with this forceful 
expression of it: 

"A function is said to be "effectively calculable" if its values can be found by 
some purely mechanical process. Although it is fairly easy to get an intuitive 
grasp of this idea, it is nevertheless desirable to have some more definite, 
mathematical expressible definition . . . [he discusses the history of the definition 
pretty much as presented above with respect to Gödel, Herbrand, Kleene, Church, 
Turing and Post] . . . We may take this statement literally, understanding by a 
purely mechanical process one which could be carried out by a machine. It is 
possible to give a mathematical description, in a certain normal form, of the 
structures of these machines. The development of these ideas leads to the author's 
definition of a computable function, and to an identification of computability † 
with effective calculability . . . .  
"† We shall use the expression "computable function" to mean a function 
calculable by a machine, and we let "effectively calculable" refer to the intuitive 
idea without particular identification with any one of these definitions."(Turing 
1939:160)  

J. B. Rosser (1939) and S. C. Kleene (1943) 

J. Barkley Rosser boldly defined an ‘effective [mathematical] method’ in the following 
manner (boldface added): 

"'Effective method' is used here in the rather special sense of a method each step 
of which is precisely determined and which is certain to produce the answer in a 
finite number of steps. With this special meaning, three different precise 
definitions have been given to date. [his footnote #5; see discussion immediately 
below]. The simplest of these to state (due to Post and Turing) says essentially 
that an effective method of solving certain sets of problems exists if one can 
build a machine which will then solve any problem of the set with no human 
intervention beyond inserting the question and (later) reading the answer. 
All three definitions are equivalent, so it doesn't matter which one is used. 



Moreover, the fact that all three are equivalent is a very strong argument for the 
correctness of any one." (Rosser 1939:225–6)  

Rosser's footnote #5 references the work of (1) Church and Kleene and their definition of 
λ-definability, in particular Church's use of it in his An Unsolvable Problem of 
Elementary Number Theory (1936); (2) Herbrand and Gödel and their use of recursion in 
particular Gödel's use in his famous paper On Formally Undecidable Propositions of 
Principia Mathematica and Related Systems I (1931); and (3) Post (1936) and Turing 
(1936-7) in their mechanism-models of computation. 

Stephen C. Kleene defined as his now-famous "Thesis I" known as the Church-Turing 
thesis. But he did this in the following context (boldface in original): 

"12. Algorithmic theories... In setting up a complete algorithmic theory, what we 
do is to describe a procedure, performable for each set of values of the 
independent variables, which procedure necessarily terminates and in such 
manner that from the outcome we can read a definite answer, "yes" or "no," to the 
question, "is the predicate value true?”" (Kleene 1943:273)  

History after 1950 

A number of efforts have been directed toward further refinement of the definition of 
"algorithm", and activity is on-going because of issues surrounding, in particular, 
foundations of mathematics (especially the Church-Turing Thesis) and philosophy of 
mind (especially arguments around artificial intelligence). For more, see Algorithm 
characterizations. 

 

Electrical network 
An electrical network is an interconnection of electrical elements such as resistors, 
inductors, capacitors, transmission lines, voltage sources, current sources, and switches. 

An electrical circuit is a network that has a closed loop, giving a return path for the 
current. A network is a connection of two or more components, and may not necessarily 
be a circuit. 

Electrical networks that consist only of sources (voltage or current), linear lumped 
elements (resistors, capacitors, inductors), and linear distributed elements (transmission 
lines) can be analyzed by algebraic and transform methods to determine DC response, 
AC response, and transient response. 



A network that also contains active electronic components is known as an electronic 
circuit. Such networks are generally nonlinear and require more complex design and 
analysis tools. 

Design methods 

To design any electrical circuit, either analog or digital, electrical engineers need to be 
able to predict the voltages and currents at all places within the circuit. Linear circuits, 
that is, circuits with the same input and output frequency, can be analyzed by hand using 
complex number theory. Other circuits can only be analyzed with specialized software 
programs or estimation techniques. 

Circuit simulation software, such as VHDL and HSPICE, allows engineers to design 
circuits without the time, cost and risk of error involved in building circuit prototypes. 

Electrical laws 

A number of electrical laws apply to all electrical networks. These include 

 Kirchhoff's current law: The sum of all currents entering a node is equal to the 
sum of all currents leaving the node.  

 Kirchhoff's voltage law: The directed sum of the electrical potential differences 
around a loop must be zero.  

 Ohm's law: The voltage across a resistor is equal to the product of the resistance 
and the current flowing through it (at constant temperature).  

 Norton's theorem: Any network of voltage and/or current sources and resistors is 
electrically equivalent to an ideal current source in parallel with a single resistor.  

 Thévenin's theorem: Any network of voltage and/or current sources and resistors 
is electrically equivalent to a single voltage source in series with a single resistor.  

Other more complex laws may be needed if the network contains nonlinear or reactive 
components. Non-linear self-regenerative heterodyning systems can be approximated. 
Applying these laws results in a set of simultaneous equations that can be solved either 
by hand or by a computer. 

Network simulation software 

More complex circuits can be analyzed numerically with software such as SPICE or 
symbolically using software such as SapWin. 

Linearization around operating point 

When faced with a new circuit, the software first tries to find a steady state solution, that 
is, one where all nodes conform to Kirchhoff's Current Law and the voltages across and 



through each element of the circuit conform to the voltage/current equations governing 
that element. 

Once the steady state solution is found, the operating points of each element in the 
circuit are known. For a small signal analysis, every non-linear element can be linearized 
around its operation point to obtain the small-signal estimate of the voltages and currents. 
This is an application of Ohm's Law. The resulting linear circuit matrix can be solved 
with Gaussian elimination. 

Piecewise-linear approximation 

Software such as the PLECS interface to Simulink uses piecewise-linear approximation 
of the equations governing the elements of a circuit. The circuit is treated as a completely 
linear network of ideal diodes. Every time a diode switches from on to off or vice versa, 
the configuration of the linear network changes. Adding more detail to the approximation 
of equations increases the accuracy of the simulation, but also increases its running time. 

Database 
A database is an integrated collection of logically related records or files which 
consolidates records into a common pool of data records that provides data for many 
applications. A database is a collection of information that is organized so that it can 
easily be accessed, managed, and updated. 

In one view, databases can be classified according to types of content: bibliographic, full-
text, numeric, and images. 

The data in a database is organized the data according to a database model. The model 
that is most commonly used today is the relational model. Other models such as the 
hierarchical model and the network model use a more explicit representation of 
relationships. 

Database topics 

Architecture 

Depending on the intended use, there are a number of database architectures in use. Many 
databases use a combination of strategies. On-line Transaction Processing systems 
(OLTP) often use a row-oriented datastore architecture, while data-warehouse and other 
retrieval-focused applications like Google's BigTable, or bibliographic database (library 
catalogue) systems may use a Column-oriented DBMS architecture. 

Document-Oriented, XML, knowledgebases, as well as frame databases and RDF-stores 
(aka triple-stores), may also use a combination of these architectures in their 
implementation. 



Finally, it should be noted that not all databases have or need a database schema (so 
called schema-less databases). 

Over many years the database industry has been dominated by General Purpose database 
systems, which offer a wide range of functions that are applicable to many, if not most 
circumstances in modern data processing. These have been enhanced with extensible 
datatypes, pioneered in the PostgreSQL project, to allow a very wide range of 
applications to be developed. 

There are also other types of database which cannot be classified as relational databases. 

Database management systems 

A Database Management System (DBMS) is a set of computer programs that controls 
the creation, maintenance, and the use of the database of an organization and its end 
users. It allows organizations to place control of organizationwide database development 
in the hands of Database Administrators (DBAs) and other specialist. DBMSes may use 
any of a variety of database models, such as the network model or relational model. In 
large systems, a DBMS allows users and other software to store and retrieve data in a 
structured way. 

A computer database relies on software to organize the storage of data. This software is 
known as a database management system (DBMS). Database management systems are 
categorized according to the database model that they support. The model tends to 
determine the query languages that are available to access the database, the most common 
of which is SQL. A great deal of the internal engineering of a DBMS, however, is 
independent of the data model, and is concerned with managing factors such as 
performance, concurrency, integrity, and recovery from hardware failures. In these areas 
there are large differences between products. 

