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Preface to the Second Edition

When Taylor & Francis Group (CRC Press) first suggested 
an update to the 2006 first edition of the Electronic Design 
Automation for Integrated Circuits Handbook, we realized 
that almost a decade had passed in the electronics industry, 
almost a complete era in the geological sense. We agreed 
that the changes in electronic design automation (EDA) and 
design methods warranted a once-in-a-decade update, and 
asked our original group of authors to update their chap-
ters. We also solicited some new authors for new topics that 
seemed of particular relevance for a second edition. In addi-
tion, we added a new coeditor, Igor L. Markov, especially 
since Louis K. Scheffer has moved out of the EDA industry.

Finding all the original authors was a challenge. Some 
had retired or moved out of the industry, some had moved 
to completely new roles, and some were just too busy to 
contemplate a revision. However, many were still available 
and happy to revise their chapters. Where appropriate, we 
recruited new coauthors to revise, update, or replace a chap-
ter, highlighting the major changes that occurred during the 
last decade.

It seems appropriate to quote from our original 2006 
preface: “As we look at the state of electronics and IC 
design in 2005–2006, we see that we may soon enter a 
major period of change in the discipline.” And “Upon 
further consideration, it is clear that the current EDA 
approaches have a lot of life left in them.” This has been 
our finding in doing the revision. Some rather revolu-
tionary changes are still coming; but to a great extent, 
most of the EDA algorithms, tools, and methods have 
gone through evolutionary, rather than revolutionary, 
changes over the last decade. Most of the major updates 
have occurred both in the initial phases of the design 
flow, where the level of abstraction keeps rising in order 

to support more functionality with lower NRE costs, and 
in the final phases, where the complexity due to smaller 
and smaller geometries is compounded by the slow prog-
ress of shorter wavelength lithography.

Major challenges faced by the EDA industry and 
researchers do not require revising previously accumulated 
knowledge so much but rather stimulate applying it in new 
ways and, in some cases, developing new approaches. This 
is illustrated, for example, by a new chapter on 3D circuit 
integration—an exciting and promising development that is 
starting to gain traction in the industry. Another new chap-
ter covers on-chip networks—an area that had been nascent 
at the time of the first edition but experienced strong growth 
and solid industry adoption in recent years.

We hope that the readers enjoy the improved depth and 
the broader topic coverage offered in the second edition.

Luciano Lavagno

Igor L. Markov

Grant E. Martin

Louis K. Scheffer

MATLAB® is a registered trademark of The MathWorks, 
Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com
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Preface to the First Edition

Electronic design automation (EDA) is a spectacular success 
in the art of engineering. Over the last quarter of a cen-
tury, improved tools have raised designers’ productivity by 
a factor of more than a thousand. Without EDA, Moore’s 
law would remain a useless curiosity. Not a single billion-
transistor chip could be designed or debugged without these 
sophisticated tools—without EDA, we would have no lap-
tops, cell phones, video games, or any of the other electronic 
devices we take for granted.

Spurred by the ability to build bigger chips, EDA devel-
opers have largely kept pace, and these enormous chips can 
still be designed, debugged, and tested, even with decreasing 
time to market.

The story of EDA is much more complex than the pro-
gression of integrated circuit (IC) manufacturing, which is 
based on simple physical scaling of critical dimensions. EDA, 
on the other hand, evolves by a series of paradigm shifts. 
Every chapter in this book, all 49 of them, was just a gleam 
in some expert’s eye just a few decades ago. Then it became 
a research topic, then an academic tool, and then the focus 
of a start-up or two. Within a few years, it was supported 
by large commercial EDA vendors, and is now part of the 
conventional wisdom. Although users always complain that 
today’s tools are not quite adequate for today’s designs, the 
overall improvements in productivity have been remarkable. 
After all, in which other field do people complain of only 
a 21% compound annual growth in productivity, sustained 
over three decades, as did the International Technology 
Roadmap for Semiconductors in 1999?

And what is the future of EDA tools? As we look at the 
state of electronics and IC design in 2005–2006, we see that 
we may soon enter a major period of change in the disci-
pline. The classical scaling approach to ICs, spanning mul-
tiple orders of magnitude in the size of devices over the last 
40+ years, looks set to last only a few more generations or 
process nodes (though this has been argued many times in 
the past and has invariably been proved to be too pessimis-
tic a projection). Conventional transistors and wiring may 
well be replaced by new nano- and biologically based tech-
nologies that we are currently only beginning to experiment 
with. This profound change will surely have a considerable 
impact on the tools and methodologies used to design ICs. 
Should we be spending our efforts looking at Computer 
Aided Design (CAD) for these future technologies, or con-
tinue to improve the tools we currently use?

Upon further consideration, it is clear that the current 
EDA approaches have a lot of life left in them. With at 
least a decade remaining in the evolution of current design 

approaches, and hundreds of thousands or millions of 
designs left that must either craft new ICs or use program-
mable versions of them, it is far too soon to forget about 
today’s EDA approaches. And even if the technology changes 
to radically new forms and structures, many of today’s EDA 
concepts will be reused and built upon for design of tech-
nologies well beyond the current scope and thinking.

The field of EDA for ICs has grown well beyond the 
point where any single individual can master it all, or even 
be aware of the progress on all fronts. Therefore, there is a 
pressing need to create a snapshot of this extremely broad 
and diverse subject. Students need a way of learning about 
the many disciplines and topics involved in the design tools 
in widespread use today. As design grows multidisciplinary, 
electronics designers and EDA tool developers need to 
broaden their scope. The methods used in one subtopic may 
well have applicability to new topics as they arise. All of elec-
tronics design can utilize a comprehensive reference work 
in this field.

With this in mind, we invited many experts from across 
all the disciplines involved in EDA to contribute chap-
ters summarizing and giving a comprehensive overview 
of their particular topic or field. As might be appreciated, 
such chapters represent a snapshot of the state of the art in 
2004–2005. However, as surveys and overviews, they retain 
a lasting educational and reference value that will be useful 
to students and practitioners for many years to come.

With a large number of topics to cover, we decided to split 
the handbook into two books. Volume 1, Electronic Design 
Automation for IC System Design, Verification, and Testing, 
covers system-level design, micro-architectural design, and 
verification and test. Electronic Design Automation for IC 
Implementation, Circuit Design, and Process Technology is 
Volume 2 and covers the classical “RTL to GDSII” design 
flow, incorporating synthesis, placement, and routing, along 
with analog and mixed-signal design, physical verification, 
analysis and extraction, and technology CAD topics for IC 
design. These roughly correspond to the classical “front-
end/back-end” split in IC design, where the front end (or 
logical design) focuses on ensuring that the design does 
the right thing, assuming it can be implemented, and the 
back end (or physical design) concentrates on generating the 
detailed tooling required, while taking the logical function 
as given. Despite limitations, this split has persisted through 
the years—a complete and correct logical design, indepen-
dent of implementation, remains an excellent handoff point 
between the two major portions of an IC design flow. Since 
IC designers and EDA developers often concentrate on one 
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side of this logical/physical split, this seemed to be a good 
place to divide the book as well.

In particular this volume, Electronic Design Automation 
for IC System Design, Verification, and Testing, starts with 
a general introduction to the topic, and an overview of IC 
design and EDA. System-level design incorporates many 
aspects—application-specific tools and methods, special 
specification and modeling languages, integration concepts 
including the use of intellectual property (IP), and perfor-
mance evaluation methods; the modeling and choice of 
embedded processors and ways to model software running 
on those processors; and high-level synthesis approaches. 
ICs that start at the system level need to be refined into 
micro-architectural specifications, incorporating cycle-
accurate modeling, power estimation methods, and design 
planning. As designs are specified and refined, verifica-
tion plays a key role—and the handbook covers languages, 

simulation essentials, and special verification topics such 
as transaction-level modeling, assertion-based verification, 
and the use of hardware acceleration and emulation, as well 
as emerging formal methods. Finally, making IC designs 
testable and thus cost-effective to manufacture and package 
relies on a host of test methods and tools, both for digital 
and analog and mixed-signal designs.

This handbook with its two constituent books is a valu-
able learning and reference work for everyone involved and 
interested in learning about electronic design and its associ-
ated tools and methods. We hope that all readers will find it 
of interest and that it will become a well-thumbed resource.

Louis K. Scheffer

Luciano Lavagno

Grant E. Martin



xiii

Acknowledgments

Louis K. Scheffer acknowledges the love, support, encour-
agement, and help of his wife, Lynde, his daughter, Lucynda, 
and his son, Loukos. Without them, this project would not 
have been possible.

Luciano Lavagno thanks his wife, Paola, and his daughter, 
Alessandra Chiara, for making his life so wonderful.

Grant E. Martin acknowledges, as always, the love and 
support of his wife, Margaret Steele, and his two daughters, 
Jennifer and Fiona.

Igor L. Markov thanks his parents, Leonid and Nataly, for 
encouragement and support.



This page intentionally left blankThis page intentionally left blank



xv

Editors

Luciano Lavagno received his PhD in EECS from the 
University of California at Berkeley, California, in 1992 and 
from Politecnico di Torino, Torino, Italy, in 1993. He is a coau-
thor of two books on asynchronous circuit design, a book on 
hardware/software codesign of embedded systems, and more 
than 200 scientific papers. Between 1993 and 2000, he was 
the architect of the POLIS project, a cooperation between 
the University of California at Berkeley, Cadence Design 
Systems, Magneti Marelli, and Politecnico di Torino, which 
developed a complete hardware/software codesign environ-
ment for control-dominated embedded systems. Between 
2003 and 2014, he was one of the creators and architects of 
the Cadence CtoSilicon high-level synthesis system.

Since 2011, he is a full professor with Politecnico di 
Torino, Italy. He has been serving on the technical com-
mittees of several international conferences in his field 
(e.g., DAC, DATE, ICCAD, ICCD, ASYNC, CODES) and of 
various workshops and symposia. He has been the technical 
program chair of DAC, and the TPC and general chair of 
CODES. He has been an associate editor of IEEE TCAS and 
ACM TECS. He is a senior member of the IEEE.

His research interests include the synthesis of asynchro-
nous low-power circuits, the concurrent design of mixed 
hardware and software embedded systems, the high-level 
synthesis of digital circuits, the design and optimization of 
hardware components and protocols for wireless sensor net-
works, and design tools for WSNs.

Igor L. Markov is currently on leave from the University of 
Michigan, Ann Arbor, Michigan, where he taught for many 
years. He joined Google in 2014. He also teaches VLSI design 
at Stanford University. He researches computers that make 
computers, including algorithms and optimization tech-
niques for electronic design automation, secure hardware, 
and emerging technologies. He is an IEEE fellow and an 
ACM distinguished scientist. He has coauthored five books 
and has four U.S. patents and more than 200 refereed publi-
cations, some of which were honored by best-paper awards. 
Professor Markov is a recipient of the DAC Fellowship, the 
ACM SIGDA Outstanding New Faculty award, the NSF 
CAREER award, the IBM Partnership Award, the Microsoft 
A. Richard Newton Breakthrough Research Award, and the 
inaugural IEEE CEDA Early Career Award. During the 2011 
redesign of the ACM Computing Classification System, 
Professor Markov led the effort on the Hardware tree. Twelve 
doctoral dissertations were defended under his supervision; 
three of them received outstanding dissertation awards.

Grant E. Martin is a distinguished engineer at Cadence 
Design Systems, Inc. in San Jose, California. Before that, 
Grant worked for Burroughs in Scotland for 6 years; Nortel/
BNR in Canada for 10  years; Cadence Design Systems for 
9 years, eventually becoming a Cadence fellow in their Labs; 
and Tensilica for 9 years. He rejoined Cadence in 2013 when 
it acquired Tensilica, and has been there since, working in 
the Tensilica part of the Cadence IP group. He received his 
bachelor’s and master’s degrees in mathematics (combina-
torics and optimization) from the University of Waterloo, 
Canada, in 1977 and 1978.

Grant is a coauthor of Surviving the SOC Revolution: 
A Guide to Platform-Based Design, 1999, and System Design 
with SystemC, 2002, and a coeditor of the books Winning 
the SoC Revolution: Experiences in Real Design and UML 
for Real: Design of Embedded Real-Time Systems, June 2003, 
all published by Springer (originally by Kluwer). In 2004, he 
cowrote, with Vladimir Nemudrov, the first book on SoC 
design published in Russian by Technosphera, Moscow. 
In the middle of the last decade, he coedited Taxonomies 
for the Development and Verification of Digital Systems 
(Springer, 2005) and UML for SoC Design (Springer, 2005), 
and toward the end of the decade cowrote ESL Design and 
Verification: A Prescription for Electronic System-Level 
Methodology (Elsevier Morgan Kaufmann, 2007) and ESL 
Models and their Application: Electronic System Level 
Design in Practice (Springer, 2010).

He has also presented many papers, talks, and tutorials 
and participated in panels at a number of major confer-
ences. He cochaired the VSI Alliance Embedded Systems 
study group in the summer of 2001 and was cochair of 
the DAC Technical Programme Committee for Methods 
for 2005 and 2006. He is also a coeditor of the Springer 
Embedded System Series. His particular areas of interest 
include system-level design, IP-based design of system-
on-chip, platform-based design, DSP, baseband and image 
processing, and embedded software. He is a senior mem-
ber of the IEEE.

Louis K. Scheffer received his BS and MS from the 
California Institute of Technology, Pasadena, California, in 
1974 and 1975, and a PhD from Stanford University, Stanford, 
California, in 1984. He worked at Hewlett Packard from 
1975 to 1981 as a chip designer and CAD tool developer. In 
1981, he joined Valid Logic Systems, where he did hardware 
design, developed a schematic editor, and built an IC layout, 
routing, and verification system. In 1991, Valid merged with 



xvi    Editors

Cadence Design Systems, after which Dr.  Scheffer worked 
on place and route, floorplanning systems, and signal integ-
rity issues until 2008.

In 2008, Dr. Scheffer switched fields to neurobiology, 
studying the structure and function of the brain by using 
electron microscope images to reconstruct its circuits. As 
EDA is no longer his daily staple (though his research uses 

a number of algorithms derived from EDA), he is extremely 
grateful to Igor Markov for taking on this portion of these 
books. Lou is also interested in the search for extraterres-
trial intelligence (SETI), serves on the technical advisory 
board for the Allen Telescope Array at the SETI Institute, 
and is a coauthor of the book SETI-2020, in addition to sev-
eral technical articles in the field.



xvii

Contributors

Iuliana Bacivarov
Aviloq
Zurich, Switzerland

Felice Balarin
Cadence Design Systems
San Jose, California

Mike Bershteyn
Cadence Design Systems
San Jose, California

Shuvra Bhattacharyya
Department of Electrical and Computer Engineering
University of Maryland
College Park, Maryland

and

Department of Pervasive Computing
Tampere University of Technology
Tampere, Finland

Joseph T. Buck
Synopsys, Inc.
Mountain View, California

Raul Camposano
Nimbic
Mountain View, California

Naehyuck Chang
Department of Electrical Engineering
KAIST
Daejeon, South Korea

Anupam Chattopadhyay
School of Computer Engineering
Nanyang Technological University
Singapore, Singapore

Kwang-Ting (Tim) Cheng
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, California

Alain Clouard
STMicroelectronics
Grenoble, France

Marcello Coppola
STMicroelectronics
Grenoble, France

Jérôme Cornet
STMicroelectronics
Grenoble, France

Robert Damiano
Consultant
Hillsboro, Oregon

Robert P. Dick
Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan

Marco Di Natale
Department of Computer Engineering
Scuola Superiore S. Anna
Pisa, Italy

Nikil Dutt
Donald Bren School of Information and Computer 

Sciences
University of California, Irvine
Irvine, California

Stephen A. Edwards
Computer Science
Columbia University
New York, New York



xviii    Contributors

Limor Fix (retired)
Ithaca, New York

Harry Foster
Mentor Graphics Corporation
Wilsonville, Oregon

Miltos D. Grammatikakis
Department of Applied Informatics & Multimedia
Technological Educational Institute of Crete
Heraklion, Greece

Leopold Haller
Cadence Design Systems
San Jose, California

Norris Ip
Google
Mountain View, California

Ahmed Jerraya
Laboratoire d’électronique des technologies de 

l’information
Commissariat à l’Energie Atomique et aux Energies 

Alternatives
Grenoble, France

Bozena Kaminska
School of Engineering Science
Simon Fraser University
Burnaby, British Colombia, Canada

Yaron Kashai
Cadence Design Systems
San Jose, California

Brion Keller
Cadence Design Systems
San Jose, California

Bernd Koenemann
Independent
San Francisco Bay Area, California

Alex Kondratyev
Xilinx
San Jose, California

Luciano Lavagno
Department of Electronics and Telecommunications
Politecnico di Torino
Torino, Italy

Steve Leibson
Xilinx, Inc.
San Jose, California

Rainer Leupers
Institute for Communication Technologies and Embedded 

Systems
RWTH Aachen University
Aachen, Germany

Huawei Li
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, People’s Republic of China

James Chien-Mo Li
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, Republic of China

Enrico Macii
Department of Control and Computer Engineering
Politecnico di Torino
Torino, Italy

Laurent Maillet-Contoz
STMicroelectronics
Grenoble, France

Igor L. Markov
Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan

Erich Marschner
Mentor Graphics Corporation
Wilsonville, Oregon

Grant E. Martin
Cadence Design Systems
San Jose, California

Ken McMillan
Microsoft
Bellevue, Washington

Renu Mehra
Synopsys, Inc.
Mountain View, California

Prabhat Mishra
Department of Computer and Information Science 

and Engineering
University of Florida
Gainesville, Florida



Contributors   xix

Ralph H.J.M. Otten
Department of Electrical Engineering
Eindhoven University of Technology
Eindhoven, the Netherlands

Eric Paire
STMicroelectronics
Grenoble, France

Antonis Papagrigoriou
Department of Informatics Engineering
Technological Educational Institute of Crete
Heraklion, Greece

Antoine Perrin
STMicroelectronics
Grenoble, France

Polydoros Petrakis
Department of Applied Informatics and Multimedia
Technological Educational Institute of Crete
Heraklion, Greece

Massimo Poncino
Dipartimento di Automatica e Informatica
Politecnico di Torino
Torino, Italy

John Sanguinetti
Forte Design Systems, Inc.
San Jose, California

Louis K. Scheffer
Janelia Research Campus
Howard Hughes Medical Institute
Washington, DC

Frank Schirrmeister
Cadence Design Systems
San Jose, California

Jean-Philippe Strassen
STMicroelectronics
Grenoble, France

Haralampos-G. Stratigopoulos
Laboratoire d’Informatique de Paris 6
Centre National de la Recherche Scientique
Université Pierre et Marie Curie
Sorbonne Universités
Paris, France

Vivek Tiwari
Intel Corporation
Santa Clara, California

Ray Turner
Independent
San Jose, California

Li-C. Wang
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara, California

Yosinori Watanabe
Cadence Design Systems
San Jose, California

Marilyn Wolf
School of Electrical and Computer Engineering 
Georgia Institute of Technology
Atlanta, Georgia



This page intentionally left blankThis page intentionally left blank



I
Introduction



This page intentionally left blankThis page intentionally left blank



3

1Overview

Luciano Lavagno, Grant E. Martin, Louis K. Scheffer, and Igor L. Markov

CONTENTS

1.1 Introduction to Electronic Design Automation for Integrated Circuits Handbook, 
Second Edition 5

1.1.1 Brief History of Electronic Design Automation 5

1.1.2 Major Industry Conferences and Publications 8

1.1.3 Structure of the Book 9

1.2 System-Level Design 9

1.2.1  Tools and Methodologies for System-Level Design 9

1.2.2 System-Level Specification and Modeling Languages 10

1.2.3 SoC Block-Based Design and IP Assembly 10

1.2.4 Performance Evaluation Methods for Multiprocessor 
Systems-on-Chip Design 10

1.2.5 System-Level Power Management 10

1.2.6  Processor Modeling and Design Tools 10

1.2.7 Models and Tools for Complex Embedded Software and Systems 10

1.2.8  Using Performance Metrics to Select Microprocessor Cores for IC Designs 10

1.2.9 High-Level Synthesis 11



4    1.1  Introduction to Electronic Design Automation for Integrated Circuits Handbook, Second Edition

1.3 Microarchitecture Design 11

1.3.1  Back-Annotating System-Level Models 11

1.3.2  Microarchitectural Power Estimation and Optimization 11

1.3.3 Design Planning and Closure 11

1.4 Logic Verification 11

1.4.1 Design and Verification Languages 11

1.4.2 Digital Simulation 11

1.4.3  Leveraging Transactional-Level Models in a SoC Design Flow 11

1.4.4 Assertion-Based Verification 12

1.4.5  Hardware-Assisted Verification and Software Development 12

1.4.6 Formal Property Verification 12

1.5 Test 12

1.5.1 Design-for-Test 12

1.5.2 Automatic Test Pattern Generation 12

1.5.3 Analog and Mixed-Signal Test 12

1.6 RTL to GDSII or Synthesis, Place, and Route 13

1.6.1 Design Flows 13

1.6.2 Logic Synthesis 13

1.6.3  Power Analysis and Optimization from Circuit to Register-Transfer Levels 13

1.6.4 Equivalence Checking 13

1.6.5 Digital Layout: Placement 13

1.6.6 Static Timing Analysis 13

1.6.7  Structured Digital Design 13

1.6.8 Routing 14

1.6.9 Physical Design for 3D ICs 14

1.6.10 Gate Sizing 14

1.6.11 Clock Design and Synthesis 14

1.6.12  Exploring Challenges of Libraries for Electronic Design 14

1.6.13 Design Closure 14

1.6.14 Tools for Chip-Package Co-Design 14

1.6.15 Design Databases 15

1.6.16 FPGA Synthesis and Physical Design 15

1.7 Analog and Mixed-Signal Design 15

1.7.1  Simulation of Analog and RF Circuits and Systems 15

1.7.2  Simulation and Modeling for Analog and Mixed-Signal Integrated Circuits 15

1.7.3  Layout Tools for Analog ICs and Mixed-Signal SoCs: A Survey 15

1.8 Physical Verification 15

1.8.1 Design Rule Checking 15



Chapter 1 – Overview    5

1.1  INTRODUCTION TO ELECTRONIC DESIGN AUTOMATION 
FOR INTEGRATED CIRCUITS HANDBOOK, SECOND EDITION

Modern integrated circuits (ICs) are enormously complicated, sometimes containing billions of 
devices. The design of these ICs would not be humanly possible without software (SW) assistance 
at every stage of the process. The tools and methodologies used for this task are collectively called 
electronic design automation (EDA).

EDA tools span a very wide range, from logic-centric tools that implement and verify func-
tionality to physically-aware tools that create blueprints for manufacturing and verify their 
feasibility. EDA methodologies combine multiple tools into EDA design flows, invoking the 
most appropriate software packages based on how the design progresses through optimiza-
tions. Modern EDA methodologies can reuse existing design blocks, develop new ones, and 
integrate entire systems. They not only automate the work of circuit engineers, but also process 
large amounts of heterogeneous design data, invoke more accurate analyses and more powerful 
optimizations than what human designers are capable of.

1.1.1 BRIEF HISTORY OF ELECTRONIC DESIGN AUTOMATION

The need for design tools became clear soon after ICs were invented. Unlike a breadboard, an IC 
cannot be modified easily after fabrication; therefore, testing even a simple change takes weeks 
(for new masks and a new fabrication run) and requires considerable expense. The internal nodes 
of an IC are difficult to probe because they are physically small and may be covered by other 
layers of the IC. Internal nodes with high impedances are difficult to measure without dramati-
cally changing the performance. Therefore, circuit simulators became crucial to IC design almost 
as soon as ICs came into existence. These programs appeared in the 1960s and are covered in 
Chapter 17 of Electronic Design Automation for IC Implementation, Circuit Design, and Process 
Technology (hereafter referred to as Volume 2 of this Handbook).

As the circuits grew larger, clerical help was required in producing the masks. At first, the 
designer drew shapes with colored pencils but the coordinates were transferred to the computer 
by digitizing programs, written to magnetic tape (hence the handoff from design to fabrication 
is still called “tapeout”), and then transferred to the mask-making machines. In the 1960s and 
1970s, these early programs were enhanced to full-fledged layout editors. Analog designs in 
the modern era are still largely laid out manually, with some tool assistance, as Chapter 19 of 
Volume 2 will attest.
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As the circuits scaled up further, ensuring the correctness of logic designs became difficult, 
and logic simulation (Chapter 16) was introduced into the IC design flow. Testing completed 
chips proved difficult too, since unlike circuit boards, internal nodes could not be observed 
or controlled through a “bed of nails” fixture. Therefore, automatic test pattern generation 
(ATPG) programs were developed to generate test vectors that can be entered through acces-
sible pins. Other techniques that modified designs to make them more controllable, observable, 
and testable were not far behind. These techniques, covered in Chapters 21 and 22, were first 
available in the mid-1970s. Specialized needs were met by special testers and tools, discussed 
in Chapter 23.

As the number of design rules, number of layers, and chip size continued to increase, it 
became increasingly difficult to verify by hand that a layout met all the manufacturing rules 
and to estimate the parasitics of the circuit. Therefore, as demonstrated in Chapters 20 and 
25 of Volume 2 new software was developed, starting in the mid-1970s, to address this need. 
Increasing numbers of interconnect layers made the process more complex, and the original 
analytic approximations to R, C, and L values became inadequate, and new techniques for para-
sitic extraction were required to determine more accurate values, or at least calibrate the param-
eter extractors.

The next bottleneck was in determining the precise location of each polygon and drawing 
its detailed geometry. Placement and routing programs for standard-cell designs allowed the 
user to specify only the gate-level netlist—the computer would then decide on the location 
of the gates and route the wires connecting them. This greatly improved productivity (with a 
moderate loss of silicon efficiency), making IC design accessible to a wider group of electronics 
engineers. Chapters 5 and 8 of Volume 2 cover these programs, which became popular in the 
mid-1980s.

Even just the gate-level netlist soon proved unwieldy, and synthesis tools were developed to 
create such a netlist from a higher-level specification, usually expressed in a hardware descrip-
tion language (HDL). This step is called Logic Synthesis. It became available in the mid-1980s. In 
the late 2000s, the issues described in Chapter 2 of Volume 2 have become a major area of con-
cern and the main optimization criterion, respectively, for many designs, especially in the por-
table and battery-powered categories. Around this time, the large collections of disparate tools 
required to complete a single design became a serious problem. Electronic design automation 
Design Databases were introduced as common infrastructure for developing interoperable tools. 
In addition, the techniques described in Chapter 1 of Volume 2 grew more elaborate in how tools 
were linked together to support design methodologies, as well as use models for specific design 
groups, companies, and application areas.

In the late 1990s, as transistors continued to shrink, electromagnetic noise became a serious 
problem. Programs that analyzed power and ground networks, cross-talk, and substrate noise in 
systematic ways became commercially available. Chapters 23, 24, and 26 of Volume 2 cover these 
topics.

Gradually through the 1990s and early 2000s, chips and design processes became so com-
plex that yield optimization developed into a separate field called Design for Manufacturability 
in the Nanometer Era, otherwise known as “Design for Yield.” In this time frame, the smallest 
on-chip features dropped below the wavelength of the light used to manufacture them with 
optical lithography. Due to the diffraction limit, the masks could no longer faithfully copy what 
the designer intended. The creation of these more complex masks is covered under Chapter 21 
of Volume 2.

Developing the manufacturing process itself was also challenging. Process Simulation (Volume 
2, Chapter 27) tools were developed to explore sensitivities to process parameters. The output of 
these programs, such as doping profiles, was useful to process engineers but too detailed for 
electrical analysis. A newly developed suite of tools (see Volume 2, Chapter 28) predicted device 
performance from a physical description of devices. These models were particularly useful when 
developing a new process.

System-level design became useful very early in the history of design automation. However, 
due to the diversity of application-dependent issues that it must address, it is also the least stan-
dardized level of abstraction. As Chapter 10 points out, one of the first instruction set simulators 
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appeared soon after the first digital computers did. Yet, until the present day, system-level design 
has consisted mainly of a varying collection of tricks, techniques, and ad hoc modeling tools.

The logic simulation and synthesis processes introduced in the 1970s and 1980s, respec-
tively, are, as was discussed earlier, much more standardized than system-level design. The 
front-end IC design flow would have been much more difficult without standard HDLs. Out 
of a huge variety of HDLs introduced from the 1960s to the 1980s, Verilog and VHDL have 
become the major Design and Verification Languages (Chapter 15). Until the late 1990s, veri-
fication of digital designs seemed stuck at standard digital simulation—although at least since 
the 1980s, a variety of Hardware-Assisted Verification and Software Development (Chapter 
19) solutions have been available to designers. However, advances in verification languages 
and growing design complexity have motivated more advanced verification methods, and the 
last decade has seen considerable interest in Leveraging Transactional-Level Models in a SoC 
Design Flow (Chapter 17), Assertion-Based Verification (Chapter 18), and Formal Property 
Verification (Chapter 20). Equivalence Checking (Volume 2, Chapter 4) has been the formal 
technique most tightly integrated into design flows, since it allows designs to be compared 
before and after various optimizations and back-end-related modifications, such as scan 
insertion.

For many years, specific system-design domains have fostered their own application-specific 
Tools and Methodologies for System-Level Design (Chapter 3)—especially in the areas of algo-
rithm design from the late 1980s to this day. The late 1990s saw the emergence of and competi-
tion between a number of C/C++-based System-Level Specification and Modeling Languages 
(Chapter 4). With the newly available possibility to incorporate all major functional units of a 
design (processors, memories, digital and mixed-signal HW blocks, peripheral interfaces, and 
complex hierarchical buses) onto a single silicon substrate, the last 20 years have seen the rise of 
the system on chip (SoC). Thus, the area of SoC Block-Based Design and IP Assembly (Chapter 5) 
has grown, enabling greater complexity with advanced semiconductor processes through the 
reuse of design blocks. Along with the SoC approach, the last decade saw the emergence of 
Performance Evaluation Methods for MPSoC Designs (Chapter 6), development of embedded 
processors through specialized Processor Modeling and Design Tools (Chapter 8), and grad-
ual and still-forming links to Models and Tools for Complex Embedded Software and Systems 
(Chapter 9). The desire to improve HW design productivity has spawned considerable interest 
in High-Level Synthesis (Chapter 11) over the years. It is now experiencing a resurgence driven 
by C/C++/SystemC as opposed to the first-generation high-level synthesis (HLS) tools driven by 
HDLs in the mid-1990s.

After the system level of design, architects need to descend by one level of abstraction to the 
microarchitectural level. Here, a variety of tools allow one to look at the three main criteria: 
timing or delay (Microarchitectural and System-Level Power Estimation and Optimization), 
power (Chapter 13), and area and cost (Chapter 14). Microarchitects need to make trade-offs 
between the timing, power, and cost/area attributes of complex ICs at this level.

The last several years have seen a variety of complementary tools and methods added to con-
ventional design flows. Formal verification of design function is only possible if correct timing 
is guaranteed, and by limiting the amount of dynamic simulation required, especially at the 
postsynthesis and postlayout gate levels, Static Timing Analysis (Volume 2, Chapter 6) tools 
provide the assurance that timing constraints are met. Timing analysis also underlies timing 
optimization of circuits and the design of newer mechanisms for manufacturing and yield. 
Standard cell–based placement and routing are not appropriate for Structured Digital Design 
(Volume 2, Chapter 7) of elements such as memories and register files, and this observation 
motivates specialized tools. As design groups began to rely on foundries and application-spe-
cific (ASIC) vendors and as the IC design and manufacturing industry began to “deverticalize,” 
design libraries, covered in Chapter 12 of Volume 2, became a domain for special design flows 
and tools. Library vendors offered a variety of high-performance and low-power libraries for 
optimal design choices and allowed some portability of design across processes and foundries. 
Tools for Chip-Package Co-Design (Volume 2, Chapter 14) began to link more closely the design 
of IOs on chip, the packages they fit into, and the boards on which they would be placed. For 
implementation “fabrics,” such as field-programmable gate arrays (FPGAs), specialized FPGA 
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Synthesis and Physical Design Tools (Volume 2, Chapter 16) tools are necessary to ensure good 
results. A renewed emphasis on Design Closure (Volume 2, Chapter 13) allows a more holistic 
focus on the simultaneous optimization of design timing, power, cost, reliability, and yield 
in the design process. Another area of growing but specialized interest in the analog design 
domain is the use of new and higher-level modeling methods and languages, which are covered 
in Chapter 18 of Volume 2.

Since the first edition of this handbook appeared, several new areas of design have reached 
a significant level of maturity. Gate Sizing (Volume 2, Chapter 10) techniques choose the best 
widths for transistors in order to optimize performance, both in a continuous  setting (full-cus-
tom-like) and in a discrete setting (library based and FinFET based). Clock Design and Synthesis 
(Volume 2, Chapter 11)  techniques enable the distribution of reliable synchronization to huge 
numbers of sequential  elements. Finally, three-dimensional (3D) integrated circuits are attempt-
ing to extend the duration of Moore’s law, especially in the elusive domain of improving perfor-
mance, by allowing multiple ICs to be stacked on top of each other.

A much more detailed overview of the history of EDA can be found in Reference 1. A historical 
survey of many of the important papers from the International Conference on Computer-Aided 
Design (ICCAD) can be found in Reference 2.

1.1.2 MAJOR INDUSTRY CONFERENCES AND PUBLICATIONS

The EDA community formed in the early 1960s from tool developers working for major 
 electronics design companies such as IBM, AT&T Bell Labs, Burroughs, and Honeywell. It 
has long valued workshops, conferences, and symposia, in which practitioners, designers, and 
later academic researchers could exchange ideas and practically demonstrate the techniques. 
The Design Automation Conference (DAC) grew out of workshops, which started in the early 
1960s and, although held in a number of US locations, has in recent years tended to stay on the 
west coast of the United States or a bit inland. It is the largest combined EDA trade show and 
technical conference held annually anywhere in the world. In Europe, a number of country-
specific conferences held sporadically through the 1980s, and two competing ones, held in 
the early 1990s, led to the creation of the consolidated Design Automation and Test in Europe 
conference, which started in the mid-1990s and has grown consistently in strength ever since. 
Finally, the Asia-South Pacific DAC started in the mid-1990s to late 1990s and completes the 
trio of major EDA conferences spanning the most important electronics design communities 
in the world.

Large trade shows and technical conferences have been complemented by ICCAD, held in 
San Jose for over 20 years. It has provided a more technical conference setting for the latest algo-
rithmic advances, attracting several hundred attendees. Various domain areas of EDA knowl-
edge have sparked a number of other workshops, symposia, and smaller conferences over the last 
20 years, including the International Symposium on Physical Design, International Symposium 
on Quality in Electronic Design (ISQED), Forum on Design Languages in Europe (FDL), HDL and 
Design and Verification conferences (HDLCon, DVCon), High-level Design, Verification and Test 
(HLDVT), International Conference on Hardware–Software Codesign and System Synthesis 
(CODES+ISSS), and many other gatherings. Of course, the area of Test has its own long-standing 
International Test Conference (ITC); similarly, there are specialized conferences for FPGA design 
(e.g., Forum on Programmable Logic [FPL]) and a variety of conferences focusing on the most 
advanced IC designs such as the International Solid-State Circuits Conference and its European 
counterpart the European Solid-State Circuits Conference.

There are several technical societies with strong representation of design automation: one is 
the Institute of Electrical and Electronics Engineers (IEEE, pronounced as “eye-triple-ee”) and the 
other is the Association for Computing Machinery (ACM). The Electronic Design Automation 
Consortium (EDAC) is an industry group that cosponsors major conferences such as DAC with 
professional societies.

Various IEEE and ACM transactions publish research on algorithms and design  techniques—a 
more archival-oriented format than conference proceedings. Among these, the IEEE Transactions 
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on computer-aided design (CAD), the IEEE Transactions on VLSI systems, and the ACM 
Transactions on Design Automation of Electronic Systems are notable. A less-technical, broader-
interest magazine is IEEE Design and Test.

As might be expected, the EDA community has a strong online presence. All the conferences 
have Web pages describing locations, dates, manuscript submission and registration procedures, 
and often detailed descriptions of previous conferences. The journals offer online submission, ref-
ereeing, and publication. Online, the IEEE (http://ieee.org), ACM (http://acm.org), and CiteSeer 
(http://citeseer.ist.psu.edu) offer extensive digital libraries, which allow searches through titles, 
abstracts, and full texts. Both conference proceedings and journals are available. Most of the 
references found in this volume, at least those published after 1988, can be found in at least one 
of these libraries.

1.1.3 STRUCTURE OF THE BOOK

In the next chapter, “Integrated Circuit Design Process and Electronic Design Automation,”  
Damiano, Camposano, and Martin discuss the IC design process, its major stages and design flow, 
and how EDA tools fit into these processes and flows. It particularly covers interfaces between the 
major IC design stages based on higher-level abstractions, as well as detailed design and verifica-
tion information. Chapter 2 concludes the introductory section to the Handbook. Beyond that, 
Electronic Design Automation for Integrated Circuits Handbook, Second Edition, comprises sev-
eral sections and two volumes. Volume 1 (in your hands) is entitled Electronic Design Automation 
for IC System Design, Verification, and Testing). Volume 2 is Electronic Design Automation for 
IC Implementation, Circuit Design, and Process Technology. We will now discuss the division of 
these two books into sections.

EDA for digital design can be divided into system-level design, microarchitecture design, logic 
verification, test, synthesis place and route, and physical verification. System-level design is the 
task of determining which components (bought and built, HW and SW) should comprise a sys-
tem that can perform required functions. Microarchitecture design fills out the descriptions of 
each of the blocks and sets the main parameters for their implementation. Logic verification 
checks that the design does what is intended. Postfabrication test ensures that functional and 
nonfunctional chips can be distinguished reliably. It is common to insert dedicated circuitry to 
make test efficient. Synthesis, placement, and routing take the logical design description and map 
it into increasingly-detailed physical descriptions, until the design is in a form that can be built 
with a given process. Physical verification checks that such a design is manufacturable and will 
be reliable. This makes the design flow, or sequence of steps that the users follow to finish their 
design, a crucial part of any EDA methodology.

In addition to fully digital chips, analog and mixed-signal chips require their own specialized 
tool sets.

All these tools must scale to large designs and do so in a reasonable amount of time. In general, 
such scaling cannot be accomplished without behavioral models, that is, simplified descriptions 
of the behavior of various chip elements. Creating these models is the province of Technology 
CAD (TCAD), which in general treats relatively small problem instances in great physical detail, 
starting from very basic physics and building the more efficient models needed by the tools that 
must handle higher data volumes.

The division of EDA into these sections is somewhat arbitrary. In the following, we give a brief 
description of each book chapter.

1.2 SYSTEM-LEVEL DESIGN

1.2.1  TOOLS AND METHODOLOGIES FOR SYSTEM-LEVEL DESIGN

Chapter 3 by Bhattacharyya and Wolf covers system-level design approaches and associated tools 
such as Ptolemy and the MathWorks tools, and illustrates them for video applications.

http://ieee.org
http://acm.org
http://citeseer.ist.psu.edu
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1.2.2 SYSTEM-LEVEL SPECIFICATION AND MODELING LANGUAGES

Chapter 4 by Edwards and Buck discusses major approaches to specifying and modeling sys-
tems, as well as the languages and tools in this domain. It covers heterogeneous specifications, 
models of computation and linking multidomain models, requirements on languages, and spe-
cialized tools and flows in this area.

1.2.3 SoC BLOCK-BASED DESIGN AND IP ASSEMBLY

Chapter 5 by Kashai approaches system design with particular emphasis on SoCs via IP-based 
reuse and block-based design. Methods of assembly and compositional design of systems are 
covered. Issues of IP reuse as they are reflected in system-level design tools are also discussed.

1.2.4  PERFORMANCE EVALUATION METHODS FOR MULTIPROCESSOR 
SYSTEMS-ON-CHIP DESIGN

Chapter 6 by Jerraya and Bacivarov surveys the broad field of performance evaluation and sets 
it in the context of  multiprocessor system on chip (MPSoC). Techniques for various types of 
blocks—HW, CPU, SW, and interconnect—are included. A taxonomy of performance evaluation 
approaches is used to assess various tools and methodologies.

1.2.5 SYSTEM-LEVEL POWER MANAGEMENT

Chapter 7 by Chang, Macii, Poncino, and Tiwari discusses dynamic power management 
approaches, aimed at selectively stopping or slowing down resources, whenever possible while 
providing required levels of system performance. The techniques can be applied to reduce both 
power consumption and energy consumption, which improves battery life. They are generally 
driven by the SW layer, since it has the most precise picture about both the required quality of 
service and the global state of the system.

1.2.6  PROCESSOR MODELING AND DESIGN TOOLS

Chapter 8 by Chattopadhyay, Dutt, Leupers, and Mishra covers state-of-the-art specification lan-
guages, tools, and methodologies for processor development used in academia and industry. It 
includes specialized architecture description languages and the tools that use them, with a num-
ber of examples.

1.2.7 MODELS AND TOOLS FOR COMPLEX EMBEDDED SOFTWARE AND SYSTEMS

Chapter 9 by Di Natale covers models and tools for embedded SW, including the relevant models 
of computation. Practical approaches with languages such as Simulink® and the Unified Modeling 
Language are introduced. Embeddings into design flows are discussed.

1.2.8  USING PERFORMANCE METRICS TO SELECT MICROPROCESSOR CORES FOR IC DESIGNS

Chapter 10 by Leibson discusses the use of standard benchmarks and instruction set simula-
tors to evaluate processor cores. These might be useful in nonembedded applications, but are 
especially relevant to the design of embedded SoC devices where the processor cores may not 
yet be available in HW, or be based on user-specified processor configurations and extensions. 
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Benchmarks drawn from relevant application domains have become essential to core evaluation, 
and their advantages greatly exceed those of the general-purpose benchmarks used in the past.

1.2.9 HIGH-LEVEL SYNTHESIS

Chapter 11 by Balarin, Kondratyev, and Watanabe describes the main steps taken by a HLS tool 
to synthesize a C/C++/SystemC model into register transfer level (RTL). Both algorithmic tech-
niques and user-level decisions are surveyed.

1.3 MICROARCHITECTURE DESIGN

1.3.1  BACK-ANNOTATING SYSTEM-LEVEL MODELS

Chapter 12 by Grammatikakis, Papagrigoriou, Petrakis, and  Coppola discusses how to use sys-
tem-level modeling approaches at the cycle-accurate  microarchitectural level to perform final 
design architecture iterations and ensure conformance to timing and performance specifications.

1.3.2  MICROARCHITECTURAL POWER ESTIMATION AND OPTIMIZATION

Chapter 13 by Macii,  Mehra, Poncino, and Dick discusses power estimation at the microarchi-
tectural level in terms of data paths, memories, and interconnect. Ad hoc solutions for optimizing 
both specific components and entire designs are surveyed, with a particular emphasis on SoCs 
for mobile applications.

1.3.3 DESIGN PLANNING AND CLOSURE

Chapter 14 by Otten discusses the topics of physical floor planning and its evolution over the 
years, from dealing with rectangular blocks in slicing structures to more general mathematical 
techniques for optimizing physical layout while meeting a variety of criteria, especially timing 
and other constraints.

1.4 LOGIC VERIFICATION

1.4.1 DESIGN AND VERIFICATION LANGUAGES

Chapter 15 by Edwards discusses the two main HDLs in use—VHDL and Verilog—and how they 
meet the requirements for design and verification flows. More recent evolutions in languages, 
such as SystemC, SystemVerilog, and verification languages (i.e., OpenVera, e, and PSL), are also 
described.

1.4.2 DIGITAL SIMULATION

Chapter16 by Sanguinetti discusses logic simulation algorithms and tools, as these are still the 
primary tools used to verify the logical or functional correctness of a design.

1.4.3  LEVERAGING TRANSACTIONAL-LEVEL MODELS IN A SoC DESIGN FLOW

In Chapter 17, Maillet-Contoz, Cornet, Clouard, Paire, Perrin, and Strassen focus on an industry 
design flow at a major IC design company to illustrate the construction, deployment, and use 
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of transactional-level models to simulate systems at a higher level of abstraction, with much 
greater performance than at RTL, and to verify functional correctness and validate system 
performance characteristics.

1.4.4 ASSERTION-BASED VERIFICATION

Chapter 18 by Foster and  Marschner introduces the topic of assertion-based verification, which 
is useful for capturing design intent and reusing it in both dynamic and static verification meth-
ods. Assertion libraries such as OVL and languages including PSL and SystemVerilog assertions 
are used for illustrating the concepts.

1.4.5  HARDWARE-ASSISTED VERIFICATION AND SOFTWARE DEVELOPMENT

Chapter 19 by Schirrmeister, Bershteyn, and Turner discusses HW-based systems including 
FPGA, processor-based accelerators/ emulators, and FPGA prototypes for accelerated verifica-
tion. It compares the characteristics of each type of system and typical use models.

1.4.6 FORMAL PROPERTY VERIFICATION

In Chapter 20, Fix, McMillan, Ip, and Haller discuss the concepts and theory behind formal prop-
erty checking, including an overview of property specification and a discussion of formal verifica-
tion technologies and engines.

1.5 TEST

1.5.1 DESIGN-FOR-TEST

Chapter 21 by Koenemann and Keller discusses the wide variety of methods, techniques, and 
tools available to solve design-for-test (DFT) problems. This is a sizable area with an enormous 
variety of techniques, many of which are implemented in tools that dovetail with the capabilities 
of the physical test equipment. This chapter surveys the specialized techniques required for effec-
tive DFT with special blocks such as memories, as well as general logic cores.

1.5.2 AUTOMATIC TEST PATTERN GENERATION

Chapter 22 by Cheng, Wang, Li, and Li starts with the fundamentals of fault modeling and com-
binational ATPG concepts. It moves on to gate-level sequential ATPG and discusses satisfiability 
(SAT) methods for circuits. Moving on beyond traditional fault modeling, it covers ATPG for 
cross-talk faults, power supply noise, and applications beyond manufacturing test.

1.5.3 ANALOG AND MIXED-SIGNAL TEST

In Chapter 23, Stratigopoulos and Kaminska first overview the concepts behind analog test-
ing, which include many characteristics of circuits that must be examined. The nature of analog 
faults is discussed and a variety of analog test equipment and measurement techniques sur-
veyed. The concepts behind analog built-in self-test are reviewed and compared with the digital 
test. This chapter concludes Volume 1 of Electronic Design Automation for Integrated Circuits 
Handbook, Second Edition.
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1.6 RTL TO GDSII OR SYNTHESIS, PLACE, AND ROUTE

1.6.1 DESIGN FLOWS

The second volume, Electronic Design Automation for IC Implementation, Circuit Design, and 
Process Technology begins with Chapter 1 by Chinnery, Stok, Hathaway, and Keutzer. The RTL 
to GDSII flow has evolved considerably over the years, from point tools bundled loosely together 
to a more integrated set of tools for design closure. This chapter addresses the design-flow chal-
lenges based on the rising interconnect delays and new challenges to achieve closure.

1.6.2 LOGIC SYNTHESIS

Chapter 2 by Khatri, Shenoy, Giomi, and Khouja provides an overview and survey of logic syn-
thesis, which has, since the early 1980s, grown to be the vital center of the RTL to GDSII design 
flow for digital design.

1.6.3  POWER ANALYSIS AND OPTIMIZATION FROM CIRCUIT TO REGISTER-TRANSFER LEVELS

Power has become one of the major challenges in modern IC design. Chapter 3 by Monteiro, 
Patel, and Tiwari provides an overview of the most significant CAD techniques for low power, at 
several levels of abstraction.

1.6.4 EQUIVALENCE CHECKING

Equivalence checking can formally verify whether two design specifications are functionally 
equivalent. Chapter 4 by Kuehlmann, Somenzi, Hsu, and Bustan defines the equivalence-checking 
problem, discusses the foundation for the technology, and then discusses the algorithms for combi-
national and sequential equivalence checking.

1.6.5 DIGITAL LAYOUT: PLACEMENT

Placement is one of the fundamental problems in automating digital IC layout. Chapter 5 by 
Kahng and Reda reviews the history of placement algorithms, the criteria used to evaluate 
quality of results, many of the detailed algorithms and approaches, and recent advances in 
the field.

1.6.6 STATIC TIMING ANALYSIS

Chapter 6 by Cortadella and Sapatnekar overviews the most prominent techniques for static 
timing analysis. It then outlines issues relating to statistical timing analysis, which is becoming 
increasingly important to handle process variations in advanced IC technologies.

1.6.7  STRUCTURED DIGITAL DESIGN

In Chapter 7, Cho, Choudhury, Puri, Ren, Xiang, Nam, Mo, and Brayton cover the tech-
niques for designing regular structures, including data paths, programmable logic arrays, and 
 memories. It extends the discussion to include regular chip architectures such as gate arrays 
and structured ASICs.
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1.6.8 ROUTING

Routing continues from automatic placement as a key step in IC design. Routing creates 
the wire traces necessary to connect all the placed components while obeying the process 
design rules. Chapter 8 by Téllez, Hu, and Wei discusses various types of routers and the key 
algorithms.

1.6.9 PHYSICAL DESIGN FOR 3D ICs

Chapter 9 by Lim illustrates, with concrete examples, how partitioning the blocks of an IC into 
multiple chips, connected by through-silicon vias (TSVs), can significantly improve wire length 
and thus both performance and power. This chapter explores trade-offs between different design 
options for TSV-based 3D IC integration. It also summarizes several research results in this 
emerging area.

1.6.10 GATE SIZING

Determining the best width for the transistors is essential to optimize the performance of an 
IC. This can be done both in a continuous setting, oriented toward full-custom or liquid library 
approaches, and in a discrete setting, for library-based layout and FinFET circuits. In Chapter 10, 
Held and Hu emphasize that sizing individual transistors is not very relevant today; the entire 
gates must be sized.

1.6.11 CLOCK DESIGN AND SYNTHESIS

Chapter 11 by Guthaus discusses the task of distributing one or more clock signals throughout an 
entire chip, while minimizing power, variation, skew, jitter, and resource usage.

1.6.12  EXPLORING CHALLENGES OF LIBRARIES FOR ELECTRONIC DESIGN

Chapter 12 by Hogan, Becker, and Carney discusses the factors that are most important and 
relevant for the design of libraries and IP, including standard cell libraries; cores, both hard and 
soft; and the design and user requirements for the same. It also places these factors in the overall 
design chain context.

1.6.13 DESIGN CLOSURE

Chapter 13 by Osler, Cohn, and Chinnery describes the common constraints in VLSI design 
and how they are enforced through the steps of a design flow that emphasizes design closure. 
A  reference flow for ASICs is used and illustrated. Finally, issues such as power-limited design 
and variability are discussed.

1.6.14 TOOLS FOR CHIP-PACKAGE CO-DESIGN

Chip-package co-design refers to design scenarios, in which the design of the chip impacts the 
package design or vice versa. In Chapter 14,  Franzon and Swaminathan discuss the drivers for 
new tools; the major issues, including mixed-signal needs; and the major design and modeling 
approaches.
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1.6.15 DESIGN DATABASES

The design database is at the core of any EDA system. While it is possible to build a mediocre 
EDA tool or flow on any database, efficient and versatile EDA tools require more than a primitive 
database. Chapter 15 by Bales describes the place of a design database in an integrated design 
system. It discusses  databases used in the past, those currently in use as well as emerging future 
databases.

1.6.16 FPGA SYNTHESIS AND PHYSICAL DESIGN

Programmable logic devices, and FPGAs, have evolved from implementing small glue-logic 
designs to large complete systems. The increased use of such devices—they now are the major-
ity of design starts—has resulted in significant research in CAD algorithms and tools targeting 
programmable logic. Chapter 16 by Hutton, Betz, and Anderson gives an overview of relevant 
architectures, CAD flows, and research.

1.7 ANALOG AND MIXED-SIGNAL DESIGN

1.7.1  SIMULATION OF ANALOG AND RF CIRCUITS AND SYSTEMS

Circuit simulation has always been a crucial component of analog system design and is becom-
ing even more so today. In Chapter 17, Roychowdhury and Mantooth provide a quick tour of 
modern circuit simulation. This includes circuit equations, device models, circuit analysis, more 
advanced analysis techniques motivated by RF circuits, new advances in circuit simulation using 
multitime techniques, and statistical noise analysis.

1.7.2  SIMULATION AND MODELING FOR ANALOG AND MIXED-SIGNAL INTEGRATED CIRCUITS

Chapter 18 by Gielen and Phillips provides an overview of the modeling and simulation methods 
that are needed to design and embed analog and RF blocks in mixed-signal integrated systems 
(ASICs, SoCs, and SiPs). The role of behavioral models and mixed-signal methods involving mod-
els at multiple hierarchical levels is covered. The generation of performance models for analog 
circuit synthesis is also discussed.

1.7.3  LAYOUT TOOLS FOR ANALOG ICs AND MIXED-SIGNAL SoCs: A SURVEY

Layout for analog circuits has historically been a time-consuming, manual, trial-and-error task. 
In Chapter 19, Rutenbar, Cohn, Lin, and Baskaya cover the basic problems faced by those who 
need to create analog and mixed-signal layout and survey the evolution of design tools and 
 geometric/electrical optimization algorithms that have been directed at these problems.

1.8 PHYSICAL VERIFICATION

1.8.1 DESIGN RULE CHECKING

After the physical mask layout is created for a circuit for a specific design process, the layout is 
measured by a set of geometric constraints or rules for that process. The main objective of design 
rule checking (DRC) is to achieve high overall yield and reliability. Chapter 20 by Todd, Grodd, 
Tomblin, Fetty, and Liddell gives an overview of DRC concepts and then discusses the basic veri-
fication algorithms and approaches.
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1.8.2  RESOLUTION ENHANCEMENT TECHNIQUES AND MASK DATA PREPARATION

With more advanced IC fabrication processes, new physical effects, negligible in the past, are 
being found to have a strong impact on the formation of features on the actual silicon wafer. It 
is now essential to transform the final layout via new tools in order to allow the manufacturing 
equipment to deliver the new devices with sufficient yield and reliability to be cost- effective. In 
Chapter 21, Schellenberg discusses the compensation schemes and mask data conversion tech-
nologies now available to accomplish the new design for manufacturability (DFM) goals.

1.8.3  DESIGN FOR MANUFACTURABILITY IN THE NANOMETER ERA

Achieving high-yielding designs in state-of-the-art IC process technology has become an 
extremely challenging task. DFM includes many techniques to modify the design of ICs in order 
to improve functional and parametric yield and reliability. Chapter 22 by Dragone, Guardiani, 
and Strojwas discusses yield loss mechanisms and fundamental yield modeling approaches. It 
then discusses techniques for functional yield maximization and parametric yield optimization. 
Finally, DFM-aware design flows and the outlook for future DFM techniques are discussed.

1.8.4  DESIGN AND ANALYSIS OF POWER SUPPLY NETWORKS

Chapter 23 by Panda, Pant, Blaauw, and Chaudhry covers design methods, algorithms, tools for 
designing on-chip power grids, and networks. It includes the analysis and optimization of effects 
such as voltage drop and electromigration.

1.8.5 NOISE IN DIGITAL ICs

On-chip noise issues and their impact on signal integrity and reliability are becoming a major 
source of problems for deep submicron ICs. Thus, the methods and tools for analyzing and  coping 
with them, which are discussed by Keller and Kariat in Chapter 24, gained in recent years.

1.8.6 LAYOUT EXTRACTION

Layout extraction is the translation of the topological layout back into the electrical circuit it 
is intended to represent. In Chapter 25, Kao, Lo, Basel, Singh, Spink, and Scheffer discuss the 
distinction between designed and parasitic devices and also the three major parts of extraction: 
designed device extraction, interconnect extraction, and parasitic device extraction.

1.8.7  MIXED-SIGNAL NOISE COUPLING IN SYSTEM-ON-CHIP DESIGN: 
MODELING, ANALYSIS, AND VALIDATION

Chapter 26 by Verghese and Nagata describes the impact of noise coupling in mixed-signal ICs 
and reviews techniques to model, analyze, and validate it. Different modeling approaches and 
computer simulation  methods are presented, along with measurement techniques. Finally, the 
chapter reviews the application of substrate noise analysis to placement and power distribution 
synthesis.
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1.9 TECHNOLOGY COMPUTER-AIDED DESIGN

1.9.1 PROCESS SIMULATION

Process simulation is the modeling of the fabrication of semiconductor devices such as transis-
tors. The ultimate goal is an accurate prediction of the active dopant distribution, the stress dis-
tribution, and the device geometry. In Chapter 27, Johnson discusses the history, requirements, 
and development of process simulators.

1.9.2  DEVICE MODELING: FROM PHYSICS TO ELECTRICAL PARAMETER EXTRACTION

Technology files and design rules are essential building blocks of the IC design process. 
Development of these files and rules involves an iterative process that crosses the boundaries 
of technology and device development, product design, and quality assurance. Chapter 28 by 
Dutton, Choi, and Kan starts with the physical description of IC devices and describes the evolu-
tion of TCAD tools.

1.9.3 HIGH-ACCURACY PARASITIC EXTRACTION

Chapter 29 by Kamon and Iverson describes high-accuracy parasitic extraction methods using 
fast integral equation and random walk-based approaches.
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2.1 INTRODUCTION

In this chapter, we describe the design process, its major stages, and how electronic design auto-
mation (EDA) tools fit into these processes. We also examine the interfaces between the major 
integrated circuit (IC) design stages as well as the kind of information—both abstractions upward 
and detailed design and verification information downward—that must flow between stages. We 
assume complementary metal oxide semiconductor (CMOS) is the basis for all technologies.

We will illustrate with a continuing example. A company wishes to create a new system on chip 
(SoC). The company assembles a product team, consisting of a project director, system architects, 
system verification engineers, circuit designers (both digital and analog), circuit verification engi-
neers, layout engineers, and manufacturing process engineers. The product team determines the 
target technology and geometry as well as the fabrication facility or foundry. The system archi-
tects initially describe the system-level design (SLD) through a transaction-level specification 
in a language such as C++, SystemC, or Esterel. The system verification engineers determine 
the functional correctness of the SLD through simulation. The engineers validate the transac-
tion processing through simulation vectors. They monitor the results for errors. Eventually, these 
same engineers would simulate the process with an identical set of vectors through the system 
implementation to see if the specification and the implementation match. There is some ongoing 
research to check this equivalence formally.

The product team partitions the SLD into functional units and hands these units to the circuit 
design teams. The circuit designers describe the functional intent through a high-level design lan-
guage (HDL). The most popular HDLs are Verilog and VHDL. SystemVerilog is a recent language, 
adopted by the IEEE, which contains design, testbench, and assertion syntax. These languages 
allow the circuit designers to express the behavior of their design using high-level functions such 
as addition and multiplication. These languages allow expression of the logic at the register trans-
fer level (RTL), in the sense that an assignment of registers expresses functionality. For the analog 
and analog mixed signal (AMS) parts of the design, there are also HDLs such as Verilog-AMS 
and VHDL-AMS. Most commonly, circuit designers use Simulation Program with IC Emphasis 
(SPICE) transistor models and netlists to describe analog components. However, high-level lan-
guages provide an easier interface between analog and digital segments of the design, and they allow 
writing higher-level behavior of the analog parts. Although the high-level approaches are useful as 
simulation model interfaces, there remains no clear method of synthesizing transistors from them. 
Therefore, transistor circuit designers usually depend on schematic capture tools to enter their data.

The design team must consider functional correctness, implementation closure (reaching the 
prioritized goals of the design), design cost, and manufacturability of a design. The product team 
takes into account risks and time to market as well as choosing the methodology. Anticipated 
sales volume can reflect directly on methodology; for instance, whether it is better to create a 
full-custom design, semicustom design or use standard cells, gate arrays, or a field programmable 
gate array (FPGA). Higher volume mitigates the higher cost of full-custom or semicustom design, 
while time to market might suggest using an FPGA methodology. If implementation closure for 
power and speed is tantamount, then an FPGA methodology might be a poor choice. Semicustom 
designs, depending on the required volume, can range from microprocessor central proces-
sor units (CPUs), digital signal processors (DSPs), application-specific standard parts (ASSP), 
or application-specific ICs (ASIC). In addition, for semicustom designs, the company needs to 
decide whether to allow the foundry to implement the layout or whether the design team should 
use customer-owned tooling (COT). We will assume that our product team chooses semicustom 
COT designs. We will mention FPGA and full-custom methodologies only in comparison.

In order to reduce cost, the product team may decide that the design warrants reuse of intel-
lectual property (IP). IP reuse directly addresses the increasing complexity of design as opposed 
to feature geometry size. Reuse also focuses on attaining the goals of functional correctness. 
One analysis estimates that it takes 2000 engineering years and 1 trillion simulation vectors to 
verify 25 million lines of RTL code. Therefore, verified IP reuse reduces cost and time to market. 
Moreover, IP blocks themselves have become larger and more complex. For example, the 1176JZ-S 
ARM core is 24 times larger than the older 7TDI-S ARM core. The USB 2.0 Host is 23 times larger 
than the Universal Serial Bus (USB) 1.1 Device. PCI Express is 7.5 times larger than PCI v 1.1.
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Another important trend is that SoC-embedded memories are an increasingly large part of the 
SoC real estate. While in 1999 20% of a 180 nm SoC was embedded memory, roadmaps project 
that by 2005 embedded memory will consume 71% of a 90 nm SoC. These same roadmaps indi-
cate that by 2014 embedded memory will grow to 94% of a 35 nm SoC.

SoCs typically contain one or more CPUs or DSPs (or both), a cache, a large amount of 
embedded memory, and many off-the-shelf components such as USB, universal asynchronous 
receiver–transmitter (UART), Serial Advanced Technology Attachment (SATA), and Ethernet (cf. 
Figure 2.1). The differentiating part of the SoC contains the new designed circuits in the product.

The traditional semicustom IC design flow typically comprises up to 50 steps. On the digi-
tal side of design, the main steps are functional verification, logical synthesis, design planning, 
physical implementation that includes clock-tree synthesis, placement and routing, extraction, 
design rule checking (DRC) and layout versus schematic (LVS) checking, static timing analysis, 
insertion of test structures, and test pattern generation. For analog designs, the major steps are 
as follows: schematic entry, SPICE simulation, layout, layout extraction, DRC, and LVS checking. 
SPICE simulations can include DC, AC, and transient analysis, as well as noise, sensitivity, and 
distortion analysis. Analysis and implementation of corrective procedures for the manufacturing 
process, such as mask synthesis and yield analysis, are critical at smaller geometries. In order to 
verify an SoC system where many components reuse IP, the IP provider may supply verification 
IPs, monitors, and checkers needed by system verification.

There are three basic areas where EDA tools assist the design team. Given a design, the first is 
verification of functional correctness. The second deals with implementation of the design. The 
last area deals with analysis and corrective procedures so that the design meets all manufactur-
ability specifications. Verification, layout, and process engineers on the circuit design team essen-
tially own these three steps.

2.2 VERIFICATION

The design team attempts to verify that the design under test (DUT) functions correctly. 
For RTL designs, verification engineers rely heavily on simulation at the cycle level. After 
layout, EDA tools, such as equivalence checking, can determine whether the implementation 
matches the RTL functionality. After layout, the design team must check that there are no 
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problem delay paths. A static timing analysis tool can facilitate this. The team also needs to 
examine the circuit for noise and delay due to parasitics. In addition, the design must obey 
physical rules for wire spacing, width, and enclosure as well as various electrical rules. Finally, 
the design team needs to simulate and check the average and transient power. For transistor 
circuits, the design team uses SPICE circuit simulation or fast SPICE to determine correct 
functionality, noise, and power.

We first look at digital verification (cf. Figure 2.2). RTL simulation verifies that the DUT behav-
ior meets the design intent. The verification engineers apply a set of vectors, called a testbench, to 
the design through an event-driven simulator, and compare the results to a set of expected out-
puts. The quality of the verification depends on the quality of the testbench. Many design teams 
create their testbench by supplying a list of the vectors, a technique called directed test. For a 
directed test to be effective, the design team must know beforehand what vectors might uncover 
bugs. This is extremely difficult since complex sequences of vectors are necessary to find some 
corner case errors. Therefore, many verification engineers create testbenches that supply stimulus 
through random vectors with biased inputs, such as the clock or reset signal. The biasing increases 
or decreases the probability of a signal going high or low. While a purely random testbench is easy 
to create, it suffers from the fact that vectors may be illegal as stimulus. For better precision and 
wider coverage, the verification engineer may choose to write a constrained random testbench. 
Here, the design team supplies random input vectors that obey a set of constraints.

The verification engineer checks that the simulated behavior does not have any discrepancies 
from the expected behavior. If the engineer discovers a discrepancy, then the circuit designer 
modifies the HDL and the verification engineer resimulates the DUT. Since exhaustive simula-
tion is usually impossible, the design team needs a metric to determine quality. One such metric 
is coverage. Coverage analysis considers how well the test cases stimulate the design. The design 
team might measure coverage in terms of number of lines of RTL code exercised, whether the test 
cases take each leg of each decision, or how many “reachable” states are encountered.

Another important technique is for the circuit designer to add assertions within the HDL. 
These assertions monitor whether the internal behavior of the circuit is acting properly. Some 
designers embed tens of thousands of assertions into their HDL. Languages like SystemVerilog 
have extensive assertion syntax based on linear temporal logic. Even for languages without the 
benefit of assertion syntax, tool providers supply an application program interface (API), which 
allows the design team to build and attach its own monitors.

The verification engineer needs to run a large amount of simulation, which would be imprac-
tical if not for compute farms. Here, the company may deploy thousands of machines, 24/7, to 
enable the designer to get billions of cycles a day; sometimes the machines may run as many as 
200 billion cycles a day. Best design practices typically create a highly productive computing envi-
ronment. One way to increase throughput is to run a cycle simulation by taking a subset of the 
chosen verification language that both is synchronous and has a set of registers with clear clock 
cycles. This type of simulation assumes a uniformity of events and typically uses a time wheel 
with gates scheduled in a breadth-first manner.
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Another way to tackle the large number of simulation vectors during system verification is 
through emulation or hardware acceleration. These techniques use specially configured hard-
ware to run the simulation. In the case of hardware acceleration, the company can purchase 
special-purpose hardware, while in the case of emulation the verification engineer uses specially 
configured FPGA technology. In both cases, the system verification engineer must synthesize the 
design and testbench down to a gate-level model. Tools are available to synthesize and schedule 
gates for the hardware accelerator. In the case of an FPGA emulation system, tools can map and 
partition the gates for the hardware.

Of course, since simulation uses vectors, it is usually a less than exhaustive approach. The veri-
fication engineer can make the process complete by using assertions and formal property check-
ing. Here, the engineer tries to prove that an assertion is true or to produce a counterexample. The 
trade-off is simple. Simulation is fast but by definition incomplete, while formal property checking 
is complete but may be very slow. Usually, the verification engineer runs constrained random simu-
lation to unearth errors early in the verification process. The engineer applies property checking to 
corner case situations that can be extremely hard for the testbench to find. The combination of sim-
ulation and formal property checking is very powerful. The two can even be intermixed, by allowing 
simulation to proceed for a set number of cycles and then exhaustively looking for an error for a 
different number of cycles. In a recent design, by using this hybrid approach, a verification engineer 
found an error 21,000 clock cycles from an initial state. Typically, formal verification works well on 
specific functional units of the design. Between the units, the system engineers use an “assume/
guarantee” methodology to establish block pre- and postconditions for system correctness.

During the implementation flow, the verification engineer applies equivalence checking to 
determine whether the DUT preserves functional behavior. Note that functional behavior is dif-
ferent from functional intent. The verification engineer needs RTL verification to compare func-
tional behavior with functional intent. Equivalence checking is usually very fast and is a formal 
verification technology, which is exhaustive in its analysis. Formal methods do not use vectors.

For transistor-level circuits, such as analog, memory, and radio frequency, the event-driven 
verification techniques suggested earlier do not suffice (cf. Figure 2.3). The design team needs to 
compute signals accurately through SPICE circuit simulation. SPICE simulation is very time con-
suming because the algorithm solves a system of differential equations. One way to get around 
this cost is to select only a subset of transistors, perform an extraction of the parasitics, and then 
simulate the subset with SPICE. This reduction gives very accurate results for the subset, but even 
so, the throughput is still rather low. Another approach is to perform a fast SPICE simulation. 
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This last SPICE approach trades some accuracy for a significant increase in throughput. The 
design team can also perform design space exploration by simulating various constraint values 
on key goals such as gain or phase margin to find relatively optimal design parameters. The team 
analyzes the multiple-circuit solutions and considers the cost trade-offs. A new generation of 
tools performs this “design exploration” in an automatic manner. Mixed-level simulation typi-
cally combines RTL, gate, and transistor parts of the design and uses a communication backplane 
to run the various simulations and share input and output values.

Finally, for many SoCs, both hardware and software comprise the real system. System verifica-
tion engineers may run a hardware–software cosimulation before handing the design to a foundry. 
All simulation system components mentioned can be part of this cosimulation. In early design 
stages, when the hardware is not ready, the software can simulate (execute) an instruction set model, 
a virtual prototype (model), or an early hardware prototype typically implemented in FPGAs.

2.3 IMPLEMENTATION

This brings us to the next stage of the design process, the implementation and layout of the digital 
design. Circuit designers implement analog designs by hand. FPGA technologies usually have a 
 single basic combinational cell, which can form a variety of functions by constraining inputs. 
Layout and process tools are usually proprietary to the FPGA family and manufacturer. For 
 semicustom design, the manufacturer supplies a precharacterized cell library, either standard cell 
or gate array. In fact, for a given technology, the foundry may supply several libraries, differing in 
power, timing, or yield. The company decides on one or more of these as the target technology. 
One twist on the semicustom methodology is structured ASIC. Here, a foundry supplies preplaced 
memories, pad rings, and power grids, as well as sometimes preplaced gate array logic, which is 
similar to the methodology employed by FPGA families. The company can use semicustom tech-
niques for the remaining combinational and sequential logic. The goal is to reduce nonrecurring 
expenses by limiting the number of mask sets needed and by simplifying physical design.

By way of contrast, in a full-custom methodology, one tries to gain performance and limit power 
consumption by designing much of the circuit as transistors. The circuit designers keep a corre-
sponding RTL design. The verification engineer simulates the RTL and extracts a netlist from the 
transistor description. Equivalence checking compares the extracted netlist to the RTL. The circuit 
designer manually places and routes the transistor-level designs. Complex high-speed designs, such 
as microprocessors, sometimes use full custom methodology, but the design costs are very high. 
The company assumes that the high volume will amortize the increased cost. Full-custom designs 
consider implementation closure for power and speed as most important. At the other end of the 
spectrum, FPGA designs focus on design cost and time to market. Semicustom methodology tries 
to balance the goals of timing and power closure with design cost (cf. Figure 2.4).
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In the semicustom implementation flow, one first attempts to synthesize the RTL design into a 
mapped netlist. The circuit designers supply their RTL circuit along with timing constraints. The 
timing constraints consist of signal arrival and slew (transition) times at the inputs and required 
times and loads (capacitances) at the outputs. The circuit designer identifies clocks as well as any 
false or multiple-cycle paths. The technology library is usually a file that contains a description of 
the function of each cell along with delay, power, and area information. The cell description con-
tains the pin-to-pin delay represented either as lookup table functions of input slew, output load, 
and other physical parameters, such as voltage and temperature, or as polynomial functions that 
best fit the parameter data. For example, foundries provide cell libraries in Liberty or OLA (Open 
Library Application Programming Interface) formats. The foundry also provides a wire delay 
model, derived statistically from previous designs. The wire delay model correlates the number of 
sinks of a net to capacitance and delay.

Several substages comprise the operation of a synthesis tool. First, the synthesis tool compiles 
the RTL into technology-independent cells and then optimizes the netlist for area, power, and 
delay. The tool maps the netlist into a technology. Sometimes, synthesis finds complex functions 
such as multipliers and adders in parameterized (area/timing) reuse libraries. For example, the 
tool might select a Booth multiplier from the reuse library to improve timing. For semicustom 
designs, the foundry provides a standard cell or gate array library, which describes each func-
tional member. In contrast, the FPGA supplier describes a basic combinational cell from which 
the technology mapping matches functional behavior of subsections of the design. To provide 
correct functionality, the tool may set several pins on the complex gates to constants. A postpro-
cess might combine these functions for timing, power, or area.

A final substage tries to analyze the circuit and performs local optimizations that help the 
design meet its timing, area, and power goals. Note that due to finite number of power levels of 
any one cell, there are limits to the amount of capacitance that functional cell types can drive 
without the use of buffers. Similar restrictions apply to input slew (transition delay). The layout 
engineer can direct the synthesis tool by enhancing or omitting any of these stages through 
scripted commands. Of course, the output must be a mapped netlist.

To get better timing results, foundries continue to increase the number of power variations for 
some cell types. One limitation to timing analysis early in the flow is that the wire delay models 
are statistical estimates of the real design. Frequently, these wire delays can differ significantly 
from those found after routing. One interesting approach to synthesis is to extend each cell of 
the technology library so that it has an infinite or continuous variation of power. This approach, 
called gain-based synthesis, attempts to minimize the issue of inaccurate wire delay by assuming 
cells can drive any wire capacitance through appropriate power level selection. In theory, there 
is minimal perturbation to the natural delay (or gain) of the cell. This technique makes assump-
tions such as that the delay of a signal is a function of capacitance. This is not true for long wires 
where resistance of the signal becomes a factor. In addition, the basic approach needs to include 
modifications for slew (transition delay).

To allow detection of manufacturing faults, the design team may add extra test generation 
circuitry. Design for test (DFT) is the name given to the process of adding this extra logic 
(cf. Figure 2.5). Sometimes, the foundry supplies special registers, called logic-sensitive scan 
devices. At other times, the test tool adds extra logic called Joint Test Action Group (JTAG) 
boundary scan logic that feeds the registers. Later in the implementation process, the design 
team will generate data called scan vectors that test equipment uses to detect manufacturing 
faults. Subsequently, tools will transfer these data to automatic test equipment (ATE), which 
perform the chip tests.

As designs have become larger, so has the amount of test data. The economics of the scan vec-
tor production with minimal cost and design impact leads to data compression techniques. One 
of the most widely used techniques is deterministic logic built-in self-test (BIST). Here, a test tool 
adds extra logic on top of the DFT to generate scan vectors dynamically.

Before continuing the layout, the engineer needs new sets of rules, dealing with the legal place-
ment and routing of the netlist. These libraries, in various exchange formats, for example, LEF 
for logic, DEF for design, and PDEF for physical design, provide the layout engineer physi-
cal directions and constraints. Unlike the technology rules for synthesis, these rules are typi-
cally model dependent. For example, there may be information supplied by the circuit designer 
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about the placement of macros such as memories. The routing tool views these macros as blockages. 
The rules also contain information from the foundry.

Even if the synthesis tool preserved the original hierarchy of the design, the next stages of imple-
mentation need to view the design as flat. The design-planning step first flattens the logic and then 
partitions the flat netlist as to assist placement and routing; in fact, in the past, design planning was 
sometimes known as floor planning. A commonly used technique is for the design team to provide 
a utilization ratio to the design planner. The utilization ratio is the percentage of chip area used by 
the cells as opposed to the nets. If the estimate is too high, then routing congestion may become a 
problem. If the estimate is too low, then the layout could waste area. The design-planning tool takes 
the locations of hard macros into account. These macros are hard in the sense that they are rectan-
gular with a fixed length, fixed width, and sometimes a fixed location on the chip. The design-plan-
ning tool also tries to use the logical hierarchy of the design as a guide to the partitioning. The tool 
creates, places, and routes a set of macros that have fixed lengths, widths, and locations. The tool 
calculates timing constraints for each macro and routes the power and ground grids. The power and 
ground grids are usually on the chip’s top levels of metal and then distributed to the lower levels. 
The design team can override these defaults and indicate which metal layers should contain these 
grids. Sometimes design planning precedes synthesis. In these cases, the tool partitions the RTL 
design and automatically characterizes each of the macros with timing constraints.

After design planning, the layout engineer runs the physical implementation tools on each 
macro. First, the placer assigns physical locations to each gate of the macro. The placer typically 
moves gates while minimizing some cost, for example, wire length or timing. Legalization fol-
lows the coarse placement to make sure the placed objects fit physical design rules. At the end of 
placement, the layout engineer may run some more synthesis, like resizing of gates. One of the 
major improvements to placement over the last decade is the emergence of physical synthesis. 
In physical synthesis, the tool interleaves synthesis and placement. Recall that previously, logic 
synthesis used statistical wire capacitance. Once the tool places the gates, it can perform a global 
route and get capacitances that are more accurate for the wires, based on actual placed locations. 
The physical synthesis tool iterates this step and provides better timing and power estimates.

Next, the layout engineer runs a tool that buffers and routes the clock tree. Clock-tree synthe-
sis attempts to minimize the delay while assuring that skew, that is the variation in signal trans-
port time from the clock to its corresponding registers, is close to zero.

Routing the remaining nets comes after clock-tree synthesis. Routing starts with a global anal-
ysis called global route. Global route creates coarse routes for each signal and its outputs. Using 
the global routes as a guide, a detailed routing scheme, such as a maze channel or switchbox, per-
forms the actual routing. As with the placement, the tool performs a final legalization to assure 
that the design obeys physical rules. One of the major obstacles to routing is signal congestion. 
Congestion occurs when there are too many wires competing for a limited amount of chip wire 
resource. Remember that the design team gave the design planner a utilization ratio in the hope 
of avoiding this problem.

Both global routing and detailed routing take the multilayers of the chip into consideration. 
For example, the router assumes that the gates are on the polysilicon layer, while the wires con-
nect the gates through vias on 3–8 layers of metal. Horizontal or vertical line segments comprise 
the routes, but some recent work allows 45° lines for some foundries. As with placement, there 
may be some resynthesis, such as gate resizing, at the end of the detailed routing stage.

Once the router finishes, an extraction tool derives the capacitances, resistances, and induc-
tances. In a 2D parasitic extraction, the extraction tool ignores 3D details and assumes that each 
chip level is uniform in one direction. This produces only approximate results. In the case of the 
much slower 3D parasitic extraction, the tool uses 3D field solvers to derive very accurate results. 
A 2 1/2-D extraction tool compromises between speed and accuracy. By using multiple passes, it 
can access some of the 3D features. The extraction tool places its results in a standard parasitic 
exchange format file.

During the implementation process, the verification engineer continues to monitor behav-
ioral consistency through equivalence checking and using LVS comparison. The layout engineer 
analyzes timing and signal integrity issues through timing analysis tools and uses their results 
to drive implementation decisions. At the end of the layout, the design team has accurate resis-
tances, capacitances, and inductances for the layout. The system engineer uses a sign-off timing 
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analysis tool to determine if the layout meets timing goals. The layout engineer needs to run a 
DRC on the layout to check for violations.

Both the Graphic Data System II (GDSII) and the Open Artwork System Interchange Standard 
(OASIS) are databases for shape information to store a layout. While the older GDSII was the 
database of choice for shape information, there is a clear movement to replace it by the newer, 
more efficient OASIS database. The LVS tool checks for any inconsistencies in this translation.

What makes the implementation process so difficult is that multiple objectives need consider-
ation. For example, area, timing, power, reliability, test, and yield goals might and usually cause 
conflict with each other. The product team must prioritize these objectives and check for imple-
mentation closure.

Timing closure—that is meeting all timing requirements—by itself is becoming increasingly 
difficult and offers some profound challenges. As process geometry decreases, the significant 
delay shifts from the cells to the wires. Since a synthesis tool needs timing analysis as a guide and 
routing of the wires does not occur until after synthesis, we have a chicken and egg problem. In 
addition, the thresholds for noise sensitivity also shrink with smaller geometries. This along with 
increased coupling capacitances, increased current densities and sensitivity to inductance, make 
problems like crosstalk and voltage (IR) drop increasingly familiar.

Since most timing analysis deals with worst-case behavior, statistical variation and its effect on 
yield add to the puzzle. Typically timing analysis computes its cell delay as function of input slew 
(transition delay) and output load (output capacitance or RC). If we add the effects of voltage and 
temperature variations as well as circuit metal densities, timing analysis gets to be very complex. 
Moreover, worst-case behavior may not correlate well with what occurs empirically when the 
foundry produces the chips. To get a better predictor of parametric yield, some layout engineers 
use statistical timing analysis. Here, rather than using single numbers (worst case, best case, 
corner case, nominal) for the delay-equation inputs, the timing analysis tool selects probability 
distributions representing input slew, output load, temperature, and voltage among others. The 
delay itself becomes a probability distribution. The goal is to compute the timing more accurately 
in order to create circuits with smaller area and lower power but with similar timing yield.

Reliability is also an important issue with smaller geometries. Signal integrity deals with 
analyzing what were secondary effects in larger geometries. These effects can produce erratic 
behavior for chips manufactured in smaller geometries. Issues such as crosstalk, IR drop, and 
electromigration are factors that the design team must consider in order to produce circuits that 
perform correctly.

Crosstalk noise can occur when two wires are close to each other (cf. Figure 2.6). One wire, 
the aggressor, switches while the victim signal is in a quiet state or making an opposite transi-
tion. In this case, the aggressor can force the victim to glitch. This can cause a functional failure 
or can simply consume additional power. Gate switching draws current from the power and 
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ground grids. That current, together with the wire resistance in the grids, can cause significant 
fluctuations in the power and ground voltages supplied to gates. This problem, called IR drop, can 
lead to unpredictable functional errors. Very high frequencies can produce high current densities 
in signals and power lines, which can lead to the migration of metal ions. This power electromi-
gration can lead to open or shorted circuits and subsequent signal failure.

Power considerations are equally complex. As the size of designs grows and geometries shrink, 
power increases. This can cause problems for batteries in wireless and handheld devices and ther-
mal management in microprocessor, graphic, and networking applications. Power consumption 
falls into two areas: (1) dynamic power (cf. Figure 2.7), the power consumed when devices switch 
value, and (2) leakage power (cf. Figure 2.8), the power leaked through the transistor. Dynamic 
power consumption grows directly with increased capacitance and voltage. Therefore, as designs 
become larger, dynamic power increases. One easy way to reduce dynamic power is to decrease 
voltage. However, decreased voltage leads to smaller noise margins and less speed.
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A series of novel design and transistor innovations can reduce the power consumption. 
These include operand isolation, clock gating, and voltage islands. Timing and power con-
siderations are very often in conflict with each other, so the design team must employ these 
remedies carefully.

A design can have part of its logic clock gated by using logic to enable the bank of registers. The 
logic driven by the registers is quiescent until the clock-gated logic enables the registers. Latches 
at the input can isolate parts of a design that implement operations (e.g., an arithmetic logic unit), 
when results are unnecessary for correct functionality, thus preventing unnecessary switching. 
Voltage islands help resolve the timing versus power conflicts. If part of a design is timing criti-
cal, a higher voltage can reduce the delay. By partitioning the design into voltage islands, one can 
use lower voltage in all but the most timing-critical parts of the design. An interesting further 
development is dynamic voltage/frequency scaling, which consists of scaling the supply voltage 
and the speed during operation to save power or increase performance temporarily.

The automatic generation of manufacturing fault detection tests was one of the first EDA 
tools. When a chip fails, the foundry wants to know why. Test tools produce scan vectors that 
can identify various manufacturing faults within the hardware. The design team translates the 
test vectors to standard test data format and the foundry can inject these inputs into the failed 
chip through automated test equipment (ATE). Remember that the design team added extra 
logic to the netlist before design planning, so that test equipment could quickly insert the scan 
vectors, including set values for registers, into the chip. The most common check is for stuck at 0 
or stuck at 1 faults where the circuit has an open or short at a particular cell. It is not surpris-
ing that smaller geometries call for more fault detection tests. An integration of static timing 
analysis with transition/path delay fault automatic test pattern generation (ATPG) can help, for 
example, to detect contact defects; while extraction information and bridging fault ATPG can 
detect metal defects.

Finally, the design team should consider yield goals. Manufacturing becomes more difficult 
as geometries shrink. For example, thermal stress may create voids in vias. One technique to get 
around this problem is to minimize the vias inserted during routing, and for those inserted, to 
create redundant vias. Via doubling, which converts a single via into multiple vias, can reduce 
resistance and produce better yield. Yield analysis can also suggest wire spreading during rout-
ing to reduce crosstalk and increase yield. Manufacturers also add a variety of manufacturing 
process rules needed to guarantee good yield. These rules involve antenna checking and repair 
through diode insertion as well as metal fill needed to produce uniform metal densities necessary 
for copper wiring chemical–mechanical polishing (CMP). Antenna repair has little to do with 
what we typically view as antennas. During the ion-etching process, charge collects on the wires 
connected to the polysilicon gates. These charges can damage the gates. The layout tool can con-
nect small diodes to the interconnect wires as a discharge path.

Even with all the available commercial tools, there are times when layout engineers want to 
create their own tool for analysis or small implementation changes. This is analogous to the need 
for an API in verification. Scripting language and C-language-based APIs for design databases 
such as MilkyWay and OpenAccess are available. These databases supply the user with an avenue 
to both the design and rules. The engineer can directly change and analyze the layout.

2.4 DESIGN FOR MANUFACTURING

One of the newest areas for EDA tools is design for manufacturing. As in other areas, the driv-
ing force of the complexity is the shrinking of geometries. After the design team translates their 
design to shapes, the foundry must transfer those shapes to a set of masks. Electron beam (laser) 
equipment then creates the physical masks for each layer of the chip from the mask information. 
For each layer of the chip, the foundry applies photoresistive material and then transfers the mask 
structures by the stepper optical equipment onto the chip. Finally, the foundry etches the correct 
shapes by removing the excess photoresist material.

Since the stepper uses light for printing, it is important that the wavelength is small enough to 
transcribe the features accurately. When the chip’s feature size was 250 nm, we could use lithog-
raphy equipment that produced light at a wavelength of 248 nm. New lithography equipment that 
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produces light of lower wavelength needs significant innovation and can be very expensive. When 
the feature geometry gets significantly smaller than the wavelength, the detail of the reticles (fine 
lines and wires) transferred to the chip from the mask can be lost. EDA tools can analyze and cor-
rect this transfer operation without new equipment, by modifying the shapes of data—a process 
known as mask synthesis (cf. Figure 2.9). This process uses resolution enhancement techniques 
and methods to provide dimensional accuracy.

One mask synthesis technique is optimal proximity correction (OPC). This process takes the 
reticles in the GDSII or OASIS databases and modifies them by adding new lines and wires, so 
that even if the geometry is smaller than the wavelength, optical equipment adequately preserves 
the details. This technique successfully transfers geometric features of down to one-half of the 
wavelength of the light used. Of course given a fixed wavelength, there are limits beyond which 
the geometric feature size is too small for even these tricks.

For geometries of 90 nm and below, the lithography EDA tools combine OPC with other mask 
synthesis approaches such as phase shift mask (PSM), off-axis illumination, and assist features 
(AF). For example, PSM is a technique where the optical equipment images dark features at criti-
cal dimensions with 0° illumination on one side and 180° illumination on the other side. There 
are additional manufacturing process rules needed, such as minimal spacing and cyclic conflict 
avoidance, to avoid situations where the tool cannot map the phase.

In summary, lithography tools proceed through PSM, OPC, and AF to enhance resolution 
and make the mask more resistive to process variations. The process engineer can perform a 
verification of silicon versus layout and a check of lithography rule compliance. If either fails, the 
engineer must investigate and correct, sometimes manually. If both succeed, another EDA tool 
“fractures” the design, subdividing the shapes into rectangles (trapezoids), which can be fed to 
the mask writing equipment. The engineer can then transfer the final shapes file to a database, 
such as the manufacturing-electron-beam-exposure system (MEBES). Foundry equipment uses 
the MEBES database (or other proprietary formats) to create the physical masks. The process 
engineer can also run a virtual stepper tool to preanalyze the various stages of the stepper opera-
tion. After the foundry manufactures the masks, a mask inspection and repair step ensures that 
they conform to manufacturing standards.

Another area of design for manufacturing analysis is the prediction of yield (cf. Figure 2.10). 
The design team would like to correlate some of the activities during route with actual yield. 
Problems with CMP via voids and crosstalk can cause chips to unexpectedly fail. EDA routing 
tools offer some solutions in the form of metal fill, via doubling and wire spacing. Library provid-
ers are starting to develop libraries for higher yields that take into account several yield failure 
mechanisms. There are tools that attempt to correlate these solutions with yield. Statistical tim-
ing analysis can correlate timing constraints to parametric circuit yield.
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Finally, the process engineer can use tools to predict the behavior of transistor devices or pro-
cesses. Technology computer-aided design (TCAD) deals with the modeling and simulation of 
physical manufacturing process and devices. Engineers can model and simulate individual steps 
in the fabrication process. Likewise, the engineer can model and simulate devices, parasitics, or 
electrical/thermal properties, therefore providing insights into their electrical, magnetic, or opti-
cal properties.

For example, because of packing density, foundries may switch isolation technology for an 
IC from the local oxidation of silicon model toward the shallow trench isolation (STI) model. 
Under this model, the process engineer can analyze breakdown stress, electrical behavior such as 
leakage, or material versus process dependencies. TCAD tools can simulate STI effects; extract 
interconnect parasitics, such as diffusion distance, and determine SPICE parameters.

2.5 UPDATE: A DECADE OF EVOLUTION IN DESIGN PROCESS AND EDA

Reviewing the design process described in this chapter, which was written for the first edition 
of the handbook published in 2006, it is remarkable how similar today’s IC design process is in 
terms of major tasks and steps, despite the decade that has elapsed, and the huge increase in SoC 
complexity and process complexity that has occurred. In addition, despite many changes in the 
EDA industry and its tools, there are remarkable similarities in many ways.

Nevertheless, the past decade has seen some important changes that are worthy of note for 
their impact on design process and EDA tools. Some of these arguably have more impact in 
the economics of design than on the technical design processes. In the following update, we 
try to briefly note some of these major changes and summarize their impact on design process 
and EDA:

 ◾ SoC design complexity: From a few tens of blocks and fewer than 10 subsystems in a com-
plex SoC of a decade ago to today’s most complex SoCs that may have hundreds of blocks 
and many complicated subsystems, we have seen the design tasks grow in magnitude. 
This has many side effects: a large increase in design teams, greater collaboration by 
design teams around the world, many mergers, acquisitions and restructurings of teams 
in design companies (especially to acquire design IP and design talent in subsystem areas 
that are being merged into the more complex SoCs), and much more reliance on third-
party IP blocks and subsystems. In addition, less and less can be done by last-minute 
manual tweaks to the design, hence resulting in more reliance on EDA tools, quality IP, 
and very well-controlled design processes. The latest International Technology Roadmap 
for Semiconductors (2012 update edition) [27] has substantial discussions of SoC design 
challenges in its “System Drivers” and “Design” chapters.

 ◾ Reduction in the number of semiconductor fabrication facilities: The trend, which started 
in the 1990s and accelerated in the last decade, of system companies shedding their 
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in-house semiconductor fabrication facilities, and even some semiconductor companies 
reducing their dependence on in-house fabrication, has led to significant changes in 
design practices. Fabrication processes have become more standardized with a shrink 
in the number of potential suppliers; the issue of second sourcing has changed its form. 
It no longer relies on second source fabrication of a single design; rather, these days, sys-
tems companies change chip sets for standard functions such as modems or application 
processors, either by accepting complete systems from providers (e.g., modems) or by 
using software layers to differentiate their products and recompile it on new application 
processors. Thus, differentiation is more by software than hardware design. As processes 
moved down in scale, fewer and fewer companies could afford to stay on the fabrication 
process treadmill. Several consortia were formed to develop common processes, but this 
eventually became unaffordable for all but a few companies.

 ◾ Growing importance of fabless semiconductor industry: As system companies switched 
away from in-house process development and fabrication facilities, we have seen the 
rise of the fabless semiconductor industry and the pure-play foundries, the most nota-
ble being TSMC [28]. This has kept alive the dream of ASIC design in system com-
panies, fostered an intermediate fabless semiconductor network of companies (such as 
Qualcomm, Broadcom, and many more), allowed some semiconductor companies to 
run a mixed fab/fabless business model, and standardized design processes, which helps 
design teams deal with the complexity of design in advanced processes at 28 nm and 
below. It has also fostered the growth of companies, such as eSilicon, that act as interme-
diaries between fabless IC companies that focus on RTL and above and fabrication. This 
involves essentially driving the back-end tools, developing a special relationship with 
fabrication that ensures faster access to technology information, and shielding fabless 
IC companies from the more intimate knowledge of technology. Keeping this separate 
from the IP business has also helped reduce the fabless industry concerns about design 
services.

 ◾ Consolidation in the EDA industry: It has become increasingly difficult to fund EDA 
startups, and the “Big 3” of EDA (Synopsis, Cadence, and Mentor Graphics) have contin-
ued buying many of the small startups left in the industry over the last decade, including 
Forte, Jasper, Springsoft, EVE, and Nimbic [29]. For Cadence and Synopsis, substantial 
recent mergers and acquisitions include considerable amounts of design IP and IP design 
teams. This consolidation has good points and bad points in terms of the design process 
and tools and flows. On the bad side, it may limit some of the innovation that small EDA 
startups bring to the industry. On the good side, the larger EDA companies have more to 
invest in new tools and capabilities and flows, are able to work more closely with large IP 
providers and the various fabless and integrated (with fabrication facilities) semiconduc-
tor companies, and can make strategic investments to match tool capabilities to future 
process generations. In addition, by branching out to include IP as part of the EDA busi-
ness model, the tools can be improved with in-house designs and the IP offerings them-
selves have the backing of large EDA companies and their strategic investments. This 
tends to increase the variety and quality of the IP available to design teams and offers 
them more choices.

 ◾ Relative geographic shifts in design activity: Over the years there has been a tremendous 
reorganization of design activity. In a geographic sense, design activity in Europe and 
North America has declined (Europe more than North America), Japan has declined to 
a lesser extent, and the rest of Asia—Taiwan, Korea, and China—has increased. In India, 
design activity has also increased. This has had some effect on the adoption and deploy-
ment of advanced design methodologies and tools. In particular, electronic system-level 
(ESL) tools and methods have been of greater interest in Europe and to some extent in 
North America. This is fostered in Europe by EU programs that fund advanced work in 
microelectronics and design. The geographic shift has meant that ESL methodologies 
have had slower adoption than might have been the case if European design activity had 
remained as strong. However, we have seen more interest in the last few years in the use 
of system-level methods and models in Asian design companies, ameliorating some of 
this delay. Japan may be an exception to this, with early and continued interest in ESL.
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 ◾ Advanced processes: The development in process technologies—from 90  nm through 
65 nm, 40/45 nm, 28/30/32 nm, 20/22 nm, to 14/16 nm, including new circuit designs 
such as FinFETs—has continued apace over the last decade, albeit at a somewhat slower 
pace than traditional Moore’s law would indicate (perhaps taking 3 years rather than 
2 years to double transistor count). Inherent speeds of transistors no longer increase at 
the old pace. Some reports claim that even the cost per transistor has reached its mini-
mum value around the 32–22 nm nodes. If true, this would mean that functionality no 
longer becomes cheaper with every generation and that a completely different strategy 
would be required in the whole electronic industry. More advanced design techniques 
are required. Design teams need to grow larger and integrate more diverse subsystems 
into complex SoCs. Design closure becomes harder and the number of steps required at 
each phase of design grows.

 ◾ Changes in SoC architectures and more platforms: The prediction made in 1999 of the 
move to a platform-based design style for SoCs [30] has come true; almost all complex 
SoCs follow some kind of platform-based design style in which most new products are 
controlled derivatives of the platform. This has shifted the hardware/software divide 
toward relatively fewer custom hardware blocks (only where their performance, power, 
or area characteristics are vital to the product function) and relatively more processors 
(whether general purpose or application specific) and memory (for all that software and 
associated data).

 ◾ Greater use of FPGAs versus ASICs: Although FPGA vendors have long proclaimed the 
near-complete takeover of FPGAs from ASICs in electronics product design, it has not 
unfolded according to their optimistic predictions [31]. However, FPGAs are used more 
in end-product delivery these days than a decade ago, at least in some classes of products. 
The new FPGAs with hardened embedded processors and other hard elements such as 
multiply-accumulate DSP blocks and SERDES look more attractive as product develop-
ment and delivery vehicles than pure FPGAs. A notable example of this is Xilinx’s Zynq 
platform FPGAs [32]. Use of such design platforms changes aspects of the design process 
rather significantly.

 ◾ Greater use of IP blocks: The use of design IP blocks and subsystems, whether sourced 
from internal design groups or external IP providers, has grown significantly. While 
reducing new design effort on complex SoCs, the use of IP blocks also changes much of 
the focus of SoC from new original design to architecting the use of IP and the integra-
tion and verification process itself.

 ◾ Greater use of processors and application-specific instruction set processors (ASIPs): The 
kind of IP block has a big influence on SoC design. Increasingly, platforms are using 
more processors, both general-purpose control plane processors and dedicated DSPs, 
accelerators, and ASIPs in the dataplane. In some domains, such as audio decoding, 
ASIPs are so close in performance, energy consumption, and cost (area) to dedicated 
hardware blocks, in which their flexibility in supporting multiple standards and new 
standards makes their use almost obligatory. The shifting boundary between dedicated 
hardware blocks and processors moves the design boundary between hardware and 
software in general, thus changing in degree (but not in kind) the design effort devoted 
to the software side.

 ◾ Growing reliance on software: This is a natural outgrowth of the increased use of pro-
cessors discussed earlier. And the shift of the hardware/software divide changes the 
emphasis in design teams. This handbook, particularly the design process in this chap-
ter, emphasizes hardware design of SoCs, of course.

 ◾ High-level synthesis: When digital hardware blocks do need to be designed for an SoC, 
the traditional design methodology has been to design them at RTL level and then 
use logic synthesis, verification, and normal digital implementation flows to integrate 
them into SoCs. High-level synthesis has gone through interesting historical evolutions 
since the late 1980s at least [33], including considerable interest in the mid-1990s using 
hardware description languages as the input mechanism, a collapse, and growth in the 
more recent decade using C/C++/SystemC as inputs. It is now used as a serious part of 
the design flow for various complex hardware blocks, especially those in the dataplane 
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(e.g., various kinds of signal processing blocks). The chapter in the handbook on high-
level synthesis is a good reference to the current state of the art here.

 ◾ Verification growth and change: Of course, as the SoC design grows in complexity, the 
verification challenge grows superlinearly. Many methods, some quite old, have seen 
wider adoption in the last decade. These include formal verification (both equivalence 
checking and property checking), use of hardware verification engines and emulators, 
hardware–software coverification, and virtual platforms. In addition, regular RTL and 
gate-level simulation has exploded for large SoCs. Many chapters in the EDA Handbook 
touch on these topics.

 ◾ Back-end design flow: Several important changes have occurred in back-end design 
tools and flow. In particular, advances in high-performance place and route, gate siz-
ing, power-grid optimization, and clock gating and multiobjective optimizations are of 
major impact. For the most important optimizations, industry released large modern 
benchmark suites and organized multimonth research contests for graduate students. 
As a result, we now have much better understanding as to which methods work best 
and why. For participating teams, contests encourage sharper focus on empirical perfor-
mance and allow researchers to identify simple yet impactful additions to mainstream 
techniques that would have been difficult to pursue otherwise. In most cases, the tech-
nique winning at the contest has been adopted in the industry within 2–3 years and 
often developed further by other academic researchers. Multiobjective optimization as 
a domain requires a keen understanding of available components and their empirical 
performance, as well as rigorous experimentation. It holds the potential for significant 
improvement in the back-end flow.

 ◾ More Moore and more than Moore: Despite the imminent predictions of its demise, 
Moore’s law (or observation) [34] continues apace with each new technology generation. 
The time required for the number of gates on ICs to double may have stretched beyond 
the 1 year in the original observation, to 2 years in the 1970s and 3 years in the 2000s. 
Overall, process speed and thus the maximum MHz achievable with each process gen-
eration may have slowed down or stopped (or be limited by power concerns). SoCs are 
more complex in achievable gate count at 28 nm than at 40 nm, and a greater number 
of gates are possible at 16 nm. In addition, we have seen new process technologies—
such as 3D FinFETs—emerge, which begin to fulfill the “more than Moore” predictions. 
Whether carbon nanotubes and transistors and gates built on them will become the 
workhorse technology at 7 or 5 nm or beyond is not clear, but something more than 
Moore is certainly emerging. These changes clearly influence the design process.

Although many changes in design trends have an impact on the design process, it retains many of 
the key characteristics and steps of a decade ago. The cumulative effect changes the emphasis on 
particular design disciplines and moves the dividing lines between them. Fundamentally, it has 
not changed the nature of the IC design process. This is likely to remain so in the future.
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3.1 INTRODUCTION

System-level design, once the province of board designers, has now become a central concern for 
chip designers. Because chip design is a less forgiving design medium—design cycles are longer 
and mistakes are harder to correct—system-on-chip (SoC) designers need a more extensive tool 
suite than may be used by board designers, and a variety of tools and methodologies have been 
developed for system-level design of SoCs.

System-level design is less amenable to synthesis than are logic or physical design. As a result, 
system-level tools concentrate on modeling, simulation, design space exploration, and design veri-
fication. The goal of modeling is to correctly capture the system’s operational semantics, which 
helps with both implementation and verification. The study of models of computation provides a 
framework for the description of digital systems. Not only do we need to understand a particular 
style of computation, such as dataflow, but we also need to understand how different models of 
communication can reliably communicate with each other. Design space exploration tools, such 
as hardware/software codesign, develop candidate designs to understand trade-offs. Simulation 
can be used not only to verify functional correctness but also to supply performance and power/
energy information for design analysis.

We will use video applications as examples in this chapter. Video is a leading-edge application 
that illustrates many important aspects of system-level design. Although some of this informa-
tion is clearly specific to video, many of the lessons translate to other domains.

The next two sections briefly introduce video applications and some SoC architectures that 
may be the targets of system-level design tools. We will then study models of computation and 
languages for system-level modeling. We will then survey simulation techniques. We will close 
with a discussion of hardware/software codesign.

3.2 CHARACTERISTICS OF VIDEO APPLICATIONS

One of the primary uses of SoCs for multimedia today is for video encoding—both compression 
and decompression. In this section, we review the basic characteristics of video compression 
algorithms and the implications for video SoC design.

Video compression standards enable video devices to interoperate. The two major lines of 
video compression standards are MPEG and H.26x. The MPEG standards concentrate on 
broadcast applications, which allow for a more expensive compressor on the transmitter side in 
exchange for a simpler receiver. The H.26x standards were developed with videoconferencing in 
mind, in which both sides must encode and decode. The Advanced Video Codec standard, also 
known as H.264, was formed by the confluence of the H.26x and MPEG efforts. H.264 is widely 
used in consumer video systems.

Modern video compression systems combine lossy and lossless encoding methods to reduce 
the size of a video stream. Lossy methods throw away information such that the uncompressed 
video stream is not a perfect reconstruction of the original; lossless methods do allow the infor-
mation provided to them to be perfectly reconstructed. Most modern standards use three major 
mechanisms:

 1.  The discrete cosine transform (DCT) together with quantization
 2.  Motion estimation and compensation
 3.  Huffman-style encoding
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Quantized DCT and motion estimation are lossy, while Huffman encoding is lossless. These 
three methods leverage different aspects of the video stream’s characteristics to more efficiently 
encode it.

The combination of DCT and quantization was originally developed for still images and is 
used in video to compress single frames. The DCT is a frequency transform that turns a set of 
pixels into a set of coefficients for the spatial frequencies that form the components of the image 
represented by the pixels. The DCT is used over other transforms because a 2D DCT can be 
computed using two 1D DCTs, making it more efficient. In most standards, the DCT is per-
formed on an 8 × 8 block of pixels. The DCT does not itself lossily compress the image; rather, the 
quantization phase can more easily pick out information to throw away thanks to the structure 
of the DCT. Quantization throws out fine detail in the block of pixels, which correspond to the 
high-frequency coefficients in the DCT. The number of coefficients set to zero is determined on 
the level of compression desired.

Motion estimation and compensation exploit the relationships between frames provided by 
moving objects. A reference frame is used to encode later frames through a motion vector, which 
describes the motion of a macroblock of pixels (16 × 16 in many standards). The block is copied 
from the reference frame into the new position described by the motion vector. The motion vec-
tor is much smaller than the block it represents. Two-dimensional correlation is used to deter-
mine the position of the macroblock’s position in the new frame; several positions in a search area 
are tested using 2D correlation. An error signal encodes the difference between the predicted and 
the actual frames; the receiver uses that signal to improve the predicted picture.

MPEG distinguishes several types of frames: I (inter) frames are not motion compensated, 
P (predicted) frames have been predicted from earlier frames, and B (bidirectional) frames have 
been predicted from both earlier and later frames.

The results of these lossy compression phases are assembled into a bit stream and compressed 
using lossless compression such as Huffman encoding. This process reduces the size of the repre-
sentation without further compromising image quality.

It should be clear that video compression systems are actually heterogeneous collections of 
algorithms; this is also true of many other applications, including communications and security. 
A video computing platform must run several algorithms; those algorithms may perform very 
different types of operations, imposing very different requirements on the architecture.

This has two implications for tools: first, we need a wide variety of tools to support the design 
of these applications; second, the various models of computation and algorithmic styles used in 
different parts of an application must at some point be made to communicate to create the com-
plete system. For example, DCT can be formulated as a dataflow problem, thanks to its butterfly 
computational structure, while Huffman encoding is often described in a control-oriented style.

Several studies of multimedia performance on programmable processors have remarked on 
the significant number of branches in multimedia code. These observations contradict the popu-
lar notion of video as regular operations on streaming data. Fritts and Wolf [1] measured the 
characteristics of the MediaBench benchmarks.

They used path ratio to measure the percentage of instructions in a loop body that were 
actually executed. They found that the average path ratio of the MediaBench suite was 78%, 
which indicates that a significant number of loops exercise data-dependent behavior. Talla et al. 
[2] found that most of the available parallelism in multimedia benchmarks came from interitera-
tion parallelism. Exploiting the complex parallelism found in modern multimedia algorithms 
requires that synthesis algorithms be able to handle more complex computations than simple 
ideal nested loops.

3.3 PLATFORM CHARACTERISTICS

Many SoCs are heterogeneous multiprocessors and the architectures designed for multimedia 
applications are no exception. In this section, we review several SoCs, including some general-
purpose SoC architectures as well as several designed specifically for multimedia applications.
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Two very different types of hardware platforms have emerged for large-scale applica-
tions. On the one hand, many custom SoCs have been designed for various applications. 
These custom SoCs are customized by loading software onto them for execution. On the 
other hand, platform field-programmable gate arrays (FPGAs) provide FPGA fabrics along 
with CPUs and other components; the design can be customized by programming the FPGA 
as well as the processor(s). These two styles of architecture represent different approaches 
for SoC architecture and they require very different sorts of tools: custom SoCs require 
large-scale software support, while platform FPGAs are well suited to hardware/software 
codesign.

3.3.1 CUSTOM SYSTEM-ON-CHIP ARCHITECTURES

The TI OMAP family of processors [3] is designed for audio, industrial automation, and portable 
medical equipment. All members of the family include a C674x DSP; some members also include 
an ARM9 CPU.

The Freescale MPC574xP [4] includes 2 e200z4 CPUs operating in delayed lock step for safety 
checking as well as an embedded floating point unit.

3.3.2 GRAPHICS PROCESSING UNITS

GPUs are widely used in desktop and laptop systems as well as smartphones. GPUs are optimized 
for graphics rendering but have been applied to many other algorithms as well. GPUs provide 
SIMD-oriented architectures with floating-point support.

Figure 3.1 shows the organization of the NVIDIA Fermi [5]. Three types of processing ele-
ments are provided: cores, each of which has a floating point and an integer unit, load/store units, 
and special function units. A hierarchy of register files, caches, and shared memory provides very 
high memory bandwidth. A pair of warp processors controls operation. Each warp scheduler can 
control a set of 32 parallel threads.

Warp scheduler

Cores Load/store

Interconnection network

Shared memory/L1 cache

Uniform cache

Special
function

units

Warp scheduler

Instruction cache

Register file

FiGURe 3.1 Organization of the Fermi graphics processing unit.
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3.3.3 PLATFORM FPGAs

FPGAs [6] have been used for many years to implement logic designs. The FPGA provides 
a more general structure than programmable logic devices, allowing denser designs. They 
are less energy efficient than custom ASICs but do not require the long application specific 
integrated circuit (ASIC) design cycle.

Many FPGA design environments provide small, customizable soft processors that can be 
embedded as part of the logic in an FPGA. Examples include the Xilinx MicroBlaze and Altera 
Nios II. Nios II supports memory management and protection units, separate instruction and 
data caches, pipelined execution with dynamic branch prediction (up to 256 custom instruc-
tions), and hardware accelerators. MicroBlaze supports memory management units, instruction 
and data caches, pipelined operation, floating-point operations, and instruction set extensions.

The term “programmable SoC” refers to an FPGA that provides one or more hard logic CPUs in 
addition to a programmable FPGA fabric. Platform FPGAs provide a very different sort of heteroge-
neous platform than custom SoCs. The FPGA fabric allows the system designer to implement new 
hardware functions. While they generally do not allow the CPU itself to be modified, the FPGA logic 
is a closely coupled device with high throughput to the CPU and to memory. The CPU can also be pro-
grammed using standard tools to provide functions that are not well suited to FPGA implementation. 
For example, the Xilinx Zynq UltraScale+ family of multiprocessor systems-on-chips [7] includes an 
FPGA logic array, a quad-core ARM MPCore, dual-core ARM Cortex-R5, graphics processing unit, 
and DRAM interface.

3.4 ABSTRACT DESIGN METHODOLOGIES

Several groups have developed abstract models for system-level design methodologies. These 
models help us to compare concrete design methodologies.

An early influential model for design methodologies was the Gajski–Kuhn Y-chart [8]. As shown 
in Figure 3.2, the model covers three types of refinement (structural, behavioral, and physical) at 
four levels of design abstraction (transistor, gate, register transfer, and system). A design method-
ology could be viewed as a trajectory through the Y-chart as various refinements are performed 
at different levels of abstraction.

System

Register-transfer

Gate

Transistor

Physical
area

Behavioral
function

Structural
hierarchy

FiGURe 3.2 The Y-chart model for design methodologies. (From Gajski, D.D. and Kuhn, R.H., 
Computer, 16(12), 11, 1983.)
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The X-chart model [9] has been proposed as a model for SoC design methodologies. As shown 
in Figure 3.3, a system specification is given by the combination of a behavioral description that 
describe the system function and a set of constraints that describes the nonfunctional require-
ments on the design. A synthesis procedure generates a structural implementation and a set of 
quality numbers by which the structure can be judged.

3.5 MODEL-BASED DESIGN METHODOLOGIES

Increasingly, developers of hardware and software for embedded computer systems are view-
ing aspects of the design and implementation processes in terms of domain-specific models 
of computation. Models of computation provide formal principles that govern how functional 
components in a computational specification operate and interact (e.g., see Reference 10). 
A domain-specific model of computation is designed to represent applications in a particular 
functional domain such as DSP and image and video processing; control system design; com-
munication protocols or more general classes of discrete, control flow intensive decision-making 
processes; graphics; and device drivers. For discussions of some representative languages and 
tools that are specialized for these application domains, see, for example, [11–22]. For an integrated 
review of domain-specific programming languages for embedded systems, see Reference 23.

Processors expose a low-level Turing model at the instruction set. Traditional high-level pro-
gramming languages like C, C++, and Java maintain the essential elements of that Turing model, 
including imperative semantics and memory-oriented operation. Mapping the semantics of 
modern, complex applications onto these low-level models is both time consuming and error 
prone. As a result, new programming languages and their associated design methodologies have 
been developed to support applications such as signal/image processing and communications. 
Compilers for these languages provide correct-by-construct translation of application-level oper-
ations to the Turing model, which both improves designer productivity and provides a stronger, 
more tool-oriented verification path [24].

3.5.1 DATAFLOW MODELS

For most DSP applications, a significant part of the computational structure is well suited to 
modeling in a dataflow model of computation. In the context of programming models, data-
flow refers to a modeling methodology where computations are represented as directed graphs 
in which vertices (actors) represent functional components and edges between actors represent 

Behavior

Structure Quality numbers

Constraints

Synthesis

Optimization formulation

Optimization results

FiGURe 3.3 The X-chart model for design methodologies. (From Gerstlauer, A. et al., IEEE Trans. 
Comput. Aided Design Integr. Circuits Syst., 28(10), 1517, 2009.)
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first-in-first-out (FIFO) channels that buffer data values (tokens) as they pass from an output of 
one actor to an input of another. Dataflow actors can represent computations of arbitrary com-
plexity; typically in DSP design environments, they are specified using conventional languages 
such as C or assembly language, and their associated tasks range from simple, fine-grained func-
tions such as addition and multiplication to coarse-grain DSP kernels or subsystems such as FFT 
units and adaptive filters.

The development of application modeling and analysis techniques based on dataflow graphs 
was inspired significantly by the computation graphs of Karp and Miller [25] and the process 
networks of Kahn [26]. A unified formulation of dataflow modeling principles as they apply to 
DSP design environment is provided by the dataflow process networks model of computation of 
Lee and Parks [27].

A dataflow actor is enabled for execution any time it has sufficient data on its incoming edges 
(i.e., in the associated FIFO channels) to perform its specified computation. An actor can execute 
at any time when it is enabled (data-driven execution). In general, the execution of an actor results 
in some number of tokens being removed (consumed) from each incoming edge and some num-
ber being placed (produced) on each outgoing edge. This production activity in general leads to 
the enabling of other actors.

The order in which actors execute, called the “schedule,” is not part of a dataflow specifi-
cation and is constrained only by the simple principle of data-driven execution defined ear-
lier. This is in contrast to many alternative computational models, such as those that underlie 
procedural languages, in which execution order is overspecified by the programmer [28]. The 
schedule for a dataflow specification may be determined at compile time (if sufficient static 
information is available), at run time, or when using a mixture of compile-time and run-time 
techniques. A particularly powerful class of scheduling techniques, referred to as “quasi-static 
scheduling” (e.g., see Reference 29), involves most, but not all, of the scheduling decisions being 
made at compile time.

Figure 3.4 shows an illustration of a video processing subsystem that is modeled using 
 dataflow semantics. This is a design, developed using the Ptolemy II tool for model-based embed-
ded system design [30], of an MPEG-2 subsystem for encoding the P frames that are processed 

FiGURe 3.4 A video processing subsystem modeled in dataflow.
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by an enclosing MPEG-2 encoder system. A thorough discussion of this MPEG-2 system and 
its  comparison to a variety of other modeling representations is presented in Reference 31. The 
components in the design of Figure 3.4 include actors for the DCT, zigzag scanning, quantization, 
motion compensation, and run length coding. The arrows in the illustration correspond to the 
edges in the underlying dataflow graph.

The actors and their interactions all conform to the semantics of synchronous dataflow (SDF), 
which is a restricted form of dataflow that is efficient for describing a broad class of DSP appli-
cations and has particularly strong formal properties and optimization advantages [32,33]. 
Specifically, SDF imposes the restriction that the number of tokens produced and consumed 
by each actor on each incident edge is constant. Many commercial DSP design tools have been 
developed that employ semantics that are equivalent to or closely related to SDF. Examples of 
such tools include Agilent’s SystemVue, Kalray’s MPPA Software Development Kit, National 
Instrument’s LabVIEW, and Synopsys’s SPW. Simulink®, another widely used commercial tool, 
also exhibits some relationships to the SDF model (e.g., see Reference 34).

3.5.2 DATAFLOW MODELING FOR VIDEO PROCESSING

In the context of video processing, SDF permits accurate representation of many useful subsys-
tems, such as the P-frame encoder shown in Figure 3.4. However, such modeling is often restricted 
to a highly coarse level of granularity, where actors process individual frames or groups of suc-
cessive frames on each execution. Modeling at such a coarse granularity can provide compact, 
top-level design representations, but greatly limits the benefits offered by the dataflow represen-
tation since most of the computation is subsumed by the general-purpose, intra-actor program 
representation. For example, the degree of parallel processing and memory management optimi-
zations exposed to a dataflow-based synthesis tool becomes highly limited at such coarse levels of 
actor granularity. An example of a coarse-grain dataflow actor that “hides” significant amounts of 
parallelism is the DCT actor as shown in Figure 3.4.

3.5.3 MULTIDIMENSIONAL DATAFLOW MODELS

A number of alternative dataflow modeling methods have been introduced to address this limi-
tation of SDF modeling for video processing and, more generally, multidimensional signal pro-
cessing applications. For example, the multidimensional SDF (MD-SDF) model extends SDF 
semantics to allow constant-sized, n-dimensional vectors of data to be transferred across graph 
edges and provides support for arbitrary sampling lattices and lattice-changing operations [35]. 
Intuitively, a sampling lattice can be viewed as a generalization to multiple dimensions of a uni-
formly spaced configuration of sampling points for a 1D signal [36]; hexagonal and rectangular 
lattices are examples of commonly used sampling lattices for 2D signals. The computer vision (CV) 
SDF model is designed specifically for CV applications and provides a notion of structured buffers 
for decomposing video frames along graph edges; accessing neighborhoods of image data from 
within actors, in addition to the conventional production and consumption semantics of dataflow; 
and allowing actors to efficiently access previous frames of image data [37,38]. Blocked dataflow 
is a metamodeling technique for efficiently incorporating hierarchical, block-based processing of 
multidimensional data into a variety of dataflow modeling styles, including SDF and MD-SDF 
[31]. Windowed SDF is a model of computation that deeply integrates support for sliding window 
algorithms into the framework of static dataflow modeling [39]. Such support is important in the 
processing of images and video streams, where sliding window operations play a fundamental role.

3.5.4 CONTROL FLOW

As described previously, modern video processing applications are characterized by some 
degree of control flow processing for carrying out data-dependent configuration of application 
tasks and changes across multiple application modes. For example, in MPEG-2 video encoding, 
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significantly different processing is required for I frames, P frames, and B frames. Although the 
processing for each particular type of frame (I, P, or B) conforms to the SDF model, as illustrated 
for P frame processing in Figure 3.4, a layer of control flow processing is needed to efficiently 
integrate these three types of processing methods into a complete MPEG-2 encoder design. 
The SDF model is not well suited for performing this type of control flow processing and more 
generally for any functionality that requires dynamic communication patterns or activation/
deactivation across actors.

A variety of alternative models of computation have been developed to address this limitation 
and integrate flexible control flow capability with the advantages of dataflow modeling. In Buck’s 
Boolean dataflow model [40] and the subsequent generalization as integer-controlled dataflow [41], 
provisions for such flexible processing were incorporated without departing from the framework 
of dataflow, and in a manner that facilitates the construction of efficient quasi-static schedules. 
In Boolean dataflow, the number of tokens produced or consumed on an edge is either fixed or 
is a two-valued function of a control token present on a control terminal of the same actor. It is 
possible to extend important SDF analysis techniques to Boolean dataflow graphs by employing 
symbolic variables. In particular, in constructing a schedule for Boolean dataflow actors, Buck’s 
techniques attempt to derive a quasi-static schedule, where each conditional actor execution is 
annotated with the run-time condition under which the execution should occur. Boolean data-
flow is a powerful modeling technique that can express arbitrary control flow structures; how-
ever, as a result, key formal verification properties of SDF, such as bounded memory and deadlock 
detection, are lost (the associated analysis problems are not decidable) in the context of general 
Boolean dataflow specifications.

3.5.5  INTEGRATION WITH FINITE-STATE MACHINE AND 
MODE-BASED MODELING METHODS

In recent years, several modeling techniques have also been proposed that enhance expres-
sive power by providing precise semantics for integrating dataflow or dataflow-like rep-
resentations with finite-state machine (FSM) models and related methods for specifying 
and transitioning between different modes of actor behavior. These include El Greco [42], 
which evolved into the Synopsys System Studio and provides facilities for control models to 
dynamically configure specification parameters, *charts (pronounced “starcharts”) with het-
erochronous dataflow as the concurrency model [43], the FunState intermediate representa-
tion [44], the DF* framework developed at K. U. Leuven [45], the control f low provisions in 
bounded dynamic dataflow [46], enable-invoke dataflow [47], and scenario-aware dataflow 
(SADF) [48].

3.5.6 VIDEO PROCESSING EXAMPLES

Figure 3.5 shows an illustration of a model of a complete MPEG-2 video encoder system that 
is constructed using Ptolemy, builds on the P-frame-processing subsystem of Figure 3.4, and 
employs multiple dataflow graphs nested within a FSM representation. Details on this application 
model can be found in Reference 31.

Figure 3.6 shows a block diagram, adapted from Reference 48, of an MPEG-4 decoder that 
is specified in terms of SADF. Descriptive names for the actors in this example are listed in 
Table 3.1, along with their SADF component types, which are either shown as “K” for kernel 
or “D” for detector. Intuitively, kernels correspond to data processing components of the 
enclosing dataflow graph, while detectors are used for control among different modes of 
operation (scenarios) for the kernels. The FD actor in the example of Figure 3.6 determines 
the frame type (I or P frame) and is designed as a detector. The other actors in the speci-
fication are kernels. For more details on this example and the underlying SADF model of 
computation, we refer the reader to Reference 48. The “D” symbols that appear next to some 
of the edges in Figure 3.6 represent dataflow delays, which correspond to initial tokens on 
the edges.
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IDCTVLD
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FiGURe 3.6 A block diagram of an MPEG-4 decoder that is specified in terms of scenario-aware 
dataflow. (Adapted from Theelen, B.D. et al., A scenario-aware data flow model for combined long-
run average and worst-case performance analysis, in Proceedings of the International Conference on 
Formal Methods and Models for Codesign, Washington DC, 2006.)

(d) (e)

(a) (b) (c)

FiGURe 3.5 An MPEG-2 video encoder specification. (a) MPEG2 encoder (top); (b) inside the FSM; 
(c) I frame encoder; (d) P frame encoder; (e) B frame encoder.



Chapter 3 – Tools and Methodologies for System-Level Design    49

3.6 LANGUAGES AND TOOLS FOR MODEL-BASED DESIGN

In this section, we survey research on tools for model-based design of embedded systems, with 
an emphasis on tool capabilities that are relevant to video processing systems. We discuss several 
representative tools that employ established and experimental models of computation and pro-
vide features for simulation, rapid prototyping, synthesis, and optimization. For more extensive 
coverage of model-based design tools for video processing systems and related application areas, 
we refer the reader to Reference 19.

3.6.1 CAL

CAL is a language for dataflow programming that has been applied to hardware and software 
synthesis and a wide variety of applications, with a particular emphasis on applications in video 
processing [20]. One of the most important applications of CAL to date is the incorporation of a 
subset of CAL, called RVC-CAL, as part of the MPEG reconfigurable video coding (RVC) stan-
dard [49]. In CAL, dataflow actors are specified in terms of entities that include actions, guards, 
port patterns, and priorities. An actor can contain any number of actions, where each action 
describes a specific computation that is to be performed by the actor, including the associated 
consumption and production of tokens at the actor ports, when the action is executed. Whether 
or not an action can be executed at any given time depends in general on the number of avail-
able input tokens, the token values, and the actor state. These fireability conditions are specified 
by input patterns and guards of the action definition. The relatively high flexibility allowed for 
constructing firing conditions makes CAL a very general model, where fundamental scheduling-
related problems become undecidable, as with Boolean dataflow and other highly expressive, 
“dynamic dataflow” models.

Input patterns also declare variables that correspond to input tokens that are consumed when 
the action executes and that can be referenced in specifying the computation to be performed 
by the action. Such deep integration of dataflow-based, actor interface specification with speci-
fication of the detailed internal computations performed by an actor is one of the novel aspects 
of CAL.

Priorities in CAL actor specifications provide a way to select subsets of actions to execute 
when there are multiple actions that match the fireability conditions defined by the input pat-
terns and guards. For more details on the CAL language, we refer the reader to the CAL language 
report [50].

A wide variety of tools has been developed to support design of hardware and software 
systems using CAL. For example, OpenDF was introduced in Reference 22 as an open-source 
simulation and compilation framework for CAL; the open RVC-CAL compiler (Orcc) is an 
open-source compiler infrastructure that enables code generation for a variety of target lan-
guages and platforms [51]; Boutellier et al. present a plug-in to OpenDF for multiprocessor 
scheduling of RVC systems that are constructed using CAL actors [52]; and Gu et al. present 
a tool that automatically extracts and exploits statically schedulable regions from CAL speci-
fications [53].

tABLe 3.1  Modeling components Used in the MPeG-4 
Decoder Sample of Figure 3.6

Abbreviation Descriptive name type 

FD Frame detector D

IDCT Inverse discrete cosine transformation K

MC Motion compensation K

RC Reconstruction K

VLD Variable-length decoding K
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3.6.2 COMPAAN

MATLAB® is one of the most popular programming languages for algorithm development, and 
high-level functional simulation for DSP applications. In the Compaan project, developed at 
Leiden University, systematic techniques have been developed for synthesizing embedded soft-
ware and FPGA-based hardware implementations from a restricted class of MATLAB programs 
known as parameterized, static nested loop programs [54]. In Compaan, an input MATLAB 
specification is first translated into an intermediate representation based on the Kahn process 
network model of computation [26]. The Kahn process network model is a general model of data-
driven computation that subsumes as a special case the dataflow process networks mentioned 
earlier in this chapter. Like dataflow process networks, Kahn process networks consist of con-
current functional modules that are connected by FIFO buffers with nonblocking writes and 
blocking reads; however, unlike the dataflow process network model, modules in Kahn process 
networks do not necessarily have their execution decomposed a priori into well-defined, discrete 
units of execution [27].

Through its aggressive dependence analysis capabilities, Compaan combines the widespread 
appeal of MATLAB at the algorithm development level with the guaranteed determinacy, com-
pact representation, simple synchronization, and distributed control features of Kahn process 
networks for efficient hardware/software implementation.

Technically, the Kahn process networks derived in Compaan can be described as equivalent 
cyclo-static dataflow graphs [55,56] and therefore fall under the category of dataflow process 
networks. However, these equivalent cyclo-static dataflow graphs can be very large and unwieldy 
to work with, and therefore, analysis in terms of the Kahn process network model is often more 
efficient and intuitive.

The development of the capability for translation from MATLAB to Kahn process networks 
was originally developed by Kienhuis, Rijpkema, and Deprettere [57], and this capability has since 
evolved into an elaborate suite of tools for mapping Kahn process networks into optimized imple-
mentations on heterogeneous hardware/software platforms consisting of embedded processors 
and FPGAs [54]. Among the most interesting optimizations in the Compaan tool suite are depen-
dence analysis mechanisms that determine the most specialized form of buffer implementation, 
with respect to reordering and multiplicity of buffered values, for implementing interprocess 
communication in Kahn process networks [58].

Commercialization of the Compaan Technology is presently being explored as part of a Big 
Data effort in the field of astronomy. The Compaan tool set is used to program multi-FPGA 
boards from C-code for real-time analysis of astronomy data.

At Leiden University, Compaan has been succeeded by the Daedalus project, which pro-
vides a design f low for mapping embedded multimedia applications onto multiprocessor 
SoC devices [59].

3.6.3 PREESM

Parallel and Real-time Embedded Executives Scheduling Method (PREESM) is an extensible, 
Eclipse-based framework for rapid programming of signal processing systems [21,60]. Special 
emphasis is placed in PREESM for integrating and experimenting with different kinds of multi-
processor scheduling techniques and associated target architecture models. Such modeling and 
experimentation is useful in the design and implementation of real-time video processing sys-
tems, which must often satisfy stringent constraints on latency, throughput, and buffer memory 
requirements.

Various types of tools for compilation, analysis, scheduling, and architecture modeling can 
be integrated into PREESM as Eclipse [61] plug-ins. Existing capabilities of PREESM empha-
size the use of architecture models and scheduling techniques that are targeted to mapping 
applications onto Texas Instruments programmable digital signal processors, including the 
TMS320C64x+ series of processors. Applications are modeled in PREESM using SDF graphs, 
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while target  architectures are modeled as interconnections of abstracted processor cores, 
 hardware coprocessors, and communication media. Both homogeneous and heterogeneous 
architectures can be modeled, and emphasis also is placed on careful modeling of DMA-based 
operation associated with the communication media.

Multiprocessor scheduling of actors in PREESM is performed using a form of list scheduling. 
A randomized version of the list scheduling algorithm is provided based on probabilistic genera-
tion of refinements to the schedule derived by the basic list scheduling technique. This random-
ized version can be executed for an arbitrary amount of time, as determined by the designer, 
after which the best solution observed during the entire execution is returned. Additionally, the 
randomized scheduling algorithm can be used to initialize the population of a genetic algorithm, 
which provides a third alternative for multiprocessor scheduling in PREESM. A plug-in for edge 
scheduling is provided within the scheduling framework of PREESM to enable the application of 
alternative methods for mapping interprocessor communication operations across the targeted 
interconnection of communication media.

Pelcat et al. present a study involving the application of PREESM to rapid prototyping of a 
stereo vision system [62].

3.6.4 PTOLEMY

The Ptolemy project at U.C. Berkeley has had considerable influence on the general trend toward 
viewing embedded systems design in terms of models of computation [30,41]. The design of 
Ptolemy emphasizes efficient modeling and simulation of embedded systems based on the inter-
action of heterogeneous models of computation. A key motivation is to allow designers to repre-
sent each subsystem of a design in the most natural model of computation associated with that 
subsystem, and allow subsystems expressed in different models of computation to be integrated 
seamlessly into an overall system design.

A key constraint imposed by the Ptolemy approach to heterogeneous modeling is the con-
cept of hierarchical heterogeneity [63]. It is widely understood that in hierarchical modeling, a 
system specification is decomposed into a set C of subsystems in which each subsystem can 
contain one or more hierarchical components, each of which represents another subsystem in C. 
Under hierarchical heterogeneity, each subsystem in C must be described using a uniform model 
of computation, but the nested subsystem associated with a hierarchical component H can be 
expressed (refined) in a model of computation that is different from the model of computation 
that expresses the subsystem containing H.

Thus, under hierarchical heterogeneity, the integration of different models of computation must 
be achieved entirely through the hierarchical embedding of heterogeneous models. A key conse-
quence is that whenever a subsystem S1 is embedded in a subsystem S2 that is expressed in a differ-
ent model of computation, the subsystem S1 must be abstracted by a hierarchical component in S2 
that conforms to the model of computation associated with S2. This provides precise constraints for 
interfacing different models of computation. Although these constraints may not always be easy 
to conform to, they provide a general and unambiguous convention for heterogeneous integration, 
and perhaps even more importantly, the associated interfacing methodology allows each subsystem 
to be analyzed using the techniques and tools available for the associated model of computation.

Ptolemy has been developed through a highly flexible, extensible, and robust software design, 
and this has facilitated experimentation with the underlying modeling capabilities by many 
research groups in various aspects of embedded systems design. Major areas of contribution 
associated with the development of Ptolemy that are especially relevant for video processing sys-
tems include hardware/software codesign, as well as contributions in dataflow-based modeling, 
analysis, and synthesis (e.g., see References 35, 64–66).

The current incarnation of the Ptolemy project, called Ptolemy II, is a Java-based tool that 
furthers the application of model-based design and hierarchical heterogeneity [30] and provides 
an even more malleable software infrastructure for experimentation with new techniques 
involving models of computation.
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An important theme in Ptolemy II is the reuse of actors across multiple computational models. 
Through an emphasis in Ptolemy II on support for domain polymorphism, the same actor defini-
tion can in general be applicable across a variety of models of computation. In practice, domain 
polymorphism greatly increases the reuse of actor code. Techniques based on interface autom-
ata [67] have been developed to systematically characterize the interactions between actors and 
models of computation and reason about their compatibility (i.e., whether or not it makes sense 
to instantiate an actor in specifications that are based on a given model) [68].

3.6.5 SysteMoc

SysteMoc is a SystemC-based library for dataflow-based, hardware/software codesign and syn-
thesis of signal processing systems. (See Section 3.7 for more details about SystemC, the simula-
tion language on which SysteMoc was developed.) SysteMoc is based on a form of dataflow in 
which the model for each actor A  includes a set F of functions and a FSM called the firing FSM 
of A. Each function f ∈ F is classified as either an action function or a guard function. The action 
functions provide the core data processing capability of the actor, while the guard functions 
determine the activation of transitions in the firing FSM. Guard functions can access values of 
tokens present at the input edges of an actor (without consuming them), thereby enabling data-
dependent sequencing of actions through the firing FSM. Furthermore, each transition t  of the 
firing FSM has an associated action function x(t) ∈ F, which is executed when the transition t  is 
activated. Thus, SysteMoc provides an integrated method for specifying, analyzing, and synthe-
sizing actors in terms of FSMs that control sets of alternative dataflow behaviors.

SysteMoc has been demonstrated using a design space exploration case study for FPGA-
based implementation of a 2D inverse DCT, as part of a larger case study involving an MPEG-4 
decoder [69]. This case study considered a 5D design evaluation space encompassing throughput, 
latency, number of lookup tables (LUTs), number of flip-flops, and a composite resource utilization 
metric involving the sum of block RAM and multiplier resources. Among the most impressive 
results of the case study was the accuracy with which the design space exploration framework devel-
oped for SysteMoc was able to estimate FPGA hardware resources. For more details on SysteMoc 
and the MPEG-4 case study using SysteMoc, we refer the reader to Reference 69.

3.7 SIMULATION

Simulation is very important in SoC design. Simulation is not limited to functional verification, 
as with logic design. SoC designers use simulation to measure the performance and power con-
sumption of their SoC designs. This is due in part to the fact that much of the functionality is 
implemented in software, which must be measured relative to the processors on which it runs. 
It is also due to the fact that the complex input patterns inherent in many SoC applications do not 
lend themselves to closed-form analysis.

SystemC is a simulation language that is widely used to model SoCs [70]. SystemC leverages the 
C++ programming language to build a simulation environment. SystemC classes allow design-
ers to describe a digital system using a combination of structural and functional techniques. 
SystemC supports simulation at several levels of abstraction. Register-transfer-level simulations, 
for example, can be performed with the appropriate SystemC model. SystemC is most often used 
for more abstract models. A common type of model built in SystemC is a transaction-level model. 
This style of modeling describes the SoC as a network of communicating machines, with explicit 
connections between the models and functional descriptions for each model. The transaction-
level model describes how data are moved between the models.

Hardware/software cosimulators are multimode simulators that simultaneously simulate 
different parts of the system at different levels of detail. For example, some modules may be 
simulated in register-transfer mode, while software running on a CPU is simulated function-
ally. Cosimulation is particularly useful for debugging the hardware/software interface, such as 
debugging driver software.
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Functional validation, performance analysis, and power analysis of SoCs require simulating 
large numbers of vectors. Video and other SoC applications allow complex input sequences. Even 
relatively compact tests can take up tens of millions of bytes. These long input sequences are 
necessary to run the SoC through a reasonable number of the states implemented in the sys-
tem. The large amounts of memory that can be integrated into today’s systems, whether they 
be on-chip or off-chip, allow the creation of SoCs with huge numbers of states that require long 
simulation runs.

Simulators for software running on processors have been developed over the past several 
decades. The Synopsys Virtualizer, for example, provides a transaction-level modeling interface 
for software prototyping. Both computer architects and SoC designers need fast simulators to 
run the large benchmarks required to evaluate architectures. As a result, a number of simulation 
techniques covering a broad range of accuracy and performance have been developed.

A simple method of analyzing a program’s execution behavior is to sample the program coun-
ter (PC) during program execution. The Unix prof command is an example of a PC-sampling 
analysis tool. PC sampling is subject to the same limitations on sampling rate as any other sam-
pling process, but sampling rate is usually not a major concern in this case. A more serious limita-
tion is that PC sampling gives us relative performance but not absolute performance. A sampled 
trace of the PC tells us where the program spent its time during execution, which gives us valu-
able information about the relative execution time of program modules that can be used to opti-
mize the program. But it does not give us the execution time on a particular platform—especially 
if the target platform is different than the platform on which the trace is taken—and so we must 
use other methods to determine the real-time performance of programs.

Some simulators concentrate on the behavior of the cache, given the major role of the cache 
in determining overall system performance. The Dinero simulator (http://pages.cs.wisc.edu/ 
~markhill/DineroIV/) is a well-known example of a cache simulator. These simulators generally 
work from a trace generated from the execution of a program. The program to be analyzed is 
augmented with additional code that records the execution behavior of the program. The Dinero 
simulator then reconstructs the cache behavior from the program trace. The architect can view 
the cache in various states or calculate cache statistics.

Some simulation systems model the behavior of the processor itself. A functional CPU simula-
tor models instruction execution and maintains the state of the programming model, that is, the 
set of registers visible to the programmer. The functional simulator does not, however, model the 
performance or energy consumption of the program’s execution.

A cycle-accurate simulator of a CPU is designed to accurately predict the number of clock 
cycles required to execute every instruction, taking into account pipeline and memory system 
effects. The CPU model must therefore represent the internal structure of the CPU accurately 
enough to show how resources in the processor are used. The SimpleScalar simulation tool [71] 
is a well-known toolkit for building cycle-accurate simulators. SimpleScalar allows a variety of 
processor models to be built by a combination of parameterization of existing models and linking 
new simulation modules into the framework.

Power simulators are related to cycle-accurate simulators. Accurate power estimation requires 
models of the CPU microarchitecture at least as detailed as those used for performance evalua-
tion. A power simulator must model all the important wires in the architecture since capacitance 
is a major source of power consumption. Wattch [72] and SimplePower [73] are the two best-
known CPU power simulators.

3.8 HARDWARE/SOFTWARE COSYNTHESIS

Hardware/software cosynthesis tools allow system designers to explore architectural trade-offs. 
These tools take a description of a desired behavior that is relatively undifferentiated between 
hardware and software. They produce a heterogeneous hardware architecture and the architec-
ture for the software to run on that platform. The software architecture includes the allocation 
of software tasks to the processing elements of the platform and the scheduling of computation 
and communication.

http://pages.cs.wisc.edu/~markhill/DineroIV/
http://pages.cs.wisc.edu/~markhill/DineroIV/
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The functional description of an application may take several forms. The most basic is 
a task graph, as shown in Figure 3.7. The graph describes data dependencies between a set 
of processes. Each component of the graph (i.e., each set of connected nodes) forms a task. 
Each task runs periodically and every task can run at a different rate. The task graph model 
generally does not concern itself with the details of operations within a process. The process 
is characterized by its execution time. Several variations of task graphs that include control 
information have been developed. In these models, the output of a process may enable one of 
several different processes.

Task graph models are closely related to the dataflow graph models introduced in Section 3.5.1. 
The difference often lies in how the models are used. A key difference is that in dataflow models, 
emphasis is placed on precisely characterizing and analyzing how data are produced and con-
sumed by computational components, while in task graph models, emphasis is placed on effi-
ciently abstracting the execution time or resource utilization of the components or on analyzing 
real-time properties. In many cases, dataflow graph techniques can be applied to the analysis or 
optimization of task graphs and vice versa. Thus, the terms “task graph” and “dataflow graph” are 
sometimes used interchangeably.

An alternative representation for behavior is a programming language. Several different code-
sign languages have been developed and languages like SystemC have been used for cosynthesis 
as well. These languages may make use of constructs to describe parallelism that were originally 
developed for parallel programming languages. Such constructs are often used to capture opera-
tor-level concurrency. The subroutine structure of the program can be used to describe task-level 
parallelism.

The most basic form of hardware/software cosynthesis is hardware/software partitioning. 
As shown in Figure 3.8, this method maps the design into an architectural template. The basic 
system architecture is bus based, with a CPU and one or more custom hardware processing ele-
ments attached to the bus. The type of CPU is determined in advance, which allows the tool to 
accurately estimate software performance. The tool must decide what functions go into the cus-
tom processing elements; it must also schedule all the operations, whether implemented in hard-
ware or software. This approach is known as hardware/software partitioning because the bus 
divides the architecture into two partitions and partitioning algorithms can be used to explore 
the design space.

Two important approaches to searching the design space during partitioning were introduced 
by early tools. The Vulcan system [74] starts with all processes in custom processing elements and 
iteratively moves selected processes to the CPU to reduce the system cost. The COSYMA system 
[75] starts with all operations running on the CPU and moves selected operations from loop nests 
into the custom processing element to increase performance.

Hardware/software partitioning is ideally suited to platform FPGAs, which implement the 
bus-partitioned structure and use FPGA fabrics for the custom processing elements. However, 
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FiGURe 3.7 A task graph.
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the cost metric is somewhat different than in custom designs. Because the FPGA fabric is of a 
fixed size, using more or less of the fabric may not be important, so long as the design fits into the 
amount of logic available.

Other cosynthesis algorithms have been developed that do not rely on an architectural 
template. Kalavade and Lee [64] alternately optimize for performance and cost to generate 
a heterogeneous architecture. Wolf [76] alternated cost reduction and load balancing while 
maintaining a performance-feasible design. Dick and Jha [77] used genetic algorithms to search 
the design space.

Scheduling is an important task during cosynthesis. A complete system schedule must ulti-
mately be constructed; an important aspect of scheduling is the scheduling of multiple processes 
on a single CPU. The study of real-time scheduling for uniprocessors was initiated by Liu and 
Layland [78], who developed rate-monotonic scheduling (RMS) and earliest-deadline-first (EDF) 
scheduling. RMS and EDF are priority-based schedulers, which use priorities to determine which 
process to run next. Many cosynthesis systems use custom, state-based schedulers that deter-
mine the process to execute based upon the state of the system.

Design estimation is an important aspect of cosynthesis. While some software characteristics 
may be determined by simulation, hardware characteristics are often estimated using high-level 
synthesis. Henkel and Ernst [79] used forms of high-level synthesis algorithms to quickly synthe-
size a hardware accelerator unit and estimate its performance and size. Fornaciari et al. [80] used 
high-level synthesis and libraries to estimate power consumption.

Software properties may be estimated in a variety of ways, depending on the level of abstrac-
tion. For instance, Li and Wolf [81] built a process-level model of multiple processes interacting 
in the cache to provide an estimate of the performance penalty due to caches in a multitask-
ing system. Tiwari et al. [82] used measurements to build models of the power consumption of 
instructions executing on processors.

3.9 SUMMARY

System-level design is challenging because it is heterogeneous. The applications that we want 
to implement are heterogeneous in their computational models. The architectures on which we 
implement these applications are also heterogeneous combinations of custom hardware, proces-
sors, and memory. As a result, system-level tools help designers manage and understand complex, 
heterogeneous systems. Models of computation help designers cast their problem in a way that 
can be clearly understood by both humans and tools. Simulation helps designers gather impor-
tant design characteristics. Hardware/software cosynthesis helps explore design spaces. As appli-
cations become more complex, expect to see tools continue to reach into the application space to 
aid with the transition from algorithm to architecture.

CPU

Memory

Accelerator

Bus

FiGURe 3.8 A template for hardware/software partitioning.
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4.1 INTRODUCTION

While a digital integrated circuit can always be specified and modeled correctly and precisely as 
a network of Boolean logic gates, the complexity of today’s multibillion transistor chips would 
render such a model unwieldy, to say the least. The objective of system-level specification and 
modeling languages—the subject of this chapter—is to describe such behemoths in more abstract 
terms, making them easier to code, evaluate, test, and debug, especially early during the design 
process when fewer details are known.

Our systems compute—perform tasks built from Boolean decision making and arithmetic—
so it is natural to express them using a particular model of computation. Familiar models of 
computation include networks of Boolean logic gates and imperative software programming 
languages (e.g., C, assembly, Java). However, other, more specialized models of computation are 
often better suited for describing particular kinds of systems, such as those focused on digital 
signal processing.

Specialized models of computation lead to a fundamental conundrum: while a more specia-
lized model of computation encourages more succinct, less buggy specifications that are easier to 
reason about, it may not be able to model the desired system. For example, while many dataflow 
models of computation are well suited to describing signal processing applications, using them to 
describe a word processor application would be either awkward or impossible. We need models 
of computation that are specialized enough to be helpful, yet are general enough to justify their 
creation.

4.2  PARALLELISM AND COMMUNICATION: 
THE SYSTEM MODELING PROBLEMS

Digital systems can be thought of as a set of components that operate in parallel. While it can be 
easier to conceptualize a system described in a sequential model such as the C software language, 
using such a model for a digital system is a recipe for inefficiency. All the models described in this 
chapter are resolutely parallel.

Describing how parallel components communicate provides both the main challenge in sys-
tem modeling and the largest opportunity for specialization. A system is only really a system 
if its disparate components exchange information (otherwise, we call them multiple systems), 
and there are many ways to model this communication. Data can be exchanged synchronously, 
meaning every component agrees to communicate at a periodic, agreed-upon time, or asynchro-
nously. Communication among components can take place through point-to-point connections 
or arbitrary networks. Communication channels can be modeled as memoryless or be allowed to 
store multiple messages at a time.

How communication is performed in each model of computation provides a convenient way 
to classify the models. In the following, we discuss a variety of models of computation following 
this approach. Others, including Simulink® [18,19], LabView, and SysML, which are more difficult 
to classify and less formal, are discussed in Chapter 9.

4.3 SYNCHRONOUS MODELS AND THEIR VARIANTS

Digital hardware designers are most familiar with the synchronous model: a network of Boolean 
logic gates and state-holding elements (e.g., flip-flops) that march to the beat of a global clock. 
At  the beginning of each clock cycle, each state-holding element updates its state, potentially 
changing its output and causing a cascade of changes in the Boolean gates in its fanout.

The synchronous model imposes sequential behavior on what are otherwise uncoordinated, 
asynchronously running gates. The clock’s frequent, periodic synchronization forces the sys-
tem’s components to operate in lockstep. Provided that the clock’s period is long enough to allow 
the combinational network to stabilize, a synchronous logic network behaves as a finite-state 
machine that takes one step per clock tick.
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While most digital systems are ultimately implemented in a synchronous style, the model 
has two big disadvantages. Uniformly distributing a multi-GHz clock signal without skew (time 
difference among components, which limits maximum speed) presents a practical challenge; 
assigning each computation to a cycle and limiting communication to one message per cycle 
presents a more conceptual challenge.

A number of system design languages are based on the synchronous model of computa-
tion. Each takes a different approach to describing the behavior of processes, and many have 
subtle differences in semantics. Benveniste et  al. [3] discuss the history of many of these 
languages.

4.3.1 DATAFLOW: LUSTRE AND SIGNAL

The Lustre language [30] is a textual dataflow language. A Lustre program consists of arithme-
tic, decision, and delay operators applied to streams of Booleans, integers, and other types. For 
example, the following (recursive) Lustre equation states that the stream n consists of 0 followed 
by the stream n delayed by one cycle with 1 added to every element. This equation produces the 
sequence 0, 1, 2, ….

 n = 0 -> pre(n) + 1

Lustre permits such recursive definitions provided that every loop is broken by at least one delay (pre), 
a requirement similar to requiring combinational logic to be cycle-free. This rule ensures the 
behavior is always well defined and easy to compute.

Functions are defined in Lustre as a group of equations with named ports. Here is a general-
purpose counter with initial, step, and reset inputs from Halbwachs et al. [30].

 node COUNTER(val_init, val_incr: int, 

   reset: bool) returns (n: int); 
 let 
  n = val_init -> if reset then val_init 

    else pre(n) + val_incr; 
 tel. 

Lustre’s when construct subsamples a stream under the control of a Boolean-valued stream, 
similar to the downsampling operation in digital signal processing. Its complementary current 
construct interpolates a stream (using a sample-and-hold mechanism) to match the current basic 
clock, but Lustre provides no mechanism for producing a faster clock.

The Signal language [40] is a similar dataflow-oriented language based on synchronous 
semantics, but departs from Lustre in two important ways. First, it has much richer mecha-
nisms for sub- and oversampling data streams that allow it to create faster clocks whose rates 
are data dependent. While this is difficult to implement in traditional logic, it provides Signal 
with expressibility approaching that of a software programming language. For example, Signal 
can describe a module that applies Euclid’s greatest common divisor algorithm to each pair of 
numbers in an input stream. A designer would have to manually add additional handshaking to 
model such behavior in Lustre.

The other main difference is that Signal allows arbitrary recursive definitions, includ-
ing those that have no solution along with those with multiple solutions. Signal’s design-
ers chose this route to enable the modeling of more abstract systems, including those with 
nondeterminism.

4.3.2 IMPERATIVE: ESTEREL

The Esterel synchronous language [7] provides an imperative modeling style rather different from 
the aforementioned dataflow languages. Such an approach simplifies the description of discrete 
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control applications. To illustrate, Berry’s [5] ABRO example expresses a resettable synchronizer 
that waits for the arrival of two signals (A and B) before outputting O:

module ABO:
input A, B, R;
output O;
loop
 [ await A || await B ];
 emit O
each R
end module

The semantics of Esterel uniquely define the cycle-level timing of such a program, which are actu-
ally fairly complex because of all the edge cases. Here, each await construct waits one or more 
cycles for the Boolean signal A or B to be true. In the cycle that the second signal is true, the par-
allel construct || passes control immediately to the emit statement, which makes O true in that 
cycle (it is false by default). Note that A and B can arrive in either order or in the same cycle. The 
loop construct immediately restarts this process once O has been emitted or in a cycle where 
R is present. Finally, if A, B, and R arrive in the same cycle, the semantics of loop…each gives 
priority to R; O will not be true in that cycle.

Esterel’s precise semantics makes it a good target for model checkers. For example, XEVE [11] 
was able to achieve high state coverage when verifying the control-dominated parts of a com-
mercial digital signal processor (DSP) [2]. The reference model was written in a mixture of C for 
the datapath and Esterel for control.

The techniques used to compile Esterel have evolved substantially [56]. While synchronous 
models always imply an underlying finite-state machine, the earliest Esterel compilers enu-
merated the program’s states, which could lead to exponential code sizes. The next compilers 
avoided the exponential code size problem by translating the program into a circuit and gener-
ating code that simulated the circuit. Berry described this approach in 1991 [4], which formed 
the basis of the successful V5 compiler. Later work by Edwards [22] and Potop-Butucaru [55] 
better preserved the control structure of the source program in the compiled code, greatly 
speeding its execution.

An Esterel program is allowed to have, within a single clock cycle, cyclic dependencies, pro-
vided that they can be resolved at compile time. This solution falls between that in Lustre, which 
simply prohibits cyclic dependencies, and Signal, which defers their resolution to runtime. This 
subtle point in Esterel’s semantics was not clearly understood until the circuit translation of 
Esterel emerged. Shiple et al. [62] describes the techniques employed, which evolved from earlier 
work by Malik [47].

Seawright’s production-based specification system, Clairvoyant [59], shares many ideas with 
Esterel. Its productions are effectively regular expressions that invoke actions (coded in VHDL or 
Verilog), reminiscent of the Unix tool lex [46]. Seawright et al. later extended this work to produce 
a commercial tool called Protocol Compiler [60], whose circuit synthesis techniques were similar 
to those used for compiling Esterel. While not a commercial success, the tool was very effective 
for synthesizing and verifying complex controllers for SDH/Sonet applications [51].

4.3.3 GRAPHICAL: STATECHARTS AND OTHERS

Harel’s Statecharts [31] describe hierarchical state machines using a graphical syntax. 
Ultimately, a synchronous language shares Esterel’s focus on discrete control and even some of 
its semantic constructs, but its graphical approach is fundamentally different. I-Logix, which 
Harel cofounded, commercialized the technology in a tool called Statemate, which has since 
been acquired by IBM.

Statecharts assemble hierarchical extended finite-state machines from OR and AND compo-
nents. An OR component is a familiar bubble-and-arc diagram for a state machine, with guard 
conditions and actions along the arcs, but the states may be either atomic or Statechart models 
(i.e., hierarchical). As in a standard FSM, the states in an OR component are mutually exclusive. 
By contrast, an AND component consists of two or more Statechart models that operate in parallel. 



Chapter 4 – System-Level Specification and Modeling Languages    63

In Harel’s original version, transition arrows can cross levels of hierarchy, providing great expres-
sive power (something like exceptions in software) while breaking modularity.

The Statechart below is an OR component (states C and AB); AB is an AND component 
consisting of two OR components. It starts in state AB at states A1 and B1. The arcs may have 
conditions and actions (not shown here).

A1 B1

B2

AB

A2
C

c

Statecharts can be used for generation of C or HDL (hardware description language) code for 
implementation purposes, but the representation is most commonly used today for creating 
 executable specifications [32] as opposed to final implementations.

The form of Statecharts has been widely accepted; it has even been adopted as part of the 
Unified Modeling Language [58], but there has been a great deal of controversy about the seman-
tics. Many variants have been created as a result of differing opinions about the best approach to 
take: von der Beeck [68] identifies 20 and proposes another.
The following are the main points of controversy:

 ◾ Modularity: Many researchers, troubled by Harel’s level-crossing transitions, eliminated 
them and came up with alternative approaches to make them unnecessary. In many 
cases, signals are used to communicate between levels.

 ◾ Microsteps: Harel’s formulation uses delta cycles to handle cascading transitions that 
occur based on one transition of the primary inputs, much like in VHDL and Verilog. 
Others, such as Argos [48] and SyncCharts [1], have favored synchronous-reactive 
semantics and find a fixpoint, so that what requires a series of microsteps in Harel’s 
Statecharts becomes a single atomic transition. These formulations reject a specification 
if its fixpoint is not unique.

 ◾ Strong preemption vs. weak preemption: A race of sorts occurs when a system is in a 
state where both an inner and outer state have a transition triggered by the same event. 
With strong preemption, the outer transition “wins”; the inner transition is completely 
preempted. With weak preemption, both transitions take place (meaning that the action 
associated with the inner transition is performed), with the inner action taking place 
first (this order is required because the outer transition normally causes the inner state 
to terminate). Strong preemption can create causality violations, since the action on an 
inner transition can cause an outer transition that would preempt the inner transition. 
Many Statechart variants reject specifications with this kind of causality violation as ill 
formed. Some variants permit strong or weak preemption to be specified separately for 
each transition.

 ◾ History and suspension: When a hierarchical state is exited and reentered, does it 
remember its previous state? If it does, is the current state remembered at all levels of 
hierarchy (deep history) or only at the top level (shallow history)? In Harel’s Statecharts, 
shallow history or deep history can be specified as an attribute of a hierarchical state. 
In some other formulations, a suspension mechanism is used instead, providing the 
equivalent of deep history by freezing a state (analogous to gating a clock in a hardware 
implementation).
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The Statechart below, a traffic light controller with the ability to pause, illustrates the difference 
between history and suspension. The controller on the left uses a Harel-style history mechanism 
that commands the controller to resume in a stored state after a pause; on the right, a SyncCharts-
like suspension mechanism holds the controller’s state while the pause input is asserted.

RED YEL
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~Pause Pause
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Pause

PAUSE

4.4 TRANSACTION-LEVEL MODELS AND DISCRETE-EVENT SIMULATION

The constraints of the synchronous model that guarantee determinism—lockstep operation cou-
pled with fixed, periodic communication—demand a higher level of detail than is often desired; 
transaction-level modeling (TLM) is a popular approach that relaxes both of these requirements, 
providing a model of computation comprised of asynchronous processes that communicate (reli-
ably) at will. The result is more abstract than synchronous models, but can be nondeterministic, 
or at least sensitive to small variations in timing.

Grötker et al. [29] define TLM as “a high-level approach to modeling digital systems where 
details of communication among modules are separated from the details of the implementation 
of the functional units or of the communication architecture.” The original SystemC development 
team coined the term “transaction-level modeling”; an alternative, “transaction-based modeling,” 
might have been preferable, as TLM does not correspond to a particular level of abstraction in 
the same sense that, for example, register-transfer level (RTL) does [28]. However, distinctions 
between TLM approaches and RTL can clearly be made: while in a RTL model of a digital sys-
tem the detailed operation of the protocol, address, and data signals on a bus are represented in 
the model, with TLM, a client of a bus-based interface might simply issue a call to high-level 
read() or write() functions. The TLM approach therefore not only reduces model complex-
ity but also reduces the need for simulating parallel threads, both of which improve simulation 
speed. Grötker et al. [29, Chapter 8] give a simple but detailed example of a TLM approach to the 
modeling of a bus-based system with multiple masters, slaves, and arbiters.

While the SystemC project coined the TLM term, the idea is much older. For example, the 
SpecC language [26], through its channel feature, permits the details of communication to be 
abstracted away in much the same manner. Furthermore, the SystemVerilog language [64] now 
supports TLM through ports declared with its interface keyword. Even without direct lan-
guage support, it is almost always possible to separate functional units from communication as 
cleaner way of organizing a system design, even in all its detailed RTL glory; Sutherland et al. [64] 
recommend exactly this.

TLM is commonly used in a discrete-event (DE) setting: a simulation technique for synchronous 
models whose processes are idle unless one of their inputs change. By demanding such behavior, 
a DE simulator only needs to do work when something changes. Broadly, a DE simulator advances 
simulation time (i.e., the clock cycle being simulated, typically a measure of real time) until it reaches 
the next scheduled event, then it executes that event, which may cause a change and schedule 
another future event, and so on. The common Verilog and VHDL hardware modeling languages, for 
example, are based on this model, so it is semantically easy to mix TLM with detailed RTL models 
of certain components, which is useful at various steps in the design refinement process.

The TLM methodology for system design continues to mature, yet disagreement remains 
about how many levels of abstraction to consider during a design flow. Cai and Gajski [17] propose 
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a rigorous approach in which the designer starts with an untimed (i.e., purely functional) specifi-
cation, then separately refines the model’s computation and communication. They identify inter-
mediate points such as bus-functional models with accurate communication timing but only 
approximate computation timing.

4.5 HOARE’S COMMUNICATING SEQUENTIAL PROCESSES

Communicating sequential processes with rendezvous (CSP) is an untimed model of computa-
tion first proposed by Hoare [34]. Unlike synchronous models, CSP does not assume a global 
clock and instead ensures synchronization among parts of a system through rendezvous commu-
nication. A pair of processes that wish to communicate must do so through a rendezvous point 
or channel. Each process must post an I/O request before data are transferred; whichever process 
posts first waits for its peer.

Such a lightweight communication mechanism is easy to implement in both hardware and 
software and has formed the basis for high-level languages such as Occam [36], the remote-
procedure call style of interprocess communication in operating systems, and even asynchronous 
hardware design [49].

Nondeterminism is a central issue in CSP: nothing prohibits three or more processes to attempt 
to rendezvous on the same channel. This situation produces a race that is won by the first two pro-
cesses to arrive; changing processes’ execution rate (but not their function) can dramatically change 
a system’s behavior and I/O. Such races can be dangerous or a natural outcome of a system’s struc-
ture. Server processes naturally wait for a communication from any of a number of other processes 
and respond to the first one that arrives. This behavior can be harmless if requests do not update 
the server’s state, or can mask hard-to-reproduce bugs that depend on timing, not just function.

4.6 DATAFLOW MODELS AND THEIR VARIANTS

Dataflow models of computation allow for varying communication rates among components, 
a more expressive alternative to synchronous models, which usually assume a constant, unit 
communication rate among components. Most dataflow models also provide some facility for 
buffering communication among components, which adds more flexibility in execution rates and 
implementations since the whole system no longer needs to operate in lockstep.

Dataflow’s flexibility allows the easier description of multirate and data-dependent com-
munication, often convenient abstractions. While both can be “faked” in synchronous models 
(e.g., by adding the ability to hold the state of certain components so they perceive fewer clock 
cycles), expressing this in a synchronous model requires adding exactly the sort of implementa-
tion details designers would prefer to omit early in the design process.

Nondeterminism can be an issue with dataflow models. In general, allowing parallel processes 
to read from and write to arbitrary channels at arbitrary times produces a system whose function 
depends on relative execution rates, which are often difficult to control. Such nondeterminism 
can make it very difficult to verify systems since testing can be inconclusive: even if a system is 
observed to work, it may later behave differently even when presented with identical inputs.

Whether the model of computation guarantees determinacy is thus a key question to ask of 
any dataflow model. Note that nondeterministic models of computation can express determin-
istic systems; the distinction is that they do not provide any guarantee. In 1974, Gilles Kahn [37] 
proposed a very flexible deterministic dataflow model that now underlies most dataflow models; 
most successful ones are careful restrictions of this.

4.6.1 KAHN PROCESS NETWORKS: DETERMINISM WITH UNBOUNDED QUEUES

A Kahn process network (KPN) [37] is a network of processes that communicate by means of 
unbounded first-in-first-out queues (FIFOs). Each process has zero or more input FIFOs, and zero 
or more output FIFOs. Each FIFO is connected to exactly one input process and one output process. 
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When a process writes data to an output FIFO, the write always happens immediately; the FIFO 
grows as needed to accommodate the data written. However, a process may only read one of its 
inputs by means of a blocking read: if there are insufficient data to satisfy a request, the reading 
process blocks until the writing process for the FIFO provides more. Furthermore, a process can 
only read from a single FIFO at any time: it cannot, say, wait for the first available data on multiple 
FIFOs. The data written by a process depend only on the data read by that process and the initial 
state of the process. Under these conditions, Kahn showed that the trace of data written on each 
FIFO is independent of process scheduling order, that is, the I/O behavior of a Kahn network is 
deterministic even if the relative speeds of the processes are uncontrolled.

Because any implementation that preserves the semantics will compute the same data streams, 
KPN representations, or special cases of them, are a useful starting point for the system architect 
and are often used as executable specifications.

Dataflow process networks are a special case of Kahn process networks in which the behavior 
of each process (often called an “actor” in the literature) can be divided into a sequence of execu-
tion steps called “firings” by Lee and Parks [44]. A firing consists of zero or more read operations 
from input FIFOs, followed by a computation, and then by zero or more write operations to out-
put queues (and possibly a modification of the process’s internal state). This model is widely used 
in both commercial and academic software tools, such as Scade [6], SPW, COSSAP [38] and its 
successor, System Studio [12], and Ptolemy [20]. The subdivision into firings, which are treated as 
indivisible quanta of computation, can greatly reduce context switching overhead in simulation, 
and can enable synthesis of software and hardware. In some cases (e.g., Yapi [21], Compaan [63]), the 
tools permit processes to be written as if they were separate threads, and then split the threads 
into individual firings by means of analysis; the thread representation allows read and write direc-
tives to occur anywhere, while the firing representation can make it easier to understand the data 
rates involved, which is important for producing consistent designs.

While mathematically elegant, Kahn process networks in their strictest form are unrealizable 
because of their need for unbounded buffers. Even questions like whether a network can run in 
bounded memory are generally undecidable. Parks [52] presents a scheduling policy to run a KPN 
in bounded memory if it can be done, but it is an online algorithm that provides no compile-time 
guarantees.

4.6.2 STATIC DATAFLOW: DATA-INDEPENDENT FIRING

In an important special case of dataflow process networks, the number of values read and written 
by each firing of each process is fixed, and does not depend on the data. This model of computa-
tion was originally called synchronous dataflow (SDF) [43], an unfortunate choice because it is 
untimed, yet suggests the synchronous languages discussed earlier. In fact, the term was origi-
nally used for the Lustre language described earlier. The term “static dataflow” is now considered 
preferable; Lee himself uses it [44]. Fortunately, the widely used acronym SDF still applies.

Below is a simple SDF graph that upsamples its input (block A) by a factor of 100, applies a 
function C to the signal, and then downsamples it down by 100. Each number indicates how 
many data values are read or written to the attached FIFO each time the actor fires. For example, 
every time the B actor fires, it consumes 1 value (on the FIFO from A) and produces 10 values 
(on the FIFO to C). While not shown in this example, each edge may have initial logical delays, 
which can be thought of as initial values in the queues. Such initial values are compulsory to 
avoid deadlock if the graph contains cycles.

A B C D E
10 1 10 1 1 110 10

Compile-time analysis is a central advantage of SDF over more general Kahn networks: sched-
uling, buffer sizes, and the possibility of deadlock can all be established precisely and easily before 
the system runs [43]. Analysis begins by determining consistent relative actor firing rates, if they 
exist. To avoid buffer over- or underflow, the number of values read from a FIFO must asymptoti-
cally match the number of values written. Define entry (i,j) of the topology matrix Γ to be the net 
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number of values written (reads count negatively; zero represents no connection) per firing of 
actor j on FIFO i. Note that Γ is not necessarily square. To avoid unbounded data accumulation or 
systematic underflow on each FIFO, these production and consumption rates must balance, that 
is, if q is a column vector and each qj is the number of times actor j fires, we must ultimately have

 Gq = 0

If the graph is connected, q has nonzero solutions only if rank(Γ) is s − 1, where s is the number 
of actors in the graph [42].

For example, the SDF graph below is inconsistent. There is no way both A and B can fire 
continuously without the data in the top FIFO growing unbounded. Equivalently, the only 
solution to Γq = 0 is q = 0.
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By contrast, if Γ has rank s − 1, the system has a 1D family of solutions that corresponds to 
running with bounded buffers. In general, s actors demands Γ have rank s − 1; rank s implies 
inconsistent rates; and a rank below s − 1 implies disconnected components—usually a design 
error. For the up-/downsampler example given earlier,

 

10 1 0 0 0
0 10 1 0 0
0 0 1 10 0
0 0 0 1 10

1

2

3

4

5

-
-

-
-

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê

q
q
q
q
q

êê
ê

ù

û

ú
ú
ú
ú
ú
ú

= 0

We are interested in the smallest nonzero integral solution to this system, which gives the number 
of firings in the shortest repeatable schedule. For this example,

 
q x= [ ],1 10 100 10 1

where x is an arbitrary real number. This solution means that, in the smallest repeatable schedule, 
actors A and E fire once, B and D fire 10 times, and C fires 100 times. While a schedule listing all 
122 firings is correct, a single-appearance schedule [8], which includes loops and lists each actor 
exactly once, produces a more efficient implementation. For this example, A(BC10D)10E is such a 
schedule.

A nontrivial solution to the balance equations Γq = 0 is necessary but does not guarantee a 
feasible schedule; the system may still deadlock. The graph below has a simple family of solutions 
(A and B fire equally often), yet it immediately deadlocks because there are no initial data in either 
FIFO. It is always possible to make a system with consistent rates avoid underflow by adding ini-
tial tokens to its FIFOs, but doing so usually changes the data passed between the actors.

A B

1

11

1



68    4.6 Dataflow Models and Their Variants

For static dataflow networks, efficient static schedules are easily produced, and bounds can be 
determined for all of the FIFO buffers, whether for a single programmable processor, multiple 
processors, or hardware implementations. Bhattacharyya et al. [9] provide an excellent overview 
of the analysis of SDF designs, as well as the synthesis of software for a single processor from 
such designs.

For multiple processors, one obvious alternative is to form a task dependence graph from the 
actor firings that make up one iteration of the SDF system, and apply standard task scheduling 
techniques such as list scheduling to the result. Even for uniform-rate graphs, where there is no 
looping, the scheduling problem is NP-hard. However, because it is likely that implicit loops are 
present, a linear schedule is likely to be too large to handle successfully. Efficient multiprocessor 
solutions usually require preservation of the hierarchy introduced by looping; Pino et  al. [53] 
propose a way to do this.

Engels et al. [25] propose cyclo-static dataflow: a subtle but powerful extension of static data-
flow that allows the input–output pattern of an actor to vary periodically. Complete static sched-
ules can still be obtained, but in most cases the interconnecting FIFO queues can be made much 
shorter because more details of an actor’s behavior can be exposed, reducing unneeded buffering 
otherwise imposed by the SDF model.

The Gabriel system [10] was one of the earliest examples of a design environment that sup-
ported the SDF model of computation for both simulation and code generation for DSPs. Gabriel’s 
successor, Ptolemy, extended and improved Gabriel’s dataflow simulation and implementation 
capabilities [54]. Descartes [57] was another early, successful SDF-based code generation system, 
which was later commercialized along with COSSAP by Cadis (later acquired by Synopsys). The 
GRAPE-II system [39] supported implementation using the cyclo-static dataflow model.

While many graphical SDF design systems exist, others have employed textual languages 
whose semantics are close to SDF. The first of these was Silage [33], a declarative language in 
which all loops are bounded; it was designed to allow DSP algorithms to be efficiently imple-
mented in software or hardware. The DFL (dataflow) language [69] was derived from Silage, 
and a set of DFL-based implementation tools was commercialized by Mentor Graphics as DSP 
station, now defunct.

4.6.3 DYNAMIC DATAFLOW: DATA-DEPENDENT FIRING

The term dynamic dataflow is often used to describe dataflow systems that include data-dependent 
firing and are therefore not static. COSSAP [38] may have been the first true dynamic dataflow 
simulator; Messerschmitt’s Blosim [50], while older, required the user to specify sizes of all FIFO 
buffers and writes to full FIFOs blocked (while COSSAP buffers grow as needed), so it was not a 
true dataflow (or Kahn process network) simulator. However, the method used by COSSAP for 
dynamic dataflow execution was suitable for simulation only, not for embedded systems imple-
mentation, and did not provide the same guarantees as Parks [52].

While there are many algorithmic problems or subproblems that can be modeled as SDF, at 
least some dynamic behavior is required in most cases, so there has long been interest in provid-
ing for at least some data-dependent execution of actors in tools, without paying for the cost of 
full dynamic dataflow.

The original SPW tool from Comdisco (later Cadence, now Synopsys) [16] used a dataflow-
like model of computation that was restricted in a different way: each actor had an optional hold 
signal. The actor would always read the hold signal. If hold was true, the actor did not execute; 
otherwise, it would read one value from each of its other inputs and write one value to each of its 
outputs. This model is more cumbersome than SDF for static multirate operation, but can express 
dynamic behaviors that SDF cannot express, and the one-place buffers simplified the generation 
of hardware implementations. It is a special case of dynamic dataflow (though limited to one-
place buffers). Later versions of SPW added full support for SDF and dynamic dataflow.

Boolean-controlled dataflow (BDF) [13], later extended to integer dataflow (IDF) [14] to allow 
for integer control streams, was an attempt to extend SDF analysis and scheduling techniques 
to a subset of dynamic dataflow. While in SDF the number of values read or written by each I/O 
port is fixed, in BDF the number of values read by any port can depend on the value of a Boolean 
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data value read or written by some other port called a “control port.” In the BDF model, as in 
SDF, each port of each actor is annotated with the number of values transferred (read or written) 
during one firing. However, in the case of BDF, instead of a compile-time constant the number of 
values transferred can be an expression containing Boolean-valued variables. These variables are 
the data values that arrive at, or are written by a control port, a port of the BDF actor that must 
transfer one value per firing. The SPW model, then, is a special case of BDF where there is one 
control port that controls all other ports, and the number of values transferred must be one or 
zero. IDF allows control streams to be integers.

While BDF is still restricted compared to general dataflow, it is sufficiently expressive to be 
Turing equivalent. Unfortunately, this means that a number of analysis problems, including the 
important question of whether buffer sizes can be bounded, are undecidable in general [13]. 
Nevertheless, clustering techniques can be used to convert a BDF graph into a reduced graph 
consisting of clusters; each individual cluster has a static or quasi-static schedule, and only a sub-
set of the buffers connecting clusters can potentially grow to unbounded size. This approach was 
taken in the dataflow portion of Synopsys’s System Studio [12], for example.

Zepter and Grötker [70] used BDF for hardware synthesis. Their approach can be thought of 
as a form of interface synthesis: given a set of predesigned components that read and write data 
periodically, perhaps with different periods and perhaps controlled by enable signals, together 
with a behavioral description of each component as a BDF model, their Aden tool synthesized the 
required control logic and registers to correctly interface the components.

Later work based on Zepter’s concept relaxed the requirement of periodic component behav-
ior and provided more efficient solutions, but only handled the SDF case [35].

4.6.4 DATAFLOW WITH FIXED QUEUES

Bounding queue sizes between dataflow actors makes a dataflow model finite state (and thus 
easier to analyze than Kahn’s Turing-complete networks), although it can impose deadlocks that 
would not occur in the more general model. This is often a reasonable trade-off, however, and is 
a more realistic model of practical implementations.

SHIM (software/hardware integration medium) [23] is one such model: complementary 
to SDF, it allows data-dependent communication patterns but requires FIFO sizes to be stati-
cally bounded. Its data-dependent communication protocols allow it to model such things as 
variable-bitrate decompression (e.g., as used in JPEG and related standards), which is beyond 
static dataflow models. The SHIM model guarantees the same I/O determinacy of Kahn but 
because it is finite state, it enables very efficient serial code generation based on static analysis 
[24], recursion [65], deterministic exceptions [66], and static deadlock detection [61], none of 
which would be realistic in a full Kahn network setting.

Perhaps the most commonly used fixed-sized queues are SystemC’s sc _ fifo<t> channels 
[29]. The task-transfer-level approach [67] illustrates how such queues can be used. It starts from 
an executable Kahn network (i.e., with unbounded queues) written in Yapi [21]. The model is then 
refined to use fixed-sized queues.

4.7 HETEROGENEOUS MODELS

Each of the models of computation discussed earlier is a compromise because most advantages 
arise from restrictions that limit what a model can express, making certain behaviors either 
awkward or impossible to express.

Heterogeneous models attempt to circumvent this trade-off by offering the best of multiple 
worlds. Ptolemy [15] was the first systematic approach that accepted the value of domain-specific 
tools and models of computation, yet sought to allow designers to combine more than one model 
in the same design. Its approach to heterogeneity was to consistently use block diagrams for 
designs but to assign different semantics to a design based on its domain, or model of compu-
tation. Primitive actors were designed to function only in particular domains, and hierarchi-
cal designs were simulated based on the rules of the current domain. To achieve heterogeneity, 
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Ptolemy allowed a hierarchical design belonging to one domain (e.g., SDF) to appear as an atomic 
actor following the rules of another domain (e.g., DE simulation). For this to work correctly, 
mechanisms had to be developed to synchronize schedulers operating in different domains.

The original Ptolemy, now called Ptolemy Classic, was written in C++ as an extensible class 
library; its successor, Ptolemy II [20], was thoroughly redesigned and written in Java. Ptolemy 
Classic treated domains as either untimed (e.g., dataflow) or timed (e.g., DE). From the perspec-
tive of a timed domain, actions in an untimed domain appeared to be instantaneous. In the case 
of a mixture of SDF and DEs, for example, one might represent a computation with SDF com-
ponents and the associated delay in the DE domain, thus separating the computation from the 
delay involved in a particular implementation. When two distinct timed domains are interfaced, 
a global time is maintained, and the schedulers for the two domains are kept synchronized. 
Buck et al. [15] describe the details of synchronizing schedulers across domain boundaries.

Ptolemy Classic was successful as a heterogeneous simulation tool, but it possessed a path to 
implementation (in the form of generated software or HDL code) only for dataflow domains (SDF 
and BDF). Furthermore, all of its domains shared the characteristic that atomic blocks repre-
sented processes and connections represented data signals.

One of the more interesting features added by Ptolemy II was its approach to hierarchical con-
trol [27]. The concept, flowing logically out of the Ptolemy idea, was to extend Statecharts to allow 
for complete nesting of data-oriented domains (e.g., SDF and DE) as well as synchronous-reactive 
domains, working out the semantic details as required. Ptolemy II calls designs that are repre-
sented as state diagrams modal designs. If the state symbols represent atomic states, we simply 
have an extended finite-state machine (extended because, as in Statecharts, the conditions and 
actions on the transition arcs are not restricted to Boolean signals). However, the states can also 
represent arbitrary Ptolemy subsystems. When a state is entered, the subsystem contained in the 
state begins execution. When an outgoing transition occurs, the subsystem halts its execution. 
The so-called time-based signals that are presented to the modal model propagate downward to 
the subsystems that are inside the states.

Girault et al. [27] claim that the semantic issues with Statechart variants identified by von der 
Beek [68] can be solved by orthogonality: nesting FSMs together with domains providing the 
required semantics, thereby obtaining, for example, either synchronous-reactive or DE behavior. 
But this only solves the problem in part because there are choices to be made about the semantics 
of FSMs nested inside of other FSMs.

A similar project to allow for full nesting of hierarchical FSMs and dataflow, with a somewhat 
different design, was part of Synopsys’s System Studio [12]. System Studio’s functional modeling 
combines dataflow models with Statechart-like control models that have semantics very close to 
those of SyncCharts [1], as both approaches started with the Esterel semantics. Like Ptolemy II, 
System Studio permits any kind of model to be nested inside of any other, and state transitions 
cause interior subsystems to start and stop. One unique feature of System Studio is that param-
eter values, which in Ptolemy are set at the start of a simulation run or are compiled in when 
code generation is performed, can be reset to different values each time a subsystem inside a state 
transition diagram is started.

There have been several efforts to make the comparison and the combination of models of 
computation more theoretically rigorous. Lee and Sangionvanni-Vincentelli [45] introduce a 
metamodel that represents signals as sets of events. Each event is a pair consisting of a value and a 
tag, where the tags can come from either a totally ordered or a partially ordered set. Synchronous 
events share the same tag. The model can represent important features of a wide variety of mod-
els of computation, including most of those discussed in this chapter; however, in itself it does 
not lead to any new results.

4.8 CONCLUSIONS

This chapter has described a wide variety of approaches, all of them deserving of more depth than 
could be presented here. Some approaches have been more successful than others.

It should not be surprising that there is resistance to learning new languages and models. It has 
long been argued that system-level languages are most successful when the user does not realize 
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that a new language is being proposed. Accordingly, there has sometimes been less resistance 
to graphical approaches (especially when the text used in such an approach is from a familiar 
 programming language such as C++ or an HDL), and to class libraries that extend C++ or Java. 
Lee [41] argues that such approaches are really languages, but acceptance is sometimes improved 
if users are not told this.

Approaches based on Kahn process networks and dataflow have been highly successful in a 
variety of application areas that require digital signal processing. These include wireless; audio, 
image, and video processing; radar, 3D graphics; and many others. Chapter 3 gives a detailed 
comparison of the tools used in this area. Hierarchical control tools, such as those based on 
Statechart and Esterel, have also been successful, though their use is not quite as widespread. 
Most of the remaining tools described here have been found useful in smaller niches, though 
some of these are important. Nevertheless, it seems higher-level tools are underused. As the 
complexity of systems to be implemented continues to increase, designers that exploit domain-
specific system-level approaches will benefit by doing so.
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76    5.1 Major Challenges with Block-Based Design Methodology

System-on-chip (SoC) designs are ubiquitous—they can be found at the core of every cell phone 
and tablet [1]. Most SoCs are platform based [2]: built on a foundation architecture with a pro-
cessing subsystem comprising numerous cores and a large number of support and peripheral 
intellectual property (IP) blocks. Processors, IP blocks, and memories communicate via a complex 
interconnect, typically a cascade of sophisticated network-on-chip (NoC) modules. Figure 5.1 
depicts a block diagram of an ARM-based SoC. SoCs require embedded software in order to per-
form basic functionality such as booting, power management, and clocking control. The embed-
ded software is tightly matched to the hardware and is considered an integral part of the design. 
The whole design, NoCs, and memory subsystem in particular are highly tuned for the desired 
SoC functionality and performance.

Complexity grows with every new generation of SoC designs. The newest crop features up 
to eight general-purpose compute cores, with 64-bit cores rapidly becoming the norm, along 
with several special-purpose processors, coherent interconnect with high-bandwidth memory 
access, and hundreds of integrated peripheral modules. While some of the complexities address 
mobile computing needs, future designs will undoubtedly become even more highly integrated. 
The Internet of Things,* which is identified as the next driver for computing [3], poses new chal-
lenges. Extreme low power and integration of major analog modules such as radio transceivers 
will continue to push up complexity.

SoC design projects face severe time constraints due to ever-present time-to-market pres-
sure. This conflicts with the need to integrate a growing number of features: a large number 
of wired and wireless communication protocols, a variety of sensors, more processors, higher-
bandwidth interconnect, and more sophisticated system-wide capabilities such as power and 
security management. This is made possible by relying on a block-based design methodology, 
where IP blocks—predesigned and verified modules—are composed to create the SoC. While this 
methodology is not new [4], the extent to which it is used is unprecedented.

* The Internet of Things is a vision of computing devices embedded in common objects such as household appliances, 
sensors embedded in buildings, cars, the electric grid, and medical devices. All these computing devices are connected 
to the Internet and therefore can communicate with each other and the existing World Wide Web.
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5.1 MAJOR CHALLENGES WITH BLOCK-BASED DESIGN METHODOLOGY

Knowledge transfer: IP block-based design methodology faced an uphill struggle when it was first 
introduced in the early 2000s: what seemed initially like an obvious design accelerator turned out 
in practice to be a problematic and error-prone proposition. While using a ready-made design 
saves on design time, integration time typically balloons, with rampant integration and configu-
ration errors. The contrast between the optimistic 2006 view expressed in Reference 5 and the 
more recent experience reported in Reference 6 highlights the difficulty. The reason is simple: the 
knowledge needed to configure and integrate the IP block resides with the original designer and 
not the system integrator. Packaging IP blocks properly such that all the information necessary 
for integration is available remains a major challenge.
Correct configuration: Composing an SoC out of hundreds of configurable components produces an 
astronomically large configuration space. Many commonly used IP blocks, such as standard com-
munication protocols, have tens of parameters each. There are complex interdependencies between 
configuration parameters of each IP block, and composing these together into a coherent system 
is even more challenging. Therefore, configuration requires automated assistance and validation. 
Many of the hard-to-find bugs at the integration level turn out to be configuration related [7].
Integrating software: Software is an indispensable part of an SoC design. Some of the SoC func-
tionality is unavailable without firmware being present. A case in point is a power management 
processor that provides software control over switching low power modes for the various SoC 
modules. Low-level drivers are often required as well, because some of the hardware modules 
require complex initialization sequences. The ubiquity of software has several major implications:

 ◾ Some software must be ready before SoC simulation can commence.
 ◾ The software must match the specific SoC configuration.
 ◾ Simulation of SW execution is inherently slow, posing a major throughput challenge.

Functional verification and performance validation: Functional verification is arguably the big-
gest challenge for block-based SoC designs. Verification methodology is adopting modulariza-
tion with the introduction of verification IP blocks (VIPs) [8], which are paired with matching 
design IP blocks. Such VIPs are most common for communication protocols such as Ethernet, 
USB, on-chip busses, and memory interfaces. Yet the impact of VIPs on reducing the verifica-
tion effort is considerably smaller than the impact of IP blocks on the design process. One key 
reason is the huge functional space presented by modern SoCs, that is, the combination of 
computation and communication with auxiliary functions such as controlling power, reset, 
clocking, and security. Many of the auxiliary functions are partially controlled by software, 
making their verification more challenging still. Some of the system properties, performance 
first and foremost, are emergent—they can only be observed when the system is integrated.

5.2 METADATA-DRIVEN METHODOLOGY

Design composition used to be a manual task in which a design engineer assembles the SoC by 
editing hardware description language (HDL) files, instantiating IP blocks, and connecting them 
to each other. Complexity and time constraints make this approach impractical—virtually all 
SoCs today are constructed using generator programs. These programs receive as input some 
high-level definition of the component blocks, as well as the desired configuration of the SoC. The 
term “metadata” is often used to describe this information [9]. The generator programs produce 
the top-level HDL of the composed design as well as other necessary artifacts for verification and 
implementation. Such generator programs range in sophistication from basic assembly [10] pro-
ducing standard HDL output to experimental high-level design languages that are compositional 
and directly synthesizable like Chisel [11] and metagenerators like Genesis-2 [12].

The ability to generate new design configurations with little manual effort and minimal time 
investment is sometimes used to explore design alternatives, most often focusing on the SoC inter-
connect. In contrast with high-level architectural models, designs obtained by metadata-driven 
generation are typically timing accurate, and this improves the accuracy of performance estimation.
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Many of the IP blocks are highly configurable, and some of them are created on demand by 
their own specific generator programs, customized by additional metadata input. Two broadly 
used examples are Cadence Tensilica configurable processor cores, whose instruction sets can 
be optimized to meet desired computation, power, and area requirements [13], and NoCs, whose 
topology and throughput are customized for every instance [14,15].

Besides hardware design, other artifacts are produced by automatic generation. These include 
generating verification environments, test benches for performance validation, and some low-level 
software drivers as well. Such generators require additional metadata representing verification 
components, test scenarios, and HW/SW interfaces. Novel work is attempting to capture aspects 
of the architecture and leverage that for verification. An example of such a formalism is iPave [16].

A common form of metadata used to represent the design composition and its memory archi-
tecture is the IP-XACT standard, which has been under development for over a decade [17]. Early 
development of this standard was performed by the Spirit initiative; see discussion in the previ-
ous version of this chapter [18]. Several automation tools are focused on managing IP-XACT 
metadata [19]. IP-XACT primary objects represent the following design artifacts:

 ◾ Components and component instances
 ◾ Bus interfaces/interface connections
 ◾ Ports/ad hoc connections
 ◾ Design configurations
 ◾ Filesets, listing source files, and directories
 ◾ Registers

In addition, IP-XACT accepts vendor extensions that can be used to add metadata that is inter-
preted by individual tools (the semantics of such extensions is not defined by the standard). 
Design teams and EDA companies utilize IP-XACT with vendor extensions to implement vari-
ous integration flows. An example of such homegrown automation is reported in Reference 20.

While IP-XACT was conceived as a complete standard for IP packaging and integration, it has 
several shortcomings. It does not provide sufficient detail for registers, memory architectures, 
interrupts, and resets. It does not address cross-cutting design concerns such as timing, power 
management, and design for test. Because the standard is focused on design modeling, capturing 
verification artifacts is only possible in a rudimentary way.

Other standards have been created to supplement metadata where needed. SystemRDL [21] 
is a standard focused on detailed representation of registers and memories addressing both the 
hardware and software viewpoints. CPF [22] and UPF [23] are standards for power management.

In addition to standard formats, there are many upcoming and ad hoc formats ranging from XML 
to spreadsheets capturing various supplementary aspects required for composition, verification, and 
analysis. The extensive reliance on generators makes metadata creation, validation, and management 
a central requirement for SoC integration. Means of verifying the compatibility of metadata with 
respective design data are emerging in commercial products, leveraging formal methods. Examples 
include the Cadence Jasper connectivity verification application [24] and Atrenta’s SpyGlass [25]. 
Support and automation of metadata remains an active development area.

5.3 IP PACKAGING

The block-based methodology creates a separation between the team developing the IP block and 
the team integrating it in a context of an SoC. The two teams often belong to different organi-
zations, may be geographically distant, and can have limitations on information sharing due to 
IP concerns. This separation requires a formal handoff between the teams, such that all neces-
sary information is available at the time of integration. Primarily, the design itself, along with a 
test bench and software drivers are packaged. Another major aspect of this handoff is metadata 
describing the IP block in terms of structure, interfaces, configurability, low power behavior, and 
test plan. The process of assembling the data for the handoff is called “IP packaging.” It is part 
of an automatic release procedure of the IP. Several commercial products such as Magillem IP 
Packager [26] and ARM Duolog Socrates [27] are aimed at automating this task.
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Since an SoC integrates many IP blocks, it is highly desired that all IPs are packaged the same 
way, providing the same contents. Such uniformity is a strong requirement when considering 
automation. The uniformity requirement is rarely met, however, because the form and contents 
of metadata are dependent on the IP vendor, while the automation requirements can be specific 
to the integrator’s design methodology. This state of affairs is owing to the rapid development of 
integration technology, with standards and tools struggling to catch up with the leading integra-
tion projects. As a result of this disparity, SoC design teams must devote effort and resources to 
repackaging IP blocks, filling in missing metadata aspects [28].

5.4 IP CONFIGURATION AND COMPOSITION

Many IP blocks are configurable—they may be adapted to work with several interface widths 
at varying frequencies, can enable or disable certain protocol extensions, could optionally be 
switched to a low-power mode, and so on. Some of these configuration options are static and 
determined during instantiation. Others are dynamic and sometimes software controlled.

Configuration options are often codependent: a certain mode of operation may only be avail-
able for particular interface configurations. Such interdependencies are spelled out in the IP 
block’s functional specification or datasheet. At the same time, the complexity of configuring 
even a single IP can be significant to the point that automation-guided configuration is often 
desired [29]. Configurability of VIPs is more complex still: these blocks need to match their design 
counterparts and in addition their verification-related features could be configured. For instance, 
a protocol VIP can be active (driving stimulus) or passive (monitoring only). Verification features 
such as enabling the collection of functional coverage, and the logging of events to a trace file can 
be configured with finer granularity, the selection of test sequences, the hookup of clock and reset 
conditions, and the application of additional constraints.

System composition is typically automated by one of the metadata-driven generators, most 
commonly using IP-XACT as input. This requires capturing all configuration information in 
metadata to ensure that the IP block instances are configured correctly. The composition process 
results in a top-level HDL file instantiating and connecting the IPs, as well as a top-level IP-XACT 
file. Similarly, automatically generated verification environments must instantiate properly con-
figured VIPs. Verification IP configuration is not covered by current standards; instead there are 
various vendor-provided formats and GUIs for that purpose. An example of a configuration GUI 
is provided in Figure 5.2.

FiGURe 5.2 The Cadence PureView configuration GUI for intellectual property block configuration.
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A composed system is partially configured:

 ◾ Some static configuration aspects such as connectivity are determined.
 ◾ Other static configuration options may be parameterized and will be fully determined 

only when a simulation model is built and elaborated.
 ◾ Dynamic configuration options are yet undetermined and will be finalized by the boot 

code executing during SoC initialization.

SoCs are configurable as a whole, in addition to the configuration of the integrated IPs. An SoC 
can have multiple modes of operation, some of which are required for functional testing as dis-
cussed in Section 5.5 below. Other configurations may be needed to support different market 
requirements. These configurations are mostly software controlled, but some modes may be 
hardwired depending on pin or pad ring connectivity.

The many configuration choices of individual IP blocks and the system as a whole span a huge 
configuration space, which turns out to be very sparse. Legal configurations, yielding a func-
tional system, are rare—most configuration combinations are illegal and will result in a failure. 
Unfortunately, such failures can be obscure and hard to detect, being virtually indistinguishable 
from functional design errors. Recognizing that the identification of configuration errors through 
functional verification is hugely inefficient and expensive, there are growing efforts to ensure 
“correct by construction” configuration. Approaches range from rule-based automated guid-
ance to autogeneration of configurations based on higher-level requirements [30]. An example 
for autogeneration is the OpenCores SOC_maker tool [31]. Both approaches rely on capturing 
configuration parameters and their relationships.

5.5 FUNCTIONAL VERIFICATION AND PERFORMANCE VALIDATION

Some design modules, most notably NoCs, are created by automatic generators. While presumed 
correct by construction, there is still a need to verify the functionality of such modules to dem-
onstrate that the metadata driving the generator was correct and the generated result meets 
the expected functional requirements. This calls for additional automation, generating the test 
environment and the functional tests to preserve and enhance the time and labor savings. Tools 
such as the Cadence Interconnect WorkBench [32] pair with NoC generators like ARM CoreLink 
AMBA Designer [15] to meet this need.

Dynamic functional verification converged over the last two decades to a finely honed metric-
driven methodology that is making extensive use of directed-random stimulus generation. This is 
currently the most efficient way to verify block-level designs, augmented by formal model check-
ing that offers powerful complementary capabilities. At the SoC level, however, these block-level 
methods run into major difficulties [33]. The SoC presents huge functional variability, extremely 
large sequential depth and parts of the behavior that are implemented in software. These qualities 
make each verification task much more difficult, and at the same time the probability that some 
behavior picked at random will actually be exercised in the released product is very low. A new 
verification paradigm is required to practically verify SoC functionality.

Difficulties with directed-random test generation led to the development of software-
driven scenario-based verification [34]. This methodology leverages the SoC software pro-
grammability to achieve better controllability and observability. Rather than randomizing 
stimulus at the signal level, this approach uses a programming model of the SoC to randomly 
generate high-level scenarios corresponding to interesting use cases. An example of such 
a scenario definition expressed in a unified modeling language (UML) activity diagram is 
depicted in Figure 5.3. Thanks to the associated model, the resulting tests are aware of the 
SoC configuration and the state of its resources, ensuring only legitimate stimulus is being 
driven. This methodology is shown to be effective at validating complex user scenarios that 
are unlikely to be reached by other means, blending in both mainline functionality and auxil-
iary events such as power cycles, resets, and dynamic reconfigurations [35]. An added benefit 
is the ability to use this methodology in emulation and even postsilicon (i.e., on the actual 
manufactured chip) as means of failure debug.
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Another practical challenge with SoC verification is the throughput of simulation. SoC 
timing-accurate simulation models are huge, owning to the large scale of integration. The 
addition of software as firmware and low-level drivers makes the situation much worse: the huge 
SoC model must spin, simulating numerous CPU cycles processing the embedded software. The 
throughput constraint is too severe to allow booting an operating system on a cycle-accurate 
RTL model. At the same time, it is absolutely necessary to exercise the system, including low-
level software, to flush out configuration problems and logic errors. The industry’s current solu-
tion is leveraging hardware acceleration, which is in growing demand and is ubiquitous in SoC 
verification. However, even with acceleration, the performance of software on the simulated 
SoC remains poor.

A new hybrid-acceleration methodology is offering a significant improvement over plain accel-
eration. The key to the speedup is migrating the compute subsystem to a virtual platform while 
maintaining a coherent memory representation between the accelerated portion and the virtual 
platform. This can be done economically because only a small part of the memory is actually 
accessed by both portions. This partition lets the main processors run at virtual platform speed 
(same or better than real time), while the rest of the design executes in timing-accurate, acceler-
ated simulation. Execution in the virtual platform is interrupted when memory locations mapped 
to accelerated modules are accessed, triggering a backdoor mechanism that synchronizes both 
memory representations (the one in the accelerator and the relevant portion of the virtual plat-
form memory). Accelerated code can generate interrupts that will cause synchronization as well. 
As long as the frequency of events requiring synchronization is sufficiently low, performance 
gains are substantial. Results of this methodology show a 10-fold speedup over plain acceleration 
on major industrial designs [36].

Besides acceleration speed, the capacity of the hardware accelerator is a concern as well. 
Accelerator capacity is at a premium and it is often best utilized when a design is thoughtfully 
trimmed down to exclude modules that do not participate in the test scenario. Creating a whole 
new design configuration per test scenario is prohibitively expensive if done manually, but thanks 
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to metadata-driven generation such configurations can be automatically created, following a very 
small change in the metadata. See Chapter 19, for a more in-depth discussion of acceleration 
techniques.

Much of the SoC architecture design effort is aimed at optimizing performance, which is a 
major selling feature for most SoCs. High-level models of the architecture are developed and 
tested against expected usage scenarios. Many design variations are considered and carefully 
refined. Yet once the design is implemented, validating SoC performance is a major challenge. On 
the one hand, after the design is released in product form, it is not hard to assess the customer-
perceived performance—as evident by the myriad smartphone performance benchmarks. On 
the other hand, it is really hard to extract meaningful performance predictions from a simula-
tion involving massive concurrent activity, typical of functional verification scenarios. Instead, a 
dedicated performance suite is needed, targeting specific critical communication and computa-
tion paths in a systematic way over a set of configurations chosen to represent the most common 
use cases [37]. Such performance suites typically focus on the SoC interconnect and memory 
interface, and may be tuned specifically to target market applications such as streaming video or 
high-end graphics for gaming. Not only does this approach provide reliable performance predic-
tions that should correlate to the architectural predictions, but it also helps identify and isolate 
specific bottlenecks [38].

5.6 CONCLUSIONS

A decade ago it seemed as if higher degrees of integration could be achieved by “more of the same” 
tools and methodologies, relying on ever-increasing computing power. Difficulties with block-
based design and related metadata formats slowed initial adoption. While some of the challenges 
that affected them still remain, the scale and complexity of integration saw a tremendous growth, 
making metadata-driven block-based design indispensable.

SoC design and verification today are driven by metadata. Much of the actual top-level HDL 
design, as well as key modules such as NoCs, are automatically generated. The verification envi-
ronment portions of the embedded and driver software are generated and configured automati-
cally. This makes metadata a golden source impacting critical aspects. At the same time, much 
of the metadata is nonstandard, using ad hoc formats such as spreadsheets. Software tools range 
from commercially available EDA tools through IP provider generators to homegrown automa-
tion developed by the SoC integrator. The EDA landscape will continue to evolve as metadata-
related tools and formats mature.

Verification is undergoing a disruptive change as well. The scale of functionality the design 
is capable of and the addition of software as an integral part of the design require a major shift 
in our approach to verification. Scenario-based software-driven testing emerges as a lead-
ing test generation methodology, augmented by sophisticated acceleration techniques. These 
changes are just starting to take root at the most advanced design projects and will likely 
continue to evolve and trickle down to the rest of the design community. SoC integration and 
verification automation remain an active research and development field with a big potential 
impact on electronic design.
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6.1 INTRODUCTION

Multiprocessor systems-on-chip (MPSoCs) require the integration of heterogeneous components 
(e.g., microprocessors, DSP, ASIC, memories, buses, etc.) on a single chip. The design of MPSoC 
architectures requires the exploration of a huge space of architectural parameters for each com-
ponent. The challenge of building high-performance MPSoCs is closely related to the availability 
of fast and accurate performance evaluation methodologies. This chapter provides an overview 
of the performance evaluation methods developed for specific subsystems. It then proposes to 
combine subsystem performance evaluation methods to deal with MPSoC.

Performance evaluation is the process that analyzes the capabilities of a system in a particular 
context, that is, a given behavior, a specific load, or a specific set of inputs. Generally, performance 
evaluation is used to validate design choices before implementation or to enable architecture 
exploration and optimization from very early design phases.

A plethora of performance evaluation tools have been reported in the literature for various 
subsystems. Research groups have approached various types of subsystems, that is, software 
(SW), hardware (HW), or interconnect, differently, by employing different description models, 
abstraction levels, performance metrics, or technology parameters. Consequently, there is cur-
rently a broad range of methods and tools for performance evaluation, addressing virtually any 
kind of design and level of hierarchy, from very specific subsystems to generic, global systems.

Multi-processor system-on-chip (MPSoC) is a concept that aims at integrating multiple sub-
systems on a single chip. Systems that put together complex HW and SW subsystems are difficult 
to analyze. Additionally, in this case, the design space exploration and the parameter optimization 
can quickly become intractable. Therefore, the challenge of building high-performance MPSoCs 
is closely related to the availability of fast and accurate performance evaluation methodologies.

Existing performance evaluation methods have been developed for specific subsystems. 
However, MPSoCs require new methods for evaluating their performance. Therefore the purpose 
of this study is to explore different methodologies used for different subsystems in order to propose 
a general framework that tackles the problem of performance evaluation for heterogeneous MPSoC. 
The long-term goal of this work is to build a global MPSoC performance evaluation by composing 
different tools. This kind of evaluation will be referred to as holistic performance evaluation.
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The chapter is structured as follows: Section 6.2 defines the key characteristics of performance 
evaluation environments. It details the analyzed subsystems, their description models and envi-
ronments, and the associated performance evaluation tools and methods. Section 6.3 is dedicated 
to the study of MPSoC performance evaluation. Section 6.4 proposes several trends that could 
guide future research toward building efficient MPSoC performance evaluation environments.

6.2  OVERVIEW OF PERFORMANCE EVALUATION IN 
THE CONTEXT OF SYSTEM DESIGN FLOW

This section defines typical terms and concepts used for performance evaluation. First, the per-
formance-evaluation process is positioned within a generic design flow. Three major axes define 
existing performance evaluation tools: the subsystem under analysis, the performance model, 
and the performance evaluation methodology. They are detailed in this section. An overview 
of different types of subsystems is provided, focusing on their abstraction levels, performance 
metrics, and technology parameters. In the end, the main performance evaluation approaches 
are introduced.

6.2.1 MAJOR STEPS IN PERFORMANCE EVALUATION

This section analyzes the application domain of the performance evaluation process within the 
systems design flow. A designed system is evaluated by a suitable performance evaluation tool 
where it is represented by a performance model. Next, this section presents how evaluation 
results may influence decisions during system design.

A design flow may include one or more performance evaluation tools. These evaluation tools 
could be used for different purposes, e.g., to verify if a system meets the constraints imposed or 
runs properly and to help making design choices.

Figure 6.1 presents a generic design flow. The initial specification is split into a functional and 
a nonfunctional part of the subsystem to be analyzed. The functional part contains the behavior 
of the subsystem under analysis, described it as an executable program or as a formal model (e.g., 
equation). However, the set of evaluation constraints or quality criteria selected from the initial 
specification constitute the nonfunctional part.

The performance model cannot be separated from the evaluation methodology, because it 
provides the technology characteristics used to compute performance results prior to the real 
implementation. Moreover, it selects the critical characteristics to be analyzed, such as the model 
performance metrics: timing, power, and area. Eventually it chooses the measurement strategy 
(e.g., an aggregation approach). Both performance metrics and technology parameters may be 
built into the evaluation tool or given as external libraries.

The design process may be made of several iterations when the system needs to be tuned or 
partially redesigned. Several design loops may modify the performance model. Each time a new 
calculation of the metrics (e.g., the chip area can be enlarged in order to meet timing deadlines) 
or technological parameters (e.g., a new underlying technology or increased clock frequency) is 
initiated.

6.2.2 KEY CHARACTERISTICS OF PERFORMANCE EVALUATION

Figure 6.2 details on three axes, the three main characteristics of the performance evaluation 
process: the subsystem under analysis, its abstraction level, and the performance evaluation 
methodology. Analysis of five kinds of subsystems will be considered: HW, SW, CPUs, intercon-
nect subsystems, and MPSoCs. Each basic subsystem has specific design methods and evaluation 
tools. They may be designed at different abstraction levels, of which we will consider only three. 
Also, three performance evaluation methodologies will be considered, with metrics and technol-
ogy parameters specific to different subsystems.
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A subsystem under analysis is characterized by its type (e.g., HW, SW, etc.), and its abstraction 
level. The performance evaluation may be applied to different kinds of subsystems varying from 
simple devices to sophisticated modules. We will consider five main kinds of subsystems: HW 
subsystems, CPU subsystems, SW subsystems, interconnect subsystems, and constituent parts of 
MPSoC. Traditionally they are studied by five different research communities.

Classically, the HW community [1] considers HW subsystems as HDL models. They are 
designed with electronic design automation (EDA) tools that include specific performance 
analysis [2–5]. The computer architecture community e.g., [6] considers CPU subsystems as 
complex microarchitectures. Consequently, specialized methodologies for CPU design and per-
formance evaluation have been developed [7]. The SW community [8,9] considers SW subsystems 
as programs running parallel tasks. They are designed with computer-aided SW engineering 
(CASE) tools and evaluated with specific methods [10–22]. The networking community [23–30] 
 considers interconnect subsystems as a way to connect diverse HW or SW components. The 
network performance determines the overall system efficiency, and consequently it is an inten-
sively explored domain.

Each of these communities uses different abstraction levels to represent their subsystem. 
Without any loss of generality, in this study only three levels will be considered: register transfer 
level (RTL), virtual-architecture level, and task level. These may be adapted for different kinds of 
subsystems.

Performance evaluation uses a specific methodology and a system performance model. 
The  methodology may be simulation-based, analytic (i.e., using a mathematical description), 
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or statistical. The system performance model takes into account the performance metrics and 
technology parameters.

The performance metrics are used for assessing the system under analysis. They may be physi-
cal metrics related to real system functioning or implementation (e.g., execution timings, occu-
pied area, or consumed power), or quality metrics that are related to nonfunctional properties 
(e.g., latency, bandwidth, throughput, jitter, or errors).

The technology parameters are required to fit the performance model to an appropriate analy-
sis domain or to customize given design constraints. The technology parameters may include 
architectural features of higher level (e.g., the implemented parallelism, the network topology), or 
lower level (e.g., the silicon technology, the voltage supply).

6.2.3 PERFORMANCE EVALUATION APPROACHES

The two main classes of performance evaluation reported in literature are: statistical approaches 
and deterministic approaches. For statistical approaches, the performance is a random variable 
characterized by several parameters such as a probability distribution function, average, standard 
deviation, and other statistical properties. Deterministic approaches are divided into empirical 
and analytical approaches. In this case, the performance cost function is defined as a determin-
istic variable, a function of critical parameters. Each of these approaches is defined as follows:

The statistical approach [17,19] proceeds in two phases. The first phase finds the most suitable 
model to express the system performance. Usually parameters are calibrated by running random 
benchmarks. The second phase makes use of the statistical model previously found to predict the 
performance of new applications. In most cases, this second phase provides a feedback for updat-
ing the initial model.

The empirical approach can be accomplished either by measurement or simulation. 
Measurement is based on the real measurement of an already built or prototyped system. It gen-
erally provides extremely accurate results. Because this approach can be applied only late in the 
design cycle when a prototype can be made available, we do not include it in this study. The simu-
lation approach [3,16,21,24–28,31] relies on the execution of the complete system using input 
scenarios or representative benchmarks. It may provide very good accuracy. Its accuracy and 
speed depend on the abstraction level used to describe the simulated system.

The analytical approach [2,10–12,14,15,32] formally investigates system capabilities. The sub-
system under analysis is generally described at a high level of abstraction by means of algebraic 
equations. Mathematical theories applied to performance evaluation make possible a complete 
analysis of the full system performance at an early design stage. Moreover, such approaches pro-
vide fast evaluation because they replace time-consuming system compilation and execution. 
Building an analytical model could be very complex. The dynamic behavior (e.g., program con-
text switch and wait times due to contentions or collisions) and refinement steps (e.g., compiler 
optimizations) are hard to model. However, this approach may be useful for worst-case analysis 
or to find corner cases that are hard to cover with simulation.

6.2.4 HARDWARE SUBSYSTEMS

6.2.4.1 DEFINITION

A HW subsystem is a cluster of functional units with a low programmability level like FPGA or 
ASIC devices. It can be specified by finite state machines (FSMs) or logic functions. In this chap-
ter, the HW concept excludes any modules that are either CPUs or interconnection like. We also 
restrain the study to digital HW.

6.2.4.2 ABSTRACTION LEVELS

HW abstraction is related to system timing, of which we consider three levels: high-level lan-
guage (HLL), bus cycle-accurate (BCA), and RTL. At HLL, the behavior and communication may 
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hide clock cycles, by using abstract channels and high-level communication of primitives, e.g., a 
system described by untimed computation and transaction-level communication. At BCA level, 
only the communication of the subsystem is detailed to the clock cycle level, while the compu-
tation may still be untimed. At RTL, both the computation and communication of the system 
are detailed to clock cycle level. A typical example is a set of registers and some combinatorial 
functions.

6.2.4.3 PERFORMANCE METRICS

Typical performance metrics are power, execution time, or size, which could accurately be 
extracted during low-level estimations and used in higher abstraction models.

6.2.4.4 TECHNOLOGY PARAMETERS

Technology parameters abstract implementation details of the real HW platform, depending on 
the abstraction level. At HLL, as physical signals and behavior are abstracted, the technology 
parameters denote high-level partitioning of processes with granularity of functions (e.g., C func-
tion) and with reference to the amount of exchanged transactions. At BCA level, the technology 
parameters concern data formats (e.g., size, coding, etc.), or behavioral data processing (e.g., num-
ber of bytes transferred, throughputs, occupancies, and latencies). At RTL, the HW subsystem 
model is complete. It requires parameters denoting structural and timing properties (e.g., for the 
memory or communication subsystems) and implementation details (e.g., the FPGA mapping or 
ASIC implementation).

There are different performance evaluation tools for HW subsystems, which make use of 
 different performance evaluation approaches: simulation-based approaches [3], analytical 
approaches [2], mixed analytical and statistical approaches [18], mixed simulation and statistical 
approaches [5], and mixed analytical, simulation, and statistical approaches [4].

6.2.5 CPU MODULES

6.2.5.1 DEFINITION

A CPU module is a hardware module executing a specific instruction set. It is defined by an 
instruction set architecture (ISA) detailing the implementation and interconnection of the vari-
ous functional units, the set of instructions, register utilization, and memory addressing.

6.2.5.2 ABSTRACTION LEVELS

For CPU modules, three abstraction levels can be considered: RTL, also known as the micro-
architecture level, the cycle-accurate ISA level, and the assembler (ASM) ISA level. The RTL (or 
micro-architecture level) offers the most detailed view of a CPU. It contains the complete detailed 
description of each module, taking into account the internal data, control, and memory hierarchy. 
The cycle-accurate ISA level details the execution of instructions with clock accuracy. It exploits 
the real instruction set model and internal resources, but in an abstract CPU representation. The 
ASM ISA level increases the abstraction, executing programs on a virtual CPU representation, 
with abstract interconnections and parameters, e.g., an instruction set simulator.

6.2.5.3 PERFORMANCE METRICS

The main performance metrics for CPU subsystems are related to timing behavior. We can men-
tion among these the throughput that expresses the number of instructions executed by CPU per 
time unit, the utilization that represents the time ratio spent on executing tasks, and the time 
dedicated to the execution of a program or to respond to a peripheral. Other performance evalu-
ation metrics are power consumption and memory size.
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6.2.5.4 TECHNOLOGY PARAMETERS

Technology parameters abstract the CPU implementation details, depending on the abstraction 
level. At RTL, only the technology for the CPU physical implementation is abstract. The ISA 
level abstracts the control and data path implementation, but it still details the execution with 
clock-cycle accuracy using the real instruction set (load/store, floating point, or memory manage-
ment instructions), the internal register set, and internal resources. And finally, the ASM level 
abstracts the micro-architecture (e.g., pipeline and cache memory), providing only the instruc-
tion set to program it.

Different performance evaluation tools for CPU subsystems exist, making use of different 
performance evaluation approaches: simulation-based approaches [31,33] analytical approaches 
[10,32], statistical approaches [19], mixed analytical and statistical approaches [34], and mixed 
analytical, simulation, and statistical approaches [7].

Chapter 10 has as its main objective the measurement of CPU performance. For a thorough 
 discussion on CPU performance evaluation utilizing benchmarking techniques, we refer the 
reader to Chapter 10.

6.2.6 SOFTWARE MODULES

6.2.6.1 DEFINITION

A software module is defined by the set of programs to be executed on a CPU. They may have 
 different representations (procedural, functional, object-oriented, etc.), different execution mod-
els (single- or multi-threaded), different degrees of responsiveness (real time, nonreal time), or 
different abstraction levels (from HLL down to ISA level).

6.2.6.2 ABSTRACTION LEVELS

We will consider three abstraction levels for SW modules. At HLL, parallel programs run inde-
pendently on the underlying architecture, interacting by means of abstract communication 
models. At transaction-level modeling (TLM) level, parallel programs are mapped and executed 
on generic CPU subsystems. They communicate explicitly but their synchronization remains 
implicit. And finally, at ISA level, the code is targeted at a specific CPU and it targets explicit 
interconnects.

6.2.6.3 PERFORMANCE METRICS

The metrics most used for SW performance evaluation are run time, power consumption, and 
occupied memory (footprint). Additionally, SW performance may consider concurrency, hetero-
geneity, and abstraction at different levels [35].

6.2.6.4 TECHNOLOGY PARAMETERS

For SW performance evaluation, technology parameters abstract the execution platform. At 
HLL, technology parameters abstract the way different programs communicate using, for 
example, coarse-grain send()/receive() primitives. At TLM level, technology parameters hide 
the technique or resources used for synchronization, such as using a specific Operating System 
(OS), application program interfaces (APIs) and mutex_lock()/unlock()-like primitives. At ISA 
level, technology parameters abstract the data transfer scheme, the memory mapping, and the 
addressing mode.

Different performance evaluation tools for SW models exist, making use of different perfor-
mance evaluation approaches: simulation-based [21], analytical [12], and statistical [17].
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6.2.6.5 SOFTWARE SUBSYSTEMS

6.2.6.5.1 Definition
When dealing with system-on-chip design, the SW is executed on a CPU subsystem, made of a 
CPU and a set of peripherals. In this way, the CPU and the executed SW program are generally 
combined in an SW subsystem.

6.2.6.5.2 Abstraction Levels
The literature presents several classifications for the abstraction of SW subsystems, among which we 
will consider three abstraction levels: The HLL, the OS level, and the hardware abstraction layer (HAL) 
level. At the HLL, the application is composed of a set of tasks communicating through abstract HLL 
primitives provided by the programming languages (e.g., send()/receive()). The architecture, the inter-
connections, and the synchronization are abstract. At the OS level, the SW model relies on specific 
OS APIs, while the interconnections and the architecture still remain abstract. Finally, at the HAL 
level, the SW is bound to use a specific CPU insturtion set and may run on an RTL model of the CPU. 
In this case, the interconnections are described as an HW model, and the synchronization is explicit.

6.2.6.5.3 Performance Metrics
The main performance metrics are the timing behavior, the power consumption, and the occu-
pied area. They are computed by varying the parameters related to the SW program and to the 
underlying CPU architecture.

6.2.6.5.4 Technology Parameters
In SW subsystem performance evaluation, technology parameters abstract the execution plat-
form, and characterize the SW program. At HLL, technology parameters mostly refer to appli-
cation behavioral features, abstracting the communication details. At the OS level, technology 
parameters include OS features (e.g., interrupts, scheduling, and context switching delays), but 
their implementation remains abstract. At HLL, technology parameters abstract only the tech-
nology of implementation, while all the other details, such as the data transfer scheme, the mem-
ory mapping or the addressing mode are explicitly referred to.

Different performance evaluation tools for SW subsystems exist, making use of different perfor-
mance evaluation approaches: simulation-based approaches [16,20], analytical approaches [11,13], 
statistical approaches [19], and mixed analytical, simulation, and statistical approaches [22].

6.2.7 INTERCONNECT SUBSYSTEMS

6.2.7.1 DEFINITION

The interconnect subsystem provides the media and the necessary protocols for communication 
between different subsystems.

6.2.7.2 ABSTRACTION LEVELS

In this study, we will consider RTL, transactional, and service or HLL models. At the HLL, 
 different modules communicate by requiring services using an abstract protocol, via abstract 
network topologies. The transactional level still uses abstract communication protocols (e.g., 
send/receive) but it fixes the communication topology. The RTL communication is achieved by 
means of explicit interconnects like physical wires or buses, driving explicit data.

6.2.7.3 PERFORMANCE METRICS

The performance evaluation of interconnect subsystem focuses on the traffic, interconnection 
topology (e.g., network topology, path routing, and packet loss within switches), interconnec-
tion technology (e.g., total wire length and the amount of packet switch logic), and application 
demands (e.g., delay, throughput, and bandwidth).
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6.2.7.4 TECHNOLOGY PARAMETERS

A large variety of technology parameters emerge at different levels. Thus, at HLL, parameters are the 
throughput or latency. At TLM level, the parameters are the transaction times and the arbitration 
strategy. At the RTL, the wires and pin-level protocols allow system delays to be measured accurately.

Simulation is the performance evaluation strategy most used for interconnect subsystems 
at different abstraction levels: behavioral [24], cycle-accurate level [25], and TLM level [27]. 
Interconnect simulation models can be combined with HW/SW co-simulation at different 
abstraction levels for the evaluation of full MPSoC [26,28].

6.2.8 MULTIPROCESSOR SYSTEMS-ON-CHIP MODELS

6.2.8.1 DEFINITION

An MPSoC is a heterogeneous system built of several different subsystems like HW, SW, and 
interconnect, and it takes advantage of their synergetic collaboration.

6.2.8.2 ABSTRACTION LEVELS

MPSoCs are made of subsystems that may have different abstraction levels. For example, in the 
same system, RTL HW components can be coupled with HLL SW components, and they can 
communicate at the RTL or by using transactions. In this study, we will consider the intercon-
nections, synchronization, and interfaces between the different subsystems. The abstraction lev-
els considered are the functional level, the virtual architecture model level, and the level that 
combines RTL models of the hardware with instruition set architecture models of the CPU. At 
the functional level (like message passing interface (MPI)) [36], the HW/SW interfaces, the inter-
connections, and synchronization are abstracted and the subsystems interact through high-level 
primitives (send, receive). For the virtual architecture level, the interconnections and synchroni-
zation are explicit but the HW/SW interfaces are still abstract. The lowest level considered deals 
with an RTL architecture for the HW-related sections coupled with the ISA level for the SW. This 
kind of architecture explicitly presents the interconnections, synchronization, and interfaces. 
In order to master the complexity, most existing methods used to assess heterogeneous MPSoC 
systems are applied at a high abstraction level.

6.2.8.3 PERFORMANCE METRICS

MPSoC performance metrics can be viewed as the union of SW, HW and interconnect subsys-
tems performance metrics, for instance, execution time, memory size, and power consumption.

6.2.8.4 TECHNOLOGY PARAMETERS

A large variety of possible technology parameters emerge for each of the subsystems involved, 
mostly at different levels and describing multiple implementation alternatives. They are consid-
ered during system analysis, and exploited for subsystem performance optimization.

Different performance-evaluation tools for MPSoC exist. They are developed for specific 
 subsystems [37–41], or for the complete MPSoC [42–44]. Section 6.3 deals with performance-
evaluation environments for MPSoCs.

6.3 MPSoC PERFORMANCE EVALUATION

As has been shown in previous sections, many performance evaluation methods and tools are 
available for different subsystems: HW, SW, interconnect and even for MPSoCs. They include a 
large variety of measurement strategies, abstraction levels, evaluated metrics, and techniques. 
However, there is still a considerable gap between particular evaluation tools that consider only 
isolated components and performance evaluation for a full MPSoC.
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The evaluation of a full MPSoC design containing a mixture of HW, SW and interconnect 
subsystems, needs to cover the evaluation of all the subsystems, at different abstraction levels.

Few MPSoC evaluation tools are reported in the literature [37–39,41,42,44,45]. The key restric-
tion with existing approaches is the use of a homogeneous model to represent the overall system, 
or the use of slow evaluation methods that cannot allow the exploration of the architecture by 
evaluating a massive number of solutions.

For example, the SymTA/S approach [45] makes use of a standard event model to represent 
communication and computation for complex heterogeneous MPSoC. The model allows tak-
ing into account complex behavior such as interrupt control and data dependant computation. 
The approach allows accurate performance analysis; however, it requires a specific model of the 
MPSoC to operate.

The ChronoSym approach [41] makes use of a time-annotated native execution model to evalu-
ate SW execution times. The timed simulation model is integrated into an HW/SW co-simulation 
framework to consider complex behaviors such as interactions with the HW resources and OS 
performance. The approach allows fast and accurate performances analysis of the SW subsystem. 
However, for the entire MPSoC evaluation, it needs to be combined with other approaches for the 
evaluation of interconnect and HW subsystems.

Co-simulation approaches are also well suited for the performance evaluation of heteroge-
neous -systems. The co-simulation offers flexibility and modularity to couple various subsystem 
executions at different abstraction levels and even specified in different languages. The accuracy 
of performance evaluation by co-simulation depends on the chosen subsystem model and on 
their global synchronization.

A complete approach aiming at analyzing the power consumption for the entire MPSoC by 
using several performance models is presented in Reference 42. It is based on interconnecting 
different simulations (e.g., SystemC simulation and ISS execution) and different power models for 
different components, in a complete system simulation platform named MPARM. A related work 
is [43], where the focus is on MPSoC communication-performance analysis.

The co-estimation approach in Reference 44 is based on the concurrent and synchronized 
execution of multiple power estimators for HW/SW system-on-chip-power analysis. Various 
power estimators can be plugged into the co-estimation framework, possibly operating at dif-
ferent levels of abstraction. The approach is integrated in the POLIS system design environment 
and PTOLEMY simulation platform. The power co-estimation framework drives system design 
trade-offs, e.g., HW/SW partitioning, component, or parameter selection. A similar approach is 
represented in References 46 and 47. The tool named ROSES allows different subsystems that may 
be described at different abstraction levels and in different languages to be co-simulated.

However, when applied to low abstraction levels, evaluation approaches based on co-simula-
tion [43,44,46] appear to be slow. They cannot explore large solution spaces. An alternative would 
be to combine co-simulation with analytical methods in order to achieve faster evaluation. This 
is similar to methods used for CPU architecture exploration [31,33].

Figure 6.3 shows such a scheme for MPSoC. The key idea is to use co-simulation for computing 
extensive data for one architectural solution. The results of co-simulation will be further used to 
parameterize an analytical model. A massive number of new design solutions can be evaluated 
faster using the newly designed analytic model.

The left branch of Figure 6.3 represents the performance evaluation of the full system by co-
simulation. This can be made by using any existing co-simulation approach [43,44,46]. The input 
of the evaluation process is the specification of the MPSoC architecture to be analyzed. The speci-
fication defines each subsystem, the communication model, and the interconnection interfaces.

The right branch of Figure 6.3 describes the evaluation of the full system using an  analytical 
model. The figure represents the analytical model construction with dotted lines. This is done 
through component characterizations and parameter extraction from the base co-simulation 
model.

After the construction phase, the analytical branch can be decoupled from the co- simulation. 
The stand-alone analytical performance evaluation provides quick and still accurate evaluations 
for new designs. The two branches of Figure 6.3, that is, the co-simulation and the analytical 
approach, lead to similar performance results, but they are different in terms of evaluation speed 
and accuracy.
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The proposed strategy is based on the composition of different evaluation models, for different 
MPSoC subsystems. It combines simulation and analytical models for fast and accurate evalua-
tion of novel MPSoC designs. The further objective is to develop a generic framework for design 
space exploration and optimization, where different simulation based or analytical evaluation 
methods could be applied to different subsystems and at different levels of abstraction.

6.4 CONCLUSION

MPSoC is an emerging community trying to integrate multiple subsystems on a single chip and con-
sequently requiring new methods for performance evaluation [48]. Therefore, the aim of this study 
was to explore different methodologies for the different subsystems that may compose the MPSoC.

We defined a general taxonomy to handle the heterogeneity and diversity of performance-
evaluation solutions. This taxonomy introduced the attributes of an evaluation tool: abstraction 
levels, modeling techniques, measured metrics, and technology parameters. Finally, we proposed 
an evaluation framework based on the composition of different methods in which simulation and 
analytical methods could be combined in an efficient manner, to guide the design space explora-
tion and optimization.
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Abstract

Early consideration of power as a metric in the very early stages of the design flow allows 
to drastically reduce it and to simplify later design stages. Power-aware system design has 
thus become one of the most important areas of research in the recent past, although only 
a few techniques that have been proposed to address the problem have found their way into 
automated tools.

One of the approaches that have received a lot of attention, both from the concep-
tual and the implementation sides, is the so-called dynamic power management (DPM). 
The fundamental idea behind this technique, which is very broad and thus may come in 
very many different flavors, is that of selectively stopping or underutilizing the system 
resources that for some periods are not executing useful computation or not providing 
result at maximum speed.

The landscape of DPM techniques is very wide; an exhaustive survey of the literature 
goes beyond the scope of this handbook. For additional technical details, the interested 
reader may refer to the excellent literature on the subject, for instance [1–4]. This chapter 
describes the principles, the models, and the implementation issues of DPM.

7.1 INTRODUCTION

In general terms, a system is a collection of components whose combined operations provide 
a service to a user. In the specific case of electronic systems, the components are processor 
cores, DSPs, accelerators, memories, buses, and devices. Power efficiency in an electronic 
system can be achieved by optimizing (1) the architecture and the implementation of the 
individual components, (2) the communication between the components, and (3) the usage 
of components.

In this chapter, we will restrict our attention to the last point, that is, to the issues of achieving 
power efficiency in an electronic system by means of properly managing its resources during the 
execution of the operations in which the system is designed for.

The underlying assumption for the solutions we will discuss is that the activity of the system 
components is event driven; for example, the activity of display servers, communication interfaces, 
and user interface functions is triggered by external events and it is often interleaved with long 
periods of quiescence. An intuitive way of reducing the average power dissipated by the whole sys-
tem consists therefore of shutting down (or reducing the performance of) the components during 
their periods of inactivity (or underutilization). In other words, one can adopt a DPM strategy that 
dictates how and when the various components should be powered (or slowed) down in order to 
minimize the total system power budget under some performance/throughput constraints.
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DPM can essentially take two forms, depending on the available degree of reconfiguration 
of the resource that is power managed. In its simplest variant, the resource has an on and an off 
states, and DPM essentially entails the decision of when to turn the resource off. In a more elabo-
rated variant, the resource can provide its functionality at different power/performance levels, 
that is, it features multiple on states; in this case, DPM becomes a more complicated problem in 
which the objective is to provide the requested services and performance levels with the least 
energy consumption. Therefore, in the former scenario, only the idleness of the resource matters 
and affects the on–off decisions. In the latter one, conversely, also its underutilization can be 
successfully exploited to reduce power consumption.

For both variants of DPM, appropriate hardware support is required to implement the off and 
on states. Typical implementations of the off states include clock gating or power/supply gating, 
whereas multiple on states are usually made available by tuning the supply voltage, the frequency, 
or, more typically, both of them.

The core of this chapter focuses on DPM and the relative policies, for the two earlier discussed 
variants (Section 7.2). A specific section is devoted to the issue of DPM in the context of battery-
operated systems (Section 7.3). Some of the techniques described in Sections 7.2 and 7.3 apply 
also to the software domain, described in Section 7.4, which also includes a description of avail-
able strategies for software-level power estimation.

7.2 DYNAMIC POWER MANAGEMENT

7.2.1 POWER MODELING FOR DPM: POWER AND ENERGY STATE MACHINES

The formalism of finite-state machines can be extended to model power consumption of an 
electronic system. The power state machine (PSM) is the most widely used model to describe a 
power-managed resource [5]. At any given point in time, each resource is in a specific power state, 
which consumes a given amount of power.

Figure 7.1 shows an example of PSM, namely, that of the Intel XScale processor. Each power 
state denotes the power value and/or performance of the system in that state. Transitions are 
labeled with the time required to complete them.

In addition to the time cost, the PSM formalism can be enhanced to account for the power cost 
of the state transition, which depends on the specific implementation of the destination power 
state, for example, the energy required to change the clock frequency and/or the supply voltage.

Given the PSM model of all the power-managed components in a system, we can easily track 
the current power values of all resources as the state of the system changes. This approach enables 
us to have the average or peak power dissipation by looking at the power state transition over 
time for a given set of environmental conditions. The power consumption in each state can be a 
designer’s estimate, a value obtained from simulation, or a manufacturer’s specification.

Pidle = 10 mW

Pdrowsy = 1 mW

Prun = 450 mW Psleep ~ 0 mW

180 cycles >>36,000 cycles

36,000 cycles

Idle Run Sleep

Drowsy

FiGURe 7.1 Power state machine for Intel XScale.
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Given the increased relevance of static (i.e., leakage) power in deeply scaled technologies, it can 
be useful to separately denote the dynamic energy and leakage power contributions in a power-
managed component. Furthermore, leakage power in a state in fact depends on frequency, and it 
increases as the clock frequency of the device decreases.

Energy state machines (ESMs) are an alternative formalism that provides such a separa-
tion, which is not possible in PSMs [6]. To eliminate time dependency, the dynamic portion is 
represented by energy, while the leakage portion is represented by power. Figure 7.2 shows the 
concept of ESM. Dynamic energy consumption, Edyn,ij, is associated with a transition from state i to 
state j, and leakage power consumption, Pleak,i, is associated with a state. Each state change clearly 
requires different amount of dynamic energy. If we slow down the clock frequency, only the 
storage time of the states becomes longer.

The ESM exactly represents the actual behavior of a system and its energy consumption. 
However, it is not trivial to acquire leakage power and dynamic energy consumption sep-
arately without elaborated power estimation. Special measurement and analysis tools that 
separately handle dynamic energy and leakage power in system level are often required to 
annotate the ESM [7,8].

7.2.2 REQUIREMENTS AND IMPLEMENTATION OF DPM

In addition to models for power-managed systems, as those discussed in the previous section, 
there are several other issues that must be considered when implementing DPM in practice. These 
include the choice of an implementation style for the power manager that must guarantee accuracy 
in measuring interarrival times and service times for the system components, flexibility in moni-
toring multiple types of components, low perturbation, and marginal impact on component usage.

Another essential aspect concerns the choice of the style for monitoring component activ-
ity; options here are offline (traces of events are dumped for later analysis) and online (traces of 
events are analyzed while the system is running, and statistics related to component usage are 
constantly updated) monitoring.

Finally, of utmost importance is the definition of an appropriate power management policy, 
which is essential for achieving good power/performance trade-offs. The remainder of this sec-
tion is devoted to the discussion of various options for DPM policies, including those regarding 
dynamic voltage scaling (DVS).

7.2.3 DPM POLICIES

The function of a DPM policy is to decide (1) when to perform component state transitions and 
(2) which transition should be taken, depending on workload, system history, and performance 
constraints. The fundamental requirement of any DPM policy is that they must be computationally 

Pleak,0

Pleak,2 S2

S0 S1

Pleak,1

Edyn,10

Edyn,01

Edyn,12Edyn,21

FiGURe 7.2 Energy state machine.
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simple, so that their execution requires as little as possible time and power. For this reason, most 
practical policies are heuristic and do not have any optimality claim.

The rest of this section surveys the most popular DPM policies and highlights their benefits 
and pitfalls. We classify power management approaches into four major categories: static, predic-
tive, stochastic, and adaptive policies. Within each class, we introduce approaches being applied 
to the system design and described in the literature.

7.2.3.1 STATIC POLICIES

The simplest DPM policy is a static one based on a timeout T. Let us assume a simple PSM with 
an on and an off state; the component is put in its off state T time units after the start of an idle 
interval. This scheme assumes that if an idle T has elapsed, there will be a very high chance for the 
component to be idle for an even longer time. The policy is static because the timeout for a given 
power state is chosen once and for all. The nicest feature of a timeout policy lies in its simplicity 
of implementation.

However, timeout policies can be inefficient for three reasons: First, the assumption that if the 
component is idle for more than T time units, it will be so for much longer may not be true in 
many cases. Second, while waiting for timeout to elapse, the component is actually kept in the on 
state for at least T time units, wasting a considerable amount of power. Third, speed and power 
degradations due to shutdowns performed at inappropriate times are not taken into account; in 
fact, it should be kept in mind that the transition from power down to fully functional mode has 
an overhead. It takes some time to bring the system up to speed, and it may also take more power 
than the average, steady-state power.

7.2.3.2 PREDICTIVE POLICIES

Improving the performance and energy efficiency of static policies implies somehow predicting 
the length of the next incoming idle interval. Predictive policies exploit the correlation that exists 
between the past history of the workload and its near future in order to make reliable predictions 
about future events. Specifically, we are interested in predicting idle periods that are long enough 
to justify a transition into a low-power state.

An essential parameter for the design of efficient policies is the breakeven time TBE, that is, 
the minimum time for which the component should be turned off so that it compensates for the 
overhead associated with shutting it down and turning it on the component. Each power state has 
its own TBE, whose value can be calculated from the power values in the involved states and the 
power and performance costs of the relative transitions and does not depend on the workload. In 
particular, the value of TBE for a power state is lower bounded by the time needed to complete the 
transition to and from that state [3]. As an example, consider the simple PSM of Figure 7.3; the 
breakeven time TBE,Off of the off state is at least as large as TOn,Off + TOff,On. The accurate calculation 
of TBE for a power state is discussed in details in Reference 3.

In practice, we should therefore turn the resource in a given state if the next incoming idle 
period Tidle is greater than the TBE for that state. However, since Tidle is unknown, we have to pre-
dict it in some way. If we call Tpred our prediction of Tidle, the policy becomes now “go to state S if 
Tpred > TBE,S.”

It is clear that we need good predictors in order to minimize mispredictions. We define 
overprediction (underprediction) as a predicted idle period longer (shorter) than the actual 
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FiGURe 7.3 Example of power state machine for TBE calculation.
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one. Overpredictions originate a performance penalty, while underpredictions imply a waste 
of power without incurring performance penalty. The quality of a predictor is measured by 
two figures: safety and efficiency. The safety is the complement of the probability of making 
overpredictions, and the efficiency is the complement of the probability of making under-
predictions. We call a predictor with maximum safety and efficiency an ideal predictor. 
Unfortunately, predictors of practical interest are neither safe nor efficient, thus resulting in 
suboptimum policies.

Two examples of predictive policy are proposed in Reference 9. The first policy relies on the 
observation of past history of idle and busy periods. A nonlinear regression equation is built 
offline by characterization of various workloads, which expresses the next idle time Tpred as a 
function of the sequence of previous idle and active times. The power manager stores then the 
history of idle and active times, and when an idle period starts, it calculated the prediction Tpred 
based on that equation: if Tpred > TBE, the resource is immediately put into that power state. This 
policy has the main disadvantage of requiring offline data collection and analysis for construct-
ing and fitting the regression model.

In the second policy, the idle period is predicted based on a threshold Tthreshold. The dura-
tion of the busy period preceding the current idle period is observed. If the previous busy 
period is longer than the threshold, the current idle period is assumed to be longer than TBE, 
and the system is shut down. The rationale of this policy is that short busy periods are often 
followed by long idle periods. The critical design decision parameter is the choice of the 
threshold value Tthreshold.

7.2.3.3 STOCHASTIC POLICIES

Although all the predictive techniques address workload uncertainty, they assume deterministic 
response time and transition time of a system. However, the system model for policy optimiza-
tion is very abstract, and abstraction introduces uncertainty. Hence, it is safer and more general 
to assume a stochastic model for the system as well as the workload. Moreover, real-life sys-
tems support multiple power states, which cannot be handled by simple predictive techniques. 
Predictive techniques are based on heuristic algorithms, and their optimality can be gauged 
only through comparative simulations. Finally, predictive techniques are geared toward only the 
power minimization and cannot finely control performance penalty.

Stochastic control techniques formulate policy selection as an optimization problem in the 
presence of uncertainty both in the system and in the workload. They assume that both the sys-
tem and the workload can be modeled as Markov chains and offer significant improvement over 
previous power management techniques in terms of theoretical foundations and of robustness of 
the system model. Using stochastic techniques allows one to (1) model the uncertainty in the sys-
tem power consumption and the state transition time, (2) model complex systems with multiple 
power states, and (3) compute globally optimum power management policies, which minimize 
the energy consumption under performance constraints or maximize the performance under 
power constraints.

A typical Markov model of a system consists of the following entities [14]:

 ◾ A service requester (SR) that models the arrival of service requests
 ◾ A service provider (SP) that models the operation states of the system
 ◾ A power manager that observes the state of the system and the workload, makes a deci-

sion, and issues a command to control the next state of the system
 ◾ A cost metrics that associate power and performance values with each command

The basic stochastic policies [14] perform policy optimization based on the fixed Markov chains of 
the SR and of the SP. Finding a globally power-optimal policy that meets given performance con-
straints can be formulated as a linear program (LP), which can be solved in polynomial time in the 
number of variables. Thus, policy optimization for Markov processes is exact and computationally 
efficient. However, several important points must be understood: (1) The performance and power 
obtained by a policy are expected values, and there is no guarantee of the optimality for a specific 
workload instance. (2) We cannot assume that we always know the SR model beforehand. (3) The 
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Markov model for the SR or SP is just an approximation of a much more complex stochastic pro-
cess, and thus the power-optimal policy is also just an approximate solution.

The Markov model in Reference 14 assumes a finite set of states, a finite set of commands, and 
discrete time. Hence, this approach has some shortcomings: (1) The discrete-time Markov model 
limits its applicability since the power-managed system should be modeled in the discrete-time 
domain. (2) The power manager needs to send control signals to the components in every time slice, 
which results in heavy signal traffic and heavy load on the system resources (therefore more power 
dissipation). Continuous-time Markov models [15] overcome these shortcomings by introducing 
the following characteristics: (1) A system model based on continuous-time Markov decision pro-
cess is closer to the scenarios encountered in practice. (2) The resulting power management policy 
is asynchronous, which is more suitable for implementation as a part of the operating system (OS).

7.2.3.4 ADAPTIVE POLICIES

All the DPM policies discussed cannot effectively manage workloads that are unknown a priori or 
nonstationary, since they strongly rely on the workload statistics. For this reason, several adaptive 
techniques have been proposed to deal with nonstationary workloads. Notice that adaptivity is a 
crosscut feature over the previous categories: we can therefore have timeout-based, predictive, or 
stochastic adaptive policies.

Adaptive Timeout-Based Policies: One option is to maintain a set of timeout values, each 
associated with an index indicating how successful it has been Reference 11. The policy 
chooses, at each idle time, the timeout value that would have performed best among the 
set of available ones. Alternatively, a weighted list of timeout values is kept, where the 
weight is determined by relative performance of past requests with respect to the opti-
mal strategy [12], and the actual timeout is calculated as a weighted average of all the 
timeout values in the list [13]. The timeout value can be increased when it results in too 
many shutdowns, and it can be decreased when more shutdowns are desirable.

Adaptive Predictive Policies: Another adaptive shutdown policy has been proposed in 
Reference 10. The idle time prediction is calculated as a weighted sum of the last idle 
period and the last prediction (exponential average):

 T aT a Tpred
n

idle
n

pred
n= + -- -1 11( )

 This prediction formula can effectively predict idle periods in most cases; however, when 
a single very long idle period occurs in between a sequence of nearly uniform idle peri-
ods, the prediction of the upcoming long idle period and the following one will generally 
be quite inaccurate. This is because the single long idle period represents an outlier in 
the sequence and alters the estimation process. The authors of Reference 10 introduce 
appropriate strategy to correct mispredictions for this particular scenario that are able 
to solve the problem but also taint the simplicity of the basic estimator.

Adaptive Stochastic Policies: An adaptive extension of stochastic control technique is pro-
posed to overcome a limitation of the (static) stochastic techniques. It is not possible to 
know complete knowledge of the system (SP) and its workload (SR) a priori. Even though 
it is possible to construct a model for the SP once and for all, the system workload is 
generally much harder to characterize in advance. Furthermore, workloads are often 
nonstationary. Adaptation consists of three phases: policy precharacterization, param-
eter learning, and policy interpolation [16]. Policy precharacterization builds a n-dimen-
sional table addressed by n parameters for the Markov model of the workload. The table 
contains the optimal policy for the system under different workloads. Parameter learn-
ing is performed online during system operation by short-term averaging techniques. 
The parameter values are then used for addressing the table and for obtaining the power 
management policy. If the estimated parameter values do not exactly match the dis-
crete set of values used for addressing the table, interpolation may obtain an appropriate 
policy as a combination of the policies in the table.
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7.2.3.5 LEARNING-BASED POLICIES

More recently, a few works have proposed the use of various learning algorithms to devise poli-
cies that naturally adapt to nonstationary workloads [17–19]. These policies represent a sort of 
hierarchical generalization of adaptive policies, in the sense that instead of using a single adaptive 
policy, they take a set of well-known policies and rather design a policy selection mechanism. The 
approaches essentially differ in the type of policy selection strategy used: Markov decision pro-
cesses [17], machine learning [18], or reinforcement Q-learning [19].

7.2.4 DYNAMIC VOLTAGE SCALING

Supply voltage scaling is one of the most effective techniques in energy minimization of CMOS 
circuits because the dynamic energy consumption of CMOS is quadratically related to the supply 
voltage Vdd as follows:

(7.1) E CV Rdynamic dd= 2

(7.2) P CV fdynamic dd= 2

where
Edynamic is the dynamic energy consumption for a task execution
C is the average switching load capacitance of target circuit
Vdd is the controlled supply voltage
R is the number of cycles required in the execution of a given task
f  is the maximum operating frequency corresponding to the Vdd

However, the supply voltage has a strong relation with the circuit delay. The circuit delay of CMOS 
can be approximated to be linearly proportional to the inverse of the supply voltage [20]. That is, a 
lower supply voltage results in a larger circuit delay and a smaller maximum operating frequency, 
which may degrade the performance of the target system:

(7.3)
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where
τdelay is the circuit delay
Vth is the threshold voltage of the CMOS transistors

DVS is the power management strategy that controls the supply voltage according to the current 
workload at runtime to minimize the energy consumption without having an adverse effect on sys-
tem performance. DVS can be viewed as a variant of DPM in which DPM is applied not just to idle 
components but also to those resources that are noncritical in terms of performance, running the 
resource at different power/speed points. In other words, DVS introduces the concept of multiple 
active states, as opposed to DPM, where there can be multiple idle states but only a single active state.

Since in DVS power/speed trade-off points are defined by different supply voltage (and/or fre-
quency) levels, DVS is traditionally applied to digital programmable components rather than 
generic devices and is usually associated with a trade-off between computation speed and power 
consumption. In order to apply DVS to real systems, hardware support for voltage scaling is 
required [22], as well as the software support that monitors the task execution and gives the volt-
age control command to the DVS hardware.

DVS is typically managed at the task granularity, where “task” refers to a generic computation 
burst with an associated maximum duration (e.g., a deadline). It does not necessarily coincide 
with a task or thread of an OS. DVS conceptually exploits the slack time (i.e., idleness) of tasks to 
avoid performance degradation: if the current task has more remaining time than the expected 
execution time at the maximum frequency, the voltage scheduler lowers the supply voltage and 
extends the execution time of this task up to the arrival time of the next task.
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As an example, consider the conceptual scenario of Figure 7.4, where a core with two execu-
tion speeds S1 and S2 (S1 > S2) executes a task in a time slot between T1 and T2. The two speeds 
are obtained by powering the core with different supply voltages Vdd,1 and Vdd,2 (Vdd,1 > Vdd,2). Let 
us assume also that the computational demand of this task is such that, when executing at S1, 
the task finishes earlier than T2.

In a DPM scenario (Figure 7.4a), we turn the system into an off state when it finishes execu-
tion (provided that the remaining idle time is long enough to justify the transition). With DVS 
(Figure 7.4b), conversely, we execute the task at the lower speed S2, which in this specific case 
allows to finish exactly at T2, thus leaving no idleness.

The power and energy benefits of this strategy are evident when considering the quadratic 
dependency of power and energy on supply voltage in Equations 7.1 and 7.2. Let us do a rough 
evaluation of the energy for the two case of Figure 7.4. For DPM, assuming that the time slot 
T2 − T1 corresponds to N cycles, that the task executed at S1 terminates after N/2 cycles (staying 
thus idle for the remaining N/2 cycles), and that the power in the off state is zero, the total energy 

is therefore E C V N
dynamic a, = × ×1

2

2
. In the DVS case, assuming, for instance, that S2 is achieved with 

a supply voltage V2 = 0.5V1, we get Edynamic, b = C(0.5V1)2 N = 0.5Edynamic, a. The calculation obviously 
neglects all the overheads in the state (for DPM) or speed (for DVS) transitions.

7.2.4.1 TASK SCHEDULING SCHEMES FOR DVS

The vast majority of the DVS strategies proposed in the literature focus on systems with real-time 
requirements, because they can be well characterized in terms of task start and finish times, durations, 
and deadlines, thus allowing the possibility of devising formal energy-optimal scheduling algorithms. 
The various algorithms suggest different runtime slack estimation and distribution schemes that are 
trying to achieve the theoretical lower bound of energy consumption that is calculated statically for a 
given workload [24]. Several DVS scheduling schemes are summarized and evaluated in Reference 23.

The rest of this section analyzes two important issues concerning these DVS scheduling 
algorithms for hard real-time system, namely, the granularity of the voltage adjustments and 
the slack estimation methods.

 1. Voltage scheduling granularity: DVS scheduling schemes are classified by voltage sched-
uling granularity and fall into two categories: intertask DVS algorithm and intratask 
DVS algorithm. In the intratask DVS algorithms, a task is partitioned into multiple 
pieces such as time slots [25] or basic blocks [26], and a frequency and consequent volt-
age assignment is applied during the task execution. The actual execution time variation 
is estimated at the boundary of each time slot or each basic block and used for the input 
of adaptive operation frequency and voltage assignment.

  In intertask DVS algorithms, voltage assignment occurs at the task boundaries. After 
a task is completed, a new frequency and consequent voltage setting is applied by static or 
dynamic slack time estimation. The slack time estimation method has to be aggressive to 
effectively achieve system energy reduction. At the same time, it must be conservative so 
that every task is successfully scheduled within its deadline. These two rules are conflict-
ing with each other, making it difficult to develop an effective slack estimation algorithm.

 2. Slack time estimation: DVS techniques for hard real-time system enhance the traditional 
earliest deadline first or rate monotonic scheduling to exploit slack time that is used 
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to adjust voltage and frequency of voltage-scalable components. Therefore, the primary 
objective is to estimate the slack time accurately for more energy reduction. Various 
kind of static and dynamic slack estimation methods have been proposed to exploit the 
most of slack time without violating the hard real-time constraints.

Most approaches for intertask DVS algorithms deal with static slack estimation methods [27–31]. 
These methods typically aim at finding the lowest possible operating frequency at which all the tasks 
meet their deadlines. These methods rely on the worst-case execution time (WCET) to guarantee 
hard real-time demands. Therefore, the operating frequency can be lowered to the extent that each 
task’s WCET does not exceed the deadline. The decision of each task’s frequency can be done stati-
cally because it is the function of WCET and deadline, which are not changed during runtime.

In general, the actual execution time is much shorter than WCET. Therefore, WCET-based 
static slack time estimation cannot fully exploit the actual slacks. To overcome this limitation, 
various dynamic slack estimation methods have been proposed. Cycle-conserving RT-DVS tech-
nique utilizes the extra slack time to run other remaining tasks at a lower clock frequency [29]. 
Using this approach, the operating frequency is scaled by the CPU utilization factor (a value 
between 0 [always idle] and 1 [100% active]). The utilization factor is updated when the task is 
released or completed. When any task is released, the utilization factor is calculated according to 
the task’s WCET. After a task is completed, the utilization factor is updated by using the actual 
execution time. The operation frequency may be lowered until the next arrival time of that task.

The next release time of a task can be used to calculate the slack budget [28]. This approach 
maintains two queues: the run queue and the delay queue. The former holds tasks that are waiting 
sorted by their priority order, while the latter holds tasks that are waiting for next periods, sorted 
by their release schedule. When the active queue is empty and the required execution time of an 
active task is less than its allowable time frame, the operation frequency is lowered using that slack 
time. As shown in Reference 28, the allowable time frame is defined as the minimum between the 
deadline of the current active task and the release time of the first element of the delay queue.

Path-based slack estimation for intratask DVS algorithms is also possible [26]. The control flow 
graph (CFG) of the task is used for slack time estimation; each node of the CFG is a basic block of 
the task, and each edge indicates control dependency between basic blocks. When the thread of 
execution control branches to the next basic block, the expected execution time is updated. If the 
expected execution time is smaller than the task’s WCET, the operating frequency can be lowered.

7.2.4.2 PRACTICAL CONSIDERATIONS IN DVS

Most DVS studies focused on task scheduling assume a target system that (1) consists of all 
voltage-scalable components whose supply voltage can be set to any value within a given range of 
supply voltage, (2) in which only dynamic energy is considered, and (3) in which the speed setting 
of the tasks do not affect other components of the system. Although these assumptions simplify 
calculation of energy consumption and development of a scheduling scheme, the derived sched-
uling may not perform well because the assumption does not reflect a realistic setting. In fact, 
in deeply scaled CMOS technology leakage power is become a significant portion of total power, 
which does not fit exactly in the relations of Equations 7.1 and 7.2. Recent studies have addressed 
the impact of these nonidealities on DVS.

Discretely Variable Voltage Levels: Most scheduling algorithms assume that the supply volt-
age can be regulated in a continuous way; however, commercial DVS-enabled micro-
processors usually support only a small number of predefined voltages. To get a more 
practical DVS schedule, some scheduling techniques have been proposed for discretely 
variable supply voltage levels as opposed to continuously variable one.

  An optimal voltage allocation technique for a single task with discrete voltage levels 
can be obtained by solving an integer LP [32]. In case that only a small number of dis-
cretely variable voltages can be used, this work shows that using the two voltages in that 
are the immediate neighbors to the ideal voltage that minimizes the energy consump-
tion. By iterating this “interpolation” of adjacent voltages, it is possible to yield an energy-
optimal schedule for multiple tasks [33].



Chapter 7 – System-Level Power Management    109

Leakage-aware DVS: As the supply voltage of CMOS devices becomes lower, the threshold 
voltage should be also reduced, which results in dramatic increase of the subthresh-
old leakage current. Therefore, especially for deeply scaled technologies, both static and 
dynamic energy should be considered.

  However, when adding the static energy contribution, total energy is not a monotoni-
cally increasing function of the supply voltage anymore. Since the performance degrada-
tion due to reduction of the supply voltage may increase the execution time, this may 
result in the increase of static energy consumption. Consequently, if the supply voltage 
is reduced below a certain limit, the energy consumption becomes larger again. Inspired 
by this convex energy curve, which is not monotonically increasing with respect to the 
supply voltage, it is possible to identify an optimal critical voltage value [34] below which 
it is not convenient to scale supply voltage, even though there is still slack time left over. 
For this leftover idle time, extra power can be saved by turning the resource off (pro-
vided that this is convenient, based on breakeven time analysis).

Memory-aware DVS: As the complexity of modern system increases, the other components 
except microprocessor, for example, memory devices, contribute more to system power con-
sumption. Thus, their power consumption must be considered when applying a power man-
agement technique. Unfortunately, many off-chip components do not allow supply voltage 
scaling. Since they are controlled by the microprocessor, their active periods may become 
longer when we slow down the microprocessor using DVS. The delay increase due to lower 
supply voltage of a microprocessor may increase the power consumption of non-supply-
voltage-scalable devices eventually. In these cases, the energy gain achieved from DVS on 
the processor must be traded off against the energy increase of non-voltage-scalable devices.

There are some related studies about the DVS in the system including non-supply-voltage-
scalable devices, especially focusing on memory devices. The works of References 35 and 36 
show that aggressive reduction of supply voltage of microprocessor results in the increase of total 
energy consumption because the static energy consumption of memory devices becomes larger 
as the execution time gets longer, and thus chances of power down decrease. In Reference 36, 
an analytical method to obtain an energy-optimal frequency assignment of non-supply-voltage-
scalable memory and supply-voltage-scalable CPU is proposed.

7.2.4.3 NONUNIFORM SWITCHING LOAD CAPACITANCES

Even if multiple tasks are scheduled, most studies characterize these tasks only by the timing con-
straints. This assumes that all tasks with the same voltage assignment and the same period will con-
sume the same amount of energy irrespective of their operation. This means that uniform switching 
load capacitances C in the energy consumption equation are assumed for all the tasks. However, dif-
ferent tasks may utilize different datapath units that result in different energy consumption even for 
the tasks with the same period. Scheduling algorithms for multiple tasks that account for nonuniform 
switching load capacitances can be obtained by adapting the basic algorithm of Reference 24 [33].

7.2.4.4 DVS SCHEDULING FOR NON-REAL-TIME WORKLOADS

Unlike real-time workloads, generic workloads cannot be characterized in terms of a task-based 
model using start and finish times, deadlines, and WCETs. As a consequence, it is not possible 
to devise a universal, energy-optimal scheduling algorithm for the real-time case. The traditional 
approach is to consider execution as split in uniform-length time intervals of relatively large size 
(in the order of several thousand cycles), and update processor speed (via voltage/frequency set-
ting) at the beginning of each time interval based on the characteristics of the workload in the 
previous interval(s) [37,38].

An example of policy is the PAST policy of Reference 37, in which the speed of the next time 
interval is increased by 20% if the utilization factor in the previous interval was greater than 70%, 
and speed is decreased by 60% minus the utilization factor if the latter was lower than 50%. The 
algorithm considers also the computation that, due to a too low speed in the previous interval, 
can carry over the current interval; the utilization factor includes this excess computation.



110    7.3 Battery-Aware Dynamic Power Management

The heuristic nature of these algorithms is evident from this example—the thresholds are 
calibrated based on empirical evaluation on typical workloads and no optimality can be done.

These methods are simple implementations of a more general principle that provides mini-
mum overall energy, that is, to average the workload over multiple time periods and use the clos-
est speed that allows to execute leaving the smallest idle time. This approach, besides reducing 
the number of speed changes, can be shown to improve average energy because of the convex 
relationship between energy and speed [21].

7.2.4.5 APPLICATIONS OF DVS

Besides the approaches listed earlier, several extensions have been made to DVS for various appli-
cation areas. One of them is an extension of DVS to multiple processing elements. Although a 
single processor is often assumed, recent studies try to derive the energy-optimal task schedule 
and allocation on multiple DVS-enabled processing elements such as a multiprocessor system on 
chip [39]. The dependency between each processing element makes DVS more complex, and thus 
needs more future study.

Some studies focus DVS specialization for specific applications, for example, a multimedia 
workload. In Reference 40, the decoding time of an MPEG video frame is predicted using the 
characteristics of MPEG-2. The task scheduler utilizes this information to determine the most 
appropriate supply voltage for decoding the current frame.

DVS is often applied to a system that must meet fault tolerance requirements as well as real-
time constraints [41,42]. Fault tolerance can be achieved through the checkpointing and rollback 
recovery, which also require slack time like DVS. Therefore, the slack times should be carefully 
distributed among the fault tolerance features and the power management techniques, respec-
tively, to minimize the energy consumption maintaining fault tolerance.

7.3 BATTERY-AWARE DYNAMIC POWER MANAGEMENT

The power management techniques described in the previous section do assume an ideal power 
supply, that is, (1) it can satisfy any power demand by the load and (2) the available battery energy 
is always available regardless of the load demand. While this simplifying assumption may be 
considered reasonable for systems connected to a fixed power supply, it is simply wrong in the 
case of battery-operated systems.

7.3.1 BATTERY PROPERTIES

Batteries are in fact nowhere close to be ideal charge storage units, as pointed out in any battery 
handbook [47]. From a designer’s standpoint, two are the main nonidealities of real-life battery 
cells that need to be considered:

 ◾ The capacity of a battery depends on the discharge current. At higher currents, a battery is 
less efficient in converting its chemically stored energy into available electrical energy. This 
effect is called the “rated capacity effect”: it is shown in the left plot of Figure 7.5, where the 
capacity of the battery is plotted as a function of the average current load. We observe that, 
for increasing load currents, the battery capacity progressively decreases: at higher rates, 
the cell is less efficient at converting its stored energy into available electrical energy.

 ◾ A consequence of the rated capacity effect is that battery lifetime will be negatively cor-
related with the variance of the current load; for a given average current value, a constant 
load (i.e., with no variance) will result in the longest battery lifetime of all load profiles.

 ◾ Batteries have some (limited) recovery capacity when they are discharged at high current 
loads. A battery can recover some of its deliverable charge if periods of discharge are 
interleaved with rest periods, that is, periods in which no current is drawn. The right 
plot in Figure 7.5 shows how an intermittent current load (dashed line) results in a longer 
battery lifetime than a constant current load (solid line), for identical discharge rate. The 
x-axis represents the actual elapsed time of discharge, that is, it does not include the 
time during which the battery has been disconnected from the load.
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Accounting for these nonidealities is essential, since it can be shown that power management 
techniques (both with and without DVS) that neglect these issues may actually result in an 
increase in energy [48,49].

7.3.2 BATTERY-AWARE DPM

The most intuitive solution consists thus of incorporating battery-driven policies into the DPM 
framework, either implicitly (i.e., using a battery-driven metric for a conventional policy) [51] or 
explicitly (i.e., a truly battery-driven policy) [50,52]. A simple example of the latter type could sim-
ply be a policy whose decision rules used to control the system operation state are based on the 
observation of a battery output voltage, which is (nonlinearly) related with the charge state [50].

More generally, it is possible to directly address the aforementioned nonidealities to shape 
the load current profile so as to increase as much as possible the effective capacity of the battery.

The issue of load-dependent capacity can be tackled along two dimensions. The dependency 
on the average current can be tackled by shaping the current profile in such a way that highly 
current-demanding operations are executed first (i.e., with fully charged battery), and low-
current-demanding ones are executed later (i.e., with a reduced-capacity battery).

This principle fits well at the task granularity, where the shaping of the profile corresponds to 
task scheduling. Intuitively, the solution that maximizes battery efficiency and thus its lifetime 
is the one in which tasks are scheduled in nondecreasing order of their average current demand 
(Figure 7.6), compatibly with deadline or response time constraints [55].

The issue of charge recovery can be taken into account by properly arranging the idle times 
in the current profile. In particular, idle periods can be inserted between the executions of tasks. 
Notice that this is different from typical current profiles, where active and idle intervals typically 
alternate in relatively long bursts (Figure 7.7a).
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Inserting idle slots between task execution will allow the battery to recover some of the charge 
so that lifetime can be increased (Figure 7.6b). In the example, it may happen that after execu-
tion of T2 the battery is almost exhausted and execution of T3 will not complete; conversely, the 
insertion of an idle period will allow the battery to recover part of the charge so that execution of 
T3 becomes possible. Idle time insertion can obviously be combined with the ordering of tasks to 
exploit both properties and achieve longer battery lifetimes [56].

Availaibility of appropriate battery models are therefore essential to assess the actual impact of 
the system’s operations on the available energy stored in a battery. Stated in other terms, how the 
energy consumed by the hardware actually reflects on the energy drawn from the battery. Many 
types of battery models have been proposed in the literature, with a large variety of abstraction 
levels, degrees of accuracy, and semantics ([57]–[63]).

7.3.3 BATTERY-AWARE DVS

The possibility of scaling supply voltages at the task level adds further degrees of freedom in 
choosing the best shaping of the current loads. Voltage scaling can be in fact viewed as another 
opportunity to reduce the current demand of a task, at the price of increased execution time. 
Under a simple, first-order approximation, the drawn current I is proportional to V3, while 
delay increases proportionally with V. Therefore, the trade-off is between a decrease (increase) 
in the discharge current and an increase (decrease) in the duration of the stress [56].

Battery-aware DVS tries to enforce the property of the load-dependent capacity, since it can 
be proved that scaling voltage is always more efficient than inserting idle periods [55]. Therefore, 
anytime a slack is available, it should be filled by scaling the voltage (Figure 7.8), compatibly with 
possible constraints.

This is equivalent to stating that the impact on lifetime of the rate-dependent behavior of bat-
teries dominates that due to the charge recovery effect. Notice that this property is consistent 
with the results derived in Section 7.2 for non-battery-operated systems: Scaling voltage is always 
more convenient, energy-wise, than shutting down.

Solutions proposed in the literature typically start from a nondecreasing current profile and 
reclaim the available slack from the tail of the schedule by slowing down tasks according to the 
specified constraints [53–55].
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7.3.4 MULTIBATTERY SYSTEMS

In the case of supply systems consisting of multiple batteries, the load-dependent capacity of 
batteries has deeper implications, which open additional opportunities for optimization. In fact, 
since at a given point in time the load is connected to only one battery, the other ones are idle. 
DPM with multiple batteries amounts thus to the problem of assigning of battery idle times 
(as opposed to task idle times). In other words, since this is equivalent to schedule battery usage 
over time, this problem is called battery scheduling.

The default battery scheduling policy in use in most devices is a nonpreemptive one that 
sequentially discharges one battery after another, in some order. Because of the aforementioned 
nonidealities, this is clearly a suboptimal policy [64].

Similarly to task scheduling, battery scheduling can be either workload independent or work-
load dependent. In the former case, batteries are attached to the load in a round-robin fashion 
for a fixed amount of time. Unlike task scheduling, the choice of this quantity is dictated by the 
physical property of batteries. It can be shown, in fact, that the smaller this interval, the higher 
is the equivalent capacity of the battery sets [65]. This is because by rapidly switching between 
full load and no load, each battery perceives an effective averaged discharge current proportional 
to the fraction of time it is connected to the load. In other words, if a battery is connected to 
the load current I for a fraction α < 1 of the switching period, it will perceive a load current α · I. 
This is formally equivalent to connecting the two batteries in parallel, without incurring into the 
problem of mutually discharging the batteries.

In the latter case, we assign a battery to the load depending on its characteristics. More pre-
cisely, one should select which battery to connect to the load based on runtime measurement 
of current draw, in an effort to match a load current to the battery that better responds to it 
[50,64,65]. A more sophisticated workload-dependent scheme consists of adapting the round-
robin approach to heterogeneous (i.e., having different nominal capacities and discharge curves) 
multibattery supplies. In these cases, the current load should be split nonuniformly over all the 
cells in the power supply. Therefore, the round-robin policy can be modified in such a way that 
the time slice has different durations. For instance, in a two-battery system, this is equivalent to 
connect batteries to the load following a square wave with unbalanced duty cycle [66].

7.4 SOFTWARE-LEVEL DYNAMIC POWER MANAGEMENT

7.4.1 SOFTWARE POWER ANALYSIS

Focusing solely on the hardware components of a design tends to ignore the impact of the soft-
ware on the overall power consumption of the system. Software constitutes a major component 
of systems where power is a constraint. Its presence is very visible in a mobile computer, in the 
form of the system software and application programs running on the main processor. But soft-
ware also plays an even greater role in general digital applications. An ever-growing fraction of 
these applications are now being implemented as embedded systems. In these systems, the func-
tionality is partitioned between a hardware and a software component.

The software component usually consists of application-specific software running on a dedi-
cated processor, while the hardware component usually consists of application-specific circuits. 
The basic formulation of DPM described in the prior sections is general enough for its application 
to generic hardware components. However, for the software component it is more effective to 
view the power consumption from the point of view of the software running on the programma-
ble element. Relating the power consumption in the processor to the instructions that execute on 
it provides a direct way of analyzing the impact of the processor on the system power consump-
tion. Software impacts the system power consumption at various levels. At the highest level, this 
is determined by the way functionality is partitioned between hardware and software. The choice 
of the algorithm and other higher-level decisions about the design of the software component 
can affect system power consumption significantly. The design of the system software, the actual 
application source code, and the process of translation into machine instructions—all of these 
determine the power cost of the software component.
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In order to systematically analyze and quantify this cost, however, it is important to start at 
the most fundamental level, that is, at the level of the individual instructions executing on the 
processor. Just as logic gates are the fundamental units of computation in digital hardware cir-
cuits, instructions can be thought of as the fundamental unit of software. Accurate modeling and 
analysis at this level is therefore essential. Instruction-level models can then be used to quantify 
the power costs of the higher constructs of software (application programs, system software, 
algorithm, etc.).

It would be helpful to define the terms “power” and “energy,” as they relate to software. The 
average power consumed by a processor while running a given program is given by

 P I Vdd= ×

where
P is the average power
I is the average current
Vdd is the supply voltage

Power is also defined as the rate at which energy is consumed. Therefore, the energy consumed 
by a program is given by

 E P T= ×

where T is the execution time of the program. This in turn is given by T = N · τ, where N is the 
number of clock cycles taken by the program and τ is the clock period. Energy is thus given by

 E I V Ndd= × × × t

Note that if the processor supports dynamic voltage and frequency switching, then Vdd and τ can 
vary over the execution of the program. It is then best to consider the periods of code execution 
with different (Vdd,τ) combinations as separate components of the power/energy cost. As it can 
be seen from the earlier discussion, the ability to obtain an estimate of the current drawn by 
the processor during the execution of the program is essential for evaluating the power/energy 
cost of software. These estimates can either be obtained through simulations or through direct 
measurements.

7.4.1.1 SOFTWARE POWER ESTIMATION THROUGH SIMULATION

The most commonly used method for power analysis of circuits is through specialized power 
analysis tools that operate on abstract models of the given circuits. These tools can be used for 
software power evaluation too. A model of the given processor and a suitable power analysis tool 
are required. The idea is to simulate the execution of the given program on the model. During 
simulation, the power analysis tool estimates the power (current) drawn by the circuit using pre-
defined power estimation formulas, macromodels, heuristics, and/or algorithms.

However, this method has some drawbacks. It requires the availability of models that capture 
the internal implementation details of the processor. This is proprietary information, which most 
software designers do not have access to. Even if the models are available, there is an accuracy vs. effi-
ciency trade-off. The most accurate power analysis tools work at the lower levels of the design—switch 
level or circuit level. These tools are slow and impractical for analyzing the total power consumption 
of a processor as it executes entire programs. More efficient tools work at the higher levels—register 
transfer or architectural. However, these are limited in the accuracy of their estimates.

7.4.1.2 MEASUREMENT-BASED INSTRUCTION-LEVEL POWER MODELING

The earlier problems can be overcome if the current being drawn by the processor during 
the execution of a program is physically measured. A practical approach to current measure-
ment as applied to the problem of instruction-level power analysis has been proposed  [46]. 
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Using  this approach, empirical instruction-level power models were developed for three 
commercial microprocessors. Other researchers have subsequently applied these concepts 
to other microprocessors. The basic idea is to assign power costs to individual instructions 
(or instruction pairs to account for interinstruction switching effects) and to various interin-
struction effects like pipeline stalls and cache misses. These power costs are obtained through 
experiments that involve the creation of specific programs and measurement of the current 
drawn during their execution. These costs are the basic parameters that define the instruc-
tion-level power models. These models form the basis of estimating the energy cost of entire 
programs. For example, for the processors studied in Reference 46, for a given program, the 
overall energy cost is given by

 
E B N S O j N S Ei i

i

i j i i j k k= × + × +å( ) ( , ), ,

The base power cost, Bi, of each instruction, i, weighted by the number of times it will be exe-
cuted, Ni, is added up to give the base cost of the program. To this, the circuit state switching 
overhead, Oi,j, for each pair of consecutive instructions, i, j, weighted by the number of times 
the pair is executed, Ni,j, is added. The energy contribution, Ek, of the other interinstruction 
effects, k (stalls and cache misses) that would occur during the execution of the program, is 
finally added.

The base costs and overhead values are empirically derived through measurements. The 
other parameters in the previous formula vary from program to program. The execution 
counts Ni and Ni,j depend on the execution path of the program. This is dynamic, runtime 
information that has to be obtained using software performance analysis techniques. In cer-
tain cases, it can be determined statically, but in general it is best obtained from a program 
profiler. For estimating Ek, the number of times pipeline stalls and cache misses occur has 
to be determined. This is again dynamic information that can be statically predicted only 
in certain cases. In general, this information is obtained from a program profiler and cache 
simulator.

The processors whose power models have been published using the ideas mentioned earlier 
have so far been in-order machines with relatively simple pipelines. Out-of-order superscalar 
machines present a number of challenges to an instruction-oriented modeling approach and 
provide good opportunities for future research.

7.4.1.3 IDLE TIME EVALUATION

The earlier discussion is for the case when the processor is active and is constantly executing instruc-
tions. However, a processor may not always be performing useful work during program execution. For 
example, during the execution of a word processing program, the processor may simply be waiting for 
keyboard input from the user and may go into a low-power state during such idle periods. To account 
for these low-power periods, the average power cost of a program is thus given by

 P P T P Tactive active idle idle= × + ×

where
Pactive is the average power consumption when the processor is active
Tactive is the fraction of the time the processor is active
Pidle and Tidle are the corresponding parameters for when the processor is idle and has been put 

in a low-power state

Tactive and Tidle need to be determined using dynamic performance analysis techniques. In mod-
ern microprocessors, a hierarchy of low-power states is typically available, and the average power 
and time spent for each state would need to be determined.
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7.4.2 SOFTWARE-CONTROLLED POWER MANAGEMENT

For systems in which part of the functionality is implemented in software, it is natural to expect 
that there is potential for power reduction through modification of software. Software power 
analysis (whether achieved through physical current measurements or through simulation of 
models of processors) as described in Section 7.2.4 helps to identify the reasons for variation in 
power from one program to another. These differences can then be exploited in order to search 
for low-power alternatives for each program. The information provided by the instruction-level 
analysis can guide higher-level design decisions like hardware–software partitioning and choice 
of algorithm. It can also be directly used by automated tools like compilers, code generators, 
and code schedulers for generating code targeted toward low power. Several ideas in this regard 
have been published, starting with the work summarized in Reference 46. Some of these ideas 
are based on specific architectural features of the subject processors and memory systems. The 
most important conclusion though is that in modern general-purpose CPUs, software energy and 
performance track each other, that is, for a given task, a faster program implementation will also 
have lower energy. Specifically, it is observed that the difference in average current for instruction 
sequences that perform the same function is not large enough to compensate for any difference 
in the number of execution cycles. Thus, given a function, the least energy implementation for 
it is the one with the faster running time. The reason for this is that CPU power consumption is 
dominated by a large common cost factor (power consumption due to clocks, caches, instruction 
fetch hardware, etc.) that for the most part is independent of instruction functionality and does 
not vary much from one cycle to the other. This implies that the large body of work devoted to 
software performance optimization provides direct benefits for energy as well. Power manage-
ment techniques such as increased use of clock gating and multiple on-chip voltages indicate that 
future CPUs may show greater variation in power consumption from cycle to cycle. However, 
CPU design and power consumption trends do suggest that the relationship between software 
energy and power that was observed before will continue to hold. In any case, it is important to 
realize that software directly impacts energy/power consumption, and thus it should be designed 
to be efficient with respect to these metrics. A classic example of inefficient software is “busy wait 
loops.” Consider an application such as a spreadsheet that requires frequent user input. During 
the times when the spreadsheet is recalculating values, high CPU activity is desired in order to 
complete the recalculation in a short time. In contrast, when the application is waiting for the 
user to type in values, the CPU should be inactive and in a low-power state. However, a busy wait 
loop will prevent this from happening and will keep the CPU in a high-power state. The power 
wastage is significant. Converting the busy wait loops to an instruction or system call that puts 
the CPU into a low-power state from which it can be woken up on an I/O interrupt will eliminate 
this wasted power.

7.4.2.1 OS-DIRECTED DYNAMIC POWER MANAGEMENT

An important trend in modern CPUs is the ability for software to control the operating voltage 
and frequency of the processor. These different voltage/frequency operating points, which repre-
sent varying levels of power consumption, can be switched dynamically under software control. 
This opens up additional opportunities for energy-efficient software design, since the CPU can 
be made to run at the lowest power state that still provides enough performance to meet the task 
at hand. In practice, the DPM and DVS techniques described in Section 7.2.4 from a hardware-
centric perspective (because they managed multiple power states of hardware components) can 
be also viewed from the software perspective.

In this section, we describe implementation issues of power management techniques. In gen-
eral, the OS is the best software layer where the DPM policy can be implemented. OS-directed 
power management (OSPM) has several advantages: (1) the power/performance dynamic control 
is performed by the software layer that manages computational, storage, and I/O tasks of the sys-
tem; (2) power management algorithms are unified in the OS, yielding much better integration 
between the OS and the hardware; and (iii) moving the power management functionality into the 
OS makes it available on every machine on which the OS is installed. Implementation of OSPM 
is a hardware/software codesign problem because the hardware resources need to interface with 
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the OS-directed software power manager, and because both hardware resources and the 
software applications need to be designed so that they could cooperate with OSPM.

The advanced configuration and power interface (ACPI) specification [43] was developed to 
establish industry common interfaces enabling a robust OSPM implementation for both devices 
and entire systems. Currently, it is standardized by Hewlett-Packard, Intel, Microsoft, Phoenix, 
and Toshiba. It is the key element of an OSPM, since it facilitates and accelerates the codesign of 
OSPM by providing a standard interface to control system components. From a power manage-
ment perspective, OSPM/ACPI promotes the concept that systems should conserve energy by 
transitioning unused devices into lower-power states, including placing the entire system in a 
low-power state (sleep state) when possible. ACPI-defined interfaces are intended for wide adop-
tion to encourage hardware and software designers to build ACPI-compatible (and thus, OSPM 
compatible) implementations. Therefore, ACPI promotes the availability of power manageable 
components that support multiple operational states. It is important to notice that ACPI speci-
fies neither how to implement hardware devices nor how to realize power management in the 
OS. No constraints are imposed on implementation styles for hardware and on power manage-
ment policies. The implementation of ACPI-compliant hardware can leverage any technology or 
architectural optimization as long as the power-managed device is controllable by the standard 
interface specified by ACPI. The power management module of the OS can be implemented using 
any kind of power management policies including predictive techniques, and stochastic control 
techniques. A set of experiments were carried out by Lu et al. to measure the effectiveness of 
different power management policies on ACPI-compliant computers [44,45].

7.5 CONCLUSIONS

The design of energy-efficient systems goes through the optimization of the architectures of 
the individual components, the communications between them, and their usage. Of these three 
dimensions, the optimization of components usage seems to better fit to a system-level context, 
since it may rely on very abstract models of the components and does not usually require detailed 
information about their implementation.

In this chapter, we discussed and analyzed the problem of optimizing the usage of compo-
nents of a system, which is usually called dynamic power management. DPM aims at dynamically 
adapting the multiple states of operation of various components to the required performance 
level, in an effort to minimize the power wasted by idle or underutilized components.

In its simplest form, DPM entails the decision between keeping the component active or turn-
ing it off, where the off state may consists of different power/performance trade-off values. When 
combined with the possibility of dynamically varying the supply voltage, DPM generalizes to the 
more general problem of DVS, in which multiple active states are possible. DVS is motivated by 
the fact that it is always more efficient, energy-wise, to slow down a component rather than shut-
ting it down, because of the quadratic dependency of power on voltage. Nonidealities can also be 
incorporated into DVS, such as the use of a discrete set of voltage levels, the impact of leakage 
power, and the presence of nonideal supply source (i.e., a battery).

Finally, we revisited the DPM/DVS problem from the software perspective, illustrating how 
this can be managed entirely by the software, possibly the OS running on the system.
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8.1 INTRODUCTION

Computing is an integral part of daily life. We encounter two types of computing devices 
every day: desktop-based computing devices and embedded computer systems. Desktop-based 
computing systems encompass traditional computers, including personal computers, notebook 
computers, workstations, and servers. Embedded computer systems are ubiquitous—they run 
the computing devices hidden inside a vast array of everyday products and appliances such 
as smartphones, toys, handheld PDAs, cameras, and cars. Both types of computing devices 
use programmable components such as processors, coprocessors, and memories to execute 
application programs. These programmable components are also referred as “programmable 
accelerators.” Figure 8.1 shows an exemplary embedded system with programmable accelera-
tors. Depending on the application domain, the embedded system can have application-spe-
cific accelerators, interfaces, controllers, and peripherals. The complexity of the programmable 
accelerators is increasing at an exponential rate due to technological advances as well as demand 
for realization of ever more complex applications in communication, multimedia, networking, 
and entertainment. Shrinking time to market coupled with short product lifetimes creates a 
critical need for design automation of increasingly sophisticated and complex programmable 
accelerators.

Modeling plays a central role in the design automation of processors. It is necessary to develop a 
specification language that can model complex processors at a higher level of abstraction and also 
enable automatic analysis and generation of efficient prototypes. The language should be power-
ful enough to capture high-level description of the programmable architectures. On the other 
hand, the language should be simple enough to allow correlation of the information between the 
specification and the architecture manual.

Specifications widely in use today are still written informally in natural languages like 
English. Since natural language specifications are not amenable to automated analysis, there 
are possibilities of ambiguity, incompleteness, and contradiction: all problems that can lead to 
different interpretations of the specification. Clearly, formal specification languages are suit-
able for analysis and verification. Some have become popular because they are input languages 
for powerful verification tools such as a model checker. Such specifications are popular among 
verification engineers with expertise in formal languages. However, these specifications are 
not acceptable by designers and other tool developers. Therefore, the ideal specification  language 
should have formal (unambiguous) semantics as well as easy correlation with the architecture 
manual.

Architecture description languages (ADLs) have been successfully used as a specification lan-
guage for processor development. Development of a processor is associated with multiple steps 
as embodied in the Mescal design methodology [1]. These steps—benchmarking, architectural 
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space identification, design evaluation, design exploration, and deployment—are correlated with 
corresponding tools and implementations. Mescal methodology, in practice, is represented by the 
ADL-based processor design flow. The ADL specification is used to perform design representa-
tion, design evaluation, design validation, and synthesis to a more detailed abstraction such as 
register transfer level (RTL). This is shown in Figure 8.2.

More specifically, the ADL specification is used to derive a processor toolsuite such as 
 instruction-set (IS) simulator, compiler, debugger, profiler, assembler, and linker. The specifica-
tion is used to generate detailed and optimized hardware description in an RTL description [2,3]. 
The ADL specification is used to validate the design by formal, semiformal, and simulation-based 
validation flows [4], as well as for the generation of test interfaces [5]. The specification can also 
be used to generate device drivers for real-time operating systems (OSs) [6].

The rich modeling capability of ADL is used to design various kinds of processor architectures 
ranging from programmable coarse-grained reconfigurable architectures (CGRAs) to supersca-
lar processors [2,7,8]. The design exploration capability of an ADL-driven toolsuite is extended to 
cover high-level power and reliability estimations [9]. The prominence of ADL is also palpable in 
its widespread market acceptance [10,11]. In this chapter, we attempt to cover the entire spectrum 
of processor design tools, from the perspective of ADL-based design methodology.

The rest of this chapter is organized as follows: Section 8.2 describes processor modeling using 
ADLs. Section 8.3 presents ADL-driven methodologies for software toolkit generation, hardware 
synthesis, exploration, and validation of programmable architectures. Finally, Section 8.4 con-
cludes the chapter.

8.2 PROCESSOR MODELING USING ADLs

The phrase “architecture description language” has been used in the context of designing both soft-
ware and hardware architectures. Software ADLs are used for representing and analyzing software 
architectures [12]. They capture the behavioral specifications of the components and their interac-
tions that comprise the software architecture. However, hardware ADLs (also known as processor 
description languages) capture the structure, that is, hardware components and their connectivity, 
and the behavior (IS) of processor architectures. The concept of using high-level languages (HLLs) 
for specification of architectures has been around for a long time. Early ADLs such as ISPS [13] were 
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used for simulation, evaluation, and synthesis of computers and other digital systems. This section 
gives a short overview of prominent ADLs and tries to define a taxonomy of ADLs.

8.2.1 ADLs AND OTHER LANGUAGES

How do ADLs differ from programming languages, hardware description languages (HDLs), 
modeling languages, and the like? This section attempts to answer this question. However, it is 
not always possible to answer the following question: given a language for describing an architec-
ture, what are the criteria for deciding whether it is an ADL or not?

In principle, ADLs differ from programming languages because the latter bind all architec-
tural abstractions to specific point solutions whereas ADLs intentionally suppress or vary such 
binding. In practice, architecture is embodied and recoverable from code by reverse engineering 
methods. For example, it might be possible to analyze a piece of code written in C and figure 
out whether it corresponds to a Fetch unit or not. Many languages provide architecture-level 
views of the system. For example, C++ offers the ability to describe the structure of a processor 
by instantiating objects for the components of the architecture. However, C++ offers little or no 
architecture-level analytical capabilities. Therefore, it is difficult to describe architecture at a level 
of abstraction suitable for early analysis and exploration. More importantly, traditional program-
ming languages are not a natural choice for describing architectures due to their unsuitability for 
capturing hardware features such as parallelism and synchronization.

ADLs differ from modeling languages (such as UML) because the latter are more concerned 
with the behaviors of the whole rather than the parts, whereas ADLs concentrate on representa-
tion of components. In practice, many modeling languages allow the representation of cooperating 
components and can represent architectures reasonably well. However, the lack of an abstraction 
would make it harder to describe the IS of the architecture. Traditional HDLs, such as VHDL and 
Verilog, do not have sufficient abstraction to describe architectures and explore them at the system 
level. It is possible to perform reverse engineering to extract the structure of the architecture from 
the HDL description. However, it is hard to extract the IS behavior of the architecture.

8.2.2 PROMINENT ADLs

This section briefly surveys some of the prominent ADLs in the context of processor modeling 
and design automation. There are many comprehensive ADL surveys available in the literature 
including ADLs for retargetable compilation [14], programmable embedded systems [15], and 
system-on-chip (SoC) design [16]. A definitive compilation of the ADLs can be found in Reference 17.

Figure 8.3 shows the classification of ADLs based on two aspects: content and objective. The 
content-oriented classification is based on the nature of the information an ADL can capture, 
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whereas the objective-oriented classification is based on the purpose of an ADL. ADLs can be 
classified into six categories based on the objective: simulation oriented, synthesis oriented, test 
oriented, compilation oriented, validation oriented, and OS oriented.

ADLs can be classified into four categories based on the nature of the information: structural, 
behavioral, mixed, and partial. This classification can be also linked with the objective and ori-
gin of the different ADLs. The structural ADLs capture the structure in terms of architectural 
components and their connectivity. The behavioral ADLs capture the IS behavior of the proces-
sor architecture. The mixed ADLs capture both structure and behavior of the architecture. These 
ADLs capture complete description of the structure or behavior or both. However, the partial ADLs 
capture specific information about the architecture for the intended task. For example, an ADL 
intended for interface synthesis does not require internal structure or behavior of the processor.

Early ADLs are inspired from RTL abstraction. An example is the ADL MIMOLA [18], which 
is categorized within structural ADLs. A brief description of MIMOLA is provided here.

8.2.2.1 MIMOLA

MIMOLA [18] was developed at the University of Dortmund, Germany. It was originally proposed 
for microarchitecture design. One of the major advantages of MIMOLA is that the same descrip-
tion can be used for synthesis, simulation, test generation, and compilation. A tool chain including 
the MSSH hardware synthesizer, the MSSQ code generator, the MSST self-test program compiler, 
the MSSB functional simulator, and the MSSU reservation table (RT)-level simulator was developed 
based on the MIMOLA language [18]. MIMOLA has also been used by the RECORD [18] compiler.

MIMOLA description contains three parts: the algorithm to be compiled, the target pro-
cessor model, and additional linkage and transformation rules. The software part (algorithm 
description) describes application programs in a PASCAL-like syntax. The processor model 
describes microarchitecture in the form of a component netlist. The linkage information 
is used by the compiler in order to locate important modules such as program counter and 
instruction memory. The following code segment specifies the program counter and instruc-
tion memory locations [18]:

 LOCATION_FOR_PROGRAMCOUNTER PCReg;
 LOCATION_FOR_INSTRUCTIONS IM[0..1023];

The algorithmic part of MIMOLA is an extension of PASCAL. Unlike other HLLs, it allows ref-
erences to physical registers and memories. It also allows use of hardware components using 
procedure calls. For example, if the processor description contains a component named MAC, 
programmers can write the following code segment to use the multiply–accumulate operation 
performed by MAC:

 res:= MAC(x, y, z);

The processor is modeled as a netlist of component modules. MIMOLA permits modeling of 
arbitrary (programmable or nonprogrammable) hardware structures. Similar to VHDL, a num-
ber of predefined, primitive operators exist. The basic entities of MIMOLA hardware models are 
modules and connections. Each module is specified by its port interface and its behavior. The 
following example shows the description of a multifunctional ALU module [18]:

 MODULE ALU
 (IN inp1, inp2: (31:0);
 OUT outp: (31:0);
 IN ctrl;
 )
 CONBEGIN
 outp <- CASE ctrl OF
 0: inp1 + inp2;
 1: inp1 - inp2;
 END;
 CONEND;
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The CONBEGIN/CONEND construct includes a set of concurrent assignments. In the example men-
tioned previously, a conditional assignment to output port outp is specified, which depends on the 
two-bit control input ctrl. The netlist structure is formed by connecting ports of module instances. 
For example, the following MIMOLA description connects two modules: ALU and accumulator ACC.

 CONNECTIONS ALU.outp -> ACC.inp
 ACC.outp -> ALU.inp

The MSSQ code generator extracts IS information from the module netlist. It uses two internal 
data structures: connection operation graph (COG) and instruction tree (I-tree). It is a very difficult 
task to extract the COG and I-trees even in the presence of linkage information due to the flex-
ibility of an RT-level structural description. Extra constraints need to be imposed in order for the 
MSSQ code generator to work properly. The constraints limit the architecture scope of MSSQ to 
microprogrammable controllers, in which all control signals originate directly from the instruction 
word. The lack of explicit description of processor pipelines or resource conflicts may result in poor 
code quality for some classes of very long instruction word (VLIW) or deeply pipelined processors.

The difficulty of IS extraction can be avoided by abstracting behavioral information from the 
structural details. Behavioral ADLs, such as nML [19] and instruction set description language 
(ISDL) [20], explicitly specify the instruction semantics and put less emphasis on the microarchi-
tectural details.

8.2.2.2 nML

nML was designed at Technical University of Berlin, Germany. nML has been used by code 
generators CBC [21] and CHESS [22] and IS simulators Sigh/Sim [23] and CHECKERS. 
CHESS/CHECKERS environment is used for automatic and efficient software compilation 
and IS simulation [23].

nML developers recognized the fact that several instructions share common properties. The 
final nML description would be compact and simple if the common properties are exploited. 
Consequently, nML designers used a hierarchical scheme to describe ISs. The instructions are the 
topmost elements in the hierarchy. The intermediate elements of the hierarchy are partial instruc-
tions (PIs). The relationship between elements can be established using two composition rules: 
AND-rule and OR-rule. The AND-rule groups several PIs into a larger PI and the OR-rule enumer-
ates a set of alternatives for one PI. Therefore, instruction definitions in nML can be in the form of 
an AND–OR tree. Each possible derivation of the tree corresponds to an actual instruction.

To achieve the goal of sharing instruction descriptions, the IS is enumerated by an attributed gram-
mar. Each element in the hierarchy has few attributes. A nonleaf element’s attribute values can be 
computed based on its children’s attribute values. Attribute grammar is also adopted by other ADLs 
such as ISDL [20]. The following nML description shows an example of instruction specification [19]:

 op numeric_instruction(a:num_action, src:SRC, dst:DST)
 action {
 temp_src = src;
 temp_dst = dst;
 a.action;
 dst = temp_dst;
 }
 op num_action = add | sub
 op add()
 action = {
 temp_dst = temp_dst + temp_src
 }

The definition of numeric_instruction combines three PIs with the AND-rule: num_action, 
SRC, and DST. The first PI, num_action, uses OR-rule to describe the valid options for actions: 
add or sub. The number of all possible derivations of numeric_instruction is the product of the 
size of num_action, SRC, and DST. The common behavior of all these options is defined in the 
action attribute of numeric_instruction. Each option for num_action should have its own action 
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attribute defined as its specific behavior, which is referred by the a.action line. For example, the 
aforementioned code segment has action description for add operation. Object code image and 
assembly syntax can also be specified in the same hierarchical manner.

nML also captures the structural information used by IS architecture. For example, storage 
units should be declared since they are visible to the IS. nML supports three types of storages: 
RAM, register, and transitory storage. Transitory storage refers to machine states that are retained 
only for a limited number of cycles, for example, values on buses and latches. Computations have 
no delay in nML timing model—only storage units have delay. Instruction delay slots are modeled 
by introducing storage units as pipeline registers. The result of the computation is propagated 
through the registers in the behavior specification.

nML models constraints between operations by enumerating all valid combinations. The 
enumeration of valid cases can make nML descriptions lengthy. More complicated constraints, 
which often appear in digital signal processors (DSPs) with irregular instruction-level parallelism 
(ILP) constraints or VLIW processors with multiple issue slots, are hard to model with nML. For 
example, nML cannot model the constraint that operation I1 cannot directly follow operation 
I0. nML explicitly supports several addressing modes. However, it implicitly assumes an archi-
tecture model that restricts its generality. As a result, it is hard to model multicycle or pipelined 
units and multiword instructions explicitly. A good critique of nML is given in Reference 24.

Several ADLs endeavored to capture both structural and behavioral details of the processor 
architecture. We briefly describe two such mixed ADLs: EXPRESSION [25] and Language for 
Instruction-Set Architecture (LISA) [26].

8.2.2.3 EXPRESSION

The aforementioned mixed ADLs require explicit description of RTs. Processors that contain 
complex pipelines, large amounts of parallelism, and complex storage subsystems typically con-
tain a large number of operations and resources (and hence RTs). Manual specification of RTs 
on a per-operation basis thus becomes cumbersome and error prone. The manual specification 
of RTs (for each configuration) becomes impractical during rapid architectural exploration. 
The EXPRESSION ADL [25] describes a processor as a netlist of units and storages to auto-
matically generate RTs based on the netlist [27]. Unlike MIMOLA, the netlist representation 
of EXPRESSION is of coarse granularity. It uses a higher level of abstraction similar to a block-
diagram-level description in an architecture manual.

EXPRESSION ADL was developed at the University of California, Irvine. The ADL has been 
used by the retargetable compiler (EXPRESS [28]) and simulator (SIMPRESS [29]) generation 
framework. The framework also supports a graphical user interface (GUI) and can be used for 
design space exploration of programmable architectures consisting of processor cores, coproces-
sors, and memories [30]. An EXPRESSION description is composed of two main sections: behav-
ior (IS) and structure. The behavior section has three subsections: operations, instruction, and 
operation mappings. Similarly, the structure section consists of three subsections: components, 
pipeline/data-transfer paths, and memory subsystem.

The operation subsection describes the IS of the processor. Each operation of the processor is 
described in terms of its opcode and operands. The types and possible destinations of each oper-
and are also specified. A useful feature of EXPRESSION is operation group that groups similar 
operations together for the ease of later reference. For example, the following code segment shows 
an operation group (alu_ops) containing two ALU operations: add and sub.

 (OP_GROUP alu_ops
 (OPCODE add
 (OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
 (BEHAVIOR DEST = SRC1 + SRC2)
 …)
 (OPCODE sub
 (OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
 (BEHAVIOR DEST = SRC1 - SRC2)
 …)
 )
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The instruction subsection captures the parallelism available in the architecture. Each instruction 
contains a list of slots (to be filled with operations), with each slot corresponding to a functional 
unit. The operation mapping subsection is used to specify the information needed by instruction 
selection and architecture-specific optimizations of the compiler. For example, it contains map-
ping between generic and target instructions.

The component subsection describes each RT-level component in the architecture. The com-
ponents can be pipeline units, functional units, storage elements, ports, and connections. For 
multicycle or pipelined units, the timing behavior is also specified.

The pipeline/data-transfer path subsection describes the netlist of the processor. The pipeline 
path description provides a mechanism to specify the units that comprise the pipeline stages, 
while the data-transfer path description provides a mechanism for specifying the valid data 
transfers. This information is used to both retarget the simulator and to generate RTs needed 
by the scheduler [27]. An example path declaration for the DLX architecture [31] (Figure 8.4) is 
shown as follows. It describes that the processor has five pipeline stages. It also describes that the 
Execute stage has four parallel paths. Finally, it describes each path, for example, it describes that 
the FADD path has four pipeline stages.

 (PIPELINE Fetch Decode Execute MEM WriteBack)
 (Execute (ALTERNATE IALU MULT FADD DIV))
 (MULT (PIPELINE MUL1 MUL2… MUL7))
 (FADD (PIPELINE FADD1 FADD2 FADD3 FADD4))

The memory subsection describes the types and attributes of various storage components (such 
as register files, SRAMs, DRAMs, and caches). The memory netlist information can be used to 
generate memory-aware compilers and simulators [32]. Memory-aware compilers can exploit the 
detailed information to hide the latency of the lengthy memory operations. EXPRESSION captures 
the datapath information in the processor. The control path is not explicitly modeled. The instruc-
tion model requires extension to capture interoperation constraints such as sharing of common 
fields. Such constraints can be modeled by ISDL through cross-field encoding assignment.
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8.2.2.4 LISA

LISA [26] was developed at RWTH Aachen University, Germany, with the original goal of 
developing fast simulators. The language has been used to produce production–quality simu-
lators [33]. Depending on speed and accuracy constraints, different modes of IS simulator, 
that is, compiled, interpretive, just-in-time cache compiled, can be generated. An important 
aspect of LISA is its ability to stepwise increase the abstraction details. A designer may start 
from an instruction-accurate LISA description, perform early design exploration, and then 
move toward a detailed, cycle-accurate model. In this stepwise improvement of architectural 
details, application profiler, automatic IS encoding [34], and custom instruction identifica-
tion [35] play an important role. From a cycle-accurate LISA description, optimized, low-
power RTL [36,37] generation is permitted. LISA also provides a methodology for automated 
test-pattern and assertion generation [38]. LISA has been used to generate retargetable C 
compilers [39,40]. LISA descriptions are composed of two types of declarations: resource 
and operation. The resource declarations cover hardware resources such as registers, pipe-
lines, and memory hierarchy. An example pipeline description for the architecture shown in 
Figure 8.4 is as follows:

 PIPELINE int = {Fetch; Decode; IALU; MEM; WriteBack}
 PIPELINE flt = {Fetch; Decode; FADD1; FADD2;
 FADD3; FADD4; MEM; WriteBack}
 PIPELINE mul = {Fetch; Decode; MUL1; MUL2; MUL3; MUL4;
 MUL5; MUL6; MUL7; MEM; WriteBack}
 PIPELINE div = {Fetch; Decode; DIV; MEM; WriteBack}

Operations are the basic objects in LISA. They represent the designer’s view of the behavior, 
the structure, and the IS of the programmable architecture. Operation definitions capture the 
description of different properties of the system such as operation behavior, IS information, 
and timing. These operation attributes are defined in several sections. Coding and Syntax sec-
tions cover the instruction encoding and semantics. Behavior section contains the datapath of 
the instruction and Activation section dictates the timing behavior of the instruction across 
the pipeline stages. LISA exploits the commonality of similar operations by grouping them 
into one. The following code segment describes the decoding behavior of two immediate-
type (i_type) operations (ADDI and SUBI) in the DLX Decode stage. The complete behavior 
of an instruction can be obtained by combining the behavior definitions along the operation-
activation chain. In this regard, an entire LISA model can be conceptualized as a directed 
acyclic graph, where the nodes are the LISA operations and the edges are formed by the LISA 
Activation section.

 OPERATION i_type IN pipe_int.Decode {
 DECLARE {
 GROUP opcode={ADDI || SUBI}
 GROUP rs1, rd = {register};
 }
 CODING {opcode rs1 rd immediate}
 SYNTAX {opcode rd ‘‘,’’ rs1 ‘‘,’’ immediate}
 BEHAVIOR {rd = rs1; imm = immediate; cond = 0;}
 ACTIVATION {opcode, writeback}
 }

Recently, the language has been extended to cover a wide range of processor architectures such 
as weakly programmable ASICs, CGRAs [41], and partially reconfigurable ASIPs [42]. One par-
ticular example of the language extension is to efficiently represent VLIW architectures. This is 
done by template operation declaration as shown in the following. Using this description style, 
multiple datapaths can be described in a very compact manner. The actual instantiation of the 
datapath with different values of tpl for, say different VLIW slots, take place during simulator/
RTL generation.
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 OPERATION alu_op<tpl> IN pipe_int.EX {
 DECLARE {
 GROUP opcode={ADDI<tpl> || SUBI<tpl>}
 GROUP rs1, rd = {register};
 }
 CODING {opcode<tpl> rs1 rd immediate}
 SYNTAX {opcode rd ‘‘,’’ rs1 ‘‘,’’ immediate}
 BEHAVIOR {rd = alu_op<tpl>(rs1, immediate);}
 ACTIVATION {writeback}
 }

Within the class of partial ADLs, an important entry is Tensilica Instruction Extension (TIE) 
ADL. TIE [43] captures the details of a processor to the extent it is required for the customization 
of a base processor.

8.2.2.5 TIE

To manage the complexity of processor design, customizable processor cores are provided 
by Tensilica [11] and ARC [44]. For Tensilica’s XTensa customizable cores, the design space is 
restricted by discrete choices such as number of pipeline stages, and width and size of the basic 
address register file. On the other hand, users are able to model, for example, arbitrary custom 
IS extensions, register files, VLIW formats, and vectorization rules by an ADL, known as TIE. 
Exemplary TIE description for a vector add instruction is shown in the following. Following the 
automatic parsing of TIE by XTensa C compiler generation, the instruction add_v can be used 
in the application description as a C intrinsic call. Detailed description of TIE is available at 
References 43 and 45 (Chapter 6).

 // large register file
 Regfile v 128 16

 // custom vector instruction
 operation add_v {out v v_out, in v v_a, in v v_b} {}
 {
 assign v_out = {v_a[127:96] + v_b[127:96],
 v_a[95:64] + v_b[95:64],
 v_a[64:32] + v_b[64:32],
 v_a[31:0] + v_b[31:0];}
 }

8.3 ADL-DRIVEN METHODOLOGIES

This section describes the ADL-driven methodologies used for processor development. It pres-
ents the following three methodologies that are used in academic research as well as industry:

 ◾ Software toolsuite generation
 ◾ Optimized generation of hardware implementation
 ◾ Top-down validation

8.3.1 SOFTWARE TOOLSUITE GENERATION

Embedded systems present a tremendous opportunity to customize designs by exploiting 
the application behavior. Rapid exploration and evaluation of candidate architectures are 
necessary due to time-to-market pressure and short product lifetimes. ADLs are used to 
specify processor and memory architectures and generate software toolkit including com-
piler, simulator, assembler, profiler, and debugger. Figure 8.5 shows an ADL-based design 
space exploration flow. The application programs are compiled to machine instructions and 
simulated, and the feedback is used to modify the ADL specification with the goal of finding 
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the best possible architecture for the given set of application programs under various design 
constraints such as area, power, performance, and reliability.

An extensive body of recent work addresses ADL-driven software toolkit generation and 
design space exploration of processor-based embedded systems, in both academia (ISDL [20], 
Valen-C [46], MIMOLA [18], LISA [26], nML [19], Sim-nML [47], and EXPRESSION [25]) 
and industry (ARC [44], RADL [48], Target [23], Processor Designer [10], Tensilica [11], and 
MDES [49]).

One of the main purposes of an ADL is to support automatic generation of a high-quality soft-
ware toolkit including a cycle-accurate simulator. For supporting fast design space exploration, the 
simulator needs to balance speed and accuracy. In the same manner, the C/C++ compiler to be gen-
erated from the ADL specification needs to support advanced features such as specification of ILP. 
This section describes some of the challenges in automatic generation of software tools (focusing on 
compilers and simulators) and surveys some of the approaches adopted by current tools.

8.3.1.1 COMPILERS

Traditionally, software for embedded systems was hand-tuned in assembly. With increasing 
complexity of embedded systems, it is no longer practical to develop software in assembly lan-
guage or to optimize it manually except for critical sections of the code. Compilers that produce 
optimized machine-specific code from a program specified in a HLL such as C/C++ and Java are 
necessary in order to produce efficient software within the time budget. Compilers for embedded 
systems have been the focus of several research efforts recently [50,51].

The compilation process can be broadly broken into two steps: analysis and synthesis. During 
analysis, the program (in HLL) is converted into an intermediate representation (IR) that contains 
all the desired information such as control and data dependences. During synthesis, the IR is trans-
formed and optimized in order to generate efficient target-specific code. The synthesis step is more 
complex and typically includes the following phases: instruction selection, scheduling, resource 
allocation, code optimizations/transformations, and code generation. The effectiveness of each 
phase depends on the algorithms chosen and the target architecture. A further problem during the 
synthesis step is that the optimal ordering between these phases is highly dependent on the target 
architecture and the application program. As a result, traditionally, compilers have been painstak-
ingly hand-tuned to a particular architecture (or architecture class) and application domain(s). 

Architecture
speci�cation

ADL
speci�cation

Compiler
Assembler

Linker RTL
Automatic

tool�ow

Pro�ler

Technology-speci�c
performance,

reliability

Code size,
runtime

Generic
RTL

template

Design space 
exploration

Design space 
exploration

Simulator

Application

Optimization
e.g.

resource
sharing

FiGURe 8.5 ADL-driven design space exploration.



132    8.3 ADL-Driven Methodologies

However, stringent time-to-market constraints for SoC designs no longer make it feasible to man-
ually generate compilers tuned to particular architectures. Automatic generation of an efficient 
compiler from an abstract description of the processor model becomes essential.

A promising approach to automatic compiler generation is the retargetable compiler approach. 
A compiler is classified as retargetable if it can be adapted to generate code for different target 
processors with significant reuse of the compiler source code. Retargetability is typically achieved 
by providing target machine information (in an ADL) as input to the compiler along with the 
program corresponding to the application. The complexity in retargeting the compiler depends 
on the range of target processors it supports and also on its optimizing capability. Due to the 
growing amount of ILP features in modern processor architectures, the difference in quality of 
code generated by a naive code conversion process and an optimizing ILP compiler can be enor-
mous. Recent approaches on retargetable compilation have focused on developing optimizations/
transformations that are retargetable and capturing the machine-specific information needed 
by such optimizations in the ADL. The retargetable compilers can be classified into three broad 
categories, based on the type of the machine model accepted as input.

 1. Architecture template based: Such compilers assume a limited architecture template that is 
parameterizable for customization. The most common parameters include operation laten-
cies, number of functional units, and number of registers. Architecture template-based 
compilers have the advantage that both optimizations and the phase ordering between 
them can be manually tuned to produce highly efficient code for the limited architecture 
space. Examples of such compilers include the Valen-C compiler [46] and the GNU-based 
C/C++ compiler from Tensilica, Inc. [11]. The Tensilica GNU-based C/C++ compiler is 
geared toward the Xtensa parameterizable processor architecture. One important fea-
ture of this system is the ability to add new instructions (described through an Instruction 
Extension Language) and automatically generate software tools tuned to the new IS.

 2. Explicit behavioral information based: Most compilers require a specification of the 
behavior in order to retarget their transformations (e.g., instruction selection requires a 
description of the semantics of each operation). Explicit behavioral information–based 
retargetable compilers require full information about the IS as well as explicit resource 
conflict information. Examples include the Aviv [52] compiler using ISDL, CHESS [22] 
using nML, and Elcor [49] using MDES. The Aviv retargetable code generator produces 
machine code, optimized for minimal size, for target processors with different ISs. It 
solves the phase ordering problem by performing a heuristic branch-and-bound step 
that performs resource allocation/assignment, operation grouping, and scheduling con-
currently. CHESS is a retargetable code generation environment for fixed-point DSPs. 
CHESS performs instruction selection, register allocation, and scheduling as separate 
phases (in that order). Elcor is a retargetable compilation environment for VLIW archi-
tectures with speculative execution. It implements a software pipelining algorithm 
(modulo scheduling) and register allocation for static and rotating register files.

 3. Behavioral information generation based: Recognizing that the architecture information 
needed by the compiler is not always in a form that may be well suited for other tools (such 
as synthesis) or does not permit concise specification, some research has focused on the 
extraction of such information from a more amenable specification. Examples include the 
MSSQ and RECORD compiler using MIMOLA [18], retargetable C compiler based on 
LISA [39], and the EXPRESS compiler using EXPRESSION [25]. MSSQ translates Pascal-
like HLL into microcode for microprogrammable controllers, while RECORD translates 
code written in a DSP-specific programming language, called data flow language, into 
machine code for the target DSP. The EXPRESS compiler tries to bridge the gap between 
explicit specification of all information (e.g., Aviv) and implicit specification requiring 
extraction of IS (e.g., RECORD), by having a mixed behavioral/structural view of the pro-
cessor. The retargetable C compiler generation using LISA is based on reuse of a powerful 
C compiler platform with many built-in code optimizations and generation of mapping 
rules for code selection using the instruction semantics information [39]. The commercial 
Processor Designer environment based on LISA [10] is extended to support a retargetable 
compiler generation back end based on LLVM [53] or CoSy [54] (see Figure 8.6).
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Custom instruction synthesis: Although there are embedded processors being designed completely 
from scratch to meet stringent performance constraints, there is also a trend toward partially 
predefined, configurable embedded processors [11], which can be quickly tuned to given applica-
tions by means of custom instruction and/or custom feature synthesis. The custom instruction 
synthesis tool needs to have a front end, which can identify the custom instructions from an input 
application under various architectural constraints and a flexible back end, which can retarget the 
processor tools and generate the hardware implementation of the custom instruction quickly. Custom 
instruction, as a stand-alone problem, has been studied in depth [55–57]. In the context of processor, 
custom instruction synthesis with architectural back end is provided in References 11 and 35. Custom 
instruction syntheses with hardware-oriented optimizations are proposed in Reference 58, while cus-
tom instructions are mapped onto a reconfigurable fabric in Reference 59.

8.3.1.2 SIMULATORS

Simulators are critical components of the exploration and software design toolkit for the system 
designer. They can be used to perform diverse tasks such as verifying the functionality and/or 
timing behavior of the system (including hardware and software) and generating quantitative 
measurements (e.g., power consumption [60]) that can aid the design process.

Simulation of the processor system can be performed at various abstraction levels. At the 
highest level of abstraction, a functional simulation of the processor can be performed by model-
ing only the IS. Such simulators are termed instruction-accurate (IA) simulators. At lower lev-
els of abstraction are the cycle-accurate and phase-accurate simulation models that yield more 
detailed timing information. Simulators can be further classified based on whether they provide 
bit-accurate models, pin-accurate models, exact pipeline models, and structural models of the 
processor.

Typically, simulators at higher levels of abstraction are faster but gather less information as com-
pared to those at lower levels of abstraction (e.g., cycle accurate, phase accurate). Retargetability 
(i.e., ability to simulate a wide variety of target processors) is especially important in the arena 
of embedded SoC design with emphasis on the design space exploration and codevelopment of 
hardware and software. Simulators with limited retargetability are very fast but may not be use-
ful in all aspects of the design process. Such simulators typically incorporate a fixed architecture 
template and allow only limited retargetability in the form of parameters such as number of 
registers and ALUs. Examples of such simulators are numerous in the industry and include the 
HPL-PD [49] simulator using the MDES ADL. The model of simulation adopted has significant 
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impact on the simulation speed and flexibility of the simulator. Based on the simulation model, 
simulators can be classified into three types: interpretive, compiled, and mixed.

 1. Interpretation based: Such simulators are based on an interpretive model of the pro-
cessors IS. Interpretive simulators store the state of the target processor in host mem-
ory. It then follows a fetch, decode, and execute model: instructions are fetched from 
memory, decoded, and then executed in serial order. Advantages of this model include 
ease of implementation, flexibility, and the ability to collect varied processor state infor-
mation. However, it suffers from significant performance degradation as compared to 
the other approaches primarily due to the tremendous overhead in fetching, decoding, 
and dispatching instructions. Almost all commercially available simulators are inter-
pretive. Examples of interpretive retargetable simulators include SIMPRESS [29] using 
EXPRESSION, and GENSIM/XSIM [61] using ISDL.

 2. Compilation based: Compilation-based approaches reduce the runtime overhead by 
translating each target instruction into a series of host machine instructions that manip-
ulate the simulated machine state. Such translation can be done either at compile time 
(static compiled simulation), where the fetch–decode–dispatch overhead is completely 
eliminated, or at load time (dynamic compiled simulation) that amortizes the overhead 
over repeated execution of code. Simulators based on the static compilation model are 
presented by Zhu and Gajski [62] and Pees et al. [63]. Examples of dynamic compiled 
code simulators include the Shade simulator [64] and the Embra simulator [65].

 3. Interpretive + compiled: Traditional interpretive simulation is flexible but slow. Instruction 
decoding is a time-consuming process in software simulation. Compiled simula-
tion performs compile time decoding of application programs to improve the simulation 
 performance. However, all compiled simulators rely on the assumption that the com-
plete program code is known before the simulation starts and is further more runtime 
static. Due to the restrictiveness of the compiled technique, interpretive simulators are 
typically used in embedded systems design flow. Several simulation techniques (just-in-
time cache-compiled simulation [JIT-CCS] [33] and IS-CS [66]) combine the flexibility of 
interpretive simulation with the speed of the compiled simulation.

  The JIT-CCS technique compiles an instruction during runtime, just-in-time before 
the instruction is going to be executed. Subsequently, the extracted information is stored 
in a simulation cache for direct reuse in a repeated execution of the program address 
(Figure 8.7). The simulator recognizes if the program code of a previously executed 
address has changed and initiates a recompilation. The IS compiled simulation (IS-CS) 
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technique performs time-consuming instruction decoding during compile time. In case 
an instruction is modified at runtime, the instruction is redecoded prior to execution. 
It also uses an instruction abstraction technique to generate aggressively optimized 
decoded instructions that further improves simulation performance [66].

Hybrid Simulation (HySim): Normally, a software developer does not need high simulation accuracy 
all the time. Some parts of an application just need to be functionally executed to reach a zone of 
interest. For those parts a fast but inaccurate simulation is completely sufficient. For the region on 
interest, however, a detailed and accurate simulation might be required to understand the behavior 
of the implementation of a particular function. The HySim [67] concept—a simulation technique—
addresses this problem. It allows the user to switch between a detailed simulation, using previously 
referred ISS techniques, and direct execution of the application code on the host processor. This 
gives the designer the possibility to trade simulation speed against accuracy. The tricky part in hybrid 
simulation is to keep the application memory synchronous between both simulators. By limiting the 
switching to function borders, this problem becomes easier to handle.

8.3.2 GENERATION OF HARDWARE IMPLEMENTATION

For a detailed performance evaluation of the processor as well as the final deployment on a working 
silicon, a synthesizable RTL description is required. There are two major approaches in the literature 
for synthesizable HDL generation. The first one is based on a parameterized processor core. These 
cores are bound to a single processor template whose architecture and tools can be modified to a 
certain degree. The second approach is based on high-level processor specification, that is, ADLs.

 1. Template-based RTL generation: Examples of template-based RTL generation approaches 
are Xtensa [11], Jazz [68], and PEAS [69]. Xtensa [11] is a scalable RISC processor core. 
Configuration options include the width of the register set, caches, and memories. New 
functional units and instructions can be added using the Tensilica Instruction Language 
(TIE) [11]. A synthesizable hardware model along with software toolkit can be generated 
for this class of architectures. Improv’s Jazz [68] processor was supported by a flexible 
design methodology to customize the computational resources and IS of the processor. 
It allows modifications of data width, number of registers, depth of hardware task queue, 
and addition of custom functionality in Verilog. PEAS [69,70] is a GUI-based hardware/
software codesign framework. It generates HDL code along with software toolkit. It has 
support for several architecture types and a library of configurable resources.

 2. ADL-based RTL generation: Figure 8.5 includes the flow for HDL generation from pro-
cessor description languages. Structure-centric ADLs such as MIMOLA are suitable for 
hardware generation. Some of the behavioral languages (such as ISDL and nML) are also 
used for hardware generation. For example, the HDL generator HGEN [61] uses ISDL 
description, and the synthesis tool GO [23] is based on nML. Itoh et al. [71] have proposed 
a microoperation description–based synthesizable HDL generation. It can handle simple 
processor models with no hardware interlock mechanism or multicycle operations.

The synthesizable HDL generation approach based on LISA [3] produces an HDL model of the 
architecture. The designer has the choice to generate a VHDL, Verilog, or SystemC representa-
tion of the target architecture [3]. The commercial offering [10], based on LISA [26], allows the 
designer to select between a highly optimized code with poor readability or an unoptimized code. 
Different design options like resource sharing [72], localization of storage, and decision minimi-
zation [73] can be enabled. The HDL generation methodology, based on EXPRESSION ADL, is 
demonstrated to have excellent performance [2].

8.3.3 TOP-DOWN VALIDATION

Validation of microprocessors is one of the most complex and important tasks in the current SoC 
design methodology. Traditional top-down validation methodology for processor architectures 
would start from an architectural specification and ensure that the actual implementation is in sync. 
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with the specification. The advent of ADL provided an option to have an executable specification, 
thereby allowing top-down validation flow [38,74]. This is shown graphically in Figure 8.8.

This methodology is enabled in two phases. First, the ADL specification is validated for com-
pleteness. Second, the ADL specification is used for driving simulation-based verification with 
increasingly detailed abstraction level.

 1. Validation of ADL specification: It is important to verify the ADL specification to ensure 
the correctness of the architecture specified and the generated software toolkit. Both 
static and dynamic behavior need to be verified to ensure that the specified architecture 
is well formed. The static behavior can be validated by analyzing several static properties 
such as connectedness, false pipeline and data-transfer paths, and completeness using a 
graph-based model of the pipelined architecture [75]. The dynamic behavior can be vali-
dated by analyzing the instruction flow in the pipeline using a finite-state machine–based 
model to verify several important architectural properties such as determinism and in-
order execution in the presence of hazards and multiple exceptions [76]. In Reference 38, 
assertions are generated from a LISA description for detecting incorrect dynamic behav-
ior, for example, multiple write access to the same storage element.

 2. Specification-driven validation: The validated ADL specification can be used as a golden ref-
erence model for top-down validation of programmable architectures. The top-down valida-
tion approach has been demonstrated in two directions: functional test program generation 
and design validation using a combination of equivalence checking and symbolic simulation.

Test generation for functional validation of processors has been demonstrated using 
MIMOLA [18], EXPRESSION [77], LISA [38], and nML [23]. A model checking–based approach 
is used to automatically generate functional test programs from the processor specification using 
EXPRESSION [77]. It generates graph model of the pipelined processor from the ADL specifica-
tion. The functional test programs are generated based on the coverage of the pipeline behavior. 
Further test generation covering pipeline interactions and full-coverage test-pattern generations 
have been demonstrated for EXPRESSION [78] and LISA [38], respectively. ADL-driven design 
validation using equivalence checking is proposed in Reference 74. This approach combines 
ADL-driven hardware generation and validation. The generated hardware model (RTL) is used 
as a reference model to verify the hand-written implementation (RTL design) of the processor. To 
verify that the implementation satisfies certain properties, the framework generates the intended 
properties. These properties are applied using symbolic simulation [74].

Note that the functional validation problem is relatively simpler for configurable processor 
cores. There, for each possible configuration, which is a finite set, the processor specification 
needs to be validated. This is presented for Tensilica configurable cores [79].
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8.4 CONCLUSIONS

The emergence of heterogeneous multiprocessor SoCs has increased the importance of 
 application-specific processors/accelerators. The complexity and tight time-to-market con-
straints of such accelerators require the use of automated tools and techniques. Consequently, 
over the last decade, ADLs have made a successful transition from pure academic research to 
widespread acceptance in industry [10,11,23,44,80].

Indeed, the academic evolution and stepwise transition of ADLs to industrial usage makes an 
interesting study in the history of technology. In the academic research, starting from the early 
effect of nML [19], Target Compiler Technologies was founded, which is eventually acquired by 
Synopsys [23]. LISA, another prominent ADL, commercially ventured out as LISATek, before 
being acquired by CoWare, Inc. and finally by Synopsys [10]. The ASIP design environment based 
on PEAS [69] is commercialized [70], too. Many other notable ADLs such as MIMOLA [18] and 
ISDL [20] are not pursued for research or commercial usage anymore. EXPRESSION [30], ArchC 
[80], and MDES [49] are freely available. Among configurable cores, Tensilica was acquired by 
Cadence [11] and ARC configurable cores are now available via Synopsys [44].

Nowadays, the processor is modeled using an ADL or is chosen from a range of configura-
tion options. The selected configuration/specification is used to generate software tools including 
compiler and simulator to enable early design space exploration. The ADL specification is also 
used to perform other design automation tasks including synthesizable hardware generation and 
functional verification.

Academic research with ADLs has reached a saturation point as far as the aforementioned 
performance metrics are considered. However, new research directions have emerged with time. 
The wide range of microarchitectures to be supported in a heterogeneous SoC demands a flexible 
modeling platform. However, standard ADLs were designed with the focus on processor micro-
architectures. Offbeat structures such as CGRA, partially reconfigurable processors, and weakly 
configurable ASICs are yet to be efficiently and automatically designed. For example, mapping 
a CDFG on a CGRA is an important research problem at this moment. With decreasing device 
sizes, physical effects are percolating to the upper design layers. As a result, thermal/reliability-
aware processors are being designed. This demand is being reflected on the ADL-based design 
methodologies as well.

This chapter provided a short overview of the high-level processor architecture design meth-
odologies. Detailed treatment of ADLs can be found in Reference 17. Custom processor architec-
tures and language-based partially reconfigurable processor architectures are discussed in detail 
in References 81 and 42, respectively. Technically inquisitive readers can fiddle with the open-
source, academic ADLs [30,80] or commercial ADLs [10,23], as well as commercial template-
based processor design flows [11].
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142    9.1 Introduction

Abstract

The development of correct complex software for reactive embedded systems requires the 
verification of properties by formal analysis or by simulation and testing. Reduced time to 
market, increased complexity, and the push for better quality also demand the reuse of 
composable software components. Currently, no language (or design methodology) pro-
vides all the desirable features for distributed cyber-physical systems. Languages and mod-
eling standards are catching up with the need for a separation of concerns between the 
model of the functionality, the model of the platform, and the description of the functional 
implementation or mapping. Also, verification and automatic generation of implementa-
tions require a strong semantics characterization of the modeling language. This chapter 
provides an overview of existing models and tools for embedded software, libraries, the 
starting from an introduction to the fundamental concepts and the basic theory of exist-
ing models of computation, both synchronous and asynchronous. The chapter also fea-
tures an introduction to the Unified Modeling Language, the Systems Modeling Language, 
Simulink® and Esterel languages, and commercial (and open source when applicable) tools. 
Finally, the chapter provides a quick peek at research work in software models and tools to 
give a firm understanding of future trends and currently unsolved issues.

9.1 INTRODUCTION

The increasing cost necessary for the design and fabrication of ASICs, together with the need for 
the reuse of functionality, adaptability, and flexibility, is among the causes for an increasing share 
of software-implemented functions in embedded projects. Figure 9.1 represents a typical archi-
tectural framework for embedded systems, where application software runs on top of a real-time 
operating system (RTOS) (and possibly a middleware layer) that abstracts from the hardware and 
provides a common application programming interface (API) for reuse of functionality (such as 
the AUTOSAR standard [1] in the automotive domain).
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Unfortunately, mechanisms for improving the software reuse at the level of programming 
code, such as libraries, the RTOS- or middleware-level APIs, currently fall short of achieving 
the desired productivity [2], and the error rate of software programs is exceedingly high. Today, 
model-based design of software carries the promise of a much needed step-up in productivity 
and reuse.

The use of abstract software models may significantly increase the chances that the design 
and its implementation are correct, when used at the highest possible level in the development 
process. Correctness can be mathematically proved by formal reasoning upon the model of the 
system and its desired properties (provided the model is built on solid mathematical foundations 
and its properties are expressed by some logic functions). Unfortunately, in many cases, formal 
model checking is simply impractical, because of the lack of models with a suitable semantics or 
because of the excessive number of possible states of the system. In this case, the modeling lan-
guage should at least provide abstractions for the specification of reusable components, so that 
software modules can be clearly identified with the provided functionality or services.

When exhaustive proof of correctness cannot be achieved, a secondary goal of the modeling 
language should be to provide support for simulation and testing. In this view, formal methods 
can also be used to guide the generation of the test suite and to guarantee coverage. Finally, mod-
eling languages and tools should help ensure that the model of the software checked formally or 
by simulation is correctly implemented in a programming language executed on the target hard-
ware (this requirement is usually satisfied by automatic code generation tools.)

Industrial and research groups have been working for decades in the software engineering 
area looking for models, methodologies, and tools to increase the reusability of software compo-
nents and reduce design errors. Traditionally, software models and formal specifications focused 
on behavioral properties and have been increasingly successful in the verification of functional 
correctness. However, modern embedded software is characterized by concurrency, resource 
constraints, and nonfunctional properties, such as deadlines or other timing constraints, which 
ultimately depend upon the computation platform.

This chapter attempts to provide an overview of (visual and textual) languages and tools for 
embedded software modeling and design. The subject is so wide and rapidly evolving that only 
a short survey is possible in the limited space allocated to this chapter. Despite all efforts, exist-
ing methodologies and languages fall short in achieving most of the desirable goals, and they are 
continuously being extended in order to allow for the verification of at least some properties of 
interest.

We outline the principles of functional and nonfunctional modeling and verification, the lan-
guages and tools available on the market, and the realistic milestones with respect to practical 
designs. Our description of (some) commercial languages, models, and tools is supplemented 
with a survey of the main research trends and far-reaching results. The bibliography covers 
advanced discussions of the key issues involved.

The organization of this chapter is as follows: the introduction section defines a reference 
framework for the discussion of the software modeling problem and reviews abstract models for 
functional and temporal (schedulability) analysis. The second section provides a quick glance 
at the two main categories of available languages and models: purely synchronous and general 
asynchronous. An introduction to the commercial modeling (synchronous) languages Esterel 
and Simulink and to the Unified Modeling Language (UML) and Systems Modeling Language 
(SysML) standards is provided. Discussion of what can be achieved with both, with respect to for-
mal analysis of functional properties, schedulability analysis, simulation, and testing, is provided 
later. The chapter also discusses the recent extensions of existing methodologies to achieve the 
desirable goal of component-based design. Finally, a quick glance at the research work in the area 
of embedded software design, methods, and tools closes the chapter.

9.1.1 CHALLENGES IN THE DEVELOPMENT OF EMBEDDED SOFTWARE

With a typical development process (Figure 9.2), an embedded system is the result of refine-
ment stages encompassing several levels of abstraction, from user requirements to (code) 
implementation, followed by the testing and validation stages. At each stage, the system is 
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described using an adequate formalism, starting from abstract models for the user domain 
entities at the requirements level. Lower-level models, typically developed in later stages, 
provide an implementation of the abstract model by means of design entities, representing 
hardware and software components. The implementation process is a sequence of steps that 
constrain the generic specification by exploiting the possible options (such as the possible 
nondeterminism, in the form of optional or generic behavior that is allowed by specifications) 
available from higher levels.

The designer must ensure that the models of the system developed at the different stages sat-
isfy the required properties and that low-level descriptions of the system are correct implementa-
tions of higher-level specifications. This task can be considerably easier when the models of the 
system at the different abstraction levels are homogeneous, that is, if the computational models 
on which they are based share common semantics and notation.

The problem of correct mapping from a high-level specification, employing an abstract model 
of the system, to a particular software and hardware architecture or platform is one of the key 
aspects in embedded system design.

The separation of the two main concerns of functional and architectural specification and 
the subsequent mapping of functions to architecture elements are among the founding prin-
ciples of many design methodologies such as platform-based design [3] and frameworks like 
Ptolemy and Metropolis [4,5], as well as emerging standards and recommendations, such as the 
AUTOSAR automotive initiative [1] and the UML MARTE (Modeling and Analysis of Real-Time 
and Embedded) profile [6] from the Object Management Group (OMG) [7], and industry best 
practices, such as the V-cycle of software development [8]. A keyhole view of the corresponding 
stages is represented in Figure 9.3.
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The main design activities taking place at this stage and the corresponding challenges can be 
summarized as follows:

 ◾ Specification of functionality is concerned with the development of logically correct sys-
tem abstractions. If the specification is defined using a formal model, formal verification 
allows checking that the functional behavior satisfies a given set of properties.

 ◾ The system software and hardware platform components are defined in the architecture 
design level.

 ◾ The definition of logical and physical resources available for the execution of the func-
tional model allows the definition of the mapping of functional model elements onto the 
platform (architecture elements) executing them. When this mapping step is complete, 
formal verification of nonfunctional properties, such as timing properties and schedula-
bility analysis, may be performed.

Complementing these two steps, implementation verification checks that the behavior of the 
logical model, when mapped onto the architecture model, correctly implements the high-level 
formal specifications.

9.1.2 FORMAL MODELS AND LANGUAGES AND SCHEDULABILITY ANALYSIS

A short review of the most common MOCs (formal languages) proposed with the objective 
of formal or simulation-based verification is fundamental for understanding commercial 
models and languages, and it is also important for understanding today’s and future chal-
lenges [9,10].

9.1.2.1 MODELS OF COMPUTATION

Formal models are precisely defined languages that specify the semantics of computation and 
communication (also defined as “model of computation” [MOC] [9]). MOCs may be expressed, 
for example, by means of a language or automaton formalism.

A system-level MOCs is used to describe the system as a (possibly hierarchical) collection of 
design entities (blocks, actors, tasks, processes) performing units of computation represented as 
transitions or actions, characterized by a state and communicating by means of events (tokens) 
carried by signals. Composition and communication rules, concurrency models, and time rep-
resentation are among the most important characteristics of an MOC. MOCs are discussed at 
length in several books, such as Reference 10.

A first classification may divide models by their representation of time and whether the behav-
ior is discrete or continuous:

 ◾ Continuous time (CT): In these models, computational events can occur at any point in 
time. CT models are often used (as ordinary differential equations or differential alge-
braic equations) for modeling physical systems interacting with or controlled by the 
electronic/software system.

 ◾ Discrete time: Events occur at points in time on a periodic time lattice (integer multiples 
of some base period). The behavior of the controller is typically assumed as unspeci-
fied between any two periodic events or assumed compliant with a sample-and-hold 
assumption.

 ◾ Discrete event (DE): The system reacts to events that are placed at arbitrary points in 
time. However, in contrast to CT systems, the time at which events occur is typically not 
important for specifying the behavior of the system, and the evolution of the system does 
not depend on the time that elapses between events.

Hybrid systems feature a combination of the aforementioned models. In reality, practically all 
systems of interest are hybrid systems. However, for modeling convenience, discrete-time or DT 
abstractions are often used.
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Once the system specifications are given according to a formal MOC, formal methods can be 
used to achieve design-time verification of properties and implementation as in Figure 9.3. In general, 
properties of interest fall under the two general categories of ordered execution and timed execution:

 1.  Ordered execution relates to the verification of event and state ordering. Properties such 
as safety, liveness, absence of deadlock, fairness, and reachability belong to this category.

 2.  Timed execution relates to event enumeration, such as checking that no more that n 
events (including time events) occur between any two events in the system. Timeliness 
and some notions of fairness are examples.

Verification of desirable system properties may be quite hard or even impossible to achieve by 
logical reasoning on formal models. Formal models are usually classified according to the decid-
ability of properties. Decidability in timed and untimed models depends on many factors, such 
as the type of logic (propositional or first order) for conditions on transitions and states; the real-
time semantics, including the definition of the time domain (discrete or dense); and the linear 
or branching time logic that is used for expressing properties (the interested reader may refer 
to Reference 11 for a survey on the subject). In practice, decidability should be carefully evalu-
ated [9]. In some cases, even if it is decidable, the problem cannot be practically solved since the 
required runtime may be prohibitive and, in other instances, even if undecidability applies to the 
general case, it may happen that the problem at hand admits a solution.

Verification of model properties can take many forms. In the deductive approach, the system 
and the property are represented by statements (clauses) written in some logic (e.g., expressed 
in the linear temporal logic [LTL] [12] or in the branching temporal CTL [13]), and a theorem 
proving tool (usually under the direction of a designer or some expert) applies deduction rules 
until (hopefully) the desired property reduces to a set of axioms or a counterexample is found. 
In model checking, the system and possibly the desirable properties are expressed by using an 
automaton or some other kind of executable formalism. The verification tool ensures that no 
executable transition nor any system state violates the property. To do so, it can generate all the 
potential (finite) states of the system (exhaustive analysis). When the property is violated, the tool 
usually produces the (set of) counterexample(s).

The first model checkers worked by explicitly computing the entire structure of all the reach-
able system states prior to property checking, but modern tools are able to perform verification 
as the states are produced (on-the-fly model). This means that the method does not necessarily 
require the construction of the whole state graph and can be much more efficient in terms of 
the time and memory that is needed to perform the analysis. On-the-fly model checking and the 
SPIN [14] toolset provide, respectively, an instance and an implementation of this approach.

To give some examples (Figure 9.4), checking a system implementation I against a specifica-
tion of a property P in case both are expressed in terms of automata (homogeneous verification) 
requires the following steps. The implementation automaton AI is composed with the comple-
mentary automaton ¬AP expressing the negation of the desired property. The implementation I 
violates the specification property if the product automaton AI || ¬AP has some possible run and 
it is verified if the composition has no runs. Checking by observers can be considered as a particu-
lar instance of this method, very popular for synchronous models.

In the very common case, the property specification consists of a logical formula and the 
implementation of the system is given by an automaton. Then the verification problem can be 
solved algorithmically or deductively by transforming it into an instance of the previous cases, 
for example, by transforming the negation of a specification formula fS into the corresponding 
automaton and by using the same techniques as in homogeneous verification.

Verification of implementation correctness is usually obtained by exploiting simulation and 
bisimulation properties.

A very short survey of formal system models is provided, starting with finite-state machines 
(FSMs), probably the most popular and the basis for many extensions.

In FSM, the behavior is specified by enumerating the (finite) set of possible system states and 
the transitions among them. Each transition connects two states and it is labeled with the subset 
of input variables (and possibly the guard condition upon their values) that triggers its execution. 
Furthermore, each transition can produce output variables. In Mealy FSMs, outputs depend on 
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both state and input variables, while in the Moore model, outputs only depend on the process 
state. Guard conditions can be expressed according to different logics, such as propositional logic, 
first-order logic, or even (Turing-complete) programming code.

In the synchronous FSM model, signal propagation is assumed to be instantaneous. Transitions 
and the evaluation of the next state occur for all the system components at the same time. Synchronous 
languages, such as Esterel and Lustre, are based on this model. In the asynchronous model, two 
asynchronous FSMs never execute a transition at the same time except when explicit rendezvous 
is explicitly specified (a pair of transitions of the communicating FSMs occur simultaneously). The 
Specification and Description Language (SDL) process behavior is an instance of this general model.

The composition of FSMs is obtained by construction of a product transition system, that is, 
a single FSM machine where the set of states is the product of the sets of the states of the com-
ponent machines. The difference between synchronous and asynchronous execution semantics 
is quite clear when compositional behaviors are compared. Figure 9.5 illustrates the differences 
between the synchronous and asynchronous composition of two FSMs.

When there is a cyclic dependency among variables in interconnected synchronous FSMs, 
the Mealy model, like any other model where outputs are instantaneously produced based on the 
input values, may result in a fixed-point problem and possibly inconsistency (Figure 9.6 shows a 
simple functional dependency). The existence of a unique fixed-point solution (and its evaluation) 
is a problem that must be solved in all models in which the composition of synchronous (Mealy-
type) FSMs results in a loop.

In large, complex systems, composition may easily result in a huge number of states, the prob-
lem is often referred to as state explosion.
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In its statechart extension [15], Harel proposed three mechanisms to reduce the size of an FSM 
for modeling practical systems: state hierarchy, simultaneous activity, and nondeterminism. In 
statecharts, a state can possibly represent an enclosed state machine. In this case, the machine is in 
one of the states enclosed by the superstate (or-states) and concurrency is achieved by enabling two 
or more state machines to be active simultaneously (and-states, such as lap and off in Figure 9.7).

In Petri net (PN) models, the system is represented by a graph of places connected by transi-
tions. Places represent unbounded channels that carry tokens and the state of the system is repre-
sented at any given time by the number of tokens existing in a given subset of places. Transitions 
represent the elementary reactions of the system. A transition can be executed (fired) when it 
has a fixed, prespecified number of tokens in its input places. When fired, it consumes the input 
tokens and produces a fixed number of tokens on its output places. Since more than one transi-
tion may originate from the same place, one transition can execute while disabling another one 
by removing the tokens from shared input places. Hence, the model allows for nondeterminism 
and provides a natural representation of concurrency by allowing simultaneous and independent 
execution of multiple transitions (Figure 9.8a).

The FSM and PN models have been originally developed with no reference to time or time 
constraints, but the capability of expressing and verifying timing requirements is key in many 
design domains (including embedded systems). Hence, both have been extended to support time-
related specifications. Time extensions differ according to the time model assumed (discrete or CT). 
Furthermore, proposed extensions differ in how time references should be used in the system, 
whether a global clock or local clocks are assumed, and how time should be used in guard condi-
tions on transitions or states.

When computing the set of reachable states, time adds another dimension, further con-
tributing to the state explosion problem. In general, discrete-time models are easier to analyze 
compared to CT models, but synchronization of signals and transitions results in fixed-point 
evaluation problems whenever the system model contains cycles without delays.

Discrete-time systems naturally lead to an implementation based on the time-triggered paradigm, 
where all actions are bound to happen at multiples of a time reference (usually implemented by means 
of a response to a timer interrupt) and CT (asynchronous systems) conventionally corresponds to 
implementations based on the event-based design paradigm, where system actions can happen 
at any time instant. This does not imply a correspondence between time-triggered  systems  and 
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synchronous systems. The latter are characterized by the additional constraint that all system com-
ponents must perform an action synchronously (at the same time) at each tick in a periodic time base.

Many models have been proposed in the research literature for time-related extensions. Among 
those, time PNs (TPNs) [16,17] and timed automata (TAs) [18] are probably the best known.

TAs (see, e.g., Figure 9.9) operate with a finite set of locations (states) and a finite set of real-
valued clocks. All clocks proceed at the same rate and measure the amount of time that passed 
since they were started (reset). Each transition may reset some of the clocks and each defines a 
restriction on the value of the symbols as well as on the clock values required for it to happen. 
A state may be reached only if the values of the clocks satisfy the constraints and the proposition 
clause defined on the symbols evaluates to true.

Timed PNs [19] and TPNs are extensions of the PN formalism allowing for the expression of 
time-related constraints. The two differ in the way time advances: in timed PNs time advances 
in transitions, thus violating the instantaneous nature of transitions (which makes the model 
much less prone to analysis). In the timed PN model, time advances while token(s) are in places. 
Enabling and deadline times can be associated with transitions, the enabling time being the time 
a transition must be enabled before firing and the deadline being the time instant by which the 
transition must be taken (Figure 9.8b).

The additional notion of stochastic time allows the definition of the (generalized) stochastic 
PNs [20,21] used for the purpose of performance evaluation (Figure 9.10).
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Many further extensions have been proposed for both TAs and TPNs. The task of comparing 
the two models for expressiveness should take into account all the possible variants and is prob-
ably not particularly interesting in itself. For most problems of practical interest, however, both 
models are essentially equivalent when it comes to expressive power and analysis capability [22].

A few tools based on the TA paradigm have been developed and are very popular. Among 
those, we cite Kronos [23] and Uppaal [24]. The Uppaal tool allows modeling, simulation, and ver-
ification of real-time systems modeled as a collection of nondeterministic processes with finite 
control structure and real-valued clocks, communicating through channels or shared variables 
[24,25]. The tool is free for nonprofit and academic institutions.

TAs and TPNs allow the formal expression of requirements for logical-level resources, tim-
ing constraints, and timing assumptions, but timing analysis only deals with abstract specifica-
tion entities, typically assuming infinite availability of physical resources (such as memory or 
CPU speed). If the system includes an RTOS, with the associated scheduler, the model needs to 
account for preemption, resource sharing, and the nondeterminism resulting from them. Dealing 
with these issues requires further evolution of the models.

For example, in TAs, clock variables can be used for representing the execution time of each 
action. In this case, however, only the clock associated with the action scheduled on the CPU 
should advance, with all the others being stopped.

The hybrid automata model [26] combines discrete transition graphs with continuous dynamic 
systems. The value of system variables may change according to a discrete transition or it may change 
continuously in system states according to a trajectory defined by a system of differential equations. 
Hybrid automata have been developed for the purpose of modeling digital systems interacting with 
(physical) analog environments, but the capability of stopping the evolution of clock variables in states 
(first derivative equal to 0) makes the formalism suitable for the modeling of systems with preemption.

TPNs and TAs can also be extended to cope with the problem of modeling finite computing 
resources and preemption. In the case of TAs, the extension consists of the stopwatch automata 
model, which handles suspension of the computation due to the release of the CPU (because 
of real-time scheduling), implemented in the HyTech tool [27] (for linear hybrid automata). 
Alternatively, the scheduler is modeled with an extension to the TA model, allowing for clock 
updates by subtraction inside transitions (besides normal clock resetting). This extension, avail-
able in the Uppaal tool, avoids the undecidability of the model where clocks associated with the 
actions not scheduled on the CPU are stopped.

Likewise, TPNs can be extended to the preemptive TPN model [28], as supported by the 
ORIS tool [29]. A tentative correspondence between the two models is traced in Reference 30. 
Unfortunately, in all these cases, the complexity of the verification procedure caused by the state 
explosion poses severe limitations upon the size of the analyzable systems.

Before moving on to the discussion of formal techniques for the analysis of time-related prop-
erties at the architecture level (schedulability), the interested reader may refer to Reference 31 for 
a survey on formal methods, including references to industrial examples.

9.1.2.2 MAPPING FUNCTIONAL MODEL ONTO IMPLEMENTATIONS

Formal MOCs are typically used to represent the desired system (or subsystem component) func-
tionality, abstracted from implementation considerations.

Functionality is implemented on an execution (computation and communication) platform, 
realized as software code, firmware, or dedicated hardware components. This process involves 
(at least) three layers of the system representation with the corresponding models: functional, 
platform, and implementation.
Ideally, these three (sets of) models should be constructed and relationships among their elements 
should be defined in such a way that the following applies:

 1. The platform model abstracts the platform properties of interest for evaluating the map-
ping solution with respect to quantitative properties that relate to performance (time), 
reliability, cost, extensibility, and power (and possibly others).

 2. The platform model permits verifying the existence of a mapping solution that provably 
preserves the semantics properties of interest of the functional model. This property is 
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of particular interest when formal safety properties are demonstrated on the functional 
model. In order for these properties to carry over to the implementation, a formal proof 
of correctness must be provided.

 3. The implementation model complies with the programming and implementation stan-
dards in use and allows the analysis of the properties of interest. An example of such 
analysis is schedulability analysis that refers to the capability of a multiprogrammed 
system to meet timing constraints or deadlines.

9.1.2.3 SCHEDULABILITY ANALYSIS

If specification of functionality aims at producing a logically correct representation of system 
behavior, the (architecture-level) implementation representation is where physical concurrency 
and schedulability requirements are expressed and evaluated. At this level, the units of computa-
tion are the processes or threads (the distinction between these two operating systems concepts 
is not relevant for the purpose of this chapter, and in the following, the generic term “task” will 
be optionally used for both), executing concurrently in response to environmental stimuli or 
prompted by an internal clock. Threads cooperate by exchanging data and synchronization or 
activation signals and contend for use of the execution resource(s) (the processor) as well as for 
the other resources in the system. The physical architecture level allows the definition of the 
mapping of the concurrent entities onto the target hardware. This activity entails the selection 
of an appropriate scheduling policy (e.g., offered by a RTOS) and possibly supports by timing or 
schedulability analysis tools.

Formal models, exhaustive analysis techniques, and model checking are now evolving toward 
the representation and verification of time and resource constraints together with the functional 
behavior. However, applicability of these models is strongly limited by state explosion. In this 
case, when exhaustive analysis and joint verification of functional and nonfunctional behavior 
are not practical, the designer could seek the lesser goal of analyzing only the worst-case timing 
behavior of coarse-grain design entities representing concurrently executing threads.

Software models for time and schedulability analysis deal with preemption, physical and 
logical resource requirements, and resource management policies and are typically limited to 
a quite simplified view of functional (logical) behavior, mainly limited to synchronization and 
activation signals.

To give an example: if, for the sake of simplicity, we limit the discussion to single processor 
systems, the scheduler assigns the execution engine (the CPU) to threads (tasks) and the main 
objective of real-time scheduling policies is to formally guarantee the timing constraints (dead-
lines) on the thread response to external events.

In this case, the software architecture can be represented as a set of concurrent tasks (threads). 
Each task τi executes periodically or according to a sporadic pattern and it is typically represented 
by a simple set of attributes, such as the tuple (Ci, θi, pi, Di), representing the worst-case computa-
tion time, the period (for periodic threads) or minimum interarrival time (for sporadic threads), 
the priority, and the relative (to the release time ri) deadline of each thread instance.

Fixed-priority scheduling and rate monotonic analysis (RMA) [32,33] are by far the most com-
mon real-time scheduling and analysis methodologies. RMA provides a very simple procedure 
for assigning static priorities to a set of independent periodic tasks together with a formula for 
checking schedulability against deadlines.

The highest priority is assigned to the task having the highest rate and schedulability is guar-
anteed by checking the worst-case scenario that can possibly happen. If the set of tasks is sched-
ulable in that condition, then it is schedulable under all circumstances. For RMA the critical 
condition happens when all tasks are released at the same time instant initiating the largest busy 
period (CT interval when the processor is busy executing tasks of a given priority level).

By analyzing the busy period (from t = 0), it is possible to derive the worst-case response 
(sometime also called completion) time Wi for each task τi. If the task can be proven to complete 
before or at the deadline (Wi ≤ Di), then it is defined as guaranteed with respect to its timing 
constraints.

The worst-case response time can be computed by considering the critical condition for 
each task. Consider, for example, task τi of Figure 9.11. Its response time is the sum of the time 
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needed for its own execution Ci and the processor time used by higher-priority tasks, denoted 
as interference Ii.

The interference Ii can be obtained as the sum of the interferences Ii,j from all the higher-or 
equal-priority tasks (indicated by the notation j ∈ he(i)) as in
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Each term Ii,j can be further refined by considering that each time a higher-or equal-priority task 
is activated, it will be executed for its entire worst-case time Cj. If ni,j denotes the number of times 
the higher-or equal-priority task τj is activated before τi completes, then
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The iterative formula for computing Wi (in case τi, ≤ Di) is obtained with the final consideration 
that in the critical instant, the number of activations of τj before τi completes is

 
n W

i j
i

j
, =

é

ê
ê

ù

ú
úq

The worst-case response time can be computed as the lowest value solution (if it exists) of
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Rate monotonic scheduling was developed starting from a very simple model where all tasks are 
periodic and independent. In reality, tasks require access to shared resources (apart from the pro-
cessor) that can only be used in an exclusive way, such as communication buffers shared among 
asynchronous threads.

In this case, one task may be blocked because another task holds a lock on shared resources. 
When the blocked task enjoys a priority higher than the blocking task, blocking and prior-
ity inversion may occur; finding the optimal-priority assignment becomes an NP-hard problem 
and the previous formula for computing Wi is not valid anymore, since each task can now be 
delayed not only by interference but also when trying to use a critical section that is used by a 
lower-priority task. In addition, with traditional semaphores, this blocking can occur multiple 
times and the time spent each time a task needs to wait is also unbounded (think of the classical 
deadlock problem).

Ii Ci Wi Wi = Ii + Ci

Cj

C1

Time-critical instant

ni,j

Ii,j

ri

FiGURe 9.11 Computing the worst-case response time from the critical instant.
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Real-time scheduling theory settles at finding resource assignment policies that provide at 
least a worst-case bound upon the blocking time. The priority inheritance (PI) and the (immedi-
ate) priority ceiling (PC) protocols [34] belong to this category.

The essence of the PC protocol (which has been included in the real-time OS OSEK standard 
issued by the automotive industry) consists of raising the priority of a thread entering a critical 
section to the highest among the priorities of all threads that may possibly request access to the 
same critical section. The thread returns to its nominal priority as soon as it leaves the  critical 
section. The PC protocol ensures that each thread can be blocked at most once and bounds the 
duration of the blocking time to the largest critical section shared between itself or higher- priority 
threads and lower-priority threads.

When the blocking time due to priority inversion is bounded for each task and its worst-case 
value is Bi, the evaluation of the worst-case completion time in the schedulability test becomes

(9.2)
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9.1.2.4 MAPPING FUNCTIONAL REACTIONS ONTO THREADS

The mapping of the actions defined in the functional model onto architectural model enti-
ties is the critical design activity where the two views are reconciled. In practice, the actions 
or transitions defined in the functional part must be executed in the context of one or more 
system threads. The definition of the architecture model (number and attributes of threads) 
and the selection of resource management policies, the mapping of the functional model 
into the corresponding architecture model, and the validation of the mapped model against 
functional and nonfunctional constraints is probably one of the major challenges in software 
engineering.

Single-threaded implementations are quite common and a simple choice for several tools that 
can provide (practical) verification and a semantics-preserving implementation for a given MOC. 
Schedulability analysis degenerates to the simple condition that the execution time of the imple-
mentation thread is less than its execution period. The entire functional specification is executed 
in the context of a single thread performing a never-ending cycle where it serves events in a 
noninterruptable fashion according to the run-to-completion paradigm. The thread waits for 
an event (either external, like an interrupt from an I/O interface, or internal, like a call or signal 
from one object or FSM to another), fetches the event and the associated parameters, and, finally, 
executes the corresponding code.

All the actions defined in the functional part need to be scheduled (statically or dynami-
cally) for execution inside the thread. The schedule is usually driven by the partial order of the 
execution of the actions, as defined by the MOC semantics. Commercial implementations of this 
model range from code produced by the Esterel compiler [35] to single-threaded implementations 
of Simulink models produced by the Embedded Coder toolset from the MathWorks [36], or to the 
single-threaded code generated by Rational Rhapsody Architect for Software [37] for the execu-
tion of UML models.

The scheduling problem is much simpler than in the multithreaded case, since there is no need 
to account for thread scheduling and preemption and resource sharing usually are addressed 
trivially.

On the other extreme, one could associate one thread with every functional block or every 
possible action. Each thread can be assigned its own priority, depending on the criticality and on 
the deadline of the corresponding action. At runtime, the operating system scheduler properly 
synchronizes and sequentializes the tasks so that the order of execution respects the functional 
specification.

Both approaches may easily prove inefficient. The single-threaded implementation requires 
to complete the processing of each event before the next event arrives. The one-to-one mapping 
of functions or actions to threads suffers from excessive scheduler overhead caused by the need 
for a context switch at each action. Considering that the action specified in a functional block 
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can be very short and that the number of functional blocks is usually quite high (in many appli-
cations it is in the order of hundreds), the overhead of the operating system could easily prove 
unbearable.

The designer essentially tries to achieve a compromise between these two extremes, 
 balancing responsiveness with schedulability, f lexibility of the implementation, and perfor-
mance overhead.

9.1.3 PARADIGMS FOR REUSE: COMPONENT-BASED DESIGN

One more dimension can be added to the complexity of the software design problem if the need 
for maintenance and reuse is considered. To this purpose, component-based and object-oriented 
(OO) techniques have been developed for constructing and maintaining large and complex 
systems.

A component is a product of the analysis, design, or implementation phases of the lifecycle and 
represents a prefabricated solution that can be reused to meet (sub)system requirement(s). 
A component is commonly used as a vehicle for the reuse of two basic design aspects:

 1. Functionality (or behavior): The functional syntax and semantics of the solution the 
component represents.

 2. Structure: The structural abstraction the component represents. These can range from 
“small grain” to architectural features, at the subsystem or system level. Common exam-
ples of structural abstractions are not only OO classes and packages but also Simulink 
subsystems.

The generic requirement for reusability maps into a number of issues. Probably the most 
relevant property that components should exhibit is abstraction, meaning the capabil-
ity of hiding implementation details and describing relevant properties only. Components 
should also be easily adaptable to meet changing processing requirements and environmen-
tal constraints through controlled modification techniques (like inheritance and genericity). 
Composition rules must be used to build higher-level components from existing ones. Hence, 
an ideal component-based modeling language should ensure that properties of components 
(functional properties, such as liveness, reachability, deadlock avoidance, or nonfunctional 
properties such as timeliness and schedulability) are preserved or at least decidable after 
composition. Additional (practical) issues include support for implementation, separate 
compilations, and imports.

Unfortunately, reconciling the standard issues of software components, such as context 
independence, understandability, adaptability, and composability, with the possibly conflicting 
requirements of timeliness, concurrency, and distribution, typical of hard real-time system devel-
opment, is not an easy task and is still an open problem.

OO design of systems has traditionally embodied the (far from perfect) solution to some of 
these problems. While most (if not all) OO methodologies, including the UML, offer support for 
inheritance and genericity, adequate abstraction mechanisms and especially composability of 
properties are still subject of research.

Starting with its 2.0 release, the UML language has reconciled the abstract interface 
abstraction mechanism with the common box–port–wire design paradigm. Lack of an explicit 
declaration of required interfaces and absence of a language feature for structured classes 
were among the main deficiencies of classes and objects, if seen as components. In UML 2.0, 
ports allow for a formal definition of a required as well as a provided interface. Association 
of protocol declaration with ports further improves and clarifies the semantics of interaction 
with the component. In addition, the concept of a structured class allows for a much better 
definition of a component.

Of course, port interfaces and the associated protocol declarations are not sufficient for speci-
fying the semantics of the component. In UML, the Object Constraint Language (OCL) can 
also be used to define behavioral specifications in the form of invariants, preconditions, and 
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postconditions, in the style of the contract-based design methodology (implemented in Eiffel 
[38]). Other languages have emerged for supporting the specification of behaviors in UML, such 
as the Action Language for Foundational UML (ALF) [39] and the Executable UML Foundation 
(fUML) [40]. However, the UML action languages are still not in widespread use and are not 
further discussed here.

9.2 SYNCHRONOUS VS. ASYNCHRONOUS MODELS

The verification of functional and nonfunctional properties of software demands a formal 
semantics and a strong mathematical foundation of the models. Among the possible choices, the 
synchronous-reactive (SR) model enforces determinism and provides a sound methodology for 
checking functional and nonfunctional properties at the price of expensive implementation and 
performance limitations.

In the SR model, time advances at discrete instants and the program progresses accord-
ing to successive atomic reactions (sets of synchronously executed actions), which are per-
formed instantaneously (zero computation time), meaning that the reaction is fast enough 
with respect to the environment. The resulting discrete-time model is quite natural to 
many domains, such as control engineering and (hardware) synchronous digital logic design 
(Verilog or VHDL).

The synchronous assumption (each computation or reaction completes before the next event 
of interest for the system, or, informally, computation times are negligible with respect to the 
environment dynamics and synchronous execution) does not always apply to the controlled envi-
ronment and to the architecture of the system.

Asynchronous or general models typically allow for (controlled) nondeterminism and more 
expressiveness, at the price of strong limitations on the extent of the functional and nonfunc-
tional verification that can be performed.

Some modeling languages, such as UML, are deliberately general enough to specify systems 
according to a generic asynchronous or synchronous paradigm using suitable sets of extensions 
(semantics restrictions).

By the end of this chapter, it will hopefully be clear how neither of the two design paradigms 
(synchronous or asynchronous) is currently capable of facing all the implementation challenges of 
complex systems. The requirements of the synchronous assumption (on the environment and the 
execution platform) are difficult to meet in large, distributed systems, and true component-based 
design, where each property of a composite can be simply inferred by the black-box properties of 
its components (without breaking encapsulation), making it very difficult (if not impossible). The 
asynchronous paradigm, on the other hand, results in implementations that are very difficult to 
analyze for logical and time behavior.

9.3 SYNCHRONOUS MODELS

In a synchronous system, the composition of system blocks implies the product combination of 
the states and the conjunction of the reactions for each component. In general, this results in a 
fixed-point problem and the composition of the function blocks is a relation, not a function, as 
outlined in Section 9.2.

The synchronous languages Signal, Esterel, and Lustre are probably the best representatives of 
the synchronous modeling paradigm.

Lustre [41,42] is a declarative language based on the dataflow model where nodes are the main 
building block. In Lustre, each flow or stream of values is represented by a variable, with a distinct 
value for each tick in the discrete-time base. A node is a function of flows: it takes a number of 
typed input flows and defines a number of output flows using a system of equations.

A Lustre node (an example in Figure 9.12) is a pure functional unit except for the preinitializa-
tion and initialization (->) expressions, which allow referencing the previous element of a given 
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stream or forcing an initial value for a stream. Lustre allows streams at different rates, but in 
order to avoid nondeterminism, it forbids syntactically cyclic definitions.

Esterel [43] is an imperative language, more suited for the description of control. An Esterel 
program consists of a collection of nested, concurrently running threads. Execution is synchro-
nized to a single, global clock. At the beginning of each reaction, each thread resumes its execu-
tion from where it paused (e.g., at a pause statement) in the last reaction, executes imperative code 
(e.g., assigning the value of expressions to variables and making control decisions), and finally 
either terminates or pauses waiting for the next reaction.

Esterel threads communicate exclusively through signals representing globally broadcast 
events. A signal does not persist across reactions and it is present in a reaction if and only if it is 
emitted by the program or by the environment.

Esterel allows cyclic dependencies and treats each reaction as a fixpoint equation, but the only 
legal programs are those that behave functionally in every possible reaction. The solution of this 
problem is provided by constructive causality [44], which amounts to checking if, regardless of 
the existence of cycles, the output of the program (the binary circuit implementing it) can be 
formally proven to be causally and deterministically dependent from the inputs for all possible 
sequences of inputs.

The language allows for conceptually sequential (operator ;) or concurrent (operator ||) 
execution of reactions, defined by language expressions handling signal identifiers (as in the 
example of Figure 9.13). All constructs take zero time except await and loop… each…, 
which explicitly produce a program pause. Esterel includes the concept of preemption, 
embodied by the loop… each R statement in the example of Figure 9.13 or the abort 
action when signal statement. The reaction contained in the body of the loop is 
preempted (and restarted) when the signal R is set. In case of an abort statement, the reac-
tion is preempted and the statement terminates.

Count
evt

reset
count

FiGURe 9.12 An example of Lustre node and its program. (From Caspi, P., LUSTRE: A declarative 
language for programming synchronous systems, in: ACM SIGACT-SIGPLAN Symposium on Principles of 
Programming Languages (POPL), Munich, Germany, 1987 pp. 178–188.)
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FiGURe 9.13 An example showing features of the Esterel language and an equivalent statechart-
like visual formalization. (From Boussinot, F. and de Simone, R., Proc. IEEE, 79, 1293, September 1991.)
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Formal verification was among the original objectives of Esterel. In synchronous languages, 
verification of properties typically requires the definition of special programs called 
“observers” that observe the variables or signals of interest and at each step decide if the 
property is fulfilled. A program satisfies the property if and only no observer ever complains 
during any execution.

The verification tool takes the program implementing the system, an observer of the desired 
property (or assertion observer, since it checks that the system complies with its asserted 
properties), and another observer program modeling the assumptions on the environment. 
The three programs are combined in a synchronous product, as in Figure 9.14, and the tool 
explores the set of reachable states. If the assertion observer never reaches a state where the 
system property is invalid before reaching a state where the assumption observer declares 
violation of the environment assumptions, then the system is correct. The process is described 
in detail in Reference 45.

The commercial package Simulink/Stateflow by the MathWorks [46] allows modeling and 
simulation of control systems according to an SR MOC. Although its semantics is not formally 
defined (in mathematical terms) in any single document, it consolidated over time into a set of 
execution rules that are available throughout the user manuals.

The system is a network of functional blocks bj. Blocks can be of two types: regular (dataflow) 
or Stateflow (state machine) blocks. Dataflow blocks can be of type continuous, discrete, or 
triggered. Continuous-type blocks process CT signals and produce as output other continuous 
signal functions according to the provided block function description (typically a set of differen-
tial equations). This includes the rules to update the state of the block (if there is one). Discrete 
blocks are activated at periodic time instants and process input signals, sampled at periodic time 
instants producing a set of periodic output signals and state updates. Finally, triggered blocks are 
only executed on the occurrence of a given event (a signal transition or a function call). When 
the event arrives, the current values on the input signals are evaluated, producing values on the 
output signals and updating (possibly) the block state.

When a system model must be simulated, the update of the outputs and of the state of 
continuous-type blocks must be computed by an appropriate solver, which could use a vari-
able or a fixed step. When the system model is used for the automatic generation of an imple-
mentation, only fixed step solvers can be used. This means that even continuous blocks are 
evaluated on a discrete-time base (the step of the solver), which must be selected as an integer 
divider of any other period in the system and takes the name of base period. Taken aside trig-
gered blocks (for now), this means that all blocks in the system are activated periodically (or at 
events belonging to a periodic time base) in case the automatic generation of an implementa-
tion is required.

Regular blocks process a set of input signals at times that are multiples of a period Tj, which 
is in turn an integer multiple of a system-wide base period Tb (in the case of triggered blocks, the 
model could be extended to sporadic activations).

We denote the inputs of block bj by ij,p (ij as vector) and its outputs by oj,q (oj). At all times kTj 
the block reads the signal values on its inputs and computes two functions: an output update 
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FiGURe 9.14 Verification by observers.
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function oj = fo(ij , Sj) and a state update function SNewj = fs(ij , Sj), where Sj (SNewj) is the current (next) 
state of bj. Often, the two update functions can be considered as one:

 (oj, SNewj) = fu(ij, Sj)

Signal values are persistent until updated (each signal can be imagined as stored in a shared buf-
fer). Therefore, each input and output is formally a right-continuous function, possibly sampled at 
periodic time instants by a reading block.

Figure 9.15 shows an example model with regular and Stateflow (labeled as supervisor in the 
figure) blocks.

The execution periods of discrete blocks are not shown in the model views, but block rates can 
be defined in the block properties as fixed or inherited. Inherited rates are resolved at model com-
pilation time based on rules that compose (according to the block type) the rates of its predecessors 
or successors. Inheritance can proceed forward or backward in the input–output model flow. For 
example, a constant block providing (with an unspecified rate) a constant value to a block will inherit 
the rate of the block that reads the constant value (if unspecified, this block will in turn inherit from 
its successor). Conversely, if two blocks with assigned periods are feeding a simple adder block, with 
inherited rate, this block will be executed at the greatest common divisor of its input block periods.

Stateflow (or FSM) blocks can have multiple activation events ej,v (as shown in Figure 9.16, with 
two events of periods 2 and 5 entering the top of the Stateflow block chart; if no input event is 
defined, as for the supervisor block of Figure 9.16, the block implicitly reacts to periodic events at 
every base period). At any integer multiple of one of the events’ periods kTj,v, an update function is 
computed depending on the current state, the subset of input events that are active, and the set of 
input values. Update functions are extended by allowing the execution of generic functions whenever 
a given event is active on a given state. When multiple events are active, an ordering is provided to 
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give precedence to some events (for the given state) over others (thereby guaranteeing determinism). 
Figure 9.16 represents an FSM with two input signals, two output signals, and two incoming events 
with periods 2 and 5, obtained from the rising edge of two signals. The figure also shows the result 
of the model compilation with the computed signal periods. The outputs of the Stateflow block are 
labeled as periodic with a rate of 1 (the greatest common divisor of the activation events’ periods).

A fundamental part of the model semantics is the rules dictating the evaluation order of the 
blocks. Any block for which the output is directly dependent on its input (i.e., any block with 
direct feedthrough) cannot execute until the block driving its input has executed. Some blocks set 
their outputs based on values acquired in a previous time step or from initial conditions speci-
fied as a block parameter. The set of topological dependencies implied by the direct feedthrough 
defines a partial order of execution among blocks. The partial order must be accounted for in the 
simulation and in the runtime execution of the model.

If two blocks bi and bj are in an input–output relationship (the output of bj depends on its input 
coming from one of the outputs of bi, and bj is of type feedthrough, Figure 9.17), then there is a 
communication link between them, denoted by bi → bj. In case bj is not of type feedthrough, then 
the link has a delay, as indicated by b bi j

-¾ ®¾1 . Let bi(k) represent the kth occurrence of block bi 
(belonging to the set of time instants ∪v kTi,v for a state machine block, or kTi for a dataflow block), 
then a sequence of activation times ai(k) is associated with bi.

Given t ≥ 0, we define ni(t) to be the number of times that bi has been activated before or at t. 
In case of a link bi → bj, if ij(k) denotes the input of the kth occurrence of bj, then the SR semantics 
specifies that this input is equal to the output of the last occurrence of bi that is no later than the 
kth occurrence of bj, that is,

(9.3) ij(k) = oi(m); where m = ni(aj(k)) 

This implies a partial order in the execution of the block functions. If b bi j
-¾ ®¾1 , then the previ-

ous output value is read, that is,

(9.4) ij(k) = oi(m −1) 
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Any implementation that verifies properties (9.3) or (9.4) will preserve the correspondences 
between the values produced or written by a predecessor block and the subset of them that is 
read by a successor, and it is therefore called “flow preserving.”

The timeline on the bottom of Figure 9.17 illustrates the execution of a pair of blocks with SR 
semantics. The horizontal axis represents time. The vertical arrows capture the time instants 
when the blocks are activated and compute their outputs from the input values. In the figure, it 
is ij(k) = oi(m).

A cyclic dependency among blocks where output values are instantaneously produced based 
on the inputs (all blocks in the cycle of type feedthrough) results in a fixed-point problem and 
possibly inconsistency (in general, a violation of the SR functional behavior).

This problem (called “algebraic loops”) may be treated in different ways. Previous Esterel 
compilers tried to detect the cases in which loops still resulted in a deterministic behavior (the 
fixed-point equation allows a single solution). Today, most tools and languages (Simulink, among 
others) simply disallow algebraic loops in models for which an implementation must be automati-
cally produced. The problem can be solved by the designer by adding a block that is not of type 
feedthrough (a Moore-type FSM or simply a delay block) in the loop.

The behavior of a Simulink/Stateflow block follows the semantics and notation of extended 
(hierarchical and concurrent) state machines. The Stateflow semantics have evolved with time 
and are described (unfortunately not in mathematical terms) in the user manual of the prod-
uct, currently of more than 800 pages. The resulting language, a mix of a graphical and textual 
notation, tends to give the user full control of the programmability of the reactions and is de 
facto a Turing-complete language, with the potential for infinite recursion and nonterminating 
reactions.

The formal definition of a subset of the Stateflow semantics (now partly outdated) is provided 
in References 47 and 48, and compositionality is explored in Reference 49. Analogies between 
Stateflow and the general model of hierarchical automata are discussed in Reference 50.

Given the industrial recognition of the tool, the synchronous language community initially 
studied the conditions and the rules for the translation of Simulink [51,52] and then Stateflow [53] 
models into Lustre. In all papers (but especially the last one), the authors describe all the seman-
tics issues they discovered in the mapping, which may hamper the predictability and determinism 
of Simulink/Stateflow models, outlining recommendations for the restricted use of a “safe” subset 
of the languages. Previously cited research on flow-preserving communication mechanisms also 
applies to Simulink systems. In particular, in Reference 54, the extension of the Simulink rate 
transition (RT) block (a mechanism for ensuring flow preservation under restricted conditions) 
to multicore platforms is discussed and possible solutions are presented. The formal descrip-
tion of input/output dependencies among components as reusable systems is provided in 
Reference 55.

9.3.1 SEMANTICS-PRESERVING IMPLEMENTATIONS

In References 56 and 57, the very important problem of how to map a zero-execution time 
Simulink semantics into a software implementation of concurrent threads where each computa-
tion necessarily requires a finite execution time is discussed.

The update functions of blocks and their action extensions are executed by program functions 
(or lines of code), executed by a task.

For regular blocks, the implementation may consist of two functions or sequences of state-
ments, one for the state update and another for the output update (the output update parts must 
be executed before the state update). The two functions are often merged into a single update 
function, typically called “step.”

Similarly, the implementation of a Stateflow (FSM) block consists of two functions or state-
ment sets, evaluating the state and output update for the state machine (possibly merged). The 
update function is executed every time there is a possible incoming event computed from a 
transition of a signal. In the commercial code generator, the code is embedded in a periodic 
function, executing at the greatest common divisor of the periods of the activation events. This 
function first checks if there is any active event resulting from a value transition of one of the 
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incoming signals. Then, it passes the set of active events to a monolithic function that computes 
the actions and the new state based on the current active state, the active events, and the value 
of the variables (and the guard conditions). Contrary to the Esterel and Lustre compilers, the 
code generator from Stateflow does not flatten the state machine or precomputes all the states 
of the chart (or the system). Flattening the model representation before code generation has 
advantages and disadvantages. The main disadvantages are that opportunities for reusing code 
(of multiple instances of the same subsystem) are lost and the code typically computes values 
(and reactions) that are not needed for a specific event/point in time. The main advantage, how-
ever, is that the code generation rules that are applied to the flattened model are very simple and 
it is much easier to generate code that corresponds to the model (i.e., it does not introduce any 
unintended behavior).

The code generation framework follows the general rules of the simulation engine and must 
produce an implementation with the same behavior (preserving the semantics). In many cases, 
what may be required from a system implementation is not the preservation of the synchro-
nous assumption, that is, the reaction (the outputs and the next state) of the system must be com-
puted before the next event in the system, but the looser, flow preservation property. Formally, the 
implementation must guarantee that every source block is executed without losing any execution 
instance that Equation 9.3 or 9.4 holds for any signal exchanged between two blocks and the 
correct untimed behavior of all (regular and Stateflow) blocks. The example implementation of 
Figure 9.19 does not satisfy the synchronous assumption (the output of block E is produced after 
real-time 1), but is flow preserving.

The Simulink Coder (formerly Real-Time Workshop)/Embedded Coder code generator of 
MathWorks allows two different code generation options: single task and fixed-priority multitask. 
Single-task implementations are guaranteed to preserve the simulation-time execution semantics 
but impose stricter conditions on system schedulability. A single periodic task replicates the same 
schedule of the block functions performed by the simulator, only in real time instead of logical time. 
It is triggered by a clock running at the base period of the system. Each time the task is activated, it 
checks which block reactions need to execute by scanning the global order list of the block functions. 
After its execution completes, the task goes back to sleep. In this case, a task is unnecessary. What 
is required is a mechanism for triggering a periodic execution, the global list of the system reactions 
(with their periods), and (possibly) a mechanism for checking task overruns and timing errors.

The possible problem with this implementation is described at the bottom of Figure 9.18. If the 
time that is required to compute the longest reaction in the system is larger than the base period 
(for the implementation on the selected execution platform), then the single-task implementation 
is not feasible since it violates the synchronous assumption.

By reasoning on the example system in the figure, a possible solution could be outlined for a mul-
titask implementation on a single-core platform: blocks C and E (with period 4) could execute with a 
deadline equal to their periods. Figure 9.19 shows the multitask solution produced by the MathWorks 
code generator. One task is defined for each period in the system. Each task executes the blocks with 
the same period, in the order in which blocks are executed in the global order list. The task priorities 
are assigned using the rate monotonic rule to maximize the chances of schedulability.

A
1

B
1

C
4

D
2

E
4

t = 0

t = 0

t = 1

t = 1

t = 2 t = 3 t = 4

A B A B A BD

A B

A BC

C

D

D

E

E

FiGURe 9.18 A single-task implementation of a network of blocks.



162    9.3 Synchronous Models

In general, considering not only single-core platforms, but arbitrary execution architectures 
and a generic scheduling policy on each node, the stage of the design process in which the func-
tional model is mapped into a task (thread) model is the starting point of several optimization 
problems. Examples of design decisions that may be subject to constraints or determine the qual-
ity of the implementation are

 ◾ Mapping functions into tasks
 ◾ Assigning the execution order of functions inside tasks
 ◾ Assigning the task parameters (priority, deadline, and offset) to guarantee semantics 

preservation and schedulability
 ◾ Assigning scheduling attributes to functions (including preemptability and preemption 

threshold)
 ◾ Designing communication mechanisms that ensure flow preservation while minimiz-

ing the amount of memory used (an example of possible issues with flow preservation is 
shown in Figure 9.20).

In multitask implementations, the runtime execution of the model is performed by running the 
code in the context of a set of threads under the control of a priority-based RTOS. The function-
to-task mapping consists of a relationship between a block update function (or each one of them 
in the case of an FSM block) and a task and a static scheduling (execution order) of the function 
code inside the task. The ith task is denoted as τi. M( fj, k, i) indicates that the step function fj of 
block bj is executed as the kth segment of code in the context of τi.
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FiGURe 9.19 An example of multitask implementation of a network of blocks.
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The function order is simply the order in which the implementation code is invoked (typically 
by a call to its Step() function) from inside the task code.

Because of preemption and scheduling, in a multirate system, the signal flows of the implemen-
tation can differ from the model flows. The bottom part of Figure 9.20 shows the possible prob-
lems with flow preservation in multitask implementations because of preemption and scheduling.

The timeline on top represents the execution of the block reactions in logical time. The sched-
ule at the bottom shows a possible execution when the computation of the update function is 
performed in real time by software code, and the code (task) implementing the kth instance of 
the reader is delayed because of preemption.

In this case, the writer finishes its execution producing the output oi(m). If the reader performs 
its read operation before the preemption by the next writer instance, then (correctly) ij(k) = oi(m). 
Otherwise, it is preempted and a new writer instance produces oi(m + 1). In the latter case, the 
reader reads oi(m + 1), in general different from oi(m).

Problems can possibly arise when two communicating blocks are mapped into different tasks. 
In this case, we expect that the two blocks execute with different rates (there may be exceptions 
to this rule and will be handled in similar ways).

In case a high-priority block/task τ1 drives a low-priority block/task τ2 (left side of Figure 9.21), 
there is uncertainty about which instance of τ1 produces the data consumed by τ2 (τ2 should read 
the values produced by the first instance of τ1, not the second). In the oversampling case, there 
is uncertainty on the reader instance that is consuming the data. In addition, if the reader has 
higher priority than the writer, the communication must have an associated delay.

Clearly, the shared variables implementing the communication channel must be protected for 
data consistency. However, lock-based mechanisms are in general not suited for the implementation 
of flow-preserving communication, since they are based on the assumption that the execution order 
of the writer and reader is unknown and there is the possibility of one preempting the other while 
operating on the shared resource and flow preservation in the case of a multirate/multitask genera-
tion mode for single-core platforms. The design element is called a “rate transition” block [46] and is 
in essence a special case of a wait-free communication method. In a multitask implementation, the 
MathWorks code generator creates one task (identifier) for each block rate in the model and assigns 
its priority according to the rate monotonic rule (as in the example of Figure 9.20).

RT blocks are placed between any two blocks with different rates. In the case of high-to-
low-rate/priority transitions, the RT block output update function executes at the rate of the 
receiver block (left side of Figure 9.22), but within the task and at the priority of the sender block. 
In low-to-high-priority transitions (right side of Figure 9.22), the RT block state update function 
executes in the context of the low-rate task. The RT block output update function runs in the 
context of the high-rate task, but at the rate of the sender task, feeding the high-rate receiver. The 
output function uses the state of the RT that was updated in the previous instance of the low-rate 
task. RT blocks can only be applied in a more restricted way than generic wait-free methods [58]: 
the periods of the writer and reader need to be harmonic, meaning one is an integer multiple of 
the other; also, they only apply to one-to-one communication links. One-to-n communication 
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is regarded as n separate links and each of them is buffered independently. The RT mechanism 
has the clear advantage of being completely implemented in user space, but cannot be used when 
the reader and the writer do not have harmonic periods (or are not periodic, but triggered), or 
are not executed with statically assigned priorities, or even when they execute on different cores. 
In the following, we will analyze the mechanisms for guaranteeing data consistency in a general 
single-core single-writer–multiple-reader case. The same mechanisms can then be extended to 
deal with intercore communication. In this last case, several implementation options are possible.