A Relational Database Management System (RDBMS) implements the features of the 
relational model outlined above. In this context, Date's "Information Principle" states: 
"the entire information content of the database is represented in one and only one way. 
Namely as explicit values in column positions (attributes) and rows in relations (tuples). 
Therefore, there are no explicit pointers between related tables." 

Five Components of DBMS 

 DBMS Engine accepts logical request from the various other DBMS subsystems, 
converts them into physical equivalent, and actually accesses the database and 
data dictionary as they exist on a storage device.  

 Data Definition Subsystem helps user to create and maintain the data dictionary 
and define the structure of the files in a database.  

 Data Manipulation Subsystem helps user to add, change, and delete information 
in a database and query it for valuable information. Software tools within the data 
manipulation subsystem are most often the primary interface between user and the 



information contained in a database. It allows user to specify its logical 
information requirements.  

 Application Generation Subsystem contains facilities to help users to develop 
transactions-intensive applications. It usually requires that user perform a detailed 
series of tasks to process a transaction. It facilities easy-to-use data entry screens, 
programming languages, and interfaces.  

 Data Administration Subsystem helps users to manage the overall database 
environment by providing facilities for backup and recovery, security 
management, query optimization, concurrency control, and change management.  

Primary Tasks of DBMS Packages 

 Database Development. It is used to define and organize the content, 
relationships, and structure of the data needed to build a database.  

 Database Interrogation. It can access the data in a database for information 
retrieval and report generation. End users can selectively retrieve and display 
information and produce printed reports and documents.  

 Database Maintenance. It is used to add, delete, update, correct, and protect the 
data in a database.  

 Application Development. It is used to develop prototypes of data entry screens, 
queries, forms, reports, tables, and labels for a prototyped application. Or use 4GL 
or 4th Generation Language or application generator to develop program codes.  

 

Types of Databases 

Operational Database 

Operational Databases. These databases store detailed data needed to support the 
operations of the entire organization. They are also called Subject Area Databases 
(SADB), Transaction Databases, and Production Databases. These are all examples: 

 Customer Databases  
 Personal Databases  
 Inventory Databases  

Analytical Database 

Analytical Databases. These databases stores data and information extracted from 
selected operational and external databases. They consist of summarized data and 
information most needed by an organizations manager and other end user. They may also 
be called multidimensional database, Management database, and Information database. 

Data Warehouse 



Data Warehouse Databases. It stores data from current and previous years that has been 
extracted from the various operational databases of an organization. It is the central 
source of data that has been screened, edited, standardized and integrated so that it can be 
used by managers and other end user professionals throughout an organization 

Distributed Database 

Distributed Databases. These are databases of local work groups and departments at 
regional offices, branch offices, manufacturing plants and other work sites. These 
databases can include segments of both common operational and common user databases, 
as well as data generated and used only at a user’s own site. 

End-User Database 

End-User Databases. These databases consist of a variety of data files developed by 
end-users at their workstations. Examples of these are collection of documents in 
spreadsheets, word processing and even downloaded files. 

External Database 

External Databases. These databases where access to external, privately owned online 
databases or data banks is available for a fee to end users and organizations from 
commercial services. Access to a wealth of information from external database is 
available for a fee from commercial online services and with or without charge from 
many sources in the internet. 

Hypermedia Databases on the Web 

Hypermedia Databases. These are set of interconnected multimedia pages at a web-site. 
It consists of home page and other hyperlinked pages of multimedia or mixed media such 
as text, graphic, photographic images, video clips, audio etc. 

Navigational database 

Navigational databases. Type of database characterized by the fact that objects in it are 
found primarily by following references from other objects. Traditionally navigational 
interfaces are procedural, though one could characterize some modern systems like XPath 
as being simultaneously navigational and declarative. 

In-Memory databases 

In-Memory databases. It is a database management system that primarily relies on main 
memory for computer data storage. It is contrasted with database management systems 
which employ a disk storage mechanism. Main memory databases are faster than disk-
optimized databases since the internal optimization algorithms are simpler and execute 
fewer CPU instructions. Accessing data in memory provides faster and more predictable 



performance than disk. In applications where response time is critical, such as 
telecommunications network equipment that operates 9-1-1 emergency systems, main 
memory databases are often used. 

Document-oriented databases 

Document-oriented Databases. It is a computer program designed for document-
oriented applications. These systems may be implemented as a layer above a relational 
database or an object database. As opposed to relational databases, document-based 
databases do not store data in tables with uniform sized fields for each record. Instead, 
each record is stored as a document that has certain characteristics. Any number of fields 
of any length can be added to a document. Fields can also contain multiple pieces of data. 

Real-time databases 

Real-time databases. It is a processing system designed to handle workloads whose state 
is constantly changing. This differs from traditional databases containing persistent data, 
mostly unaffected by time. For example, a stock market changes very rapidly and is 
dynamic. Real-time processing means that a transaction is processed fast enough for the 
result to come back and be acted on right away. Real-time databases are useful for 
accounting, banking, law, medical records, multi-media, process control, reservation 
systems, and scientific data analysis. As computers increase in power and can store more 
data, they are integrating themselves into our society and are employed in many 
applications. 

Database models 

Database model 

Post-relational database models 

Products offering a more general data model than the relational model are sometimes 
classified as post-relational. The data model in such products incorporates relations but is 
not constrained by the Information Principle, which requires that all information is 
represented by data values in relations. 

Some of these extensions to the relational model actually integrate concepts from 
technologies that pre-date the relational model. For example, they allow representation of 
a directed graph with trees on the nodes. 

Some products implementing such models have been built by extending relational 
database systems with non-relational features. Others, however, have arrived in much the 
same place by adding relational features to pre-relational systems. Paradoxically, this 
allows products that are historically pre-relational, such as PICK and MUMPS, to make a 
plausible claim to be post-relational in their current architecture. 



Object database models 

In recent years, the object-oriented paradigm has been applied to database technology, 
creating a various kinds of new programming model known as object databases. These 
databases attempt to bring the database world and the application programming world 
closer together, in particular by ensuring that the database uses the same type system as 
the application program. This aims to avoid the overhead (sometimes referred to as the 
impedance mismatch) of converting information between its representation in the 
database (for example as rows in tables) and its representation in the application program 
(typically as objects). At the same time, object databases attempt to introduce the key 
ideas of object programming, such as encapsulation and polymorphism, into the world of 
databases. 

A variety of these ways have been tried for storing objects in a database. Some products 
have approached the problem from the application programming end, by making the 
objects manipulated by the program persistent. This also typically requires the addition of 
some kind of query language, since conventional programming languages do not have the 
ability to find objects based on their information content. Others have attacked the 
problem from the database end, by defining an object-oriented data model for the 
database, and defining a database programming language that allows full programming 
capabilities as well as traditional query facilities. 

Database storage structures 

Database storage structures 

Relational database tables/indexes are typically stored in memory or on hard disk in one 
of many forms, ordered/unordered flat files, ISAM, heaps, hash buckets or B+ trees. 
These have various advantages and disadvantages discussed further in the main article on 
this topic. The most commonly used are B+ trees and ISAM. 

Object databases use a range of storage mechanisms. Some use virtual memory mapped 
files to make the native language (C++, Java etc.) objects persistent. This can be highly 
efficient but it can make multi-language access more difficult. Others break the objects 
down into fixed and varying length components that are then clustered tightly together in 
fixed sized blocks on disk and reassembled into the appropriate format either for the 
client or in the client address space. Another popular technique is to store the objects in 
tuples, much like a relational database, which the database server then reassembles for 
the client. 

Other important design choices relate to the clustering of data by category (such as 
grouping data by month, or location), creating pre-computed views known as 
materialized views, partitioning data by range or hash. Memory management and storage 
topology can be important design choices for database designers as well. Just as 
normalization is used to reduce storage requirements and improve the extensibility of the 



database, conversely denormalization is often used to reduce join complexity and reduce 
execution time for queries. 

Indexing 

All of these databases can take advantage of indexing to increase their speed. This 
technology has advanced tremendously since its early uses in the 1960s and 1970s. The 
most common kind of index is a sorted list of the contents of some particular table 
column, with pointers to the row associated with the value. An index allows a set of table 
rows matching some criterion to be located quickly. Typically, indexes are also stored in 
the various forms of data-structure mentioned above (such as B-trees, hashes, and linked 
lists). Usually, a specific technique is chosen by the database designer to increase 
efficiency in the particular case of the type of index required. 