9.3.2 ARCHITECTURE DEPLOYMENT AND TIMING ANALYSIS

Synchronous models are typically implemented as a single task that executes according to an event 
server model. Reactions are decomposed into atomic actions that are partially ordered by the cau-
sality analysis of the program. The scheduling is generated at compile time trying to exploit the 
partial causality order among the functions that implement the block reactions, in order to make 
the best possible use of hardware and shared resources. The main concern is checking that the 
synchrony assumption holds, that is, ensuring that the longest chain of reactions ensuing from 
any internal or external event is completed within the step duration. Static scheduling means that 
critical applications are deployed without the need for any operating system (and the correspond-
ing overhead). This reduces system complexity and increases predictability avoiding preemption, 
dynamic contention over resources, and other nondeterministic operating system functions.

The timing analysis of task sets implementing Simulink/Stateflow models can be quite chal-
lenging. At the highest level of abstraction, the multitasking implementation of a Simulink model 
simply consists of a set of periodic independent tasks with implicit (equal to their periods) deadlines, 
exchanging information using wait-free communication mechanisms (such as the RT blocks).

A system like this can easily be analyzed using the basic response time formulation outlined 
in the previous sections.

However, a deeper analysis reveals a number of additional issues. When a task is implement-
ing Stateflow reactions, an abstraction as a simple periodic task with a worst-case execution time 
can be quite pessimistic. In Reference 59, the authors discuss the problem and show an analogy 
with the analysis of the task digraph model [60] (a very general model for the analysis of branch-
ing jobs). A more efficient analysis for this type of systems is also presented in Reference 61. 
Alternative methods for implementing synchronous state machines as a set of concurrent tasks 
are discussed in References 62 and 63.

Also, RT blocks are only applicable in single-core architectures and under the condition that 
the rates of the communicating blocks are harmonic. A discussion on the extension of the RT 
block mechanism to multicore platforms can be found in Reference 64.

In References 65–67, the authors show how existing wait-free communication mechanisms can be 
extended to provide guaranteed flow preservation and how to optimize the sizing of the buffers and/or 
optimize the design with respect to timing performance [68]. The use of a priority assignment differ-
ent from rate monotonic to selectively avoid the use of RT blocks is discussed in References 69 and 70.

9.3.3 TOOLS AND COMMERCIAL IMPLEMENTATIONS

Lustre is implemented by the commercial toolset SCADE, offering an editor that manipulates 
both graphical and textual descriptions; two code generators, one of which is accepted by certifi-
cation authorities for qualified software production; a simulator; and an interface to verification 
tools such as the plug-in from Prover [71].

The early Esterel compilers had been developed by Gerard Berry’s group at INRIA/CMA and 
freely distributed in binary form. The commercial version of Esterel was first marketed in 1998 
and then distributed by Esterel Technologies, which later acquired the SCADE environment. 
SCADE has been used in many industrial projects, including integrated nuclear protection sys-
tems (Schneider Electric), flight control software (Airbus A340–600), and track control systems 
(CS Transport). Dassault Aviation was one of the earliest supporters of the Esterel project and has 
long been one of its major users.
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Several verification tools use the synchronous observer technique for checking Esterel pro-
grams [72]. It is also possible to verify implementations of Esterel programs with tools exploit-
ing explicit state space reduction and bisimulation minimization (FC2Tools), and finally, tools 
can be used to automatically generate test sequences with guaranteed state/transition coverage.

The Simulink tool by MathWorks was developed with the purpose of simulating control algo-
rithms and has been since its inception extended with a set of additional tools and plug-ins, such 
as the Stateflow plug-in for the definition of the FSM behavior of a control block, allowing mod-
eling of hybrid systems, and a number of automatic code generation tools, such as the Simulink 
Coder and Embedded Coder.

9.3.4 CHALLENGES

The main challenges and limitations that synchronous languages must face when applied to com-
plex systems are the following:

 ◾ Despite improvements, the space and time efficiency of the compilers is still not 
satisfactory.

 ◾ Embedded applications can be deployed on architectures or control environments that 
do not comply with the SR model.

 ◾ Designers are familiar with other dominant methods and notations. Porting the devel-
opment process to the synchronous paradigm and languages is not easy.

Efficiency limitations are mainly due to the formal compilation process and the need to check 
for constructive causality. The first three Esterel compilers used automata-based techniques and 
produced efficient code for small programs, but they did not scale to large-scale systems because 
of state explosion. Versions 4 and 5 were based on translation into digital logic and generated 
smaller executables at the price of slow execution (The program generated by these compil-
ers wastes time evaluating each gate in every clock cycle.) This inefficiency can produce code 
100 times slower than that from previous compilers [72].

Version 5 of the compiler allowed cyclic dependencies by exploiting Esterel’s constructive 
semantics. Unfortunately, this requires evaluating all the reachable states by symbolic state space 
traversal [73], which makes it extremely slow.

As for the difficulty in matching the basic paradigm of synchrony with system architectures, 
the main reasons of concern are

 ◾ The bus and communication lines, if not specified according to a synchronous (time-
triggered) protocol and the interfaces with the analog world of sensors and actuators

 ◾ The dynamics of the environment, which can possibly invalidate the instantaneous 
execution semantics

The former has been discussed at length in a number of papers (such as [74,75]), giving conditions 
for providing a synchronous implementation on top of distributed platforms.

A possible solution consists in the adoption of a desynchronization approach based on the 
loosely time-triggered architecture (LTTA), which allows to provide a flow-preserving implemen-
tation by means of constraints on the rates of the processing actors or backpressure mechanisms 
for controlling the flow of data (when the transmitter can be stalled). The timing analysis of LTTA 
implementations on distributed platforms is discussed in References 76 and 77.

Finally, in order to integrate synchronous languages with the mainstream commercial meth-
odologies and languages, translation and import tools are required. For example, it is possible 
from SCADE to import discrete-time Simulink diagrams and Sildex allows importing Simulink/
Stateflow discrete-time diagrams. Another example is the attempt to integrate Esterel and UML 
based on a proposal for coupling Esterel Studio and Rational Rose drafted by Dassault [78] and 
adopted by commercial Esterel tools.

The commercial Esterel compilers were first acquired by Synfora and then by Synopsys, but 
finally, despite early interest in a standardization by IEEE, the product appears as discontinued.
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The SCADE Suite is still commercially available from Esterel Technologies (now acquired by 
Ansys) and quite popular for applications that require certification (or a certified code genera-
tor), such as under the DO-178B and DO-178C or the upcoming standard for automotive systems 
ISO 26262 (ASIL D and C).

9.4 ASYNCHRONOUS MODELS

UML (an OMG standard) and SDL (an ISO-ITU standard) are languages developed, respectively, in 
the context of general-purpose computing and in the context of (large) telecommunication systems. 
UML is the merger of many OO design methodologies aimed at the definition of generic software 
systems. Its semantics is not completely specified and intentionally retains many variation points in 
order to adapt to different application domains. In order to be practically applicable to the design of 
embedded systems, further characterization (a specialized profile in UML terminology) is required. 
In the 2.0 revision of the language, the system is represented by a (transitional) model where active 
and passive components, communicating by means of connections through port interfaces, coop-
erate in the implementation of the system behavior. Each reaction to an internal or external event 
results in the transition of a statechart automaton describing the object behavior.

SDL has a more formal background since it was developed in the context of software for tele-
communication systems for the purpose of easing the implementation of verifiable communica-
tion protocols. An SDL design consists of blocks cooperating by means of asynchronous signals. 
The behavior of each block is represented by one or more (conceptually concurrent) processes. 
Each process, in turn, implements an extended FSM.

Until the development of the UML profile for schedulability, performance, and time (SPT) and 
its follower MARTE systems profile, UML did not provide any formal means for specifying time or 
time-related constraints nor for specifying resources and resource management policies. The deploy-
ment diagrams were the only (inadequate) means for describing the mapping of software unto the 
hardware platform and tool vendors had tried to fill the gap by proposing nonstandard extensions.

The situation with SDL is not much different, although SDL offers at least the notion of global 
and external time. Global time is made available by means of a special expression and can be 
stored in variables or sent in messages.

Implementation of asynchronous languages typically (but not necessarily) relies on an operat-
ing system. The latter is responsible for scheduling, which is necessarily based on static (design-
time) priorities if a commercial product is used to this purpose. Unfortunately, as it will be clear 
in the following, real-time schedulability techniques are only applicable to very simple models 
and are extremely difficult to generalize to most models of practical interest or even to the imple-
mentation model assumed by most (if not all) commercial tools.

9.4.1 UML

UML represents a collection of engineering practices that have proven successful in the modeling 
of large and complex systems and has emerged as the software industry’s dominant OO modeling 
language.

Born at Rational in 1994, UML was taken over in 1997 at version 1.1 by the OMG Revision 
Task Force (RTF), which became responsible for its maintenance. The RTF released UML 
version 1.4 in September 2001 and a major revision, UML 2.0, appeared in 2003. UML is now at 
version 2.5 (beta) [7].

UML has been designed as a wide-ranging, general-purpose modeling language for specify-
ing, visualizing, constructing, and documenting the artifacts of software systems. It has been 
successfully applied to a wide range of domains, ranging from health and finance to aerospace 
and e-commerce, and its application goes even beyond software, given recent initiatives in areas 
such as systems engineering, testing, and hardware design. A joint initiative between the OMG 
and the International Council on Systems Engineering defined a profile for systems engineering, 
which later produced the standard specification for the SysML. The SysML 1.4 specification was 
adopted in March 2014 [79]. At the time of this writing, over 60 UML CASE tools can be listed 
from the OMG resource page (http://www.omg.org).

http://www.omg.org
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After its major revision 2.0, the UML language specification consists of four parts:

 1. UML Infrastructure, defining the foundational language constructs and the language 
semantics in a more formal way than it was in the past

 2. UML Superstructure, which defines the user-level constructs
 3. OCL Object Constraint Language, which is used to describe expressions (constraints) 

on UML models
 4. UML Diagram Interchange, including the definition of the XML-based XMI format, for 

model interchange among tools

UML consists of a metamodel definition and a graphical representation of the formal language, 
but it intentionally refrains from including any design process. The UML language in its general 
form is deliberately semiformal and even its state diagrams (a variant of statecharts) retain suf-
ficient semantics variation points in order to ease adaptability and customization.

The designers of UML realized that complex systems cannot be represented by a single 
design artifact. According to UML, a system model is seen under different views, representing 
different aspects. Each view corresponds to one or more of diagrams, which, taken together, 
represent a unique model. Consistency of this multiview representation is ensured by the UML 
metamodel definition. The diagram types included in the UML 2.0 specification are represented 
in Figure 9.22, as organized in the two main categories that relate to structure and behavior.

When domain-specific requirements arise, more specific (more semantically characterized) 
concepts and notations can be provided as a set of stereotypes and constraints and packaged in 
the context of a profile.

Structure diagrams show the static structure of the system, that is, specifications that are valid 
irrespective of time. Behavior diagrams show the dynamic behavior of the system. The main 
diagrams are

 ◾ Use case diagram, indicating a high-level (user requirements–level) description of the 
interaction of the system with external agents

 ◾ Class diagram, representing the static structure of the software system, including the 
OO description of the entities composing the system and of their static properties and 
relationships

 ◾ Behavior diagrams including interaction or sequence diagrams and state diagrams as 
variants of message sequence charts [MSCs] and statecharts), providing a description 
of the dynamic properties of the entities composing the system, using various notations

 ◾ Architecture diagrams (including composite and component diagrams, showing a 
description of reusable components), showing a description of the internal structure of 
classes and objects and a better characterization of the communication superstructure, 
including communication paths and interfaces.

 ◾ Implementation diagrams, containing a description of the physical structure of the 
software and hardware components
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FiGURe 9.22 A taxonomy of UML 2.0 diagrams.
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The class diagram is typically the core of a UML specification, as it shows the logical structure 
of the system. The concept of classifier (class) is central to the OO design methodology. Classes can 
be defined as user-defined types consisting of a set of attributes defining the internal state and a set 
of operations (signature) that can be possibly invoked on the class objects resulting in an internal 
transition. As units of reuse, classes embody the concepts of encapsulation (or information hiding) 
and abstraction. The signature of the class abstracts the internal state and behavior and restricts 
possible interactions with the environment. Relationships exist among classes, with special names 
and notations in relevant cases, such as aggregation and composition, use, and dependency. The 
generalization (or refinement) relationship allows controlled extensions of the model by letting a 
derived class specification inherit all the characteristics of the parent class (attributes and opera-
tions, and also, selectively, relationships) while providing new ones (or redefining existing ones).

Objects are instances of the type defined by the corresponding class (or classifier). As such, 
they embody all of the classifier attributes, operations, and relationships. Several books [80–82] 
have been dedicated to the explanation of the full set of concepts in OO design. The interested 
reader is invited to refer to the literature on the subject for a more detailed discussion.

All diagram elements can be annotated with constraints, expressed in OCL or in any other 
formalism that the designer sees as appropriate. A typical class diagram showing dependency, 
aggregation, and generalization associations is shown in Figure 9.23.

UML finally acknowledged the need for a more formal characterization of the language 
semantics and for better support for component specifications. In particular, it became clear that 
simple classes provide a poor match for the definition of a reusable component (as outlined in 
previous sections).

As a result, necessary concepts, such as the means to clearly identify provided and (especially) 
required interfaces, have been added by means of the port construct. An interface is an abstract 
class declaring a set of functions with their associated signature. Furthermore, structured classes 
and objects allow the designer to formally specify the internal communication structure of a 
component configuration.

UML classes, structured classes, and components are now encapsulated units that model 
active system components and can be decomposed into contained classes communicating by 
signals exchanged over a set of ports, which model communication terminals. A port carries both 
structural information on the connection between classes or components and protocol informa-
tion that specifies what messages can be exchanged across the connection (an example in Figure 9.24). 
A state machine and/or a UML sequence diagram (similar to MSCs) may be associated with a 
protocol to express the allowable message exchanges. Two components can interact if there is a 
connection between any two ports that they own and that support the same protocol in comple-
mentary (or conjugated) roles. The behavior or reaction of a component to an incoming message 
or signal is typically specified by means of one or more statechart diagrams.
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Behavior diagrams comprise statechart diagrams, sequence diagram, and collaboration 
diagrams.

Statecharts [15] describe the evolution in time of an object or an interaction between objects by 
means of a hierarchical state machine. UML statecharts are an extension of Harel’s statecharts, 
with the possibility of defining actions upon entry into or exit from a state as well as actions to be 
executed when a transition is taken. Actions can be simple expressions or calls to methods of the 
attached object (class) or entire programs. Unfortunately, not only does the Turing completeness 
of actions prevent decidability of properties in the general model, but UML does not even clarify 
most of the semantics variations left open by the standard statechart formalism.

Furthermore, the UML specification explicitly gives actions a run-to-completion execution 
semantics, which makes them nonpreemptable and makes the specification (and analysis) of typi-
cal RTOS mechanisms such as interrupts and preemption impossible.

To give an example of UML statecharts, Figure 9.25 shows a sample diagram where, upon 
entry of the composite state (the outermost rectangle), the subsystem enters into three concur-
rent (and-type) states, named Idle, WaitForUpdate, and Display_all, respectively. Upon entry 
in the WaitForUpdate state, the variable count is also incremented. In the same portion of the 
diagram, reception of message msg1 triggers the exit action setting the variable flag and the 
(unconditioned) transition with the associated call action update(). The count variable is 
finally incremented upon reentry in the state WaitForUpdate.
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FiGURe 9.25 An example of UML statechart.
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Statechart diagrams provide the description of the state evolution of a single object or class, 
but neither they are meant to represent the emergent behavior deriving from the cooperation 
of more objects nor are they appropriate for the representation of timing constraints. Sequence 
diagrams partly fill this gap. Sequence diagrams show the possible message exchanges among 
objects, ordered along a time axis. The timepoints corresponding to message-related events can 
be labeled and referred to in constraint annotations. Each sequence diagram focuses on one par-
ticular scenario of execution and provides an alternative to temporal logic for expressing timing 
constraints in a visual form (Figure 9.26).

Collaboration diagrams also show message exchanges among objects, but they emphasize struc-
tural relationships among objects (i.e., “who talks with whom”) rather than time sequences of messages.

Collaboration diagrams (Figure 9.27) are also the most appropriate way for representing logical 
resource sharing among objects. Labeling of messages exchanged across links defines the sequenc-
ing of actions in a similar (but less effective) way to what can be specified with sequence diagrams.
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Despite availability of multiple diagram types (or maybe because of it), the UML metamodel is 
quite weak when it comes to the specification of dynamic behavior. The UML metamodel concen-
trates on providing structural consistency among the different diagrams and provides sufficient 
definition for the static semantics, but the dynamic semantics are never adequately addressed, 
up to the point that a major revision of the UML action semantics became necessary. In 2008, 
this originated the first adopted specification of the Foundational UML (fUML) language [40]. 
The intention is for UML to eventually become an executable modeling language, which would, 
for example, allow early verification of system functionality. Within the OMG, it was clear that a 
graphical language was not the best candidate for the UML executable semantics. The Concrete 
Syntax for a UML Action Language RFP, issued by OMG in 2008, asked for a textual language 
solution and resulted in the Action Language for fUML (Alf) [39]. Alf is a formal textual descrip-
tion for UML behaviors that can be attached to a UML model element. Alf code can be used to 
specify the behaviors of state machine actions or the method of an operation.

Semantically, Alf maps to the fUML subset. Syntactically, Alf looks a lot like typical C++ or 
Java. This is because the language proposers realized that it was only reasonable to define Alf in a 
way that would be familiar to practitioners, to ease the adoption of the new language.

As of today, Alf is still not widely used to model behavior and tool support for its execution 
(for simulation and verification) is missing. An early attempt at the definition and implementa-
tion of transformation mechanisms toward the translational execution of ALF can be found in 
Reference 83. An extended discussion on how the previous approach is extended to full C++ code 
generation from UML profiles and Alf is discussed in Reference 84.

However, simulation or verification of (at least) some behavioral properties and (especially) 
automatic production of code are features that tool vendors cannot ignore if UML is not to be 
relegated to the role of simply documenting software artifacts. Hence, CASE tools provide an 
interpretation of the variation points. This means that validation, code generation, and automatic 
generation of test cases are tool specific and depend upon the semantics choices of each vendor.

Concerning formal verification of properties, it is important to point out that UML neither 
provide any clear means for specifying the properties that the system (or components) is expected 
to satisfy nor give any means for specifying assumptions on the environment. The proposed use 
of OCL in an explicit contract section to specify assertions and assumptions acting upon the 
component and its environment (its users) can hopefully fill this gap in the future.

Research groups are working on the definition of a formal semantics restriction of UML 
behavior (especially by means of the statechart formalism), in order to allow for formal verifica-
tion of system properties [85,86]. After the definition of such restrictions, UML models can be 
translated into the formats used by existing validation tools for timed MSCs or TAs.

Finally, the last type of UML diagrams is the implementation diagrams, which can be either 
component diagrams or deployment diagrams. Component diagrams describe the physical 
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structure of the software in terms of software components (modules) related with each other by 
dependency and containment relationships. Deployment diagrams describe the hardware archi-
tecture in terms of processing or data storage nodes connected by communication associations 
and show the placement of software components onto the hardware nodes.

The need to express in UML timeliness-related properties and constraints and the pattern of 
hardware and software resource utilization as well as resource allocation policies and scheduling 
algorithms found a (partial) response with the OMG MARTE profile. The specification of timing 
attributes and constraints in UML designs will be discussed in Section 9.4.5.

9.4.2 SysML

To meet the modeling needs of (large-scale embedded) systems, the OMG issued the SysML 
modeling standard [79]. SysML derives several of its metamodeling features and diagrams from 
UML. However, SysML is formally not a UML refinement even though it reuses a large share of it.

SysML provides a number of additional modeling elements in its metamodel (among others, 
see Figure 9.29):

Blocks: They are the basic structure elements. Based on the UML composite classes, they provide a 
unifying concept to describe the structure of an element or system and support SysML new features 
(e.g., flow ports, value properties). In system-level modeling, blocks are used to represent any type 
of system or element, including hardware, software, data, facilities, people, and possibly signals and 
other physical quantities.
Flow ports: These ports are used to represent interfaces for physical quantities or signals, or even for 
data-oriented communication, providing a much closer correspondence to the concept of a port in 
SR modeling languages.
Flow specifications: These are extended specifications of the type of signals, data, or physical items 
exchanged over flow ports. In very general terms, flow specifications allow the specification of not 
only the type of the flow items but also their direction.
Item flows: These flows allow the identification of the specific item in a flow specification that is com-
municated in a connection over two ports.
Allocations: They allow the representation of general relationships that map one model element to 
another, such as behavioral mapping (i.e., function to component), structural mapping (i.e., logical to 
physical), or software to hardware.
Requirements: The requirement stereotype represents a text-based requirement, which includes the 
definition of a requirement identifier and of its text properties.
Parametric constraints: They are associated with flow port values and expressed as equations or any 
other suitable language.
Continuous flows. A refinement of data flows used for CT signals or physical quantities.

SysML reuses a number of diagrams from UML, even if some of them have a different name. 
The UML class diagram becomes the block definition diagram (BDD), and the composite struc-
ture diagram becomes the internal block diagram (IBD). The package, state machine, activity, 

<<block>>
DigitalWatch

constraints
operations

parts

references
values

properties

+display : Watch_Display

+/counter : Timestamp

<<block>>

constraints
operations

parts

references

values

properties

+controller : Controller

Elevator

+cabin : Cabin
+Floor1 : FloorController

setBtn : null

modeBtn : null

+contolledMotor : Motor

–Num_of_floors : Integer

FiGURe 9.29 Block compartments as shown in a block definition diagram.
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use case, and sequence diagrams (the last with the name interaction diagram) are also reused 
from UML.

In addition, SysML provides some new diagrams:

Parametric diagrams are used to express constraints among (signal) values of ports. They provide 
support for engineering analysis (e.g., performance, reliability) on design models. A parametric dia-
gram represents the usage of the constraints in an analysis context and may be used for identification 
of critical performance properties. Parametric diagrams are still structural and declarative. They are 
not meant for the equations to be simulated or integrated.
Requirement diagrams are provided to let the system developer enter textual requirements and the 
relationship among them. Also, requirements may be traced to their refinements and linked to the 
test descriptions.

Blocks are used in the BDDs and IBDs. BDDs describe the relationship among blocks (e.g., 
composition, association, specialization); IBDs describe the internal structure of blocks in terms 
of properties and connectors.

In the BDD, blocks appear with a set of compartments (in the classification of Figure 9.29, 
BDDs are shown—as all new diagrams—in shaded rectangles; an example of BDD is in Figure 9.30) 
that are used to describe the block characteristics. Compartments allow the definition of

 ◾ Properties
 ◾ Parts
 ◾ References
 ◾ Values
 ◾ Ports
 ◾ Operations
 ◾ Constraints
 ◾ Allocations from/to other model elements (e.g., activities)
 ◾ Requirements that the block satisfies

An example of a BDD is shown in Figure 9.30 with composition and generalization dependencies 
(similar to their UML counterparts).
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constraints

values
properties
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constraints

Motor
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1
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values

properties
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constraints

parts
operations
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FiGURe 9.30 An example of block definition diagram.
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BDDs cannot define completely the communication dependencies and the composition struc-
ture (the topology of the system). Given that blocks are used to specify hierarchical architecture 
structures, there is a need to represent the internal structure of a composite and the interconnec-
tions among its parts (the usage of a block in the context of a composite block, characterized by a 
role). The internal structure is made explicit by the IBDs, where the communication and signaling 
topology become explicit (an example in Figure 9.31).

Parametric diagrams are used to express constraints (possibly through equations) between 
value properties (Figure 9.32). Constraints can be defined by other blocks. The expression lan-
guage can be formal (e.g., MathML [87], OCL) or informal and binds the constraint parameters 
to value properties of blocks or their ports (e.g., vehicle mass bound to parameter “m” in F = m 
× a). The computational or analysis engine that verifies the constraints should be provided by a 
specific analysis tool and not by SysML.

Requirement diagrams are used to define a classification of requirements categories 
(e.g., functional, interface, performance) or a hierarchy of requirements, describing the refine-
ment relationships among requirements in a specification. Requirement relationships include 
DeriveReqt, Satisfy, Verify, Refine, Trace, and Copy. An example of requirement diagram is 
shown in Figure 9.33.

Finally, different ways are provided in SysML for specifying allocations. Graphical and tabular 
representations can be used for «allocation» on IBDs (an example of IBD that describes an execu-
tion architecture is shown in Figure 9.34). BDDs can be used to define the deployment of software 
and data to hardware.

ibd [Block] Chiller [Chiller]

compressor_speed:double

supply_temperature:double

suction_valve_cmd:double

return_temperature:double

suction_temperature:double

suction_pressure:double

evaporator_temperature:double

evaporator_pressure:double

evaporator_fan:double

discharge_pressure:double

current_drawn:TriphaseCurrent

condenser_fan:double

compressor_current:double

Compressor:Compressor1

current_drawn:double

refrigerant_out:Refrigerant
temperature:double

pressure:double

refrigerant_in:Refrigerant

compressor_speed:double

Condenser:Condenser1
coolant_speed

coolant_temp:double

refrigerant_out:Refrigerant
refrigerant_in:Refrigerant

coolant_out
coolant_in:double

Evaporator:Evaporator1

evaporator_pressure:double

evaporator_temperature:double

refrigerant_out:double

refrigerant_in:double

water_out:double
water_in:double

Exv:EXV1

refrigerant_out:Refrigerant

refrigerant_in:Refrigerant

Fan:Fan1

speed_command:double

cool_out:double
cool_in:double

air_out:doubleair_in:double

FiGURe 9.31 An example of an internal block diagram.
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9.4.3 OCL

The object constraint language (OCL) [88] is a formal language used to describe constraint 
expressions on UML models. An OCL expression is typically used to specify invariants or other 
type of constraint conditions that must hold for the system. OCL expressions refer to the contex-
tual instance, that is, the model element to which the expression applies, such as classifiers, for 
example, types, classes, interfaces, associations (acting as types), and datatypes. Also all attributes, 
association ends, methods, and operations without side effects that are defined on these types can 
be used.

par [Block] Vehicle_dynamics [Eq_bind]

eng_torq:Nm

{dw/dt = (T-L)/Iv}

e1:Engine speed
T:Nm

L:Nm

w:1/s

e2:RPM

e3:Road load

eng_Iner:Nm Iv:Kgm2

drv_rat:x

rpm:1/s
eng_rpm:1/sw:1/s

r:x

{rpm = w/r}

brk_trq:Nm

rpm:1/s

bT:1/s
L:Nm

FiGURe 9.32 An example of a parametric diagram.

Chiller Requirements
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entering water

text=Controls shall be provided to
maintain minimum flow rates

text=The chiller shall handle CHW
variations without nuisance tripping

id=R1.0.2
text=The chilled water pumping system is primary only,
variable flow.

text=The chiller plant
must have 1,100 tons

text=The chiller system must provide cooling for a building tower

Chiller requirements

Chiller load Chiller Water pumping

«requirement»

«requirement»

«requirement» «requirement» «requirement»

«Requirement» «Requirement» «Requirement»
Limit temperature Minimum flow rate CHW variations

«requirement»

«Requirement» «Requirement»

«DeriveReqt»«DeriveReqt»

«Requirement»

FiGURe 9.33 A requirement diagram with different types of relationships.
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OCL can be used to specify invariants associated with a classifier. In this case, it returns a 
Boolean type and its evaluation must be true for each instance of the classifier at any moment in 
time (except when an instance is executing an operation).

Preconditions and postconditions are other types of OCL constraints that can be possibly 
linked to an operation of a classifier, and their purpose is to specify the conditions or contract 
under which the operation executes. If the caller fulfills the precondition before the operation is 
called, then the called object ensures the postcondition to hold after execution of the operation, 
but of course, only for the instance that executes the operation (Figure 9.35).

9.4.4 SDL

The SDL is an International Telecommunications Union (ITU-T) [89] standard promoted by the 
SDL Forum Society for the specification and description of systems [55].

Since its inception, a formal semantics has been part of the SDL standard (Z.100), including 
visual and textual constructs for the specification of both the architecture and the behavior of 
a system. The behavior of (active) SDL objects is described in terms of concurrently operating 
and asynchronously communicating abstract state machines. SDL provides the formal behav-
ior semantics that enables tool support for simulation, verification, validation, testing, and code 
generation.

«block»
System

«part»
: CANbus

«part»
: Flex

«part»
: PandaBoard

«part»
arm: ARM

«part»
: FrontCamera

«part»
: Gyros_Accel

«part»
: ServoSteer

«part»
: Encoders_Poten.

«part»
: RearCamera

inout USB: <Undefined> out PWM1: <Undefined>
inout SPI: <Undefined>

inout SPI: <Undefined>

in PWM: <Undefined>

out PWM2: <Undefined> inout USB: <Undefined>

«part»
dspic: DSPIC

«part»
: ServoWheels

«part»
block1: ARM

«part»
: BeagleBoard

inout bus: <Undefined>

inout CANPort: <Undefined>

inout CANPort: <Undefined> inout CANPort: <Undefined>

inout USB: <Undefined>

in PWM: <Undefined>
inout SPI: <Undefined>

inout SPI: <Undefined>

inout USB: <Undefined>

FiGURe 9.34 An example of an internal block diagram describing a physical execution architecture.
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In SDL, systems are decomposed into a hierarchy of block agents communicating via 
(unbounded) channels that carry typed signals. Agents may be used for structuring the design 
and can in turn be decomposed into subagents until leaf blocks are decomposed into process 
agents. Block and process agents differ since blocks allow internal concurrency (subagents), while 
process agents only have an interleaving behavior.

The behavior of process agents is specified by means of extended finite and communicating 
state machines (SDL services) represented by a connected graph consisting of states and transi-
tions. Transitions are triggered by external stimuli (signals, remote procedure calls) or conditions 
on variables. During a transition, a sequence of actions may be performed, including the use and 
manipulation of data stored in local variables or asynchronous interaction with other agents or 
the system environment via signals that are placed into and consumed from channel queues.

Figure 9.36 shows a process behavior and a matching representation by means of an extended 
FSM (right side).

Channels are asynchronous (as opposed to synchronous or rendezvous) FIFO queues (one 
for each process) and provide a reliable, zero- or finite-delay transmission of communication ele-
ments from a sender to a receiver agent.

Signals sent to an agent will be delivered to the input port of the agent. Signals are consumed 
in the order of their arrival either as a trigger of a transition or by being discarded in case there 
is no transition defined for the signal in the current state. Actions executed in response to the 
reception of input signals include expressions involving local variables or calls to procedures.

Clock

tick()

-rate:integer

watch

reference1

1 0..*

0..*
rclk activate

checkwclk

GetSpeed()
SetTarget()
Enable()

CruiseControl
target:real
measured:real
active:boolean

FiGURe 9.35 OCL examples adding constraints or defining behavior of operations in a class 
diagram.
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FiGURe 9.36 A Specification and Description Language process behavior and the corresponding 
extended finite-state machine.
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In summary, an agent definition consists of

 ◾ A behavior specification given by the agent extended FSM
 ◾ A structure and interaction diagram detailing the hierarchy of system agents with their 

internal communication infrastructure
 ◾ The variables (attributes) under the control of each agent
 ◾ The black-box or component view of the agent defining the interaction points (ports) 

with the provided and required interfaces

SDL 2000 extends the language by including typical features of OO and component-based modeling 
techniques, including

 ◾ Encapsulation of services by ports (gates) and interfaces
 ◾ Classifiers and associations
 ◾ Specialization (refinement) of virtual class structure and behavior

SDL offers native mechanisms for representing external (global) time. Time is available by means 
of the predefined variable now, the now() primitive and timer constructs. Process actions can 
set timers, that is, the specification of a signal at a predefined point in time, wait, and eventually 
receive a timer expiry signal. SDL timer timeouts are always received in the form of asynchronous 
messages and timer values are only meant to be minimal bounds, meaning that any timer signal 
may remain enqueued for an unbounded amount of time.

In SDL, processes inside a block are meant to be executed concurrently, and no specifica-
tion for a sequential implementation by means of a scheduler, necessary when truly concurrent 
hardware is not available, is given. Activities implementing the processes behavior (transitions 
between states) are executed in a run-to-completion fashion. From an implementation point of 
view, this raises the same concerns that hold for implementation of UML models.

Other language characteristics make verification of time-related properties impossible: the 
Z.100 SDL semantics says that external time progresses in both states and actions. However, each 
action may take an unbounded amount of time to execute, and each process can remain in a state 
for an indeterminate amount of time before taking the first available transition.

Furthermore, for timing constraint specification, SDL does not include the explicit notion of 
event; therefore, it is impossible to define a time tagging of most events of interest such as trans-
mission and reception of signals, although MSCs (similar in nature to UML sequence diagrams) 
are typically used to fill this gap since they allow expression of constraints on time elapsing 
between events.

Incomplete specification of time events and constraints prevents timing analysis of SDL dia-
grams, but the situation is not much better for untimed models. Properties of interest are in general 
undecidable because of infinite data domains, unbounded message buffers, and the  semiformal 
modeling style, where SDL is mixed with code fragments inside conditions and actions (the formal 
semantics of SDL is aimed at code generation rather than at simulation and verification).

9.4.5 ARCHITECTURE DEPLOYMENT, TIMING SPECIFICATION, AND ANALYSIS

UML has been developed outside the context of embedded systems design and it is clear from 
the previous sections that it neither cope with the modeling of resource allocation and sharing 
nor deal with the minimum requirements for timing analysis. In fact, almost nothing exists in 
the standard UML (the same could be said for SDL) for modeling or analyzing nonfunctional 
aspects, and neither scheduling nor placement of software components on hardware resources 
can be specified or analyzed.

The MARTE profile for the Modeling and Analysis of Real-Time Embedded Systems for UML [6] 
enhances the standard language by defining timed models of systems, including time assump-
tions on the environment and platform-dependent aspects like resource availability and sched-
uling. Such model extensions should allow formal or simulation-based validation of the timing 
behavior of the software.
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SDL contains primitives for dealing with global time, but nevertheless, when the specification 
of time behavior and resource usage is an issue, it makes capturing most time specifications and 
constraints practically impossible.

Another problem of SDL is that it does not provide deployment and resource usage infor-
mation, and it does not support the notion of preemptable or nonpreemptable actions that is 
necessary for schedulability analysis. Deficiencies in the specification of time also clearly affect 
simulation of SDL models with time constraints. Any rigorous attempt to construct the simula-
tion graph of an SDL system (the starting point for simulation and verification) must account 
for all possible combinations of execution times, timer expirations, and resource consumptions. 
Since no control over time progress is possible, many undesirable executions might be obtained 
during this exhaustive simulation.

9.4.6 MARTE UML PROFILE

The OMG Real-Time Embedded systems MARTE profile aims at substituting a number of 
proposals for time-related extensions that appeared in recent years (such as the OMG SPT 
profile [90]). In order to better support the mapping of active objects into concurrent threads, 
many research and commercial systems introduced additional nonstandard diagrams.

An UML profile is a collection of language extensions or semantics restrictions of generic UML 
concepts. These extensions are called “stereotypes” and indicated with their names in between guil-
lemets, as in «TimedEvent». The profile concept is itself a stereotype of the standard UML package.

The MARTE profile defines a comprehensive conceptual framework that uses stereotypes 
built on the UML metamodel providing a much broader scope than any other real-time extension 
and that applies to all diagrams. MARTE consists mostly of a notation framework or vocabulary, 
with the purpose of providing the necessary concepts for schedulability and performance analy-
sis of (timed) behavioral diagrams or scenarios. However, MARTE inherits from UML the defi-
ciencies related to its incomplete semantics and, at least as of today (2015), it lacks a sufficiently 
established practice. The current version of the profile is based on extensions (stereotyped model 
elements, tagged values, and constraints) belonging to four main framework packages, further 
divided into subpackages (as in Figure 9.37). 

Of the four frameworks, the foundation package contains the fundamental definitions for 
modeling time, clocks, and timed events. The GRM package contains the Generic Resource Model 

«pro�le»
GCM

«pro�le»
GRM

«pro�le»
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AllocNFP
«pro�le»

CoreElements
«pro�le»

HLAM
«pro�le»

HRM
«pro�le»

SRM
«pro�le»

MARTE foundations

«pro�le»

MARTE design model MARTE design model

«pro�le»
GQAM

«pro�le»
SAM

«pro�le»
PAM

MARTE annexes

FiGURe 9.37 The framework packages and the subpackages in the OMG MARTE profile.
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specification and usage patterns. The NFP package contains the stereotypes for nonfunctional 
properties. The design model contains the extensions for modeling concurrency and resources in 
the generic concurrency GCM, software resource SRM, and hardware resource HRM packages. 
The analysis model package contains specialized concepts for modeling schedulability (SAM) 
and performance (PAM) analysis.

In MARTE, the time model provides for both continuous and discrete-time models, as well as 
global and local clocks, including drift and offset specifications. The profile allows referencing to 
time instances (associated with events), of time type, and to the duration time interval between 
any two instances of time in attributes or constraints inside any UML diagram.

The time package (some of its stereotypes are shown in Figure 9.38) contains not only definitions 
for a formal model of time but also stereotyped definitions for the two basic mechanisms of timer 
and clock. Timers can be periodic; they can be set or reset, paused or restarted, and, when expired, 
they send timeout signals. Clocks are specialized periodic timers capable of generating tick events.

Time values are typically associated with events, defined in UML as a “specification of a type of 
observable occurrence” (change of state). A pairing of an event with the associated time instance 
(time tag) is defined in the MARTE profile as a TimedEvent.

The GRM resource model package defines the main resource types as well as generic resource 
managers and schedulers (its main packages with their relationships in Figure 9.39 and a detail of 
some stereotypes in Figure 9.40).

«metaclass»
UML::Classes::

Kernel::Property

«Metaclass»
UML::CommonBehaviors::

Communications::Event

«metaclass»
UML::Classes::Kernel::
InstanceSpecification

«stereotype»
Clock

«Stereotype»
NFP_Profile::Unit

«stereotype»
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«stereotype»
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nature: TimeNatureKind[1]
unitType: Enumeration[0..1]
isLogical: Boolean[1] = false
resolAttr: Property[0..1]
maxValAttr: Property[0..1]
o�setAttr: Property[0..1]
getTime: Operation[0..1]
setTime: Operation[0..1]
indexToValue: Operation[0..1]

«stereotype»
TimedDomain

standard: TimeStandardKind[0..1]

«metaclass»
UML::Classes::Kernel::

Namespace
«metaclass»
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0.1

1..* on type

1

FiGURe 9.38 Stereotypes for clocks in the time package of MARTE.

GRM

ResourceCore

ResourceTypes

ResourceManagement Scheduling

ResourceUsages

FiGURe 9.39 The packages for resource modeling in the GRM package.
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In the MARTE profile, the mapping between the logical entities and the physical architecture 
supporting their execution is a form of realization layering (synonymous of deployment). The 
semantics of the mapping provides a further distinction between the “deploys” mapping, indi-
cating that instances of the supplier are located on the client and the “requires” mapping, which 
is a specialization indicating that the client provides a minimum deployment environment as 
required by the supplier.

Although a visual representation of both is possible, it is not clear in which of the existing 
diagrams it should appear. Hence, the MARTE recommendation for expressing the mappings 
consists of a table of relationships expressing the deploy and require associations among logical 
and engineering components.

The GRM profile package is used for the definition of the stereotypes for software and hardware 
resources. The software resource modeling is much more detailed and comprehensive than the 
hardware modeling package, which only contains stereotypes for the basic concepts (Figure 9.41).

«profile»
GRM

«stereotype»
CommunicationEndPoint

«metaclass»
UML::Classes::Kernel::
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«metaclass»
UML::Classes::Kernel::
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«stereotype»
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«stereotype»
MutualExclusionResource

«stereotype»
ProcessingResource

«stereotype»
SchedulableResource

schedParams: schedParameters[0..*]
isActive:Boolean = true{IsReadOnly}

isPreemptible: Boolean = true
schedPolicy: SchedPolicyKind = FixedPriority
otherSchedPolicy: String
schedule: ScheduleSpecification

«stereotype»
CommunicationMedia

elementSize: NFP_Integer
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protectKind: ProtectProtocolKind = priorityInheritance
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otherProtectProtocol: String
isProtected:Boolean = true{IsReadOnly}
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«stereotype»
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packetSize: NFP_Integer

FiGURe 9.40 Stereotypes for resources in the GRM package.
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The schedulability analysis model is based on stereotyped scenarios. Each scheduling situation 
is in practice a sequence, collaboration, or activity diagram, where one or more trigger events 
result in actions to be scheduled within the deadline associated with the trigger.

RMA is the method of choice for analyzing simple models with a restricted semantics, con-
forming to the so-called “task-centric” design paradigm. This requires updating the current defi-
nition of UML actions, in order to allow for preemption (which is a necessary prerequisite of 
RMA, see also Section 9.1.2.3).

In this task-centric approach, the behavior of each active object or task consists of a combina-
tion of reading input signals, performing computation, and producing output signals. Each active 
object can request the execution of actions of other passive objects in a synchronous or asynchro-
nous fashion (Figure 9.42).

Figure 9.42 shows an example with two activities that are logically concurrent, activated peri-
odically, and handle a single event. The MARTE stereotypes provide for the specification of the 
execution times and deadlines. As long as the active objects cooperate only by means of pure 
asynchronous messages, simple schedulability analysis formulas, such as (9.1) or (9.2), can be 
used. These messages can be implemented by means of memory mailboxes, which are a kind of 
protected (shared resource) object.

Unfortunately, the task-centric model, even if simple and effective in some contexts, only 
allows analysis of simple models where active objects do not interact with each other. See also 
other design methodologies [91–93], where the analysis of UML models is made possible by 
restricting the semantics of the analyzable models. In general UML models, each action is part 
of multiple end-to-end computations (with the associated timing constraints) and the system 
consists of a complex network of cooperating active objects, implementing state machines and 
exchanging asynchronous messages.
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«profile»
HwLayout

«profile»
HwPhysical

«profile»
HwTiming

«profile»
HwGeneral

«import»
«import»

«import»«import»

«modelLibrary»
MARTE::Library::BasicNFP_Types

FiGURe 9.41 The internal structure of the HRM package.
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In their work [94–96], Saksena, Karvelas, and Wang present an integrated methodology 
that allows dealing with more general OO models where multiple events can be provided as 
inputs to a single thread. According to their model, each thread has an incoming queue of 
events, possibly representing real-time transactions and the associated timing constraints 
(Figure 9.43).

Consequently, scheduling priority (usually a measure of time urgency or criticality) is 
attached to events rather than threads. This design and analysis paradigm is called “event-
centric design.” Each event has an associated priority. For example, a deadline monotonic prior-
ity assignment can be used, where the priority associated to an event is inversely proportional 
to the time by which the event processing must be completed (its deadline). Event queues are 
ordered by priority (i.e., threads process events based on their priority) and threads inherit the 
priority of the events they are currently processing. This model entails a two-level scheduling: 
the events enqueued as input to a thread need to be scheduled to find their processing order. At 
system level, the threads are scheduled by the underlying RTOS (a preemptive priority-based 
scheduler is assumed).
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FiGURe 9.42 A sample activity diagram representing a situation suitable for rate monotonic analysis (from the MARTE profile).
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Schedulability analysis of the general case is derived from the analysis methodology for 
generic deadlines (possibly greater than the activation rates of the triggering events) by com-
puting response times of actions relative to the arrival of the external event that triggers the 
end-to-end reaction (transaction) T containing the action. The analysis is based on the standard 
concepts of critical instant and busy period for task instances with generic deadlines (adapted to 
the transaction model).

In Reference 96, many implementation options for the event-centric model are discussed, 
namely, single-threaded implementation and multithread implementation with fixed-priority or 
dynamic-priority multithreaded implementation. A formula or procedure for schedulability anal-
ysis is also provided or at least discussed for each of these models. The interested reader should 
refer to Reference 96 for details.

From a time-analysis point of view, it makes sense to define the set of nested actions that are 
invoked synchronously in response to an event. This set is called the “synchronous set.”

In a single-threaded implementation, the only application thread processes pending events in 
priority order. Since there is only one thread, there is only one level of scheduling. Actions inherit 
their priority from the priority of the triggering event. Also, a synchronously triggered action 
inherits its priority from its caller. In single-threaded implementations, any synchronous set that 
starts executing is completed without interruption. Hence, the worst-case blocking time of an 
action starting at t = 0 is bounded by the longest synchronous set of any lower-priority action that 
started prior to t = 0 and interference can be computed as the sum of the interference terms from 
other transactions and the interference from actions in the same transaction.

The single-thread model can be analyzed for schedulability (details in Reference 96) and it is 
also conformant to the nonpreemptable semantics of UML actions. Most of the existing CASE 
tools support a single-threaded implementation and some of them (such as Rational Rose RT) 
support the priority-based enqueuing of activation events (messages).

In multithreaded implementations, each event represents a request for an end-to-end sequence 
of actions, executed in response to its arrival. Each action is executed in the context of a thread. 
Conceptually, we can reverse the usual meaning of the thread concept, considering events (and 
the end-to-end chain of actions) as the main scheduling item and the threads required for the 
execution of actions as special mutual exclusion (mutex) resources, because of the impossibility 
of having a thread preempt itself. This insight allows using threads and threading priorities in a 
way that facilitates response time analysis.

If threads behave as mutexes, then it makes sense to associate with each thread a ceiling prior-
ity as the priority at which the highest-priority event is served. As prescribed by PI or PCP, threads 
inherit the priority of the highest-priority event in their waiting queue and this allows bounding 
priority inversion. In this case, the worst-case blocking time is restricted to the processing of a 
lower-priority event. Furthermore, before processing an event, a thread locks the active object 
within which the event is to be processed (this is necessary when multiple threads may handle 
events that are forwarded to the same object), and a ceiling priority and a PI rule must be defined 
for active objects as well as for threads.

For the multithreaded implementation, a schedulability analysis formula is currently avail-
able for the aforementioned case in which threads inherit the priority of the events. The sched-
ulability analysis formula generally results in a reduced priority inversion with respect to the 
single-threaded implementation, but its usefulness is hindered by the fact that (to the author’s 
knowledge) there is no CASE tool supporting generation of code with the possibility of assigning 
priorities to events and runtime support for executing threads inheriting the priority of the event 
they are currently handling.

Assigning static priorities to threads is tempting (static priority scheduling is supported by 
most RTOSs) and it is a common choice for multithreaded implementations (Rational Rose RT 
and other tools use this method). Unfortunately, when threads are required to handle multiple 
events, it is not clear what priority should be assigned to them and the computation of the worst-
case response time is in general very hard, because of the two-level scheduling and the difficulty 
of constructing an appropriate critical instant. The analysis needs to account for multiple priority 
inversions that arise from all the lower-priority events handled by a higher-priority thread. Still, 
however, it may be possible to use static thread priorities in those cases when it is easy to estimate 
the amount of priority inversion.
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The discussion of the real-time-analysis problem bypasses some of the truly fundamental 
problems in designing a schedulable software implementation of a functional (UML) model. The 
three main degrees of freedom in a real-time UML design subject to schedulability analysis are

 ◾ Assigning priorities to events
 ◾ Defining the optimal number of tasks
 ◾ Especially defining a mapping of methods (or entire objects) to tasks for their execution

Timing analysis (as discussed here) is only the last stage, after the mapping decisions have 
been taken.

What is truly required is a set of design rules, or even better an automatic synthesis procedure 
that helps in the definition of the set of threads and especially in the mapping of the logical enti-
ties to threads and to the physical platform.

The problem of synthesizing a schedulable implementation is a complex combinatorial opti-
mization problem. In Reference 96, the authors propose an automatic procedure for synthesizing 
the three main degrees of freedom in a real-time UML design. The synthesis procedure uses a 
heuristic strategy based on a decomposition approach, where priorities are assigned to events/
actions in a first stage and mapping is performed in a separate stage. This problem, probably the 
most important in the definition of a software implementation of real-time UML models, is still 
an open problem.

9.4.7 TOOLS AND COMMERCIAL IMPLEMENTATIONS

There is a large number of specialized CASE tools for UML modeling of embedded systems. Among 
those, Rhapsody from IBM [97], Real-Time Studio from ATEGO [98], and Enterprise Architect 
from Sparxx [99] are probably the most common commercial solutions. However, in recent 
years, several open-source implementations started to appear. Among those, Topcased [100] and 
Papyrus [101] are probably the most popular. Both are based on the Eclipse Modeling Framework 
(EMF [102]) and leverage its capabilities, including the options for model transformations. In con-
trast with general-purpose UML tools, all these try to answer the designer’s need for automated 
support for model simulation, verification, and testing. In order to do so, they all provide an inter-
pretation of the dynamic semantics of UML. Common features include interactive simulation of 
models and automatic generation of code. Nondeterminism is forbidden or eliminated by means 
of semantics restrictions. Some timing features and design of architecture-level models are usu-
ally provided, although in a nonstandard form if compared to the specifications of the MARTE 
profile. Furthermore, support for OCL and user-defined profiles is often quite weak.

Formal validation of untimed and timed models is typically not provided, since commercial 
vendors focus on providing support for simulation, automatic code generation, and (partly) auto-
mated testing. Third-party tools interoperating by means of the standard XMI format provide 
schedulability analysis. Research work on restricted UML semantics models demonstrates that 
formal verification techniques can be applied to UML behavioral models. This is usually done by 
the transformation of UML models into a formal MOC and subsequent formal verification by 
existing tools (for both untimed and timed systems).

9.5 METAMODELING AND EMF

A very interesting trend in recent years has been the availability of tools that support the creation 
of metamodels and the generation of a toolset infrastructure based on the defined metamodel, 
including editors, serialization/deserialization, diff/merge, constraint checkers, and transforma-
tions from model to model and from model to text (including programming code).

EMF [102] is a very popular open-source solution for the creation of domain-specific mod-
eling languages based on metamodels. The Eclipse core facility (Ecore) allows one to create a 
metamodel specification compliant with the metaobject facility (MOF) [103] OMG standard 
metamodeling language.
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EMF provides tools and runtime support to produce a set of Java classes for the model, along 
with a set of adapter classes that enable viewing and command-based editing of the model, seri-
alization, and a basic editor. The EMF project (now Eclipse modeling tool [102]) includes a num-
ber of additional open-source tools and plug-ins to create and manage models in a production 
environment.

Among the metamodel and model graphical editors, Sirius enables the specification of a mod-
eling workbench with graphical, table, or tree editors that include support for the definition of 
validation rules and actions. EcoreTools is another plug-in providing a diagram editor for Ecore 
and support for documenting models, the definition of dependencies, and the specification and 
verification of constraints on models and metamodels.

For managing model versions, EMF Compare provides generic support to compare and merge 
models constructed according to any type of EMF-supported (MOF) metamodel. EMF Diff/
Merge is another diff/merge tool for models. The plug-in can be used as a utility for tools that need 
to merge models based on consistency rules. Typical usage includes model refactoring, iterative 
model transformations, bridges between models or modeling tools, collaborative modeling envi-
ronments, or versioning systems.

EMF also includes a validation component that provides an API for defining constraints for 
any EMF metamodel and support for customizable model traversal algorithm, as well as parsing 
of constraints specified in Java or OCL.

The metamodeling capability of EMF has been leveraged by several tools that provide open-
source modeling solutions for standard languages, such as real-time OO modeling (ROOM), 
UML, and SysML. Among those, eTrice provides an implementation of the ROOM [104] model-
ing language together with editors, code generators for Java, C++ and C code, and exemplary tar-
get middleware. Topcased is an open-source SysML modeler that includes an editor, a constraint 
checker, and a plug-in for the automatic generation of documentation. Finally, Papyrus is today 
probably the best known open-source UML/SysML modeling tool.

9.6 TRANSFORMATIONS

The Eclipse EMF also supports a number of model-to-model transformation (MMT) languages 
that allow the parsing of a model constructed according to some language and, based on the 
detection of patterns or features in it, constructing another model, possibly according to a differ-
ent metamodel, or even updating the source model.

Among the model transformation languages supported by EMF, Query/View/Transformation 
(QVT) is a standard set of languages defined by the OMG [105]. The QVT standard defines three 
model transformation languages that operate on models that conform to MOF 2.0 metamodels. 
The QVT standard integrates and extends OCL 2.0. There are three QVT languages:

 1. QVT-Operational: An imperative language designed for writing unidirectional transfor-
mations. This language is supported by the Eclipse EMF, which offers an implementation 
in its MMT project as a QVT-Operational Mappings Language.

 2. QVT-Relations (QVTr) is a declarative language designed to permit both unidirectional 
and bidirectional model transformations. A transformation embodies a consistency 
relation on the sets of models. Consistency can be checked by executing the transforma-
tion in check-only mode or in enforce mode. In the last mode, the engine will modify one 
of the models so that the set of relations between models are consistent.

 3. QVT-Core (QVTc) is a declarative language designed to act as the target of transla-
tion from QVTr. Eclipse also provides an implementation [105] for the QVT Declarative 
Languages, including QVTc and QVTr.

In addition to QVT, the Eclipse EMF also supports the ATL transformation language [94].
A different set of transformation languages can be used for model-to-text transformations. 

The Eclipse model-to-text project includes a number of such plug-ins [106]. Special uses of model-
to-text transformations include the automatic generation of code from models according to user-
selected rules and the automatic generation of documentation, including pdf or word formats.
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Among the model-to-text projects supported by Eclipse are

 ◾ Epsilon, a family of languages and tools for code generation, MMT, model validation, 
comparison, migration, and refactoring

 ◾ Acceleo, an implementation of the OMG MOF Model to Text Language standard

9.7 RESEARCH ON MODELS FOR EMBEDDED SOFTWARE

The models and tools described in the previous sections are representatives of a larger number 
of methods, models, languages, and tools (at different levels of maturity) that are currently being 
developed to face the challenges posed by embedded software design.

This section provides an insight on other (often quite recent) proposals for solving advanced 
problems related to the modeling, simulation, and/or verification of functional and nonfunc-
tional properties. They include support for compositionality and possibly for integration of 
heterogeneous models, where heterogeneity applies to both the execution model and the 
semantics of the component communications or, in general, interactions. Heterogeneity is 
required because there is no clear winner among the different models and tools—different 
parts of complex embedded systems may be better suited to different modeling and analysis 
paradigms (such as dataflow models for data-handling blocks and FSMs for control blocks). The 
first objective, in this case, is to reconcile by unification the synchronous and asynchronous 
execution paradigms.

The need to handle timing and resource constraints (hence preemption) together with the 
modeling of system functionality is another major requirement for modern methodologies [120].

Performance analysis by simulation of timed (control) systems with scheduling and resource 
constraints is, for example, the main goal of the TrueTime Toolset from the Technical University 
in Lund [107].

The TrueTime Toolset is one example of a modeling paradigm where scheduling and resource 
handling policies can be handled as separate modules to be plugged in together with the blocks 
expressing the functional behavior. TrueTime consists of a set of Simulink blocks that simulate 
real-time kernel policies as found in commercial RTOSs. The system model is obtained by con-
necting kernel blocks, network blocks, and ordinary Simulink blocks representing the functional 
behavior of the control application. The toolbox is capable of simulating the system behavior of 
the real-time system with interrupts, preemption, and scheduling of resources. The T-Res frame-
work [108] is a successor of TrueTime, providing essentially similar analysis capability, but a bet-
ter integration with models that are natively developed as a network of Simulink blocks.

The TimesTool [109] is another research framework (built on top of Uppaal and available at 
http://www.timestool.org) attempting an integration of the TA formalism with methods and algo-
rithms for task and resource scheduling. In TimesTool, a timed automaton can be used to define 
an arbitrarily complex activation model for a set of deadline-constrained tasks, to be scheduled 
by fixed or dynamic (earliest deadline first [32]) priorities. Model checking techniques are used to 
verify the schedulability of the task set, with the additional advantage (if compared to standard 
worst-case analysis) of providing the possible runs that fail the schedulability test.

Other design methodologies bring further distinction among at least three different design 
dimensions representing

 1. The functional behavior of the system and the timing constraints imposed by the envi-
ronment and/or resulting from design choices

 2. The communication network and the semantics of communication defining interactions 
upon each link

 3. The platform onto which the system is mapped and the timing properties of the system 
blocks resulting from the binding

The Ptolemy and the Metropolis environments are probably the best known examples of design 
methodologies founded on the previous principles.

http://www.timestool.org
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Ptolemy (http://www.ptolemy.eecs.berkeley.edu/) is a simulation and rapid prototyping frame-
work for heterogeneous systems developed at the Center for Hybrid and Embedded Software 
Systems in the Department of Electrical Engineering and Computer Sciences of the University 
of California at Berkeley [4]. Ptolemy II targets complex heterogeneous systems encompassing 
different domains and functional needs, such as signal processing, feedback control, sequential 
decision making, and possibly even user interfaces.

Prior to UML 2.0, Ptolemy II had already introduced the concept of actor-oriented design, by 
complementing traditional object orientation with concurrency and abstractions of communica-
tion between components.

In Ptolemy II, the model of the application is built as a hierarchy of interconnected actors (most 
of which are domain polymorphic). Actors are units of encapsulation (components) that can be 
composed hierarchically producing the design tree of the system. Actors have an interface abstract-
ing their internals and providing bidirectional access to functions. The interface includes ports that 
represent points of communication and parameters that are used to configure the actor operations.

Communication channels pass data from one port to another according to some communi-
cation semantics. The abstract syntax of actor-oriented design can be represented concretely in 
several ways, one example being the graphical representation provided by the Ptolemy II Vergil 
GUI (Figure 9.44).

Ptolemy is not built on a single, uniform, MOC, but it rather provides a finite library of direc-
tors implementing different MOCs. A director, when placed inside a Ptolemy II composite actor, 
defines its abstract execution semantics (MOC) and the execution semantics of the interactions 
among its component actors (its domain).

A component that has a well-defined behavior under different MOCs is called a domain poly-
morphic component. This means that its behavior is polymorphic with respect to the domain or 
MOC that is specified at each node of the design tree.

The available MOCs in Ptolemy II include

 ◾ CSP with synchronous rendezvous
 ◾ CT, where behavior is specified by a set of algebraic or differential equations
 ◾ DEs, where an event consists of a value and a time stamp
 ◾ FSMs
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FiGURe 9.44 A Ptolemy actor and its black-box (higher-level) representation.
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 ◾ (Kahn) Process networks (PN)
 ◾ Synchronous dataflow
 ◾ Synchronous/reactive (SR)
 ◾ Time-triggered synchronous execution (the Giotto framework [110])

The CT and SR domains have fixed-point semantics, meaning that in each iteration, the domain 
may repeatedly fire the components (execute the available active transitions inside them) until a 
fixed point is found.

Of course, key to the implementation of polymorphism is proving that an aggregation of com-
ponents under the control of a domain defines in turn a polymorphic component. This is possible 
for a large number of combinations of MOCs [111].

In Ptolemy II, the implementation language is Java, and an experimental module for auto-
matic Java code generation from a design is now available at http://ptolemy.eecs.berkeley.edu/. 
The source code of the Ptolemy framework is available for free from the same website. Currently, 
the software has hundreds of active users at various sites worldwide in industry and academia.

The Metropolis environment embodies the platform-based design methodology [3] for design 
representation, analysis, and synthesis under development at the University of California at 
Berkeley.

In the Metropolis and its follow-up Metro II toolsets [112,113], system design is seen as the 
result of a progressive refinement of high-level specifications into lower-level models, possibly 
heterogeneous in nature. The environment deals with all the phases of design from conception 
to final implementation.

Metropolis and Metro II are designed as a very general infrastructure based on a metamodel 
with precise semantics that is general enough to support existing computation models and to 
accommodate new ones. The metamodel supports not only functionality capture and analysis 
through simulation and formal verification but also architecture description and the mapping of 
functionality to architectural elements (Figure 9.45).

The Metropolis metamodel (MMM) language provides basic building blocks that are used to 
describe communication and computation semantics in a uniform way. These components rep-
resent computation, communication, and coordination or synchronization:

 ◾ Processes for describing computation
 ◾ Media for describing communication between processes
 ◾ Quantity managers for enforcing a scheduling policy for processes
 ◾ Netlists for describing interconnections of objects and for instantiating and intercon-

necting quantity managers and media

A process is an active object (it possesses its own thread of control) that executes a sequence 
of actions (instructions, subinstructions, function calls, and awaits [114]) and generates a 
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FiGURe 9.45 The Metropolis and Metro II frameworks.
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sequence of events. Each process in a system evolves by executing one action after the other. 
At each step (which is formally described in [114] in terms of a global execution index), each 
process in the system executes one action and generates the corresponding event. This syn-
chronous execution semantics is relaxed to asynchrony by means of a special event called NOP 
that can be freely interleaved in the execution of a process (providing nondeterminism).

Each process defines its ports as the possible interaction points. Ports are typed objects asso-
ciated with an interface, which declares the services that can be called by the process or called 
from external processes (bidirectional communication) in a way much similar to what it is done 
in UML 2.0.

Processes cannot connect directly to other processes but the interconnection has to go 
through a medium, which has to define (i.e., implement) the services declared by the interface 
associated with the ports. The separation of the three orthogonal concepts of process, port, and 
medium provides maximum flexibility and reusability of behaviors, that is, the meaning of the 
communication can be changed and refined without changing the computation description that 
resides in the processes (Figure 9.46).

A model can be viewed as a variant of a system-encompassing timed automaton where the 
transition between states is labeled by event vectors (one event per process). At each step, there 
is a set of event vectors that could be executed to make a transition from the current state to 
the next state. Unless a suitably defined quantity manager restricts the set of possible execu-
tions by means of scheduling constraints, the choice among all possible transitions is performed 
nondeterministically.

Quantity managers define the scheduling of actions by assigning tags to events. A tag is an 
abstract quantity from a partially order set (for instance, time). Multiple requests for action exe-
cution can be issued to a quantity manager that has to resolve them and schedule the processes 
in order to satisfy the ordering relation on the set of tags. The tagged-signal model [115] is the 
formalism that defines the unified semantics framework of signals and processes that stand at the 
foundation of the MMM.

By defining different communication primitives and different ways of resolving concurrency, 
the user can, in effect, specify different MOCs. For instance, in a synchronous MOC, all events 
in an event vector have the same tag.

The mapping of a functional model into a platform is performed by enforcing a synchroniza-
tion of function and architecture. Each action on the function side is correlated with an action on 
the architecture side using synchronization constraints.

The precise semantics of Metropolis allows for system simulation but also for synthesis and 
formal analysis. The metamodel includes constraints that represent in abstract form requirements 
not yet implemented or assumed to be satisfied by the rest of the system and its environment.

Metropolis uses a logic language to capture nonfunctional constraints (e.g., time or energy 
constraints). Constraints are declarative formulas of two kinds: LTL and logic of constraints.

Although two verification tools are currently provided to check that constraints are satisfied at 
each level of abstraction, the choice of the analysis and synthesis methods or tools depends on the 
application domain and the design phase. Metropolis clearly cannot possibly provide algorithms 
and tools for all possible design configurations and phases, but it provides mechanisms to com-
pactly store and communicate all design information, including a parser that reads metamodel 
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FiGURe 9.46 Processes, ports, and media in Metropolis and Metro II.
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designs and a standard API that lets developers browse and modify design information so that 
they can plug in the required algorithms for a given application domain. This mechanism has 
been exploited to integrate the Spin software verification tool [14].

Separation of behavior, communication, or interaction and execution models are among 
the founding principles of the component-based design and verification procedure outlined in 
References 116 and 117. The methodology is based on the assumption that the system model is a 
transition system with dynamic priorities restricting nondeterminism in the execution of system 
actions. Priorities define a strict partial order among actions (a a )1 2≺ . A priority rule is a set of 
pairs {(C j,≺j)}j∈J such that ≺j is a priority order and Cj is a state constraint specifying when the 
rule applies.

In Reference 117, a component is defined as the superposition of three models defining its 
behavior, its interactions, and the execution model. The transition-based formalism is used to 
define the behavior. Interaction specification consists of a set of connectors, defining maximal 
sets of interacting actions (i.e., sets of actions that must occur simultaneously in the context of 
an interaction). The set of actions that are allowed to occur in the system consists of the complete 
actions (triangles in Figure 9.47). Incomplete actions (circles in Figure 9.47) can only occur in the 
context of an interaction defining a higher-level complete action (as in the definition of IC[K1]+ 
in Figure 9.47, which defines the complete action a5|a9, meaning that incomplete action a9 can 
only occur synchronously with a5). This definition of interaction rules allows for a general model 
of asynchronous components, which can be synchronized upon a subset of their actions if and 
when needed. Finally, the execution model consists of a set of dynamic-priority rules.

Composing a set of components means applying a set of rules at each of the three levels. 
The rules defined in Reference 118 define an associative and commutative composition operator. 
Further, the composition model allows for composability (properties of components are preserved 
after composition) and compositionality (properties of the compound can be inferred from prop-
erties of the components) with respect to deadlock freedom (liveness).

In Reference 118, the authors propose a methodology for analysis of timed systems (and a 
framework for composition rules for component-based real-time models) based on the  framework 
represented in Figure 9.48. According to the proposed design methodology, the system architec-
ture consists of a number of layers, each capturing a different set of properties.
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C[K2] = {{a3,a4},{a7,a10},{a8,a10}}
IC[K2]+ = {a10,a7|a10,a8|a10}

IM[K1]:
C[K1] = {{a1,a2},{a5,a9},{a6,a9}}
IC[K1]+ = {a5,a6,a11,a5|a9,a6|a9}

IM[K1,K2]:
C[K1,K2] = {{a1,a2,a3,a4},{a11,a12}}
IC[K1,K2]+ = {a1|a2|a3|a4,a11,a11|a12}

FiGURe 9.47 Interaction model among system components in Reference 105.
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At the lowest level, threads (processes) are modeled according to the TA formalism, capturing 
the functional behavior and the timing properties and constraints.

At the preemption level, system resources and preemptability are accounted for by adding one 
or more preemption transitions (Figure 9.49a), one for each preemptable resource and mutual 
exclusion rules are explicitly formulated as a set of constraints acting upon the transitions of the 
processes.

Finally, the resource management policies and the scheduling policies are represented as addi-
tional constraints Kpol = Kadm ∧ Kres, where Kadm are the admission control constraints and Kres are 
the constraints specifying how resource conflicts are to be resolved.

Once scheduling policies and schedulability requirements are in place, getting a correctly 
scheduled system amounts to finding a nonempty control invariant K such that K ⇒ Ksched ∧ Kpol.

The last example of research framework for embedded software modeling is the Generic 
Modeling Environment (GME), developed at Vanderbilt University [119], which is a configurable 
toolkit offering a metamodeling facility for creating domain-specific models and program synthe-
sis environments. The configuration of a domain-specific metamodel can be achieved by defin-
ing the syntactic, semantics, and presentation information regarding the domain. This implies 
defining the main domain concepts, the possible relationships, and the constraints restricting the 
possible system configurations as well as the visibility rules of object properties.

The vocabulary of the domain-specific languages implemented by different GME configura-
tions is based on a set of generic concepts built into GME itself. These concepts include hierar-
chies, multiple aspects, sets, references, and constraints. Models, atoms, references, connections, 
and sets are first-class objects.

Models are compound objects that can have parts and inner structure. Each part in a container 
is characterized by a role. The modeling instance determines what parts are allowed and in which 
roles. Models can be organized in a hierarchy, starting with the root object. Aspects provide 
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visibility control. Relationships can be directed or undirected connections, further characterized 
by attributes. The model specification can define several kinds of connections, which objects can 
participate in a connection and further explicit constraints. Connections only appear between 
two objects in the same model entity. References to model-external objects help establish con-
nections to external objects as well.

9.8 CONCLUSIONS

This chapter discusses the use of models for the design and verification of embedded software 
systems. It attempts at a classification and a survey of existing formal MOCs, following the classi-
cal divide between synchronous and asynchronous models and between models for functionality 
as opposed to models for software architecture specification. Problems like formal verification of 
system properties, both timed and untimed, and schedulability analysis are discussed. The chap-
ter also provides an overview of the commercially relevant modeling languages such as Simulink, 
UML, SysML, Lustre, and SDL.

The discussion of each topic is supplemented with an indication of the available tools that 
implement the methodologies and analysis algorithms.

The situation of software modeling languages appears to be consolidating. Formal verification 
is making its way into commercial practice (especially for safety-critical systems), but rather than 
being extended to more general MOCs, it is successfully applied to systems that adhere to a con-
strained and controlled MOC (usually synchronous and time triggered).

Similarly, availability of executable specifications is making simulation and code generation a 
reality. However, these technologies are mostly applied to single-core targets for the generated 
code, given that the modeling support for distributed platforms is limited.

Several open issues remain: most notably, how to successfully model execution architectures 
for complex, distributed systems and how to deploy functional models onto execution platform 
models while preserving the semantics properties of interest.

Even though several academic proposals have been put forward in these years, none of them 
has yet achieved the level of maturity for a successful use in industrial practice.
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10.1 INTRODUCTION

Ten years after their introduction in 1971, microprocessors became essential for board-level elec-
tronic system design. In the same manner, microprocessors are now absolutely essential compo-
nents for designers using field-programmable gate arrays (FPGAs) and for integrated circuit (IC) 
design. The reason is simple. Processor cores are the most reusable on-chip components because 
of their easy software programmability and because of the extensive development tool environ-
ment and ecosystem that surround any good processor architecture. Although it is easy to envi-
sion using processor cores to implement many tasks on an IC, it is often difficult to select an 
appropriate processor from the many cores now available because contemporary processor cores 
are complex, multifunction elements. Consequently, there is no single, simple, meaningful way to 
evaluate the suitability of a processor core for specific embedded tasks on a board, in an FPGA, or 
in an IC. Many factors must be considered including processor performance, gate count, power 
dissipation, availability of suitable interfaces, and the processor’s software development support 
tools and ecosystem. This chapter deals with the objective measurement of processor core perfor-
mance with respect to the selection of processor cores for use in IC design and on FPGAs.

Designers often measure microprocessor and processor core performance through com-
prehensive benchmarking. Processor chips already realized in silicon are considerably easier to 
benchmark than processor cores. Processors used in FPGAs fall somewhere in the middle. All 
major microcontroller and microprocessor vendors offer their processors in evaluation kits, which 
include evaluation boards and software development tool suites (which include compilers, assem-
blers, linkers, loaders, instruction-set simulators [ISSs], and debuggers). Some of these kits are 
quite inexpensive, having dropped to the $10 level and below in the last few years. Consequently, 
benchmarking chip-level microcontroller or microprocessor performance consists of porting 
and compiling selected benchmarks for the target processor, downloading and running those 
benchmarks on the evaluation board, and recording the results.

Processor cores for use in the design of ICs are incorporeal and are not usually available as 
stand-alone chips. In fact, if these cores were available as chips, they would be far less useful to 
IC designers because on-chip processors can have vastly greater I/O capabilities than processors 
realized as individual chips. Numerous wide and fast buses are the norm for processor cores—to 
accommodate instruction and data caches, local memories, and private I/O ports—which is not 
true for microprocessor chips because these additional buses would greatly increase pin count to 
an impractical level. However, extra I/O pins are not costly for processor cores, so they usually 
have many buses and ports. A case in point is the Xilinx Zynq All Programmable SoC. This device 
fuses a dual-core ARM Cortex-A9 MPCore processor complex called the PS (processor system) 
with an FPGA programmable logic fabric (called the PL). The PS and PL intercommunicate using 
multiple interfaces and other signals using a combined total of more than 3000 connections. That 
sort of connectivity is simply impossible using a separately packaged microprocessor.

Benchmarking processor cores has become increasingly important in the IC design flow 
because any significant twenty-first century IC design incorporates more than one processor 
core—at least two, often several, and occasionally hundreds. Figure 10.1 shows a Xilinx Zynq-
7000 All Programmable SoC. This device combines an entire dual-processor subsystem based on 
the ARM Cortex-A9 MPCore processor and a large chunk of programmable logic (FPGA). There 
are several members of the Zynq SoC device family with varying amounts of programmable logic 
depending on the family member.

The Xilinx Zynq SoC is interesting in the context of this chapter because it contains two 
ARM Cortex-A9 processor cores running at clock rates of 800 MHz to 1 GHz and because you 
can instantiate other processor architectures in the FPGA portion of the device. Xilinx design 
tools include the configurable MicroBlaze processor core with a configuration tool. Configurable 
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processors make interesting benchmarking targets, which is discussed in much more detail later 
in this chapter. Figure 10.2 shows a block diagram of a Zynq SoC discussed earlier.

As the number of processor cores used on a chip increases and as these processor cores 
perform more on-chip tasks, measuring processor core performance becomes an increasingly 
important and challenging task in the overall design of the IC. Benchmarking the hardened 

FiGURe 10.1 The Xilinx Zynq-7000 All Programmable SoC fuses a dual-core ARM Cortex-A9 
MPCore processor complex called the PS (processor system) with an FPGA programmable logic fabric 
(called the PL) on one piece of silicon. (Copyright Xilinx Inc. Reproduced by permission.)
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FiGURe 10.2 The Xilinx Zynq-7000 All Programmable SoC incorporates two embedded ARM 
Cortex-A9 MPCore processor cores in a processing block called the PS (processor system) with an 
FPGA programmable logic fabric (called the PL). Additional processors can be instantiated in the 
Zynq SoC’s PL. The PS and PL intercommunicate using multiple interfaces and other signals using a 
combined total of more than 3000 connections. (Copyright Xilinx Inc. Reproduced by permission.)
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processor cores in an FPGA is not so difficult if the device initially powers up as though it is a 
processor chip. That happens to be the case for the Xilinx Zynq SoC. However, measuring the 
performance of processor Internet Protocol (IP) cores intended for use in ASIC and SoC designs 
is a bit more complex than benchmarking microprocessor chips: another piece of software, an 
ISS must stand in for a physical processor chip until the processor is realized in silicon. Each 
processor core and each member of a microprocessor family require its own specific ISS because 
the ISS must provide a cycle-accurate model of the processor’s architecture to produce accurate 
benchmark results.

Note that it is also possible to benchmark a processor core using gate-level or net-list simula-
tion, but this approach is three orders of magnitude slower (because gate-level simulation is much 
slower than instruction-set simulation) and is therefore used infrequently [1]. For processor cores, 
the selected benchmarks are compiled and run on the ISS to produce the benchmark results. All 
that remains is to determine where the ISS and the benchmarks are to be obtained, how they are 
to be used, and how the results will be interpreted. These are the subjects of this chapter.

10.2 ISS AS BENCHMARKING PLATFORM

ISSs serve as benchmarking platforms because processor cores as realized on an IC rarely exist 
as a chip. ISSs run quickly—often 1000 times faster than gate-level processor simulations run-
ning on HDL simulators—because they simulate the processor’s software-visible state without 
employing a gate-level processor model. The earliest ISS was created for the Electronic Delay 
Storage Automatic Calculator (EDSAC), which was developed by a team led by Maurice V. Wilkes 
at the University of Cambridge’s Computer Laboratory (shown in Figure 10.3). The room-sized 
EDSAC I was the world’s first fully operational, stored-program computer (the first von Neumann 
machine) and went online in 1949. EDSAC II became operational in 1958.

The EDSAC ISS was first described in a paper on debugging EDSAC programs, which was 
written and published in 1951 by S. Gill, one of Wilkes’ research students [2]. The paper describes 
the operation of a tracing simulator that operates by

 ◾ Fetching the simulated instruction
 ◾ Decoding the instruction to save trace information
 ◾ Updating the simulated program counter if the instruction is a branch or else placing 

the nonbranch instruction in the middle of the simulator loop and executing it directly
 ◾ Returning to the top of the simulator loop

FiGURe 10.3 The EDSAC I, developed at the Computer Laboratory, University of Cambridge, U.K., 
became the first fully functional stored-program computer in 1948. This computer also had the 
first instruction-set simulator, which was described in an article published in 1951. (Copyright 2015,  
Computer Laboratory, University of Cambridge,  Cambridge, U.K., Reproduced with permission.)
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Thus, the first operational processor ISS predates the introduction of the first commercial micro-
processor (Intel’s 4004) by some 20 years.

Cycle-accurate ISSs, the most useful simulator category for processor benchmarking, com-
pute exact instruction timing by accurately modeling the processor’s pipeline. All commercial 
processor cores have at least one corresponding ISS. They are obtained in different ways. Some 
core vendors rely on third parties to provide an ISS for their processors. Other vendors offer an 
ISS as part of their tool suite. Some ISSs must be purchased and some are available in evaluation 
packages from the processor core vendor.

To serve as an effective benchmarking tool, an ISS accurately simulates the operation of the 
processor core and it must provide the instrumentation needed to provide critical benchmarking 
statistics. These statistics include cycle counts for the various functions and routines executed 
and main-memory and cache-memory usage. The better the ISS instrumentation, the more com-
parative information the benchmark will produce.

10.3 IDEAL VERSUS PRACTICAL PROCESSOR BENCHMARKS

IC designers use benchmarks to help them pick the best processor core for a given task to be per-
formed on the IC. The original definition of a benchmark was literally a mark on a craftsperson’s 
wooden workbench that provided some measurement standard. Eventually, the first benchmarks 
(carved into the workbench) were replaced with standard measuring tools such as yardsticks. 
Processor benchmarks provide yardsticks for measuring processor performance. The ideal yard-
stick would be one that could measure any task running on any processor. The ideal processor 
benchmark produces results that are relevant, reliable, repeatable, objective, comparable, and 
applicable. Unfortunately, no such processor benchmark exists so we must make do with approx-
imations of the ideal.

The ideal processor benchmark would be the actual application code that the processor must 
run. No other piece of code can possibly be as representative of the processor’s ability to execute 
the actual task to be performed. No other piece of code can possibly replicate the instruction-use 
distribution; register, memory, and bus use; or the data-movement patterns of the actual applica-
tion code. However, the actual application code is less than ideal as a benchmark in many ways.

First and foremost, the actual application code may not even exist when candidate processor 
cores are benchmarked because processor benchmarking and selection must occur early in the 
project. A benchmark that does not exist is truly worthless.

Next, the actual application code serves as an extremely specific benchmark. It will indeed 
give a very accurate prediction of processor performance for a specific task and for no other task. 
In other words, the downside of a highly specific benchmark is that the benchmark will give a 
less-than-ideal indication of processor performance for other tasks. Because on-chip processor 
cores are often used for a variety of tasks, the ideal benchmark may well be a suite of application 
programs and not just one program.

Yet another problem with application-code benchmarks is their lack of instrumentation. The 
actual application code has almost always been written to execute the task, not to measure a 
processor core’s performance. Appropriate measurements may require instrumentation of the 
application code. This modification consumes time and resources, which may not be readily 
available, and it could well break the application code. Technically, that is known as a “bad 
thing.” Even with all of these issues, the application code (if it exists) provides invaluable infor-
mation on processor core performance and should be used whenever possible to help make a 
processor core selection.

10.4 STANDARD BENCHMARK TYPES

Given that the ideal processor benchmark proves less than ideal, the industry has sought stan-
dard benchmarks for use when the target application code is either not available or not appropri-
ate. There are four types of standard benchmarks: full-application or real-world benchmarks and 
benchmark suites, synthetic or small-kernel benchmarks, hybrid or derived benchmarks that mix 
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and match aspects of the full-application and synthetic benchmarks, and microbenchmarks (not 
to be confused with microprocessor benchmarks).

Full-application benchmarks and benchmark suites employ existing system- or application-
level code drawn from real applications, although probably not precisely the application of inter-
est to any given ASIC or SoC design team. To be sufficiently informative, these benchmarks 
may incorporate many thousands of lines of code, have large instruction-memory footprints, and 
consume large amounts of data memory.

Synthetic benchmarks tend to be smaller than full, application-based benchmarks. They con-
sist of smaller code sections representing commonly used algorithms. Code sections may be 
extracted from working code or they may be written specifically for use as a benchmark. Writers 
of synthetic benchmarks try to approximate instruction mixes of real-world applications without 
replicating the entire application. It is important to keep in mind that these benchmarks are nec-
essarily approximations of real-world applications.

Hybrid benchmarks mix and match large application programs and smaller blocks of synthetic 
code to create a sort of microprocessor torture track (with long straight sections and tight curves 
to use a racetrack analogy). Hybrid benchmark code is augmented with test data sets taken from 
real-world applications. A processor core’s performance around this torture track can give a good 
indication of the processor’s abilities over a wide range of situations, although probably not the 
specific use to which the processor will be put.

Microbenchmarks are very small code snippets designed to exercise some particular pro-
cessor feature or to characterize a particular machine characteristic in isolation from all other 
processor features and characteristics. Microbenchmark results can delineate a processor’s peak 
capabilities and reveal potential architectural bottlenecks, but peak performance is not a very 
good indicator of overall application performance. Nevertheless, a suite of microbenchmarks may 
come close to approximating an ideal benchmark for certain applications, if the application is a 
common one with many standardized, well-defined, well-understood functions.

10.5 PREHISTORIC PERFORMANCE RATINGS: MIPS, MOPS, AND MFLOPS

Lord Kelvin might have been predicting processor performance measurements when he said, 
“When you can measure what you are speaking about, and express it in numbers, you know 
something about it; but when you cannot measure it, when you cannot express it in numbers, 
your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge, but 
you have scarcely, in your thoughts, advanced to the stage of science.” [3]

The need to rate processor performance is so great that, at first, microprocessor vendors 
grabbed any and all numbers at hand to rate performance. The first figures of merit used were 
likely clock rate and memory bandwidth. These prehistoric ratings measured processor perfor-
mance divorced of any connection to running code. Consequently, these performance ratings 
are not benchmarks. Just as an engine’s revolutions per minute (RPM) reading is not sufficient 
to measure vehicle performance (you need engine torque plus transmission gearing, differential 
gearing, and tire diameter to compute speed), the prehistoric, clock-related processor ratings of 
MIPS, MOPS, MFLOPS, and VAX MIPS (defined below) tell you almost nothing about a proces-
sor’s true performance potential.

Before it was the name of a microprocessor architecture, the term “MIPS” was an acronym 
for millions of instructions per second. If all processors had the same instruction-set architecture 
(ISA) and used the same compiler to generate code, then a MIPS rating might possibly be used as 
a performance measure. However, all processors do not have the same ISA and they most defi-
nitely do not use the same compiler, so they are not equally efficient when it comes to task execu-
tion speed versus clock rate. In fact, microprocessors and processor cores have very different ISAs 
and compilers for these processors are differently abled when generating code. Consequently, 
some processors can do more with one instruction than other processors, just as large automobile 
engines can do more than smaller ones running at the same RPM.

This problem was already bad in the days when only complex-instruction-set computer (CISC) 
processors roamed the earth. The problem went from bad to worse when reduced-instruction-set 
computer (RISC) processors arrived on the scene. One CISC instruction would often do the work 
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of several RISC instructions (by design) so that a CISC microprocessor’s MIPS rating did not cor-
relate at all with a RISC microprocessor’s MIPS rating because of the work differential between 
RISC’s simple instructions and CISC’s more complex instructions.

The next prehistoric step in creating a usable processor performance rating was to switch 
from MIPS to VAX MIPS, which was accomplished by setting the extremely successful VAX 
11/780 minicomputer—introduced in 1977 by the now defunct Digital Equipment Corporation 
(DEC)—as the benchmark against which all other processors are measured. So, if a microproces-
sor executed a set of programs twice as fast as a VAX 11/780, it was said to be rated at 2 VAX 
MIPS. The original term “MIPS” then became “native MIPS,” so as not to confuse the original 
ratings with VAX MIPS. DEC referred to VAX MIPS as VAX units of performance (VUPs) just to 
keep things interesting or confusing depending on your point of view.

Both native and VAX MIPS are woefully inadequate measures of processor performance 
because they were usually provided without specifying the software (or even the program-
ming language) used to create the rating. Because different programs have different instruc-
tion mixes, different memory usage patterns, and different data-movement patterns, the same 
processor could easily earn one MIPS rating on one set of programs and quite a different 
rating on another set. Because MIPS ratings are not linked to a specific benchmark program 
suite, the MIPS acronym now stands for meaningless indication of performance for those in 
the know.

A further problem with the VAX MIPS measure of processor performance is that the concept 
of using a VAX 11/780 minicomputer as the gold performance standard is an idea that is more 
than a bit long in the tooth in the twenty-first century. There are no longer many (or any) VAX 
11/780s available for running benchmark code and DEC effectively disappeared when Compaq 
Computer Corp. purchased what was left of the company in January 1998, following the decline of 
the minicomputer market. Hewlett-Packard absorbed Compaq in May 2002, submerging DEC’s 
identity even further. VAX MIPS is now the processor equivalent of a furlongs-per-fortnight speed 
rating—woefully outdated.

Even more tenuous than the MIPS performance rating is the concept of MOPS, an acronym 
that stands for “millions of operations per second.” Every algorithmic task requires the comple-
tion of a certain number of fundamental operations, which may or may not have a one-to-one 
correspondence with machine instructions. Count these fundamental operations in the millions 
and they become MOPS. If they are floating-point operations, you get MFLOPS. One thousand 
MFLOPS equals one GFLOPS. The MOPS, MFLOPS, and GFLOPS ratings suffer from the same 
drawback as the MIPS rating: there is no standard software to serve as the benchmark that 
produces the ratings. In addition, the conversion factor for computing how many operations a 
processor performs per clock (or how many processor instructions constitute one operation) is 
somewhat fluid as well, which means that the processor vendor is free to develop a conversion 
factor on its own. Consequently, MOPS and MFLOPS performance ratings exist for various pro-
cessor cores but they really do not help an IC design team pick a processor core because they are 
not true benchmarks.

10.6 CLASSIC PROCESSOR BENCHMARKS (THE STONE AGE)

Like ISSs, standardized processor performance benchmarks predate the 1971 introduction of 
Intel’s 4004 microprocessor, but just barely. The first benchmark suite to attain de facto standard 
status was a set of programs known as the Livermore Kernels (also popularly called the Livermore 
Loops).

10.6.1 LIVERMORE FORTRAN KERNELS/LIVERMORE LOOPS BENCHMARK

The Livermore Kernels were first developed in 1970 and consist of 14 numerically intensive appli-
cation kernels written in FORTRAN. Ten more kernels were added during the early 1980s and the 
final suite of benchmarks was discussed in a paper published in 1986 by F. H. McMahon of the 
Lawrence Livermore National Laboratory (LLNL), located in Livermore, CA [4]. The Livermore 
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Kernels actually constitute a supercomputer benchmark, measuring a processor’s floating-point 
computational performance in terms of MFLOPS (millions of floating-point operations per sec-
ond). Because of the somewhat frequent occurrence of floating-point errors in many computers, 
the Livermore Kernels test both the processor’s speed and the system’s computational accu-
racy. Today, the Livermore Kernels are called the Livermore FORTRAN Kernels (LFK) or the 
Livermore Loops.

The Livermore Loops are real samples of floating-point computation taken from a diverse 
workload of scientific applications extracted from operational program code used at LLNL. The 
kernels were extracted from programs in use at LLNL because those programs were generally far 
too large to serve as useful benchmark programs; they included hardware-specific subroutines for 
performing functions such as I/O, memory management, and graphics that were not appropriate 
for benchmark testing of floating-point performance; and they were largely classified, due to the 
nature of the work done at LLNL. Some kernels represent widely used, generic computations such 
as dot and matrix (SAXPY) products, polynomials, first sum and differences, first-order recur-
rences, matrix solvers, and array searches. Some kernels typify often-used FORTRAN constructs 
while others contain constructs that are difficult to compile into efficient machine code. These 
kernels were selected to represent both the best and worst cases of common FORTRAN pro-
gramming practice to produce results that measure a realistic floating-point performance range 
by challenging the FORTRAN compiler’s ability to produce optimized machine code. Table 10.1 
lists the 24 Livermore Loops.

A complete LFK run produces 72 timed results, produced by timing the execution of the 24 
LFK kernels three times using different DO-loop lengths.

The LFK kernels are a mixture of vectorizable and nonvectorizable loops and test the compu-
tational capabilities of the processor hardware and the software tools’ ability to generate efficient 
machine code. The Livermore Loops also tests a processor’s vector abilities and the associated 
software tools’ abilities to vectorize code.

tABLe 10.1  twenty-Four Kernels in the Livermore Loops

LFK Kernel number Kernel Description 

Kernel 1 An excerpt from a hydrodynamic application

Kernel 2 An excerpt from an Incomplete Cholesky-Conjugate Gradient program

Kernel 3 The standard inner-product function from linear algebra

Kernel 4 An excerpt from a banded linear equation routine

Kernel 5 An excerpt from a tridiagonal elimination routine

Kernel 6 An example of a general linear recurrence equation

Kernel 7 Equation of state code fragment (as used in nuclear weapons research)

Kernel 8 An excerpt of an alternating direction, implicit integration program

Kernel 9 An integrate predictor program

Kernel 10 A difference predictor program

Kernel 11 A first sum

Kernel 12 A first difference

Kernel 13 An excerpt from a 2D particle-in-cell program

Kernel 14 An excerpt from a 1D particle-in-cell program

Kernel 15 A sample of casually written FORTRAN to produce suboptimal machine code

Kernel 16 A search loop from a Monte Carlo program

Kernel 17 An example of an implicit conditional computation

Kernel 18 An excerpt from a 2D explicit hydrodynamic program

Kernel 19 A general linear recurrence equation

Kernel 20 An excerpt from a discrete ordinate transport program

Kernel 21 A matrix product calculation

Kernel 22 A Planckian distribution procedure

Kernel 23 An excerpt from a 2D implicit hydrodynamic program

Kernel 24 A kernel that finds the location of the first minimum in X
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At first glance, the Livermore Loops benchmark appears to be nearly useless for the benchmark-
ing of embedded processor cores in ICs. It is a floating-point benchmark written in FORTRAN 
that looks for good vector abilities. FORTRAN compilers for embedded processor cores are quite 
rare—essentially nonexistent. Today, very few real-world applications run tasks like those appear-
ing in the 24 Livermore Loops, which are far more suited to research on the effects of very high-
speed nuclear reactions than the development of commercial, industrial, or consumer products. 
It is unlikely that the processor cores in a mobile phone handset, a digital camera, or a tablet will 
ever need to perform 2D hydrodynamic calculations. Embedded-software developers working in 
FORTRAN are also quite rare. Consequently, processor core vendors are quite unlikely to tout 
Livermore Loops benchmark results for their processor cores. The Livermore Loops benchmarks 
are far more suited to testing supercomputers. However, as on-chip gate counts grow, as proces-
sor cores gain single-instruction, multiple-data (SIMD) and floating-point execution units, and 
as IC designs increasingly tackle tougher number-crunching applications including the imple-
mentation of audio and video codecs, the Livermore Loops benchmark could become valuable for 
testing more than just supercomputers.

10.6.2 LINPACK

LINPACK is a collection of FORTRAN subroutines that analyze and solve linear equations 
and linear least-squares problems. Jack Dongarra assembled the LINPACK collection of lin-
ear algebra routines at the Argonne National Laboratory in Argonne, IL. The first versions of 
LINPACK existed in 1976 but the first users’ guide was published in 1977 [5,6]. The package 
solves linear systems whose matrices are general, banded, symmetric indefinite, symmetric 
positive definite, triangular, and tridiagonal square. In addition, the package computes the QR 
and singular value decompositions of rectangular matrices and applies them to least-squares 
problems. The LINPACK routines are not, strictly speaking, a benchmark but they exercise 
a computer’s floating-point capabilities. As of 2014, LINPACK benchmark has been largely 
supplanted by the Linear Algebra Package (LAPACK) benchmark, which is designed to run 
efficiently on shared-memory, vector supercomputers. The University of Tennesee maintains 
these programs at www.netlib.org.

Originally, LINPACK benchmarks performed computations on a 100 × 100 matrix, but with 
the rapid increase in computing performance that has occurred, the size of the arrays grew to 
1000 × 1000. The original versions of LINPACK were written in FORTRAN but there are now 
versions written in C and Java as well. Performance is reported in single- and double-precision 
MFLOPS, which reflects the benchmark’s (and the national labs’) focus on “big iron” machines 
(supercomputers). LINPACK and LAPACK benchmarks are not commonly used to measure 
microprocessor or processor core performance.

10.6.3 WHETSTONE BENCHMARK

The Whetstone benchmark was written by Harold Curnow of the now defunct Central Computer 
and Telecommunications Agency (CCTA), which was tasked with computer procurement in the 
British government. The CCTA used the Whetstone benchmark to test the performance of com-
puters being considered for purchase. The Whetstone benchmark is the first program to appear 
in print that was designed as a synthetic benchmark for testing processor performance. It was 
specifically developed to test the performance of only one computer: the hypothetical Whetstone 
machine.

The Whetstone benchmark is based on application-program statistics gathered by Brian A. 
Wichmann at the National Physical Laboratory in England. Wichmann was using an Algol-
60 compilation system that compiled Algol statements into instructions for the hypothetical 
Whetstone computer system, which was named after the small town of Whetstone located just 
outside the city of Leicester, England, where the compilation system was developed. Wichmann 
compiled statistics on instruction usage for a wide range of numerical computation programs 
then in use.

www.netlib.org
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An Algol-60 version of the Whetstone benchmark was released in November 1972 and  single- 
and double-precision FORTRAN versions appeared in April 1973. The FORTRAN versions 
became the first widely used, general-purpose, synthetic computer performance benchmarks. 
Information about the Whetstone benchmark was first published in 1976 [7].

The Whetstone benchmark suite consists of several small loops that perform integer and 
 floating-point arithmetic, array indexing, procedure calls, conditional jumps, and elementary 
function evaluations. These loops reside in three subprograms (called p3, p0, and pa) that are 
called from a main program. The subprograms call trigonometric (sine, cosine, and arctangent) 
functions and other math-library functions (exponentiation, log, and square root). The benchmark 
authors empirically managed the Whetstone’s instruction mix by manipulating loop  counters 
within the modules to match Wichmann’s instruction-mix statistics. Empirical Whetstone loop 
weights range from 12 to 899.

The Whetstone benchmark produces speed ratings in terms of thousands of Whetstone 
instructions per second (KWIPS), thus using the hypothetical Whetstone computer as the gold 
standard for this benchmark in much the same way that the actual VAX 11/780 was used as the 
golden reference for VAX MIPS and VUPs. In 1978, self-timed versions of the Whetstone bench-
mark written by Roy Longbottom (also of CCTA) produced speed ratings in MOPS and MFLOPS 
and an overall rating in MWIPS.

As with the LFK and LINPACK benchmarks, the Whetstone benchmark focuses on floating-
point performance. Consequently, it is not commonly applied to embedded processor cores that 
are destined to execute integer-oriented and control tasks on an IC because such a benchmark 
really would not tell you much about the performance of the processor(s) in question. However, 
the Whetstone benchmark’s appearance spurred the creation of a plethora of “stone” bench-
marks, and one of those benchmarks, known as the “Dhrystone,” became the first widely used 
benchmark to rate processor performance.

10.6.4 DHRYSTONE BENCHMARK

Reinhold P. Weicker, working at Siemens-Nixdorf Information Systems, wrote and published the 
first version of the Dhrystone benchmark in 1984 [8]. The benchmark’s name, Dhrystone, is a pun 
derived from the Whetstone benchmark. The Dhrystone benchmark is a synthetic benchmark 
that consists of 12 procedures in one measurement loop. It produces performance ratings in 
Dhrystones per second. Originally, the Dhrystone benchmark was written in a “Pascal subset of 
Ada.” Subsequently, versions in Pascal and C have appeared and the C version is the one most 
used today.

The Dhrystone benchmark differs significantly from the Whetstone benchmark and these dif-
ferences made the Dhrystone far more suitable as a processor benchmark. First, the Dhrystone 
is strictly an integer program. It does not test a processor’s floating-point abilities because most 
microprocessors in the early 1980s (and even those in the early twenty-first century) had no 
native floating-point computational abilities. Floating-point capabilities are now far more com-
mon in microprocessor cores, however. The Dhrystone devotes a lot of time executing string 
functions (copy and compare), which microprocessors often execute in real applications.

The original version of the Dhrystone benchmark quickly became successful. One indica-
tion of the Dhrystone’s success was the attempts by microprocessor vendors to unfairly inflate 
their Dhrystone ratings by “gaming” the benchmark (cheating). Weicker made no attempt to 
thwart compiler optimizations when he wrote the Dhrystone benchmark because he reason-
ably viewed those optimizations as typical of real-world programming. However, version 1 
of the Dhrystone benchmark did not print or use the results of its computations allowing 
properly written optimizing compilers using dead-code-removal algorithms to optimize away 
almost all of the benchmark by removing the benchmark program’s computations. The results 
were not used, which the optimizers detected. Clearly, such optimizations go far beyond 
the spirit of benchmarking. Weicker corrected this problem by publishing version 2.1 of the 
Dhrystone benchmark in 1988 [9]. At the same time, he acknowledged some of the bench-
mark’s limitations and published his criteria for using the Dhrystone benchmarks to compare 
processors [10].
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Curiously, DEC’s VAX also plays a role in the saga of the Dhrystone benchmarks. The VAX 
11/780 minicomputer could run 1757 version 2.1 Dhrystones/sec. Because the VAX 11/780 was 
(erroneously) considered a 1 MIPS computer, it became the Dhrystone standard machine, which 
resulted in the emergence of the DMIPS or D-MIPS (Dhrystone MIPS) rating. By dividing a 
processor’s Dhrystone 2.1 performance rating by 1757, processor vendors could produce an offi-
cial-looking DMIPS rating for their products. Thus, DMIPS manages to fuse two questionable 
rating systems (Dhrystones and VAX MIPS) to create a third, derivative, equally questionable 
microprocessor-rating system.

The Dhrystone benchmark’s early success as a marketing tool further encouraged abuse, which 
became rampant. For example, vendors quickly (though unevenly) added Dhrystone-optimized 
string routines written in machine code to some of their compiler libraries because accelerating 
these heavily used library routines boosted Dhrystone ratings. Actual processor performance did 
not change at all but the Dhrystone ratings suddenly improved. Some compilers started in-lining 
these machine-coded string routines for even better performance ratings.

As the technical marketing teams at the microprocessor vendors continued to study the 
benchmark, they found increasingly better ways of improving their products’ ratings by intro-
ducing compiler optimizations that only applied to the benchmark. Some compilers even had 
pattern recognizers that could recognize the Dhrystone benchmark source code, or there was a 
special Dhrystone command-line switch that caused the compiler to generate the entire program 
using a previously prewritten, precompiled, hand-optimized version of the Dhrystone bench-
mark program.

It is not even necessary to alter a compiler to produce wildly varying Dhrystone results using 
the same microprocessor. Using different compiler optimization settings can drastically alter 
the outcome of a benchmark test, even if the compiler has not been Dhrystone optimized. For 
example, Bryan Fletcher of Memec taught a class titled “FPGA Embedded Processors: Revealing 
True System Performance” at the 2005 Embedded Systems Conference in San Francisco where he 
showed that the Xilinx MicroBlaze soft core processor produced Dhrystone benchmark results 
that differ by almost 9:1 in terms of DMIPS/MHz depending on configuration and compiler set-
tings as shown in Table 10.2 [11].

As Fletcher’s results show, compiler optimizations and processor configuration can alter a pro-
cessor’s Dhrystone performance results significantly (9:1 variation in this example alone). These 
results clearly delineate a problem with using Dhrystone as a benchmark: there’s no organization 
to enforce Weicker’s published rules for using the Dhrystone benchmark, so there is no way to 
ensure that processor vendors benchmark fairly and there is no way to force vendors to fully dis-
close the conditions that produced their benchmark results. If benchmarks are not conducted by 
objective third parties under controlled conditions that are disclosed along with the benchmark 
results, the results must always be at least somewhat suspect even if there are published rules for 
the benchmark’s use because no one enforces the rules. Without enforcement, history teaches 
us that some vendors will not follow rules when the sales of a new microprocessor are at stake as 
discussed in the following.

tABLe 10.2  Performance Differences in Xilinx MicroBlaze Dhrystone Benchmark 
Performance Based on Processor configuration and compiler Settings

conditions DMiPS clock Frequency (MHz) DMiPS(MHz )

Initializing optimized system, running from SRAM 6.85 75 0.091

Increasing compiler optimization level to Level 3 7.14 75 0.095

Adding instruction and data caches 29.13 60 0.486

Removing data cache and moving stack and small data sections 
to local memory

33.17 60 0.553

Adding remaining data sections to local memory 47.81 60 0.797

Removing instruction cache, moving large data sections back to 
SRAM, and moving instructions to local memory

41.48 75 0.553

Moving entire program to local memory 59.79 75 0.797
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Over time, other technical weaknesses have appeared in the Dhrystone benchmark. For 
example, the actual Dhrystone code footprint is quite small. As their instruction caches 
grew, some processors were able to run the Dhrystone benchmark entirely from their caches, 
which boosted their performance on the Dhrystone benchmark but did not represent real 
performance gains because most application programs would not fit entirely into a proces-
sor’s cache. Table 10.2 demonstrates the sensitivity of the Dhrystone benchmark to cache 
and memory size. Processors with wider data buses and wide-load/store instructions that 
move many string bytes per bus transaction also earn better Dhrystone performance rat-
ings. Although this instruction behavior also benefits application code, it can mislead the 
unwary who think that the benchmark is comparing the relative computational performance 
of processors.

One of the worst abuses of the Dhrystone benchmark occurred when processor vendors ran 
benchmarks on their own evaluation boards and on competitors’ evaluation boards, and then 
published the results. The vendor’s own board would have fast memory and the competitors’ 
boards would have slow memory, but this difference would not be revealed when the scores were 
published. Differences in memory speed do affect Dhrystone results, so publishing the Dhrystone 
results of competing processors without also disclosing the use of dissimilar memory systems to 
compare the processors is clearly dishonest, or at least mean spirited. Other sorts of shenanigans 
were used to distort Dhrystone comparisons as well. One of the Dhrystone benchmark’s biggest 
weaknesses is therefore the absence of a governing body or an objective, third party that can 
review, approve, and publish Dhrystone benchmark results.

Despite all of these weaknesses, microprocessor and processor core vendors continue 
to publish Dhrystone benchmark results—or at least they have Dhrystone results handily 
 available—because Dhrystone ratings are relatively easy to generate and the benchmark code 
is very well understood after three decades of use. Even with its flaws, microprocessor and 
processor core vendors keep Dhrystone ratings handy because the lack of such ratings might 
raise a red flag for some prospective customers. (“Why won’t they tell me? The numbers must 
be bad.”)

Here is a stated opinion from ARM Application Note 273 [12], “Dhrystone Benchmarking for 
ARM Cortex Processors”:

Today, Dhrystone is no longer seen as a representative benchmark and ARM does not recommend 
using it. In general, it has been replaced by more complex processor benchmarks such as SPEC and 
CoreMark.

Dhrystone’s explosive popularity as a tool for making processor comparisons coupled with 
its technical weaknesses and the abuses heaped upon the benchmark program helped to spur 
the further evolution of processor benchmarks in the 1990s, producing new benchmark pro-
grams including SPEC and CoreMark mentioned in the ARM application note quoted earlier. 
Section 10.7 of this chapter discusses several newer processor benchmarks including SPEC and 
Embedded Microprocessor Benchmark Consortium (EEMBC) CoreMark.

10.6.5 EDN MICROPROCESSOR BENCHMARKS

EDN magazine, a trade publication for the electronics industry published from 1956 through 
2015, was a very early advocate of microprocessor use for general electronic system design. 
Editors at EDN wrote extensively about microprocessors starting with their introduction in the 
early 1970s. EDN published the first comprehensive microprocessor benchmarking article in 
1981, just after the first wave of commercial 16-bit microprocessor chips had been introduced 
[13]. This article compared the performance of the four leading 16-bit microprocessors of the day: 
DEC’s LSI-11/23, Intel’s 8086, Motorola’s 68000, and Zilog’s Z8000. (The Motorola 68000 micro-
processor actually employed a 16/32-bit architecture.) The Intel, Motorola, and Zilog processors 
heavily competed for system design wins during the early 1980s and this article provided design 
engineers with some of the very first microprocessor benchmark ratings to be published by an 
objective third party.
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This article was written by Jack E. Hemenway, a consulting editor for EDN, and Robert D. 
Grappel of MIT’s Lincoln Laboratory. Hemenway and Grappel summed up the reason that the 
industry needs objective benchmark results succinctly in their article:

Why the need for a benchmark study at all? One sure way to start an argument among computer 
users is to compare each one’s favorite machine with the others. Each machine has strong points and 
drawbacks, advantages and liabilities, but programmers can get used to one machine and see all the 
rest as inferior. Manufacturers sometimes don’t help: Advertising and press releases often imply that 
each new machine is the ultimate in computer technology. Therefore, only a careful, complete and 
unbiased comparison brings order out of the chaos.

Those sentiments are still true; nothing has changed after more than three decades.
The EDN article continues with an excellent description of the difficulties associated with 

microprocessor benchmarking:

Benchmarking anything as complex as a 16-bit processor is a very difficult task to perform fairly. The 
choice of benchmark programs can strongly affect the comparisons’ outcome so the benchmarker 
must choose the test cases with care.

These words also remain accurate after more than 30 years.
Hemenway and Grappel used a set of benchmark programs created in 1976 by a Carnegie–

Mellon University (CMU) research group. These benchmarks were first published by the CMU 
group in 1977 in a paper at the National Computer Conference [14]. The benchmark tests— 
interrupt handlers, string searches, bit manipulation, and sorting—are very representative of 
the tasks microprocessors and processor cores must perform in most embedded applications. 
The EDN authors excluded the CMU benchmarks that tested floating-point computational per-
formance because none of the processors in the EDN study had native floating-point resources. 
The seven programs in the 1981 EDN benchmark study appear in Table 10.3.

Significantly, the authors of this article allowed programmers from each microprocessor ven-
dor to code each benchmark for their company’s processor. Programmers were required to use 
assembly language to code the benchmarks, which eliminated compiler inefficiencies from the per-
formance results and allowed the processor architectures to compete directly. Considering the rela-
tively immature state of microprocessor compilers in 1981, this was probably an excellent decision.

The authors refereed the benchmark tests by reviewing each program to ensure that no  corners 
were cut and that the programs faithfully executed each benchmark algorithm. The authors did 
not force the programmers to code in a specific way and allowed the use of special instructions 
(such as instructions designed to perform string manipulation) because using such instructions 
fairly represented actual processor use.

The study’s authors ran the programs and recorded the benchmark results to ensure fairness. 
They published the results including the program size and execution speed. Publishing the pro-
gram size recognized that memory was costly and limited, a situation that still holds true today 
in IC design. The authors published the scores of each of the seven benchmark tests separately, 
acknowledging that a combined score would tend to mask important information about a proces-
sor’s specific abilities.

tABLe 10.3 Programs in the 1981 eDn Benchmark Article by Hemenway and Grappel

component Benchmark Description 

Benchmark A Simple priority interrupt handler

Benchmark B FIFO interrupt handler

Benchmark E Text string search

Benchmark F Primitive bit manipulation

Benchmark H Linked-list insertion (test addressing modes and 32-bit operations)

Benchmark I Quicksort algorithm (tests stack manipulation and addressing modes)

Benchmark K Matrix transposition (tests bit manipulation and looping)
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EDN published a similar benchmarking article in 1988 covering DSPs [15]. The article was writ-
ten by David Shear, one of EDN’s regional editors. Shear benchmarked 18 DSPs using 12 benchmark 
programs selected from 15 candidate programs. The DSP vendors participated in the selection of 
the 12 DSP benchmark programs used from the 15 candidates. The final dozen DSP benchmark 
programs included six DSP filters, three math benchmarks (a simple dot product and two matrix 
multiplications), and three fast Fourier transforms (FFTs). The benchmark programs that Shear 
used to compare DSPs differed substantially from the programs used by Grappel and Hemenway 
to compare general-purpose microprocessors because, as a class, DSPs are applied quite differently 
than general-purpose processors. Shear’s benchmark set of 12 DSP programs appear in Table 10.4.

Notably, Shear elected to present the benchmark performance results (both execution speed 
and performance) as bar charts instead of in tabular form, noting that the bar charts emphasized 
large performance differences while masking differences of a few percent, which he dismissed as 
“not important.”

Shear’s EDN article also recognized the potential for cheating by repeating the “Three Not-So-
golden Rules of Benchmarking” that had appeared in 1981. EDN Editor Walt Patstone wrote and 
published these rules as a follow-up to the Hemenway and Grappel article [16]:

 ◾ Rule 1: All’s fair in love, war, and benchmarking.
 ◾ Rule 2: Good code is the fastest possible code.
 ◾ Rule 3: Conditions, cautions, relevant discussion, and even actual code never make it to 

the bottom line when results are summarized.

These two EDN microprocessor benchmark articles established and demonstrated all of the 
characteristics of an effective, modern microprocessor benchmark:

 ◾ Conduct a series of benchmark tests that exercise relevant processor features for a class 
of tasks.

 ◾ Use benchmark programs that are appropriate to the processor class being studied.
 ◾ Allow experts to code the benchmark programs.
 ◾ Have an objective third-party check and run the benchmark code to ensure that the 

vendors and their experts do not cheat.
 ◾ Publish benchmark results that maximize the amount of available information about the 

tested processor.
 ◾ Publish both execution speed and memory use for each processor on each benchmark 

program because there is always a trade-off between a processor’s execution speed and 
its memory consumption.

These characteristics shaped the benchmarking organizations and their benchmark programs 
during the 1990s.

tABLe 10.4  twelve Programs in eDn’s 1988 DSP Benchmark Article

Program Benchmark Description 

Benchmark 1 20-tap FIR filter

Benchmark 2 64-tap FIR filter

Benchmark 3 67-tap FIR filter

Benchmark 4 8-pole canonic IIR filter (4×) (direct form II)

Benchmark 5 8-pole canonic IIR filter (5×) (direct form II)

Benchmark 6 8-pole transpose IIR filter (direct form I)

Benchmark 7 Dot product

Benchmark 8 Matrix multiplication, 2 × 2 times 2 × 2

Benchmark 9 Matrix multiplication, 3 × 3 times 3 × 1

Benchmark 10 Complex 64-point FFT (radix-2)

Benchmark 11 Complex 256-point FFT (radix-2)

Benchmark 12 Complex 1024-point FFT (radix-2)
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10.7 MODERN PROCESSOR PERFORMANCE BENCHMARKS

As the number of available microprocessors mushroomed in the 1980s, the need for good bench-
marking standards became increasingly apparent. The Dhrystone benchmarking experiences 
showed how useful a standard benchmark could be and these experiences also demonstrated the 
lengths (both fair and unfair) to which processor vendors would go to earn top benchmark scores. 
The EDN articles demonstrated that an objective third party could bring order out of bench-
marking chaos. As a result, both private companies and industry consortia stepped forward with 
the goal of producing fair and balanced processor benchmarking standards.

10.7.1 SPEC: THE STANDARD PERFORMANCE EVALUATION CORPORATION

One of the first organizations to seriously tackle the need for good microprocessor benchmarking 
standards was SPEC (www.spec.org). (Originally, the abbreviation SPEC stood for the “System 
Performance Evaluation Cooperative.” It now stands for the “Standard Performance Evaluation 
Corporation”). SPEC was founded in 1988 by a group of workstation vendors including Apollo, 
Hewlett-Packard, MIPS Computer Systems, and Sun Microsystems working in conjunction with 
the trade publication Electronic Engineering Times.

One year later, the cooperative produced its first processor benchmark, SPEC89, which was 
a standardized measure of compute-intensive processor performance with the express purpose 
of replacing the existing, vague MIPS, and MFLOPS rating systems. Because high-performance 
microprocessors were primarily used in high-end workstations at the time and because SPEC was 
formed by workstation vendors as a cooperative, the SPEC89 benchmark consisted of source code 
that was to be compiled for the UNIX operating system (OS). At the time, UNIX was strictly a 
workstation OS. The open-source version of UNIX named Linux would not appear for another 
2 years and it would not become a popular embedded OS until the next millennium.

The Dhrystone benchmark had already demonstrated that benchmark code quickly rots over 
time due to rapid advances in processor architecture and compiler technology. (It is no small 
coincidence that Reinhold Weicker, Dhrystone’s creator and one of the people most familiar 
with processor benchmarking, became a key member of SPEC.) The likelihood of benchmark 
rot was no different for SPEC89, so the SPEC organization has regularly improved and expanded 
its benchmarks, producing SPEC92, SPEC95 (with separate integer and floating-point compo-
nents called CINT95 and CFP95), SPEC CPU2000 (consisting of CINT2000 and CFP2000), SPEC 
CPUv6, and finally SPEC CPU2006 (consisting of CINT2006 and CFP2006). Here is what the 
SPEC website says about SPEC CPU2006 as of mid-2014:

CPU2006 is SPEC’s next-generation, industry-standardized, CPU-intensive benchmark suite, stress-
ing a system’s processor, memory subsystem, and compiler. SPEC designed CPU2006 to provide a 
comparative measure of compute-intensive performance across the widest practical range of hard-
ware using workloads developed from real user applications. These benchmarks are provided as 
source code and require the user to be comfortable using compiler commands as well as other com-
mands via a command interpreter using a console or command prompt window in order to generate 
executable binaries. The current version of the benchmark suite is V1.2, released in September 2011; 
submissions using V1.1 are only accepted through December 19, 2011.

Tables 10.5 and 10.6 list the SPEC CINT2006 and CFP2006 benchmark component programs, 
respectively.

As Tables 10.5 and 10.6 show, SPEC benchmarks are application-based benchmarks, not syn-
thetic benchmarks. The SPEC benchmark components are excellent as workstation/server bench-
marks because they use actual applications that are likely to be assigned to these machines. SPEC 
publishes benchmark performance results for various computer systems on its website and sells 
its benchmark code. As of 2014, the CPU2006 benchmark suite costs $800 ($200 for nonprofit 
use). A price list for the CPU2006 benchmarks as well as a wide range of other computer bench-
marks appears on the SPEC website.

Because the high-performance microprocessors used in workstations and servers are some-
times used as embedded processors and some of them are available as processor cores for use 

http://www.spec.org
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on SoCs, microprocessor and processor core vendors sometimes quote SPEC benchmark scores 
for their products. You should use these performance ratings with caution because the SPEC 
benchmarks are not necessarily measuring performance that is meaningful to embedded appli-
cations. In addition, memory and storage subsystem performance will significantly affect the 
results of these benchmarks. No mobile phone is likely to be required to simulate seismic-wave 
propagation, except for the possible exception of handsets sold in California, and the memory 
and storage subsystems in mobile phones do not resemble the ones used in workstations.

A paper written by Jakob Engblom at Uppsala University compared the static properties of 
the SPECint95 benchmark programs with code from 13 embedded applications consisting of 
334,600 lines of C source code [17]. Engblom’s static analysis discovered several significant differ-
ences between the static properties of the SPECint95 benchmark and the 13 embedded programs. 
Noted differences include the following:

 ◾ Variable sizes: Embedded programs carefully control variable size to minimize memory 
usage. Workstation-oriented software like SPECint95 does not limit variable size nearly 
as much because workstation memory is roomy by comparison.

 ◾ Unsigned data are more common in embedded code.
 ◾ Logical (as opposed to arithmetic) operations occur more frequently in embedded code.

tABLe 10.6  SPec cFP2006 Benchmark component Programs

component Language category 

410.bwaves Fortran Computes 3D transonic transient laminar viscous flow
416.gamess Fortran Quantum chemical computations
433.milc C Gauge field generator for lattice gauge theory
434.zeusmp Fortran Computational fluid dynamics for astrophysical simulation
435.gromacs C, Fortran Molecular dynamics simulation
436.cactusADM C, Fortran Einstein evolution equation solver using numerical methods
437.leslie3d Fortran Computational fluid dynamics using large Eddy simulations
444.namd C++ Large biomolecular simulator
447.dealll C++ Helmholtz-type equation solver with nonconstant coefficients
450.soplex C++ Linear program solver using simplex algorithm
453.povray C++ Image rendering
454.calculix C, Fortran Finite element solver for linear and nonlinear 3D structures
459.GemsFDTD Fortran 3D solver for Maxwell’s equations
465.tonto Fortran Quantum chemistry
470.lbm C Incompressible fluid simulation
481.wrf C, Fortran Weather modeling
482.sphinx3 C Speech recognition

tABLe 10.5  SPec cint2006 Benchmark component Programs

component Language category 

400.perlbench C A set of work tools written in the Perl programming language
401.bzip2 C Compression
403.gcc C C programming language compiler
429.mcf C Combinatorial optimization, vehicle scheduling
445.gobmk C Game playing: go
456.hmmr C Protein sequence analysis using hidden Markov models
458.sjeng C Artificial intelligence: chess
462.libquantum C Quantum computer simulation
464.h264ref C Video compression using h.264 encoder
471.omnetpp C++ Discrete event simulator that emulates an Ethernet network
473.astar C++ Pathfinding library for 2D maps
483.xalancbmk C++ XML document processing
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 ◾ Many embedded functions only perform side effects (such as flipping an I/O bit). They 
do not return values.

 ◾ Embedded code employs global data more frequently for variables and for large constant 
data.

 ◾ Embedded programs rarely use dynamic memory allocation.

Although Engblom’s intent in writing this paper was to show that SPECint95 code was not suit-
able for benchmarking embedded development tools such as compilers, his observations about 
the characteristic differences between SPECint95 code and typical embedded application code 
are also significant for embedded processors and processor cores. Engblom’s observations under-
score the maxim that the best benchmark code is always the actual target application code.

10.7.2 BERKELEY DESIGN TECHNOLOGY, INC.

Berkeley Design Technology, Inc. (BDTI) is a technical services company that has focused exclu-
sively on the applications of DSP processors since 1991. BDTI helps companies select, develop, 
and use DSP technology by providing expert advice and consulting, technology analysis, and 
highly optimized software development services. As part of those services, BDTI has spent more 
than a decade developing and applying DSP benchmarking tools. As such, BDTI serves as a pri-
vate third party that develops and administers DSP benchmarks.

BDTI introduced its core suite of DSP benchmarks, formally called the “BDTI Benchmarks,” 
in 1994. The BDTI Benchmarks consist of a suite of 12 algorithm kernels that represent key DSP 
operations used in common DSP applications. BDTI revised, expanded, and published informa-
tion about the 12 DSP algorithm kernels in its BDTI Benchmark in 1999 [18]. The 12 DSP kernels 
in the BDTI Benchmark appear in Table 10.7.

BDTI’s DSP benchmark suite is an example of a specialized processor benchmark. DSPs are not 
general-purpose processors and therefore require specialized benchmarks. BDTI Benchmarks 
are not full applications as are SPEC benchmark components. The BDTI Benchmark is a hybrid 
benchmark that uses code (kernels) extracted from actual DSP applications.

tABLe 10.7 BDti Benchmark Kernels

Function Function Description example Applications 

Real block FIR FIR filter that operates on a block of real (not 
complex) data

Speech processing (e.g., G.728 speech coding)

Complex block FIR FIR filter that operates on a block of complex data Modem channel equalization

Real single-sample FIR FIR filter that operates on a single sample of real 
data

Speech processing and general filtering

LMS adaptive FIR Least-mean-square adaptive filter that operates on 
a single sample of real data

Channel equalization, servo control, and linear 
predictive coding

IIR IIR filter that operates on a single sample of real data Audio processing and general filtering

Vector dot product Sum of the point-wise multiplication of two vectors Convolution, correlation, matrix multiplication, 
and multidimensional signal processing

Vector add Point-wise addition of two vectors, producing a 
third vector

Graphics, combining audio signals or images

Vector maximum Find the value and location of the maximum value in 
a vector

Error control coding and algorithms using 
block floating point

Viterbi decoder Decode a block of bits that have been 
convolutionally encoded

Error control coding

Control A sequence of control operations (test, branch, 
push, pop, and bit manipulation)

Virtually all DSP applications including some 
control code

256-point, in-place 
FFT

FFT that converts a time domain signal to the 
frequency domain

Radar, sonar, MPEG audio compression, and 
spectral analysis

Bit unpack Unpacks variable-length data from a bit stream Audio decompression and protocol handling
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BDTI calls its benchmarking methodological approach “algorithm kernel benchmarking and 
application profiling.” The algorithm kernels used in the BDTI Benchmarks are functions that 
constitute the building blocks used by most signal processing applications. BDTI extracted these 
kernels from DSP application code. The kernels are the most computationally intensive portions 
of the donor DSP applications. They are written in assembly code and therefore must be hand 
ported to each new DSP architecture. BDTI believes that the extracted kernel code is more rig-
orously defined than the large DSP applications, such as a V.90 modem or a Dolby AC-3 audio 
codec, which perform many functions in addition to the core DSP algorithms.

The application-profiling portion of the BDTI Benchmark methodology refers to a set of 
techniques used by BDTI to either measure or estimate the amount of time, memory, and other 
resources that an application spends executing various code subsections, including subsections 
that correspond to the DSP kernels in the BDTI Benchmark. BDTI develops kernel-usage esti-
mates from a variety of information sources including application-code inspections, instru-
mented code-run simulations, and flow-diagram analysis.

BDTI originally targeted its benchmark methodology at actual DSP processor chips, not pro-
cessor cores. The key portion of the benchmark methodology that limited its use to processors 
and not cores was the need to conduct the benchmark tests at actual clock speeds because BDTI 
did not want processor manufacturers to test this year’s processors and then extrapolate the 
results to next year’s clock speeds. However, ASIC and SoC designers must evaluate and com-
pare processor core performance long before a chip has been fabricated. Processor core clock 
speeds will depend on the IC fabrication technology and cell libraries used to create the IC. 
Consequently, BDTI adapted its benchmarking methodology to evaluate processor cores. BDTI 
uses results from a cycle-accurate simulator and worst-case projected clock speeds (based on 
gate-level processor core simulation and BDTI’s evaluation of the realism of that projection) to 
obtain benchmark results from processor cores.

BDTI does not release the BDTI Benchmark code. Instead, it works with processor vendors 
(for a fee) to port the benchmark code to new processor architectures. BDTI acts as the objective 
third party; conducts the benchmark tests; and measures execution time, memory usage, and 
energy consumption for each benchmark kernel.

BDTI rolls a processor’s execution times on all 12 DSP kernels into one composite num-
ber that it has dubbed the BDTImark2000 to satisfy people who prefer using one number to 
rank candidate processors. To prevent the mixing of processor benchmark scores verified with 
hardware and simulated processor core scores, BDTI publishes the results of simulated bench-
mark scores under a different name: the BDTIsimMark2000. Both the BDTImark2000 and the 
BDTIsimMark2000 scores are available without charge on BDTI’s website.

BDTI publishes many of the results on its website (www.BDTI.com) and the company sold 
some of the results of its benchmark tests in reports on specific DSP processors and in a book 
called the “Buyers Guide to DSP Processors.” As of mid 2014, the company is no longer actively 
selling industry reports. However, the company does still offer the BDTI Benchmark Information 
Service (www.bdti.com/Services/Benchmarks/BIS).

10.7.3 EMBEDDED MICROPROCESSOR BENCHMARK CONSORTIUM

EDN magazine’s legacy of microprocessor benchmark articles grew into full-blown realiza-
tion when EDN editor Markus Levy founded the nonprofit, embedded-benchmarking organi-
zation called EEMBC (www.eembc.org). EEMBC stands for the EDN Embedded Benchmark 
Consortium, which dropped the “EDN” from its name but not the corresponding “E” from its 
abbreviation in 1997. EEMBC’s stated goal was to produce accurate and reliable metrics based 
on real-world embedded applications for evaluating embedded processor performance. Levy 
drew remarkably broad industry support from microprocessor and DSP vendors for his con-
cept of a benchmarking consortium, which had picked up 21 founding corporate members by 
the end of 1998: Advanced Micro Devices, Analog Devices, ARC, ARM, Hitachi, IBM, IDT, 
Lucent Technologies, Matsushita, MIPS, Mitsubishi Electric, Motorola, National Semiconductor, 
NEC, Philips, QED, Siemens, STMicroelectronics, Sun Microelectronics, Texas Instruments, 
and Toshiba [19]. EEMBC (pronounced “embassy”) spent nearly 3 years working on a suite of 

http://www.BDTI.com
http://www.bdti.com/Services/Benchmarks/BIS
http://www.eembc.org
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benchmarks for testing embedded microprocessors and introduced its first benchmark suite 
at the Embedded Processor Forum in 1999. EEMBC released its first certified scores in 2000 
and, during the same year, announced that it would start to certify simulation-based benchmark 
scores so that processor cores could be benchmarked. As of 2014, EEMBC has nearly 50 corpo-
rate members, 100 commercial licensees, and more than 120 university licensees.

The current EEMBC processor benchmarks are contained in 10 suites loosely grouped accord-
ing to application:

 ◾ CoreMark: EEMBC CoreMark [20] is a simple, yet sophisticated, benchmark that is 
designed specifically to test the functionality of a processor core. CoreMark consists 
of one integer workload with four small functions written in easy-to-understand ANSI 
C code with a realistic mixture of read/write operations, integer operations, and con-
trol operations. CoreMark has a total binary size of no more than 16 kB when com-
piled with the gcc compiler on an x86 machine. This small size makes CoreMark more 
convenient to run using simulation tools. Unlike EEMBC’s primary benchmark suites, 
CoreMark is not based on any real application, but the workload consists of several 
commonly used algorithms that include matrix manipulation to exercise hardware 
multiplier/accumulators (MACs) and common math operations, linked-list manipula-
tion to exercise the common use of pointers, state machine operation to exercise data-
dependent branch instructions, and CRC (cyclic redundancy check). CoreMark is not 
system dependent. It exhibits the same behavior regardless of the platform (big/little 
endian, high-end or low-end processor). Running CoreMark produces a single-number 
score for making quick comparisons between processors. The EEMBC CoreMark was 
specifically designed to prevent the kind of cheating that took place with the Dhrystone 
benchmark. The CoreMark work cannot be optimized away or there will be no results. 
Furthermore, CoreMark does not use special libraries that can be artificially manipu-
lated and it makes no library calls from within the timed portion of the benchmark, so 
special benchmark-optimized compiler libraries will not artificially boost a processor’s 
CoreMark score.

 ◾ CoreMark-HPC: Released by EEMBC in 2014, the CoreMark-HPC is a more advanced, 
wider scope benchmark that includes five integer and four floating-point workloads, 
with data set sizes that range from 42 kB to more than 3 MB (per context when used in 
a multicore implementation).

 ◾ Ultralow-Power (ULP) Microcontrollers: The EEMBC ULPBench-CoreProfile performs a 
variety of functions commonly found in ULP applications; among them are memory and 
math operations, sorting, GPIO interaction, etc. Unlike the other EEMBC performance 
benchmarks, the goal of ULPBench is to measure microcontroller energy efficiency. To 
go along with benchmark software of ULPBench, EEMBC developed its EnergyMonitor, 
an inexpensive, yet highly accurate energy measuring device. Using ULPBench, the 
microcontroller wakes up once per second and performs the given workload of approxi-
mately 20,000 cycles, then goes back to sleep. Hence, ULPBench is a measure of the 
energy consumed over a 1 s duty cycle, allowing microcontrollers to take advantage of 
their low power modes.

 ◾ Floating Point: Many embedded applications including audio, DSP/math, graphics, auto-
motive, and motor control employ floating-point arithmetic. In the same way that the 
EEMBC CoreMark benchmark is a “better Dhrystone,” the EEMBC FPMark provides 
a better embedded floating-point benchmark than Whetstone and LINPACK, which 
are not really embedded benchmarks. Uniquely, the FPMark provides a combination of 
single- and double-precision workloads, as well as a mixture of small, medium, and large 
data sets; this makes this benchmark useful for testing the range of low-end microcon-
trollers to high-end processors.

 ◾ Multicore: EEMBC MultiBench is a suite of embedded benchmarks that allows processor 
and system designers to analyze, test, and improve multicore architectures and platforms. 
It leverages EEMBC’s proven library of application-focused benchmarks in hundreds of 
workload combinations using a thread-based API to establish a common programming 
model. The suite’s individual benchmarks target three forms of concurrency:
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 ◾ Data decomposition: Allows multiple threads to cooperate on achieving a unified 
goal and demonstrates a processor’s support for fine-grained parallelism

 ◾ Processing of multiple-data streams: Uses common code running on multiple threads 
to demonstrate how well a multicore solution scales with multiple-data inputs

 ◾ Multiple workload processing: Shows the scalability of a solution for general-purpose 
processing and demonstrates concurrency over both code and data

 ◾ Automotive Industrial: EEMBC AutoBench is a suite of benchmarks that predict the per-
formance of microprocessors and microcontrollers in automotive and industrial applica-
tions, but because of the diverse algorithms contained in this suite, it is more commonly 
used as a general-purpose benchmark. Its 16 benchmark kernels include the following:

 ◾ Generic Workload Tests: These tests include bit manipulation, matrix mapping, a 
specific floating-point tester, a cache buster, pointer chasing, pulse-width modula-
tion, multiplication, and shift operations (typical of encryption algorithms).

 ◾ Basic Automotive Algorithms: These tests include controller area network (CAN), 
tooth to spark (locating the engine’s cog when the spark is ignited), angle-to-time 
conversion, road speed calculation, and table lookup and interpolation.

 ◾ Signal Processing Algorithms: These tests include sensor algorithms used for engine-
knock detection, vehicle stability control, and occupant safety systems. The algorithms 
in this group include FFTs and inverse FFTs (iFFT), finite impulse response (FIR) filter, 
inverse discrete cosine transform (iDCT), and infinite impulse response (IIR) filter.

 ◾ Digital Entertainment: The EEMBC DENBench is a suite of benchmarks that approx-
imates the performance of processor subsystems in multimedia tasks such as image, 
video, and audio file compression and decompression. Other benchmarks in the suite 
focus on encryption and decryption algorithms commonly used in digital rights man-
agement and eCommerce applications. The DENBench components include the follow-
ing algorithms and minisuites:

 ◾ MPEG: Includes MP3 decode, MPEG-2 encode and decode, and MPEG-4 encode 
and decode, each of which are applied to five different data sets for a total of 25 
results

 ◾ Cryptography: A collection of four benchmark tests for common cryptographic 
standards and algorithms including Advanced Encryption Standard (AES), Data 
Encryption Standard, Rivest–Shamir–Adleman algorithm for public-key cryptogra-
phy, and Huffman decoding for data decompression

 ◾ Digital Image Processing: JPEG compression and color-space-conversion tests includ-
ing JPEG compress, JPEG decompress, RGB to YIQ, RGB to CMYK, and RGB to HPG. 
Seven different data sets are applied to each of these tests producing a total of 35 results

 ◾ MPEG Encode Floating Point: A floating-point version of the MPEG-2 Encode bench-
mark, using single-precision floating-point arithmetic instead of integer functions

 ◾ Networking: A suite of benchmarks that allow users to approximate the performance 
of processors tasked with moving packets in networking applications. The suite’s seven 
benchmark kernels include the following:

 ◾ IP Packet Check: Tests the correct processing of IP packets. The first step is to vali-
date the IP header information of all packets. The RFC1812 standard defines the 
requirements for packet checks carried out by IP routers and EEMBC created its 
Packet Check benchmark to model a subset of the IP header validation work speci-
fied in that standard.

 ◾ IP Reassembly: Packets are often fragmented before being transmitted over the 
Internet from one part of the network to another and then reassembled upon arrival. 
The IP Reassembly benchmark measures processor performance when reconstruct-
ing these disjointed packets.

 ◾ IP Network Address Translator (NAT): Follows NAT rules to rewrite the IP addresses 
and port numbers of packets. Because rewriting each packet modifies its source IP 
address and port chosen by the algorithm, the NAT benchmark simulates an impor-
tant part of network processing for many router designs.

 ◾ Route Lookup: Receives and forwards IP packets using a mechanism commonly 
applied to commercial network routers employing a Patricia Tree data structure, 
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which is a compact binary tree that allows fast and efficient searches with long or 
unbounded length strings. The benchmark monitors the processor’s ability to check 
the tree for the presence of a valid route and measures the time needed to walk 
through the tree to find the destination node for packet forwarding.

 ◾ Open Shortest Path First (OSPF): Implements the Dijkstra shortest path first algo-
rithm, which is widely used in routers and other networking equipment.

 ◾ Quality of Service (QoS): Transporting voice, video, and multimedia packets present 
a greater challenge than transporting simple text and files because packet timing 
and order are critical for smooth multimedia playback. QoS processing tests mea-
sure data transfer and error rates to ensure that they are suitable to support such 
applications.

 ◾ TCP: EEMBC’s TCP benchmark is designed to reflect performance in three different 
network scenarios. The first component, Gigabit Ethernet (TCP Jumbo), represents 
the likely workload of Internet backbone equipment using large packet transfers. The 
second (TCP Bulk) concentrates on large transfers of packets using protocols such 
as FTP. The last component (TCP Mixed) focuses on the relay of mixed traffic types, 
including Telnet, FTP, and HTTP. The benchmark processes all of the packet queues 
through a server task, network channel, and client task. Simulating the data transfers 
through the connections reveals how the processor will realistically cope with vari-
ous forms of TCP-based traffic.

 ◾ Text and Image Processing: EEMBC OABench approximates the performance of proces-
sors in printers, plotters, and other office automation systems that handle text and image 
processing tasks. Its five benchmark kernels include the following:

 ◾ Bezier: Benchmarks the classic Bezier curve algorithm by interpolating a set of 
points defined by the four points of a Bezier curve.

 ◾ Dithering: Uses the Floyd–Steinberg error diffusion dithering algorithm.
 ◾ Ghostscript: Provides an indication of the potential performance of an embedded 

processor running a PostScript printer engine. OABench can be run with or without 
this benchmark.

 ◾ Image Rotation: Uses a bitmap rotation algorithm to perform a clockwise 90° rota-
tion on a binary image.

 ◾ Text Parsing: Parses Boolean expressions made up of text strings and tests bit manip-
ulation, comparison, and indirect reference capabilities.

 ◾ Telecomm (DSP): A suite of benchmarks that allows users to approximate the perfor-
mance of processors in modem and related fixed-telecom applications. Its benchmark 
kernels include representative DSP algorithms:

 ◾ Autocorrelation: A mathematical tool used frequently in signal processing for ana-
lyzing functions or series of values, such as time domain signals. Produces scores 
from three different data sets: pulse, sine, and speech.

 ◾ Convolutional Encoder: Supports a type of error-correcting code based on an algo-
rithm often used to improve the performance of digital radio, mobile phones, satel-
lite links, and Bluetooth implementations.

 ◾ Bit Allocation: Tests the target processor’s ability to spread a stream of data over a 
series of buffers (or frequency bins) and then modulates and transmits these buffered 
streams on a telephone line in a simulated ADSL application.

 ◾ iFFT: Tests the target processor’s ability to convert frequency domain data into time 
domain data.

 ◾ FFT: Tests the target processor’s ability to convert time domain data into frequency 
domain data.

 ◾ Viterbi Decoder: Tests the processor’s ability to recover an output data packet from 
an encoded input data packet in embedded IS-136 channel coding applications.

 ◾ Consumer: The EEMBC ConsumerBench is a suite of benchmarks that approximates the 
performance of processors in digital still cameras, printers, and other embedded sys-
tems that handle digital imaging tasks. Its four benchmark kernels include the following:

 ◾ Image Compression and Decompression: Consists of industry-standard JPEG 
compression and decompression algorithms. The EEMBC benchmarks provide 
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standardization of the JPEG options as well as the input data set to ensure level 
comparisons.

 ◾ Color Filtering and Conversion: Tests include a high-pass grayscale filter, as well as 
RGB-to-CMYK and RGB-to-YIQ color conversions.

EEMBC’s processor benchmark suites with their individual benchmark programs allow design-
ers to select the benchmarks that are relevant to a specific design, rather than lumping all of the 
benchmark results into one number [21,22]. However, many companies use all of the EEMBC pro-
cessor benchmark suites combined to provide the most comprehensive level of testing for balancing 
instruction-type distribution, memory footprints, cache missing, branch predictions, and instruc-
tion-level parallelism (ILP). EEMBC’s benchmark suites are developed by separate subcommittees, 
each working on one application segment. Each subcommittee selects candidate applications that 
represent the application segment and dissects each application for the key kernel code that per-
forms the important work. This kernel code coupled with a test harness becomes the benchmark. 
Each benchmark has published guidelines in an attempt to force the processor vendors to play fair.

However, the industry’s Dhrystone experience proved conclusively that some processor ven-
dors would not play fair without a fair and impartial referee, so EEMBC created one: the EEMBC 
Technology Center (ETC). Just as major sports leagues hire referee organizations to conduct 
games and enforce the rules of play, EEMBC’s ETC conducts benchmark tests and enforces the 
rules of EEMBC benchmarking to produce certified EEMBC scores. The ETC is also responsible 
for verifying the exact environment under which each test was run; this includes processor 
frequency, wait states, and compiler version and switches.

The EEMBC website lists certified and uncertified scores but EEMBC only guarantees the reliabil-
ity of scores that have been officially certified by the ETC. During its certification process, the ETC 
reestablishes the manufacturer’s benchmark environment, verifies all settings, rebuilds the executable, 
and runs CoreMark according to the specific run rules. EEMBC certification ensures that scores are 
repeatable, accurate, obtained fairly, and derived according to EEMBC’s rules. Scores for devices that 
have been tested and certified can be searched from EEMBC’s CoreMark Benchmark search page.

EEMBC publishes benchmark scores on its website (www.EEMBC.org) and the organiza-
tion’s work is ongoing. To prevent benchmark rot, EEMBC’s subcommittees constantly evaluate 
revisions to the benchmark suites and have added benchmarks including EEMBC’s system-level 
benchmarks, which include the following:

 ◾ AndEBench and AndEBench-Pro: An industry-accepted method of evaluating Android 
hardware and platform performance. These benchmarks are a free download in the 
Google Play market. AndEBench is designed to be easy to run with just the push of a 
button.

 ◾ BrowsingBench: It provides a standardized, industry-accepted method of evaluating web 
browser performance. This benchmark

 ◾ Targets smartphones, netbooks, portable gaming devices, navigation devices, and IP 
set-top boxes

 ◾ Measures the complete user experience—from the click/touch on a URL to the final 
page rendered and scrolled on the screen

 ◾ Factors in Internet content diversity as well as various network profiles used to 
access the Internet

 ◾ DPIBench (in development as of the mid-2014): This provides a standardized, industry-
accepted method of evaluating systems and processors performing deep-packet inspection:

 ◾ Targets network security appliances
 ◾ Measures throughput and latency and quantifies number of flows
 ◾ Enables consumers of firewall technologies with an objective means of selecting a 

solution from the myriad of vendor offerings

Except for CoreMark and CoreMark-HPC, the EEMBC benchmark code can be licensed for 
 nonmember evaluation, analysis, and criticism by industry analysts, journalists, and independent 
third parties. Such independent evaluations would be unnecessary if all of the EEMBC corporate 
members tested their processors and published their results. However, fewer than half of the 

http://www.EEMBC.org


Chapter 10 – Using Performance Metrics to Select Microprocessor Cores for IC Designs    221

EEMBC corporate members have published any benchmark results for their processors and few 
have tested all of their processors [23].

10.7.4 MODERN PROCESSOR BENCHMARKS FROM ACADEMIC SOURCES

The EEMBC CoreMark benchmark has become the de facto industry standard for measuring 
embedded microprocessor performance but its use is limited to EEMBC licensees, industry ana-
lysts, journalists, and independent third parties. Consequently, two university sources produced 
freely available benchmarks to give everyone access to nontrivial processor benchmarking code.

10.7.4.1 UCLA’S MEDIABENCH 1.0

The first academic processor benchmark was MediaBench, originally developed by the Computer 
Science and Electrical Engineering Departments at the University of California at Los Angeles 
(UCLA) [24]. The MediaBench 1.0 benchmark suite was created to explore compilers’ abilities to 
exploit ILP in processors with very long instruction word and SIMD structures. The MediaBench 
benchmark suite is aimed at processors and compilers targeting new-media applications and con-
sists of several applications culled from image processing, communications, and DSP applica-
tions and includes a set of input test data files to be used with the benchmark code.

Since then, a MediaBench II has appeared, supported by the MediaBench Consortium on a 
website at Saint Louis University (http://euler.slu.edu/~fritts/mediabench/); however, there does 
not seem to have been much activity on the site for a while. Applications used in MediaBench II 
include the following:

 ◾ Composite: The composite benchmark, MBcomp, suite will contain 1 or 2 of the most 
advanced applications from each of the individual media benchmarks (except kernels).

 ◾ Video and Image: This image- and video-centric media benchmark suite is composed of 
the encoders and decoders from six image/video compression standards: JPEG, JPEG-
2000, H.263, H.264, MPEG-2, and MPEG-4.

 ◾ Audio and Speech: Listed as under development.
 ◾ Security: Listed as under development.
 ◾ Graphics: Listed as under development.
 ◾ Analysis: Listed as under development.
 ◾ Kernels: Listed as under development.

Benchmarks for the composite and video and image suites appear in Tables 10.8 and 10.9.

tABLe 10.9 MediaBench ii Video and image Benchmark Programs

MediaBench 1.0 Application Application Description example Applications 

H.264/MPEG-4 AVC Video codec Digital video cameras and HD and 4K2K displays

MPEG-4 ASP MPEG-4 video codec Digital television and DVD

JPEG-2000 Image codec Printers

MPEG-2 Video codec Digital cameras and displays

H.263 Video codec Videoconferencing

JPEG Image codec Digital cameras, displays, and printers

tABLe 10.8 MediaBench ii composite Benchmark Programs

Benchmark Application Description example Applications 

H.264 Video Codec Video

JPEG-2000 Image Codec Still images

http://euler.slu.edu/~fritts/mediabench/
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10.7.4.2 MIBENCH FROM THE UNIVERSITY OF MICHIGAN

A comprehensive benchmark suite called MiBench was presented by its developers from the 
University of Michigan at the IEEE’s 4th annual Workshop on Workload Characterization in 
December 2001 [25]. MiBench intentionally mimics EEMBC’s benchmark suite. It includes a set 
of 35 embedded applications in six application-specific categories: automotive and industrial, 
consumer devices, office automation, networking, security, and telecommunications. Table 10.10 
lists the 35 benchmark programs (plus two repeated benchmark tests) in the six categories. All of 
the benchmark programs in the MiBench suite are available in standard C source code at http://
www.eecs.umich.edu/mibench.

The MiBench automotive and industrial benchmark group tests a processor’s control abilities. 
These routines include

 ◾ basicmath: Cubic function solving, integer square root, and angle conversions
 ◾ bitcount: Counts the number of bits in an integer array
 ◾ qsort: Quicksort algorithm applied to a large string array
 ◾ susan: Image recognition program developed to analyze MRI brain images

MiBench applications in the consumer device category include

 ◾ JPEG encode/decode: Still-image codec
 ◾ tiff2bw: Converts a color tiff image into a black-and-white image
 ◾ tiff2rgba: Converts a color image into one formatted into red, green, and blue
 ◾ tiffdither: Dithers a black-and-white image to reduce its size and resolution
 ◾ tiffmedian: Reduces an image’s color palette by taking several color-palette medians
 ◾ lame: The Lame MP3 music encoder
 ◾ mad: A high-quality audio decoder for the MPEG1 and MPEG2 video formats
 ◾ typeset: A front-end processor for typesetting HTML files

Applications in the MiBench office automation category include

 ◾ Ghostscript: a PostScript language interpreter minus a graphical user interface
 ◾ stringsearch: Searches a string for a specific word or phrase
 ◾ ispell: A fast spelling checker
 ◾ rsynth: A text-to-speech synthesis program
 ◾ sphinx: A speech decoder

The set of MiBench networking applications includes

 ◾ Dijkstra: Computes the shortest path between nodes
 ◾ Patricia: A routing-table algorithm based on Patricia tries

The networking group also reuses the CRC32, sha, and Blowfish applications from the MiBench 
suite’s security application group.
The security group of MiBench applications includes

tABLe 10.10  MiBench Benchmark Programs

Auto/industrial consumer Devices office Automation networking Security telecom 

basicmath JPEG Ghostscript Dijkstra Blowfish encoder CRC32

bitcount lame ispell patricia Blowfish decoder FFT

qsort mad rsynth (CRC32) PGP sign IFFT

susan (edges) tiff2bw sphinx (sha) PGP verify ADPCM encode

susan (corners) tiff2rgba stringsearch (Blowfish) Rijndael encoder ADPCM decoder

susan (smoothing) tiffdither Rijndael decoder GSM encoder

tiffmedian sha GSM decoder

typeset

http://www.eecs.umich.edu/mibench
http://www.eecs.umich.edu/mibench
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 ◾ Blowfish encryption/decryption: A symmetric block cipher with a variable-length key
 ◾ sha: A secure hashing algorithm
 ◾ Rijndale encryption/decryption: The cryptographic algorithm used by the AES encryp-

tion standard
 ◾ PGP sign/verify: A public-key cryptographic system called “Pretty Good Privacy”

MiBench’s telecommunications application suite includes the following applications:

 ◾ FFT/IFFT: FFT and the iFFT
 ◾ GSM encode/decode: European voice codec for mobile telephony
 ◾ ADPCM encode/decode: Adaptive differential pulse code modulation speech-compression 

algorithm
 ◾ CRC32: A 32-bit cyclic redundancy check

With its 35-component benchmark applications, MiBench certainly provides a thorough work-
out for any processor/compiler combination. Both MediaBench and MiBench solve the problem 
of proprietary code for anyone who wants to conduct a private set of benchmark tests by providing 
a standardized set of benchmark tests at no cost and with no use restrictions. Industry analysts, 
technical journalists, and researchers can publish results of independent tests conducted with 
these benchmarks, although none seem to have done so, to date.

The trade-off made with these processor benchmarks from academia is that there is no official 
body to enforce benchmarking rules, to provide result certification, or even to drive future develop-
ment. Nothing seems to have happened on the MiBench website for more than a decade, yet the state 
of the art in algorithm development has certainly advanced over that time, as has processor capabil-
ity. For someone conducting their own set of benchmark tests, self-certification may be sufficient. 
For anyone else, the entity publishing the results must be scrutinized for fairness in the conducting 
of tests, for bias in test comparisons among competing processors, and for bias in any conclusions.

10.8  CONFIGURABLE PROCESSORS AND THE FUTURE 
OF PROCESSOR CORE BENCHMARKS

For the past 30 years, processor benchmarks have attempted to show how well specific processor 
architectures work. Myriad benchmark programs developed over that period have had mixed suc-
cess in achieving this goal. One thing that has been constant over the years is the use of bench-
marks to compare microprocessors and processor cores with fixed ISAs. Nearly all processors 
realized in silicon have fixed architectures and the processor cores available for use in FPGAs, 
ASICs, and SoCs generally have had fixed architectures as well. However, the transmutable silicon 
of FPGAs, ASICs, and SoCs makes it feasible to employ configurable processor cores instead of 
fixed ones, which greatly complicates the use of comparison benchmark programs because config-
urable processors can be tuned to specific applications by adding instructions and registers, which 
sort of invalidates the whole idea of benchmarking. Nevertheless, you can use benchmarking tools 
to guide you to the best processor configuration for a specific application or set of applications.

Processor vendors take two fundamental approaches to making configurable ISA processors 
available to FPGA users and ASIC and SoC designers. The first approach provides tools that allow 
the designer to modify a base processor architecture to boost the processor’s performance on a 
target application or set of applications. Xilinx and Altera both offer configurable processor cores 
for their FPGAs (MicroBlaze and NIOS, respectively). Companies taking this approach for ASIC 
and SoC designers include the portion of Imagination Technologies formerly known as MIPS, 
the portion of Synopsys formerly known as ARC/Virage, and the portion of Cadence formerly 
known as Tensilica. (Imagination acquired MIPS; Synopsys acquired Virage, which had formerly 
acquired ARC; and Cadence acquired Tensilica.) The second approach employs tools that compile 
entirely new processor architectures for each application. Two companies subsequently acquired 
by Synopsys took this approach: CoWare and Target Compilers.

The ability to tailor a processor architecture to a target application (which includes bench-
marks) allows you to trade off performance against on-chip resources. Tailoring can drastically 
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increase a program’s execution speed and it can drastically increase or decrease the amount of 
on-chip resources needed to implement the processor. For example, Table 10.11 shows the rela-
tive performance for three different Xilinx MicroBlaze processor configurations (minimal, inter-
mediate, and maximum performance) over four EEMBC benchmark suites. These MicroBlaze 
processor configurations (see Tables 10.12 through 10.14 for configuration details) were created 
specifically to illustrate benchmark performance.

Note that the benchmark performance varies among the processor configurations by more 
than an order of magnitude depending on the benchmark. So which configuration is the best? That 
is a trick question. Benchmark performance alone would not tell you which processor configura-
tion to select. You must also consider the resources needed to achieve these performance scores.

tABLe 10.11  Xilinx configurable MicroBlaze Processor Relative Performance on 
eeMBc Benchmarks

eeMBc Benchmark 

Xilinx MicroBlaze 
Processor Minimum 

Resources 
(normalized) 

Xilinx MicroBlaze 
Processor Maximum 

Performance 
(normalized) 

Xilinx MicroBlaze 
Processor intermediate 

Performance 
(normalized) 

Angle-to-time conversion 1.00 11.48 4.65

Basic floating point 1.00 5.42 3.63

Bit Manipulation 1.00 11.38 6.29

Cache buster 1.00 11.44 7.45

Response to remote request (CAN) 1.00 10.23 8.51

FFT 1.00 18.52 7.94

FIR filter 1.00 9.21 8.55

iDCT 1.00 21.97 11.94

Low-pass filter (IIR) and DSP functions 1.00 35.55 10.88

iFFT 1.00 20.27 8.47

Matrix math 1.00 5.99 3.20

Pointer chasing 1.00 2.47 1.99

Pulse-width modulation 1.00 11.24 10.12

Road speed calculation 1.00 16.04 14.71

Table lookup 1.00 15.61 4.51

Tooth to spark 1.00 8.25 4.61

Automark™ 1.00 11.35 6.49

JPEG compression benchmark 1.00 1.67 0.92

JPEG decompression benchmark 1.00 1.67 1.07

Grayscale image filter 1.00 1.67 1.68

RGBCMY01 (consumer RGB to CMYK) 1.00 1.07 1.00

RGBYIQ01 (consumer RGB to YIQ) 1.00 47.88 44.71

Consume mark™ 1.00 2.99 2.37

TCP-BM jumbo 1.00 2.92 1.84

TCP-BM bulk 1.00 4.60 2.90

TCP-BM mixed 1.00 6.16 3.62

TCPmark™ 1.00 4.36 2.68

Networking: IP Packet Check Benchmark 1.00 8.55 6.21

Networking: IP Packet Check Benchmark 1.00 8.05 6.19

Networking: IP Packet Check Benchmark 1.00 7.92 6.19

Networking: IP Packet Check Benchmark 1.00 7.57 5.96

Networking: QoS 1.00 6.69 5.95

Networking: Route Lookup Benchmark 1.00 10.07 7.77

Networking: OSPF Benchmark 1.00 4.61 3.24

Networking: IP Reassembly Benchmark 1.00 3.45 3.49

Network Address Translation 1.00 6.85 3.87

IPmark™ 1.00 6.78 5.22



Chapter 10 – Using Performance Metrics to Select Microprocessor Cores for IC Designs    225

tABLe 10.12  Xilinx configurable MicroBlaze Processor: Minimum 
Resources configuration

MicroBlaze v9.3, Vivado 2014.1—247 MHz

Minimum Resources: three-Stage Pipeline, no Barrel Shifter, no Hardware Multiplier, no FPU

Certification report None

Type of platform FPGA xc7k325tffg900-3, KC705 board

Type of certification Optimized

Certification date N/A

Benchmark notes C optimized

Hardware type Production silicon

Native data type 32 bits

Architecture type RISC

Processor cooling method Fan

Maximum power dissipation Not measured

Names and nominal voltage levels VDD 1.5 V, VDD DDR 1.5 V, VDD I/O 2.5 V

Processor process technology 28 nm

L1 instruction cache size (kB) 0.25

L1 data cache size (kB) 0.25

External data bus width (bits) 32

Memory clock (MHz) 400

Memory configuration 4-3-3-3

L2 cache size (kB) 0

L2 cache clock N/A

tABLe 10.13  Xilinx configurable MicroBlaze Processor: intermediate 
Performance and intermediate Resources configuration

MicroBlaze v9.3, Vivado 2014.1—247 MHz

intermediate Resources: Five-Stage Pipeline, Barrel Shifter, Hardware Multiplier, no FPU

Certification report None

Type of platform FPGA xc7k325tffg900-3, KC705 board

Type of certification Optimized

Certification date N/A

Benchmark notes C optimized

Hardware type Production silicon

Native data type 32 bits

Architecture type RISC

Processor cooling method Fan

Maximum power dissipation Not measured

Names and nominal voltage levels VDD 1.5 V, VDD DDR 1.5 V, VDD I/O 2.5 V

Processor process technology 28 nm

L1 instruction cache size (kB) 4

L1 data cache size (kB) 4

External data bus width (bits) 32

Memory clock (MHz) 400

Memory configuration 4-3-3-3

L2 cache size (kB) 0

L2 cache clock N/A



226    10.8 Configurable Processors and the Future of Processor Core Benchmarks

In the case of the three Xilinx MicroBlaze processor configurations shown in Table 10.11, 
the maximum performance configuration consumes approximately four times as many on-chip 
FPGA resources as the minimum resources configuration and the intermediate performance 
configuration consumes roughly half as much FPGA resource as the maximum performance 
configuration and twice as much resource as the minimum resources configuration.

Design teams should always pick the configuration that achieves the project’s performance 
goals while consuming as little resource as possible. Benchmarks give design teams the guidance 
they need to make these configuration choices when the actual application code is not available.

The Xilinx MicroBlaze soft processor core is a 32-bit RISC Harvard architecture processor 
core included with Xilinx FPGA design tools (Vivado Design Edition, Vivado Webpack Edition, 
and ISE). The MicroBlaze core has more than 70 configurable options, allowing designers using 
Xilinx FPGAs to create many, many processor configurations for applications ranging from 
small-footprint state machines and microcontroller-like processors to high-performance, com-
pute-intensive processors that can run the Linux OS. MicroBlaze processors can have three- or 
five-stage pipelines to optimize speed and have many other configuration options including ARM 
AXI or Xilinx processor local bus interfaces, memory management units, instruction and data-
side caches, and an floating-point unit (FPU)—yet all of these configurations are still based on the 
same basic MicroBlaze processor architecture. Tables 10.12 through 10.14 show the salient con-
figuration parameters for the three Xilinx MicroBlaze processor configurations used to generate 
the relative EEMBC benchmark performance numbers in Table 10.11. Of these configuration 
parameters, the key differences among the three processor configurations include

 ◾ Pipeline stages
 ◾ Minimum resources configuration: three-stage pipeline
 ◾ Intermediate resources configuration: five-stage pipeline
 ◾ Maximum performance configuration: five-stage pipeline

 ◾ Hardware execution units
 ◾ Minimum resources configuration: without barrel shifter, hardware multiplier, or FPU
 ◾ Intermediate resources configuration: with barrel shifter and hardware multiplier, 

but without FPU
 ◾ Maximum performance configuration: with barrel shifter, hardware multiplier, and FPU

tABLe 10.14  Xilinx configurable MicroBlaze Processor: Maximum 
Performance configuration

MicroBlaze v9.3, Vivado 2014.1—247 MHz

Maximum Performance: Five-Stage Pipeline, Barrel Shifter, Hardware Multiplier, FPU

Certification report None
Type of platform FPGA xc7k325tffg900-3, KC705 board
Type of certification Optimized
Certification date N/A
Benchmark notes C optimized
Hardware type Production silicon
Native data type 32 bits
Architecture type RISC
Processor cooling method Fan
Maximum power dissipation Not measured
Names and nominal voltage levels VDD 1.5 V, VDD DDR 1.5 V, VDD I/O 2.5 V
Processor process technology 28 nm
L1 instruction cache size (kB) 16
L1 data cache size (kB) 16
External data bus width (bits) 32
Memory clock (MHz) 400
Memory configuration 4-3-3-3
L2 cache size (kB) 0
L2 cache clock N/A
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 ◾ Cache sizes
 ◾ Minimum resources configuration: 256 byte instruction and data caches
 ◾ Intermediate resources configuration: 4 kB instruction and data caches
 ◾ Maximum performance configuration: 16 kB instruction and data caches

Note that GCC compiler settings were the same for all Xilinx MicroBlaze processor Benchmark testing:

 –O3 –mcpu = 9.3 –mlittle-endian –fno-asm -fsigned-char

Also note that the performance numbers shown in Table 10.11 are all normalized to an operating 
clock rate of 247 MHz. In general, you can expect processor configurations with more pipeline 
stages to operate at faster maximum clock rates than processors with fewer pipeline stages because 
there is less logic in each pipeline stage. However, carrying that differential into the benchmark 
results adds yet another dimension to the complexity of evaluating the various configurations. The 
clock rates for the three MicroBlaze processor configurations are normalized to simplify com-
parisons in these benchmark results. In many designs, maximum achievable clock rate will be a 
further consideration, not directly tied to but certainly related to the benchmark results.

10.9 CONCLUSION

As a growing number of processor cores are employed to implement a variety of on-chip tasks, 
development teams creating designs with FPGAs, ASICs, and SoCs increasingly rely on bench-
marking tools to evaluate processor core performance. The tool of first recourse is always the 
actual application code for the target task. However, this particular evaluation tool is not always 
conveniently at hand when the processor selection is needed to start hardware design. Standard 
processor benchmark programs must often stand in as replacement tools for processor evalua-
tion. These tools have undergone more than two decades of evolution and their use (and abuse) 
is now well understood.

Benchmarks have evolved over time. Initially, they were used to compare mainframes and 
supercomputers. When microprocessors first appeared, benchmarks quickly became a way 
of comparing processor offerings from different semiconductor vendors. Expansion into the 
embedded markets placed new emphasis on the ability to benchmark processors as the num-
ber of microprocessors and microcontrollers exploded. Benchmark evolution has not ended. 
More processor benchmarks are always in the wings. EEMBC is continually expanding its 
reach with new benchmarks, for example. The transitions to multicore processors, nanome-
ter lithography, mobile systems, and the low-power portion of the Internet of Things have 
placed a new emphasis on the amount of power and energy required to execute on-chip tasks, 
so power-oriented benchmarks are growing in importance and benchmarking organizations 
including EEMBC and SPEC are developing new processor benchmarks to measure power 
dissipation on standardized tasks. EEMBC’s ULPBench (ULP benchmark) is one example of 
such a benchmark.

As long as there are microprocessors and processor cores, we will need benchmarks to com-
pare them.

ReFeRenceS

 1. J. Rowson, Hardware/software co-simulation, in Proceedings of the 31st Design Automation Conference 
(DAC’94), San Diego, CA, June 1994.

 2. S. Gill, The diagnosis of mistakes in programmes on the EDSAC, in Proceedings of the Royal Society 
Series A Mathematical and Physical Sciences, Cambridge University Press, London, U.K., pp. 538–554, 
May 22, 1951.

 3. Lord Kelvin (William Thomson), Popular Lectures and Addresses, Vol. 1, Macmillan and Co, 1889, 
p. 73 (originally: Lecture to the Institution of Civil Engineers, May 3, 1883).

 4. F. McMahon, The Livermore FORTRAN Kernels: A computer test of the numerical performance 
range, Technical report, Lawrence Livermore National Laboratory, Livermore, CA, December 1986.



228    References

 5. J.J. Dongarra, LINPACK working note #3, FORTRAN BLAS timing, Argonne National Laboratory, 
Argonne, IL, November 1976.

 6. J.J. Dongarra, J.R. Bunch, C.M. Moler, and G.W. Stewart, LINPACK working note #9, Preliminary 
LINPACK user’s guide, ANL TM-313, Argonne National Laboratory, Argonne, IL, August 1977.

 7. H.J. Curnow and B.A. Wichmann, A synthetic benchmark, Computer Journal, 19(1), 43–49, 1976.
 8. R.P. Weicker, Dhrystone: A synthetic systems programming benchmark, Communications of the 

ACM, 27(10), 1013–1030, October 1984.
 9. R.P. Weicker, Dhrystone benchmark: Rationale for version 2 and measurement rules, SIGPLAN 

Notices, 23(8), 49–62, August 1988.
 10. R.P. Weicker, Understanding variations in dhrystone performance, Microprocessor report, pp. 16–17, 

May 1989.
 11. B.H. Fletcher, FPGA embedded processors: Revealing true system performance, in Embedded 

Training Program, Embedded Systems Conference, San Francisco, CA, 2005, ETP-367, available at 
http://www.xilinx.com/products/design_resources/proc_central/resource/ETP-367paper.pdf.

 12. Dhrystone benchmarking for ARM cortex processors: Application note 273, July 2011, ARM Ltd, 
available at http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0273a, last accessed 
November 30, 2015.

 13. R.D. Grappel and J.E. Hemenway, A tale of four μPs: Benchmarks quantify performance, EDN, April 1, 
1981, pp. 179–232.

 14. S.H. Fuller, P. Shaman, D. Lamb, and W. Burr, Evaluation of computer architectures via test pro-
grams, in AFIPS Conference Proceedings, Vol. 46, pp. 147–160, June 1977.

 15. D. Shear, EDN’s DSP benchmarks, EDN, September 29, 1988, pp. 126–148.
 16. W. Patstone, 16-bit μP benchmarks—An update with explanations, EDN, September 16, 1981, p. 169.
 17. J. Engblom, Why SpecInt95 should not be used to benchmark embedded systems tools, in Proceedings 

of the ACM SIGPLAN 1999 Workshop on Languages, Compilers, and Tools for Embedded Systems 
(LCTES’99), Atlanta, GA, May 5, 1999.

 18. Evaluating DSP Processor Performance, Berkeley Design Technology, Inc. (BDTI), Berkeley, CA, 
 1997–2000, http://www.bdti.com/MyBDTI/pubs/benchmk_2000.pdf, last accessed November  30, 
2015.

 19. M. Levy, At last: Benchmarks you can believe, EDN, November 5, 1988, pp. 99–108.
 20. S. Gal-On and M. Levy, Exploring CoreMark™—A benchmark maximizing simplicity and efficacy, 

2010, available at www.eembc.org/techlit/whitepaper.php, last accessed November 30, 2015.
 21. J. Poovey, T. Conte, M. Levy, and S. Gal-On, A benchmark characterization of the EEMBC bench-

mark suite, IEEE Micro, 29(5), 18–29, September–October 2009.
 22. S. Gal-On and M. Levy, Creating portable, repeatable, realistic benchmarks for embedded sys-

tems and the challenges thereof, in LCTES ‘12 Proceedings of the 13th ACM SIGPLAN/SIGBED 
International Conference on Languages, Compilers, Tools and Theory for Embedded Systems, ACM 
SIGPLAN Notices—LCTES ‘12, 47(5), 149–152, May 2012.

 23. T. Halfhill, Benchmarking the benchmarks, Microprocessor Report, August 30, 2004.
 24. C. Lee, M. Potkonjak et  al., MediaBench: A tool for evaluating and synthesizing multimedia and 

communications systems, in MICRO 30, Proceedings of the 30th Annual IEEE/ACM International 
Symposium on Microarchitecture, Research Triangle Park, NC, December 1–3, 1997.

 25. M. Guthaus, J. Ringenberg et al., MiBench: A free, commercially representative embedded bench-
mark suite, in IEEE Fourth Annual Workshop on Workload Characterization, Austin, TX, December 
2001.

http://www.xilinx.com/products/design_resources/proc_central/resource/ETP-367paper.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0273a
http://www.bdti.com/MyBDTI/pubs/benchmk_2000.pdf
http://www.eembc.org/techlit/whitepaper.php


229

11High-Level Synthesis

Felice Balarin, Alex Kondratyev, and Yosinori Watanabe

CONTENTS

11.1 Introduction 230

11.1.1 How “High” Is HLS Anyway? 231

11.1.2 Design Decisions Made by HLS 232

11.1.3 Design Decisions Not Made by HLS 234

11.1.4 Defining Behavior of High-Level Models 236

11.2 High-Level Synthesis by Example 238

11.2.1 HLS Problem 241

11.2.2 Elaboration 242

11.2.3 Optimization 244

11.2.4 Microarchitecture Transformations 244

11.2.5 Scheduling 245

11.2.5.1 Estimation of Minimal Resource and Latency Bounds 246

11.2.5.2 Scheduling Requirements 247

11.2.5.3 How to Implement Scheduling 249

11.2.5.4 Register Allocation 251

11.2.6 Producing RTL 252

11.3 Simplifying Control and Data Flow Graphs 252

11.3.1 DFG Optimizations 252

11.3.2 CFG Optimizations 254



230    11.1 Introduction

11.1 INTRODUCTION

The history of high-level synthesis (HLS) is long. HLS established its status as an active research topic 
in the EDA community by the late 1970s and was often introduced as “the next big thing” by the early 
1990s, following the significant and very successful adoption of logic synthesis [1]. However, only 
recently have commercial design projects started using HLS as the primary vehicle in the  hardware 
design flow. Even then, the commercial use of HLS was limited to design applications that were histor-
ically considered the sweet spot of HLS, dominated by data-processing operations with little control 
logic. This might suggest that HLS has had limited commercial success. On the other hand, industry 
users who have adopted HLS in their commercial design projects unanimously state that they would 
never go back to the register-transfer level (RTL)-based design flow. For them, HLS is an indispens-
able technology that enables them to achieve the quality of designs unattainable with an RTL-based 
design flow. Designs synthesized with HLS typically outperform manually written RTL designs in 
commercial design projects. Sometimes the HLS tools can better explore the design space to find 
more optimal implementations, but the main source of improvements is helping the design engineers 
identify the best microarchitectures for the target designs. When using HLS, designers can specify the 
intention by focusing only on a few key aspects of the architectures while leaving the tools to fill out 
the details automatically. With RTL design, all of those details must be explicitly specified, and while 
it is theoretically possible to spell out the details manually, the engineers or their management find it 
too time consuming and error prone to do so, especially when considering the effort needed to revise 
and maintain the code across multiple projects or to cope with specification changes.

The complexity of designs and stringent project schedules make the high reusability of design 
and verification assets an imperative requirement. Therefore, the type of designs that HLS is 
used for has been expanding from the traditional datapath-dominant designs to more control-
centric designs. There are several major semiconductor companies today that use HLS in con-
trol and communication IPs extensively—those IPs are integrated into a broad range of SoCs 
that impose very different requirements for the IPs in terms of implementation such as clock 
frequencies or performance constraints, as well as functionality on specific features or I/O inter-
face configurations. These companies concluded that they would not meet the project schedules 
if they needed to support all these diverse requirements by manually writing RTL models and 
verifying them. Instead, they write behavioral descriptions of the IPs in a highly configurable 
manner, so that the functionality and microarchitecture for individual design targets can be 
specified through simple reconfiguration of the same models, and HLS provides detailed imple-
mentations necessary to realize the specification. As a consequence, HLS is used in a diverse 
range of production designs of such IPs as memory and DMA controllers, cache controllers, 
power controllers, interconnect fabrics, bus interfaces, and network traffic switches, in addition 
to computation-acceleration IPs such as image and graphic processors and DSP algorithms.

In this chapter, we present technical details of a state-of-the-art HLS technology. We start by 
illustrating the steps that HLS tools execute in the synthesis procedure, and then we go into details 
of the individual steps using specific examples. Before doing so, let us first provide an overview, 
in the rest of this section, of the level of abstraction at which the behavioral descriptions for HLS 
are written, as well as types of design decisions and design transformations that HLS technology 
typically realizes. This overview will help the readers understand the kinds of automation that HLS 
technology focuses on and the kinds of design tasks that are left for humans to complete.
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11.1.1 HOW “HIGH” IS HLS ANYWAY?

As its name suggests, HLS usually starts from a design description that is at a higher level of abstrac-
tion than RTL, the most common design-entry point in use today. We will highlight several specific 
design aspects that engineers must explicitly deal with in RTL code, but can be abstracted in HLS.

Some of the abstraction in HLS comes from the input language. The input language of most of the 
HLS tools currently in use is based on C++, either the language directly or via the SystemC extension 
of C++ [25]. Tools based on proprietary languages have not gained much traction mostly because 
of the lack of compilers and debuggers and the lack of legacy code. SystemC is an extension of C++ 
that can be implemented by a C++ library, so it can be developed using standard C++ compilers and 
debuggers. The C++ language was developed to design complex software systems and has a number 
of features to facilitate abstraction and encapsulation, for example, templates, polymorphism, class 
inheritance, and abstract interfaces. C/C++ and SystemC-based HLS tools support most of these 
mechanisms. They allow the hardware designer to apply abstraction techniques developed for soft-
ware that go far beyond the capabilities of typical hardware design languages (HDLs) such as Verilog.

The examples used in this chapter will generally be in SystemC, but the issues discussed are generic 
to HLS, regardless of the input languages to be used. When language-specific differences arise, we 
point them out and examine them both from the point of view of C/C++ and SystemC-based tools.

In addition to C++ abstraction mechanisms, there are hardware-specific design issues that 
HLS tools can optimize, allowing additional abstraction of the design description. These capa-
bilities can improve designers’ productivity by automating tedious and error-prone tasks, such 
as specifying low-level details. They also make the input description easier to reuse by removing 
implementation-specific details and allowing tools to identify them instead, under specific imple-
mentation requirements provided to the tools.

HLS tools help RTL designers by automatically optimizing resource sharing. This makes it 
possible to better encapsulate the functionality, making it easier to understand and extend. They 
also do the scheduling, that is, the assignment of operations to cycles. This transformation is 
somewhat similar to retiming in logic synthesis, but HLS scheduling often changes the design 
much more significantly than logic synthesis retiming.

For example, consider the following code segments:

 res = p1*c1+p3*c3-p0*c0-p2*c2;

and
 t1 = (p0+p2–2*p1)*c4 +p1;
 t2 = (p1+p3–2*p2)*c4 +p2;
 res = t1*c5 + t2*(256-c5);

They represent alternative interpolation formulas for points p0,…,p3. A typical design may 
support different modes, and different formulas may be used in each mode. The first formula 
contains four multiplications. The second formula contains 6, but two of them are by a con-
stant 2, which does not require a multiplier for implementation. Thus, to implement either 
formula over two cycles, two multipliers are sufficient. Furthermore, since the two formulas 
are never evaluated at the same time, these multipliers can be shared. To achieve this in RTL, 
all the multiplexing of intermediate results would have to be done explicitly and it would be 
very hard to separate and recognize the original formulas. In HLS, the formulas can be encap-
sulated in separate functions, and all the details about scheduling the multiplications in two 
cycles and multiplexing the right operands to each one based on the state and active mode are 
handled by HLS tools. Furthermore, if in the future it becomes necessary to implement yet 
another formula using the same multipliers, all one needs to do is to add another function, and 
all the multiplexing details will be automatically regenerated.

Starting with design descriptions that do not describe pipelining, HLS tools can create 
 hardware that is pipelined, with computations that are properly balanced between the stages 
and a latency that is adjusted to optimize the design. If some of the design parameters, such as 
clock cycles or technology library, change, it is easy to rerun the tool and come up with a different 
design with a different number of stages and different computations in each stage. Generating 
such an alternative from an RTL implementation may take weeks.
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It is common in HLS to separate out the part of the design description that describes the compu-
tation from the parts that describe the communication. The communication parts can be developed 
separately, encapsulated in a library, and then reused in many different designs. These commu-
nication primitives can range from single point-to-point handshaking channels, to complex bus 
interfaces such as AXI4, relieving the designer from learning the details of the bus interface design, 
or even just from understanding all the details of the bus protocols. This leads to major savings in 
the overall design effort. We must note that it is possible to predesign bus interfaces in RTL as well. 
However, having these separate predefined components usually carries a performance penalty. In 
contrast, using HLS, even though communication primitives are specified separately, the tool will 
synthesize and optimize them together with computational parts, often leading to better designs.

Last but not least, HLS allows the designer to abstract the notion of state. In RTL, the 
designer needs to model design states explicitly by defining and manipulating state variables. 
HLS tools allow the designer to write in the more natural procedural way commonly used in 
software. HLS tools can automatically construct and implement control finite-state machine 
(FSMs) from such a description. Typically, the tools offer several FSM implementation options, 
which make it very easy to explore design alternatives that would require significant code 
changes if one needs to do in RTL.

Consider, for example, the code in Figure 11.1. HLS tools can process such code and extract 
the FSM(s) for it. The FSM for the main thread proc1 will have a state for each of the two wait() 
statements in its body, but there will also be additional states associated with functions called by 
proc1. In particular, if the put and get functions have one state each, which is true in a typical 
implementation, then function f1 adds one state and function f3 adds 3: two from calls to put 
and one for wait(). The FSM implementation options may include a single one-hot encoded FSM 
or separate coordinated FSMs for proc1, f1, and f3, possibly with different encodings. In addi-
tion, an HLS tool may choose to create additional states if that helps it satisfy design objectives. 
Note also that in this code, the details of pin-level communication have been completely hidden 
in a library that implements the put and get functions. This allows the designer to focus on the 
intended functionality without spending time on details of interface protocols.

11.1.2 DESIGN DECISIONS MADE BY HLS

The output of HLS is RTL. It is therefore necessary that HLS tools make design decisions on those 
aspects described in the previous section, which must exist in the RTL but are abstracted away 
in the input of HLS.

void DUT::proc1() {
 …
 while (true)
  req_code_t sel = req1.get();
  rsp1.put(sel);

  if (sel==0) {
   status = 1;
  } else if (sel==1) {
   f1();
  } else if (sel==2) {
   int v = f2();
   rsp2.put(v);
  } else if (sel==3) {
   f3();
  } else {
   flag=1;
   status = 2;
   wait();
  }
  wait();
 }
}

void DUT::f1() {
 rsp2.put(a * b * c * d);
}

int DUT::f2() {
 return a + b + c + d;
}

void DUT::f3() {
 rsp2.put(a * b − c * d);
 wait();
 rsp2.put(a * c − b * d);
}

FiGURe 11.1 Example of procedural code.
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Specifically, there are four primary types of design decisions made by HLS. The first type of 
decision is the structure of FSMs and the interactions among them. RTL specifies a set of inter-
acting FSMs, but states are not specified explicitly in the HLS input. The nature of interactions 
between the FSMs determines the concurrency of hardware components where each compo-
nent is associated with a single FSM. The HLS tools decide which parts of the behavior of the 
input description should be captured as single components and how these components should 
interact. Then for each component, the tools decide the number of states and their transitions 
to form an FSM.

In practice, today’s HLS tools often use structures given in the input description to define 
individual components. For example, functions in the input description could become single 
components, or a language-like SystemC can explicitly specify concurrent threads in the input 
description, for which the tools define separate components. The designers can take advantage 
of this to express the intended concurrency in the design. When they have a clear idea about 
how the component-level concurrency should be created in the resulting hardware, they can 
write the input description in such a way that the underlying structure of the description leads 
the HLS tools to make this decision according to the designers’ intention. The designers can also 
specify this intention separately from the input description. For example, some HLS tools allow 
the designers to specify which functions should be treated as single components and which ones 
should be absorbed into the components that call the functions.

The decisions about the interaction of these components determine how they communicate 
data between them. Let us consider a case where a function f() is called in another function, 
say main_control(), defined in the input behavioral description. Suppose that f() was selected to 
become a dedicated component, separate from main_control(). The simplest way to define the 
communication between them is that the component for main_control() assigns data used as the 
input of f() to some signals and asserts a control signal, indicating that the new data are avail-
able. The component for f() then retrieves the data and executes the function. Once completed, 
it assigns the results of the function to some signals and asserts a control signal to indicate that 
the result is available. The main_control() identifies that the control signal is asserted, and at that 
point it retrieves the data and acknowledges the retrieval. The component for f() then resets the 
control signal. There are some variations in this interaction. For example, the component for 
main_control() could wait for f() to complete its computation, whenever it assigns the input data 
for f(). Alternatively, it could proceed to other parts of the behavior of main_control() that do 
not depend on the result of f(), so that main_control() and f() could be executed in parallel in the 
resulting hardware. Further, it might be decided that main_control() sends new data to f(), before 
receiving the result from f() for the previous input data, which in effect implements a pipelined 
execution between the two components.

Similar to the structure of components, today’s HLS tools often provide these implementation 
options to the users of the tools, so that the designers can express their intentions. The tools usu-
ally also have some heuristics to determine which implementation options should be used based 
on their analysis of the input behavior.

Now the structure of the hardware components is defined, as well as the manner in which they 
interact. At this point, HLS tools decide the structure of the FSM associated with each compo-
nent. There are multiple factors to consider in defining the FSM structure, and we will introduce 
them gradually in the subsequent sections, starting from the simplest case.

The second type of decision made by HLS tools is to define hardware resources used for 
implementing the behavior. We often refer to this type of design decision as resource allo-
cation. Resources are of two kinds: computational resources and data storage resources. 
Computational resources implement operations given in the input behavior, such as additions, 
multiplications, comparisons, or compositions of such. Data storage resources determine how 
data should be retained. Computational resources access these resources for retrieving inputs 
of the computation or writing the outputs. Data storage resources could be simply wires, or 
ports if the data are at the inputs or outputs of the components, or registers if the data need 
to remain intact across multiple states of the FSMs, or some sort of memories that keep data 
and provide a particular way to access them. We will describe how the decisions are made to 
choose particular kinds of data storage resources in HLS tools in the succeeding sections, again 
starting from the simplest case.
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Computational resources also have variations. Even if they are all for the same type of compu-
tation, such as the addition of two numbers, there are different kinds of adders in terms of how 
the addition is done, each of which results in different implementation characteristics such as 
area or timing. HLS tools determine what kind of resources should be used, based on the context 
in which the computations are performed.

One of the contexts in which the resource allocation is determined is called scheduling, and 
this is the third type of design decision made in HLS. Scheduling decides which computations 
should be done at which states of the FSMs. Sometimes, there is no flexibility in making such a 
decision. For example, the communication between the hardware components might require 
that the result of a computation needs to be produced in the same state where the input data for 
the computation become available. In this case, this computation needs to be scheduled at this 
specific state. On the other hand, there are cases where the result of the computation is used in 
a state that can be reached only after many state transitions. In such a case, there are multiple 
possible states at which this computation might be done.

As you can see, these first three types of design decisions are all interdependent. This 
makes HLS a complex problem to solve, because decisions made for one type will impose 
certain consequences on choices one can make for the other types. In the rest of this chapter, 
we will provide more formal descriptions of the problems for which these types of design 
decision are made.

We stated in the beginning of this section that there are four types of decision made in 
HLS. What is the fourth one? It is the decision about interpreting the behavioral description 
given as input to HLS and defining the “objects” for which one can make the three types of 
design decisions described earlier. In this sense, this type of design decision has a slightly 
different nature from the other three types. That is, it is a decision about how HLS tools 
transform the behavioral descriptions to some data structures that represent the seman-
tics of the behavior to be processed, in a manner suitable for making the aforementioned 
design decisions.

This process usually involves not only identifying the underlying behavior of the design but 
also representing it using some internal data structures so that good design decisions can be 
made in the subsequent steps in HLS. For example, many behavioral descriptions used for today’s 
HLS employ procedural programming paradigms such as those found in C++. In these descrip-
tions, many computations that could be executed in parallel are written in a sequential manner. 
During the transformation of the description to the internal data structures, HLS tools analyze 
the data dependencies among the individual computations, so that such potential parallel execu-
tion could be explored as a part of the subsequent synthesis process. Similarly, some simplifica-
tions of the representation are also made, if those are good for the rest of the synthesis process 
regardless of specific design decisions. For example, if some constant numbers are used as a part 
of the behavior, then the tools propagate this information throughout the design, which could 
reduce the number of bits required for data storage resources. Some simplifications are also pos-
sible on the control structure of the behavior. For example, a complex branch structure could be 
simplified if the condition used in one branch can be subsumed by another branch.

11.1.3 DESIGN DECISIONS NOT MADE BY HLS

State-of-the-art HLS tools implement advanced techniques for effectively exploring the design 
space to make decisions on the aspects described in the previous section. At the same time, there 
are other aspects that need to be addressed, in order to produce high-quality hardware. Today’s 
HLS tools mostly leave design decisions on these aspects to humans, in such a way that designers 
can explicitly specify how the design should be implemented, while the tools perform the actual 
implementation accordingly.

These human design decisions are generally macroarchitectural decisions, correspond-
ing to the types of decisions that go into creating a high-level block diagram of the hard-
ware. There are four aspects to the architectural decisions—block-level parallelism and 
hierarchy, communication mechanisms between the blocks, usage of memories for storage, 
and timing budgets.
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The first aspect, the parallelism, is about how the target behavior is decomposed so that their 
components can be executed together. In hardware design, this parallelism can be customized 
for each specific target behavior, and this provides significant advantages for timing and power, 
compared to software implementation. HLS tools are good at exploring possible parallel imple-
mentations for certain cases. For example, if there are two addition operators in the design scope 
that is currently synthesized, the tools can often recognize that these operators could be executed 
in parallel and decide whether this should be indeed the option to use in the final implementa-
tion. However, the tools are not effective when the target objects are defined at a coarser level. 
If there is an iterative loop in the behavioral description, for example, today’s HLS tools are not 
always good at evaluating whether the individual iterations could be implemented in parallel or 
if it is better to implement each of the iterations sequentially. Also, they are not good at extract-
ing hierarchy out of a given behavioral description and then deciding whether those hierarchical 
components should be implemented in parallel or not. In these cases, humans often specify how 
the iterations of a loop should be implemented or create design hierarchy explicitly in the behav-
ioral description and specify what sort of parallel implementation should be used for the resulting 
design components.

The second aspect is about how those design components should interact. Whether they are 
implemented for parallel execution or not, the protocol and interfaces between two components 
need to be determined for implementation. In the previous section, we looked at the interaction 
between two functions, main_control() and f(). They need to exchange data to realize the target 
behavior, but there are multiple ways to organize this exchange, depending upon the amount of 
parallelism that must be achieved. HLS tools usually present multiple options for possible imple-
mentations, so that designers can choose one or explicitly write implementation mechanisms so 
that the tools implement them exactly as specified.

These two aspects are about implementation options on flows of operations, but a similar 
consideration exists also for data to be used for operations. In hardware design, it is neces-
sary to decide at design time which data should be stored using what kind of storage resources. 
Individual data could be stored in dedicated storage resources, or resources could be shared for 
storing multiple data. HLS tools can make effective decisions in general, but there is a case where 
designers know better the ideal implementation choices. This specific case is when data are stored 
in array constructs in the behavioral description. Multiple data can be stored in the elements of 
an array, and the index in the array is used to access them. Hardware can implement this exact 
mechanism by using a memory, where the index is used to define the addresses of the memory. 
However, operations that use these data might be implemented in parallel, and thus one might 
want to implement this array so that multiple data can be accessed in parallel. There are dif-
ferent ways to implement the parallel accesses. One way is to decompose the array elements so 
that they can be implemented with independent registers. Alternatively, one might want to keep 
the array as a memory, but multiple access ports are created. The adequate number of ports and 
access mechanisms depend upon how the operations that use the data are implemented, and 
one might want the HLS tool to decide the port structures based on the parallelism used in the 
implementation. Further, such memories might be already implemented efficiently and available 
as libraries, and one might want to use such a memory for the array rather than implementing it 
from scratch. Typically, HLS tools present the designer with possible implementation options for 
arrays, so that they can choose the adequate options and provide the information necessary to 
realize the implementation.

The fourth aspect that designers sometimes specify to the HLS tool explicitly is the timing 
budget. In design applications in which latency is important, the overall latency of the design 
is provided as a design constraint. Sometimes, it is difficult for tools to decompose this con-
straint for individual design components that constitute the whole design, and in such a case the 
designer specifies timing constraints for those components explicitly.