Most relational DBMS's and some object DBMSs have the advantage that indexes can be 
created or dropped without changing existing applications making use of it. The database 
chooses between many different strategies based on which one it estimates will run the 
fastest. In other words, indexes are transparent to the application or end-user querying the 
database; while they affect performance, any SQL command will run with or without 
index to compute the result of an SQL statement. The RDBMS will produce a plan of 
how to execute the query, which is generated by analyzing the run times of the different 
algorithms and selecting the quickest. Some of the key algorithms that deal with joins are 
nested loop join, sort-merge join and hash join. Which of these is chosen depends on 
whether an index exists, what type it is, and its cardinality. 

An index speeds up access to data, but it has disadvantages as well. First, every index 
increases the amount of storage on the hard drive necessary for the database file, and 
second, the index must be updated each time the data are altered, and this costs time. 
(Thus an index saves time in the reading of data, but it costs time in entering and altering 
data. It thus depends on the use to which the data are to be put whether an index is on the 
whole a net plus or minus in the quest for efficiency.) 

A special case of an index is a primary index, or primary key, which is distinguished in 
that the primary index must ensure a unique reference to a record. Often, for this purpose 
one simply uses a running index number (ID number). Primary indexes play a significant 
role in relational databases, and they can speed up access to data considerably. 

Transactions and concurrency 

In addition to their data model, most practical databases ("transactional databases") 
attempt to enforce a database transaction. Ideally, the database software should enforce 
the ACID rules, summarized here: 

 Atomicity: Either all the tasks in a transaction must be done, or none of them. The 
transaction must be completed, or else it must be undone (rolled back).  



 Consistency: Every transaction must preserve the integrity constraints — the 
declared consistency rules — of the database. It cannot place the data in a 
contradictory state.  

 Isolation: Two simultaneous transactions cannot interfere with one another. 
Intermediate results within a transaction are not visible to other transactions.  

 Durability: Completed transactions cannot be aborted later or their results 
discarded. They must persist through (for instance) restarts of the DBMS after 
crashes  

In practice, many DBMSs allow most of these rules to be selectively relaxed for better 
performance. 

Concurrency control is a method used to ensure that transactions are executed in a safe 
manner and follow the ACID rules. The DBMS must be able to ensure that only 
serializable, recoverable schedules are allowed, and that no actions of committed 
transactions are lost while undoing aborted transactions. 

Replication 

Replication of databases is closely related to transactions. If a database can log its 
individual actions, it is possible to create a duplicate of the data in real time. The 
duplicate can be used to improve performance or availability of the whole database 
system. Common replication concepts include: 

 Master/Slave Replication: All write requests are performed on the master and then 
replicated to the slaves  

 Quorum: The result of Read and Write requests are calculated by querying a 
"majority" of replicas.  

 Multimaster: Two or more replicas sync each other via a transaction identifier.  

Parallel synchronous replication of databases enables transactions to be replicated on 
multiple servers simultaneously, which provides a method for backup and security as 
well as data availability. 

Security 

Database security denotes the system, processes, and procedures that protect a database 
from unintended activity. 

Security is usually enforced through access control, auditing, and encryption. 

 Access control ensures and restricts who can connect and what can be done to the 
database.  

 Auditing logs what action or change has been performed, when and by whom.  
 Encryption: Since security has become a major issue in recent years, many 

commercial database vendors provide built-in encryption mechanisms. Data is 



encoded natively into the tables and deciphered "on the fly" when a query comes 
in. Connections can also be secured and encrypted if required using DSA, MD5, 
SSL or legacy encryption standard.  

Enforcing security is one of the major tasks of the DBA. 

In the United Kingdom, legislation protecting the public from unauthorized disclosure of 
personal information held on databases falls under the Office of the Information 
Commissioner. United Kingdom based organizations holding personal data in electronic 
format (databases for example) are required to register with the Data Commissioner. 

Locking 

Locking is how the database handles multiple concurrent operations. This is how 
concurrency and some form of basic integrity is managed within the database system. 
Such locks can be applied on a row level, or on other levels like page (a basic data block), 
extent (multiple array of pages) or even an entire table. This helps maintain the integrity 
of the data by ensuring that only one process at a time can modify the same data. 

In basic filesystem files or folders, only one lock at a time can be set, restricting the usage 
to one process only. Databases, on the other hand, can set and hold mutiple locks at the 
same time on the different level of the physical data structure. How locks are set, last is 
determined by the database engine locking scheme based on the submitted SQL or 
transactions by the users. Generally speaking, no activity on the database should be 
translated by no or very light locking. 

For most DBMS systems existing on the market, locks are generally shared or exclusive. 
Exclusive locks mean that no other lock can acquire the current data object as long as the 
exclusive lock lasts. Exclusive locks are usually set while the database needs to change 
data, like during an UPDATE or DELETE operation. 

Shared locks can take ownership one from the other of the current data structure. Shared 
locks are usually used while the database is reading data, during a SELECT operation. 
The number, nature of locks and time the lock holds a data block can have a huge impact 
on the database performances. Bad locking can lead to disastrous performance response 
(usually the result of poor SQL requests, or inadequate database physical structure) 

Default locking behavior is enforced by the isolation level of the data server. Changing 
the isolation level will affect how shared or exclusive locks must be set on the data for 
the entire database system. Default isolation is generally 1, where data can not be read 
while it is modified, forbidding to return "ghost data" to end user. 

At some point intensive or inappropriate exclusive locking, can lead to the "dead lock" 
situation between two locks. Where none of the locks can be released because they try to 
acquire resources mutually from each other. The Database has a fail safe mechanism and 



will automatically "sacrifice" one of the locks releasing the resource. Doing so processes 
or transactions involved in the "dead lock" will be rolled back. 

Databases can also be locked for other reasons, like access restrictions for given levels of 
user. Some databases are also locked for routine database maintenance, which prevents 
changes being made during the maintenance. See "Locking tables and databases" (section 
in some documentation / explanation from IBM) for more detail.) However, many 
modern databases don't lock the database during routine maintenance. e.g. "Routine 
Database Maintenance" for PostgreSQL. 

Applications of databases 

Databases are used in many applications, spanning virtually the entire range of computer 
software. Databases are the preferred method of storage for large multiuser applications, 
where coordination between many users is needed. Even individual users find them 
convenient, and many electronic mail programs and personal organizers are based on 
standard database technology. Software database drivers are available for most database 
platforms so that application software can use a common Application Programming 
Interface to retrieve the information stored in a database. Two commonly used database 
APIs are JDBC and ODBC. 

Examples of use 

The largest statistical database maintained by the central authority of statistics in 
Denmark is called StatBank. The very large database in English is available free-of-
charge for all users on the internet. It is updated every day 9.30 am (CET) and contains 
all new statistics in a very detailed form. The statistics can be presented as cross-tables, 
diagrams or maps. There are about 2 million hits every year (2006). The output can be 
transferred to other programs for further compilation. 

 

Digital electronics 
Digital electronics are electronics systems that use digital signals. Digital electronics are 
representations of Boolean algebra (also see truth tables) and are used in computers, 
mobile phones, and other consumer products. In a digital circuit, a signal is represented in 
discrete states or logic levels. The advantages of digital techniques stem from the fact it is 
easier to get an electronic device to switch into one of a number of known states, than to 
accurately reproduce a continuous range of values, traditionally only two states, '1' and '0' 
are used though digital systems are not limited to this. 

Digital electronics or any digital circuit are usually made from large assemblies of logic 
gates, simple electronic representations of Boolean logic functions. 



To most electronic engineers, the terms "digital circuit", "digital system" and "logic" are 
interchangeable in the context of digital circuits. 

Advantages 

One advantage of digital circuits when compared to analog circuits is  that signals 
represented digitally can be transmitted without degradation due to noise. For example, a 
continuous audio signal, transmitted as a sequence of 1s and 0s, can be reconstructed 
without error provided the noise picked up in transmission is not enough to prevent 
identification of the 1s and 0s. An hour of music can be stored on a compact disc as about 
6 billion binary digits. 

In a digital system, a more precise representation of a signal can be obtained by using 
more binary digits to represent it. While this requires more digital circuits to process the 
signals, each digit is handled by the same kind of hardware. In an analog system, 
additional resolution requires fundamental improvements in the linearity and noise 
charactersitics of each step of the signal chain. 