In all these aspects, it is not necessarily the case that the designer knows the best implementa-
tion options in the beginning. It is rather an interactive process between the human and the tools, 
where the designer can evaluate the synthesis results after some given implementation choices 
and then change some of the choices to iterate the synthesis. Therefore, it is very important for 
HLS tools to provide an effective analysis capability, with which the designer can quickly focus 
on critical regions of the design and steer the synthesis process.
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11.1.4 DEFINING BEHAVIOR OF HIGH-LEVEL MODELS

In most general terms, HLS transforms a high-level model (say a SystemC model) into a lower-
level model (typically RTL). Clearly, this transformation must preserve the behavior of the 
high-level model, but depending on the precise definition of what exactly is preserved, very dif-
ferent synthesis problems with different issues and benefits may arise. In this section, we describe 
 several commonly used alternatives.

All of these alternatives aim at preserving only the relation between inputs and outputs, leav-
ing to the synthesis tool complete freedom to rearrange the internal computation. Thus, the first 
step is to create a mapping between the inputs and the outputs of the two models. Doing so in 
SystemC is straightforward because the notion of sc_in and sc_out is very similar to the notion 
of port in HDLs (like input and output regs in Verilog). Still, there are some differences between 
ports in SystemC and HDLs that need to be carefully considered. First of all, C and C++ (and 
thus also SystemC) support only the binary representation where each bit can be 0 or 1. HDLs 
extend this by additional values, most notably X indicating undefined values. Also, Verilog sup-
ports only primitive data types like bit vectors and integers, while C/C++ support composite 
data types like structs.

For pure C/C++ high-level models, a mapping is defined from arguments of a function to 
ports of an RTL module. This mapping may be fully automatic or it may require some additional 
user input.

RTL assigns a cycle-based semantics to ports, where a port has a single definite value in every 
cycle. Thus, to be able to compare inputs and outputs of the two models, similar semantics need 
to be defined for high-level models. SystemC already defines such semantics, as long as the clock 
edges are the only events that explicitly depend on time. In practice, all HLS tools consider only 
such SystemC models. There is no universally accepted cycle-based semantics of pure C models 
of hardware, so one must be defined by each tool.

In addition to ports, hardware designs often use memories for communication between mod-
ules. In high-level models, memories are typically modeled as C/C++ arrays, although some tools 
also offer alternative modeling styles with special objects.

The simplest and the most restrictive notion of preserving behavior is a cycle-accurate 
 interpretation of high-level models. In this modeling approach, we assume that inputs of the two 
models have the same values at each cycle boundary, and then we require that the  outputs also have 
cycle-by-cycle equivalent values. This approach is the most restrictive because it does not allow 
the HLS tool to make any changes to the timing of I/O operations. It is also the least abstract 
approach because the user needs to explicitly ensure that the timing of I/O operations is such that 
there is sufficient time to complete all the computations that need to be done. Nevertheless, this 
approach is still significantly more abstract than RTL. Most of the main abstraction mechanisms 
are available at this level as well: sharing is abstracted, operations can be scheduled at different 
states, FSMs can be specified implicitly by procedural code, and there could be several options for 
their implementation. In addition, one can still use all the C++ abstraction techniques. However, 
compared to other approaches, the scheduling freedom is limited and automatic pipelining by 
HLS is not an option because exact I/O timing must be preserved.

In the strict cycle-accurate interpretation, the operations of reading and writing from a mem-
ory that is shared with other design components are treated as I/O operations. This means that in 
RTL they must appear exactly in the same cycle as in the high-level model.

While modeling at cycle-accurate level seems to limit the power of HLS technology, there are 
many design applications in practice for which this modeling style is natural. In those designs, 
exact timing requirements for the I/O operations are defined as a part of the design specifica-
tions. Hence, the designers’ primary value of using HLS is not about changing the I/O timing, but 
about the optimization of internal behavior and the coding style of the input models that allows 
more configurations and reuse compared to RTL, due to the abstraction made for the behavior. 
Another key advantage of the cycle-accurate approach is on the verification side. Since high-level 
and RTL models have equivalent I/O behavior, the verification environment can use either one 
of them without much adjustment, and so most of the verification tasks can be done even before 
RTL is available. Also, in this model, it is straightforward to formalize the notion of equivalence 
between the high-level and RTL models.
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In certain application domains, designs have strong throughput requirements (the num-
ber of inputs processed in a period of time), but the latency (the time spent processing a 
single input) is often not as relevant. This naturally leads to pipelined designs where pro-
cessing of multiple inputs is overlapped. To abstract pipelining details from the high-level 
model, one needs to relax the cycle-accuracy requirement on the I/O behavior. We call 
this relaxation a cycle-delayed model. In this model, an output in RTL does not have to be 
cycle-by-cycle equivalent to the matching output in the high-level model, but it has to be 
equivalent to a delayed version of that output. More precisely, if h(n) and r(n) denote match-
ing outputs in the high-level and RTL models, respectively (n = 0, 1, 2, represents the cycles), 
then we require that

 h(n) = r(n + d)

holds for all n. The parameter d corresponds to the pipeline depth. Usually, it is chosen by the 
HLS tool, but the user has the ability to limit it. It can be different for different outputs in the 
design. Clearly, the aforementioned relation says nothing about the first d values of the RTL out-
put. These cycles correspond to loading of the pipeline. Usually, the outputs are required to hold 
their reset value, but in some designs styles these values do not matter and an HLS tool may be 
able to take advantage of this to optimize the design.

While cycle-delayed models may accurately represent some simple pipelined designs, many 
more complex pipelining techniques may not preserve this simple relation. In particular, if pipe-
lines are allowed to stall or the pipelined implementation has a throughput that is different from 
the high-level model, then the cycle-delayed model is no longer applicable.

Cycle-delayed models require a more complex verification environment, because it must be aware 
of the pipeline depth. Further complexities arise if the pipeline depth is different for each output. This 
could be dealt with by making the verification environment parameterizable by pipeline depth(s), or 
additional signals can be added to the interface to indicate when the pipelines are loaded.

Another common class of designs are latency-insensitive designs [19,22] that can be seen as 
an implementation of dataflow process networks [21]. In this approach, communication between 
design components is not interpreted as waveforms carrying a value in every cycle, but rather as 
a stream of data tokens that is obtained by sampling the waveforms at certain points. Auxiliary 
handshaking signals controlled by both the sender and the receiver are used to determine at 
which point to sample the waveform, that is, at which point the token is transferred. Each design 
component processes input tokens and generates output tokens. When there are no tokens to 
process, the component idles.

The concept of streaming can be extended to components communicating through a shared 
memory. Typically, the sender and the receiver never access the memory at the same time. The 
handshaking defines how to transfer the access rights back and forth between the sender and the 
receiver. The content of the memory at the moment of access right transfer represents the token 
that has been exchanged.

To specify a high-level model of a latency-insensitive design, one needs to specify the protocol 
to exchange data tokens between design components that define the computation processing 
input tokens and generating output tokens. In C/C++-based HLS tools, the protocol is speci-
fied by selecting one of the predefined options built into the tool and the processing is specified 
by C/C++ code. In SystemC-based tools, both the protocols and the processing are specified by 
SystemC code. The part of the code describing the protocols needs to be specially designated 
because it is interpreted in a cycle-accurate way. In contrast, timing is abstracted from the code 
describing the data processing. Every tool provides some way to specify timing constraints for 
such code, but the tool is free to choose any timing consistent with these constraints. The parts 
of code describing the protocols are often referred to as protocol regions or simply protocols. The 
name for this design style comes from the fact that the functionality of the system is not changed 
if the latency of the individual streams or computations is changed. This is the major advantage of 
this style. It allows for optimizing design components without affecting the overall functionality. 
The disadvantage is that unless special care is taken to balance the system, a lot of components 
may spend a lot of time idling, which is not the optimal use of resources. Also, there is the over-
head of the handshaking logic. In general, this design style is well suited for applications where 
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timing is not critical or when combined with pipelining, for designs with strict throughput but 
loose latency constraints.

RTL implementations of high-level latency-insensitive models need to preserve only the 
streams of data tokens at each output. More precisely, HLS needs to ensure that if the input 
streams in the high-level and RTL models are the same, then the streams at the outputs must also 
be the same. The timing of individual tokens and the ordering between tokens on different out-
puts do not have to be preserved. The verification environments for latency-insensitive designs 
also have to be latency insensitive. They also need to take into account that RTL and high-level 
models may operate with very different latencies. In fact, for some designs under this class of 
modeling, it is not possible to determine an upper bound on the difference of latencies between 
the input and output models of HLS, and in that case it is known that the notion of equivalence 
between them cannot be formulated within the framework of finite-state systems [22].

For many designs, there exist models where the communication between the components is 
abstracted into transactions, without specifying the details of the protocols implementing these 
transactions. This modeling style is called transaction-level modeling (TLM) [14]. Transaction-level 
models are widely used for architecture exploration, in early SW development, and as reference mod-
els for verification. The basic advantage of TLM models is that they can be simulated much faster 
than any other model described here. To be synthesized, TLM models need to be refined by speci-
fying an implementation protocol for the transactions. This naturally leads to latency-insensitive 
designs, but it is also possible to refine TLM models into cycle-accurate or cycle-delayed models.

The acronym TLM has gained wide acceptance, and it is often being used as a synonym for 
any high-level model to which HLS is applied. We use it in a more limited way for models that 
abstract away the details of communication protocols.

11.2 HIGH-LEVEL SYNTHESIS BY EXAMPLE

This section provides an illustration of the HLS flow by means of an example. On one side the 
example is based on a very simple C-code structure for the ease of understanding. On the other 
hand, it is rich enough to introduce the main HLS steps and to present nontrivial trade-offs to be 
considered in the design process.

Let us assume that a system has a clear bottleneck in performance. One of the options is to 
move part of the software functionality into hardware, bearing in mind that hardware could 
deliver two to three orders of magnitude of speedup over software implementation. One might 
expect from the past experience of using software compilers that this would be a simple matter of 
finding the right HLS tool, setting a few parameters and enjoying the result. Unfortunately, today 
(and there is little hope of future change) there is no automatic push-button tool that takes a piece 
of software code and makes a “reasonable” hardware representation out of it. The reason is that 
contrary to traditional software compilation (where a sequential code is compiled into a lower 
level sequential code), hardware compilers take an input targeted at one architecture (software) 
and produce an output in a very different architecture (hardware) that is parallel by nature and 
typically cannot add resources (computational or memories) on the fly. The following is a list of 
tasks that a designer needs to take care of in order to use an HLS flow.

 1. Make sure that the software code satisfies conditions for hardware synthesizability.
  This requires avoiding recursion and dynamic memory allocation because hardware has 

a static architecture that must be defined at compile time. Some limited forms of recur-
sion and dynamic allocation (when the depth of recursion stack or the memory size are 
known statically) might be feasible, depending on how capable the HLS tool is, but in 
general a designer is discouraged from using these features. Note that in the early days 
of HLS, the use of pointers was limited as well. Fortunately, with the advances in the 
field, this limitation was lifted, and now most commercial tools happily accept code with 
pointers and pointer arithmetic, with very few limitations.

 2. Explicitly reveal the coarse grain parallelism.
  This task is somewhat similar to preparing a program for parallel computing. It requires 

splitting a sequential program into a set of concurrent threads with predefined interfaces. 
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Note that revealing low-level parallelism is not required, since this is a task that is well 
understood by HLS tools, for example, given statements x = b + c; y = b * c; the tool 
would see that these two operations could be done in any order or simultaneously.

 3. Provide information about hardware platform and design constraints.
  There are two main hardware platforms that HLS tools target: ASICs and FPGAs. The 

information about them is captured by specifying an underlying ASIC technology library 
or FPGA family type. Design intent about the implementation performance is provided 
by setting the clock period and latency constraints, which specify (optionally) an upper 
bound on the number of clock cycles to execute a particular piece of code.

 4. Define a desired microarchitecture.
  The quality requirements (whether it is area, power, or combination of both) are of great 

importance in an HLS flow. If an implementation does not fit into an area/power enve-
lope, it cannot be used as a part of a system and it is useless. The optimization space in 
minimizing the cost of hardware is much bigger than in software compilation. The deci-
sions about loop unrolling or pipelining, memory architecture, or input/output protocols 
have a crucial impact on implementation cost (see, e.g., [3] where an order of magni-
tude difference in area and power numbers were observed for IDCT code implementa-
tions under different microarchitecture choices). There is little hope of coming up with 
an automatic solution for this problem that would work well for all cases. Instead, HLS 
tools provide “knobs” for the user to specify his or her intent about the implementation. 
An essential part of the synthesis process is the design exploration phase, when the user 
explores architectural options playing what-if scenarios and observing the tool results.

Figure 11.2 captures the aforementioned differences between software and hardware com-
pilation flows. One can see that software compilation is a push-button flow with the tool being 
almost a black box for the user, while targeting hardware calls for user intervention and interac-
tion with the tool at many steps (the tool is no longer a black box).
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FiGURe 11.2 Compilation flows in software (a) and hardware (b).
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The process of preparing sequential C-code for HLS is illustrated by the following exam-
ple, showing the (simplified) conversion of the hue–saturation–light format into the more 
conventional red–green–blue (RGB) format (the code as follows generates the red com-
ponent only).

int convertHSL2R(int hue,int light,int sat)
// function for the HLS->R conversion
// similar functions for green and blue are omitted for simplicity.
{
 int m1, m2, red;
 if (light < 64) m2 = light +light*sat/128;
 else m2 = light + sat - light*sat/128;
 m1 = 2*light - m2;
 red = m1;
 if (hue < 60) { 
 red = m1 + (m2 - m1)*hue/64);
 } else if (hue < 180) { 
 red = m2;
 } else if (hue < 240) 
 red =(m1 + (m2 - m1)*(240 - hue)/64);
 }
 return red; 
}

 1. Threading and interface identification
  This function is a simple example and does not require splitting into several threads. 

The whole function becomes a thread. The function reads three input values hue, 
light, and saturation and produces a single output value red. Inputs and outputs in the 
function are conveniently specified as 32-bit integers. This is very typical in software 
because it does not incur large penalties (except for memory-critical applications) 
and keeps the functionality data agnostic. On the other hand, sizing the datapath to 
true bit widths is of paramount importance to achieve good quality of results (QoR) 
when designing hardware. In the aforementioned example, the ranges for inputs and 
outputs are the following: 0 ≤ hue ≤ 360, 0 ≤ light, sat ≤ 128, 0 ≤ red ≤ 256. This is 
explicitly specified in the input specification for synthesis (see the following).

  Considerations similar to this must be made for the green and blue values, although 
our focus in this example is only on the red value computation. The computations 
on these different colors could be done in independent threads, or they could be all 
in a single thread. The designers decide the thread structure and write the functions 
accordingly.

 2. Specifying design constraints
  Let us assume that the required throughput for the format conversion is 100 MHz, that 

is, a new pixel needs to be produced every 10 ns, and the clock cycle is 5 ns. For nonpipe-
lined implementation, this defines the latency to be no greater than two cycles per pixel 
computation. The aforementioned latency constraint can be specified in different ways: 
(a) through latency annotations that an HLS tool understands or (b) by adding timing 
statements explicitly (wait() statements in SystemC).

The input specification in SystemC for the convertHSL2R is shown as follows:

class convertHSL2R: public sc_module {
 sc_in<bool> clk, rst;
 sc_in<sc_uint<7>> light, sat;
 sc_in<sc_uint<9>> hue;
 sc_out<sc_uint<8>> red;
 void thread();
 …
};
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void convertHSL2R::thread() {
 while (true) {
 sc_uint<7> li, sa;
 sc_uint<9> hu;
 sc_uint<8> re;
 li = light.read();
 sa = sat.read();
 hu = hue.read();
 // From here the code is not changed
 int m1, m2;
 if (li < 64) m2 = li +li*sa/128;
 else m2 = li + sa - li*sa/128;
 m1 = 2*li - m2;
 re = m1;
 if (hu < 60) { 
 re = m1 + (m2 - m1)*hu/64);
 } else if (hu < 180) { 
 re = m2;
 } else if (hu < 240) 
 re =(m1 + (m2 - m1)*(240 - hu)/64);
 }
 // Latency of computation is 2
 wait();
 wait();
 red.write(re); 
 } // end while
} // end thread

Note that apart from explicit specification of interfaces, the computation part is almost 
unchanged in SystemC compared to the original code. In particular, the designer does not 
need to care about the true bit widths of internal variables (m1 and m2 are kept integer), 
because it is the job of the HLS tool itself to size them properly based on the I/O interface 
bit widths. The SystemC specification of convertHSL2R is used in this chapter to illustrate 
all the steps of the synthesis f low. This specification is intentionally simplified to ease the 
discussion. We will refine the f low while using more elaborated specification constructs in 
later sections.

Our example of convertHSL2R is limited in terms of

 1. Control structures
  It represents a one-directional computation flow that does not contain loops or functions.
 2. Explicit timing
  The timing intent of the designer is expressed by explicit wait() statements added to the 

input source. It assumes that there is no freedom in changing the latency of that com-
putation and that the targeted RTL implementation should be IO cycle accurate with 
respect to the input source.

 3. Data types and types of operations
  The example is solely restricted to integer data types (floating and fixed-point compu-

tations are significantly more complicated to handle in hardware). Representing soft-
ware arrays in hardware is another source of synthesis complications. Typically, arrays 
are mapped onto memory modules with predefined interfaces for reading and writing. 
We postpone the discussion of this mapping until later and do not use arrays in this 
illustrative example.

11.2.1 HLS PROBLEM

Figure 11.3 shows the set of the tasks that typical HLS tools perform. We consider these tasks in 
more detail in the following.
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11.2.2 ELABORATION

In this step, the input software model and design constraints are elaborated into an internal repre-
sentation that is suitable for hardware synthesis. Many representations have been proposed in the 
literature [2,6,7,9–11,27]. While they vary in details due to specific focuses on optimizations, they 
typically use graph structures to represent the design behavior to be synthesized, as well as the hard-
ware resources and structures to be used for their implementation, so that the HLS design decisions 
described in Section 11.1.2 can be made efficiently. For the behavioral part, a good representation is 
given by the control and data flow graph (CDFG) model, which has become a de facto standard [9].

A CDFG can be formally represented as two flow graphs: control (CFG) and data (DFG) flow 
graphs. The nodes of the CFG represent control flow or latency. One can distinguish the following 
types of nodes in a CFG:

 1. A unique origin node that represents the start of the thread. It has no input edges and a 
single output edge.

 2. A fork node with a single input and multiple output edges to represent branching due to 
conditional statements in C code such as if, switch, or loop exit.

 3. A join node with multiple input edges and a single output edge to merge conditional 
branches and to represent loop iterations (one input edge from the code before the loop, 
one from the body of the loop).

 4. A simple node with a single input and a single output edge. These nodes come in two 
flavors: they either serve as a placeholder for a reference point in the control flow (e.g., a 
label in the C code) or correspond to “wait()” calls in SystemC (called state nodes).
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FiGURe 11.3 Typical HLS flow.
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From the aforementioned description of node types, it is easy to see that the CFG abstracts the com-
putation and shows only the control paths and their latency. Sometimes, the CFG model is extended 
to include the so-called compound nodes [9,18] to form hierarchical structures such as if-then-else 
blocks, switch-case blocks, and loop nodes. The advantage is to gain in terms of scalability of the 
CFG representation. However, scalability comes at the expense of losing some optimization oppor-
tunities due to additional hierarchy levels, hence using this extension calls for cautious evaluation.

The DFG captures data transformations for a given behavior/thread. Its main objects are 
operations, which roughly correspond to simple (single operator) expressions in the source code. 
Variables in a DFG are represented in static single assignment (SSA) form in which all operation 
outputs (variables) are unique [4]. When a variable in the input source is assigned conditionally 
(say in two branches of an if-then-else statement), its value is derived from different computation 
branches using a special DFG operation MUX (also called Phi node).

Figure 11.4 shows the CFG and DFG for the convertHSLToR example. Variables m2 and re 
are assigned conditionally in the original specification. In the DFG, the assembling of their 
values from different conditional branches is performed by the corresponding DFG MUXes. 
The relationship between DFG and CFG is provided through a mapping from DFG operations 
to CFG edges. The first such mapping that is established after elaboration is called birthday 
mapping, which associates each DFG operation with the edge of the CFG where this operation 
is born according to the input source. For example, operation SUB2 (m1 = sa − m2) is associ-
ated with the out-edge of the if-bottom node in the CFG, while operations SUB3 (240 − hu) and 
SUB4 (m1 − m2) are associated with edges c4 and c2 of the CFG.
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11.2.3 OPTIMIZATION

We use the term “optimization” to specifically refer to the step of simplifying as much as pos-
sible the internal representation (CFG and DFG) before going to scheduling. The implications 
are much more important here than in software compilation, where getting the smallest pos-
sible size of the executable code is nice but not necessary. In HLS, redundant (or more com-
plex than needed) operations in the DFG or a larger size of the CFG are directly translated 
into extra hardware, which in the end makes the implemented circuit too expensive and hence 
unusable in the highly competitive market of hardware IPs. An additional pressure comes 
from the fact that HLS technology often competes with manual RTL flows, where human 
designers have accumulated a lot of experience in squeezing gates out of their circuits. This 
is why optimization is very important for HLS. Optimization methods range from traditional 
compiler optimizations, such as dead code elimination, constant folding and propagation, and 
common subexpression extraction,  to ones that are more specific to hardware and HLS. The 
most prominent example of hardware-specific optimization is bit trimming, which is based 
on careful range analysis of the operands, and then sizing the datapath to minimal bit widths. 
We will discuss HLS-specific optimizations (in particular those that simplify the CFG) in 
later sections.

An attentive reader may notice several aspects of our simple example from Figure 11.4b:

 1. The application of common subexpression extraction for li * si (see operation MUL that 
feeds both branches in the computation of m2)

 2. The application of strength reduction to first replace division by 128 and 64 with shifts, 
which are further implemented by proper wiring of the operation outputs

In addition (though it is not shown in Figure 11.4b), the datapath for the computation is bit 
trimmed, resulting in operations that range from 7 to 11 bits.

11.2.4 MICROARCHITECTURE TRANSFORMATIONS

The quality of implementation after synthesis strongly depends upon the previously made archi-
tectural choices, which often require input from the designer. A good tool should provide flex-
ibility for specifying design intent to achieve optimal results. The design decisions taken at this 
step fall into two main categories:

 1. Restructuring control or design hierarchy
  Control restructuring typically chooses how to handle loops and/or functions in the 

computation. The designer has several options: loops can be unrolled or split, two or 
more loops can be merged into a single one, and loops can be pipelined letting iterations 
overlap. The design hierarchy coming from the source code is defined by functions and 
their calling graph. Functions in software are mainly used for two reasons (a) to reuse 
repeated functionality and (b) to encapsulate functionality in a single object, hiding 
internal details. While the goal of reuse is meaningful in hardware as well, encapsula-
tion is less justifiable because it limits optimization opportunities, by creating a bound-
ary between the caller and the called functions. When targeting hardware, the designer 
needs to reconsider the structure of the design as specified in the source code and decide 
which functions should be preserved (and implemented as a separate entity) and which 
ones should be merged (inlined) into the caller.

 2. Specifying memory architecture
  Decisions on how to store data to be used in computations are of paramount importance 

for hardware synthesis. The most economical storage is provided by dedicated hardware 
memories. However, it has a negative impact on the amount of parallelism to access 
data (limited by memory bandwidth, i.e., by the number of ports and their widths). The 
opposite extreme is provided by flattening data (arrays or structs) to a set of scalar data 
elements, each of which could be accessed separately. This is more costly in terms of area 
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than memories, but it gives more flexibility in accessing the data elements. In addition, 
when implementing a memory, the designer needs to take into consideration whether 
this memory will be visible by other processes (and thus require multiple access support) 
or will be serving as a local scratchpad for a single process.

To help designers with making educated choices about microarchitecture, HLS tools should pro-
vide a reasonable set of defaults: for example, automatically inline a function when it is called only 
once and flatten an array when its size is smaller than a threshold. However, the solution space 
of microarchitecture choices is very large and decisions are highly interdependent (e.g., unrolling 
a loop that calls a function may make it too costly to inline this function afterward). Therefore, 
even with good defaults, specifying microarchitecture demands human interaction and it is a 
significant part of the design exploration process. After all, this is why designing with HLS is 
exciting—evaluating different architectures in a matter of minutes or hours is something that 
RTL designers can only dream of.

Our simple example of convertHSLToR does not contain internal loops or functions. For this 
example, the only possible designer choice is whether to implement the main loop “as is” or to 
pipeline it. This is fully defined by the required throughput and cycle time. With a simple back-
of-the-envelope computation, one can quickly confirm that the computation fits in two cycles 
of 5 ns each, and therefore the desired throughput of 100 MHz is achieved without the need to 
pipeline the loop.

11.2.5 SCHEDULING

The final goal of HLS is to produce RTL. In RTL, the functionality is described by an explicit FSM, 
and the logic computing next states and outputs is associated with state transitions. The ultimate 
goal of the scheduling step is to make explicit which resources perform the computation and how 
the computational pieces are associated with states of the thread. Note that separation of control 
and computation in the form of the CFG and DFG helps significantly in formulating the schedul-
ing problem. Indeed, one can clearly see a close similarity between the CFG and the FSM models. 
The main difference is that the CFG is explicit about mutually exclusive paths, while in an FSM 
all paths between identical source and destination states are merged in a single transition. For 
example, in Figure 11.4a the CFG shows paths between state2 and state1 around the loop explic-
itly (using two fork–join node pairs), while in the FSM there is a single transition state2 → state1 
with an enabling condition (if_true + if_ false) & (case_c1 + case_c2 + case_c3 + case_c4).

With this observation, the scheduling problem can be formulated as finding of two mappings:

 ◾ Mapping sched: dfg_operations → cfg_edges, which defines the edge assigned to each 
operation as the result of its scheduling

 ◾ Mapping res: dfg_operations → resources, which defines which hardware instance imple-
ments an operation

The difficulty in finding these mappings is that their right-hand sides are not fixed: in general, 
there is freedom to both modify the CFG by adding states and/or to enlarge the set of resources, 
in order to satisfy scheduling constraints. Thus, scheduling can be thought of as a walk in the 
solution space defined by sets of resources and by CFG latencies (defined by the states cur-
rently present in CFG) with the goal of finding solutions in which none of the quality param-
eters (resource count or latency) can be improved without worsening the other (known as Pareto 
points) (see Figure 11.5a). At each step of this walk, a fixed latency/fixed resource scheduling 
problem is solved (if it is feasible), and when this succeeds, an RTL is produced. A failure to solve 
it shows that the problem is overconstrained and needs to be relaxed by increasing latency or 
adding resources. This is done by the Analyzer, which checks the reasons of failure and chooses 
the best relaxation to apply (see Figure 11.5b). The Analyzer can be implemented in many differ-
ent ways, for example, as a domain-targeted expert system and as a general optimization engine 
(using, e.g., simulated annealing, genetic programming, integer linear programming [ILP], linear 
programming [LP], and satisfiability [SAT]), or rely on specific heuristics.
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Note that checking whether a given instance of the scheduling problem under fixed constraints 
(resources/latency) is feasible is known to be a difficult problem (NP-complete [5]). Hence, there 
is little hope to be able to solve it exactly, and the development of efficient heuristics is needed. 
The choice of the starting point when performing a scheduling walk (such as in Figure 11.5a) is 
very important: choosing it too conservatively increases scheduling time while overapproximat-
ing the number of needed resources or latency leads to lower implementation quality.

11.2.5.1 ESTIMATION OF MINIMAL RESOURCE AND LATENCY BOUNDS

Every DFG operation must be related to a resource that is capable of implementing its functional-
ity. For many operations this mapping is one to one (Figure 11.6a) but some exceptions exist when 
several types of resources are capable of implementing the same type of operation (see Figure 
11.6b where a “+” operation might be implemented by an adder or an adder/subtractor).

Resources have associated costs in terms of area and delay (see Figure 11.6b) that could 
be obtained by synthesizing them in the given technology library. Choosing the initial set of 
resources is a nontrivial problem in itself. The naive solution that provides a single resource 
for every operation type is too conservative. Indeed, it assumes that a DFG with, for example, 
n additions can be implemented with a single adder, while this is often not feasible under 
latency constraints. A tighter bound could be obtained by considering the distribution of 
operations within the CFG, taking into account their mobility. For example, if in a loop with 
latency m, n operations of type R are chained to produce a value used in every loop iteration, 
then clearly the lower bound on the number of resources of type R is given by  n m/  . This lower 
bound assumes “perfect sharing” of resources among loop operations, which may or may not 
be feasible.
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Computation of a tighter (than naive) lower bound is illustrated by the estimation of the num-
ber of resources in the convertHSLToR example. Typically, only arithmetic operations (multi-
plications, additions, and subtractions) and user-defined operations (noninlined functions) are 
worth sharing. The rest of the DFG operations are simple (MUXes, logical, and comparisons to 
constants); hence, the cost of MUXes when sharing these operations would be excessive. In this 
case, the HLS tool would create an implementation using dedicated resources. The SystemC 
code for this example is a loop with a latency of two states, containing three multiplications 
(remember that common subexpression extraction merged two multiplications together), with 
two multiplications being mutually exclusive (as they are residing in opposite branches of an 
if-then-else statement). This gives a lower bound of  2 2/  = 1 multiplier to implement this algo-
rithm. Assuming additions and subtractions to be implemented by universal adder–subtractor 
resources (addsub), we find nine operations altogether; considering mutual exclusivity, we have 
at most five of them to be executed in two states, which gives  5 2/  = 3 addsub resources as a 
minimal lower bound.
The generalization of this problem is more complicated because of the following reasons:

 1. The effect of mutual exclusivity among operations is not straightforward. This informa-
tion can be approximated by analyzing the conditions under which operations occur in 
the CDFG. Note that this is only an approximation, because originally mutually exclu-
sive operations might be scheduled concurrently due to code motion (e.g., speculation).

 2. Bit widths of operations must be taken into account in addition to operation types. 
Suppose that a loop with two states contains a 32-bit addition and a 4-bit addition. 
There is a trade-off in deciding whether a 4-bit addition should be mapped (bound) 
to a 32-bit adder (which is slow when measured by its worst-case delay) or a dedi-
cated faster 4-bit adder needs to be created (possibly increasing area but reducing 
estimated delay).

 3. Loops may provide too coarse a granularity to reason about resource contention. The 
mobility of operations might be restricted to a single state or a sequence of states. Formal 
reasoning about resource contention must be done on connected subgraphs within the 
CFG that correspond to operation mobility intervals. A trade-off between the number 
of considered subgraphs and their ability to contribute to the lower bound needs to be 
made, in order to keep the problem manageable.

Ideas similar to resource estimations can be exploited for deriving a minimal bound on the initial 
latency of each innermost loop body in a thread to start scheduling it. In this case, the tool needs 
to take into account multicycle and fixed-cardinality operations (e.g., memory accesses) and to 
compute how many cycles are required to fit these operations within the loop body. For example, 
if a specification contains a loop with two accesses to a single-port single-cycle memory, then the 
latency of the loop cannot be less than 2.

Note that due to heuristic nature of scheduling procedures, choosing a proper starting point 
for exploring the solution space is important not only to converge more quickly but for the final 
QoR as well. This suggests that investing into tightening the minimal bounds for resources and 
latency before scheduling is definitely worthwhile.

11.2.5.2 SCHEDULING REQUIREMENTS

Research on scheduling is very rich and summarizing it briefly is challenging (a good collection 
of pointers can be found in Reference 26). Instead, we choose to provide readers with a map that 
helps in navigating through hundreds of papers on the topic. We start from the most important 
requirements for scheduling algorithms that any successful approach must satisfy.

11.2.5.2.1 Scalability
This requirement is mostly driven by the size of the graphs that the scheduler needs to deal 
with. In industrial applications, it is quite possible to encounter a DFG with more than 10,000 
operations (especially after extensive use of unrolling and inlining) and a CFG with hundreds 
of states. A typical arithmetic operation in a large design can be implemented with 2–20 types of 
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 different resources, for example, considering bit widths and architectures (e.g., ripple vs. carry-
look-ahead). Let us assume 10 types of resources on average. One may need to solve 100 fixed 
latency/fixed resource problems (called scheduling steps) before reaching a fixed point in the 
scheduling walk discussed earlier. This gives a problem complexity in the order of 109 choices to 
be made and demands for algorithms with linear or pseudolinear complexity at most. In particu-
lar, it makes clear that scheduling approaches based on ILP, which were quite popular at some 
point, are of theoretical value only.

11.2.5.2.2 Accuracy of Timing Modeling
The scalability requirement imposes constraints on how complicated the modeling of resource 
delays should be. In logic synthesis, a 16-bit adder is characterized by many timing arcs corre-
sponding to combinational paths from inputs to outputs (32 for the output MSB only), but using 
the same approach in HLS might affect the scalability requirement. Different approaches have 
been proposed in the literature to address this issue, ranging from characterizing resources by 
deterministic delays (single or multiple) [28], to statistical characterization [29], to trading off 
between accuracy and speed of timing computations.

Regardless of the HLS approaches for delay characterization, there are several important 
aspects to be considered, based on the nature of resource delays in state-of-the-art hardware 
designs. Consider the following table, which shows the maximum pin-to-pin delays obtained by 
logic synthesis using the TSMC_45nm_typical library for several resources, when logic synthesis 
is constrained to produce the fastest possible implementations.
Several observations can be made from this table:

 1. With a clock cycle of 2 ns, commonly seen in consumer electronic devices (500 MHz 
clock rate), three multipliers or nine adders can perform their computation in a single 
clock cycle. Hence, any realistic approach must consider scheduling multiple operations 
in a single clock cycle (also called operation chaining), unlike a large number of theoreti-
cal approaches proposing scheduling a single operation on a resource in each control step.

 2. Delays of resources vary widely and any assumption on their uniformity (such as unit 
delays) is not practical.

 3. For high-frequency design (e.g., with a 2 GHz clock rate), the MUX delay is noticeable 
(takes about 8% of the clock cycle) and cannot be neglected.

As we mentioned earlier, timing modeling in HLS is less accurate than in logic synthesis because 
scalability requirements prevent us from exploiting pin-to-pin delays. By reducing the number 
of timing arcs when characterizing resources, the timing modeling is performed in a conserva-
tive way. This is needed to ensure timing convergence in the HLS-based design flow, that is, once 
timing is met in HLS, it should also be met in logic synthesis. It also helps to simplify HLS tim-
ing modeling by ignoring second-order timing effects like wire loads, which are very difficult to 
estimate up front, when the netlist is still under construction. However, the observation about the 
significance of MUX delays (see Table 11.1) prevents us from overly exploiting these conservative 
margins. In particular, it is not possible to ignore the impact of sharing on timing: resource and 
register sharing MUXes must be modeled explicitly to avoid timing violations in logic synthesis 
due to MUX delays and false paths (see the discussion in Section 11.2.5.4 for more details).

11.2.5.2.3 Controllability
The huge size of the optimization space in HLS is both a blessing and a curse. On one side it 
presents a lot of possibilities to achieve better implementation, but on the other (bearing in 

tABLe 11.1  Maximum Delays obtained after Logic Synthesis under 
constraints to Produce Fastest implementations

Resource Mul (16 bit) Add (16 bit) MUX/control MUX/Data 

Delay (ps) 576 209 26 38
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mind the heuristic nature of synthesis) it makes it easy for an automated optimization tool to 
end up being stuck in local minima. Some form of designer guidance is needed and inevitable. 
A designer needs to have a way to inform the tool about the design intent, provided in the form 
of constraints. Information such as “this loop is critical and should be synthesized separately 
from the rest of the thread” or “at most N multipliers should be used,” or “for this design 
low power is the most critical constraint,” will steer scheduling in very different directions. 
The other part of synthesis control provides capabilities to exactly replay the same synthesis 
decisions between different runs.

The controllability requirements make it difficult to build HLS synthesis based on general 
optimization engines such as simulated annealing (SA), genetic algorithms (GA, Tabu), or SAT-
based approaches. These engines might be still helpful in providing quick and dirty solutions (to 
be refined by a more specific synthesis flow) but they are clearly not self-sufficient.

Figure 11.7 summarizes the aforementioned requirements graphically. The acceptable sched-
uling approaches should occupy the space outside the triangle created by requirements 1–3. The 
space under the triangle shows some of the approaches that are impractical because they violate 
one of the requirements. This map provides a quick sanity check when choosing a scheduling 
method.

11.2.5.3 HOW TO IMPLEMENT SCHEDULING

Each scheduling iteration (which solves a fixed latency/resource problem—see Figure 11.5) is 
represented conceptually as a bin packing problem instance [9], where bins are CFG edges and 
items to pack are DFG operations. Bin packing proceeds until either the timing constraint 
(clock period) or a resource bound (number of available resources of a given type) is violated 
for a clock cycle. Timing is checked by building a netlist corresponding to the set of operations 
that are scheduled in the current clock cycle (possibly from several CFG edges belonging to the 
same state).

The pseudocode for a typical scheduling procedure is shown in Figure 11.8. The priority func-
tion takes into account the mobility of the operations, their complexity, the size of their fanout 
cones, etc. Examples of different definitions of this function are list scheduling [9], force-directed 
scheduling [8], and other approaches.

Applying this procedure to the CFG/DFG of the convertHSLToR example gives the schedule 
in Figure 11.9, where the binding of operations to resources is shown with dotted arrows. Note 
that the original bound on the number of multipliers turned out to be precise, while schedul-
ing had to relax the bound for addsubs, by adding two more resources (five versus the initially 
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estimated  three). The explanation comes from restrictions to avoid structural combinational 
cycles during scheduling. Indeed, addsub0 and addsub1 are scheduled in state1 in the fanout cone 
of the multiplier, while operations sub3, sub4, and sub5 are in the fanin cone of this multiplier in 
state2. Sharing sub3, sub4, or sub5 on addsub0 and addsub1 will create a (false) combinational 
cycle between the multiplier and the addsubs. These cycles must be accounted for in scheduling 
and avoided by adding more resources (addsub3 and addsub4).
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FiGURe 11.9 Schedule for convertHSLToR example.

SCHEDULE_(CFG C, DFG D, clock period Tclk, Library L, User Constraints U) {
forall edges in CFG {
 Ready ← operations ready to schedule;
 Compute_op_priorities(Ready);
 Op_best ← highest priority op;
 Op_best_success = false;
 Op_res ← resources compatible with op_best;
 forall r in Op_res {
 if (r is available at edge e
 && binding op_best on r satisfies timing)
 Op_best_success = true;
 break;
 }
 }
 if(!op_best_success and e is the last edge to which op_best can be scheduled ){
 Failed_ops ← op_best;
 } else {Update(op_best, Ready);}
 } // end of forall edges in CFG
 if (Failed_ops ! = Ø) {return failure;}
}

FiGURe 11.8 Scheduling procedure.
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11.2.5.4 REGISTER ALLOCATION

When operation op is scheduled in state si and its result is consumed in a later state sj, the output 
values of op must be stored in all states between si and sj. The task of assigning values to be stored 
into registers is called register allocation. This task is somewhat simpler than the general task of 
assigning operations to resources for two reasons:

 1. Even though the types of registers may vary (with different reset and enabling func-
tionality), their timing characteristics are very close and the problem can be reduced to 
binding operation values to a single type of resource: a “universal” register.

 2. Sharing of registers is relatively easy to account for, by adding to each register the delay 
of a sharing MUX. This is because during register sharing only the fanin logic needs 
to be considered, which creates a one-sided timing constraint that is easy to satisfy. 
Figure 11.10a shows timing before and after sharing of registers. Control and datapaths 
end up on maximal delays (denoted as fractions of clock cycle T) but they are still within 
the clock period. This is very different from the case of operations sharing the same 
resource, where both fanin and fanout cones matter and timing can be easily violated 
(see Figure 11.10b). The reason for this difference is that registers mark the start and end 
of all timing paths.

A scheduled DFG uniquely defines values to store and their lifespan intervals, that is, the states 
during which they should be stored. Two values can share the same register if they belong to 
mutually exclusive branches of computation or their lifespans do not overlap. Finding a mini-
mum number of registers for a given set of states (defined by the CFG) can be reduced to applying 
the left-edge algorithm taking into account mutual exclusivity and lifespans. This problem can be 
solved in polynomial time [9].

Targeting a minimal bound on the number of registers might not provide the best result, 
because achieving this goal typically results in some values moving from register to register in 
different states. Moving values has a negative impact on both power and the size of MUXes, and 
it should be avoided whenever possible.

Although (as was stated earlier) there are good arguments for decoupling scheduling and reg-
ister allocation, combining these steps may provide some benefits, as Figure 11.11 illustrates. 
Let us assume that operations are scheduled in their birthday positions, as in the SystemC code 
in Figure 11.11a, and we are about to schedule operation y = a + b in state s3. When deciding 
about sharing this operation with the previously scheduled x = t1 + t2, a conservative view on 
 operand locations must be taken and sharing MUXes must be inserted into the netlist (see Figure 
11.11b). These MUXes disappear if after scheduling we share registers for operands t1,a and t2,b. 
But in the scheduling step we do need to take into account the delays of sharing MUXes when 
considering state s3. When scheduling and allocation are done simultaneously, it is possible to 
reduce pessimism in timing analysis and achieve the simplified datapath of Figure 11.11c from 
the beginning.
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This however significantly increases the complexity of the scheduling task, which may 
 overweigh the advantages of merging these synthesis steps.

11.2.6 PRODUCING RTL

A design in which all operations are scheduled and the values are assigned to registers is ready 
for RTL generation. There are several ways of generating RTL. A typical RTL model consists of 
the following parts:

 1. Sequential part
  It contains the reset actions for state, output, and variable registers (initialization part) 

and their updates during normal functioning, where combinational “d-values” of regis-
ter inputs are written to “q-values” of register outputs.

 2. Combinational part that describes
 a. Control in the form of an FSM
  The FSM is extracted from the CFG, with a state encoding strategy (e.g., one hot) 

specified by the user.
 b. Datapath
  It specifies resources introduced by scheduling and their connections. For shared 

resources, inputs are taken from sharing MUXes. The latter can be specified through 
case statements controlled by the FSM.

In addition to the RTL model output, reports about the results of synthesis, as well as simu-
lation-only models, can be generated. The latter are behavioral Verilog models that are neither 
synthesizable nor register and resource accurate but simulate faster than RTL and are used for 
debug and verification.

We have now walked through the main steps of the HLS process with an illustrative example. 
In the subsequent sections, we will describe details on some key aspects that need to be consid-
ered when devising HLS algorithms in practice.

11.3 SIMPLIFYING CONTROL AND DATA FLOW GRAPHS

11.3.1 DFG OPTIMIZATIONS

Optimizations reducing size and/or complexity of DFG operations are translated directly 
into smaller implementations. They could be divided into two categories: common  compiler 
optimizations, equally applicable to software and hardware, and hardware-specific optimiza-
tions. Typically, an optimization step is implemented as a fixed-point computation, because 
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applying one simplification may trigger another. Among compiler optimizations, the most 
prominent ones are (with examples)

 1. Constant propagation
 a + 0  → a,
 if (a == 128) {b = a – 1;} → b = 127;
 a + 1 + 2 → a + 3
 2. Operation strength reduction
 a/32 → a >> 5,
 a * 3 → a + a << 1;
 sc_uint<1> a, b; a + b; → a ^ b;
 sc_uint a; a > 0 → OR(all_bits_of_a);
 3. Common subexpression elimination
 (a + b) * (a + b) → tmp = a + b; tmp * tmp
 a = M[i+1]; i++; b = M[i] + d; → a = M[i+1]; i++; b = a + d;
 4. Dead code elimination
 if (a > 128) sum = 128;
 else if (b > 4 && a > 128) sum--; → if (a > 128) sum = 128;

A very powerful hardware-specific optimization is range minimization. The problem is posed 
as minimizing the ranges of operations based on (a) ranges of primary inputs, (b) ranges of pri-
mary outputs, and (c) user-specified ranges of some key variables (e.g., DFG feedback variables). 
Range analysis is implemented as a fixed-point forward and backward traversal of the DFG. In 
the forward traversal, the outputs of the operations are pruned based on information about 
their input ranges, while in the backward traversal the inputs of the operations are pruned 
based on the ranges of their outputs. Affine arithmetic (multiplications by constants and addi-
tions) is known to be well suited for range analysis, while nonaffine operations like nonconstant 
multiplications do not provide many of these opportunities. Range analysis is done by defining 
transfer functions for every DFG operation [12]. These functions come in two flavors:

 1. Purely bit range based, say for a = b + c, with b_range = [0,4] (meaning that b has five bits) 
and c_range = [0,3] by forward propagation implies a_range = [0,5].

 2. Value based, say for a = b + c, with b_value = [1,10] (meaning that b can take any value 
between 1 and 10) and c_value[1,5] by forward propagation implies a_value = [2,15], 
which requires one less bit than in the previous case. In addition to being more precise 
about maximum and minimum value reasoning, value-based analysis is also capable of 
providing insights about internal “holes” in the range to prove the redundancy of some 
internal bits.

Loops clearly present difficulties in range analysis due to values needing to be carried through 
the backward edge of the loop for the next iteration. For bounded loops, this difficulty could 
be avoided by virtually unrolling the loop during range analysis (similar to the bounded model 
checking approach). The other option is to use inductive reasoning between loop iterations, but 
its applicability is limited if the loop contains nonaffine operations [12]. In that case, the only 
option is a user-specified range for these feedback variables. Range analysis is a very important 
optimization technique that is particularly useful when the initial specification comes from 
 legacy software with integral data types.

Timing is another major constraint in HLS; hence, there are many hardware-specific optimi-
zations that are targeted particularly at timing:

 1. Chain-to-tree conversion, where a long chain of operations is converted into a shallower 
(faster) tree structure. Figure 11.12a shows an example of this optimization, where a 
chain of five adders is converted into a tree form.

 2. Retiming of MUXes across functional units (see Figure 11.12b).

To appreciate the power of timing optimizations, let us consider an example based on the fol-
lowing behavioral description, where c is an input Boolean signal and the loop is fully unrolled.
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for (i = 0; i < 4; i++) {
 if (c.read()) sum++;
}

The simplifications applied to the aforementioned timing transformations result in a structure 
that is far more suitable for hardware than the starting one (as illustrated by Figure 11.13).

11.3.2 CFG OPTIMIZATIONS

The optimizations presented so far are performed on the DFG and are targeted at datapath simpli-
fications. Equally important is to simplify control, which is naturally formulated as a CFG struc-
ture simplification. The two main source code constructs that are responsible for complicating 
the CFG structure are conditional statements (if, case) and loops. We will consider loops in detail 
in the next section, while for now we will focus on conditional statements. Consider a SystemC 
code example as in Figure 11.14a and its CFG, where a conditional if-then-else statement is trans-
lated into a fork–join structure in the CFG. Fork–join structures in the CFG limit the mobility 
of operations, due to the need to synchronize computation in corresponding branches (MUXes 
are needed to produce a value for x, y, z). Typically, these merging MUXes (SSA Phi nodes) are 
fixed at the join nodes of the CFG. Even though it is possible to relax this condition and let them 
move to later nodes, this relaxation has limited applicability, especially when encountering a new 
fork–join structure. When these MUXes are considered fixed, the whole computation for x needs 
to happen in a single state, which requires at least two multipliers. A simple rewrite of the original 
specification in predicate form is shown in Figure 11.14b. It eliminates a conditional statement and 
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simplifies the CFG. Instead, some operations get an additional attribute, called predicate condi-
tion, representing the condition under which they should be executed (e.g., w + v is executed when 
the variable “cond” = true). The advantage is the elimination of a synchronization point in the form 
of a join node, letting different computations span a different number of states. For example, com-
putations for z and y are simple enough and can be completed before reaching state s1, while the 
computation for x may span both states, reducing the number of required multipliers to 1.

Reducing the CFG from the form shown in Figure 11.14a to that in Figure 11.14b automati-
cally is called if-conversion (the fork–join structure is reduced to a single edge and predicates are 
added to DFG operations). The general case of if-conversion is represented in Figure 11.14c, which 
shows the extension of this transformation to branches with states (see states s1 and s2 merged 
into s1,2) and partial conversion (see edges e1 and e2 merged to e1,2).

If-conversion helps simplifying complicated CFG structures by eliminating fork–join con-
structs, and it relaxes many mobility constraints on operations, resulting in a richer solution 
space and potentially better QoR. A small downside is that mutual exclusivity of operations needs 
to be deduced not only from the CFG structure but from the predicate information as well. This, 
however, is relatively straightforward.

11.4 HANDLING LOOPS

Loops are commonly used in SystemC input code. Even our small convertHSLToR example has an 
embracing while(true) loop to describe the reactive nature of the algorithm infinitely repeating the 
transformation from HLS format to RGB. This loop however represents the simplest case because no 
values are carried from the outside loop to its internals and no values are carried between loop iterations.
A more general example is represented by the following FilterLoop code snippet:

while(true)  {
 // setting a parameter to be used in the loop
 int smooth = param.read() + offset1.read() + offset2.read();
 wait();  //s1
 for (int i = 0; i < N; i++) {
  int aver = point[i] * scale[i] + point[i+2] * scale[i+2];
  out[i] = aver / smooth;
  smooth++;
  wait();  //s2
 }
}
The DFG and CFG for this example are shown in Figure 11.15a and b, respectively. One can notice 
that the DFG for FilterLoop is cyclic. Cycles occur when computing values i and smooth and are 
represented in the DFG by backward edges coming to MUX operations. These MUXes merge 
the computations from outside the loop (see the initialization of smooth) with the loop updates 
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that need to be passed to the next iteration (smooth++). Similar to merge MUXes for fork–join 
 structures (as described in the previous section), the mobility of these operations is limited to the 
out-edge of the join node of the CFG. The presence of computational cycles in the DFG signifi-
cantly complicates the problem of time budgeting during scheduling.

Indeed, operations from outside the loop that are scheduled on the in-edge of the loop share 
the same state as loop operations, and the more operations are scheduled before the loop, the 
less room remains in the bin for packing loop operations. This may result in operations from 
the loop body not fitting the current loop latency, calling for a loop latency increase. However, 
increasing the latency of the loop has a much bigger effect on the computation performance 
than increasing the latency outside the loop. We would rather add a state before the loop to 
separate operations outside the loop from those within the loop. The problem is that when 
scheduling operations before the loop, it is hard to anticipate the timing complications in the 
loop body because the scheduler has not seen it yet. Similar considerations could be applied 
for loop operations scheduled on the out-edge of the loop (i.e., on the out-edge of the for_loop 
node). These operations are in the fanout of the loop merge MUXes, and therefore they belong 
to the same timing path as operations from the last state of the loop feeding these MUXes 
backward. When scheduling the out-edge, it is as yet unknown which operations will end up 
in the last state and this presents a two-sided timing constraint that is nontrivial to solve. 
It  typically requires a complicated reasoning to decide which relaxation to apply when schedul-
ing fails to satisfy loop timing.

Simplifying or eliminating loops altogether is helpful in making the synthesis task easier. 
A common technique to do this is “loop unrolling.” In its simplest form it results in full unrolling, 
which replaces a loop that is known to iterate at most N times with N copies of its loop body. The 
advantages of full unrolling could be appreciated by looking at the FilterLoop example. In its body, 
memories point and scale are accessed two times each, which for a single-port memory imposes a 
constraint of minimal latency 2 for executing a single loop iteration with four memory reads. The 
full unrolling of this loop (for N = 3) is shown in Figure 11.15c. Unrolling completely eliminates 
the hardware for loop control and reduces significantly the number of memory accesses and mul-
tiplications (doing a common subexpression extraction and noticing that point[i + 2] * scale[i + 2] 
for iteration i is the same as point[i] * scale[i] for iteration (i + 2)). The quantitative evaluations of 
the original and the unrolled implementations are summarized in Table 11.2, which clearly shows 
drastic improvements coming from unrolling.
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Unrolling might also be applied in a “partial” fashion when the loop(Body) is replaced by k 
 copies loop(Body1, Body2,…, Bodyk) and the loop is executed N/k times rather than N times.

This does not eliminate the loop but it helps in performing optimizations across different loop 
iterations, which are now explicitly expressed in the Body1, Body2, … code.

Note that unrolling is beneficial only if the unrolled iterations are enjoying significant reduc-
tions due to optimization. If making iterations explicit does not create optimization opportuni-
ties and unrolling is not needed for performance reasons, then it is not advised because it simply 
bloats the DFG size and masks the structure of the original specification. There is no guarantee 
that different iterations would be scheduled uniformly and most likely the regularity of the data-
path with N iterations will be lost. A careful evaluation of unrolling consequences should be done 
during microarchitecture exploration. When the increase in complexity overweighs the advan-
tages given by the optimizations, the designer might want to keep the original loop structure. 
In the latter case, to make a loop synthesizable, one needs to make sure that it does not contain 
combinational cycles, that is, every computational cycle must be broken by a state. Breaking 
combinational cycles in loops that are not unrolled is typically performed automatically before 
starting scheduling, and it is up to the tool to find the best place for state insertion.

Besides unrolling and breaking loops, there are several well-known compiler techniques that 
rewrite loops in a simpler way that is more suitable for implementation (both in hardware and in 
software). The most popular ones are as follows:

 1. Loop inversion that changes a standard while loop into a do/while. This one is particu-
larly effective when one can statically infer that the loop is always executed at least once.

 2. Loop-invariant code motion that moves out of the loop assignments to variables whose 
values are the same for each iteration.

 3. Loop fusion that combines two adjacent loops that iterate the same number of times into 
a single one when there are no dependencies between their computations.

The advantages of loop fusion are illustrated by the following example when adjacent loops 
LOOP1 and LOOP2 are combined in a single loop LOOP1_2 reducing the number of reads from 
memory A and B by a factor of 2:

LOOP1 : for (int i = 0; i < N; i++) {
 CENTER[i] . x = A[i] .  x + B[i] .  x;
 CENTER[i] .  y = A[i] .  y + B[i] .  y;
}

LOOP2: for (int i = 0; i < N; i++) {
 int x_dist = A[i].  x - B[i] .  x;
 int y_dist = A[i].  y - B[i] .  y;
 DIST_2[i] = x_dist * x_dist + y_dist * y_dist;
}

LOOP1_2:for (int i = 0; i < N; i++) {
 CENTER[i] .  x = A[i] .  x + B[i] .  x;
 CENTER[i] .  y = A[i] .  y + B[i] .  y;

 int x_dist = A[i] .  x - B[i] .  x;
 int y_dist = A[i] .  y - B[i] .  y;
 DIST[i] = x_dist * x_dist + y_dist * y_dist;
}

tABLe 11.2 evaluating Quality of original and Unrolled implementations

computation time no. of Memory Reads no. of Multiplications 

Original 2 × N × Tclk 4 × N 2 × N

Unrolled N × Tclk + 2 2 × (N + 2) N + 2
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Finally, we would like to introduce one more loop transformation that is not common for soft-
ware compilation but is very important for HLS. This is an important technique to reveal paral-
lelism between loop iterations and is called loop pipelining. We will describe loop pipelining in 
detail in Section 11.7, but it is important to note here that it can only be applied to loops that do 
not have any other nested loops (apart from the special case of “stall loops,” which wait until, e.g., 
input data or some shared resource becomes available). Therefore, when the user wants to pipe-
line a loop that does have a nested loop, the inner loop needs to be merged with the outer loop for 
pipelining to proceed. This transformation is illustrated in Figure 11.16. The following example 
shows the application of the merge loop transformation, which converts the while_loop with a 
nested for_loop into a single while_loop:

 // Nested loops
 while(1) {
 for (int j = 0; j < 10; j ++) {
 a[j] = b[j] + c[j];
 }
 }
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 // Merged loops
 bool start = true;
 int j;
 while(1) {
 if (start) {
 j = 0;
 }
 if (j < 10) {
 a[j] = b[j] + c[j];
 j++;
 start = false;
  } else {
 start = true;
  }
 }

11.5 HANDLING FUNCTIONS

Almost every nontrivial computer program consists of multiple functions that call each other. 
Structuring a program in this way enables modularization, decomposition, and layering of levels 
of abstraction, all of which are key in designing complex systems. This program structure is often 
a useful guide when deciding the optimal hardware architecture. However, since the decision to 
separate some functionality into a function is driven by many reasons, and not only by the intended 
hardware structure, sometimes a better implementation can be achieved if function boundaries are 
ignored or modified. Thus, a part of the microarchitecture selection by the designer is to choose 
which functions should be implemented as separate units in hardware and which ones should be 
implemented as a part of the calling function. In the latter case, we say that the function is inlined, 
and in the former case, we say (for the lack of a better term) that the function is noninlined.

Inlining a function is equivalent to replacing the call to the function with a copy of the func-
tion’s body. If a function is called at many places, multiple copies are created, and the DFG can 
grow significantly, sometimes testing the capacity limits of tools. On the positive side, each copy 
can be separately optimized in the context of its caller. This will enable optimizations like con-
stant propagation that are specific to a call and cannot be applied to all calls.

Noninlined functions are implemented as stand-alone hardware design components. In gen-
eral, such implementations can be treated similarly to resources, and function calls can be treated 
as operations. Multiple calls can share a single implementation, or the tool may decide to instan-
tiate multiple copies of the implementation to improve performance.

One difference between a function call and other types of operations is that the latency of 
function calls (i.e., the number of cycles between receiving the inputs and generating the out-
puts) may be different for different values of input data. To deal with that, HLS tools typically 
implement some kind of protocol between the hardware implementation of the caller and the 
implementation of the function. For example, one can introduce “GO” and “RETURN” events 
and implement a function call as follows:

… // prepare arguments
notify(GO);
do {wait();} while (! notified(RETURN));
… // collect results

The block implementing the function then should behave like this:

while(true) {
 do {wait();} while (!notified(GO))
 … // collect input argument
 … // compute the function
 … // prepare results
 notify(RETURN);
}
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Similar implementations can be obtained if a function is explicitly modeled as a separate SystemC 
thread. However, according to the semantics of SystemC, every communication between threads 
requires at least one clock cycle, while the aforementioned scheme allows combinational com-
munication between the caller and the function block.

This implementation still follows the sequential nature of the C++ code. At any given time, 
either the calling block or the function block may be doing some useful work, but the other is 
idling, waiting for an event to be notified. A more efficient implementation can be obtained if 
something is known about the latency of the block implementing the function. For example, if it 
is known that the function implementation takes at least N cycles to execute before generating 
RETURN, then the preparation of arguments and notification of GO on one side and waiting for 
RETURN and collection of results on the other side can be scheduled up to N cycles apart, and 
the caller can perform other useful work while the function implementation is computing the 
results.

Further optimization is possible if the latency of the function implementation is constant. 
Then, the RETURN event can simply be eliminated, and the collection of results can be scheduled 
a known constant number of cycles after notifying GO. Such implementations can be treated by 
the HLS tool simply as any other resource: either combinational (if latency is 0) or multicycle 
(otherwise).

Implementations of noninlined functions with constant latency may also be pipelined. Such 
an implementation may start processing a new set of inputs before it has computed the final 
results for the previous set. The minimum number of cycles between two consecutive input sets 
is called the initiation interval. Most commonly it is 1, but in general it can be any number of 
cycles smaller than the latency.

To create an implementation of a function, HLS tools typically use the same HLS algorithms 
they use for the caller. However, some tools also support an option where the usual HLS steps 
are skipped and a pipelined implementation is created by an embedded logic synthesis tool with 
retiming enabled. Logic synthesis can sometimes produce implementation with smaller latency 
and hence fewer storage elements, resulting in a smaller overall area.

11.6 HANDLING ARRAYS

Arrays are widely used in C and their hardware implementation requires special attention. First 
let us distinguish between arrays that are accessed only by a single thread and arrays that are 
accessed by multiple threads. We will first focus on the former, because it represents the base 
case. The latter introduces additional issues about managing concurrent accesses from two 
threads that go beyond the scope of this chapter.
HLS tools are typically capable of handling arrays in three ways:

 1. Implementing them with memories created by a memory generator.
 2. Implementing them as register banks. Such banks are defined in the generated RTL 

and they are then synthesized by a logic synthesis tool just like any other piece of gen-
erated RTL.

 3. Flattening them, that is, treating them like any other variable and not applying any spe-
cial rules to them. They will become values in the DFG, subject to the normal register 
allocation process.

The three options provide three different trade-off points in terms of design complexity and 
 performance. The user usually has control over the implementation of each array.

There are two basic ways to flatten an array. For example, if an array is declared by “char a[4],” 
it could be treated as a 32-bit variable a, or it could be treated as four 8-bit variables a_0, …, a_3. 
The latter approach increases the number of objects that need to be processed and thus increases 
the complexity, but it does make it easier to track dependencies between operations. For example, 
assume that the following loop is unrolled:

for (i=0; i<4; i++) a[i]++;
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If array a is treated as a single variable, then the four increment operations need to be done 
in sequence, because they all modify the same variable a. However, if a is treated as four 
separate variables, after simple constant propagation, the tool may easily understand that 
there are no dependencies between the four increment operations and that they can be 
executed concurrently.

If an array is not flattened, then read and write accesses to the array are recorded as distinct 
operations that must be scheduled. However, scheduling these operations is subject to special 
constraints that do not apply to other kinds of operations. Consider, for example, the following 
code segment:

 while(…) {
  …
  a[ind1] = x; // operation W1    
  y = a[ind2]; // operation R2
  out.write(y); // operation O
  a[ind3] = z; // operation W3
 } 

It contains two array write operations (W1, W3) and one array read operation (R2). If the array is 
implemented by a memory or a register bank, then executing each one of these operations occu-
pies a port for one cycle. This creates a resource conflict in the sense that while one of the opera-
tions accesses the port, the other operations cannot access it. Normally, HLS tools can resolve 
resource conflicts by instantiating another copy of a resource. However, the resource in this case 
is a port, and the number of ports on a memory is typically fixed and cannot be increased. So, for 
example, if the array is implemented by a memory with a single read/write port, the body of the 
loop cannot be scheduled in less than three cycles.

In addition to resource constraints, scheduling of array operations is also subject to con-
straints derived from array dependencies. Consider operations W1 and R2, and assume that the 
array is implemented by a memory that has at least two write ports and one read port (hence there 
are no resource constraints). There are no data dependencies between W1 and R2; however, W1 
will affect the result of R2, in case indices ind1 and ind2 are the same (this is often called a read 
after write [RAW] hazard). To cope with this kind of dependency, an HLS tool may require that 
R2 be scheduled at least one cycle after W1. This is a conservative rule that will generate correct 
implementations for all memories. It could be relaxed, for example, if the memory has a forward-
ing capability between a write port and a read port when the two addresses are the same or if 
forwarding logic is automatically generated [20].

Similarly, there is an array dependency (write after read [WAR] hazard) between R2 
and W3. If W3 is not scheduled after R2 and ind2 and ind3 are the same, the value returned 
by R2 may be wrong. To satisfy this dependency, an HLS tool may require that W3 is sched-
uled at least one cycle after R2. Again, this is a conservative rule, but ironically it is needed 
exactly for the memories supporting the forwarding capability defined earlier. Finally, there 
is an array dependency between W1 and W3 (write after write [WAW] hazard), where W3 
must be scheduled after W1 to avoid the possibility of W1 overwriting W3. There are no 
array dependencies between two read operations. In summary, even if the memory has plenty 
of ports, the body of the loop cannot be implemented in less than three cycles (unless for-
warding is automatically supported by the memory or the tool), because R2 must be sched-
uled at least one cycle after W1, W3 must be scheduled at least one cycle after R2, and W1 
in the next iteration must be scheduled at least one cycle after W3. This last dependency is 
an example of interiteration array dependency, which we will examine in more details in the 
section about pipelining.

HLS tools may analyze index expressions and not create array dependencies when two index 
expressions can be proven never to be equal. Analyzing array index expressions has been exten-
sively studied, particularly for affine indices [23,24]. However, this kind of analysis is hard in 
practice, and it often misses cases for which designers are convinced that the dependency is not 
real. For these cases, most HLS tools allow the designers to break the dependencies that the tool 
could not prove to be false. However, if the designer is wrong and breaks a true dependency, then 
the generated hardware may not operate correctly.
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In practice, reading from a memory often has a latency of one or more cycles. If the latency is 
N, then any operation that depends on the data returned by an array read needs to be scheduled 
at least N cycles after the read operation itself is scheduled. For example, the aforementioned 
operation O would have to be scheduled at least one cycle after the operation R1 if R1’s latency 
is one cycle. Registers banks can be built with 0 latency, so that results are available in the same 
cycle in which the operation is scheduled. If this is the case, then only the usual data dependency 
rules need to be followed when scheduling array reads.

11.7 PIPELINING

Pipelining is a widely used technique for designing hardware that needs to meet stringent through-
put requirements but has more relaxed latency requirements. In HLS, pipelined designs are cre-
ated by pipelining loops. Without pipelining, an iteration of a loop will start executing only after 
the previous iteration is completely finished. When the loop is pipelined, computation for a single 
iteration is divided into stages and an iteration starts as soon as the previous iteration completes its 
first stage. Thus, at any given point in time, several iterations of the loop may be executing concur-
rently, each in a different stage. In a well-balanced design, all the stages take the same number of 
cycles, and henceforth we will only consider such designs. The number of cycles needed to execute 
one stage is called the “initiation interval.” The number of cycles needed to complete all stages is 
called the “latency” of the pipelined loop. In practice, for a majority of designs, the initiation inter-
val is required to be 1, and the latency varies widely from a few cycles to hundreds of cycles. Unless 
otherwise noted, we will assume that for all the examples in this section the initiation interval is 1. 
However, all the definitions and techniques are also valid for larger initiation intervals.

The user must specify the initiation interval for the loop to be pipelined. Most tools will accept 
some bounds on the latency, but most often the tools are searching for the optimal latency for the 
given initiation interval. A loop can be pipelined only if it meets certain conditions. The details 
vary from tool to tool, but typical conditions include the following:

 ◾ The loop can have no nested loops, except for stall loops. Stall loops in SystemC model 
conditions under which the pipeline needs to be stalled. Tools may accept different kind 
of loops as stall loops, but most tools require a stall loop to be of very special form, for 
example, while(cond) wait(); or do wait(); while(cond);. To deal with nested loops, a 
tool may provide a transformation where multiple nested loops are merged into a single 
one (see Figure 11.16).

 ◾ It must be possible to schedule an iteration of the loop so that every execution in which 
stall loops are not taken takes the same number of cycles. Loops with such a property 
are said to be balanced. Every HLS tool has a set of transformations aimed at balancing 
unbalanced loops, but there can be no guarantee that these transformations will always 
succeed starting from a SystemC model with arbitrarily interspersed wait() calls.

 ◾ If a function call appears in a pipelined loop, it must either be inlined, or have a latency 
that is less than or equal to the initiation interval, or be pipelined. Furthermore, if it is 
pipelined, the initiation interval must be compatible with the initiation interval of the 
loop, and its latency must be less than the latency of the loop. A function pipelined with 
initiation interval II is compatible with loop initiations intervals that are multiples of II. 
In particular, a function pipelined with II = 1 is compatible with any pipelined loop. 
Note that pipelined functions can be called outside of a pipelined loop, but in that case, 
at most one of their stages is performing useful computations in any given clock cycle.

Thus, to schedule a pipelined loop means to choose the number of stages and then assign all 
operations in one iteration to their stages. This schedule is subject to the usual data dependency 
constraints, but it must also satisfy additional constraints specific to pipelining. Before we intro-
duce these constraints, let us first introduce an example and some notation.

In the rest of this section, we will use the loop in Figure 11.17 as an example. Each iteration 
of the loop has four input operations (I1,…, I4), two arithmetic operation (>, +1), and two array 
accesses (R,W). We assume that array arr is implemented by a memory with one read and one 
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write port and read latency of 1. The loop also contains a call to function f. We assume that it is 
not inlined, but that it has a pipelined implementation with initiation interval 1 and latency 1. 
The multiplexor operation M computes the value of variable y at the bottom of the loop. The data 
inputs to M are the value of variable y from the previous iteration and the result of operation +1, 
while its control input is the result of operation >. Finally, the loop has two nested stall loops. They 
can be ignored for now, until we discuss stalling in detail.

To represent the schedule of the loop, we use expressions such as

(I1, S1, I2, R) | (f, +1) | (>, M) | (I3, S3, I4, W)

This expression indicates that

 ◾ I1, S1, I2, and R are scheduled in stage 1
 ◾ f and +1 are scheduled in stage 2
 ◾ > and M are scheduled in stage 3
 ◾ The rest of the operations are scheduled in stage 4

For the moment, we avoid the question if this is a valid schedule. By the end of this section, 
it should become clear that under certain conditions it indeed is.

To denote the state of the pipeline at any given point in time, we annotate the schedule with 
the iteration that is being executed in each stage. For example, we use

3(I1, S1, I2, R) | 2(f, +1) | b | 1(I3, S3, I4, W),

to denote the state where the first iteration is in stage 4, the second in stage 2, and the third in 
stage 1. Note that no iteration is in stage 3. In this case, we say that there is a bubble in stage 3 and 
use “b” to denote it. At times, we will omit some or all of the operations. So, to denote the same 
state as earlier, we may simply use

3 | 2 | b | 1

or if we want to focus only on array operations, we may use

3(R) | 2 | b | 1(W)

For the loop and the schedule as earlier, let us now examine the states through which the pipeline 
goes. Initially, the pipeline starts in the state

b | b | b | b

Assuming no stall loops are taken, the pipeline execution proceeds as follows:

1 | b | b | b
2 | 1 | b | b
3 | 2 | 1 | b
4 | 3 | 2 | 1
5 | 4 | 3 | 2
…

while(…) {
 while( ! a1_valid.read() ) wait(); // input read I1, stall loop S1
 x = arr[a1.read()]; // input read I2, array read R
 if (f(x) > 0) y = y+1; // function f, greater than 0, increment +1,
 // multiplexor M
 while(! a2_valid.read() ) wait(); // input read I3, stall loop S2
 arr[a2.read()] = y; // input read I4, array write W
}

FiGURe 11.17 An example of pipeline.
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When pipelining a loop, one has to be careful that externally visible operations are executed in 
the same order as without pipelining. Consider the following execution trace focused on I/O 
operation I2 and I4:

4(I2) | 3 | 2 | 1(I4)
5(I2) | 4 | 3 | 2(I4)
…

Clearly, 4(I2) is executed before 2(I4), while without pipelining all operations in iteration 4 are exe-
cuted after all operations in iteration 2. In this case, both operations are reads, which may not raise 
any concerns, but if I4 was a write and there was some external dependency between the output 
written by I4 and the input read by I2, the design may not be working properly after pipelining. The 
designer needs to make sure that these kinds of changes do not break the functionality, and some 
conservative tools may refuse to do such reordering without an explicit permission from the designer.

In the aforementioned loop, operation M depends on the result of operation +1, which in 
turn depends on the result of M in the previous iteration. So, in the data flow graph representing 
dependencies between operations, there is an edge from +1 to M and an edge from M to +1. In 
graph terminology, M and +1 belong to a strongly connected component (SCC) of the DFG. By defi-
nition, an SCC of a directed graph is a maximal subgraph such that there exists a path between 
any two nodes in the subgraph.

The dependency from M to +1 is between operations in different iterations of the loop, and 
hence it is called a “loop-carried dependency” (LCD). In general, every SCC of the DFG must 
include some LCDs. Scheduling operations connected by LCDs requires special attention [3]. For 
example, the following chain of operations needs to be executed in sequence:

1(+1) -> 1(M) -> 2(+1)

But, 1(+1) and 2(+1) will be executed exactly one cycle apart (because the initiation interval is 1), 
posing significant restrictions on the scheduling of M. Some tools require that all the data from 
one iteration to the next be communicated through registers. If this is the case, then M must be 
scheduled in the same cycle as +1. More generally, all the operations in an SCC must be scheduled 
within the same initiation interval. Some tools use the technique known as pipeline bypassing 
[20] to relax this rule somewhat and allow M to be scheduled one stage after +1 without violating 
causality. For example, consider again the schedule

(I1, S1, I2, R) | (f, +1) | (>, M) | (I3, S3, I4, W)

where M is scheduled one cycle after +1. Consider a typical execution of the pipeline

2 | 1(+1) | b | b
3 | 2(+1) | 1(M) | b
4 | 3(+1) | 2(M) | 1

Operation 2(+1) depends on 1(M), which is being executed in the same cycle. To satisfy this 
dependency, the tool will create a combinational path from the hardware implementation of stage 
3 to the implementation of stage 2, bypassing the registers that are normally used for such com-
munication. Without pipeline bypassing, it may be impossible to schedule SCCs that contain 
sequential operations like memory reads.

From any operation in an SCC, there is a path to any other SCC member and a path back to 
itself. Thus, every operation in an SCC belongs to at least one dependency cycle. The sum of delays 
for all operations in such a cycle poses a fundamental limit on the throughput of the design. The 
timing path along any dependency cycle in an SCC must be less than the clock period times the 
initiation interval. This property holds regardless of the presence or absence of pipeline bypass-
ing. Given a fixed initiation interval, this poses a fundamental limit on the maximal frequency 
of the design. Note that increasing pipeline latency does not affect this property. Changing the 
initiation interval does relax the frequency constraint, but this is often not an option because it 
may violate strict throughput requirements.
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Let us now consider an execution of the pipeline while focusing on the array operations 
in the loop:

4(R) | 3 | 2 | 1(W)
5(R) | 4 | 3 | 2(W)
6(R) | 5 | 4 | 3(W)

Operation 4(R) is executed before 2(W) and 3(W), and it is executed in the same cycle as 1(W), 
while without pipelining it would be executed after all of them. This is not a problem as long as 
the address used by 4(R) is different from those used by all three write operations. Analyzing 
these interiteration array dependencies is the subject of intensive research [23,24], but in practice 
the tools rely on a combination of analysis and information provided by the user.

For this schedule to be legal, the user needs to specify that operations R and W have  distance 3. 
This indicates that in any iteration the address of W will not be equal to the address of R in at least 
any of the three subsequent iterations. Based on this assurance from the user, the tool will allow 
W to be scheduled up to (but no more than) three stages after R. Note that if the user cannot 
give such a guarantee, the only option that would not violate such constraints between iterations 
would be to schedule R and W in the same stage, but this is not possible with II 1, because of the 
data dependency within a single iteration. Thus, in this case, the loop is not pipelineable, unless 
the user relaxes the distance constraint between array ops or increases the II.

Let us now examine how multicycle operations affect scheduling. The same rules as in 
 nonpipelined case apply. Function call f depends on operation R, which has latency 1, so the earli-
est it can be scheduled is stage 2. But since function f is pipelined with latency 1, the earliest stage 
in which its successors can be scheduled is stage 3. For example, operation > cannot be scheduled 
sooner than that stage.

Finally, let us consider stall loops. Assume that the pipeline is in state

5 | 4 | 3 |2

and that a2_valid is 0. Stall loop 2(S2) will be executed, and we say that stage 4 has stalled. Since 
iteration 3 cannot proceed to stage 4 until iteration 2 has completed, iteration 3 will also stall 
in stage 3. The stalling will propagate backward and the pipeline will remain in this state until 
a2_valid becomes 1 again.

Let us now consider the same state but assume that a2_valid is 1 and a1_valid is 0. Now, stall 
loop 5(S1) is executed and stage 1 stalls. Many HLS tools are capable of dealing with such stalls 
in two ways: hard stall and soft stall. In the hard stall approach, the pipeline will be kept in the 
current state until a1_valid becomes 1. In the soft stall approach, stage 1 is stalled, but the later 
stages are allowed to proceed. Thus, in the next cycle the state will be

5 | b | 4 | 3

Note that a bubble has been created in stage 2. If a1_valid becomes 1, the pipeline will proceed, 
but the bubble will remain and will move down the pipe:

6 | 5 | b | 4

Now assume that in this state a2_valid is 0. Tools that support soft stall typically also support 
bubble squashing, that is, they will stall stage 4 but not stages 2 and 1 because there is a bubble in 
front of them. Thus, with bubble squashing the next state will be

7 | 6 | 5 | 4

and the pipeline will be fully filled again.
In general, soft stall ensures better average performance and avoids many deadlocks that 

may happen with hard stall. However, hard stall requires simpler logic, with shorter timing 
paths, and its simplicity makes it easier to coordinate multiple independent pipelines. Hard stall 
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implementations also very often have a lower power profile than soft stall implementations. 
Therefore, both approaches are used in practice.

As indicated earlier, scheduling of pipelined loops is similar to scheduling of nonpipelined ones, 
with additional constraints due to LCDs, interiteration array dependencies, and I/O reordering. 
Another difference from the nonpipelined case is that resources cannot be shared between stages, 
since they may all be active in any given cycle. However, if the initiation interval is larger than one, 
then every stage consists of several cycles, and it is possible to share resources between different cycles.

Once a feasible schedule is found, HLS tools still need to take a few special steps before gener-
ating RTL. Registers to carry data from one stage to another need to be allocated. The tools need 
to take special care of data that need to be carried across multiple stages, as multiple versions of 
the data may exist at any given time, one for each active iteration. Pipeline control logic must be 
generated, including the stalling signals. Stalling poses a particular problem for multicycle opera-
tions like pipelined functions. For example, if a five-stage pipelined function is filled with data 
when the calling pipelined loop stalls, steps need to be taken not to lose data that are already in 
flight. The tools typically take one of two approaches. They either generate stalling control when 
the function is pipelined, so that internal computation of the function can be stalled at the same 
time as the calling loop stalls, or, if this is not possible, they add stall buffers to the function out-
puts to temporarily store the data that would otherwise be lost.

Pipelining changes the cycle-by-cycle behavior of the design, so if one wants to build a verifica-
tion environment that could be used for both the source code and the generated RTL, then these 
changes need to be dealt with. In Section 11.1.4, we discussed verification approaches for cycle-
delayed and latency-insensitive cases. The best way to deal with pipeline verification is to make 
sure that the design falls in one of these two categories. Pipelining without stalling is the basic 
tool to create cycle-delayed designs. Latency-insensitive designs based on handshaking protocols 
naturally lead to the use of stall loops in pipelined loops.

11.8 MANIPULATING LATENCY

Finding the optimal RTL implementation latency during synthesis is a nontrivial task. Let us start 
from the simplest reactive specification:

// Example: reactive_simple
while (true) {
 read_inputs();
 compute();
 write_outputs();
}

Typically, design requirements come in the form of a throughput constraint (Thr), defining the 
rate at which I/O operations take place, say 100 MHz, and of a clock period Tclk (say 2 ns), derived 
from the environment in which the hardware block will be integrated. Latency is measured as 
a delay (in the number of clock cycles) between reading inputs and producing outputs and very 
often designers are flexible about it (as long as the throughput is satisfied). In this case, the latency 
of the computation is a parameter that needs to be determined during synthesis, where its upper 
bound is defined by Latmax = ë û1/(  * )Thr Tclk  = 1/(108 * 2 * 10–9) = 5. If the computations inside 
the loop fit into five clock cycles, then the synthesis task is over. This gives a first approximation 
for the procedure of synthesis under a latency constraint when the upper bound on Latmax is 
known (see Figure 11.18a).
The procedure in Figure 11.18a is simple but it is effective only in very limited cases:

 1. An implementation with maximal latency might not be optimal. Indeed if in the previ-
ous example the computation could fit three cycles, an implementation with latency = 5 
is redundant in terms of both timing and area (a five-state FSM is more complicated than 
a three-state FSM).

 2. Typically, computations are data dependent and working under a single worst-case 
latency significantly impacts the performance of the system.
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 3. A computation within a thread is rarely represented as straight-line code, but it may 
contain several loops. Budgeting latency across loops requires careful consideration.

 4. SystemC specification and RTL implementation may have different throughputs, which 
complicates the construction of testbenches. In our example, the specification needs a 
new input every two cycles, while the implementation requires an input every five cycles.

Addressing the data-dependent duration of the computations performed by different threads 
requires one to specify IO interactions among threads and with the environment in a latency-
insensitive way. This can be addressed by using latency-insensitive I/O protocols that directly 
identify when an I/O transaction completes successfully. A simple example of such a protocol is 
given as follows:

//read_input protocol
while (!in_valid.read()) { wait();}
val = in_data.read();
in_accept = 0;
wait();
in_accept = 1;

In read_input protocol the design waits for its environment to notify it that a new input value is 
available by setting the in_valid signal to high. Before this happens, the design is stalled, simply 
checking the in_valid value from the environment. Once in_valid becomes true, the design reads 
the input value from the environment (in_data.read()) and informs the environment about the 
read completion by lowering in_accept. in_accept is asserted again in the next clock cycle, in 
preparation for consuming the next input. A similar protocol can be designed for write_output. 
Clearly, input and output protocols must preserve the same cycle-accurate behavior throughout 
synthesis, which implies that adding states (increasing latency) is not allowed inside the sub-CFG 
defining each protocol. Coming back to our reactive_simple example and substituting the read_
inputs() and write_outputs() functions by the corresponding latency-insensitive protocols (with 
minimal latency 1 each), we can formulate the synthesis problem as implementing the compute() 
functionality by adding not more than three states to the reactive_simple thread. Note that this 
formulation is very different from our first setting that defined the latency of reactive_simple to 
be fixed at 5. Not only with a new setting the testbench can be used “AS IS” for both the input 
behavioral description and the implementation RTL (due to its latency-insensitive property), 
but the optimization space has increased, by exploring also the implementation solutions with 
latency 2, 3, 4, 5 in the same HLS run. The procedure for synthesis with latency constraints is 
refined as in Figure 11.18b.

The new function specify_protocols() aims at marking CFG regions (connected subgraphs with 
a single start node) as protocols. There are different ways of implementing this function: it can 
identify CFG regions based on protocol directives that are placed in the SystemC code or the user 
may want to specify protocols directly in the CFG, by pointing at the start and the end nodes of 
the region. Similarly, set_max_latency() specifies a maximal latency for a CFG region (for the 
whole CFG in particular) that is defined as the maximal latency for all acyclic paths in the region.

(a) (b)

FiGURe 11.18 Handling latency during scheduling: fixed (a) and latency-insensitive (b) approaches.
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The goal of function compute_slack() is to provide a quantitative estimation of how many 
states can be legally added to a CFG to keep all latency constraints satisfied. This metric is con-
veniently represented by the notion of sequential slack on CFG edges. The sequential slack of an 
edge defines the number of states that could be legally added to this edge without violating any 
latency constraints. From the discussion about protocols, it is clear that any edge in the protocol 
region has slack 0 (no states are allowed to be added in protocols). To illustrate the notion of 
sequential slack, we refer to the example of CFG in Figure 11.14c (after if-conversion). Suppose 
that this CFG fragment is constrained to have maximum latency 3. Then for edge e1,2 sequential 
slack is 2 because we can add two states to this edge and still meet the latency constraint. For the 
rest of the CFG edges, the slack is 1.

The function schedule(T, Pro, slack) performs scheduling and may add states to the 
edges that have positive sequential slack. The decision about adding a state can be taken, for 
example, by an expert system (see Figure 11.5b) by comparing the cost of this action versus other 
actions like adding resources and speculating an operation. Adding a state to an edge requires 
recomputing the slack for the rest of the CFG because the slacks of other edges are affected. 
Adding a state to any edge before the fork of the CFG in Figure 11.14c (assuming latency con-
straint 3) nullifies the sequential slack of all edges but e1,2, whose slack becomes 2–1 = 1.

To make the procedure from Figure 11.18b effective, the designer needs to translate through-
put requirements down to latency constraints in the CFG. Sometimes it is difficult to do this 
explicitly. When several IO interfaces exist with complicated dependencies between them, 
expressing throughput as a single static upper bound might not be possible for practically mean-
ingful bounds. Even when such a bound exists (as in our reactive_simple example), the com-
putation could have loops with a number of iterations that is not statically known. This would 
make it impossible to derive latency constraints from the desired throughput. In general, latency 
constraints either are well defined only for loop-free regions of the CFG or must be interpreted 
as feedforward (ignoring backward edges). In the latter case, they constrain the number of states 
in a loop body but ignore the number of loop repetitions. Due to these reasons solving the task 
of converting throughput requirements into latency constraints is typically left to the user. This 
is called “latency budgeting” and its automated solution is an open problem. The typical way of 
approaching it is to let the tool run without latency constraints, when any number of states can 
be added outside the protocol regions. Then the designer analyzes the obtained solution (either 
manually or through simulation) and provides latency constraints to move in the desired direc-
tion, until a satisfactory implementation is obtained.

11.9 HLS PARADIGM AND FUTURE OPPORTUNITIES

HLS technology has advanced significantly, thanks to broad and persistent efforts in both 
academia and industry over the last several decades. Hence, when commercial HLS tools are 
evaluated today for production use, the question of whether the tool can produce high-quality 
implementations or not is no longer the central concern. Of course, HLS must meet stringent 
requirements of quality implementations, but it is widely recognized that the technology can 
be used to match or often outperform manual RTL in terms of QoR. People also know that the 
behavioral descriptions taken as input by HLS provide far more configurability than RTL, and 
this offers significant advantages to address the needs of reusability of design models across dif-
ferent design projects and across multiple generations of a given project with different design 
requirements.

This shifts the central concern for adopting HLS from whether it could be actually used as a 
design tool to how it could be integrated into the existing design flow, which starts from RTL. 
Specifically, there are three kinds of integration concerns: with the verification flow, with legacy 
RTL in the rest of the design, and with the backend implementation flow.

For verification there are two main issues. The first is how to extend state-of-the-art verifica-
tion methodologies such as UVM (Universal Verification Methodology) [13] for verifying the 
behavioral description used as input to HLS. The second is how to reduce the verification effort 
currently required at RTL, when the RTL models are produced by HLS tools and not manu-
ally written by a human. For the first one, commercial verification tools have been extended 
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to support functional verification of behavioral descriptions, especially when they are written 
in SystemC [25]. SystemC is a widely used language for modeling hardware behavior, not just 
for HLS but also for other use cases such as virtual platforms for software integration or archi-
tecture characterization. For this reason, extension efforts in terms of verification support of 
SystemC design models are active, and standardization of these extensions is also in progress 
[14,15]. On the other hand, other types of verification such as formal property checking or hard-
ware-oriented code coverage are not yet fully adopted for these behavioral descriptions. Tools are 
available in this category for software engineering, but special requirements exist for hardware 
models, for example, interface protocol verification for concurrent systems or value coverage 
analysis for variables used in the models, and existing technologies are still not adopted in prac-
tice for industrial use with hardware models. For the second concern, the most desired solu-
tion is formal equivalence checking, which automatically confirms that the functionality of the 
synthesized RTL is equivalent to that of the original behavioral description under the specified 
synthesis transformation, such as pipelining or latency alteration. This area has made significant 
advances in the last decade. Nevertheless, the application domains for which HLS is used are 
expanding even at a higher rate. Furthermore, the capabilities of HLS technology are advancing 
to provide more aggressive transformations between the input behavioral descriptions and the 
resulting RTL. For these reasons, simulation-based verification is still required in practice for 
HLS-generated RTL in many commercial design projects.

Whether verification is done formally or by simulation, support for easy debugging of the 
generated RTL is extremely important, because the RTL models are generated by tools and are 
not always easy to understand for humans. What is needed is not only the debugging of the RTL 
itself, as would be done traditionally with manually written RTL code, but also the ability to 
correlate signals and design constructs in the RTL to the original behavioral description or the 
underlying design semantics. Modern HLS tools are advancing the correlation features for this 
purpose, thus helping humans to easily analyze the synthesis results. For example, if there is an 
adder resource in the RTL, designers can query the HLS tool to identify which addition opera-
tions of the original behavioral description are implemented by the RTL adder, which sequence 
those addition operations are executed, and where they are scheduled within the control data 
flow graph. To accomplish this, the HLS tool needs an internal representation to efficiently keep 
track of synthesis transformations made from the input descriptions to RTL and record this 
information in a database, so that it can be retrieved as needed.

The second type of integration is with the RTL-based design flow. In typical design projects, it 
is rare that all the design components required for a project are newly designed. Usually there are 
design models that can be reused or revised easily to implement some functionality, and many 
of such existing models are written in RTL. When HLS is used for the rest of the components, 
it is important that the HLS flow does not affect the design steps executed for the whole design. 
First of all, this means that when design components adjacent to the HLS components are writ-
ten in RTL, they need to be connected seamlessly, despite the fact that they might be written in 
different languages and using different abstraction levels for the interfaces. Modern HLS tools 
provide features to support this need. For example, they automatically produce interlanguage 
interface adapters between the behavioral and RTL blocks. Sometimes, the boundary between 
the HLS components and RTL components does not exactly coincide with that of the design 
blocks specified in the block diagram of the design specification. There are cases where some part 
of the functionality of an HLS component must be implemented using existing RTL code. For 
example, a given function called in the behavioral description may have an RTL implementation 
that has been used for many years in multiple production projects. The designer knows that the 
RTL code works and there is no need to change it. Some HLS tools support this kind of fine-grain 
integration, by letting the user specify the binding of the behavioral function to the RTL design, 
with additional information on its input and output interfaces and timing characteristics, so that 
the tools can automatically reuse the RTL code, properly interfacing with the rest of the design 
synthesized by HLS.

Another requirement in the integration of HLS in the existing design flow is support for engi-
neering change orders (ECOs). In the context of HLS, the main concern is support for top-down 
ECO, where at a late stage, when design components have been already implemented to the logic 
or layout level and verification has been done, the need arises to introduce small changes in the 
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design functionality. In the RTL-based design flow, the designers carefully examine the RTL code 
and find a way to introduce the changes with minimal and localized modification of the code. 
If the designer tries to do the same with HLS, by introducing small changes in the behavioral 
description, when HLS is applied to the new description, the generated RTL often becomes very 
different from the original one. The logic implemented in RTL may change very significantly even 
if the functionality is very similar to the original one. Some HLS tools provide an incremental 
synthesis feature to address this issue [16]. In this flow, HLS saves information about synthesis of 
the original design in the first place, and when ECO happens, it takes as input this information 
together with the newly revised behavioral description. It then uses design similarity as the main 
cost metric during synthesis and produces RTL code with minimal differences from the original 
RTL code while meeting the specified functionality change.

In terms of integration with the backend implementation flow, a typical problem encountered 
with RTL produced by HLS is wire congestion. In behavioral descriptions used as input to HLS, 
it is not easy to anticipate how wires will be interconnected in the resulting implementations. 
A large array in the behavioral description may be accessed by many operations, but these opera-
tions could be partitioned in such a way that each subset accesses only a particular part of the 
array. In this case, decomposing the array into several small arrays and implementing each one 
of them separately could lead to better use of wires. But it is not easy to identify this up front 
in the input description. In fact, this single large array might be used in a concise manner in a 
loop, and this could look better than having multiple arrays. The designer might then instruct 
an HLS tool to implement this large array as a monolithic memory, and the tool would not be 
able to produce the better implementation with decomposed arrays. There are also cases where 
the HLS tool introduces artificial congestion. As we saw earlier in this chapter, HLS can effec-
tively explore opportunities of sharing resources to implement arithmetic operations. It can also 
explore opportunities to share registers for storing results of different operations. These are good 
in terms of reducing the number of those resources required in the implementation, but they 
might create artificial wire congestion, because multiple wires are forced to be connected with 
the shared resources even though they might not be functionally related with each other and thus 
could be placed in a more distributed and more routable manner if resources were not shared.

The effect of wiring cannot be fully identified during the HLS process, because sufficient infor-
mation on wiring is not available in that phase. It is therefore imperative to provide a mechanism 
that feeds the results of the analysis of wires made in the placement phase back to the HLS phase. 
Some companies that adopt HLS for production designs implement such a flow, where the reports 
of wire congestion obtained in the backend are correlated to resources used in the RTL generated 
by the HLS tool, which in turn are analyzed to identify the characteristics of the behavior accessing 
the resources associated with those resources [17]. With tool support for providing such correla-
tions, engineers can develop an iterative design and analysis flow to cope with the congestion issue. 
A similar opportunity exists for power analysis and low-power design, in that effective feedback 
from the backend implementation flow to HLS can lead to better exploration by HLS tools or by 
their users of the design space, while considering power consumption. We anticipate that tighter 
integration of HLS with backend tool chains will be provided more and more in the future, so that 
design bottlenecks can be identified quickly, and HLS technology can be efficiently used to produce 
implementations that lead to smooth design closure in the downstream implementation process.
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12.1 INTRODUCTION

The number of transistors on a chip grows exponentially, pushing technology toward highly inte-
grated systems on a chip (SoCs) [1]. Existing design tools fail to exploit all the possibilities offered 
by this technological leap, and shorter-than-ever time-to-market trends drive the need for inno-
vative design methodology and tools. It is expected that a productivity leap can only be achieved 
by focusing on higher levels of abstraction, enabling optimization of the top part of the design 
where important algorithmic and architectural decisions are made and massive reuse of prede-
signed system and block components are applied.

Detailed VHDL (VHSIC hardware definition language) or Verilog models are inadequate for 
system-level description due to poor simulation performance. Advanced system-level modeling 
may lead from a high-level system model derived from initial specifications, through successive 
functional decomposition and refinement, to implementing an optimized, functionally correct, 
unambiguous protocol, that is, without deadlock conditions or race hazards. A popular open-
source C++ system-level modeling and simulation library that allows clock-accurate (also called 
cycle-accurate) modeling is Accellera Systems Initiative SystemC (first standardized by OSCI) [2]. 
SystemC (now IEEE standard 1666) consists of a collection of C++ classes describing mainly hard-
ware concepts and a simulation kernel implementing the runtime semantics. It provides all basic 
concepts used by HDLs, such as fixed-point data types, modules, ports, signals, time, and abstract 
concepts such as interfaces, communication channels, and events. SystemC 2.3 allows the devel-
opment and exchange of fast system models, providing seamless integration of tools from a variety 
of vendors [3]. A detailed system-level modeling framework can rely on a SystemC-based C++ 
Intellectual Property (IP) modeling library, a powerful simulation engine, a runtime and test envi-
ronment, and refinement methodology. Two commercial tools for domain-independent SystemC-
based design were developed in the early days: VCC from Cadence [4] and Synopsys Cocentric 
System Studio (extending RTWH-Aachen’s COSSAP tool) [5] and Synopsys SystemC Compiler [6].

Despite current system design efforts, there is not yet a complete and efficient SystemC-based 
development environment capable of

 ◾ Providing parameterized architecture libraries, synthesis, and compilation tools for 
fast user-defined creation and integration of concise, precise, and consistent SystemC 
models
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 ◾ Enabling IP reuse at the system and block level, which results in significant savings in 
project costs, time scale, and design risk [7,8]

 ◾ Supporting efficient design space exploration

In this chapter, we focus on general methodologies for clock-accurate system-level modeling and 
performance evaluation and design space exploration, a key process to enhancing design quality.

More specifically, in Section 12.2, we consider system modeling, design flow, and design space 
exploration. We first introduce abstraction levels and outline general system-level design meth-
odology, including

 ◾ Top-down and bottom-up protocol refinement
 ◾ Hierarchical modeling, that is, decomposing system functionality into subordinate 

modules (blocks and subblocks)
 ◾ Orthogonalization of concerns (i.e., separating module specification from architecture 

and behavior from communication)
 ◾ Communication protocol layering

In Section 12.3, we outline SystemC-based system-level modeling objects, such as module, clock, 
intramodule memory, intramodule synchronization, and intermodule communication channels, 
and examine back-annotation of different operational characteristics of (predefined and custom-
ized) system-level models, focusing on time annotation.

Then, in Section 12.4, we discuss examples of system-level modeling and related back- 
annotation issues. We consider time annotation of clock-accurate models by providing an 
example based on processor architectures. We also examine a more complex example of system-
level modeling and time annotation on a user-defined SystemC-based hierarchical finite-state 
machine (HFsm). This object provides two descriptions of model behavior: using states, condi-
tions, actions, and delays as in traditional (flat) finite-state machines and using states and events. 
We also examine intermodule communication channels in SystemC and phase-locked loop (PLL) 
design in SystemC-AMS, the SystemC extension for analog mixed-signal (AMS) modeling.

In Section 12.5, we focus on system-level modeling methodologies for collecting perfor-
mance statistics from modeling objects, including automatic extraction of statistical properties. 
Advanced high-level performance modeling environments may be based on advanced system-
level monitoring activities. Thus, we examine the design of integrated system-level tools, generat-
ing, processing, presenting, and disseminating system monitoring information.

In Section 12.6, we discuss open system-level modeling issues, such as asynchronous processing, 
parallel and distributed system-level simulation, and interoperability with other design tools. By resolv-
ing these issues, SystemC-based system-level modeling can achieve a higher degree of productivity.

12.2 DESIGN METHODOLOGY

We examine fundamental concepts in system-level design, including abstraction levels, system-
level modeling methodology, and design exploration.

12.2.1 ABSTRACTION LEVELS

A fundamental issue in system design is model creation. A model is a concrete representation of 
IP functionality. In contrast to component IP models, a virtual platform prototype refers to system 
modeling. A virtual platform enables integration, simulation, and validation of system functional-
ity, reuse at various levels of abstraction, and design space exploration for various implementations 
and appropriate hardware/software partitioning. A virtual platform prototype consists of

 ◾ Models of hardware components, including peripheral IP block models (e.g., I/O, timers, 
audio, video code, or DMA), processor emulator via instruction set simulator (ISS) (e.g., 
ARM V4, PowerPC, ST20, or Stanford DLX), and communication network with internal 
or external memory (e.g., bus, crossbar, or network on chip)
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 ◾ System software, including hardware-dependent software, models of RTOS, device driv-
ers, and middleware

 ◾ Environment simulation, including application software, benchmarks, and stochastic 
models

Notice that a virtual prototype may hide, modify, or omit system properties. As shown in Figure 12.1, 
abstraction levels in system modeling span multiple levels of accuracy ranging from functional 
to transactional to clock and bit accurate to gate level. Each level introduces new model details [9]. 
We  now provide an intuitive description for the most used abstraction levels from the most 
abstract to the most specific:

 ◾ Functional models are appropriate for concept validation and partitioning between 
control and data. However, they have no notion of resource sharing or time, that is, 
functionality is executed instantaneously and the model may or may not be bit accu-
rate. This includes definition of abstract data types, specification of hardware or soft-
ware (possibly RTOS) computation, communication, and synchronization mechanisms 
and algorithm integration to high-level simulation tools and languages, for example, 
MATLAB® or UML.

 ◾ Transactional behavioral models (simply noted as transactional) are functional models 
mapped to a discrete-time domain. Transactions are atomic operations with their dura-
tion stochastically determined, that is, a number of clock cycles in a synchronous model. 
Although detailed timing characteristics on buses cannot be modeled, transactional 
models are fit for modeling pipelining, RTOS scheduling, basic communication pro-
tocols, test-bench realization, and preliminary performance estimation. Transactional 
models are usually hundreds of times faster than lower-level models and are therefore 
appropriate for concept validation, virtual platform prototyping, design space explora-
tion, and early software development [1]. SystemC currently integrates the TLM2 stan-
dard for transaction-level modeling that supports blocking and nonblocking interface 
functionality and aims at model interoperability.

 ◾ Clock-accurate models (denoted CA) enforce accurate timing on all system transactions. 
Thus, synchronous protocols, wire delays, and device access times can be accurately 
modeled. Using discrete-event systems, this layer allows for simple, generic, and effi-
cient clock-accurate performance modeling of abstract processor core wrappers (called 
bus functional models), bus protocols, signal interfaces, peripheral IP blocks, ISS, and 
test benches. Time delays are usually back-annotated from register-transfer-level (RTL) 
models, since clock-accurate models are not always synthesizable.

Functional

Transaction
behavioral

Test bench
Transaction

CA

RTL

Gate

FiGURe 12.1 IP modeling in various abstraction levels.
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 ◾ Clock-accurate and bit-accurate (CABA) models are clock-accurate models that are also 
bit accurate internally and at interface level. CABA models offer an efficient, attractive 
path to implementation via automatic hardware/RTOS synthesis (high-level synthesis), 
freeing the designer from timing and performance decisions while allowing for high 
reusability.

 ◾ RTL models correspond to the abstraction level from which synthesis tools can generate 
gate-level descriptions (or netlists). Register-transfer-level systems are usually visualized 
as having two components: data and control. The data part consists of registers, opera-
tors, and data paths, while the control part provides the time sequence of signals that 
stimulate activities in the data part. Data types are bit accurate, interfaces are pin accu-
rate, and register transfer is clock accurate.

 ◾ Gate models are described in terms of primitives, such as Boolean logic with timing 
data and layout configuration. For simulation reasons, gate models may be internally 
mapped to a continuous-time domain, including currents, voltages, noise, clock rise, and 
fall times. Storage and operators are broken down into logic implementing the digital 
functions corresponding to these operators, while timing for individual signal paths can 
be obtained. Thus, according to these, an embedded physical SRAM memory model may 
be defined as

 ◾ A high-level functional model described in a programming language, such as C or 
C++

 ◾ A clock-accurate (and possibly bit-accurate) model, allowing validation of its integra-
tion with other components

 ◾ An implementation-independent RTL logic described in VHDL or Verilog
 ◾ A vendor gate library described using NAND, flip-flop schematics
 ◾ A detailed and fully characterized mask layout at the physical level, depicting rect-

angles on chip layers and geometrical arrangement of I/O and power locations

12.2.2 SYSTEM MODELING METHODOLOGY

System modeling methodology is a combination of stepwise protocol refinement, hierarchical 
modeling, orthogonalization of concerns, and communication layering techniques. Stepwise pro-
tocol refinement is achieved through a combination of top-down and/or bottom-up approaches:

 ◾ In bottom-up refinement, IP reuse–oriented integration with optimal evaluation, 
composition, and deployment of prefabricated or predesigned IP block and system 
components drive the process.

 ◾ In top-down refinement, emphasis is placed on specifying unambiguous semantics, 
capturing desired system requirements, optimal partitioning of system behavior into 
simpler behaviors, and gradually refining the abstraction level down to a concrete 
low-level architecture by adding details and constraints in a narrower context, while 
preserving desired properties. Top-down refinement allows the designer to explore 
modeling at different levels of abstraction, thus trading model accuracy with simu-
lation speed. This continuous rearrangement of existing IP in ever-new composites 
is a key process to new product ideas. It also allows for extensive and systematic 
reuse of design knowledge and application of formal correctness techniques. The 
concrete architecture obtained through formal refinement must satisfy the follow-
ing properties:

 ◾ Relative correctness, that is, it must logically imply the abstract architecture by 
conforming to system specifications

 ◾ Faithfulness, that is, no new rules can be derived during the refinement process

While formal refinement is hard to achieve since there are no automated proof techniques, 
relative refinement is based on patterns consisting of a pair of architectural schemas that are 
relatively correct with respect to a given mapping. By applying refinement patterns, for example, 
a state transformation in a control flow graph [10], we can systematically and incrementally 
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transform an abstract architecture to an equivalent lower-level form. Notice that formal architec-
tural transformation is related to providing an augmented calculus with annotations for proper-
ties such as correctness, reliability, and performance [11]. If architectural components eventually 
become explicit formal semantic entities, then architectural compatibility can be checked in a 
similar way to type checking in high-level programming languages [12].

Hierarchy is a fundamental ingredient for modeling conceptual and physical processes in sys-
tems of organized complexity using either a top-down analytical approach, that is, the divide 
and conquer paradigm, or a bottom-up synthesis approach, that is, the design-reuse paradigm. 
Hierarchical modeling based on simpler, subordinate models controlled by high-level system 
models enables a better encapsulation of the design’s unique properties, resulting in efficient sys-
tem design with simple, clean, pure, self-contained, and efficient modular interfaces. For example, 
hierarchical modeling of control, memory, network, and test bench enables the system model to 
become transparent to changes in subblock behavior and communication components. A system-
atic framework supporting hierarchical modeling can be based on the SystemC module object, 
as well as the inheritance and composition features of the C++ language [13,14]. Thus, SystemC 
modules consist of SystemC submodules in nested structures. Moreover, SystemC facilitates the 
description of hierarchical systems by supporting module class hierarchy very efficiently since 
simulation of large, complex hierarchical models imposes limited impact on performance over 
the corresponding nonhierarchical models.

Stepwise refinement of a high-level behavioral model of an embedded system into actual 
implementation can be based on the concept of orthogonalization of concerns [15]:

 ◾ Separation of functional specification from final architecture, that is, what the basic sys-
tem functions are for system-level modeling versus how the system organizes hardware 
and software resources in order to implement these functions. This concept enables 
system partitioning and hardware/software codesign by focusing on progressively lower 
levels of abstraction.

 ◾ Separation of communication from computation (called behavior) enables plug-and-
play system design using communication blocks that encapsulate and protect IP cores. 
This concept reduces ambiguity among designers and enables efficient design space 
exploration.

Layering simplifies individual component design by defining functional entities at various 
abstraction levels and implementing protocols to perform each entity’s task. Advanced inter-
module communication refinement may be based on establishing distinct communication layers, 
thus greatly simplifying the design and maintenance of communication systems [16,17]. We usu-
ally adopt two layers:

 1. The communication layer that provides a generic message API, abstracting away the fact 
that there may be a point-to-point channel, a bus, or an arbitrarily complex network on 
chip.

 2. The driver layer that builds the necessary communication channel adaptation for 
describing high-level protocol functionality, including compatible protocol syntax 
(packet structure) and semantics (temporal ordering).

12.2.3 DESIGN SPACE EXPLORATION

In order to evaluate the vast number of complex architectural and technological alternatives, 
the architect must be equipped with a highly parameterized, user-friendly, and flexible design 
space exploration methodology. This methodology is used to construct an initial implemen-
tation from system requirements, mapping modules to appropriate system resources. This 
solution is subsequently refined through an iterative improvement strategy based on reliability, 
power, performance, and resource contention metrics obtained through domain- or application-
specific performance evaluation using stochastic analysis models and tools and application 
benchmarks, for example, networking or multimedia. The proposed solution provides values 



Chapter 12 – Back-Annotating System-Level Models    281

for all system parameters, including configuration options for sophisticated multiprocessing, 
multithreading, prefetching, and cache hierarchy components.

After generating an optimized mapping of behavior onto architecture, the designer may 
either manually decompose hardware components to the RTL of abstraction or load system-
level configuration parameters onto available behavioral synthesis tools, such as the Synopsys 
Synphony C Compiler or Xilinx Vivado. These tools integrate a preloaded library of configurable 
high-level (soft) IPs, for example, processor models, memories, peripherals, and interconnects, 
such as STMicroelectronics’ STbus [18,19], and other generic or commercial system interfaces, 
such as VSIA’s VCI [20], OCP [9], and ARM’s AMBA bus [21]. The target is to parameterize, 
configure, and interface these IPs in order to generate the most appropriate synthesis strategy 
automatically. Now, the design flow can proceed normally with place and route, simulation, and 
optimization by interacting with tools, such as Synopsys IC Compiler, VCS, and PrimeTime PX 
for power analyses.

12.3 ANNOTATION OF SYSTEM-LEVEL MODELS

SystemC allows both CABA modeling and clock-approximate transaction-level modeling. In this 
section, we consider back-annotation of system-level models, focusing especially on hardware 
modeling objects.

12.3.1 SYSTEM-LEVEL MODELING OBJECTS

As a prelude to back-annotation, we examine a high-level modeling environment consisting of a 
SystemC-based C++ modeling library and associated simulation kernel. Proprietary runtime and 
test environment may be provided externally. Thus, our high-level modeling environment pro-
vides user-defined C++ building blocks (macro functions) that simplify system-level modeling, 
enable concurrent design flow (including synthesis), and provide the means for efficient design 
space exploration and hardware/software partitioning.

High-level SystemC-based modeling involves hardware objects as well as system and applica-
tion software components. For models of complex safety critical systems, software components 
may include calls to an RTOS model [22]. An RTOS model abstracts a real-time operating system 
by providing generic system calls for operating system management (RTOS kernel and multitask 
scheduling initialization), task management (fork, join, create, sleep, activate), event handling 
(wait, signal, notify), and real-time modeling. Future SystemC versions are expected to include 
user-defined scheduling constructs on top of the core SystemC scheduler providing RTOS fea-
tures, such as thread creation, interrupt, and abort. During software synthesis, an RTOS model 
may be replaced with a commercial RTOS.

Focusing on hardware components and on-chip communication components, we will describe 
system-level modeling objects (components) common in SystemC models. Most objects fall into 
two main categories: active and passive modeling objects. While active objects include at least one 
thread of execution, initiating actions that control system activity during the course of simula-
tion, passive objects do not have this ability and only perform standard actions required by active 
objects. Notice that communication objects can be both active and passive depending on the 
modeling level. Each hardware block is instantiated within a SystemC class called sc_ module. 
This class is a container of a user-selected collection of SystemC clock domains, and active, 
 passive, and communication modeling objects including the following:

 ◾ SystemC and user-defined data types providing low-level access, such as bits and bytes, 
allowing for bit-accurate, platform-independent modeling.

 ◾ User-defined passive memory objects such as register, FIFO, LIFO, circular FIFO, mem-
ory, cache, as well as user-defined collections of externally addressable hierarchical 
memory objects.

 ◾ SystemC and user-defined intramodule communication and synchronization objects 
based on message passing, such as monitor, or concurrent shared memory such as 
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mutex, semaphore, conditional variables, event flag, and mailbox. This includes timer 
and watchdog timer for generating periodic and nonperiodic time-out events.

 ◾ Active control flow objects such as SystemC processes: C-like functions that execute with-
out delay (SC_METHOD), asynchronous threads (SC_THREAD), and clocked threads 
(SC_CTHREAD), and HFsm. HFsm encompasses abstract processor models based on 
independent ISS or even using custom techniques, that is, cross compiling the (bare 
metal) application code, mapping macro- to microoperations, and annotating with tim-
ing data based on a technical reference manual (e.g., timing delays for ARM Cortex-A9 
[23]), ISS, and/or hardware implementation. Intramodule interaction, including compu-
tation, communication, and synchronization, is performed either by local processes or 
by remote control flow objects defined in other modules.

 ◾ Intermodule communication object, for example, based on message passing, cf. [2].
 ◾ User-defined intermodule point-to-point and multipoint communication channels and 

corresponding interfaces, for example, peripheral, basic, and advanced VCI [20], AMBA 
bus (AHB, APB) [21], ST Microelectronics’ proprietary Request Acknowledge (RA), 
Request Valid (RV), and STBus (type 1, type 2, and type 3) [18,19]. These objects are 
built on top of SystemC in a straightforward manner. For example, on-chip commu-
nication network (OCCN) provides an open-source, object-oriented library of objects 
built on top of SystemC with the necessary semantics for modeling on-chip communica-
tion infrastructure [17], while heterogeneous system on chip (HSoC) provides a similar 
library for SoC modeling [24]. Notice that SystemC components can be integrated with a 
large number of SystemC-based libraries and tools already available in the market, such 
as a variety of open processor architectures models (in OVP suite) from Imperas [25].

12.3.2 TIME ANNOTATION

When high-level views and increased simulation speed are desirable, systems may be modeled at 
the transactional level using an appropriate abstract data type, for example, processor core, video 
line, or network communication protocol-specific data structure. With transactional modeling, 
the designer is able to focus on IP functionality rather than on details of the physical interface, 
including data flows, FIFO sizes, or time constraints. For efficient design space exploration, trans-
actional models (including application benchmarks) must be annotated with a number of archi-
tectural parameters:

 ◾ Realizability parameters capture system design issues that control system concurrency, 
such as processor, memory, peripheral, network interface, router, and their interactions, 
for example, packetization, arbitration, packet transfer, or instruction execution delays. 
RTOS models, for example, context switch or operation delays, and VLSI layout, for 
example, time–area trade-offs, clock speed, bisection bandwidth, power-consumption 
models, pin count, or signal delay models may also be considered.

 ◾ Serviceability parameters refer to reliability, availability, performance, and fault- recovery 
models for transient, intermittent, and permanent hardware/software errors. When 
repairs are feasible, fault recovery is usually based on detection (through checkpoints 
and diagnostics), isolation, rollback, and reconfiguration. While reliability, availability, 
and fault-recovery processes are based on two-state component characterization (faulty 
or good), performability metrics evaluate degraded system operation in the presence of 
faults, for example, increased latency due to packet congestion when there is limited loss 
of network connectivity.

Timing information is only one of many possible annotations. In order to provide accurate sys-
tem performance measurements, for example, power consumption, throughput rates, packet loss, 
latency statistics, or QoS requirements, all transactional models involving computation, commu-
nication, and synchronization components must be back-annotated with an abstract notion of 
time. Thus, timing characteristics, obtained either through hardware synthesis of clock-accurate 
hardware models or by profiling software models on an RTOS-based embedded processor with 
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clock-accurate delays associated with each operation in its instruction set, can be back-annotated 
to the initial TLM model for transactional-level modeling. The clock-accurate system architec-
ture model can be used for system-level performance evaluation, design space exploration, and 
also as an executable specification for the hardware and software implementation.

However, architectural delays are not always clock accurate but rather clock approximate. For 
example, for computational components mapped to a particular RTOS, or large communica-
tion transactions mapped to a particular shared bus, it is difficult to estimate accurately thread 
delays, which depend on precise system configuration and load. Similarly, for deep submicron 
technology, wire delays that dominate protocol timings cannot be determined until layout time. 
Thus, in order to avoid system revalidation for deadlock and data race hazards, and ensure cor-
rect behavior independent of computation, communication, and synchronization delays, one 
must include all necessary synchronization points and interface logic in the transactional mod-
els. Analysis using parameter sweeps helps estimate sensitivity of system-level design due to 
perturbations in the architecture, and thus examine the possibility of adding new features in 
derivative products [1,26].

For most SystemC-based hardware objects, time annotation is performed statically during 
instantiation time. Note that time delays also occur due to the underlying protocol semantics. As 
an example, we now consider memory and communication channel objects; HFsms are discussed 
in the next section:

 ◾ Time is annotated during instantiation of memory objects by providing the number of clock 
cycles (or absolute time) for respective read/write memory operations. The timing seman-
tics of the memory access protocol implemented within an active control flow object may 
contribute additional dynamic delays. For example, a congestion delay may be related to 
allowing a single-memory operation to proceed within a particular time interval, or a large 
packet delay may be due to transferring only a small amount of information per time unit.

 ◾ Time is annotated during instantiation of the processes connected to the communica-
tion channels through timing constraints implemented within an active control flow 
object, blocking calls to intramodule communication and synchronization objects, and 
SystemC wait or wait_until statements. Blocking calls within intermodule communica-
tion objects instantiated within the SystemC channel object or adherence to specific 
protocol semantics may imply additional dynamic delays, for example, compatibility in 
terms of the size of communicated tokens; this parameter may be annotated during 
communication channel instantiation.

12.4 SYSTEM-LEVEL MODELING USING SYSTEMC

Design space exploration of complex embedded systems that combine a number of CPUs, memo-
ries, and dedicated devices is a tedious task. Thus, system designers must be equipped with an 
architecture simulation tool capable of converting quickly and without much effort high-level 
concepts to a specific model. In this context, a variety of design space exploration approaches 
based on interoperable system-level design tools entail different simulation efficiencies versus 
accuracy trade-offs that enable exploring a subset of the design space.

Next, we consider four short case studies related to system-level modeling and back-annotation: 
an abstract processor model, a hierarchical final-state machine and an asynchronous channel in 
SystemC, and a PLL in SystemC-AMS.

12.4.1 ABSTRACT PROCESSOR MODEL

In this section, we present a cosimulation approach based on an abstract processor model for 
an existing multicore architecture (e.g., focusing on ARM Cortex-A9). Using this approach, we 
are able to simulate the performance of a bare metal application, that is, without the use of an 
operating system, in a clock-approximate manner. Notice that full system simulation (e.g., under 
Linux) is not supported by SystemC. Although there is limited multiprocessor support in other 
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high-level design space exploration frameworks, such as Imperas OVPSIM [25] and (open source) 
Gem5 [27–29], interoperability with SystemC is at a very early stage.

To start with, we need to model each ARM processor instruction (e.g., add, subtract, and 
multiply, compare and branch, move and shift, and local load/store) in SystemC at transaction-
level and then statically back-annotate available clock-approximate timing information from the 
assembly instruction cycle delays. Accurate timing has been published in the technical archi-
tecture reference manual for Cortex-A9 [23]. Hence, each processor instruction is modeled as a 
SystemC function that contains a wait(x); statement, where x is the number of processor cycles 
that are back-annotated from the previously mentioned reference manual.

The desired application should be written in ANSI C and compiled using an ARM cross com-
piler [30] with flags suitable for generating assembly code. As a second step, this assembly code 
must be selectively replaced by the corresponding processor instructions modeled in our abstract 
processor model. In other words, each assembly instruction is converted to a SystemC function 
that is back-annotated with the corresponding delay. Notice that in order to actually follow the 
exact trace of the original program (when it branches), the equivalent C++ instruction is also 
executed by the simulator.

An example showing the conversion steps for an application (from source code to assembly 
and from assembly to SystemC function calls) is shown in Figure 12.2.

Architecture modeling of instruction and data caches requires knowledge of the architecture 
of the memory hierarchy (organization, cache line size, etc.) [31]. Certain model inaccuracies for 
instruction cache arise due to indirect addressing and the associated branch prediction model.

12.4.2 HIERARCHICAL FINITE-STATE MACHINES USING SYSTEMC

Finite-state machines are critical for modeling dynamic aspects of hardware systems. Most hard-
ware systems are highly state dependent, since their actions depend not only on their inputs but 
also on what has previously happened. Thus, states represent a well-defined system status over an 
interval of time, for example, a clock cycle. In clock-accurate simulation, we assume that system 
events occur at the beginning (or the end) of a clock cycle. In this way, we can capture the right 
behavior semantics and back-annotate hardware objects in a very detailed way.

int sum = 0;
...

. . .

...

...

end = times(&tms2);

pthread_barrier_wait(&bar1);

mov_com(worker_id,...);
local_str(worker_id,...);...

...
end = sc_simulation_time();

cpu_barrier(bar1, bar1_max, thread_id);

Virtual platform application
ARM assembly
Multicore application

0030A0E30160263 mov r3, #0 @ tmp155,
1C300BE50164264 r3, [fp, #–28] @ tmp155, sumstr
A0304BE20604756 sub r3, fp, #160   @  tmp194,,
0300A0E10608757 mov r0, r3 @, tmp194
FEFFFFEB060c758 bl times  @
0030A0E10610759 mov r3, r0 @ D.7289,
A0009FE50ca81404 ldr r0, .L61+52 @,
FEFFFFEB0cac1405 bl pthread_barrier_wait @

FiGURe 12.2 Program conversion steps for ARM cosimulation.
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Hierarchical finite-state models based on Harel statecharts and variants [32,33] define com-
plex, control-dominated systems as a set of smaller subsystems, by allowing the model developer 
to consider each subsystem in a modular way. Scoping is used for types, variable declaration, and 
procedure calls. Hierarchy is usually disguised into two forms:

 1. Structural hierarchy that enables the realization of new components based on existing 
ones. A system is a set of interconnected components, existing at various abstraction 
levels.

 2. Behavioral hierarchy that enables system modeling using either sequential, for example, 
procedure or recursion, or concurrent computation, for example, parallel or pipelined 
decomposition.

Similar to asynchronous and clocked threads (SC_THREAD and SC_CTHREAD constructs) 
defined in SystemC, an HFsm modeled in C++/SystemC is a powerful mechanism for capturing 
a description of dynamic behavior within a SystemC model. HFsm may be used to capture for-
mally the dynamic behavior of a hardware module, for example, a circuit representing an embed-
ded system controller or a network protocol. For control tasks, asynchronous or clocked threads 
in SystemC and HFsm implementations can be made equivalent. Although clocked threads are 
usually simpler and more efficient from the simulation time point of view, since the sensitivity 
list is just the clock edge, an HFsm implementation is more general and improves clarity and effi-
ciency when specifying complex control tasks. It also allows for HFsm back-annotation in a more 
detailed way, thus making clock accuracy easier to obtain. Since outer HFsm states are typically 
behavioral generalizations of inner ones, HFsm facilitates the implementation of policy mecha-
nisms such as signaling exceptions to a higher scope and preemptive events. It also avoids pitfalls 
in implementations of traditional (flat) finite-state machine implementations, such as

 ◾ Exponential explosion in the number of states or transitions when composing substates, 
hence characterizing the system-level model using less redundant timing information

 ◾ Difficulty in modeling complex hierarchical control flows, with transitions spanning 
different levels of the behavioral hierarchy

 ◾ Difficulty in handling hierarchical group transitions or global control signals specified 
for a set of states, for example, reset and halt

 ◾ No support for concurrent, multithreaded computation

12.4.2.1 FLAT HFsm DESCRIPTION: STATES, CONDITIONS, ACTIONS, AND DELAYS

With simple, commonly used modeling constructs, a flat HFsm is represented using states, con-
ditions, delays, and actions. States are used to identify HFsm status, conditions are used to drive 
actions, and delay times are used to postpone actions. Composite transitions are defined as a 
quadruple formed by a condition, an action, a delay, and the next state. A flat HFsm represented 
graphically is shown in Figure 12.3.

S1

S2C1/A1/t1

C2/A2/t2

C3/A3/t3

C4/A4/t4
S3

FiGURe 12.3 Graphical illustration of a flat, clocked finite-state machine.
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An equivalent representation can be given in tabular form:

 ◾ State S1 = {{C1, A1, t1, S2}};
 ◾ State S2 = {{C3, A3, t3, S3}};
 ◾ State S3 = {{C4, A4, t4, S1}, {C3, A3, t5, S3}};

Let us consider the state S3. In this state, we have two transitions. In the first one, S1 is the next 
state, C4 is the condition, A4 is the action, and t4 is a constant compile-time delay. The semantics 
of this transition are as follows. If the HFsm is in state S3 and condition C4 is true, then HFsm 
performs action A4 and transfers control to state S1 after a delay of t4 clock cycles. Delay anno-
tation during state changes is common in HFsm specifications, for example, when defining the 
dynamic behavior of a processor or memory controller. Thus, the HFsm designer could redefine 
this order, for example, condition–action–delay instead of condition–delay–action.

Furthermore, if HFsm conditions were not allowed to make blocking function calls, then 
the delay associated to performing the corresponding action would be deterministic and could 
simply be estimated and back-annotated directly by the model designer. Dynamic delays, for 
example, delays due to concurrent accesses to shared resources, cause nondeterministic delays. 
These are much harder to model accurately and difficult to replicate during testing. They could 
be handled at the beginning of the action routine by placing appropriate blocking function calls 
to time-annotated intramodule communication and synchronization objects, such as user-
defined channels.

12.4.2.2 HFsm DESCRIPTION USING STATES AND EVENTS

For more complex examples, hierarchical states may have “parents” or “children,” placed 
at different levels. This approach is common with machines providing different operating 
modes, that is, machine features that define multiple, alternative configurations. Then, HFsm 
is described conveniently using discrete-event systems, that is, a finite set of states, a finite set 
of event categories, start-up and regular state transitions mapping (state, event) pairs to other 
states, and actions associated with transitions. Events are triggered by changes in conditions 
that (similar to actions) can be time annotated. This description is natural, abstract, powerful, 
and efficient:

 ◾ Initial start-up transitions originate during initial transitions from a top superstate. 
These transitions invoke entry and start-up actions (e.g., setting state parameters) for the 
state associated with the transition as well as for intermediate superstates, if a transition 
crosses two or more levels of hierarchy.

 ◾ Regular transitions occur at the current state during normal HFsm processing. They are 
triggered by events selected either randomly or through external stimuli from a user-
defined enumerated event list. These transitions cause entry (and exit) actions upon 
entering (respectively, exiting) an HFsm state. Depending on the position in the state 
hierarchy of the new versus the current state, entry and exit actions are executed in 
order, either from the least deeply nested to the most deeply nested state or vice versa. 
Entry and exit actions always precede processing actions possibly associated with the 
newly entered hierarchical state.

Hierarchical finite-state machines are common when describing operation control in digital sys-
tems, where, for example, a top menu superstate is usually specialized to one or more system 
setting modes (e.g., time and date keeping for a digital watch) and one or more normal operating 
modes (e.g., for Internet, text, or video content for an on-screen display of a digital TV). These 
modes of operation can be considered as independent superstates.

Within this hierarchical system specification context, we present a SystemC-related imple-
mentation of HFsm that clarifies the previous definition. A SystemC wait or wait_until can be 
associated with each processed event; notice that quite similarly to time annotation, power 
dissipation data can be annotated to each HFsm state transition. Moreover, blocking calls 
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to intramodule communication and synchronization objects may account for additional 
dynamic delays. These delays can be implemented in start-up transitions (START_EVT) from 
a superstate and subsequent state entry (ENTRY_EVT) or state exit (EXIT_EVT) transitions. 
Note that state entry or exit transitions may occur within a given hierarchical level or between 
different levels; in fact, in order to discover which entry or exit actions to execute, it is nec-
essary to compute dynamically, that is, during state transitions, the least common ancestor 
from the least deeply nested (source or destination) to the most deeply nested state (destina-
tion or source).

12.4.3 ASYNCHRONOUS INTERMODULE COMMUNICATION IN SYSTEMC

Unlike synchronous communication channels where individual modules share a clock, asyn-
chronous blocking communication channels use local handshake protocols to exchange data 
among nodes connected to memory-less wires. Globally asynchronous locally synchronous 
(GALS) techniques relax the synchrony condition by employing multiple nonsynchronized 
clocks, achieving improved power consumption and reduced electromagnetic interference [34]. 
GALS systems may behave deterministically, if system output cannot differ for the same input 
sequence. Deterministic GALS systems must provide a unique output independent of frequency/
phase variations, interconnect delays, and clock skew.

As an example, in asynchronous and GALS intermodule communication, we consider 
two SystemC modules exchanging information over an asynchronous pipeline. Information 
is transmitted only if one is ready to send and the other ready to receive. Many kinds of 
channels can be used to represent in SystemC this type of handshake. For CABA commu-
nication, the SystemC signal data channel provides the necessary event synchronization 
functionality, for example, wait(signal.event). However, as indicated in Sections 12.4.3.1 and 
12.4.3.2, special care must be taken when implementing asynchronous or GALS communi-
cation using signals in SystemC, not only from the point of an annotation perspective but 
also from a viewpoint of correctness. In Section 12.4.3.3, we provide a possible solution to 
both problems based on the four-phase asynchronous handshake protocol that allows for 
back-annotation.

12.4.3.1 ASYNCHRONOUS INTERMODULE COMMUNICATION USING SYSTEMC SIGNALS

We first consider typical communication between two modules connected together via a SystemC 
signal of type data_type, that is, the data_in port of one is connected to the data_out port of the 
other and vice versa. Without loss of generality, we assume that both modules have similar func-
tionality and focus on their communication interface. The following code snippet helps make this 
case familiar to SystemC developers.

class device: public sc_module {
 public:
 SC_HAS_PROCESS(device);
 device(sc_module_name nm): sc_module(nm) {
  SC_THREAD(in_action);
   sensitive << data_in;

 }
 sc_in<data_type> data_in;
 sc_out<data_type> data_out;
 void in_action();
};
void device::in_action(){
 while(1){
  wait(); //waits an event in data_in port
  data_type module_data = data_in.read();
  // process received data
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  ...
  // Write data to the other module
  data_out.write();

 }
};
int sc_main (int argc, char* argv[]) {
...
 sc_signal<data_type> signal_1;
 sc_signal<data_type> signal_2;
 device module1(“Module1”); 
 module1.data_in (signal_1);
 module1.data_out (signal_2);
 device module2(“Module2”); 
 module2.data_in (signal_2);
 module2.data_out (signal_1);
...
 sc_start();
}

In the aforementioned implementation, we present a two-way intermodule communication that 
is asynchronous, since there is no clock synchronization. More specifically, when the sending 
module has data ready in its data_out port, the data_in port of the second module receives the 
data through the appropriate signal_x signal channel, where x = 1, 2.

This implementation is easy to use and has no clock dependency, so it supports inter-
module communication in both synchronous and asynchronous systems, that is, systems 
that use the same or different clocks. However, it does not work properly in all cases, since 
there is a limitation in event generation related to SystemC signals. More specifically, a sig-
nal generates an event if and only if the signal changes its value. Thus, if a sender repeatedly 
executes the write method on its output port, but writes the same value, only one event in 
the event list of the listening port of the signal will be generated, that is, the second write is 
essentially lost.

12.4.3.2 INTERMODULE COMMUNICATION WITH CLOCK-SENSITIVE MODULES

Next, we consider two modules, each with a clock-sensitive thread. The modules use identi-
cal or different clocks and interact with each other as before through asynchronous signals. 
As in Section 12.4.3.1, we focus on communication interface definitions rather than the 
module functionality. The modules are again connected together via a SystemC signal of 
type data_type, as shown next. The following code extract helps make this example more 
concrete.

class device: public sc_module {
 public:
 SC_HAS_PROCESS(device);
 device(sc_module_name nm):sc_module(nm) {
  SC_THREAD(in_action);
   sensitive << pkt_in << CLK;
 }
 sc_in_clk CLK;
 sc_in<data_type> data_in;
 sc_out<data_type> data_out;
 void in_action();
 };
void device::in_action(){
 while(1){
  //wait for event in pkt_in port
  wait(data_in.value_changed_event());
  data_type module_data = data_in.read();
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  // process received data
  ...
   wait(x); //module can wait for x cycles
  // Write data to the other module
  data_out.write();
 }
};
int sc_main (int argc, char* argv[]) {
...
sc_clock clock1(“CLOCK1”, ZZ, SC_NS, X.X, Y.Y, SC_NS);
sc_clock clock2(“CLOCK1”, ZZ, SC_NS, .X, Y.Y, SC_NS);
...
 sc_signal<data_type> signal_1;
 sc_signal<data_type> signal_2;
 device module1(“Module1”);
 module1.data_out (signal_1);
 module1.data_in (signal_2);
 module1.CLK (clock1);
 device module2(“Module2”);
 module2.data_out (signal_2);
 module2.data_in (signal_1);
 module2.CLK (clock2);
...
 sc_start();
}

This implementation not only suffers from the same SystemC limitations as the previous example 
(see Section 12.4.3.1) requiring uniqueness of the signal values, but since the listening thread 
in_action is sensitive to both the data signal and the clock, it is possible that while waiting for a 
clock event in the in_action method, events are lost (signal values overwritten) or duplicated (sig-
nal values read twice) from the asynchronous data channel. Thus, correctness of this handshake 
protocol heavily depends on the relative speed of modules 1 and 2.

12.4.3.3  ASYNCHRONOUS INTERMODULE COMMUNICATION 
BETWEEN CLOCK-SENSITIVE MODULES

In order to resolve both previous problems, we consider a safe asynchronous intermodule com-
munication channel for SystemC modules with clock-sensitive listening threads. A common 
asynchronous protocol for GALS communication is the four-phase asynchronous handshake. 
This protocol applies backpressure when the sender sends data that the receiver cannot accom-
modate. As shown in Figure 12.4, the protocol starts at an initial idle state. This state is entered 
again whenever the sender is not ready to send. The protocol is defined at the network level 
through a request (s_ready), an acknowledge signal (d_ready), and one or more data signals. The 
request is asserted by the sender, while the receiver responds by asserting the acknowledge; then 
both signals are deasserted in turn, that is, first the sender withdraws its request and then the 
receiver withdraws its acknowledge signal.

This fully interlocked asynchronous handshake allows correct operation without loss or dupli-
cate information. We simplify things and focus (without loss of generality) on the channel imple-
mentation of two interacting modules: one sender and one receiver. The module connections are 
shown in Figure 12.4.

Sender Receiver

<data> sender_out <data> receiver_in

<bool> s_ready <bool> d_ready

<bool> s_ready<bool> d_ready

FiGURe 12.4 Sender and receiver connections.
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class sender: public sc_module {
 public:
 SC_HAS_PROCESS(device);
 sender(sc_module_name nm):sc_module(nm) {
  SC_THREAD(out_action);
   sensitive << CLK;
 }
 sc_in_clk CLK;
 sc_in<bool> d_ready;
 sc_out<bool> s_ready;
 sc_out<data_type> data_port;
 void out_action();
};
class receiver: public sc_module {
 public:
 SC_HAS_PROCESS(device);
 receiver(sc_module_name nm): sc_module(nm) {
  SC_THREAD(in_action);
   sensitive << CLK;
 }
  sc_in<data_type> data_port;
  sc_in_clk CLK;
  sc_in<bool> d_ready;
  sc_out<bool> s_ready;
  void in_action();
};
void sender::out_action(){
 while(1){
  wait();
  s_ready.write(false);
  if (!d_ready.read()){
   data_port.write(module_data);
   s_ready.write(true); // ready to send
   wait(d_ready.value_changed_event());
  }
 }
}
void receiver:: in_action() {
 while(1){
  wait();
  s_ready.write(false);
  if (d_ready.read()){
   module_data = data_port.read();
   s_ready.write(true);
   wait(d_ready.value_changed_event());
  }
 }
}
int sc_main (int argc, char* argv[]) {
 ...
sc_clock clock1(“CLOCK1”, ZZ, SC_NS, X.X, Y.Y, SC_NS);
sc_clock clock2(“CLOCK1”, ZZ, SC_NS, X.X, Y.Y, SC_NS);
 ...
 sender sender0(“SENDER”);
 sender0.data_port(data_signal);
 sender0.m_s_ready(signal1);
 sender0.m_d_ready(signal2);
 sender0.CLK(clock1);
 receiver receiver0(“RECEIVER”);
 receiver0.data_port(data_signal);
 receiver0.m_d_ready(signal1);
 receiver0.m_s_ready(signal2);
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 receiver0.CLK(clock2);
 sc_start();
}

As shown in this SystemC code, we use two extra signal ports of type bool. Each port has an 
s_ready (request) output port and a d_ready (acknowledgment) input port. The s_ready output 
port of the sender module is connected to the d_ready listening port of the receiver and vice 
versa. This implementation works as follows.

When the receiver sets its s_ready output signal to false (ready to receive), then the d_ready 
input signal of the sender module becomes true, and consequently, the out_action thread in the 
sender module is able to send data to the receiver via its data_out port. Then, it sets its s_ready 
signal to true and waits until its d_ready signal changes value, that is, until it becomes true.

The change in the s_ready signal of the sender allows the receiver module, which listens to the 
corresponding d_ready signal, to read data from its data_port. Subsequently, it sets its s_ready 
output signal to true and waits until its d_ready signal changes value, that is, until it becomes 
true. The change in the s_ready signal of the receiver unblocks the sender who listens to the 
corresponding d_ready port via the d_ready.value_changed_event().

Notice that both sender and receiver calls to the value_changed_event() are necessary to 
avoid duplicating/overwriting of the transmitted data, when the relative speeds of the sender and 
receiver differ. Moreover, by using Boolean signals, no messages can be lost, resolving the issue 
already discussed in Section 12.4.3.1.

This SystemC implementation seems to allow further back-annotation, for example, by 
calling either a simple wait(x, SC_NS) for a given number of ns or wait(x, SC_NS, ready.
value_changed_event()), which waits for a specified time of x nanoseconds, or event ready to 
occur, whichever comes first. However, the semantics (earliest of the two) can lead to dupli-
cates. Also, notice that a call to wait(x, SC_NS) (for an arbitrary x) could lead to synchroniza-
tion hazards (deadlock, message loss, duplicates), since events generated at specific instances 
may never be consumed.

As an extension, the aforementioned handshake protocol can be rewritten based on a push 
instead of a pull functionality, that is, the sender (instead of the receiver) initiates the transaction. 
Such an implementation is described in Reference 35. It can also be utilized to design multiaccess 
channels (e.g., an asynchronous router) through the use of an sc_spawn() and an appropriately 
designed arbiter.

12.4.4 BEHAVIORAL PLL MODEL IN SYSTEMC-AMS

In the most embedded SoC devices, such as a wireless radio chip, digital circuits are combined 
with analog circuits. Most analog systems have a small transistor count, such as operational 
amplifiers, data converters (ADC or DAC), filters, PLLs, sensors, and power management chips, 
while complex analog blocks include analog controllers in transportation and consumer elec-
tronic appliances, such as motor controllers. AMS design must address design complexity, power 
efficiency, verification, and signal integrity at all levels, from single cell device to high-level com-
ponents and from discrete- to continuous-time domain. Although digital design is highly auto-
mated, a very small portion of analog design is currently automated through EDA tools and is 
often described as flat nonhierarchical design. As a result, although digital circuits are increas-
ingly larger parts in SoC design, critical analog circuits require a disproportionately large amount 
of chip area and require (comparatively) immense effort in interface design, validation, manufac-
turing, design analysis, and IP reuse.

In this context, system-level modeling of analog circuits may use an innovative approach 
based on the recently open SystemC-AMS 2.0 standard proposed by Accellera; a correspond-
ing implementation is available from Fraunhofer Institut [36–39]. The SystemC-AMS extension 
complements the SystemC language with circuit-level simulation for critical AMS or RF circuitry 
(i.e., similar to Spice tools) and behavioral modeling (i.e., similar to Verilog-AMS, SystemVerilog, 
or VHDL-AMS), providing a high-level abstraction to support fast simulation of next-generation 
complex multimillion transistor SoCs.
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The SystemC-AMS standard defines a User Guide and Language Reference Manual that 
define execution semantics and extensions to SystemC language constructs (classes, inter-
faces, analog kernel, and modeling of continuous-time analysis) for developing executable 
specifications of embedded AMS systems at system-level, analog behavioral and netlist level 
in the same simulation environment. This extension made SystemC the first AMS language 
offering frequency, together with time-domain analysis, enhancing system modeling and 
hw/sw codesign in many complex applications, such as electromechanical system control in 
robotics and simulation of analog RF and digital blocks of wireless networks, for example, 
Bluetooth.

More specifically, SystemC-AMS extensions define new language constructs identified by the 
prefix sca_. Depending on the underlying semantics, AMS modules can be declared in dedicated 
namespaces sca_tdf (timed data flow semantics that includes modeling systems in which activa-
tion periods or frequencies are either statically defined or dynamically changing), sca_eln (electri-
cal linear networks), and sca_lsf (linear signal flow) [37]. By using namespaces, similar primitives 
to SystemC are defined to denote ports, interfaces, signals, and modules. For example, a timed 
data flow input port is an object of class sca_tdf::sca_in<type>.

12.4.4.1 SYSTEMC-AMS PARAMETER ANNOTATION

SystemC-AMS behavioral models focus on functionality, rather than on details of the physical 
implementation, enabling fast simulation and design space exploration early in the design phase, 
that is, before focusing on implementation details of low-level electrical circuit models and pro-
cess technology. In contrast, low-level models allow precise evaluation of parasitic effects and 
electrical parameters of the analog circuit, such as wire delay parameters. This low-level charac-
terization allows back-annotation of the initial behavioral models (at object instantiation time in 
SystemC-AMS) with a number of architecture-related performance, power, and reliability char-
acteristics for clock-approximate or clock-accurate modeling.

Then, a back-annotated behavioral model can be used to do the following:

 ◾ Ensure correctness in the presence of deadlock and data race hazards.
 ◾ Enable interfacing to new hardware logic or software models.
 ◾ Perform accurate system-level design space exploration and analysis. For example, 

analysis using parameter sweeps helps estimate sensitivity of system-level design due 
to perturbations in the architecture in different operational environments and allows 
examination of possible new features in derivative products.

12.4.4.2 PLL DEFINITION IN SYSTEMC-AMS

As a case study, we consider the use of SystemC-AMS timed data flow for behavioral modeling 
of self-clocking structures for skew reduction based on PLL [40,41]. We explain how to annotate 
model parameters from existing open or freeware low-level electrical circuit designs in order to 
perform accurate system-level simulation, operational characterization, consistency validation, 
and sensitivity analysis. In addition, by understanding the sources and characteristics of different 
types of noise, distortion, and interference effects, it is possible to accurately model and validate 
a PLL’s performance, reliability, and signal-to-noise ratio with SystemC-AMS.

For validating and characterizing PLL operation, we can use behavioral-level simulation in 
SystemC-AMS with input/output timed data flow (sca_tdf) signals. The PLL module described 
in SystemC-AMS models all circuit blocks, that is, phase detector, low-pass filter (which can be 
implemented in the frequency domain using sca_lsf), and analog/digital voltage‒controlled oscil-
lator (VCO). The block will generate an output signal that has a fixed (mathematically proven) 
relationship to the phase of an input reference signal.

The PLL module can also be integrated with other modules that induce perturbations to 
parameter and input signals (e.g., the reference oscillator). These modules, also modeled as generic 
SystemC-AMS classes with input and output time data flow signals, can cause variation due to 
nonlinear effects and thermal Gaussian noise [42,43], for example, due to component aging; block 
specification and binding details of these instantiated modules are omitted.
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The PLL class definition in SystemC-AMS is as follows:

pll(sc_core::sc_module_name n,
 double ph_gain, // phase detector gain
 double lp_ampl, // low pass amplitude
 double lp_fc, // low pass frequency
 double vco_fc, // vco frequency
 double kvco, // vco sensitivity (Hz/V)
 double vco_gain, // vco gain
 double vco_vc) // vco voltage control
 Its timed data flow signals at the I/O interface are:
sca_tdf::sca_in<double> ref; // reference signal
sca_tdf::sca_out<double> lpo; // low pass filter
sca_tdf::sca_out<double> vco; // vco

The PLL model design parameters are as follows (specification and binding details, which are 
similar to SystemC, are omitted):

Parameter Default Description 

sc_module_name n —

double ph_gain 3.7 Gain of phase detector

double lf_ampl 1 Amplitude of low-pass filter

double lf_fc 1 Cutoff frequency of low-pass filter (Hz)—small to remove high-frequency clock noise

double vco_fc 109 Central frequency of vco output (Hz)

double kvco 107 Sensitivity of vco (Hz/V)

double vco_gain 1 Gain of vco output

double vco_vc 0 Voltage control of vco

integer rate 1 Data rate of input port (no multirate channels)

Loop filter parameters (e.g., gain), as well as phase detector and VCO tuning characteristics, have 
a dramatic effect on PLL behavior. For example, abrupt small perturbations (e.g., ±1%) in the 
reference frequency or phase or filter dynamics (loop bandwidth, damping factor and frequency) 
influence PLL operational characteristics and stability, for example, lock time, cycle slipping and 
damping behavior, reference spurs, and phase noise. For instance, a lower bandwidth filter causes 
the loop to respond slower to the noise being injected by the VCO, while a higher bandwidth 
allows the loop to respond quickly to the noise and compensate for it.

12.4.4.3 PLL PARAMETER ANNOTATION

For a realistic, accurate, and efficient simulation of PLL operational characteristics, the previously 
described behavioral-level SystemC-AMS models must be annotated with different system state 
parameters from corresponding low-level electrical implementations. More specifically, it is nec-
essary to modify SystemC-AMS model parameters, including initialization of constant system 
parameters (related to timing and power characteristics) and dynamic modification of parameter 
values during simulation, for example, when modeling specific stimuli or perturbations due to 
component interactions or technology process–related effects, such as noise.

Low-level implementations at electrical network and circuit level are already available as 
library models in many commercial and open or free PLL design toolkits and allow reuse of sys-
tem performance metrics and test-bench scenarios:

 ◾ In addition to popular commercial signal processing toolkits, such as Virtuoso AMS 
from Cadence, LabView from National Instruments, and SimPLL from Analog Radio 
Systems [44], which provide basic PLL device component characteristics in a more gen-
eral analog model environment, there are several free tools, as outlined next.

 ◾ CPPSIM, developed by Prof. M. Perrott at MIT, is designed mostly for teaching analog 
design [45]. This is a complete analog modeling environment, with simulator, model 
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design, and synthesis components. It is noteworthy that CPPSIM contains useful open-
source C++ classes for AMS modeling; however, these classes are hidden within other 
free but not open-source code, so it is usually difficult to directly extract and reuse.

 ◾ Several open-source or free (but limited license) tools providing real PLL operational 
characterization are very useful and easy to use for configuration and annotation 
between behavioral models and electrical network implementations. These are usually 
provided for free in executable form by engineers working at different analog design 
companies. For example, we mention EasyPLL from National Instruments [46], PLL 
from Michael Ellis [47], and PLLSim (with a nice GUI) from Michael Chan from the 
University of Queensland [48].

Unfortunately, back-annotation from low-level AMS models is not seamlessly integrated with 
the SystemC-AMS modeling environment, and circuit-level parameters can rarely be used with-
out adaptation, a time-consuming and error-prone manual process even for the same process 
technology. In order to reduce time to market and increase the chance of first-time-right silicon, 
a systematic interoperable framework is necessary to automatically capture the available design 
knowledge information from low-level design schematics based on simulation results and tech-
nology-related parasitic models in a way that is transparent to the designer. In addition, after fast 
and efficient device simulation using the refined (annotated or calibrated) SystemC-AMS behav-
ioral models, generic time series analysis and wave visualization tools, such as Fourier and oscil-
lator analyzers, can be customized for analysis and correlation of the operational characteristics. 
For example, Figure 12.5 shows a typical frequency analysis after simulation, which shows a peak 
at the required frequency of 1 GHz. Spurs have much smaller amplitude by ~20 dB and reduce 
PLL capture range and lock time [49,50]. For a refined analysis, we can compute peak-to-peak and 
rms phase jitter and perform spur reduction using more sophisticated filters [51,52].

Apart from certain classes of filters, there is currently no automated model translation or 
synthesis algorithm for generating a circuit from top-level HDL-AMS specifications. New EDA 
tools are necessary to perform plug-and-play calibration, integration, verification, analysis, and 
optimization in terms of performance, fault tolerance, and power-efficiency characterization, 
extending and standardizing existing support for rapid development of reliable, configurable, 

FiGURe 12.5 Fast Fourier transform of phase-locked loop voltage–controlled oscillator output signal.
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and programmable AMS SoCs. These tools can also perform back-annotation automatically by 
applying metamodels, for example, symbolic analysis or graph rewriting principles in a hierarchi-
cal design, linking lower-level data to higher-level design entities.

12.5 AUTOMATIC EXTRACTION OF STATISTICAL INFO

System-level modeling is an essential ingredient of system design flow. Data and control flow 
abstraction of the system hardware and software components express not only functionality but 
also system performance characteristics that are necessary to identify system bottlenecks [53]. 
For example, virtual channels are used to avoid both network and protocol deadlock and also to 
improve performance and provide quality of service. While for software components it is usually 
the responsibility of the user to provide appropriate key performance indicators, for hardware 
components and interfaces, it is necessary to provide a statistical package that hides internal 
access to the modeling objects. The generated statistical data may be analyzed using visualization 
software, for example, the open-source Grace tool [54] or dumped to a file for subsequent data 
processing, for example, via a spreadsheet or a specialized text editor.

12.5.1 STATISTICAL CLASSES FOR SYSTEM-LEVEL MODELS

Considering the hardware system modeling objects previously proposed, we observe that dynamic 
performance characteristics, for example, latency, throughput, packet loss, resource utilization, 
and possibly power consumption (switching activity) are definitely required from the following:

 ◾ Intermodule communication and synchronization objects (message) representing com-
munication channel performance metrics for throughput, latency, or packet loss.

 ◾ Intramodule passive memory objects (register, FIFO, LIFO, circular FIFO, memory, cache) 
reflecting memory performance metrics for throughput, latency, packet loss, buffer size, 
and hit ratio. Although similar metrics for certain joint intramodule communication and 
synchronization objects, for example, mailboxes, are possible, these objects may be imple-
mented in hardware in various ways, for example, using control logic and static memory.

Assuming a common 2-D graphic representation, a statistical API for the aforementioned met-
rics can be based on a function enable_stat(args) enabling the data-capturing activity. Its argu-
ments specify a distinct name of the modeling object; the absolute start and end time for statistics 
collection; the title and legends for the x and y axes; the time window for windowed statistics, 
that is, the number of consecutive points averaged for generating a single statistical point; and a 
Boolean flag for stopping or restarting statistics during simulation.

Since complex systems involve both time- (instant) and event-driven (duration) statistics, we 
may provide two general monitoring classes, collecting instant and duration measurements from 
system components with the following functionality.

In time-driven simulation, signals usually have instantaneous values. During simulation, these 
values can be captured at a specific time by calling the function:

 stat_write (double time, double value).

In event-driven simulation, recorded statistics for events must include arrival and departure time 
(or duration). Since the departure time is known later, the interface must be based on two func-
tions: stat_event_start and stat_event_end. Thus, first the user invokes an operation

 int a = stat_event_start(double arrival_time)

to record the arrival time and save the unique location of the event within the internal table of 
values in a local variable a. Then, when the event’s departure time is known, this time is recorded 
within the internal table of values at the correct location, by calling the stat_event_end function 
with the appropriate departure time.

 void stat_event_end(double departure_time, a).
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The stat_event_start/end operations may take into account memory addresses in order to compute 
duration statistics for consecutive operations, for example, consecutive read/write accesses (or 
enqueue/dequeue) operations corresponding to the same memory block (or packet) for a register, 
FIFO, memory, cache, or intermodule communication object, that is, message. Thus, a modified 
StatDurationLib class performs the basic stat_event_start/end operations using (transparently to 
the user) internal library object pointers. Then, upon an event arrival, we invoke the command

 void stat_event_start(long int MAddr, double arrival_time)

to record the following in the next available location within the internal table:

 ◾ The current memory address (MAddr)
 ◾ The arrival time (arrival_time)
 ◾ An undefined (−1) departure time

Then, upon a corresponding departure event, we invoke the command

 void stat_event_end(long int MAddr, double departure_time)

to search for the current MAddr in the internal table of values and update the entry correspond-
ing to the formerly undefined, but now defined departure time.

For duration statistics in 2-D graphic form, the y-axis point may indicate time of occurrence of 
a read operation performed on the same address as a previous cache write operation whose time 
of occurrence is shown at the corresponding point on the x-axis. Event duration, for example, 
latency for data access from the same memory block can be obtained by subtracting these two 
values. For example, using Grace this computation can be performed very efficiently using the 
Edit data sets: create_new (using Formula) option. Furthermore, notice that the write–read map-
ping is one to one, that is, data  are first written and then they are read, while a reverse access, that 
is, read before write, causes an error. Such conditions must be thoroughly checked in the code.

As explained before, statistics collection may be performed either by the user or directly by 
the hardware modeling objects, for example, bus channels, such as AMBA APB, AHB, AXI, or 
STBus, using library-internal object pointers. In the latter case, software probes are inserted into 
the source code of library routines, either manually by setting sensors and actuators or more effi-
ciently through the use of a monitoring segment that automatically compiles the necessary probes. 
Software probes share resources with the system model, thus offering low cost, simplicity, flexibil-
ity, portability, and precise application performance measurement in a timely, frictionless manner.

Furthermore, based on the previous statistical functions, we can derive application-specific 
statistics for the following system modeling objects (similar to instant and duration classes, 
enable_stat(args) functions are provided for initializing parameters):

 ◾ Average throughput over a specified time window of register, FIFO objects, memory, 
cache, and intermodule communication objects (message)

 ◾ Cumulative average throughput over consecutive time windows of register, FIFO objects, 
memory, cache, and intermodule communication objects (message)

 ◾ Instant value of counter-based objects such as FIFO, LIFO, and circular FIFO objects; 
this class can also be used to compute the instant cache hit ratio (for read/write accesses) 
and cell loss with binary instantaneous counter values

 ◾ Average instant value over a specified time window of counter-based objects; this class 
can be used to compute average cache hit ratio and cell loss probability

 ◾ Cumulative average value over consecutive time windows of counter-based objects; this class 
can also be used to compute the cumulative average cache hit ratio and cell loss probability

 ◾ Latency statistics for read/write (or enqueue/dequeue) on register, FIFO, memory, cache, 
and intermodule communication objects (message)

In addition to the previously described classes that cover all basic cases, it is sometimes neces-
sary to combine statistical data from different modeling objects, for example, from hierarchical 
memory units, in order to compare average read versus write access times, or for computing 
cell loss in network layer communication. For this reason, we need new user-defined joint or 
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merged statistics built on top of time- and event-driven statistics. Special parameters, for exam-
ple, Boolean flags, for these joint statistic classes can lead to more detailed statistics.

We have discussed automatic extraction of statistical properties from hardware modeling 
objects. This statistical approach may also be extended to software modeling. As an example, the 
enable_stat_ construct for obtaining write throughput statistics (read throughput is similar) from 
a software FIFO object buffer is listed next. This function call will generate Figure 12.6.

 // enable stats in [0,500], with time window = 1 sample
 enable_stat_throughput_read(“buffer”, 0, 500, 1,
 “Simulation Time”, “Average Throughput (Writes)”);

For more details on the implementation of statistical classes and the use of online or offline 
Grace-based statistical graphs, the reader is referred to the OCCN user manual and the statisti-
cal test benches that accompany the OCCN and HSoC libraries [17,24]. These test benches are 
compatible with both Solaris and Linux operating systems.

12.5.2 ADVANCED SYSTEM MONITORING

Conventional text output and source-code debugging are inadequate for monitoring and debug-
ging complex and inherently parallel system models. Current system-level design tools, such as 
the Synopsys System Studio, generate vcd files for signal tracing, or build relational databases in 
the form of tables for data recording, visualization, and analysis. Efficient high-level performance 
modeling environments may be based on advanced monitoring activities in back-annotated 
system-level models. Although these activities may correspond to distinct monitoring phases 
occurring in time sequence, potentially there is a partial overlap between them:

 ◾ Generation refers to detecting events and providing status and event reports containing 
monitoring traces (or histories) of system activity.

 ◾ Processing refers to functions that process monitoring data, for example, merging of 
traces, filtering, correlation, analysis, validation, and updating. These functions convert 
low-level monitoring info to the required format and level of detail.

 ◾ Presentation refers to displaying monitoring information in appropriate form.
 ◾ Dissemination concerns the distribution of selected monitoring reports to system-level 

developers and external processing entities.
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FiGURe 12.6 Performance results using Grace for a transport layer protocol.
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In addition to these  main activities, implementation issues relating to intrusiveness and synchro-
nization are crucial to efficient design and evaluation of monitoring activities.

12.5.2.1 GENERATION OF MONITORING REPORTS: STATUS AND EVENT REPORTS

In order to describe the dynamic behavior of an IP model instance (or group of objects) over 
a period of time, status and event reports are recorded in time order as monitoring traces. 
A complete monitoring trace contains all monitoring reports generated by the system since 
the start of the monitoring session, while a segmented trace is a sequence of reports collected 
during a limited period of time, for example, due to overflow of a trace buffer or deliberate 
halting of trace generation. A monitoring trace may also be used to generate nonindependent 
traces based on various logical views of objects or system activity. For each trace, we need 
to identify the reporting entity, the monitored object, the type of the report, as well as user-
defined parameters, for example, start and end time, time window, priority, and size. We 
also provide browsing or querying facilities (by name or content) or runtime adjustments, 
for example, examining the order of event occurrences or readjusting the interval between 
event occurrences.

A status report contains a subset of system state information, including object properties, such 
as time stamp, status, and identity. Appropriate criteria define the sampling rate, the reporting 
scheme, and the contents of each report. For example, the report may be generated either periodi-
cally, that is, based on a predetermined finite-state machine or thread schedule, or on demand, 
that is, upon receiving a request for solicited reporting. The request may itself be periodic, that is, 
via polling or on a random basis.

System events may be detected immediately upon occurrence or after a delay. For exam-
ple, signals on an internal system bus may be monitored in real time, while alternatively, 
status reports may be generated, stored, and processed in order to detect events at a later 
time. Event detection may be internal to the monitored object, that is, typically performed 
as a function of the object itself, or external, that is, performed by an external agent who 
receives status reports and detects changes in the state of the object. Once the occurrence of 
an event is detected, an event report is generated. In general, an event report contains a vari-
able number of attributes such as reporting entity, monitored object, event identifier, type, 
priority, time of occurrence, state of the object immediately before and after event occur-
rence, application-specific state variables, time stamps, text messages, and possibly pointers 
to detailed information.

12.5.2.2 PROCESSING OF MONITORING INFORMATION

A system-level model may generate large amounts of monitoring information. Design exploration 
is successful if the data can be used to identify design problems and provide corrective measures. 
Thus, the data collection and analysis stage is split into four different phases.

Validation of system information provides consistency checks, possibly specified in a formal 
language, ensuring correct, nonintrusive monitoring, and harmonized operation. This includes

 ◾ Sanity tests based on the validity of individual monitoring traces, for example, by check-
ing for correct token values in event fields, such as an identity or time stamp

 ◾ Validation of monitoring reports against each other, for example, by checking against 
known system properties, including temporal ordering

Filtering reduces the amount of monitoring data to a suitable rate and level of detail. For example, 
filter mechanisms reduce the complexity of displayed process communications by

 ◾ Incorporating a variable report structure
 ◾ Displaying processes down to a specified level in the module hierarchy
 ◾ Masking communication signals and data using filter dialogs
 ◾ Providing advanced filter functionality for displaying only tokens with predetermined values
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Analysis processes monitoring traces based on special user-selected criteria. Since analysis is 
application dependent, it relies on sophisticated stochastic models involving combinatorics, 
probability theory, and Markov chain theory. Analysis techniques enable

 ◾ Simple processing, for example, average, maxima, variance statistics of state variables
 ◾ Statistical trend analysis for forecasting using data analysis packages such as MATLAB, 

Grace or SAS, and correlation (merging, combination, or composition) of monitoring 
traces, which raises the abstraction level

Together with filtering, correlation prevents the users from being overwhelmed by an immense 
amount of detailed information and helps identify system bottlenecks. Thus, for example, events 
generated by sensors or probes may be combined using AND, OR, and NOT operators to provide 
appropriate high-level reliability metrics. Since correlation of system-level monitoring informa-
tion is a very challenging task, a relational database, such as mini-SQL, which includes selection, 
projection, and join operators, is sometimes useful.

12.5.2.3 PRESENTATION OF MONITORING INFORMATION

Various visualization techniques such as simple textual representation, time-process diagrams, 
and animation may be provided.

Textual representation (ascii) increases its expressive power by providing appropriate inden-
tation, color, and highlighting to distinguish information at different abstraction levels. Events 
may be displayed in a causal rather than temporal order by including parameters such as event 
type, name of process initiating the event, name of process(es) handling the event, and contents 
of transmitted messages.

A time-process diagram is a 2-D diagram illustrating the current system state and the 
sequence of events leading to that state. The horizontal axis represents events correspond-
ing to different processes, while the vertical one represents time. In synchronous systems, 
the unit of time corresponds to actual time, while in asynchronous systems, it corresponds 
to the occurrence of an event. In the latter case, the diagram is called a concurrency map, 
with time dependencies between events shown as arrows. An important advantage of time-
process diagrams is that monitoring information may be presented on a simple text screen 
or a graphical one.

An animation captures a snapshot of the current system state. Both textual and graphical 
event representations, for example, input, output, and processing events, can be arranged 
in a 2-D display window. Graphical representations use formats such as icons, boxes, Kiviat 
diagrams, histograms, bar charts, dials, X–Y plots, matrix views, curves, pie charts, and 
performance meters. Subsequent changes in the display occur in single-step or continuous 
fashion and provide an animated view of system evolution. For online animation, the effec-
tive rates at which monitoring information is produced and presented to the display must 
be matched. For each abstraction level, animation parameters include enable/disable event 
monitoring or visualization, clock precision, monitoring interval, or level of detail, and view-
ing/printing statistics.

12.5.2.4 DISSEMINATION OF MONITORING INFORMATION

Monitoring reports would have to reach designers, managers, or processing entities. Thus, dis-
semination schemes range from very simple and fixed, to very complex and specialized. Selection 
criteria contained within the subscription request are used by the dissemination system to 
determine which reports (and with what contents, format, and frequency) should be deliv-
ered. Depending on the frequency of the queries and system events, the user may resort to a 
hybrid model combining both push (data duplication in small area around the server) and pull 
approaches (client contacting the server) for efficient on-demand dissemination of the required 
system monitoring information.
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12.5.2.5 OTHER IMPORTANT MONITORING DESIGN ISSUES

Specifications for the actual graphical user interface of the monitoring tool depend on the 
designer’s imagination, experience, and time. We present here desirable features of a system-level 
monitoring interface:

 ◾ Visualization at different abstraction levels that reduces the learning curve and enables 
the user to observe behavior at various abstraction levels on a per object, per block, or 
per system basis. Thus, the user may start observation at a coarse level and progressively 
(or simultaneously) focus on lower levels. At each level, system cost, application per-
formance, and platform-specific metrics may be presented in appropriate easy-to-read 
charts and graphic visualization techniques. The communication volume (reliability or 
power consumption) may be visualized by adjusting the width or color of the lines inter-
connecting (respectively) the boxes representing the corresponding modules.

 ◾ A history function that visualizes inherent system parallelism by permitting the user to 
perform several functions, such as

 ◾ Scrolling the display of events forward or backward in time by effectively changing 
a simulated system clock

 ◾ Controlling the speed at which system behavior is observed using special functions, 
for example, to start, stop, pause, or restart an event display, perform single-step or 
continuous animation, and allow for real-time or slow-motion animation

 ◾ Visibility of interactions that enables the user to visualize dynamically contents of a par-
ticular communication message, object data structure, module or driver configuration, 
or general system data such as log files or filtering results.

 ◾ Placement of monitoring information that greatly enhances visibility and aids human 
comprehension. Placement may either be automatic, that is, using computational geom-
etry algorithms, or manual by providing interface functions, for example, for moving or 
resizing boxes representing objects, system events, or coupled links representing process 
communication.

 ◾ Multiple views use multiple windows representing system activities from different view-
points, thus providing a comprehensive picture of system behavior.

 ◾ Scalable monitoring focuses on monitoring large-scale models, with tens or hundreds of 
thousands of objects. Large-scale monitoring could benefit from efficient message queues 
or nonblocking and blocking concurrent queues [55,56] that achieve a high degree of con-
currency at low implementation cost compared to other general methods [57,58].

In addition, the monitoring system designer should focus on the issues of intrusiveness and 
synchronization occurring in distributed system design.

 ◾ Intrusiveness refers to the effect that monitoring and diagnostics may have on the 
monitored system due to sharing common resources, for example, processing power, 
communication channels, and storage space. Intrusive monitors may lead not only to 
system performance degradation, for example, due to increased memory access, but 
also to possible deadlock conditions and data races, for example, when evaluating sym-
metric conditions that result in globally inconsistent actions.

 ◾ Distributed simulation can support time- and space-efficient modeling of large modu-
lar systems at various abstraction levels, with performance orders of magnitude better 
than existing commercial simulation tools [59]. Distributed systems are more difficult 
to monitor due to increased parallelism among processes or processors, random and 
nonnegligible communication delays, possible process failures, and unavailable global 
synchronized time. These features cause interleavings of monitoring events that might 
result in different output data from repeated runs of deterministic distributed algo-
rithms or different views of execution events from various objects [60–63]. However, 
these problems do not occur with SystemC scheduling (and early parallel SystemC ver-
sions), since current versions of the kernel are sequential, offering simulated parallelism 
and limited event interleaving.
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12.6 OPEN ISSUES IN SYSTEM-LEVEL MODELING

Clock-accurate transactional system-level modeling is performed at an abstraction level higher 
than traditional hardware description languages, thus improving design flow and enhancing 
design quality by offering an increased design space, efficient simulation, and block- and system-
level reuse. We have described efforts toward a general, rich, and efficient system-level performance 
evaluation methodology that allows multiple levels of abstraction, enables hardware/software 
codesign, and provides interoperability between several state-of-the-art tools. There are activities 
that could enhance this methodology:

 ◾ System reliability, fault-tolerance, and validation/verification tools [64]; available tools 
in the latter area are usually external to the system-level modeling library and tightly 
linked to actual implementation. New system-level verification tools could rely on 
refinement techniques to test the functional equivalence between the original high-level 
design (e.g., SystemC) and the derived RTL design.

 ◾ Wider use of automated C/C++ or SystemC to RTL behavioral synthesis tools, such as 
Forte (now Cadence), Calypto Catapult, Synopsys Synphony, and Xilinx Vivado, can 
reduce time to market while providing area, speed, and latency trade-offs for complex 
designs, for example, signal and image processing or VLIW designs interfacing with 
standard system interconnects. Unlike in the past, automated design of virtual platforms 
that integrate AMS and mechanical components and system drivers should be consid-
ered as part of the system-level design flow.

 ◾ Efficient system-level modeling constructs, for example,
 ◾ Parallelizing the SystemC kernel to execute efficiently in parallel and distributed 

systems
 ◾ Developing an asynchronous SystemC scheduler to improve test coverage during the 

validation phase [65,66]
 ◾ Supporting system-level power-consumption models; for example, unlike memory 

models, high-level network-on-chip power estimation methodology offers good 
accuracy [67–69]

 ◾ Providing full support of real-time operating system models providing task manage-
ment, context saving and restoring, preemptive scheduling, high-resolution timer, 
and task synchronization facility [70,71], for example, integration of embedded soft-
ware stacks and applications, including user interfaces

 ◾ Handling asynchronous modeling [72], for example, by modifying the SystemC kernel 
and providing waves, concurrency maps, and system snapshots

 ◾ Graphical visualization [73–75], including appropriate GUIs for
 ◾ Interactive model design based on importing ready-to-use library modules, for 

example, HFsms, or reusable IP block or system components; these libraries would 
support best practices in simulation configuration and control, such as saving into 
files, starting, pausing, and restarting simulation as well as displaying waveforms by 
linking to graphical libraries and dumping or changing model parameters during 
initialization or runtime [76]

 ◾ Advanced monitoring features, based on generation, processing, presentation, and 
dissemination of monitoring info

 ◾ Platform-specific performance metrics, such as simulation efficiency, and computa-
tion and communication load, which help improve simulation performance in par-
allel platforms, for example, through automatic data allocation, latency hiding, or 
dynamic load balancing

 ◾ Documenting executable specifications by customizing tools, such as Doxygen, Doc++, 
or mkdoc.

 ◾ Interoperability between libraries and tools, for example, ISS, system and hardware 
description languages, and simulation interfaces, can provide long-term reuse oppor-
tunities. Although current efforts (e.g., for linking SystemC with Gem5, OPNET, or 
OMNET simulators) are limited to supporting one-to-many thread communication 
patterns and use ad hoc event-based synchronization and TCP sockets (e.g., MPI) or 
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shared memory to exchange information among the simulators, this could be achieved 
in a more organized way using middleware, for example, by inventing a generic interface 
definition language.
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Abstract

Power consumption has become one of the main design considerations in electronic sys-
tems. This chapter introduces innovative methodologies for successfully dealing with 
power estimation and optimization during early stages of the design process. In particular, 
the presentation offers an insight into state-of-the-art techniques for power estimation at 
the microarchitectural level, describing how power consumption of components like data-
path macros, glue and steering logic, memory macros, buses, interconnect, and clock wires 
can be efficiently modeled for fast and accurate power estimation. Then, the focus shifts to 
power optimization, covering the most popular classes of techniques, such as those based 
on clock gating, on exploitation of common-case computation, and on threshold and sup-
ply voltage management. Ad hoc optimization solutions for specific components, such as 
on-chip memories and global buses, are also briefly discussed for the sake of completeness. 
Our attention then turns to system-level modeling and optimization of power consumption 
in embedded systems such as mobile phones.

Most of the aforementioned approaches to microarchitectural and system-level power 
estimation and optimization have now reached a significant level of maturity and are find-
ing their way into commercial CAD tools and software for designers of mobile computing 
systems. Strengths and limitations of the design technology that is at the basis of such tools 
will be discussed in detail throughout this chapter.

13.1 INTRODUCTION

Minimizing integrated circuit power consumption can prolong battery life span, decrease cool-
ing subsystem costs, and decrease operating costs of electronic devices. Power consumption is 
an important consideration for many electronic devices. This is not surprising, given the massive 
market for mobile and portable telecommunication and computing systems. As a consequence, 
techniques and tools that enable tight power consumption control during design are required.

Pioneering work on low-power design techniques has focused on gate and transistor levels 
where, due to the available information on the structure and the macroscopic parameters of the 
devices, accurate power estimates are expected and satisfactory methods for both estimation and 
optimization are available.

The increased complexity of modern designs, facilitated by the advent of aggressively scaled 
technologies and the pressure of time-to-market constraints, called for modifications to the way 
ICs are designed. This resulted in the use of tools at higher levels of the design process. Today, 
design techniques and tools are available to assist in estimating and optimizing power consump-
tions at the microarchitectural (register-transfer level [RTL]) and system levels, in addition to 
lower levels of the design process. At these levels, basic design entities are no longer elemen-
tary objects such as transistors or logic gates, but rather blocks capable of performing complex 
functions. Typical components at the microarchitectural level include datapath macros (such as 
adders and multipliers), storage elements (such as registers and memory banks), communication 
resources (e.g., buses), and steering elements (e.g., multiplexors and codecs). At the system level, 
entire microprocessors or wireless communication interfaces may be used as building blocks. 
As a result, it has been necessary to develop power modeling and optimization techniques well 
suited for the RTL and above, many of which are available for industrial use.

As electronic technology evolves, so does EDA technology; higher levels of abstraction are 
currently being proposed as possible starting points for new design development. For instance, 
in the system-on-chip (SoC) domain, hardware–software combined specification, design, and 
synthesis are becoming common practice, and new methodologies and tools are being investi-
gated. Although RTL remains the highest level of abstraction for which extensive EDA support is 
guaranteed, tools are now becoming available at higher levels of the design flow.

The objective of this chapter is to provide a comprehensive overview of the most advanced, 
yet well-established EDA solutions for power estimation and optimization. We will consider both 
RTL and system-level tools for estimating and optimizing power consumption. The chapter will 
start by providing some background information about power consumption in CMOS circuits. 
It continues with a brief overview of the architectural template assumed by most of the power 
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modeling, estimation, and optimization approaches, which constitute the core of the chapter. 
It concludes with two sections on system-level power estimation and optimization.

13.2 BACKGROUND

CMOS is, by far, the most common technology used for manufacturing digital circuits. There are 
three major sources of power dissipation in a CMOS circuit [1]:

(13.1) P = PSw + PSC + PL. 

where
PSw, called “switching or dynamic power,” is due to charging and discharging capacitors driven 

by the gates in the circuit
PSC, called “short-circuit power,” is caused by the short-circuit currents that arise when pairs 

of PMOS/NMOS transistors are conducting simultaneously

Finally, PL, called “leakage or static” or “stand-by power,” originates from subthreshold currents 
caused by transistors with low threshold voltages and from gate currents caused by reduced 
thickness of the gate oxide.

For older technologies (e.g., 0.25 mm), PSw was dominant. For deep-submicron processes, PL 
becomes more important. For instance, in application-specific integrated circuit (ASIC) designs, 
leakage power accounts for around 5%–10% of the total power budget at 180 nm, and this fraction 
grows to 20%–25% at 130 nm and to 35%–50% at 90 nm. Therefore, leakage power minimization 
must be addressed from the design standpoint, and not just at the technology or process level, as 
was done in the past.

Design methods for leakage power control are currently the subject of intensive investiga-
tion: approaches based on variable-threshold, dual-threshold, and multithreshold CMOS devices; 
the insertion of (possibly distributed) sleep transistors; the adoption of multivoltage gates; and 
the application of reverse and forward body biasing are some examples of promising solutions 
for reducing the impact of leakage in nanometer circuits. Yet, most of the methods and tools 
for low-power design in use today are still primarily targeting the minimization of the dynamic 
component of the power; this is because research in this domain has been carried out for a much 
longer time and the available solutions have now reached a significant degree of maturity. As a 
consequence, a significant part of this chapter will be focused on techniques addressing switch-
ing power modeling, estimation, and optimization.

Switching power for a CMOS gate working in a synchronous environment is modeled by the 
following equation:

(13.2)
 

P C V f ESw L dd Ck Sw = ,1
2

2

 

where
CL is the output load of the gate
Vdd is the supply voltage
fCk is the clock frequency
ESw is the switching activity of the gate, defined as the probability of the gate’s output of making 

a logic transition during one clock cycle
Reductions of PSw are achievable by combining the minimization of the four parameters in 

Equation 13.2

Historically, supply voltage scaling has been the most used approach to power optimization, 
since it normally yields considerable savings owing to the quadratic dependence of PSw on Vdd. The 
major shortcoming of this solution, however, is that lowering the supply voltage affects circuit 
speed. As a consequence, both design and technology solutions must compensate for reduced 
voltage. In other words, speed optimization is applied first, followed by supply voltage scaling, 
which brings the design back to its original timing but with a lower-power requirement.
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A similar problem, that is, performance decrease, is encountered when power optimization is 
obtained through frequency scaling. Techniques that rely on reductions of the clock frequency 
to lower-power consumption are thus usable under the constraint that some performance slack 
does exist. Although this may seldom occur for designs considered in their entirety, it happens 
quite often that some specific units in a larger architecture do not require peak performance for 
some clock/machine cycles. Selective frequency scaling (as well as voltage scaling) on such units 
may thus be applied, at no penalty on the overall system speed.

Optimization approaches that have a lower impact on performance, yet allowing significant 
power savings, are those targeting the minimization of the switched capacitance (i.e., the prod-
uct of the capacitive load and the switching activity). Static solutions (i.e., applicable at design 
time) handle switched capacitance minimization through area optimization (which corresponds 
to a decrease in the capacitive load) and switching activity reduction via exploitation of different 
kinds of signal correlations (temporal, spatial, and spatiotemporal). Dynamic techniques, on the 
other hand, aim at eliminating power waste that may be originated by the application of certain 
system workloads (i.e., the data being processed).

Static and dynamic optimizations can be achieved at different levels of design abstraction. 
Actually, addressing the power problem from the very early stages of design development offers 
enhanced opportunities to obtain significant reductions of the power budget and to avoid costly 
redesign steps. Power-conscious design flows must then be adopted; these require, at each level of 
the design hierarchy, the exploration of different alternatives, as well as the availability of power 
estimation tools that could provide accurate feedback on the quality of each design choice.

This chapter first describes the state of the art in tools and techniques for RTL power opti-
mization. It then describes system-level power optimization techniques, many of which are 
now supported by EDA tools. More specifically, although RTL descriptions may contain com-
ponents of different kinds (see the next section for more details on the architectural template), 
we will primarily concentrate on estimation and optimization of the portion of the architec-
ture that is normally designed with the help of automatic tools (e.g., datapath, controller, inter-
connect, and clock tree). Modeling, estimation, and optimization techniques for components 
with peculiar characteristics, such as memories and buses, will also be surveyed in order to 
make the picture as complete as possible. At the system level, we will describe tools for power 
estimation and optimization that allow at least part of the process to be automated.

13.3 ARCHITECTURAL TEMPLATE

The definition of a “microarchitecture” generally assumes an architectural template, which 
serves as a reference for all microarchitectural descriptions. There are two main advantages in 
assuming such a template: First, it allows one to infer a fine-grained partition of the entire design 
into objects of manageable size, for which customized models and specific optimizations can be 
devised. Second, by assuming that all microarchitectural descriptions will map onto this tem-
plate, the chance of reusing models and optimization techniques increases.

A traditional microarchitectural template views a design as the interaction of a datapath 
and a controller, which fits well to the so-called finite-state machine with datapath (FSMD) 
model [2]. Variants of the base FSMD model concern the structure of the controller (e.g., sparse 
logic implementation vs. wired logic), the structure of the interconnect (e.g., number, type, and 
size of the buses), or the supported arithmetic operations (e.g., number and type of the available 
datapath units).

Figure 13.1 shows a possible architecture of a typical FSMD that exposes its basic building 
blocks: the controller (shown on the left) and the datapath (right), consisting of a register file 
(or equivalently a set of sparse registers), a memory, various interconnection buses, and some 
datapath units (integer and/or floating point). Besides the blocks themselves, the interconnec-
tion between them (not explicitly depicted in the figure) is also a source of power consumption; 
these wires can be global or local, depending on whether they span the entire architecture or not. 
Examples of the former classes are the clock signal and the global buses; examples of the latter are 
the signals connecting the units to the global wires. The most important of all wires is the clock 
that constitutes a significant source of consumption, because of its large load and high activity. 
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While most of the local wires are usually hidden inside the primitive blocks, global wires need a 
special treatment because they cannot be captured otherwise.

The architectural template introduced earlier is sometimes defined as structural RTL, with the 
purpose of emphasizing the explicit notion of structure it contains, as well as the RT-level nature 
of the operations that take place during execution.

The key issue is that fitting a microarchitectural description to this template allows us to 
restrict the granularity of the power models and of the optimizations to that of the following 
main building blocks: controller, datapath units, memory, buses, and wires. Registers may fall 
either in the class of memory devices (for a register-file implementation style) or in that of data-
path units (for “sparse” style). This approach is followed by most microarchitectural power esti-
mation and optimization frameworks that have been proposed in the recent literature [3–10].

The FSMD template of Figure 13.1 also nicely fits microarchitectural descriptions specified 
using hardware description languages (e.g., VHDL or Verilog). They are in fact described as a 
state machine (the controller), whose states consist of a series of microarchitectural operations 
(e.g.,  assignments, arithmetic, or logic operations) corresponding to datapath operations. It is 
worth emphasizing, however, that such descriptions, after parsing by standard hardware descrip-
tion language (HDL) compilers, tend to lose some of their structural semantics and are partly 
flattened into a netlist of finer-grain primitives such as abstract logic gates [11], in which only 
memory macros are preserved.

13.4 MICROARCHITECTURAL POWER MODELING AND ESTIMATION

The problem of power estimation at the RTL amounts to building a power model that relates the 
power consumption of the target design to suitable quantities. In formula,

 P = P(X1, …, Xn),

where Xi, i  = 1,…, n, represent the n model parameters. The construction of the model shown here 
implies addressing several issues that call for the development of various modeling alternatives 
and are discussed in detail in the sequel.
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13.4.1 MODELING ISSUES

This section summarizes the challenges in determining appropriate model granularity, param-
eters, semantics, structure, and location.

13.4.1.1 MODEL GRANULARITY

Section 13.3 shows that an architectural template determines the granularity of the power mod-
els; power estimation of a design requires thus the construction of power models for the following 
classes of building blocks: controller, datapath units, memory, buses, and wires.

13.4.1.2 MODEL PARAMETERS

Parameters included in the model must be observable at the abstraction level at which they are 
used. Under the architectural model of Section 13.3, the abstract model of switching power in 
Equation 13.2 translates into the following high-level expression:

(13.3)
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where
Ai and Ci denote the switching activity and the physical capacitance of component i, 

respectively
k lumps the f Vdd

2  terms, which can be considered as scaling factors at the RTL

This decouples a power model into a model for activity and a model for capacitance for each 
type of component. Activity and capacitance models may depend on different parameters because 
they are affected by different physical quantities.

An activity is easier to model, because at the RTL it is a well-defined quantity. Activity mod-
els rely on activity parameters, such as bit-wise (referred to specific input or output signals of a 
component) or word-wise (regarding input or output values of a component) transition and static 
probabilities. Most activity models proposed in the literature use these probability measures as 
parameters. Other choices for activity parameters may include variants of transition probabilities 
such as transition density [12], defined as an average (over time) switching rate or various correla-
tion measures.

Modeling physical capacitance is a more problematic task than modeling activity. The term 
“physical” suggests the difficulty in linking capacitance to quantities observable at the RTL. 
In spite of that, RTL capacitance models can be derived with a reasonable degree of accuracy. 
They all rely on the intuitive observation that capacitance will be roughly related to the number 
of “objects” (gates or similar lower-level primitives) of the target component. In other words, 
physical capacitance at the RTL is approximated by complexity, and we thus speak of complexity 
 models, based on complexity parameters.

Complexity parameters that are available at the RTL are restricted to the width of a compo-
nent (i.e., its number of inputs and outputs) or the number of states (which is relevant only to the 
controller since notion of state is explicit). Any complexity parameter different from these would 
require some additional information derived from back annotation of physical information of 
previous implementations.

13.4.1.3 MODEL SEMANTICS

Models can be distinguished by interpretation of their return values. The most intuitive option is 
to assume that models express average power, which is commonly used as a metric to track bat-
tery lifetime or average heat dissipation. In this case, the semantics of the model is that of a single 
figure to represent the consumption of the target description. Average power models are called 
“cumulative power models” [13].
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However, the notion of a cycle intrinsic to RTL descriptions allows us to obtain a power model 
with a richer semantic by simply changing the way we collect statistics. The first step in this 
direction consists of expanding the model of Equation 13.3 into

(13.4)
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where Pj denotes the power consumption at cycle j, which can be obtained by summing the power 
consumption for each component (as in Equation 13.3), this time using activities and capaci-
tances of component i at each cycle j. The semantics of the model of Equation 13.4 is cycle accu-
rate because it allows to track cycle-by-cycle (total) power.

The use of a cycle-accurate model affects the choice of the parameters. For example, transition 
or static probabilities are not suitable quantities anymore, since they are intrinsically “average.” 
Conversely, cycle-accurate models should use cycle-based activity measures, such as the number 
of bit toggles between consecutive patterns (i.e., the Hamming distance) [14,15] or the values of 
consecutive input patterns [13,16].

A cycle-accurate model provides several advantages over a cumulative one. First, it allows one 
to go beyond the bare evaluation of average power and can be used to perform sophisticated anal-
ysis of power consumption over time, such as reliability, noise, or IR drop analysis. In addition, 
a cycle-accurate model is more accurate than a cumulative one, but not just because it provides 
a set of power values rather than a single one. In fact, the relation between input statistics and 
power is nonlinear: average consumption is usually different from the consumption associated 
to average input statistics, especially when power consumption varies significantly over time. 
Therefore, even when average power is the objective, averaging the series of cycle-by-cycle values 
will yield a more accurate estimate than a model of average power. On the negative side, cycle-
accurate models require significantly larger storage than cumulative ones.

13.4.1.4 MODEL CONSTRUCTION

Concerning model construction, an RTL power model can be built top-down (or analytical) or 
bottom-down (or empirical) [3].

Top-down approaches relate activity and capacitance of an RTL component to the model 
parameters through a closed formula. The term “top-down” refers to the fact that the model is 
derived directly from the microarchitectural description and is not based on lower-level informa-
tion. For this reason, such formula usually has a physical interpretation. Analytical models are 
particularly useful either when dealing with a newly designed circuit for which no information 
of previous implementations is available or when the implementation of the circuit follows some 
predictable template, which can be exploited to force some specific relation between the model 
parameters. A memory is a typical example of an entity for which an analytical model is suitable: 
its internal organization is quite fixed (cell array, bit and wordlines, decoders, MUXes, and sense 
amps), thus allowing accurate modeling based on internal parameters [17,18].

If we exclude these special cases, however, top-down models are not very accurate, since their 
links to the implementation (e.g., technology and synthesis constraints) are quite weak.

Bottom-up approaches, conversely, are based on “measuring” the power consumption of exist-
ing implementations, from which the actual power model is derived. Typically, the template of 
the power model (i.e., the parameters and a set of coefficients used to weigh the parameters) is 
defined up front; statistical techniques are then used to fit the model template to the measure of 
power values. This approach is known as macromodeling and has proved to be a very accurate and 
robust methodology for RTL power estimation and can be considered the state-of-the-art solution. 
Section 13.4.2 will be devoted to the detailed description of the macromodeling flow (Figure 13.2).

13.4.1.5 MODEL STORAGE

The issue of model storage is concerned with the shape of the model. Since models express 
a mathematical relation between power and a set of parameters, the problem amounts to 
that of representing such a relation. The two options are to store it (1) as an equation or 
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(2) as a lookup table, corresponding to the choice of representing a relation as a continuous 
function (equation-based models), or a discrete function approximated by points (lookup 
table‒based models). These two types of models differ in their storage requirements and 
robustness, that is, the sensitivity of the model to the conditions (i.e., the experiments) 
used for its construction. In that sense, robustness is an issue only for empirical models. 
Concerning storage requirements, equation-based models are much more compact than 
table-based ones. In general, an equation will only require the storage of the coefficients of 
the model, as opposed to a full table. In addition, the accuracy of a table-based model is pro-
portional to its size (the denser the table, the higher the accuracy), whereas the accuracy of 
an equation-based model is independent of the model size.

13.4.2 RTL POWER MODELS

In this section, we will review the most relevant results on power modeling of datapath units, 
controller, and wires. On the other hand, as already mentioned in Section 13.2, we will not con-
sider components such as memories and communication buses.

13.4.2.1 POWER MODELING OF DATAPATH UNITS

There are three main reasons for which accurate datapath power estimates must resort to empiri-
cal models. First, because of the variety of available datapath units, a distinct analytical model 
for each type of component would be required. Second, analytical models, because of their func-
tional meaning, would not be able to capture differences due to various implementation styles of 
a given component (e.g., a ripple-carry vs. a carry-lookahead adder). Third, accuracy of analytical 
models would be too low for units that have poorly regular structures (e.g., dividers or floating-
point operators).

Besides coping with these issues, empirical models facilitate a single-model template that 
can be used for all types of datapath units. Empirical power models are commonly called 
“macromodels.” The term has been borrowed from the statistical domain to denote the fact 
that such models have a “coarse” level of detail and are used to relate quantities pertaining to 
different abstraction levels, such as RTL parameters, to the actual measured power. We thus 
talk of “macromodeling” when defining the process of building an empirical power model for 
a generic component.

Before reviewing the most important results in datapath macromodeling, it is worth summa-
rizing the flow that is normally used for building such macromodels.

Choice of model parameters

Design of training set

Characterization

Model extraction

Parameters {Xy...Xn}

Vector pairs {Wy...Wm}

Power samples {P(Wy)...P(Wm)}

Power model P(Xy...Xn)

FiGURe 13.2 Macromodeling flow.
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13.4.2.2 MACROMODELING FLOW

Macromodeling involves the following four major steps:

 1. Choice of model parameters: Although this step applies to nonempirical models also, it is 
especially important for macromodels, since it defines the parameter space and it affects 
the complexity of the following steps.

 2. Design of the training set: The training set is a representative subset of the set of all 
possible input vector pairs that will be used to determine the model. Key points in 
the choice of the training set are its size (i.e., the total number of vector pairs) and its 
statistical distribution. The former is responsible for the simulation time, while the 
latter impacts accuracy; a bad distribution of the training set may offset the advan-
tage of a large number of vector pairs. What defines a good distribution depends on 
the chosen parameters. A requirement for the training set is that it should span the 
domain of all the model parameters as much as possible. When one or more domains 
are not sufficiently covered by the training set, we say that the model is insufficiently 
trained. For instance, if the parameter of the model is the switching activity, the 
choice of random patterns as a training set would not be a good one, since only a 
very small portion of the activity domain (the one around a switching activity of 0.5) 
would be exercised.

 3. Characterization: This step consists of using the training set to generate a set of points 
in the (power, parameters) space. For each element in the training set (a vector pair), a 
corresponding value of power is obtained by means of a low-level power simulator (gate 
or transistor level).

 4. Model extraction: This step consists of deriving the model from the set of measure-
ments obtained in the previous step. The actual calculation depends on how the model is 
stored. For equation-based models, a least-mean-square (LMS) regression engine is typi-
cally applied to the sample measurements; if a lookup table is used, extraction consists 
of collecting the power values for each of the discrete points of the parameters space.

13.4.2.3 MACROMODELS FOR DATAPATH UNITS

The literature on power macromodeling for datapath units is quite rich, and it includes solutions 
that cover all points of the power model space discussed in Section 13.4.1, with different accu-
racy/effort trade-offs. In spite of the vast amount of available material, it is quite easy to identify 
the key results in the power macromodeling domain.

The technique described by Powell and Chau [19] can be considered as the first proposal of 
a power macromodel for datapath units; it is actually just a capacitance macromodel, because it 
assumes fixed activity, that is, no activity parameters are included. Landman and Rabaey [20] rec-
ognized that modeling activity is essential, by observing that even “random” data do not exhibit 
true randomness on all bits, because of sign extension bits due to reduced dynamic ranges of 
typical values. Their model, called “dual-byte type” (DBT), separates data bits in two regions (sign 
and random), with distinct activity parameters. Since each unit may have different combinations 
of input and output regions depending on their functionalities, each unit must have a distinct 
model.

Gupta and Najm [21] proposed a power macromodel that can be considered as the state of the 
art; it consists of a 3D lookup table of power coefficients, whose dimensions are Pin, the average 
input probability; Din, the average input transition density; and Dout, the average output transition 
density. Characterization is based on quantizing each dimension into equally spaced intervals.

Figure 13.3 shows the three dimensions of the lookup table in the case of a quantization inter-
val of 0.2. Notice how the relation between Din and Pin constrains the number of feasible points 
in the (Din, Pin) parameters’ space.

Under this model, characterization involves the generation of a number of input streams for 
each feasible value of parameters Din and Pin. Values of parameter Dout, instead, are extracted 
from the resulting output stream (obtained through simulation) and are discretized using a bin-
ning technique.
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The 3D lookup table model provides two main advantages with respect to the DBT model (or 
its variants). First, the use of a lookup table with discretized dimensions significantly improves 
the robustness of the estimates. Second, since parameters are normalized values, the same model 
template can apply to any datapath unit, without the need of (1) customizing it to its functionality 
and (2) including an explicit capacitance (i.e., complexity) parameter (thus, without the need of 
being parameterized).

Many macromodels published in the literature build around this 3D table-based model, either 
by improving some specific aspects that help to increase accuracy (e.g., interpolation schemes and 
local accuracy improvements) [22–25] or by generalizing it into a parameterized model (i.e., where 
the bit width of the operators becomes a parameter, as in the DBT model) [26].

13.4.2.4 POWER MODELING OF CONTROLLERS

Control logic typically has a smaller impact than the datapath; however, its dissipation is not 
negligible for several reasons. First, some designs are control intensive and may contain many 
interacting controllers whose impact on power may be sizable. Second, datapath units are often 
hand crafted while controllers are synthesized; then, they use silicon area less efficiently than 
datapath. Third, controllers are usually active for a large fraction of the operation time, while 
the datapath can be partially or completely idle.

What makes controller power modeling more challenging than datapath units is the fact that 
controllers are usually specified in a very abstract fashion even at the RT level and they are spe-
cific to each design. In contrast, datapath units are usually instantiated from a library that can be 
precharacterized once and for all. Some controller implementation styles employ regular struc-
tures, like PLAs or ROMs, which can be precharacterized with good accuracy. On the other 
hand, the most common choice for controllers is to synthesize them as sparse logic. Because of 
its irregular structure, this makes power modeling considerably harder.

One additional difficulty lies in the fact that the description of controllers is more abstract 
than that of datapath components because states are usually specified symbolically. Thus, con-
troller synthesis goes through two steps, namely, state assignment and logic synthesis.

Power modeling of controllers at the microarchitectural level can be classified into prestate 
assignment [27,28] and poststate assignment [4,6,29] depending on the target description of the 
controller. The former is generally less accurate and can be used to provide upper and lower 
bounds on power consumption. The latter tries to give actual estimates of average power. Strictly 
speaking, however, RTL descriptions of controllers typically fall in the former category.
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Due to the poor link between an abstract, state-based description and the actual implemen-
tation, power models for controllers that have some practical value are empirical. The analyti-
cal model presented in [27] provides in fact theoretical bounds for the switching in finite-state 
machines (FSMs), but the correlation to actual power figures is intrinsically very weak. For con-
trollers, macromodeling is thus more than just an option. The difference with respect to datapath 
components, however, is that the model template is not so intuitive, because it is difficult to 
estimate the correlation between parameters and the actual power consumption. Therefore, the 
choice of the parameters is even more critical than in the case of datapath units. Possible param-
eters for controllers include

 ◾ Static behavioral parameters (i.e., parameters that can be obtained from the behavioral 
specification): the number of inputs, the number of outputs, and the number of states

 ◾ Dynamic behavioral parameters (i.e., parameters that can be obtained from functional 
simulation): the average input and output signal and transition probabilities

 ◾ Static structural parameters (i.e., parameters that are available after state encoding): the 
number of state variables

 ◾ Dynamic structural parameters (i.e., parameters that can be obtained from RTL simula-
tion): the average transition probability of the state variables

A framework for the exploration of all possible models of order M with up to N terms is described 
in [30]; it defines a third-order model with four terms that yields an average relative error of about 
30% and relative standard deviation of the error of about the same magnitude. The model uses only 
a subset of the aforementioned parameters, but from all of the four categories. This model has been 
shown to be far more accurate and robust than other models, including the intuitive model, that is, 
the one that uses a linear combination of switching activities (for inputs, outputs, and state variables) 
weighted by their corresponding cardinalities (number of inputs, outputs, and state variables).

13.4.2.5 POWER MODELING OF MEMORIES

As for any other component, memory power can be fitted into the template of Equation 13.2:

 
P C V f Emem mem dd Ck Sw =  ,1

2
2

where Cmem denotes the capacitance that is switched on a memory access. Since the capacitance 
for a read access is, in general, different from that for a write access, Cmem should be considered 
as an average capacitance.

For this reason, it is more accurate to resort to a cycle-accurate model and express average 
power as follows:

(13.5)
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where
Ncycles is the total number of cycles
Nread (Nwrite) is the number of read (write) accesses
Cread (Cwrite) is the corresponding capacitances

Memories and in particular SRAM arrays, unlike generic RTL blocks, lend themselves to a 
relatively easy modeling of capacitance, owing to their well-defined internal structure, which is 
characterized by high regularity. In other words, it is feasible to adopt an analytical model that 
expresses the total memory power as the sum of the various components: read/write circuitry, 
decoders, cells, bitlines, wordlines, MUXes, and sense amplifiers [17,31,32]. These models are 
very accurate but suffer from being strongly dependent on technology; in fact, they require the 
knowledge of parameters such as the capacitance of the bitline or the wordline or the capacitance 
of a minimum-sized transistor, which cannot always be easily accessible.
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A simpler, yet effective model for microarchitectural estimation is an empirical one, where all 
model parameters are chosen in order to be easily available at a higher level of abstraction (e.g., 
the number of words) and the relation to the technology is established in a characterization run. 
For example, a typical capacitance model can be expressed as

 Cmem = a + bW + cN + dW N,

where
W is the number of rows
N is the number of columns of the memory array [4]

A similar model that also included the number of words as parameters was used in [33]. The 
characterization proceeds very similarly to the conventional macromodeling flow, in which the 
values of a, b, c, and d are determined by means of LMS regression. If we stick to the template of 
Equation 13.5, separate characterizations for read and write capacitances are required.

13.4.2.6 POWER MODELING OF WIRES

If we assume that the power consumption of datapath units and controller is based on empirical 
macromodels, their power estimates include the contribution of (internal) wires. There are then 
two categories of wires that need a custom power model: global wires, such as reset and clock, and 
intercomponent wires, such as those connecting RTL blocks.

For both types of wires similar considerations apply: in fact, power is consumed by wires when 
charging and discharging the corresponding capacitances. Therefore, the model of Equation 13.3, 
where Ai and Ci are the switching probability and the parasitic capacitance of the ith net, respectively, 
well fits wires also. Since factor Ai is available for both global wires and intercomponent wires, the 
problem of modeling wiring power reduces to that of modeling wiring capacitance, or, equivalently, 
wiring length. Wiring capacitances are unknown at the RTL, but realistic estimates can be obtained 
based on structural information, area estimates, and low-level wiring models. The problem of esti-
mating the total wire length at high levels of abstraction is quite well understood; it is based on vari-
ants of Rent’s rule [34–36], which relate the length of the interconnect to macroscopic parameters 
that can be easily inferred from a high-level specification, such as the number of I/O pins.

The main difference between the power models for global wires and intercomponent wires lies 
in their context. Area-based estimates work reasonably well for global wires, since they span the 
entire design. As a matter of fact, typical power models for global wires directly relate wire length 
to a power k of design area (often k = 0.5) and the latter to a power q of the number of I/O pins [20].

For intercomponent wires, conversely, their length is more weakly correlated to the entire 
design area. The solution adopted is very similar, yet on a smaller scale—that is, rather than 
referring to the entire design, each wire refers to the components it connects. In this case, wire 
length is made proportional to a power of the component’s area, which is related to a power of the 
number of I/O pins of the component [37].

Figure 13.4 shows the conceptual topology of an intercomponent wire. The output capaci-
tance Cout of a component is implicitly accounted for by its power model. Conversely, the input 

Cout Cwire Cin

N
M

FiGURe 13.4 Hierarchical topology of an intercomponent wire.
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capacitance Cin is not included in the power model, since power estimates provided by low-level 
simulation represent the power drawn from the supply net, while input capacitors are directly 
charged by the primary input lines. The total wire capacitance should thus take into account the 
fanout of a wire (known at the RTL), both externally (Cwire) and internally (Cin), by splitting each 
contribution into a fixed term (the “stem” capacitance) and a quantity proportional to the number 
of fanouts (the “branch” capacitance).

It is worth emphasizing that in ultra-deep-submicron technologies, where wires dominate 
chip area, the estimation of wire length requires some early floorplanning information in order to 
be reliable. Such information can then be back-annotated into the RTL description to guide wire 
length estimation based on the empirical models discussed earlier.

13.4.2.7 POWER MODELING OF BUSES

At the microarchitectural level, buses are relatively straightforward entities consisting of a 
set of wires. However, we believe they deserve a separate treatment from the generic wires we 
have considered in the previous section, since they are usually seen as a single-interconnec-
tion resource that will eventually be routed together as a set of wires; this physical grouping 
of bus wires is also reflected by typical HDL descriptions, where buses are represented as 
arrays of signals.

Buses may be shared (i.e., they may not just be point-to-point connections) and, mostly, 
are single-master buses relying on a simple protocol that defines the physical (i.e., the sig-
naling scheme) and the data-link (i.e., the binary representation of the transmitted values) 
layers. More complex on-chip bus architectures that include features such as support for 
multimaster and complex protocols (i.e., those required by modern multiprocessor SoC 
architectures) tend to be categorized as hardware blocks rather than as a wiring infra-
structure, because of the high amount of hardware control they require [38]. This trend is 
witnessed by the wide availability of synthesizable IP blocks that can be modularly used by 
RTL designers and automatically synthesized (e.g., Synopsys’ DesignWare IPs for AMBA 
buses [39]). In this section, we will focus on single-master buses that are typical in non-
core-based designs.

Specifically, with reference to the template of Figure 13.1, buses are the resources that 
are used to connect blocks of two types (possibly in a shared manner): computational units 
and memories.

A conceptual model of the average power consumed by a bus consisting of n lines can be obtained 
by simply summing up the contribution of each wire, according to the model of Equation 13.2:
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where
CL is, in this case, the capacitance of a single bus line
Ei

Sw is the switching activity of the ith bus line

The equation is based on the assumption that all lines have roughly the same capacitance. This 
model would be reasonably accurate if the bus lines were routed independently of each other, 
possibly on different metal layers. Conversely, the grouped nature of buses makes the model unre-
alistic because it considers each wire as if it were isolated from the others, thus completely ignor-
ing the contribution due to coupling capacitances, that is, the mutual capacitive effect of two 
neighboring wires.

Figure 13.5 shows a simplified view of the capacitances switched between two adjacent wires. 
Cl is the ground capacitance considered in the model (also called self-capacitance), while CC 
denotes the coupling capacitance. In deep-submicron technologies, the magnitude of CC far 
exceeds the self-capacitance: Electrical-level simulations for 0.13 mm technologies have shown 
that CC is more than three times the value of Cl [40] and that this factor will further increase in 
future technologies.
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In view of the aforementioned discussion, accounting for the contribution of CC in on-chip 
buses is mandatory; this can be done by augmenting the basic power model as follows [41]:

(13.6)
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where Ei
Sw denotes the coupling switching activity, that is, a quantity related to the simultane-

ous switching of two adjacent lines. In fact, when the transitions on two adjacent lines, a and b, 
are aligned in time, there are only two transition pairs that cause CC to switch: (1) when both 
a and b switch to different final values and (2) when one of the two lines switches, while the other 
one does not, and their final values are different.

Table 13.1 shows the normalized switched capacitance for a two-line bus, when all capacitive 
effects are considered. The ratio Cc/Cl is represented by 1 . In the table, only 0 → 1 transitions are 
counted as power-dissipating transitions on Cl.

The table clearly shows that increasingly larger values of l will tend to emphasize the impor-
tance of the energy due to switching of the coupling capacitance.

13.4.3 POWER ESTIMATION

The modeling technology discussed in the previous sections can be successfully used to enhance 
state-of-the-art RTL-to-physical design flows with power estimation capabilities.

Assuming that the design to be estimated is described by an FSMD, as defined in Section 13.3, 
the estimation procedure consists of three basic steps [8], as shown in Figure 13.6.

The first operation implies identifying and separating the datapath components from each 
other and from the FSM that represents the control. This is needed in order to enable the power 
estimator to generate the power models for each component in the FSMD.
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(coupling capacitance)
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FiGURe 13.5 Capacitances involved in bus line switching.

tABLe 13.1  normalized Switched capacitance on two Adjacent Bus Lines
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The FSMD then needs to be simulated. To this purpose, an RTL simulator is used to trace all 
the internal signals that define the boundaries between the various components in the FSMD. 
This is of fundamental importance for the evaluation of the power models that is needed to com-
plete the estimation procedure.

Finally, the actual power estimation must take place. The design hierarchy is traversed at the 
top level, from the inputs toward the outputs, and for each component, model construction and 
model evaluation are carried out. Model construction entails building the proper model accord-
ing to the type of component being considered. A caching strategy may be used to limit the num-
ber of times models are built; more specifically, after the model for a given component is built, it 
is stored in a cache, so that it can possibly be reused at later times. Model evaluation, on the other 
hand, requires that the parameter values obtained during the RTL simulation phase are plugged 
into each model to get the actual power values.

The total power information for the design is then obtained by summing up the contribution 
of the model of each component; both a total power budget and a power breakdown can thus be 
reported to the user.

13.5 MICROARCHITECTURAL POWER OPTIMIZATION

This section presents some of the most popular microarchitectural power optimization tech-
niques used in designs today. We first deal with datapath components and controllers; in this 
case, we classify the existing solutions into three categories:

 1. Those based on clock gating, whose objective is to stop the clock for some cycles of 
operation in order to achieve a reduction of the switching component of the power.

 2. Those based on exploitation of common-case computation, whose objective is to opti-
mize switching power consumption for the most common operation conditions.

 3. Those based on dynamic management of threshold and supply voltages, whose goal is 
that of reducing either leakage or switching power or both by operating the logic in a 
multi-Vth/multi-Vdd regime.

For each class of approaches, we discuss the basic idea as well as the algorithms used and chal-
lenges faced in applying these techniques in automated flows. We then move to techniques 
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applicable to memories and buses. Owing to the peculiarity of these components, their optimiza-
tion is treated separately toward the end of this section.

13.5.1 CLOCK GATING

Clock gating dynamically shuts off the clock to portions of a design that are idle for some cycles. 
The theory of this technique has been investigated extensively in the past [42–44], and clock 
gating is now considered the most successful and widely adopted solution for switching power 
reduction in real designs [45–48].

In some cases, it may be possible to shut off the clock to an entire block in the design, thereby 
saving large amounts of power when the block is not functioning. Perfect cases for this are when 
a block is used only for a specific mode of operation, for example, the receiver and transmitter 
parts in a transceiver may not be active at the same time, and the receiver can be shut off during 
transmit stages, or vice versa.

It is also possible to gate the clock of a single register or set of registers. For instance, synchro-
nous, load-enabled (LE) registers are usually implemented using a clocked D-type flip-flop and a 
recirculating multiplexor, with the flip-flop being clocked at every cycle as shown in Figure 13.7a.

In the gated clock version of Figure 13.7b, the register does not get the clock signal in the cycles 
when no new data are loaded, therefore reducing switching power. Savings are further enhanced 
by the removal of the multiplexor. Gating a single-bit register, however, has the associated penalty 
of power consumption in the clock-gating logic. The key is then to amortize such a penalty over a 
large number of registers, by saving the flip-flop clocking power and the multiplexor power of all 
of them using a single clock-gating circuit.

The transparent latch is used to guarantee that spurious glitches in the enable signal occurring 
when the clock is high are not propagated to the clock input of the register. The latch freezes the 
output at the rising edge of the clock and ensures that the new enable signal, EN1, at the AND 
gate is stable when the clock is high. Meanwhile, the enable signal can time-borrow from the 
latch, so that it has the entire clock period available to propagate.

We cover advanced methods for detecting clock-gating opportunities and present issues asso-
ciated with implementing clock gating in a typical automatic flow, along with possible solutions 
in this section.

13.5.1.1 ADVANCED CLOCK GATING

The clock-gating conditions that depend on the enable signal of the register bank, which can 
be identified by means of topological inspection and analysis of the RTL description, can be 
extended by considering the functional behavior of the circuit. In particular, it is possible to 
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augment the opportunities for stopping the clock that feeds a given register anytime the output 
of such a register is not observable, that is, the value of the output is not used by the gates in 
the register’s fanout cone. Calculating these additional options for clock gating entails finding 
the observability don’t care (ODC) conditions for the output of the register; Babighian et al. [49] 
propose to extract idle conditions from a RTL netlist, by focusing on control signals that drive 
steering modules (e.g., multiplexors, tristate buffers, and LE registers). Referring, for instance, to a 
multiplexor, all but one data inputs are unobservable at any given time depending on the value(s) 
that are carried out by the control signal(s), so that the logic values of the unobservable branches 
become irrelevant to the correct operation of the circuit. Hence, the clock signals of the registers 
in the fanin cone of an unobservable multiplexor branch can be gated without compromising the 
functionality.

The goal of the approach of Babighian et al. [49] is to improve the effectiveness of clock gat-
ing by creating an activation function that can stop the clock of a set of registers for a significant 
fraction of cycles when the register outputs are unobservable. This is done in two steps: first, 
by performing ODC computation, which is based on a backward traversal of the datapath in 
decreasing topological order, considering only ODCs created by steering modules, and second, 
by generating the activation function, which implies the synthesis of the ODC function and the 
addition of clock-gating logic to the RTL netlist. Even though ODC computation is simple for a 
single-steering module, ODC expressions can become quite large if the netlist has many levels of 
steering modules and many fanout points. Therefore, traversal of only a limited number of levels 
in the netlist is allowed.

Once the ODC expression is computed, the corresponding logic must be instantiated in order 
to drive properly the clock-gating logic. The main difficulty in this step is due to the fact that 
ODC conditions masking register in clock cycle T may be used to gate their clock in cycle T−1. 
In other words, the clock-gating logic may need to be active in the clock cycle immediately before 
the register becomes unobservable. Unfortunately, the control signals at the inputs of the ODC 
functions are generated one clock cycle too late.

If the control signals are available directly as outputs of the registers, the instantiation of the 
clock-gating logic is relatively straightforward. Logic gates implementing the ODC expressions 
are inserted and their inputs are connected to the inputs of the registers. In real-life designs, how-
ever, the control inputs of the steering modules seldom come directly from the registers; instead, 
they are often generated by additional logic. In this case, the entire cone of logic between registers 
and control signals should be duplicated and connected at the inputs of the registers, and ODC 
computation gates should then be connected at the outputs of the duplicated cones. Clearly, the 
addition of this extra logic may represent a nonnegligible overhead.

Most of today’s commercial synthesis tools deal with this issue by restricting the type of acti-
vation function used to gate the clock. In practice, they just detect ODCs generated locally to the 
registers by assuming the register’s outputs to be always observable by the environment. This 
corresponds to considering, as ODC function, the complement of the enable signal, which feeds 
the clock-gating logic.

By detecting clock-gating conditions only when enable signals are present, no precomputa-
tion of clock-gating conditions is required and thus no duplication is needed. Notice that ODC-
based clock-gating subsumes traditional automatic clock gating as a very special limit case (i.e., 
 backward traversal is completely avoided). Thus, the clock-gating conditions computed by the 
ODC-based approach are guaranteed to be a superset of those targeted by tools that introduce 
clock gating only for LE registers (see Figure 13.7).

13.5.1.2 CLOCK-SKEW ISSUES

A problem in latch-based architectures comes from the fact that clock skew between the 
latch and the AND gate can result in glitches at the gated clock output. This is explained in 
Figure 13.8. In particular, Figure 13.8a shows the case when the clock arrives much earlier 
at the AND gate than at the latch. Here, the clock skew between the latch and the AND gate 
should be less than the clock-to-output delay of the latch for the circuit to function properly. 
Figure 13.8b depicts the situation when the clock arrives earlier at the latch. In this case, the 
clock skew between the AND gate and the latch should be less than the sum of the setup time 
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of the latch, and the input-to-output delay of the latch, to function properly. Therefore, the 
clock skew between the latch and the AND gate, Cs, should be carefully controlled according 
to the following equation:

 − (s + din) < Cs < dclk,

where
s is the setup time of the latch
din the input-to-output delay of the latch
Cs the difference in clock arrival time between the latch and the AND gate (the clock arrival 

time at the AND gate minus the clock arrival time at the latch), and
dclk the clock-to-output delay of the latch.

Depending on the relative placement of the latch and the AND gate, these requirements may 
pose very stringent constraints on the clock-tree synthesis (CTS) tool.

The best way to control the relative timing of the two clock signals is to keep the entire struc-
ture in a single cell, called the “integrated clock-gating” (ICG) cell. The cell should be designed 
specifically for clock gating, with the explicit requirements discussed earlier. Most technology 
libraries today do include the ICG cell as part of their primitives. Another way to address this 
issue is to ensure that the latch and the AND gate are close to each other during the placement 
phase of the design by placing hard constraints on the distance between them. This makes it 
simpler for CTS tools to reduce the clock skew between them during the clock routing phase.

13.5.1.3 CLOCK LATENCY ISSUES

To maximize power savings, a single clock-gating cell may be used to gate several registers, if the 
activation function is common to all of them. But the gated clock may not have enough strength 
to drive all these registers, calling for a clock tree at its output. If a clock tree is introduced 
between the ICG cell and the registers it controls, the clock signal at the gating logic arrives much 
before the clock signal at the registers, and the activation signal must be ready before the clock 
arrives at the gating logic. This applies strict timing constraints on the activation signal, which 
must be addressed during synthesis.
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13.5.1.4 CLOCK-TREE SYNTHESIS

In the presence of massively gated clocks, CTS tools must automatically address the presence of 
gated clocks, both combinational and sequential, and also the ICG cell on the clock line. CTS 
tools must support different relative latency requirements at different points in the clock tree, 
since the clock latency at the gated clocks can be very different from the latency at the regis-
ters. If ICG cell is not used, the CTS tool would need to provide stringent control of clock skew 
between the latch and the AND gate.

13.5.1.5 PHYSICAL CLOCK GATING

Physical clock gating simultaneously takes into account the factors mentioned in the previous 
subsections, namely, skew, latency, and CTS issues. There exists a spectrum of clock-gating 
approaches with regard to the placement of clock-gating cells into a clock tree. Designers often 
opt to place the clock-gating cells as close as possible to the final placement of their correspond-
ing registers, as shown in Figure 13.9a. This placement can be enforced during physical synthesis 
by specifying a bound for the proximity of the clock-gating cells to the registers. Some advantages 
of this approach are that it makes it easier to estimate the latency from the clock-gating cell and 
it also increases the amount of available slack for the arrival of the activation signal. The impact 
on the clock tree is fairly minimal since the clock-gating cells are placed close to the registers 
and can eliminate the need for buffer insertion after clock-gating cell insertion. A disadvantage 
to this approach is that it leaves most of the clock-tree switching even when branches are leading 
to registers that will have the clock blocked by a gated clock. In order to save as much power as 
possible, it is desirable to gate as many buffers on the clock tree as possible. This is difficult for the 
designer to do without knowledge of the actual physically induced timing constraints.

In a physically aware clock-gating system, CTS works in conjunction with placement and clock gat-
ing to determine an optimized placement and insertion of the clock-gating cells into the clock tree. This 
information is used to balance the delay on the activation signal with the amount of potential power 
saved by placing the clock-gating cell closer to the root of the clock tree, as shown in Figure 13.9b.

13.5.1.6 CLOCK-TREE PLANNING

Cell placement, clock-gating cell insertion, and CTS can also be decoupled, provided that the 
process of clock-tree planning is started after cell placement and it does not interfere with clock 
routing. The objective of the approach in [50,51] is to build a power-optimal gated clock-tree 
structure fully compatible with state-of-the-art physical design tools to perform detailed clock 
routing and buffering. Thus, the output of the proposed clock-tree planning methodology is not a 
completely routed clock tree; instead, it is a clock netlist (including clock-gating cells and related 
control logic) and constraints that, provided as input to CTS tools, lead to a low-power gated 
clock tree, while still accounting for all non-power-related requirements (e.g., controlled skew 
and low crosstalk-induced noise).
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The methodology consists of three steps:

 1. Calculation of the clock-gating activation functions
 2. Generation of the clock-tree logical topology
 3. Instantiation and propagation of the clock-gating cells and related logic

The gated clock activation functions for all the RTL modules are computed first. Next, accord-
ing to the activation functions and the physical position of the registers, the logical topology of 
the clock tree is planned. This entails balancing the reduction in clock-switching activity against 
clock and activation function capacitive loads. Clock-gating cells are then inserted into the clock-
tree topology and propagated upward in the tree whenever this is convenient, thus balancing the 
clock power consumption against the power of the gated clock subtree. The information about 
the gated clock tree is finally passed to the back-end portion of the flow, which will take care of 
clock-tree routing and buffering.

13.5.1.7 TESTABILITY ISSUES

Clock gating reduces test coverage of the circuit since gated clock registers are not clocked unless 
the activation signal is high. During test or scan modes, test vectors need to be loaded into the 
registers, and hence they must be clocked irrespective of the value of the activation signal. One 
way to address this, investigated from the theoretical standpoint in [52], is to include a control 
point or control gate at the activation signal, as shown in Figure 13.10a. This allows clock-gating 
signal, EN, to be overridden during the scanning in or out of vectors by the test-mode signal. 
In this way, during the test clock cycles, the clock signal is not gated by the activation signal, EN, 
and the register can be tested to see if it holds the correct state. Further, the test-mode signal is 
held at logic “1” during test mode, making any stuck-at fault on the activation signal unobserv-
able. If full observability is required, this signal must be explicitly made observable by tapping it 
into an observability exclusive or (XOR) tree, as shown in Figure 13.10b.

A growing concern around scan-based testing is the power consumed during the scanning in 
and out of test vectors [53,54]. The changing register values during scanning can create activity 
levels that are much higher than those experienced during normal operation and lead to good 
chips failing during testing.

13.5.2 EXPLOITATION OF COMMON-CASE COMPUTATION

It is well known that in complex digital architectures, some functionalities are exercised far more 
than others; this is due, mainly, to the fact that the data to be processed (i.e., the workload) 
may not have an equiprobable distribution. Optimizing the common-case computation has thus 
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become an established practice in high-throughput design [55], where variable-latency units 
replace fixed-latency ones to improve the overall system performance by adapting the latency of 
the datapath to the length of the computation to be executed. Architectural retiming [56], specu-
lative completion [57], and telescopic units [58,59] are examples of application, even in an auto-
matic fashion, of the optimization paradigm based on exploitation of common-case computation.

The concept of common-case computation has been extended recently to the case of power 
minimization; more specifically, as switching power depends on what the units of a design are, 
which are activated by the input data as well as on the type of data to be processed, it may be 
possible to come up with variable-power architectural solutions that guarantee minimum power 
demand for the most probable execution conditions [60]. Figure 13.11 shows a possible architec-
ture implementing the common-case optimization approach.

Block A supports the full functionality of the design, while block B only covers the most com-
mon subset of it. A and B work in mutual exclusion, owing to the latch-enabled registers placed 
on the primary inputs of the two blocks. Based on the next datum to be processed, block SEL is 
in charge of selecting whether A or B should be activated in the next clock cycle. As B is much 
smaller than A, any time B is active, power is reduced. On the other hand, when A has to com-
pute, there may be a penalty in power, as the whole design is larger (thus, there are more gates that 
have to switch) if compared to block A alone. Let q be the probability of block B to be active; let 
PA and PB be the average power consumed by blocks A and B, respectively, when they are comput-
ing; and let POv be the power overhead due to block SEL and the additional logic needed to make 
the architecture working. Actual power savings are achieved if

 (1 − q)PA + qPB + POv < Pa. (13.7)

This tells us that the architecture exploiting the common-case computation obtains power reduc-
tions over block A alone for high values of probability q. Clearly, high q usually implies a larger 
SEL and a larger B (intuitively, what happens is that as q increases, some of the functionality of 
A is incorporated also into B). The challenge is thus that of designing the smallest possible SEL 
and B blocks that maximize the value of q and limit the impact on area and delay penalty.

In the following, we review some solutions proposed in the recent literature that can be 
considered as practical actuation, with a slightly different flavor, of the design framework dis-
cussed earlier.

13.5.2.1 OPERAND ISOLATION

The concept at the basis of operand isolation [61] is illustrated in Figure 13.12. In Figure 13.12a, we 
observe that the output of the multiplier is only used when the control signals to the multiplexors, 
SEL_0 and SEL_1, are both high. In cycles when either of the control signals is low, if the multi-
plier inputs change, the multiplier performs computation but its result is not used. The wasted 
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power may be substantial if these idle cycles occur for long periods of time. Figure  13.12b 
shows operand isolation applied to the multiplier. First, the activation signal AS is created to 
detect the idle cycles of the multiplier. AS is high in the active clock cycles when the multiplier 
output is being used, otherwise low. This signal is used to isolate the multiplier by freezing its 
inputs during idle cycles using a set of gates, called “isolation logic.” In Figure 13.12b, the isola-
tion logic consists of AND gates, but OR gates or latches may also be used. Using AND/OR gates 
avoids the introduction of new sequential elements and reduces the impact on the rest of the flow. 
Also, AND/OR gates are cheaper and tend to give better power savings overall.

Operand isolation saves power by reducing switching in the operator being isolated, but it also 
introduces timing, area, and power overhead from the additional circuitry for the activation sig-
nal and the isolation logic. This overhead must be carefully evaluated against the power savings 
obtained to ensure a net power saving without too much delay or area penalty.

13.5.2.2 PRECOMPUTATION

Precomputation [62,63] relies on duplication of part of the logic with the purpose of precomput-
ing the circuit output values one clock cycle before they are required and then using these values 
to reduce the total amount of switching in the circuit during the next clock cycle. Knowing the 
output values one clock cycle in advance allows the original logic to be turned off during the next 
time frame, thus eliminating any charging/discharging of internal capacitances.

The size of the logic that precalculates the output values must obviously be kept under control, since 
its contribution to the total power balance may offset the savings achieved by blocking the switching 
inside the original circuit. Several variants to the basic architecture can be adopted to take care of this 
problem. In particular, it may sometimes be convenient to resort to partial, rather than global, shut-
down, that is, to select for precomputation only a (possibly small) subset of the circuit inputs.

As an example, consider Figure 13.13a; the combinational block, A, implements an N-input, 
single-output Boolean function, f, and it has the I/O pins connected to registers R1 and R2. A pos-
sible precomputation architecture is depicted in Figure 13.13b.
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Key elements of the precomputation architecture are the two N-input, single-output predictor 
functions, called g1 and g0, whose behavior is required to satisfy the following constraints:

 g1 = 1 ⇒ f = 1

 g0 = 1 ⇒ f = 0

The consequence is that if at the present clock cycle either g1 or g0 evaluates to 1, the LE signal 
goes to 0, and the inputs to block A at the next clock cycle are forced to retain the current values. 
Hence, no gate output transitions inside block A occur, while the correct output value for the next 
time frame is provided by the two registers located on the outputs of g1 and g0.

As mentioned earlier, the choice of the predictor functions is a difficult task. Perfect prediction 
requires g1 ≡ f and g0 ≡ f9. However, this solution would not give any advantage in terms of power 
consumption over the original circuit, since it would entail the triplication of block A, and thus it 
would cause the same number of switchings as before, but with an area three times as large as the 
original network. Consequently, the objective to be reached is the realization of two functions for 
which the probability of their logical sum (i.e., g1 + g0) being 1 is as high as possible, but for which 
the area penalty due to their implementations is very limited. Also, the delay of the implemen-
tation of g1 and g0 should be given some attention, since the prediction circuitry may be on the 
critical path, and therefore, it may impact the performance of the optimized design.

One way of guaranteeing functions g1 and g2 to be much less complex than function f, thus 
implying a marginal area overhead in addition to a remarkable power savings, consists of making 
the two predictor functions depend on a limited number of inputs as compared to f.

Precomputation-based power optimization has been shown to be effective in the case of 
designs with pipelined structure. On the contrary, it seems to be hardly applicable to the case 
of sequential circuits with feedback. The reason for this is that the precomputation functions 
never attempt to stop the present-state inputs, which represent the majority of the inputs to 
the combinational logic for sequential circuits with a realistic number of memory elements 
(i.e., flip-flops).

13.5.2.3 COMPUTATIONAL KERNEL EXTRACTION

It is known that, when in their steady state, complex sequential circuits tend to run through a 
limited set of states. Once such a set, called a “computational kernel” [64], is extracted from a 
given circuit specification, it can be successfully used for various types of optimization, including 
power minimization.

Given a sequential circuit with the traditional topology shown in Figure 13.14a, the paradigm 
proposed in [64] for improving its power dissipation is based on the architecture depicted in 
Figure 13.14b.
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The essential elements of the architecture are the following:

 ◾ The combinational portion of the original circuit (block C)
 ◾ The computational kernel (block K)
 ◾ The selector function (block SEL)
 ◾ The dual-state registers (block DS Reg)
 ◾ The output multiplexor (block MUX)

The computational kernel can be seen as a dense implementation of the circuit it has been 
extracted from. In other terms, K implements the core functions of the original circuit, and 
because of its reduced complexity, it usually implements such functions in a faster and less power 
consuming way.

The purpose of the selector function SEL is that of deciding what logic block, between C 
and K, will provide the output value and the next state in the following clock cycle. To take a 
decision, SEL examines the values of the next-state outputs at clock cycle n. If the output and 
next-state values in clock cycle n + 1 can be computed by the kernel K, then SEL generates the 
value 1. Otherwise, it generates the value 0. The output of block SEL is connected to the mul-
tiplexor that selects that block produces the output and the next state, as well as to the control 
input of the dual-state registers, which steer the primary and state inputs to the appropriate 
combinational block (either C or K). The optimized implementation is functionally equivalent 
to the original one.

The scheme in Figure 13.14b is just one among several possible architectures. The peculiar 
feature of this solution concerns the topology of the selection logic. In particular, the choice of 
having a selection function that only depends on the next-state outputs is dictated by the need of 
obtaining a small implementation. Reducing the size of the support of SEL, that is, not including 
the primary inputs, is one way of pursuing this objective.

Fundamental for a successful application of the kernel-based optimization paradigm is the 
procedure adopted for kernel extraction. If the circuit is described by means of its state transi-
tion graph, the kernel can be determined exactly through symbolic (i.e., binary decision dia-
gram [BDD] based) procedures similar to those employed for FSM reachability analysis. On the 
other hand, when the state transition graph is too large to be managed, there are two options. 
If a gate-level description of the circuit is available, then block K can be iteratively synthesized 
by means of implication analysis followed by redundancy removal. Otherwise (i.e., if only a 
functional description of the circuit is available), kernel identification and synthesis can be 
performed by resorting to simulation of typical input traces and by then running probabilistic 
analysis and resynthesis of the state transition graph based on the results of the simulation. 
Obviously, in case approximate kernel extraction is adopted, the savings that can be obtained 
are usually more limited.

13.5.3 MANAGING VOLTAGES

As discussed in Section 13.2, power consumption in CMOS designs heavily depends both 
on the operating supply voltage (switching power) and on the transistors’ threshold voltage 
(leakage power).

The two variables are not independent, and switching speed constitutes the link. Starting from 
the 0.5 mm technology node, supply voltage levels have been scaling at approximately 1 V/0.1 μm. 
As we are now below the 100 nm feature size, the reduced operating voltages are forcing thresh-
old voltages down to 0.25 V and below, in order to preserve speed. This has had a major impact on 
the leakage current of the transistors built into these technologies. As Equation 13.8 shows, the 
subthreshold leakage current grows exponentially as the threshold voltage decreases:

(13.8) Isub = I0(e(−Vth/S)(1 − e−qVds/kT)) (at Vgs = 0).

For approximately every 65–85 mV decrease in threshold voltage (depending on temperature), 
there is an order of magnitude increase in subthreshold leakage current.
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13.5.3.1 MANAGING THRESHOLD VOLTAGES

Silicon foundries have started to offer multiple threshold devices at the same process node to 
address the need to control leakage current and enabling designers to trade leakage and perfor-
mance [65]. Along with the standard Vth, a low- and high-Vth transistor may be offered where 
the low-Vth device may have an order of magnitude higher leakage than the standard Vth device 
and the high-Vth device may have an order of magnitude lower leakage than the standard. This 
reduction in leakage is not free though, and it comes at the expense of the speed of the device—
there could be a 20% to 2x delay penalty between the standard and the high-Vth devices—and an 
increase in the cost of the fabrication process.

Synthesis algorithms can be used to optimize leakage by using high-threshold voltages 
while still meeting the timing requirements using low-Vth devices on the more critical paths. 
The threshold voltage of a transistor can be dynamically changed by varying its back bias. The 
change in Vth is roughly proportional to the square root of the back-bias voltage. As threshold 
voltages drop below 0.25 V, variable back biasing may gain more appeal. A distinct advantage 
of this approach is that during periods when heavy processing is needed, Vth can be reduced, 
thus speeding up the cells. When the cells are in a slower drowsy or idle mode, the threshold 
voltage can be raised, thus lowering the leakage. One significant impact of using variable back 
biasing is that there are two new terminals for each cell that now need to be routed. A common 
ASIC design practice is to create cells that tie the n-well regions to Vdd and the p-well regions 
to ground. In the physical implementation, these are simply predefined contacts designed into 
the cell that are connected as part of the power and ground routes. To enable back biasing, new 
voltage lines are routed to control the bias. These can be to individual cells or, more likely, to 
regions that contain multiple cells sharing the same well and a common tie-cell to control the 
well bias [66,67].

13.5.3.2 POWER GATING–BASED SUPPLY VOLTAGE MANAGEMENT

For applications like cell phones that have long shutdown periods, the power consumption is 
dominated by the leakage power consumption during off periods. Power gating addresses this 
issue by shutting off the power supply to blocks that are not in use. This not only eliminates the 
switching power dissipation in the block but also hugely saves the leakage power dissipation when 
the block is shut down. In the simplest case of power gating, the voltage level across the chip is the 
same, but different power supply grids are used in different parts of the chip. Besides both leakage 
and switching power savings, this helps to control the IR drop on the power grids. These design 
techniques create interesting switching on the chip. When one block is shut down, the voltage on 
its output ports may drift to undefined values causing large leakage and unexpected functionality 
in the gates that it drives. Therefore, it is necessary to isolate all the output ports of a block that is 
shut down. Further, if a block is shut down, it might be important for it to remember some of its 
previous state values. The registers used to store these values need to be specially designed to be 
powered by a secondary supply that will allow them to retain their values during shut down and 
restore it when the primary supply is up [68,69].

Figure 13.15 shows a typical floorplan of a power-gated chip with isolation cells and retention 
registers.

EDA tools need to insert automatically isolation cells and retention registers for powered-
down blocks. To complete the entire flow, it is important to be able to represent all this informa-
tion in the source description (the RTL) and infer both isolation and retention logic during RTL 
synthesis. Since the power-down behavior directly impacts the functionality of the chip, it is 
important to be able to verify this functionality both with simulation tools and formal verifica-
tion tools.

To enable power gating in a complete automated design flow, place, route, and back-end 
optimization tools need to be aware of the different power supply regions. Cells powered by 
each supply need to be placed in separate areas, and signals should be routed so that they do not 
traverse areas serviced by a different power supply, since subsequent repeater/buffer insertion on 
these signals will not be legal.
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With complex power-gating schemes, the role of power and power network analysis tools 
becomes more important. Turning the voltage ON or OFF to a block can cause large transients 
on the power grid, affecting other blocks on the chip. These effects should be accounted for by 
the power analysis tools.

13.5.3.3 MULTI-Vdd SUPPLY VOLTAGE MANAGEMENT

Integrated circuit designs commonly support multiple voltages in one form or the other, and EDA 
tools need to support the various special needs of these design styles [70,71]. For instance, the power-
gating technique discussed earlier can be thought of as the simplest version of multivoltage design, 
where the ON voltage level is the same for all the blocks, but can be changed to 0 V during shutdown.

A more complex methodology uses different voltages for different blocks on the chip, which 
are powered with separate power supplies that can be independently shut down [72]. An example 
of a multivoltage chip is shown in Figure 13.16.
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FiGURe 13.16 Example of multivoltage chip.
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Variations of multivoltage design styles include dynamic Vdd scaling, where on-chip controls 
are used to switch the voltage on the different parts of the chip to different predefined levels. 
Adaptive scaling takes this a step further, where high-level control feedback loops can be used to 
change the Vdd values of different blocks based on the speed/power requirements for the chip at 
any given time.

Along with the issues associated with power gating, multivoltage design has other require-
ments from EDA tools. First, tools need to understand the impact of voltage levels on timing and 
power of library cells (hence, on the design) and need to provide both analysis and optimization 
capabilities that accurately account for the different Vdd levels. Second, the implementation tools 
should be able to insert automatically level shifters to be able to adapt signals from one level to 
another. Instantiation and optimization of level shifter cells is key to multivoltage design [73]. 
The tools have to manage cells that have more than one supply rail and circuitry that can vary or 
completely shut down the supply voltage to a block.

Clock-tree generators need to account for buffers that operate at different voltages to provide 
clock signals to each block, and the router needs to account for buffer placement in the context of 
different voltage regions on the chip. Routing a feed-through signal via a region may now require 
the insertion of level shifters in order to drive the signal adequately. Analysis tools need to under-
stand these different situations—tracking all of these new voltage-based modes—and provide 
useful feedback to the designer.

An additional major impact on the design flow is the need to treat the supply line as another 
variable. For most previous mainstream designs, logical netlists only specified the input and out-
put connections between gates. Vdd pins for all the cells (as also the Vss pins) were attached to a 
single power (ground) network after the place and route step was done. In a multivoltage design, 
different cells are connected to different power (ground) networks and this information needs to 
be managed in the entire design flow starting from the RT level, to be able to simulate correctly 
and verify the design right from the start.

A final design implication that optimization and analysis tools must account for is the signal 
integrity impact of driving some lines at higher voltages than others. The higher-voltage lines can 
cause larger spikes in neighboring low-voltage lines than other lower-voltage aggressors, which 
impacts timing analysis, power, and the routing of lines on the chip.

13.5.4 MEMORY POWER OPTIMIZATION

The power model of Equation 13.5 exposes the two quantities that can be targeted to reduce 
memory power, namely, the number of (read or write) accesses and the (read or write) capaci-
tance. The former are actually dictated by the scheduling of the operations resulting from RTL 
design or high-level synthesis and should be considered as fixed. Attention should then focus on 
capacitance minimization.

Apparently, the read or write capacitances are related to physical parameters and are also 
uniquely defined for a given technology. In practice, Cread and Cwrite should be regarded as 
average read or write capacitances, that is, they should represent the cost of an average read 
or write access. This subtle difference opens the way to a class of optimization techniques 
that modify the organization of the memory, which can be seen as the RTL counterpart 
of techniques that, in a more general macroarchitectural context, aim at optimizing the 
memory hierarchy of a system. The most well-known example is the use of a cache between 
processor and memory, whose net effect is that of reducing the average cost of accessing 
memory.

Such a reduction of average cost (i.e., capacitance) can be achieved either by augmenting the 
hierarchy vertically (i.e., adding levels to the hierarchy) or by growing it horizontally (i.e., adding 
support structures in parallel to existing hierarchy levels), or both [74,75]. In an RTL context, 
the cycle-accurate timing information contained in the description rules out the vertical trans-
formations, since they affect the average cycle time of a memory. We can reasonably assume 
that, in a microarchitecture, only one level of memory hierarchy does (typically) exist. The 
latter option is therefore the only viable one that allows a relatively seamless integration in a 



Chapter 13 – Microarchitectural and System-Level Power Estimation and Optimization    333

microarchitecture. Horizontal modification of a memory can be restated in terms of the usual 
common-case paradigm discussed in Section 13.5.2.

In this specific situation, the common case is represented by the memory cells that are accessed 
most. The idea is that of “isolating” this common case from the average case; since both are iden-
tified by memory cells, this amounts to instantiating a memory block “in parallel” to the main 
memory. This is shown in the example in Figure 13.17.

The left side of the figure depicts the original memory, consisting of W = 1000 words, while on 
the right-hand side, the W memory locations are mapped onto two different memory blocks of 
sizes W1 = 200 and W2 = 800. Assume that for a given workload the memory cells in the mono-
lithic block Mem are accessed a total of N = 10,000 times. For the partitioned architecture, the 
common case is that the most frequently accessed memory cells are placed into the smaller block 
Mem1 (with N1 = 8000 accesses) and the least frequently accessed locations are mapped to the 
larger block Mem2 (with N2 = 2000 accesses).

We realistically assume that the power cost for accessing a cell in a memory block is directly 
related to the size of the block itself (the larger the block, the higher the power cost). Specifically, 
for our example, we assume the power access cost for cells in Mem to be CMem = 0.5, the cost for 
cells in Mem1 to be CMem1 = 0.1, and the cost for cells in Mem2 to be CMem2 = 0.4.

The average power for the monolithic memory is Pmono = PMem = NC
N

men  = 0.5. For the parti-
tioned memory, neglecting the decoder overhead, the power is

 
P P P N C N C

Npart Mem1 Mem2
Mem Mem =  + = 1 1 2 2 8 000 0 1 2 000 0+ = × + ×, . , .44

10 000,
 = 0.16.

The partitioned scheme is more convenient as N1 gets larger with respect to N2, meaning that the 
most frequently accessed locations should be mapped as much as possible onto smaller blocks.

The generic template illustrated in Figure 13.17 lends itself to numerous variants, depending, 
for instance, on whether the subblocks are overlapping or not, on the choice of the number and 
of the size of the subblocks, on the possibility of having noncontiguous partitions (i.e., addresses 
could be relocated within blocks), on the architecture and implementation style of the decoder, on 
the organization and routing of the address and data buses, and on the placement of the subblocks.

The common-case principle applied to memories requires proper extra logic to drive the 
accesses to the correct memory bank (the block generically denoted as “encoder” in the figure) 
whose power and performance overhead constrains the type of partitioning scheme allowed. 
Some memory partitioning variants, such as those proposed in [76], provide significant power 
reductions with a very limited hardware overhead that can be easily tolerated into an RTL design.

It is important to mention that although the delay of the decoder is on the critical path, it 
usually does not affect the overall cycle time, since the access times of the subblocks are smaller 
than that of the monolithic memory; it suffices that (tdecoder + maxi(tblocki)) ≤ tmem,mono in order to 
guarantee a seamless integration of the partitioned scheme (tmem,mono is the access time of the 
monolithic memory, and tblocki is the access time of the generic subblock after partitioning).
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FiGURe 13.17 Common-case optimization applied to memory.
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13.5.5 BUS POWER OPTIMIZATION

Among the various parameters that appear in the model of Equation 13.6, only switching activity 
can be exploited at the microarchitectural level in order to reduce power. While supply voltage 
and frequency are somehow assigned up front, capacitance values (both switching and coupling) 
can only be reduced during physical design through proper wire sizing (for self-capacitance), 
spacing, or shielding (for coupling capacitance).

Reducing the activity factors amounts to modifying the binary values that are transmitted to 
the bus, in other terms, encoding the values. For correct operations, clearly, both encoding and 
decoding are required at each end of the bus.

Since we are dealing with hardware components, encoding/decoding must be implemented 
through specialized hardware blocks. This obvious requirement poses serious limitations on the 
encoding that can be applied on an on-chip bus: codecs will in fact consume power, which if not 
kept under control may easily offset the power gain achieved from the reduction of switching and 
coupling activities. Moreover, the codec also adds delay to the corresponding paths, which must 
be limited since the cycle time is fixed up front at the RTL. There is, therefore, a clear trade-off 
between codec complexity (power, but also delay) and the reduction in the number of transitions. 
Since the latter are weighted by the switched capacitance, this trade-off can be cleanly expressed 
as a minimum value (switching and coupling) of capacitance that represents the break-even 
point of the power cost function; beyond this minimum value, the encoding scheme becomes 
advantageous.

This trade-off drastically limits the type of encoding to be chosen. The existing literature on 
low-power bus encoding is vast and it consists, in most of the cases, of quite complex encoding 
schemes that are more suitable for off-chip buses or for long global on-chip buses rather than for 
short datapath buses. Moreover, technology scaling plays against the application of encoding to 
on-chip buses: as wire capacitance progressively increases with respect to that of the cells, the 
average length of the wires must be decreased, thus making it more and more difficult to amor-
tize the cost of the codec.

13.5.5.1 BUS-ENCODING SCHEMES

Bus encoding can be applied at the physical level (signal encoding) or at the data-link level 
(data encoding). The former consists of modifying (in time or space) the way the binary 0s and 
1s are represented. For instance, a 1 could be encoded as a 0 → 1 transition. Data encoding, 
instead, consists of modifying the way the binary patterns are represented. For example, a 
word could be represented by adding one parity bit. The application of the two types of encod-
ing is not mutually exclusive. However, signal encoding may have an impact on the technol-
ogy used to implement the design. For instance, a typical signal-encoding technique consists 
of reducing the voltage swing on (possibly some) of the bus wires. To make this possible, the 
technology on which the system will be implemented must be able to support that voltage 
level. For this reason, signal-encoding techniques are more related to the physical level of 
abstraction and will not be analyzed further. Conversely, data encoding is more general, since 
the only underlying assumption is that of tolerating the insertion of additional hardware to 
perform the encoding.

The problem of defining a code that minimizes the number of (self and/or coupling) transi-
tions enables a theoretical formulation that has led to solutions that mix results from information 
and probability theory. Although surveying these techniques is out of the scope of this chapter, a 
rough classification may help in understanding the problem better. Bus-encoding techniques can 
be categorized based on two dimensions:

 1. The amount of redundancy allowed. Some encoding schemes rely on spatial or temporal 
redundancy. Spatial redundancy implies the addition of extra bus lines, whereas tempo-
ral redundancy implies the addition of extra cycles to the bus transfers.

 2. The amount of knowledge on the statistics of the transmitted data. Some schemes assume 
a priori knowledge of the statistical properties of the information transmitted on the 
bus, which can be exploited to customize the encoding functions to the most typical 
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behavior. An example is that of address buses, in which, although the specific patterns 
sent on the bus are not known, there exists a high degree of correlation between them, 
because of the sequential execution of a program.

Redundant codes are very popular in literature. One of the most referenced ones is the bus-invert 
(BI) scheme [77], in which the transmitter computes the Hamming distance between the word 
to be sent and the previously transmitted one. If the distance is larger than half of the bus width, 
the word to be transmitted is inverted, that is, complemented. The information about inversion is 
carried by an additional wire that is used at the receiver end to restore the original data.

The BI scheme has some interesting properties. First, the worst-case number of transi-
tions of an n-bit bus is n/2 at each cycle. Second, if we assume that data are uniformly ran-
domly distributed, it is possible to show that the average number of transitions with this code 
is lower than that of any other encoding scheme with just one redundant line. Moreover, the 
basic 1-bit redundant BI code has the property that the average number of transitions per 
line increases as the bus gets wider and asymptotically converges to 0.5, which is also the 
average switching per line of an unencoded bus and is already close to this value for 32-bit 
buses. This shortcoming has spun a number of variants of the basic BI scheme, based on 
the partitioning of the bus into smaller blocks and on the use of bus inversion on each block 
independently. Since the trivial application of this partitioned variant on an m-block bus 
would require m control lines, these methods have tried to reduce this additional complexity 
(e.g., see the work in [78,79]).

Addition of redundancy is not very desirable at the RTL. Temporal redundancy obviously 
alters the timing of the operations, thus giving rise to performance issues, while spatial redun-
dancy may require the modification of the bus interface to support the extra connections, which 
may not be feasible when connecting synthesizable IP blocks with predefined I/O.

Discarding redundancy drastically limits the spectrum of applicability of bus encoding. 
In particular, if no assumption on the statistical properties of the transmitted data can be 
made, results from information theory show that it is not possible to reduce the number of 
transitions [80]. Some irredundant codes proposed in the literature bypass this theoreti-
cal limitation by building statistical information online over a given timing window [81,82]. 
These adaptive schemes require, however, a significant hardware overhead that is not gener-
ally affordable at the RTL.

When some knowledge of the statistical properties is available a priori, more effective encod-
ings can be devised. The most realistic option at the RTL is the case of address buses, for which 
there exists a high degree of correlation between consecutive addresses; in particular, addresses 
generated by processors typically exhibit a high degree of sequentiality; this is particularly true 
for data-dominated applications, where the few control structures only occasionally break the 
sequentiality of the address stream.

Some authors have suggested the adoption of Gray coding [83] for address buses. This code 
achieves its asymptotic best performance of a single transition per emitted address when infinite 
streams of consecutive addresses are considered. This average can be lowered to asymptotic zero 
transitions, at the price of adding some spatial redundancy [84]. Alternatively, the asymptotic 
zero-transition behavior can be achieved without any redundancy by exploiting the decorrelating 
characteristics of the XOR function, when applied to consecutive bus patterns. In this way, the 
values on the bus are encoded using a transition signaling scheme [85]. Notice that the decor-
relation implies an operation of a signal with its previous copy and may not be feasible at the RTL 
for timing reasons. Conversely, Gray encoding is a fully combinational transformation and it is 
potentially feasible to insert Gray codecs into an RTL description, should the cycle time con-
straints allow it.

So far, we have discussed techniques that aim at reducing switching activity. When 
addressing coupling activity, things are even more critical, because the encoding involves 
pairs of wires, thus making the hardware overhead required by the codec more complex by 
construction. In addition, solutions based on encoding the data to reduce coupling activ-
ity tend to ignore the most important implication of coupling, that is, its impact on timing 
due to crosstalk. Minimizing the number of simultaneous transitions on adjacent wires may 
reduce power consumption of coupling capacitance, yet it does not reduce crosstalk by itself. 
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Crosstalk mainly affects signal integrity, and even a significant reduction of crosstalk-induced 
power is of little interest for designers, if it does not guarantee the proper functionality of the 
circuit. Therefore, a solution to the problem must be consistent with performance-oriented 
crosstalk reduction techniques. In other terms, since crosstalk is mainly a capacitive effect, 
the only way to reduce it is by reducing the capacitance that causes it, and let power reduction 
come as a by-product. This makes the power optimization an issue to be dealt with during the 
physical design step, with the application of techniques ranging from (static or dynamic) wire 
permutation [86–88] to nonuniform wire spacing [89], from the insertion of shielding lines 
[90–92] to different combinations of the aforementioned approaches [93,94]. Solutions based 
on encoding of the data, however, may still be applied on top of capacitance reduction tech-
niques, should the timing constraint allow it.

13.6 SYSTEM-LEVEL POWER MODELING

This section describes three commonly used methods of system-level power modeling. In all 
three, macromodels of components are combined to produce a macromodel of the entire system. 
The primary challenge is constructing these subcomponent macromodels. The first approach to 
solving this problem makes heavy use of the macromodeling techniques described in Section 
13.4.2, but operates at a higher level of abstraction, with entire microprocessors or wireless com-
munication subsystems being treated as components. The second approach makes use of mea-
sured power consumptions of components, although the system may not yet exist. The third 
approach is based on direct or indirect measurement of power consumption in a working sys-
tem subject to carefully monitored, and possibly controlled, workloads. The appropriate method 
of model construction depends on whether the model is intended for use during, or after, the 
 hardware design process.

13.6.1 SUBCOMPONENT MACROMODEL‒BASED MODELING

We now describe how a system-level macromodel can be developed based on component-level 
macromodels.

If a system-level power model is intended for use in refining components within the system-
level architecture, it is necessary to construct the component-level models before it is possible 
to measure their power consumptions. Therefore, a bottom-up approach is used, in which the 
component power model is constructed from circuit structure–based or historical macromodels 
of its components. In Figure 13.18, these macromodels are represented by the “macromodel built 
from circuit-level models” blocks.

Figure 13.18 illustrates a system-level macromodel for an embedded computing system con-
taining several component macromodels: an organic light-emitting diode (OLED) display, a 
microcontroller, and several other components. Based on these macromodels, it is possible to 
construct a higher-level model in which power consumption depends on the sequence of the 
activity and power management states of the component. In the case of an OLED display, this 
state might depend on the distribution of pixel intensity RGB values and the display power man-
agement state. In the case of a microcontroller, this state might depend on the operating voltage, 
frequency, and utilization (percent of time not idle). More detailed models might also consider 
instruction and operand properties as well as cache state. In the case of a wireless communica-
tion interface, this state may depend on whether the interface is idle, ready, receiving, or trans-
mitting and the states it has been in recently. Macromodels of lower-level subcomponents can be 
used to determine the relationships between activity and power management states on compo-
nent power consumption. For example, given an appropriate subcomponent macromodel and an 
understanding of the impact of a particular instruction on switching activity in subcomponents 
such as ALUs, caches, and buses, it is possible to estimate the power implications of particular 
instructions on the higher-level component, such as a microprocessor.

The subcomponent macromodel-based modeling approach has some disadvantages. Typically, 
substantial errors are introduced due to inaccuracies in the subcomponent models. This approach 
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can also be computationally expensive to evaluate because it depends on potentially complex 
subcomponent macromodels. However, if knowledge of the impact of system-level workloads on 
the power consumptions of individual components is needed before the designs of these subcom-
ponents are finalized, there is little alternative.

13.6.2 COMPONENT MEASUREMENT‒BASED MODELING

If the designs of components within the system have already been finalized and have been 
used in prior designs, an alternative modeling approach with some advantages in accuracy and 
modeling complexity can be used. In this case, it is possible to measure the impact of com-
ponent model parameters such as input and power management state and use the resulting 
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component-level power models to construct a system-level model. The macromodels pro-
duced by this modeling method are represented by the “macromodels built via measurement” 
blocks in Figure 13.18.

13.6.3 SYSTEM MEASUREMENT‒BASED MODELING

We now describe the process of developing a system-level power model based on direct or indi-
rect measurement of component power consumptions. The end result will be a system-level mac-
romodel such as that shown in Figure 13.18, though the model can be produced without access to 
macromodels for, or direct measurements of, individual components.

Even after a system-level hardware architecture has been finalized, a system-level power model 
can be valuable when optimizing the designs and policies of operating system and applications 
or determining which components to focus optimization efforts on during the design of related 
future systems. In this case, instead of constructing the system-level model bottom-up from sub-
component macromodels, there are advantages to constructing a component-based system-level 
power model using measurements in carefully observed, and perhaps controlled, component 
activity and power management states. Such models are based on measurements of real systems, 
reducing the potential for error. This approach also has the benefit of permitting a system-level 
designer to construct the necessary component-level models even if their circuit structures are 
not known. Even when circuit structures are known, for many components the complexity of 
constructing measurement-based models is lower than that of building upon circuit structure 
subcomponent macromodels.

Despite the benefits of using measurement-based system-level macromodels, there are some 
potential risks. Foremost among these is the risk of failing to exercise some activity and power 
management state of a component that is later encountered during real-world use. Fortunately, it 
is possible to construct such models for complex systems such as smartphones with single-digit 
error percentages [95].

13.6.3.1 SIMPLIFIED PROBLEM DEFINITION

Let us now consider the model construction process for a fairly complex and heterogeneous 
system: the smartphone. A similar approach can be used for many other classes of electronic systems. 
The simplest version of the problem can be stated as follows.

Abstract system-level power modeling problem definition: Given knowledge of the possible 
power management and activity states of all components within an electronic system, as well as 
the ability to control these states and measure the resulting component-level power consump-
tions, construct a power model capable of estimating the power consumption of the entire system 
as a function of the current and historical states of its individual components.

Starting from this definition, a naïve approach to modeling the entire system would be to tran-
sition the system through each possible combination of component states and measure the result-
ing component power consumptions. This process could be quite expensive, as the number of 
system-wide states would increase exponentially in the number of components. Fortunately, the 
system-level power consumption is the sum of the power consumptions of its components and, in 
most real-world systems, the power consumptions of most components are mostly independent of 
the states of other components. Therefore, the expedient of varying the state of each component 
while holding the states of other components constant is generally sufficient. We found that this 
simplification introduced 6% error when used during power modeling of a smartphone [95].

13.6.3.2 PRACTICAL PROBLEM DEFINITION

Unfortunately, the power modeling problem faced by real-world system designers is harder and 
more complex, for the following reasons:

“Given knowledge of the possible power management and activity states of all components…”: 
In fact, this information is commonly unavailable from component vendors, so the system 
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designer must often play the role of sleuth, combining knowledge of component operation with 
comprehensive testing to determine the states possible for each component. This is not a fun-
damental problem. It exists only because component designers, whose customers are system 
designers, do not provide enough information about their components to enable their most 
power-efficient use.

“…as well as the ability to control these states…”: Although it is generally possible to exercise 
control over the states of components, this control is imprecise. For example, precisely controlling 
the percent of time a processor spends idle may be difficult without burdensome changes to its 
operating system. Precisely controlling the power management state of a wireless interface may 
depend on time-consuming reverse engineering of its firmware or having control of a cellular 
base station. Fortunately, combining approximate control of component states with more precise 
measurement of these states offers a solution. Consider, for example, the problem of modeling the 
dependence of microprocessor power consumption as a function of duty cycle, the proportion of 
time spent actively executing instructions. It may be difficult to precisely control the percent of 
cycles spent idle due to operating system interference. However, rough control of this parameter 
can be combined with operating system introspection to ensure that each power measurement 
is associated with its corresponding duty cycle. A similar approach can be used when modeling 
the dependence of wireless communication interface power consumption on parameters such as 
transmission power.

“… measure the resulting component-level power consumptions…”: In many systems, measur-
ing the power consumptions of individual components is a challenge because distributed current 
meters are not available and accessing the appropriate interconnects is physically challenging or 
would cause damage to the system. As a result, the system designer must often make due with 
measuring the power consumption of the entire system during the modeling process.

This leaves us with the following problem definition:
Practical system-level power modeling problem definition: Given the ability to (1) determine 

all possible power management and activity states of all components within an electronic system, 
(2) control these states with some probability of success, (3) measure the current states precisely, 
and (4) measure the resulting system-level power consumption, construct a power model capable 
of estimating the power consumption of the entire system as a function of the current and his-
torical states of its individual components.

13.6.3.3 MODEL CONSTRUCTION

This problem of constructing a system-level power model can be solved using the procedure 
illustrated in Figure 13.19. The first step of determining the major parameters on which compo-
nent power consumptions depend can be challenging due to the variety of possible dependen-
cies and because understanding each requires some component-specific knowledge. For example, 
backlit display power consumption depends primarily on backlight output level; OLED power 
consumption is a function of pixel color intensities; microprocessor power depends primarily on 
the percent of active cycles and power management state including operating frequency and volt-
age; and wireless communication interface power consumption depends on the recent history of 
data transmission and reception rates, which influence internally controlled power management 
states that are generally not externally visible. Determining which components and states must 
be considered can be more challenging than exercising those states.

In the second step, methods are developed to determine the states of components in the 
system. These methods may use software introspection or measurement with an external data 
acquisition card to determine the state.

The third step in Figure 13.19 can be challenging, as well, because it can be impractical to 
precisely control the states of individual components. Sometimes, only approximate control, or 
control that has some limited probability of success on a given attempt, is possible.

In the fourth step, built-in or external sensors are used to measure system power consumption.
In the fifth step, transitioning through the power-relevant states of a single component at a 

time, while holding the states of other components constant, can simplify the model construc-
tion process, although it is not strictly necessary. This leaves open the possibility of building a 
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model without explicitly controlling component states, provided that each component enters all 
power-relevant states during the model construction process.

Step six is generally easiest when regression on the data measured in step five is used to deter-
mine component macromodel parameters and potentially structure.

There are several papers describing this process, or particular steps within it, in detail [95–101].

13.6.3.4 MODEL EVALUATION

The process of evaluating a system-level power model such as that described in the prior sections 
is generally simpler than that of constructing it. The model is generally inexpensive to evaluate 
function of the power-relevant states of all power-relevant components. This opens the possibility 
of hosting the system-level power model on the physical electronic system being modeled with 
low overhead, making it practical to estimate the power consumptions of the system and its indi-
vidual components even if the system does not have built-in current sensors or has only one such 
sensor. There are several tools based on this concept [95,96].

Although automation plays a central role in the generation and evaluation of system-level 
power models, it is common for several steps of the process to require designer involve-
ment and knowledge. In most cases, this is the result of component designers neglecting to 
provide relevant component-level power models that, if available, would support automated 
construction of system-level power models. As a result, there are major opportunities for 
component designers catering to designers of low-power systems to differentiate their prod-
ucts from their competitors. It is now fairly common for independent design groups around 
the world to build power models for components without a detailed understanding of their 
circuit structures, when the cost could have instead been paid once by the better-equipped 
component designer.

1. Determine parameters on which
component power depends.

2. Develop SW or data acquisition card–based
methods to determine component states.

5. Transition through
power states of

each component.

6. Determine expression of power of each
component as a function of its state.

3. Develop SW or HW methods
of controling component states.

4. Measure power
consumption

of entire system.

FiGURe 13.19 System-level power model construction process.
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13.7 SYSTEM-LEVEL POWER OPTIMIZATION

This section describes three methods by which system-level power consumption is commonly opti-
mized. Although the first is generally manual, it is included because it is one of the most important 
uses of the results yielded by the automated power modeling tools described in Section 13.6. It may 
also be possible to automate in the future. In the second approach, automated compiler optimizations 
and transformations are used to improve the energy efficiency of software. In the third approach, 
the activity and power management states of individual components are adjusted to simultaneously 
optimize system power and other objectives, such as functionality or user satisfaction.

13.7.1 APPLICATION REDESIGN

System-level power modeling often yields surprising information to system-level hardware and 
software designers. For example, a designer might find that a particular component has much 
higher power or energy consumption than expected, leading to the identification of an applica-
tion design flaw that can be corrected through redesign. The process of finding such design flaws 
is based on the use of automated power modeling and estimation tools, but can depend on pains-
taking manual analysis.

There has been some recent work on automating the analysis process. For example, researchers 
have used virtual machine–based tracking of information flow through applications and platform 
(operating system) to identify operations that consume energy but never have any impact on the 
output of the system [102]. One can determine when an energy-consuming operation, such as receipt 
of a packet via a wireless interface, is useless by tracking all of the computations transitively depend-
ing on the product of the operation and determining whether any change the system state in a way 
that can become visible to the system’s user. If not, the operation could be eliminated without any 
harmful impact on the system. Such operations exist in real, widely used, smartphone applications.

13.7.2 COMPILER OPTIMIZATIONS

Some of the power optimization mechanisms can be explicitly or implicitly controlled by 
compile-time code transformations. For example, the sequence of instructions can influence 
the resulting energy consumption and multiple sequences are often permissible, allowing 
compilers to reorder instructions, for example, to reduce switching activities on the instruc-
tion bus, thereby reducing energy consumption [103]. Although such approaches can sig-
nificantly reduce power consumption in some circumstances, the benefits of such low-level 
techniques are often low when compared with related optimization techniques that consider 
performance, alone.

Researchers have analyzed the performance and energy implications of enabling and disabling 
particular compiler optimizing transformations. Although this can sometimes greatly reduce 
energy consumption, in most work most of the benefit comes from reducing execution time, 
that is, performance-oriented compiler optimizations (a fairly mature research area) would have 
yielded a similar result. In a few cases, operations that decreased energy consumption increased 
execution time, but these generally had only a few percent impact on each.

Techniques in which compilers intelligently control the temporally fine-grained power manage-
ment states of microprocessors have generally yielded substantial energy savings (e.g., 50%) [104,105]. 
Compiler control of memory layout including the software-directed use of scratchpad memory and 
compiler-assisted cache control have also resulted in energy reductions of more than 25% [106–108].

13.7.3 COMPONENT STATE CONTROL

It is common for operating systems and firmware to control the power management states of 
system components with the goal of minimizing energy consumption while maintaining good 
quality of service. More precisely, the goal is to transition each component to the appropriate 
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state, at the right time, to minimize system-level energy consumption while offering an adequate 
user experience. This is a hard problem for two reasons.

First, changing power management state, for example, changing the voltage and frequency of 
a microprocessor or transitioning a wireless communication interface to a lower-power mode 
offering less functionality, often imposes a substantial time and energy cost. Circuit designers are 
working to reduce these penalties, but they remain substantial for many components. Perfectly 
solving the component power management state scheduling problem would require knowledge 
of future component use. The most commonly used strategy is to assume that future component 
use will be similar to that in the recent past, and transition to lower-power, lower-functionality 
component states after a certain amount of time has elapsed since the last intensive use of the 
component. Researchers have developed power management policies based on more sophisti-
cated predictive models, some of which are appropriate for use in automated online power man-
agement system software [109].

Second, the only performance-related metric that ultimately matters for a computer system is 
the satisfaction of its user or owner. Commonly used proxies for this metric, such as instructions 
processed per second, do not relate in any simple way to user satisfaction [109]. Researchers have 
considered metrics that better approximate user satisfaction, such as application response time 
[110], that are suitable for use in evaluating and improving automated online system-level power 
management techniques.

13.8 CONCLUSIONS

This chapter has reviewed the basic principles of power modeling, estimation, and optimiza-
tion for digital CMOS circuits described at the microarchitectural and system levels. The most 
common and successful modeling solutions for various types of components, such as datapath 
macros, controllers, memories, wires, and buses, have been discussed in detail, offering a compre-
hensive overview of the state of the art in this domain. We have also described methods of con-
structing power models for complex, heterogeneous digital systems. Power estimation methods 
making use of the various models have been illustrated.

Building on the foundation of power estimation, we have described power optimization tech-
nologies such as clock gating, exploitation of common-case computation and dynamic Vth/Vdd 
management, memory partitioning, bus encoding, and careful control of component activity and 
power management states at the system level. Emphasis has been put on design automation aspects 
of most of the techniques considered, with the objective of making this chapter of practical use 
not only to IC designers and architects but also to circuit-level and system-level EDA engineers.
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14.1 INTRODUCTION

In the past decade, design automation faced a sequence of what were called closure problems. 
“How to achieve wireability in placement of components or modules on a chip,” and “how to 
allocate resources in order to optimize schedules” were among the early ones. In the 1990s, 
timing closure was a dominant challenge; that is “how to ensure timing convergence with min-
imal size.” Toward the end of that decade so many additional characteristics and constraints, 
such as (static and active) power, signal integrity, and electromagnetic compliance, had to be 
considered that industry started to speak of the ever elusive design closure (For an analysis 
of these characteristics and constraints, see Chapter 13 of Electronic Design Automation for 
IC Implementation, Circuit Design, and Process Technology). Yet, that is today’s challenge of 
design automation: “how to specify a function to be implemented on a chip, feed it to an EDA 
tool, and get, without further interaction, a design that meets all requirements of functionality, 
speed, size, power, yield and other costs.”

14.1.1 WIRING CLOSURE

Around 1980, designers realized that the complexity of chips in the decade to come forced them 
to use more than just a router and occasionally a placer to find a starting point. At the same 
time, it was obvious that the two tasks were heavily dependent on each other. Routing without 
a placement was inconceivable, while at the same time a placement might render any routing 
infeasible. This “phase problem” between placement and routing was tackled with error-prone 
spacing repairs and wasteful reservations, which turned out to be inadequate. Thus the quest for 
wiring closure was born.
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The answer came with the introduction of floorplans, data structures that capture relative 
positions of objects rather than co-ordinates. Once such a “topology” was generated and stored, 
optimizations could convert it into geometry, often a dissection of the rectangular chip into rect-
angular regions for the modules. The restriction to rectangular shapes was convenient because 
the optimization could be organized as trading off dimensions in order to reserve an adequate 
shape for each module while achieving an optimal overall contour. Under a mild structural con-
straint this required only polynomial time.

In a sense, floorplanning is simply a generalization of placement. Whereas placement was the 
manipulation of geometrically fixed objects to arrange them in a configuration without overlaps, 
floorplanning handled objects for which the shape did not have to be predetermined. It lent itself 
much better to top-down approaches where the shape and sometimes even the precise size of the 
modules were unknown. Certain restraints enabled stepwise refinement in that the tree repre-
sentation of the floorplan was forced to be a refinement of a given hierarchy tree. These features 
caused a strong association of the floorplan concept with hierarchical design.

The salient feature of floorplans is that they allow designers to perform early analysis on their 
design decisions so that performance can be improved without resorting to lengthy iterations 
(in its original context floorplanning was presented as an iteration-free approach to chip design!). 
It thus enables silicon virtual prototyping, where sophisticated assessment procedures are inte-
grated with hierarchical floorplan design to adapt modules in a timely manner to their (prelimi-
nary) environments, while respecting intellectual property reuse.

Today it can safely be stated that placement has been replaced by floorplanning, followed by a 
legalization step. Many modern back-end tools start with generating point configurations (with 
or without size-dependent spacing) or overlapping geometrical objects, mostly by analytic or 
stochastic optimizers that can handle complex but flat incidence structures with library elements 
of fixed shape. Once the optimum for this configuration is established, legalizers ensure that 
all overlap is removed, and that routability is enhanced. Ironically, this was exactly what early 
fully automatic floorplanners did [1]. Other back-end tools start by partitioning a netlist while 
giving relative positions to the blocks. Details about the algorithms can be found in Chapter 5 
of Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology.

In Section 14.2, we work from the definition of a floorplan to the many models and configu-
rations that have served to capture relative positions in one way or another. We emphasize the 
importance of meaningful and easy to handle metrics for evaluating floorplans, although the 
in-depth treatment and comparison is left to other chapters in this book.

14.1.2 TIMING CLOSURE

With wiring as the main closure problem of the 1980s, timing closure became the target of the 
next decade. Two timing closure approaches emerged in the middle of the 1990s, both founded on 
the observation that gate delay can be kept constant under load variation by sizing [2]. Applying 
this rule to the whole design flat is one of them, and it has been commercialized successfully. There 
is however a flaw in this approach: as interconnects get longer, wire resistance cannot be neglected 
anymore. Unfortunately, keeping the delay constant by sizing is a model valid only when there is 
no resistance between the driving gate and the capacitive load(s). Line buffering is a patch that 
often helps, but cannot rescue the method. The other approach is by wire planning. It allocates 
delay to global interconnect first, then assigns budgets to modules, and applies the constant delay 
method to each of these modules. The assumptions of this method are that interconnect delay is 
linear with its length, and the size of the individual models is small compared to the whole design. 
The latter is used in two ways: interconnect delay within the modules cannot be reduced by buffer 
insertion, and modules can be treated as points during the global delay allocation.

If interconnect delay is proportional to interconnect length, path delay is insensitive to 
module position as long as detours are avoided. Interconnect linear with length is achieved 
by optimal segmentation of wires with buffers. To achieve minimal delay, buffers should 
be optimized in size. This fixes line impedance, thus giving up degrees of freedom to keep 
module delay within the budget. Adapting line impedance changes the delay per unit length. 
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Fortunately, delay change by size variation around the optimum is small, and by minimizing 
area during the budget assignment, slack is created that can be used to compensate for addi-
tional interconnect delay.

What remains is to implement an algorithm for time budget assignment. This implies trading 
module size for speed: the smaller the module, the slower the signal propagation through it. If we 
know the relation between the two performance characteristics for every module, a minimization 
of the total area under timing constraints is easily formulated. Every path imposes a constraint on 
the budget assignment, and every budget assignment to a module implies a certain amount of area. 
The mathematical program obtained in this way can be efficiently solved if the trade-off function is 
convex, i.e., there is an algorithm with runtime polynomial in the size of the tableau.

There may however be exponentially many paths in a graph, and the size of the tableau could 
be exponential in the size of the graph. What is needed is a formulation that is polynomial in 
the size of the graph. Such a formulation will be presented in Section 14.3.3. Before that, we will 
review constant delay synthesis, and summarize the assumptions of wire planning. We conclude 
with a section that shows how mild violations of these assumptions can be accommodated.

14.1.3 DESIGN CLOSURE

Up until 2000, the EDA industry had concentrated on tools and techniques for achieving 
closure with respect to one target design parameter. Moreover, these parameters were mainly 
related to that part of the trajectory that synthesized mask level data from an RTL description 
or even lower levels. After wiring and timing, power is likely to become the closure problem 
of this decade.

Today’s chip synthesis requires tools and methodologies for manipulating designs at higher 
levels of abstraction to meet a large variety of performance constraints. What is needed is a 
formal system to handle trade-offs between performance characteristics over many levels of 
abstraction. Such a system will be indispensable to achieve design closure, in the sense alluded to 
at the beginning of this chapter. It should free design trajectories from the need for iterations and 
interactions to which users resort when their tools fail in one or more aspects to achieve closure, 
not knowing whether the process will converge or not, and in the latter case not even being sure 
whether a solution within specifications exists.

The approach hinges on a generalization of the concept of a performance characteristic, and 
a set of operations over such characteristics that extend and reduce performance spaces without 
ever losing candidates for optimal solutions with respect to any monotonic cost function. Of 
course, the key is the effectiveness in keeping the search space small, and the efficiency of the 
algorithms which do that.

After analyzing successes of the past in achieving closure, and pointing to the efforts of today, 
we formulate a number of observations that are the basis for the construction of such a formal 
system, an algebra for trade-offs, the topic of Section 14.4.

14.2 FLOORPLANS

Formally, a floorplan is a data structure that captures the relative positions of objects which get 
their final shape by optimizing some objective without violating constraints.

This definition does not imply any underlying hierarchical structure. It simply generalizes the 
notion of placement: the manipulation of objects with fixed geometrical features in order to allo-
cate them without any overlap in an enclosing plane region. The generalization refers to both the 
uncertainty or flexibility of the shape of some or all of the objects, and the possibility of overlap 
when these objects have a shape or area associated with them.

It is evident that hierarchical approaches that want to find regions for allocating subsets of 
modules almost always must resort to floorplanning in some way, because it is neither always 
wise nor often feasible to predetermine the shape of all modules in a hierarchy. This obvious need 
for floorplanning in approaches that want to preserve, completely or partly, properties of earlier 
partitioning, caused an almost complete identification of floorplanning with hierarchical layout 
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design. The elegant formulation of stepwise refinement for layout synthesis, where preserving the 
hierarchical structure of a functional design occurs automatically by adoptation of a structural 
restraint that expanded, ordered and labeled the original hierarchy tree, planted this idea firmly 
in the minds of back-end tool developers of the late 1980s.

This is easily understood if we see that a supermodule’s floorplan (that is the relative positions 
of its modules) was derived from:

 ◾ A preliminary shape of the supermodule
 ◾ A preliminary environment (e.g., pin positions)
 ◾ Shape information for the modules (e.g., shape constraints)
 ◾ An incidence structure (i.e., a netlist) 

and possibly
 ◾ Timing information of external signals
 ◾ Module delay information
 ◾ Path delay information.

The result was subsequently used in

 ◾ Creating a preliminary environment for the supermodule’s modules
 ◾ Assessing wire space requirements
 ◾ Estimating the delays.

All these are controlled by the (given or derived) hierarchy.
Figure 14.1 illustrates this, and essentially invites the recursive application of the central 

floorplan function. The terminology, the creation, and the use of module environments, and the 
explicit mention of hierarchy in the last item, seems to bind floorplanning exclusively to hier-
archical design. However, a flat design with a single supermodule and a single level of leaf cells 
(undivided modules) is perfectly consistent, and was always the most important practical appli-
cation of the floorplanning concept. It has rendered classical constructive placement obsolete, 
because of its flexibility and relative efficiency.

14.2.1 MODELS

In this section, we look at three classes of models for floorplans, not necessarily in chronological 
order of origin, but fairly representative of what has been conceived over three decades for cap-
turing relative positions of modules.

Relative positions
( = f loorplan)

Assessed environment
Shape estimate
Pin position estimates
Signal timing

Sub module data
Shape constraints
(at least area estimates)
Pin positions
Module delay
. . . . . .

Proximities
Connectedness
(e.g., net list)
Timing constraints
. . . . . .

Libraries
Technology
Function
Performance

Dissection

Global wiring

Timing analysis

(Re-) synthesisAssessed submodule environments

FiGURe 14.1 Floorplan design.
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14.2.1.1 GRAPHS

The oldest floorplans are graphs. Drawing a rectangle dissection already produces a graph, 
where line segments are interpreted as edges and the points where these come together (mostly 
T-junctions, sometimes crossings) as vertices. It should be noted that different dissections may 
lead to the same graph. Special properties that such a graph should have is that its edges can be 
divided into two classes, h- and v-edges, and it should possess a plane representation where these 
edges are represented by orthogonal line segments, one orientation per class. This graph is called 
the floorplan graph (Figure 14.2a).

The first formal floorplanning procedure started with a graph in which the edges represented 
desired adjacencies. The vertices represent the objects, that is modules, but in the first applica-
tions, rooms. Obviously, not every such graph can be converted into a rectangle dissection. They 
should be planar, but that is not enough. In addition, they should have a dual that has a plane 
representation with the two orthogonal sets of line segments, as described above. Graphs with 
such a dual are called Grason graphs in honor of the first scientist to publish a floorplanning pro-
cedure [3]. This pioneer also gave a characterization of Grason graphs, but efficient algorithms 
for recognizing Grason graphs and constructing an associated rectangle dissection came some 
15 years later [4–7].

On the basis of the division into h- and v-edges, we can also divide the edges of the Grason 
graph, yielding two graphs: the Grason-h-graph and the Grason-v-graph. By directing these 
graphs consistently with the relative positions of the rectangles of their vertices, we obtain the 
Grason-h-digraph (Figure 14.2b) and the Grason-v-digraph.

Equivalent to this digraph pair (or the colored Grason graph), and also to the colored floorplan 
graph (i.e., with explicitly given h- and v-edgesets) is the channel digraph (Figure 14.2d) where 
each channel (i.e., maximal line segment) has a vertex and each T-junction has an arc pointing 

(c) (d)

(a) (b)

FiGURe 14.2 Graphs: (a) Floorplan graph with cube extension, (b) Grason h-digraph, (c) polar 
h-digraph, and (d) channel digraph.
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to the “bar of the T” [8]. This graph has rarely been used though it has some characteristic prop-
erties and retains generality, where the much more popular polar digraphs are not capable of 
capturing all adjacencies.

Although known already in the first half of the last century, these polar graphs were intro-
duced [9] into layout synthesis in 1970 by Tatsuo Ohtsuki. The polar h-digraph (Figure 14.2c) 
takes the maximal horizontal line segments as its vertices, and has an arc for every rectangle. 
It does capture incidence of rectangles to line segments, but adjacency between rectangles is not 
exactly covered. Consequently, the Grason h-digraph is a subgraph of the line graph of the polar 
h-digraph.

The relations between the graphs acting as floorplans for the same rectangle dissection are 
brought together in the table of Figure 14.3, where “D” stands for dualization and “L” for forming 
the line digraph. The upward arrow toward the polar digraphs and superset signs indicate the loss 
of information when going to polar graphs. Polar graphs are nevertheless the most popular graph 
models because they can be transformed into sets of linear equalities that must be satisfied by the 
rectangle dimensions of any compatible dissection.* This forms a good starting point for sizing 
using mathematical programming.

14.2.1.2 POINT CONFIGURATIONS

Plane point sets are by now the most commonly used floorplans. If the only information that is 
used is the sequence of the points (representing the modules) after projecting them on an axis, 
then it is better to speak of a sequence pair, because all distance information is left unused.

Methods that try to embed a distance space into a euclidean space, and finally into a two-
dimensional euclidean space often use eigenvalues to find the plane with maximum spread and 
to lose as little distance information as possible when projecting on that plane. Depending on the 
distance metric certain statements about optimality can be made. However, the euclidean dis-
tance is not really a useful metric and projection may force modules apart that should and can be 
kept together. Eigenvalue methods are good mainly for recovering structure in low-dimensional 
configurations.

With the rise of annealing as a competitive method for improving complex configurations, it 
was soon considered for floorplan design [10]. The question was how to represent relative posi-
tions in such a way that total wiring length was calculated very quickly. The first answer was a 
pair of sequences, which meant that the moves were transpositions of two elements in one such 
sequence, but the points were then spaced according to their area (not the square root of area!).

* In fact, these equalities are the Kirchhoff equations from basic electric circuit theory, with e.g., the widths as current 
intensities, and the heights as voltage differences between the nodes.
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Sequence pairs obtained a more specific meaning when the two permutations of modules 
implied the following meaning for relative positions:

 1. A module mi is to the left of module mj if it precedes that module in both sequences.
 2. A module mi is above a module mj if it precedes that module in the first sequence, and if 

it follows that module in the second sequence.

Till now sequence pairs are only generated by stochastic algorithms such as annealing. 
Evaluations are time consuming, although polynomial or even linear, which causes long run-
times, because these evaluations are placed in the inner loop. This makes such algorithms 
impractical. In favor of sequence pairs, it should be noted that they can easily handle empty 
rooms without explicitly encoding them in the sequences. This is not possible, for example, 
with polar graphs!

14.2.1.3 TREES

Trees for representing rectangle configurations have become popular recently, as shown by the 
appearance of O-, bi-, star and stair trees. These representations compete in their efficiency to 
solve the packing problem for their compatible rectangle configurations. These packing prob-
lems are easy to solve for rectangles with fixed shape and orientation. An example is the labeled 
ordered tree (Figure 14.4) from which a packing can be computed in linear time [11]. Among all 
possible trees with the adequate number of vertices there is one that produces the smallest pos-
sible packing. There are however very many possible trees though their number is bounded by the 
Catalan number times the number of permutations, and this number is asymptotically smaller 
than (n!)2, the number of sequence pairs.

14.2.2 DESIGN

In many ways, one can argue that floorplan design has not been solved adequately. The various 
algorithms for generating floorplans modeled by graphs are either confined to subspaces that do 
not have to contain optimum or even near-optimum plans, or produce in essence a number of 
configurations that cannot be bounded by a polynomial in the number of modules.

14.2.2.1 ADJACENCY-BASED FLOORPLAN DESIGN

The first thoughts on floorplan design were directed toward realizing the required or desired 
adjacencies. These adjacencies form a graph, and if this graph is a Grason graph, a rectangle 

FiGURe 14.4 Labeled ordered tree.
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dissection with these adjacencies exists. Linear-time algorithms* for testing graphs for this prop-
erty exist. In general, these adjacencies do not form a Grason graph, and seldom a subgraph of a 
Grason graph. The adjacency requirements therefore have to be pruned to such a subgraph and 
subsequently extended to a suitable Grason graph, either explicitly or implicitly. A generic proce-
dure is given in Figure 14.5.

Graphs with rectangular duals (even graphs with duals, when combinatorially defined) have 
to be planar. Procedures that try to realize adjacencies therefore often start with heuristics for 
planarizing the corresponding graph. A straightforward way for doing that is by removing “weak” 
adjacencies. Removing enough edges will planarize a graph sooner or later. But adding nodes also 
can have this effect. These “phony” rectangles (because nodes are supposed to represent rect-
angles) are called wiring nodes in [12]. Other heuristics can be found, but after the first stage in 
Figure 14.5 the graph is supposed to be planar, so it has a dual and of course a plane representa-
tion. But does it have a rectangular dual? Not for a representation with complex triangles—that is, 
representations with circuits of three edges with other edges inside. If that is the case there are a 
number of options:

 ◾ Modify the representation
 ◾ Remove the complex triangles
 ◾ Triangulate avoiding complex triangles.

In [13], all options are exploited although in the reverse sequence. The remaining freedom can be 
used for assigning the corners.

The resulting graph has a rectangular dual, and therefore a corresponding rectangle dissec-
tion can be found. A constructive procedure for generating such a dissection in an efficient way 
was published in [5]. An elegant method, based on the observation that construction is in essence 
assigning T-junctions, was complete matching in [14].

A flow such as in Figure 14.5 does not consider shape requirements (not even size require-
ments) in its floorplan generation. Shape constraints are taken into account only afterward in 
a floorplan optimization step, mostly a tableau of inequalities holding the floorplan (e.g., by the 
equations derived from polar graphs) and the shape constraints. This often leads to unacceptable 

* Do not trust the textbooks on this! Consult the original articles.

Adjacencies (from
proximities, net list, ...)

Assessed
environment

Planarization

Plane triangulation
(no complex triangles)

Corner assignment

Dualization
(polar graphs)

Floorplan Rectangle
dissection

Optimization

Shape
constraints

FiGURe 14.5 Adjacency-based floorplan design.
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results, the main reason why pure adjacency-based floor-planning was never successful. The 
approach in the next section is much better equipped to take shapes into account.

14.2.2.2 PROXIMITY-BASED FLOORPLAN DESIGN

Point configurations can be generated efficiently depending on the objective. Eigenvalue 
 methods are very fast but are bound to use a euclidean metric. Besides, they usually use 
p rojection to lower the dimensionality of the solution, which may reduce distances, leav-
ing other modules unnecessarily far apart. Repeated probing based on eigenvalues makes the 
 generation slow.

Probabilistic techniques, such as annealing, genetic algorithms, and evolution, need very 
fast evaluations, which makes them resort to crude measures. For fixed rectangles, techniques 
such as in Section 14.2.1.3 can be of advantage, but they cannot handle more flexible shape 
constraints.

Currently the best results seem to be obtained with analytic optimizers of the quadratically 
convergent Newton-type, followed by legalizers. They are usually applied to flat designs, that is 
designs without any hierarchical structure, regardless of the number of objects to be treated. 
Since these analytic optimizers do not produce nonoverlapping configurations of the objects to 
be allocated, they are classical examples of floorplanners, although the literature often calls them 
(global) placement procedures, which is only justified when combined with a valid legalizer.

In any way, critical for floorplanners is the metric by which the results are evaluated. In 
Chapter 5 of EDA for IC Implementation, Circuit Design, and Process Technology, this issue will 
be addressed.

14.2.3 CONSTRAINED FLOORPLANS

Much more can be said about floorplanning, especially about the misconceptions and mis-
interpretations surrounding it. A particular topic that attracts many scientists (but few tool 
developers) is the avoidance of special constraints. Early in its history the restraint of preserv-
ing sliceability was recommended [1]. It was exactly that constraint that made floorplanning 
fit as a glove with stepwise refinement from a given hierarchy. Floorplans with that property 
could be represented as a tree, but there were other and more important properties. The fact 
that slicing structures have the minimum number of “channels” may have had its day as well 
as the conflict-free routing sequence of those channels. But the fact that many algorithms that 
are at least NP-hard for general floorplan structures become tractable for slicing structures, 
remains of paramount importance. Among these algorithms is of course the floorplan optimi-
zation problem [15]. Later it was proven by Stockmeyer [16] that even the simple special case 
of fixed module geometries and free orientations was NP-hard! Given a slicing tree and the 
more general shape constraints defined in [17] makes floorplan optimization efficiently solv-
able. Also, labeling a given tree to find the optimum slicing tree with that topology can be done 
in polynomial time [18]. And last but not the least, given a point configuration (but actually a 
pair of sequences), the optimal compatible slicing structure can be found in polynomial time. 
“Compatible” means that every slice in the floorplan corresponds exactly with a rectangular set 
in the point configuration [19].

Considering the place and the nature of floorplanning capable of handling uncertainties, flex-
ibility, and preliminary positions, there is not much sense in paying any price for also including 
nonslicing floorplan topologies [20,21].

14.3 WIREPLANS

A wireplan is an incidence structure of modules and global wires. A global wire is one that 
can be sped up by buffer insertion. The latter implies that its (minimum) length and layer are 
known. For the modules, a trade-off between speed and size should be available. If timing 
constraints are given for the inputs and outputs, time budgets can be assigned to the modules 
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so that the total size is minimal. The modules can then be designed using the concept of 
constant delay so that they do not exceed their budget.

14.3.1 CONSTANT DELAY

14.3.1.1 DELAY MODELS

In [2], the observation was made that sizing a gate proportional to its load keeps the gate delay 
constant. This confirms the delay model introduced in [22] that reads as

 
t = +g C

C
pL

in

where
p is the inherent parasitic delay
g is the computational effort

The latter depends on the function, the gate topology, and the relative dimensioning of the tran-
sistors. Both p and g are size-independent, i.e., increasing the gate size with an arbitrary factor 
does not affect these parameters. The quotient CL/Cin is called the restoring effort of the gate.

14.3.1.2 SIZING FORMULATION

Constant delay synthesis starts from a network of gates where each gate has a fixed delay assigned 
to it. In order to realize this delay, its restoring effort has to have the appropriate value. Satisfying 
these requirements for all gates in the network simultaneously leads to a set of linear equations, 
as can be seen from Figure 14.6.

Using the notations in that figure the set can be written as

(14.1)
 

c q Nf I Nf c qD
C

D= + - =or ( )  

The algebraic and numerical aspects of this set have been analyzed in [23] where a detailed deri-
vation can be found as well.

The sizing procedure is summarized in Figure 14.7. It shows that if synthesis produces, beside 
a netlist, also a vector f of reciprocal values of restoring efforts (thereby fixing the delay of each 
gate), solving set Equation 14.1 yields the vector c of input capacitances (and implicitly the gate 
sizes). Placement of these sized gates may reveal changes in the wire capacitances, and conse-
quently in the vector q. Iterating the calculation converges to a set of sizes and imposed capacitances 
consistent with the placement.
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FiGURe 14.6 Composing the load capacitance of gate i: it consists of an “imposed” capacitance qi, 
and the input capacitances in its fanout, which are proportional to the respective load capacitances.
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14.3.1.3 LIMITS

The gate model of Section 14.3.1.1, which underlies the procedure in Section 14.3.1.2, assumes 
negligible resistance between the gate and its load. For relatively short wires in the network this 
assumption is certainly acceptable. Modules of up to 100,000 gates can be safely dimensioned in 
this way. For larger modules wires may get so long that wire resistance is no longer negligible. 
In today’s chips, it is even said that interconnect dominates performance. It is not possible to 
derive an equally simple and numerically robust iteration method when resistance has to be 
accounted for. Moreover, improving speed by sizing does not work when there is line resistance. 
Line segmentation and buffering is effective up to a certain level. This limits the validity of con-
stant delay synthesis (Figure 14.8).

14.3.2 WIRE PLANNING

14.3.2.1 PROBLEM STATEMENT

Larger networks will have wires with nonnegligible wire resistance; if some wires have to connect 
widely separated points this can only be avoided in very regular designs by only-neighbor con-
nections. To extend the methodology of the previous section to these designs, such wires have to 
be treated appropriately. Not uncommon in complex designs is dividing the whole into parts that 
can be handled by the sizing procedure. Such a partitioning often comes naturally in functional 
design. The time plan can then identify connections that allow for (or have to have) delays that 
exceed a critical value. If this value is taken to be the delay of a segment in an optimally buffered 
interconnection, the thus identified interconnect can be characterized as wires with a length that 
enables delay reduction by segmentation and buffering. It has been shown that the critical value 
only depends on the chosen technology and not, for example, on the layer to which the wire is 
going to be assigned [23].*

* The delay of a segment in an optimally buffered line is indeed a process constant while the length of a segment depends 
on the layer. That length does not depend on the buffer sizes!

c = (1 – Nf D)–1q
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FiGURe 14.7 Computational procedure for sizing the gates.
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FiGURe 14.8 Wire resistance, here de-emphasized, is neglected in the model underlying the 
constant delay synthesis.
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The approach is to allocate the delay of such identified interconnect first, and then divide the 
remaining time budget over the modules. These modules do not contain such interconnect and 
can be sized with the procedure described in Section 14.3.1.2, and thus be held within the bud-
get assigned to that module. The problem to be solved is therefore: given a network of modules 
connected by global interconnect and timing requirements on paths in that network, assign size 
and delay to each module so that a network can be produced that satisfies the timing require-
ments. Of course, the relation between size and delay of each module has to be known. This 
relation will be discussed in Section 14.3.2.3. But first, possible properties of global interconnect 
will be exploited.

14.3.2.2 WIRE DELAY

Optimally segmented wires have a delay linear in the length [23]. And if wire delay is linear with 
its length, its contribution to the path delay between two points on a chip does not depend on the 
position of the modules on this path. Even stronger, if the path is detour-free, the wire delay on a 
path is fixed: it only depends on the coordinates of the two endpoints.

Of course, it may in general not be possible to realize the paths of a network in a detour-
free manner when the coordinates of these endpoints are given.* An easy net-by-net criterion 
has been formulated in [23], answering the question whether for a given endpoint placement, a 
detour-free realization exists. Even a point placement can be derived straightforwardly if that 
criterion is tested (and satisfied) for all nets. The given endpoint placement is called monotonic in 
that case. Also it has been demonstrated there that every acyclic functional network has a realiza-
tion that makes every endpoint placement monotonic. For logic networks a synthesis procedure 
has been implemented that preserves monotonicity [25].

Here we assume that an acyclic network is given with the coordinates of its endpoints and that 
it can be realized without path detours. In Section 14.3.4, we discuss what can be done if detours 
cannot be avoided and extra wire delay is incurred. The endpoints can be the location of connec-
tions to the outside, entries and exits of a supermodule containing all modules in the network, the 
positions of preplaced registers, etc.

14.3.2.3 MODULE SIZE AND DELAY

The relation between the size and delay of a module is essentially a trade-off: speeding up a 
module is usually paid for with additional area. Plotted in an area versus delay quadrant, the 
realization values will be in a region bounded below for both performance characteristics by 
a monotonically decreasing function with the points of interest on that function. In practice, 
that function can be well approximated by a convex curve. In [26] this curve is approximated 
by finding a best fit for (delay − c) (area + b) = a through the identified Pareto points among the 
design points.

14.3.3 TIME BUDGETTING

14.3.3.1 PROBLEM FORMULATION

Assume that a wireplan is given with a monotonic placement of the endpoints (in the sense 
of Section 14.3.2.2). This means that there exists a point placement for its modules enabling 
simultaneous detour-free routing of all paths between inputs and outputs. The Manhattan or 
L1 length of any input–output path (Li,o) can therefore be made equal to the L1 distance between 
the input and output terminal pins of that path. The wire delay on such a “monotonic” path 
is proportional to this length, regardless of the position of the modules on this path, because 
the delay of optimally buffered wires is linear with length, and the summed delay of the wire 
segments between the modules is the summed length of the segments multiplied by some 

* In practice, the overwhelming majority of two-point routes are without detours as experiments in [24] show: only 
1.37% were detoured!
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constant. The main conclusion is that we can calculate the wire delay of a monotonic path 
directly from the input and output pin positions. Because module positions are not needed to 
do that delay calculation, it is possible to do time budgeting even before relative module posi-
tions are known.

To obtain the total path delay, the delay of its modules has to be added to the wire delay. That 
delay depends on the implementation of the modules. Let Pjk be the set of all paths from input j to 
output k; in a given wire plan and p a single path in this set. Then the constraints imposed by the 
timing requirements read as follows:
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These constraints simply state that for each single path between two pins, the wire delay plus the 
summed module delay should not exceed a given timing constraint. Treq jk is an upper bound on 
the delay between pins j and k. DWjk is the wire delay on the path, and thus equal to L1 distance 
between both pins multiplied by a (technology/layer dependent) constant. The minimum (Pareto) 
delay of a module m is approximated by Dm(Am), a function of its size (area) Am.

The first question that can be posed is whether the wire plan can be realized in a footprint 
of a given size, while satisfying the timing requirements. It can be answered by minimizing 
total area, ΣAi, subject to the given constraints. If the obtained minimal area is larger than 
the area of the footprint, the wire plan does not fit. Otherwise, not only is the answer to the 
question obtained, but also the available “slack” area that can be used to adapt modules to the 
wire characteristics.

The method to use for solving the above optimization problem depends on the delay model, 
that is on the module delay as a function of module area. Linearizing the Dm curves, and using 
linear program solvers yields a method which can be polynomial in the size of the program, but 
the linearizations need to be sufficiently coarse. Other time budgeting techniques have appeared 
in the literature. Among the more popular techniques, we have to count the zero-slack algorithm 
of Nair et al. [27] and its variants, the knapsack of approach of Karkowski [28] and the convex 
optimization of Sapatnekar et al. [29].

This optimization problem can be solved by geometric program solvers if both object function 
and constraints have the form f t c tj i

aij( ) = å Õ . Choosing for the module delay

 D(s) = d/s + r.

achieves that. The function captures the essence of common area-delay trade-offs. D is the delay 
as a function of a size factor s, making the area of a module A(s) = a0s. For each module d, r and a0 
are given. Now, the resulting program for n modules is
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with constraints of the following form:
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A certain class of geometric programs (including the example above) has posynomial functions 
for both object function and constraints Cj > 0. By applying the transformation ti = exi, both object 
function and constraints of the posynomial formulation become convex, and can be solved in 
polynomial time. Further, general convex solvers can be used. The number of constraints depends 
on the number of paths. Unfortunately, the latter is exponential in the number of edges, resulting 
in a program of unmanageable size.
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14.3.3.2 COMPLEXITY REDUCTION

The number of constraints is determined by the total number of input–output paths. The num-
ber of terms in a constraint is the number of modules in the associated path. Note that the 
number of terms is far greater than the number of variables (module sizes), since modules may be 
on several paths. The number of terms is of interest here, and renders the straightforward formu-
lation impractical already for relatively small designs.

It is easy to see that the number of paths in a graph can be exponentional with regard to 
the number of edges, but there may be some hope that in practical designs the number of 
paths is small. This is not the case, and an approach based on considering all paths is out of 
the question.

However, all the necessary information can be captured by maintaining a number of variables 
at each node. The delay from a primary input i to an internal node n depends on the maximum 
delay of the paths from i to n. If s of those subpaths exists, s constraints appear for each subpath 
from n to an output. Since only maximum delays count, only the delay of the slowest (sub)path is 
of interest. To use that observation, we introduce at each node, for each primary input in its fanin 
cone, a variable representing the maximum module delay on the subpath from the input to this 
node. Using the fact that we have a directed, acyclic graph, this value can easily be calculated as 
the sum of the delay of this node and the maximum of the values of its predecessors.

For example, in Figure 14.9, there are two paths between I2 and O2. With wx denoting the wire 
delay of segment x, and My the module delay of module y, we find (in the straight forward formu-
lation) as constraints for these path
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Using monotonicity and linear wire delay
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we obtain the form of Section 14.3.3.1
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FiGURe 14.9 A circuit of modules.
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In the formulation of this section, introducing the variable ATn
1 to denote the maximum module 

delay from input I to node n, we find
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Although the savings in efficiency are not noticeable in such a small example, it is obvious 
that they are tremendous in large examples. In fact, the number of constraints becomes equal 
to the number of nodes plus the product of the number of edges and the number of primary 
inputs. Each node has for each primary input in the fanin cone a variable representing the 
module delay up to here. The number of these variables is bound by the number of primary 
inputs. For each edge, a constraint is generated for each of those variables at the source node, 
linking the delay of a node with the delay of its successor. For each node, an additional con-
straint representing its own delay is generated. Both kinds of constraints are simple and have 
only two terms.

This shift from paths to nodes makes the timing graph from [30] a more convenient model. 
It is in essence the line digraph of the original: the arrows become nodes, and two arrows that 
have a head–tail connection at a module node yield an arrow in the timing graph. The conversion 
is illustrated in Figure 14.10.

In this model, we can distinguish different delays between different module pin pairs and asso-
ciate them with the corresponding arrow. Figure 14.11 shows the timing graph that corresponds 
with the wire plan of Figure 14.9.

As an alternative to [30], we have for each node as many variables AT as there are primary 
inputs in its input cone. In Figure 14.11, node n3 has two variables associated, ATn

I
3
2 and ATn

I
3
2. 

In this way, all input–output delays can be taken into account. The complexity of the prob-
lem is now, as is the case with static timing analysis, polynomial in the size of the graph.
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FiGURe 14.10 The line graph of the digraph in Figure 14.9.
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The problem formulation after this complexity reduction becomes

 
minimize AM

M
å
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(14.2)
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where
PI and PO are the sets of primary inputs and outputs, respectively
E is the set of edges in the timing graph
C(m) is the set of primary inputs in the input cone of m

Moving from the straightforward path-based formulation of Section 14.3.3.1 to the nodebased 
approach of this section enables an efficient area optimization under timing constraints. But 
there are some more techniques to reduce the problem even further and save on runtime.

A simple reduction in the number of constraints is obtained by not restricting the formulation 
to variables derived from looking at maximum delays from the inputs. The first set of constraints 
in (E) contains

 
g( ) ( )m C m

m
å

constraints, γ(m) being the outdegree of node m. If the generation of constraints is done with refer-
ence to the primary outputs, the total number of constraints is determined by output cones and 
indegrees. This may yield a quite different and sometimes considerably lower number of constraints. 
Although a graph may be analyzed for this comparison in a straightforward manner, the tableau of 
constraints may be generated for both cases after which the smaller one is used. The computation 
time for generating such a tableau is small compared to the time taken by the actual computation.

A more intricate improvement in efficiency is obtained by using a technique called pruning 
[31]. It reduces problem size, degeneracy, and redundancy without sacrificing accuracy. As illus-
trated by Figure 14.12, the basic pruning operation is a graph transformation that replaces a node 

M1

M2

M3

M4

n1

I1

I2

n2

O1

O2

n3

n4

dM1
I1, O1

dM1
I1, n3

dM1
n1, O1

dM1
n1, n3

dM2
I2, n2

dM3
n2, n4

dM4
n3, O2

dM4
n4, O2

dM2
I2, n1

FiGURe 14.11 The timing graph of the digraph in Figure 14.9.



364    14.3 Wireplans

with touching arcs, and replaces it with other arcs. The variables on the arcs are such that the 
associated optimization problem is equivalent to the original one.

Generally, solver performance depends on the number of constraints, the number of variables, 
and the total number of terms in the constraints. Pruning affects these numbers. It is possible to 
assign to each node a gain, a measure of the benefit in case this node was pruned, taking these 
effects into account. If, for example, two constraints with four variables are replaced by one con-
straint with six variables, this may or may not be beneficial, depending on the used solver. This 
is reflected by a positive or negative gain. Nodes are greedily pruned until no nodes with positive 
gains exist anymore.

In [31], only the numbers of variables and constraints are taken into account, and given equal 
weights, but one can also consider the number of terms, and tailor the associated weights to the 
solver used. In the original formulation, only one AT variable resides at each node, while one for 
each primary input may also exist. Therefore, the pruning procedure has to be adjusted to calcu-
late gains for AT variables rather than nodes. In this way, an AT at node n may be pruned for pri-
mary input I1, but not for primary input I2. Another way of looking at this is that for each primary 
input, a timing graph is being constructed, consisting of the input and its fanout cone, and to 
which the original pruning procedure can be applied. Then, the resulting optimization program 
is simply the sum of object functions and the concatenation of the associated constraints. The 
pruning procedure requires only one graph traversal, and results not only in a dramatically more 
compact formulation, but also one that is numerically better conditioned.

14.3.4 ROBUSTNESS

The time budgets are based on assumptions concerning path lengths, monotonicity, and trade-
offs. In real life, however, some of these assumptions may be hard to meet later on: one may, for 
instance, sometimes need to deviate from monotonicity. Another uncertainty is the accuracy of 
the trade-off models. More generally, one can say that in a noniterative design flow, one needs a 
certain amount of “slack separation”* in order to obtain “robustness” with respect to uncertainties 
later on. Fortunately, slack on the majority of paths can be introduced at very low cost.

First, the formulation itself ensures a certain amount of slack: wire delay is calculated as the 
path length times some constant. When the modules are realized, however, they will occupy 
space, effectively reducing wire length, and thus delay. Second, the formulation ensures that all 
input–output pairs will have a critical path: a path whose delay equals the constraint. This implies 
that every module is on a critical path. It does not however imply that every wire segment is. This 
offers the possibility of detouring these wires. Third, if simple bounds on area are used, this may 
also result in slack. Finally, wire delay is calculated for ideally buffered wires. If logic is pulled out 
of the module, and spread over the wires, buffers may be replaced by “useful” gates. Therefore, 
wire delay estimation is kept conservative.

If the slack inherent in the formulation is still not sufficient, Westra et al. [26] introduces a way 
to provide additional slack at little area cost. It also has the advantage that truely critical paths 
that limit circuit performance most are revealed, making it clear where the main thrust of design 
effort should focus.

* Negative slack means constraints are violated, (positive) slack means there is room to tighten a constraint, and slack 
separation is the difference between the most critical path and other paths.
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FiGURe 14.12 The basic pruning operation with constraints for the bold path.
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14.4 A FORMAL SYSTEM FOR TRADE-OFFS

It is interesting to look back on how wiring closure was achieved, though keeping in mind that in 
those days wiring was realized in two or three layers and allocated to channels between modules. 
Critical was the generalization of placement, concerned with the arrangement of geometrically 
fixed objects without overlap in the plane (possible bounded or preferably small) into floorplan 
design, where only relative positions of objects are being fixed. Accepting slicing as a structural 
restraint then guaranteed sufficient wiring space that could be treated uniformly with the mod-
ules during sizing, and yielded a conflict-free sequence of channel routing problems. In addition, 
it rendered several optimizations tractable, including sizing which was in essence a trade-off 
between the dimensions of height and width. These dimension pairs are partially ordered by a 
dominance relation: one pair dominates another if neither of its dimensions is larger than the 
corresponding dimension of the other pair.

Similar observations can be made with respect to timing closure. The essential shift there 
is from sizing with speed as an arbitrary outcome to timing constraints with size beyond 
control. For smaller modules the concept of constant delay enabled closure. However, the 
underlying assumption that the delay of a gate can be kept constant by varying its size linearly 
with its load is only valid when resistance between the gate and its load can be neglected. 
This required planning of all wires for which resistance could not be neglected. They take a 
considerable but constant part of the timing budget leaving the remainder to be divided over 
the modules. Again this comes down to trade-offs, now between size and speed, and a cor-
responding dominance relation.

After timing, the primary concern for many of today’s SoC devices is power consumption, 
which if appropriate paradigm shifts can be found, will lead to similar trade-offs between speed 
and power. The problem however is that performance characteristics can no longer be dealt with 
by considering them in isolated pairs or triples. What is needed is a formal system that allows 
us to manipulate a design without losing potentially optimal final solutions. Such a system is the 
topic of this section, but before introducing it we observe the following.

Closure has up to now been achieved by Pareto-style trade-offs, where every realization 
implies a combination of values of performance characteristics. These values are linearly 
ordered, though the realization points are partially ordered by dominance. Only points that are 
not dominated by others can be optimal under monotone objectives. At the end, the best one 
with respect to such an objective is chosen. The two examples above enable hierarchical applica-
tion of the methods.

Today, it is of paramount importance to avoid premature commitment while being unaware 
of the consequences, because of the many relevant performance characteristics that interact with 
different levels of design. Choosing the best one at a certain level may preclude optimal ones in 
later stages. Yet, multidimensional Pareto analysis may be, and mostly is, very complex.

14.4.1 REALIZATION SPACES

A performance characteristic is a set of realization values that indicate a quality aspect of 
a product or design step. Performance characteristics that quickly come to mind in chip 
design are size, delay, and power. Considered by themselves they are of the type “the smaller 
the better.” Without loss of generality we will assume all characteristics to be of that type. 
Another property of these classic performance characteristics is that they are totally ordered.* 
That is, for every pair of realizations we can say whether one is better than the other with 
respect to such a parameter. The performance characteristics measurable in the final product 
often share this property. Although performance characteristics without that property do 
not easily come to mind, we will not adopt such a constraint for performance characteris-
tics. We assume that they are ordered, i.e., there is a reflexive, transitive, and anti-symmetric 
relation associated with any performance characteristic, but not all of its values are compa-
rable. Any trade-off between totally ordered performance characteristics may produce such 

* A performance characteristic whose ordering is total (or linear) is called a basic performance characteristic here.
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a relation. Power and delay, for example, form pairs that are so ordered by dominance: such a 
pair dominates another pair if it is at least as good in both aspects. Obviously, two pairs each 
of which improves upon the other in some aspect are not comparable. If we consider a num-
ber of realizations of a given product specification and compare them on the basis of power 
consumption and speed, we are in fact looking at a number of pairs that are partially ordered. 
We call such a partially ordered set of realizations with respect to some performance charac-
teristic a realization space, and its ordering relation dominance, i.e., a realization dominates 
another realization if it is at least as good with respect to every concerned performance char-
acteristic. Abstractly, a realization space is simply a set Q with a partial order ≺Q, and we say 
q ∈ Q dominates q′ ∈ Q whenever q Qq≺ ¢.

Let us consider all performance characteristics that might be relevant for a design. Some of 
these characteristics will be measurable in the final result. Others might be absorbed during the 
design process after they have played a role in certain stages of that process. It may even be so that 
certain characteristics have not been encountered at all upon completion because early decisions 
precluded them. That is, at each stage of the design process, realization spaces concerned with 
subsets of the performance characteristics are being manipulated and transformed into other 
realization spaces. It is important to note here that when realization spaces are combined to form 
a new space they induce a new partial ordering. In other words, the result is also a realization 
space. We no longer distinguish spaces concerned with basic performance characteristics and 
results that are associated with partial orders!

Each element (or point) in a realization space S represents a (partial) realization of a 
system. For convenience, we write them as vectors, c c c cn= ( , , , )1 2 … , where each ci is a real-
ization value of a characteristic Qi. Then a in S dominates b  in S ( )a sb≺  if a bi Qi i≺  for all i. 
Dominance still expresses the fact that the underlying realization is in no aspect worse than 
the other. It can be raised to subsets of a realization space to say that any point in the domi-
nated subset can be matched or improved upon by some point in the dominating subset: 
a subset A of a realization space dominates another subset B if for every element b BÎ  there 
is an element a AÎ  such that a cb≺ ; this is written as A B≺ . If A and B dominate each other, 
they are called Pareto-equivalent which is denoted as A ≡ B. Pareto-equivalence between 
two subsets means that neither subset contains a point that cannot be matched by a point 
in the other subset.

Realization points that are strictly dominated by other points in the same set can be removed 
without losing interesting realization options. In general, we do not want to maintain larger sets 
than necessary. This brings about the notion of minimality: a subset C of a realization space is 
Pareto-minimal if the removal of any of its elements yields a subset that is not Pareto-equivalent 
to C. That is, no element dominates another element in a Pareto-minimal subset. Or in other 
words, the Pareto-minimal subsets are anti-chains of the partial order.

Note that two Pareto-equivalent subsets need not be the same. However, when they are 
Pareto-minimal they have to be identical! More disturbing is the fact that not all realization 
spaces have a unique Pareto-equivalent subset that is Pareto-minimal. Whenever it exists for a 
realization space S we denote it by min(S). A sufficient requirement for such a Pareto-frontier is 
that every chain in the space has a smallest element (i.e., the space is well-ordered). This implies 
that every finite realization space has a Pareto-equivalent subset that is Pareto-minimal. In the 
present context, we mostly have only discrete points obtained by profiling in the realization 
spaces. From that perspective, the implication is certainly satisfactory. We assume in the rest of 
this section that all realization spaces are well-ordered.

14.4.2 OPERATORS

Of course, the unbridled combination of the performance characteristics yields immense, 
unmanageable spaces. Essential, therefore, is an efficient algorithm that takes a realization space 
and returns a so-called Pareto frontier. This potentially reduces realization spaces, and might, 
if applied intelligently, keep a design flow manageable. Other operations may be defined pro-
vided that no potentially optimal candidate realizations are lost. Operations should preferably 
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preserve minimality, i.e., applying the operation on minimized sets produces a minimal result-
ing set. However, a number of obviously necessary operations do not have that property. In such 
cases, we have to settle for optimum preserving, meaning that minimizing the result of such an 
operation on minimized operands, is the same as minimizing the result of that same operation 
on the unminimized operands.

14.4.2.1 MINIMIZATION

We denote by min(C) the unique Pareto-minimal set of a realization spaces C. It contains all 
realizations from that space that we would be interested in practice because all other realizations 
are dominated by some realization in min(C).

We call the operation to obtain that subset minimization. It is the key operation in the system. 
It would be nice if other operations when applied to minimized realization spaces would not 
require minimization to obtain the Pareto-minimal equivalent space. More precisely, if we have 
an operator Ψ that takes n spaces as its operands, we would like

(14.3) min(Ψ(C1,…, Cn)) = Ψ(min(C1),…, min(Cn)) 

We say then that Ψ preserves minimality. In that case minimization after applying operator Ψ is 
unnecessary. The result is always minimal when the operands have been minimized, which saves 
time in computing the results of the operation.

Unfortunately, some indispensable operations will not preserve minimality. That does not 
mean that it is not advantageous to apply the operation on minimized spaces. The computa-
tional effort spent on these generally smaller spaces is almost always considerably less than 
when the unreduced spaces are the arguments. If only a Pareto-equivalent subset is obtained, 
that is

(14.4)
 

Y Y( , , ) (min( ), ,min ))C C C Cn n1 1… …º  

Subsequent minimization then yields the same realization space as when the operation was 
applied to C1, …, Cn. So by minimizing operands, which are often intermediate results in the 
design process, before applying Ψ, no optimal realizations are lost. Every practical operator 
should support minimization in that sense, for otherwise all realizations have to be analyzed to 
identify the optimal ones.

If Pareto-equivalence is a congruence with respect to the operator Ψ, that is;
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then the operation necessarily supports minimization. This means that to prove that minimiza-
tion support it suffices to show that the operator preserves dominance:
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14.4.2.2 FREE PRODUCT

When designing subsystems independently with their own realization spaces and tradeoffs, they 
have to be put together later, which means that their realization spaces have to be combined. The 
corresponding operator is called free product.

Let C1 and C2 be realization spaces each with their own performance characteristics. The free 
product C1⋅C2 consists of the points c c1 2× , the concatenation of the “vectors” of each point c C1 1Î  
and each point c C2 2Î

Obviously, not only is Pareto-equivalence a congruence with respect to free product, the 
operator even preserves minimality, which was to be expected when its purpose is considered.
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14.4.2.3 UNION

To enable a choice between realizations resulting from different design paths, the operator union 
is introduced. It can be thought of as the realization points of both spaces being brought into one 
and the same space spanned by the same set of performance characteristics as the two individual 
spaces. The notation is C1 ⊔ C2.

The operator does not preserve minimality. Obviously, a design trajectory may produce a real-
ization that is dominated by one resulting from the other design path. So, minimization may 
result in a subset strictly included in its operand. But minimization is supported, because it can 
be seen as easily that C1 ⊔ C2 ≡ min (C1) ⊔ min (C2). It is even true that Pareto-equivalence is a 
congruence with respect to the union operator.

14.4.2.4 CONSTRAINTS

When we have a set of realizations, some of which are invalid because of additional constraints, 
then we can apply a constraint to filter out only those realizations that satisfy the constraint. Such 
constraints can be formally expressed as a set D of acceptable realizations or equivalently as a 
proposition on the realization space, identifying the acceptable realizations. Application of the 
constraint D to a realization space C leaves those realizations of C satisfying the constraint. We 
denote the new space as C ⊓ D.

When defined in that general way, constraints present a problem. It may easily happen that a 
constraint filters out a realization that dominated one that was not filtered out. Minimization can-
not be supported in this way, because that operator may have removed such dominated realization 
points, while they may be part of the minimized result of the constraint applied to the unmini-
mized space. The constraints in our algebra—we will call them safe constraints—will never have 
a dominating realization passing while the dominating realization fails the test. More precisely, a 
constraint D is called a safe constraint when for every a and b with a b≺ , b DÎ  implies that a DÎ . 
The notation for applying a safe constraint D on a realization space C is C �̆ D.

14.4.2.5 PROJECTION

In certain design stages, certain performance characteristics may no longer be relevant for future 
decisions. Projection can then be used to remove such a dimension of the realization space. 
In general, minimality is not preserved by projection, but dominance is. Therefore congruence 
and hence minimization support follow.

14.4.3 COST FUNCTIONS

The selection of a final realization point often happens with a cost function. Such a cost function 
should be one which never selects a point that is dominated under the space’s partial order by 
another point. If that were possible, the whole formal system constructed here would be point-
less, because the purpose was to manipulate and form realization spaces without losing any can-
didates for optimal realizations. In the process, strictly dominated realizations are being removed 
when reducing a space to the Pareto frontier. To ensure that cost functions are in concord with 
the motivation for building this formal system, we require monotonicity, i.e., whenever c c1 2≺  the 
cost function f has to satisfy f c f c( ) ( )1 2£ .

Thus defined, it requires cost functions to assign real numbers to every point in the final 
realization space. This is perfectly in order when the real objective is like that, as for example 
the chip size (or area). Often the selection is not so unambiguous, and designers resort to 
weighted combinations. Setting these weights is more often than not a trial-and-error affair. 
Yet the outcome may depend heavily on the exact setting. In essence, it is a consequence of 
restricting the range of cost functions to a basic performance characteristic. This is not neces-
sary. If we allow the range to be any performance characteristic, that is any partially ordered 
set, then a simple adaptation of the definition of monotonicity preserves the essential property 
cost functions should have.
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Monotone functions from a realization space C into a performance characteristic are then 
defined to be functions satisfying
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Thus defined they still can only select realizations in the Pareto-minimal set of the space as opti-
mal. Moreover, any member of that set can be selected by such a function. That is, for every point 
in the Pareto-minimal set of a realization space, there is a monotone cost function that will select 
that point as minimal. This means that further reduction of spaces is not possible without giving 
up the guarantee that no potentially optimal candidate realizations are lost, if the cost function is 
not known. With the generalized cost function however a partial selection of candidates is pos-
sible, leaving fewer realizations to consider in subsequent steps.

14.4.4 CONCLUDING REMARKS

This section describes the algebra (C, min, •, ⊔, ↓, �̆), where C is the set of all possible realization 
spaces that can be encountered during the design of a chip. The algebra was introduced in [32] 
where it mainly served as a formal system for runtime reconfiguration. The manipulations and 
calculations then have to take place on mostly resource-constrained devices. Here it is used for 
design-time exploration with a wide choice in computer power and lesser constraints on com-
pute time. Not surprisingly, different algorithms may be chosen in these two application areas.

In the latter application, the algebra is meant for supporting the design while it forms realiza-
tion spaces by combining subsystems and their realization spaces. The number of realizations, 
also when restricted to Pareto-minimal sets, can grow very fast, and it is therefore crucial to 
keep the space sizes small. Reducing them to their Pareto-minimal spaces is the most important 
means here, but pruning the space may still be necessary. The challenge is then to find the best 
approximation of realization space by one with a limited number of points [33,34].

To date the most efficient minimization algorithm has time complexity O(N (log N)d) [35], 
where d is the number of dimensions of the realization space and N the number of realizations. 
The number of points for which the algorithm is faster than simpler algorithms such as the simple 
cull in [36], having a complexity of O(N2), is quite high. This makes the former algorithm the 
choice only for large spaces, while simple cull and hybrid algorithms [36] are recommendable for 
smaller numbers of realizations. A similar effect is observed for data structures for storing sets 
of realizations. The quad-tree data structure [37,38] is shown to be more efficient than linear lists 
in [38], but here also, the gain is achieved for large numbers of data points. Yukish [36] shows that 
when keeping points lexicographically sorted, normalized linear tables can be advantageous for 
computing the union and intersection of sets.
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Abstract

After a few decades of research and experimentation, register-transfer dialects of two lan-
guages—SystemVerilog and VHDL—have emerged as the industry standard starting point 
for automatic large-scale digital integrated circuit synthesis. Writing register-transfer-level 
descriptions of hardware designs remains a largely human process, and hence the clarity, 
precision, and ease with which such descriptions can be coded correctly have a profound 
impact on the quality of the final product and the speed with which the design can be created.

While the efficiency of a design (e.g., the speed at which it can run or the power it con-
sumes) is obviously important, its correctness is paramount, consuming the majority of the 
time (and hence money) spent during the design process. In response to this challenge, a 
number of so-called verification languages have arisen. These have been designed to assist 
in a simulation-based or formal verification process by providing mechanisms for checking 
temporal properties, generating pseudorandom test cases, and for checking how much of a 
design’s behavior has been exercised by the test cases.

Through examples and discussion, this chapter describes the two main design lan-
guages—VHDL and SystemVerilog—and SystemC, a language currently used to build large 
simulation models.

15.1 INTRODUCTION

Hardware description languages (HDLs) have been the preferred way to design an integrated 
circuit since about the mid-1990s, when they supplanted graphical schematic capture pro-
grams. A typical design methodology in 2014 starts with back-of-the-envelope calculations 
that lead to a rough architectural design. This design is refined and tested for functional cor-
rectness by coding a simulator for it in a software language such as C or C++. Once this high-
level model is satisfactory, it is passed to designers who implement it in a register-transfer-level 
(RTL) dialect of VHDL or SystemVerilog—the two industry-dominant HDLs. This new model 
is then simulated to verify that it behaves equivalently to the high-level reference model and 
then fed to a logic synthesis system such as Synopsys’ Design Compiler, which translates the 
RTL into an efficient gate-level netlist. Finally, this netlist is given to an automated place-and-
route system that ultimately generates the polygons that will become wires and transistors on 
the chip.

None of these steps is at all simple. Translating a C model of a system into RTL involves adding 
many details, ranging from protocols to cycle-level scheduling. Despite many years of research, 
this step remains stubbornly manual, although automatic translation has become feasible in cer-
tain narrow domains, such as signal processing. Synthesizing and optimizing a netlist from an 
RTL dialect of an HDL has been automated, but is the result of many years of university and 
industrial research, as are all the automated steps after it.

15.2 HISTORY

Many credit Reed [46] with the first HDL. His formalism, simply a list of Boolean functions that 
define the inputs to a block of f lip-flops driven by a single clock (i.e., a synchronous digital 
system), captures the essence of an HDL: a formal method for modeling systems at a higher level 
of abstraction. Reed’s formalism does not mention the wires and vacuum tubes that would actu-
ally implement his systems, yet it makes clear how these components should be assembled.

In the six decades since Reed, both the number and the need for HDLs have increased. 
In  1973, Omohundro and Tracey [41] could list nine languages and dozens more have been 
proposed since.

The main focus of HDLs has shifted as the cost of digital hardware has dropped. In the 1950s and 
1960s, the cost of digital hardware remained high and was used primarily for general-purpose 
computers. Chu’s CDL [14] is representative of languages of this era: it uses a programming language–
like syntax, has a heavy bias toward processor design, and includes the notions of arithmetic, 
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registers and register transfer, conditionals, concurrency, and even microprograms. Bell and Newell’s 
influential ISP (described in their 1971 book [6]) was also biased toward processor design.

The 1970s saw the rise of many more design languages [11,13]. One of the more successful was 
ISP. Developed by Charles Rose and his student Paul Drongowski at Case Western Reserve in 
1975–1976, ISP was based on Bell and Newell’s ISP and used in a design environment for multi-
processor systems called N.mPc [44]. Commercialized in 1980 (and since owned by a variety of 
companies), it enjoyed some success, but starting in 1985, the Verilog simulator (and accompany-
ing language) began to dominate the market.

The 1980s brought Verilog and VHDL, whose descendants remain the dominant HDLs to this 
day (2014). Initially successful because of its superior gate-level simulation speed, Verilog started 
life in 1984 as a proprietary language in a commercial product, while VHDL, the very high-speed 
integrated circuit (VHSIC) HDL, was designed at the behest of the US Department of Defense as 
a unifying representation for electronic design [18].

While the 1980s was the decade of widespread commercial adoption of HDLs for simula-
tion, the 1990s brought them an additional role as input languages for logic synthesis. While 
the idea of automatically synthesizing logic from an HDL dates back to the 1960s, it was only 
the development of effective multilevel logic synthesis algorithms in the 1980s [12] that made 
HDLs practical for specifying hardware, much as compilers for software require optimiza-
tion to produce competitive results. Synopsys was one of the first to release a commercially 
successful logic synthesis system that could generate efficient hardware from RTL Verilog 
specifications. By the end of the 1990s, parts of virtually every large integrated circuit were 
designed this way.

HDLs continue to be important for providing inputs for synthesis and modeling for simu-
lation, but their importance as aids to validation continues to grow. Long an important part 
of the design process, the use of simulation to check the correctness of a design is now abso-
lutely critical, and languages have evolved to better perform simulation quickly, correctly, and 
judiciously.

Language features in SystemVerilog now directly support an approach to verification that 
is grown in popularity: it is now common to automatically generate biased random test cases 
(e.g.,  input sequences in which a system’s reset signal is asserted very rarely), check how thor-
oughly these cases exercise the design (e.g., by checking whether certain values or transitions 
have been overlooked), and by checking whether invariants have been violated during the simula-
tion process (e.g., making sure that each request is followed by an acknowledgment).

15.3 VERIFICATION

Verification—making sure that C and RTL models are functionally correct—is the most serious, 
time-consuming challenge in digital hardware design. At the moment, simulation remains the 
dominant way of raising confidence in the correctness of these models, but has many drawbacks. 
One of the more serious is the need for simulation to be driven by appropriate test cases. These 
need to exercise the design, preferably the difficult cases that expose bugs, and be both com-
prehensive and relatively short since simulation takes time. The so-called formal verifica-
tion techniques, which amount to efficient exhaustive simulation, have been gaining ground, but 
 suffer from capacity problems.

Knowing when simulation has exposed a bug and estimating how complete a set of test cases 
is are the two other major issues in a simulation-based functional verification methodology. 
SystemVerilog has recently adopted a wide variety of constructs that can generate biased, con-
strained random test cases, check temporal properties, and check functional coverage. VHDL 
has also adopted many verification-centered constructs, but currently lags behind SystemVerilog.

Simulation applies a stimulus to a model of a design to predict the behavior of the fabricated 
system. Naturally, there is a trade-off between highly detailed models that can predict many attri-
butes, say, logical values, timing, and power consumption, and simplified models that can only 
predict logical behavior but execute much faster.

Because the size of the typical design has grown exponentially over time, functional simula-
tion, which only predicts the logical behavior of a synchronous circuit at clock-cycle boundaries, 
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has become the preferred form of simulation because of its superior speed. Of course, timing still 
matters, but verifying whether a design meets timing is more frequently checked using a static 
timing analyzer, which is far quicker and more reliable than simulation-driven timing analysis, 
anyway. Furthermore, designers have shied away from more timing-sensitive circuitry such as 
transparent latches and other “asynchronous” design styles because they require more detailed 
simulation models and are therefore more costly to validate. Finally, checking a design’s power 
consumption usually demands simulation. While a detailed timing simulation of a design should 
provide a very precise estimate of power consumption (e.g., by accounting for glitches), it is faster 
and nearly as effective to run a functional simulation to estimate activity factors. Even static 
power consumption (e.g., leakage) can be affected by state, something conveniently analyzed by 
functional simulation.

Simulation-based validation raises three important questions: what the stimulus should be, 
whether it exposes any design errors, and whether the stimulus is long and varied enough to have 
exposed “all” design errors. Historically, these three questions have been answered manually, 
that is, by having a test engineer write test cases, check the results of simulation, and make some 
informed guesses about how comprehensive the test suite actually is.

A manual approach has many shortcomings. Writing test cases is tedious, and the number 
that needs to be written for “complete” verification grows faster than the size of the system 
description. Manually checking the output of simulation is similarly tedious and subtle errors 
can be easily overlooked. Finally, it is difficult to judge quantitatively how much of a design has 
really been tested.

More automated methodologies, and ultimately languages, have evolved to address some of 
these challenges, but the verification problem remains one of the most difficult. Biased random 
test case generation is now typical, joining manual test case generation as a standard practice in 
verification. Designer-inserted assertions, long standard practice for software development, have 
also become standard for hardware, although the sort of assertions needed in hardware are more 
complicated than the typical “the argument must be nonzero” sort of checking that works well 
in software. Finally, automated “coverage” checking, which attempts to quantify how much of a 
design’s behavior has been exercised in simulation, has also become standard.

All of these techniques, while an improvement, are not a panacea. While biased random test 
case generation can quickly generate many interesting tests, it provides no guarantees of com-
pleteness, meaning bugs may go unnoticed. Because they must often check a temporal property 
(e.g., “acknowledge arrives within three cycles of every request”), good assertions in hardware 
systems are much more difficult to write than those for software (which most often check data 
structure consistency), and again, there is no way to know when enough assertions have been 
added, and it is possible that the assertions themselves have flaws (e.g., they let bugs by). Finally, 
test cases that achieve 100% coverage can also let bugs by because the criterion for coverage is 
necessarily weak. Coverage typically checks what states particular variables have been in, but it 
cannot consider all combinations because their number grows exponentially quickly with design 
size. As a result, certain important combinations may not be checked even though coverage 
checks report “complete coverage”.

While the utility of biased random test generation and coverage metrics is mostly limited to 
simulation, assertion specification techniques are useful for, and have been heavily influenced 
by, formal verification. Pure formal techniques consider all the possible behaviors by definition 
and therefore do not require explicit test cases (implicitly, they consider all possible test cases) 
and also do not need to consider coverage. But knowing what behavior is unwanted is crucial for 
formal techniques, whose purpose is to either expose unwanted behavior or formally prove it 
cannot occur.

In the early 2000s, a sort of renaissance occurred in verification languages. Temporal logics, 
specifically linear temporal logic (LTL) and computation tree logic (CTL), form the mathemati-
cal basis for most assertion checking, but their traditional mathematical syntax is awkward for 
hardware designers. Instead, a number of more traditional computer languages, which combine 
a more human-readable syntax for the bare logic with a lot of “syntactic sugar” for more natu-
rally expressing common properties, were proposed for expressing properties in these logics. Two 
industrial efforts from Intel (ForSpec) and IBM (Sugar) emerged as the most complete and were 
later adopted in part by SystemVerilog and VHDL.
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Meanwhile, some EDA companies were producing languages designed for writing test benches 
and checking simulation coverage. Vera, originally designed by Systems Science and since 
acquired by Synopsys, and e, designed and sold by Verisity, were the two most commercially 
successful. Bergeron [7] discusses how to use the two languages.

All four of these languages underwent extensive crossbreeding. Vera was made public, was 
rechristened OpenVera, had Intel’s ForSpec assertions grafted onto it, and was added almost in its 
entirety to SystemVerilog. Sugar, meanwhile, has been adopted by the Accellera standards commit-
tee, rechristened the Property Specification Language (PSL), and also added in part to SystemVerilog 
and VHDL. Verisity’s e language has changed the least, but was eventually made public.

15.3.1 PSL

The property specification language (PSL) evolved from the proprietary Sugar language developed 
at IBM and has since been adopted as an IEEE standard [27] and grafted onto both SystemVerilog 
and VHDL.

Beer et al. [5] provide a nice introduction to an earlier version of the language, which they 
explain evolved over many years. It has been used within IBM in the RuleBase formal verifica-
tion system since 1994 and was also pressed into service as a checker generator for simulators in 
1997. Accellera, an EDA standards group, adopted it as their formal property language in 2002. 
Cohen et al. [17] provides instruction on the language.

PSL is based on CTL [15], a powerful but rather cryptic temporal logic for specifying proper-
ties of finite-state systems. It is able to specify both safety properties (“this bad thing will never 
happen”) as well as liveness properties (“this good thing will eventually happen”). Liveness 
properties can only be checked formally because it makes a statement about all the possible 
behaviors of a system, while safety properties can also be tested in simulation. LTL, a subset 
of CTL, expresses only safety properties and can therefore be turned into checking automata 
meant to be run in concert with a simulation to look for unwanted behavior. PSL carefully 
defines which subsets of its properties are purely LTL and are therefore candidates for use in 
simulation-based checking.

PSL is divided into four layers. The lowest, Boolean, consists of instantaneous Boolean expres-
sions on signals in the design under test. The syntax of this layer follows that of the HDL to which 
PSL is being applied and can be Verilog, SystemVerilog, VHDL, or others. For example, a[0:3] & 
b[0:3] and a(0 to 3) and b(0 to 3) represent the bitwise and of the four most significant 
bits of vectors a and b in the Verilog and VHDL flavors, respectively.

The second layer, temporal, is where PSL gets interesting. It allows a designer to state 
properties that hold across multiple clock cycles. The always operator, which states that a 
Boolean expression holds in every clock cycle, is one of the most basic. For example, always 
!(ena & enb) states that the signals ena and enb will never be true simultaneously in 
any clock cycle.

More interesting are operators that specify delays. The next operator is the simplest. The 
property always(req -> next ack) states that in every cycle that the req signal is true, the 
ack signal is true in the next cycle. The -> symbol denotes implication, that is, if the expression to 
the left is true, that on the right must also be true. The next operator can also take an argument, 
for example, always req -> next[2] ack means that ack must be true two cycles after 
each cycle in which req is true.

PSL provides an extended form of regular expressions convenient for specifying more 
complex behaviors. Although it would be possible to write always (req -> next (ack -> 
next !cancel)) to indicate that ack must be true after any cycle in which req is true, and 
cancel must be false in the cycle after that, it is much easier to instead write always {req; 
ack; !cancel}. This illustrates a basic principle of PSL: most operators are actually just 
“syntactic sugar”; the set of fundamental operators is quite small.

PSL draws a clear distinction between “weak” operators, which can be checked in simulation 
(i.e., safety properties) and “strong” operators, which express liveness properties and can only be 
checked formally. Strong operators are marked with a trailing exclamation point (!), and some 
operators come in both strong and weak varieties.
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The eventually! operator illustrates the meaning of strong operators. The property 
always (req -> eventually! ack) states that after req is asserted, ack will always 
be asserted eventually. This is not something that can be checked in simulation: if a particular 
simulation saw req but did not see ack, it would be incorrect to report that this property failed 
because running that particular simulation longer might have produced ack. This is the fun-
damental difference between safety and liveness properties: safety states something bad never 
happens; liveness states something good eventually happens.

Another subtlety is that it is possible to express properties in which times moves backward 
through a property. A simple example is always ((a && next[3] (b)) -> c, which states 
that when a is true and b is true three clock cycles later, c is true in the first cycle, that is, when a 
was true. While it is possible to check this in simulation (for each cycle in which a is true, remem-
ber whether c is true and look three clock cycles later for b), it is more difficult to build automata 
that check such properties.

The third layer of PSL, the verification layer, instructs a verification tool what tests to perform on 
a particular design. It amounts to a binding between properties defined with expressions from the 
Boolean and temporal layer, and modules in the design under test. The following simple example

vunit ex1a(top_block.i1.i2) {
 A1: assert never (ena && enb);
}

declares a “verification unit” called ex1a, binds it to the instance named top _ block.i1.i2 in 
the design under test, and declares (the assertion named A1) that the signals ena and enb in that 
instance are never true simultaneously.

In addition to assert, verification units may also include assume directives, which state the 
tool may assume a given property; assume _ guarantee, which both assumes and tests a par-
ticular property; restrict, which constrains the tool to only consider inputs that have a given 
property; cover, which asks the tool to check whether a certain property was ever observed; and 
fairness, which instructs the tool to only consider paths in which the given property occurs 
infinitely often, for example, only when the system does not wait indefinitely.

The fourth, modeling layer of PSL essentially allows Verilog, SystemVerilog, VHDL, or other 
code to be included inline in a PSL specification. The intention here is to allow addition details 
about the system under test to be included in the PSL source file.

15.3.2 The “e” LANGUAGE

The e language was developed by Verisity as part of its Specman product as a tool for efficiently 
writing test benches. In this sense, it is quite different than PSL, which acts as an add-on to exist-
ing languages such as SystemVerilog or VHDL. It is an imperative object-oriented language with 
concurrency, the ability to generate constrained random values, mechanisms for checking func-
tional (variable value) coverage, and a way to check temporal properties (assertions). Books on e 
include Palnitkar [43] and Iman and Joshi [32].

The syntax of e is a little unusual. First, all code must be enclosed in <’ and ’> symbols, oth-
erwise it is considered a comment. Unlike C, e declarations are written “name: type.” The syntax 
for fields in compound types (e.g., structs) includes particles such as % and !, which indicate when 
a field is to be driven on the device under test and not randomly computed, respectively.

Figure 15.1 shows a fragment of an e program that defines an abstract test strategy for a very 
simple microprocessor, specifically how to generate instructions for it. It illustrates the type sys-
tem of the language as well as the utility of constraints. It defines two enumerated scalar types, 
opcode and reg, and defines the width of each. The struct instr defines a new compound 
type (instr) that represents a single instructions. First is the op field, which is one of the opcodes 
defined earlier. They, the op1 and the op2 fields, are marked with %, indicating that they should 
be considered by the pack built-in procedure, which marshals data to send to the simulation.

The kind field is also a enumerated scalar, but is used here as a type tag. It is not marked with %, 
which means that its value will not be included when the structure is packed and sent to the simu-
lation. The two when directives define two subtypes, that is, “reg instr” and “imm instr.” 
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Such subtypes are similar to derived classes in object-oriented programming languages. Here, the 
value of the kind field, which can be either imm or reg, determines the subtype.

The two keep directives impose constraints between the kind field and the opcode, ensuring, 
for example, that ADD and SUB instructions are of the reg type. Although these constraints are 
simple, e is able to impose much more complicated constraints on the values of fields in a struct.

The final when directive further constrains the JMP and CALL instructions, that is, by 
restricting what values the op2 field may take for these instructions.

The extend sys directive adds a field named instrs to the sys built-in structure, which is 
the basic environment. The leading ! makes the system create an empty list of instructions, which 
will be filled in later.

Figure 15.2 illustrates how the definition of Figure 15.1 can be used to generate tests that 
exercise the ADD and ADDI instructions. It first adds constraints to the instr class (the tem-
plate for instructions defined in Figure 15.1) that restrict the opcodes to either ADD or ADDI, 
then imposes a constraint on the top level (sys) that makes it generate exactly 10 instructions. 
Running the source code of Figures 15.1 and 15.2 together makes the system generate a sequence 
of 10 pseudorandom instructions.

Instruction encoding for a very simple processor
<’
type opcode : [ ADD, SUB, ADDI, JMP, CALL ] (bits: 4);
type reg : [ REG0, REG1, REG2, REG3 ] (bits: 2);

struct instr {
 %op : opcode; // Four-bit opcode
 %op1 : reg; // Two-bit operand
 kind : [imm, reg]; // Whether instruction is immediate or register

 when reg instr { %op2 : reg; } // Second operand register
 when imm instr { %op2 : byte; } // Second operand and immediate byte

 // Constrain certain instructions to be register, immediate
 keep op in [ ADD, SUB ] => kind == reg;
 keep op in [ ADDI, JMP, CALL ] => kind == imm;

 // Constrain the second operand for JMP and CALL instructions
 when imm instr {
  keep opcode in [JMP, CALL] => op2 < 16;
 }
};

extend sys {
 !instrs : list of instr; // Add a non-generated field called instrs
};
'>

FiGURe 15.1 e code defining instruction encoding for a simple 8-bit microprocessor. An example 
from the Specman tutorial.

<'
extend instr {
 keep opcode in [ADD, ADDI];
 keep op1 == REG0;
 when reg instr { keep op2 == REG1; }
 when imm instr { keep op2 == 0x3; }
};

extend sys {
 keep instrs.size() == 10;
};
'>

FiGURe 15.2 e code that uses the instruction encoding of Figure 15.1 to randomly generate 
10 instructions. An example from the Specman tutorial.
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15.4 SYSTEMVERILOG

SystemVerilog began as the Verilog HDL [1,28,29], designed and implemented by Phil 
Moorby at Gateway Design Automation in 1983–1984 (see Moorby’s history of the language 
[11] for more details). The Verilog product was very successful, buoyed largely by the speed 
of its “XL” gate-level simulation algorithm. Cadence bought Gateway in 1989 and largely 
because of pressure from the competing, open VHDL language, made the language public 
in 1990. Open Verilog International was formed shortly thereafter to maintain and promote 
the standard, and IEEE adopted it in 1995 and then ANSI in 1996. Extensions were added in 
2001 and 2005, leading to new standards. Meanwhile, Superlog, a Verilog dialect extended 
with software-like constructs, was released in 1999, grew in popularity, and was ultimately 
donated to the Verilog standardization body in 2002. In the same timeframe, the Vera lan-
guage began life around 1995 as a commercial language for describing Verilog test benches. 
In 1998, Synopsys bought its creator, System Science, Inc., and opened the language to the 
public in 2001 as OpenVera. In 2005, Verilog, Superlog, and OpenVera were merged to pro-
duce the SystemVerilog standard. As of this writing (2014), SystemVerilog is a superset of 
“classical” Verilog (although it retains its own IEEE standard number 1800) and seems poised 
to supplant Verilog.

The first Verilog simulator was event driven and efficient for gate-level circuits, the fashion 
of the time, but the opening of the Verilog language in the early 1990s paved the way for other 
companies to develop more efficient compiled simulators, which traded upfront compilation time 
for higher simulation speed.

Like tree rings, the syntax and semantics of SystemVerilog language now embodies a history 
of simulation technologies and design methodologies. At its conception, gate- and switch-level 
simulations were in fashion, and Verilog contains extensive support for these now rarely used 
modeling styles. Moorby had worked with others on this problem before designing Verilog [22]. 
Since then, it has acquired constructs from object-oriented software languages, biased random 
test generation techniques, and test bench coverage tools.

Like many HDLs, Verilog supports hierarchy for structural modeling, but was originally 
designed assuming modules would have at most tens of connections. Hundreds or thousands of 
connections are now common, and Verilog-2001 [29] added a more succinct connection syntax 
to address this problem.

Procedural or behavioral modeling, once intended mainly for specifying test benches, was 
pressed into service first for RTL specifications and later for the so-called behavioral specifica-
tions. Again, Verilog-2001 added some facilities to enable this (e.g., always @* to simplify the 
procedural modeling of combinational logic) and SystemVerilog has added even more support 
explicitly for RTL modeling, for example, always _ comb and always _ ff.

The syntax and semantics of Verilog have always been a compromise between modeling 
clarity and simulation efficiency. A “reg” in Verilog, which used to be the main storage class 
for behavioral modeling, is exactly a shared variable. This means it simulates very efficiently 
(e.g., writing to a reg is just an assignment to memory), but also means that it can be misused 
(e.g., when written to by two concurrently running processes) and misinterpreted (e.g., its name 
suggests a memory element such as a flip-flop, but it often represents purely combinational 
logic). In SystemVerilog, the use of “reg” is deprecated in favor of the more flexible “logic” 
type, which subsumes both “reg” and “wire” types, allowing the compiler to choose the most 
appropriate implementation.

Thomas and Moorby [52] has long been the main text on the Verilog language (Moorby was the 
main designer). Unlike many standards documents, the Verilog standard [28] is quite readable, 
since it was adopted from the original Verilog simulator user manual, a tradition that has been 
carried over to the SystemVerilog standard [31]. Other references include Palnitkar [42] for an 
overall description of the language, and Mittra [39] and Sutherland [50] for the programming lan-
guage interface (PLI). Smith [48] compares Verilog and VHDL. French et al. [23] present a clever 
way of compiling Verilog simulations and also discuss more traditional ways. Sutherland et al. [51] 
describe SystemVerilog relative to Verilog; Spear and Tumbush [49] focus on SystemVerilog’s 
verification features.
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15.4.1 CODING IN SYSTEMVERILOG

A SystemVerilog model is a list of modules. Each module has a name; an interface consisting of 
named, typed, directional ports; a list of local “variables”; and a body that can contain instances of 
primitive gates such as ANDs and ORs, instances of other modules (allowing hierarchical struc-
tural modeling), continuous assignment statements, which can be used to model combinational 
datapaths, and concurrent processes written in an imperative style.

Figure 15.3 illustrates some of SystemVerilog’s modeling styles. Shown are various ways to 
model a two-input multiplexer: primitive gates in Figure 15.3a, a user-defined primitive—a truth 
table—in Figure 15.3b, a continuous assignment in Figure 15.3c, and a concurrent process in 
Figure 15.3d. All of these models exhibit roughly the same behavior (minor differences occur 
when some inputs are undefined) and can be mixed freely within a design.

module mux_struct(
 output logic f,
 input logic a, b, sel);

 logic nsel, f1, f2;

 and g1(f1, a, nsel),
 g2(f2, b, sel);
 or g3(f, f1, f2);
 not g4(nsel, sel);

endmodule
(a)

primitive mux_prim(
 output logic f,
 input logic a, b, sel);

table
 1?0 : 1;
 0?0 : 0;
 ?11 : 1;
 ?01 : 0;
 11? : 1;
 00? : 0;
endtable

endprimitive
(b)

module mux_cont(
 output logic f,
 input logic a, b, sel);

 assign f = sel ? b : a;
endmodule
(c)

module mux_imp(
 output logic f,
 input logic a, b, sel);

 always_comb
  if (sel) f = b;
  else f = a;

endmodule
(d)

module testbench;
 logic a, b, sel, f;

 mux dut(f, a, b, sel);

 initial begin
  $display(“a,b,sel -> f”);
  $monitor($time,,
 “%b%b%b -> ”,
 a, b, sel, f);
  a = 0; b = 0; sel = 0;
  #10 a = 1;
  #10 sel = 1;
  #10 b = 1;
  #10 a = 0;
  #10 sel = 0;
  #10 b = 0;
 end
endmodule
(e)

a,b,sel -> f
0 000 -> 0

10 100 -> 1
20 101 -> 0
30 111 -> 1
40 011 -> 1
50 010 -> 0
60 000 -> 0
(f )

FiGURe 15.3 SystemVerilog examples. (a) A two-input multiplexer described with a structural 
model. (b) A user-defined primitive for the multiplexer. (c) The multiplexer described using a continuous 
assignment. (d) The multiplexer described with imperative code. (e) A test bench for the multiplexer. 
(f) The output from the test bench.
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One of SystemVerilog’s strengths remains its ability to represent test benches along with the 
model being tested. Figure 15.3e illustrates a test bench for this simple mux, which applies a 
sequence of inputs over time and prints a report of the observed behavior. Figure 15.3f shows its 
output.

SystemVerilog modules communicate through logic variables (Figure 15.4), which can be set 
both continually (e.g., by an assign) and imperatively through assignment statements in initial 
and the various always blocks. (These replace Verilog’s more error-prone reg and net types, which 
had to be used for imperative and continuous assignments, respectively.)

Figure 15.5 illustrates the syntax for defining and instantiating models. Each module has a 
name and a list of named ports, each of which has a direction and a width. Instantiating such a 
module consists of giving the instance a name and listing the signals or expressions to which it is 
connected. Connections can be made positionally or by port name, the latter being preferred for 
modules with many (perhaps 10 or more) connections.

Continuous assignments are a simple way to model both Boolean and arithmetic datapaths. 
A  continuous assignment uses SystemVerilog’s comprehensive expression syntax to define a 
function to be computed and its semantics are such that the value of the expression on the right 
of a continuous expression is always copied to the net on the left (regs are not allowed on the left 
of a continuous assignment). Practically, SystemVerilog simulators implement this by recomput-
ing the expression on the right whenever any variable it references changes. Figure 15.6 illustrates 
some continuous assignments.

logic a; // Wire: four-valued (0,1,X,Z)
bit b; // Bit: two-valued (0,1)
byte by; // Eight-bit, two-valued
int i; // Thirty-two bit, two-valued
wire c; // Wire with weak to strong drivers
tri [15:0] dbus; // 16-bit tristate bus
tri #(5,4,8) b; // Wire with delay
logic [5:0] vec; // Six-bit register
trireg (small) q; // Wire stores a small charge
integer imem[0:1023]; // Array of 1024 integers
logic [31:0] dcache [0:63]; // A 32-bit memory
real d; // Double-precision floating point

FiGURe 15.4 A sampling of SystemVerilog variable definitions.

module mymod(
 output logic out1, // Outputs first by convention
 output logic [3:0] out2, // four-bit vector
 input logic in1,
 input logic [2:0] in2);

// Module body: instances,
// continuous assignments,
// initial and always blocks

endmodule

module usemymod;
logic a;
logic [2:0] b;
logic c, e, g;
logic [3:0] d, f, h;

mymod m1(c, d, a, b); // simple instance
mymod m2(e, f, c, d[2:0]), // instance with part-select input
 m3(.in1(e), .in2(f[2:0]), // connect-by-name
 .out1(g), .out2(h) );

endmodule

FiGURe 15.5 SystemVerilog structure: an example of a module definition and another module 
containing three instances of it.
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Behavioral modeling in Verilog uses imperative code enclosed in initial and always blocks 
that write to variables to maintain state. Each block effectively introduces a concurrent pro-
cess that is awakened by an event and runs until it hits a delay or a wait statement. The 
example in Figure 15.7 illustrates basic behavioral usage.

Figure 15.8 shows a more complicated behavioral model, in this case a simple state machine. 
This example is written in a common style where the combinational and sequential parts of a 

module add8(
 output logic [8:0] sum,
 input logic [7:0] a, b,
 input logic carryin);

// unsigned arithmetic
assign sum = a + b + {8’b0, carryin};
endmodule

module datapath(
 output logic [2:0] addr_2_0,
 output logic icu_hit,
 input logic psr_bm8,
 input logic hit);

logic [31:0] addr_qw_align;
logic [3:0] addr_qw_align_int;
logic [31:0] addr_d1;
logic powerdown;
logic pwdn_d1;
logic [1:0] addr_offset;

// part select, vector concatenation is {}
assign addr_qw_align = { addr_d1[31:4], addr_qw_align_int[3:0] };

// if-then-else operator
assign addr_offset = psr_bm8 ? addr_2_0[1:0] : 2’b00;

// Boolean operators
assign icu_hit = hit & !powerdown & !pwdn_d1;

// …

endmodule

FiGURe 15.6 SystemVerilog modules illustrating continuous assignment. The first is a simple 8 bit 
full adder producing a 9 bit result. The second is an excerpt from a processor datapath.

module behavioral;
logic [1:0] a, b;

initial begin
 a = ‘b1;
 b = ‘b0;
end

always begin
 #50 a = ∼a; // Toggle a every 50 time units
end

always begin
 #100 b = ∼b; // Toggle b every 100 time units
end

endmodule

FiGURe 15.7 A simple SystemVerilog behavioral model. The code in the initial block runs once at 
the beginning of simulation to initialize the two registers. The code in the two always blocks runs 
periodically: once every 50 and 100 time units, respectively.
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state machine are written as two separate processes. The first process is purely combinational, as 
indicated by the always_comb directive. The process executes on any change on signals a, b, 
or state. The code consists of a multiway choice—a case statement—and performs procedural 
assignments to the o and nextState variables.

The second process models a pair of f lip-flops that holds the state between cycles. The 
@(posedge clk or posedge reset) directive makes the process sensitive to the rising 
edge of the clock or a change in the reset signal. At the positive edge of the clock, the process 
captures the value of the nextState variable and copies it to state.

The example in Figure 15.8 illustrates the two types of behavioral assignments. The assignments 
used in the first process are the so-called blocking assignments, written =, and take effect imme-
diately. Nonblocking assignments are written <= and have somewhat subtle semantics. Instead of 
taking effect immediately, the right-hand sides of nonblocking assignments are evaluated when they 
are executed, but the assignment itself does not take place until the end of the current time instant. 
Such behavior effectively isolates the effect of nonblocking assignments to the next clock cycle, 
much like the output of a flip-flop is only visible after a clock edge. In general, nonblocking assign-
ments are preferred when writing to state-holding elements for exactly this reason. See Figure 15.12 
and the next section for a more extensive discussion of blocking versus nonblocking assignments.

15.4.2 VERIFICATION WITH SYSTEMVERILOG

One of Verilog’s strengths has long been its ability to model both systems and test benches, two very 
different tasks. System modeling demands both accuracy (i.e., the model behaves like the system) 
and precision (i.e., the model supports sufficient details in the model); test engineers, by contrast, are 
concerned mostly about how easily they can code a test bench that can produce the desired stimu-
lus and check for the desired responses. How the test bench code does its job is nearly immaterial.

The majority of the additions that turned Verilog into SystemVerilog focused on simplifying 
the  verification task. The Superlog additions [21] were mostly software-inspired constructs from 

module FSM(
 output logic o,
 input logic a, b, reset, clk);
logic [1:0] state, nextState;

// Combinational logic block: sensitive to changes on all inputs;
// outputs o and nextState always assigned

always_comb
 case (state)
  2’b00: begin
   o = a & b;
   nextState = a ? 2’b00 : 2’b01;
  end
  2’b01: begin
   o = 0; nextState = 2’b10;
  end
  default: begin
   o = 0; nextState = 2’b00;
  end
 endcase

// Sequential block: sensitive to clock edge and reset signal

always_ff @(posedge clk or posedge reset)
 if (reset)
  state <= 2’b00;
 else
  state <= nextState;

endmodule

FiGURe 15.8 A SystemVerilog behavioral model for a state machine illustrating the common prac-
tice of separating combinational and sequential blocks.
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C and C++, including enumerated types, record types (structs), typedefs, type casting, a variety of 
operators such as +=, operator overloading, control-flow statements such as break and continue, 
as well as object-oriented programming constructs such as classes, inheritance, and dynamic object 
creation and deletion. At the very highest level, it also adds strings, associative arrays, concurrent pro-
cess control (e.g., fork/join), semaphores, and mailboxes, giving it features only found in concurrent 
programming languages such as Java. All of these had the goal of making it easier to express more 
complicated test bench behavior more succinctly using software-inspired modeling techniques.

Perhaps the most interesting additions, however, directly support biased random test genera-
tion. In this methodology, which has been growing in popularity and effectiveness, a test engineer 
writes a program that generates many “random” inputs for a particular module along with some 
sort of checker that can verify the system under test behaves as desired when given the inputs. 
The idea is that it is easier to generate a comprehensive test suite by leaving certain elements to 
chance rather than insisting a human conceive of all the corner cases.

But purely randomly generated tests are likely to be terribly inefficient, making biased, con-
strained random tests preferred. Consider a module with a reset signal. Unbiased test vectors 
might assert reset half the time, making long runs of the module quite unlikely. Instead, we want 
biased random test vectors that assert reset perhaps 1/100th or 1/1000th of the time.

To these ends, SystemVerilog adopted constructs pioneered in the (Open)Vera, Sugar, and 
ForSpec verification languages that facilitate biased constrained random test generation, func-
tional coverage checks, and temporal assertions. Biased, constrained random test generation 
allows the user to control the generation of “random” test inputs, constraining them to regions 
of interest, avoiding illegal or don’t-care inputs. Functional coverage checks provide a mecha-
nism for the user to classify events, such as being in a certain state or making a specific, expected 
transition between states, and then easily count the number of such events while the system 
under test is being subjected to the test vectors. This provides a way to look for gaps in test cov-
erage, for example, when a particular state transition should be possible but was never observed.

Temporal assertions allow a test engineer to specify both desirable and undesirable properties 
that take place over one, two, or more clock cycles, such as entering an illegal state or asserting a 
particular output for too many cycles. The idea here is to provide the user with the ability to easily 
look for unwanted behavior (i.e., bugs) while a system is being subjected to random test vectors. 
Such assertions came originally from the formal verification community, which has long wanted 
to test systems for all possible inputs using more analytical techniques. Which formal verification 
techniques grow in quality, mostly the ability to analyze large designs quickly, simulation remains 
a key component in any test engineers’ arsenal because it is always able to answer questions about 
the largest of designs.

Figure 15.9 illustrates some of the random test generation constructs in SystemVerilog, which 
were largely taken from the Vera language.

Figure 15.10 illustrates some of the coverage constructs in SystemVerilog. In general, one 
defines “covergroups,” which are collections of bins that sample values on a given event, typi-
cally a clock edge. Each covergroup defines the sorts of values it will be observing (e.g., values of 
a single variable, combinations of multiple variables, and sequences of values on a single variable) 
and rules that define the “bins” each of these values will be placed in. In the end, the simulator 
reports which bins were empty, indicating that none of the matching behavior was observed. 
Again, much of this machinery was taken from Vera.

Figure 15.11 shows some of SystemVerilog’s assertion constructs. In addition to signaling an 
error when an “instantaneous” condition does not hold (e.g., a set of variables are taking on mutu-
ally incompatible values), SystemVerilog has the ability to describe temporal sequences such as 
“ack must rise between one and five cycles after req rises” and check whether they appear dur-
ing simulation. Much of the syntax comes from PSL/Sugar.

15.4.3 VERILOG SHORTCOMINGS

Compared to VHDL, SystemVerilog does a poor job at protecting users from themselves. Verilog’s 
variables are shared variables and the language permits all the standard pitfalls associated with 
them, such as races and nondeterministic behavior. Most users avoid such behavior by following 



386    15.4 SystemVerilog

class Bus;
 rand bit[15:0] addr;
 rand bit[31:0] data;

 constraint world_align { addr[1:0] = 2’b0; }
endclass

initial begin
 Bus bus = new;

 repeat (50) begin
  if (bus.randomize() == 1)
   $display(“addr = %16h data = %h\n”, 
 bus.addr, bus.data);

  else
   $display(“overconstrained: no satisfying values exist\n”);
 end
end

typdef enum { low, mid, high } AddrType;

class MyBus extends Bus;
 rand AddrType atype; // Additional random variable

 // Additional constraint on address: still word-aligned}
 constraint addr_range {
  (atype == low ) -> addr inside { [0:15] };
  (atype == mid ) -> addr inside { [16:127] };
  (atype == high) -> addr inside { [128:255] };
 }
endclass

task exercise_bus;
 int res;

 // Restrict to low addresses
 res = bus.randomize() with { atype == low; };

 // Restrict to particular address range
 res = bus.randomize()
 with { 10 <= addr && addr <= 20 };

 // Restrict data to powers of two
 res = bus.randomize() with { data & (data - 1) == 0 };

 // Disable word alignment
 bus.word_align.constraint_mode(0);

 res = bus.randomize with { addr[0] ║ addr[1] };

 // Re-enable word alignment
 bus.word_align.constraint_mode(1);
endtask

FiGURe 15.9 Constrained random variable constructs in SystemVerilog. The example starts 
with a simple definition of a Bus class that constraints the two least significant bits of the address 
to be zero and then invokes the randomize method to randomly generate address/data pairs 
and print the result. Next is a refined version of the Bus class that adds a field taken from an enu-
merated type that further constrains the address depending on its value. The example ends with 
a task that illustrates various ways to control the constraints, after examples in the SystemVerilog 
LRM. (From Accelera, SystemVerilog 3.1a language reference manual: Accellera’s extensions to 
Verilog, Napa, CA, May 2004.)
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enum { red, green, blue } color;

bit [3:0] adr, offset;

covergroup g2 @(posedge clk);
 Hue: coverpoint color;
 Offset: coverpoint offset;

 // Consider (color, adr) pairs, e.g.,
 // (red, 3’b000), (red, 3’b001), …, (blue, 3’b111)
 AxC: cross color, adr;

 // Consider (color, adr, offset) triplets
 // Creates 3 * 16 * 16 = 768 bins
 all: cross color, adr, Offset;
endgroup

g2 g2_inst = new; // Create a watcher

bit [9:0] a; // Takes values 0--1023

covergroup cg @(posedge clk);

 coverpoint a {
  // place values 0--63 and 65 in bin a
  bins a = { [0:63], 65 };

  // create 65 bins, one for 127, 128, …, 191
  bins b[] = { [127:150], [148:191] };

  // create three bins: 200, 201, and 202
  bins c[] = { 200, 201, 202 };

  // place values 1000--1023 in bin d
  bins d = { [1000:$] };

  // place all other values (e.g., 64, 66, .., 126, 192, …) in their own bin
  bins others[] = default;
 }

endgroup

bit [3:0] a;

covergroup cg @(posedge clk);
 coverpoint a {
  // Place any of the sequences 4 -> 5 -> 6, 7 -> 11, 8 -> 11, 9 -> 11, 10 ->11,
  // 7 -> 12, 8 -> 12, 9 -> 12, and 10 -> 12 into bin sa.
  bins sa = (4 => 5 => 6), ([7:9],10 => 11,12);

  // Create separate bins for 4 -> 5 -> 6, 7 -> 10, 8 -> 10, and 9 -> 10
  bins sb[] = (4 => 5 => 6), ([7:9] => 10);

  // Look for the sequence 3 -> 3 -> 3 -> 3
  bins sc = 3 [* 4];

  // Look for any of the sequences 5 -> 5, 5 -> 5 -> 5, or 5 -> 5 -> 5 -> 5
  bins sd = 5 [* 2:4];

  // Look for any sequence of the form 6 -> … -> 6 -> … -> 6
  // where “…” represents any sequence that excludes 6
  bins se = 6 [-> 3];
 }
endgroup

FiGURe 15.10 SystemVerilog coverage constructs. The example begins with a definition of a cov-
ergroup that considers the values taken by the color and offset variables as well as combinations. Next 
is a covergroup illustrating the variety of ways bins may be defined to classify values for coverage. The 
final covergroup illustrates SystemVerilog’s ability to look for and classify sequences of values, not just 
simple values. Examples from the SystemVerilog LRM. (From Accelera, SystemVerilog 3.1a language 
reference manual: Accellera’s extensions to Verilog, Napa, CA, May 2004.)
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certain rules (e.g., by restricting assignments to a shared variable to a single concurrent process), 
but SystemVerilog allows more dangerous usage. Tellingly, a number of EDA companies exist 
solely to provide lint-like tools for SystemVerilog that report such poor coding practices. Gordon [24] 
provides a more detailed discussion of the semantic challenges of SystemVerilog.

Nonblocking assignments are one way to ameliorate most problems with nondeterminism 
caused by shared variables, but they, too, can lead to bizarre behavior. To illustrate the use of shared 
variables, consider a three-stage shift register. The implementation in Figure 15.12a appears to be 
correct, but in fact may not behave as expected because the language says the simulator is free to 
execute the three always blocks in any order when they are triggered. If the processes execute top 
to bottom, the module becomes a one-stage shift register, but if they execute bottom to top, the 
behavior is as intended. The real danger here is that the simulation might work as desired but the 
synthesized circuit may behave differently, defeating the value of the simulation.

Figure 15.12b shows a correct implementation of the shift register that uses nonblocking 
assignments to avoid this problem. The semantics of these assignments are such that the value on 
the right-hand side of the assignment is captured when the statement runs, but the actual assign-
ment of values is only done at the “end” of each instant in time, that is, after all three blocks have 
finished executing. As a result, the order in which the three assignments are executed does not 
matter, and therefore the code always behaves like a three-stage shift register.

The behavior of nonblocking assignments can be unexpected to software programmers. 
In most programming languages, the effect of an assignment can be felt by the instruction 

// Make sure req1 or req2 is true if we are in the REQ state}
always @(posedge clk)
 if (state == REQ)
  assert (req1 || req2);

// Same, but report the error ourselves
always @(posedge clk)
 if (state == REQ)
  assert (req1 || req2)
  else
   $error(“In REQ; req1 || req2 failed (\%0t)”, $time);

property req_ack;
 @(posedge clk) // Sample req, ack at rising clock edge
  // After req is true, between one and three cycles later,
  // ack must have risen.
  req ##[1:3] $rose(ack);
endproperty

// Assert that this property holds, i.e., create a checker
as_req_ack: assert property (req_ack);

// The own_bus signal goes high in 1 to 5 cycles,
// then the breq signal goes low one cycle later.
sequence own_then_release_breq;
 ##[1:5] own_bus ##1 !breq
endsequence

property legal_breq_handshake;
 @(posedge clk) // On every clock,
 disable iff (reset) // unless reset is true,
 // once breq has risen, own_bus should rise and breq should fall.
 $rose(breq) |-> own_then_release_breq;
endproperty

assert property (legal_breq_handshake);

FiGURe 15.11 SystemVerilog assertions. The first two always blocks check simple safety proper-
ties, that is, that req1 and req2 are never true at the positive edge of the clock. The next property 
checks a temporal property: that ack must rise between one and three cycles after each time req is 
true. The final example shows a more complex property: when reset is not true, a rising breq signal 
must be followed by own _ bus rising between one and five cycles later and breq falling.
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immediately following it, but the delayed-assignment semantics of a nonblocking assignment 
violates this rule. Consider the erroneous decimal counter in Figure 15.13a. Without knowing 
the subtle semantics of Verilog nonblocking assignments, the counter would appear to count 
from 0 to 9, but in fact it counts to 10 before being reset because test of o by the if statement 
gets the value of o from the previous clock cycle, not the results of the o <= o + 1 statement. 
A corrected version is shown in Figure 15.13b, which uses a local variable count to maintain 
the count, blocking assignments to touch it, and finally a nonblocking assignment o to send the 
count outside the module.

Coupled with the rules for register inference, the circuit implied by the counter in Figure 
15.13b is fine. Only the count variable will actually become a state-holding element.

15.5 VHDL

Although VHDL and SystemVerilog are often used interchangeably for specifying RTL hard-
ware, they could not have had more different histories. Unlike Verilog, VHDL was deliberately 
designed to be a standard HDL. As Dewey explains [18], VHDL was created at the behest of 
the US Department of Defense in response to the desire to incorporate integrated circuits 
( specifically VHSIC, hence the name of the program from which VHDL evolved) in military 
hardware. Starting with a summer study at Woods Hole, Massachusetts, in 1981, requirements 
for and the scope of the language were first established, then after a bidding process, a contract 
to develop the language was awarded in 1983 to three companies: Intermetrics, which was the 

module bad_sr(
 output logic o,
 input logic i, clk);
logic a, b, o;

always_ff @(posedge clk) a = i;
always_ff @(posedge clk) b = a;
always_ff @(posedge clk) o = b;

endmodule
(a)

module good_sr(
 output logic o,
 input logic i, clk);
logic a, b, o;

always_ff @(posedge clk) a <= i;
always_ff @(posedge clk) b <= a;
always_ff @(posedge clk) o <= b;

endmodule
(b)

FiGURe 15.12 SystemVerilog examples illustrating the difference between blocking and 
 nonblocking assignments. (a) An erroneous implementation of a three-stage shift register that may 
or may not work depending on the order in which the simulator chooses to execute the three always 
blocks. (b) A correct implementation using nonblocking assignments, which make the variables take 
on their new values after all three blocks are done for the instant.

module bad_counter(
 output logic [3:0] o,
 input logic clk);
logic [3:0] o;

always @(posedge clk) begin
 o <= o + 1;
 if (o == 10)
  o <= 0;
end

endmodule
(a)

module good_counter(
 output logic [3:0] o,
 input logic clk);
logic [3:0] count;

always @(posedge clk) begin
 count = count + 1;
 if (count == 10)
  count = 0;
 o <= count
end

endmodule
(b)

FiGURe 15.13 Verilog examples illustrating a pitfall with nonblocking assignments. (a) An errone-
ous implementation of a counter, which counts to 10, not 9. (b) A correct implementation using a 
combination of blocking and nonblocking assignments.
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prime contractor for Ada, the software programming language developed for the US military in 
the early 1980s; Texas Instruments; and IBM. Dewey and de Geus describe this history in more 
detail [19].

The VHDL language was created in 1983 and 1984, essentially concurrently with Verilog, and 
first released publicly in 1985. Interest in an IEEE standard HDL was high at the time, and VHDL 
was eventually adopted as IEEE standard 1076 in 1987 [33] and revised in 1993, 2002, and most 
recently 2008 [30]. Verilog, meanwhile, remained proprietary until 1990. The standardization 
and growing popularity of VHDL at the time was certainly instrumental in Cadence’s decision 
to make Verilog public.

The original objectives of the VHDL language [18] were to provide a means of documenting 
hardware (i.e., as an alternative to imprecise English descriptions) and of verifying it through 
simulation. As such, a VHDL simulator was developed along with the language.

The VHDL language is vast, complicated, and has a verbose syntax derived from Ada. For 
many years, it had a more robust type system than Verilog, but recent additions to SystemVerilog 
have narrowed this gap. While VHDL’s popularity as a means of formal documentation is ques-
tionable, it has succeeded as a modeling language for hardware simulation and, like Verilog, as a 
specification language for RTL logic synthesis.

While much of the VHDL and Verilog languages are very different, in practice the subsets 
designers use to describe hardware are similar, in large part because most synthesis tools accept 
similar subsets of both languages. The way the languages are employed to write test benches 
varies far more. Many of the features targeting biased random test generation recently added to 
SystemVerilog do not have VHDL analogs.

The 2008 revision of the language [30] fixes many infelicities in the language that had increased 
its verbosity (e.g., VHDL 2008 now allows logic types in conditionals and provides a matching set 
of relational operators that can eliminate the former plague of =’1’ operators) and adds the IEEE 
PSL [27] as a mechanism for specifying temporal correctness properties.

VHDL has spawned many books discussing its proper usage. Basic texts include Lipsett et al. 
[37] (one of the earliest), Dewey [20], Bhasker [8], Perry [45], Rushton [47], and Ashenden [3,4]. More 
advanced is Cohen [16], which suggests preferred idioms in VHDL, and Harr and Stanculescu 
[26], which discusses using VHDL for a variety of modeling tasks, not just RTL.

15.5.1 CODING IN VHDL

Like SystemVerilog, VHDL describes designs as a collection of hierarchical modules. But 
unlike SystemVerilog, VHDL splits them syntactically into interfaces—called entities—and 
their implementations—architectures. In addition to named input and output ports, entities 
also define compile-time parameters (generics), types, constants, attributes, use directives, 
and others.

Figure 15.14 shows code for the same two-input multiplexer roughly equivalent to the 
SystemVerilog examples in Figure 15.3. Figure 15.14a is the entity declaration for the multiplexer, 
which defines its input and output ports. Figure 15.14b is a purely structural description of the 
multiplexer: it defines internal signals, the interface to the Inverter, AndGate, and OrGate com-
ponents, and instantiates four of these gates. The name of the architecture, “structural,” is 
arbitrary; it is used to distinguish among different architectures. Furthermore, the Verilog exam-
ple used the built-in gate-level primitives; VHDL itself does not know about logic gates, but can 
be taught about them.

Figure 15.14c illustrates a dataflow model for the multiplexer with each logic gate made 
explicit. VHDL does have built-in logical operators. Figure 15.14d shows an even more succinct 
implementation, which uses the multiway when conditional operator.

Finally, Figure 15.14e shows a behavioral implementation of the mux. It defines a concurrently 
running process sensitive to the three mux inputs (a, b, and c) and uses an if–then–else statement 
(VHDL provides most of the usual control-flow statements) to select between copying the a signal 
and the b signal to the output d.

One of the design philosophies behind the VHDL language was to maximize its flexibility by 
making most things user definable. As a result, unlike Verilog, it has only the most rudimentary 
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built-in types (e.g., Boolean variables, but nothing to model four-valued logic), but has a much 
more powerful type system that allows such types to be defined. The Bit used in the examples in 
Figure 15.14 is actually a predefined part of the standard environment, that is,

 type BIT is (’0’, ’1’);

which is a character enumeration type whose two values are the characters 0 and 1. VHDL is case 
insensitive; Bit and BIT are equivalent.

Figure 15.15 is a more elaborate example showing an implementation of the classic traffic 
light controller from Mead and Conway [38]. This is written in a synthesizeable dialect, using the 
common practice of separating the output and next-state logic from the state-holding element. 

entity mux2 is
 port (a, b, c : in Bit; d : out Bit);
end;
(a)

architecture structural of mux2 is

 signal cbar, ai, bi : Bit; -- internal signals

 component Inverter -- component interfaces
  port (a:in Bit; y: out Bit);
 end component;
 component AndGate
  port (a1, a2:in Bit; y: out Bit);
 end component;
 component OrGate
  port (a1, a2:in Bit; y: out Bit);
 end component;

begin
 I1: Inverter port map(a => c, y => cbar); -- connect-by-name
 A1: AndGate port map(a, c, ai); -- connect-by-position
 A2: AndGate port map(a1 => b, a2 => cbar, y => bi);
 01: OrGate port map(a1 => ai, a2 => bi, y => d);
end;
(b)

architecture dataflow1 of mux2 is
 signal cbar, ai, bi : Bit;
begin
 cbar <= not c;
 ai <= a and c;
 bi <= b and cbar;
 d <= ai or bi;
end;
(c)

architecture dataflow2 of mux2 is
begin
 d <= a when c else -- Allowed in VHDL 2008
 b;
end;
(d)

architecture behavioral of mux2 is
begin
 process(all) -- Sensitive to all inputs
 begin
  if c then -- Allowed in VHDL 2008
   d <= a;
  else
   d <= b;
  end if;
 end process;
end;
(e)

FiGURe 15.14 VHDL 2008 code for a two-input multiplexer. (a) The entity definition for the 
multiplexer specifies its interface. (b) A structural implementation instantiating primitive gates. 
(c) A dataflow implementation with an expression for each gate. (d) A direct dataflow implementation. 
(e) A behavioral implementation.
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library ieee;
use ieee.std_logic_1164.all;

entity tlc is
 port (
  clk, reset, cars, short, long : in std_ulogic;
  highway_yellow, highway_red, farm_yellow, farm_red
  start_timer : out std_ulogic);
end tlc;

architecture imp of tlc is
signal current_state, next_state : std_ulogic_vector(1 downto 0);
constant HG : std_ulogic_vector := “00”;
constant HY : std_ulogic_vector := “01”;
constant FY : std_ulogic_vector := “10”;
constant FG : std_ulogic_vector := “11”;
begin

P1: process (clk) -- Sequential process
begin
 if (clk’event and clk = ‘1’) then
  current_state <= next_state;
 end if;
end process P1;

-- Combinational process: sensitive to input changes
P2: process (all)
begin
 if reset then
  next_state <= HG;
  start_timer <= ‘1’;
 else
  case current_state is
   when HG =>
    highway_yellow <= ‘0’; highway_red <= ‘0’;
    farm_yellow <= ‘0’; farm_red <= ‘1’;
    if cars and long then
     next_state <= HY; start_timer <= ‘1’;
    else
     next_state <= HG; start_timer <= ‘0’;
    end if;
   when HY =>
    highway_yellow <= ‘1’; highway_red <= ‘0’;
    farm_yellow <= ‘0’; farm_red <= ‘1’;
    if short then next_state <= FG; start_timer <= ‘1’;
    else next_state <= HY; start_timer <= ‘0’;
    end if;
   when FG =>
    highway_yellow <= ‘0’; highway_red <= ‘1’;
    farm_yellow <= ‘0’; farm_red <= ‘0’;
    if not cars or long then
     next_state <= FY; start_timer <= ‘1’;
    else
     next_state <= FG; start_timer <= ‘0’;
    end if;
   when FY =>
    highway_yellow <= ‘0’; highway_red <= ‘1’;
    farm_yellow <= ‘1’; farm_red <= ‘0’;
    if short then next_state <= HG; start_timer <= ‘1’;
    else next_state <= FY; start_timer <= ‘0’;
    end if;
   when others =>
    next_state <= “XX”; start_timer <= ‘X’;
    highway_yellow <= ‘X’; highway_red <= ‘X’;
    farm_yellow <= ‘X’; farm_red <= ‘X’;
  end case;
 end if;
end process P2;
end imp;

FiGURe 15.15 The traffic light controller from Mead and Conway [38] implemented in VHDL, illus-
trating the common practice of separating combinational and state-holding processes.
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Specifically, the first process is sensitive only to the clock signal. The if statement in the first 
process checks for an event on the clock (VHDL signals have a variety of attributes; event is true 
whenever the value has changed) and the clock being high, that is, the rising edge of the clock. 
The second process is sensitive only to the inputs and present state of the machine, not the clock, 
and is meant to model combinational logic. It illustrates the multiway conditional case statement, 
constants, and bit vectors. It employs types (i.e., std _ ulogic and std _ ulogic _ vector) 
and operators from the ieee.std_logic_1164 library, an IEEE standard library [34] for modeling 
logic with unknown values (X).

15.5.2 VERIFICATION IN VHDL

Simple assertions that check variable values at a single point in time have long been part of VHDL. 
The assert construct may appear in both concurrent and sequential contexts:

assert a < b; 

assert state /= BAD 
 report “bad state encountered” 
 severity “FAILURE”; 

process

begin 

 for i in 0 to numvector-1 loop 
  inputs <= vectors(i).in; 
  wait for shortdelay; 

  assert outputs = vectors(i).out 
   report “incorrect output” 
   severity error; 

  wait for longdelay; 
 end loop; 
 wait;
end process; 

However, many interesting properties of hardware designs are temporal, meaning that desired 
behavior changes over time. Standard VHDL assertions can be used in processes to check tem-
poral properties. For example, the following process verifies that an acknowledge signal is always 
asserted in the cycle following a cycle in which request is asserted.

process begin 
 wait until clk’event and clk = ’1’ and request = ’1’; 
 wait until clk’event and clk = ’1’; 
 assert acknowledge = ’1’; 
end process; 

However, VHDL 2008 adds PSL constructs to the assert construct, allowing this to be coded 
much more simply:

assert always (request -> next acknowledge);

Here, always means this holds in all cycles (i.e., not just the first); next indicates the given prop-
erty (here, acknowledge is true) must hold in the next clock cycle (i.e., after the next rising edge 
of the clock).



394    15.6 SystemC

15.5.3 VHDL SHORTCOMINGS

One shortcoming of VHDL is its obvious verbosity: the use of begin/end pairs instead of braces, 
the need to separate entities and their architectures, the need to spell out things like ports, its 
lengthy names for standard logic types (e.g., std _ ulogic _ vector), and its requirement of 
enclosing Boolean values and vectors in quotes. Some of these issues have been addressed in 
VHDL 2008 (e.g., many formerly mandatory = ’1’ constructs are no longer needed), but not all. 
Many of these are artifacts of its roots in the Ada language, another fairly verbose language com-
missioned by the US Department of Defense, but others are due to questionable design decisions. 
Consider the separation of entity/architecture pairs. While separating these concepts is a boon 
to abstraction and simplifies the construction of simulations of the same system in different con-
figurations (e.g., to run a simulation using a gate-level architecture in place of a behavioral one for 
more precise timing estimation), in practice most designers only ever write a single architecture 
for a given entity and such pairs are usually written together.