Computer-controlled digital systems can be controlled by software, allowing new 
functions to be added without changing hardware. Often this can be done outside of the 
factory by updating the product's software. So, the product's design errors can be 
corrected after the product is in a customer's hands. 

Information storage can be easier in digital systems than in analog ones. The noise-
immunity of digital systems permits data to be stored and retrieved without degradation. 
In an analog system, noise from aging and wear degrade the information stored. In a 
digital system, as long as the total noise is below a certain level, the information can be 
recovered perfectly. 

Disadvantages 

In some cases, digital circuits use more energy than analog circuits to accomplish the 
same tasks, thus producing more heat. In portable or battery-powered systems this can 
limit use of digital systems. 

For example, battery-powered cellular telephones often use a low-power analog front-end 
to amplify and tune in the radio signals from the base station. However, a base station has 
grid power and can use power-hungry, but very flexible software radios. Such base 
stations can be easily reprogrammed to process the signals used in new cellular standards. 

Digital circuits are sometimes more expensive, especially in small quantities. 

The sensed world is analog, and signals from this world are analog quantities. For 
example, light, temperature, sound, electrical conductivity, electric and magnetic fields 



are analog. Most useful digital systems must translate from continuous analog signals to 
discrete digital signals. This causes quantization errors. 

Quantization error can be reduced if the system stores enough digital data to represent the 
signal to the desired degree of fidelity. The Nyquist-Shannon sampling theorem provides 
an important guideline as to how much digital data is needed to accurately portray a 
given analog signal. 

In some systems, if a single piece of digital data is lost or misinterpreted, the meaning of 
large blocks of related data can completely change. Because of the cliff effect, it can be 
difficult for users to tell if a particular system is right on the edge of failure, or if it can 
tolerate much more noise before failing. 

Digital fragility can be reduced by designing a digital system for robustness. For 
example, a parity bit or other error management method can be inserted into the signal 
path. These schemes help the system detect errors, and then either correct the errors, or at 
least ask for a new copy of the data. In a state-machine, the state transition logic can be 
designed to catch unused states and trigger a reset sequence or other error recovery 
routine. 

Embedded software designs that employ Immunity Aware Programming, such as the 
practice of filling unused program memory with interrupt instructions that point to an 
error recovery routine. This helps guard against failures that corrupt the microcontroller's 
instruction pointer which could otherwise cause random code to be executed. 

Digital memory and transmission systems can use techniques such as error detection and 
correction to use additional data to correct any errors in transmission and storage. 

On the other hand, some techniques used in digital systems make those systems more 
vulnerable to single-bit errors. These techniques are acceptable when the underlying bits 
are reliable enough that such errors are highly unlikely. 

 A single-bit error in audio data stored directly as linear pulse code modulation 
(such as on a CD-ROM) causes, at worst, a single click. Instead, many people use 
audio compression to save storage space and download time, even though a 
single-bit error may corrupt the entire song.  

Analog issues in digital circuits 

Digital circuits are made from analog components. The design must assure that the 
analog nature of the components doesn't dominate the desired digital behavior. Digital 
systems must manage noise and timing margins, parasitic inductances and capacitances, 
and filter power connections. 



Bad designs have intermittent problems such as "glitches", vanishingly-fast pulses that 
may trigger some logic but not others, "runt pulses" that do not reach valid "threshold" 
voltages, or unexpected ("undecoded") combinations of logic states. 

Since digital circuits are made from analog components, digital circuits calculate more 
slowly than low-precision analog circuits that use a similar amount of space and power. 
However, the digital circuit will calculate more repeatably, because of its high noise 
immunity. On the other hand, in the high-precision domain (for example, where 14 or 
more bits of precision are needed), analog circuits require much more power and area 
than digital equivalents. 

Construction 

A digital circuit is often constructed from small electronic circuits called logic gates. 
Each logic gate represents a function of boolean logic. A logic gate is an arrangement of 
electrically controlled switches. 

The output of a logic gate is an electrical flow or voltage, that can, in turn, control more 
logic gates. 

Logic gates often use the fewest number of transistors in order to reduce their size, power 
consumption and cost, and increase their reliability. 

Integrated circuits are the least expensive way to make logic gates in large volumes. 
Integrated circuits are usually designed by engineers using electronic design automation 
software (See below for more information). 

Another form of digital circuit is constructed from lookup tables, (many sold as 
"programmable logic devices", though other kinds of PLDs exist). Lookup tables can 
perform the same functions as machines based on logic gates, but can be easily 
reprogrammed without changing the wiring. This means that a designer can often repair 
design errors without changing the arrangement of wires. Therefore, in small volume 
products, programmable logic devices are often the preferred solution. They are usually 
designed by engineers using electronic design automation software (See below for more 
information). 

When the volumes are medium to large, and the logic can be slow, or involves complex 
algorithms or sequences, often a small microcontroller is programmed to make an 
embedded system. These are usually programmed by software engineers. 

When only one digital circuit is needed, and its design is totally customized, as for a 
factory production line controller, the conventional solution is a programmable logic 
controller, or PLC. These are usually programmed by electricians, using ladder logic. 

Structure of digital systems 



Engineers use many methods to minimize logic functions, in order to reduce the circuit's 
complexity. When the complexity is less, the circuit also has fewer errors and less 
electronics, and is therefore less expensive. 

The most widely used simplification is a minimization algorithm like the Espresso 
heuristic logic minimizer within a CAD system, although historically, binary decision 
diagrams, an automated Quine–McCluskey algorithm, truth tables, Karnaugh Maps, and 
Boolean algebra have been used. 

Representations are crucial to an engineer's design of digital circuits. Some analysis 
methods only work with particular representations. 

The classical way to represent a digital circuit is with an equivalent set of logic gates. 
Another way, often with the least electronics, is to construct an equivalent system of 
electronic switches (usually transistors). One of the easiest ways is to simply have a 
memory containing a truth table. The inputs are fed into the address of the memory, and 
the data outputs of the memory become the outputs. 

For automated analysis, these representations have digital file formats that can be 
processed by computer programs. Most digital engineers are very careful to select 
computer programs ("tools") with compatible file formats. 

To choose representations, engineers consider types of digital systems. Most digital 
systems divide into "combinatorial systems" and "sequential systems." A combinatorial 
system always presents the same output when given the same inputs. It is basically a 
representation of a set of logic functions, as already discussed. 

A sequential system is a combinatorial system with some of the outputs fed back as 
inputs. This makes the digital machine perform a "sequence" of operations. The simplest 
sequential system is probably a flip flop, a mechanism that represents a binary digit or 
"bit". 

Sequential systems are often designed as state machines. In this way, engineers can 
design a system's gross behavior, and even test it in a simulation, without considering all 
the details of the logic functions. 

Sequential systems divide into two further subcategories. "Synchronous" sequential 
systems change state all at once, when a "clock" signal changes state. "Asynchronous" 
sequential systems propagate changes whenever inputs change. Synchronous sequential 
systems are made of well-characterized asynchronous circuits such as flip-flops, that 
change only when the clock changes, and which have carefully designed timing margins. 

The usual way to implement a synchronous sequential state machine is divide it into a 
piece of combinatorial logic and a set of flip flops called a "state register." Each time a 
clock signal ticks, the state register captures the feedback generated from the previous 
state of the combinatorial logic, and feeds it back as an unchanging input to the 



combinatorial part of the state machine. The fastest rate of the clock is set by the most 
time-consuming logic calculation in the combinatorial logic. 

The state register is just a representation of a binary number. If the states in the state 
machine are numbered (easy to arrange), the logic function is some combinatorial logic 
that produces the number of the next state. 

In comparison, asynchronous systems are very hard to design because all possible states, 
in all possible timings must be considered. The usual method is to construct a table of the 
minimum and maximum time that each such state can exist, and then adjust the circuit to 
minimize the number of such states, and force the circuit to periodically wait for all of its 
parts to enter a compatible state. (This is called "self-resynchronization.") Without such 
careful design, it is easy to accidentally produce asynchronous logic that is "unstable", 
that is, real electronics will have unpredictable results because of the cumulative delays 
caused by small variations in the values of the electronic components. Certain circuits 
(such as the synchronizer flip-flops, switch debouncers, and the like which allow external 
unsynchronized signals to enter synchronous logic circuits) are inherently asynchronous 
in their design and must be analyzed as such. 