The flexibility of VHDL also has advantages and disadvantages. Its type system was for a long 
time more flexible than Verilog’s (although SystemVerilog has added features that close the gap), 
providing things such as aggregate types and overloaded functions and operators, but this flex-
ibility also comes with a need for standardization and also tends to increase the verbosity of the 
language. Some of the need for standardization was recognized early, resulting in libraries such 
as the widely supported IEEE 1164 library for multivalued logic modeling. However, a standard 
for signed and unsigned arithmetic on logic vectors was slower in coming (it was eventually 
standardized in 1997 [35]), prompting both Synopsys and Mentor to each introduce similar but 
incompatible and incomplete versions of a similar library.

Fundamentally, many of the problems stem from a desire to make the language too general. 
Aspects of the type system suffer from this as well. While the ability to define new enumerated 
types for multivalued logic modeling is powerful, it seems a little odd to require virtually every 
VHDL program (since its main use has long been specification for RTL synthesis) to include one 
or more standard libraries. For many years, this also led to the need to be constantly compar-
ing signals to the literal ’1’ instead of just using a signal’s value directly and requiring a user to 
carefully watch the types of subexpressions. VHDL 2008 has addressed many of these issues, but 
many more remain.

15.6 SYSTEMC

SystemC is a relative latecomer to the HDL wars. Developed at Synopsys in the late 1990s, primar-
ily by Stan Liao, SystemC was originally called Scenic [36] and was intended to replace Verilog 
and VHDL as the main system description language for synthesis (see Arnout [2] for some of the 
arguments for SystemC). SystemC is not so much a language as a C++ library along with a set of 
coding rules, but this is exactly its strength. It evolved from the common practice of first writ-
ing a high-level simulation model in C or C++, refining it, and finally recoding it in RTL Verilog 
or VHDL. SystemC was intended to smooth the refinement process by removing the need for a 
separate HDL.

SystemC can be thought of as a dialect of C++ for modeling digital hardware. Like Verilog 
and VHDL, it supports hierarchical models whose blocks consist of input/output ports, internal 
signals, concurrently running imperative processes, and instances of other blocks. The SystemC 
libraries make two main contributions: an inexpensive mechanism for running many processes 
concurrently (based on a lightweight thread package; see Liao et al. [36]) and an extensive set of 
types for modeling hardware systems, including bit vectors and fixed-point numbers. A SystemC 
model consists of a series of class definitions, each of which define a block. Methods defined for 
such a class become concurrently running processes, and the constructor for each class starts 
these processes running by passing them to the simulation kernel. Simulating a SystemC model 
starts by calling the constructors for all blocks in the design and then invoking the scheduler, 
which is responsible for executing each of the concurrent processes as needed.

The computational model behind earlier versions of SystemC was cycle based instead of 
the event-driven model of Verilog and VHDL. This meant that the simulation was driven by 
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a collection of potentially asynchronous, but periodic clocks. Later versions (SystemC 2.0 and 
higher) adopted an event-driven model much like VHDL’s.

SystemC can also be viewed as a complementary approach to the test bench problem, which 
Verilog and VHDL have long grappled with. While both Verilog and VHDL have long had facili-
ties for writing test benches, they have never been as advanced, efficient, flexible, or as interop-
erable as mainstream software languages such as C or C++. To address this, both Verilog and 
VHDL have long provided application programming interfaces that allow C/C++ code to link 
with their simulators (Verilog’s PLI and VHDL’s Procedural Interface, respectively). These can be 
used to develop very sophisticated test benches, link in simulation models written in C/C++, and 
communicate with real hardware.

These interfaces, however, are clumsy compared to simply coding in C/C++ to begin with, the 
approach SystemC takes. Instead, SystemC pushes the awkwardness to modeling concurrency 
and structure, things which Verilog and VHDL do better. For writing large functional models, 
SystemC definitely has the advantage, but the few commercial products that have provided hard-
ware synthesis from SystemC have met with little commercial success.

A number of SystemC books are now available. Black and Donovan [10] is popular. Grötker 
et al. [25] provide a nice introduction to SystemC 2.0. Bhasker [9] is also an introduction. The 
volume edited by Muller et al. [40] surveys more advanced SystemC modeling techniques.

15.6.1 CODING IN SYSTEMC

Figure 15.16 shows a small SystemC model for a 0–99 counter driving a pair of seven-segment 
displays. It defines two modules (the decoder and counter structs) and an sc _ main func-
tion that defines some internal signals, instantiates two decoders and a counter, and runs the 
simulation while printing out what it does.

The two modules in Figure 15.16 illustrate two of the three types of processes possible in 
SystemC. The decoder module is the simpler one: it models a purely combinational process by 
defining a method (called, arbitrarily, “compute”) that will be invoked by the scheduler every 
time the number input changes, as indicated by the sensitive << number; statement 
beneath the definition of compute as an SC _ METHOD.

The second module, counter is an SC _ CTHREAD process: a method (here called “tick”) 
that is invoked in response to a clock edge (here, the positive edge of the clk input, as defined 
by the SC _ CTHREAD(tick, clk.pos()); statement) and can suspend itself with the wait() 
statement. Specifically, the scheduler resumes the method when the clock edge occurs, and the 
method runs until it encounters a wait() statement, at which point its state is saved and control 
passes back to the scheduler.

This example illustrates only a very small fraction of the SystemC type libraries. It uses 
unsigned integers (sc _ uint), bit vectors (sc _ bv), and a clock (sc _ clock). The nonclock 
types are wrapped in sc _ signals, which behave like VHDL signals. In particular, when an 
SC _ CTHREAD method assigns a value to a signal, the effect of this assignment is felt only after 
all the processes triggered by the same clock edge have been run. Thus, such assignments behave 
like blocking assignments in Verilog to ensure that the nondeterministic order in which such 
processes are invoked (the scheduler is allowed to invoke them in any order) does not affect the 
ultimate outcome of simulating the system.

15.6.2 SYSTEMC SHORTCOMINGS

Like many languages, the most common use of SystemC has diverged from its designers’ original 
intentions—an input for hardware synthesis in the case of SystemC. A number of synthesis tools 
for the language do exist, but SystemC is now used primarily (and quite successfully) for system 
modeling. This does mean, however, that it does not solve the “separate language for synthesis 
problem.”

A big disadvantage of SystemC is that C++ was never intended for modeling digital hard-
ware and as a result is even more lax about enforcing rules than Verilog. The syntax, similarly, is 
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#include “systemc.h”
#include <stdio.h>

struct decoder : sc_module {
 sc_in<sc_uint<4> > number;
 sc_out<sc_bv<7> > segments;

 void compute() {
  static sc_bv<7> codes[10] = {
   0x7e, 0x30, 0x6d, 0x79, 0x33,
   0x5b, 0x5f, 0x70, 0x7f, 0x7b };
  if (number.read() < 10)
   segments = codes[number.read()];
 }

 SC_CTOR(decoder) {
  SC_METHOD(compute);
  sensitive << number;
 }
};

struct counter : sc_module {
 sc_out<sc_uint<4> > tens;
 sc_out<sc_uint<4> > ones;
 sc_in_clk clk;

 void tick() {
  int one = 0, ten = 0;
  for (;;) {
   if (++one == 10) {
    one = 0;
    if (++ten == 10) ten = 0;
   }
   ones = one;
   tens = ten;
   wait();
  }
 }

 SC_CTOR(counter) {
  SC_CTHREAD(tick, clk.pos() );
 }
};

int sc_main(int argc, char *argv[])
{
 sc_signal<sc_uint<4> > ones, tens;
 sc_signal<sc_bv<7> > ones_segments, tens_segments;
 sc_clock clk;

 decoder decoder1(“decoder1”);
 decoder1(ones, ones_segments);
 decoder decoder2(“decoder2”);
 decoder2(tens, tens_segments);

 counter counter1(“counter1”);
 counter1(tens, ones, clk);

 for (int i = 0 ; i < 12 ; i++) {
  sc_start(clk, 1);
  printf(“%d %d %x %x\n”,
 (int)tens.read(), (int)ones.read(),
 (int)(sc_uint<7>)tens_segments.read(),
 (int)(sc_uint<7>)ones_segments.read() );
 }

FiGURe 15.16 A SystemC model for a two-digit decimal counter driving two seven-segment 
displays.
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somewhat awkward and relies on some very tricky macro preprocessor definitions. On detailed 
models, the simulation speed of a good compiled-code Verilog or VHDL simulator may be bet-
ter, although SystemC is much faster for higher-level models. For such systems, which consist of 
complex processes, SystemC should be superior since the simulation becomes nearly a normal 
C++ program. However, the context-switching cost in SystemC is higher than that of a good 
Verilog or VHDL simulator when running a more detailed model, so a system with many small 
processes would not simulate as quickly.

Another issue is the ease with which a SystemC model can inadvertently be made nonde-
terministic. Although carefully following a discipline of only communicating among processes 
through signals will ensure the simulation is deterministic, any slight deviation from this will 
cause problems. For example, library functions that use a hidden global variable may cause 
 nondeterminism if called from different processes. Accidentally holding state in an SC _ METHOD 
process (e.g., writing code that stores values in class or global variables) can also cause problems 
since such methods are invoked in an undefined order.

Many argue that nondeterministic behavior in a language can be desirable for modeling 
nondeterministic systems, which certainly exist and need to be modeled. However, the sort of 
nondeterminism in a language such as SystemC or Verilog creeps in unexpectedly and is diffi-
cult to use as a modeling tool. For the simulation of a nondeterministic model to be interesting, 
there needs to be some way of seeing the different possible behaviors, yet a nondeterministic 
artifact such as an SC _ METHOD process that holds state provides no mechanism for ensuring 
that it is not, in fact, predictable. As a result, a designer has a hard time answering whether 
a model of a nondeterministic system can exhibit undesired behavior, even through a careful 
selection of test cases.

15.7 CONCLUSIONS

VHDL and SystemVerilog remain the dominant HDLs and are likely to be with us for a long time, 
although perhaps they will become like assembly language has become to programming: a part 
of the compilation chain, but not generally written manually. Both have deep semantic flaws, but 
these can be largely avoided by adhering to coding conventions, and in practice are quite practical 
design entry vehicles.

SystemC offers an alternative approach that starts from a “stock” (and very well supported) 
software programming language and addresses the high-level modeling problem directly, but it 
has not succeeded as a HDL, despite multiple attempts to make it bridge the gap.

When this chapter was first written 10 years ago, there were a plethora of competing veri-
fication-focused languages designed to interface with VHDL and Verilog models. Since then, 
SystemVerilog and, to a lesser extent, VHDL have adopted the better ideas from these languages. 
More than most other languages, Verilog and VHDL have evolved significantly over time as infe-
licities are fixed and constructs supporting new methodologies have been introduced.

The fundamental burdens of specifying digital hardware and verifying its correctness will 
continue to fall on design and verification languages. Even if those in the future bear little resem-
blance to those described here, the current crop forms a strong foundation on which to build.
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16.1 INTRODUCTION

Logic simulation is the primary tool used for verifying the logical correctness of a hardware 
design. In many cases, logic simulation is the first activity performed in the process of taking a 
hardware design from concept to realization. Modern hardware description languages are both 
simulatable and synthesizable. Designing hardware today is actually writing a program in the 
hardware description language. Performing a simulation is just running that program. When 
the program (or model) runs correctly, then one can be reasonably assured that the logic of the 
design is correct, for the cases that have been tested in the simulation.

Simulation is the key activity in the design verification process. That is not to say that it is an 
ideal process. It has some very positive attributes:

 1. It is a natural way for the designer to get feedback about his design. Because it is just run-
ning a program—the design itself—the designer interacts with it using the vocabulary 
and abstractions of the design. There is no layer of translation to obscure the behavior of 
the design.

 2. The level of effort required to debug and then verify the design is proportional to the 
maturity of the design. That is, early in the design’s life, bugs and incorrect behavior are 
usually found more quickly. As the design matures, it takes longer to find the errors.

 3. Simulation is completely general. Any hardware design can be simulated. The only limits 
are time and computer resources.

On the negative side, simulation has two drawbacks, one of which is glaring:

 1. There is (usually) no way to know when you are done. It is not feasible to completely test, 
via simulation, all possible states and inputs of any nontrivial system.

 2. Simulation can take an inordinately large amount of computing resources, since typi-
cally it uses a single processor to reproduce the behavior of many (perhaps millions of) 
parallel hardware processes.

Every design project must answer the question “have we simulated enough to find all the bugs?” 
and every project manager has taped out his design knowing that the truthful answer to that 
question is either “no” or “I don’t know.” It is this fundamental problem with simulation that has 
caused so much effort to be spent looking for both tools to help answer the question, and formal 
alternatives to simulation.

Code coverage, functional coverage, and logic coverage tools have all been developed to help 
gauge the completeness of simulation testing. None are complete solutions, though they all help. 
Formal alternatives have been less successful. Just as in the general software world where proving 
programs correct has proven intractable, formal methods for verifying hardware designs have 
still not proven general enough to replace simulation. That is not surprising, since it is the same 
problem.

The second drawback motivates much of the material in this chapter. That is, simulation is 
always orders of magnitude slower than the system being simulated. If a hardware system runs 
at 1 GHz, a simulation of that system might run at 10–1000 Hz, depending on the level of the 
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simulation and the size of the system. That is a slowdown from 106 to 108! Consequently, many 
people have spent considerable time and effort finding ways to speed up logic simulation.

Considering both the advantages and disadvantages of logic simulation, it is really quite a good 
tool for verifying the correctness of a hardware design. Despite its drawbacks, simulation remains 
the first choice for demonstrating correctness of a design before fabrication, and its value has 
been well established.

16.1.1 LEVELS OF ABSTRACTION

Because simulation is a general technique, a hardware design can be simulated at different lev-
els of abstraction. Often it is useful to simulate a model at several levels of abstraction in the 
same simulation run. The commonly used levels of abstraction are gate level, register transfer level 
(RTL), and behavioral (or algorithmic) level. However, it is possible to incorporate lower levels 
like transistor level or even lower physical levels as well as higher levels such as transaction level 
or domain-specific levels. For this discussion, we will restrict our attention to behavioral, RTL, 
and gate levels, with the understanding that other levels are completely compatible with the tech-
niques described here.

16.1.2 DISCRETE EVENT SIMULATION

we decided to focus on simulation …, because that’s the only really interesting thing to do with a 
computer

Alan Kay, Second West Coast Computer Faire (1978)

Logic simulation is a special case of the more general discrete event simulation methods, which 
were initially developed in the 1960s [5]. Discrete event simulation is a method of representing 
the behavior of a system over time, using a computer. The system may be either real or hypotheti-
cal, but its state is assumed to change over time due to some combination of external stimulus 
and internal state. The fundamental idea is that the behavior of any system can be decomposed 
into a set of discrete instants of time at which things happen. Those instants are called events, 
and the “things that happen” are state changes. This is very analogous to the way we digitize con-
tinuous physical phenomena, like audio sampling. In essence, we digitize a time-based process by 
dividing it up into discrete events. It is easy to see that with a fine enough granularity, one can get 
an adequately accurate representation for just about any purpose.

The basic operation of a discrete event simulation is given in Figure 16.1.
Each event in the system is represented by an event routine. An event routine is some code 

to be executed to represent the action at that event, which usually amounts to a state change 
and a determination of the occurrence of one or more future events. The set of possible events 
is usually (though not always) fixed, but the number of occurrences of each type of event can be 
variable.

Future event list

Determine next event
Update clock
Call next event routine

ti + 3
Event
routine A

ti + 2
Event
routine C

ti + 1
Event
routine B

ti
Event
routine A

FiGURe 16.1 Discrete event simulation basic operation.
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The list of events shown in Figure 16.1 is a list of those events that are scheduled to happen at 
known times in the future (ti+1, ti+2, …). The entries on this list contain the time at which the event 
will occur, and the type of event it is; that is, what event routine should be called to realize that 
event’s behavior. It is common to have more than one instance of any particular type of event 
scheduled to occur at various times on this list. This list is called the future event list.

16.2 EVENT- VS. PROCESS-ORIENTED SIMULATION

The basic discrete event simulation paradigm was in use in the early 1960s (and probably earlier), 
and several subroutine libraries were developed for FORTRAN and Algol to support it. It was 
soon realized that there were more natural ways to write simulation models of many systems, and 
that led to the development of specialized simulation languages, particularly GPSS, SIMSCRIPT, 
and Simula [3]. Of these, GPSS is still used today to model systems as extensive as the U.S. air 
traffic control system. Simula was the first object-oriented programming language and intro-
duced the concepts of classes and objects.

Both GPSS and Simula took a process-oriented view of modeling. That is, instead of writ-
ing a separate routine for each event, one would write a routine that represented a process 
which might include several events within it taking place over a nonzero period of simulated 
time. The routine would have wait statements in it to indicate that some time would pass 
between one event and the next. This did not affect the underlying simulation mechanism, 
but it did change the way the simulation model was written. A process orientation is particu-
larly useful for hardware simulation at a behavioral level, while an event orientation works 
for RTL and gate levels. The most popular hardware description languages, Verilog [6,7], 
VHDL [2], and SystemC [4], are process-oriented simulation languages which are indirectly 
descended from Simula.

16.3 LOGIC SIMULATION METHODS AND ALGORITHMS

Logic simulation is essentially a process of computing a state trajectory of the system over time. 
The system’s state is defined by the state variables, which are the storage elements in the circuit. 
We usually think of these as the registers and latches in the design. How the state, taken as a 
whole, changes over time is called the state trajectory.

A simple state trajectory as a function of time can be written as follows:

 f(m,n,t + 1) = mt + nt

where
m is a state variable
n is an input

It is obvious how to compute this function:

 

Do  endtime)

new input
enddo

( ,i
t t
m m n
n

=
= +
= +

=

1
1

This example illustrates how a function is simulated over time. There is a loop, which consists 
of updating the system time or clock, evaluating the logic components, and updating the state 
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variables. Compare this loop to the process of Figure 16.1. There is only one event routine, and it 
gets executed repeatedly at a regular time interval.

Now we can expand this example to two functions,

 

f m n t m n
g x n t x n

( , , )
( , , )

+ = +
+ = Ù

1
1

t t

t t

Evaluating these two functions together would look like this:

 

Do  endtime)

new input
enddo

( ,i
t t
m m n
x x n
n

=
= +
= +
= Ù

=

1
1

This set of state functions when taken together, make up a system with a state variable, which is 
a duple (m, x). Running this simulation computes the trajectory of the state vector (m, x) over the 
simulation interval.

Notice that the way we have defined the functions f and g, the value of n used in the com-
putation is the value of n at time t, even though the time of the evaluation is t + 1. This leads 
to a further refinement of the simulation process. In real hardware, state variables (registers 
or latches) do not get updated instantaneously. That is, the computation even if it is a simple 
assignment, takes some nonzero amount of time. So the simulation loop could be rewritten as 
in Figure 16.2.

While we have not represented the actual delays involved in the computation, we have 
abstracted them into a behavior that takes into account their effect. We now have the typical 
event-processing loop in a digital logic simulation: advance the clock, evaluate all the logic func-
tions, and update the variable values.

Note that this has incorporated an abstraction of physical behavior over time, since we are 
moving time from one discrete moment to another, and we are assuming that nothing interesting 
happens in between those two instants. We also assumed that m, x, and n do not change their 
values instantaneously, but they do change before the next time instant (t + 1). Note that they 
all change together after all the evaluation has been done. This is usually called a “delta cycle,” 
meaning it is a set of events that happen at time t, but after all the evaluation events. That is, the 
new-value assignments happen at t + δt.

A further complication arises when time delays must be introduced into a computation. That 
is, the function being computed may look like this:

 f m n t g m nt k t k( , , ) ( , )= - -

do (i=l, endtime)
 t = t + 1
 // evaluate the functions
 t_m = m + n
 t_x = x ∧ n
 t_n = new input
 // update the variable values
 m = t_m
 x = t_x
 n = t_n
enddo

FiGURe 16.2 Basic simulation loop.
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That is, the new value does not get updated into the state variable until k time units after the 
evaluation. To handle this, the simulation loop would look like Figure 16.3.

It is common practice to replace the array t_m() in Figure 16.3 with a linked list, which is 
ordered by the index t. In order to make this work, the delay is usually incorporated into the 
new-value computation, and the new value is put on a future update list at time t + k. The future 
update list is analogous to the future event list, and in fact does not need to be separate from it. 
The simulation loop would then look like Figure 16.4.

Here we have assumed that the future update list has values only for the variable m. Generally, 
there may be many different state variables whose new values may be saved on the future update 
list, so each entry on the list must identify the state variable that the value is associated with. Note 
also that the new value is always at the front of the list, if the list is ordered by increasing time t. 
That is, at any given time t, there are no values on the list with time < t (those would be values in 
the past), so all the variable updates can be found at the front of the list. Of course, there may be 
no values on the list associated with time t, that is, the first entry on the list may have time > t, in 
which case no variable would be updated at time t.

16.3.1 SYNCHRONOUS AND ASYNCHRONOUS LOGIC

The example above shows synchronous, or sequential, logic. That is, each variable’s new value is 
computed at a regular interval (t, t + 1, …). There is also asynchronous, or combinational, logic 
that might be present in a system to be simulated. The salient characteristic of asynchronous 
logic is that the function is computed continuously. That is, when the inputs change, the output 
changes immediately, at least as compared to the granularity of the simulation time. For example, 
in an and gate followed by an inverter, the two inputs are anded into the inverter whose output is 
created with no (apparent) delay (Figure 16.5).

b

c
d

FiGURe 16.5 Example asynchronous logic.

do (i=l, endtime)
 t = t + 1
 // evaluate the functions
 t_m = m + n
 put_on_future_update_list(t_m,t+k)
 t_n = new input
 // update the variable values
 m = take_off_future_update_list(t)
 n = t_n
enddo

FiGURe 16.4 Simulation loop with update list.

do (i=l, endtime)
 t = t + 1
 // evaluate the functions
 t_m(t + k) = m + n
 t_n = new input
 // update the variable values
 m = t_m(t)
 n = t_n
enddo

FiGURe 16.3 Simulation loop with update step.
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This would be represented by d = ~(c&b). In terms of our simulation loop, asynchronous logic 
functions have their outputs updated during the evaluation phase, not delayed until the update 
phase. That is, there is no temporary variable created to hold the new value.

It now is apparent that we need some way of distinguishing between the kind of assignment 
that is immediate and the previous, synchronous, kind, which is delayed. A simulation language 
typically has the ability to represent instantaneous change as well as delayed change.

16.3.2 PROPAGATION

Combinational logic leads to a further complication of our simulation loop, namely, where do we 
do the evaluation of a combinational expression? Combinational logic must be evaluated when-
ever one of its constituent inputs changes. Sequential logic can be evaluated regularly, at time 
intervals corresponding to a clock signal. That is why it was natural to write the simulation loop 
with the evaluations happening immediately after updating the time variable. But where do we 
put combinational logic update?

The answer can be found by looking at what would cause a combinational expression to be 
evaluated. That is, when would its inputs change? If we look at a typical circuit that has both 
combinational and sequential logic, it might look like Figure 16.6.

Looking at this, we see that the input to a combinational expression is either the value of a 
state variable (a register) or the output of another combinational expression. Going back to the 
simulation loop, the logical place to put the evaluation of combinational expressions is after the 
update of state variables. If our combinational logic consisted of

 

c m a
d c b

=
=

|
~ ( & )

Then the loop would look like Figure 16.7.
The simulation loop as it is described in Figure 16.7 is now sufficient to simulate circuits that 

have the form of Figure 16.6, but with an important caveat. That caveat is that the combinational 
expressions must be ordered such that each one is evaluated only after all of its inputs have been 
updated. If a circuit does not contain any combinational feedback loops, then it is possible to sat-
isfy this ordering requirement. Ordering the expressions is called levelizing.

If the delays for the sequential variables are all zero, which is a common case, then this simu-
lation loop is quite efficient, and in fact many logic simulators have been created with just this 
simulation loop. The drawback of this approach however, is that all of the expressions in the cir-
cuit must be evaluated on every loop iteration, i.e., at each time instant. When very much of the 
circuit remains unchanging for long periods, this can be quite wasteful, as expressions that do 
not change get continually reevaluated.

To improve the simulation efficiency in this common case, we can return to the basic event 
scheduling idea of discrete event simulation, and only evaluate an expression when one or more 
of its inputs has changed. This is called propagation of a value from an output to an input, or in 
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Combinational
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FiGURe 16.6 Example with synchronous and asynchronous logic.
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language terms, from a left-hand side of an assignment to a right-hand side. The simulation loop 
now would look like Figure 16.8.

Just as we introduced a future update list, we can also create a propagation list, where the entry 
on the list is the expression whose inputs have changed. Rewriting the simulation loop using that, 
we get Figure 16.9.

Notice here that the propagate list contains a pointer or other identifier of the expres-
sion that needs to be evaluated. Notice also that the expressions that depend on any vari-
able are given by the function c(v). The function c(v) is static, since in logic simulation, the 
expressions that depend on any variable are known at compile time. Finally, notice that it is 

do (i=l,endtime)
 t = t + 1
 for (all state variables m)
  t_m= f( . ) // evaluate the state variables
  put_on_future_update_list(m, t_m, t)
 endfor
 // update the variable values
 while (u = take_off_future_update_list(t) != empty)
  u.v = u.t_v
  put_on_propagate_list(c(u.v), t+u.d)
 endwhile
 // propagate changed values to combinational expressions
 while (c = take_off_propagate_list(t) != empty)
  c.v = eval(c.expr)
  put_on_propagate_list(c(c.v), t+c.d)
 endwhile
enddo

FiGURe 16.9 Simulation loop with propagation list.

do (i=l, endtime)
 t = t + 1
 // evaluate the state variables
 t_m = m + n
 put_on_future_update_list(t_m,t)
 t_n = new input
 // update the variable values
 m = take_off_update_event_list(t)
 n = t_n
 // propagate m and n to combinational expressions
 c = m | a
 // propagate c to combinational expressions
 b = ~(c & d)
 // propagate b to combinational expressions
 …
enddo

FiGURe 16.8 Simulation loop with propagation.

do (i=l,endtime)
 t = t + 1
 // evaluate the functions
 t_m = m + n
 put_on_future_update_list(t_m,t)
 t_n = new input
 // update the variable values
 m = take_off_future_update_list(t)
 n = t_n
 //update all combinational expressions
 c = m | a
 d = ~(c & b)
enddo

FiGURe 16.7 Simulation loop with asynchronous logic.
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a simple efficiency improvement to only propagate those values that have changed. That is, 
if the new value of a variable is the same as the old value, there is no need to reevaluate any 
dependent expressions. With that enhancement, we have a complete simulation loop for a 
logic simulator.

The only remaining necessary generalization is time. We have dealt with time as simply an 
ordered set of instants, t1, t2, …. This would be sufficient if each time instant was able to be 
mapped onto a real time line, for example, if each ti corresponded to clock cycle i. However, in the 
general case, there may be nonuniform time intervals at which events happen. Just as there could 
be a delay in updating the state variables with new values, there could be delays updating com-
binational variables with new values (this would represent gate delays). So both the update event 
list and the propagate list would be ordered by time, and each event on either list would include 
a time at which it was to occur. Now, when all the events at the current time t are finished, the 
main loop would be iterated upon and time would be advanced to the nearest time in the future 
from either of the two lists (Figure 16.10).

The entry which is put on the future event list is the sequential expression, which will be evalu-
ated at a given time in the future (often a clock-cycle boundary). This now has all the elements of a 
logic simulation loop, sometimes also called the scheduling loop or the simulation kernel. People 
often talk about a “simulation engine” in an attempt to make simulators sound more sophisti-
cated than they really are. The scheduler is about the only thing that could be called a “simulation 
engine,” and as we have seen, conceptually it is pretty simple.

16.3.3 PROCESSES

We have described a logic simulation model as a collection of synchronous state variables (reg-
isters) and asynchronous combinational expressions. This corresponds to a typical RTL-style 
description of a logic circuit. We might write a description of such a circuit as follows:

 

at rising edge of clock:
reg newval
reg newval

asynchron

i i

j j

=
=

…

oous:
newval reg reg
newval reg reg

i i j

j i j

=
=

f
g

( , , )
( , , )

…

…

…

do (while t < endtime)
 t = min(future_event_list, future_update_list, propagate_list)
 while (m = take_off_future_event_list(t) != empty)
  t_m= eval(m.expr) // evaluate the state variable in this event
  put_on_future_update_list(m.v, t_m, t+m.d)
  put_on_future_event_list(m.v, m.expr, t+m.next)
 endwhile
 // update the variable values
 while (u = take_off_future_update_list(t) != empty)
  u.v = u.t_v
  put_on_propagate_list(c(u.v), t+u.d)
 endwhile
 // propagate changed values to combinational expressions
 while (c = take_off_propagate_list(t) != empty)
  c.v = eval(c.expr)
  put_on_propagate_list(c(c.v), t+c.d)
 endwhile
enddo

FiGURe 16.10 Simulation loop with future event, update, and propagate lists.
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This maps directly onto the simulation loop described in Figure 16.10. However, this is a pretty 
low level of description, and it would be laborious to write circuit models this way routinely. By 
introducing the idea of a process, we can gain expressive power and still use the same simulation 
mechanics. A process would look like this:

 

process
wait (rising edge of clock)
reg reg reg
reg

i i j

j

<= f ( , , )…

<<= g( , , )reg reg

endprocess

i j …

…

Here we have combined the combinational logic with the sequential logic. Note that we have used 
a special symbol <=, to indicate that the assignment is a delayed assignment. This is not strictly 
necessary, as we could infer that any assignment to a state variable should be a delayed assign-
ment. Verilog uses a special assignment symbol, VHDL and SystemC do not.

We could extend the process by allowing time to pass during the execution of the process, as 
in Figure 16.11.

This process represents a communication protocol with another process whereby data are 
exchanged using a ready/valid handshake, and the output happens 10 clock-cycles after the input. 
It is straightforward to map this process onto our simulation loop by decomposing the process 
into events that get put onto the future event list. Each of the events corresponds to a wait in the 
process. This is left as an exercise for the reader.

The notion of a process becomes more powerful when a system has multiple processes, which 
can operate on common variables. Processes are inherently independent. That is, the events in 
two processes may or may not have any ordering relationship between them. Typically, all pro-
cesses are assumed to begin at the beginning of simulation (time 0), but the events they wait on 
may be different and unrelated. Events within processes may be synchronized by means of com-
mon events or variables, but they do not have to be.

It is easy to see how arbitrarily complicated behavior can be described with multiple processes, 
and it is straightforward to map the events in each process into our simulation structure. Indeed, 
it is fairly easy to construct models that cannot be physically realized using these structures. 
While it may not be apparent what the value of describing unrealizable systems is, this power can 
be very useful when modeling the environment that the system is subjected to. This is usually 
called the testbench, while the target system is called the design under test. It is very useful to be 
able to describe both in the same simulation environment.

16.3.4 RACE CONDITIONS

A race condition can occur in a concurrent system when the behavior of the system depends 
on the order of execution of two events that are logically unordered. The most common cause 

Process
 while (forever)
  while (!valid)
   wait (rising edge of clock)
  d <= data.in
  ready <= 0
  wait (rising edge of clock)
  for (i=0; i<10; i++)
   wait (rising edge of clock)
  dataout <= f(d)
  ready <= 1
 endwhile
endprocess

FiGURe 16.11 An example process.
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of this is when one process modifies a variable and another reads the same variable at the same 
 simulated time. This will not happen with state variables when delayed assignment is used, but 
it can happen with combinational variables, or with state variables if delayed assignment is not 
used. VHDL took the approach of making all assignments to state variables delayed, while Verilog 
did not. Thus, it is easier to write a model with race conditions in Verilog than in VHDL. There is 
an efficiency cost to delayed assignment of course, which is one of the reasons that VHDL simula-
tors are typically slower than Verilog simulators.

16.4 IMPACT OF LANGUAGES ON LOGIC SIMULATION

The three major hardware description languages, Verilog, VHDL, and SystemC, are the 
 primary languages used for hardware simulation today. All of them have the richness required 
to represent the vast majority of hardware designs. Verilog has more low-level capabilities 
than VHDL or SystemC, while SystemC has more high-level capabilities than VHDL or 
Verilog. They have common features that enable efficient simulation of hardware constructs, 
primarily hardware data types, hardware-oriented hierarchy, and hardware-oriented timing 
and synchronization.

16.4.1 DATA TYPES

One of the ways that hardware description languages differ from other programming languages 
is the data types they offer. Logic signals are either 1 or 0, or in some cases neither (i.e., undriven 
or floating). But real hardware can be more complicated, so it is often convenient to be able to 
model signals as a range of strengths. That is, a strong signal can override a weak signal. It is also 
convenient for simulation purposes to include an unknown value (x), which indicates that a 
value is either uninitialized, or driven by conflicting values. This range of possible values is most 
useful when modeling at low levels, which is why Verilog has the richest set of signal values and 
SystemC has the least.

All hardware description languages have data types that allow the explicit specification of 
bit widths. That is, it can be specified that a variable is n bits wide, where the maximum value of 
n is usually some large number. This is useful when describing buses and collections of signals 
that are to be treated as a single variable. There are also operations to go along with these data 
types, like concatenation and subset selection. Operations on these data types cause the simu-
lator to do more work than would be done in a normal C program, since the underlying com-
puter must use several instructions to accomplish them, rather than a single native instruction.

16.4.2 VARIABLES

Verilog, VHDL, and SystemC make a distinction between variables which are state variables and 
those which are combinational variables. This makes the simulator’s job easier because the classi-
fication is made by the programmer. In fact, a simulator could determine which variables are state 
variables and which are not by context. Verilog goes even further and requires the programmer 
to indicate which assignments are delayed assignments and which are not.

16.4.3 HIERARCHY

The organization of a model in a hardware description language consists of a collection of mod-
ules in a tree structure. This corresponds with the way hardware is built. Signals are passed 
between modules in the tree by means of input and output ports. As far as the simulation goes, 
the port connections between parent and child are the same as combinational logic assignments. 
That is, for an input port, the left-hand side of the assignment is the port variable in the child 
module, and the right-hand side is the port variable in the parent module. By including these 
constructs in the language, the user does not have to write so much code, but the simulator still 
has to do the same amount of work.
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16.4.4 TIME CONTROL

Hardware description languages offer a clock-based model of synchronization and event control. 
This makes synchronous logic circuits easy to write. Again, it does not make the simulator do any 
less work. The main characteristic is the definition of events in relation to one or more common 
signals, which are usually interpreted as a system clock signal, or a set of clock signals. Thus, 
a process can wait on the rising or falling edge of a signal, or either edge. The common way of 
indicating that two processes execute at the same time is to have both wait on the same edge of 
a common signal. At the RTL, where registers are explicitly instantiated, it is common to have 
hundreds or thousands of registers all triggered by the rising edge of a clock. This can be taken 
advantage of by the simulator to reduce the overhead of these events. Note however, that there 
is nothing inherently different about a clock signal from any other signal. The only difference is 
how it is used.

A Verilog description of a clock signal is shown in Figure 16.12a, a register using it is shown in 
Figure 16.12b, and a process using it is shown in Figure 16.12c.

16.4.5 COMBINATIONAL LOGIC

A distinctive feature of hardware description languages from a simulation point of view, is the 
inclusion of a separate construct to describe combinational or continuous logic. As previously 
described, combinational logic is composed of assignments to variables that are done reactively. 
That is, the assignment is evaluated and performed whenever any of its constituent variables 
changes. We saw earlier how propagation is handled in the simulator. Combinational expressions 
are evaluated only as a result of propagation. Their use is a natural way to represent hardware at 
the RTL, but their use imposes complications for the simulator, since a poor choice of when to 
evaluate them can have dramatic consequences on the running time of the simulation. Figure 16.13a 
shows a Verilog continuous assignment, and Figure 16.13b shows the same variable assignment 
written as a process. Note that in both cases, the expression evaluation and assignment will be 
performed whenever one of the right-hand side variables changes.

16.5 LOGIC SIMULATION TECHNIQUES

Simulation speed is defined as the ratio of simulation time to simulated time. Simulation time is 
the real time required to execute the simulation model, while simulated time is the time repre-
sented in the model. Because an essentially unbounded amount of simulation is required to verify 

reg clk;
reg [7:0] state, newstate;

clk = 0;
always @ (posedge clk)

always #10
state <= newstate;

clk = ~clk;
(a) (b)
always begin
 while (go == 0)
  @(posedge clk); //wait for go
 count = 0;
 while (count <10) // wait for 10 cycles
  @(posedge clk) count = count + 1;
 done <= 1; // raise flag
 @(posedge clk)
  done <= 0; // drop flag after one cycle
end
(c)

FiGURe 16.12 Description and use of a clock signal in Verilog (a) clock signal; (b) register using 
clock signal; (c) process using clock signal.
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the correct behavior of a complex digital design, simulation speed is very important. It is inter-
esting to note that in logic simulation, the simulation speed ratio is often called the slow-down, 
since the simulation takes longer than the real system, usually by orders of magnitude. However, 
in general system simulation, the simulation speed ratio is often called a speedup, since the simu-
lated time scale may be very large.

The underlying mechanics of logic simulation are as described above. Except in the case of 
cycle-based simulation as described below, all simulators use a scheduler that functions pretty 
much the same. The scheduler is responsible for selecting the next event to execute and transfer-
ring control to it. There are well-known algorithms for implementing schedulers, and all main-
stream logic simulators have reasonably well-optimized schedulers.

Nevertheless, different simulators can have vastly different performances on the same model 
written in the same language (or the same model written in a different language). The difference 
in execution efficiency between simulators is due to how the event routines are executed, how 
operations are executed, and especially how events are scheduled. It is not uncommon for two 
different simulators to execute a different number of events—differing by a factor of 2 or 3—for 
the same model, and still yield the same results.

16.5.1 INTERPRETED SIMULATION

Most early logic simulators were interpreters. That is, the simulator read in the model source, built 
some internal data structures, and encoded the event routine operations in a unique instruction 
set. Then, as the simulation was run, the event routines were interpreted by a special piece of 
code, the interpreter, which “executed” those custom instructions. This is a technique that has 
been used for many years to translate and execute programs in a variety of languages. In general, 
interpreted execution offers a good opportunity for debugging the program, since the interpreter 
can relate any errors directly to the source of the program. However, there is an efficiency cost. 
Interpreted execution is slow, because the interpreter has to do a lot of work for each instruction. 
As a result, there are few modern logic simulators that are interpreters.

16.5.2 COMPILED CODE SIMULATION

Logic simulators have been categorized as “compiled code” simulators to distinguish them from 
interpreters. A better description would be simply “compiler” [1]. A compiled code simulator is 
nothing more than a compiler for the simulation language it implements. Fundamentally, it dif-
fers from an interpreter in how the event routines are executed. While an interpreter executes 
the event routines by executing a sequence of operations represented as higher-level instructions, 
a compiler prepares the event routines so that they can be executed directly by the host machine. 
That is, an event routine is compiled into machine code so that it can be called as a subroutine. 
Essentially, the compiler has to do more work initially, but it produces event routines that execute 
much faster. It is common for compiled code to execute one to two orders of magnitude faster 
than interpreted code. That difference in efficiency has been observed across many different pro-
gramming languages and many different underlying machine architectures. It is no surprise that 
compiled logic simulators typically run between 10 and 20 times faster than interpreted logic 
simulators on the same models.

It is common for compiled logic simulators to emit event routine code in C and then use the 
host machine’s C compiler to produce machine code. The C code emitted is nothing more than 
an intermediate form of the compiled program, with the C compiler serving as the last phase of 

assign var = a + (b ^ c);
always @(a or b or c)

var = a + (b ^ c);
(a) (b)

FiGURe 16.13 Logic written as (a) continuous assignment; (b) process.
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the compiling process. In general, there is little difference in efficiency between compiled simula-
tors that use the host C compiler to produce machine instructions and those that emit machine 
instructions directly.

It is worth noting that the relative efficiency of interpreters and compilers is dependent on the 
level of abstraction of the model being simulated. The lower the level, the smaller the difference. 
The fastest gate-level simulator, even today (2006), is still an interpreted Verilog simulator.

16.5.3 CYCLE-BASED SIMULATION

In the general case, updating a variable value may have a time delay which results in an event 
being scheduled and then executed by the scheduling loop. In a typical synchronous logic model, 
every clock cycle could have many intermediate events within the cycle when different vari-
ables are updated. In most cases however, the same state behavior will be observed at the clock 
boundaries if those intermediate events are collapsed to two events, one at the clock edge and 
one immediately after. This is generally called cycle-based simulation. Since the state behavior 
is all that is important when verifying logical correctness, this simplification is appealing. The 
question then becomes, how much faster can you simulate a model using this abstraction?

A number of different cycle-based techniques have been tried. The obvious way to do it was 
mentioned previously, where every expression in the model is ordered and executed once in every 
cycle. This is sometimes called ubiquitous cycle-based simulation. The big advantage this has is 
that there is no overhead of putting events on the future event list or taking them off. In an RTL 
logic simulation, this overhead can amount to as much as 40% of the execution time. For some 
designs this static scheduling has proven effective, but the big drawback it has is that if the model 
has few state variables changing in each cycle, there is a lot of wasted work done. This technique 
is seldom used for commercial logic simulators now.

However, the ubiquitous cycle-based technique is amenable to hardware acceleration. The 
scheduling loop is simple enough in that it is relatively easy to program an FPGA-based hardware 
device to perform the simulation. Products that do this are called emulators, and they can per-
form logic simulations several orders of magnitude faster than software simulators.

16.5.4 LEVEL OF ABSTRACTION AND SPEED

As noted above, while not limited to these levels, the primary levels of abstraction that logic sim-
ulation is concerned with are gate level, RTL, and behavioral level. From a simulation perspective, 
the main difference between these levels is the number of events that are executed. Between RTL 
and gate level, the primary abstraction is the width of operands and results. At the RTL, multiple-
bit variables, or vectors in Verilog terminology, are operated on as a unit. At gate level, vectors are 
typically split into their individual bits. Thus, at gate level, every logical operation is performed 
by a hardware element, which requires an event to produce its output. If the timing of the design 
is important for the simulation, then simulating each physical component is required, since each 
component may have a different delay.

At the RTL, operations are typically performed as aggregates on their input variables, produc-
ing vectors as results. It is easy to see that anding two 16-bit vectors to produce a 16-bit result can 
be done with one event at RTL, while it will take 16 events at gate level. Since the event routine 
itself takes about the same amount of time to and two 1-bit inputs as two 16-bit inputs, the gate-
level simulation will run 16 times slower than the RTL simulation. It is common for the same 
design to simulate an order of magnitude faster at RTL than at gate level.

Moving up to behavioral level, the primary abstraction is the reduction of clocked events. That 
is, in behavioral code, variable values are computed without regard to the mechanics of the com-
putation. A computation that may take several cycles in the ultimate hardware will be done in just 
one event. Synchronization in behavioral code is typically done via communication signals rather 
than fixed-cycle counts. Consequently, the simulation can be done with significantly fewer events 
at behavioral level than at RTL. Again, the difference between simulation time for a behavioral 
model and the same design at the RTL can be an order of magnitude.
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16.5.5 CO-SIMULATION METHODS

There are a variety of hardware simulation languages that have been invented and used over the years. 
In addition to the primary HDLs, Verilog, VHDL, and SystemC, other languages have been created to 
write testbench code in, most prominently e and Vera. In addition, code written in other more general-
purpose languages (C, PERL, etc.) is often incorporated into a simulation model. While these other 
languages are mainly used for modeling the parts of the system that make up the environment for the 
hardware design, there is no difference between them and the hardware design as far as the simulator 
is concerned. An event is an event, whether in the hardware model or the environment model.

Integrating this multiplicity of languages into a single simulation model can be a problem. 
Integrating a general-purpose programming language with a simulation language is not espe-
cially hard, since there is no concept of time in general-purpose languages. Thus, all one really 
needs to do is allow an escape mechanism so that code written in the general-purpose language 
can be called in an event routine. Providing an API so that the general-purpose language code 
can schedule events and get called as an event routine is pretty straightforward. All mainstream 
logic simulators provide this capability.

Integrating a simulator with another logic simulator is a more difficult problem. Ideally, a logic 
simulator would be able to understand all the required simulation languages and compile a model 
written in all of them into a single model. Practically, logic simulators are created to handle one 
language, and integration with other languages is done at a coarser level of granularity.

The simplest way to integrate models written in two or more languages is to compile the com-
ponents with separate compilers, and then put them together by coordinating their schedulers. 
This is called co-simulation. That is, each simulator runs as it normally would, keeping its own 
scheduler and future event list as well as other local data, and synchronizing through the sched-
ulers. This can be done as shown in Figure 16.14. The points marked as <==n==> are points at 
which the schedulers must synchronize with each other. All schedulers must have finished the 
preceding section before any can proceed to the next section.

The only remaining difficulty is that propagation may be required between parts of the model 
that reside in different simulators. That is, a Verilog module could have a variable whose value 
depends on a variable in a VHDL module. It is easy to see how to do this—just provide a way for 
the VHDL model to propagate a value onto the Verilog model’s propagate list. Actually doing it in 
a concise and automatic way is more problematic, and this problem has been solved in a variety of 
ways through a combination of language features (to identify a variable as external) and an API. 
Sometimes, this ability is simply restricted to module ports.

16.5.6 SINGLE-KERNEL SIMULATORS

Co-simulation with multiple schedulers works, but the coarse granularity of the synchroniza-
tion can impose a substantial overhead if there are many propagation events across the simula-
tor boundary. In general, the API calls between simulators involve a fair amount of overhead as 

do (forever)
 t = next t <==1==>
 while (m = future_event_list(t))
  execute event routine m
 endwhile <==2==>
 // update the variable values
 while (u = update_list(t))
  u.v = u.t_v
  put_on_propagate_list(c(u.v), t+u.d)
 endwhile <==3==>
 // propagate changed values
 while (c = propagatelist(t))
  c.v = eval(c.expr)
  put_on_propagate_list(c(c.v), t+c.d)
 endwhile <==4==>
enddo

do (forever)
 t = next t
 while (m = future_event_list(t))
  execute event routine m
 endwhile
 // update the variable values
 while (u = update_list(t))
  u.v = u.t_v
  put_on_propagate_list(c(u.v), t+u.d)
 endwhile
 // propagate changed values
 while (c = propagatelist(t))
  c.v = eval(c.expr)
  put_on_propagate_list(c(c.v), t+c.d)
 endwhile
enddo

FiGURe 16.14 Synchronization points in co-simulation.
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each one must establish its environment on every call. It would be more efficient if the model 
 components written in all the languages could use the same scheduler. This is the approach taken 
by the so-called single-kernel simulators.

In essence, simulators that handle multiple languages with a single scheduler have sepa-
rate compilers for each language but they all use the same scheduler. That avoids the need for 
synchronization between different schedulers, and can save a substantial amount of overhead. 
There are commercial single-kernel simulators for Verilog and VHDL, and Verilog, VHDL, 
and SystemC.

16.6 IMPACT OF HVLs ON SIMULATION

Hardware verification languages (HVLs) came into vogue as special-purpose languages for writ-
ing testbenches. They provide convenient means of generating stimulus for a hardware model, and 
also provide useful abstractions for modeling the hardware model’s environment. For instance, 
it is generally easier to write a communication protocol that provides correct, variable input in 
an HVL than it is to write the same thing in an HDL. From the simulator’s point of view, the 
mechanics of dealing with an HVL are the same as co-simulation. Indeed, an HVL is just another 
flavor of simulation language. Simulators that integrate an HVL and an HDL into a single sched-
uler are becoming more common.

16.7 SUMMARY

In this chapter, we have covered many of the details of digital logic simulation. Logic simula-
tion is simply a special case of discrete event simulation, which has a long history in general 
system modeling. The speed of simulation is proportional to the level of detail in the simulation 
model, which in turn is determined by the level of abstraction at which the model is expressed. 
In logic simulation, the three common levels of abstraction are gate level, RTL, and behavioral 
level. There are techniques like cycle simulation used to speed up simulation, as well as tech-
niques like co-simulation used to improve the hardware modeling capability. Ultimately, logic 
simulation is the most general technique available to verify that a hardware design does what 
it is intended to do.
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17.1 INTRODUCTION

Multimillion gate circuits currently under design with the latest CMOS technologies include 
not only hardwired functionalities but also embedded software running most often on  multiple 
 processors. This complexity drives the need for extensions of the traditional RTL-to-layout design 
and verification flow.

Systems on chip (SoCs), as the name implies, are complete systems composed of  processors, 
buses, hardware accelerators, input/output (I/O) peripherals, analog/RF devices, memories, 
and embedded software. Fifteen years ago, these components were assembled on boards; nowa-
days, they can be embedded into a single circuit. This skyrocketing complexity has two major 
consequences: (1) mandatory reuse of many existing IPs to avoid redesigning the entire chip 
from scratch for each new generation and (2) employment of embedded software to provide 
major parts of the expected functionality of the chip. Allowing software development to start 
very early in the development cycle is, therefore, of paramount importance to reduce time to 
market. Meanwhile, real-time requirements are key parameters of the specifications, especially 
in the application domains targeted by semiconductor companies such as STMicroelectronics 
(e.g., automotive, multimedia). It is, therefore, equally important to be able to analyze the 
expected real-time behavior of a given SoC architecture. Another crucial issue is the functional 
verification of IPs composing the system as well as their integration. The design flow must sup-
port an efficient verification process to reduce the development time and avoid silicon respins 
that could jeopardize the return on investment of the product under design.

The guidelines and methodology discussed in this chapter are based on more than a decade 
of industrial experience in electronic system-level (ESL) design with transaction-level modeling 
(TLM) work that the team of authors did at STMicroelectronics, ranging from base technology 
development, to industrial deployment in product groups, to ESL standardization with IP-XACT 
and SystemC/TLM [1]. The team started investigations on high-level modeling in the late 1990s 
and identified about 15 proprietary languages at that time, but there is no commercial product 
available to fully cover the needs. STMicroelectronics decided to invest in the development of a 
modeling kit to support the needs related to the complex and fast-moving architectures of our 
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SoCs. Model portability across different simulation environments was a key concern to enable 
early adoption and, later, model reuse—to serve internal and external customers.

During the 1990s, more and more designs were embedding several processors, bus masters 
(such as DMAs), and a number of peripherals and subsystems. The need for models with fewer 
details than RTL that would be available earlier and would simulate faster became obvious in the 
SoC area. As the number of processors increased in SoCs, so did the need to easily execute and 
debug software during presilicon verification and validation phases. This involved test software 
(used for driving functional verification of RTL-level hardware), as well as production software that 
would be shipped with the SoC to the customer.

The kind of SoC model needed to address this problem must provide a view of the hardware 
tailored for software execution, typically capturing data movement to and from memory and reg-
isters, as well as interrupts from peripherals. As software programmers most often do not require 
visibility at the cycle level, but rather need simulation fast enough for interactive debugging, there 
was an opportunity to create a level of modeling that would not be cycle accurate (CA) but would 
transfer data as single block read/write (data transaction) whenever possible: TLM. While this 
concept existed for some time, its implementation on top of SystemC in the early 2000s made 
TLM a widely recognized level of modeling in the system flow [2]. The Open SystemC Initiative 
TLM Working Group, founded in 2003, contributed to its standardization as an Open SystemC 
Initiative* and, later on, as an integral part of IEEE 1666-2011 [2]. TLM also appeared as a mod-
eling level on top of other languages, such as SystemVerilog, to help build testbenches. SystemC 
TLM models (C++ based) are used along with software (most often C based) in a natural fit, all 
along the system design flow, from architecture to hardware functional verification, to firmware 
pre- and postsilicon debug, and to software-on-hardware presilicon validation [3,4].

The structure of this chapter is as follows: first, we introduce the types of presilicon platforms 
in use today and their benefits in the flow. Then, we discuss the key factors required to ensure the 
successful development and reuse of such platforms. We insist on the importance of modeling 
standards in system-level design and identify missing pieces that would further increase model 
interoperability and facilitate platform integration. System design automation is then discussed, 
as well as procurement requirements. Before concluding, we summarize the main emerging 
needs identified from intensive usage of the virtual platforms in product groups: representation 
of clock trees, power supplies, and reset, software-in-the-loop early power estimates, capture of 
system synchronization aspects, etc.

17.2 RISE OF PRESILICON PLATFORMS

An SoC flow exploiting transactional platforms can be summarized by (somewhat overlap-
ping) steps such as architecture, design, joint verification of hardware (including firmware) and 
 software, as well as system pre- and postsilicon validation.

This section describes the different transactional platforms exploited by the various categories of 
users during these steps. We first review the major platform types and introduce key concepts such as 
transactors. We then explore how the different user needs are addressed by the various platform types.

In the following sections, we focus on modeling the digital parts of SoCs. We also acknowledge 
the possibility and interest in modeling analog blocks using the AMS extensions of the SystemC 
language and supporting simulators [5]. From our experience, very detailed AMS models execute 
too slowly to support interactive software debug sessions, so caution should be taken to ensure a 
balance between accuracy of analog parts and simulation speed requirements.

17.2.1 TRANSACTIONAL PLATFORM TYPES AND USAGES

The simplest type of transaction-level platform contains only transaction-level models (i.e., SystemC/
TLM models) without using other abstraction levels (such as RTL). These platforms are typically used 
for software development activities such as firmware, OS kernel porting and drivers, middleware, 

*  Now Accellera Systems Initiative.
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and some hardware-related application features. In addition, these platforms are used by engineers 
preparing software-driven tests (typically in the C language) for the hardware functional verification 
and validation. In this chapter, we refer to such platforms as “pure virtual prototypes.”

In other situations, it is necessary to combine a virtual prototype with some RTL blocks 
(see Figure 17.1). Depending on the need, VHDL or Verilog RTL models may be included for one or 
several IPs or subsystems. In some cases, the whole SoC is simulated with RTL models, except for 
the processor or processor subsystem (to leverage the speedup of a TLM abstraction of the CPU). To 
interface the TLM part and the RTL part, a special simulation component is used: a transactor [6,7], 
which performs the translation between TLM abstract transactions and corresponding RTL signal 
sequences. Transactors are available from third parties, such as Bluespec,* Cadence,† Mentor,‡ and 
Synopsys,§ for many standard protocols, such as AMBA, USB, and PCIe. They may also be developed 
on purpose for design-specific protocols, such as direct IP-to-IP links, if needed by the verification 
plan. We call the simulations that integrate both TLM and RTL parts as “TLM cosimulations.”

When greater simulation speed is required for the RTL parts of a TLM cosimulation, these 
RTL models can be moved to a hardware emulator machine. These machines are an easy means 
to speed up simulation, but they are generally available in limited quantity at a given company 
due to their cost. We call “TLM coemulation” the corresponding TLM/RTL platform.

As an alternative or complement to hardware emulation, it is possible to use field- programmable 
gate array (FPGA) boards to host the RTL portions. In that case, we call the resulting TLM/RTL 
mix a “TLM coprototyping platform.” The main advantage is the wider deployment of such plat-
forms as FPGA boards are less costly than a hardware emulator.¶

Next, we cover the various user categories: developers and validation engineers, designers, and 
architects. For each category, we present the most useful platform types.

17.2.1.1 MIDDLEWARE AND APPLICATION DEVELOPMENT

Development of these software layers requires satisfying two important properties: simulation 
speed and observability. Indeed, as developers spend their time doing interactive debugging, it is 
important that they do not wait when stepping through the execution of their embedded C code. 

* http://www.bluespec.com/.
† http://www.cadence.com/.
‡ http://s3.mentor.com/.
§ http://www.synopsys.com/.
¶ The interested reader may refer to Chapter 19 for more information.
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This implies efficient infrastructure to execute the embedded software, as well as abstract enough 
TLM models (TLM loosely timed [2]), for the rest of the hardware. Regarding observability, users 
require at least the same level of observability as they would expect from a debugger on the 
physical target: contents of memory and registers accessible through address map, possibility to 
suspend upon interrupt, etc.

Running the software requires a processor model, together with the same address map 
and interrupt network as the future silicon. Several processor modeling technologies exist as 
third-party or in-house solutions. One option is to integrate an instruction set simulator (ISS), expos-
ing the targeted instruction set. In this case, the functional effect of the instructions within 
the embedded software binary is simulated by the ISS. An alternate solution is to execute the 
embedded software on a processor model relying on host processor instructions, while keep-
ing complete functional accuracy for the rest of targeted processor specifications; this is usu-
ally called native wrappers/host code execution [8,9]. Here, it is the functional effect of the 
actual source code (C or C++) that is reproduced, by compiling the embedded software for 
the instruction set of the machine executing the simulation (host), based on the fact that 
compilation to a different target will not change its functionality. Obviously, this latter way of 
executing software brings some minor restrictions (assembly code needs to be rewritten in C), 
but in our experience, this methodology brings unrivaled software execution performance. It 
is used successfully in production not only for simple C tests but also for operating systems 
like Linux or FreeRTOS.

These software execution technologies available for TLM platforms satisfy the simulation 
speed requirement. The other part of the equation regarding efficient software debug with vir-
tual platforms relies on the simulation speed of TLM models for the rest of the hardware. Our 
experience in that area is that both the level of detail and proper modeling practices are crucial 
to guarantee efficiency. It is tempting to target cycle accuracy or even precise timing when writ-
ing TLM models for embedded software execution. However, this inevitably impedes simulation 
speed without providing significant benefits. We realized that only functional timing was neces-
sary, together with a way to capture uncertainties about the other time values (see Section 17.4.4 
for more details). Finally, modeling practices also play a key role in determining simulation speed. 
Causes of inefficiency range from bad software practices (naïve loops with repeated memory allo-
cations/deallocations, unused string setup, polling instead of explicit synchronization) to clumsy 
modeling (capturing a timer with a process that awakes at each clock cycle).

Regarding observability, TLM platforms actually provide more information than execution 
on the real chip. It is possible to inspect details of the hardware behavior during the embedded 
software execution, without the traditional limitations of silicon debugging. In addition, TLM 
platforms can raise crucial warnings about hardware misuses, which are generally symptoms of 
software bugs. The advanced user can set breakpoints in both their own software and the C++ 
code of the various TLM models, which is a powerful codebug capability in order to help under-
stand the hardware–software interactions. The complexity of current SoCs, with multiple cores 
and cache coherency, not to mention OS virtualization and security, makes these capabilities 
even more important, as the developer strongly needs to understand what is happening in the 
SoC architecture. Another trend is also developing, due to the same observability advantages: 
postsilicon use of TLM platforms. Developers tend to use the virtual prototype to better under-
stand the root causes behind corner-case situations experienced on the final chip.

17.2.1.2 FIRMWARE AND LOW-LEVEL DRIVER DEVELOPMENT

Developers for these layers of software benefit from pure virtual prototypes in the same way as 
upper-layer developers do (see previous section). It is important to mention that even at that level 
of the software stack, the TLM platform captures enough detail to allow the actual execution of 
the software/firmware and also to provide interesting observability features.

17.2.1.3 IP AND SUBSYSTEM DESIGN FUNCTIONAL VERIFICATION

The success of an SoC is not only determined by its processor (efficient implementation, use 
of a popular instruction set, etc.) but also based on its integration of specialized subsystems 
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(see Figure 17.2). A subsystem is a set of hardware IPs that, together with a dedicated processor 
(or set of processors) running firmware, provide the most efficient implementation of a given 
functionality. It is controlled by the main processor of the SoC and may exchange data and 
interrupts with other subsystems. In addition, a subsystem may communicate with the outside 
world through I/Os. For instance, a TVOUT subsystem will communicate with an external 
display through HDMI connections.

Our strategy is to rely on SystemC/TLM platforms to develop C tests for verification pur-
poses, which will be reused for validation later in the project. Such platforms require a basic 
backbone to execute the test software, together with a TLM reference model of the subsystem 
to be verified. This approach separates test development from actual RTL debug: this results 
in more mature tests (as they have been developed using a reference model) and eases RTL 
verification.

Other methods for functional verification exist, such as universal verification methodology 
(UVM) [10], assertion-based verification, or formal verification techniques. They do not address 
this strategy and are not covered here. Interested readers may refer to [11] or Chapter 18 for more 
information.

There are two types of complementary verification tests. Internal subsystem tests typically 
replace the actual firmware, when the goal is to verify the subsystem’s hardware as seen from the 
subsystem’s dedicated processor. In this case, a white box subsystem model is used, describing the 
several IPs and internal buses involved (see Figure 17.3).

External subsystem tests, running on the main processor of the SoC, aim at verifying the 
functionality of the subsystem as a whole. The model of the subsystem may be here a black box 
model, exposing only the system-level-relevant functional interfaces (mainly bit-true registers, 
data, and interrupts) and having a more abstract model for the subsystem internals. This kind of 
model typically does not reflect the separation between hardware and firmware internal to the 
subsystem (see Figure 17.4).

For instance, for a video decoder, the black box model internals may be the reference algo-
rithm coming from the corresponding standard committee. When the subsystem is a simple 
variant of a previous generation, the choice may be to skip the white box and go directly to a black 
box verification platform.

Once the verification tests are developed, RTL debug is performed by replacing the TLM refer-
ence model by the RTL of the IP to be verified, using transactors, yielding a TLM cosimulation 
platform. It allows debugging the RTL in a very efficient way, benefitting from the speed and 
observability of the TLM subset.
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When the RTL part is too slow to simulate (e.g., video streams taking days or weeks to be decoded), 
faster execution is achievable by exploiting a TLM coemulation or coprototyping platform. The 
TLM part remains unchanged, while the RTL moves to a hardware emulator or an FPGA board.

17.2.1.4 SoC VERIFICATION AND SYSTEM VALIDATION

SoC RTL verification and SoC validation benefit primarily from mixed TLM/RTL cosimulation 
platforms. They are used by SoC RTL integration verification, where observability is crucial. 
The validation team benefits from TLM coemulation platforms as speed is essential to run long, 
data-intensive test suites.

To build a platform suited to SoC verification, the TLM reference models of the various subsys-
tems are integrated with an SoC backbone using the memory map of the final chip (Figure 17.5). 
At this stage, IP verification C tests can be directly reused in SoC verification test suites, saving 
a lot of time and effort during the SoC project and providing a golden reference (stimuli and 
expected data) across IP and SoC phases and teams. When doing the actual RTL debug, the RTL 
part represents most of the SoC within the simulation. Only the processor subsystem is kept at 
the TLM abstraction level for faster embedded software execution (Figure 17.6).

17.2.1.5 ARCHITECTURE EXPLORATION

With today’s complex designs, it is no longer possible to predict and estimate the performance 
of the final system using spreadsheet formulas. Such spreadsheets typically include hundreds of 
formulas that are very hard to maintain over the project. Moreover, formulas cannot represent 
the dynamic behavior of software-rich systems (such as on-the-fly mode changes generated by 
user interactions).

SoC system architects, hardware architects, and software architects need a simulation 
platform with the following characteristics:

 ◾ Available early, from the beginning of the project
 ◾ Easy to modify, for quick what-if architecture study loops
 ◾ Easy to get performance estimates from, to help the SoC hardware and software organi-

zations commit to guarantees of performance for the future product
 ◾ Easy to understand by other stakeholders of the system design flow, making the platform 
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These requirements are somewhat contradictory: for instance, it may be difficult to get estimates 
that are precise enough to take SoC architecture decisions when using a model intended for the 
beginning of the project. In practice, the availability of models is the driving factor for an archi-
tect to select the virtual platform that is the closest to his or her needs.

For the SoC architecture phase, the RTL of the various IPs may exist (direct reuse from a 
previous generation) or may be obtained easily (existing configurable IP). In these two cases, 
the IP can be integrated directly in the simulation. If the simulation speed of the RTL IP is not 
 satisfactory, it is possible to use RTL-to-SystemC translator tools to produce SystemC cycle accu-
rate (CA)  models. Commercial solutions such as Carbon Model Studio* or HIFSuite† can be used; 
open-source tools like Verilator‡ are also available. These models are identical in accuracy to the 
RTL (at the boundaries of the IP) but simulate an order of magnitude faster. It is also possible 
to rely on third-party libraries, which generally include SystemC CA models (processors, hard-
ware accelerators, etc.). The use of a hardware emulator can also be envisaged for fast execution. 
However, in the latter case, the project time to be spent on the first mapping and for analyzing the 
results needs to be considered before betting on this approach for the architecture phase.

When no RTL of the IP is available, a TLM model may already exist or could be possible in 
terms of effort. Such models can be used as part of the performance study platform, with some 
care. They need to be approximately timed (TLM-AT [2]) to be useful. Depending on the goal of 
the architecture study, it may be necessary to model all IP internals (including TLM-AT submod-
ules) or an abstraction could be made, exposing only the interface of the IP model to the rest of 
the platform. Such models are notoriously time consuming to create and are not 100% accurate. 
Furthermore, it is difficult to assess their contribution to the global accuracy of the platform. 
Hence, these models do not help architects to commit on performances of the future silicon, 
except in simple architecture cases. However, they may be better than nothing, because they 
provide a way to actually run simulations and help architects to compare different architecture 
options, in a relative way.

*  http://www.carbondesignsystems.com/.
†  http://www.hifsuite.com/index.php/home.
‡  http://www.veripool.org/wiki/verilator.
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verification Optional: In-system verif. of DUT

Using HDL + SystemC 
mixed-language simulator 

Transactor

FiGURe 17.6 From IP to system-on-chip verification—step 2.

http://www.carbondesignsystems.com/
http://www.hifsuite.com/index.php/home
http://www.veripool.org/wiki/verilator
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Last, it is also possible that neither RTL models nor TLM functional models are available for 
a given IP (for example, new hardware blocks at early stages of a project). The new blocks may, 
in this frequent case, be represented by IP traffic generators (IPTGs) [12]. An IPTG  typically 
generates functional traffic (read/write, send/receive transactions, etc.) at the TLM level, with 
a configurable profile (such as sizes of block transfers or bursts) corresponding to the IP being 
modeled.

When the aim of the study is to estimate SoC interconnect (number of nodes for a network on 
chip, internode widths, frequencies, FIFO sizes, etc.), the IPTG TLM-level traffic is connected to 
a CA model of the interconnect with transactors.

When the aim of the study is a software performance estimate, a simpler, TLM-AT model of 
the interconnect may suffice. Again, the actual level of accuracy obtained in such a setup is still 
the subject of ongoing research. In practice, interconnects are most often built from design kits 
offering parameterized preexisting modules (such as network-on-chip routing nodes) and related 
assembly tools. Such assembly makes it possible to quickly build CA or RTL models of intercon-
nect variants. For this reason, CA/RTL models of the interconnect are generally used, with their 
TLM approximately timed counterparts being employed for software-intensive benchmarks or 
reference applications used in what-if architecture loops.

17.2.2 IMPACTS ON THE DESIGN CHAIN

The benefits of presilicon debug of software for the SoC under development (time to market, early 
and powerful codebug of software with hardware) can be propagated to the final customer, who 
has to develop or port their own software. Pure virtual prototypes are the transactional platforms 
of choice for this activity. In some cases, the virtual prototypes can be delivered very quickly, as 
only new IPs or IP variants would require extra modeling effort. It is also possible that the miss-
ing TLM model IPs are developed by a third-party SoC or IP provider (who is sometimes the final 
customer of the SoC itself), speeding up the availability of the platform. The benefits are obvious: 
the final customer is exposed early to a prototype of the product; these virtual prototypes can 
be easily replicated and upgraded worldwide without per-board return or onsite upgrade by field 
application engineers.

The same advantages are available in other contexts, for example, when the SoC is  codeveloped 
by several companies. In this case, the virtual prototype provides a live, simulatable reference 
across companies. As shown earlier, this reference can be leveraged in many areas: from presili-
con OS driver development to verification test reuse between the various teams. In addition, it 
provides a tool to help quickly spot integration or interoperability issues, hence improving the 
time to market and quality of the end product, as well as intercompany cooperation.

17.2.3 PLATFORMS AT A GLANCE

The types of virtual platforms and types of uses described in the previous paragraphs 
(see Figure  17.1) can be summarized in Table 17.1.

tABLe 17.1 Summary of types of Virtual Platforms and Uses

Virtual Platform types and 
Uses (Pre- and Postsilicon) 

Soc Architect 
Phase 

iP Design and 
Verification 

Soc Design and 
Verification 

Soc 
Validation Software 

Traffic generator platform Yes

Pure virtual prototype Yes Yes Yes Yes

TLM cosimulation with RTL Yes Yes Yes

TLM coemulation Yes Yes Yes Yes

TLM coprototype Yes Yes
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The ecosystem keeps growing. All major EDA providers, as well as a number of specialized 
companies, have built an offer of tools, models, and services. A good indicator of the vitality of the 
ecosystem is the large number of organizations participating to the Accellera Systems Initiative 
(ASI)* organization, in charge of the standardization of this area.

17.3 PLATFORM DEVELOPMENT

Virtual prototype development has triggered new activities related to IP modeling and platform 
integration. In this section, we devise the importance of standards, how platform automation 
helps to increase productivity, and finally the procurement strategy.

17.3.1 USAGE-DRIVEN MODELING GUIDELINES

In an industrial context, it is crucial to ensure model reuse over time in various simulation envi-
ronments. Therefore, special attention is paid to define and use the appropriate standards, as 
described next.

17.3.1.1 STANDARDS AND THE PLATFORMS ECOSYSTEM

In this section, we give an overview of the importance of standards in the system-level design 
area. It is possible to categorize the various types of standards as follows:

 ◾ Design and modeling language standards, such as VHDL/Verilog/SystemVerilog and 
SystemC: From an industrial perspective, they are important in order to ensure model 
usability over a multiyear period and to secure corresponding investments.

 ◾ Methodology standard: UVM [10] is emerging as a recognized standard to rationalize 
the structure of RTL verification environments and ease reuse and sharing of verifica-
tion platforms.

 ◾ Interoperability standards, which we describe in more detail later on in this section: 
One can list model-to-model interoperability standards like SystemC/TLM [13], as 
well as model-to-tool interoperability standards like APIs for transaction recording as 
defined in the SystemC Verification Library [14] or parameter definitions as defined in 
the upcoming cci_param standard [15].

The availability of interoperability standards is fundamental, as they impact model developers 
and platform integrators as well as end users.

Model-to-tool interoperability standards enable models to interact with various tools through 
well-defined interfaces. This is of utmost importance to ensure portability of models across CAD 
environments. Indeed, when such standards are not available, model developers have to include 
proprietary libraries in their models to support a given tool (e.g., relying on a given modeling 
object to allow a register to be seen in a register introspection tool). One proprietary library 
from one vendor will rarely work in environments provided by other vendors. This creates extra 
implementation and validation effort on the shoulders of model developers and makes it difficult 
to reuse models across teams or organizations. Getting standard model-to-tool interfaces also 
improves the end user experience. With them, the user can choose the tool environment they are 
most comfortable with, without asking for any changes in the models.

Model-to-model interoperability standards facilitate integration of TLM models to create vir-
tual prototypes. In the absence of such standards, platform integrators receive models based on 
different and often incompatible modeling technologies. The integration of foreign models then 
requires the following steps:

 ◾ Understanding of the concepts of the foreign modeling technology
 ◾ Identification of the integration strategy
 ◾ Implementation and validation of the appropriate adapter or wrapper

* http://www.accellera.org/.

http://www.accellera.org/
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All these steps must be performed for all foreign technologies and are obviously not cost effec-
tive. Moreover, adding adapters is a cause of integration bugs and negatively impacts the overall 
simulation performance. The SystemC TLM-2 standard [13] is an example of model-to-model 
interoperability standard for memory-mapped bus interfaces.

Modeling standards offer a great opportunity to help developers create their models, consid-
ering the standard as a guideline, instead of building models from the ground up. This gives a 
framework where examples are usually available and provides guidance to implement the right 
interfaces. Additionally, modeling standards usually include a set of rules to comply with, which 
is crucial to ensure interoperability. Accompanying the standards, release of supplemental mate-
rial, like a reference implementation, significantly helps model developers to ramp up.

Standards are an ecosystem enabler. The growth rate of the ESL ecosystem has been quite dis-
appointing during the last decade. One of the major reasons for the slow ramp-up of the market 
has been the absence of standards. As long as proprietary solutions were dominating the techni-
cal space, it was difficult to get interoperable commercial offers for models and tools. As a con-
sequence, customers were reluctant to significantly invest in these solutions. When standards 
become available, IP providers can extend their offerings with models of their IPs that can interop-
erate with models from other parties, facilitating virtual platform integration. Likewise, platform 
integrators can adopt tools from various providers without creating unnecessary dependencies 
or constraints on models. The availability of standards also creates the opportunity for new, 
dynamic participants like start-ups to penetrate the market and offer innovative products with 
high added value. Standards are therefore the seed to initiate a rich and interoperable ecosystem.

As far as the community is concerned, the existence of ESL standards is a great opportunity 
to educate people along the design chain: IP and tool suppliers, IP sourcing teams, and end 
customers can adopt and spread good practices. From the academic perspective, educational 
programs can be built in engineering schools to provide the industry with highly skilled model-
ing engineers.

ESL standards are delivered as a normative document, usually called a Language Reference 
Manual. When it comes to model implementation, they must also be implemented as pieces of 
C++/SystemC.

Tool vendors* are offering commercial implementations of the standards, in their simulators 
or associated tools. Benefits of these implementations include an easy installation process and 
availability of documentation and support. The integration of various tools into ESL frameworks 
can offer a good added value, as vendors can propose performance-optimized implementations, 
extended functionalities, and coupling between complementary tools. However, this can put 
technical constraints on the environment: version of supported compilers, ability to link models 
with specific libraries, etc.

Some ESL standards, such as SystemC, also come with an open-source implementation. From 
the model validation perspective, such an implementation is fundamental to provide a refer-
ence point. Considering that the underlying technology is C++, it is critical that this point is 
neutral with respect to any commercial implementation. As an example, as IP providers deliver 
their models as binary code, for obvious reasons, this introduces a dependency on the version of 
SystemC used during the compilation process. When the platform integrator receives models 
from several providers, alignment to a single configuration needs to be ensured. From our experi-
ence, it is very difficult to have an IP provider release a binary package for a SystemC implemen-
tation provided by a competing vendor. The open-source implementation fully plays its neutral 
ground role, as the IP model can be compiled against this freely available version and released 
without simulator-related licensing issues.

There is a strong benefit of keeping an open-source implementation of the SystemC simula-
tion kernel. This strategy helps a wide community of participants to develop added-value tools 
that are built on top and beside simulation kernels, as well as connections to other simulators. In 
addition, there is a strong interest to share maintenance costs of the kernel, seen as an enabler of 
added-value technologies, through an open-source approach.

* Several companies, including major EDA and more specialized providers, are offering commercial SystemC simulators.
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17.3.1.2 MISSING PIECES

Modeling standards are still in their infancy. SystemC has been standardized as IEEE 1666 in 
2005 and revised in 2011, integrating especially the TLM-1 and TLM-2 model-to-model  standards [2]. 
However, this only covers memory-mapped bus interfaces, whereas the industry needs to inte-
grate IPs with additional connections. Not every interface in this domain needs a standard TLM 
definition. Focus should be put on interfaces actually required when connecting IPs from dif-
ferent suppliers. In particular, some point-to-point protocols or very specific communication 
mechanisms have less need to be standardized. ST, Cadence, and ARM have joined forces to 
create several technical proposals, both in model-to-model and model-to-tool areas, which have 
been donated to the ASI to contribute to further standardization. We have listed here the vari-
ous needs, sorted by perceived urgency and underlined the ones that are addressed as part of 
ST/Cadence/ARM joint proposals [16] and shared with ecosystem partners.

Improving model-to-model interoperability requires standard interfaces in the following 
areas:

 ◾ Wire modeling: This is the most common type of interface encountered in IP integration, 
after memory-mapped bus interfaces. SystemC already provides a class for modeling 
such wires, called sc_signal. But it has proven to be too focused on the RTL abstraction 
level, with several drawbacks when used in TLM modeling. In particular, changes in 
value are not seen immediately, but at the next delta cycle, which is at odds with TLM 
instantaneous interface method calls and can create situations where the event order is 
difficult to predict or too constrained with respect to the real chip. In addition, in TLM, 
multiple different processes often end up driving changes on a given wire line, which 
causes a multiple driver issue with sc_signal. Finally, the actual data type used with the 
signal is left to the choice of the model developer, causing model-to-model interoper-
ability issues. Therefore, the ST–Cadence–ARM proposals advocated the standardiza-
tion of a dedicated TLM protocol fixing the data type to use (to C++ bool data type) and 
integrating, among others, immediate propagation of value-change calls.

 ◾ Frequency and voltage: Functional and extrafunctional properties of complex SoCs are 
more and more intertwined. Capturing operating frequency and voltage in the models 
will soon become mandatory, to validate advanced embedded software, as described in 
more detail in Section 17.4.1 below. Consequently, standard interfaces for these facets 
should be defined to facilitate model integration.

 ◾ Serial communication: SoCs are exposing more and more I/O capabilities. In the auto-
motive domain and other application areas, it is desirable to integrate several models 
communicating through serial protocols like CAN, SPI, or FlexRay to validate complex 
interactions occurring in the final product. The definition of standard modeling inter-
faces for serial communication would greatly facilitate platform integration for system 
houses.

Model-to-tools interoperability would be significantly improved with the standardization of the 
following elements:

 ◾ Configuration: While parameters might be defined in IP-XACT descriptions, there is 
no standard API to define parameters in SystemC models and easily set/update their 
values. Each model provider has its own configuration infrastructure implemented in 
C++, which makes the integration of models from various sources very painful, having 
several (potentially incompatible) configuration mechanisms to be supported in a single 
platform. Started several years ago, this standardization effort [34] is still ongoing in the 
Configuration, Control, and Inspection (CCI) Working Group of the ASI.

 ◾ Memory region interface: No standard is defined to support introspection in SystemC. 
This dramatically limits debugging capabilities, as each CAD vendor has implemented 
proprietary hooks to visualize register or memory values in their tools. This usually ends 
up with the instantiation of vendor-specific modeling objects in the models, which nega-
tively impacts model portability across CAD environments. To address this issue, our 
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proposal is to define an introspection API at the boundary between models and tools 
that enables any model to work with any tool, without the need to rely on proprietary 
modeling objects.

 ◾ Address map: Debugging embedded software on a multicore platform with complex 
hierarchical interconnects becomes very difficult. Due to security features and memory 
management strategies, address translation mechanisms are becoming more and more 
complex, making the memory regions actually reachable from one core very difficult to 
understand. Moreover, the reconstruction of the system address map cannot be com-
puted statically due to interconnect remapping capabilities. System-level tools fail today 
to reconstruct the system address map, as seen from one specific initiator, due to the lack 
of standard API to collect this information dynamically at runtime. Our standard pro-
posal here is a companion API based on TLM-2, which allows discovering dynamically 
the address map as seen from a given point in the system.

Methodological aspects should not be neglected as well as divergent choices could impede the 
correct integration of models and execution of virtual prototypes:

 ◾ System synchronization: In many cases, virtual prototypes are adopting a loosely timed 
approach, to benefit from associated simulation speed. However, the inherent issue of 
system synchronization coming with this modeling style is neither well understood 
nor addressed in a sound and consistent manner. This can lead to integration problems 
(one block taking over the simulation kernel or degrading performance) or even worse 
may render the virtual prototype unrealistic, that is, omitting real-world behaviors that 
would trigger bugs in the embedded software. We provide more details on this topic in 
Section 17.4.4.

 ◾ Conformance to standards: Defining standards is a first step to solve the interoperability 
problem; it is also necessary for stakeholders of the ecosystem to adopt and comply with 
them. We have unfortunately observed some SystemC simulator implementations being 
late to conform to IEEE 1666 evolutions. Similarly, model providers viewing TLM-2 as 
a simple API casually ignore the 500+ rules associated with this standard. It is crucial 
for the ecosystem to improve in this area, in order to globally increase interoperability.

 ◾ Avoid proprietary or exotic languages: The natural language used to develop trans-
action-level models to be integrated in virtual prototypes is SystemC. However, IP 
providers are sometimes adopting other proprietary languages, such as LISA+ [17] or 
MATLAB®/Simulink® [18]. In some cases, an intermediate compilation flow is needed 
to generate SystemC code from a model described in another language, or a SystemC 
wrapper is required to connect the model to the platform. The binary form of the result-
ing SystemC model might cause integration issues when integrated with other binary 
models into a virtual prototype, due to dependencies on external proprietary librar-
ies. Similar situations occur when models are written in a scripting language, such as 
Python, to initially support other needs (for instance, generation of data for verification 
purposes). Integrating such models in SystemC requires executing them in different OS 
processes and an exchange of data with the virtual prototype using IPC channels like 
sockets or shared memory. In summary, these exotic practices make integration more 
difficult: they cause extra effort, negatively impact the simulation speed, and create 
maintenance issues.

 ◾ Facilitate integration and configuration: Model developers should avoid items that cause 
integration or configuration issues. For instance, they should not use environment 
variables to pass parameter values to the models, when they can use either construc-
tor parameters or a more general configuration API. The definition of project-level or 
company-level coding guidelines can help us to enforce the adoption of the right prac-
tices. Likewise, developers should avoid using APIs from software packages obtained 
from third parties when they are undocumented, poorly supported, or not portable from 
one environment to the other. Special attention should be paid to the licensing scheme 
of such packages to prevent legal issues [19] or license contamination, for example, with 
the GPL license [20].
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Last but not least, availability of vendor-agnostic modeling building blocks should facilitate the 
ramp-up of the industry in the ESL area:

 ◾ Register bank: Register modeling is a recurrent question when developing TLM models. 
A minimal approach consists in representing registers as scalar variables and private 
data members of the SystemC module. A huge case statement must then be imple-
mented to respond to read/write accesses and update the variables accordingly. This is 
very error prone and tedious for the model developer. A good practice consists of using 
a generic register bank object that is configured at runtime, exploiting an IP-XACT 
[21] definition when available. SystemRDL [22], although new and not yet widely used, 
might also address such requirements in the future. It improves the readability of models 
and offers built-in modeling capabilities and services like configurable verbosity of the 
reporting mechanisms. EDA vendors usually provide such capabilities through propri-
etary modeling objects, but they unfortunately include tool-specific dependencies that 
are incompatible with competing environments. A vendor/tool agnostic offering expos-
ing a standardized introspection interface is consequently highly needed.

 ◾ Convenience layer: The primary goal of model developers is to focus on the right mod-
eling of their IPs. They are usually not experts in the underlying simulation infrastruc-
ture and should not spend their efforts in dealing with low-level details of standards. 
Therefore, a convenience layer providing user-friendly APIs should be available. 
It improves the productivity of model developers (as simpler read/write API calls are 
easier to understand than the low-level intricate details of some standards). It ensures 
standard compliance by construction (as it is the responsibility of the implementers 
of the convenience layer to be compliant). It can also provide extra services on top of 
standard APIs such as endianness management, address alignment, error checking, 
unified messaging, and logging mechanism. Finally, it facilitates alignment of models 
with the evolution of the standards (because the user code is isolated from the stan-
dards’ APIs).

 ◾ Reporting/messaging/monitoring: SystemC offers built-in basic reporting primitives that 
are not complete enough to address all the needs of virtual prototyping. Messaging 
capabilities should offer flexibility in verbosity level. Several configurable categories of 
messages should be defined (information, warning, error, fatal error, etc.). In order to 
facilitate postprocessing of simulation traces, messages should be systematically format-
ted, with timestamp, name of the module, message category, etc.

17.3.1.3 MODELS AND TOOLS ORTHOGONALITY

In the past, a tight and unexpected dependency of models on simulation tools has often been 
observed, due to the usage of vendor-specific modeling objects within models: add-ons for debug-
ging features, proprietary introspection classes, etc. Such practices have drawbacks that become 
the most visible quite late, at integration time. Indeed, platform integrators often face integration 
issues due to incompatible dependencies triggered by the models.

The models can also be reused in a variety of contexts. For instance, a given SystemC/TLM 
model might be reused for functional verification purposes in cosimulation platforms in con-
junction with HDL models. It could also sometimes be delivered to partners or customers, who 
have their own constraints. Due to the fast evolution of CAD tools and their respective feature 
set, it may be necessary for a user to switch from one vendor to another depending on the project 
requirements. Migrating models is almost impossible if they have dependencies on proprietary 
capabilities of a certain vendor. Considering this context, no assumption should be made on the 
CAD environment used to simulate the models. A robust policy should be adopted to ensure the 
portability of models across CAD environments. This can be implemented through a strict adher-
ence to the standards, consequently making the models portable. In addition, model developers 
should ensure independence from proprietary modeling elements and check that the models can 
execute correctly on any standard-compliant simulator by running appropriate nonregression 
test suites (functional tests to check model correctness when it is evolved).
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17.3.2 SYSTEM DESIGN AUTOMATION

A standardized format to describe the externally visible information of an IP block is also impor-
tant to facilitate IP reuse. To address this need, IP-XACT has been defined to provide a standard-
ized XML-based machine-readable format that captures IP metadata. Initially, it was thought to 
ease IP and subsystems integration in platforms (both at RTL and TLM levels), by providing all 
the information required to instantiate and bind IPs together into a design. Tools like netlisters 
can draw benefit from this description independent of the IP provider, as the format is vendor 
independent. The intention is that IP providers should deliver IP-XACT descriptions of their IPs, 
to facilitate the growth of the IP ecosystem.

An alternate usage of this standard has emerged, relating to model generation flow. An IP-XACT 
description of an IP contains a lot of information that can be seen as a machine-readable subset of 
the IP specification:

 ◾ List of registers and bit fields that are defined with associated offsets, potentially tagged 
with predefined behaviors (attributes)

 ◾ Connection points for buses and wires
 ◾ Instance parameters*

This information present in the IP-XACT file can be used to support the automatic generation of a 
wide variety of files as depicted in Figure 17.7, ranging from TLM and/or RTL model skeletons to 
header files for embedded software or register tests or UVM sequences for functional verification [23].

17.3.3 PROCUREMENT REQUIREMENTS

Availability of models is a prerequisite to create virtual prototypes. This calls for new practices in 
the supply chain, as well as from the project perspective.

*  It is, however, required to define on the SystemC model side the corresponding standard to avoid in-house parameter 
implementations and facilitate model exchange and reuse.
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FiGURe 17.7 IP-XACT-based generation flow.
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17.3.3.1 SUPPLY CHAIN ECOSYSTEM

The situation has progressed well since the first edition of this handbook in 2006. The leading 
hardware IP vendors nowadays provide IEEE 1666 TLM and IEEE 1685 IP-XACT views for their 
IP. The most advanced ones use these views for their own internal needs (see previous sections 
on software, verification, and validation), in a specification to TLM to RTL flow, and then offer 
them optionally, in addition to their IP RTL. We are, however, not yet at a stage where IP ven-
dors provide these TLM views in advance of RTL when a new IP or a new variant is introduced. 
Fortunately, this is the case between an internal IP supplier team and the SoC team inside the 
same company, where incremental and iterative releases are better accepted.

As another emerging trend, leading customers of SoC companies now increasingly request 
TLM platforms prior to silicon, to make progress in the validation of their own software integra-
tion and, thus, have less to do after silicon is available. They consequently arrive earlier to the 
market with their complete product. Here, an understanding of the type of company partnership 
is needed to maximize the schedule gain; without physical devices (silicon mask, FPGA, etc.), 
releases can start very soon with a jointly agreed reduced set of features, evolving afterward 
incrementally until silicon is available.

The expanding use of TLM models across the supply chain also means a larger number of 
potential users for tools to help create and to use transaction-level platforms: SystemC-aware 
C++ debuggers, IP-XACT to TLM generators, and platform-aware profilers, to name a few.

17.3.3.2 PROJECT-LEVEL PLATFORM STRATEGY

From SoC specification to silicon, we have seen that the various categories of users 
(e.g.,   developers and hardware verification engineers) need different subsets of the SoC, one 
most relevant to each task. Many of these subsets include the initial, common transactional 
backbone that represents the memory path from the main processor(s) of the SoC to the RAM 
(e.g., DDR controller model) via cache levels and interconnect. It is typically created by the 
SoC integration team or a specialized modeling team working with a specification from the 
SoC team. Around this backbone, a given IP verification team may plug the model of the IP to 
be verified, to create expected results data for a given set of stimuli. Afterward, more complex 
use cases require the simultaneous presence in the TLM virtual platform of several subsys-
tems. The backbone is incrementally complemented by subsystem models, to the benefit of all 
teams, even if they do not use all of the contents in the virtual platform. It simplifies the ver-
sion and configuration management of the platform and keeps a single reference at any given 
point in project time. This is possible with the pure virtual prototype, provided models are 
correctly written to keep acceptable speed of the complete platform. It is also possible with 
the TLM coemulation or coprototyping platform, but with a smaller number of incremental 
steps during the SoC project, as each step requires the time to map for emulation of the cor-
responding subsystem(s). Given the very high cost of large-capacity hardware emulators, it 
may be relevant to make available to a given team only the subplatform that is needed by this 
team. More simultaneous platforms might be loaded in the emulator, hence more teams work-
ing simultaneously for a given emulator budget. This multiple-platform approach is manda-
tory for mixed TLM/RTL platform usages, such as IP verification, as a close-to-complete RTL 
SoC platform would be too slow to simulate (typically hours to days per run) compared to the 
verification IP team needs.

17.4 EMERGING NEEDS

In the early days of virtual prototyping, the focus was on the core functionality of the system. 
This subject is now well understood and addressed in the industry (IP companies providing 
models, standards being in use, etc.). However, the ever-growing complexity of on-chip sys-
tems and the wider deployment of virtual prototypes demand new modeling capabilities, as 
described in Sections 17.4.1 to 17.4.6 below.
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17.4.1 NEXT STEPS IN PLATFORM-ASSISTED SOFTWARE VALIDATION

Presilicon development of embedded software modules requires extending the virtual prototypes 
to support development related to clock trees, power supplies, and resets. These capabilities are 
also beneficial in postsilicon use.

17.4.1.1 CLOCKS

The bring-up of complex systems is quite often impacted by poor management of clock trees. It is 
therefore very useful to verify upfront what the reachable frequencies are for each IP, considering 
the multiple frequency multipliers and dividers and detecting errors in programming sequences 
during the development of bring-up sequences and software drivers.

This cannot be checked using hardware prototypes on FPGAs or hardware emulators. 
On these platforms, clock trees are not accurately captured and are at best visible as waveforms.

A TLM model captures this information in a different, more understandable way. Clocks can 
be modeled by their frequency value (rather than signals), which is then transformed by various 
multipliers, dividers, and clock gating blocks. On the receiving end, IPs can trigger warnings or 
errors if they are used outside of specified frequency ranges. In this way, it is possible to validate 
software driving such clocks.

17.4.1.2 VOLTAGE

In the power area, more and more IPs such as DC/DC converters are software programmable and 
voltage information should be captured in the virtual prototypes accordingly. Working or reten-
tion voltages may also be needed to support validation of the programming sequences. Finally, 
voltage information is also required when implementing low-power strategies,* as explained in 
Section 17.4.1.4.

17.4.1.3 RESET

Functional verification activities require modeling of reset capabilities in the IPs to be able to 
restart each IP independently and validate their behavior. This is also useful in the wake-up phase.

Embedding reset management in IP TLM models has often become a necessity today. 
Generally, there is one reset condition specified for each IP block: an external agent asks for reset 
assertion/deassertion of the IP, to put it in a stable state. This is usually called “hardware” reset, as 
controlled by external hardware connections, and always occurs at the start-up of the platform. 
Hardware reset may also be triggered during the lifetime of the platform, particularly when IPs 
are put in low-power mode and need to be reset to wake up. As a first approximation, it can be 
easy to ignore the reset functionality at the beginning of platform execution, considering that 
all IP resets are deasserted at start-up time. However, this excludes low-power wake-up from the 
simulation environment, missing the opportunity to observe and check the interactions between 
software drivers and IPs restarting operation.

There is a second case of reset, which is less widespread: software reset. IPs may sometimes 
crash (e.g., generating erroneous traffic), requiring a way to restart them independently. Such 
software resets are generally triggered by internal commands (such as a register bit). Generally, 
complex IPs always provide these capabilities, to allow quickly putting back IPs into a stable state 
in emergency or error situations.

17.4.1.4 VALIDATION OF LOW-POWER STRATEGIES

Energy management is becoming a key differentiating factor for complex SoCs. This is true for 
nomadic devices not only as they are operating under battery constraints but also more generally 
as energy efficiency is now seriously considered by the end customer on top of new regulations.

* An interested reader may also refer to Chapters 7 and 13 for more information.
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A large variety of low-power strategies exists today, such as clock and power gating or dynamic 
voltage and frequency scaling. Advanced low-power policies are controlled by specific embedded 
software usually running on a dedicated core. If appropriately extended, virtual prototypes can 
help to anticipate the functional validation of these policies. This may require integrating new 
dedicated TLM protocols and offering corresponding introspection capabilities. Each IP model 
should expose a mechanism to update operating frequency, voltage, and apply reset. The result-
ing modeling infrastructure should also provision execution modes allowing these features to be 
disabled: this enables gradual adoption in the models, without impacting them when no policy is 
implemented yet.

The key benefits expected from such activity are the following:

 ◾ Being able to check reset management and correctness of programming sequences for 
frequency and voltage update

 ◾ Allowing operating point validity checks: combined values of frequency and voltage that 
must be valid from the IP, as well as from the SoC perspective

17.4.2 EARLY POWER ESTIMATION

The next step to support the development of energy-efficient devices is the ability to estimate 
the power consumption of the system operating in real conditions, early in the design cycle. This 
should be done taking into account all hardware features and executing the full software stack. 
An additional interesting estimation is that of the thermal behavior of the system (which is closely 
linked to its power consumption). Some experimental activities to connect virtual prototypes to 
dedicated power and thermal models have already been conducted [24–27], but we are still far 
from a production-level deployment. From our experience, it is not realistic to expect detailed 
and accurate figures using virtual prototypes, due to their high level of abstraction. However, 
it might be possible to extract trends or orders of magnitude to compare the relative impacts of 
several low-power policies* that could be applied to the system. Depending on their character-
istics, we consider three categories of systems, for which the power estimate might be impacted 
by different factors:

 ◾ Systems significantly composed of analog IPs, such as complex microcontrollers: the 
presence of analog IPs complicates the overall power estimation.

 ◾ CPU-based architectures composed of multiple clusters of cores: it is necessary to model 
the various levels of cache, their size, and refill policies.

 ◾ Complex SoCs, mixing multiple cores, and hardware accelerators: interconnect is dif-
ficult to model, and subsystems might be very complex and heterogeneous. The embed-
ded application software is required to provide system estimates, whereas it is usually 
available only after the architectural studies.

While it is desirable to get early power and thermal estimates, a certain number of challenges still 
need to be tackled:

 ◾ It is difficult to assess the level of accuracy of such estimates.
 ◾ A floorplan is usually not available for early thermal estimates.
 ◾ The timing accuracy currently available in virtual prototypes is probably not sufficient to 

accurately assess power consumption, including leakage and temperature-related effects.
 ◾ The modeling effort is huge during the architectural step, and models might be available 

far too late to make system architecture decisions, which need to be made early.
 ◾ Realistic embedded software needs to be available to obtain valid estimations, which is 

usually not the case when performing architectural studies.

* Interested readers may also refer to Chapter 13 for more information.
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17.4.3 SCALABILITY OF PLATFORMS

Despite having a simulation speed of multiple orders of magnitude faster than traditional RTL 
simulations, TLM simulation performance is more and more affected by the growing complex-
ity of the systems. For example, current virtual prototypes representing complex multimedia 
systems embed several hundred IPs or subsystems. They execute several hundreds of SystemC 
processes running more than one million lines of code. On top of the hardware models, several 
millions lines of embedded software are commonly executed.

Current SystemC simulators only exploit a single processor core due to multithreading primi-
tives (coroutines) that were designed to both simplify description of model parallelism (no need 
for mutexes or locks) and allow reproducibility of the simulations from one run to another. On 
today’s machines, not being able to exploit the many cores/processors available on a host machine 
is an important bottleneck, and the cooperative semantics of SystemC will clearly become a major 
concern on tomorrow’s machines. It is therefore crucial to conduct research in this area [28–30].

17.4.4 SYSTEM SYNCHRONIZATION

One of the most overlooked issues in today’s embedded systems is their potential sensitivity to 
functional event order. A functional event is a concrete event happening on the real chip, whose 
occurrence can influence the behavior of other components in the system and therefore the 
embedded software.

Simple examples of functional events include an interrupt request (IRQ) being raised or a 
value change in a register whose content is read by a CPU for synchronization. Functional events 
are often perceived as independent from one another; however, there are many situations where 
this is not the case. For instance, consider two IRQs, one signaling the end of a video-processing 
activity and the other originating from a timer. The second IRQ could be used as a watchdog to 
indicate that the video processing did not complete on time and trigger a special behavior (such 
as cancelling further processing or skipping a frame). With this simple example, it is obvious 
that there are several possibilities to consider for the designer: either the video processing com-
pletes on time (i.e., the end-of-video-processing IRQ occurs before the watchdog IRQ) or it does 
not complete on time (i.e., the watchdog IRQ occurs before the end-of-video-processing IRQ). 
By  definition, the embedded software is sensitive to the order of these functional events and 
should be tested in the various situations. Even two apparently unrelated functional events can 
exhibit bugs in the software. We also saw real-world bugs occurring when two functional events 
were happening simultaneously from the CPU point of view.

It is important to anticipate such behaviors with a virtual prototype. To achieve this, two 
important elements must be present:

 1. The simulation must explicitly capture the possibility for various orders or interleavings 
of the functional events. 

 2. The embedded software (as well as the system itself) must be tested under these various 
possibilities. This requires multiple runs of the simulation.

In the context of SystemC simulations, the first point is achieved by ensuring that the various 
components are modeled with separate threads and that these threads have enough degree of 
freedom between them. More precisely, degrees of freedom are achieved by yielding back control 
to the SystemC scheduler at some given points in each process. The locations where each process 
should yield are dependent on the presence of functional events and hence on the actual func-
tionality being captured. We call these locations synchronization points.

Yielding back control means that the simulation scheduler will be free to choose which pro-
cess to select for execution, resulting in multiple interleaving possibilities. However, there are two 
remaining issues: (1) how to explore the various possibilities (to test the embedded software on 
multiple runs) and (2) how to ensure that the resulting interleavings are realistic.

One possibility would be to have some “orchestra conductor,” which would decide which 
process should be resumed first. Such an orchestra master would also take into account the 
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exploration of the various possibilities, by changing its decisions based on the simulation run 
 iteration. It would also have to generate realistic simulation runs, by not choosing to elect a 
 process “too often” or “not often enough.” This notion of orchestra master is present whenever 
there is parallelism. It has been used in the past to capture models of computation [31] or study 
the notion of fairness [32]. In our case, it is quite difficult to write such an orchestra master, 
because we have to reconcile both interleaving exploration and some notion of realism that is 
difficult to precisely define.

The pragmatic solution to this modeling problem is to reintroduce “timing” in the model. 
There are two types of timing situations to be considered:

 ◾ Some of them are functional in the sense that the hardware will follow them as written 
in the specification: timers, video timings, etc. Whatever legal value is programmed by 
the software will cause a timer to raise its IRQ accordingly.

 ◾ The others are not precisely known or are highly dependent on data or other factors. For 
these cases, using fixed values can actually remove valid degrees of freedom in the model 
and be equivalent to making wrong assumptions about the hardware (cache causing 
delays, new hardware revision of the IP being faster, unexpected bus contention, etc.).

For instance, taking the previous example, saying that the video processing takes 200 ns and the 
timer is programmed at 300 ns will result in the first IRQ always happening before the second 
one, and thus the “does not complete in time” scenario will not occur. This could be fine if it is 
never possible that the situation happens, by construction (in which case, it means the software 
would not have to support it). If the video processing is actually not guaranteed to take a given 
fixed duration (complex dependency on actual data, variability, etc.), then it is necessary to cap-
ture that lack of knowledge. In order to do that, we propose to use a classical tool to deal with 
fuzziness: intervals of values. Such intervals allow expressing an order of magnitude and injecting 
a notion of realism in the model. The wider these timing intervals are, the more behaviors can 
exist around the degrees of freedom; conversely, narrowing the intervals allows selection of a lim-
ited set of realistic situations. Exploring the corresponding sets of interleaving can be done using 
sophisticated techniques [33], but it can also be simply done by choosing random values in the 
intervals for each simulation run (and changing the random seed). The approach can be extended 
by providing more information, such as constraints between timing intervals, which could then 
be explored with constrained random number generation. The only limitation in this area is the 
actual information available on timing relations at this stage of the design flow.

In the TLM-2 standard, various and somewhat conflicting synchronization/simulation tech-
niques have been standardized, to fulfill the broadest set of views on the subject. The technique 
that we are mentioning is covered by the standard under the term “explicit synchronization” or 
“synchronization on demand.” Another technique proposed by TLM-2 is the “time quantum,” 
which is often wrongly associated with the term “temporal decoupling.” Actually, decoupling 
time is inherent in the modeling style associated with TLM (at least for loosely timed models). By 
definition, multiple actions are taken without any interactions with the SystemC scheduler, both 
because the time is not known precisely at this level of detail and because this would generate 
simulation overhead with context switches. The term synchronization on demand indeed men-
tions synchronization with something: it is resynchronizing local decoupled time with the global 
SystemC simulation time. This resynchronization is done with the SystemC wait() statement, 
which will put the current process on pause and yield back control to the scheduler (which will 
resume execution of the process once the wait() delay is elapsed). The difference between syn-
chronization on demand and time quantum is the way in which the decision to resynchronize is 
taken. With the former, the locations where time should be resynchronized are linked to actual 
functionality of the real system. With the latter, the decision is based purely on the comparison 
between the time accumulated during temporal decoupling and some arbitrary global threshold: 
the time quantum.

There is absolutely no guarantee that the time quantum will indeed reach the threshold for 
interesting locations that would need to be degrees of freedom. Furthermore, the locations 
depend on the actual timing values, which are assumed to be fixed (no intervals there). Not only 
such simulations would not exhibit the proper set of functional event interleavings required to 
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validate correctly the embedded software, but sometimes, due to insufficient degrees of freedom, 
the simulation can just break, that is, it would not exhibit any functionally correct behavior. In 
other words, with this technique, the user is left with trying different arbitrary values for the 
global quantum, hoping that the simulation will run correctly and exhibit interesting behaviors.

On the other hand, synchronization on demand, combined with loose timing, allows a reli-
able definition and exploration of a set of realistic behaviors. The degrees of freedom are caused 
by resynchronization occurring at functionally defined locations: system synchronizations. The 
functional timing values, together with the knowledge of orders of magnitudes (defined with the 
loose timings), constrain the set of behavior to yield realistic situations.

Given the complexity of current systems, it is crucial that the embedded software is developed 
to be robust to the various events occurring on the real chip (which may change with a different 
environment or the next generation of the product). To achieve this, the software must be tested 
on virtual prototypes that provide a reliable way of exposing varied, yet realistic, behaviors. The 
modeling techniques presented in this section have successfully been used in production, allow-
ing, among others, discovery of corner-case bugs in critical sections of various kinds of embed-
ded software.

17.4.5 VIRTUAL PLATFORM INTEGRATION ISSUES

The complexity of large SoC integration has brought similar levels of complexity to the integra-
tion of their presilicon virtual prototypes. Of course, all well-known problems linked to large 
application integration do occur, and standards (IEEE 1666 TLM, IEEE 1685 IP-XACT, upcoming 
CCI WG, etc.) are created to solve some of them. However, it becomes more and more difficult to 
guarantee proper alignment of the various technical parameters in a given virtual prototype. For 
instance, upgrading to the latest version of a given standard may require revalidation of every IP 
in this new environment. This can be time consuming or prove difficult in the case of legacy IPs. 
Another example of technical parameter decision during integration is the choice of a SystemC 
simulator for the whole virtual platform. As of today, the only solution to set up a virtual platform 
is to select one SystemC simulator and to try to compile and integrate all IPs on top of it. As we 
mentioned previously, the availability of an open-source implementation of SystemC is really 
beneficial to the virtual platform integrators, as it is a neutral point allowing integration from 
different IP model providers. In the absence of this open-source version, would all SystemC/TLM 
suppliers provide compatibility between their different implementations to allow this mandatory 
heterogeneous integration?

17.4.6 VIRTUAL PLATFORM COMMUNICATION ISSUES

While virtual platforms may require huge integration efforts, software developers need to be able 
to inject dynamic data inside their virtual platforms and get results from the execution of their 
software on the virtual platform. At a minimum, this can be done through files, but this solution 
quickly shows unacceptable limitations. Embedding internal traffic generators inside the virtual 
platform is just another way to hide the need to perform real I/O communication with the virtual 
platform.

To generalize this interaction of the virtual platform with the external world, it is required to 
have actual communication between two or more virtual platforms, as software becomes more 
and more distributed between multiple independent SoCs. While it is already difficult for a single 
virtual platform, the integration of multiple platforms would become a real nightmare, and it will 
mandate another level of standardization, namely, to be able to connect multiple virtual plat-
forms together through standard communication channels (e.g., one virtual platform producing 
a video stream from a video file out of an HDMI transmitter IP and another decoding from an 
HDMI receiver IP and displaying the decoded images, both being connected only through their 
respective HDMI IP models).

Undoubtedly, this need will expand to complex communicating heterogeneous systems, 
 connecting multiple virtual platforms together in order to run complex distributed software. This 
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will probably start with point-to-point serial communication protocols (RS232, I2S, CAN, LIN, 
etc.), but will quickly evolve to multipoint and bidirectional ones (I2C, USB, Ethernet, etc.). This is 
clearly one important requirement brought by the network cloud or even the Internet of Things: 
a huge number of small devices connected and interacting together. Testing interoperability will 
be much easier if using connectable virtual prototypes, thanks to their introspection capabilities.

17.5 CONCLUSION

Since the first edition of this handbook, using transaction-level models in an SoC design flow 
has become a recognized and efficient methodology. Use cases and associated virtual platforms 
are now well understood. In addition, stronger standards are now available: SystemC/TLM IEEE 
1666-2011, and IP-XACT IEEE 1685-2014 (which was upgraded with TLM additions to match the 
former). These standards enabled the creation of a TLM model market; many IP suppliers now 
provide a TLM view of their IPs. Benefits of TLM platforms across most phases of an SoC design 
project are proven. Several months are saved in the design cycle, enabling shorter time to mar-
ket, early detection, and easy debug of hardware/software integration complex bugs and reduced 
schedule risks. Customers of SoC companies have also started to leverage the benefits for their 
own presilicon software developments. Standardization efforts are continuing to add a next level 
of third-party model interoperability and further reduce the expertise level needed by a company 
to fully benefit from these virtual platforms. The technical progress on virtual prototypes is far 
from finished: it is necessary to capture even more aspects (clocks, power supply, etc.) while keep-
ing up with the evolution in complexity (scalability, integration issues, etc.). With the complex 
features coming with new architectures (e.g., cache coherency with peripherals, virtualization, 
security, power), one can be sure that the impact of transaction-level platforms will go beyond 
productivity improvement: their unique hardware/software observability will simply be manda-
tory to succeed in the design of such SoCs.

One of the best rewards of our 15 years of efforts (including concept exploration, industrial 
deployment, and standardization activities) has been the shift of perception from software devel-
opers concerning virtual prototypes. They switched from complete skepticism about their advan-
tages to a deep sense of confidence that running software on them provides an important step 
toward a higher level of quality for their software. What we observe now is that people who try it 
become eager to adopt it.
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18.1 INTRODUCTION

Functional verification is a process of confirming that the intent of the design was preserved dur-
ing its implementation. Hence, this process requires two key components: a specification of design 
intent and a design implementation. Yet historically, describing design intent in a fashion useful 
to the verification process has been problematic. For example, typical forms of specification are 
based on natural languages, which certainly do not lend themselves to any form of automation 
during the verification process. Furthermore, ambiguities in the specification often lead to mis-
interpretation in the design and verification environments. The problem is compounded when a 
verification environment cannot be shared across multiple verification processes (i.e., the lack of 
interoperability between the specification and the various verification environments for simula-
tion, acceleration, emulation, or formal verification).

In this chapter, we introduce an approach to addressing the functional verification chal-
lenge, known as assertion-based verification (ABV), which provides a unified methodology 
for unambiguously specifying design intent across multiple verification processes using asser-
tions. Informally, an assertion is a statement of design intent that can be used to specify design 
 behavior [1]. Assertions may specify internal design behaviors (such as a specific FIFO structure) 
or external design behavior (such as protocol rules for a design’s interfaces or even higher-level 
requirements that span across design blocks). One key characteristic of assertions is that they 
allow the engineer to specify what the design is supposed to do at a high level of abstraction 
without having to describe the details of how the design intent is to be implemented. Thus, this 
abstract view of the design intent is ideal for the verification process—whether we are specifying 
high-level requirements or lower-level internal design behavior.

18.1.1 OBSERVABILITY AND CONTROLLABILITY

Fundamental to the discussion of ABV is understanding the concepts of controllability and observ-
ability [2,3]. Controllability refers to the ability to influence an embedded finite state machine, 
structure, or specific line of code within the design by stimulating various input ports. Note 
that while in theory a simulation testbench has high controllability of the design model’s input 
ports during verification, it can have very low controllability of an internal structure within the 
model. Observability, in contrast, refers to the ability to observe the effects of a specific internal 
finite state machine, structure, or stimulated line of code. Thus, a testbench generally has limited 
observability if it only observes the external ports of the design model (because the internal signals 
and structures are often hidden from the testbench).

To identify a design error using the testbench approach, the following conditions must hold 
(i.e., evaluate true):

 1. The testbench must generate proper input stimulus to activate (i.e., sensitize) a bug.
 2. The testbench must generate proper input stimulus to propagate all effects resulting 

from the bug to an output port.

18.4 Industry Adoption of ABV 452

18.4.1 Who Should Create the Assertions? 452

18.4.2 Maturing an Organization’s ABV Process Capabilities 453

18.4.2.1 ABV Tools and Technology 454

18.4.2.2 ABV Conventions and Procedures 454

18.4.2.3 Learning How to Create Assertions Effectively 456

18.4.2.4 Metrics in the ABV Process 457

18.5 Summary and Future Directions 458

References 459



Chapter 18 – Assertion-Based Verification    443

It is possible, however, to set up a condition where the input stimulus activates a design error that 
does not propagate to an observable output port (Figure 18.1). In these cases, the first condition 
cited earlier applies; however, the second condition is absent.

Embedding assertions in the design model increases observability. In this way, the verification 
environment no longer depends on generating proper input stimulus to propagate a bug to an 
observable port. Thus, any improper or unexpected behavior can be caught closer to the source 
of the bug, in terms of both time and location in the design intent.

While assertions help solve the observability challenge in simulation, they do not help with the 
controllability challenge. However, by adopting an assertion-based, constraint-driven simulation 
environment or applying formal property checking techniques to the design assertions, we are 
able to address the controllability challenge.

18.2 HISTORY

In this section, we discuss different approaches to solving the functional specification challenge. 
We begin by briefly introducing propositional temporal logic, which forms the basis for mod-
ern property specification languages. Building on this foundation, we then present a historical 
 perspective for various forms of assertion specification.

18.2.1 REASONING ABOUT BEHAVIOR

Logic, whose origins can be traced back to ancient Greek philosophers, is a branch of philosophy 
(and today mathematics) concerned with reasoning about behavior. In a classical logic system, 
we state a proposition and then deduce (or infer) if a given model satisfies our proposition, as 
illustrated in Figure 18.2.
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FiGURe 18.1 Poor observability misses bugs.
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True/FalseLogic

FiGURe 18.2 Classical logic system.
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For example, consider the following set of propositions:

 ◾ The moon is a satellite of the earth.
 ◾ The moon is rising (now).

If we let the universe be our model, then using classical logic we can check whether our set of 
propositions hold for the given model.

Classical logic is good for describing static situations. However, classical logic is unsuitable for 
describing dynamic behavior (i.e., situations involving time). Returning to the previous example, 
it would not be possible to express the following proposition since it involves time:

 ◾ The moon will rise again and again.

Note that our interest in functional verification of hardware systems requires that we use a logic 
that is expressive enough to describe properties of reactive systems. For a reactive system, com-
ponents of the system concurrently maintain ongoing interaction with their environment, as 
well as other concurrent components of the system. Hence, in the next section, we discuss a more 
expressive logic that involves time.

18.2.1.1 PROPOSITIONAL TEMPORAL LOGIC

In this section, we build a foundation of understanding by introducing a few basic concepts of 
propositional temporal logic. The advantage of using temporal logic to specifying properties of 
reactive systems is that it enables us to reason about these systems in a very simple way. That is, 
temporal logic eliminates the need to explicitly specify the time relationships between system 
events, which are represented as Boolean formulas that describe states of the design. For example, 
instead of writing the property expression involving time explicitly, such as

∀t.!(grant1(t) & grant2(t))

which specifies for all values of time t, grant1 and grant2 are mutually exclusive, we simply 
write in a temporal property language, such as Property Specification Language (PSL):

always !(grant1 & grant2)

which states that grant1 and grant2 should not hold at the same time.
In temporal logic, we define a computational path π as an infinite sequence of states

π = s0, s1, s2, s3, …,

which represents a forward progression of time and a succession of states, si. When proving a 
temporal assertion, we may assume that a point in time or given state along the path has a unique 
future or successor state (e.g., s0 → s1), in which case the assertion is proven on a given path or 
trace of execution (e.g., a single simulation trace). Thus, each possible computational path of a 
system is considered separately. We refer to this form of logic as linear-time temporal logic, and 
linear temporal logic (LTL) is one example [4]. Alternatively, we may assume that each point in 
time or given state along a path may split into multiple futures or successor states (e.g., s0 → s1 
and s0 → s5). In that case, all computational paths are considered concurrently, which is usually 
represented as a tree of infinite computational paths. We refer to this form of logic as branching-
time temporal logic, and computational tree logic (CTL) is one example [5].

CTL and LTL play essential roles in formal hardware verification for branching-time temporal 
logic and linear-time temporal logic, respectively. To show how these two types of logic differ, we 
first introduce CTL* [6]. CTL* contains operators for reasoning about paths of computation, such 
as the path formula operators G (always), F (eventually), U (until), and X (next) and operators for 
reasoning on branching paths of execution, that is, the state formula operators A (for all paths of 
execution) and E (for any path of execution). In addition to these quantifiers, any Boolean com-
positions of CTL* formulas are CTL* formulas as well.
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For any temporal formulas p and q, as illustrated in Figure 18.3, the temporal formula G p 
specifies that the temporal formula p holds for all states of a path π (or simply, p always holds). 
The temporal formula F p specifies that p holds for some future state of a path π. The temporal 
formula p U q specifies that the temporal formula p holds in all states of a path π until q holds in 
some future state of π.

The temporal formula A f specifies that for all paths π starting from the current state, f holds. 
The temporal formula E f means that there is a path π starting from the current state for which 
f holds.

As seen in the previous paragraphs, CTL* can be separated into state formulas (involving 
A and E) and path formulas (involving G, F, X, and U). Any atomic proposition p (or Boolean 
expression) over state formulas is by definition a state formula. In addition, existential quantifica-
tion over path formulas (e.g., E f, where E is the existential quantifier and f is a path formula) is 
also by definition a state formula.

Any state formula is a path formula, as are Boolean compositions of path formulas. In addi-
tion, path formulas can be composed using the temporal operators X f and f1 U f2.

Note that the F operator can be thought of as an alias for the unary form of the until operator 
(e.g., F p = true U p), and that G and F are dual (i.e., G p is equivalent to ¬F¬p). The rationale behind 
the first alias is that eventually (F) is equivalent to waiting vacuously until p is valid; and the ratio-
nale behind the second formula is that saying “p always valid” is equivalent to saying that “it is not 
the case that ¬p will be valid in the future.” Similarly, it is not difficult to show that E and A are dual.

Note that in CTL* we do not make any restriction on the order in which temporal and branch-
ing operators appear in a valid formula. As a result, FG and AG are valid CTL* formulas. The first 
formula (FG) states that eventually our proposition will be valid forever. The second formula (AG) 
states that for all paths starting from the current state, our proposition will always be true.

Now that we have presented CTL*, we can restrict this logic to CTL and LTL:

 ◾ CTL: A CTL formula is a CTL* formula beginning with a branch quantifier (A and E), 
restricting that temporal operators (F, G, U, and X) be proceeded by branch quantifiers. 
For example, the formula AG p is a valid CTL formula, but FG p is not.

 ◾ LTL: An LTL formula is the subset of CTL* formulas obtained by simply restricting the 
valid formulas to path formulas.

For example, the formula FG p is a valid LTL formula, but EG p is not.
If we consider an implicit universal quantifier for all paths (i.e., A) in front of an LTL formula, 

we can see that certain behaviors, such as A(GF p), cannot be represented by CTL, although it 
is a valid LTL formula. Similarly, AG(EF p) is a valid CTL formula, but not a valid LTL formula. 
While the first formula says that for all states of all paths, eventually p holds (a fairness con-
straint), the second formula says that for all branches of all states, at least in one of the paths, 
eventually p holds.

Note that neither LTL nor CTL can express a property that involves counting, such as

 ◾ p is asserted in every even cycle

p p p p p p p p p p

G p

p

F p

p p p p p p q q q q

p U q

FiGURe 18.3 Temporal formula path operator semantics.
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In the next section, we introduce extended regular expressions, which allow us to express behav-
ior that involves counting.

We do not thoroughly discuss the semantics of CTL*, CTL, and LTL in this chapter, but we 
give a short introduction on this subject to subsidize the remainder of this chapter. We refer the 
reader to [7] for a more complete definition of these logics’ semantics and complexities.

18.2.1.2 EXTENDED REGULAR EXPRESSIONS

Regular expressions provide a convenient way to define sets of computations (i.e., a temporal 
pattern used to match various sequences of states). Extended regular expressions are regular 
expressions extended with conjunctions and negation. Hence, the computational path defined 
by an extended regular expression can be combined to form the building blocks used to specify 
hardware design assertions. Regular expressions can express counting modulo n type behavior 
through the use of the* operator. Hence, regular expressions allow us to specify properties that 
cannot be described by either CTL or LTL, such as {̀ true;!p}*, which states that p is asserted 
in every even cycle.

Note that not all properties can be expressed with extended regular expressions. For example, 
the property eventually p holds forever cannot be expressed using extended regular expressions, 
yet this property can be expressed in LTL (i.e., FGp).

18.2.2 ASSERTION LANGUAGES

Assertions may be expressed either declaratively or procedurally. A declarative assertion is 
always active and is evaluated concurrently with other components in the design. A procedural 
assertion, on the other hand, is a statement within procedural code and is executed sequen-
tially in its turn within the procedural description. Hence, declarative properties are natural 
for specifying block-level interfaces, as well as systems. Similarly, a procedural assertion is 
convenient for expressing implementation-level properties that must hold in the context of 
procedural code. A key difference between the declarative assertion and the procedural asser-
tion is that the declarative assertion concurrently monitors the assertion expression, while the 
procedural assertion only validates the assertion expression during sequential visits through 
the procedural code.

In the following sections, we discuss various languages and techniques in use today for 
expressing assertions, which includes VHDL, the Open Verification Library (OVL), and 
SystemVerilog Assertion (SVA). Note that a comprehensive discussion of the Accellera PSL fol-
lows in Section 18.3.1.

18.2.2.1 VHDL ASSERTIONS

The concept of assertions was introduced quite early in the development of the VHSIC Hardware 
Description Language, better known as VHDL. VHDL was originally developed in the early 1980s 
by a team consisting of Intermetrics, Inc., IBM, and Texas Instruments, under a DoD-sponsored 
effort to create a design and documentation language for VHSIC-class electronic designs. The 
initial requirements for this language were defined in June 1981 during a workshop in Woods 
Hole, MA. The requirements published in the proceedings of that workshop [8] included a require-
ment to support exception handling, but they did not explicitly mention assertions. However, by 
January 1983, when these requirements were included in the request for proposal for the VHDL 
effort [9], they had been extended to include many of the so-called “Steelman” requirements 
developed earlier for the Ada programming language [10], including a requirement for assertions 
that was almost identical to the assertion requirement for Ada (Section 3.8.6):

It shall be possible to include assertions in programs. If an assertion is false when encountered dur-
ing simulation, it shall raise an exception. It shall also be possible to include assertions, such as the 
expected frequency for selection of a conditional path, that cannot be verified. [Note that assertions 
can be used to aid optimization and maintenance.]
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Ironically, the original Ada requirement did not lead to an explicit assertion construct in Ada, 
yet the derivative requirement for VHDL resulted in the creation of not just one, but two kinds 
of assertion in VHDL: a sequential assertion statement, which can appear within sequential 
(i.e., procedural) code in a process or subprogram; and a concurrent assertion statement, which 
can appear in a block and acts like an independent process.

VHDL assertions involve only combinational expressions; no temporal operators are available 
in VHDL, other than the very limited capability provided by certain signal-valued attributes such 
as S’delayed. Even so, VHDL assertions quickly proved to be very useful mechanism for express-
ing invariants that are expected to hold within a design, such as a relationship among variables 
that is expected to hold at a given point in the execution of algorithmic code (expressed with a 
sequential assertion statement) or a relationship among signals that is expected to hold at all 
times (expressed with a concurrent assertion statement).

The simulation semantics for VHDL assertions, which are defined in the VHDL Language 
Reference Manual [11], ensure that an assertion will issue an error message any time it is executed 
and the asserted expression evaluates to false. However, error detection during simulation is not 
the only value of such assertions. They also can play a significant role in documentation of code 
and therefore maintenance of the code over time. Furthermore, as formal equivalence check-
ing developed as an alternative to simulation, VHDL assertions were adapted to that verifica-
tion method as well. For example, in the early-to-mid-1990s, VHDL assertions were used in one 
formal verification tool [12] to specify both axioms or assumptions about the environment and 
assertions about the design that needed to be verified.

The IEEE 1076-2008 VHDL standard extended the language by incorporating PSL (see 
Section  18.3.1) directly into the language. This extension enables PSL temporal operators, 
 properties, sequences, and directives to be used alongside the existing VHDL concurrent asser-
tion statements to express much more complex behavioral requirements.

18.2.2.2 OVL

One of the challenges in creating an assertion-based methodology is ensuring consistency within 
a design project. Any inconsistencies between multiple stakeholders involved in the design and 
verification process can become so problematic that the benefits the assertions provide during 
the verification process are overshadowed by an unmanageable methodology. For example, an 
assertion-based methodology needs to provide a consistent manner of

 ◾ Controlling assertions (e.g., enabling and disabling assertions)
 ◾ Reporting assertion violations
 ◾ Specifying reset

Aside from methodology consistency, another challenge related to assertion adoption has been 
the effort required to teach engineers new languages that specify assertions.

The OVL [13] was developed as a means to overcome these challenges within an assertion-
based methodology [14]. Actually, the OVL is not an assertion language and lacks the expressive-
ness of languages such as PSL or SVA. In contrast, the OVL is a library of simulation monitors 
written in both Verilog and VHDL. Hence, the OVL could be classified as a declarative form of 
assertion specification. During the register-transfer level (RTL) development process, engineers 
select and then instantiate OVL monitors into the RTL model. Each assertion monitor is then 
used to check for a specific Boolean and temporal violation during the verification process. The 
following is an example of a Verilog-instantiated OVL monitor that checks for the case when 
grant1 and grant2 are not mutually exclusive:

assert_always mutex (clk, reset_n, !(grant1 & grant2));

The OVL monitors address assertion-based methodology considerations by encapsulating a unified 
and systematic method of reporting and a common mechanism for enabling and disabling asser-
tions during the verification process. The reporting and enable/disable features use a consistent 
process, which provides uniformity and predictability within an assertion-based methodology.



448    18.3 Language Principles and Concepts

The OVL offers a wide set of monitors, enabling the engineer to capture a large class of asser-
tions, for example, the simple assert _ always Boolean invariant shown in the previous 
example and one-hot checking, as well as multicycle temporal checks, such as assert _ next 
and assert _ change.

18.2.2.3 SYSTEMVERILOG ASSERTIONS

Unlike VHDL, the IEEE-1364 Verilog language never contained a Boolean assertion construct. It 
was not uncommon for designers to capture assertions in their Verilog RTL in an ad hoc fashion 
using the Verilog $display() system task. The problem with this approach is that not all $dis-
play() calls could be treated or identified as assertions, which means that any ad hoc assertions 
specified using a $display() could not be verified by formal verification tools. In  addition, 
this ad hoc approach to specifying assertions required a significant amount of extra modeling to 
express sequences or other complex temporal behaviors.

SVA [15] was developed to provide engineers the means to describe complex behaviors about 
their designs in a clear and concise manner. SVA is based on LTL built over sublanguages of regu-
lar expressions and supports two types of assertions: procedural (or immediate) and declarative 
(or concurrent). Both assertion types are intended to convey the intent of the design engineer and 
to identify the source of a problem as quickly and directly as possible. In addition, engineers can 
use SVA to define temporal correctness properties and coverage events.

The following is an example of a SystemVerilog concurrent assertion used to check for mutual 
exclusion of grant signals:

property mutex;
 @(posedge clk) disable iff (!reset_n) (!(grant1 & grant2));
endproperty
assert property (mutex);

In 2004, the Accellera 3.1a SystemVerilog LRM [16] was moved to the IEEE for standardization 
under the auspices of the IEEE’s Corporate Standards Group (CAG) as IEEE P1800. Great effort 
was taken within Accellera to ensure semantics alignment between SVA with PSL. However, 
there are a few syntactical differences between SVA and PSL due to the diverse objectives of these 
two languages. Most notably, SVA was designed to provide an embedded assertion capability 
directly within the SystemVerilog language, while PSL was designed as a stand-alone assertion 
language that harmoniously works across multiple hardware description languages (HDLs) (such 
as SystemVeriliog, Verilog, and VHDL).

18.3 LANGUAGE PRINCIPLES AND CONCEPTS

The following section introduces principles and concepts behind the IEEE PSL [17].

18.3.1 PSL PRINCIPLES

PSL is a comprehensive language that includes both LTL and CTL constructs. This enables PSL 
to support various kinds of formal verification flows, including event-driven and cycle-driven 
simulation and various algorithms for formal verification (model checking).

Most tools are based on a single algorithm and therefore cannot support all of PSL. In par-
ticular, most simulation tools are characterized by a single trace and monotonically advancing 
time, which preclude support for many CTL-based properties and make it difficult to support 
some LTL-based properties efficiently. The subset of PSL that can be supported efficiently in both 
simulation and formal verification is known as the “Simple Subset” and is defined by a short list 
of simple syntactic restrictions.

The temporal semantics of PSL are formally defined. This formal definition ensures preci-
sion; it is possible to understand precisely what a given PSL construct means and does not mean. 
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The formal definition also enables careful reasoning about the interaction of PSL constructs, or 
about their equivalence or difference. The formal definition has enabled validation of the PSL 
semantic definition, either manually or through the use of automated reasoning [18].

However, for practical application, it is imperative that PSL statements be grounded in the 
domain to which they apply. This is accomplished in PSL by building on expressions in the HDL 
used to describe the design that is the domain of interest. At the bottom level, PSL deals with 
Boolean conditions that represent states of the design. By using HDL expressions to represent 
those Boolean conditions, PSL temporal semantics are connected to, and smoothly extend, the 
semantics of the underlying HDL.

18.3.2 BASIC PSL CONCEPTS

PSL is defined in layers (Figure 18.4). The Boolean layer is the foundation; it supports the tem-
poral layer, which uses Boolean expressions to specify behavior over time. The verification layer 
consists of directives that specify how tools should use temporal layer specifications to verify 
functionality of a design. Finally, the modeling layer defines the environment within which veri-
fication is to occur.

PSL is also defined in various flavors (Figure 18.4). Each flavor corresponds to a particular 
underlying HDL. Currently defined flavors include VHDL, Verilog, SystemVerilog, and SystemC.

Since PSL works with various underlying HDLs, it must adapt to the various forms of expression 
allowed in each language and the various notions of datatype that exist in each language. To that 
end, PSL defines a number of expression type classes—Bit, Boolean, BitVector, Numeric, and 
String—and specifies how native and user-defined datatypes in VHDL, Verilog, SystemVerilog, 
and SystemC all map to those type classes.

18.3.2.1 BOOLEAN LAYER

The Boolean layer consists of expressions that belong to the Boolean-type class, that is, those 
whose values are, or map to, true or false. These expressions represent conditions within the 
design—for example, the state of the design, or the values of inputs, or a relationship among con-
trol signals. Typically, this includes any expression that is allowed as the condition in an if state-
ment in a given HDL. PSL extends this set of expressions with a collection of built-in functions 
that check for rising or falling signals, signal stability, and other useful utilities.

18.3.2.2 TEMPORAL LAYER

The temporal layer involves time and Boolean expressions that hold (i.e., are true) at various points 
in time. This includes expressions that hold pseudo-continuously (i.e., at every point in time con-
sidered by the verification tool) as well as expressions that hold at selected points in time, such as 
those points at which a clock edge occurs, or an enabling condition is true. Temporal operators 
enable the specification of complex behaviors that involve multiple conditions over time.
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One class of temporal operators is used to construct Sequential Extended Regular Expressions, 
or sequences. A sequence describes behavior in the form of a series of conditions that hold in suc-
cession. A sequence may specify that a given condition repeats for a minimum, maximum, or 
even unbounded number of times before the next condition holds, and it may specify that two or 
more subordinate sequences overlap or hold in parallel. If the behavior described by a sequence 
matches the behavior of the design starting at a given time, then the sequence holds at that time. 
PSL also supports endpoints, which are identical to sequences except that they hold at the time in 
which the behavior completes.

For example, consider the following sequence declarations, which describe a simple hand-
shake-based bus protocol. In this case, a default clock declaration specifies the times at which 
successive expressions are evaluated:

default clock = (posedge clk);
sequence GetBus = { req[+]; (req && ack) };
sequence HoldBus = { (req && ack)[*] };
sequence RlsBus = { (!req && ack); !ack };
sequence ReadOp = { rwb && ardy; !drdy[*0:2]; drdy };
sequence ReadT = { GetBus; {HoldBus && ReadOp}; RlsBus };

The first three define the series of control conditions involved in arbitrating for control of the 
bus. Sequence GetBus describes behavior in which a request signal is high for one or more cycles, 
followed by a cycle in which the request signal is still high and an acknowledge signal goes high. 
Sequence HoldBus describes behavior in which both request and acknowledge signals stay high 
for an indefinite length of time. Sequence RlsBus describes behavior in which the request signal 
drops, and in the next cycle the acknowledge signal drops. Similarly, sequence ReadOp describes 
the control signals involved in a read operation on the bus: in the first cycle, a read operation is 
indicated and address ready signal is asserted; following that, data ready is asserted after a delay 
of 0, 1, or 2 cycles. Sequence ReadT combines all of these to represent a read transaction in which 
the GetBus sequence occurs first; then the ReadOp sequence occurs in parallel with the HoldBus 
sequence; and finally, the RlsBus sequence occurs.

A second class of temporal operators provides a means of expressing conditional behavior 
using implication. This includes Boolean implication (a → b) as well as suffix implication, in 
which the antecedent may be a sequence rather than a simple Boolean. In the latter case, the 
consequent holds at the end of the initial sequence. A third class of temporal operators con-
sists of a set of English keywords that describe temporal relationships. These include always, 
never, next, eventually!, until, before, and slight variations thereof. Temporal operators 
may be combined with Booleans and sequences to describe behaviors, or properties, of a 
design.

For example, consider the following property declarations, which describe certain character-
istics of the same simple bus protocol:

property BusArbitrationCompletes =
 always GetBus |=> {HoldBus; RlsBus};

property ReqSteady =
 always rose(req) -> next req until ack;

property AckSteady =
 always rose(ack) -> next !req before !ack;

property AckWithin (constant N) =
 always rose(req) -> next {{ack} within [*N]};

The first declaration defines a property BusArbitrationCompletes, which says that if Sequence 
GetBus occurs, then it will always be followed by Sequence HoldBus and then Sequence RlsBus. 
The second declaration defines property ReqSteady, which says that if signal req rises, then it will 
stay high until signal ack is high. Similarly, the third declaration defines property AckSteady, 
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which says that if signal ack rises, then signal req will go low before ack is low. The final declara-
tion defines parameterized property AckWithin, which says that after req rises, ack will occur 
within N cycles, where N is to be provided later.

18.3.2.3 VERIFICATION LAYER

The verification layer specifies how sequences and properties are expected to apply to the design 
and therefore how verification tools should attempt to verify the design using those sequences 
and properties. PSL directives indicate what to do with a given property or sequence. The assert 
directive says that a given property is expected to hold for the design, and that this should be 
checked during verification. The assume directive says that a given property should be taken for 
granted—it can be used in verifying other properties, but it need not be checked. The restrict 
directive is similar; it says that that a given sequence should be taken for granted. Typically, 
assert directives apply to the design being verified, while assume and restrict directives are 
used to constrain the environment within which the design is being verified. Additional direc-
tives (in particular, the cover directive) provide additional capabilities.

The verification layer also includes verification units, which enable packaging a collection of 
related PSL declarations and directives so they can be applied as a group to a particular part of 
the design. A verification unit may be bound to a particular instance within the design, or to 
a module used within the design; this causes the PSL directives to apply to that instance, or to 
all instances of that module, respectively. Unbound verification units may be defined to create 
reusable packages of PSL definitions. One verification unit may inherit another verification 
unit, which makes the definitions of the latter available for use in the former.

18.3.2.4 MODELING LAYER

The modeling layer consists of HDL code used to model the environment of the design and/or 
to build auxiliary state machines that simplify the construction of PSL sequences or properties. 
Modeling the environment of design under verification is primarily of interest for formal veri-
fication, which is addressed elsewhere. Building auxiliary state machines applies to both formal 
verification and simulation, and is addressed here.

Counters are one class of auxiliary state machines that are often necessary in specifying behav-
ior. The modeling layer of PSL allows the underlying HDL to be used for constructing such a coun-
ter within a verification unit, so that it is kept separate from the design itself, yet is still available for 
use in a PSL assertion. For example, consider a byte-serial bus protocol that specifies the number 
of bytes being transferred as the first byte following the packet header. Assuming the Verilog flavor 
of PSL, the following verification unit might be written to specify the behavior of this protocol:

vunit SerialProtocol (serial_interface_module) {
 integer count, crc;

 always @(posedge clk)
 if (header)
 begin
 count = currentbyte;
 crc = 0;
 end
 else
 begin
 if (count > 0) crc = compute_crc(crc, currentbyte);
 count = count – 1;
 end

 endpoint header = {currentbyte==̀ PKT_HDR; 1};
 sequence data = {(count>0)[*]; crc==currentbyte};

 assert always header -> next data;
}



452    18.4 Industry Adoption of ABV

In this example, verification unit SerialProtocol contains Verilog code (in Courier font) that acts 
as an auxiliary state machine supporting the assertion at the end of the verification unit. The 
Verilog code maintains a counter, loaded from the first byte after the header, and decrements the 
counter as successive data bytes appear. In parallel, it computes a cyclic redundancy check (CRC) 
for the packet, to compare against the CRC embedded at the end of the packet.

This example illustrates reference to a PSL endpoint within the HDL modeling layer code. 
Endpoint header is a sequence consisting of the header byte of a packet followed by the packet 
size. When this sequence has been recognized, it triggers the loading of the packet size into the 
counter in the Verilog code. The assertion also uses this endpoint as the indication that a packet 
has started, which implies that the data must follow (and that the CRC computed by the Verilog 
code must match the byte following the data in the packet).

Although PSL is defined as a separate language, it is also possible to embed PSL directly into 
HDL code. One approach involves a convention adopted by many PSL tools in which PSL code 
is embedded in HDL comments, following the comment delimiter and the keyword psl. Another 
approach involves incorporation of PSL directly into the underlying HDL, as recently occurred 
in the IEEE 1076-2008 VHDL standard. Embedded assertions are of most use for designers who 
want to add assertions as they go, to document their assumptions. External assertions (in veri-
fication units) are often of more use to verification engineers, who want to verify blocks without 
modifying the source code of those blocks.

18.4 INDUSTRY ADOPTION OF ABV

While the process of writing assertions is fairly well understood by those skilled in the art—or 
whose skill can be easily acquired though a wealth of published papers and books that focus 
on language syntax and semantics—the process of creating a repeatable ABV methodology that 
integrates into an existing verification flow is not. Hence, this section focuses on practical pro-
cess considerations that must be implemented to ensure an organization’s successful adoption of 
assertion-based techniques.

18.4.1 WHO SHOULD CREATE THE ASSERTIONS?

One question often asked by many engineers just beginning the process of adopting an ABV 
methodology within their flow is: “Who should write the assertions? Should it be the design 
engineers or the verification engineers?” In fact, confusion about who should write the asser-
tions has prevented many projects from adopting assertion-based techniques. However, in orga-
nizations that have matured their ABV process, both design and verification engineers generally 
create assertions. Although the ABV objectives are similar for both the design and verification 
engineer (i.e., to reduce debugging time while clarifying the design intent), the types of asser-
tions each of these stakeholders write are generally different, as illustrated in Figure 18.5.

The assertions that a verification engineer writes are generally derived from the project’s verifica-
tion testplan. These are often referred to as high-level assertions, and they are used to check for com-
pliance of the design against the specification. For example, a verification engineer might write a set 
of assertions to check compliance for a specific bus protocol. This set of assertions could be bundled 
together to form an assertion-based IP component, which then could be reused to check multiple 
similar interfaces. The key concept here is that the types of assertions that the verification engineer 
writes are typically specification-focused black box in nature (i.e., they have no internal implementa-
tion knowledge of the design), and they should be accounted for in the verification testplan.

In contrast, the types of assertions that a design engineer writes are focused on some low-level 
aspects of the design implementation that they want to monitor. This is particularly useful for 
checking design assumptions as well as checking for some characteristic of the design implemen-
tation where there are potential concerns due to complexity. The type of low-level assertions that 
a design engineer writes is analogous to a C software programmer who writes an assertion to 
monitor that a pointer that was passed to a function is valid before it is used within the function—
thus reducing debugging time if the function was used incorrectly.
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As an example, the design engineer might decide to add low-level assertions to monitor a 
particular FIFO for overflow or underflow conditions. Or the design engineer might add a low-
level assertion to monitor for multiple, simultaneous grants that might be erroneously issued by 
an arbiter. The key concept here is that the types of assertions that the design engineer writes are 
focused on some aspect of the implementation, white box in nature, and they are not accounted 
for in the verification testplan. In addition, these low-level assertions should not be verification 
targets for the verification engineer. The objective of creating these low-level assertions by the 
design engineer is to reduce debugging time by monitoring potential incorrect behavior related 
to some aspect of the implementation.

For large projects (where the engineering team has matured its ABV process), the verifica-
tion engineering team typically creates a few hundred high-level, specification-focused asser-
tions. In contrast, for the same project, it is not unusual to find that the design engineering 
team (when combining all their RTL) will have contributed 10s to 100s of thousands of low-
level assertions [19].

18.4.2 MATURING AN ORGANIZATION’S ABV PROCESS CAPABILITIES

Successful adoption and integration of ABV within a project’s design and verification flow 
involves much more than (1) learning an assertion language, (2) creating a few assertions, and 
(3) purchasing verification tools that support assertions. The successful adoption of ABV within 
these organizations does not happen by accident; that is, process issues must be addressed.

Why is process important? When an engineer conducts a set of new tasks in an ad hoc fashion, 
they are often not repeatable and can prevent effective adoption of these new tasks by other engi-
neers throughout the organization. Furthermore, if no metrics are gathered related to the new 
tasks that were introduced into the flow, then it becomes difficult to quantify any productivity 
gains or identify areas that need to be addressed.

So what do we mean by process? A process (Figure 18.6) obviously consists of tools and tech-
nology. Yet, it also consists of a clearly defined set of conventions and procedures. This makes the 
process repeatable throughout an organization. Furthermore, for successful adoption to occur, 
the organization must develop or acquire the required skills required by the process, as well as 
motivation to develop those skills. Finally, metrics are fundamental to quantitatively determine 
the effectiveness of a process, as well as identify opportunities for process optimizations or modi-
fications. Without metrics, the organization lacks visibility into a process.

Verification engineer Design engineer

High-level assertions Low-level assertions

Requirement focused Implementation focused

Black-box assertions White-box assertions

Accounted for in testplan Not accounted for in testplan

Improve observability

Reduce debugging time

Creating reusable assertion IP

Compliance traceability

FiGURe 18.5 Assertion-based verification stakeholders and types of assertions.
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18.4.2.1 ABV TOOLS AND TECHNOLOGY

One of the benefits of assertions is that they can be specified once, and then the project can 
reuse the assertions across an entire suite of verification tools. In other words, assertions can 
be reused across a custom verification tool, a standard RTL testbench, a commercial simulator, 
a semiformal tool, or a formal verification tool. A number of projects today are even synthesiz-
ing assertions into hardware emulation, FPGA prototypes, and actual silicon for postsilicon 
debugging. In reality, ABV is not a process unto itself but an extension of existing verification 
techniques (e.g., simulation, emulation, and formal verification, FPGA prototyping, and even 
postsilicon validation).

Although the ABV tools, languages, and technology are necessary components of  the 
ABV   process, there is a wealth of material published that narrowly focuses on this aspect  of 
the ABV process. Hence, this topic is not addressed in this chapter.

In terms of reusing assertions across multiple tools, although it is possible, this is something 
that must be carefully considered within a project. For example, it might be unproductive to 
formally verify every low-level, implementation assertion created by a design engineer for a given 
block—particularly if the block has been identified as low risk. Similarly, it is likely be unproduc-
tive to synthesize every assertion from every design block into emulation.

18.4.2.2 ABV CONVENTIONS AND PROCEDURES

To ensure that the ABV process is repeatable and consistent, the design project must establish 
conventions for the creation and use of assertions. For example, the project team must provide 
a consistent manner of controlling assertions (i.e., enabling and disabling assertions), reporting 
assertion violations, and specifying reset. If these conventions are not established early in the 
project’s planning phase, then the ABV process can become unwieldy and even overwhelming as 
multiple stakeholders get involved.

18.4.2.2.1 Assertion Control As previously stated, it is a good idea to establish a consistent 
mechanism for enabling and disabling assertions within the verification process. SystemVerilog 
provides constructs to enable and disable assertions, but the conventions used for that purpose 
must be decided by the project (e.g., $assertoff, $asserton, $assertkill). Some orga-
nization use either the Verilog generate or `ifdef constructs for various reasons to enable or 
disable assertions. However, it is important to choose a convention that integrates well with other 
processes within the design teams specific verification flow. Hence, there is no single correct con-
vention for all organizations; however, a project convention should be established.

Other process considerations that the project might need to address are the grouping of sets of 
assertions and the ability to control specific groups based on the verification focus. For example, 
some groups of assertions might need to be disabled during error injection testing in simulation 
or emulation.

Metrics, analysis,
optimizations

Tools and technology

Conventions, procedures

Process

People, skills, documentation, 
training, motivation

FiGURe 18.6 What is a process?
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18.4.2.2.2 Assertion Reset Similar to assertion control conventions, it is necessary to establish 
a consistent convention and mechanism for resetting the assertions. For example, some projects 
create a global or master reset that is controlled from the testbench, in addition to the local resets 
within the scope of the assertions. The decision to have a global reset is something that must be 
decided early in the verification planning process.

18.4.2.2.3 Reporting If each engineer develops their own error reporting convention, it 
becomes problematic to create scripts that automatically process the various simulation log files. 
While today’s assertion languages provide constructs for reporting, they leave it up to the engi-
neer to decide what to report. Conventions should be established to ensure consistent looking 
assertion messages and their appropriate error or warning message levels. This simplifies the 
creation of any scripts used for postprocessing verification tool log files.

Some projects establish a convention for limiting the number of times each specific assertion 
can report an error within a given simulation run. This can be helpful at preventing any given 
assertion from overwhelming a regression log file for a previously identified error.

18.4.2.2.4 Naming Conventions Naming conventions are something you might want to con-
sider as part of your ABV process. For example, to ensure consistency across a project, many 
organizations require the engineers to add labels to their assertions and coverage properties. 
One convention that is often adopted is to add prefixes to the labels, or named properties and 
sequences, to simplify their identification. Table 18.1 provides one example of a prefix naming 
convention that is often used. The organization might decide to create different convention for 
your own project. The point is that naming conventions provide clarity when reviewed by mul-
tiple ABV multiple engineers and managers concerned with the ABV process.

18.4.2.2.5 Binding versus Embedding Assertions Verification engineers often group their set 
of related assertions into a reusable verification component—often referred to as assertion-based 
IP [20]. However, for the design engineer, the question is often asked if the assertion should be 
directly embedded into the RTL code or maintained separately within a bind file. There are advan-
tages and disadvantages to each approach. The advantage of embedding the assertions directly in 
the RTL is that if the RTL is reused at some future point in time, the embedded assertions travel 
with the code, which can simplify maintenance. In addition, assertions directly embedded in the 
RTL often help clarify the original design intent, which is helpful if the RTL code is modified by 
someone other than the original creator in the future.

However, there are times when an RTL module intended for reuse is considered golden and 
cannot be modified. Yet, it is still often desirable to create a set of assertions for that reused 
module. Under these circumstances, binding a set of assertions (located in a separate file from 
the RTL) preserves the integrity of the original golden RTL code, while permitting the addition 
of assertions [21].

Another consideration when establishing an assertion bind versus embed convention relates 
to the synthesis (and other) processes, which might be under the control of a makefile. For 
 example, if there is a bug in an assertion that needs to be fixed, or if the engineer decides to add a 
new assertion directly into the RTL code, a timestamp for the RTL file would be updated, which 
would unnecessarily trigger a costly synthesis run and affect the physical flow. However, if the 
assertions are maintained in a separate bind file, the maintenance of those assertions has no 
effect on the timestamp on the RTL file, which prevents an unnecessary make from executing.

tABLe 18.1 Suggested Assertion Prefix naming convention

Prefix Definition 

s_ Prefix used to identify a named sequence, e.g., s_req_gnt
p_ Prefix used to identify a named property, e.g., p_mutex
a_ Prefix used on labels to identify an assertion, e.g., a_mutex
c_ Prefix used on labels to identify coverage properties, e.g., c_write_burst
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18.4.2.3 LEARNING HOW TO CREATE ASSERTIONS EFFECTIVELY

It is generally easy for an engineer to learn the syntax and semantics of an assertion language, 
and there are many resources available that focus on this subject [1,19–25]. Yet, skills must be 
developed beyond the how aspect of writing an assertion. In fact, many engineers getting started 
with the ABV process are often confused on the what that assertions should address. This is less 
of a problem for verification engineers since the verification testplan identifies what should be 
checked. However, for design engineers, understanding where to add assertions in the RTL can 
be frustrating until they gain sufficient experience.

18.4.2.3.1 Simple Assertion Creation Principles Following a few simple principles and guide-
lines greatly simplifies the process of creating assertions for design engineers. The most impor-
tant principle is to keep the assertions simple and short. However, design engineers often think 
too hard about the type of assertion they want to create. For example, many engineers are think-
ing in terms of high-level, end-to-end checks—similar to the check they might consider when 
creating a directed test. Or they might think in terms of a complex sequence they want to check 
as defined by a specific requirement. One problem with this approach is that many of these com-
plex assertions often require advanced assertion language skills to create. But more importantly, 
they will not provide the design engineer with the simulation debugging benefits that low-level 
assertions provide.

Hence, when getting started, our first recommendation is that the design engineers avoid 
thinking about assertions in the same way as they would when creating directed end-to-end 
tests. Instead, the design engineers should write simple assertions to check low-level discrete 
behavior—for example, a FIFO will not underflow or overflow, or an input packet’s tag has a 
legal value, or the grants from an arbiter are mutually exclusive. The advantage of keeping the 
assertions simple and short is that the design engineer will find it much easier to write these 
assertions. Furthermore, these simple assertions will reduce the design engineers’ debugging 
effort in simulation. In contrast, high-level, end-to-end assertions (although useful to verifica-
tion engineers for creating reusable verification components) generally do not reduce the debug-
ging effort.

Our second recommendation is that the design engineers write their assertions in place of a 
comment whenever possible. For example, many engineers write a comment about some assump-
tion they have made about the design or some aspect of the design that is concerning them—such 
as the two control signals must never be high at the same time or the design will not function 
correctly. Adding an assertion (in addition to a comment) is a great way to validate your assump-
tions during simulation and monitor specific design concerns.

Our final recommendation is, whenever it is possible, the design engineer should create asser-
tions on the interface ports of their design block to validate basic control signals or legal com-
mand values. For example, if a block has two input control signals (e.g., en1 and en2) that must 
never be active at the same time, then a simple assertion can check this condition. Or, if there is a 
specific timing relationship or restriction between interface control signals, such as a grant must 
follow a request within 10 cycles, then a simple assertion can quickly identify problems when 
the timing restriction is violated. For design engineers, it is recommended that they evolve their 
assertion skills first before they try to create more complex assertions that verification engineers 
would typically create, such as a set of assertions checking a bus protocol.

18.4.2.3.2 Assertion Reviews An effective method to build skills within an organization is 
to conduct assertion reviews with the team at different stages of RTL development. This is not 
as painful or as time consuming as traditional code reviews. The goal is for the various team 
members to describe (from a high level) the various assertions they have added to their design 
and what they are checking. What happens through this process is that engineers who are 
inexperienced at creating assertions will learn from the engineers who are more experienced 
at creating assertions. For example, an experienced engineer might share with the team a set 
of assertions that were created to check a complex arbiter. The inexperienced engineers will 
often realize that they have a similar complex arbiter and could create a set of similar asser-
tions for it.



Chapter 18 – Assertion-Based Verification    457

Another benefit with assertion reviews is that the process often exposes incorrect assump-
tions made between multiple engineers working on neighboring blocks. These bugs can then be 
fixed prior to any form of verification, which increases productivity. For example, one engineer 
might share with the team a set of assertions written to check the interface of a block. The engi-
neer responsible for the neighboring block might then point out an incorrect assumption that was 
made on the neighboring interface.

18.4.2.3.3 Learning from Bug Escapes Another useful method of maturing a project’s ABV 
skills is to carefully analyze bug escapes, and then learn how to improve the team’s assertion-
creating skills from these mistakes. For instance, when a bug slips through simulation and 
into emulation, FPGA prototyping, or even postsilicon validation—the design and verification 
team should try to identify whether some low-level, RTL error (which manifested itself into the 
larger issue identified at a later stage of verification) could have been caught with an assertion. 
As an example, if a router block periodically drops a packet as a result of a fair arbitration error, 
then a good candidate assertion might be one that checks to ensure the arbiter is fair. The key 
point is that to build skills with the design engineers, you want to focus on the root cause(s) of 
the bug and the low-level assertions that the design engineer could have created to reduce the 
overall debugging effort (e.g., the arbiter error in our case)— versus focusing on writing a single 
assertion that would detect the high-level, end-to-end failure. Focusing on low-level assertions 
does not mean that the high-level assertions are of little value, but a larger set of low-level asser-
tions will dramatically reduce debugging time by identifying the root cause of a higher-level 
failure.

By applying this approach, the project team matures their ABV skills over time, and increases 
the quality and density of assertions in the design.

18.4.2.4 METRICS IN THE ABV PROCESS

Finally, metrics are a fundamental component for any process a design team creates. Without 
quantifiably measuring the effectiveness of a process, the organization has no real visibility into 
its effectiveness—nor the ability to identify aspects of the process that need to be optimized, 
modified, or eliminated [26].

The following are just a few examples of metrics that can be introduced into an ABV process:

18.4.2.4.1 Bug Identification Mature organizations generally log the bugs they identified dur-
ing verification regressions, which enables them to observe bug rates and other trends associated 
with bugs (Figure 18.7). These process metrics are useful for decision making by the design and 
verification team, as well as project managers. For example, when bug rates level off, then either 
the design is stabilizing in terms of quality, or the metrics have identified a lack of effectiveness 
with the current verification approach, and an alternative strategy might need to be considered.

In addition to logging specific bugs, mature organizations often log the technique in the 
verification environment that found the bug, for example, a linting tool, a scoreboard within 
a testbench, a VIP protocol checker, and an assertion in simulation. By logging the verification 
technique that identified each specific bug, it is then easy to calculate the number of bugs found 
by the various techniques (e.g., assertions), which can quantify the effectiveness of various veri-
fication techniques.

18.4.2.4.2 Debugging Effort If a project logs the effort spent on debugging each specific bug, 
as well as the verification approach used to identify the bug, then it is possible to measure the 
impact that a new verification technique has on reducing debugging time. Managing the effort 
spent in debugging is an effective way to improve productivity since debugging consumes the 
most effort spent in verification.

18.4.2.4.3 Assertion Density This metric calculates the number of assertions for each block in 
the design, and it is useful for identifying potential verification risks. Experience has shown that, 
in general, complex blocks with a low assertion density have more bugs and are more difficult to 
debug [27]. For designers who have low assertion density metric, and have expended high effort 
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in debugging, publishing assertion density within an organization, along with debugging effort, 
can be a great motivation to improve assertion density numbers.

Note that an alternative approach to calculating assertion density is to calculate the ratio of 
the number of assertions per lines of code. In general, simply calculating the number of asser-
tions in a design block is sufficient. Also, some commercial tools calculate assertion density as the 
minimum sequential distance between each design element and an assertion [28]. The objective 
is to identify portions of the design with poor observability.

18.5 SUMMARY AND FUTURE DIRECTIONS

Today’s assertion language standards, such as PSL and SVA, have become a driving force in indus-
try adoption of advanced functional verification techniques, bridging the gap between theory and 
practice. For example, recent industry studies indicate that debugging, on average, has grown to 
consume the largest amount of time within today’s overall SoC verification effort [29,30]. These 
same studies indicate that assertion use in industry has grown from a 37% adoption rate in 2007 
to 68% by 2012. The significance of this proliferation is that as numerous published case studies 
indicate, organizations that have adopted an ABV methodology have seen a significant reduction 
in verification debugging time (as much as 50% [1,31]) due to improved observability. In addi-
tion, adopting ABV provides an integration path for more advanced forms of verification into the 
design flow (such as formal property checking).

The current interest in ABV is focused on the use of assertions in simulation. Assertions are 
usually added after the fact, to increase observability of events within the design so that bugs can 
be detected closer to their source. But this approach is only beginning to take advantage of the 
power of assertion languages.

Many engineers consider the biggest challenge in adoption of assertion-based techniques is 
related to the manual effort and time required to generate assertions—with no guarantees about 
the quality or coverage of the assertions produced. To address this challenge, researchers are 
exploring assertion synthesis techniques to automatically generate assertions by data mining 
simulation traces in order to identify both design and environment properties [32]. This research 
has recently led to multiple commercial assertion synthesis solutions, as listed in Table 18.2.

Over time, the industry has witnessed an increased use of the coverage capabilities of assertion 
languages to enable coverage-driven verification [33]. At the same time, by taking advantage of 
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the formal semantics of assertion languages such as PSL and SVA, formal verification of designs 
has become common. Eventually, we can expect to see assertion languages used to thoroughly 
specify the behavior of design IP blocks and their interfaces [34] with such specifications devel-
oped before, rather than after, the design is done. This practice may even lead to use of assertion 
languages as a vehicle for design if appropriate methods for assertion-based design synthesis or 
component selection can be developed.
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19.1 INTRODUCTION

The state of hardware-assisted development has changed fundamentally since the first edition 
in 2006. This chapter therefore is split into two parts. In the first part, we describe how a typi-
cal modern system-on-chip (SoC) design and the different development engines—from virtual 
prototyping through register-transfer-level (RTL) simulation, acceleration and emulation, and 
field-programmable gate array (FPGA)-based prototyping and bring-up on-chip prototypes—are 
being used in concert, outlining their individual strengths and weaknesses. The second part of 
the chapter delves further into the state-of-the-art emulation technology, contrasting processors 
and FPGA fabrics as underlying architectures.

19.1.1 DEVELOPMENT TRENDS OF THE LAST DECADE

Since the first edition of this book almost 10 years ago in 2006, the chip and system design char-
acteristics that define the requirements for development and verification processes of hardware 
and software have changed significantly.

First, according to Reference 1, the number of design starts, while still hovering around 9000 
per year in 2014 after a dip to a low of about 7000 in 2009, is expected to remain at the same order 
of magnitude until 2020. However, it has significantly changed with respect to the technology 
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node and the complexity of each design. In 2004, only 3.7% of the design starts targeted 90 nm or 
smaller geometries. In 2014, that percentage has grown to 33.5% and is predicted to reach 41.5% 
in 2020. The growth in design complexity, thanks to available silicon area, is significant.

Second, at 90 nm, the industry experienced a shift in the distribution of cost as well. The over-
all development and verification effort for software exceeded that for hardware, making up about 
48% of the effort for 65 nm designs. This effort is expected to grow by eight times from 65 nm 
nodes to 16/14 nm. The execution cycles required for verification of those complex designs can-
not be provided by just faster execution engines but also require smarter use of verification cycles 
and even decisions as to which use cases may be neglected and do not need verification.

The third and possibly the most significant design trend that has impacted design technologies 
is that of hardware intellectual property (IP) reuse. According to Reference 2, in 2004, it was a 
modest percentage of just under 30% of the design, with just under 20 IP blocks on average, and it 
is expected to grow to about 70% reuse and an average of 120 IP blocks in 2014. In 2017, the same 
study predicts that, on average, about 180 IP blocks will contribute to 80% overall hardware reuse.

19.1.2 TYPICAL 2015 DEVELOPMENT PROJECT

Comprehensive functional verification of hardware itself, as well as its associated software, is key 
to reducing development costs and delivering a product on time and as specified. Figure 19.1 indi-
cates a design flow from specification to silicon, including production and postsilicon validation. 
Hardware has to be developed using integration of IP into subsystems, subsystems into SoCs, 
and SoCs into systems. Complex software stacks, from bare-metal software (directly interfacing 
to the registers in hardware and forming abstraction layers to access the hardware) to operating 
systems (OSs) to middleware and applications, have to be able to execute on the various proces-
sors in the system.

More specifically, based on a study of 12 projects [3], a specification phase of 8–12 weeks 
is followed by a phase combining RTL design, integration, and verification, with a major fac-
tor being the qualification of IP. The overall duration from RTL to GDSII can range from 49 to 
83 weeks. The key is that in the last 10–12 weeks only small gate-level changes and engineering 
change orders are allowed as the focus of development will have shifted to silicon implementa-
tion and verification. The actual tapeout is followed by an 11–17-week production phase and 
14–18 weeks of postsilicon validation.
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The left axis of Figure 19.1 indicates the HW/SW (Hardware/Software) development stack. 
The SoC integrates subsystems and IP blocks and then operates within its system environment, 
that is, the PCB board and package. Different types of software are executing on the SoC, ranging 
from bare-metal software that, together with its associated hardware, actually defines the func-
tionality of the chip, to drivers and OSs such as Linux, Android, iOS, and Windows or real-time 
OSs such as OSE or vxWorks. These OSs are hosting middleware for audio, video, graphics, and 
networking that in turn enable applications responsible for the end user experience.

A couple of key dependencies are also indicated in Figure 19.1. As RTL matures during the 
design flow, there comes a point at which hardware functionality has to be frozen as the focus 
shifts toward silicon implementation and only changes at the gate level can be easily imple-
mented. At that point, all the aspects of the chip as to how it interacts with its system environ-
ment also have to be verified, posing unique challenges to execution platforms for the RTL at that 
stage of the project because either the system environment has to be modeled or virtualized or 
the engines of varying speeds that execute the design under development need to be connected 
to actual physical representations of the system environment.

The other dependency relates to software development. Generally, the interactions at the 
hardware/software interfaces need to be validated as early as possible, and today, proper boot-
up of OSs has become a de facto requirement to allow tapeout. This poses unique challenges 
for the RTL execution engines as a large number of cycles needs to be executed—billions of 
instructions—to get OSs to boot. While the actual use of presilicon development platforms will 
continue during the final phase prior to tapeout, decisions to hold the tapeout at that point due to 
software issues found while functional verification proceeds need to be considered very carefully 
as the verification of physical implementation has to be restarted. Once the chip is back from 
production, software development can be finalized using the actual chip prototypes.

Many improvements in system design processes focused on engines that can execute hardware 
representations earlier in the design cycle. These engines must also be able to execute sufficient 
cycles for verification and for software development—which can reach billions of cycles just for an 
OS boot-up. We have been witnessing a shift to the left (as illustrated in Figure 19.1) that is still 
continuing [4]. More and more tests that used to be performed only post silicon are now attempted 
presilicon. As mentioned earlier, software development has become so complex that some of it has 
to be brought forward in the design flow as a requirement for tapeout, like booting to the prompt 
of an OS. Being able to start hardware/software codevelopment 4–6 weeks earlier can significantly 
impact the financial return for a product if a given target market window can be met.

19.1.3 CORE DEVELOPMENT ENGINES

During the aforementioned project phases, verification and software development are mainly 
done on four different types of core execution engines—virtual prototyping, RTL simulation, in-
circuit emulation (ICE), and FPGA-based prototyping. A very common use model utilizing both 
RTL simulation and emulation in combination is called “simulation acceleration” and is further 
detailed in the following five definitions:

 1. Virtual prototypes are transaction-level representations of the hardware, able to execute 
the same code that will be loaded on the actual hardware. They can execute at speeds 
well above hundreds of MIPS on x86-based hosts running Windows or Linux. To the 
software developer, virtual prototypes look just like the hardware because the registers 
are represented correctly, while functionality is accurately represented but abstracted. 
For example, processor pipelines and bus arbitrations are not represented with full 
accuracy, and video/audio decoding algorithms may functionally execute using a C/C++ 
implementation but will not be timing or bit accurate. For more information on virtual 
prototyping, please see Chapters 6, 8, and 12. RTL simulation executes the same hard-
ware representation that is later fed into logic synthesis and implementation. This is the 
main vehicle for hardware verification, and it executes in the single-digit Hertz range 
but is fully accurate as the RTL becomes the golden model for implementation, allowing 
detailed hardware debugging. RTL simulation should be used early in the verification 
process when bugs and fixes are frequent.
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 2. Simulation acceleration executes a mix of RTL simulation and hardware-assisted verifi-
cation. Simulation acceleration can address the performance shortcomings of RTL sim-
ulation when the design is mapped into a hardware accelerator to execute faster, while 
the testbench (and any behavioral design code) continues to execute in simulation on 
the workstation. A high-bandwidth, low-latency channel connects the workstation to the 
accelerator to exchange signal data between the testbench and the design. By Amdahl’s 
law, the slowest device in the chain will determine the achievable speed. Normally, this 
is the testbench executing nonsynthesizable verification constructs (e.g., written using 
“e” or SystemVerilog) in the simulator. With a very efficient testbench (written in C or 
transaction based), the channel connecting the host and the hardware accelerator may 
become the bottleneck. As indicated by the name, the primary use case is acceleration 
of simulation. This combination allows engineers to utilize the advanced verification 
capabilities of language-based testbenches with a faster device under test (DUT) that is 
mapped into the hardware accelerator. Typical speedups over RTL simulation can reach 
or exceed 1000×, but the achievable speed is typically limited to tens of kilohertz.

 3. ICE executes the design using specialized hardware verification computing platforms 
into which the RTL is mapped automatically and for which the hardware debug is as 
capable as in RTL simulation. Interfaces to the outside world (Ethernet, USB, etc.) can 
be made using rate adapters. ICE takes the full design including monitors and checkers 
(but typically excluding test benches unless they are synthesizable) and maps it into the 
hardware platform, allowing much higher speed up into the megahertz range and thus 
hardware/software codevelopment. ICE greatly reduces the long time required to imple-
ment and change designs typically seen with FPGA prototyping and provides a compre-
hensive, efficient debugging capability. While it takes weeks or months to implement an 
FPGA prototype, it takes only days to implement emulation. And design changes take a 
few hours or less. ICE does this at the expense of running speed and cost compared to 
FPGA prototypes. Looking at emulation from a different perspective, it improves accel-
eration’s performance by substituting “live” stimulus for the testbench simulated on the 
host. This stimulus can come from a target system (the product being developed) or 
from test equipment. At 10,000–100,000 times the speed of simulation, ICE alone deliv-
ers the speed necessary to test application software while still providing a comprehen-
sive hardware debug environment. Due to its fast compilation into processor arrays and 
since it does not require an expensive FPGA layout phase, ICE can be used much earlier 
in the design flow than FPGA-based prototyping.

 4. FPGA-based prototyping uses a collection of FPGAs into which the design is mapped 
directly. Due to the need to partition the design, remap it to a different implementation 
technology, and reverify equivalence to the incoming RTL, the bring-up of an FPGA-
based prototype can be cumbersome and takes months (as opposed to hours or min-
utes in ICE); debug is mostly an offline process. In exchange, speeds can reach tens of 
megahertz, making software development a realistic use case. The time required to map 
a large design into a collection of FPGAs can be very long and error prone. Changes 
to fix design flaws also take a long time to implement and may require board wiring 
changes. Since FPGA prototypes have little debugging capability, probing signals inside 
the FPGAs in real time is difficult and intrusive, leading to a reduction in execution 
speed, and recompiling FPGAs to move probes takes a long time. FPGA-based prototyp-
ing should be used toward the end of the development cycle when the design is basically 
complete, and speed is needed to get sufficient testing to uncover any remaining system-
level bugs. Due to its speed, FPGA-based prototyping is still often the preferred software 
development vehicle, especially when accurate hardware representations are required 
(as compared to virtual prototyping on less accurate transaction-level models) and when 
cost is important and designs are small enough to fit into a single FPGA.

Notably, simulation and prototyping involve two different styles of execution. Simulation exe-
cutes the RTL code serially while a prototype executes fully in parallel. This leads to differences 
in debugging. In simulation, one sets a breakpoint and stops the simulation to inspect the design 
state, interact with the design, and resume simulation. One can stop execution midcycle as it 
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were, with only a part of the code executed. One can see any signal in the design and the contents 
of any memory location at any time. You can even back up (if you have saved a checkpoint) and 
rerun. With a prototype, one has to rely on a logic analyzer for visibility, so you can see only a 
limited number of signals, which you determine ahead of time (by clipping on probes). The target 
does not stop when the logic analyzer triggers, so each time one changes the probes or triggers 
condition, you have to reset the environment and start again from the beginning. Acceleration 
and emulation are more like prototyping and silicon in terms of RTL execution and debugging, 
since the entire design executes simultaneously as it will in the silicon. Since the same hardware 
is often used to provide both simulation acceleration and ICE, these systems provide a blend of 
these two very different debugging styles.

Another difference between simulation versus acceleration and emulation is a consequence 
of accelerators using hardware for implementation—they inherently use only two-valued 
logic (0/1)—acting the way the silicon will when fabricated. More values, such as X and Z, are 
used only in specific scenarios, like X-state handling during initialization or strength resolution, 
as will be discussed in Section 19.4. Accelerators also do not model precise circuit timing; hence, 
they may miss race conditions or setup and hold-time violations. Verification of those is better 
carried out during simulation or with static timing analysis tools. A key distinction between an 
emulator and an FPGA prototyping system is that the emulator provides a rich debug environ-
ment, while a prototyping system has little to no debug capability and is primarily used after the 
design is debugged to create multiple copies for system analysis and software development.

19.2 HARDWARE-ACCELERATED VERIFICATION SYSTEMS

Key tasks during the development include system modeling and trade-offs, early software devel-
opment, IP selection and design verification, SoC and subsystem verification, gate level, timing 
and power sign-off, HW/SW validation for SoC and bare-metal software, software integration, 
and quality assurance, as well as system and silicon validation. The following sections will outline 
the main trade-offs, user concerns, requirements, and solutions.

19.2.1 HARDWARE VERIFICATION AND SOFTWARE DEVELOPMENT

Figure 19.2 outlines appropriate engine use areas as an overlay on the main user tasks.
Depending on whether models are available, virtual prototyping can enable software develop-

ment as early as a couple of weeks after the specification is available. It is fast, allows good soft-
ware debug insight and execution control, and is typically the quickest way to bring up software 
on a new design. By itself, it does not allow detailed hardware debug, which is the initial strength 
of RTL simulation. Used initially for RTL development, IP integration and design verification, 
RTL simulation can be used up to the complexity level of subsystems and certainly is a sign-off 
criterion for gate-level simulation and timing sign-off. It allows the fastest turnaround time for 
new RTL, offers excellent hardware debug, but it is typically too slow to execute meaningful 
amounts of software. With the advent of extending the use of graphical processing units (GPUs) 
to more general parallel compute tasks, the speed of RTL simulations can be increased using 
accelerators built into workstations.

To better extend to subsystems and the full SoC, verification acceleration uses specialized 
hardware attached to the simulation workstation and moves the DUT into hardware. In addi-
tion to faster hardware verification, this can allow enough speedup for bare-metal software devel-
opment. With its in-circuit capabilities, emulation extends the verification to the full-chip and 
chip-in-system levels by enabling connections to real system environments such as PCI, USB, and 
Ethernet. The main advantage of processor-based emulation is fast turnaround time for bring-up, 
which makes it ideal for the project phase in which RTL is not quite yet mature. In addition, it 
allows multiuser access and excellent hardware debug insight in the context of real software that 
can be executed at megahertz speeds, resulting in very efficient hardware/software debug cycles. 
Standard software debuggers can be attached using JTAG adaptors or virtual connections. FPGA-
based emulators are typically weaker with respect to debug efficiency and turnaround time.
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FPGA-based prototyping allows the extension of the speed range into the tens of megahertz 
range and often offers the best cost per gate per megahertz for software development and hard-
ware regressions in the project phase when RTL has become stable enough so that fast turn-
around time and hardware debug matter less. The downside to standard FPGA-based prototyping 
is capacity limitations as well as longer bring-up due to the changes that have to be made to map 
the RTL to FPGAs. Key characteristics of the different dynamic development engines are com-
pared in Table 19.1.

19.2.2 USER CONCERNS AND REQUIREMENTS

The top requirements and concerns of customers when choosing a hardware-assisted verification 
and software development engine are execution speed, capacity, and cost:

 ◾ Execution speed is often looked at as a primary concern for software developers, which 
is not surprising given the number of cycles necessary to boot an OS. However, as pre-
sented by ARM® during CDNLive India 2013 [5] on how many cycles it took to verify 
the ARM big.LITTLE™ processor configuration, it is also an important parameter for 
verification given that trillions of cycles have to be executed per week. Traditionally, 
emulation is in the megahertz range and FPGA-based prototyping in the range of tens 
of megahertz.

 ◾ Capacity—the design size that can be mapped—is often a key criterion. In emulation, 
users can map billion-gate designs. For FPGA-based prototyping, the upper limit is typi-
cally in the area of 100 million gates.

 ◾ The marginal cost per unit is usually measured in dollars per gate, and it is of key interest 
in balancing the investment customers make. Emulation reflects its value of advanced 
debug, shorter bring-up, earlier time of availability, and, of course, its versatility of use 
models at higher cost compared to FPGA-based prototyping.
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Besides these top three requirements, additional requirements are growing in importance and 
help moderate the decision of which engine is the most appropriate at a specific point in a devel-
opment project:

 ◾ The effort in addition to RTL is an often-overlooked component. Emulation can use RTL 
in an almost unmodified form in order to map it into the hardware. FPGA-based pro-
totyping requires users to manually modify the RTL to map into the FPGA as opposed 
to the actual target technology for which the RTL was meant. Memories have to be 
remodeled, the design needs to be partitioned between FPGAs, clock domains must be 
managed, and so on. Both FPGA-based prototyping and FPGA-based emulation require 
an actual layout of the partitioned design into the individual FPGAs, a process that often 
does not achieve closure at first try and is very time consuming, even when using mul-
tiple cores and parallelizing across multiple multiprocessor servers. In contrast, pro-
cessor-based emulation maps into the hardware at 75 million gates per hour on a single 
workstation. This impacts power and cost.

 ◾ Hardware debug, a key requirement for hardware verification, is almost as capable in 
emulation as it is in RTL simulation, with full visibility and interactivity while not slow-
ing down the execution. In FPGA-based prototyping, hardware debug is less advanced, 
with probes inserted in advance and waveforms analyzed offline after execution. In both 
FPGA-based prototyping and FPGA-based emulation, the instrumentation for debug 
slows down the execution and modifies the actual RTL.

 ◾ Software debug is an area in which emulation and FPGA-based prototyping are simi-
lar in capabilities. Standard software debuggers such as the ARM DS-5, GDB, and 
Lauterbach’s Trace32 can be attached via a JTAG port. Techniques are emerging that 
allow synchronized offline debug of software traces together with hardware, perhaps 
giving emulation a slight edge.

 ◾ Bring-up time is closely tied to the modifications that are necessary to map RTL into the 
hardware. Users of processor-based emulation have reported [6] that they can map new 
RTL several times a day. In traditional FPGA-based prototyping, users would have to 
wait several months until bring-up.

 ◾ Time of availability in the development cycle is a key difference, and it is tied to maturity 
of the RTL being mapped. Due to its fast compile-time, processor-based emulation can 
be used very early in the development cycle when RTL becomes available. Due to its 
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longer bring-up and efforts to modify RTL, FPGA-based systems are more suitable once 
RTL is stable, later in the design flow, but still prior to silicon availability.

 ◾ Hardware accuracy is not a big differentiator between emulation and FPGA, and it is 
in the diagram mostly to differentiate from other related technologies, such as virtual 
prototyping, for which the hardware is abstracted. Emulation has a slight edge because 
fewer modifications are required to the original RTL to enable bring-up.

 ◾ Finally, system connections represent how an engine connects to the actual chip environ-
ment. Both emulation and FPGA-based prototyping fare well here as they can be con-
nected to the system environment using rate adaptors, like Cadence SpeedBridges™ [7] 
and Mentor iSolve™ [8]. FPGA-based prototyping has a slight edge due to the higher 
possible speed that allows some interfaces to be executed natively.

19.2.3 HISTORY OF HARDWARE-ACCELERATED VERIFICATION SYSTEMS

In the 1980s, IBM developed the engineering verification engine (EVE) family of simulation 
acceleration hardware for internal use. EVE later extended to the Awan architecture in 1998, 
AwanNG in 2004, and AwanStar in 2008 [9].

In 1988, Quickturn delivered the first commercial emulator when FPGA technology had 
reached sufficient capacity to allow their implementation. In 1997, Quickturn delivered a pro-
cessor-based emulator based on custom silicon and was acquired by Cadence Design Systems 
in 1999. In 2002, Cadence delivered the Palladium product line with 128 million gates and up 
to 750 MHz. Axis announced Xtreme emulator based on reconfigurable computing technology 
in 2001, it was acquired by Verisity in 2004, and then it merged into Cadence in 2005. In 2010, 
Cadence subsequently introduced the Palladium XP Verification Computing technology, fol-
lowed by Palladium XP II in 2013.

Mentor Graphics entered the emulation business by acquiring Meta Systems (founded in 1991) 
in 1995. After exiting the emulation business in 1996, they introduced the Celaro Pro technology 
in 2002 and in 2003 acquired IKOS, which had acquired Virtual machine Works in 1995. They 
introduced the Veloce product family in 2007, followed by Veloce 2 in 2012.

Eve had launched their Zebu product line in 2002 and was acquired by Synopsys in 2012. 
Subsequently, Zebu Server 3 was introduced in early 2014.

With growing complexity of FPGAs, custom FPGA prototypes found more and more usage as 
internally developed platforms in the 2000s. These systems either used the FPGA implementation 
tools delivered by FPGA providers like Xilinx and Altera, or commercial FPGA implementation 
tools from companies like Synplicity. By 2005, ProDesign Elektronik GmbH, HARDI Electronics, 
The Dini Group, and Aldec had introduced commercial FPGA-based prototyping systems, which 
prompted make versus buy discussions among designers, evaluating whether they should build 
in house prototypes by themselves versus relying on commercial offerings [10]. HARDI was later 
acquired by Synplicity and merged into Synopsys in 2008. In 2009, Synopsys acquired the ChipIt 
business unit of ProDesign. At the time of the revision of this chapter for the second edition, the 
main FPGA-based prototyping offerings in the market were provided by Synopsys (HAPS), The 
Dini Group, S2C (TAI), ProDesign (duo v7), Cadence (Protium™), and Aldec (Riviera PRO).

In addition, in 2015, the lines between FPGA-based prototyping and emulation are blurring. 
Differentiation between the two is mostly done by use model and support. The majority of users 
for FPGA-based prototyping is doing software development [11], while the majority of users for 
emulation are doing hardware verification. With software’s growing importance for SoC develop-
ment, emulation is used for software development too, as is FPGA-based prototyping for hard-
ware verification.

The following sections will introduce in more detail the characteristics of processor-based 
and FPGA-based systems for emulation and prototyping. To emphasize the blurring lines 
between different solutions, Figure 19.3 outlines the capabilities of different solutions along the 
user concerns and requirements as introduced in Section 19.2.5. Generally, FPGA systems excel 
at higher speeds and lower marginal costs per unit, while processor-based systems excel at time 
of availability during a development project due to faster bring-up time and hardware debug 
(see also [12]).
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19.2.4 FPGA-BASED SYSTEMS

FPGAs are an obvious choice for implementing an emulator, especially when the design fits into a 
single FPGA. The number of gates an FPGA can hold drops as a design is partitioned into multiple 
FPGAs. When a design is partitioned into many FPGAs, the FPGA I/O pin count rather than the 
vendor-rated gate can determine the capacity of the FPGA.

This problem of how many pins to provide for each partition of a system came up in the 
IBM 1401 project back in 1960. Ed Rent found an empirical rule for the relationship between 
pins per logic block and the number of gates in the block, by which the number of pins is 
equal to the product of a Rent constant K and the number of gates G, adjusted by the Rent 
exponent R [13]. While Rent’s rule is empirical, it has had profound influence on system archi-
tecture and CAD/EDA tools and has been central to logic emulation system architecture 
[14,15]. Different Rent coefficients apply to different environments; the exponent is typically 
larger than 0.5 and determines global connectivity, while the constant, at values larger than 1, 
impacts net fan out.

System modules that have to be implemented in an emulator are typically richly connected 
inside, with fewer connections to other modules outside. Partitioning system modules into 
smaller portions requires cutting of  many of the internal nets. Rent’s rule applies to modules 
that get partitioned and predicts how many internal nets are cut depending on the size of the 
partition. Partitioning many modules across small FPGAs requires large interconnect hardware, 
which in exchange reduces speed and increases power. At the time of the writing of the first edi-
tion a decade ago, it looked like FPGAs will run out of pins long before their available capacity was 
utilized. Figure 19.4 shows Rent’s rule pins calculated from Xilinx logic gate count capacities and 
illustrates how Rent’s rule pins required have gone up with capacity much faster than real pins 
available (just as predicted in the first edition of this book).

FPGA based prototypingEmulation

0
1
2
3
4
5
6
7
8
9

10
Execution speed

Processor based emulation and FPGA based prototyping
user requirements (higher rating means ''better'')

Capacity

Marginal cost per unit

Effort in addition to RTL

Hardware debug

Software debug

HW bring-up time

Time of availability

Hardware accuracy

System connections

FiGURe 19.3 Processor-based emulation and field-programmable gate array–based prototyping.



Chapter 19 – Hardware-Assisted Verification and Software Development    471

As a result, FPGA-based emulators need very special attention when it comes to partitioning 
and routing the design to be mapped into them, specifically because the FPGA capacity grows 
much more quickly than the available bandwidth between them. Time-division multiplexing 
(TDM) of wires has been used, with several signals sharing the bandwidth of one wire. The less 
bandwidth is required per signal, the more signals per wire can be used at the same execution 
speed. It turned out that in reality small bandwidth per signal is hard to achieve in FPGAs because 
route delay unpredictability increases bandwidth requirements and timing constraints increase 
compilation time significantly. However, the lack of available pins today is compensated by time-
multiplexing many design nets onto fewer pins, upward of 30× per pin, now at gigahertz rate.

As shown in Reference 16 in December 2014, Rent’s rule applies when each major module gets 
partitioned into many FPGAs, but if entire modules fit in an emulation chip then only its sys-
tem-level nets get cut as there are naturally much fewer of them. Mike Butts uses in Reference 16 
the example of the 3.8 million gate “OOO” module of the Intel Nehalem CPU that fits into one 
28 nm FPGA but needs to be partitioned if it is mapped into smaller FPGAs (see Figure 19.5). 
Using the example of a 6.6 million gates (MG) design, Butts shows using Rent’s rule that when a 
large FPGA containing all 6.6 MG is used, it only requires us to cut 37% as many nets within the 
major modules as the same design mapped into 10 chips with 660,000 gates each (i.e., cutting 
19,300 instead of 52,000 nets). With FPGAs getting large enough to fit major modules, the cut 
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FiGURe 19.4 Rent’s rule pins calculated from Xilinx logic gate count capacities.

Complexity HW cost, size

Delay

Failure point
Power

Alloc/
RAT

OB
R

RS

FiGURe 19.5 Partitioned “OOO” module of Intel Nehalem CPU.
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nets are mostly system-level busses to which Rent’s rule does not apply. Over the last decade, 
as indicated in Section 19.1.1, the number of major modules has grown in number. However, 
its growth has been easily matched by the growth in size of FPGAs, which have been following 
Moore’s law. As a result, if the hierarchy of a design is known, then Rent’s rule becomes less sig-
nificant for modern FPGA-based emulators.

19.2.5 PROCESSOR-BASED SYSTEMS

Processor-based emulators consist of a massive array of Boolean processors able to share data 
with one another, running at very high speed. The software technology consists of partitioning 
a design among the processors and scheduling individual Boolean operations in the correct time 
sequence and in an optimal way. At their introduction, performance did not match FPGA-based 
emulators, but compile times of less than an hour and the elimination of timing problems that 
plague FPGA-based systems made the new technology appealing for many use models, especially 
simulation acceleration.

Later generations of this technology eventually surpassed FPGA systems in emulation speed, 
while retaining the large advantage in compilation times—and without a farm of a hundred PCs 
for compilation. Advances in software technology extended the application of processor-based 
emulators to handle asynchronous designs with any number of clocks. Other extensions sup-
ported 100% visibility of all signals in the design, visibility of all signals at any time from the 
beginning of the emulation run, and dynamic setting of logic analyzer trigger events without 
recompilation. At the same time that the emulation speed of FPGA-based systems was decreasing 
(due to heavily multiplexing pins), new generations of processor-based systems not only increased 
emulation speed but also proved scalable in capacity to several billions of gates (Table 19.2).

19.3 EMULATOR ARCHITECTURES

19.3.1 SMALL-SCALE EMULATION AND LOGIC PROTOTYPING WITH FPGA

FPGAs provide a convenient and inexpensive mechanism for prototyping low-complexity logic 
designs. The logic gate and memory capacity of FPGAs has recently grown so much that the high-
end FPGA parts are capable of holding smaller application-specific integrated circuits (ASICs) up 
to 25 million gates. Similarly, modern FPGAs can operate at speeds of up to hundreds of mega-
hertz, which is also close to an average ASIC clock rate. These factors have resulted in growing 
popularity of FPGA prototyping for small- to medium-size logic designs.

In the majority of cases, the designers of such prototypes create and customize them indepen-
dently based on the requirements and characteristics of the systems in which their logic designs 
are intended to operate. The external inputs and outputs are connected either to a production 
board or to a prototype board specifically designed for that purpose. A minimal set of tools and 
infrastructure required for prototyping is supplied by FPGA vendors for whom such prototyping 
activities represent a significant market. Such tools typically consist of a compiler that converts 
the logic design into an FPGA programming bitstream and a debugger.

As much as FPGA vendors attempt to simplify prototyping, there are still some difficulties 
that the developers of such a prototype must overcome. For example, FPGA devices are volatile. 
Their configurations must be stored in nonvolatile off-chip memory and downloaded at power-
up. The facilities for that purpose need to be created. In many cases, the verification environment 
for the design is implemented in software. For that, the FPGA needs to be interfaced with the 
workstation that runs the software. These issues create a business opportunity for vendors of 
small FPGA-based rapid prototyping systems that are typically implemented on boards, which 
contain the target FPGA and the facilities for design download and workstation interfacing. The 
use of such systems shortens the time required for prototype bring-up in comparison with the 
completely custom-designed setups.
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Things rapidly become more complicated when the design size grows beyond the capac-
ity of one FPGA. Although multiple FPGA prototyping systems are also available, they all 
suffer from difficult problems of partitioning, creating signal connectivity, and multi-FPGA 
timing closure.