As of 2005, almost all digital machines are synchronous designs because it is much easier 
to create and verify a synchronous design—the software currently used to simulate digital 
machines does not yet handle asynchronous designs. However, asynchronous logic is 
thought to be superior, if it can be made to work, because its speed is not constrained by 
an arbitrary clock; instead, it simply runs at the maximum speed permitted by the 
propagation rates of the logic gates from which it is constructed. Building an 
asynchronous circuit using faster parts implicitly makes the circuit "go" faster. 

More generally, many digital systems are data flow machines. These are usually designed 
using synchronous register transfer logic, using hardware description languages such as 
VHDL or Verilog. 

In register transfer logic, binary numbers are stored in groups of flip flops called 
registers. The outputs of each register are a bundle of wires called a "bus" that carries that 
number to other calculations. A calculation is simply a piece of combinatorial logic. Each 
calculation also has an output bus, and these may be connected to the inputs of several 
registers. Sometimes a register will have a multiplexer on its input, so that it can store a 
number from any one of several buses. Alternatively, the outputs of several items may be 
connected to a bus through buffers that can turn off the output of all of the devices except 
one. A sequential state machine controls when each register accepts new data from its 
input. 

In the 1980s, some researchers discovered that almost all synchronous register-transfer 
machines could be converted to asynchronous designs by using first-in-first-out 
synchronization logic. In this scheme, the digital machine is characterized as a set of data 
flows. In each step of the flow, an asynchronous "synchronization circuit" determines 
when the outputs of that step are valid, and presents a signal that says, "grab the data" to 



the stages that use that stage's inputs. It turns out that just a few relatively simple 
synchronization circuits are needed. 

The most general-purpose register-transfer logic machine is a computer. This is basically 
an automatic binary abacus. The control unit of a computer is usually designed as a 
microprogram run by a microsequencer. A microprogram is much like a player-piano 
roll. Each table entry or "word" of the microprogram commands the state of every bit that 
controls the computer. The sequencer then counts, and the count addresses the memory or 
combinatorial logic machine that contains the microprogram. The bits from the 
microprogram control the arithmetic logic unit, memory and other parts of the computer, 
including the microsequencer itself. 

In this way, the complex task of designing the controls of a computer is reduced to a 
simpler task of programming a relatively independent collection of much simpler logic 
machines. 

Computer architecture is a specialized engineering activity that tries to arrange the 
registers, calculation logic, buses and other parts of the computer in the best way for 
some purpose. Computer architects have applied large amounts of ingenuity to computer 
design to reduce the cost and increase the speed and immunity to programming errors of 
computers. An increasingly common goal is to reduce the power used in a battery-
powered computer system, such as a cell-phone. Many computer architects serve an 
extended apprenticeship as microprogrammers. 

"Specialized computers" are usually a conventional computer with a special-purpose 
microprogram. 

Automated design tools 

To save costly engineering effort, much of the effort of designing large logic machines 
has been automated. The computer programs are called "electronic design automation 
tools" or just "EDA." 

Simple truth table-style descriptions of logic are often optimized with EDA that 
automatically produces reduced systems of logic gates or smaller lookup tables that still 
produce the desired outputs. The most common example of this kind of software is the 
Espresso heuristic logic minimizer. 

Most practical algorithms for optimizing large logic systems use algebraic manipulations 
or binary decision diagrams, and there are promising experiments with genetic algorithms 
and annealing optimizations. 

To automate costly engineering processes, some EDA can take state tables that describe 
state machines and automatically produce a truth table or a function table for the 
combinatorial part of a state machine. The state table is a piece of text that lists each 



state, together with the conditions controlling the transitions between them and the 
belonging output signals. 

It is common for the function tables of such computer-generated state-machines to be 
optimized with logic-minimization software such as Minilog. 

Often, real logic systems are designed as a series of sub-projects, which are combined 
using a "tool flow." The tool flow is usually a "script," a simplified computer language 
that can invoke the software design tools in the right order. 

Tool flows for large logic systems such as microprocessors can be thousands of 
commands long, and combine the work of hundreds of engineers. 

Writing and debugging tool flows is an established engineering specialty in companies 
that produce digital designs. The tool flow usually terminates in a detailed computer file 
or set of files that describe how to physically construct the logic. Often it consists of 
instructions to draw the transistors and wires on an integrated circuit or a printed circuit 
board. 

Parts of tool flows are "debugged" by verifying the outputs of simulated logic against 
expected inputs. The test tools take computer files with sets of inputs and outputs, and 
highlight discrepancies between the simulated behavior and the expected behavior. 

Once the input data is believed correct, the design itself must still be verified for 
correctness. Some tool flows verify designs by first producing a design, and then 
scanning the design to produce compatible input data for the tool flow. If the scanned 
data matches the input data, then the tool flow has probably not introduced errors. 

The functional verification data are usually called "test vectors." The functional test 
vectors may be preserved and used in the factory to test that newly constructed logic 
works correctly. However, functional test patterns don't discover common fabrication 
faults. Production tests are often designed by software tools called "test pattern 
generators." These generate test vectors by examining the structure of the logic and 
systematically generating tests for particular faults. This way the fault coverage can 
closely approach 100%, provided the design is properly made testable (see next section). 

Once a design exists, and is verified and testable, it often needs to be processed to be 
manufacturable as well. Modern integrated circuits have features smaller than the 
wavelength of the light used to expose the photoresist. Manufacturability software adds 
interference patterns to the exposure masks to eliminate open-circuits, and enhance the 
masks' resolution and contrast. 

Design for testability 

A large logic machine (say,. with more than a hundred logical variables) can have an 
astronomical number of possible states. Obviously, in the factory, testing every state is 



impractical if testing each state takes a microsecond, and there are more states than the 
number of microseconds since the universe began. Unfortunately, this ridiculous-
sounding case is typical. 

Fortunately, large logic machines are almost always designed as assemblies of smaller 
logic machines. To save time, the smaller sub-machines are isolated by permanently-
installed "design for test" circuitry, and are tested independently. 

One common test scheme known as "scan design" moves test bits serially (one after 
another) from external test equipment through one or more serial shift registers known as 
"scan chains". Serial scans have only one or two wires to carry the data, and minimize the 
physical size and expense of the infrequently-used test logic. 

After all the test data bits are in place, the design is reconfigured to be in "normal mode" 
and one or more clock pulses are applied, to test for faults (e.g. stuck-at low or stuck-at 
high) and capture the test result into flip-flops and/or latches in the scan shift register(s). 
Finally, the result of the test is shifted out to the block boundary and compared against 
the predicted "good machine" result. 

In a board-test environment, serial to parallel testing has been formalized with a standard 
called "JTAG" (named after the "Joint Test Action Group" that proposed it). 

Another common testing scheme provides a test mode that forces some part of the logic 
machine to enter a "test cycle." The test cycle usually exercises large independent parts of 
the machine. 

Trade-offs 

Several numbers determine the practicality of a system of digital logic. Engineers 
explored numerous electronic devices to get an ideal combination of fanout, speed, low 
cost and reliability. 

The cost of a logic gate is crucial. In the 1930s, the earliest digital logic systems were 
constructed from telephone relays because these were inexpensive and relatively reliable. 
After that, engineers always used the cheapest available electronic switches that could 
still fulfill the requirements. 

The earliest integrated circuits were a happy accident. They were constructed not to save 
money, but to save weight, and permit the Apollo Guidance Computer to control an 
inertial guidance system for a spacecraft. The first integrated circuit logic gates cost 
nearly $50 (in 1960 dollars, when an engineer earned $10,000/year). To everyone's 
surprise, by the time the circuits were mass-produced, they had become the least-
expensive method of constructing digital logic. Improvements in this technology have 
driven all subsequent improvements in cost. 



With the rise of integrated circuits, reducing the absolute number of chips used 
represented another way to save costs. The goal of a designer is not just to make the 
simplest circuit, but to keep the component count down. Sometimes this results in slightly 
more complicated designs with respect to the underlying digital logic but nevertheless 
reduces the number of components, board size, and even power consumption. 

For example, in some logic families, NAND gates are the simplest digital gate to build. 
All other logical operations can be implemented by NAND gates. If a circuit already 
required a single NAND gate, and a single chip normally carried four NAND gates, then 
the remaining gates could be used to implement other logical operations like logical and. 
This could eliminate the need for a separate chip containing those different types of gates. 

The "reliability" of a logic gate describes its mean time between failure (MTBF). Digital 
machines often have millions of logic gates. Also, most digital machines are "optimized" 
to reduce their cost. The result is that often, the failure of a single logic gate will cause a 
digital machine to stop working. 

Digital machines first became useful when the MTBF for a switch got above a few 
hundred hours. Even so, many of these machines had complex, well-rehearsed repair 
procedures, and would be nonfunctional for hours because a tube burned-out, or a moth 
got stuck in a relay. Modern transistorized integrated circuit logic gates have MTBFs of 
nearly a trillion (1×1012) hours, and need them because they have so many logic gates. 

Fanout describes how many logic inputs can be controlled by a single logic output. The 
minimum practical fanout is about five. Modern electronic logic using CMOS transistors 
for switches have fanouts near fifty, and can sometimes go much higher. 

The "switching speed" describes how many times per second an inverter (an electronic 
representation of a "logical not" function) can change from true to false and back. Faster 
logic can accomplish more operations in less time. Digital logic first became useful when 
switching speeds got above fifty hertz, because that was faster than a team of humans 
operating mechanical calculators. Modern electronic digital logic routinely switches at 
five gigahertz (5×109 hertz), and some laboratory systems switch at more than a terahertz 
(1×1012 hertz). 

Logic families 

Design started with relays. Relay logic was relatively inexpensive and reliable, but slow. 
Occasionally a mechanical failure would occur. Fanouts were typically about ten, limited 
by the resistance of the coils and arcing on the contacts from high voltages. 

Later, vacuum tubes were used. These were very fast, but generated heat, and were 
unreliable because the filaments would burn out. Fanouts were typically five to seven, 
limited by the heating from the tubes' current. In the 1950s, special "computer tubes" 
were developed with filaments that omitted volatile elements like silicon. These ran for 
hundreds of thousands of hours. 



The first semiconductor logic family was Resistor-transistor logic. This was a thousand 
times more reliable than tubes, ran cooler, and used less power, but had a very low fan-in 
of three. Diode-transistor logic improved the fanout up to about seven, and reduced the 
power. Some DTL designs used two power-supplies with alternating layers of NPN and 
PNP transistors to increase the fanout. 

Transistor transistor logic (TTL) was a great improvement over these. In early devices, 
fanout improved to ten, and later variations reliably achieved twenty. TTL was also fast, 
with some variations achieving switching times as low as twenty nanoseconds. TTL is 
still used in some designs. 

Another contender was emitter coupled logic. This is very fast but uses a lot of power. It's 
now used mostly in radio-frequency circuits. 

Modern integrated circuits mostly use variations of CMOS, which is acceptably fast, very 
small and uses very little power. Fanouts of forty or more are possible, with some speed 
penalty. 

Non-electronic logic 

unconventional computing 

It is possible to construct non-electronic digital mechanisms. In principle, any technology 
capable of representing discrete states and representing logic operations could be used to 
build mechanical logic. MIT students Erlyne Gee, Edward Hardebeck, Danny Hillis (co-
author of The Connection Machine), Margaret Minsky and brothers Barry and Brian 
Silverman, built two working computers from Tinker toys, string, a brick, and a 
sharpened pencil. The Tinkertoy computer is supposed to be in the Houston Museum of 
Natural Science. 

Hydraulic, pneumatic and mechanical versions of logic gates exist and are used in 
situations where electricity cannot be used. The first two types are considered under the 
heading of fluidics. One application of fluidic logic is in military hardware that is likely 
to be exposed to a nuclear electromagnetic pulse (nuclear EMP, or NEMP) that would 
destroy electrical circuits. 

Mechanical logic is frequently used in inexpensive controllers, such as those in washing 
machines. Famously, the first computer design, by Charles Babbage, was designed to use 
mechanical logic. Mechanical logic might also be used in very small computers that 
could be built by nanotechnology. 

Another example is that if two particular enzymes are required to prevent the 
construction of a particular protein, this is the equivalent of a biological "NAND" gate. 

Embedded system 



 
 
Picture of the internals of a Netgear ADSL modem/router. A modern example of an 
embedded system. Labelled parts include a microprocessor (4), RAM (6), and flash 
memory (7). 

An embedded system is a computer system designed to perform one or a few dedicated 
functions, often with real-time computing constraints. It is usually embedded as part of a 
complete device including hardware and mechanical parts. In contrast, a general-purpose 
computer, such as a personal computer, can do many different tasks depending on 
programming. Embedded systems control many of the common devices in use today. 

Since the embedded system is dedicated to specific tasks, design engineers can optimize 
it, reducing the size and cost of the product, or increasing the reliability and performance. 
Some embedded systems are mass-produced, benefiting from economies of scale. 

Physically, embedded systems range from portable devices such as digital watches and 
MP3 players, to large stationary installations like traffic lights, factory controllers, or the 
systems controlling nuclear power plants. Complexity varies from low, with a single 
microcontroller chip, to very high with multiple units, peripherals and networks mounted 
inside a large chassis or enclosure. 

In general, "embedded system" is not an exactly defined term, as many systems have 
some element of programmability. For example, Handheld computers share some 
elements with embedded systems — such as the operating systems and microprocessors 
which power them — but are not truly embedded systems, because they allow different 
applications to be loaded and peripherals to be connected. 

Examples of embedded systems 



 
 
PC Engines' ALIX.1C Mini-ITX embedded board with an x86 AMD Geode LX 800 
together with Compact Flash, miniPCI and PCI slots, 22-pin IDE interface, audio, USB 
and 256MB RAM 

 
 
An embedded RouterBoard 112 with U.FL-RSMA pigtail and R52 miniPCI Wi-Fi card 
widely used by wireless Internet service providers (WISPs) in the Czech Republic. 

Embedded systems span all aspects of modern life and there are many examples of their 
use. 

Telecommunications systems employ numerous embedded systems from telephone 
switches for the network to mobile phones at the end-user. Computer networking uses 
dedicated routers and network bridges to route data. 

Consumer electronics include personal digital assistants (PDAs), mp3 players, mobile 
phones, videogame consoles, digital cameras, DVD players, GPS receivers, and printers. 
Many household appliances, such as microwave ovens, washing machines and 
dishwashers, are including embedded systems to provide flexibility, efficiency and 
features. Advanced HVAC systems use networked thermostats to more accurately and 
efficiently control temperature that can change by time of day and season. Home 
automation uses wired- and wireless-networking that can be used to control lights, 
climate, security, audio/visual, surveillance, etc., all of which use embedded devices for 
sensing and controlling. 



Transportation systems from flight to automobiles increasingly use embedded systems. 
New airplanes contain advanced avionics such as inertial guidance systems and GPS 
receivers that also have considerable safety requirements. Various electric motors — 
brushless DC motors, induction motors and DC motors — are using electric/electronic 
motor controllers. Automobiles, electric vehicles, and hybrid vehicles are increasingly 
using embedded systems to maximize efficiency and reduce pollution. Other automotive 
safety systems such as anti-lock braking system (ABS), Electronic Stability Control 
(ESC/ESP), traction control (TCS) and automatic four-wheel drive. 

Medical equipment is continuing to advance with more embedded systems for vital signs 
monitoring, electronic stethoscopes for amplifying sounds, and various medical imaging 
(PET, SPECT, CT, MRI) for non-invasive internal inspections. 

In addition to commonly described embedded systems based on small computers, a new 
class of miniature wireless devices called motes are quickly gaining popularity as the 
field of wireless sensor networking rises. Wireless sensor networking, WSN, makes use 
of miniaturization made possible by advanced IC design to couple full wireless 
subsystems to sophisticated sensor, enabling people and companies to measure a myriad 
of things in the physical world and act on this information through IT monitoring and 
control systems. These motes are completely self contained, and will typically run off a 
battery source for many years before the batteries need to be changed or charged. 

History 

In the earliest years of computers in the 1930–40s, computers were sometimes dedicated 
to a single task, but were far too large and expensive for most kinds of tasks performed 
by embedded computers of today. Over time however, the concept of programmable 
controllers evolved from traditional electromechanical sequencers, via solid state devices, 
to the use of computer technology. 