19.3.2 LARGE-SCALE EMULATION WITH FPGA ARRAYS

As discussed earlier, when mapping very large-scale integrated circuits into FPGAs, often mul-
tiple FPGAs are required to fully emulate the design. The systems of the early 1990s had already 
identified the major difficulties of large-scale FPGA array emulation: partitioning, timing closure, 
and interconnect schemes. One distinctive approach used for FPGA interconnect was a regular 
pattern of direct FPGA to FPGA connections. Although moderately successful, this scheme 
significantly magnified the difficulties of timing closure and partitioning because many signals 
had to visit several FPGA parts in order to reach their destinations.

FPGA arrays with partial crossbar architecture, highly successful in the 1990s, implement 
the interconnection of FPGA parts using a number of special crossbar devices [17]. Each such 
device is a fully programmable crossbar with N terminals. Assuming that the FPGA array con-
sists of K parts, each having M external inputs and outputs, every crossbar device will connect 
to at most N/K inputs or outputs of each FPGA. This ratio, commonly called the “richness” of a 
partial crossbar, determines the ability to route the interconnection scheme. The number of pins 
of a single crossbar device defines the limit to which a one-level partial crossbar can be scaled. 
Further capacity increase is accomplished using multilevel schemes, where the crossbar devices 
are again connected in a partial crossbar pattern. It has been shown that with appropriate use of 
the internal symmetry of FPGA pins, even low richness values allow most practical logic designs 
to be routed successfully. Hybrid schemes that combine direct connections with partial crossbar 
have also been implemented [18].

The problem of multi-FPGA timing closure has also been addressed. This problem in FPGA-
based emulators primarily manifested itself in hold-time violations, due to the difficulty of 
managing clock skews in multi-FPGA designs. Unlike the insufficient setup time, which can be 
corrected simply by reducing the operating speed of an emulator, hold-time violations affect 
the functionality of the design and must be removed. A number of approaches have been pro-
posed, which utilize partitioning constraints and clock signal duplications or special circuit 
modification [15].

As an answer to the challenge of insufficient FPGA pin count, several TDM schemes have 
been proposed, which divide the bandwidth available at an FPGA input/output pin among several 
signals that need to be transmitted between the parts.

A virtual wire scheme [14,18], though defined in general terms, has been primarily applied to 
direct FPGA connectivity architecture. It schedules the transmission of signals between FPGA 
parts as well as the storage of signal values at design flip-flops, in terms of the cycles TV of a sin-
gle-clock signal that is distributed throughout the emulator. After each logical signal that crosses 
an FPGA partition boundary is assigned to both the physical pin and the TV cycle, the total 
number of the TV cycles necessary to advance the circuit to the next state is determined. This 
number essentially constitutes a TDM factor M for this design, which will be equal to the ratio of 
the design clock cycle (under the simplifying assumption that it was a single-clock synchronous 
design to start with) to TV. Circuits are later built in the FPGA programmable logic that imple-
ment and control TDM and signal evaluation schedules. It is important to note that virtual wire 
technology assumes that the design can be statically scheduled (although exceptions are made 
for asynchronous signals that are not to be multiplexed at all) and that the execution of exactly 
M TV cycles assures its correct transition to the next state. This methodology effectively trans-
forms the original circuit to a synchronous equivalent, which operates with a clock period TV. It 
has to ensure that the signal setup time requirements for such synchronous circuits are satisfied, 
and therefore, no combinatorial path exists with a propagation time larger than TV.

A different scheme, though again defined in general terms, has been primarily used with 
the partial crossbar architecture. This scheme is different in that it makes no attempt to trans-
form the circuit to its synchronous equivalent, and it makes no assumptions about the signal 
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propagation times inside the FPGA. All it does is the high-speed multiplexing of the FPGA 
inputs and outputs with the maximal speed permitted by the partial crossbar, printed circuit 
board, etc. The multiplexing period TV does not depend at all on the design being emulated and 
is in fact constant, as is the multiplexing factor M. On the other hand, there are no guarantees 
that exactly M TV cycles would be sufficient for advancing the design state. Signal transitions 
are propagated freely until they reach the FPGA boundary where they are synchronized to the 
TDM clock. As in the virtual wires technique, some signals can be excluded from multiplexing 
(and the clocks always are) so that the asynchronous behavior can be emulated more closely. The 
crossbar parts have the ability to demultiplex signals before switching them. Therefore, the fact 
that some signals share a physical wire does not impose any constraints on the way these signals 
should be routed.

For each solution, it has been argued that it has advantages over the other in terms of execution 
speed, support for asynchronous design styles, as well as the overall cost and ease of adoption. 
However, they encounter similar difficulties. The virtual wires technology allows the increase of 
effective bandwidth of the FPGA pins only to the extent that TV is less than the design state 
evaluation time. In order to keep the emulation speed from going down, it is necessary therefore 
to keep TV low. However, to satisfy setup time requirements, TV must be larger than any combi-
national path delay. Controlling these delays in an FPGA, while keeping compilation time low, 
is notoriously difficult. Besides, the delays are known only after the FPGA compilation is fin-
ished while the signal schedule has to be determined before this compilation starts. As a result, 
pin bandwidths cannot be increased so that they keep up with the ever-growing gate/pin ratio. 
Although the technique by Sample et al. [19] does not explicitly require controlling setup time, in 
the end it suffers from similar limitations.

One can make an intriguing observation while considering multi-FPGA systems with TDM. 
A configurable logic structure (typically, a lookup table) that produces a signal subject to time 
multiplexing is severely underused. While its output needs to be valid only during one TV period, 
this output is in fact being produced continuously. Thus, on average, only one out of M con-
figurable logic structures could be in actual use at any given time. Conversely, we could use the 
configurable logic much more efficiently if it could compute different signals during different TV 
cycles. Had this been the case, however, it would effectively turn a lookup table into a processor 
that executes instructions over time.

19.3.3 PROCESSOR ARRAYS FOR EMULATION

A processor-based hardware emulator [20] consists of bit-wide processors that execute a different 
Boolean function of N variables every TV cycle. The input values on which the Boolean functions 
operate are supplied by sets of multiplexers that switch every TV cycle as well. The Boolean func-
tions and the control codes for the input multiplexers (addresses) together constitute instructions 
that are stored in the instruction memory.

The depth of such memory determines the TDM factor M that applies both to the processors 
and to the interconnect structures. In this approach, every processor effectively performs the 
work that M FPGA lookup tables formerly had, plus the multiplexing structures for one chip I/O 
pad and port multiplexing structure of a block memory array.

In the semiconductor implementations of a processor-based emulator (Figure 19.6), routing 
structures are significantly simplified compared with FPGAs. In place of a large variety of wire 
segments that could be arbitrarily combined with programmable switches, processor-based 
emulation chips contain a two-level routing structure [21] that recognizes processor cluster-
level routing in addition to the uniform chip-level routing. Because of that, signal propagation 
delays are uniform. Processor-based emulators offer tighter control over the signal timing than 
an FPGA-based emulator’s virtual logic can allow, at a correspondingly lower duration of the TV 
cycle and higher values of M.

To better understand how a processor-based emulator works, it is useful to briefly review 
how a logic simulator works. Recall that a computer’s arithmetic logic unit (ALU) can perform 
basic Boolean operations on variables, for example, AND, OR, and NOT, and that a language 
construct such as “always @ (posedge Clock) Q = D” forms the basis of a flip-flop. In the case of 
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gates (and transparent latches), simulation order is important. Signals race through a gate chain 
left to right so to speak, or top to bottom in RTL source code. Flip-flops (registers) break the gate 
chain for ordering purposes.

One type of simulator, a levelized compiled logic simulator, executes the Boolean equations 
one at a time in the correct order. (Time delays are not relevant for functional logic simulation.) 
If two ALUs were available, you can imagine breaking the design up into two independent logic 
chains and assigning each chain to an ALU, thus parallelizing the process and reducing the time 
required, perhaps to one half. A processor-based emulator has from tens of thousands to millions 
of ALUs, which are efficiently scheduled to perform all the Boolean equations in the design in the 
correct sequence. The following series of illustrations illustrates this process.

The first step is to reduce Boolean logic to four-input functions (Figure 19.7). The following 
sequencing constraint set applies:

 ◾ The flip-flops must be evaluated first.
 ◾ S must be calculated before M.
 ◾ M must be calculated before P.
 ◾ Primary inputs B, E, and F must be sampled before S is calculated.
 ◾ Primary inputs G, H, and J must be sampled before M is calculated.
 ◾ Primary inputs K, L, and N must be sampled before P is calculated.

Note that primary input A can be sampled at any time after the flip-flops.
The second step is to schedule logic operations among processors and time steps 

(Figure 19.7).
In the schedule as shown in Table 19.3, an emulation cycle consists of running all the steps 

for a complete modeling of the design. Large designs typically take 60–300 steps to schedule, 
depending on whether the compiler optimizes for speed or capacity. The resulting schedule is 
shown in Figure 19.8.
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HDL
SystemC
C/C++

Workstation
Runtime control

and debug
environment

Target system

FiGURe 19.6 Processor-based emulator architecture.
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In addition to the Boolean equations representing the design logic, the emulator must also effi-
ciently implement memories and encrypted “soft” IP and support physical IP “bonded-out” cores. 
For simulation acceleration, it must also have a fast, low-latency channel to connect the emulator to 
a simulator on the workstation, since behavioral code cannot be synthesized into the emulator. 
For in-circuit operation, the emulator needs to support connections to a target system and test 
equipment. Finally, to provide visibility into the design for debugging, the emulator contains a 
logic analyzer. The logic analyzer will be described later.

tABLe 19.3 emulation Schedule

time Step Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

1 Calculate C Sample B Sample G Calculate R

2 Sample E Sample H Sample N

3 Sample F Sample J

4 Sample K

5 Calculate S Sample L

6 Calculate M

7 Receive M

8

9

10 Sample A Calculate P
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FiGURe 19.7 Reducing Boolean logic.
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19.4 DESIGN MODELING

As demonstrated earlier, the further we move along the line from a simple FPGA-based prototype 
to an advanced, highly scalable emulation system, the less the actual model execution mecha-
nism resembles the target design implementation in silicon. In other words, for processor-based 
emulation, the user’s design must be restructured to facilitate an efficient mapping onto the given 
emulation hardware. Next, we shall cover the major reasons and methods of design modeling.

19.4.1 TRI-STATE BUS MODELING

Tri-state busses are modeled with combinatorial logic. When none of the enables are on, emu-
lators give the user a choice of pull-up, pull-down, or retain state. In the latter case, a latch is 
inserted into the design to hold the state of the bus when no drivers are enabled. In case multiple 
enables are on, the expected result is a value X, which emulators can represent as either 0 or 1 
depending on compiler implementation. (Note that this is a good place to use assertions.)

19.4.2 BREAKING ASYNCHRONOUS LOOPS

Emulators do not model the precise gate-level timing of silicon. FPGA-based emulators have 
random gate delays and processor-based emulators have delays of 0. As processor-based emu-
lators execute the operations sequentially in levelized order, a topological loop in the netlist 
leads to a problem of correct instruction ordering. If a wrong order is chosen, several rounds of 
evaluation may be required to compute the correct next state of a design. Several techniques for 
automatic instruction ordering (loop breaking) have been developed [22]. Application of these 
techniques typically assures design state computation in a single round of gate evaluations 
(no oversampling).

19.4.3 CLOCK HANDLING IN PROCESSOR-BASED EMULATORS

As described earlier, clocking was one of the prime sources of unreliability in FPGA-based emu-
lators. Processor-based emulators completely avoid this problem by scheduling all combinatorial 
gate evaluations to complete before updating any storage elements. They can generate all the 
clocks necessary for a design or they can accept externally generated clocks. It is much more con-
venient to have the emulator generate all the design clocks needed, and it runs faster. To provide 
the maximum possible emulation speed while retaining the asynchronous accuracy required, 
processor-based emulators provide two methods of handling asynchronous design clocks: aligned 
edge and independent edge (Figure 19.9).
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0 6.25 ns 12.5 18.75

FiGURe 19.9 Clocking example—three asynchronous clocks.
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19.4.4 CLOCKING WITH INDEPENDENT EDGES

Since emulators do not model design timing, but rather are functional equivalents, the exact 
timing between asynchronous clock edges is not relevant. One only needs to independently 
emulate clock edges that are not simultaneous in real life. With independent edge clocking 
(Figures 19.10 and 19.11), an emulation cycle is scheduled for every edge of every clock unless 
an edge is naturally coincident with an already scheduled edge. This is very similar to an event-
driven simulator.

19.4.5 CLOCKING WITH ALIGNED EDGES

Aligned edge clocking is based on the fact that although many clocks in a design happen to have 
noncoincident edges because of their frequencies, proper circuit operation does not depend on 
the edges being independent (Figure 19.12). In this case, while proper frequency relationships 
are  maintained, clock edges are aligned to the highest frequency clock, thereby reducing the 
number of emulation cycles required (compared to independent edge clocking) and increasing 
emulation speed.

0 3.75 7.5 11.25 18.75
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100 MHz
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15

FiGURe 19.10 Independent edge clocking of two asynchronous clocks.
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FiGURe 19.11 Adding a third asynchronous clock with independent edge clocking.
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FiGURe 19.12 Aligned edge clocking starts by assigning an emulation cycle for each edge of the 
fastest clock.
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In aligned edge clocking, an emulation cycle is first scheduled for each edge of the fastest clock 
in the design. Then, all other clocks are scheduled relative to this clock, with the slower clock 
edges aligned to the next scheduled emulation cycle. Note that no additional emulation cycles 
have been added for the second and third (slower) clocks (Figures 19.13 and 19.14). Thus, emula-
tion speed is maintained.

Also note that while edges are moved to the following fastest clock edge, frequency relation-
ships are maintained, which is essential for proper circuit operation. Giving the user the flexibility 
to switch between aligned edge clocking and independent edge clocking, processor-based emula-
tors provide both high asynchronous accuracy and the fastest possible emulation speed for a wide 
variety of design styles as compared in Table 19.4.
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FiGURe 19.13 Add second clock aligning edges to the fastest clock.
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FiGURe 19.14 Add additional clocks by aligning edges to the fastest clock.

tABLe 19.4 comparison of clocking techniques in Processor-Based emulator

independent edge clocking Aligned edge clocking

Preserves frequency relationships Yes Yes

Matches simulation Yes May not

Maintains speed with more clocks No Yes

Maintains edge independence Yes No



Chapter 19 – Hardware-Assisted Verification and Software Development    481

19.4.6 TIMING CONTROL ON OUTPUT

When interfacing to the real world, it is sometimes necessary to control the relative timing 
of output signals. A dynamic random access memory (DRAM) memory interface is one such 
example—all the address lines must be stable before asserting write enable. Since processor-
based emulators schedule logic operations to occur in sequence, it is easy to add a constraint on 
the timing within the emulation cycle on individual (or groups of) output signals to control the 
timing to a very high resolution relative to other output signals (Figure 19.15). The compiler then 
schedules this output calculation at the appropriate point in the emulation cycle. This is not pos-
sible with FPGA-based emulators, since they have no control over timing within a design clock.

19.4.7 TIMING CONTROL ON INPUT

In a similar way, and for similar reasons, timing on input signals (e.g., sampling a pin when 
another pin rises or falls) may be controllable by the user to meet specific situations. Again, 
processor-based emulators can simply schedule specific input pins to be sampled before or after 
others within the emulation cycle. With FPGA-based emulators, the user must tweak timing by 
adding delays to certain signals—including a large guard band—because FPGA-based emulators 
cannot control absolute timing along different logic paths. For FPGA-based emulators, this is 
very hard to control and may even vary from compile to compile.

19.4.8 GENERATING HIGH-SPEED CLOCKS

Occasionally, it may be necessary to generate a clock several times faster than the fastest clock 
in the design. An example is a chip with an internal clock divider. Running the entire emulation 
at higher speed would reduce emulation performance when only a couple of flip-flops need this 
speed. Since there are usually over a hundred steps in an emulation cycle, it is easy for processor-
based emulators to generate a higher-frequency clock by scheduling multiple changes on an out-
put within a single emulation cycle (Figure 19.10). As shown later, the user may exercise control 
over the timing of all the changes and create fairly complex clock signals, if needed. FPGA-based 
emulators cannot do this because they have no control over timing within the emulation cycle.

19.4.9 REDUCING UNNECESSARY EVALUATIONS

It is well established that in a typical design, a large percentage of gates switch only infrequently 
relative to the fastest clock signal. Techniques have been developed to reduce the number of 
evaluation cycles in a processor-based emulator such that a larger share of logic signals is in fact 
changing their values in each evaluation.

Such techniques are based on compile-time proof of alignment of signal transitions with one 
of several successive edges of the fastest design clock. For example, if it can be proven that all 
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FiGURe 19.15 Processor-based emulators can adjust output timing with high precision.
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signals change only with the positive edge of the clock, there would be no need to evaluate the 
design on its negative edge and the emulation speed can be effectively doubled. In practice, such 
proof can usually be achieved for the majority (but not for all) of signals. Those signal transitions 
for which alignment to a particular edge cannot be proven will need to be evaluated twice (dupli-
cated), thus doubling the performance at the cost of some increase of model size.

19.4.10 MEMORY MODELING

Memory modeling is a critically important implementation task in emulation systems. Its effect 
upon overall performance and capacity utilization is at least as big as that of the modeling of logic. 
Typically, emulation systems have several levels of memory resources such as external off-chip 
memories (DRAM or SRAM), on-chip block RAM, and the configurable logic that can be utilized 
as memory (flip-flops, lookup tables). Each of these types of resources offers its own performance/
capacity trade-off. Off-chip RAM is typically large but slow, configurable logic is fast but only 
appropriate for small memory sizes, and block RAM offers a compromise. Both off-chip RAM 
and block RAM come in a fixed set of form factors (width vs. depth) and have one or two ports 
accessible simultaneously. On the other hand, a model presented for emulation by the user com-
monly includes a wide variety of memory form factors, as well as memories with large numbers 
of ports. The goal of memory modeling is to map the memories presented in a design onto the 
available memory resources in such a way as to achieve the fastest performance with little to no 
effect on emulation capacity.

Several techniques have been developed to achieve this objective. Some of them (memory 
volume reduction, read port duplication, optimal type of memory selection) are generically appli-
cable to most kinds of emulation systems. Some (compaction, merging) are specific to processor-
based systems. For an overview of the most popular techniques, see [22].

19.5 DEBUGGING

Most of the time spent verifying designs is spent while debugging problems. Thus, productivity in 
debugging is paramount to reducing time to market. Key to this capability is being able to rapidly 
display any signal in the design and being able to diagnose the observed anomaly.

19.5.1 LOGIC ANALYZER AND SIGNAL TRACE DISPLAY

The built-in logic analyzer is the heart of an emulator’s debugging capability. The debugger dis-
plays in an integrated way signal waveforms, RTL source code, generated schematic views, and 
the design hierarchy. Signal values at a specific point in time can be back-annotated onto the 
schematic and RTL source code displays to accelerate the user’s analysis of the situation.

To give some context, consider that an emulator with a very large design with 20 million 
signals, running at 500 kHz, would generate 60 TB of signal trace data per minute. In any logic 
analyzer, there is a finite amount of memory for signal trace data storage. Emulators deal with 
this by presenting the user with trade-offs between width (number of signals) and depth (number 
of clock cycles). Emulators also use several techniques to extend the logic analyzer trace capacity 
greatly.

Emulators only need to capture design inputs and the outputs of flip-flops and memories. The 
values of other signals are Boolean combinations of these and can be quickly calculated, when 
needed. This capability would be necessary in any event since combinatorial logic in the design is 
optimized into n-input Boolean functions, and thus, some combinatorial signals in the design do 
not exist individually in the emulator.

Oftentimes, the engineer doing the debugging may not know ahead of time which signals will 
need to be probed to debug a problem. This is especially true when verification is performed by 
a separate team of engineers. In the course of debugging in such situations, the engineer may 
need to see any signal in the design to trace the problem back to the root cause. Emulators often 
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allow the user to trade-off display speed, logic analyzer depth, and the support of dynamic target 
systems to get the best debugging capabilities for their particular needs.

In contrast to 100% signal visibility, dynamic probing provides a very deep logic analyzer 
with a smaller number of probes. Users must specify prior to running—and also prior to 
compilation with FPGA-based emulators—the signals they wish to see. Much as with simula-
tion, adding a signal to the list allows the display of that signal going forward in time, but not 
backward in time. (“Forward” refers to clock cycles that have not yet been emulated, while 
“backward” refers to clock cycles that have already been emulated.) Processor-based emulators 
accomplish this rapid change of signals to be probed (<1 s to change 1000 signal probes) by 
utilizing otherwise idle time steps in the processor array to route signals to available logic ana-
lyzer memory channels. The compiler reserves a small percentage of the processor array band-
width for this purpose when using dynamic probing, allowing new signals to be probed without 
changing the program for emulating the design. Note that in FPGA-based emulators, when not 
using 100% visibility, recompiling the entire design with the new probes is necessary—which 
changes the timing of the design model, sometimes resulting in a different functional behavior 
or reduced operating speed.

For any of the aforementioned debugging choices, emulators often also provide the ability to 
extend the depth of signal tracing (number of samples) to infinity—from the beginning of emu-
lation, showing all the signals, all the time—but with some trade-offs. To support infinite trace 
data, the emulator is stopped periodically (as the physical logic analyzer becomes full) to upload 
the necessary data to the workstation. Then emulation continues. This approach also requires a 
use model, which tolerates periodic stopping of the clocks to the target system (typically a static 
target system). The advantage is that the logic analyzer now has infinite depth and is able to dis-
play signal trace data from the beginning of the emulation run for any or all signals in the design. 
The trade-off is that stopping the clocks to upload the logic analyzer data results in reduced net 
emulation speed—usually two to three times slower. However, the user can turn on and off the 
infinite trace recording at run time so that the reduced speed is only experienced during times of 
interest. For example, one could boot a PC at full speed and then turn on infinite tracing to study 
a particular problem. Thus, in spite of having a finite, practical amount of logic analyzer trace 
memory, emulators can provide a rich set of debugging choices from which the user can select a 
suitable set of trade-offs for their use model.

19.5.2 DEFINING TRIGGER CONDITIONS

Emulators allow the user to specify complex trigger conditions for the logic analyzer. In the 
course of debugging a problem, the need to change the trigger condition is often encountered. 
Processor-based emulators support changing the trigger condition instantly, without needing to 
recompile the entire design. FPGA-based emulators may require recompiling one or more FPGAs 
in order to change trigger conditions when the change involves new signals.

19.5.3 DESIGN EXPERIMENTS WITH SET, FORCE, AND RELEASE COMMANDS

Design experiments allow the user to make certain design changes instantly, without recompila-
tion, and see the result. This can be useful

 ◾ To disable sections of the circuit that are interfering with the section you want to inspect
 ◾ To force signals on or off to enable/disable signal effects

This allows the user to experiment with ideas without having to recompile the design. Design 
experiments are accomplished using specific commands to set, force, and release signals, possibly 
included in a script for time sequencing. Set instantly sets a flip-flop to a state of 1 or 0, but then 
allows normal circuit operation to change it. Force and Release are complementary commands; 
Force will freeze a signal to 1 or 0 until a Release command is given for that signal.
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19.6 USE MODELS

Emulators and accelerators can be used in a number of ways to accelerate functional verification 
and enable software development.

19.6.1 IN-CIRCUIT EMULATION

This model of operation connects the emulator with a user’s target system—a prototype of the sys-
tem the user is designing. The emulator typically replaces the ASIC(s) being designed for the tar-
get system, allowing system-level and software testing prior to silicon availability. Because the 
emulator runs slower than the ASIC being designed, slowdown solutions must be implemented 
to match the real-world interfaces to the emulator. Clocks may be derived in the target system or 
in the emulator. In some simple environments, the target system may be a piece of test equipment 
that generates and verifies test data—network testers are a typical example of this. As of 2015, ICE 
is the most common use model for emulation.

19.6.2 SIGNAL-BASED ACCELERATION

As described in Section 19.1.3, in this use model the synthesizable RTL is moved into the emula-
tor, where it runs several orders of magnitude faster than on the workstation. Behavioral code 
(e.g., the test bench and sometimes the memory models) continues to be run on the workstation 
by the simulator. Overall performance is limited by the communication channel between emu-
lator and workstation and also by the testbench execution on the simulator. Most users in this 
mode prefer to debug in the familiar simulation environment, providing visibility into the RTL 
signals evaluated in the emulator.

19.6.3 TRANSACTION-BASED ACCELERATION

Transaction-based acceleration (TBA) is another form of simulation acceleration using 
cosimulation in which transactions (a set of bundled signals, see also Chapter 17) are sent to 
the emulator rather than bit-by-bit signal exchanges. This reduces the traffic between work-
station and emulator, allowing higher performances to be achieved (where the channel is the 
limiting factor). Transactors are designed in synthesizable RTL and put into the emulator 
with the design.

These transactors map the transactions from the workstation into bit-by-bit operations for 
the design in the emulator. TBA has the additional advantage of raising the debugging level 
of the design from individual logic levels to transactions that are more meaningful to the 
designer. There is a significant issue of acquiring a rich library of transactor IP that can be 
(or has been) synthesized. The Accellera committee (www.accellera.org) has standardized an 
interface between simulators and emulators as the Standard Co-Emulation Modeling Interface 
[23], which, if supported, allows mix-and-match use of emulators/accelerators with simulators 
for transaction-based testbenches.

As the second edition of this book is being written, a discussion about virtualization contin-
ues. With TBA, the remote access of emulation becomes easier than with the “hard” connected 
interfaces used by ICE. Virtualization can even be pushed so far as to represent some of the 
peripheral components with which the chip communicates on the workstation that is connected 
to the emulator. A prime example is a USB peripheral like a memory stick, which can be repre-
sented fully virtually. While increasing the ability to debug and to inject specific errors, due to the 
limitations in the channel between the emulator and the host, this use model typically results in 
slower execution speed than can be achieved by ICE.

http://www.accellera.org
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19.6.4 TEST BENCHES IN HIGH-LEVEL PROGRAMMING LANGUAGES

Similar to cosimulation, this use model has a test bench (and possibly some submodels) written 
in a high-level programming language like C/C++ instead of a hardware description language 
(HDL) testbench. The C code is interfaced to the emulator through an application program-
ming interface (API). This mode can provide higher performance than HDL cosimulation 
because high-level programming languages execute faster than HDL in a simulator. High-level 
test benches are becoming more popular because they are often used for system-level model-
ing before designing the ASIC and some of the test routines may be reusable for the ASIC 
testbench. Debugging in this mode involves using the emulator debug environment (which the 
user prefers to look like the simulator) as well as a debugger for the high-level programming 
language used.

19.6.5 VECTOR REGRESSION

This use model applies large sets of input vectors for regression testing of small changes in the 
design. The vectors may come from simulation, testers, or other sources. Typically, they are used 
close to tapeout when small changes are made to the logic and the user must ensure that nothing 
was broken by the change. Comparison of resulting vectors against known good results may be 
done either in the emulator or the workstation (depending on emulator capabilities). Emphasis is 
on fast execution and pass/fail results.

19.6.6 EMBEDDED TESTBENCH

In this use model, the testbench (and the entire design) is written in synthesizable RTL code and 
the design and testbench are run in the emulator at full emulation speeds. Few users are willing 
to write a testbench in synthesizable RTL because of the extra effort and the existing invest-
ment in behavioral testbench code. This use model is most often applied to high-performance 
processor development, because performance is valued so highly as to make the extra testbench 
effort worthwhile. When the ASIC contains a processor core, embedded testbench mode can be 
applied using a simple synthesizable testbench and processor object code executing out of emula-
tor memory.

19.7 CONSIDERATIONS FOR SUCCESSFUL EMULATION

Creating a successful ICE environment involves a few additional considerations relative to simu-
lation or acceleration.

19.7.1 CREATING AN IN-CIRCUIT EMULATION ENVIRONMENT

Emulation generally runs up to a few megahertz, while the actual system under design will run 
much faster. When the emulator must interface with real-world full-speed devices, an emulation 
environment that bridges the speed difference between the real-world speeds and emulation speeds 
must be created. There are a variety of ways in which this might be accomplished. Sometimes, 
it is as simple as using a tester that can be slowed down. For example, for Ethernet interfaces, 
usually the PHY is bypassed. A commercial Ethernet tester can slow down the bit stream to 
emulation speeds (both transmit and receive) and both drive traffic into the design and analyze 
protocol results. Alternatively, one can use an Ethernet bidirectional packet buffer, such as a 
Cadence SpeedBridge or Mentor iSolve, between multiple real-world connections and slowed-
down Ethernet ports running at emulation speed.
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Another emulation environment example is the verification of an ASIC for a video graphics 
card. The red–green–blue (RGB) data will be produced at emulation speeds, but the monitor 
cannot sync the image at these speeds. You can use a video frame buffer, which accepts the RGB 
data at emulation speeds and puts the pixel data into a frame buffer. The frame buffer is then read 
out at normal scan rates and drives a monitor. In this way, the user views the image produced by 
the emulated design but the frame update rate is reduced. Such an environment is common as it 
allows users to see the results of their design.

A set-top box emulation environment is shown in Figure 19.16. The RF circuitry is dropped—
emulation only performs functional verification of the digital portion of the design. The rest of 
the ASIC is compiled into the emulator and the emulator is plugged into the ASIC socket on the 
PC board. A digital video recorder/player is used to deliver the digital data stream representing 
the demodulated RF. This data stream could come from some standard data sets for Motion 
Picture Expert Group (MPEG) decompression testing or it could be data that the user recorded 
from a video camera and microphone. The video frame buffer is used to display (nearly) still 
images. A second digital video recorder/player captures video data at emulation speed, records it 
to hard disk, and then plays it back at full speed. Being able to view motion is a critically impor-
tant factor in MPEG decoder work, since the MPEG process does not reproduce the exact input 
bit stream (it is “lossy”). Hence, decoder algorithms are evaluated subjectively. In a similar way, 
audio is produced via a digital audio recorder/player that buffers and replays audio at full speed so 
that one can hear the quality of reproduction.

19.7.2 DEBUG ISSUES WITH DYNAMIC TARGETS

Some emulators temporarily suspend the clocks during operation, either to capture or to cal-
culate and display signal data. While the emulator is doing this, it is not available to maintain 
the connection to the target system. As long as the target system is static, there is no problem. 
Emulation resumes normally when the clocks are restarted. When components connected 
to emulation have dynamic characteristics, they may not recover automatically from having 
their clocks stopped for a few seconds. With dynamic target systems, for example, including 
a dynamic RAM, which must be refreshed, it may be necessary to select a different choice for 
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capturing and/or displaying signal data to avoid this problem—if one is available. Note that some 
rate adapters solve this problem by keeping the target clocks running even when the emulator is not 
supplying clocks to it.

19.7.3 CONSIDERATIONS FOR SOFTWARE TESTING

As discussed in the opening section, most electronic products today have increasing software 
content. The traditional approach to software verification is to wait for (mostly) working silicon to 
begin software debugging. This makes the hardware and software debugging tasks largely sequen-
tial and increases the product’s development time. It also means that a serious system bug may 
not be found until after first silicon, requiring a costly respin and delaying the project for several 
months.

The objective of hardware/software coverification is to make the hardware and software 
debugging tasks as concurrent as possible in order to start software debugging earlier. At a mini-
mum, this means starting software debug as soon as the IC is taped out, rather than waiting for 
good silicon. But even greater concurrency is possible. Software debugging with the actual design 
can begin as soon as the hardware design achieves some level of correct functionality. Starting 
software debugging early can save up to 9 months of product development time. Early software 
testing can also uncover a bug in the ASIC early enough to fix it in the ASIC, thereby avoiding 
a software patch that may degrade usability or performance of the product. The increased level 
of software testing available, with the speed of ICE, also reduces the risk of a software bug going 
undetected and getting released with the product, and the expensive upgrades, recalls, or lost 
business that might result.

There are additional benefits to starting software verification prior to freezing the hardware 
design. If system problems or performance issues are found, designers can make intelligent trade-
offs in deciding whether to change the hardware or software, possibly avoiding a degradation in 
product functionality, reduced performance, or an increase in product cost.

Whether a microprocessor in-circuit emulator (MP-ICE) or real time operating system (RTOS) 
debugger is used, the software debugging and hardware debugging environments can be syn-
chronized so that hardware/software interface issues can be debugged conveniently. The break-
point/trigger systems of the emulator and MP-ICE are cross-connected such that the emulator’s 
logic analyzer trigger is one of the MP-ICE breakpoint conditions and the MP-ICE breakpoint 
trap signal is set as an emulator logic analyzer trigger condition. Therefore, if a software break-
point is reached, the emulator captures the condition of the ASIC at the same moment. If an ASIC 
event triggers the logic analyzer, the software is stopped at that moment. This allows inspection 
of the hardware events that led to a software breakpoint or of the ASIC operation resulting from 
executing a set of software instructions. This kind of coordinated debugging is extremely valu-
able for understanding subtle problems that occur at the hardware/software interface.

There are a variety of ways to interface to a microprocessor for software testing. JTAG, RS-232, 
or Ethernet connections can control a resident debug monitor. The OS in the processor may provide 
its own debug environment.

The microprocessor itself could be a packaged part or a bonded-out core mounted on the target 
system, an RTL model that gets mapped into the emulator with the rest of the design, or an instruc-
tion set simulator model running on the workstation.

19.7.4 MULTIUSER ACCESS

Some emulators allow their total capacity to be dynamically partitioned among a number of 
simultaneous users. This increases the usage considerably, especially early in the design cycle for 
block-level acceleration and in environments where multiple projects are sharing the emulator. 
As the design progresses and full-chip and system-level testing is required, a larger percentage of 
the emulator capacity (perhaps all of it) is used to emulate it.



488    References

19.8 SUMMARY AND OUTLOOK

Hardware accelerators and emulators provide much higher verification performance than logic 
simulators, but require some additional effort to deploy. ICE provides the highest performance—
often 10,000–1,000,000 times faster than a simulator—but requires an emulation environment to 
be built around it with speed buffering devices. Accelerators and emulators require the user to be 
aware of the differences between simulation and silicon (i.e., emulators and chips):

 1. Simulation supports 12 values and strength levels per bit or more, whereas silicon has 
only 2 values.

 2. Simulation generally executes RTL statements sequentially, whereas silicon executes 
RTL concurrently.

 3. Simulation is highly interactive (observable and controllable), whereas silicon is less so.

FPGA-based emulators use commercial FPGAs and are smaller and consume less power, while 
processor-based emulators require custom silicon designs and consume more power, but they 
compile designs much faster and can deliver higher performance. The key benefit of using emula-
tion for design verification is shorter time to market and higher product quality.

It should be clear at this point that no engine fits all requirements set forward by users. 
A  continuum of engines is needed, from TLM-based virtual prototypes through RTL simulation, 
simulation acceleration, emulation, FPGA-based prototyping, and even the actual silicon when 
it comes back from fabrication. All major EDA vendors have announced a suite of connected 
engines (Cadence in May 2011, Mentor in March 2014, and Synopsys in September 2014 [24–26]), 
and it will be interesting to see how the continuum of available engines evolves over the next 
decade.
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20.1 INTRODUCTION

In 1994, Intel spent $500 million to recall the Pentium CPU due to a functional bug that pro-
duced erroneous floating-point division results that were off by as much as 61/1,000,000 [112]. 
The growing usage of hardware and software in our world and their insufficient quality have 
already cost enormously in terms of human life, time, and money [112,114,115]. Both hardware 
and software designs are experiencing a verification crisis since simulation-based logic verifica-
tion is becoming less and less effective due to the growing complexity of the systems. To fight 
the low coverage in simulation, large systems are often decomposed into blocks and each of these 
blocks is simulated separately in its own environment. Only when the block-level simulations are 
stable will integration and full-chip/system simulation be carried out. This methodology caused 
a dramatic increase in the effort invested in simulation-based verification since a complete simu-
lation environment, including tests, checkers, coverage monitors, and environment models, is 
developed and maintained for each block. Industrial reports show that half of the total design 
effort is devoted to verification today, the number of bugs is growing exponentially, and hundreds 
of billions of simulation cycles are consumed [1]. Despite the huge investment in verification, only 
a negligible percentage of all possible executions of the design is actually being tested.

Formal property verification enjoys major advantages over simulation. It offers an exhaustive 
verification technology, which is orders of magnitude more efficient than scalar exhaustive simu-
lation. In formal verification, all possible executions of the design are analyzed and no test inputs 
are required. The main deficiency of formal verification is its limited capacity compared with sim-
ulation. Around the early 2000s, the state-of-the-art formal property verification engines could 
handle models on the order of 10K memory elements, and with complementary automatic model, 
reduction techniques properties were verified on hardware designs and software programs with 
100–500K memory elements. Further advances in the techniques since then have enabled formal 
property verification even at the system-on-a-chip (SoC) level and also for postsilicon debugging, 
handling designs with millions of gates and memory elements.

To give the reader some initial intuition into the formal verification approach, let us consider 
the simple program:

Int x;
read (x); if x < 0 then x = −x; print(x);

Assume that x is a 32-bit integer with a range of 232 different values. To verify fully that for every legal 
input the program prints a nonnegative number, simulation needs to cover the entire input space, 
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that is, 232 simulation runs. In a formal verification approach, a single symbolic simulation run pro-
vides full coverage of the input space and thus exhaustively verifies the program. In this example, 
the input to the symbolic simulation is a set of n Boolean variables representing the input bits and 
the result of the symbolic simulation is a Boolean expression that reflects the program computation 
over the input variables. The resulting Boolean expression is then checked to be nonnegative.

A property is a specification of some aspect of a system’s behavior that is considered necessary, 
but perhaps not sufficient for correct operation. Properties can range from simple sanity checks to 
more complex functional requirements. For example, we might specify that a mutually exclusive 
pair of control signals is never asserted simultaneously or we might specify that a packet router 
chip connected to the PCI bus always conforms to the rules for correct signaling on the bus. In 
principle, we could even go so far as to specify that packets are delivered correctly, but full func-
tional specifications of this sort are rare, because of the difficulty in verifying them. More often, 
formal verification is restricted to a collection of properties considered to be of crucial impor-
tance or difficult to check adequately by simulation.

In hardware design, formal property verification is used throughout the design cycle.
As Table 20.1 illustrates, a hardware design project consists of five major simultaneous activi-

ties (rows), that is, register-transfer level (RTL), timing, circuit, layout, and postsilicon. Over the 
duration of the project (columns), each activity has several consecutive subactivities. For exam-
ple, the RTL activity starts with microarchitectural (uArch) development, which is followed by 
RTL development, and it ends with RTL validation. At the early stages of the project when the 
architecture and the microarchitecture are designed, formal models of new ideas and protocols 
are developed and formally verified against a set of requirements. For example, the formal verifi-
cation of a new cache coherence protocol may be established at this stage. This verification is usu-
ally carried out by the validation team working closely with the architects. An important benefit 
from this activity is the intimate familiarity of the validation team, early at the design stage, with 
the new microarchitecture. Later, while the RTL is being developed, the formal property verifica-
tion activity shifts to RTL verification. The properties to be verified at this stage are derived either 
from the high-level microarchitectural specification, for example, the IEEE specification of the 
arithmetic operations, or from the implementation constraints that need to be verified on the 
RTL, for example, verifying that all timing paths are within the required range. Constraints con-
sumed by synthesis, static timing analysis, and power analysis are formally verified to be valid, 
and thus formal verification is offering not only better functional correctness but also debugging 
of implementation problems. Formal property verification of the RTL was mostly carried out 
by validation teams around the early 2000s. However, with the increased capacity of the formal 
verification technology and increased ease of use, RTL and circuit designers have recently started 
to use formal property verification products. Toward the end of the project and even after tape-
out, the focus of formal property verification moves back to the verification of the high-level 
microarchitecture protocols—but this time, these properties are verified against the RTL and 
not against artificial formal models. It is still a big effort to verify high-level microarchitecture 
protocols against the RTL—only a few high-risk areas in the design are selected to be verified and 
the verification is carried out by the validation teams.

tABLe 20.1 Formal Property Verification in Hardware Design Flow

Project Phases Design Stabilization implementation convergence Debug

RTL uArch development RTL development RTL validation

Timing Timing specification Full timing specification Converging timing to project goals Timing converged

Circuit Schematic entry 25% schematic 100% schematic Only bug fix in schematic

Layout Layout clean at block level Layout assembled and clean

Postsilicon A0 tape-out Functional silicon

Verify microarchitectural properties on FV models

Verify RTL properties

FPV Verify microarchitectural properties on the RTL
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In the electronic hardware industry, tools for formal property verification have been developed 
since the early 1990s in internal CAD groups of big VLSI companies like Intel, IBM, Motorola, 
Siemens [2,3], and Bell Labs [4]. In the late 1990s and early 2000s, several startup companies, like @
HDL, 0-in, Real Intent, Verplex, and Jasper, were offering similar tools. The large electronic design 
automation (EDA) companies are also offering products for formal property verification as of 2015.

In advanced electronic systems, software and hardware are becoming more and more inter-
changeable, interacting in different ways both in advanced electronic systems and in the system 
design process. Let us look at two examples. One common usage of software is in high-level mod-
eling of complex systems. These systems are designed using high-level software languages like C 
and SystemC [5], and only later in the design cycle, parts of the system (or all of it) are designated 
to be implemented in hardware. Another example of common usage of software is in the design 
of embedded systems. These systems usually consist of embedded software that executes on top 
of an embedded microprocessor or, increasingly, processors. Modern CPUs may also include and 
run embedded software called “microcode” that is used to simplify the instruction set imple-
mented in hardware.

Simulation is currently the main verification tool for software. However, the increased fre-
quency of fatal and catastrophic software errors is driving the electronic design community to 
look for better, more exhaustive verification solutions. During the 5 years or so after 2000, inten-
sive efforts have been directed to finding new and fully automatic ways to apply formal methods 
to software verification.

Many applications of formal verification to software have been analyzed in various research 
and development efforts, including two areas worthy of special recognition. One is property veri-
fication of software, which is aimed at establishing the functional correctness of the software with 
respect to properties developed by the programmer and/or automatically extracted sanity prop-
erties that check, for example, array bounds [6–11]. The second application of formal verification 
to software is translation validation, which is aimed at verifying the correct translation of the 
high-level software model into the corresponding hardware description, for example, Verilog, or 
into a lower-level software program [12–15].

In the early 2000s, formal property verification of software just started to move into the 
industry—most promising results were reported by the research team in Microsoft, verifying 
Windows NT drivers. As early as 2002, Bill Gates pointed out in a keynote speech: “Things like 
even software verification, this has been the Holy Grail of computer science for many decades 
but now in some very key areas, for example, driver verification we’re building tools that can 
do actual proof about the software and how it works in order to guarantee the reliability” [16]. 
Since then, Microsoft has started shipping formal software verification tools as part of their 
Static Driver Verifier Platform for device vendors [88]. Formal verification tools have also been 
successfully used to prove the absence of critical runtime errors in large-scale avionics control 
software [105].

Similarly, in the early 2000s, formal validation of automatic translation of software pro-
grams was also at the initial transfer stage in the electronics industry. For example, Intel has 
developed a formal tool for verifying correspondence between microcode programs [15]. A few 
EDA startups, like Calypto, were offering C-to-Verilog translation validation in the early 2000s 
as well. In the same timeframe, results were reported for academic systems demonstrating the 
ability to verify 10,000 lines of source code in C against the compiler results [17] and being able 
to verify an academic microprocessor with 550 C lines against its RTL implementation with 
1200 latches [14].

20.2 FORMAL PROPERTY VERIFICATION METHODS AND TECHNOLOGIES

The static nature of an RTL design provides a structured environment for development of 
highly automated formal verification engines and techniques. In this section, we introduce the 
concept of formal property specification and explain the underlying mathematical techniques 
for several commonly used approaches, including the automata-theoretic approach, symbolic 
model checking (SMC), satisfiability analysis, interpolation, symbolic simulation, and theo-
rem proving.
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20.2.1 FORMAL PROPERTY SPECIFICATION

Hardware designs and embedded software generally fall into a class known as reactive systems. As 
defined by Pnueli [18], these are systems that interact continuously with their environment, receiv-
ing input and producing output. This is in contrast to a computer program, such as a compiler, that 
receives input once, then executes to termination, producing output once. To specify a reactive sys-
tem, we need to be able to specify the valid input/output sequences, not just the correct function from 
input to output. For this purpose, Pnueli proposed the use of a formalism known as temporal logic 
that had previously been used to give a logical account of how temporal relationships are expressed in 
natural language. Temporal logic provides operators that allow us to assert the truth of a proposition 
at certain times relative to the present time. For example, the formula Fp states that p is true at some 
time in the future, while Gp says that p is true at all times in the future. These operators allow us to 
express succinctly a variety of commonly occurring requirements of reactive systems. We can state, 
for example, that it is never the case that signals grant1 and grant2 are asserted at the same time or 
that if req1 is asserted now, eventually (at some time in the future) grant1 is asserted. The former is 
an example of a safety property. It says that some bad condition never occurs. The latter property is 
an example of a liveness property. It says that some good condition must eventually occur. To reason 
about liveness properties, we must consider infinite executions of a system, since the only way to 
violate the property is to execute infinitely without occurrence of the good condition.

Since Pnueli introduced the use of temporal logic for specification, a number of notations have 
been developed to make specifications either more expressive or more succinct. For example, we 
may want to specify that a condition must occur not just eventually, but within a given amount 
of time. In a real-time temporal logic [19], the formula F(<5)p might be used to specify that p must 
become true within five time units. Moreover, because hardware systems are typically pipelined, 
it is common to refer to the conditions occurring in consecutive clock cycles. For this purpose, it 
is more convenient to use a notation similar to regular expressions. For example, using the prop-
erty specification language (PSL), a standard in the EDA industry, we can say “if req1 is followed 
by grant1, then eventually dav is asserted” like this:

(req1; gnt1) |-> F dav

The semicolon represents sequencing. Such notations also allow us to express some “counting” 
properties that have no expression in ordinary temporal logic. For example, we can state that 
p holds in every other clock cycle like this: (p; true)*.

Modern PSLs used in EDA provide some additional features that are convenient for hardware 
specifications. For example, one can specify a particular signal as the “clock” by which time is 
measured in a given property, and one can specify a “reset” condition that effectively cancels the 
requirements of the property. The latter is useful for dealing with reset and exception conditions.

20.2.1.1 HISTORY OF TEMPORAL SPECIFICATION LANGUAGES

Pnueli suggested the use of temporal logic in the late 1970s [20]. Starting in the early 1980s, a 
variety of logics and notations have been used in research on automatic verification, including 
linear temporal logic, computational tree logic, CCS, dynamic logic, and temporal logic of actions 
(TLAs) [20–29]. Some of these notations, notably CCS and TLA, are used for both modeling 
systems and specifying properties. In the 1990s, property languages specialized to EDA were 
developed. These include ForSpec, developed at Intel [30], Sugar from IBM [31], the temporal 
“e” language from Cadence (formerly Verisity), and CBV from Motorola. These languages were 
donated to the Accellera standards body and have been the basis for defining a new IEEE stan-
dard called PSL (IEEE standard 1850-2010) [32,79].

20.2.2 FORMAL VERIFICATION TECHNOLOGIES AND ENGINES FOR HARDWARE DESIGNS

Having specified properties of a system in a suitable notation, we would then like to be able to verify 
these properties formally, in as automated a manner as possible. Fully automated verification of 
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temporal properties is generally referred to as “model checking,” in reference to the first such 
technique developed by Clarke and Emerson [22]. Model checking can not only verify temporal 
properties but also provide counterexamples for properties that are false. Counterexamples are 
traces of incorrect system behavior that are valuable in diagnosing errors.

Since hardware systems are finite-state systems, they can be verified by model checking, at 
least in principle. Advances in model checking algorithms have allowed checking designs of 
 significant size.

20.2.2.1 AUTOMATA-THEORETIC APPROACH

We can think of a property as specifying a set of acceptable input/output traces of a system. If all 
possible traces of a given system fall into this set, then the system satisfies the property. Most 
algorithms for model checking work by translating the property into a finite automaton that 
accepts exactly the set of traces accepted by the property [33]. The automaton is a state graph, 
whose edges are labeled with input/output pairs. The language of the automaton is the set of 
input/output traces observed along accepting paths in this graph. By defining the notion of an 
accepting path in various ways, we can define different kinds of languages. For example, if we 
specify the legal initial and final states of an accepting path, we obtain a set of finite traces. To 
obtain a language of infinite traces, we can specify the initial states, and the sets of states that may 
occur infinitely often on an accepting infinite path. This allows us to represent liveness properties 
with automata. Once the property has been translated into an equivalent automaton, we need no 
longer concern ourselves with the property language.

To check the property of a system, we also represent the system with an equivalent automaton. 
We now have only to check that every trace of the system automaton is a trace of the property 
automaton. This can be done by combining the automaton for the complement of the property 
with the system automaton to produce a product automaton. If this automaton accepts any 
traces, then the system does not satisfy the property. This test can be made, in the simplest case, 
by searching the state graph of the product automaton for an accepting path. For finite traces, this 
can be accomplished by a depth- or breadth-first search, starting from the initial states. This kind 
of search-based model checking (referred to as “explicit state”) is exemplified by systems such as 
COSPAN [34], SPIN [6], and Murphi [7], which are quite effective at verifying software-based 
protocols, cache coherence protocols, and other systems with relatively small state spaces.

20.2.2.2 IN SEARCH OF GREATER CAPACITY

The main practical difficulty with the aforementioned approach is that the state graphs of the 
automata can be prohibitively large. The number of states of the system automaton is, in the worst 
case, the number of possible configurations of the registers (or other state-holding elements) 
in the system, which is exponential. For most property languages, the number of states in the 
automaton corresponding to a property is also exponential in the size of the property text. Thus, 
the brute-force approach described earlier is hopeless for large hardware designs. Instead, a num-
ber of heuristic methods have been developed that avoid explicit construction of the state graph. 
Here, we discuss a few of these methods that are currently used in the EDA.

20.2.2.3 BINARY DECISION DIAGRAM–BASED SYMBOLIC MODEL CHECKING

The SMC approach was introduced in the late 1980s [35,75] and was first implemented in a tool 
called SMV [36]. In this approach, automata are not explicitly constructed. Instead, a logical 
formula is used to characterize implicitly the set of possible transitions between states. In this 
formula, variable x represents the state of register x in the current state, while x′ represents the 
state of register x at the next time. The possible transitions of a sequential machine are easily 
characterized in this way as a set of Boolean equations (see Figure 20.1).

For most property languages, the property automaton can also be characterized in this way, 
without an exponential expansion. A breadth-first search can then be accomplished purely by 
operations on Boolean formulas. To do this, we use a formula to stand for the set of states that 
 satisfies it. The set of successors P′ of a set of states P can then be obtained by the following 
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equation, where V is the set of state variables, R the transition formula, and ∃ the existential 
quantifier over Boolean variables:

P′(V′) = ∃V · P(V) ∧ R(V, V′)

A symbolic breadth-first search starts with a formula characterizing the initial states and 
iterates the aforementioned image operation until a fixed point occurs (i.e., no new states are 
obtained).

To use this idea effectively, we need a compact representation for Boolean formulas, on which 
Boolean operations and existential quantification can be efficiently applied. For this purpose, 
binary decision diagrams (BDDs) are commonly used. A BDD is a decision graph in which vari-
ables occur in the same order along all paths and common subgraphs are combined. In 1986, 
Bryant gave an efficient algorithm for Boolean operations on this structure [37]. SMC using BDDs 
provides a means of property checking for circuits of modest size (typically up to a few hundred 
registers) in cases where the state graph is far too large to be constructed explicitly. This method 
was used successfully to find errors in the cache coherence protocols of a commercial multipro-
cessor [38] and has since been used in a number of commercial EDA tools, with many improve-
ments introduced in the 1990s.

20.2.2.4 SATISFIABILITY-BASED BOUNDED AND UNBOUNDED MODEL CHECKING

The Boolean satisfiability problem (SAT) seeks to determine whether there exists a truth assign-
ment that makes a given Boolean formula true (or equivalently, whether there exists an input pat-
tern that makes the output of a given Boolean circuit one). The first algorithm to solve this classic 
NP-complete problem was described in 1960 [76], and since then many improvements have been 
made. The success of SAT solvers such as Chaff [39], GRASP [40], and MiniSat [113] in solving 
very large problem instances prompted interest in using SAT solvers for model checking. In 1999, 
the notion of bounded model checking (BMC) using a SAT solver was introduced [41]. As in SMC, 
the transitions of the system and property automata are characterized by Boolean formulas. By 
unfolding this representation (i.e., making k consecutive copies, corresponding to consecutive 
time frames), the question of existence of a counterexample of k-steps can be posed as a SAT 
problem. This made it possible to exploit advances in SAT solvers to find counterexamples to 
properties for systems much larger than can be handled by SMC (typically up to a few thousand 
registers).

20.2.2.5 UNBOUNDED MODEL CHECKING USING A SAT SOLVER

The limitation of BMC is that it can only find counterexamples. It does not provide a practical 
way of proving that a property holds for all possible behaviors of a system. However, the success 
of BMC in handling large designs led to new methods for complete model checking that exploit 
SAT. One method, called k-induction [42], uses a SAT solver to test whether there is a path of 
k distinct good states leading to a bad state. If not and if there is no path of k-steps from an initial 
state to a bad state, then by induction the property holds at all times. This method can prove 
properties using just a SAT solver, though in practice the required k value can be quite large, 
making the BMC step prohibitive.

a
b

cp

g

Model:

c΄=(a b) c

FiGURe 20.1 Characterizing transitions of a circuit.
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Another approach, called “localization,” uses a SAT solver only to decide which components 
of a system are relevant to proving a particular property. This is done by using the SAT solver 
to refute either a partial counterexample or all counterexamples of a given length [43,44]. The 
components of the system used in this refutation are then used to attempt to verify the property 
using BDD-based SMC or other methods. Since modern SAT solvers are quite effective at ignor-
ing irrelevant facts, this process can produce a significant reduction in the size of the system to 
be checked.

20.2.2.6 INTERPOLATION-BASED MODEL CHECKING

In 2003, a SAT-based algorithm for unbounded model checking based on Craig interpolation was 
introduced for hardware verification [45]. Interpolation-based model checking (IMC) succeeded 
BDD-based methods as the dominant method for unbounded verification. Craig interpolation 
can be used to approximate a symbolic image computation that directly operates over formulas. 
That is, given a formula representing a set of states, interpolation can generate a formula repre-
senting an approximation of the set of possible successor states. This technique allows a symbolic 
breadth-first search similar to BDDs, but unlike BDDs this search can be directly performed over 
logical formulas and is approximate rather than precise.

A Craig interpolant for an inconsistent pair of logical formulas A and B is a formula I that 
is implied by A and inconsistent with B and uses only variables that are common to A and B. 
Intuitively, we may think of I as an explanation for the inconsistency of the pair expressed in a 
common vocabulary.

We now detail how interpolation may be used for image computation starting from a BMC 
run. A formula generated in BMC consists of k linked copies of the transition system, together 
with constraints representing knowledge about the initial state of the system and constraints rep-
resenting the property to be checked. We may split such a formula into two parts A and B as fol-
lows: The first part A contains the first copy of the transition system and the constraints imposed 
by the initial state. The second part B contains all other copies of the transition systems and the 
constraints representing the check for property violation. If no property is violated in k-steps, 
then the pair of formulas is inconsistent and the result of interpolation I will correspond to an 
approximate image operation. The interpolation I consists only of variables that are  common to 
A and B, that is, variables that represent knowledge about states reachable in one step. It is implied 
by A and therefore represents at least all states reachable in one step, and it is inconsistent with B, 
that is, no errors can be reached from I in k − 1 steps.

Interpolants can be computed efficiently from refutation proofs generated by SAT solvers [89]. 
The ability of SAT solvers to focus on relevant parts of a problem leads to approximate images 
that, when used as part of a symbolic breadth-first search, are often precise enough to prove 
the property of interest, but imprecise enough to retain efficiency. If the images computed via 
interpolants are found to be too imprecise to yield a clear result during the search, the search 
procedure is restarted with a higher value for the k parameter.

20.2.2.7 SYMBOLIC SIMULATION

In 1990, the technique of symbolic simulation was introduced for hardware verification [46]. This 
technique resembles ordinary simulation in the sense that the user provides an input sequence 
to drive the design. However, in symbolic simulation, the input values can be symbolic variables 
as well as numeric zeros and ones. Thus, a single simulation run may in effect represent many 
runs of the design. The outputs of the simulation are Boolean formulas over the symbolic vari-
ables instead of numeric values. The outputs can then be compared to the desired functions. 
This comparison can be done using BDDs or a SAT solver. The complexity of this check can be 
reduced by introducing logical unknown (X) values at inputs that are considered irrelevant to the 
case being verified. By itself, symbolic simulation does not prove properties because, like BMC, it 
simulates only bounded runs of the system. However, complete property verification is possible 
using the symbolic trajectory evaluation methodology, based on symbolic simulation [47]. This 
method requires the user to provide part of the proof, but has the advantage that it can be applied 
to fairly large designs.
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20.2.2.8 THEOREM-PROVING METHODS

From the 1950s into the 1980s, a great deal of progress was made in mechanizing mathematics 
and logical deduction. Classic papers in the field include [48–55]. Beginning in the 1970s with 
the Boyer–Moore theorem prover NQTHM [56] and LCF [57], many practical tools have been 
developed that assist the user in formalizing and proving mathematical theorems. Later systems 
include ACL2 [68], PVS [59], and HOL [60]. These systems usually provide some form of mecha-
nized proof search to aid in the construction of proofs. The proof search mechanism may be fully 
automatic, as in NQTHM, or customizable by writing tactics, as in LCF and its descendants.

To use a theorem prover for formal property verification, we translate both the system model 
and the desired property into the logic of the prover. This can be done, for example, by automati-
cally translating the program into a logical assertion that characterizes its transition behavior 
(a shallow embedding) or by treating the program itself as an object in the formalism and writing 
an interpreter for the programming language in the logic (a deep embedding). In either case, veri-
fying the property reduces to proving an appropriate theorem in the logic.

To prove properties of complex systems with a theorem prover, a considerable amount of user 
guidance is required, in the form of lemmas, tactics, or manual guidance of the deduction pro-
cess. The most common proof approach is to construct an inductive invariant of the system 
(or of the system augmented with auxiliary structures). An inductive invariant is a fact that is 
true initially, and implies itself at the next time, thus is true always. Once a suitable invariant 
is obtained, the proof that it is inductive can be aided by the use of a ground decision procedure 
[61]. This approach greatly reduces the required amount of proof guidance. However, manually 
constructing an inductive invariant is still a time-consuming and intellectually taxing process.

For this reason, a number of tools that combine a theorem prover and a model checker have 
been developed. In such systems, the overall proof of a property can be reduced to lemmas that 
can be discharged by a model checker. For example, the HOL-VOSS system [62] and its successor 
Forte [63] use a theorem prover to reduce the proof to lemmas that can be checked by symbolic 
simulation. The Cadence SMV system [64] can be used to reduce the proof to verification of tem-
poral logic properties by SMC. Such systems have the potential to shift a substantial amount of 
the proof effort from the user onto automated tools. To make this possible, however, we require an 
overall proof strategy that reduces the problem to a scale that can be handled by model checking.

20.2.3 MODULARIZATION AND ABSTRACTION

The most common proof approaches for dealing with complex systems are modularization and 
abstraction. By modularization, we mean breaking a property to be proved (a goal) into two or 
more properties (or subgoals) that are more easily verified automatically, usually because they 
depend on fewer system components. We must show, in turn, that the subgoals imply the goal. 
In a strictly modular approach, such as the assume-guarantee paradigm [65], we verify a sys-
tem consisting of two modules A and B by proving properties of A and B in isolation and then 
combining these to deduce a property of the system. Strictly modular proofs can be difficult to 
obtain, however, because of the need to capture in the subgoals all properties of one module 
that are required by the other. In practice, one can take a more relaxed approach. It is neces-
sary only that the subgoals be provable in a coarser abstraction of the system than the original 
goal. The abstraction may be obtained by localization (i.e., considering only a subset of system 
components) or by various methods of abstracting data (including predicate abstraction, which 
is described later in this section).

In fact, the key to all known methods for verifying large, complex systems is abstraction. 
Abstraction may involve replacing a complex system with a simpler system that captures the 
required properties or focusing on certain relevant aspects of the system under analysis and 
ignoring others. An abstract system can be constructed manually, in which case we must prove 
that the abstract system in fact preserves the properties of interest. Alternatively, an abstraction 
can be constructed automatically, perhaps according to parameters given by the user. A general 
framework for this approach is provided by abstract interpretation [66], which was developed in 
the context of software verification. In this framework, the user chooses a suitable representation 
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for facts about data in the system, and an automatic analysis computes the strongest inductive 
invariant of the system that can be expressed in this representation. As an example, we might use 
a representation that can express all linear affine relations between program variables. An impor-
tant instance of abstract interpretation is predicate abstraction [67]. Here, the user provides a set 
of simple predicates, like x < y. The analysis constructs the strongest inductive invariant that can 
be expressed as a Boolean combination of these predicates.

Of course, the invariant constructed by abstract interpretation may or may not be strong 
enough to prove the desired property. The key to this approach is to choose an abstraction 
appropriate to the given property. Thus, in predicate abstraction, the predicates must be 
chosen carefully so that they are sufficient to prove the property, without being so numerous 
as to make the analysis intractable. Considerable attention has been given to automating the 
selection of predicates [10,68]. This has proved to be especially effective in software model 
checking as we will see. Abstract interpretation has also been effectively used to prove the 
subgoals arising in a modularization approach [64]. Here, the key is to choose subgoals that 
can be proved using a coarse abstraction. By this approach, much of the work of construct-
ing invariants can be done automatically, thus simplifying the manually constructed part of 
the proof.

20.3 SOFTWARE FORMAL VERIFICATION

The dynamic nature of software poses a big challenge to the application of formal verification. 
Programs may contain dynamic memory or process allocations, dynamic loops, dynamic jump 
targets, aliases, and pointers. Whereas the state space of a discrete hardware system is finite (and 
every hardware model is therefore, at least in principle, amenable to automatic verification), the 
state space of a software program may be infinite and the respective formal verification problem 
is, in general, undecidable. In practice, this means that any reliable software verification algo-
rithm will either target a restricted class of programs or will fail to produce a clear yes or no result 
in some cases. The following is a brief survey of automatic software verification techniques based 
on model checking.

20.3.1 EXPLICIT MODEL CHECKING OF PROTOCOLS

Around 1991–1992, protocols were verified using dedicated modeling languages like Promela 
[6] and Murphi [7] and explicit model checkers. This approach best fits concurrent asynchro-
nous software systems. The explicit model checking algorithm performs a search on the state 
space of the system, and on the fly verifies for each newly visited state that the property holds 
for it. The algorithm stores all the states it encounters in a large hash table. When a state is 
generated that is already in the hash table, the search does not expand to its successor states. To 
allow efficient search of the state space, several optimization techniques have been developed. 
The most dominating one is the partial order reduction. Not all possible successors of a given 
state are generated and included in the search. However, states and flows of the program that 
are not visited in the search are proven to be redundant for establishing the correctness of the 
property. For example, if the program has two processes P1:: a; b; (in process P1, statement a is 
performed first and then statement b) and P2:: c; d. Then there are six possible execution flows 
(orders) abcd, acbd, acdb, cdab, cabd, and cadb. However, if the correctness of the property to 
be checked is only influenced by the order of execution of the statements b and d, the search 
can be limited to check only two flows: acbd and acdb. This technique has been proven to 
be successful for protocols that have high degree of concurrency and thus partial reduction 
can be very beneficial. In particular, industrial cache coherence protocols, cryptographic, and 
security-related protocols were successfully verified. Known academic and industrial model 
checkers based on this family of techniques are SPIN [6], Murphi [7], and TLA+ [69]. The main 
drawback of this approach is that the verification is not applied to the “golden model” of the 
design, that is, to the actual C and Java programs.
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20.3.2 EXPLICIT AND SYMBOLIC MODEL CHECKING OF JAVA AND C PROGRAMS

In 1999–2001, Java programs were abstracted using abstract interpretation [66] and trans-
lated into finite-state models to be verified using explicit and symbolic model checkers 
[8,9,70,71]. Similar technology has been proposed for translating C programs using predicate 
abstraction [67] into Boolean programs and submitting them to a symbolic model checker 
[10]. The extracted Boolean program has the same control-flow structure as the original pro-
gram; however, it has only Boolean variables, each representing a Boolean predicate over the 
variables of the original program. For example, if x and y are complex data structures with 
the same type, for example, structures, then a Boolean variable in the extracted program may 
represent the predicate x = y, t thus resulting in a much smaller state space in the Boolean 
program.

To give the reader some intuition into predicate abstraction, let x be an integer variable in the 
original C program and let the Boolean program have only two predicates that refer to x, “the 
predicate b1 is defined as x > 2” and “the predicate b2 is defined as x = 5.”

original program Boolean program 

pc1: x = 5; pc1: b1 = true; b2 = true;

pc2:.. pc2:..

In this case, it is easy to see that if x is assigned 5 in the original program, then both the predi-
cates b1 and b2 should become true in the corresponding program location, pc1, in the Boolean 
program. A more interesting case is as follows:

original program Boolean program 

pc1: x = x+1; pc1: b1 = ?; b2 = ?;

pc2:.. pc2:..

In this case, since b1 represents x > 2, b1 should be assigned true if x + 1 > 2, that is, if at program 
location pc1, x > 1 holds. The condition x > 1 is called the weakest precondition that would guar-
antee that x > 2 holds after the assignment x = x + 1. Similarly, since b2 represents x = 5, b2 should 
be assigned true if x + 1 = 5, that is, if at program location pc1, x = 4 holds. However, at location 
pc1 in the Boolean program, we only have access to the truth value of b1 and b2 and not to the 
values of the predicates x > 1 and x = 4, which are not included in the set of predicates used for 
the generation of the Boolean program. In this case, an automated decision procedure is invoked 
to strengthen these predicates into an expression over the set of the chosen predicates. In our 
example, the predicate x > 1 will be strengthen to x > 2 and the predicate x = 5 will strengthen 
into false. Thus, we get the following:

original program Boolean program 

pc1: x = x+1; pc1: b1 = if b1 then true else false;
b2 = false;

pc2:.. pc2:..

The predicate abstraction technology has been extended to handle pointers, procedures, and 
 procedure calls [10]. For example, let the predicate b1 be *p > 5:

original program Boolean program 

pc1: x = 3; pc1: b1 = ?;

pc2:.. pc2:..
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If x and *p are aliases, then b1 should be assigned false since *p becomes 3, else b1 should retain 
its previous value. Thus, we get the following:

original program Boolean program 

pc1: x = 3; pc1: b1 = (if &x = p then false else retain);

pc2:.. pc2:..

The SMC algorithm is applied to the Boolean program to check the correctness of the property. 
If successful, we can conclude that the property holds also for the original program. If failed, the 
Boolean program is refined to more precisely represent the original program. Additional Boolean 
predicates are automatically identified from the counterexample and a new Boolean program 
is constructed. This iterative approach is called counterexample-guided abstraction refinement 
(CEGAR) [77]. The CEGAR methodology has proven highly influential in the field of formal veri-
fication. It was successfully applied to checking safety properties of Windows device drivers and 
to discovering invariants regarding array bounds. Academic and industrial model checkers based 
on this family of techniques include SLAM and SLAM2 by Microsoft [10,88], which became part 
of the Static Driver Verifier toolset used internally and distributed to device vendors, Bandera 
[70], Java Pathfinder [9], TVLA [72], Feaver [73], Java-2-SAL [74], and Blast [68].

20.3.3 BOUNDED MODEL CHECKING OF C PROGRAMS

Around 2003, C and SpecC programs were translated into propositional formulae and then formally 
verified using a bounded model checker [11,14]. This approach can handle the entire ANSI-C language 
consisting of pointers, dynamic memory allocations, and dynamic loops, that is, loops with conditions 
that cannot be evaluated statically. These programs are verified against user-defined safety properties 
and also against automatically generated properties about pointer safety and array bounds.

The C program is first translated into an equivalent program that uses only while, if, go to, and 
assignment statements. Then each loop of the form while (e) inst is translated into if (e) inst; if (e) 
inst; …; if (e) inst; {assertion !e}, where if (e) inst is repeated n times. The assertion !e is later formally 
verified and if it does not hold, n is increased until the assertion holds. The resulting program that 
has no loops, and the properties to be checked are then translated into a propositional formula 
that represents the model after unwinding it k times. The resulting formula is submitted to a SAT 
solver, and if a satisfying assignment is found, it represents an error trace. During the k-steps 
unwinding of the program, pointers are handled. For example,

int a, b, p;
if (x) p=&a; else p=&b;
*p=5;

The aforementioned program is first translated into

p1=(x ? &a: p0)∧p2=(x? p1: &b)
*p2=5;

That is, three copies of the variable p are created: p0, p1, and p2. If x is true, then p1=&a and 
p2=p1, and if x is false, p1=p0 and p2=&b. Then *p2=5 is replaced by

*(x? p1; &b)=5 that is replaced by

(x ? *p1; *&b)=5 that is replaced by

(x? *p1; b)=5 that is replaced by

(x? *(x? &a:p0); b)=5 that is replaced by

(x? *&a; b)=5 that is replaced by

(x? a; b)=5
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After all these automatic transformation, the pointers have been eliminated and the resulting 
statement is (x? a; b) = 5. For details on dynamic memory allocations and dynamic loops, see [11].

20.3.4 TRANSLATION VALIDATION OF SOFTWARE

Two technological directions are currently pursued for formally verifying the correct trans-
lation of software programs. One [12,17] that automatically establishes an abstraction map-
ping between the source program and the object code offers an alternative to the verification 
of synthesizers and compilers. The other direction [13,14] automatically translates the two 
 programs given in C and Verilog into a BMC formula and submits it to a SAT solver. The 
value of each Verilog signal at every clock cycle is visible to the C program. Thus, the user 
can specify and formally verify the desired relation between the C variables and the Verilog 
signals. Both the C and Verilog programs are unwound for k-steps as we have described in the 
previous section.

20.4 RECENT DEVELOPMENTS (2004–2015)

In the years between 2004 and 2015, formal property verification has evolved significantly and 
has become an indispensible complement to traditional verification methods in the RTL func-
tional verification domain. Ball et al. [88] provides good information from the 2008 perspective. 
Many design projects have adopted formal property verification as an integral part of the verifi-
cation methodology—it is no longer a point tool and it no longer requires PhD-level expertise to 
perform formal property verification in commercial design projects.

Model checking algorithms using SAT solvers and interpolation techniques have become 
widely used in formal verification software, and new approaches such as IC3/property directed 
reachability (PDF) and satisfiability modulo theory (SMT) have made formal verification possible 
in large designs in a commercial setting. Academic interest in formal verification has shifted 
toward verification of software in recent years.

The availability of several standards has also contributed to the increased proliferation of for-
mal property verification, including standards for property languages, SoC metadata, low-power 
metadata, and coverage measurements.

20.4.1 PROPERTY SPECIFICATION

Section 20.2.1.1 reviewed the early history of temporal specification languages as of 2005. Since 
then, there have been several major standardization efforts in this area:

 ◾ PSL [79]: Property specification language provides a formal notation for specifying 
behaviors of a design. It was initiated by Accellera with version 1.0 released in 2003 and 
eventually approved as IEEE 1850 in 2005 with a revision in 2010.

 ◾ SVA [80]: SystemVerilog assertion is part of the SystemVerilog standard, initially 
approved as IEEE 1800 in 2005, with a revision in 2012. It comprises a subset of the 
SystemVerilog language that permits specification of properties declaratively outside a 
procedural context or embedded in procedural code.

 ◾ OVL [81]: Open Verification Library is a library of property checkers written in hardware 
description languages including Verilog, VHDL, SystemVerilog, and PSL with Verilog 
flavor. Since the official release of OVL 1.0 in 2005 by Accellera, it has continued to be 
evolved by the committee, with OVL Version 2.8 released in December 2013.

While OVL provides the convenience of specifying assertions and properties using predeter-
mined library elements, PSL and SVA provide comprehensive language constructs for the speci-
fication of design behaviors.
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Assertion monitors in OVL are composed of an event, message, and severity. For example, 
the assert_never module in OVL takes a clock signal, a reset signal, and a Boolean expression 
as the event. A severity level is provided as the parameter for the instantiated module, and an 
optional message string is the string displayed in the case of an assertion failure. More informa-
tion can be found in Chapter 18.

PSL is defined in four layers: the Boolean layer, the temporal layer, the verification layer, 
and the modeling layer. Figure 20.2 illustrates an assertion, specifying that it is always the 
case (i.e., for all time) that whenever the “req” signal is asserted, either the “read_ack” signal 
or the “write_ack” signal must be asserted in the next cycle (captured through the construct 
“next”). The PSL constructs “assert” and “always” belong to the verification and temporal lay-
ers, respectively, and the expression “read_ack || write_ack” belongs to the Boolean layer. For 
this example, to illustrate the concept of modeling, the “req” signal is trivially created from a 
combination of signals found in the design. PSL uses the concept of verification unit to group 
and organize PSL properties. Because of the modeling layers, two favors of PSL are available, 
one for Verilog and one for VHDL.

SVA contains several components: sequences, declarations, directives, and bindings. 
Figure 20.3 shows an example of an assertion similar to the one in Figure 20.2. The SVA con-
struct “|=>” describes “next cycle”; the “property” construct provides the declaration; and the 
“assert” construct provides the directive regarding how to use the property in a verification set-
ting. Binding (not shown in the example) is used to bind these properties to RTL modules in the 
design. Since SVA is designed to be used directly as a part of SystemVerilog designs and test-
benches, it inherits the expression language of SystemVerilog, including its data types, expression 
syntax, and semantics.

wire req;
assign req = read_req || write_req;
assert always (req -> next (read_ack || write_ack));

Boolean layer

Temporal layer

Verification layer

Modeling layer

FiGURe 20.2 Property specification language assertion.

property P (clk, reset 
@(posedge clk) disable iff (reset)
req |=> (read_req || write_req);
endproperty
A: assert property P;

Sequence

Declaration

Directive

FiGURe 20.3 SystemVerilog assertion.
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20.4.2 PROOF ENGINES AND ABSTRACTIONS

In this section, we highlight the recent evolutions of formal verification engines for hardware 
and software. In particular, the field of SMT has seen significant advances since its introduction 
from 2000.

20.4.2.1 FORMAL VERIFICATION ENGINES FOR HARDWARE DESIGNS

Although academic interest in formal verification has slowly shifted toward software verification 
over the past 10 years, several major breakthroughs occurred with regard to core model checking 
algorithms:

 ◾ IMC was introduced in 2003 [45] and succeeded BDDs as a dominant verification meth-
odology for unbounded verification. Other applications of interpolation to verification 
were identified, such as interpolation for predicate selection as part of the predicate 
abstraction loop or for the approximation of transition relations [89].

 ◾ PDR, originally called IC3, was introduced in 2010 [90]. IC3/PDR is a SAT-based verifica-
tion algorithm that incrementally constructs an inductive invariant for the system under 
analysis using a large number of easy-to-solve single-step SAT queries.

 ◾ The system under analysis is represented by a number of frames. Each frame is associ-
ated with a set of logical formulas that represent knowledge about reachable states at the 
corresponding depth of execution. In the main phase, the algorithm uses SAT queries to 
find counterexamples to induction (CTIs). A CTI is a set of states at a certain depth of 
execution that may lead to a property violation and that is not excluded by the current 
state of knowledge about the system.

 ◾ Once a CTI is generated, the algorithm attempts to prove that it does not correspond 
to a property violation. In the process of doing so, additional proof obligations may be 
generated at earlier execution depths, which are processed recursively. Once a CTI has 
been shown not to correspond to a property violation, additional knowledge is added to 
the system, which excludes the CTI from being considered again at a later point during 
the search. The algorithm is guaranteed to eventually find a counterexample or converge 
on an inductive invariant that proves safety of the system.

 ◾ Today, IC3/PDR is considered the strongest single-engine verification procedure in 
hardware verification and has spawned intense research interest, both in terms of low-
level improvements and efficient implementation techniques [91] and with regard to the 
underlying paradigm of inductive, incremental verification.

 ◾ Work on modern proof engines such as BMC, IMC, and IC3/PDR has focused overwhelm-
ingly on safety properties. In 2002, the Biere translation was introduced [92], which allows 
liveness properties to be translated to safety properties. The translation implicitly checks 
for the presence of an infinite counterexample by attempting to find looping parts of the 
state space and involves a duplication of the number of state-holding circuit elements. The 
k-liveness methodology was introduced in 2012 [93] and provides an alternative method 
for reducing liveness to a sequence of safety checks. The k-liveness method often works 
better than the Biere translation but cannot be used for finding counterexamples.

20.4.2.2 SATISFIABILITY MODULO THEORIES

Since the introduction of Chaff [39] and Grasp [40] in 2000, algorithmic and engineering 
advances have continued to increase the performance of SAT solvers at an exponential rate 
until at least 2007 [94].

The field of SMT attempts to generalize the advances of propositional solvers to fragments 
of first-order logic interpreted over a given first-order theory. An SMT solver can handle logi-
cal formulas that contain variables and operations over some nonpropositional target domain. 
Popular first-order theories supported by SMT solvers include linear and rational integer arith-
metic, equality with uninterpreted functions, bit vectors, and theories for specific data types such 
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as floating-point numbers or arrays. An informative overview over SMT technology is provided 
in [95]. Modern solvers include Z3 [96], MathSat [97], Yices [98], and CVC4 [99]. The SMT-LIB 
project [100] standardizes first-order theories handled by solvers as well as file formats.

One of the central developments in SMT is the DPLL(T) framework [101,102], which lifts the 
architecture of modern propositional SAT solvers to incorporate support for first-order theories. 
The core idea is to split the satisfiability task among two communicating solvers: a SAT solver is 
used to reason about the propositional structure of the problem and handles basic Boolean opera-
tors, while a theory solver reasons about conjunctions of atomic subformulas. The SAT solver 
represents theory atoms abstractly as Boolean variables and generates candidate truth assign-
ments. The theory solver is used to check whether these candidate assignments are satisfied by 
some first-order model in the theory. Theory solvers may also communicate inferred truth values 
to the propositional solver or help learn new propositional information. SMT solvers may com-
bine multiple different theory solvers into a single solver for the combined theory [103,104].

20.4.2.3 FORMAL VERIFICATION TECHNOLOGIES FOR SOFTWARE

Academic interest in formal verification has shifted toward verification of software in recent 
years. In part, this shift is driven by developments in logical decision procedures, which made 
available effective decision procedures for first-order theories, which are used to reason about 
programs. We now summarize some recent developments in software verification:

 ◾ Mature tools based on abstract interpretation were developed and used to analyze large-
scale system. The Astrée abstract interpreter [105] has been used to prove absence of 
runtime errors in projects consisting of more than 100,000 lines of automatically gener-
ated C code. Abstract interpretation–based tools have also proven effective in the con-
text of floating-point verification [106].

 ◾ Novel software model checking algorithms were developed, including the interpolation-
based algorithm implemented in the Impact model checker [107] and extensions of the 
PDR procedure to software [108,109]. Modern software model checkers typically combine 
a variety of verification techniques such as predicate abstraction [67], abstract interpreta-
tion [66], BMC [41], and interpolation [107]. Significant advances were made also made in 
proving that programs terminate (an overview over these efforts is given in [110]) and in 
the analysis of heap-manipulating programs using tools based on separation logic [111].

20.4.3 NEW STANDARDS, APPLICATIONS, AND USE MODELS

Early formal verification approaches had a reputation of being difficult to use, and mostly requir-
ing dedicated formal verification experts in the design project in order to attain its goals. However, 
between 2004 and 2014, new standards, new applications, and new use models have enabled the 
usage of formal verification by people with minimal formal verification background.

This section highlights some of these changes. The need to manually write properties for formal 
verification has been significantly reduced thanks to verification IPs (VIPs), property generation, 
metadata for SoC assembly, and metadata for low power. New use models have emerged, such as 
design comprehension and debugging. These use models hide the formal algorithm details from 
the users and provide benefit to people not interested in achieving exhaustive proofs of proper-
ties. Finally, coverage models for formal verification provide metrics of verification completeness 
even when exhaustive proofs are impractical.

20.4.3.1 VERIFICATION IPs AND PROPERTY GENERATION

The availability of verifiable properties is critical to the deployment of formal property verifica-
tion techniques. Writing properties in standard languages such as SVA or PSL demands special-
ized knowledge. Even for experts it can be extremely time consuming to manually create a robust 
set of properties for a design.
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Two complementary approaches address this need:

 ◾ VIPs that contain properties for standard interfaces
 ◾ Property generation techniques that extract properties from RTL and/or traces either 

manually or automatically

Specifications of standard protocols, such as AMBA (AHB, APB, AXI, ACE), PCI-Express, DDR, 
LPDDR, and OCP, can often be captured precisely as properties, including assertions, assump-
tions, and functional coverage points. These VIPs can be used both for formal property verifica-
tion and for simulation.

VIPs intended for formal property verification are typically configurable into three modes: 
master, slave, and monitor. These modes determine which properties in the VIP should be inter-
preted as assumptions or assertions. For example, assertions from the master mode would be 
used as assumptions in the slave mode, and assumptions from the master mode would be used 
as assertions in the slave mode. These assertions and assumptions in the master and slave modes 
would all be used as assertions in the monitor mode.

Using simulation to verify compliance of a design with respect to standard interfaces is chal-
lenging and time consuming; with formal property verification, these VIPs help exhaustively 
verify the design with respect to the compliance of the protocol. The assumptions in these VIPs 
provide the necessary constraints for verification of other properties with respect to the design, 
by configuring the proof engines to avoid returning counterexamples that violate the protocol 
assumptions.

Property generation techniques help create properties directly from an RTL description of the 
design. Before a testbench is available, properties can be extracted directly from the logic in the 
RTL, using predefined functional checks such as dead code checks, finite-state machine (FSM) 
checks, and arithmetic overflow checks. Once simulation tests are running with the design, prop-
erties can be deduced from the collections of waveforms, identifying behaviors common to mul-
tiple waveforms, and coverage holes never exercised in any of the waveforms. The properties 
generated from the process could be focusing on multicycle temporal properties, cross-hierarchi-
cal properties, FIFOs, counters, FSMs, one-hot candidate, etc.

It is critical in the property generation flow to enable user guidance to control the generation 
process. Uncontrolled property generation creates numerous property candidates, and it is hard 
for the user to identify the important properties among the other candidates that can be consid-
ered as noise. Heuristics to rank and classify the property candidates enable the user to focus on 
the important items first, and the concept of waiver to pinpoint clearly illegal or impossible cases,  
is necessary to avoid generating similar properties during analysis in the future. Furthermore, 
user-provided templates allow the generation process to provide only properties of the form that 
the user is interested in.

20.4.3.2 METADATA FOR SoC AND LOW-POWER DESIGNS

As formal property verification became indispensible in many design projects, many automated 
or dedicated applications have been discovered along the way. For example, metadata for SoC 
and low-power designs is a good source of properties to be formally verified against the design.

In recent years, many standards for metadata format have been created:

 ◾ IPXACT [82]: Initiated by the SPIRIT Consortium in 2003 and approved as IEEE 1685-
2009 in 2009, IPXACT enables the capture of metadata related to a design, its com-
ponents, the related bus interfaces and connections, abstractions of those buses, and 
details of the components including address maps, register, and field descriptions.

 ◾ SystemRDL [83]: Initiated by the SPIRIT Consortium in 2009, SystemRDL focuses 
on the metadata related to the design and delivery of registers to be used in IP blocks 
in an SoC.

 ◾ Common power format (CPF) [84]: Initiated by Silicon Integration Initiative in 2007, 
CPF captures the designer’s intent for power management, including information on 
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power modes, power domains, power switches, state retention registers, isolation cells, 
and level shifters.

 ◾ Unified power format (UPF) [85]: Initiated by Accellera in 2007 and approved as IEEE 
1801-2009, UPF is also designed to capture the designer’s intent for power management, 
similar to CPF. It continued to evolve into IEEE 1801-2013 and IEEE 1801a-2014, and an 
upcoming revision will significantly reduce the differences from CPF.

More information on IPXACT can be found in Chapter 5.
Given an IPXACT or SystemRDL description, formal property verification techniques can 

be used to exhaustively determine whether the register behaviors in the design description have 
been implemented according to the parameters specified in such metadata. While the fundamen-
tal read/write operations to the registers through an interface (known as software access) can be 
captured as properties easily, there are wide variations of register styles, potentially causing the 
resulting properties to be very complicated. Some of the complexity includes hardware modifica-
tion of the register, modified write value semantics, register aliasing, and locking and security 
mechanisms. The complexity of such variations is the main reason why formal property verifica-
tion has become more prominent in register behavior verification.

An IPXACT description also provides instantiation and connectivity information within an 
SoC. Instead of writing simulation tests for connectivity verification, formal property verifica-
tion has become the main approach for verifying connectivity in many projects. While IPXACT 
enables specification of the simple use cases, such as direct point-to-point connections and inter-
face-to-interface connections, vendor extensions have been made in an ad hoc fashion to capture 
more complicated connections, with conditional behavior, temporal latency, etc.

The availability of low-power metadata has enabled low-power-related formal verification on 
an RTL description that does not contain low-power implementation yet. After reading in the 
RTL description, the low-power metadata can be used to convert this RTL description to a power-
aware formal model in accordance with power partitioning specification, such as

 ◾ Adding corruption to the nonretained data when power is off
 ◾ Adding extra logic to retain the value of a register if retention has been specified in the 

low-power metadata
 ◾ Adding extra logic to isolate the power-off logic from surrounding power domain if 

 isolation has been specified in the low-power metadata

Using the power-aware formal model, formal property verification can be performed on

 ◾ The behavior of power-related properties extracted from the low-power metadata, which 
is impossible to analyze in the original RTL description

 ◾ Nonpower-related properties with the power-related artifacts introduced by the 
 low-power transformation, which may behave differently from the RTL without the 
 low-power artifacts

20.4.3.3 DESIGN COMPREHENSION AND DEBUGGING

Even though the primary purpose of formal property verification is to determine the validity of 
properties with respect to a design description, it has recently been used to aid design compre-
hension and debugging, as described in [86].

Given a functional coverage point, formal property verification can generate a trace exercis-
ing the coverage point if the coverage point is reachable from the reset state(s). Rearranging the 
problem statement so that the formal verification algorithm receives a set of targets with optional 
temporal relationships, an interesting waveform exercising the design can be created without 
setting up a simulation test bench. Instead of tuning the inputs generated from a simulation test 
bench to hit specific targets, the formal algorithm enforces such targets to be exercised in the 
generated waveform.
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On the other hand, properties used for formal property verification can be used for compre-
hension of a waveform from simulation and from formal verification of other properties. Given a 
waveform, an assertion (or an assumption) can be evaluated to see whether it has been violated 
anywhere in the waveform and whether its triggers have been exercised anywhere in the wave-
form. For a functional cover point specified as a property, it can be evaluated to see if it has been 
exercised anywhere in the waveform. These properties can be displayed as transactions in the 
waveform display, and the specific clock cycles of the relevant signals can be highlighted to aid 
comprehension of the waveform.

20.4.3.4 COVERAGE METRICS FOR FORMAL VERIFICATION ACTIVITIES

With more verification projects utilizing both simulation and formal property verification as two 
complementary approaches to verify the same design, it is often important to combine results 
from both approaches into a coherent measurement of verification progress. Unified branch and 
statement code coverage models have been the first step toward such an effort. More information 
on this topic can be found in Chapter 18.

Finding a coherent metric for verification progress is one of the goals for the UCIS working 
group. This group was formed in November 2006 in Accellera for the purpose of defining an 
application interface [87]. The standard allows for interoperability of verification coverage data 
across multiple tools from multiple vendors, including symbolic simulation and formal tools. The 
UCIS 1.0 standard was released in June 2012.

The EDA industry has suggested several metrics of coverage with formal property verification:

 ◾ Dead code and stimuli coverage: Measure the stimuli coverage by checking what is reach-
able in the design under a given set of constraints, and determine dead code based on 
analysis in an underconstrained environment, that is, while considering all legal input 
sequences and some illegal input sequences.

 ◾ Proof coverage and property completeness: Determine the completeness of the set of 
properties and the effectiveness of each property. One of the techniques used in such 
measurement is to extract the proof core using the proof-based abstraction technique, 
that is, from the portion of the design that affects the validity of the proof.

 ◾ Bounded proof coverage: Measure quality of a bounded proof when exhaustive analy-
sis is not available. A simple reachability bound is not a good measurement of the 
quality of a bounded proof—a simple counter within the design can drive a formal 
algorithm to reach a large reachability bound, but the activities analyzed within such 
a bound may be few and not useful. One of the techniques used in such measure-
ment is to analyze other design cover points with respect to the reachability bound 
of a bounded proof. The more design cover points can be exercised with the current 
constraints and within the reachability bound, the more design scenarios would have 
been analyzed by such a bounded proof. This provides a functional interpretation of 
the bound with respect to what the design can do and cannot do within the reach-
ability bound.

20.5 SUMMARY

Formal property verification provides a means of ensuring that a hardware or software system 
satisfies certain key properties, regardless of the input presented. Automated methods devel-
oped over the last decades have made it possible to verify properties of large, complex systems 
with minimal user interaction, and to find errors in these systems. These methods have become 
important adjuncts to simulation and testing in the hardware design verification process, enabling 
the design of more robust and reliable systems. Software formal verification has evolved into a 
mature field. Verification techniques are finding increasing adoption in the software industry and 
constitute an ongoing focus of academic research.
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21.1 INTRODUCTION

Design-for-test or design-for-testability (DFT) is a name for design techniques that add certain 
testability features to a microelectronic hardware product design. The premise of the added 
 features is to make it easier to develop and apply manufacturing tests for the designed hardware. 
The purpose of manufacturing tests is to validate that the product hardware contains no defects 
that could adversely affect the product’s correct functioning.

Tests are applied at several steps in the hardware manufacturing flow and, for certain products, 
may also be used for hardware maintenance in the customer’s environment. The tests generally 
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are driven by test programs that execute in automatic test equipment (ATE) or, in the case of 
system maintenance, inside the assembled system itself. In addition to finding and indicating 
the presence of defects (i.e., the test fails), tests may be able to log diagnostic information about 
the nature of the encountered test failures. The diagnostic information can be used to locate the 
source of the failure.

DFT plays an important role in the development of test programs and as an interface for test 
application and diagnostics.

Historically speaking, DFT techniques have been used at least since the early days of electric/
electronic data-processing equipment. Early examples from the 1940s and 1950s are the switches 
and instruments that allowed an engineer to “scan” (i.e., selectively) probe the voltage/current at 
some internal nodes in an analog computer (analog scan). DFT is often associated with design 
modifications that provide improved access to internal circuit elements such that the local inter-
nal state can be controlled (controllability) or observed (observability) more easily. The design 
modifications can be strictly physical in nature (e.g., adding a physical probe point to a net) or add 
active circuit elements to facilitate controllability/observability (e.g., inserting a multiplexer into 
a net). While controllability and observability improvements for internal circuit elements defi-
nitely are important for the test, they are not the only type of DFT. Other guidelines, for example, 
deal with the electromechanical characteristics of the interface between the product under test 
and the test equipment, for example, guidelines for the size, shape, and spacing of probe points, 
or the suggestion to add a high-impedance state to drivers attached to probed nets such that the 
risk of damage from backdriving is mitigated.

Over the years, the industry has developed and used a large variety of more or less detailed 
and more or less formal guidelines for desired and/or mandatory DFT circuit modifications. The 
common understanding of DFT in the context of electronic design automation (EDA) for mod-
ern microelectronics is shaped to a large extent by the capabilities of commercial DFT software 
tools as well as by the expertise and experience of a professional community of DFT engineers 
researching, developing, and using such tools. Much of the related body of DFT knowledge 
focuses on digital circuits, while DFT for analog/mixed-signal circuits takes something of a back-
seat. The following text follows this scheme by allocating most of the space to digital techniques.

21.2  OBJECTIVES OF DESIGN-FOR-TEST FOR 
MICROELECTRONICS PRODUCTS

DFT affects and depends on the methods used for test development, test application, and diag-
nostics. The objectives, hence, can only be formulated in the context of some understanding of 
these three key test-related activities.

21.2.1 TEST GENERATION

Most tool-supported DFT practiced in the industry today, at least for digital circuits, is predi-
cated on a structural test paradigm. Functional testing attempts to validate that the circuit under 
test operates according to its functional specification. For example, does the adder really add for 
all possible operands? Structural testing, by contrast, makes no direct attempt to ascertain the 
intended functionality of the circuit under test. Instead, it tries to make sure that the circuit has 
been assembled correctly from some low-level building blocks as specified in a structural netlist 
and that all of those low-level building blocks and their wiring connections have been manufac-
tured without defect. For example, are all logic gates there that are supposed to be there and are 
they connected correctly? The stipulation is that if the netlist is correct (e.g., somehow it has been 
fully verified against the functional specification) and structural testing has confirmed the cor-
rect assembly of the structural circuit elements, then the circuit should be functioning correctly.

One benefit of the structural paradigm is that the test generation can focus on testing a limited 
number of relatively simple circuit elements rather than having to deal with an exponentially explod-
ing multiplicity of functional states and state transitions. While the task of testing a single logic gate 
at a time sounds simple, there is an obstacle to overcome. For today’s highly complex designs, most 
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gates are deeply embedded, whereas the test equipment is connected only to the primary I/Os and/
or some physical test points. Access to the embedded gates, hence, must be obtained by sensitizing 
paths through intervening layers of logic. If the intervening logic contains state elements, then the 
issue of an exponentially exploding state space and state transition sequencing effectively poses an 
unsolvable problem for automatic test generation. To simplify test generation, DFT addresses the 
accessibility problem by removing the need for complicated state transition sequences when trying 
to control or observe what is happening at some internal circuit element.

Depending on the DFT choices made during circuit design/implementation, the generation 
of structural tests for complex logic circuits can be more or less automated. One key objective of 
DFT methodologies, hence, is to allow designers to make trade-offs between the amount and type 
of DFT and the cost/benefit (time, effort, quality) of the test generation task.

21.2.1.1 TEST APPLICATION

Complex microelectronics products typically are tested multiple times. Chips, for example, may 
be tested on the wafer before the wafer is diced into individual chips (wafer probe/sort) and 
again after being packaged (final test). More testing is due after the packaged chips have been 
assembled into a higher-level package such as a printed circuit board (PCB) or a multichip mod-
ule (MCM). For products with special reliability needs, additional intermediate steps such as 
burn-in may be involved, which, depending on the flow details, may include even more testing 
(e.g., preburn and postburn-in test or in situ test during burn-in). The cost of test in many cases 
is dominated by the test equipment cost, which in turn depends on the number of I/Os that need 
to be contacted, the performance characteristics of the tester I/O (i.e., channel) electronics, and 
the depth/speed of pattern memory behind each tester channel. In addition to the cost of the 
tester frame itself, interfacing hardware (e.g., wafer probes and prober stations for wafer sort, 
automated pick-and-place handlers for final test, burn-in boards [BIBs] for burn-in) is needed that 
connects the tester channels to the circuit under test.

One challenge for the industry is keeping up with the rapid advances in chip technology 
(I/O count/size/placement/spacing, I/O speed, internal circuit count/speed/power, thermal 
 control, etc.) without being forced to continually upgrade the test equipment; thus, modern DFT 
techniques have to offer options that allow next-generation chips and assemblies to be tested on 
existing test equipment and/or reduce the requirements/cost for new test equipment. At the same 
time, DFT has to make sure that test times stay within certain bounds dictated by the cost target 
for the products under test.

21.2.2 DIAGNOSTICS

Especially for advanced semiconductor technologies, it is expected that some of the chips on each 
manufactured wafer will contain defects that render them nonfunctional. The primary objective 
of testing is to find and separate those nonfunctional chips from the fully functional ones, mean-
ing that one or more responses captured by the tester from a nonfunctional chip under test differ 
from the expected response. The percentage of chips that fail the test, hence, should be closely 
related to the expected functional yield for that chip type. In reality, however, it is not uncommon 
that all chips of a new chip type arriving at the test floor for the first time fail (so-called zero-yield 
situation). In that case, the chips have to go through a debug process that tries to identify the 
reason for the zero-yield situation. In other cases, the test fallout (percentage of test fails) may be 
higher than expected/acceptable or fluctuate suddenly. Again, the chips have to be subjected to 
an analysis process to identify the reason for the excessive test fallout.

In both cases, vital information about the nature of the underlying problem may be hidden in 
the way the chips fail during test. To facilitate better analysis, additional fail information beyond a 
simple pass/fail is collected into a fail log. The fail log typically contains information about when 
(e.g., tester cycle), where (e.g., at what tester channel), and how (e.g., at what logic value) the test 
failed. Diagnostics attempt to derive from the fail log the logical/physical location inside the chip at 
which the problem most likely started. This location provides a starting point for further detailed 
failure analysis (FA) to determine the actual root cause. FA, in particular physical FA, can be very 
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time-consuming and costly, since it typically involves a variety of highly specialized equipment 
and an equally specialized FA engineering team. The throughput of the FA labs is very limited, 
especially if the initial problem localization from diagnostics is poor. That adversely affects the 
problem turnaround time and the number of problem cases that can be analyzed. Additional inef-
ficiency arises if the cases handed over to the FA lab are not relevant for the tester fallout rate.

In some cases (e.g., PCBs, MCMs, embedded, or stand-alone memories), it may be possible to 
repair a failing circuit under test. For that purpose, diagnostics must quickly find the failing unit 
and create a work order for repairing/replacing the failing unit. For PCBs/MCMs, the replace-
able/repairable units are the chips and/or the package wiring. Repairable memories offer spare 
rows/columns and some switching logic that can substitute a spare for a failing row/column. The 
diagnostic resolution must match the granularity of replacement/repair. Speed of diagnostics for 
replacement is another issue. For example, cost reasons may dictate that repairable memories 
must be tested, diagnosed, repaired, and retested in a single test insertion. In that scenario, the 
failure data collection and diagnostics must be more or less realistic as the test is applied. Even 
if diagnostics are to be performed offline, failure data collection on expensive production test 
equipment must be efficient and fast or it will be too expensive.

DFT approaches can be more or less diagnostics friendly. The related objectives of DFT are to 
facilitate/simplify failure data collection and diagnostics to an extent that can enable intelligent FA 
sample selection, as well as improve the cost, accuracy, speed, and throughput of diagnostics and FA.

21.2.3 PRODUCT LIFE-CYCLE CONSIDERATIONS

Test requirements from other stages of a chip’s product life cycle (e.g., burn-in, PCB/MCM test, 
[sub]system test) can benefit from additional DFT features beyond what is needed for the chip 
manufacturing test proper. Many of these additional DFT features are best implemented at the 
chip level and affect the chip design. Hence, it is useful to summarize some of these additional 
requirements, even though the handbook primarily focuses on EDA for IC design.

21.2.3.1 BURN-IN

Burn-in exposes the chips to some period of elevated ambient temperature to accelerate and weed 
out early life fails prior to shipping the chips. Typically, burn-in is applied to packaged chips. 
Chips designated for direct chip attach assembly may have to be packaged into a temporary chip 
carrier for burn-in and subsequently removed from the carrier. The packaged chips are put on 
BIBs, and several BIBs at a time are put into a burn-in oven. In static burn-in, the chips are simply 
exposed to an elevated temperature, then removed from the oven and retested. Burn-in is more 
effective if the circuit elements on the chips are subjected to local electric fields during burn-in. 
Consequently, at a minimum, some chip power pads must be connected to a power-supply grid 
on the BIBs. The so-called dynamic burn-in further requires some switching activity, typically, 
meaning that some chip inputs must be connected on the BIBs and be wired out of the burn-in 
oven to some form of test equipment. The most effective form of burn-in, called in situ burn-in, 
further requires that some chip responses can be monitored for failures while in the oven. For 
both dynamic and in situ burn-in, the number of signals that must be wired out of the oven is of 
concern because it drives the complexity/cost of the BIBs and test equipment. Some of the newer 
technologies cannot reliably perform under the elevated temperatures of the burn-in oven, so 
their responses during burn-in may be ignored; these devices must be retested after burn-in is 
complete to identify which chips are still in operating condition.

Burn-in friendly chip DFT makes it possible to establish a chip burn-in mode with minimal 
I/O footprint and data bandwidth needs.

21.2.3.2 PRINTED CIRCUIT BOARD/MULTICHIP MODULE TEST

The rigors (handling, placing, heating) of assembling multiple chips into a higher-level package 
can create new assembly-related defects associated with the chip attach (e.g., poor solder connec-
tion) and interchip wiring (e.g., short caused by solder splash). In some cases, the chip internals 
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may also be affected (e.g., bare chips for direct chip attach are more vulnerable than packaged 
chips). The basic PCB/MCM test approaches concentrate largely on assembly-related defects and 
at best use very simple tests to validate that the chips are still “alive.”

Although functional testing of PCBs/MCMs from the edge connectors is sometimes possible 
and used, the approach tends to make diagnostics very difficult. In-circuit testing is a widely 
practiced alternative or complementary method. In-circuit testing historically has used so-called 
bed-of-nails interfaces to contact physical probe points connected to the interchip wiring nets. If 
every net connected to the chip is contacted by a nail, then the tester can essentially test the chip 
as if stand-alone. However, it often is difficult to prevent some other chip driving the same net 
that the tester needs to control for testing the currently selected chip. To overcome this problem, 
the in-circuit circuit tester drivers are strong enough to override (backdrive) other chip drivers. 
Backdriving is considered a possible danger, and reliability problem for some types of chip driv-
ers and some manufacturers may discourage backdriving. Densely packed, double-sided PCBs or 
other miniaturized packages may not leave room for landing pads on enough nets, and the num-
ber and density of nets to be probed may make the bed-of-nails fixtures too unwieldy.

DFT techniques implemented at the chip level can remove the need for backdriving from a 
physical bed-of-nails fixture or use electronic alternatives to reduce the need for complete physi-
cal in-circuit access.

21.2.3.3 [SUB]SYSTEM SUPPORT

Early prototype bring-up and, in the case of problems, debug pose a substantial challenge in 
the development of complex microelectronics systems. It often is very difficult to distinguish 
between hardware, design, and software problems. Debug is further complicated by the fact that 
valuable information about the detailed circuit states that could shed light on the problem may be 
hidden deep inside the chips in the assembly hierarchy. Moreover, the existence of one problem 
(e.g., a timing problem) can prevent the system from reaching a state needed for other parts of 
system bring-up, verification, and debug.

System manufacturing, just like PCB/MCM assembly, can introduce new defects and possibly 
damage the components. The same may apply to hardware maintenance/repair events (e.g., hot 
plugging a new memory board).

Operating the system at the final customer’s site can create additional requirements, especially 
if the system must meet stringent availability or safety criteria.

DFT techniques implemented at the chip level can help enable a structural hardware integrity 
test that quickly and easily validates the physical assembly hierarchy (e.g., chip to board to back-
plane) and verifies that the system’s components (e.g., chips) are working. DFT can also increase 
the observability of internal circuit state information for debug or the controllability of internal 
states and certain operating conditions to continue debug in the presence of problems.

21.3 CHIP-LEVEL LOGIC DESIGN-FOR-TEST TECHNIQUES

DFT has a long history with a large supporting body of theoretical work as well as industrial 
application. Only a relatively small and narrow subset of the full body of DFT technology has 
found its way into the current EDA industry.

21.3.1 BRIEF HISTORICAL COMMENTARY

Much of the DFT technology available in today’s commercial DFT tools has its roots in the elec-
tronic data-processing industry. Data-processing systems have been complex composites made 
up of logic, memory, I/O, analog, human interface, and mechanical components long before the 
semiconductor industry invented the system-on-chip (SoC) moniker. Traditional DFT as prac-
ticed by the large data-processing system companies since at least the 1960s represents highly 
sophisticated architectures of engineering utilities that simultaneously address the needs of 
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manufacturing, product engineering, maintenance/service, availability, and customer support. 
The first commercial DFT tools for IC design fielded by the EDA industry, by contrast, were 
primitive scan-insertion tools that only addressed the needs of automatic test pattern genera-
tion (ATPG) for random logic. Tools have become more sophisticated and comprehensive, offer-
ing more options for logic test (e.g., built-in self-test [BIST]), support for some nonrandom logic 
design elements (e.g., BIST for embedded memories), and support for higher-level package testing 
(e.g., boundary scan for PCB/MCM testing). However, with few exceptions, there still is a lack of 
comprehensive DFT architectures for integrating the bits and pieces and a lack of consideration 
for applications besides manufacturing test (e.g., support for nondestructive memory read for 
debug purposes is not a common offering by the tool vendors).

21.3.2 ABOUT DESIGN-FOR-TEST TOOLS

There are essentially three types of DFT-related tools:

 1. DFT synthesis (DFTS). DFT involves design modification/edit steps (e.g., substituting 
one flip-flop type with another one) akin to simple logic transformation or synthesis. 
DFTS performs the circuit modification/edit task.

 2. Design rule checking (DRC). Chip-level DFT is mostly used to prepare the circuit for 
some ATPG tool or to enable the use of some type of manufacturing test equipment [29]. 
The ATPG tools and test equipment generally impose constraints on the design under 
test. DRC checks the augmented design for compliance with those constraints. Note that 
this DRC should not be confused with physical verification DRC of ICs, as is discussed in 
Chapter 20 of Electronic Design Automation for IC Implementation, Circuit Design, and 
Process Technology.

 3. DFT intellectual property creation, configuration, and assembly. In addition to relatively 
simple design modifications, DFT may add test-specific function blocks to the design. 
Some of these DFT blocks can be quite sophisticated and may rival some third-party IP 
in complexity. And, like other IP blocks, the DFT blocks often must be configured for a 
particular design and then assembled into the design.

21.3.3 CHIP DESIGN ELEMENTS AND ELEMENT-SPECIFIC TEST METHODS

Modern chips can contain different types of circuitry with vastly different type-specific testing 
needs. Tests for random logic and tests for analog macros are very different. For example, tests for 
random logic and tests for analog macros are very different. DFT has to address the specific needs 
of each such circuit type and also facilitate the integration of the resulting type-specific tests into 
an efficient, high-quality composite test program for all pieces of the chip. SoC is an industry 
moniker for chips made up of logic, memory, analog/mixed-signal, and I/O components. The 
main categories of DFT methods needed, and to a reasonable extent commercially available, for 
today’s IC manufacturing test purposes can be introduced in the context of a hypothetical SoC.

SoCs are multiterrain devices consisting of predesigned and custom design elements:

 ◾ Digital logic, synthesized (e.g., cell based) or customized (e.g., transistor level)
 ◾ Embedded digital cores (e.g., processors)
 ◾ Embedded memories (static RAM [SRAM], embedded DRAM [eDRAM], read-only 

memory [ROM], content addressable memory [CAM], and flash, with or without embed-
ded redundancy)

 ◾ Embedded register files (large number, single port, and multiport)
 ◾ Embedded field-programmable gate array (eFPGA)
 ◾ Embedded analog/mixed signal (phase-locked loop [PLL]/DLL, DAC, ADC)
 ◾ High-speed I/Os (e.g., SerDes)
 ◾ Conventional I/Os (large number, different types, some differential)
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The following overview will introduce some key type-specific DFT features for each type of 
 component and then address chip-level DFT techniques that facilitate the integration of the 
 components into a top-level design.

21.3.4 DIGITAL LOGIC

The most common DFT strategies for digital logic help prepare the design for ATPG tools. ATPG 
tools typically have difficulties with hard-to-control or hard-to-observe nets/pins, sequential 
depth, and loops.

21.3.4.1 CONTROL/OBSERVE POINTS

The job of an ATPG tool is to locally set up suitable input conditions that excite a fault (i.e., trigger 
an incorrect logic response according to the fault definition; e.g., to trigger a stuck-at-1 fault at a 
particular logic gate input, that input must receive a logic 0 from the preceding gates) and that 
propagate the incorrect value to an observable point (i.e., side inputs of gates along the way must 
be set to their noncontrolling values). The runtime and success rate of test generation depend not 
least on the search space the algorithm has to explore to establish the required excitation and 
propagation conditions.

Control points provide an alternative means for the ATPG tool to more easily achieve a par-
ticular logic value. In addition to providing enhanced controllability for test, it must be possible 
to disable the additional logic such that the original circuit function is retained for normal system 
operation. In other words, DFT often means the implementation of multiple distinct modes of 
operation, for example, a test mode and a normal mode.

The second control point type is mostly used to override unknown/unpredictable signal 
sources, in particular for signal types that impact the sequential behavior, for example, clocks. In 
addition to the two types of control points, there are other types for improved 1-controllability 
(e.g., using an OR gate) and for randomization (e.g., using an exclusive OR [XOR] gate). The latter 
type, for example, is useful in conjunction with pseudorandom test methods that will be intro-
duced later. As can be seen from the examples, the implementation of control points tends to add 
cost due to one or more additional logic levels that affect the path delay and require additional 
area/power for transistors and wiring. The additional cost for implementing DFT is generally 
referred to as “overhead,” and over the years there have been many, sometimes heated, debates 
juxtaposing the overhead against the benefits of DFT.

Observe points are somewhat cheaper in that they generally do not require additional logic in 
the system paths. The delay impact, hence, is reduced to the additional load posed by the fan-out 
and (optional) buffer used to build a path to an observation point.

21.3.4.2 SCAN DESIGN

Scan design is the most common DFT method associated with synthesized logic. The concept of 
scan goes back to the very early days of the electronics industry, and it refers to certain means for 
controlling and/or observing otherwise hidden internal circuit states. Examples are manual dials 
to connect measurement instruments to probe points in analog computers, the switches, and 
lights on the control panel of early digital computers (and futuristic computers in sci-fi flicks) and 
to more automated electronic mechanisms to accomplish the objective, for example, the use of 
machine instructions to write or read internal machine registers. Beginning with the late 1960s 
or so, scan has been implemented as a dedicated, hardware-based operation that is independent 
of, and does not rely on, specific intelligence in the intended circuit function [14,20,27,55].

Among the key characteristics of scan architectures are the choice of which circuit states to 
control/observe and the choice of an external data interface (I/Os and protocol) for the control/
observe information. In basic scan methods, all (full scan) or most (partial scan) internal sequen-
tial state elements (latches or flip-flops) are made controllable and observable via a serial interface 
to minimize the I/O footprint required for the control/observe data. The most common imple-
mentation strategy is to replace the functional state elements with dual-purpose state elements 
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(scan cells) that can operate as originally intended for functional purposes and as a serial shift 
register for scan. The most commonly used type of scan cell consists of an edge-triggered flip-flop 
with two-way multiplexer (scan mux) for the data input (mux-scan flip-flop).

The scan mux is typically controlled by a single control signal called scan_enable that selects 
between a scan-data and a system data input port. The transport of control/observe data from/
to the test equipment is achieved by a serial shift operation. To that effect, the scan cells are con-
nected into serial shift register strings called scan chains. The scan-in port of each cell is either 
connected to an external input (scan-in) for the first cell in the scan chain or to the output of a 
single predecessor cell in the scan chain. The output from the last scan cell in the scan chain must 
be connected to an external output (scan-out). The data input port of the scan mux is connected 
to the functional logic as needed for the intended circuit function.

There are several commercial and proprietary DFTS tools available that largely automate the 
scan-chain construction process. These tools operate on register-transfer-level (RTL) and/or 
gate-level netlists of the design. The tools typically are driven by some rules on how to substitute 
nonscan storage elements in the prescan design with an appropriate scan cell and how to connect 
the scan cells into one or more scan chains. In addition to connecting the scan and data input 
ports of the scan cells correctly, attention must be given to the clock input ports of the scan cells. 
To make the shift registers operable without interference from the functional logic, a particular 
circuit state (scan state), established by asserting designated scan state values at certain primary 
inputs and/or by executing a designated initialization sequence, must exist that

 1. Switches all scan muxes to use the scan side (i.e., the local scan_enable signals are forced 
to the correct value)

 2. Assures that each scan cell clock pin is controlled from one designated external clock input 
(i.e., any intervening clock gating or other clock manipulation logic is overridden/disabled)

 3. All other scan cell control inputs like set/reset are disabled (i.e., the local control inputs 
at the scan cell are forced to their inactive state)

 4. All scan-data inputs are sensitized to the output of the respective predecessor scan cell or 
the respective scan_in port for the first scan cell in the chain (i.e., side inputs of logic gates 
along the path are forced to a nondominating value and muxes select the scan-data path)

 5. The output of the last scan_cell in the scan chain is sensitized to its corresponding scan_
out port or the side inputs of logic gates along the path are forced to a nondominating 
value, such that pulsing the designated external clock (or clocks) once results in shifting 
the data in the scan chains by exactly one-bit position

This language may sound pedantic, but the DFTS and DFT DRC tools tend to use even more 
detailed definitions for what constitutes a valid scan chain and scan state. Only a crisp definition 
allows the tools to validate the design thoroughly and, if problems are detected, write error mes-
sages with enough diagnostic information to help a user find and fix the design error that caused 
the problem.

Very few modern chips contain just a single scan chain. In fact, it is fairly common to have 
several selectable scan-chain configurations, typically referred to as test modes. The reason is that 
scan can be used for a number of different purposes. Facilitating manufacturing test for synthe-
sized logic is one purpose. In that case, the scan cells act as serially accessible control and observe 
points for logic test; test application essentially follows a protocol such as the following:

 1. Establish the manufacturing test-scan mode and associated scan state, and serially load 
the scan chains with new test input conditions.

 2. Switch out of the scan state into the functional path capture state (typically done by 
switching scan_enable to the system side of the scan mux).

 3. Apply any other primary input conditions required for the test.
 4. Wait until the circuit stabilizes, and measure/compare the external test responses at 

primary outputs.
 5. Capture the internal test responses into the scan cells by pulsing one or more clocks.
 6. Reestablish the manufacturing test-scan mode’s associated scan state, and serially 

unload the test responses from the scan chains into the tester for comparison.
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Steps 1 and 6 in many cases can be overlapped, meaning that while the responses from one test 
are unloaded through the scan-out pins, new test input data are simultaneously shifted in from 
the scan-in pins. The serial load/unload operation requires as many clock cycles as there are scan 
cells in the longest scan chain. Manufacturing test time and consequently test cost for scan-based 
logic tests are typically dominated by the time used for scan load/unload. Hence, to minimize 
test times and cost, it is preferable to implement as many short, parallel scan chains as possible. 
The limiting factors are the availability of chip I/Os for scan-in/scan-out or the availability of 
test equipment channels suitable for scan. Modern DFT tools can help optimize the number of 
scan chains and balance their length according to the requirements and constraints of chip-level 
manufacturing test. Today’s scan-insertion flows also tend to include a postplacement scan reor-
dering step to reduce the wiring overhead for connecting the scan cells. The currently practiced 
state of the art generally limits reordering to occur within a scan chain. Research projects have 
indicated that further improvements are possible by allowing the exchange of scan cells between 
scan chains. All practical tools tend to give the user some control over partial ordering, keeping 
subchains untouched, and placing certain scan cells at predetermined offsets in the chains.

In addition to building the scan chains proper, modern DFT tools also can insert and validate 
pin-sharing logic that makes it possible to use functional I/Os as scan-in/scan-out or scan con-
trol pins, thus avoiding the need for additional chip I/Os dedicated to the test. In many practical 
cases, a single dedicated pin is sufficient to select between normal mode and test mode. All other 
test control and interface signals are mapped onto the functional I/Os by inserting the appropri-
ate pin-sharing logic.

Besides chip manufacturing test, scan chains often are also used for access to internal circuit 
states for higher-level assembly (e.g., board-level) testing. In this scenario, it generally is not pos-
sible or economically feasible to wire all scan-in/scan-out pins used for chip testing out to the 
board connectors. Board-level wiring and connectors are very limited and relatively expensive. 
Hence, the I/O footprint dedicated to scan must be kept at a minimum and it is customary to 
implement another scan configuration in the chips, wherein all scan cells can be loaded/unloaded 
from a single pair of scan-in/scan-out pins. This can be done by concatenating the short scan 
chains used for chip manufacturing test into a single, long scan chain or by providing some 
addressing mechanism for selectively connecting one shorter scan chain at a time to the scan-in/
scan-out pair. In either case, a scan-switching network and associated control signals are required 
to facilitate the reconfiguration of the scan interface.

In many practical cases, there are more than two scan configurations to support additional 
engineering applications beyond chip and board-level manufacturing test, for example, debug 
or system configuration [13,35]. The scan architectures originally developed for large data-pro-
cessing systems in the 1960s and 1970s, for example, were designed to facilitate comprehensive 
engineering access to all hardware elements for testing, bring-up, maintenance, and diagnostics. 
The value of comprehensive scan architectures is only now being rediscovered for the complex 
system-level chips possible with nanometer technologies.

21.3.4.3 TIMING CONSIDERATIONS AND AT-SPEED TESTING

Timing issues can affect and plague both the scan infrastructure as well as the application of 
scan-based logic test.

The frequently used mux-scan methodology uses edge-triggered flip-flops as storage elements 
in the scan cells. And the edge clock is used for both the scan operation and for capturing test 
responses into the scan cells, making both susceptible to hold-time errors due to clock skew. 
Clock skew exists not only between multiple clock domains but also within each clock domain. 
The latter tend to be more subtle and easier to overlook. To deal with interdomain issues, the 
DFT tools have to be aware of the clock domains and clock-domain boundaries. The general rule 
of thumb for scan-chain construction is that each chain should only contain flip-flops from the 
same clock domain. Also, leading-edge and falling-edge flip-flops should be kept in separate scan 
chains even if driven from the same clock source. These strict rules of division can be relaxed 
somewhat if the amount of clock skew is small enough to be reliably overcome by inserting a 
lockup latch or flip-flop between the scan cells. A lockup latch or flip-flop updates its output on 
the edge opposite to what the next flop captures its input value—avoiding a value change on the 
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same clock edge as the downstream capture. The susceptibility of the scan operation to hold-time 
problems can further be reduced by increasing the delay between scan cells, for example, by add-
ing buffers to the scan connection between adjacent scan cells. Be aware that scan-chain reorder-
ing to reduce wiring based on physical layout can introduce hold-time violations; such reordering 
should also allow for that by inserting delay or lockup latches as appropriate.

In practice, it is not at all unusual for the scan operation to fail for newly designed chips. To 
avoid the likelihood of running into these problems, it is vitally important to perform a very thor-
ough timing verification on the scan mode. In the newer nanometer technologies, signal integ-
rity issues such as static/dynamic IR drop have to be taken into account in addition to process 
and circuit variability. A more radical approach is to replace the edge-triggered scan clocking 
with a level-sensitive multiphase clocking approach as, for example, in level-sensitive scan design 
(LSSD). In this case, the master and slave latches in the scan cells are controlled from two sepa-
rate clock sources that are pulsed alternately. By increasing the nonoverlap period between the 
clock phases, it is possible to overcome any hold-time problems during scan without the need for 
lockup latches or additional intercell delay. With improved clock tree synthesis tools that reduce 
clock skew to all flops in a clock domain, the use of LSSD has practically disappeared.

Clock skew and hold-time issues also affect the reliable data transmission across interdomain 
boundaries. For example, if the clocks of two interconnected domains are pulsed together for 
capture, then it may be impossible to predict whether old or new data are captured. If the data 
change and clock edge get too close together, the receiving flip-flop could even be forced into 
metastability. ATPG tools traditionally try to avoid these problems by using a capture-by-domain 
policy in which only one clock domain is allowed to be captured in a test. This is only possible if 
DFT makes sure that it is indeed possible to issue a capture clock to each clock domain separately 
(e.g., using a separate test clock input for each domain or by degating the clocks of other domains). 
The capture-by-domain policy can adversely affect test time and data volume for designs with 
many clock domains, by limiting fault detection for each test to a single domain. Some ATPG 
tools nowadays offer sophisticated multiclock compaction techniques that overcome the capture-
by-domain limitation (e.g., if clock-domain analysis shows that there is no connection between 
certain domains, then capture clocks can be sent to all of those domains without creating poten-
tial hold-time issues; if two domains are connected, then their capture clocks can be staggered—
issued sequentially with enough pulse separation to assure predictability of the interface states). 
Special treatment of the boundary flip-flops between domains in DFT is an alternative method.

In static, fully complementary CMOS logic there is no direct path from power to ground 
except when switching. If a circuit is allowed to stabilize and settle down from all transitions, 
a very low power should be seen in the stable (quiescent) state. That expectation is the basis of 
IDDq (quiescent power) testing. Certain defects, for example, shorts, can create power-ground 
paths and therefore be detectable by an abnormal amount of quiescent power. For many years, 
low-speed stuck-at testing combined with IDDq testing have been sufficient to achieve reason-
able quality levels for many CMOS designs. The normal quiescent background current unfortu-
nately increases with each new technology generation, which reduces the signal-to-noise ratio 
of IDDq measurements. Furthermore, modern process technologies are increasingly suscepti-
ble to interconnect opens and resistive problems that are less easily detectable with IDDq to 
begin with. Many of these defects cause additional circuit delays and cannot be tested with low-
speed stuck-at tests. Consequently, there is an increasing demand for at-speed delay fault testing 
[39,40,42,52–54].

In scan-based delay testing, the circuit is first initialized by a scan operation. Then a rapid 
sequence of successive input events is applied at tight timings to create transitions at flip-flop 
outputs in the circuit, have them propagate through the logic, and capture the responses into 
receiving flip-flops. The responses finally are unloaded by another scan operation for compari-
son. Signal transitions at flip-flop outputs are obtained by loading the initial value into the flip-
flop, placing the opposite final value at the flip-flop’s data input, and pulsing the clock. In the 
case of mux-scan, the final value for the transition can come from the scan side (release from 
scan) or the system side (release from capture) of the scan mux, depending on the state of the 
scan-enable signal. The functional logic typically is connected to the system side of the scan 
mux. The transitions will, hence, generally arrive at the system side of the receiving flip-flop’s 
scan mux, such that the scan-enable must select the system side to enable capture. The release 
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from scan method, therefore, requires switching the scan-enable from the scan side to the sys-
tem side early enough to meet setup time at the receiving flip-flop, but late enough to avoid 
hold-time issues at the releasing flip-flop. In other words, the scan-enable signal is subject to 
a two-sided timing constraint and accordingly must be treated as a timing-sensitive signal for 
synthesis, placement, and wiring. Moreover, it must be possible to synchronize the scan-enable 
appropriately to the clocks of each clock domain. To overcome latency and synchronization 
issues with high fan-out scan-enables in high-speed logic, the scan-enables sometimes are pipe-
lined. The DFT scan-insertion tools must be able to construct viable pipelined or nonpipelined 
scan-enable trees and generate the appropriate timing constraints and assertions for physical 
synthesis and timing verification. Such scan-enable pipelines often are used only for transition-
ing out of the scan state; when scan_enable is asserted, the pipeline is bypassed so scan state is 
entered directly.

Most ATPG tools do not have access to timing information and, in order to generate predict-
able results, tend to assume that the offset between release and capture clocks is sufficient to 
avoid completely setup time violations at the receiving flip-flops. That means the minimal offset 
between the release and capture clock pulses are dominated by the longest signal propagation 
path between the releasing and receiving flip-flops. If slow maintenance paths, multicycle paths, 
or paths from other slower clock domains get mixed in with the normal paths of a particular tar-
get clock domain, then it may be impossible to test the target domain paths at their native speed. 
To overcome this problem, some design projects disallow multicycle paths and insist that all 
paths (including maintenance paths) that can be active during the test of a target domain, must 
fit into the single-cycle timing window of that target domain. Another approach is to add enough 
timing capabilities to the ATPG software to identify all potential setup and hold-time violations 
at a desired test timing. The ATPG tool can then avoid sending transitions through problem 
paths (e.g., holding the path inputs stable) or set the state of all problem flip-flops to unknown. 
Yet other approaches use DFT techniques to separate multicycle paths out into what looks like 
another clock domain running at a lower frequency.

Most scan-based at-speed test methods perform the scan load/unload operations at a relatively 
low frequency, not the least to reduce power consumption during shift. ATPG patterns tend 
to have close to 50% switching probability at the flip-flop outputs during scan, which in some 
cases can be 10× more than what is expected during normal functional operation. Such abnor-
mally high switching activity can cause thermal problems, excessive IR drop, or exceed the tester 
power-supply capabilities when the scan chains are shifted at full system speed. The reality of pin 
electronic capabilities in affordable test equipment sets another practical limit to the data rate at 
which the scan interface can be operated. One advantage of lower scan speeds for design is that 
it is not necessary to design the scan chains and scan-chain interface logic for full system speed. 
That can help reduce the placement, wiring, and timing constraints for the scan logic.

Slowing down the scan rate helps reduce average power, but does little for dynamic power 
(di/dt). In circuits with a large number of flip-flops, in particular when combined with tightly 
controlled low-skew clocks, simultaneous switching of flip-flop outputs can result in unexpected 
power/noise spikes and dynamic IR drops, leading to possible scan-chain malfunctions. These 
effects may need to be considered when allocating hold-time margins during scan-chain con-
struction and verification.

All current commercial ATPG tools have the ability to generate tests with reduced switching 
activity during the scan shift cycles, specifically to deal with this issue of dynamic power during 
scan shift; however, when scan bits are constrained to reduce switching activity, the number of 
test patterns required to achieve a given fault coverage may increase by 30% or more. The di/dt 
issue is also of concern during at-speed clocking outside of scan shift cycles. Normally, ATPG 
is not concerned with trying to reduce the switching activity during the capture clock pulses 
between scan operations; however, most ATPG tools have the ability to try to reduce switching 
here as well and this is typically achieved by using existing functional clock gating to prevent a 
clock pulse from reaching a significant proportion of the flops of that clock domain [70]. With 
clocks gated off for a significant percentage of the scan flops, this too can cause the number of 
test patterns to increase, by perhaps an additional 30%. For extremely low switching demands of 
7% or less, expect the number of test patterns to increase by a factor of 2 or more compared with 
no such switching activity constraints.



Chapter 21 – Design-for-Test    529

The effectiveness of at-speed tests not only depends on the construction of proper test event 
sequences but may also critically depend on being able to deliver these sequences at higher 
speed with higher accuracy than supported by the test equipment. Many modern chips use 
on-chip clock frequency multiplication (e.g., using PLLs) and phase alignment, and there is an 
increasing interest in taking advantage of this on-chip clocking infrastructure for testing. To 
that effect, clock system designers or DFTS add programmable test waveform generation fea-
tures to the root of the clock tree for each clock domain. Programmable in this context tends 
to mean the provision of a serially loadable control register that determines the details of which 
and how many clock pulses/phases are generated. The actual sequence generation is triggered 
by a (possibly asynchronous) start signal that can be issued from the tester (or some other 
internal controller source) after the scan load operation has completed. The clock generator 
will then produce a deterministic sequence of internal clock edges that are synchronized to the 
PLL output. Some high-performance designs may include additional features (e.g., programma-
ble delay lines) for manipulating the relative edge positions over and above what is possible by 
simply changing the frequency of the PLL input clock. Typically each functional clock domain 
has its own programmable clock sequence generator, although many domains may be driven 
from the output of the same PLL.

The ATPG tools generally cannot deal with the complex clock generation circuitry. Therefore, 
the on-product clock generation (OPCG) logic is combined into an OPCG macro and separated 
from the rest of the chip by cut points. The cut points look like external clock pins to the ATPG 
tool. It is the responsibility of the user to specify a list of available OPCG programming codes 
and the resulting test sequences to the ATPG tool, which in turn is constrained to use only 
the thus specified event sequences. More recently, some commercial ATPG tools recognize the 
programmable nature of the OPCG logic and can specify what values to load into the control 
registers to obtain a certain number of pulses, delayed starting of those pulses and other param-
eters for sequence generation. For verification, the OPCG macro is simulated for all specified 
programming codes, and the simulated sequences appearing at the cut points are compared to 
the input sequences specified to the ATPG tool. The generated ATPG tests and sequences are 
normally simulated using the PLL behavioral models during [Verilog] functional verification 
simulation.

Some circuit elements may require finer-grained timing that requires a different approach. One 
example is clock jitter measurement, another memory access time measurement. Test equipment 
uses analog or digitally controlled, tightly calibrated delay lines (timing verniers), and it is pos-
sible to integrate similar features into the chip. A different method for measuring arbitrary delays 
is to switch the to-be-measured delay path into an inverting recirculating loop and measure the 
oscillation frequency (e.g., counting oscillations against a timing reference). Small delays that 
would result in extremely high frequencies are made easier to test by switching them into and 
out of a longer delay path and comparing the resulting frequencies. Oscillation techniques can 
also be used for delay calibration to counteract performance variations due to process variability.

21.3.4.4 CUSTOM LOGIC

Custom transistor-level logic, often used for the most performance-sensitive parts of a design, 
poses a number of unique challenges to the DFT flow and successful test generation. Cell-based 
designs tend to use more conservative design practices and the libraries for cell-based designs 
generally come with premade and preverified gate-level test generation models. For transistor-
level custom designs, by contrast, the gate-level test generation models must somehow be gener-
ated and verified “after the fact” from the transistor-level schematics. Although the commercial 
ATPG tools may have some limited transistor-level modeling capabilities, their wholesale use 
generally leads to severe tool runtime problems and hence is strongly discouraged. The construc-
tion of suitable gate-level models is complicated by the fact that custom logic often uses dynamic 
logic or other performance/area/power-driven unique design styles, and it is not always easy to 
determine what should be explicitly modeled and what should be implied in the model (e.g., the 
precharge clocks and precharge circuits for dynamic logic). Another issue for defect coverage as 
well as diagnostics is to decide which circuit-level nets to explicitly keep in the logic model vs. 
simplifying the logic model for model size and tool performance.
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The often extreme area, delay, and power sensitivity of custom-designed structures are often 
met with a partial scan approach, even if the synthesized logic modules have full scan. The cus-
tom design team has to make a trade-off between the negative impact on test coverage and tool 
runtime vs. keeping the circuit overhead small. Typical rules of thumb will limit the number 
of nonscannable levels and discourage feedback loops between nonscannable storage elements 
(e.g., feed-forward pipeline stages in data paths are often good candidates for partial scan). Area, 
delay, and power considerations also lead to a more widespread use of pass gates and other 
three-state logic (e.g., three-state buses) in custom-design circuitry. The control inputs of pass-
gate structures, such as the select lines of multiplexers, and enables of three-state bus drivers 
tend to require specific decodes for control (e.g., one hot) to avoid three-state contention (i.e., 
establishing a direct path from power to ground) that could result in circuit damage due to 
burn-out. To avoid potential burn-out, DFT and ATPG must cooperate to assure that safe con-
trol states are maintained during scan and during test. If the control flip-flops are included in 
the scan chains, then DFT hardware may be needed to protect the circuits (e.g., all bus drivers 
are disabled during scan).

Other areas of difficulty are complex memory substructures with limited scan and possibly 
unusual or pipelined decodes that are not easily modeled with the built-in memory primitives 
available in the DFT/ATPG tools.

Finally, often we find that low-power designs have multiple power domains with the ability 
to power off some domains that are not required functionally, typically based on user activity or 
system workload. The power mode selection circuitry is often implemented using logic and power 
transistors that are not part of the typical logic allowed to be controlled by ATPG patterns. As 
such, testing of this logic and state retention logic and some of the inter-power-domain voltage-
level shifting cells can require special processing by ATPG tools [59]. In order to test some of 
this special power control and retention logic, it may be required to apply special power mode 
sequencing that turns on some power domains and turns off others; the tools had better be able 
to know which sections of logic are not powered up—for example, to ensure scan chains are not 
routed through powered-down domains.

21.3.4.5 LOGIC BUILT-IN SELF-TEST

Chip manufacturing test (e.g., from ATPG) typically assumes full access to the chip I/Os plus cer-
tain test equipment features for successful test application. That makes it virtually  impossible to 
port chip manufacturing tests to higher-level assemblies and into the field. Large data- processing 
systems historically stored test data specifically generated for in-system testing on disk and 
applied them to the main processor complex through a serial maintenance interface from a dedi-
cated service processor that was delivered as part of the system. Over the years, it became too 
cumbersome to store and manage vast amounts of test data for all possible system configurations 
and engineering change order levels, and the serial maintenance interface became too slow for 
efficient data transfer. Hence, alternatives were pursued that avoid the large data volume and data 
transfer bottleneck associated with traditional ATPG tests.

The most widely used alternative today is logic BIST using pseudorandom patterns 
[2,3,8,21,24,30,31,34,49]. It is known from coding theory that pseudorandom patterns can be 
generated easily and efficiently in hardware, typically using a so-called pseudorandom pattern 
generator (PRPG) macro utilizing a linear feedback shift register (LFSR). The PRPG is initialized 
to a starting state called PRPG seed and in response to subsequent clock pulses, produces a state 
sequence that meets certain tests of randomness. However, the sequence is not truly random. In 
particular, it is predictable and repeatable if started from the same seed. The resulting pseudo-
random logic states are loaded into scan chains for testing in lieu of ATPG data. Multiple PRPGs 
nowadays are generally built into chips—one in each core or partition. That makes it possible to 
use a large number of relatively short on-chip scan chains because the test data do not need to be 
brought in from the outside through a narrow maintenance interface or a limited number of chip 
I/Os. Simple LFSR-based PRPGs connected to multiple parallel scan chains result in undesirable, 
strong value correlations (structural dependencies) between scan cells in adjacent scan chains. 
The correlations can reduce the achievable test coverage. To overcome this potential problem, 
some PRPG implementations are based on cellular automata (CA) rather than LFSRs. LFSR-based 
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implementations use a phase-shifting network constructed out of XOR to eliminate the struc-
tural dependencies. The phase-shifting network can be extended into a spreading network that 
makes it possible to drive a larger number of scan-chain inputs from a relatively compact LFSR.

More scan chains generally mean shorter scan chains that require fewer clock cycles for load/
unload, thus speeding up test application (each scan test requires at least one scan load/unload), 
assuming that the DFTS tool used for scan insertion succeeds in reducing and balancing the 
length of the scan chains. Modern DFTS tools are capable of building scan architectures with 
multiple separately balanced selectable chain configurations/modes to support different test 
methods on the same chip. It should be noted that the achievable chain length reduction can be 
limited by the length of preconnected scan-chain segments in hard macros. Hence, for logic BIST 
it is important to assure that large hard macros are preconfigured with several shorter chain seg-
ments rather than a single long segment. As a rule of thumb, the maximum chain length for logic 
BIST should not exceed 500–1000 scan cells. That means a large core with 1M scan cells requires 
1K scan chains or more. The overhead for the PRPG hardware is essentially proportional to the 
number of chains (a relatively constant number of gates per scan chain for the LFSR/CA, phase-
shifting/spreading network, and scan-switching network).

The flip side of the coin for pseudorandom logic BIST is that pseudorandom patterns are less 
efficient for fault testing than ATPG-generated, compacted test sets. Hence, 10× as many or more 
pseudorandom patterns are needed for equivalent nominal fault coverage, offsetting the advan-
tage of shorter chains. Moreover, not all faults are easily tested with pseudorandom patterns. 
Practical experience with large-scale data-processing systems has indicated that a stuck-at cover-
age of around up to 95% can be achievable with a reasonable (as dictated by test time) number 
of pseudorandom test patterns. Going beyond 95% requires too much test application time to be 
practical. Coverage of 95% can be sufficient for burn-in, higher-level assembly, system, and field 
testing, but may be unacceptable for chip manufacturing test. Consequently, it is not unusual to 
see ATPG-based patterns used for chip manufacturing tests and pseudorandom logic BIST for 
all subsequent tests.

Higher test coverage, approaching that of ATPG, can be achieved with pseudorandom pat-
terns only by making the logic more testable for such patterns. The 50–50 pseudorandom signal 
probability at the outputs of the scan cells gets modified by the logic gates in the combinational 
logic between the scan cells. Some internal signal probabilities can be skewed so strongly to 0 or 1 
that the effective controllability or observability of downstream logic becomes severely impaired. 
Moreover, certain faults require many more specific signal values for fault excitation or propa-
gation than achievable with a limited set of pseudorandom patterns (it is like rolling dice and 
trying to get 100+ sixes in a row). Wide comparators and large counters are typical architectural 
elements afflicted with that problem. Modern DFTS and analysis tools offer the so-called pseu-
dorandom testability analysis and automatic test point insertion features. The testability analysis 
tools use testability measures or signal local characteristics captured during good machine fault 
simulation to identify nets with low pseudorandom controllability or observability for pseudoran-
dom patterns. The test point insertion tools generate a suggested list of control or observe points 
that should be added to the netlist to improve test coverage [6]. Users generally can control how 
many and what type of test points are acceptable (control points tend to be more “expensive” in 
circuit area and delay impact) for manual or automatic insertion. It is not unusual for test points 
to be “attracted” to timing-critical paths. If the timing-critical nets are known ahead of time, they 
optionally can be excluded from modification. As a rule of thumb, one test point is needed per 1K 
gates to achieve the 99%+ coverage objective often targeted for chip manufacturing test. Each test 
point consumes roughly 10 gates, meaning that 1% additional logic is required for the test points.

It should be noted that some hard-to-test architectural constructs such as comparators and 
counters can be identified at the presynthesis RTL phase of the design, creating a basis for RTL 
analysis and test point insertion tools.

Using pseudorandom patterns to eliminate the need for storing test input data from ATPG 
solves only part of the data volume problem. The expected test responses for ATPG-based tests 
must equally be stored in the test equipment for comparison with the actual test responses. As 
it turns out, LFSR-based hardware macros very similar to a PRPG macro can be used to imple-
ment error detecting code (EDC) generators. The most widely used EDC macro implementation 
for logic BIST is called multiple-input signature register (MISR), which can sample all scan-chain 
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outputs in parallel. As the test responses are unloaded from the scan chains they are simultane-
ously clocked into the MISR where they are accumulated. The final MISR state after a specified 
number of scan tests have been applied is called the signature, and this signature is compared to 
an expected signature that has been precalculated by simulation for the corresponding set of test 
patterns.

The MISR uses only shifting and XOR logic for data accumulation, meaning that each signa-
ture bit is the XOR sum of some subset of the accumulated test response bit values. One property 
of XOR sums is that even a single unknown or unpredictable summand makes the sum itself 
unknown or unpredictable. If the signature of a defect-free product under test is unknown or 
unpredictable, then the signature is useless for testing. Hence, there is a “Golden Rule” for signa-
ture-based testing that no unknown or unpredictable circuit state can be allowed to propagate 
to the MISR. This rule creates additional design requirements over and above what is required 
for scan-based ATPG. The potential impact is further amplified by the fact that pseudorandom 
patterns, unlike ATPG patterns, offer little to no ability for intelligently manipulating the test 
stimulus data. Hence, for logic BIST, the propagation of unknown/unpredictable circuit states 
(also known as x states) must generally be stopped by hardware means. For example, micropro-
cessor designs tend to contain tens of thousands of three-state nets, and modern ATPG tools 
have been adapted to that challenge by constructively avoiding three-state contention and float-
ing nets in the generated test patterns. For logic BIST, either test hardware must be added to pre-
vent contention or floating nets or the outputs of the associated logic must be degated (rendering 
it untestable) so that they cannot affect the signature. Some processor design projects forbid the 
use of three-state logic, enabling them to use logic BIST. Other design teams find that so radical 
an approach is entirely unacceptable.

Three-state nets are not the only source of x states. Other sources include unmodeled or 
incompletely modeled circuit elements, uninitialized storage elements, multiport storage element 
write conflicts, and setup/hold-time timing violations. DFTS and DRC tools for logic BIST must 
analyze the netlist for potential x-state sources and add DFT structures that remove the x-state 
generation potential (e.g., adding exclusive gating logic to prevent multiport conflicts, or by 
assuring the proper initialization of storage elements),or add degating logic that prevents x-state 
propagation to the MISR (e.g., at the outputs of uninitialized or insufficiently modeled circuit 
elements). Likewise, hardware solutions may be required to deal with potential setup/hold-time 
problems (e.g., clock-domain boundaries, multicycle paths, nonfunctional paths). High-coverage 
logic BIST, overall, is considered to be significantly more design intrusive than ATPG methods 
where many of the issues can be dealt within pattern generation rather than through design 
modifications.

21.3.4.6 AT-SPEED TESTING WITH LOGIC BUILT-IN SELF-TEST

At-speed testing with logic BIST essentially follows the same scheme as at-speed testing with 
ATPG patterns. (Historical note: contrary to frequent assertions by logic BIST advocates that 
pseudorandom pattern logic BIST is needed to enable at-speed testing, ATPG-based at-speed test 
has been practiced long before logic BIST became popular and is still being used very success-
fully today.) Most approaches use slow scan (to limit power consumption, among other things) 
 followed by the rapid application of a short burst of at-speed edge events. Just as with ATPG meth-
ods, the scan and at-speed edge events can be controlled directly by test equipment or from an 
OPCG macro. The advantage of using slow scan is that the PRPG/MISR and other scan-switching 
and interface logic need not be designed for high speed. That simplifies timing closure and gives 
the placement and wiring tools more flexibility. Placement/wiring consideration may still favor 
using several smaller, distributed PRPG/MISR macros. Modern DFTS, DRC, fault grading, and 
signature-simulation tools for logic BIST generally allow for distributed macros.

Certain logic BIST approaches, however, may depend on performing all or some of the scan 
cycles at full system speed. With this approach, the PRPG/MISR macros and other scan interface 
logic must be designed to run at full speed. Moreover, scan chains in clock domains with differ-
ent clock frequencies may be shifted at different frequencies. That affects scan-chain balancing, 
because scan chains operating at half frequency in this case should only be half as long as chains 
operating at full frequency. Otherwise they would require twice the time for scan load/unload.
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The fact that pseudorandom logic BIST applies 10× (or more) as many tests than ATPG for 
the same nominal fault coverage can be advantageous for the detection of unmodeled faults and 
of defects that escape detection by the more compact ATPG test set. This was demonstrated 
empirically in early pseudorandom test experiments using industrial production chips. However, 
it is not easy to extrapolate these early results to the much larger chips of today. Today’s chips can 
require 10K or more ATPG patterns. Even ATPG vectors are mostly pseudorandom, meaning 
that applying the ATPG vectors is essentially equivalent to applying 10K+ logic BIST patterns, 
which is much more than what was used in the old hardware experiments.

Only recently has the debate over accidental fault/defect coverage been refreshed. The theo-
retical background for the debate is the different n-detect profiles for ATPG and logic BIST. 
ATPG test sets are optimized to the extent that some faults are only detected by one test 
(1-detect) in the set. More faults are tested by a few tests and only the remainder of the fault 
population gets detected 10× (10-detect) or more. For logic BIST tests, by contrast, almost all 
faults are detected many times. Static bridging-fault detection, for example, requires coinci-
dence of a stuck-at fault test for the victim net with the aggressor net being at the fault value. If 
the stuck-at fault at the victim net is detected only once, then the probability of detecting the 
bridging fault is determined by the probability of the aggressor net being at the faulty value, for 
example, 50% for pseudorandom values. A 2-detect test set would raise the probability to 75% 
and so on. Hence, multidetection of stuck-at faults increases the likelihood of detecting bridg-
ing faults. The trend can be verified by running bridging-fault simulation for stuck-at test sets 
with different n-detect profiles and comparing the results. Hardware experiments confirmed 
the trend for production chips.

It must be noted, however, that modern ATPG tools can and have been adapted to optionally 
generate test sets with improved n-detect profiles. The hardware experiments cited by the BIST 
advocates in fact were performed with ATPG-generated n-detect test sets, not with logic BIST 
tests. It should also be noted that if the probability of the aggressor net being at the faulty value 
is low, then even multiple detects may not do enough. ATPG experiments that try to construc-
tively enhance the signal probability distribution have shown some success in that area. Finally, 
a new generation of tools is emerging that extract realistic bridging faults from the circuit design 
and layout. ATPG tools can and will generate explicit tests for the extracted faults, and it has 
been shown that low n-detect test sets with explicit cleanup tests for bridging faults can produce 
very compact test sets with equally high or higher bridging-fault coverage than high n-detect 
test sets.

Experience with logic BIST on high-performance designs reveals that test points may be 
helpful to improve nominal test coverage, but can have some side effects for characterization 
and performance screening. One reported example shows a particular defect in dynamic logic 
implementing a wide comparator that can only be tested with certain patterns. Modifying the 
counter with test points as required for stuck-at and transition fault coverage creates artificial 
nonfunctional short paths. The logic BIST patterns use artificial paths for coverage and never 
sensitize the actual critical path. Knowing that wide comparators were used in the design, some 
simple weighting logic had been added to the PRPG macro to create the almost-all-1s or almost-
all-0s patterns suited for testing the comparators. The defect was indeed only detected by the 
weighted tests and escaped the normal BIST tests. Overall, the simple weighting scheme measur-
ably increased the achievable test coverage without test points.

If logic BIST is intended to be used for characterization and performance screening, it may also 
be necessary to enable memory access in logic BIST. It is not uncommon that the performance-
limiting paths in high-speed design traverse embedded memories. The general recommendation 
for logic BIST is to fence embedded memories off with boundary scan during BIST. That again cre-
ates artificial paths that may not be truly representative of the actual performance-limiting paths. 
Hardware experience with high-performance processors shows that enabling memory access for 
some portion of the logic BIST tests does indeed capture unique fails. Experiments with (ATPG-
generated) scan tests for processor’s performance binning have similarly shown that testing paths 
through embedded memories is required for better correlation with functional tests.

As a general rule of thumb, if BIST is to be used for characterization, then the BIST logic 
may have to be designed to operate at higher speeds than the functional logic it is trying to 
characterize.
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Automated diagnosis of production test fails has received considerable attention recently and 
is considered a key technology for nanometer semiconductor technologies. In traditional stored 
pattern ATPG testing, each response bit collected from the device under test is immediately 
compared to an expected value, and most test equipment in the case of a test fail (i.e., mismatch 
between actual and expected response values) allows for optionally logging the detailed fail infor-
mation (e.g., tester cycle, tester channel, fail value) into a so-called fail set for the device under 
test. The fail sets can then be postprocessed by automated logic diagnostic software tools to 
determine the most likely root cause locations.

In logic BIST, the test equipment normally does not see the detailed bit-level responses 
because these are intercepted and accumulated into a signature by the on-chip MISR. The 
test equipment only sees and compares highly compressed information contained in the accu-
mulated signatures. Any difference between an actual signature and the expected signature 
indicates that the test response must contain some erroneous bits. It generally is impossible 
to reconstruct bit-level fail sets from the highly compressed information in the signatures. 
The automated diagnostic software tools, however, need the bit-level fail sets. The diagnosis 
of logic BIST fails, hence requiring an entirely different analysis approach or some means for 
extracting a bit-level fail set from the device under test. Despite research efforts aimed at find-
ing alternative methods, practitioners tend to depend on the second approach. To that effect, 
the logic BIST tests are structured such that signatures are compared after each group of n 
tests, where n can be 1, 32, 256, or some other number. The tests further must be structured 
such that each group of n tests is independent. In that case, it can be assumed that a signature 
mismatch can only be caused by bit-level errors in the associated group of n tests. For fail-set 
extraction, the n tests in the failing group are repeated and this time the responses are directly 
scanned out to the test equipment without being intercepted by the MISR (scan dump opera-
tion). Existing production test equipment generally can only log a limited number of failing bits 
and not the raw responses. Hence, the test equipment must have stored expect data available 
for comparison. Conceptually, that could be some “fake” expect vector like all 0s, but then even 
correct response tests would result in failing bits that would quickly exceed the very limited fail 
buffers on the testers, meaning that the actual expect data must be used. However, the number 
of logic BIST tests tends to be so high that it is impractical to store all expect vectors in the 
production test equipment. Bringing the data in from some offline medium would be too slow. 
The issue can be overcome if it is desired to diagnose only a small sample of failing devices, 
for example, prior to sending them to the FA lab. In that case, the failing chips can be sent to a 
nonproduction tester for retesting and fail-set logging. Another approach that may be useful is 
to have the full dump expect values for just the first 1K or so logic BIST test cycles and be able 
to diagnose failures that occur within those first 1K cycles and skip diagnosis on those chips 
that fail after that.

Emerging, very powerful, statistical yield analysis and yield management methods require the 
ability to log large numbers of fail sets during production testing, which means fail-set logging 
must be possible with minimal impact to the production test throughput. That generally is pos-
sible and fairly straightforward for ATPG tests (as long as the test data fit into the test equipment 
in the first place), but may require some logistical ingenuity for logic BIST and other signature-
based test methods.

21.3.4.7 TEST DATA COMPRESSION

Scan-based logic tests consume significant amounts of storage and test time on the ATE used 
for chip manufacturing test. The data volume in first order is roughly proportional to the 
number of logic gates on the chip and the same holds for the number of scan cells. Practical 
considerations and test equipment specifications oftentimes limit the number of pins avail-
able for scan-in/scan-out and the maximum scan frequency. Consequently, the scan chains for 
more complex chips tend to be longer and it takes commensurately longer to load/unload the 
scan chains. There is a strong desire to keep existing test equipment and minimize expensive 
upgrades or replacements. Existing equipment on many manufacturing test floors tends to 
have insufficient vector memory for the newer chip generations. Tester memory reload is very 
time-consuming and should be avoided if possible. The purpose of test data compression is to 
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reduce the memory footprint of the scan-based logic tests such that they comfortably fit into 
the vector memory of the [existing] test equipment.

Test equipment tends to have at least two types of memory for the data contained in the test 
program. One type is the vector memory that essentially holds the logic levels for the test inputs 
and for the expected responses. The memory allocation for each input bit could include additional 
space for waveform formats (the actual edge timings are kept in a separate time-set memory 
space) over and above the logic level. On the output side, there typically are at least two bits of 
storage for each expected response bit. One bit is a mask value that determines if the response 
value should be compared or ignored (e.g., unknown/unpredictable responses are masked) and 
the other bit defines the logic level to compare with. The other memory type contains nonvector 
program information like program op-codes for the real-time processing engine in the test equip-
ment’s pin electronics.

Some memory optimization for scan-in data is possible by taking advantage of the fact that the 
input data for all cycles of the scan load/unload operation use the same format. The format can be 
defined once upfront and only a single bit is necessary to define the logic level for each scan cycle. 
A test with a single scan load/unload operation may thus consume three bits of vector memory in 
the test equipment, and possibly only 2 bits of no response masking is needed.

Scan-based logic test programs tend to be simple in structure, with one common loop for the 
scan/load unload operation and short bursts of other test events in between. Consequently, scan-
based test programs tend to consume only very little op-code memory and the memory limita-
tion for large complex chips is only in the vector memory.

It is worth noticing that most production test equipment offers programming features such as 
branching, looping, and logic operations, for functional testing. The scan-based ATPG programs, 
however, do not typically take advantage of these features for two reasons. First, some of the 
available features are equipment specific. Second, much of the data volume is for the expected 
responses. While the ATPG tools may have control over constructing the test input data, it is 
the product under test, not the ATPG software that shapes the responses. Hence, taking full 
advantage of programming features for really significant data reduction would first require some 
method for removing the dependency on storing the full amount of expected responses.

21.3.4.7.1 Input Data Compression
Input data compression, in general, works by replacing the bit-for-bit storage of each logic level 
for each scan cell with some means for algorithmically constructing multiple-input values on the 
fly from some compact source data. The algorithms can be implemented in software or hardware 
on the tester or in software or hardware inside the chips under test. To understand the nature of 
the algorithms, it is necessary to review some properties of the tests generated by ATPG tools.

ATPG proceeds by selecting one yet untested fault and generating a test for that one fault. 
To that effect, the ATPG algorithm will determine sufficient input conditions to excite and 
propagate the selected fault. That generally requires that specific logic levels must be asserted 
at some scan cells and primary inputs. The remaining scan cells remain unspecified at this 
step in the algorithm. The thus constructed, partially specified, vector is called a test cube. It 
has become customary to refer to the specified bits in the test cube as “care bits” and to the 
unspecified bits as “don’t care bits.” All ATPG tools used in practice perform vector compac-
tion, which means that they try to combine the test cubes for as many faults as possible into a 
single test vector. The methods for performing vector compaction vary but the result generally 
is the same. Even after compaction, for almost all tests, there are many more don’t care bits 
than care bits. In other words, scan-based tests generated by ATPG tools are characterized 
by a low care bit density (percentage of specified bits in the compacted multifault test cube). 
After compaction, the remaining unspecified bits will be filled by some arbitrary fill algorithm. 
Pseudorandom pattern generation is the most common type of algorithm used for fill. That is 
noteworthy because it means that the majority of bit values in the tests are generated by the 
ATPG software algorithmically from a very compact seed value. However, neither the seed nor 
the algorithm is generally included in the final test data. And, without that knowledge, it tends 
to be impossible to recompact the data after the fact, with any commonly known compression 
algorithm (e.g., zip, lzw). The most commonly practiced test data compression methods in use 
today focus on using simple software/hardware schemes to regenerate, algorithmically, fill data 
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in the test equipment or in the chip under test. Ideally, very little memory is needed to store the 
seed value for the fill data and only the care bits must be stored explicitly.

The “cheapest” method for input fill data compression is to utilize common software features 
in existing test equipment without modifications of the chip under test. Run length encoding 
(RLE) is one software method used successfully in practice. In this approach, the pseudorandom 
fill algorithm in ATPG is replaced with a repeat option that simply repeats the last value until 
a specified bit with the opposite value is encountered. The test program generation software is 
modified to search for repeating input patterns in the test data from ATPG. If a repeating pattern 
of sufficient length is found, it will be translated into a single pattern in vector memory, and a 
repeat op-code in op-code memory, rather than storing everything explicitly in vector memory. 
Practical experience with RLE shows that care bit density is so low that repeats are possible and 
the combined op-code plus vector memory can be 10× less than storing everything in vector 
memory. As a side effect, tests with repeat fill create less switching activity during scan and, 
hence, are less power hungry than their pseudorandom brethren. One caveat for use of repeat 
 op-codes is that you must be able to repeat both the input values and any expected response val-
ues; for this reason, repeat op-codes work best with compression that uses a MISR since there are 
no expects on outputs during scan loading.

RLE can be effective for reducing the memory footprint of scan-based logic tests in test equip-
ment. However, the fully expanded test vectors comprised of care and don’t care bits are created 
in the test equipment and these are the expanded vectors that are sent to the chip(s) under test. 
The chips have the same number of scan chains and the same scan-chain length as for normal 
scan testing without RLE. Test vector sets with repeat fill are slightly less compact than sets with 
pseudorandom fill. Hence, test time suffers slightly with RLE, meaning that RLE is not the right 
choice if test time reduction is as important as data volume reduction.

Simultaneous data volume and test time reduction is possible with on-chip decompression 
techniques [1,7,9,10,18,48]. In that scenario, a hardware macro for test input data decompression 
is inserted between the scan-in pins of the chip and the inputs of a larger number of shorter scan 
chains (i.e., there are many times more scan chains than scan-in pins). The decompression macro 
can be combinational or sequential in nature, but in most practical implementations it tends to 
be linear in operation. Linear in this context means that the value loaded into each scan cell is a 
predictable linear combination (i.e., XOR sum and optional inversion) of some of the compressed 
input values supplied to the scan-in pins. In the extreme case, each linear combination contains 
only a single term, which can, for example, be achieved by replication or shifting.

Broadcast scan, where each scan-in pin simply fans-out to several scan chains without further 
logic transformation, is a particularly simple decompression macro using replication of input val-
ues. In broadcast scan, all scan chains connected to the same scan-in pin receive the same value. 
That creates strong correlation (replication) between the values loaded into the scan cells of those 
chains. Most ATPG software implementations have the ability to deal directly with correlated 
scan cell values and will automatically imply the appropriate values in the correlated scan cells. 
The only new software needed is for DFTS to create automatically the scan fan-out and DFT DRC 
for analyzing the scan fan-out network and setting up the appropriate scan cell correlation tables 
for ATPG. The hard value correlations created by broadcast scan can make some faults hard to 
test and make test compaction more difficult because the correlated values create care bits even 
if the values are not required for testing the target fault. It must therefore be expected that ATPG 
with broadcast scan has longer runtimes, creates slightly less compact tests, and achieves slightly 
lower test coverage than ATPG with normal scan. With a scan fan-out ratio of 1:32 (i.e., each 
scan-in fans out to 32 scan chains), it is possible to achieve an effective data volume and test time 
reduction of 20× or so when using 4 or fewer scan-in pins; data volume reduction ratios closer 
to the fan-out ratio are possible when 8 or more scan-in pins are available as that tends to avoid 
correlation in chains near each other. It is assumed that the scan chains can be reasonably well 
balanced and that there are no hard macros with preconnected scan segments that are too long.

The more sophisticated decompression macros contain XOR gates and the values loaded into 
the scan cells are a linear combination of input values with more than one term. Industrial ATPG 
does understand hard correlations between scan cells but not Boolean relationships like linear 
combinations with more than one term. Hence, the ATPG flow has to be enhanced to deal with 
the more sophisticated decompression techniques. Each care bit in a test cube creates a linear 
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equation with the care bit value on the one side and an XOR sum of some input values on the 
other side. These specific XOR sums for each scan cell can be determined upfront by symbolic 
simulation of the scan load operation. Since a test cube typically has more than one care bit, a 
system of linear equations is formed, and a linear equation solver is needed to find a solution for 
the system of equations. In some cases, the system of equations has no solution; for example, if 
the total number of care bits exceeds the number of input values supplied from the tester, which 
can happen when too many test cubes are compacted into a single test, it will result in an overly 
specified system of linear equations that is unlikely to have a solution. Another approach for a 
decompression macro uses multiplexors to select a different fan-out to each chain. By allowing, 
for example, three of the scan-in pins to drive the select input of a set of muxes in the scan-in 
data path, eight different scan fan-out decompressors can be selected on the fly from the set of 
remaining scan-in pins. In practice, this approach also can deal with most care bit needs in a 
single scan cycle by selecting a mux configuration that allows all required care bits to be cor-
rectly set. In summary, similar to broadcast scan, ATPG for the more sophisticated schemes also 
adds CPU time, possibly reduces test coverage, and increases the number of tests in the test set. 
The sophisticated techniques require more hardware per scan chain (e.g., one flip-flop plus some 
other gates) than the simple fan-out in broadcast scan. However, the more sophisticated methods 
tend to offer more flexibility and should make more optimal compression results possible.

It should also be pointed out that a sequential decompressor has the ability to use scan-in 
values from multiple shift cycles to solve for any specific care bit; this allows use of a smaller 
number of scan-in pins and still generally be able to solve the equations that will prove more dif-
ficult for the combinational logic decompressors. Note that with just a single scan-in pin, all com-
binational logic decompressors are the same and appear to be fan-out of that single scan-in. To 
support a small number of scan-in pins, decompressors can be extended by use of a deserializer 
that can convert a single input stream of values into multiple values to be loaded in parallel—at 
the expense of more shift cycles during the serial loading; the time for these additional serial 
load cycles can be mitigated by using a faster clock for the deserializer. Use of a sequential linear 
decompressor has some of the benefits of a deserializer, but possibly cannot achieve the much 
faster shift rates of a simple shift register; however, it is certainly possible to combine a short 
deserializer with a sequential decompressor to obtain the high shift-in frequency along with the 
benefits of the sequential decompressor.

Although the so-called weighted random pattern (WRP) test data compression approach is 
proprietary and not generally available, it is worth a brief description [38]. The classical WRP 
does not exploit the low care bit density that makes the other compression methods possible, but 
a totally different property of scan-based logic tests generated by ATPG. The property is some-
times called test cube clustering, meaning that the specified bit values in the test cubes for groups 
of multiple faults are mostly identical and only very few care bit values are different (i.e., the test 
cubes in a cluster have a small Hamming distance from each other). That makes it possible to find 
more compact data representations for describing all tests in a cluster (e.g., a common base vec-
tor and a compact difference vector for each cluster member). Many years of practical experience 
with WRP confirms that input data volume reductions in excess of 10× are possible by appropri-
ately encoding the cluster information.

It has been suggested that two-level compression should be possible by taking advantage of 
both the cluster effect and the low care bit density of scan tests. Several combined schemes have 
been proposed, but they have not shown up in any DFT tool on the market.

21.3.4.7.2 Response Data Compression/Compaction
Since the amount of memory needed for expected responses can be more than for test input 
data, any efficient data compression architecture must include test response data compression 
(sometimes also called compaction). WRP, the oldest data compression method with heavy-
duty practical production use in chip manufacturing test, for example, borrows the signature 
approach from logic BIST for response compaction. Both the WRP decompression logic and the 
signature generation logic were provided in proprietary test equipment. The chips themselves 
were designed for normal scan and the interface between the chips and the test equipment had 
to accommodate the expanded test input and test response data. The interface for a given piece 
of test equipment tends to have a relatively fixed width and bandwidth, meaning that the test 
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time will grow with the gate count of the chip under test. The only way to reduce test time in 
this scenario is to reduce the amount of data that have to go through the interface bottleneck. 
That can be achieved by inserting a response compression/compaction macro between the scan 
chains and the scan-out pins of the chip so that only compressed/compacted response data have 
to cross the interface.

How that can be done with EDCs using MISR macros was already known from and proven in 
practice by logic BIST, and the only “new” development required was to make the on-chip MISR 
approach work with ATPG tests with and without on-chip test input data decompression. From 
a DFT tool perspective, that means adding DFTS and DFT DRC features for adding and check-
ing the on-chip test response compression macro and adding a fast signature-simulation feature 
to the ATPG tool. The introduction of signatures instead of response data also necessitated the 
introduction of new data types in the test data from ATPG and corresponding new capabilities in 
the test program generation software, for example, to quickly reorder tests on the test equipment 
without having to resimulate to recompute the signatures.

One unique feature of the MISR-based response compression method is that it is not neces-
sary to monitor the scan-out pins during the scan load/unload operation (the MISR accumulates 
the responses on-chip and the signature can be compared after one or more scan load/unload 
operations are completed). The test equipment channels normally used to monitor the scan-
outs can be reallocated for scan-in, meaning that the number of scan-ins and scan chains can 
be doubled, which reduces test time by a factor of 2 if the scan chains can be rebalanced to be 
half as long as before. Furthermore, no expected values are needed in the test equipment vector 
memory for scan, thus reducing the data volume by a factor of 2 or 3 (the latter comes into play if 
the test equipment uses a two-bit representation for the expected data and the input data can be 
reformatted to a one-bit representation).

Mathematically speaking, the data manipulations in a MISR are very similar to those in a 
linear input data decompression macro. Each bit of the resulting signature is a linear combina-
tion (XOR sum) of a subset of test response bit values that were accumulated into the signature. 
Instead of using a sequential state machine like an MISR to generate the linear combinations, it 
is also possible to use a combinational XOR network to map the responses from a large number 
of scan-chain outputs to a smaller number of scan-out pins. Without memory, the combinational 
network cannot accumulate responses on-chip. Hence, the scan-out pins must be monitored and 
compared to expected responses for each scan cycle. The data reduction factor is given by the 
number of internal scan-chain outputs per scan-out pin.

Selective compare uses multiplexing to connect one out of several scan-chain outputs to a sin-
gle scan-out pin. The selection can be controlled from the test equipment directly (i.e., the select 
lines are connected to chip input pins) or through some intermediate decoding scheme. Selective 
compare is unique in that the response value appearing at the currently selected scan-chain out-
put is directly sent to the test equipment without being combined with other response values, 
meaning that any mismatches between actual and expected responses can be directly logged 
for analysis. The flip side of the coin is that responses in the currently deselected scan chains are 
ignored, which reduces the overall observability of the logic feeding into the deselected scan cells 
and could impair the detection of unforeseen defects. It also should be noted that in addition to 
monitoring the scan-out pins, some input bandwidth is consumed for controlling the selection.

Mapping a larger number of scan-chain outputs onto a smaller number of scan-out pins 
through a combinational network is sometimes referred to as space compaction. A MISR or simi-
lar sequential state machine that can accumulate responses over many clock cycles performs 
time compaction. Of course, it is possible to combine space and time compaction into a single 
architecture.

21.3.4.7.3 X-State Handling
Signatures are known for not being able to handle unknown/unpredictable responses (x states). 
In signature-based test methods, for example, logic BIST, it is therefore customary to insist that 
x-state sources should be avoided or disabled, or if that is not possible, then the associated x states 
must under no circumstances propagate into the signature generation macro.

x-state avoidance can be achieved by DFT circuit modifications (e.g., using logic gates instead 
of pass-gate structures) or by adjusting the test data such that the responses become predictable 
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(e.g., asserting enable signals such that no three-state conflicts are created and no unterminated 
nets are left floating). The latter is in many cases possible with ATPG patterns; however, that typi-
cally increases ATPG runtime and can adversely affect test coverage. Design modifications may 
be considered too intrusive, especially for high-performance designs, which have hampered the 
widespread acceptance of logic BIST.

Disabling x-state propagation can be achieved by local circuit modifications near the x-state 
sources or by implementing a general-purpose response-masking scheme. Response masking 
typically consists of a small amount of logic that is added to the inputs of the signature genera-
tion macro (e.g., MISR) [66]. This logic makes it possible to selectively degate (i.e., force a known 
value) onto the MISR input(s) that could carry x states. A relatively simple implementation, for 
example, consists of a serially loadable mask vector register with one mask bit for each MISR 
input. The value loaded into the mask bit determines whether the response data from the asso-
ciated scan-chain output are passed through to the MISR or are degated. The mask vector is 
serially preloaded prior to scan load/unload and could potentially be changed by reloading dur-
ing scan load/unload. A single control signal directly controlled from the test equipment can 
optionally activate or deactivate the effect of the masking on a scan cycle by scan cycle basis. 
More sophisticated implementations could offer more than one dynamically selectable mask bit 
per scan chain or decoding schemes to dynamically update the mask vector. The dynamic con-
trol signals as well as the need to preload or modify mask vectors do consume input data band-
width from the tester and add to the input data volume. This impact generally is very minimal if 
a single mask vector can be preloaded and used for one or more than one full-scan load/unload 
without modification. The flip side of the coin in this scenario is some loss of observability due 
to the fact that a number of predictable responses that could carry defect information may be 
masked in addition to the x states.

If a combinational space compaction network is used and the test equipment monitors the 
outputs, then it becomes possible to let x states pass through and mask them in the test equip-
ment. Flexibility could, for example, be utilized to reduce the amount of control data needed for 
a selective compare approach (e.g., if a must-see response is followed by an x state in a scan chain, 
then it is possible to leave that chain selected and to mask the x state in the tester rather than 
expending input bandwidth to change the selection).

If an XOR network is used for space compaction, then an x state in a response bit will render 
all XOR sums containing that particular bit value equally unknown/unpredictable, masking any 
potential fault detection in the other associated response bits. The “art” of constructing x-tolerant 
XOR networks for space compaction is to minimize the danger of masking “must-see” response 
bit values. It has been shown that suitable and practical networks can indeed be constructed if the 
number of potential x states appearing at the scan-chain outputs in any scan cycle is limited [67].

A similar solution adds some memory to the XOR-network approach. Unlike in MISRs, there 
is no feedback loop in the memory. The feedback in the MISR amplifies and “perpetuates” x states 
(each x state, once captured, is continually fed back into the MISR and will eventually contami-
nate all signature bits). The x-tolerant structures with memory, by contrast, are designed such 
that x states are flushed out of the memory fairly quickly (e.g., using a shift register arrangement 
without feedback) [68].

Another solution is to use input bandwidth to select a small subset of the scan chains for 
observation during any shift cycle where an x may cause loss of observation for a fault effect [69]. 
Such schemes may greatly reduce the amount of scan output data that are observed on cycles 
where not all scan chains are being observed, possibly impacting the coverage of unmodeled 
defects—especially if the input bandwidth for output selection is shared with care bit loading for 
the next test such that output observation tends to be random on cycles not observing targeted 
faults.

It should be noted that many of the x-tolerant schemes are intended for designs with a rela-
tively limited number of x states. However, certain test methodologies can introduce a large and 
variable number of x states. One example is delay test with aggressive strobe timings that target 
short paths but cause setup time violations on longer paths.

One way to improve the efficiency of the data masking approach is to identify which scan bits 
have the potential for capturing x values and place them into a small number of chains. Mask 
vector register bits can then be allocated to ensure these chains can be easily masked; other 
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chains that are not expected to see an x very often can share mask vector bits so the size of the 
mask vector is greatly reduced (e.g., by 10×). Combining the ability to mask chain outputs with 
an x-tolerant XOR network can minimize the impact of x values to the compression results.

21.3.4.7.4 Logic Diagnostics
Automated logic diagnostics software generally is set up to work from a bit-level fail set col-
lected during test [16,26]. The fail set identifies which tests failed and were data logged and, 
within each data-logged failing test, which scan cells or output pins encountered a mismatch 
between the expected value and the actual response value. Assuming binary values, the failing 
test can be expressed as the bitwise XOR sum of the correct response vector and an error vec-
tor. The diagnosis software can use a precalculated fault dictionary or posttest simulation. In 
both cases, fault simulation is used to associate individual faults from a list of model faults with 
error-simulated vectors. Model faults like stuck-at or transition faults are generally attached to 
gate-level pins in the netlist of the design under test. Hence, the fault model carries gate-level 
locality information with it (the pin the fault is attached to). The diagnosis algorithms try to find 
a match between the error vectors from the data-logged fail sets and simulated error vectors that 
are in the dictionary or are created on the fly by fault simulation. If a match is found, then the 
associated fault will be added to the so-called “call-out” list of faults that partially or completely 
match the observed fail behavior.

Response compression/compaction reduces the bitwise response information to a much 
smaller amount of data. In general, the reduction is lossy in nature, meaning that it may be dif-
ficult or impossible to unambiguously reconstruct the bit-level error vectors for diagnosis. That 
leaves essentially two options for diagnosing fails with compressed/compacted responses. The 
first option is to first detect the presence of fails in a test, then reapply the same test and extract 
the bit-level responses without compression/compaction. This approach has already been dis-
cussed in the section on logic BIST. Quick identification of the failing tests in signature-based 
methods can be facilitated by adding a reset capability to the MISR macro and comparing signa-
tures at least once for each test. The reset is applied in between tests and returns the MISR to a 
fixed starting state even if the previous test failed and produced an incorrect signature. Without 
the reset, the errors would remain in the MISR, causing incorrect signatures in subsequent tests 
even if there are no further errant responses captured. With the reset and signature compared at 
least once per test, it is easier to determine the number of failing tests and schedule all or some 
of them for retest and data logging.

As already explained in the section on logic BIST, bit-level data logging from retest may make 
it necessary to have the expected responses in the test equipment’s vector memory. To what 
extent that is feasible during production test is a matter of careful data management and sam-
pling logistics. Hence, there is considerable interest in enabling meaningful direct diagnostics 
that use the compacted responses without the need for retest and bit-level data logging.

Most response compression/compaction approaches used in practice are linear in nature, 
meaning that the difference vector between a nonfailing compacted response and the failing 
compacted response is only a function of the bit-level error vector. In other words, the difference 
vector contains reduced information about the error vector. The key question for direct diag-
nostics is to what extent it is possible to associate this reduced information with a small enough 
number of matching faults to produce a meaningful call-out list. The answer depends on what 
type of and how much fault-distinguishing information is preserved in the mapping from the 
uncompacted error vector to the compacted difference vector and how that information can be 
accessed in the compacted data. Also important is what assumptions can be realistically made 
about the error distributions and what type of encoding is used for data reduction. For example, 
if it is assumed that for some grouping of scan chains, at most one error is most likely to occur 
per scan cycle in a group, then using an error-correcting code (ECC) for compaction would 
permit complete reconstruction of the bit-level error vector. Another issue is what matching cri-
teria are used for deciding whether to include a fault in the call-out. A complete match between 
simulated and actual error vector generally also entails a complete match between simulated 
and observed compacted difference vectors. That is, the mapping preserves the matching cri-
terion (albeit the fact that the information reduction leads to higher ambiguity). On the other 
hand, partial matching success based on proximity in terms of Hamming distance may not be 
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preserved. For example, MISR-based signatures essentially are hash codes that do not preserve 
proximity. Nor should we forget the performance considerations. The bit-level error informa-
tion is used in posttest simulation methods not only to determine matching but also to greatly 
reduce the search space by only including faults from the back-trace cones feeding into the 
 failing scan cells or output pins.

Selective compare at first blush appears to be a good choice for diagnostics, because it allows 
for easy mapping of differences in the compacted responses back to bit-level errors. However, 
only a small subset of responses is visible in the compacted data and it is very conceivable that the 
ignored data contain important fault-distinguishing information.

To make a long story short, direct diagnostics from compacted responses are an area for 
potentially fruitful research and development. Some increasingly encouraging successes of direct 
diagnosis for certain linear compression/compaction schemes have been reported recently.

21.3.4.7.5 Scan-Chain Diagnostics
Especially for complex chips in new technologies it must be expected that defects or design issues 
affect the correct functioning of the scan load/unload operation. For many design projects, scan 
is not only important for test but also for debug. Not having fully working scan chains can be a 
serious problem.

Normal logic diagnostics assume fully working scan chains and are not immediately useful for 
localizing scan-chain problems. Having a scan-chain problem means that scan cells downstream 
from the problem location cannot be controlled and scan cells upstream from the problem loca-
tion cannot be observed by scan. The presence of such problems can mostly be detected by run-
ning scan-chain integrity tests, but it generally is difficult or impossible to derive the problem 
location from the results. For example, a hold-time problem that results in race through makes 
the scan chain look too short and it may be possible to deduce that from the integrity test results. 
However, knowing that one or more scan cells were skipped does not necessarily indicate which 
cells were skipped.

Given that the scan load/unload cannot be reliably used for control and observation, scan-
chain diagnostics tend to rely on alternative means of controlling/observing the scan cells in the 
broken scan chains. If mux-scan is used, for example, most scan cells have a second data input 
(namely the system data input) other than the scan-data input, and it may be possible to control 
the scan cell from that input (e.g., utilizing scan cells from working scan chains). Forcing known 
values into scan cells through nonscan inputs for the purpose of scan-chain diagnostics is some-
times referred to as lateral insertion [8]. And most scan cell outputs not only feed to the scan-data 
input of the next cell in the chain but also feed functional logic that in turn may be observable. 
It should also be noted that the scan cells downstream from the problem location are observable 
by scan.

DFT can help with diagnostics using lateral insertion techniques. A drastic approach is to 
insist that all scan cells have a directly controllable set and clear to force a known state into the 
cells. Other scan architectures use only the clear in combination with inversion between all 
scan cells to help localize scan-chain problems. Having many short scan chains can also help 
as long as the problem is localized and affects only a few (ideally one) chain. In that scenario 
the vast majority of scan chains are still working and can be used for lateral insertion and 
observation. In this context, it is very useful to design the scan architecture such that the short 
scan chains can be individually scanned out to quickly determine which chains are working 
and which are not.

Most ATPG tools can generate a scan-chain integrity test to verify the scan logic is all work-
ing. This is true for designs using test compression as well. The chain integrity test has an alter-
nating sequence of zeros and ones that change at some frequency; for example, 000011110000 
might be used if a toggling rate of ¼ (25%) is acceptable.

When using test compression, we are dealing with many scan chains that are fairly short. If 
one of these short chains is failing, it is already more localized than when a chain fails without 
test compression. In addition, there is a better chance that scan bits that feed to the failing chain 
or are fed from the failing chain are in a different chain (and that is working). Utilizing the smaller 
chains of a test compression mode helps isolate where the possible defect is located faster than 
using a full-scan (noncompression) mode.
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21.4 EMBEDDED MEMORY DESIGN-FOR-TEST TECHNIQUES

The typical DFTS tools convert only flip-flops or latches into scan cells. The storage cells in 
embedded memories generally are not automatically converted. Instead, special memory-specific 
DFT is used to test the memories themselves as well as the logic surrounding the memories.

21.4.1 TYPES OF EMBEDDED MEMORIES

Embedded memories come in many different flavors, varying in functionality, usage, and in the 
way they are implemented physically. From a test perspective, it is useful to grossly distinguish 
between register files and dense custom memories.

Register files are often implemented using design rules and cells similar to logic cells. The 
sensitivity to defects and failure modes is similar to that of logic, making them suitable for testing 
with typical logic tests. They tend to be relatively shallow (small address space) but can be wide 
(many bits per word), and have multiple ports (to enable read or write from/to several addresses 
simultaneously). Complex chips and cores can contain tens or even many hundreds of embedded 
register files.

Dense custom memories, by contrast, tend to be hand optimized and may use special design 
rules to improve the density of the storage cell array. Some memory types, for example, eDRAM, 
use additional processing steps. Because of these special properties, dense custom memories are 
considered to be subject to special and unique failure modes that require special testing (e.g., 
retention time testing, and pattern sensitivities). On the other hand, the regular repetitive struc-
ture of the memory cell arrays, unlike random logic, lends itself to algorithmic testing. Overall, 
memory testing for stand-alone as well as embedded memories has evolved in a different direc-
tion than logic testing.

In addition to normally addressed random-access memories (RAMs) including register files, 
SRAMs, and dynamic RAMs (DRAMs), there are ROMs, CAMs, and other special memories to 
be considered.

21.4.2 EMBEDDED MEMORIES AND LOGIC TEST

Logic testing with scan design benefits from the internal controllability and observability that 
comes from converting internal storage elements into scan cells. With embedded memories, the 
question arises as to whether and to what extent the storage cells inside the memories should 
likewise be converted into scan cells. The answer depends on the type of memory and how the 
scan function is implemented. Turning a memory element into a scan cell typically entails adding 
a data port for scan data, creating master–slave latch pairs or flip-flops, and connecting the scan 
cells into scan chains. The master–slave latch pair and scan-chain configuration can be fixed or 
dynamic in nature.

In the fixed configuration, each memory storage cell is (part of) one scan cell with a fixed, dedi-
cated scan interconnection between the scan cells. This approach requires modification of the stor-
age cell array in the register file, meaning that it can be done only by the designer of the register file. 
The overhead, among other things, depends on what type of cell is used for normal operation of the 
register file. If the cells are already flip-flops, then the implementation is relatively straightforward. 
If the cells are latches, then data port and a single-port scan-only latch can be added to each cell to 
create a master–slave latch pair for shifting. An alternative is to only add a data port to each latch 
and combine cell pairs into the master–slave configuration for shifting. The latter implementation 
tends to consume less area and power overhead, but only half of the words can be controlled or 
observed simultaneously (pulsing the master or slave clock overwrites the data in the correspond-
ing latch types). Hence, this type of scan implementation is not entirely useful for debug where a 
nondestructive read is preferred, and such a function may have to be added externally if desired.

In the dynamic approach, a shared set of master or slave latches is temporarily associated with 
the latches making up one word in the register file cell array, to establish a master–slave con-
figuration for shifting. Thus, a serial shift register through one word of the memory at a time can 
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be formed using the normal read/write to first read the word and then write it back shifted 1-bit 
position. By changing the address, all register file bits can be serially controlled and observed. 
Because no modification of the register cell array is needed, and normal read/write operations 
are used, the dynamic scan approach could be implemented by the memory user. The shared 
latch approach and reuse of the normal read/write access for scan keep the overhead limited and 
the word-level access mechanism is very suitable for debug (e.g., reading/writing one particular 
word). The disadvantage of the dynamic approach is that the address-driven scan operation is not 
supported by the currently available DFT and ATPG tools.

Regardless of the implementation details, scannable register files are modeled at the gate level 
and tested as part of the chip logic. However, they increase the number of scan cells as well as 
the size of the ATPG netlist (the address decoding and read/write logic are modeled explicitly 
at the gate level), and thereby can possibly increase test time. Moreover, ATPG may have to be 
enhanced to recognize the register files and create intelligently structured tests for better com-
paction. Otherwise, longer than normal test sets can result.

Modern ATPG tools tend to have some sequential test generation capabilities and can han-
dle nonscannable embedded memories to some extent. It should be noted in this context that 
the tools use highly abstract built-in memory models. Neither the memory cell array nor the 
decoding and access logic are explicitly modeled, meaning that no faults can be assigned to 
them for ATPG. Hence, some other means must be provided for testing the memory proper. 
Sequential test generation can take substantially longer and result in lower test coverage. It is 
recommended to make sure that the memory inputs can be controlled from and the memory 
outputs can be observed at scan cells or chip pins through combinational logic only. For logic 
BIST and other test methods that use signatures without masking, it must also be considered 
that nonscannable embedded memories are potential x-state sources until they are initialized. 
If memory access is desired as part of such a test (e.g., it is not unusual for performance-limiting 
paths to include embedded memories such that memory access may be required for accurate 
performance screening/characterization), then it may be necessary to provide some mechanism 
for initializing the memories. Multiple write ports can also be a source of x states if the result 
cannot be predicted when trying to write different data to the same word. To avoid multiport 
write conflicts, it may be necessary to add some form of port priority, for example, by adding 
logic that detects the address coincidence and degates the write clock(s) for the port(s) without 
priority or by delaying the write clock for the port with enough priority to assure that its data 
will be written last.

For best predictability in terms of ATPG runtimes and achievable logic test coverage, it may 
be desirable to remove entirely the burden of having to consider the memories for ATPG. That 
can be accomplished, for example, by providing a memory bypass (e.g., combinational connection 
between data inputs and data outputs) in conjunction with observe points for the address and 
control inputs. Rather than a combinational bypass, boundary scan can be used. With bypass or 
boundary scan, it may not be necessary to model the memory behavior for ATPG and a simple 
black-box model can be used instead. However, the bypass or boundary scan can introduce arti-
ficial timing paths or boundaries that potentially mask performance-limiting paths.

More recently, it has become desirable to test through embedded memories to catch delay 
defects that affect the functional paths through these memories—often part of the critical paths 
of any design. ATPG is tasked with creating transitions in the surrounding logic and writing 
them into the RAMs and reading out of RAMs/ROMs to create transitions on the outputs. 
These paths include the address inputs to the various ports on the memory as well as the data 
path, controls, and clocks. Although it is still advisable to provide an alternate means to observe 
the logic that feeds a memory, that nonfunctional observation path does not match the charac-
teristics and timing of the memory. By writing through RAMs using OPCG at-speed clocking 
and switching address inputs on read and write ports, we test much closer to the true functional 
speeds through what are typically the toughest critical paths. To do this requires an ATPG 
model of the memories and it requires ATPG to support creation of such tests—including the 
OPCG clocking macros to support creation of tests that may include a minimum of 3, but may 
require up to 6 pulses of the same at-speed clock. ATPG may be required to generate the tests 
with a single scan load or it may be allowed to perform a second scan load after a transition has 
been written into a RAM.



544    21.4 Embedded Memory Design-for-Test Techniques

21.4.3 TESTING EMBEDDED MEMORIES

It is possible to model smaller nonscannable embedded memories at the gate level. In that case, 
each memory bit cell is represented by a latch or flip-flop, and all decoding and access logic is 
represented with logic gates. Such a gate-level model makes it possible to attach faults to the logic 
elements representing the memory internals and to use ATPG to generate tests for those faults. 
For large, dense memories this approach is not very practical because the typical logic fault models 
may not be sufficient to represent the memory failure modes and because the ATPG fault selection 
and cube compaction algorithms may not be suited for generating compact tests for regular struc-
tures like memories. As a consequence, it is customary to use special memory tests for the large, 
dense memories and, in many cases, also for smaller memories. These memory tests are typically 
specified to be applied to the memory interface pins. The complicating factor for embedded mem-
ories is that the memory interface is buried inside the chip design and some mechanism is needed 
to transport the memory tests to/from the embedded interface through the intervening logic.

21.4.3.1 DIRECT ACCESS TESTING

Direct access testing requires that all memory interface pins are individually accessible from chip 
pins through combinational access paths. For today’s complex chips it is rare to have natural 
combinational paths to/from chip pins in the functional design. It is, hence, up to DFT to provide 
the access paths and also provide some chip-level controls to selectively enable the access paths 
for testing purposes and disable them for normal functional chip operation. With direct access 
testing, the embedded memory essentially can be tested as if it were a stand-alone memory. It 
requires that the memory test program is stored in the external test equipment. Memory tests for 
larger memories are many cycles long and could quickly exceed the test equipment limits if the 
patterns for each cycle have to be stored in vector memory. This memory problem does not arise 
if the test equipment contains dedicated algorithmic pattern generator (APG) hardware that can 
be programmed to generate a wide range of memory test sequences from a very compact code. In 
that case, direct access testing has the benefit of being able to take full advantage of the flexibility 
and high degree of programmability of the APG and other memory-specific hardware/software 
features of the equipment.