One of the first recognizably modern embedded systems was the Apollo Guidance 
Computer, developed by Charles Stark Draper at the MIT Instrumentation Laboratory. At 
the project's inception, the Apollo guidance computer was considered the riskiest item in 
the Apollo project as it employed the then newly developed monolithic integrated circuits 
to reduce the size and weight. An early mass-produced embedded system was the 
Autonetics D-17 guidance computer for the Minuteman missile, released in 1961. It was 
built from transistor logic and had a hard disk for main memory. When the Minuteman II 
went into production in 1966, the D-17 was replaced with a new computer that was the 
first high-volume use of integrated circuits. This program alone reduced prices on quad 
nand gate ICs from $1000/each to $3/each, permitting their use in commercial products. 

Since these early applications in the 1960s, embedded systems have come down in price 
and there has been a dramatic rise in processing power and functionality. The first 
microprocessor for example, the Intel 4004, was designed for calculators and other small 
systems but still required many external memory and support chips. In 1978 National 
Engineering Manufacturers Association released a "standard" for programmable 



microcontrollers, including almost any computer-based controllers, such as single board 
computers, numerical, and event-based controllers. 

As the cost of microprocessors and microcontrollers fell it became feasible to replace 
expensive knob-based analog components such as potentiometers and variable capacitors 
with up/down buttons or knobs read out by a microprocessor even in some consumer 
products. By the mid-1980s, most of the common previously external system components 
had been integrated into the same chip as the processor and this modern form of the 
microcontroller allowed an even more widespread use, which by the end of the decade 
were the norm rather than the exception for almost all electronics devices. 

The integration of microcontrollers has further increased the applications for which 
embedded systems are used into areas where traditionally a computer would not have 
been considered. A general purpose and comparatively low-cost microcontroller may 
often be programmed to fulfill the same role as a large number of separate components. 
Although in this context an embedded system is usually more complex than a traditional 
solution, most of the complexity is contained within the microcontroller itself. Very few 
additional components may be needed and most of the design effort is in the software. 
The intangible nature of software makes it much easier to prototype and test new 
revisions compared with the design and construction of a new circuit not using an 
embedded processor. 

Characteristics 

 
 
Soekris net4801, an embedded system targeted at network applications. 

1. Embedded systems are designed to do some specific task, rather than be a 
general-purpose computer for multiple tasks. Some also have real-time 
performance constraints that must be met, for reasons such as safety and usability; 
others may have low or no performance requirements, allowing the system 
hardware to be simplified to reduce costs.  

2. Embedded systems are not always standalone devices. Many embedded systems 
consist of small, computerized parts within a larger device that serves a more 
general purpose. For example, the Gibson Robot Guitar features an embedded 
system for tuning the strings, but the overall purpose of the Robot Guitar is, of 
course, to play music. Similarly, an embedded system in an automobile provides a 
specific function as a subsystem of the car itself.  



3. The program instructions written for embedded systems are referred to as 
firmware, and are stored in read-only memory or Flash memory chips. They run 
with limited computer hardware resources: little memory, small or non-existent 
keyboard and/or screen.  

User interfaces 

 
 
Embedded system text user interface using MicroVGA 

Embedded systems range from no user interface at all — dedicated only to one task — to 
complex graphical user interfaces that resemble modern computer desktop operating 
systems. 

Simple systems 

Simple embedded devices use buttons, LEDs, and small character or digit-only displays, 
often with a simple menu system. 

In more complex systems 

A full graphical screen, with touch sensing or screen-edge buttons provides flexibility 
while minimising space used: the meaning of the buttons can change with the screen, and 
selection involves the natural behavior of pointing at what's desired. 

Handheld systems often have a screen with a "joystick button" for a pointing device. 

Many systems have "maintenance" or "test" interfaces that provide a menu or command 
system via an RS-232 interface. This avoids the cost of a display, but gives a lot of 
control. Most consumers cannot assemble the required cables, however. 

The rise of the World Wide Web has given embedded designers another quite different 
option: providing a web page interface over a network connection. This avoids the cost of 
a sophisticated display, yet provides complex input and display capabilities when needed, 
on another computer. This is successful for remote, permanently installed equipment such 
as Pan-Tilt-Zoom cameras and network routers. 

CPU platforms 



Embedded processors can be broken into two broad categories: ordinary microprocessors 
(μP) and microcontrollers (μC), which have many more peripherals on chip, reducing 
cost and size. Contrasting to the personal computer and server markets, a fairly large 
number of basic CPU architectures are used; there are Von Neumann as well as various 
degrees of Harvard architectures, RISC as well as non-RISC and VLIW; word lengths 
vary from 4-bit to 64-bits and beyond (mainly in DSP processors) although the most 
typical remain 8/16-bit. Most architectures come in a large number of different variants 
and shapes, many of which are also manufactured by several different companies. 

Ready made computer boards 

PC/104 and PC/104+ are examples of available ready made computer boards intended for 
small, low-volume embedded and ruggedized systems. These often use DOS, Linux, 
NetBSD, or an embedded real-time operating system such as MicroC/OS-II, QNX or 
VxWorks. 

In certain applications, where small size is not a primary concern, the components used 
may be compatible with those used in general purpose computers. Boards such as the 
VIA EPIA range help to bridge the gap by being PC-compatible but highly integrated, 
physically smaller or have other attributes making them attractive to embedded engineers. 
The advantage of this approach is that low-cost commodity components may be used 
along with the same software development tools used for general software development. 
Systems built in this way are still regarded as embedded since they are integrated into 
larger devices and fulfill a single role. Examples of devices that may adopt this approach 
are ATMs and arcade machines.and which contain code specific to the application. 

ASIC and FPGA solutions 

A common configuration for very-high-volume embedded systems is the system on a 
chip (SoC) which contains a complete system consisting of multiple processors, 
multipliers, caches and interfaces on a single chip. SoCs can be implemented as an 
application-specific integrated circuit (ASIC) or using a field-programmable gate array 
(FPGA). 

Peripherals 

Embedded Systems talk with the outside world via peripherals, such as: 

 Serial Communication Interfaces (SCI): RS-232, RS-422, RS-485 etc  
 Synchronous Serial Communication Interface: I2C, SPI, SSC and ESSI 

(Enhanced Synchronous Serial Interface)  
 Universal Serial Bus (USB)  
 Multi Media Cards (SD Cards, Compact Flash etc)  
 Networks: Ethernet, Controller Area Network, LonWorks, etc  
 Timers: PLL(s), Capture/Compare and Time Processing Units  
 Discrete IO: aka General Purpose Input/Output (GPIO)  



 Analog to Digital/Digital to Analog (ADC/DAC)  
 Debugging: JTAG, ISP, ICSP, BDM Port, ...  

Tools 

As for other software, embedded system designers use compilers, assemblers, and 
debuggers to develop embedded system software. However, they may also use some 
more specific tools: 

 In circuit debuggers or emulators (see next section).  
 Utilities to add a checksum or CRC to a program, so the embedded system can 

check if the program is valid.  
 For systems using digital signal processing, developers may use a math 

workbench such as Scilab / Scicos, MATLAB / Simulink, EICASLAB, MathCad, 
or Mathematica to simulate the mathematics. They might also use libraries for 
both the host and target which eliminates developing DSP routines as done in 
DSPnano RTOS and Unison Operating System.  

 Custom compilers and linkers may be used to improve optimisation for the 
particular hardware.  

 An embedded system may have its own special language or design tool, or add 
enhancements to an existing language such as Forth or Basic.  

 Another alternative is to add a Real-time operating system or Embedded operating 
system, which may have DSP capabilities like DSPnano RTOS.  

Software tools can come from several sources: 

 Software companies that specialize in the embedded market  
 Ported from the GNU software development tools  
 Sometimes, development tools for a personal computer can be used if the 

embedded processor is a close relative to a common PC processor  

As the complexity of embedded systems grows, higher level tools and operating systems 
are migrating into machinery where it makes sense. For example, cellphones, personal 
digital assistants and other consumer computers often need significant software that is 
purchased or provided by a person other than the manufacturer of the electronics. In these 
systems, an open programming environment such as Linux, NetBSD, OSGi or Embedded 
Java is required so that the third-party software provider can sell to a large market. 