If the chip contains multiple embedded memories or, memories with too many pins, and there 
are not enough chip pins available to accommodate access for all memory interface pins, then 
a multiplexing scheme with appropriate selection control has to be implemented. It should be 
noted that the need to connect the access paths to chip pins can possibly create considerable wir-
ing overhead if too many paths have to be routed over long distances. It should also be noted that, 
particularly for high-performance memories, it could be difficult to control the timing character-
istics of the access paths accurately enough to meet stringent test timing requirements. Variants 
of direct access testing may permit the use of tightly timed pipeline flip-flops or latches in the 
data and nonclock access paths to overcome the effect of inaccurate access path timings. The 
pipelining and latency of such sequential access paths must be taken into account when translat-
ing the memory test program from the memory interface to chip interface.

Another potential method for reducing the chip pin footprint required for direct access testing 
is to serialize the access to some memory interface pins, for example, the data pins. To that effect, 
scan chains are built to shift serially wide bit patterns for the data words from/to a small number 
of chip pins. It may take many scan clock cycles to serially load/unload an arbitrary new bit pat-
tern and the memory may have to “wait” until that is done. The serial access, hence, would not 
be compatible with test sequences that depend on back-to-back memory accesses with arbitrary 
data changes. Test time also is a concern with serial access for larger memories.

21.4.3.2 MEMORY BIST

Although direct access testing is a viable approach in many cases, it is not always easy to imple-
ment, can lead to long test times if not enough bandwidth is available between the chip under test 
and the test equipment, and may consume excessive vector memory if no APG hardware is avail-
able. Moreover, it may not be easy or possible to design the access paths with sufficient timing 
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accuracy for a thorough performance test. Memory BIST has become a widely used alternative. 
For memory BIST, one or more simplified small APG hardware macros, also known as memory 
BIST controllers, are added to the design and connected to the embedded memories using a mul-
tiplexing interface. The interface selectively connects the BIST hardware resources or the normal 
functional logic to the memory interface pins [17,19,44–47].

A variety of more or less sophisticated controller types are available. Some implementations 
use pseudorandom data patterns and signature analysis similar to logic BIST in conjunction with 
simple address stepping logic. Signature analysis has the advantage that the BIST controller does 
not have to generate expected responses for compare after read. This simplification comes at the 
expense of limited diagnostic resolution in case the test fails.

The memory test sequences used with APG hardware in the test equipment are constructed 
from heavily looped algorithms that repeatedly traverse the address space and write/read regu-
lar bit patterns into/from the memory cell array. Most memory BIST implementations used in 
practice follow the same scheme. Hardwired controllers use customized finite state machines 
to generate the data-in pattern sequences, expected pattern sequences, as well address  traversal 
sequences for some common memory test algorithms (e.g., march-type algorithms). The  so-called 
programmable controllers generally contain several hardwired test programs that can be selected 
at runtime by loading programming register in the controller. Microcoded controllers offer addi-
tional flexibility by using a dedicated microengine with a memory test–specific instruction set 
and an associated code memory that must be loaded at runtime to realize a range of user custom-
izable algorithms.

The complexity of the controller not only depends on the level of programmability but also 
on the types of algorithms it can support. Many controllers are designed for so-called linear 
algorithms in which the address is counted up/down so that the full address space is traversed a 
certain number of times. In terms of hardware, the linear traversal of the address space can be 
accomplished by one address register with increment/decrement logic. Some more complex non-
linear algorithms jump back and forth between a test address and a disturb address, meaning that 
two address registers with increment/decrement and more complex control logic are required. 
For data-in generation, a data register with some logic manipulation features (invert, shift, rotate, 
mask) is needed. The register may not necessarily have the full data word width as long as the 
data patterns are regular and the missing bits can be created by replication. If bit-level compare of 
the data-outs is used for the BIST algorithm, then similar logic plus compare logic is required to 
generate the expected data-out patterns and perform the comparison. Clock and control signals 
for the embedded memory are generated by timing circuitry that, for example, generates memory 
clock and control waveforms from a single free-running reference clock. The complexity of the 
timing circuitry depends on how flexible it is in terms of generating different event sequences to 
accommodate different memory access modes and how much programmability it offers in terms 
of varying the relative edge offsets.

Certain memory tests, like those for retention and pattern-sensitive problems, require that 
specific bit values are set up in the memory cell array according to physical adjacency. The physical 
column/row arrangement is not always identical to the logical bit/word arrangement. Address/bit 
scrambling as well as cell layout details may have to be known and taken into account to generate 
physically meaningful patterns.

The impact of memory BIST on design complexity and design effort depends, among other 
things, on methodology and flow. In some ASIC flows, for example, the memory compiler returns 
the memories requested by the user complete with fully configured, hardwired, and preverified 
memory BIST hardware already connected to the memory. In other flows, it is entirely up to the 
user to select, add, and connect memory BIST after the memories are instantiated in the design. 
Automation tools for configuring, inserting, and verifying memory BIST hardware according 
to memory type and configuration are available. The tools generate customized BIST RTL or 
gate-level controllers and memory interfaces from input information about memory size/configu-
ration, number/type of ports, read/write timings, BIST/bypass interface specification, address/
bit scrambling, and physical layout characteristics. Some flows may offer some relief through 
optional shared controllers where a single controller can drive multiple embedded memories. For 
shared controllers, the users have to decide and specify the sharing method (e.g., testing multiple 
memories in parallel or one after the other).
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In any scenario, memory BIST can add quite a bit of logic to the design and this additional 
logic should be planned and taken into account early enough in the physical design planning 
stage to avoid unpleasant surprises late in the design cycle. In addition to the additional transistor 
count, wiring issues and BIST timing closure can cause conflicts with the demands of the normal 
function mode. Shared controllers make placement and wiring between the controller and the 
memory interface more complicated and require that the trade-off between wiring complexity 
and additional transistor count is well understood and the sharing strategy is planned appropri-
ately (e.g., it may not make sense to share a controller for memories that are too far away from 
each other). If a memory BIST controller is sufficiently far away from a memory to be tested, 
pipeline stages may be required to be added to allow the timing of the memory operations to run 
at the intended functional speeds.

21.4.3.3 COMPLEX MEMORIES AND MEMORY SUBSTRUCTURES

In addition to embedded single-/multiport embedded SRAMs, some chips contain more com-
plex memory architectures. eDRAMs can have more complex addressing and timing than simple 
SRAMs. eDRAMs are derived from stand-alone DRAM architectures, and, for example, they 
may have time multiplexed addressing (i.e., the address is supplied in two cycles and assembled 
in the integrated memory controller) and programmable access modes (e.g., different latency, fast 
page/column). The BIST controller and algorithm design also has to accommodate the need for 
periodic refresh, all of which can make BIST controllers for eDRAM more complex.

Other fairly widely used memory types include logic capabilities. CAMs, for example, contain 
logic to compare the memory contents with a supplied data word. BIST controllers for CAMs use 
enhanced algorithms to thoroughly test the compare logic in addition to the memory array. The 
algorithms depend on the compare capabilities and the details of the circuit design and layout.

High-performance processors tend to utilize tightly integrated custom memory subsystems 
where, for example, one dense memory is used to generate addresses for another dense memory. 
Performance considerations do not allow for separating the memories with scan. Likewise, com-
pare logic and other high-performance logic may be included as well. Memory subsystems of 
this nature generally cannot be tested with standard memory test algorithms and hence require 
detailed analysis of possible failure modes and custom development of suitable algorithms.

Some microcontrollers and many chips for smart cards, for example, contain embedded non-
volatile flash memory. Flash memory is fairly slow and poses no challenge for designing a BIST 
controller with sufficient performance, but flash memory access and operation are different from 
SRAM/DRAM access. Embedded flash memory is commonly accessible via an embedded micro-
processor that can, in many cases, be used for testing the embedded flash memory.

21.4.3.4 PERFORMANCE CHARACTERIZATION

In addition to use in production test, a BIST approach may be desired for characterizing the 
embedded memory performance. The BIST controller, memory interface, and timing circuitry in 
this scenario have to be designed for higher speed and accuracy than what is required for produc-
tion testing alone. It may also be necessary to add more algorithm variations or programmability 
to enable stressing particular areas of the embedded memory structure. The BIST designers in this 
case also may want to accommodate the use of special lab equipment used for characterization.

If BIST is to be used for characterization and speed binning, it should be designed with enough 
performance headroom to make sure that the BIST circuitry itself is not the performance limiter 
that dominates the measurements. Designing the BIST circuitry to operate at system cycle time, 
as advertised by some BIST tools, may not be good enough.

The quality of speed binning and performance characterization not only depends on the per-
formance of BIST controller and memory interface but also on the accuracy and programmabil-
ity of the timing edges used for the test. The relative offset between timing edges supplied from 
external test equipment generally can be programmed individually and in very small increments. 
Simple timing circuitry for memory BIST, by contrast, tends to be aligned to the edges of a ref-
erence clock running at or near system speed. The relative edge offset can only be changed by 
changing the frequency, and affects all edge offsets similarly.
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Some memory timing parameters can be measured with reasonable accuracy without imple-
menting commensurate on-chip timing circuitry. For example, data-out bit values can be fed 
back to the address. The memory is loaded with appropriate values such that the feedback results 
in oscillation and the oscillation frequency is an indicator of read access time. By triggering a 
clock pulse from a data-out change, it may be similarly possible to obtain an indication of write 
access time.

21.4.3.5 DIAGNOSIS, REDUNDANCY, AND REPAIR

Embedded memories can be yield limiters and useful sources of information for yield improve-
ment. To that effect, the memory BIST implementation should permit the collection of memory 
fail-bit maps. The fail-bit maps are created by data logging the compare status or compare data 
and, optionally, BIST controller status register contents.

A simple data-logging interface with limited diagnostic resolution can be implemented by 
issuing a BIST-start edge when the controller begins with the test and a cycle-by-cycle pass/fail 
signal that indicates whether a mismatch occurred during compare or not. Assuming the rela-
tionship between cycle count and BIST progress is known, the memory addresses associated with 
cycles indicating miscompare can be derived. This simple method allows for creating an address-
level fail log. However, the information is generally not sufficient for FA.

To create detailed fail-bit maps suitable for FA, the miscompares must be logged at the bit 
level. This can, for example, be done by unloading the bit-level compare vectors to the test equip-
ment through a fully parallel or a serial interface. The nature of the interface determines how long 
it takes to log a complete fail-bit map. It also has an impact on the design of the controller. If a 
fully parallel interface is used that is fast enough to keep up with the test, then the test can prog-
ress uninterrupted while the data are logged. If a serial or slower interface is used, then the test 
algorithm must be interrupted for data logging. This approach sometimes is referred to as stop-
on-nth-error. Depending on the timing sensitivity of the tests, the test algorithm may have to be 
restarted from the beginning or from some suitable checkpoint each time the compare data have 
been logged for one fail. In other cases, the algorithm can be paused and can resume after logging.

Stop-on-nth-error with restart and serial data logging is relatively simple to implement, but it 
can be quite time-consuming if miscompares happen at many addresses (e.g., defective column). 
Although that is considered tolerable for FA applications in many cases, there have been efforts 
to reduce the data-logging time without needing a high-speed parallel interface by using on-chip 
data reduction techniques. For example, if several addresses fail with the same compare vector 
(e.g., defective column), then it would be sufficient to log the compare data once and only log the 
addresses for subsequent fails. To that effect, the on-chip data reduction hardware would have to 
remember one or more already encountered compare vectors and for each new compare vector, 
check whether it is different or not.

Large and dense embedded memories, for example, those used for processor cache memory, 
offer redundancy and repair features, meaning that the memory blocks include spare rows/col-
umns and address manipulation features to replace the address/bit corresponding to the fail-
ing rows/columns with those corresponding to the spares. The amount and type of redundancy 
depend on the size of the memory blocks, their physical design, and the expected failure modes, 
trying to optimize postrepair memory density and yield. Memories that have either spare rows 
or spare columns, but not both, are said to have 1D redundancy, and memories that have both 
spare rows and columns are said to have 2D redundancy. It should be noted that large memories 
may be composed of smaller blocks and it is also possible to have block-level redundancy/repair.

Hard repair means that the repair information consisting of the failing row/column address(es) 
is stored in nonvolatile form. Common programming mechanisms for hard repair include laser-
programmable fuses, electrically programmable fuses, or flash-type memory. The advantage of 
hard repair is that the failing rows/columns need to be identified only once upfront. However, 
hard repair often requires special equipment for programming, and one-time programmable 
fuses are not suitable for updating the repair information later in the chip’s life cycle. Soft repair, 
by contrast, uses volatile memory, for example, flip-flops, to store the repair information. This 
eliminates the need for special equipment and the repair information can be updated later. 
However, the repair information is not persistent and must be redetermined after each power on.
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All embedded memory blocks with redundancy/repair must be tested prior to repair, during 
manufacturing production test, with sufficient data logging to determine whether they can be 
repaired and if so, which rows/columns must be replaced. Chips with hard repair fuses may have 
to be brought to a special programming station for fuse blow and then be returned to a tester for 
postrepair retest. Stop-on-nth-error data logging with a serial interface is much too slow for prac-
tical repair during production test. Some test equipment has special hardware/software features 
to determine memory repair information from raw bit-level fail data. In that scenario, no special 
features for repair may be required in the memory BIST engine, except for providing a data-
logging interface that is fast enough for real-time logging.

If real-time data logging from memory BIST is not possible or not desired, then on-chip 
redundancy analysis (ORA) is required. Designing a compact ORA macro is relatively simple for 
1D redundancy. In essence all that is needed is memory to hold row/column addresses corre-
sponding to the number of spares, and logic that determines whether a new failing row/column 
address already is in memory; if not, the memory uses the new memory if there still is room, and, 
if there is no more room, sets a flag indicating that the memory cannot be repaired. Dealing with 
2D redundancy is much more complicated, and ORA engines for 2D redundancy are not com-
monly available. eDRAM, for example, may use 2D redundancy and come with custom ORA 
engines from the eDRAM provider. The ORA engines for 2D redundancy are relatively large, 
and typically one such engine is shared by several eDRAM blocks, meaning that the blocks must 
be tested one after the other. To minimize test time, the eDRAM BIST controller should stagger 
the tests for the blocks such that ORA for one block is performed when the other blocks are idle 
for retention testing.

If hard repair is used, the repair data are serially logged out. Even if hard repair is used, the 
repair information may also be written into a repair data register. Then repair is turned on, and 
the memory is retested to verify its full postrepair functionality.

Large complex chips may contain many memory blocks with redundancy, creating a large 
amount of repair data. In that scenario, it can be useful to employ data compression techniques 
to reduce the amount of storage needed for repair or to keep the size of the fuse bay for repair 
small enough.

21.5 EMBEDDED LOGIC CORE DESIGN-FOR-TEST TECHNIQUES

The notion of embedded cores has become popular with the advent of SoC products. Embedded 
cores are predesigned and preverified blocks that are assembled with other cores and user-defined 
blocks into a complex chip. Being able to isolate and test an embedded core with access restricted 
to a few chip pins is crucial to efficient testing of future SoC designs [5,15,61,63].

21.5.1 TYPES OF EMBEDDED DIGITAL CORES

Embedded cores are generally classified into hard cores, which are already physically completed 
and delivered with layout data, and soft cores, which in many cases are delivered as synthesizable 
RTL code. In some cases, the cores may already be synthesized to a gate-level netlist that still 
needs to be placed and wired (firm cores).

For hard cores, it is important whether or not a “test-ready” detailed gate-level netlist is made 
available (white box), or the block internals are not disclosed (black box). In some cases, partial 
information about some block features may be made available (gray box). Also, the details of what 
DFT features have been implemented in the core can be very important.

21.5.2 MERGING EMBEDDED CORES

Soft cores and some white cores can be merged with other compatible cores and user-defined 
blocks into a single netlist for test generation.
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For hard cores, the success of merging depends on whether the DFT features in the core are 
compatible with the test methodology chosen for the combined netlist. For example, if the chosen 
methodology is full-scan ATPG, then the core should be designed with full-scan and the scan 
architecture as well as the netlist should be compatible with the ATPG tool. If logic BIST or test 
data compression is used, then the scan-chain segments in the core should be short enough and 
balanced to enable scan-chain balancing in the combined netlist.

21.5.3 DIRECT ACCESS TEST

Direct access test generally requires the inputs of the embedded core to be individually and simultane-
ously controlled from, and the core outputs to be individually and simultaneously observed at, chip 
pins, through combinational access paths. This is only possible if enough chip pins are available and 
the test equipment has enough appropriately configured digital tester channels. Some direct access test 
guidelines may allow for multiplexing subsets of a core’s outputs onto common chip pins. In that case, 
the test must be repeated with a different output subset selected until all outputs have been observed. 
That is, the required chip output pin footprint for direct access can be somewhat reduced at the 
expense of test time. All inputs must, however, remain controllable at all times. For multiple identical 
cores, it may be possible to broadcast the input signals to like core inputs from a common set of chip 
input pins and test the cores in parallel, as long as enough chip output pins are available for observing 
the core outputs and testing the cores together does not exceed the power budget. Concurrent testing 
of nonidentical cores seems conceptually possible if all core inputs and outputs can be directly accessed 
simultaneously. However, even with parallel access it may not be possible to align the test waveforms 
for nonidentical cores well enough to fit within the capabilities of typical production test equipment 
(the waveforms for most equipment must fit into a common tester cycle length and limited time-set 
memory; the tester channels of some equipment, on the other hand, can be partitioned into multiple 
groups that can be programmed independently). If the chip contains multiple cores that cannot be 
tested in parallel, then some chip-level control scheme must be implemented to select one core (or a 
small enough group of compatible cores) at a time for direct access test.

In addition to implementing access paths for direct access testing, some additional DFT may be 
required to make sure that a complete chip test is possible and does not cause unwanted side effects. 
For example, extra care may be required to avoid potential three-state burn-out conditions resulting 
from a core with three-state outputs and some other driver on the same net trying to drive oppo-
site values. In general, it must be expected that currently deselected cores and other logic could be 
exposed to unusual input conditions during the test of the currently selected core(s). The integration 
of cores is easier if there is a simple control state to put each core into safe state that protects the core 
internals from being affected by unpredictable input conditions, asserts known values at the core 
outputs, and keeps power/noise for/from the core minimal. For cores that can be integrated into 
chips in which IDDq testing is possible, the safe state or another state should prevent static current 
paths in the core. The core test selection mechanism should activate the access paths for the cur-
rently selected core(s), while asserting the appropriate safe/IDDq state for nonselected cores.

The inputs of black-box cores cannot be observed and the black-box outputs cannot be fully 
controlled. Other observe/control means must be added to the logic feeding the core inputs and 
fed by the core outputs (shadow logic) to make that logic fully testable. Isolating and diagnosing 
core-internal defects can be very difficult for black-box cores or cores using proprietary test 
approaches that are not supported by the tools available and used for chip-level test generation.

There are some DFTS and DRC tools that help with the generation, connection, and verifica-
tion of direct access paths. Also, there are some test generation tools that help translate core test 
program pin references from the core pins to the respective chip pins, and integrate the tests into 
an overall chip-level test program.

21.5.4 SERIALIZING THE EMBEDDED CORE TEST INTERFACE

There may not be enough chip pins available or the overhead for full parallel access to all core 
pins may be unacceptable. In that case, it may be possible and useful to serialize the access to 
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some core pins. One common serialization method is to control core input pins and observe core 
output pins with scan cells. Updating the input pattern or comparing the output pattern in this 
scenario entails a scan load/unload operation. The core test program must be able to allow inser-
tion of multiple tester cycles worth of wait time for the scan load/unload to complete. Moreover, 
the output of scan cells change state during scan. If the core input pin and core test program 
cannot tolerate multiple arbitrary state changes during scan load/unload, then a hold latch or 
flip-flop may have to be provided between the scan cell output and core input to retain the previ-
ous state required by the core test program until scan load/unload is done and the new value is 
available. For digital logic cores, data pins may be suitable for serialized access, assuming there is 
no asynchronous feedback and the internal memory cells are made immune to state changes (e.g., 
by turning off the clocks) during the core-external scan load/unload. Although it is conceptually 
possible to synthesize clock pulses and arbitrary control sequences via serialized access with 
hold, it generally is recommended or required to provide direct combinational control from chip 
pins for core clock and control pins.

Functional test programs for digital logic cores can be much shorter than memory test pro-
grams for large embedded memories. Serialized access for digital logic cores can, hence, be more 
practical and is more widely practiced for digital logic cores. In many cases, it is possible to find 
existing scan cells and to sensitize logic paths between those scan cells and the core pins with lit-
tle or no need for new DFT logic. This minimizes the design impact and permits testing through 
functional paths rather than test-only paths.

However, it should be noted that with serialized access, it generally is not possible to cre-
ate multiple arbitrary back-to-back input state changes and to observe multiple back-to-back 
responses. Hence, serialized access may not be compatible with all types of at-speed testing.

There are some DFTS/DRC and test program translation tools that work with serialized access. 
Test program translation in this case is not as simple as changing pin references (and possibly 
polarity) and adjusting time sets as in the case of combinational direct access testing. Input value 
changes and output measures on core pins with serialized access entail inserting a core-external 
scan load/unload procedure. Additional scan load operations may be required to configure the 
access paths.

The capabilities of the pattern translation tool may have a significant impact on the efficiency 
of the translated test program. For example, if the embedded macro is or contains an embedded 
memory with BIST, then at least a portion of the test may consist of a loop. If the translation tool 
cannot preserve the loop, then the loop must be unrolled into parallel vectors prior to transla-
tion. That can result in excessive vector memory demand from the test equipment. Black-box 
cores that come with internal scan and with a scan-based test program are another special case. 
If the core scan-in/scan-out pins are identified and the associated scan load/unload procedures 
are appropriately defined and referenced in the core test program, then the pattern translation 
software may (or may not) be able to retain the scan load/unload procedure information in the 
translated test program, resulting in a more (or less) efficient test program.

21.5.5 STANDARDIZED EMBEDDED CORE ACCESS AND ISOLATION ARCHITECTURES

There have been several proprietary and industry-wide attempts to create an interoperable archi-
tecture for embedded core access and isolation. These architectures generally contain at least 
two elements. One element is the core-level test interface, often referred to as a core test wrapper, 
and the other one is a chip-level test access mechanism (TAM) to connect the interfaces among 
themselves and to chip pins, as well as some control infrastructure to selectively enable/disable 
the core-level test interfaces.

In addition to a core’s functional mode of operation, there are several test modes of operation 
expected to be operational when the core is embedded within a chip. One or more internal-logic 
testing modes (INTEST modes) are used to isolate the core from surrounding logic allowing 
tests to be applied to it that verify its internal logic is operating correctly. There also needs to be 
a mode where the core is not isolated from the surrounding logic and the scan registers within 
the core can be used to drive values out into the surrounding logic and observe values from the 
surrounding logic. This mode is used to test the logic above the core within the hierarchy of the 
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chip design. Such a mode is considered to be externally facing and is called an EXTEST mode. In 
some core DFT approaches, there may also be a need for a so-called BYPASS mode that allows 
external scan chains to shift through the core, with the core adding perhaps 1 bit to the operating 
scan chain. A core that is operating in a BYPASS mode is not currently being tested, but it may 
help facilitate the passing of data to test another core on the chip.

The typical approach used with core-based designs is to generate tests for the core by itself (in 
isolation—also known as out of context). These tests are then migrated to the chip such that when 
these tests are applied to chip pins and observing chip pins, an instance of the core (in context) 
is being tested. This test migration (sometimes referred to as test retargeting) is what makes it 
possible to create tests for a core and put them on the shelf to be used to test any chip in which 
that core is instantiated.

When selecting/designing a core-level test interface and TAM, it is important to have a strat-
egy for both, that is, for testing the core itself and for testing the rest of the chip. For testing the 
core itself, the core test interface should have an internal test mode in which the core input sig-
nals are controlled from the TAM and the core output signals are observed by the TAM without 
needing participation from other surrounding logic outside of the core. The issue for testing the 
surrounding logic is how to observe the signals connected to the core inputs and how to control 
the signals driven by the core outputs. If the core is a black-box core, for example, the core inputs 
cannot be observed and the core outputs cannot be controlled. Even if the core is a white box, 
there may be no internal DFT that would make it easy. To simplify test generation for the sur-
rounding logic, the core test interface should have an external test mode that provides alternate 
means for observing the core input signals and for controlling the core output signals, without 
needing participation from the core internals. Even if the core internals do not have to partici-
pate in the external test mode, it may be important to assure that the core does not go into some 
illegal state (e.g., three-state burn-out) or create undesired interference (e.g., noise, power, and 
drain) with the rest of the chip. It therefore may be recommended or required that the core test 
interface should have controls for a safe mode that protects the core itself from arbitrary external 
stimulation and vice versa. Last but not the least, there has to be a normal mode in which the core 
pins can be accessed for normal system function, without interference from the TAM and core 
test interface. Layout considerations may make it desirable to allow for routing access paths for 
one core “through” another core. The core test interface may offer a dedicated TAM bypass mode 
(combinational or registered) to facilitate the daisy chaining of access connections.

Overall, the TAM, so to speak, establishes switched connections between the core pins and 
the chip pins for the purpose of transporting test data between test equipment and embedded 
cores. It should be noted that some portions of the test equipment could be integrated on the 
chip (e.g., a BIST macro) such that some data sources/sinks for the TAM are internal macro pins 
and others are chip I/Os. The transport mechanism in general can be parallel or serialized. It is 
up to the core provider to inform the core user about any restrictions and constraints regarding 
the type and characteristics of the TAM connections as well as what the required/permissible 
data sources/sinks are for each core pin. Different core pins, for example, clock pins and data 
pins, tend to have different restrictions and constraints. Depending on the restrictions and con-
straints, there probably will be some number of pins that must have parallel connections (with or 
without permitted pipelining), some number of pins that could be serialized (with some of those 
possibly requiring a hold latch or flip-flop). If certain core input pins need to be set to a specific 
state to initialize the core to some mode of operation, then it may be sufficient to assure that the 
respective state is asserted (e.g., decoded from some test mode control signals) without needing 
full blown independent access from chip pins. It further should be noted that certain cores may 
have different modes of operations, including different test modes (e.g., logic test and memory 
BIST), such that there could be different mode-specific access restrictions and constraints on any 
given pin. The TAM has to accommodate that and if necessary, be dynamically adjustable.

Serialization of the core pin access interface reduces the number of chip pins and the bit width 
(e.g., affecting the wiring overhead) of the TAM required for access, at the expense of test time. In 
addition to serializing some portion of the TAM for an individual core, there often is a choice to 
be made about testing multiple cores in parallel vs. serially. If the chip contains many cores, the 
trade-off becomes increasingly complex. For example, the TAM for all or subsets of cores could 
be arranged in a daisy-chain or star configuration, and decisions need to be made about the bit 
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width of each TAM. More decisions need to be made about testing groups of cores in parallel or 
in sequence. The decisions are influenced by the availability of pin, wiring and test equipment 
resources for parallel access, by the power/noise implications of testing several cores in parallel, 
by test time, and more.

Core test wrappers can be predesigned into a core by the core designer/provider (so-called 
wrapped core) or not (unwrapped core). In the latter case, the core user could wrap the core prior 
to, during, or after assembling it into a chip. In some cases, the wrapper overhead can be kept 
smaller by taking advantage of already existing core-internal design elements (e.g., flip-flops on 
the boundary of the core to implement a serial shift register for serialized access). If performance 
is critical, then it could be better to integrate the multiplexing function required for test access on 
the core input side with the first level of core logic or take advantage of hand-optimized custom 
design optimization that is possible in a custom core but not in synthesized logic. In any case, 
building a wrapper that requires modification of the core logic proper in hard cores in general can 
only be done by the core designer. Prewrapping a core can have the disadvantage of not being able 
to optimize the wrapper for a particular usage instance and of not being able to share wrapper 
components between cores. The once popular expectation that each third-party core assembled 
into a chip would be individually wrapped and tested using core-based testing has given way to 
a more pragmatic approach where unwrapped cores are merged into larger partitions based on 
other design flow and design (team, location, schedule, etc.) management decisions, and only the 
larger partitions are wrapped and tested using core-based testing.

A chip-level control infrastructure is needed in addition to the wrapper and TAM compo-
nents to create an architecture for core-based test. The control infrastructure is responsible for 
distributing and (locally) decoding instructions that configure the core/wrapper modes and the 
TAM according to the intended test objective (e.g., testing a particular core vs. testing the logic 
in between cores). The distribution mechanism of the control infrastructure is, in some archi-
tectures, combined with a mechanism for retrieving local core test status/result information. For 
example, local core-attached instruction and status/result registers can be configured into serial 
scan chains (dedicated chains for core test or part of “normal” chains) for core test instruction 
load and status/result unload.

The IEEE 1500 Embedded Core Test standard is in its 10th year [63]. It defines a standard for 
embedded core wrapping, allowing for both a serial and a parallel scan-chain access mechanism to 
talk to the core from chip pins; the standard is flexible and does not define specifics of the TAM.

A newly approved IEEE standard for testing and accessing internal cores (the standard refers 
to them as embedded instruments) is IEEE P1687 (the P should be removed by the time this 
handbook update is published) [64]. This standard defines a means to connect to and interact 
with various blocks within a chip that implement an interface defined by the standard; by using 
segment insertion blocks (SIBs), it becomes possible to add the internal scan of a block into the 
middle of an existing scan chain. This may be perfect for use with embedded memory BIST con-
trollers or even block logic BIST interfaces.

21.5.6 HIERARCHICAL CORE TEST COMPRESSION ARCHITECTURES

Given that cores can be wrapped to allow isolation from the surrounding logic, it is reasonable to 
pursue a strategy of divide and conquer to test the large core-based chip designs of today and the 
future. The IEEE 1500 standard for embedded core test provides a reasonable approach for build-
ing wrappers to isolate a core; this standard does not dictate the type of internal scan architecture 
of the core or of the TAM it connects to. This flexibility allows a core DFT designer to choose 
to use a test compression scan architecture within the core and to connect the core scan-in and 
scan-out pins to chip pins via a TAM of any style appropriate for further exploiting the compres-
sion within the cores—including additional compression outside the cores.

If cores internally decompress scan data fed through their scan-in pins and compress the 
internal chain data before feeding it out their scan-out pins, this begins an architecture that 
allows a single core instance to be tested using compressed stimulus and response data. With 
freedom to design the TAM any way necessary to further exploit compression, it becomes pos-
sible to have the chip scan-in pins fan-out to multiple core instances identically and have the 
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core scan-outs be compressed/merged with the outputs of other core instances prior to leaving 
through the chip’s scan-out pins. In such a chip DFT architecture, the input TAM fans out all 
scan-in data identically to each core instance (to identical and nonidentical cores). The output 
TAM merges the outputs of multiple cores together, using, for example, an XOR space compac-
tor, allowing any number of cores to be tested while utilizing the same chip scan-in and scan-out 
pin resources. This allows any number of identical cores to be tested using the scan-in stimulus 
for a single core instance and the scan-out responses merged from the n instances of the same 
core down to a data volume equivalent to that from a single core.

When testing a subset of the full set of cores on a chip in this manner, those cores not partici-
pating in the current testing should be placed into a BYPASS mode. This BYPASS mode places 
zeros on all core outputs feeding to the chip XOR space compactor so the bypassed cores do not 
disturb the output compression for those cores that are participating. This gets around the limita-
tion mentioned earlier of needing more chip pins to test more core instances.

While it is a bit more complicated, testing multiple nonidentical cores can also be done as 
long as ATPG is aware of the scan-in fan-out to all the core types in play. The key is that when 
the patterns that were generated for the cores individually are migrated to the chip level, their 
scan output data streams must be compressed together to form the chip-compressed scan-out 
streams. All core types being tested together will scan for the same scan length (those cores with 
shorter chains will be overscanned).

The scan-in TAM can include pipeline stages if necessary to keep the scan rate high. Similarly, 
the scan-out TAM with the XOR space compactor can also include pipeline stages.

Hierarchical core-based compression allows compressed tests for the cores to be migrated 
(also known as retargeted) to the chip level. This tests the internals of each core instance. In addi-
tion, the top-level logic must still be tested using standard ATPG run against the chip gate-level 
model; however, this chip model does not have to include the full gate-level model of each core—it 
can use gray-box models of each core that include just the boundary logic of each core plus some 
control logic, enough to allow the cores’ EXTEST and BYPASS mode(s) to work. These boundary 
models allow ATPG at the chip level to be run on a model that may be less than 5% of the full chip 
gate-level model (if more than 95% of chip logic is contained within cores).

Nearly all commercial test tools have some form of core-based hierarchical test support. This 
appears to be a valid means to achieve higher test compression and yet create the chip-level tests 
with fewer resources by

 1. Creating tests for the out-of-context core models that are relatively small
 2. Migrating the core tests to the chip and allowing multiple core instances to be tested in 

parallel
 3. Running ATPG at the chip level on a much smaller gate-level model of the chip by utiliz-

ing the gray-box boundary models of each core

By processing the much smaller core models and chip model, the total elapsed time to create the 
chip tests is greatly reduced and the memory needed to create the tests is also greatly reduced 
compared with running ATPG on a flat chip model.

21.6  EMBEDDED FIELD-PROGRAMMABLE GATE ARRAY 
DESIGN-FOR-TEST TECHNIQUES

Although eFPGAs are not very prevalent yet, they can have some unique properties that affect 
chip-level testing.

21.6.1 EMBEDDED FIELD-PROGRAMMABLE GATE ARRAY CHARACTERISTICS

The term “field programmable” means that the eFPGA function can be programmed in the field, 
that is long after manufacturing test. At manufacturing test time, the final function generally is 
not known. FPGAs contain both functional resources and programming resources. Both types 
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of resources tend to have their own I/O interface. The functional resources are configured by 
the programming resources prior to actual “use” to realize the intended function, and the rest of 
the chip logic communicates with the functional resources of an eFPGA through the functional 
I/O interface of the eFPGA. The normal chip functional logic in general does not see or interact 
directly with the programming resources or the programming I/O interface of the eFPGAs.

The customers of chips with eFPGAs expect that all functional and programming resources 
of the eFPGAs are working. Hence, it is necessary at chip manufacturing test time to fully test 
all functional and programming resources (even if only a few of them will eventually be used).

21.6.2  EMBEDDED FIELD-PROGRAMMABLE GATE ARRAY TEST 
AND TEST INTEGRATION ISSUES

The chip-level DFT for chips with eFPGAs will have to deal with the duality of the programming and 
functional resources. Many eFPGAs, for example, use an SRAM-like array of storage elements to 
hold the programming information. However, the outputs of the memory cells are not connected to 
data selection logic for the purpose of reading back a data word from some memory address. Instead, 
the individual memory cell outputs are intended to control the configuration of logic function blocks 
and of interconnect switches that constitute the functional resources of the eFPGA. The data-in side 
of the eFPGA programming memory array may also be different than in a normal SRAM that is 
designed for random access read/write. The design is optimized for loading a full eFPGA configura-
tion program from some standardized programming interface. The programming interfaces tend to 
be relatively narrow even if the internal eFPGA programming memory is relatively wide. Hence, the 
address/data information may have to be brought in sequentially in several chunks.

Another idiosyncrasy of FPGAs is that the use of BIST techniques for testing does not nec-
essarily mean that the test is (nearly) as autonomous as logic BIST, for example. Several BIST 
techniques have been proposed and are being used for testing the functional resources of the 
FPGA. To that effect, the reprogrammability of the FPGA is used to temporarily configure pat-
tern generation and response compression logic from some functional resources and configure 
other functional resources as test target. Once configured, the BIST is indeed largely autonomous 
and needs only a little support from external test equipment. The difference is that potentially 
large amounts of programming data need to be downloaded from the external test equipment 
to create a suite of BIST configurations with sufficient test coverage. The programming data can 
consume large amounts of vector memory and downloading them costs test time. Non-BIST 
tests still need programming data and have the additional problem of needing test equipment 
support at the functional I/O interface during test application.

The chip-level DFT approach for chips with eFPGAs has to deal with the vector memory and test 
time issue as well as implement a suitable test interface for the I/O interface of the functional resources 
(even for eFPGAs with BIST there is a need to test the interface between the chip logic and the func-
tional resources of the eFPGA). Also to be considered is that an unconfigured eFPGA is of little help 
in testing the surrounding logic, and a decision has to be made whether to exploit (and depend on) the 
programmability of the eFPGA’s functional resources or to hardwire the DFT circuitry.

21.6.3 EMBEDDED FIELD-PROGRAMMABLE GATE ARRAY TEST ACCESS TECHNIQUES

To test fully an eFPGA, it is necessary to test both the programming resources and the functional 
resources, meaning that test access to the interfaces of the two different types of resources is 
needed. Of course, it is possible to treat the eFPGA like other embedded cores and implement 
an interface wrapper connected to the chip-level TAM. This approach, however, does not take 
advantage of the fact that the chip already provides access to the eFPGA programming interface 
for functional configuration. The chip-level programming interface may be a good starting point 
for test access, especially if signature-based BIST is used to test the functional resources such that 
there is limited return traffic from the eFPGAs during test.

Regardless of whether the programming interface is adapted or another TAM is used, it may 
be desirable to test multiple eFPGA cores in parallel to reduce the demand on vector memory 
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and test time. For example, if there are multiple identical core instances, then it makes sense to 
broadcast the same programming data to all instances simultaneously. The normal program-
ming interface may have no need for and, therefore, not offer a broadcast load option for multiple 
eFPGA macros in parallel. Hence, such an option may have to be added to make the normal 
 programming interface more useable for testing. Likewise, if another TAM is used, then the 
TAM should be configurable for the optional broadcast of programming data.

21.7 CHIP-LEVEL DESIGN-FOR-TEST FOR HIGHER-LEVEL PACKAGE TEST

All the DFT approaches discussed to this point have been with regard to helping better test the 
chip itself during chip manufacturing test. Now, we consider DFT logic added to chips to help 
test the packages the chips will go into. There is not enough space here to go into great depth 
about any specific area, but we will touch on a few important items that are useful to know and 
are applicable in various situations.

21.7.1 BOARD TEST AND CHIP BOUNDARY SCAN

In the 1980s, board designs were getting more complex. Chips were being placed directly onto 
the boards using direct chip attach and other approaches that made it difficult for board testing 
to contact the pins on the chips. Without access to the chip pins or the wires (which were often 
embedded within layers of the board), it became impossible to provide a means to test and verify 
the operational correctness of the boards. One DFT approach that was generally applicable to 
board-level testing was to insert boundary scan wrappers around all of the data I/Os of each chip 
and then use those boundary wrappers to serially load values to drive across the connections 
between chips on the board; these values could then be captured into the wrapper cells on other 
chips and serially unloaded to verify the values received were correct.

Because board developers needed the chips to come with boundary scan built into them and these 
chips were often created by many different companies, it became obvious that the industry needed 
a standard means of implementing the boundary scan and effectively forcing all chip providers to 
include it within their chips so that boards had a chance of being tested with modest costs. This led to 
the development of the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture [62]. 
It took nearly a decade, but chip manufactures did eventually place this standardized form of bound-
ary scan into most chips and board-level testing became much easier. The IEEE 1149.1 Test Access 
Port (TAP) includes a finite state machine that allows the number of chip pins to be fairly minimal 
(four or five pins); conserving chip pins was essential to getting the standard accepted within the chip 
design community since chip pins are fairly expensive. The architecture is also extendable because 
it includes an instruction register, with only a few mandatory instructions; chip designers are free to 
define their own instructions to perform other test or even functional operations.

The IEEE 1149 family of standards provides for many extensions, but most of them are tar-
geted for helping test the package the chip will be inserted into. More recently, the IEEE 1149.1-
2013 update includes many new features for internal chip testing.

21.7.2 MULTICHIP MODULES AND CHIP BOUNDARY SCAN

Most MCMs are manufactured by the same company that makes the chips that go into them. 
Even before the advent of the IEEE 1149.1 standard, chips on MCMs had boundary scan included 
to make it reasonable to test the internals of the chips and then test the interconnects between 
the chips after the chips had been placed onto the MCM. These chips implemented their bound-
ary scan simply as a special test mode of each chip and they used the scan-in and scan-out pins 
already there for chip manufacturing test; they did not require the use of a finite state machine 
or an instruction register. Each chip on the MCM typically has connections to the MCM I/Os 
and these MCM pins can then give control of each chip’s scan interface to allow the boundary 
registers to be scan loaded and unloaded.
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Because IEEE 1149.1 had become so well accepted, today MCMs are more likely to be found 
using chips with the IEEE 1149.1 standard boundary scan rather than a custom one, but the 
 purpose is the same—to make it easier to test the package.

21.7.3 3D CHIP STACKS AND CHIP BOUNDARY SCAN

With the advent of through-silicon vias (TSVs), it is now possible to interconnect chips in a pack-
age vertically. Whereas an MCM may place each chip on a small board or ceramic substrate with 
multiple layers of wiring, a 3D chip stack uses TSVs to directly connect from one chip to the one 
above it or below it. Although this may look similar to an MCM from the outside, from a test per-
spective it is different for one reason: only the chip on the bottom of the stack has pins accessible 
to the test equipment; all other chips in the stack can be sent data only by arranging to have the 
chip below it pass the data along to it.

In spite of the difference, the basic DFT plan for aiding test of a 3D package is still to include 
some form of chip boundary scan on each chip in the stack. Because only the bottom chip in the 
stack talks to the outside world, that is the only chip in a stack that would be required to imple-
ment an IEEE 1149.1 TAP interface. As of the writing of this version of the handbook, there are 
not many 3D chip stacks in production at the time of the publication of this edition; some experi-
mental ones have been created and tested using a chip-level boundary scan more closely related 
to IEEE 1500 with the bottom chip including an 1149.1 TAP interface that can be used to generate 
the control signals to operate the boundary scan interfaces for all other chips in the stack [60].

There is also a new IEEE standard being developed specifically for 3D chip stacks (or a special 
type of MCM that uses a silicon interposer for interchip wiring, often referred to as a 2.5D pack-
age). The proposed standard is IEEE P1838 and currently looks to require an IEEE 1149.1 TAP 
interface on each chip in the package [65]. Many details are yet to be worked out for this standard, 
but as was true for board testing, a standard DFT approach is a requirement when building a 
higher-level package with chips from multiple vendors.

21.8 CONCLUSION

We hope you have found the information included in this chapter of use in understanding the 
basics of DFT for chip and higher-level package testing. There are many other topics that could be 
covered in this chapter. These include the issues of embedded analog/mixed-signal DFT (which 
is covered in Chapter 23) and DFT and I/Os, both normal and high speed. In addition, there are 
additional issues of top-level DFT to consider, including the integration of DFT elements, bound-
ary scan for high-level assembly test, and test interface considerations (including IEEE 1149.1 pro-
tocol, BSDL, HSDL, COP/ESP, interrupts, burn-in). However, considerations of space and time 
do not let us go any further into these many interesting details at this point; perhaps in a future 
edition of this handbook, we will be able to cover them in some detail.

We do hope you will look to some of the references provided for more details where you are 
interested. Clearly, we could have included many more references as there are many interesting 
papers on the topics we have described; however, due to space constraints, a small sample of ref-
erences are being provided. You are encouraged to search for papers on any of these topics using 
the IEEE Xplore facility or even your favorite Internet search engine.
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22.1 INTRODUCTION

Test development for complex designs can be time consuming, sometimes stretching over sev-
eral months of tedious work. In the past three decades, various test development automation 
tools have attempted to address this problem and eliminate bottlenecks that hinder the product’s 
time to market. These tools that automate dozens of tasks essential for developing adequate tests 
generally fall into four categories: design for testability (DFT), test pattern generation, pattern 
grading, and test program development and debugging. The focus of this chapter is on automatic 
test pattern generation (ATPG).
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Because ATPG is one of the most difficult problems for electronic design automation, it has 
been researched for more than 40 years. Researchers, both theoreticians and industrial tool devel-
opers, have focused on issues such as scalability, ability to handle various fault models, and meth-
ods for extending the algorithms beyond Boolean domains to handle various abstraction levels.

Historically, ATPG has focused on a set of faults derived from a gate-level fault model. For a given 
target fault, ATPG consists of two phases: fault activation and fault propagation. Fault activation 
establishes a signal value at the fault site opposite to that produced by the fault. Fault propagation 
propagates the fault effect forward by sensitizing a path from the fault site to a primary output (PO). 
The objective of ATPG is to find an input (or test) sequence that, when applied to the circuit, enables 
testers to distinguish between the correct circuit behavior and the faulty circuit behavior caused by a 
particular fault. Effectiveness of ATPG is measured by the fault coverage achieved for the fault model 
and the number of generated vectors, which should be directly proportional to test application time.

ATPG efficiency is another important consideration. It is influenced by the fault model under 
consideration, the type of circuit under test (full scan, synchronous sequential, or asynchronous 
sequential), the level of abstraction used to represent the circuit under test (gate, register transis-
tor, switch), and the required test quality.

As design trends move toward nanometer technology, new ATPG problems are emerging. During 
design validation, engineers can no longer ignore the effects of crosstalk and power supply noise on 
reliability and performance. Current modeling and vector-generation techniques must give way to 
new techniques that consider timing information, especially small delay faults (SDFs) during test 
generation, that are scalable to larger designs, and that can capture extreme design conditions. For 
nanometer technology, many current design validation problems are becoming manufacturing test 
problems as well, so new fault-modeling and ATPG techniques will be needed. In addition, multi-
core CPUs and graphics processing units (GPUs) have become more powerful computing platforms 
for exploring parallel ATPG techniques to speed up computation for large-scale industrial circuits.

This chapter is divided into seven sections. Section 22.2 introduces gate-level fault models and 
concepts in traditional combinational ATPG. Section 22.3 discusses ATPG on gate-level sequen-
tial circuits. Section 22.4 describes circuit-based Boolean satisfiability (SAT) techniques for solv-
ing circuit-oriented problems. Section 22.5 presents advanced ATPG research topics, such as 
for delay faults, crosstalk, and power supply noise. Test compression and parallel ATPG are also 
discussed in this section. Section 22.6 introduces ATPG for design applications including logic 
optimization and design verification. Section 22.7 presents sequential ATPG approaches that go 
beyond the traditional gate-level model.

22.2 COMBINATIONAL ATPG

A fault model is a hypothesis of how the circuit may go wrong in the manufacturing process. In 
the past several decades, the most popular fault model used in practice is the single stuck-at fault 
model. In this model, one of the signal lines in a circuit is assumed to be stuck at a fixed logic 
value, regardless of what inputs are supplied to the circuit. Hence, if a circuit has n signal lines, 
there are potentially 2n stuck-at faults defined on the circuit, of which some can be viewed as 
being equivalent to others [1].

The stuck-at fault model is a logical fault model because no delay information is associated 
with the fault definition. It is also called a “permanent fault” model because the faulty effect is 
assumed to be permanent, in contrast to intermittent and transient faults that can appear ran-
domly through time. The fault model is structural because it is defined based on a structural 
gate-level circuit model.

A stuck-at fault is said to be detected by a test pattern if, when applying the pattern to the cir-
cuit, different logic values can be observed, in at least one of the circuit’s POs between the original 
circuit and the faulty circuit. A pattern set with 100% stuck-at fault coverage consists of tests to 
detect every possible stuck-at fault in a circuit.

Stuck-at fault coverage of 100% does not necessarily guarantee high quality. Earlier studies 
demonstrate that not all fault coverages are created equal [2,3] with respect to the quality levels 
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they achieve. As fault coverage approaches 100%, additional stuck-at fault tests have diminishing 
chances to detect nontarget defects [4]. Experimental results have shown that in order to capture 
all nontarget defects, generating multiple tests for a fault may be required [5]. Generating tests 
to observe faulty sites multiple times may help to achieve higher quality [6,7]. Correlating fault 
coverages to test quality is a fruitful research area beyond the scope of this chapter. We use stuck-
at fault as an example to illustrate the ATPG techniques.

A test pattern that detects a stuck-at fault satisfies two criteria simultaneously: fault activation 
and fault propagation. Consider Figure 22.1 as an example. In this example, input line a of the 
AND gate is assumed to be stuck-at 0. In order to activate this fault, a test pattern must produce 
logic value 1 at line a. Then, under the good circuit assumption, line a has logic value 1 when the 
test pattern is applied. Under the faulty circuit assumption, line a has logic value 0. The symbol 
D = 1/0 is used to denote the situation. D needs to be propagated through a sensitized path to one 
of the POs. In order for D to be propagated from line a to line c, input line b has to be set at logic 
value 1. The logic value 1 is called the “noncontrolling value” for an AND gate. Once b is set at the 
noncontrolling value, line c will have whatever logic value that line a has.

The ATPG process involves simultaneous justification of the logic value 1 at lines a and b and 
propagation of the fault difference D to a PO. In a typical circuit with reconvergent fanouts, the 
 process involves a search for the right decisions to assign logic values at primary inputs (PIs) and at 
 internal signal lines in order to accomplish both justification and propagation. The ATPG problem is 
an NP-complete problem [8]. Hence, all known algorithms have an exponential worst-case runtime.

Algorithm 22.1 BRANCH-AND-BOUND ATPG (circuit, a fault)

Solve();
if (bound_by_implication()=FAILURE) then
 return (FAILURE);
if (error difference at PO) and (all lines are justified) then
 return (SUCCESS);
while (there is an untried way to solve the problem) do {
 make a decision to select an untried way to propagate or to justify;
 if (Solve()=SUCCESS) then
 return (SUCCESS);
}
return (FAILURE);

Algorithm 22.1 illustrates a typical branch-and-bound approach to implement ATPG. The 
efficiency of this algorithm is affected by two things:

 ◾ The bound_by_implication() procedure determines whether there is a conflict in the 
current value assignments. This procedure helps the search to avoid making decisions in 
subspaces that contain no solution.
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FiGURe 22.1 Fault activation and fault propagation for a stuck-at.
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 ◾ The decision-making step inside the while loop determines how branches should be 
ordered in the search tree. This determines how quickly a solution can be reached. For 
example, one can make decisions to propagate the fault difference to a PO before making 
decisions to justify value assignments.

22.2.1 IMPLICATION AND NECESSARY ASSIGNMENTS

The ATPG process operates on at least a five-value logic defined over {0, 1, D, D′, X}; X denotes 
unassigned value [9]. D denotes that in the good circuit, the value should be logic 1, and in the 
faulty circuit the value should be logic 0. D′ is the complement of D. Logical AND, OR, and NOT 
can be defined based on these five values [1,9]. When a signal line is assigned with a value, it can 
be one of the four values {0, 1, D, D′}.

After certain value assignments have been made, necessary assignments are those implied by 
the current assignments. For example, for an n-input AND gate, its output being assigned with 
logic 1 implies that all its inputs have to be assigned to logic 1. If its output is assigned to logic 0 and 
n − 1 inputs are assigned with logic 1, then the remaining input has to be assigned with logic 0. These 
necessary assignments derived from an analysis of circuit structure are called “implications.” 
If the analysis is done individually for each gate, the implications are direct implications. There 
are other situations where implications can be indirect.

Figure 22.2a shows a simple example of indirect implication. Suppose that a value 0 is being 
justified backward through line d where line b and line c have been already assigned with logic 1. 
To justify d = 0, there are three choices to set the values of the AND’s inputs. Regardless of which 
way is used to justify d = 0, the line a must be assigned with logic value 0. Hence, in this case 
d = 0, b = 1, c = 1 together implies a = 0. Figure 22.2b shows another example where f = 1 implies 
e = 1. This implication holds regardless of other assignments.

Figure 22.3 shows an example where the fault difference D is propagated through line a. 
Suppose that there are two possible paths to propagate D, one through line b and the other 
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FiGURe 22.2 Implication examples [10]. (a) d = 0 implies a = 0 when b = 1, c = 1; (b) f = 1 implies 
e = 1.
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FiGURe 22.3 Implication d = 1 because of the unique propagation path. (From Schulz, M.H. et al., 
IEEE Trans. Comput. Aided Des., 7, 126, 1988.)
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through line c. Suppose that both paths eventually converge at a 3-input AND gate. In this case, 
regardless of which path is chosen as the propagation path, line d must be assigned with logic 
value 1. Therefore, in this case a = D implies d = 1.

The bound_by_implication() procedure in Algorithm 22.1 performs implications to derive 
all necessary assignments. A conflict occurs if a line is assigned with two different values after 
all the necessary assignments have been derived. In this case, the procedure returns failure. 
It can be seen that the greater the number of necessary assignments that can be derived by 
implications, the more likely that a conflict can be detected. Because of this, efficiently finding 
necessary assignments through implications has been an important research topic for improv-
ing the performance of ATPG since the introduction of the first complete ATPG algorithm in 
Reference 9.

In addition to the direct implications that can easily be derived based on the definitions of 
logic gates, indirect implications can be obtained by analyzing circuit structure. This analysis is 
called “learning” where correlations among signals have been established by simple and efficient 
methods. Learning methods should be simple and efficient enough so that the speedup in search 
by exploring the resulting implications should outweigh the cost of establishing the signal cor-
relations. There are two types of learning approaches proposed in the literature:

1. Static learning: Signal correlations are established before the search. For example, in 
Figure 22.2b, forward logic simulation with e = 0 obtains f = 0. Because e = 0 implies 
f = 0, we obtain that f = 1 implies e = 1. For example, in Figure 22.3, the implication 
a = D → d = 1 is universal. This can be obtained by analyzing the unique propaga-
tion path from signal line a. These implications can be applied at any time during the 
search process.

2. Dynamic learning: Signal correlations are established during the search. If the learned 
implications are conditioned on a set of value assignments, these implications can only 
be used to prune the search subspace based on those assignments. For example, in 
Figure 22.2a, d = 0 implies a = 0 only when b and c have been assigned with 1. However, 
unconditional implications of the form (x = v1) → (y =v2) can also be learned during 
dynamic learning.

The concepts of static and dynamic learning were suggested in [10]. A more sophisticated learn-
ing approach called “recursive learning” was presented in [11]. Recursive learning can be applied 
statically or dynamically. Because of its high cost, it is more efficient to apply recursive learning 
dynamically. Conflict-driven recursive learning and conflict learning for ATPG were recently pro-
posed in [12].

Knowing when to apply a particular learning technique is crucial in dynamic learning to 
ensure that the gain from learning outweighs the cost of learning. For example, it is more effi-
cient to apply recursive learning on hard-to-detect faults where most of the subspaces during 
search contain no solution [11]. Because of this, search in these subspaces is inefficient. On the 
other hand, recursive learning can quickly prove that no solution exists in these subspaces. From 
this perspective, it appears that recursive learning implements a complementary strategy with 
respect to the decision tree–based search strategy, since one is more efficient for proving the 
absence of a solution but the other is more efficient for finding a solution. Conflict learning is 
another example in which learning is triggered by a conflict [12]. The conflict is analyzed and the 
cause of the conflict is recorded. The assumption is that during a search in a neighboring region, 
the same conflict might recur. By recording the cause of the conflict, the search subspace can be 
pruned more efficiently in the neighboring region. Conflict learning was first proposed in [13] 
with application in Boolean satisfiability (SAT). The authors in [12] implement the idea in their 
ATPG with circuit-based techniques.

22.2.2 ATPG ALGORITHMS AND DECISION ORDERING

One of the first complete ATPG algorithms is the D-algorithm [9]. Subsequently, other algorithms 
were proposed, including PODEM [14], FAN [15], and SOCRATES [10].
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22.2.2.1 D-ALGORITHM

The D-algorithm is based on the five-value logic defined on {0, 1, D, D′, X}. The search process 
makes decisions at PIs as well at internal signal lines. The D-algorithm is able to find a test 
even though a fault difference may necessitate propagation through multiple paths. Figure 22.4 
 illustrates such an example.

Suppose that fault difference D is propagated to line b. If the decision is made to propagate 
D through path d, g, j, l, we will require setting a = 1 and k = 1. Since a = 1 implies i = 0, k = 1 
implies h = 1, which further implies e = 1. A conflict occurs when e = 1 and b = D. If the decision 
is made to propagate D through path e, h, k, l, we will require setting i = 0 and j = 1. j = 1 implies 
g = 1, which further implies d = 1. Again, d = 1 and b = D cause a conflict. In this case, D has to 
be propagated through both paths. The required assignments are setting a = 1, c = 1, f = 1. This 
example illustrates a case when multiple-path sensitization is required to detect a fault.

The D-algorithm is the first ATPG algorithm that can produce a test for a fault even though 
it requires multiple-path sensitization. However, because the decisions are based on a five-value 
logic system, the search can be time consuming. In practice, most faults may require only single-
path sensitization, and hence, explicit consideration of multiple-path sensitization in search may 
become an overhead for ATPG [16].

22.2.2.2 PODEM

The D-algorithm can be characterized as an indirect search approach because the goal of an 
ATPG is to find a test at PIs while the search decisions in D-algorithm are made on PIs and 
 internal signal lines. PODEM implements a direct search approach where value assignments are 
made only on PIs, so that potentially the search tree is smaller. PODEM was proposed in [14]. 
A recent implementation of PODEM, called ATOM, is presented in [17].

22.2.2.3 FAN

FAN [15] introduces two new concepts to PODEM. First, decisions can be made on internal 
head lines that are the end points of a tree logic cone. Therefore, a value assigned to a head line 
is guaranteed to be justifiable because of the tree circuit structure. Second, FAN uses a multiple-
backtrace procedure so that a set of objectives can be satisfied simultaneously. In contrast, the 
original PODEM tries to satisfy one objective at a time.

22.2.2.4 SOCRATES

SOCRATES [10] is a FAN-based implementation with improvements in the implication and mul-
tiple-backtrace procedures. It also offers an improved procedure to identify a unique sensitiza-
tion path [15].

The efficiency of an ATPG implementation depends primarily on the decision ordering it 
takes. There can be two approaches to influence the decision ordering: one by analyzing the fault 
difference propagation paths and the other by measuring the testability of signal lines.
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FiGURe 22.4 Fault propagation through multiple paths.
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Analyzing the potential propagation paths can help to make decisions more likely to reach 
a solution. For example, a simple x-path check [14] can determine whether there exists a path 
from the point of a D line to a PO, where no signal lines on the path have been assigned any 
value. Unique sensitization [15] can identify signal lines necessary for D propagation regardless 
of which path it takes. The Dominator approach [18] can identify necessary assignments for D 
propagation. The authors in [16] propose a single-path-oriented ATPG where fault propagation is 
explicitly made to have a higher priority than value justification.

Decision ordering can be guided through testability measures [1,19]. There are two types of 
testability measures: controllability measures and observability measures. Controllability mea-
sures indicate the relative difficulty of justifying a value assignment to a signal line. Observability 
measures indicate the relative difficulty of propagating the fault difference D from a line to a 
PO. One popular strategy is to select a more difficult problem to solve before selecting the easier 
ones [1]. However, there can be two difficulties with a testability-guided search approach. First, 
the testability measures may not be sufficiently accurate. Second, always solving the hard prob-
lems first may bias the decisions too much in some cases. The authors in [12] suggest a dynamic 
decision ordering approach in which failures in the justification process will trigger changes in 
decision ordering.

22.2.3 BOOLEAN SATISFIABILITY–BASED ATPG

ATPG can also be viewed as solving a Boolean satisfiability (SAT) problem. SAT-based ATPG was 
originally proposed in [20]. This approach duplicates that part of the circuit that is influenced by 
the fault and constructs a satisfiability circuit instance by combining the good circuit with the 
faulty part. An input assignment that differentiates the faulty circuit from the good circuit is a 
test to detect the fault. Several other SAT-based ATPG approaches were developed later [21–23]. 
In [23], a SAT-based ATPG called SPIRIT was proposed, which includes almost all known ATPG 
techniques with improved heuristics for learning and search. ATPG and SAT will be discussed 
further in Section 22.4.

Practical implementation of an ATPG tool often involves a mixture of learning heuristics and 
search strategies. Popular commercial ATPG tools support full-scan designs where ATPG is 
mostly combinational. Although ATPG efficiency is important, other considerations such as test 
compression rate and diagnosability are also crucial for the success of an ATPG tool.

22.3 SEQUENTIAL ATPG

The first ATPG algorithm for sequential circuits was reported in 1962 by Seshu and Freeman 
[24]. Since then, tremendous progress has been made in the development of algorithms and tools. 
One of the earliest commercial tools, LASAR [25], was reported in the early 1970s.

Due to the high complexity of the sequential ATPG, it remains a challenging task for large, 
highly sequential circuits that do not incorporate any DFT scheme. However, these test genera-
tors, combined with low-overhead DFT techniques such as partial scan, have shown a certain 
degree of success in testing large designs. For designs that are sensitive to area and/or perfor-
mance overhead, the solution of using sequential circuit ATPG and partial scan offers an attrac-
tive alternative to the popular full-scan solution, which is based on combinational circuit ATPG.

It requires a sequence of vectors to detect a single stuck-at fault in a sequential circuit. Also, 
due to the presence of memory elements, the controllability and observability of the internal 
signals in a sequential circuit are in general much more difficult than those in a combinational 
circuit. These factors make the complexity of sequential ATPG much higher than that of combi-
national ATPG.

Sequential circuit ATPG searches for a sequence of vectors to detect a particular fault through 
the space of all possible vector sequences. Various search strategies and heuristics have been 
devised to find a shorter sequence and/or to find a sequence faster. However, according to 
reported results, no single strategy/heuristic outperforms others for all applications/circuits. This 
observation implies that a test generator should include a comprehensive set of heuristics.
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In this section, we will discuss the basics and give a survey of methods and techniques for 
sequential ATPG. We focus on the methods that are based on gate-level circuit models. Examples 
will be given to illustrate the basics of representative methods. The problem of sequential justifi-
cation, sometimes referred to as sequential SAT, will be discussed in more detail in Section 22.4.

Figure 22.5 shows the taxonomy for sequential test generation approaches. Few approaches can 
directly deal with the timing issues present in highly asynchronous circuits. Most sequential cir-
cuit test generation approaches neglect the circuit delays during test generation. Such approaches 
primarily target synchronous or almost synchronous (i.e., with some asynchronous reset/clear 
and/or few asynchronous loops) sequential circuits, but they cannot properly handle highly asyn-
chronous circuits whose functions are strongly related to the circuit delays and are sensitive to 
races and hazards. One engineering solution to using such approaches for asynchronous circuits 
is to divide the test generation process into two phases. A potential test is first generated by 
ignoring the circuit delays. The potential test is then simulated using proper delay models in the 
second phase to check its validity. If the potential test is invalid due to race conditions, hazards, 
or oscillations, test generation is called again to produce a new potential test.

The approaches for (almost) synchronous circuits can be classified according to the level of 
abstraction at which the circuit is described. A class of approaches uses the state transition graph 
for test generation [26–29]. This class is suitable for pure controllers for which the state transition 
graphs are either readily available or easily extractable from a lower level description. For data-
dominated circuits, if both register-transfer-level (RTL) and gate-level descriptions are provided, 
several approaches can effectively use the RTL description for state justification and fault propa-
gation [30–32].

Most of the commercial test generators are based on the gate-level description. Some of them 
employ the iterative array model [33,34] and use topological analysis algorithms [35–38] or they 
might be enhanced from a fault simulator [24,39–42]. Some use the mixed/hybrid methods that 
combine the topological analysis–based methods and the simulation-based methods [43–45]. 
Most of these gate-level approaches assume an unknown initial state in the flip-flops, whereas 
some approaches assume a known initial state to avoid initialization of the state-holding elements 
[46–48]. The highlighted models and approaches in Figure 22.5 are those commonly adopted in 
most of today’s sequential ATPG approaches.

22.3.1 TOPOLOGICAL ANALYSIS–BASED APPROACHES

Many sequential circuit test generators have been devised on the basis of fundamental 
combinational algorithms. Figure 22.6a shows the Hoffman model of a sequential circuit. 
Figure 22.6b shows an array of combinational logic through time-frame expansion. In any 
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time frame, logic values can be assigned only to the PIs. The values on the next-state (NS) 
lines depend on the values of the current state lines at the end of the previous time frame. 
The iterative combinational model is used to approximate the timing behavior of the circuit. 
Topological analysis algorithms that activate faults and sensitize paths through these mul-
tiple copies of the combinational circuit are used to generate input assignments at the PIs. 
Note that a single stuck-at fault in a sequential circuit will correspond to a multiple stuck-at 
fault in the iterative array model where each time frame contains the stuck-at fault at the 
corresponding fault site.

The earliest algorithms extended the D-algorithm [9] based on the iterative array model [33,34]. 
It starts with one copy of the combinational logic and sets it to time frame 0. The D-algorithm 
is used for time frame 0 to generate a combinational test. When the fault effect is propagated to 
the NSs, a new copy of the combinational logic is created as the next time frame and the fault 
propagation continues. When there are values required at the present state lines, a new copy 
of the combinational logic is created as the previous time frame. The state justification is then 
performed backward in the previous time frame. The process continues until there is no value 
requirement at the present state lines, and a fault effect appears at a PO.

Muth [49] pointed out that the five-value logic based on {0, 1, D, D′, X} used in the D-algorithm 
is not sufficient for sequential ATPG. A nine-value logic is suggested to take into account the pos-
sible repeated effects of the fault in the iterative array model. Each of the nine values is defined by 
an ordered pair of binary values—the first value of the pair represents the ternary value (0, 1, or X) 
of a single line in the fault-free circuit, and the second value represents the ternary value of the 
signal line in the faulty circuit. Hence for a signal, there are possibly nine distinct ordered pairs 
(0/0, 0/1, 0/X, 1/0, 1/1, 1/X, X/0, X/1, and X/X).

The extended D-algorithm and the nine-value-based algorithm use mixed forward and reverse 
time processing (RTP) techniques during test generation. The requirements created during the 
forward process (fault propagation) have to be justified by the backward process later. The mixed 
time processing techniques have some disadvantages. The test generator may need to maintain 
a large number of time frames during test generation because all time frames are partially pro-
cessed and the implementation is somewhat complicated.

The RTP technique used in the Extended Backtrace Algorithm (EBT) [35] overcomes the prob-
lems caused by the mixed time processing technique. RTP works backward in time from the last 
time frame to the first time frame. For a given fault, it preselects a path from the fault site to a PO. 
This path may involve several time frames. The selected path is then sensitized backward start-
ing from the PO. If the path is successfully sensitized, backward justification is performed for the 
required value at the fault site. If the sensitization process fails, another path is selected.

RTP has two main advantages: (1) at any time during the test generation process, only two 
time frames need to be maintained: the current time frame and the previous one. For such a 
unidirectional algorithm, the backward justification process is done in a breadth-first manner. 
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The value requirements in time frame n are completely justified before the justification of the 
requirements in time frame n − 1. Therefore, the justified values at internal nodes of time frame 
n can be discarded when the justification of time frame n − 1 starts. As a result, the memory 
usage is low and the implementation is easier. Note that the decision points and their corre-
sponding circuit status still need to be stacked for the purpose of backtracking. (2) It is easier 
to identify repetition of state requirements. A state requirement is defined as the state specified 
at the present state lines of a time frame during the backward justification process. If a state 
requirement has been visited earlier during the current backward justification process, the test 
generator has found a loop in the state transition diagram. This situation is called “state repeti-
tion.” The backward justification process should not continue to circle that loop, so backtrack-
ing should take place immediately. Since justification in time frame n is completed before the 
justification in time frame n − 1, state repetition can be easily identified by simply recording the 
state requirement after the completion of backward justification of each time frame and then 
comparing each newly visited state requirement with the list of previously visited state require-
ments. Therefore, the search can be conducted more effectively. Similarly, the test generator 
can maintain a list of illegal states, that is, the states that have been previously determined as 
unjustifiable. Each newly visited state requirement should also be compared against this list to 
determine whether the state requirement is an identified illegal state, in order to avoid repetitive 
and unnecessary searches.

There are two major problems with the EBT algorithm: (1) only a single path is selected for 
sensitization. Faults that require multiple-path sensitization for detection may not be covered. 
(2) The number of possible paths from the fault site to the POs can be very large; trying path by 
path may not be efficient.

After the EBT approach, several other sequential ATPGs were proposed, including the BACK 
algorithm [36], HITEC [37], and FASTEST [38].

22.3.1.1 BACK

The BACK algorithm [36] is an improvement over the EBT algorithm. It also employs the RTP 
technique. Instead of preselecting a path, the BACK algorithm preselects a PO. It assigns a D or 
D′ to the selected PO and justifies the value backward. A testability measure (called drivability) is 
used to guide the backward D-justification from the selected PO to the fault site. Drivability is a 
measure associated with a signal that estimates the effort of propagating a D or D′ from the fault 
site to the signal. The drivability measurement is derived based on the SCOAP [50] controllability 
measurement of both fault-free and faulty circuits. For a given fault, the drivability measure of 
each signal is computed before test generation starts.

22.3.1.2 HITEC

HITEC [37] employs several techniques to improve the performance of test generation. Even 
though it uses both forward time processing and RTP, it clearly divides the test generation pro-
cess into two phases. The first is the forward time processing phase in which the fault is activated 
and propagated to a PO. The second phase is the justification of the initial state determined in 
the first phase using the RTP. Due to the use of the forward time processing for fault propagation, 
several efficient techniques (such as the use of dominators, unique sensitization, and mandatory 
assignments [10,15,18,51] used in combinational ATPG) can be extended and applied in phase 1. 
In the RTP algorithms, such techniques are of no use. Also, no drivability is needed for the fault 
propagation phase, which further saves some computing time.

22.3.1.3 FASTEST

FASTEST [38] uses only forward time processing and uses PODEM [14] as the underlying 
test generation algorithm. For a given fault, FASTEST first attempts to estimate the total 
number of time frames required for detecting the fault and also to estimate at which time 
frame the fault is activated. The estimation is based on SCOAP [50]-like controllability and 
observability measures. An iterative array model with the estimated number of time frames 
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is then constructed. The present state lines of the very first time frame have unknown values 
and cannot be assigned to either binary value. A PODEM-like algorithm is employed where 
the initial objective is to activate the target fault at the estimated time frame. After an initial 
objective has been determined, it backtraces starting from the line of the initial objective until 
it reaches an unassigned PI or a present state line in the first time frame. For the latter case, 
backtracking is performed immediately. This process is very similar to the PODEM algorithm 
except that the process now works on a circuit model with multiple time frames. If the algo-
rithm fails to find a test within the number of time frames currently in the iterative array, the 
number of time frames is increased, and test generation is attempted again based on the new 
iterative array.

Compared to the RTP algorithms, the main advantage of the forward time processing algo-
rithm is that it will not waste time in justifying unreachable states and will usually generate a 
shorter justification sequence for bringing the circuit to a hard-to-reach state. For circuits with 
a large number of unreachable states or hard-to-reach states, the RTP algorithms may spend 
too much time in proving that unreachable states are unreachable or generating an unduly long 
sequence to bring the circuit to a hard-to-reach state. However, the forward time processing 
algorithm requires a good estimate of the total number of time frames and the time frame for 
activating each target fault. If that estimation is not accurate, the test generator may waste much 
effort in the smaller-than-necessary iterative array model.

22.3.2 UNDETECTABILITY AND REDUNDANCY

For combinational circuits or full-scan sequential circuits, a fault is called “undetectable” if no 
input sequence can produce a fault effect at any PO. A fault is called “redundant” if the presence 
of the fault does not change the input/output behavior of the circuit. The detectability is associ-
ated with a test generation procedure, whereas the redundancy is associated with the functional 
specification of a design.

A fault is combinationally redundant if it is reported as undetectable by a complete combina-
tional test generator [52]. The definitions of detectability and redundancy for (nonscan) sequen-
tial circuits are much more complicated [1,53,54], and these two properties (the redundancy and 
undetectability of stuck-at faults) are no longer equivalent [1,53,54].

It is pointed out in [54] that undetectability could be precisely defined only if a test strategy is 
specified, and redundancy cannot be defined unless the operational mode of the circuit is known. 
The authors give formal and precise definitions of undetectability with respect to four different 
test strategies, namely, full scan, reset, multiple observation time (MOT), and single observation 
time (SOT). They also explain redundancies with respect to three different circuit operational 
modes, namely, reset, synchronization, and nonsynchronization [54].

A fault is called undetectable under full scan if it is combinationally undetectable [55]. In the 
case where hardware reset is available, a fault is said to be undetectable under the reset strategy 
if no input sequence exists such that the output response of the fault-free circuit is different 
from the response of the faulty circuit, both starting from their reset states. In the case where 
hardware reset is not available, there are two different test strategies: the MOT strategy and the 
SOT strategy.

Under the SOT strategy, a sequence detects a fault only if a fault effect appears at the same 
PO Oi and at the same vector vj for all power-up initial state pairs of the fault-free and faulty 
circuits (Oi could be any PO, and vj could be any vector in the sequence). Most gate-level 
test generators and the aforementioned sequential ATPG algorithms assume the SOT test 
strategy.

Under the MOT strategy, a fault can be detected by multiple input sequences—each input 
sequence produces a fault effect at some PO for a subset of power-up initial state pairs and the 
union of the subsets covers all possible power-up initial state pairs (for an n-flip-flop circuit, there 
are 22n power-up initial state pairs). Under the MOT strategy, it is also possible to detect a fault 
using a single test sequence for which fault effects appear at different POs and/or different vectors 
for different power-up initial state pairs.
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22.3.3 APPROACHES ASSUMING A KNOWN RESET STATE

To avoid generating an initialization sequence, a class of ATPG approaches assumes the  existence 
of a known initial state. For example, this assumption is valid for circuits like controllers that 
usually have a hardware reset (i.e., there is an external reset signal, and the memory elements 
are implemented by resettable flip-flops). Approaches like STALLION [46], STEED [47], and 
VERITAS [48] belong to this category.

22.3.3.1 STALLION

STALLION first extracts the state transition graph (STG) for the fault-free circuit. For a given 
fault, it finds an activation state S and a fault propagation sequence T that will propagate the fault 
effect to a PO. This process is based on PODEM and the iterative array model. There is no back-
ward state justification in this step. Using the STG, it then finds a state transfer sequence T0 from 
the initial state S0 to the activation state S. Because the derivation of the state transfer sequence is 
based on the state graph of the fault-free circuit, the sequence may be corrupted by the fault and 
hence may not bring the faulty circuit into the required state S. Therefore, fault simulation for 
the concatenated sequence T0 − T is required. If the concatenated sequence is not a valid test, an 
alternative transfer sequence or propagation sequence will be generated.

STALLION performs well for controllers for which the state transition graph can be extracted 
easily. However, the extraction of STG is not feasible for large circuits. To overcome this defi-
ciency, STALLION constructs a partial STG only. If the required transfer sequence cannot be 
derived from the partial STG, the partial STG is then dynamically augmented.

22.3.3.2 STEED

STEED is an improvement upon STALLION. Instead of extracting the complete or partial state 
transition graph, it generates an ON set and an OFF set for each PO and each NS line for the 
fault-free circuit during the preprocessing phase. The ON set (OFF set) of a signal is the complete 
set of cubes (in terms of the PIs and the present state lines) that produces a logic 1 (logic 0) at a 
signal. The ON sets and OFF sets of the PO s and NSs can be generated using a modified PODEM 
algorithm.

For a given fault, PODEM is used to generate one combinational test. The state transfer 
sequence and fault propagation sequence are constructed by intersecting the proper ON/OFF 
sets. In general, ON/OFF set is a more compact representation than the state transition graph. 
Therefore, STEED can handle larger circuits than STALLION. STEED shows good performance 
for circuits that have relatively small ON/OFF sets. However, generating, storing, and intersect-
ing the ON/OFF sets can be very expensive (in terms of both CPU time and memory) for certain 
functions such as parity trees. Therefore, STEED may have difficulties generating tests for cir-
cuits containing such function blocks. Also, like STALLION, the transfer and fault propagation 
sequences derived from the ON/OFF sets of the fault-free circuit may not be valid for the faulty 
circuit and therefore need to be verified by a fault simulator.

22.3.3.3 VERITAS

VERITAS is a binary decision diagram (BDD)-based test generator that uses the BDD [56] to 
represent the state transition relations as well as sets of states. In the preprocessing phase, a state 
enumeration algorithm based on such BDD representations is used to find the set of states that 
are reachable from the reset state and the corresponding shortest transfer sequence for each of 
the reachable states. In the test generation phase, as with STEED, a combinational test is first 
generated. The state transfer sequence to drive the machine into the activation state is readily 
available from the data derived from reachability analysis done in the preprocessing phase. Due 
to the advances in BDD representation, construction, and manipulation, VERITAS in general 
achieves better performance than STEED.

In addition to the assumption of a known reset state, another common principle used by 
the three aforementioned approaches is to incorporate a preprocessing phase to (explicitly 
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or implicitly) compute the state transition information. Such information could be used during 
test generation to save some repeated and unnecessary state justification effort. However, for 
large designs with huge state space, such preprocessing could be excessive. For example, complete 
reachability analysis used in the preprocessing phase of VERITAS typically fails (due to memory 
explosion) for designs with several hundreds of flip-flops. Either using partial reachability analy-
sis or simply performing state justification on demand during test generation is a necessary modi-
fication to these approaches for large designs.

22.3.4 SUMMARY

The presence of flip-flops and feedback loops substantially increases the complexity of the ATPG. 
Due to the inherent intractability of the problem, it remains infeasible to automatically derive 
high-quality tests for large, nonscan sequential designs. However, because considerable progress 
has been made during the past few decades, and since robust commercial ATPG tools are now 
available, the partial-scan design methodology that relies on such tools for test generation might 
become a reasonable alternative to the full-scan design methodology [57].

As is the case with most other computer-aided design (CAD) tools, there are many engineer-
ing issues involved in building a test generator to handle large industrial designs. Industrial 
designs may contain tristate logic, bidirectional elements, gated clocks, I/O terminals, etc. Proper 
modeling is required for such elements, and the test generation process would also benefit from 
some modifications. Many of these issues are similar to those present in the combinational ATPG 
problem that have been addressed (e.g., [58–60]).

Developing special versions of ATPG algorithms/tools for circuits with special circuit struc-
tures and/or properties could be a good way to further improve the ATPG performance. Many 
partial-scan circuits have unique circuit structures. A more detailed comparison of various 
sequential ATPG algorithms, practical implementation issues, and applications with partial-scan 
designs can be found in the survey [57].

22.4 ATPG AND SAT

SAT has attracted tremendous research effort in recent years, resulting in the development of 
various efficient SAT solver packages. Popular SAT solvers [13,61–64] are designed based upon 
the conjunctive normal form (CNF).

Given a finite set of variables, V, over the set of Boolean values B ∈ {0, 1}, a literal, l or l  is an 
instance of a variable v or its complement ¬v, where v ∈ V. A clause ci, is a disjunction of literals 
(l1 ∨ l2 ∨ ⋯ ∨ ln). A formula f, is a conjunction of clauses c1 ∧ c2 ∧ ⋯ ∧ cn. Hence, a clause is con-
sidered as a set of literals, and a formula as a set of clauses. An assignment A satisfies a formula f 
if f (A) = 1. In a SAT problem, a formula f is given and the problem is to find an assignment A to 
satisfy f or prove that no such assignment exists.

22.4.1 SEARCH IN SAT

Modern SAT solvers are based on the search paradigm proposed in GRASP [13], which is an 
extension from the original DPLL [65] search algorithm. Algorithm 22.2 [13] describes the basic 
GRASP search procedure.

Algorithm 22.2 SAT()

 // B is the backtracking decision level 
 // d is the current decision level
 Search(d,B);
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 if (decided(d) = SUCCESS) then
 return (SUCCESS);
 while (true) do {
 if deduce(d) ≠ (CONFLICT) then {
 if (Search(d + 1, B) = SUCCESS) then
 return (SUCCESS);
 if (B ≠ d) then { 
 erase();
 return (CONFLICT);
 }
}
if (diagnose(d,B) = CONFLICT)  then {
 erase();
 return (CONFLICT);
 }
 erase();
}

In the algorithm, function decide() selects an unassigned variable and assigns it with a logic 
value. This variable assignment is referred to as a “decision.” If no unassigned variable exists, 
decide() will return SUCCESS, which means that a solution has been found. Otherwise, decide() 
will return CONFLICT to invoke the deduce() procedure to check for conflict. A decision level 
d is associated with each decision. The first decision has decision level 1, and the decision level 
increases by one for each new decision.

The purpose of deduce() is to check for conflict by finding all necessary assignments induced by 
the current decisions. This step is similar to perform implications in ATPG. For example, in order to 
satisfy f, every clause of it must be satisfied. Therefore, if a clause has only one unassigned literal and 
all the other literals are assigned with 0, then the unassigned literal must be assigned with value 1. 
A conflict occurs when a variable is assigned with both 1 and 0 or a clause becomes unsatisfiable.

The purpose of diagnose() is to analyze the reason that causes the conflict. The reason can be 
recorded as a conflict clause. The procedure can also determine a backtracking level other than back-
tracking to the previous decision level, a feature that can be used to implement nonchronological 
backtracking [66]. The erase() procedure deletes the value assignments at the current decision level.

In a modern SAT solver, one of the key concepts is conflict-driven learning. Conflict-driven 
learning is a method to analyze the causes of a conflict and then record the reason as a conflict 
clause to prevent the search from reentering the same search subspace. Since the introduction of 
conflict-driven learning, a hot research topic has been to find ways to derive conflict clauses that 
could efficiently prune the search space.

22.4.2 COMPARISON OF ATPG AND CIRCUIT SAT

From all appearances, the problem formulation of ATPG is more complicated. ATPG involves 
fault activation and fault propagation, whereas circuit SAT concerns only justifying the value 1 at 
the single PO of a circuit. However, as mentioned in Section 2.3, the ATPG problem can also be 
converted into a SAT problem [20].

Conflict-driven learning was originally proposed for SAT. One nice property of conflict-driven 
learning is that the reason for a conflict can be recorded as a conflict clause whose representation 
is consistent with that of the original problem. This simplifies the SAT solver implementation, in 
contrast to ATPGs where various learning heuristics are used, each of which may require a differ-
ent data structure for efficient implementation. The authors in [22] argued that this simplification 
in implementation might provide benefits for runtime efficiency.

For circuit SAT, the conflict clauses can also be stored as gates. Figure 22.7 illustrates this. 
During the application of SAT search, constraints on the signal lines can be accumulated and 
added onto the circuit. These constraints are represented as OR gates where the outputs are set 
with logic value 1. These constraints encode the signal correlations that have to hold due to the 
given circuit structure.
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The idea of conflict-driven learning was implemented in the ATPG in [12]. For many other 
applications in CAD automation of integrated circuits, applying SAT to solve a circuit-oriented 
problem often requires transformation of the circuit gate-level netlist into its corresponding 
CNF format [67]. In a typical circuit-to-CNF transformation, the topological ordering among 
the internal signals is obscured in the CNF formula. In CNF format, all signals become (input) 
variables.

For solving circuit-oriented problems, circuit structural information has proved to be very 
useful. The authors in [68] developed a structural graph model called an “implication graph” 
for efficient implication and learning in SAT. Methods were also provided in [69,70] to utilize 
structural information in SAT algorithms, which required minor modifications to the existing 
SAT algorithms. The authors in [71] implemented a circuit-based SAT solver that used structural 
information to identify unobservable gates and to remove the clauses for those gates. The work 
in [72] represented Boolean circuits in terms of 2-input AND gates and inverters. Based on this 
circuit model, a circuit SAT solver could be integrated with BDD sweeping [73].

The authors in [74] developed a circuit-based SAT solver that adopted the techniques used 
in CNF-based SAT solver zChaff [62], for example, the watched literal technique for efficient 
implication. The authors in [75] tried to recover the structural information from CNF formulas, 
utilizing the structural information to eliminate clauses and variables. Theoretical results regard-
ing circuit-based SAT algorithms were presented in [76]. The authors in [77] developed a SAT 
solver employing circuit-based implicit and explicit learning, applying the solver on industrial 
hard cases [78]. The authors in [79] developed a sequential circuit SAT solver for the sequential 
justification problem. In the following, we summarize the ideas in [77,79] to illustrate how circuit 
information can be used in circuit SAT.

22.4.3 COMBINATIONAL CIRCUIT SAT

Consider the circuit in Figure 22.8, where shaded area B contains shaded area A and shaded area 
C contains shaded area B. Suppose we want to solve a circuit SAT problem with the output objec-
tive c = 1. When we apply a circuit SAT solver to prove that c = 0 or to find an input assignment 
to make c = 1, potentially the search space for the solver is the entire circuit. Now suppose we 
identify, in advance, two internal signals a and b, such that a = 1 and b = 0 will be very unlikely 
outcomes when random inputs are supplied to the circuit. Then, we can divide the original prob-
lem into three subproblems: (1) solving a = 1, (2) solving b = 0, and then (3) solving c = 1.

Since a = 1 is unlikely to happen, when a circuit SAT solver makes decisions trying to sat-
isfy a = 1, it is likely to encounter conflicts. As a result, much conflict-driven information can 
be learned and stored as conflict gates (as illustrated in Figure 22.7). If we assume that solving 
a = 1 is done only based upon the cone of influence headed by the signal a (the shaded area A in 
Figure 22.8), then the conflict gates will be based upon the signals contained in the area A only.
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FiGURe 22.7 Learned gates accumulated by solving a = 1 in a circuit SAT problem.
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As the solver finishes solving a = 1 and starts solving b = 0, all the learned information 
 regarding the circuit area A can be used to help in solving b = 0. In addition, if a = 1 is indeed 
unsatisfiable, then signal a can be assigned with 0 when the solver is solving b = 0. Similarly, 
learned information from solving a = 1 and b = 0 can be reused to help in solving c = 1.

Intuitively, we believe that solving the three subproblems following their topological order 
could be accomplished much faster than directly solving the original problem. This is because 
when solving b = 0, hopefully fewer (or no) decisions are required to go into area A. Hence, the 
search space is more restricted within the portion of area B that is not part of area A. Similarly, 
solving c = 1 requires most decisions to be made only within the portion of area C, which is not 
part of area B. Moreover, the conflict gates accumulated by solving a = 1 could be smaller because 
they are based upon the signals in area A only. Similarly, the conflict gates accumulated during 
the solving of b = 0 could be smaller. Conceptually, this strategy allows solving a complex prob-
lem incrementally.

The authors in [77] implement a circuit SAT solver based on the idea just described. The deci-
sion ordering in the SAT solver is guided through signal correlations identified before the search 
process. A group of signals s1, s2, …, si (where i > 1) are said to be correlated if their values satisfy 
a certain Boolean function f (s1, s2, …, si) during random simulation, for example, the values of 
s1and s2 satisfy s1= s2 during random simulation. Examples of signal correlations are equivalence 
correlation, inverted equivalence correlation, and constant correlation.

22.4.4 SEQUENTIAL CIRCUIT SAT

Recently, a sequential SAT solver utilized combined ATPG and SAT techniques to implement 
a sequential SAT solver by retaining the efficiency of Boolean SAT and being complete in the 
search [79]. Given a circuit following the Huffman synchronous sequential circuit model, sequen-
tial SAT (or sequential justification) is the problem of finding an ordered input assignment 
sequence such that a desired objective is satisfied or proving that no such sequence exists. Under 
this model, a sequential SAT problem can fit into one of the following two categories:

 ◾ In a weak SAT problem, an initial state value assignment is given. The problem is to find 
an ordered sequence of input assignments such that together with the initial state, the 
desired objective is satisfied or proved to be unsatisfiable.

 ◾ In a strong SAT problem, no initial state is given. Hence, it is necessary to identify an 
input sequence to satisfy the objective starting from the unknown state. To prove unsat-
isfiability, a SAT solver needs to prove that no input sequence can satisfy the given objec-
tive for all reachable initial states.

A strong SAT problem can be translated to a weak SAT problem by encoding technique [68]. 
In sequential SAT, a sequential circuit is conceptually unfolded into multiple copies of the 
combinational circuit through time-frame expansion. In each time frame, the circuit becomes 

C
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FiGURe 22.8 An example for incremental SAT solving.
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combinational, and hence, a combinational SAT solver can be applied. In each time frame, a 
state element such as a flip-flop is translated into two corresponding signals: a pseudo-PI (PPI) 
and a pseudo-PO (PPO). The initial state is specified with the PPIs in time frame 0. The objec-
tive is specified with the signals in time frame n (the last time frame, where n is unknown before 
solving the problem). During search in the intermediate time frames, intermediate solutions are 
produced at the PPIs, and they become the intermediate PPO objectives to be justified in the 
previous time frames.

Given a sequential circuit, a state clause is a clause consisting only of state variables. A state 
clause encodes a state combination where no solution can be found. Due to the usage of state 
clauses, the time-frame expansion can be implemented implicitly by keeping only one copy of the 
combinational circuit.

To illustrate the usage of state clauses in sequential SAT, Figure 22.9 depicts a simple example 
circuit with three PIs a, b, c, one PO f, and three state-holding elements (i.e., flip-flops) x, y, z. The 
initial state is x = 1, y = 0, z = 1. Suppose the SAT objective is to satisfy f = 1.

Starting from time frame n where n is unknown, the circuit is treated as a combinational 
circuit with state variables duplicated as PPOs and PPIs. This is illustrated as (1) in the figure. Since 
this represents a combinational SAT problem, a combinational circuit SAT solver can be applied.

Suppose after the combinational SAT solving, we can identify a solution a = 1, b = 0, c = 0, 
PPIx= 0, PPIy= 1, PPIz= 0 to satisfy f = 1 (step (2)). The PPI assignment implies a state assignment 
x = 0, y = 1, z = 0. Since it is not the initial state, at this point, we may choose to continue the 
search by expanding into time frame n − 1 (this follows a depth-first search strategy).

Before solving in time frame n − 1, we need to examine the solution state x = 0, y = 1, z = 0 
more closely. This is because this solution may not represent the minimal assignment to satisfy 
the objective f = 1. Suppose after the analysis, we can determine that z = 0 is unnecessary. In other 
words, by keeping the assignment “x = 0, y = 1,” we may discover that f = 1 can still be satisfied. 
This step is called “state minimization.”

After state minimization, backward time-frame expansion is achieved by adding a state objec-
tive PPOx = 0, PPOy = 1 to the combinational copy of the circuit. Also, a state clause “(x + y′)” 
is generated to prevent reaching those same state solutions defined by the state assignment 
“x = 0, y = 1.” The new combinational SAT instance is then passed to the combinational circuit 
SAT solver for solving.

Suppose in time frame n − 1 no solution can be found. Then, we need to backtrack to time 
frame n to find another solution other than the state assignment “x = 0, y = 1.” In a way, we have 
proved that from state “x = 0, y = 1,” there exists no solution. This implies that there is no need to 
remove the state clause “(x + y′).” However, at this point we may want to perform further analysis 
to determine whether both PPOx = 0 and PPOy = 1 are necessary to cause the unsatisfiability. 

State
objective

PPI x

PPI z
PPI y

a
b
c

f = 1

PPO x
PPO y
PPO z

f = 1

PPO x
PPO y
PPO z

PPI x

PPI z
PPI y

a
b
c

f = 1

PPO x
PPO y
PPO z

State clause: (x + y΄)(x)

Time frame n

Time frame n

PPI x

PPI z
PPI y

a
b
c

1 PPI y

1 a
0 b

0 PPI x

Time frame n(1)
(2)

(3)

(4)

Initial state: (x = 1, y = 0, z = 1)

0 PPI z

0 c

State clause: (x + y΄)

0
1

N
o 

so
lu

tio
n:

 U
N

SA
T

 Time frame (n–1)

PPO x
PPO y
PPO z

FiGURe 22.9 Sequential circuit SAT with state clauses.



Chapter 22 – Automatic Test Pattern Generation    577

Suppose that after conflict analysis we discover that PPOx = 0 alone is sufficient to cause the con-
flict. Then, for the sake of efficiency, we want to add another state clause “(x).” This is illustrated 
in (4) of the figure. This step is called “state conflict analysis.”

The new combinational SAT instance now has the state clauses “(x + y′)(x)” that record the 
nonsolution state subspaces previously identified. The solving continues until either one of the 
following two conditions is reached:

 1. After state minimization, a solution is found with a state assignment containing the 
initial state. For example, a solution with the state assignment “x = 1, z = 1” contains the 
initial state “x = 1, y = 0, z = 1.” In this case, a solution for the sequential SAT problem 
is found. We note that a solution without any state assignment and with only PI assign-
ments is considered as one containing any initial state.

 2. If in time frame n, the initial objective f = 1 and state clauses together cannot be satis-
fied, then the original problem is unsatisfiable. This is equivalent to saying that, without 
adding any PPO objective, if the initial objective f = 1 and state clauses together cannot 
be satisfied, then the original problem is unsatisfiable. Here, with the state clauses, the 
time-frame expansion is conducted implicitly rather than explicitly, that is, only one 
copy of the combinational part of the circuit is required to be kept in the search process.

The aforementioned example illustrates several important concepts in the design of a sequential 
circuit SAT solver.

 ◾ The state minimization involves finding the minimal state assignments for an interme-
diate PPI solution. The search can be more efficient with an intermediate PPI solution 
containing a smaller number of assigned states.

 ◾ The use of state clauses serves two purposes: (1) to record those state subspaces that have 
been explored and (2) to record those state subspaces containing no solution. The first is 
to prevent the search from entering a state justification loop. The second follows the same 
spirit as that in the combinational SAT: when enough state clauses are accumulated, com-
binational SAT can determine that there is no solution to satisfy the initial objective and 
the state clauses. In this case, the problem is unsatisfiable. Note that while in sequential 
SAT, unsatisfiability is determined through combinational SAT, in combinational SAT, 
unsatisfiability is determined by implications based on the conflict clauses.

 ◾ Although conceptually the search follows backward time-frame expansion, the afore-
mentioned example demonstrates that for implementation, explicit time-frame expan-
sion is not necessary. In other words, a sequential SAT solver needs only one copy of 
the combinational circuit. Moreover, there is no need to memorize the number of time 
frames being expanded.

 ◾ The aforementioned example demonstrates the use of a depth-first search strategy. As 
mentioned before, decision ordering can significantly affect the efficiency of a search 
process. In sequential circuit SAT, the issue is when to proceed with time-frame expan-
sion. In depth-first fashion, time-frame expansion is triggered by trying to solve the 
most recent state objective generated. In breadth-first fashion, the newly generated 
state objectives are resolved after solving all state objectives in the current time frame. 
A hybrid search strategy can be implemented by managing the state objective queue in 
various orders.

A frame objective is an objective to be satisfied, which is passed to the combinational SAT solver. 
A frame objective can be either the initial objective or a state objective. A frame solution is an 
assignment on the PIs and PPIs, which satisfies a given frame objective without conflicting with 
the current state clauses.

When a frame objective is proved by the combinational SAT to be unsatisfiable, conflict analy-
sis is applied to derive additional state clauses based on only the PPOs. In other words, conflict 
analysis traces back to PPOs to determine which of them actually contribute to the conflict. Here, 
the conflict analysis can be similar to that in the combinational SAT [80], but the goal is to ana-
lyze the conflict sources up to the PPOs only.
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As in the combinational SAT, where conflict clauses are accumulated through the solving 
process, in sequential SAT design, state clauses are accumulated through the solving process. The 
sequential solving process consists of a sequence of combinational solving tasks based on given 
frame objectives. At the beginning, the frame objective is the initial objective. As the solving pro-
ceeds, many state objectives become frame objectives. Hence, frame objectives also accumulate 
through the solving process.

A frame objective can be removed from the objective array only if it is proved to be unsatisfi-
able by the combinational SAT. If it is satisfiable, the frame objective stays in the objective array. 
The sequential SAT solver stops only when the objective array becomes empty. This means that it 
has exhausted all the state objectives and has also proved that the initial objective is unsatisfiable 
based on the accumulated state clauses.

During each step of combinational SAT, conflict clauses also accumulate through the combi-
national SAT solving process. When the sequential solving switches from one frame objective to 
another, these conflict clauses stay. Hence, in the sequential solving process, the conflict clauses 
generated by the combinational SAT are also accumulated. Although these conflict clauses can 
help to speed up the combinational SAT solving, experiences show that for sequential SAT, man-
aging the state clauses dominates the overall sequential search efficiency [79].

Algorithm 22.3 SEQUENTIAL SAT(C, obj, s0)

 // C is the circuit with PPIs and PPOs expanded
 // obj is the initial objective
 // s0 is the initial state
 // FO is the objective array
 FO <-- {obj};
 while (FO ≠ Φ ) do {
 fobj <-- select_a_frame_objective(FO);
 fsol <-- combinational_solve_a_frame_objective(C,fobj);
 if (fsol = NULL) then {
 clause <-- PPO_state_conflict_analysis(C,fobj);
 add_state_clause(C,clause);
 FO <-- FO − {fobj};
 }
 else {
 stateassignment <-- state_minimization(C,fobj,fsol);
 if (s0 ∈ stateassignment ) then 
 return (SAT);
 else {
 clause <-- convert_to_clause(stateassignment);
 add_state_clause(C,clause);
 FO <-- FO + stateassignment;
 }
 }
}
return (UNSAT)

The overall algorithm of the sequential circuit SAT solver is described in Algorithm 22.3. Note 
that in this algorithm, solving each frame objective produces only one solution. However, it is 
easy to extend this algorithm so that solving each frame objective produces many solutions at 
once. The search strategy is based on the selection of one frame objective at a time from the 
objective array FO, where different heuristics can be implemented. The efficiency of the sequen-
tial circuit SAT solver highly depends on the selection heuristic [79].

22.5 ADVANCED ATPG RESEARCH

The move toward nanometer technology has introduced new failure modes and a new set of design 
and test problems [81]. Device features continue to shrink as the number of interconnect layers and 
gate density increases. The result is increased current density and a higher voltage drop along the 
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power nets, as well as increased signal interference from coupling capacitance. The performance 
of devices becomes more and more vulnerable to various small delay variations caused by process 
variation, resistive opens and shorts, crosstalk, and power supply noise. All these give rise to tim-
ing failures and cause excessive propagation delays that degrade circuit performance. We intro-
duce advanced research in delay faults, crosstalk faults, and power-aware ATPG in Sections 22.5.1, 
22.5.2, and 22.5.3, respectively. With ever-increasing test data volume, Section 22.5.4 describes 
important test compression techniques, which have been widely implemented in modern chips. 
Section 22.5.5 shows parallel algorithms for multicore and many-core computers. Finally, Section 
22.5.6 shows a novel application: ATPG for hardware Trojan detection.

22.5.1 ATPG FOR DELAY FAULTS AND NOISE

Demands for higher circuit operating frequencies, lower cost, and higher quality mean that test-
ing must ascertain that the circuit’s timing is correct. Timing defects can stay undetected after 
logic–fault testing such as testing of stuck-at faults, but they can be detected using delay tests. In 
particular, detection of SDFs requires test generation to sensitize paths that are long enough to 
make the accumulated delay exceed the test clock cycle.

22.5.1.1 TEST APPLICATION STRATEGIES FOR DELAY TESTING

Unlike ATPG for stuck-at faults, ATPG for delay faults is closely tied to the test application strat-
egy [82]. Before tests for delay faults are derived, the test application strategy has to be decided. 
The strategy depends on the circuit type as well as on the test equipment’s speed.

In structural delay testing, detecting delay faults requires applying 2-vector patterns (V1, V2) to 
the combinational part of the circuit at the circuit’s intended operating speed. However, because 
high-speed testers require huge investments, most testers could be slower than the designs being 
tested. Testing high-speed designs on slower testers requires special test application and test 
generation strategies—a topic that has been investigated for many years [85]. Because an arbitrary 
vector pair cannot be applied to the combinational part of a sequential circuit, ATPG for delay 
faults may be significantly more difficult for these than for full-scan circuits. Various testing 
strategies for sequential circuits have been proposed. According to the way of obtaining the sec-
ond vector V2, they can be generally classified into three categories: enhanced scan (ES), launch 
on shift (LOS), and launch on capture (LOC) [83].

In the ES strategy, standard scan cells are replaced by ES cells, which can hold two scanned-in 
bits separately. Hence, the functional dependency for obtaining V2 from V1 is removed. Thereby 
high delay fault coverage can be achieved with a more compacted test data volume using the ES 
strategy. However, due to the unacceptable hardware overhead, ES is rarely supported in modern 
VLSI chips. In the LOS strategy, the second vector V2 is generated by shifting one bit from the 
first vector V1 [84]. The implementation of LOS generally requires a timing critical scan enable 
signal. In the LOC strategy, which is widely practiced by industry because of the low implemen-
tation cost, the second vector V2 is obtained by capturing the circuit response to the first vector 
V1 [85]. However, due to the stringent functional dependency for generating V2 from V1, either 
the generated test data volume is very large or the delay fault coverage is limited using the LOC 
strategy, especially for circuits with high complexity.

Some efforts on partial enhanced-scan strategies were explored to increase delay fault coverage 
[86,87] or reduce the test data volume [88,89]. In these methods, several effective metrics for fault 
coverage improvement or test data volume reduction were developed from controllability mea-
sures and observability measures. They select a small number of standard scan cells (typical 1%) to 
be replaced with ES cells [89]. The ES cell may require a specially designed structure to avoid the 
need for an expensive global timing critical scan enable signal as required by the LOS strategy [87].

22.5.1.2 PATH SELECTION FOR DETECTING SDFs

In delay testing, a path is a combinational path that starts from a PI or the output of a flip-flop 
(called PPI) and ends at a PO or the input of a flip-flop (called PPO). The object of delay testing is 
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to apply test patterns to detect delay fault via at least one path of which delay exceeds the period 
of system clock. There is no doubt that this object will be continuously important for higher 
and higher clock frequencies. Unfortunately, the number of paths is exponential to the number 
of gates in the circuit, so it is impractical to exercise each path during ATPG. Such problems as 
which paths are critical and how many paths are enough to be tested in delay testing, though 
having been targeted for many years, have yet no satisfactory answers. Things become even worse 
when considering delay variations or SDFs caused by process variations, power supply noise, 
crosstalk noise, and resistive shorts and opens. Note that resistive shorts and opens are often 
referred as small delay defects (SDDs) in the literature.

There are basically two types of delay fault models adopted in ATPG: transition delay fault 
(TDF) and path delay fault (PDF). The advantage of ATPG for PDFs is its ability to generate tests 
that detect cumulative or distributed delay defects. It is natural to detect SDFs if long paths 
are targeted for test generation. Considering the explosive growth of path numbers, it is recom-
mended that only critical paths, or the longer paths, are considered in ATPG and delay testing as 
well. Static timing analysis (STA) is usually used to find long paths in industry.

However, long path selection by STA is not reliable. Some of the challenges are listed here:

 1. Selection before test generation is always misleading. On the one hand, many paths are 
functionally redundant. On the other hand, path delay varies among different test pat-
terns due to crosstalk, multiple input switching noise, and power supply noise.

 2. With tight timing constraint during synthesis, path delay tends to be balanced. In other 
words, more and more paths are long paths.

 3. Due to process variation, a designated medium path can become a long path after 
fabrication.

Considering the obstacles in path delay testing, more researchers have been focused on enhanc-
ing ATPG for TDFs in the recent decade. A TDF on a line refers to a slow signal change on the 
line. Traditional test generation of TDFs does not consider the path delay of the sensitized path 
for fault propagation. It is thus implicitly assumed that any path propagating the corresponding 
signal change on the line will fail the generated test if there is a TDF on the line. This requires 
the size of the delay fault larger than the slack of the tested path (often a shorter path). Certain 
large-size delay faults are regarded as gross delay faults (GDFs) [90]. A TDF test set has the ability 
to cover the whole GDF space and part of SDF space depending on the sensitized long paths. For 
instance, a method to select the K longest path through each gate was proposed to improve the 
possibility of detecting delay faults caused by small delay variations [91]. Several metrics, such as 
statistical delay quality level [92] and delay test coverage [93], have been proposed to measure the 
SDF coverage.

Either timing-aware test generation or test generation for faster-than-at-speed testing can 
enhance the detection of SDFs. Timing-aware test generation tries to activate the fault and propa-
gate the fault effect through the longest path [93–95]. The test generation time increases consider-
ably when these tools are run in timing-aware mode. Faster-than-at-speed testing, on the other 
hand, reduces the slack of the sensitized paths for each TDF test by increasing the frequency of 
the test clock [96,97]. However, most of these methods are based on inaccurate timing informa-
tion provided by STA.

Resulting from the development of statistical STA techniques [98], many new methods for 
path selection have been proposed. One method proposes to take path correlations into con-
sideration based on Monte Carlo simulation results [99]. First, a path whose delay is longer than 
the clock cycle by a certain probability is considered as a candidate critical path and all candi-
date critical paths are enumerated. Second, path refinement is processed on all candidate critical 
paths using Monte Carlo simulation, and a limited number of paths are selected to guarantee 
that when these paths satisfy the delay constraint the circuit will meet the delay constraint with 
a high probability. The method suggested in [100] adopts two heuristics for path reduction. First, 
those paths that cannot be the longest path under any process condition are deleted in the first 
heuristic. After that, a path is identified as an insignificant path if there exists another path such 
that their maximum delay difference is small, and all insignificant paths are deleted in the second 
heuristic. The method suggested in [101] adopts a branch-and-bound search strategy and the 
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criticalities of subpaths are calculated during the path selection process. One path of the test path 
set is substituted by another path each time if the test quality of the test path set can be improved. 
The method suggested in [102] converts the path selection problem to a minimal space intersec-
tion problem based on a statistical timing model and calculates the probability that all the paths 
in a path set meet the circuit’s delay constraint. Given a path number threshold, this method can 
efficiently select paths maximizing the probability of capturing potential delay failures caused by 
the accumulated distributed small delay variations.

Detailed introductions of testing SDFs can be found in [103]. Rather than sensitizing long 
paths during ATPG to detect SDFs, there are also many methods proposed for pattern grading 
and selection for screening SDFs from a large delay test set (such as an n-detection TDF test set) 
[104–106].

22.5.2 ATPG FOR CROSSTALK FAULTS

Noise faults must be detected during both design verification and manufacturing testing. When 
coupled with process variations, noise effects can exercise worst-case design corners that exceed 
operating conditions. These corners must be identified and checked as part of design validation. 
This task is extremely difficult, however, because noise effects are highly sensitive to the input 
pattern and to timing. Timing analysis that cannot consider how noise effects influence propaga-
tion delays will not provide an accurate estimation of performance, nor will it reliably identify 
problem areas in the design.

An efficient ATPG method must be able to generate validation vectors that can exercise worst-
case design corners. To do this, it must integrate accurate timing information when the test vectors 
are derived. For manufacturing testing, ATPG techniques must be augmented and adapted to new 
failure conditions introduced by nanometer technology. Tests for conventional fault models, such as 
stuck-at and transition faults, obviously cannot detect these conditions. Thus, to check worst-case 
design corners, test vectors must sensitize the faults and propagate their effects to the POs, as well as 
activate the conditions of worst-case noise effects. They must also scale to increasingly larger designs.

The increased design density in deep-submicron designs leads to more significant interfer-
ence between the signals because of capacitive coupling, or crosstalk. Crosstalk can induce 
both Boolean errors and delay faults. Therefore, ATPG for worst-case crosstalk effects must 
produce vectors that can create and propagate crosstalk pulses as well as crosstalk-induced 
delays [107–111].

22.5.2.1 CROSSTALK-INDUCED PULSES

Hazard-sensitive lines such as inputs to dynamic gates, clock, set/reset, and data inputs to flip-
flops are likely to suffer from errors caused by crosstalk-induced pulses. Crosstalk pulses can 
result in logic errors or degraded voltage levels, which increase propagation delays. ATPG for 
worst-case crosstalk pulse aims to generate a pulse of maximum amplitude and width at the fault 
site and propagate its effects to POs with minimal attenuation [112].

A mixed-signal test generation process was proposed in [113] where characteristics of cross-
talk-induced pulses are accurately modeled for a pair of coupling lines. Modeling in the presence 
of multiple aggressors and victims was discussed in [114], which can be effectively used in testing 
crosstalk faults. Modeling without timing information tends to get pessimistic results of fault 
analysis.

The timing of transitions in aggressors is usually captured by timing windows obtained by 
STA. In [115], a crosstalk target identification framework was proposed, which is composed of a 
set of extractors and filters to identify the target faults. In [116], a more accurately signal-switch-
ing method was introduced, which is characterized by the set of discontinuous timing window 
to reduce the number of violations. In [117], a timing analysis technique was proposed in which 
circuit functionality, delay, and crosstalk-induced pulses are simultaneously considered using 
time-sliced Boolean logic.

The maximum crosstalk-induced effect appears under the condition that all the aggressors 
switch in same direction and time, which is called maximum aggressive time (MAT) in [118]. 
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In order to find the test patterns satisfying the maximum glitch condition, the multiple crosstalk-
induced glitch fault (MCGF) model was introduced in [118], which identifies subpaths to sensitize 
and generate the necessary aggressor transitions coupled to a victim line. In order to find the 
MAT and appropriate subpaths causing the maximum effect on the victim line, an improved STA 
method was presented using two transition maps to record all the likely rise and fall transition 
arrival time of a line and the effective coupling capacitance of each aggressor lines to estimate 
the noise on victim lines at certain time. The test for an MCGF is a two-vector pattern that sen-
sitizes the transition signals along the subpath to each aggressor line at the MAT and propagates 
the signal on a victim line to an output as well. Therefore, given an accurate timing model, the 
crosstalk-induced pulses can be effectively identified and exactly activated using the generated 
test patterns.

22.5.2.2 CROSSTALK-INDUCED DELAY

Studies show that increased coupling effects between signals can cause signal delay to increase 
(slowdown) or decrease (speedup) significantly. Both conditions can cause errors. Signal slow-
down can cause delay faults if a transition is propagated along paths with small slacks. Signal 
speedup can cause race conditions if transitions are propagated along short paths. To guarantee 
design performance, ATPG techniques must consider how worst-case crosstalk affects propaga-
tion delays [108,109].

To generate deterministic test patterns for crosstalk-induced delay faults, timing information 
cannot be ignored. However, including timing information into an ATPG engine will signifi-
cantly increase the complexity of the ATPG algorithm. Considering the timing of the aggressors 
is the main obstacle for efficient test generation.

The authors in [109] proposed a test pattern generation algorithm with a timing-oriented 
backtrace procedure targeting coupled transition faults. The authors in [119] presented a timing-
independent approach to generate tests for crosstalk-induced slowdown effects. Focused on all 
aggressor lines of a victim line, the authors in [120] proposed a solution that combines an integer 
linear program with the traditional stuck-at fault ATPG. These three methods could not activate 
the worst-case crosstalk-induced delay since they consider testing of the crosstalk effect on a 
single victim line, similar to the TDF testing, without considering accumulative delay defects or 
effects on a path.

The authors in [110] presented a constrained PDF (CPDF) model as a combination of a critical 
path and a set of crosstalk noise sources interacting with the path. A genetic algorithm with a 
dynamic timing simulator was used to deal with timing information and determine unjustified 
PIs. This test generation method is a nondeterministic approach in terms of crosstalk activation. 
The authors in [121] proposed a timed ATPG method to generate critical paths and correspond-
ing input vectors to sensitize these paths under crosstalk effects. It incorporated special tim-
ing processing techniques into ATPG algorithms and employed circuit-level timing simulation, 
which is computationally expensive.

The authors in [122] used the timed-Boolean logic to characterize signal transitions in a time 
interval and used Boolean SAT to check the correlations between aggressor and victim transi-
tions. The authors in [123] proposed a structural test pattern generation procedure to magnify 
parasitic crosstalk effects on delay-sensitive paths by inducing switching on nearby nets. These 
two methods can find the patterns efficiently by ignoring the timing of aggressors.

The authors in [124] proposed a test generation method for critical paths considering multiple-
aggressor crosstalk effects to maximize the noise of the victim lines. Physical and timing infor-
mation are used to prune false aggressors, which is helpful for reducing the ATPG time cost. 
Specifically, timing false crosstalk effects are reduced based on static timing window analysis and 
recalculated timing windows using a delay test pattern of a victim path.

The authors in [125] introduced a precise crosstalk-induced PDF (PCPDF) model, denoted as 
(p, {sp-ai, <vi, ai>}), which is similar to CPDF, but consists of a critical path p (with a number of 
victim lines vi on p) and subpaths sp-ai propagating transitions to the aggressor lines ai at certain 
times. Since the exact timing of signal switching is determined by the subpath reaching the line, 
sensitizing specific subpaths assures the aggressors’ switching time [126]. Based on the PCPDF 
model, the method proposed in [127] adopts a path delay test generation flow toward activation of 
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worst-case crosstalk effects, as shown in Figure 22.10. It performs a transition map–based timing 
analysis to identify crosstalk-sensitive critical paths, followed by a deterministic test generation 
process for PCPDFs. Timing and logic constraints are unified during test generation to determin-
istically activate crosstalk effects. Consequently, a structural ATPG tool, or a Boolean SAT solver, 
can be efficiently applied for test generation.

Algorithm 22.4 describes the structural ATPG procedure, which can be easily extended from 
a conventional path delay ATPG engine [127].

Algorithm 22.4 ATPG _ for _ PCPDF(f)

 // the circuit is stored as a levelized netlist
 // f is a PCPDF fault (p, {sp-ai, <vi, ai>})
 // T is the test pattern to be generated
 Sort coupling sites ai of p from PI to PO;
 S = first coupling site; Slast = last coupling site;
 T = the pattern robustly sensitizing p;
 while(true) do {
 Select an unconsidered sub-path to S;
 while(sub-path is found)  do {
  Generate a pattern Tsub which sensitizes the sub-path, and is 
 consistent with T;
 if(Tsub is found) then {
 Update the accumulative crosstalk-induced delay on path p;
 T = Tsub ∩ T;
 }
 else  Select an unconsidered sub-path to S;
 }
 if S == Slast then
 return T;
 else  S = next coupling site;
 }

Gate-level
netlist

SPEF file
(Standard parasitic
exchange format)

SDF file
(Standard

delay format)

Transition-map based timing analysis

Build of lookup table for crosstalk delay, indexed
by signal skews and coupling capacitances

Computation of transition maps

Selection of crosstalk-sensitive critical paths

Structural ATPG/SAT solver

Enhanced delay test generation for PCPDFs

Test patterns

Selection of target coupling sites with sub-paths

FiGURe 22.10 Flow diagram for test generation toward activation of worst-case coupling effects 
on paths.
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The worst crosstalk-induced delay on a path can be estimated based on transition maps and 
crosstalk-sensitive critical paths can be found efficiently. This method can trade accuracy for 
efficiency by increasing the size of timescale used in the transition map, which exhibits good 
scalability to large circuits.

The aforementioned methods can be used as helpful extensions of current ATPG systems, 
but they still have their limitations to be applied by industry. Methods ignoring timing can-
not guarantee meeting of the timing requirements for activation of the crosstalk effects, while 
methods depended on an accurate delay model require extensions or evaluations under process 
variations.

22.5.3 POWER-AWARE ATPG

It has been long observed that test power is much higher than the functional power because cir-
cuits under test are exercised intensively during test [128]. Besides overheating, excessive power 
supply noise during test application may lead to extra delay and even cause yield loss [129]. During 
scan test, there are two major sources of test power consumption: shift power and capture power. 
The former is caused by scan chain shifting, while the latter is caused by the capture cycles. In 
terms of heat dissipation issue, shift power is a bigger concern since the number of shift cycles is 
much more than that of capture cycles. For at-speed testing, however, capture power should be 
considered because excessive power supply noise may lead to extra path delay and even yield loss. 
Many power-aware ATPG techniques have been summarized in the survey papers and books 
[130–133].

Power reduction can be performed in different phases of ATPG: test cube generation [134,135], 
test compression [136,137], test pattern ordering [138,139], and X-filling. After test generation for 
specific target faults, there are many don’t care bits (X) in the test cubes. Traditionally, don’t care 
bits are randomly filled to shorten the test length. Since there are many don’t care bits (typically 
more than 90%) in the test cubes, X-filling is the most effective way to reduce test power.

In order to reduce shift power, adjacent fill [140] and minimum transition fill [141] repeat the 
same bits as its scan chain neighbors to reduce shift power. For example, the following test cube 
can be easily filled as

 0XXX00XX1XXX1 → 0000000011111

In order to reduce capture power, FF-silencing tries to equalize the FF values before and after the 
capture cycle. There are four possible scenarios. For type A, both values before and after capture 
are determined. Apparently, there is no X-filling possible for type A. For type B, the value before 
capture is X (unfilled) but the value after capture is determined (0 or 1). We can fill in the same 
value as the captured value for type B. For type C, the value before capture is determined but 
the value after capture is X. For type D, both the values before and after capture are X. Different 
approaches have been proposed to X-fill type C and type D flip-flops: justification based and 
probability based. Justification-based X-filling approaches can be more effective than the latter 
but requires more computation time.

The first justification approach, low capture power X-filling (LCP-fill), was proposed in [142]. 
Type B flip-flops are first assigned and simulated iteratively until only type C and type D flip-flops 
remain. Then one or more type C flip-flops are chosen for justification. After each assignment, 
logic simulation is performed and more type B and type C pairs are generated. This process is 
repeated until only type D flip-flop remains. Eventually, assignments and justification are con-
ducted to set the same values to each type D flip-flop.

The probability-based approach does not require justification. Preferred fill [143] is a one-pass 
approach (without iteration) based on signal probability [144]. Type B flip-flops are first directly 
assigned. Then signal probability is calculated for each X in the PPO. If the 0-probability of a PPO 
is larger than the 1-probability, its corresponding PPI is assigned to be 0 and vice versa.

There are many hybrid X-filling techniques that tried to (1) apply both probability and justi-
fication approaches: JP-fill [145], or (2) reduce both shift power and capture power: i-fill [146]. 
Some other techniques work with clock gating in the design to turn off necessary clocks, such 
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as in [136] and CTX-fill in [147]. For those test patterns where don’t care bits have already been 
filled, bit-stripping [141] or X-identification [115] techniques can be used to identify some X bits 
without fault coverage loss or test set inflation.

IR-drop analysis requires extensive matrix computation that is very time consuming. Many 
metrics have been proposed as an alternative to measure IR drop during ATPG. Weighted switch-
ing activity (WSA) is one of the most widely used metrics [130]. WSA is simply the weighted 
summation of switching activities of all nodes in the circuit. Flip-flop toggle count (FFTC) is 
another simple and popular metric for ATPG [142]. WSA and FFTC do not consider hazards 
and the physical information so they are not good indications of IR drop. Other metrics have 
been proposed, such as critical capture transition [145], switching cycle average power [148], and 
FAIR [149].

On the opposite side, some research tried to maximize the test power to test the robustness of 
power grid network [150,151].

22.5.4 ATPG AND TEST COMPRESSION

Test compression is an important ATPG option to minimize the test length. Dynamic test com-
pression tries to merge as many faults as possible in a test cube during test generation. Static test 
compression tries to shorten the number of test patterns after test generation. With ever-increas-
ing test data volume, many test compression techniques are now necessary to save test time and 
ATE memory [152,153].

Code-based test compression partitions the test input data into symbols, each of which is 
replaced by a new symbol. Typical examples are Colomb code [154] and Huffman code [155]. 
Code-based techniques suffer from the difference in data rate so they are not widely used in 
practice.

Linear decompressors use a small finite-state machine (FSM) (such as linear feedback shift 
register) with a small number of inputs to generate a large volume of test data. Embedded deter-
ministic test is a commercial tool in this category [156].

Broadcast-based techniques use common inputs to deliver same test data. Typical examples 
are broadcast scan [157], Illinois scan [158], and virtual scan [159]. There are techniques that 
reduce test power during test compression, such as CJP-fill [160]. This is an ATPG optimization 
trade-off between test power reduction and test compression.

22.5.5 PARALLEL ATPG

22.5.5.1 PARALLEL FAULT GENERATION

Fault simulation, a process of determining if a given set of target faults is detected by a given pat-
tern set, is an important while time-consuming task in the VLSI testing flow. Significant efforts 
have been devoted to accelerate this process in the past. Exploring the parallelism by assign-
ing independent subtasks to different processors/threads in the multiple-processor or multiple-
thread platform have been studied extensively. These parallel logic/fault simulation approaches 
can be classified into three categories: algorithm parallel, model parallel, and data parallel.

The algorithm-parallel approaches distribute the workloads by partitioning the simulation 
process into multiple pipeline stages, each of which is mapped to one processor and the commu-
nications between the processors are minimized [161,162]. The model-parallel approaches parti-
tion the circuit into multiple subcircuits, each of which is assigned to a processor [163,164]. While 
successful implementations have been demonstrated in various customized multiprocessor and 
supercomputer platforms, approaches of these two categories are too complex for the general 
computing platforms.

The data-parallel approaches compute multiple copies of identical or near-identical circuits 
concurrently [165–167]. Either multiple patterns and/or multiple faults are simulated in parallel. 
Among the three categories, approaches in this category have the least data dependence between 
processors and, thus, can often be implemented in a low-cost vector processor.
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GPUs have recently been explored as a new general-purpose computing platform. Modern 
GPUs contain several multiprocessors, each of which executes a block of threads (or a block for 
short). They follow a single-instruction multiple-data  architecture and often can have thousands 
of threads running concurrently. This feature makes GPUs suitable for acceleration of computa-
tion-intensive EDA applications, such as fault simulation, logic simulation, test generation, power 
grid analysis, and statistical timing analysis.

The first attempt to use GPUs for fault simulation was reported in [168], which performs a 
large number of tiny threads to implement a data-parallel simulation using a conventional for-
ward fault simulation flow for all faulty circuits. This approach, implemented in an NVIDIA 
GeForce GTX 8800 GPU card, evaluates logic gates in the same logic level in parallel, for both 
fault-free and faulty circuits. Three types of kernels are implemented: (1) the logic simulation 
kernel for evaluation of each fault-free gate, (2) the fault simulation kernel for evaluation of each 
faulty gate and each gate in the transitive fanout of the faulty gate, and (3) the fault detection 
kernel for comparing the results at each PO in the transitive fanout of the faulty gate. All the gate 
evaluations are performed using lookup table–based computations. This implementation dem-
onstrated a 35X speedup, in comparison with a CPU-based commercial fault simulation engine 
running on a 1.5 GHz UltraSPARC-IV+ processor with 1.6 GB of RAM.

The authors in [169] proposed nGFSIM, a GPU-based fault simulator that can report the fault 
coverages of 1 to n-detection for any specified integer n using only a single run of fault  simulation. 
nGFSIM, which explores the massive parallelism in the GPU architecture and optimizes the 
memory access and usage, enables accelerated fault simulation without the need of fault drop-
ping. The pseudocode of the host program, called GFSIM, which runs on the CPU and uses the 
GPU as a coprocessor, is shown in Algorithm 22.5, while P is the number of patterns to be simu-
lated [169]:

Algorithm 22.5 GFSIM()

 // P is number of patterns to be simulated
 // LogicSim (l, gl) does the logic simulation on GPU
 // ForwardDetect(s, c, ls) calculates the detectability of stems on GPU
 // BackwardDetect(l, gl) calculates the detectability of other 
 gates on GPU
1. (NumLevel, LevelList, NumStem, StemList) = CircuitPrepocessing();
2. PatternGeneration;
3. Transfer the patterns and levelized netlist from CPU to GPU;
4. v=0;
5. while (v<P) do {
6. v = v + 512*LNumBlock;
7. Invoke LogicSim (l, gl) on GPU; 
8. ns = 0;
9. while (ns<NumStem) do {
10. ns = ns + FNumBlock;
11. Invoke ForwardDetect(s, c, ls) on GPU;
12. }
13. Invoke BackwardDetect(l, gl) on GPU;
14. Transfer detectability arrays from GPU to CPU;
15. }

A preprocessing step is done on the CPU to levelize the circuit and identify reconvergent stems 
(in line 1). The patterns to be simulated can be either randomly generated or read from a pattern 
file (in line 2). After the levelized netlist and the patterns are transferred to the GPU, logic simula-
tion (in line 7), forward simulation for detectability calculation on fanout reconvergent stems (in 
line 9–12), and backward simulation for detectability calculation on other faults (in line 13) are 
processed serially. Three kernels, LogicSim, ForwardDetect, and BackwardDetect, are designed 
for the three tasks, respectively.

GFSIM does not experience much difference in runtime if fault dropping is implemented or 
not. With the computational power provided by a GPU, critical path tracing used in the back-
ward fault simulation can derive the detectability of all nonreconvergent-fanout-stem faults for a 
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large number of patterns in a single pass. The nature of no fault dropping enables a single run of 
n-detection fault simulation for multiple ns of interest. Using an additional 32-bit int per fault for 
counting detection times, GFSIM is extended to nGFSIM, producing a complete fault detection 
table that records the per-pattern detectability of faults, and the number of detections of each fault.

22.5.5.2 PARALLEL TEST GENERATION

Parallel programming is a popular technique to speed up ATPG [170]. Parallel ATPG algorithms 
on CPU can be divided into three categories according to different partitioning schemes: fault par-
titioning [163,171,172], search space partitioning [173,174], and circuit partitioning [175]. The fault 
partitioning approach dynamically or statically partitions the fault list into multiple partitions and 
each of which is handled by different cores. In search space partitioning, each core searches a por-
tion of solution space. The circuit partitioning approach partitions the circuit into multiple subcir-
cuits while trying to minimize communication and maximize concurrency between subcircuits. 
Each subcircuit is taken care of by different cores. Fault partitioning and circuit partitioning can 
be applied to both test generation and fault simulation, whereas search space partitioning can only 
be applied to test generation. In [172], two to five times speedup of TDF test generation is reported 
using eight CPU cores to parallelize a fault partition-based ATPG system.

Many researches on GPU-based logic simulation and fault simulation have been done in recent 
years. Based on the partitioning scheme, simulation techniques can be classified into three catego-
ries: fault partitioning [168,176], pattern partitioning [168], and circuit partitioning [169,177,178]. 
In fault and pattern partitioning, fault list or pattern set is divided into small partitions. Each 
partition is simulated by different blocks. The circuit partitioning approach partitions the circuit 
into subcircuits. There are several methods to partition the circuit: logic level, fanout-free region, 
macrogates, etc. Each subcircuit is then simulated by different blocks in parallel.

The first GPU-based ATPG was proposed in [179]. This is a fast GPU-based N-detect transi-
tion fault ATPG, which is an extension to a CPU-based parallel ATPG algorithm, SWK [180]. 
This GPU-based ATPG implemented three levels of parallelism: device-level, block-level, and 
word-level partitioning. The partitioning techniques in each level are (1) device level, fault par-
titioning; (2) block level, fault and circuit partitioning; and (3) word level, fault and search space 
partitioning.

Device-level fault partitioning statically partitions faults into different fault lists, each of which 
is assigned to a different device. Block-level fault partitioning assigns different target faults to 
different blocks, whereas block-level circuit partitioning assigns different logic levels to differ-
ent blocks. Word-level fault partitioning assigns target faults to different bits in a word, whereas 
word-level search space partitioning assigns different branches of the decision tree to different 
bits. That means, the proposed algorithm converts decision making into bitwise logic operation 
so different branches of the decision tree can be explored at the same time. Suppose the number 
of devices is v, the number of blocks is t, and the size of a word is w. This GPU-based ATPG gen-
erates v*t*w patterns concurrently. For example, if v = 2, t = 64, and w = 32, then 4096 patterns 
can be generated simultaneously. This is a massively parallel ATPG that cannot be achieved on 
traditional CPU architecture. Overall, the GPU-based ATPG is 5.9 and 1.6 times faster than a 
single-core and 8-core CPU-based commercial ATPG in generating 8-detect transition fault pat-
terns, respectively.

It adopts a PODEM-based algorithm that generates test patterns by repeatedly backtracing 
objectives to inputs and propagating fault effects to outputs. This algorithm converts backtrace 
and propagation into bitwise logic operation so different branches of the decision tree can be 
explored at the same time.

In this algorithm, a signal Y is represented by seven words of w bits: Y Y Y Y Y Yd d b b0 1 0 1, , , , , , and 
Yp. Each bit in a word represents an individual clone, which performs an independent search. The 
meaning of the first four words is as follows:

Y 0 = 1: signal Y is zero (good 0/faulty 0).
Y 1 = 1: signal Y is one (good 1/faulty 1).
Y d = 1: signal Y is d (good 1/faulty 0).
Y d = 1: signal Y is d  (good 0/faulty 1).
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For a given clone, these four values are mutually exclusive so at most one of them equals one at a 
time. If all of them are zero, Y is unknown. When Y is unknown, the other three words indicate 
whether Y is on the propagation path or the objective path. The former is a path that faulty effect 
(d or d ) will potentially propagate to reach an output. The latter is a path that the objective back-
trace follows to reach an input. For each clone,

Yp = 1: signal Y is on a propagation path.
Y b0 1= : signal Y is on an objective 0 backtrace path.
Y b1 1= : signal Y is on an objective 1 backtrace path.

Again, these three values are mutually exclusive so at most one of them equals one at a time.
Figure 22.11 shows the test generation flow of each block in the GPU-based test generation 

for N-detect TDFs. Given a set of faults F, word size w, and the target number of detection N, 
each fault in F is handled by N clones. For example, if w = 32, F = {f1, f2, f3, f4}, and N = 8, then the 
first eight clones generate patterns for f1, and the following eight clones generate patterns for f2 
and so on. For transition faults test generation, the two initial objectives are fault-free values at 
the fault site in two time frames. A backtrace is then performed from the fault site to the inputs. 
After inputs are assigned, fault effect propagation is performed from inputs to the outputs. The 
test generation of a clone is successful if a d or d′ has reached any output. This process ends if test 
generations for all w clones are successful or time limit has reached.

Figures 22.12 through 22.15 illustrate an example to generate a test pattern for a single tran-
sition fault. This is a two-time-frame circuit, each of which consists of three AND gates, three 
inputs (E, F, G), and one flip-flop (H). LV stands for logic level. Suppose that the target fault is G2 
slow to fall. We use a two-bit word (w = 2) to represent two clones: clone #1 and clone #2. Since 
the fault is slow to fall, the initial objectives in time frame one and two are one and zero, respec-
tively. They are denoted as {b1, b1} and {b0, b0} in Figure 22.12.

Figure 22.13 shows the first backtrace after Figure 22.12. Backtracing G2 in time frame one is 
an implication backtrace because both gate inputs must be one to justify the output objective b1. 
Backtracing G2 in time frame two requires a decision because either H = 0 or G = 0 justifies the 
output objective b0. An objective split is performed to assign two clones with different objectives. 
In this example, clone #1 backtraces b0 on input H and clone #2 backtraces b0 on input G.

F N

Initialize objectives

Backtrace
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Success or time out
N

Y
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w

FiGURe 22.11 Test generation kernel flow (for a single block).
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Figure 22.14 shows the propagation after Figure 22.13. The fault is excited for both clones so G2 
in time frame two is {d , d } in the figure. Output H is {p, p} in the figure. The symbol ‘p’ indicates 
that output H is on the propagation path.

Figure 22.15 shows the second backtrace followed by another propagation. To propagate the 
faulty effect to output, both clones of E and F in time frame two are set to one. Two test patterns 
EFG = {(0x1, 11x), (xx1, 110)} and H = {1, 1} are successfully generated. More details of this algo-
rithm can be found in [179].

It has been shown that GPU N-detect ATPG technique achieved 1.6 times speedup compared 
with a 8-core commercial CPU N-detect ATPG, while test length and quality are about the same 
after test selection. However, GPU ATPG is currently limited by the size of memory and memory 
access bandwidth.

22.5.6 ATPG FOR HARDWARE TROJAN DETECTION

Economic factors mandate that design, manufacturing, testing, and deployment of silicon chips 
constitute a global effort involving multiple companies and countries. If a single contributor in 
this process decides it is advantageous to insert malicious functionality into the chip, referred to as 
hardware Trojans, the consequences can be disastrous. Detection is challenging because hardware 
Trojans can be inserted during any phase of the chip design lifecycle: as malicious third-party IP, 
modifications to the netlist or layout, or mask alterations during fabrication to name a few [181].

Using traditional ATPG methods to target hardware Trojans presents several unique chal-
lenges. In manufacturing test, stimulus vectors target stuck-at or delay fault models that are 
mainly based on circuit structure. Trojans inserted postsilicon are not present in the gate-level 
circuit description so they cannot be targeted by test pattern generation tools or candidates for 
observation points.

Many methods for postsilicon Trojan detection using functional test vectors assume that the 
adversary will incorporate design signals that have very low 0 or 1-controllability into the Trojan 
activation mechanism, making the combination of these rare values very unlikely to occur dur-
ing testing. These strategies first identify random-pattern resistant nodes in the circuit, and their 
corresponding rare values, then derive an optimal test set to trigger low probability node values 
multiple times [182,183].

Another challenge to detecting Trojans using predictable test patterns is that the adversary 
can examine the test sequence or scan/BIST circuitry and craft the Trojan to avoid detection. An 
example of this is the Trojan proposed in [184], which creates permanent stuck-at faults in select 
state bits in the Intel Ivy Bridge RNG by altering transistor dopant levels. The choice of bits and 
values to tie them to is carefully chosen to avoid detection during BIST by taking advantage of 
aliasing inherent in test response compaction.

22.6 DESIGN APPLICATIONS

ATPG technology has been applied successfully in several areas of IC design automation, includ-
ing logic optimization, logic equivalence checking, design property checking, and timing analysis.

22.6.1 LOGIC OPTIMIZATION

To optimize logic, design aids can either remove redundancy or restructure the logic by adding 
and removing redundancy.

22.6.1.1 REDUNDANCY REMOVAL

Redundancy is the main link between test and logic optimization. If there are untestable stuck-
at  faults, there is likely to be redundant logic. The reasoning is that, if a stuck-at fault does 
not have any test (the fault is untestable), the output responses of the faulty circuit (with this 
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untestable fault) will be identical to the responses of the fault-free circuit for all possible input 
patterns applied to these two circuits. Thus, the faulty circuit (with an untestable stuck-at fault) is 
indeed a valid implementation of the fault-free circuit. Therefore, when ATPG identifies a stuck-
at-1 (stuck-at-0) fault as untestable, one can simplify the circuit by setting the faulty net to logic 
1(0) and thus effectively removing the faulty net from the circuit. This operation, called redun-
dancy removal, also removes all the logic driving the faulty net.

Figure 22.16 illustrates an example. However, note that output Z in Figure 22.16a is hazard-
free, but output Z in Figure 22.16b may have glitches. Testers must ensure that redundancy is 
removed only if having glitches is not a concern (e.g., as in synchronous design).

Because this method only removes logic from the circuits, the circuit is smaller when the pro-
cess ends; the topological delay of the longest paths will be shorter than or at most equal to that 
of the original circuit. The power dissipation of the optimized circuit will also be lower.

22.6.1.2 LOGIC RESTRUCTURING

Removing a redundant fault can change the status of other faults. Those that were redundant 
might no longer be redundant, and vice versa. Although these changes complicate redundancy 
removal, they also pave the way for more rigorous optimization methods. Even for a circuit with 
no redundancies, designers can add redundancies to create new redundancies elsewhere in the 
circuit. By removing the created new redundancies, they may obtain an optimized circuit. This 
technique is called logic restructuring. For example, Figure 22.17 shows a circuit example that 
has no redundant logic. In Figure 22.18a, a signal line is artificially added that does not change the 
function of the circuit but does create redundant logic. Figure 22.18b shows the resulting circuit 
after redundancy removal. This circuit is simpler than the one in Figure 22.17.
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FiGURe 22.16 How ATPG works for redundancy removal: (a) the stuck-at 0 fault is untestable; 
(b) remove gate G and simply the logic.
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Efficient algorithms for finding effective logic restructuring [185] have been proposed in the 
past few years. By properly orienting the search for redundancy, these techniques can be adapted 
to target several optimization goals.

22.6.2 DESIGN VERIFICATION

Techniques used to verify designs include checking logic equivalence and determining that a 
circuit does or does not violate certain properties.

22.6.2.1 LOGIC EQUIVALENCE CHECKING

It is important to check the equivalence of two designs described at the same or different levels 
of abstraction. Checking the functional equivalence of the optimized implementation against the 
RTL specification, for example, guarantees that no error is introduced during logic synthesis and 
optimization, especially if part of the process is manual. Checking the equivalence of the gate-
level implementation and the gate-level model extracted from the layout assures that no error is 
made during physical design.

Traditionally, designers check the functional equivalence of two Boolean functions by con-
structing their canonical representations, as truth tables or BDDs, for example. Two circuits are 
equivalent if and only if their canonical representations are isomorphic.

Consider the comparison of two Boolean networks in Figure 22.19. A joint network can be 
formed by connecting the corresponding PI pairs of the two networks and by connecting the 
corresponding PO pairs to XOR gates. The outputs of these XOR gates become the new POs of 
the joint network. The two networks are functionally equivalent if the PO response of the joint 
network is 0 for any input vector. Therefore, to prove that two circuits are equivalent, designers 
must merely prove that no input vector produces 1 at this model’s output signal g.
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Another way to do equivalence checking is to formulate it as a problem that searches for 
a distinguishing vector, for which the two circuits under verification produce different output 
responses. If no distinguishing vector can be found after the entire space is searched, the two cir-
cuits are equivalent. Otherwise, a counterexample is generated to disprove equivalence. Because 
a distinguishing vector is also a test vector for the stuck-at-0 fault on the joint network’s output g, 
equivalence checking becomes a test generation process for g’s stuck-at-0 fault. However, directly 
applying ATPG to check the output equivalence (finding a test for stuck-at-0 fault) could be CPU 
intensive for large designs.

Figure 22.20 shows how complexity can be reduced substantially by finding an internal func-
tional similarity between the two circuits being compared [186]. Designers first use naming infor-
mation or structure analysis to identify a set of potentially equivalent internal signal pairs. They 
then build a model, as in Figure 22.20a, where signals a1 and a2 are candidate internal equivalent 
signals. To check the equivalence between these signals, we run ATPG for a stuck-at-0 fault at 
signal line f. If ATPG concludes that no test exists for that fault, the joint network can be simpli-
fied to the one in Figure 22.20b, where signal a1 has been replaced with signal a2.

With the simplified model, the complexity of ATPG for the output g stuck-at 0 fault will be 
reduced. The process identifies internal equivalent pairs sequentially from PIs to POs. By the time 
it gets to the output of the joint network, the joint network could be substantially smaller, and 
ATPG for the g stuck-at 0 fault will be quite trivial. Various heuristics for enhancing this idea and 
combining it with BDD techniques have been developed in the past few years [187]. Commercial 
equivalence checking tools can now handle circuit modules of more than a million gates within 
tens of CPU minutes.

22.6.2.2 PROPERTY CHECKING

An ATPG engine can find an example for proving that the circuit violates certain properties 
or, after exhausting the search space, can prove that no such example exists and thus that 
the circuit meets certain properties [188,189]. One example of this is checking for tristate 
bus contention, which occurs when multiple tristate bus drivers are enabled and their data 
are not consistent. Figure 22.21 shows a sample application. If the ATPG engine finds a test 
for the output stuck-at-0 fault, the test found will be the vector that causes bus contention. If 
no test exists, the bus can never have contention. Similarly, ATPG can check to see if a bus 
is f loating—all tristate bus drivers are disabled—simply by checking for a vector that sets all 
enable lines to an inactive state.

ATPG can also identify races, which occur when data travels through two levels of latches in 
one clock cycle. Finally, an ATPG engine can check for effects (memory effect or an  oscillation) 
from asynchronous feedback loops that might be in a pure synchronous circuit [188]. For each 
asynchronous loop starting and ending at a signal S, the ATPG engine simply checks to see 
whether there is a test to sensitize this loop. If such a test exists, the loop will cause either a 
memory effect (the parity from S to S is even) or an oscillation (the parity is odd).
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FiGURe 22.20 Pruning a joint network by finding internal equivalent pair. (a) Model for checking if 
signals a1 and a2 are equivalent. (b) Reducing complexity by replacing a1 with a2.
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22.6.2.3 TIMING VERIFICATION AND ANALYSIS

Test vectors that sensitize selected long paths are often used in simulations to verify circuit tim-
ing. In determining the circuit’s clock period, designers look for the slowest true path. Various 
sensitization criteria have been developed for determining a true path. Such criteria set require-
ments (in terms of logic values and the arrival times of the logic values) at side inputs of the gates 
along the path. These requirements are somewhat similar to those for deriving tests for PDFs. 
Thus, an ATPG engine can be used directly for this application.

22.6.3 SUMMARY

ATPG remains an active research area in both the CAD and the test communities, but the new 
emphasis is on moving ATPG operations toward higher levels of abstraction and on targeting 
new types of faults in deep-submicron devices. Test tools have evolved beyond merely gate-level 
test generation and fault simulation. Most design work now takes place at RTL and above, and test 
tools must support RTL handoff. New noise faults, including those from power supply noise, and 
crosstalk-induced noise, as well as substrate and thermal noise, will need models for manufactur-
ing testing. The behaviors of these noise faults need to be modeled at levels of abstraction higher 
than the electrical, circuit, and transistor levels. Finding test vectors that can cover these faults 
is a challenge for ATPG.

22.7 HIGH-LEVEL ATPG

Test generation could be significantly sped up if a circuit model at a higher level of abstraction is 
used. In this section, we discuss briefly the principles of approaches using RTL models and state 
transitions graphs. Here, we do not intend to give a detailed survey for such approaches, only a 
brief description of representative methods.

Approaches using RTL models have the potential to handle larger circuits because the num-
ber of primitives in an RTL description is much smaller than the gate count. Some methods in 
this class of approaches use only RTL description of the circuit [190–195], while others assume 
that both gate-level and RTL models are available [30–32]. Note that automatic extraction of 
the RTL description from a lower level of description is still not possible, and therefore, the RTL 
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descriptions must be given by the designers. It is also generally assumed that data and control can 
be separated in the RTL model.

For approaches using both RTL and gate-level models [30–32], typically a combinational test 
is first generated using the gate-level model. The fault-free justification sequence and the fault 
propagation sequence are generated using the (fault-free) RTL description. Justification and fault 
propagation sequences generated in such a manner may not be valid and therefore need to be ver-
ified by a fault simulator. These approaches, in general, are suitable for data-dominated  circuits 
but are not appropriate for control-dominated circuits.

For approaches using only RTL models [190–195], functional fault models at RTL are targeted, 
instead of the single stuck-at fault model at the gate level. The approaches in [190,191] target 
microprocessors and functional fault models are defined for various functions at the control-
sequencing level. Because tests are generated for the functional fault models, a high coverage 
for gate-level stuck-at faults cannot be guaranteed. The methods suggested in [192,193] focus on 
minimizing the value conflicts during the value justification and fault propagation processes, 
using the high-level information. The technique in [195] intends to guarantee that the functional 
tests for their proposed functional faults achieve a complete gate-level stuck-at fault coverage. To 
do so, mappings from gate-level faults to functional operations of modules need to be established. 
This approach also uses an efficient method for resolving the value conflicts during propagation/
justification at the RTL level. A method of characterizing a design’s functional information using 
a model extended from the traditional FSM model, with the capability of modeling both the 
datapath operations and the control state transitions, is suggested in [194]. However, this method 
does not target any fault model and only generates functional vectors for design verification.

For FSMs for which the state transition graphs are available, test sequences can be derived 
using the state transition information. In general, this class of approaches can handle only rela-
tively small circuits due to the known state-explosion problem in representing a sequential circuit 
using its state table. However, successful applications of such approaches to protocol perfor-
mance testing [196] and to testing the boundary-scan test access port controller [197] have been 
reported. The earliest method is the checking experiment [26] that is based on distinguishing 
sequences. The distinguishing sequence is defined as an input sequence that produces different 
output responses for each initial state of the FSM. This approach is concerned with the problem 
of determining whether or not a given state machine is distinguishable from all other possible 
machines with the same number of states or fewer. No explicit fault model is used. The distin-
guishing sequence may not exist, and the bound on length, if it exists, is proportional to the 
factorial of the number of states. This method is impractical because of the long test sequence. 
Improved checking experiments, based on either the simple input/output (I/O) sequence [27] or 
the unique input/output (UIO) sequence [196] of the FSM, significantly reduce the test length.

In [29], a functional fault model in the state transition level is used in a test generator FTG 
for FSMs. In the single-state-transition (SST) fault model, a fault causes the destination state 
of a SST to be faulty. It has been shown [29] that the test sequence generated for the SST faults 
in the given state transition graph achieves high fault coverages for the single stuck-at faults as 
well as the transistor faults in its multilevel logic implementation. As an approximation, FTG 
uses the fault-free state transition graph to generate the fault propagation sequence. AccuraTest 
[28] further improves the technique by using both fault-free and faulty circuits’ state transition 
graphs to generate accurate test sequences for the SST faults as well as for some multiple-state-
transition faults.

Due to the increasing complexity and size of modern designs, high-level ATPG has received 
more attention after 2000 [198–203]. The work in [198] utilizes program slicing, which was origi-
nally proposed as a static program analysis technique, for hierarchical test generation. Program 
slicing extracts environmental constraints for a given module, after which the module with the 
constraints can be synthesized into a gate-level model for test generation using a commercial 
sequential ATPG tool. Since program slicing extracts only relevant constraints for a module and 
ignores the rest of the design, it can significantly reduce the complexity of ATPG for each indi-
vidual module. The authors in [199] propose a word-level ATPG combined with an arithmetic 
constraint solver in an ATPG application for property checking. The word-level ATPG involves 
a word-level implication engine. The arithmetic constraint solver is used as a powerful impli-
cation engine on the arithmetic datapath. The authors in [200] developed an RTL behavioral 
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benchmark, namely, ITC’99 benchmark, and proposed ARTIST, which uses genetic algorithms 
to generate tests for RTL behavioral descriptions. The authors in [201] introduced RTL transfer 
faults from the data dependency graph of an RTL behavioral description and proposed X-Pulling, 
a simulation-based backtrack-free ATPG method for testing transfer faults. The authors in [203] 
propose a sequential ATPG guided by RTL information represented as an assignment decision 
diagram (ADD). State transition graphs extracted from ADDs are used to guide the ATPG pro-
cess. The author in [202] developed a constraint solver for application in functional verification 
based on random test program generation methodology. The constraint solver utilizes word-level 
ATPG techniques to derive functional test sequences under user-supplied functional constraints.

Recently, abstraction-guided simulation has been explored as an effective approach to RTL 
functional test generation for hard-to-reach states [204–208]. The work in [204] is the pioneering 
work of abstraction-guided simulation using a random test generator, which builds an abstract 
model using the modules that closely interact with the target state. Preimages of the target state 
are calculated on this abstract model and the abstract distances are acquired to guide the simu-
lation toward the target state. In order to avoid being stuck at dead-end states because of the 
abstraction bias, the work in [205] iteratively extracts and purifies the abstract model to get more 
design information until the simulator can reach the target state. The work in [206] introduces 
cultural algorithms to replace the random test generator and shows a better performance. The 
information of abstract preimages is used in the fitness calculation to evaluate each individual. 
The work in [207] uses path constraint solving that operates in an abstraction-guided simulation 
framework to generate tests to cover hard-to-reach states. The work in [208] uses Markov analy-
sis of the abstract model as the guidance of simulation on the concrete design. The results of the 
Markov analysis provide a mixture of information including both the abstract distance and the 
difficulty to generate a concrete trace from each state to the target state. Consequently, the simu-
lation using the Markov analysis as guidance shows better efficiency in target states exercising 
than the abstract distance–guided simulation.
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23.1 INTRODUCTION

Integrated circuits (ICs) are fabricated using a series of photolithographic, printing, etching, 
implanting, and chemical vapor deposition steps. This process is subject to imperfections that 
may cause complete failure in the operation of individual ICs or variations in performance among 
ICs on the same wafer or across different lots. The performance of an IC could also shift in the 
postsilicon production flow during the packaging process. For all these reasons, each fabricated 
IC must be tested in order to ensure that it meets its design specifications.

The current practice for testing the analog and mixed-signal (AMS) functions of ICs is speci-
fication-based testing [1–4]. Specification-based testing involves direct measurement of the per-
formances that are promised in the specification data sheet one by one. However, despite the 
ease of interpreting the test result, specification-based testing incurs a very high cost since it 
relies on specialized automatic test equipment (ATE) with advanced capabilities and running 
the tests takes a long time. In fact, testing the AMS functions of modern systems-on-chip (SoCs) 
is responsible for the largest fraction of the test cost despite the fact that AMS circuits occupy a 
much smaller area on the die compared to their digital counterparts [5]. With the ever-increasing 
levels of integration of SoC designs, more and more of which include AMS circuits, the ATE cost, 
test development time, and test execution time are being increasingly impacted and will keep 
increasing as we move toward more advanced technology nodes. AMS testing is nowadays an 
area of focus and innovation for the microelectronics industry.

It is thus necessary for design and test engineers to work together, early in the SoC  architecture 
design phase, in order to keep the testing costs under control. Alternative low-cost test  techniques 
need to be developed that can effectively replace standard specification-based tests. These  techniques 
should target reducing test times and/or alleviating the need to rely on specialized ATE. Introducing 
alternative test techniques, however, should not sacrifice the high accuracy of specification-based 
testing, which is measured by test metrics such as test escape (e.g., faulty circuits passing the test) 
and yield loss (e.g., functional circuits failing the test). Therefore, any alternative test technique 
should be assessed by estimating the resultant test metrics that will be met in production.

This chapter will focus on generic alternative test techniques, such as (1) inferring the outcome 
of specification-based testing from low-cost measurements (broadly known as “alternate test”), 
(2) eliminating redundant specification-based tests and applying a reduced set, (3) structural test 
techniques where the test problem reduces to checking for the presence of faults contained in a 
predefined list, and (4) practical integrated test techniques for different types of AMS circuits, 
such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), phase-locked 
loops (PLLs), and radio-frequency (RF) circuits. This chapter will also review tools to assess the 
feasibility of alternative test techniques. All these techniques and tools are seen as an enabling 
technology to break the cost trend.

23.2 INTEGRATED TEST: AN OVERVIEW

Integrated test techniques are grouped into design-for-test (DFT) and built-in self-test (BIST) 
techniques.

DFT techniques can be broadly grouped into two approaches. The first DFT approach is to 
facilitate test access into the design by implementing test signal buses according to the IEEE 
Standards 1149.1 [6] and 1149.4 [7], as illustrated in Figure 23.1. The IEEE 1149.4 architecture 
in Figure 23.1 comprises a test bus interface circuit with analog test stimulus (AT1) and analog 
test output (AT2) pins, analog boundary modules on each analog I/O, digital boundary modules 
on each digital I/O, and a test access port controller with test data in, test data out, test mode 
select, test clock, and test reset  pins. This test bus architecture provides the means for bypassing 
functional blocks in the circuit under test (CUT) in order to apply test stimuli directly to internal 
blocks and reading out the test responses. Therefore, the test bus can be used to enhance the 
overall testability, as well as to enable system diagnostics and silicon debugging in postmanu-
facturing. In addition, the test bus can be used for testing for open and short circuits among the 
interconnections of circuits in a printed circuit assembly. The second DFT approach is based 
on reconfiguring the CUT to enhance its testability. A first well-known example is the generic 
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oscillation test where the CUT is reconfigured to oscillate by connecting it into a positive feed-
back loop, as shown in Figure 23.2. The oscillation frequency and magnitude are information-
rich signatures that can be used to gain insight about the functionality of the CUT and to detect 
abnormal behavior [8,9]. A second example is the loopback test for RF transceivers where the test 
signals are generated in the baseband and the transmitter’s output is switched to the receiver’s 
input through an attenuator to analyze the test response also in the baseband [10–16], as shown 
in Figure 23.3. We will revisit these two DFT techniques in more detail in Sections 23.7 and 23.10.
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BIST techniques can also be broadly grouped into two approaches. The first approach consists 
of embedding a signal generator and a test response analyzer into the chip [17–23], as shown in 
Figure 23.4, whereas the second approach consists of embedding sensors into the chip to extract 
off-chip information-rich, low-cost test signatures from which the status of the performances 
can be implicitly inferred [24–28], as shown in Figure 23.5. The impetus for BIST techniques is to 
facilitate the use of low-performance ATE or perhaps to eliminate any need whatsoever by adding 
self-test capabilities, strategic control, and observation points within the IC.

DFT and BIST are very often ad hoc and largely a matter of early engagement with the design 
community to specify the test architecture. Great strides have been made to make DFT and BIST 
techniques successful for AMS ICs, but robust, production deployment of these techniques is 
not yet widespread. This is due in part to the challenge of evaluating their efficiency with respect 
to the standard specification-based test, which requires accurate simulation models and speed-
ing up circuit simulation. In addition, DFT and BIST techniques should not consume a dispro-
portionate amount of silicon die area and should neither be intrusive to sensitive circuits and 
design methodologies nor impede the postsilicon debugging process. Trade-offs between DFT 
and BIST techniques and traditional specification-based testing need to be considered, and the 
test resources need to be intelligently partitioned between integrated and external test methods. 
Finally, given the rather high development time of DFT and BIST techniques, it is important to 
focus on their portability, such that they can be reused in different intellectual property blocks or 
cores. Despite these challenges, the pressing demand to reduce test cost has sparked an immense 
effort to materialize DFT and BIST techniques since they arguably constitute very attractive 
alternatives. This rationale stems from the fact that much of the ATE will be on-chip or in the 
form of partitioned test that can be executed much faster.

DFT and BIST techniques become of vital importance in the case of ICs that are part of a 
larger safety-critical, mission-critical, or remote-controlled system. During its lifetime, an IC may 
fail due to aging, wear and tear, harsh environments, and overuse or due to defects that are not 
detected by the production tests and manifest themselves later in the field of operation. In such 
cases, DFT and BIST can be used to support online test during normal operation by detecting 
early reliability hazards and gaining insight about environmental conditions that can jeopardize 
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the system’s health [29–41]. They can also provide valuable feedback for achieving fault tolerance 
through calibration, tuning, or even reconfigurability [42–46].

Finally, DFT and BIST techniques can provide valuable feedback for diagnosis purposes 
[47–59]. Diagnosing the root causes of failures in the first prototypes helps to reduce design itera-
tions and to meet the time-to-market goal. In a high-volume production environment, diagnosing 
the root causes of failures can assist the designers in gathering valuable information for enhanc-
ing yield in future IC generations. Diagnosis is also of vital importance in the case of failures in 
the field for safety-critical applications. Here, it is important to identify the root causes of failures 
so as to repair the system if possible and apply corrective actions that will prevent failure reoc-
currence and, thereby, will expand the safety features.

DFT and BIST techniques vary depending the type of the AMS block and very often even for 
a particular design style or architecture. In Sections 23.8 through 23.10, we will review popular 
DFT and BIST solutions for different AMS blocks in detail.

23.3 ALTERNATE TEST

As mentioned in the introduction, the standard approach for testing AMS circuits is to measure 
directly the performances that are promised in the data sheet. The IC is declared faulty or func-
tional by simply comparing the measured performance values to the design specifications. In 
this context, the necessary ATE resources are employed and overall the test approach is easy to 
interpret and implement since the same test benches are used as during the design and prototype 
characterization phases.

Alternate test aims to circumvent specialized ATE resources and speed up the test execution 
time by relying solely on measurements that can be rapidly extracted using a low-cost assortment 
of test equipment [60–62]. The grounds for achieving the objective of inferring the performances 
implicitly from low-cost alternate measurements are that both the performances and the alter-
nate measurements are subject to the same process variations. Thus, in the presence of process 
variations, both performances and alternate measurements vary and the objective boils down 
to identifying alternate measurements that correlate well with the performances, such that any 
performance shift can be predicted from the corresponding shift in the alternate measurement 
pattern, as illustrated in Figure 23.6. For the method to succeed, it is needed first to (a) identify 
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such information-rich alternate measurements and second to (b) build the mapping between 
alternate measurements and performances.

The identification of appropriate alternate measurements is a circuit-specific problem since 
the input, output, frequency band, transfer function, etc., depend on the type of the IC, as well 
as its architecture. In the recent years, the alternate test paradigm has been proven for different 
types of ICs, including baseband analog [60,63], RF [64–67], data converters [68,69], PLLs [70], 
and microelectromechanical systems (MEMS) [71]. Very often, the alternate measurements are 
extracted ad hoc without a clear rationale. Through simulations, it is demonstrated that they 
can be used indeed to predict the performance values and in the next step the concept is dem-
onstrated experimentally in silicon. The reason is the large number of process parameters and 
their intricate interactions that makes it impossible to justify that an alternate measurement 
captures all variation scenarios that can occur in practice. A typical approach is to identify as 
many alternate measurements as possible and then compact this set using feature selection algo-
rithms [60,72–75], such as genetic algorithms [76] and floating search algorithms [77]. Another 
approach is to craft the test stimulus such that the output response becomes appropriate for 
alternate test [60,78].

Examples of alternate measurements for baseband analog circuits include sampling the output 
response when applying at the input a piecewise linear test stimulus [60,63], a multitone sinusoi-
dal [72], or a pseudo-random bit sequence [73]. Popular approaches to extract alternate measure-
ments from RF circuits include (1) applying a baseband multitone sinusoidal, up-converting it 
using a mixer that exists on the test load board or on-chip, down-converting the RF output using 
again a mixer, and sampling the demodulated baseband test response [64,65,73] and (2) applying 
sensors that tap into the RF signal path, for example, amplitude detectors [24,25,79–83] and cur-
rent sensors [26,82,84].

The intricate relationship among performances and alternate measurements makes it impos-
sible to build a mapping in the form of a closed-form mathematical equation. For this reason, the 
mapping is built through statistical learning. In particular, a set of N circuit instances that is rep-
resentative of the fabrication process is collected. The d performances P = [P1,…,Pd] and alternate 
measurements M are obtained on each circuit instance. Part of the circuit instances is used to 
train a regression function fi: M → Pi for each performance Pi. The circuit instances that are left 
out are used as an independent validation set. Target performances for the circuit instances in 
the validation set are assumed to be unknown and they are only used to estimate the test error. 
In particular, the alternate measurements are given as arguments to the regression functions to 
obtain performance predictions �P. If the test error P P−�, averaged over all circuit instances in the 
validation set, is deemed to be small, then the alternate measurements are satisfactory.

It should be noticed that outliers should be excluded from the training phase since they are 
inconsistent with the statistical nature of the bulk of the training data stemming from circuits 
with process variations and will adversely affect the regression fit results. In fact, outliers are non-
statistical in nature since their real cause is physical defects that are induced or enhanced during 
the IC manufacturing in a random fashion. Likewise, the learned regression functions are not 
designed to predict the performances of outliers as the test outcome will be somewhat random. 
Thus, in the testing phase, all ICs should be checked to verify that they are not outliers before the 
learned regression functions are applied to reach a test decision. This indispensable step in the 
flow of alternate test makes use of a defect filter [85].

Instead of predicting the actual values of the performances, it is also possible to predict 
directly whether the performances satisfy their specifications, that is, a form of go/no-go test. 
In this case, a classifier is used that implements a function g: M → [pass, fail] [72,73,86–89]. 
The classifier should be able to allocate a nonlinear decision boundary in the space of alternate 
measurements such that the population of functional circuits is separated from the popula-
tion of circuits that violate at least one specification, as illustrated in Figure 23.6. Various clas-
sifiers can be used in this context, including support vector machines (SVMs) [90], decision 
trees [91], ontogenic neural networks [92], and feed-forward neural networks [93]. Similar to 
the regression functions, the better the correlation among performances and alternate mea-
surements is, the smaller will be the overlap between the two populations and the better the 
classification rate will be. Furthermore, the classifier can be implemented on-chip toward a 
stand-alone BIST [94].
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The advantage of using regression functions is that it offers the possibility of predicting the 
performance values, which allows binning of functional circuits and a better insight into the 
performance distributions. The classifier has the advantage that it can screen out circuits with 
defects on top of circuits with excessive process variations. However, this is at the expense of 
requiring to include circuits with defects in the training set, which may be difficult to collect in 
the production environment in a short period of time. To this end, a one-class classifier can be 
used that avoids this requirement [95].

Finally, as any other indirect test method, alternate test is prone to error. To improve confi-
dence in the test decision, it is possible to identify the small fraction of circuits that will be likely 
erroneously predicted and forward them to a second test tier where more thorough testing is 
performed. Several techniques exist for this purpose, including the use of guard bands in the case 
of classifiers [73], multiple regression functions [96], and a pair of defect filters [95].

23.4 SPECIFICATION-BASED TEST COMPACTION

A plausible direction toward decreasing test cost is to identify and eliminate information redun-
dancy in the set of specification-based tests, thereby relying only on a subset of them in order to 
reach a pass/fail decision. Such redundancy is likely to exist since groups of performances refer 
to the same portion of the IC and are subject to similar process imperfections. However, it is 
highly unlikely that it will manifest itself in a coarse and easily observable form of superfluous 
tests that can be summarily discarded. Hence, more advanced statistical analysis methods are 
likely to be required.

In the linear error-mechanism model algorithm [97], availability of a linear model y = Ax is 
assumed [98], where y is the m × 1 measurement error vector, x is a n × 1 process parameter 
error vector, A is a m × n sensitivity matrix, and m corresponds to the number of measurements 
required for complete specification testing. The method aims to predict the complete vector 
y by carrying out only a subset �y of y. The cardinality p of �y (p ≥ n) is a compromise between 
the permitted measurement cost and the maximum tolerable prediction error. The selection 
process is performed through QR factorization [99] and minimizes the normalized predic-
tion variance. This is equivalent to maximizing the determinant | |� �A AT , where �A designates the 
p × n row-reduced matrix A. In [100], an iterative selection approach is followed, which con-
siders subsets rather than individual measurements. Next, the complete measurement vector 
is predicted by y A A A A yT T= −( )� � � �1 . A leisurely look at this approach and some refinements are 
provided in [101].

In [102], a fault-driven test selection approach is proposed. The set of needed tests is cumula-
tively built by adding to the current set the test for which the yield, as computed by considering 
only the specifications of the remaining tests, is maximized. The algorithm terminates when the 
desired fault coverage is reached. In [103], in addition to fault coverage, the test selection is driven 
by the degree to which faults are exposed. After the redundant tests have been eliminated, a test 
ordering algorithm can be run, aiming to reduce the average test time. The tests that have higher 
priority of being placed at the beginning of the sequence are those that have a high probability of 
detecting failures, are low cost, and are independent of the previous tests in the sequence. Test 
ordering algorithms that appear in the literature include trial of various test permutations based 
on a heuristic approach to estimate whether a permutation is likely to improve average test time 
[102], dynamic programming of a directed flow graph [104], which results in the optimal order, 
and a variation of the latter, called A* algorithm [102], which, in the worst case, requires the same 
computational cost while maintaining optimality.

In [105], specification testing is simplified using a technique called predictive subset testing. 
It requires measurement of all performances for a set of circuit instances, which is assumed 
to be representative, reflecting accurately the statistical mechanisms of the manufacturing pro-
cess. The technique is based upon establishing regression mappings between correlated pairs of 
 performances. In this situation, we seek to predict one (untested) performance using another per-
formance that is explicitly tested. Then, new test limits are assigned to the tested performance, 
such that they guarantee the compliance of the untested performance to its specifications with 
the desired confidence levels.
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The problem of specification-based test compaction can also be viewed as a binary pass/
fail classification problem [106–108]. This approach entails two components, namely, a feature 
 selection algorithm for searching in the power set of specification-based tests and a prediction 
model for predicting based solely on a select subset the outcome of the remaining specification 
tests that are excluded from this subset, as shown in Figure 23.7. Different feature selection algo-
rithms can be employed, for example, genetic algorithms [76] and floating search algorithms [77], 
and the prediction model can be built using binary classifiers, such as SVMs [90], decision trees 
[91], ontogenic neural networks [92], and feed-forward neural networks [93]. The search pro-
gresses toward a low-cost, low-dimensional, specification-based test subset based on which the 
classifier predicts correctly the pass/fail outcome of the complete specification-based test suite.

23.5 PROBABILISTIC TEST METRICS ESTIMATION

As it has been made clear so far, the general objective of the research conducted in the AMS test 
domain is to develop alternative tests that can replace effectively the costly specification-based 
tests. Despite the high number of proposals, few have materialized to date. One of the primary 
reasons is the lack of automated tools to evaluate alternative tests in terms of the resultant test 
error. Indeed, although it is straightforward to provide claims about the test cost reduction and 
overhead in the case of DFT and BIST techniques, it is not as straightforward to provide estimates 
of test escape and yield loss and project such test metrics in parts per million (PPM) values, as 
shown in Figure 23.8. Test metrics estimation has to take place during the test development phase 
through simulation before moving to production test. Otherwise, significant test resources and 
time must be dedicated without any guarantee that the alternative test will be proven indeed 
effective. Preferably, we would like to estimate test metrics early in the process so as to refine 
alternative tests or even abandon them indefinitely in time.

Broadly speaking, the faulty behavior of a circuit can be due to two reasons: (1) defects in manu-
facturing that translate into topological changes in the form of short- and open circuits, in which 
case we refer to as “catastrophic faults,” and (2) variations in the process parameters, in which case 
we refer to as “parametric faults.” While catastrophic fault coverage can be evaluated given a list of 
probable catastrophic faults, evaluating parametric fault coverage (or, equivalently, parametric test 
escape) and yield loss is a far more complex problem. The reason is twofold. First, the set of circuits 
that give rise to yield loss and the set of parametric faults are infinite. Second, we would like to 
be able to estimate parametric test escape and yield loss metrics as low as a few tens of hundreds 
of PPM, whereas a standard Monte Carlo approach by default samples the most likely statistical 
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events and, thereby, it would require an intractable number of runs that we  cannot afford. The 
problem essentially boils down to speeding up Monte Carlo simulation.

The general idea is to substitute the circuit with an equivalent model that can be simulated 
much faster, as shown in Figure 23.9. Using N initial simulations that we can afford to run, we 
build a model of the circuit and thereafter we simulate it to generate N′ ≫ N circuit instances. 
Thereafter, we can approximate test metrics using relative frequencies.

For example, the model could consist of a set of regression functions that map any point in the 
design space (e.g., process and design parameters) to the output parameters of the circuit (e.g., 
performances and test measurements) [102,109]. As an alternative for the regression functions, 
one can use symbolic models that are fitted using genetic programming [110]. If the accuracy of 
these models is deemed to be insufficient at the tails of the design space, then we can choose to 
perform circuit-level simulations for the points that are identified to lie at the tails of the design 
space [111].

An alternative approach is to use the initial N simulations to estimate the joint probability 
density function (PDF) of output parameters [112–114]. The joint PDF can be sampled very fast to 
generate the N′ new circuit instances. Other solutions related to PDF estimation are based on the 
theory of Copulas [115] or on linear error-mechanism models [116].

The most recent approach to test metrics estimation is based on the statistical blockade tech-
nique and extreme value theory [117,118]. The statistical blockade technique [119] is used to bias 
the Monte Carlo simulation so as to quickly simulate a set of most probable “extreme” circuits 
that lie close to the tails of the distribution of performances and alternative tests and give rise to 
test escape and yield loss. Thereafter, this set of extreme circuits is used to fit a probability model 
for the parametric test escape and yield loss using the extreme value theory [120], as shown in 
Figure 23.10. This technique has the advantage that it focuses directly at the tails of the distribu-
tions where the test escape and yield loss events occur.

For circuits that are hard to simulate, such as data converters and PLLs, to estimate test  metrics 
simulations are performed at the behavioral level [121,122].
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23.6 FAULT MODELING AND STRUCTURAL TEST

The introduction of the stuck-at fault model for digital circuits enabled digital testing to cope 
with the exponential growth in the digital circuit size and complexity. Indeed, the stuck-at fault 
model enabled functional testing to be replaced by structural testing, acted as a measure to quan-
tify the quality of the test plan and paved the way for the development of efficient DFT and BIST 
strategies.

Intense efforts have been made to borrow from the success of the stuck-at fault model and 
develop an appropriate and comprehensive fault model for AMS circuits that accounts for all 
fault mechanisms in the manufacturing process. In general, a fault model is defined as a set 
of circuit instances, each representing a scenario in the manufacturing process that results in 
faulty circuit behavior, such that all possible catastrophic and parametric fault scenarios are 
accounted for.

Fault models can be used to evaluate the test escape as a result of replacing specification-based 
tests with alternative tests. The approach consists of injecting one fault at a time into the netlist 
of the circuit and checking whether the alternative test is capable of detecting the fault, as shown 
in Figure 23.11. Detection implies that the alternative test is capable of clearly distinguishing the 
response of the faulty circuits from the response of functional circuits. In addition, fault models 
can be used for structural test. For a given fault model, the structural test generation problem 
boils down to generating a set of tests that detect all faults in the model. To this end, many test 
generation algorithms have been written to craft a test stimulus and select the output test signa-
ture such that the distance between the functional circuits and the faulty circuits is maximized 
[123–131].

A fault model that accounts for catastrophic faults can be developed based on inductive fault 
analysis on physical layouts [132–137]. This requires a description of defect statistics, which, when 
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mapped onto the layout, provide a list of probable faults. At the circuit level, the fault list consists 
of short and open circuits. This approach has led to defect-oriented test techniques [58,59,138], 
which can be applied for wafer-level testing to detect dies with gross defects or for final testing of 
robust designs that are highly unlikely to fail due to process variations.

The definition of a parametric fault model poses a greater challenge [139]. The reason is that 
there are an infinite number of combinations of process parameters that result in specification 
violation, that is, the size of the parametric fault model is limitless. Thus, we need to consider 
parametric faults according to their probability of occurrence and define a parametric fault 
model that contains the most probable parametric faults. Previous proposals for parametric fault 
modeling made certain assumptions to be able to deal with this challenge [137,140–145]. The 
widespread approach has been to build a parametric fault model at a higher level of abstraction, 
for example, by modeling faults as variations in passive components and in transistor parameters, 
that is, transconductance, geometry, oxide thickness, and threshold voltage, or by considering 
behavioral simulation instead of transistor-level simulation and modeling faults as variations in 
the parameters of the behavioral model. Furthermore, a common assumption is that parameters 
vary independently, which is known as single-fault assumption, and that a circuit fails a specifica-
tion when one parameter exceeds a specific tolerance. These simplified fault models make simula-
tion more traceable, yet their ability to capture correctly faulty behavior due to process variations 
has never been proven.

A fault model that consists of the most probable parametric faults generated naturally by a 
Monte Carlo analysis that makes use of the actual process design kit remains an open challenge 
[146]. A technique was proposed recently in [147] that employs the statistical blockade algorithm 
to speed up Monte Carlo analysis. The underlying idea is to bias the Monte Carlo analysis such 
as to avoid simulating circuits that are functional and, thereby, are of no use for generating a 
fault model.

23.7 OSCILLATION-BASED TEST

Oscillation-based test is a generic DFT/BIST technique [8,9]. It relies on converting the circuit to 
an oscillator and subsequently measuring the oscillation frequency and magnitude, as shown in 
Figure 23.2. The reconfiguration of the circuit is accomplished by using digital circuits to control 
analog switches and multiplexers, which are designed to have a minimal impact on the measure-
ment. The oscillation frequency and magnitude are information-rich alternate measurements 
that are a function of the process parameters and also the elements that are added in the feedback 
path to enable oscillation. As a result, by repeating these measurements under varying voltage 
conditions, for different frequency selection, and for different feedback topologies with different 
attenuation levels, it is possible to infer implicitly the status of the performances. In particular, 
test limits can be placed on the oscillation frequency and magnitude to guarantee with some level 
of certainty that the performance values lie within the specification range. The test limits can be 
found through simulation and can be selected such that a desired trade-off between test metrics 
is achieved [148].

Oscillation-based test has several advantages: (1) it is applicable virtually to all AMS circuits 
including baseband analog [8,9,149–156], data converters [157–159], RF [160], and MEMS [161]; 
(2) it is vectorless since the circuit is self-excited without requiring signal generators; (3) the oscil-
lation frequency can be processed to obtain digital test signatures that can be easily extracted 
off-chip for analysis; (4) it is immune to noise since the frequency is averaged over many periods; 
and (5) it delivers excellent fault coverage for catastrophic and parametric faults [162].

23.8 DFT AND BIST FOR DATA CONVERTERS

ADCs and DACs are characterized by dynamic specifications, such as total harmonic distortion, 
signal-to-noise ratio, and signal-to-noise-and-distortion ratio, and static specifications, such as 
differential nonlinearity, integral nonlinearity, offset, and gain error.
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The standard approach to measure the dynamic specifications of an ADC is to apply a high-
resolution sinusoidal at the input and compute the fast Fourier transform (FFT) at the output. 
The resolution of the sinusoidal typically needs to be at least two bits higher than the effective 
resolution of the ADC, which poses a great design challenge for BIST implementation. A classical 
approach for generating on-chip an analog sinusoidal is to employ a closed-loop oscillator that 
involves a highly selective bandpass filter and a comparator [163,164], as shown in Figure 23.12. 
To improve the resolution of the sinusoidal generators, they can be combined with harmonic 
cancellation techniques [165–168]. Another classical approach is to employ an open-loop oscilla-
tor, as shown in Figure 23.13. The starting point is to use an ideal ΣΔ modulator in software that 
converts a high-resolution sinusoidal to a bit stream, which, thereafter, is loaded and periodically 
reproduced in an on-chip circular shift register [19]. Bit streams can also be generated by on-chip 
digital oscillators [169,170]. The bit stream can be converted on-chip to a high-resolution sinusoi-
dal by passing it through an 1-bit DAC followed by a low-pass filter to remove the quantization 
noise [171,172]. Digital techniques can be used to cancel harmonic components at the output of 
the DAC [173]. Interestingly, in the case of switched-capacitor (SC) ΣΔ ADCs, the bit stream can 
be fed directly into the modulator by adding simple circuitry at its input [174–177]. Another pos-
sibility is to replace the conventional sinusoidal test stimulus with a stepwise exponential [178] 
or, in the case of ΣΔ ADCs, with a pseudo-random pattern sequence [179]. For analyzing the 
test response, performing a FFT on-chip incurs a high area overhead [180]. If the FFT cannot be 
performed in a digital signal processor (DSP), then for a full BIST implementation, it is required 
to replace the FFT algorithm with an alternative less computationally intensive algorithm. Well-
known algorithms are the sine-wave fitting [172,181,182] and the Goertzel algorithm [183]. 
A  variant of the sine-wave fitting algorithm with reduced complexity and, thereby, more efficient 
digital implementation is proposed in [175] in the case of stereo SC ΣΔ ADC. Another variant 
is proposed in [184] and makes use of the COordinate Rotation DIgital Computer (CORDIC) 
algorithm.

The standard approach to measure the static specifications of an ADC is to apply a ramp at 
the input and obtain the histogram of the number of occurrences of each code at the output. 
On-chip adaptive ramp generators are proposed in [185,186]. A ramp generator that relies on the 
oscillation-based test principle is described in [158]. Alternatively, an exponential waveform can 
be employed in the analysis [187,188]. Another interesting approach is based upon first identify-
ing and computationally removing the source nonlinearity and then accurately estimating the 
ADC static performances [166,189,190]. For analyzing the test response, it is required to store 
both the experimental and reference histograms and use the DSP to perform the comparison. 
Efficient BIST implementations of the histogram analysis are proposed in [191,192]. For ADCs 
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having a repetitive structure, such as pipeline, cyclic, and successive approximation ADCs, we 
can also apply what is broadly known as reduced code testing [193–196]. Only a few codes need 
to be judiciously targeted, and from this information we can extrapolate the complete histogram.

Instead of targeting a functional BIST approach aiming at measuring directly the dynamic and 
static specifications, it is also possible to consider a structural DFT approach where the aim is 
to obtain measurements that reveal important design parameters, such as the poles and settling 
errors of the integrators in the case of ΣΔ ADCs [197]. A DFT approach proposed also specifi-
cally for pipeline ADCs is to reconfigure consecutive pipeline stages to form ΣΔ modulators and 
then test instead the ΣΔ modulators through digital means [198]. A generic approach virtually 
applicable to any ADC is to obtain information from process control monitors (PCMs) that are 
scattered across the die and use this information to make judgments about the performances of 
the ADC [199].

Regarding  DACs, the standard approach to measure the dynamic specifications is to apply 
a digital signal at the input that encodes a high-resolution sinusoidal and compute the FFT at 
the output. For a BIST implementation, the digital signal can be stored on-chip in a memory. 
However, for analyzing the test response, performing the FFT on-chip [22,23,200–202] seems to 
be unavoidable, unlike in the case of ADCs where there exist alternatives, as discussed earlier. 
The standard approach to measure the static specifications is to apply a digital ramp at the input 
that contains all possible digital codes and measure the output with a digital voltmeter. A BIST 
implementation is proposed in [203].

Finally, in the case of SoCs that comprise a set of ADCs and DACs, a technique to test them 
altogether in a fully digital setup is proposed in [204].

23.9 DFT AND BIST FOR PLLS

PLLs are fundamental building blocks for processors and communication systems since they 
are used to synthesize clocks for data synchronization and to provide the frequency sources for 
up-conversion and down-conversion in RF transceivers. The standard functional tests for PLLs 
include measuring the loop gain, the lock time, defined as the time it takes for a PLL to acquire 
phase lock after an abrupt change in the phase of its reference signal, and the lock range, defined 
by the minimum and maximum frequencies that a PLL can lock to within its lock time.

However, perhaps the most important performance of a PLL is the jitter, which defines, in 
turn, the bit error rate in communication systems. The most common types of jitter are the tim-
ing jitter, defined as the edge timing variation relative to the ideal edge timing, the period jitter, 
defined as the variation of each period relative to the average period, and the cycle-to-cycle jitter, 
defined as the variation in each period with respect to the preceding period. Within these types, 
jitter can be random or deterministic.

The jitter, despite being the most important performance of a PLL, happens to be the most chal-
lenging one to measure on an ATE. The reason is twofold. First, the standard method that uses 
high-speed sampling oscilloscope requires tens of seconds, which is prohibitive for production test-
ing. Second, as the PLL output is transferred off-chip, significant jitter is added due to capacitive 
coupling to other signals on-chip and transmission line effects off-chip. In addition, sampling the 
PLL output to extract the PLL jitter introduces even more jitter and, thus, the measurement ends 
up being imprecise. For these reasons, measuring jitter exactly at the PLL output using BIST is the 
recommended method, especially for multi-GHz PLLs that may have RMS jitter as low 0.1–5 ps.

An on-chip jitter measurement technique based on an adjustable delay line is shown in 
Figure 23.14 [205]. The PLL output edge timing is compared to a delayed version of the input ref-
erence clock edge that has low jitter. For digitally controlled incrementing delays, we can deduce 
a cumulative histogram of the output jitter relative to the reference clock edges. However, the fact 
that the delay line adds jitter and the fact that the PLL and the BIST share the same power supply 
that increases the jitter in the PLL limit the resolution of the measurement to 10 ps. Similar resolu-
tion can be achieved by other on-chip jitter measurement techniques based on Vernier delay lines 
and Vernier oscillators that also incur similar area overhead [206–208]. Better resolution down 
to the resolution required by multi-GHz PLLs can be achieved with the scheme in Figure 23.15 
that employs a phase comparator [209,210]. The idea is to undersample the PLL output that has 
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frequency fD by a slightly lower clock frequency fS = fD × N/(N + 1), where N is a positive integer. 
The resulting low-frequency digital waveform has a beat frequency fB = fD − fS. At the time where 
we sample the rising and fall edges of the PLL output, the output of the phase comparator will be 
unstable due to the presence of jitter at the PLL output. The level of instability of the bits at times 
where the rising and falling edges occur, which is directly related to the PLL jitter, and, thus, by 
using a counter we can extract a signature that can be mapped to the PLL jitter.

Finally, BIST techniques to measure the jitter transfer function of PLLs are described in 
[211,212]. BIST techniques to measure various PLL parameters, including VCO gain, lock time, 
lock range, and phase offset, are described in [70,205,213,214]. Structural test techniques target-
ing catastrophic faults that employ DFT are described in [215,216].

23.10 DFT AND BIST FOR RF CIRCUITS

Perhaps the earliest system-level DFT strategy for RF transceivers is the loopback architec-
ture shown in Figure 23.3 [10–16]. Digitally modulated baseband test signals are transmitted 
through the RF transceiver chain and the baseband response signals are sampled to evaluate 
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the performance of the RF transceiver. In this case, the DSP can serve as both a test stimulus 
 generator and a test response analyzer. The transmitter is connected to the receiver through 
an attenuator such that the power amplifier’s output is suitable for the dynamic range of the 
low-noise amplifier. This approach presents many challenges related to the area overhead of the 
loopback connection and the signal-path mismatch, cross-talk, and signal leakage, which can all 
obscure the faulty behavior. Analytical techniques to decouple the transmitter and the receiver 
in loopback mode and measure I/Q imbalances and nonlinearity are presented in [217–220]. 
Alternate test of RF transceivers in loopback mode is discussed in [221,222].

Instead of performing a system-level test based on a loopback connection, another possibility 
is to target BIST of the blocks inside the RF transceiver. A popular BIST strategy is to employ on-
chip sensors, as shown in Figure 23.5. Two types of sensors are most commonly used. The first 
type is an amplitude (or envelope) detector that provides a DC signature that carries information 
about the RF amplitude [24,25,79–83]. The second type is a current sensor that takes advantage 
of the small parasitic resistor (it can reach several ohms) of the line that connects the core of the 
CUT to the power supply pad [26,82,84]. The current sensor offers dynamic power supply cur-
rent monitoring and its output can be switched to an amplitude detector in order to obtain a DC 
signature that carries information about the RF amplitude of the power supply current. Using 
two amplitude detectors at the input and output of the CUT, we can measure the gain and the 
1 dB compression point. Alternatively, the DC signatures of the sensors can be used to perform 
an alternate test.

A common disadvantage of the loopback test and sensor-based test is that they require to 
add on-chip circuits that tap into sensitive RF paths and, therefore, they unavoidably degrade 
the RF performances. For this reason, these DFT and BIST approaches must be considered 
early in the design process, and the degradation must be compensated during design in order 
to meet the intent design specifications. This finds designers rather reluctant since it increases 
design iterations and it does not allow aggressive design to exploit the features that the technol-
ogy has to offer.

To this end, nonintrusive BIST techniques have been proposed recently that leave the design 
intact. The idea is to employ sensors to monitor the CUT while being totally transparent to the 
CUT, as shown in Figure 23.16. Two types of sensors can be considered. The first type consists 
of variation-aware sensors that include process control monitors (PCMs), such as single-layout 
components (i.e., transistors, capacitors) and dummy analog stages (i.e., level shifters, bias stages, 
gain stages) [28,82]. If PCMs are placed in close physical proximity to the CUT, then they can 
offer an image of the process variations affecting the CUT. In this way, measurements on PCMs 
can track the RF  performances since they are both subject to the same interdie and correlated 
intradie  process variations. In turn, the RF performances can be implicitly predicted using the 
alternate test paradigm. This approach can be virtually applied to any RF circuit since any RF 
circuit can be decomposed into PCMs. The objective is to layout the PCMs in close physical prox-
imity to the corresponding structures in the RF circuit such that they are well matched in order 
to minimize uncorrelated intradie process variations.
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However, variation-aware sensors cannot detect the presence of defects within the CUT since 
they are not electrically connected to it. For the purpose of detecting defects, a second type of 
nonintrusive sensor can be used that is based on temperature monitoring [223–227]. The under-
lying observation is that when the CUT operates, part of its electric power is dissipated, that is, it 
is converted to heat due to the electrothermal Joule effect. The heat is mostly conducted through 
the silicon substrate and the temperature in a sensing point near a dissipating device of the CUT 
varies due to the power dissipated. The idea is that a defect will necessarily shift the dissipated 
power that, in turn, will change the temperature profile close to the CUT. Thus, a temperature 
sensor can capture this change to indicate the presence of the defect. The heat transfer has a low-
pass filter behavior with a time constant defined by the thermal path of a few tens of kilohertz. It 
appears that only DC spectral component of the dissipated power induces a temperature varia-
tion near the CUT. Nevertheless, since the dissipated power is the product of current flowing 
through the dissipating device and the voltage across its terminals, this DC component carries 
information about both the DC biasing and the RF amplitude of the signals. By extension, by 
measuring temperature near a dissipating device of the CUT, we can monitor both the DC bias-
ing point and RF operation of the CUT.

23.11 SUMMARY

We presented a concise overview of AMS testing and practical DFT and BIST techniques. The 
aim of this chapter was to explain basic concepts and provide references where the interested 
reader can find a more detailed presentation of the material as well as experiments that dem-
onstrate these concepts. Finally, we should note that, in general, we did not include traditional 
test approaches that have been for many years the practice in industry. These approaches are 
presented in great detail in [2,4]. The aim was instead to collect in a comprehensive manner the 
latest research results in the field and describe techniques that have a high potential and are close 
to industrialization.
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