Debugging 

Embedded Debugging may be performed at different levels, depending on the facilities 
available. From simplest to most sophisticated they can be roughly grouped into the 
following areas: 

 Interactive resident debugging, using the simple shell provided by the embedded 
operating system (e.g. Forth and Basic)  



 External debugging using logging or serial port output to trace operation using 
either a monitor in flash or using a debug server like the Remedy Debugger which 
even works for heterogeneous multicore systems.  

 An in-circuit debugger (ICD), a hardware device that connects to the 
microprocessor via a JTAG or NEXUS interface. This allows the operation of the 
microprocessor to be controlled externally, but is typically restricted to specific 
debugging capabilities in the processor.  

 An in-circuit emulator replaces the microprocessor with a simulated equivalent, 
providing full control over all aspects of the microprocessor.  

 A complete emulator provides a simulation of all aspects of the hardware, 
allowing all of it to be controlled and modified, and allowing debugging on a 
normal PC.  

Unless restricted to external debugging, the programmer can typically load and run 
software through the tools, view the code running in the processor, and start or stop its 
operation. The view of the code may be as assembly code or source-code. 

Because an embedded system is often composed of a wide variety of elements, the 
debugging strategy may vary. For instance, debugging a software- (and microprocessor-) 
centric embedded system is different from debugging an embedded system where most of 
the processing is performed by peripherals (DSP, FPGA, co-processor). An increasing 
number of embedded systems today use more than one single processor core. A common 
problem with multi-core development is the proper synchronization of software 
execution. In such a case, the embedded system design may wish to check the data traffic 
on the busses between the processor cores, which requires very low-level debugging, at 
signal/bus level, with a logic analyzer, for instance. 

Reliability 

Embedded systems often reside in machines that are expected to run continuously for 
years without errors, and in some cases recover by themselves if an error occurs. 
Therefore the software is usually developed and tested more carefully than that for 
personal computers, and unreliable mechanical moving parts such as disk drives, 
switches or buttons are avoided. 

Specific reliability issues may include: 

1. The system cannot safely be shut down for repair, or it is too inaccessible to 
repair. Examples include space systems, undersea cables, navigational beacons, 
bore-hole systems, and automobiles.  

2. The system must be kept running for safety reasons. "Limp modes" are less 
tolerable. Often backups are selected by an operator. Examples include aircraft 
navigation, reactor control systems, safety-critical chemical factory controls, train 
signals, engines on single-engine aircraft.  



3. The system will lose large amounts of money when shut down: Telephone 
switches, factory controls, bridge and elevator controls, funds transfer and market 
making, automated sales and service.  

A variety of techniques are used, sometimes in combination, to recover from errors—
both software bugs such as memory leaks, and also soft errors in the hardware: 

 watchdog timer that resets the computer unless the software periodically notifies 
the watchdog  

 subsystems with redundant spares that can be switched over to  
 software "limp modes" that provide partial function  
 Designing with a Trusted Computing Base (TCB) architecture ensures a highly 

secure & reliable system environment  
 An Embedded Hypervisor is able to provide secure encapsulation for any 

subsystem component, so that a compromised software component cannot 
interfere with other subsystems, or privileged-level system software. This 
encapsulation keeps faults from propagating from one subsystem to another, 
improving reliability. This may also allow a subsystem to be automatically shut 
down and restarted on fault detection.  

 Immunity Aware Programming  

High vs Low Volume 

For high volume systems such as portable music players or mobile phones, minimizing 
cost is usually the primary design consideration. Engineers typically select hardware that 
is just “good enough” to implement the necessary functions. 

For low-volume or prototype embedded systems, general purpose computers may be 
adapted by limiting the programs or by replacing the operating system with a real-time 
operating system. 

Embedded software architectures 

There are several different types of software architecture in common use. 

Simple control loop 

In this design, the software simply has a loop. The loop calls subroutines, each of which 
manages a part of the hardware or software. 

Interrupt controlled system 

Some embedded systems are predominantly interrupt controlled. This means that tasks 
performed by the system are triggered by different kinds of events. An interrupt could be 



generated for example by a timer in a predefined frequency, or by a serial port controller 
receiving a byte. 

These kinds of systems are used if event handlers need low latency and the event 
handlers are short and simple. 

Usually these kinds of systems run a simple task in a main loop also, but this task is not 
very sensitive to unexpected delays. 

Sometimes the interrupt handler will add longer tasks to a queue structure. Later, after the 
interrupt handler has finished, these tasks are executed by the main loop. This method 
brings the system close to a multitasking kernel with discrete processes. 

Cooperative multitasking 

A nonpreemptive multitasking system is very similar to the simple control loop scheme, 
except that the loop is hidden in an API. The programmer defines a series of tasks, and 
each task gets its own environment to “run” in. When a task is idle, it calls an idle 
routine, usually called “pause”, “wait”, “yield”, “nop” (stands for no operation), etc. 

The advantages and disadvantages are very similar to the control loop, except that adding 
new software is easier, by simply writing a new task, or adding to the queue-interpreter. 

Preemptive multitasking or multi-threading 

In this type of system, a low-level piece of code switches between tasks or threads based 
on a timer (connected to an interrupt). This is the level at which the system is generally 
considered to have an "operating system" kernel. Depending on how much functionality 
is required, it introduces more or less of the complexities of managing multiple tasks 
running conceptually in parallel. 

As any code can potentially damage the data of another task (except in larger systems 
using an MMU) programs must be carefully designed and tested, and access to shared 
data must be controlled by some synchronization strategy, such as message queues, 
semaphores or a non-blocking synchronization scheme. 

Because of these complexities, it is common for organizations to buy a real-time 
operating system, allowing the application programmers to concentrate on device 
functionality rather than operating system services, at least for large systems; smaller 
systems often cannot afford the overhead associated with a generic real time system, due 
to limitations regarding memory size, performance, and/or battery life. 

Microkernels and exokernels 

A microkernel is a logical step up from a real-time OS. The usual arrangement is that the 
operating system kernel allocates memory and switches the CPU to different threads of 



execution. User mode processes implement major functions such as file systems, network 
interfaces, etc. 

In general, microkernels succeed when the task switching and intertask communication is 
fast, and fail when they are slow. 

Exokernels communicate efficiently by normal subroutine calls. The hardware, and all 
the software in the system are available to, and extensible by application programmers. 

Monolithic kernels 

In this case, a relatively large kernel with sophisticated capabilities is adapted to suit an 
embedded environment. This gives programmers an environment similar to a desktop 
operating system like Linux or Microsoft Windows, and is therefore very productive for 
development; on the downside, it requires considerably more hardware resources, is often 
more expensive, and because of the complexity of these kernels can be less predictable 
and reliable. 

Common examples of embedded monolithic kernels are Embedded Linux and Windows 
CE. 

Despite the increased cost in hardware, this type of embedded system is increasing in 
popularity, especially on the more powerful embedded devices such as Wireless Routers 
and GPS Navigation Systems. Here are some of the reasons: 

 Ports to common embedded chip sets are available.  
 They permit re-use of publicly available code for Device Drivers, Web Servers, 

Firewalls, and other code.  
 Development systems can start out with broad feature-sets, and then the 

distribution can be configured to exclude unneeded functionality, and save the 
expense of the memory that it would consume.  

 Many engineers believe that running application code in user mode is more 
reliable, easier to debug and that therefore the development process is easier and 
the code more portable.  

 Many embedded systems lack the tight real time requirements of a control system. 
A system such as Embedded Linux has fast enough response for many 
applications.  

 Features requiring faster response than can be guaranteed can often be placed in 
hardware.  

 Many RTOS systems have a per-unit cost. When used on a product that is or will 
become a commodity, that cost is significant.  

Exotic custom operating systems 

A small fraction of embedded systems require safe, timely, reliable or efficient behavior 
unobtainable with the one of the above architectures. In this case an organization builds a 



system to suit. In some cases, the system may be partitioned into a "mechanism 
controller" using special techniques, and a "display controller" with a conventional 
operating system. A communication system passes data between the two. 

Additional software components 

In addition to the core operating system, many embedded systems have additional upper-
layer software components. These components consist of networking protocol stacks like 
CAN, TCP/IP, FTP, HTTP, and HTTPS, and also included storage capabilities like FAT 
and Flash memory management systems. If the embedded devices has audio and video 
capabilities, then the appropriate drivers and codecs will be present in the system. In the 
case of the monolithic kernels, many of these software layers are included. In the RTOS 
category, the availability of the additional software components depends upon the 
commercial offering. 
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