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PREFACE

For several years I taught an introductory analog and digital essentials course 
for the University of California Extensions at Berkeley and Santa Cruz. Teach-
ing there motivated me to put together, under one cover, a textbook that 
contains fundamentals of electrical, electronics, analog, and digital circuits. 
That is the reason for the word “essentials” in the title. There are not that many 
books in the market that try to accomplish this task in about 600 pages.

The book is divided into 10 chapters. It is useful for surveys of electrical 
and electronics courses, for college students as well as practicing scientists and 
engineers; it is also useful for introductory circuit courses at the undergraduate 
level. The book provides many examples from beginning to end. Within the 
examples, specific components part numbers were avoided to prevent this 
book from becoming obsolete. The book can be used by students who have 
some to no previous knowledge of the material, and for graduate-level and 
working professionals’ circuit courses. The prerequisites for using this book 
are freshman-level calculus and algebra. Nevertheless, the level of math needed 
is quite light. The book is a gentle introduction to electrical and electronic 
circuit analysis with many examples.

Physical concepts are emphasized not only with text but also with specially 
prepared figures that should help the first-time readers study the material.

This book emphasizes problem solving, using different circuit analysis meth-
odologies. These techniques allow readers to understand when one method is 
more appropriate than another. Ultimately, it is the student who is responsible 
for adopting the methods that make the most sense. No one thinks exactly in 
the same way. An example is differentiation and integration. For some people, 
differentiation is simpler than integration; for others, is the other way around.

Chapter 1 covers the three basic circuit elements: resistors, inductors, and 
capacitors. Additionally, ideal and real independent DC current and voltage 
sources are addressed. Chapter 2 emphasizes AC circuits, as they are applied 
to the three basic circuit elements. Their time-domain and frequency-domain 
behavior is seen throughout examples. A brief refresher on operations with 
complex numbers is embedded in this chapter and not in an appendix for 
reasons of reading continuity. The concept of power drawn by a circuit and its 
different types are addressed. The chapter ends with the coverage of dependent 
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voltage and current sources. Chapter 3 addresses methods to solve circuits; it 
should be studied with the greatest attention and as many problems with dif-
ferent circuit analysis methods as possible should be solved. From a practical 
point of view, this is a core chapter to master.

Chapter 4 describes with plenty of detail the behavior of first-order and  
second-order circuits in the time and frequency domains. Many textbooks do not 
put as much emphasis on first-order circuits, because they are considered too 
simple. It has been my experience with students that first-order high-pass filters 
are particularly more difficult to understand than first-order low-pass filters. 
Chapter 5 is dedicated to operational amplifiers. Even though op amps consist of 
to-be-covered electronic components, it is useful to have the reader think with 
some high level of abstraction. Under some conditions op amps are seen as func-
tional blocks and not as circuits with transistors and resistors. Linear and nonlin-
ear applications with op amps are covered with many examples.

Chapter 6 covers electronic devices. Much information on devices is pro-
vided. One can say that entire books have been written just on the electronic 
components addressed by this chapter. The textbook takes a systematic 
approach to study the circuits using diodes and transistors, hardly dwelling on 
device physics. Chapter 7 begins with digital logic. Combinational (and not 
“combinatorial,” as it is sometimes mistakenly called) logic circuits do not 
have any memory. Logic operations or Boolean algebra is presented, and logic 
simplification methods such as the Karnaugh map method are illustrated. 
Chapter 8 deals with more advanced combinational circuits such as multiplex-
ers, decoders, and some arithmetic circuits. A method to produce a very fast 
arithmetic sum of two operands is covered. Chapter 9 is about state machine 
design or sequential logic. Sequential logic has memory, unlike combinational 
logic, and it is the core subject when designing logic circuits that perform useful 
and complete functions. Chapter 10 describes piece by piece the construction 
of a simple CPU. The CPU basic functional blocks, such as its instruction set, 
the data path architecture, its memory interface, and the control logic, are 
described step by step. Some insights into capacitor power decoupling and 
reliable reset circuits are also presented. The problems at the end of this 
chapter provide tremendous insight into the CPU functionality. This chapter 
can be thought as a very light introduction to a computer architecture course.

Writing this book has been a very rewarding experience for me. This book 
should be very useful to college students and those professionals who need an 
essential analog and digital source.

I want to thank my wife Ruty and daughter Denise for their infinite patience 
and support while I was preparing the manuscript.

Eduardo (Ed) M. Lipiansky
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FROM THE BOTTOM UP: 
VOLTAGES, CURRENTS, 

AND ELECTRICAL 
COMPONENTS

1.1  AN INTRODUCTION TO ELECTRIC CHARGES AND ATOMS

The ancient Greek philosophers knew that when amber was rubbed against 
wool, it would attract lightweight particles of other materials like small pieces 
of paper or lint. Also, little pieces of paper get attracted to a plastic comb when 
the weather is dry. These experiments reveal that electric charge exists. If we 
rub one end of a glass rod with silk, charges will move toward that end of the 
rod. Rubbing a second glass rod in the same fashion and placing it close to the 
rubbed end of the first glass rod will exhibit a repelling force between the rods. 
However, when a plastic rod is rubbed with fur and it is placed near the rubbed 
glass rod, the plastic and the glass rods will attract each other. These simple 
experiments prove the existence of two different types of charge. Benjamin 
Franklin* called one of them positive and the other one negative. Most charge 
in an everyday object appears to be nonexistent because there is an equal 
amount of positive and negative charge. The word electron is derived from the 
Greek word “elektron,” which means amber. From the above experiments the 
following can be asserted:

Charges of the same sign repel each other, while charges of opposite signs attract 
each other.

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.

* Benjamin Franklin: American scientist, writer, and politician (1706–1790).
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All matter is made of the basic elements, those elements listed in the periodic 
table of chemical elements. As of 2006, there are 117 elements of which 94 are 
found naturally on the Earth. The remaining elements are synthesized in par-
ticle accelerators. Loosely speaking, all matter is made of some combination 
of atoms, where an atom is the basic unit of matter. An atom contains a nucleus 
surrounded by a cloud of electrons. The nucleus consists of positively charged 
protons and electrically neutral neutrons. Neutrons have no electrical charge, 
but their mass is about 1800 times the mass of electrons. The electronic cloud 
around the nucleus is negatively charged, and an atom with an equal number 
of protons and electrons is said to be neutral. Protons have a positive charge 
and a mass about 1800 times larger than the mass of electrons. Different 
element atoms are different from each other because of the different numbers 
and arrangements of the atom’s basic particles: electrons, neutrons, and protons. 
Traditionally in elementary physics and chemistry, the atom was compared to 
our planetary system. The nucleus is in the center of the atom, like the sun is 
the center of our system. The electrons are like the planets, orbiting around 
the sun. Electrons occupy different layers or shells that are at different dis-
tances away from nucleus. The outermost shell is referred to as the valence 
shell. The valence shell electrons determine the electrical characteristics of an 
atom.

Table 1.1 presents the elementary charge, which has a positive sign for a 
proton and a negative sign for an electron. Values for the mass of the electron, 
proton, and neutron are also tabulated.

From an electrical point of view, there are four main types of materials: 
conductors, nonconductors or insulators, semiconductors, and superconduc-
tors. The fourth type of material, the superconductor, is beyond the scope of 
this book.

Conductors are materials through which charge can move quite freely, such 
as copper or gold. Insulators are materials through which charge cannot move 
freely such as plastic or rubber. Semiconductors are materials that have an 
intermediate behavior between that of conductors and insulators. More on 
semiconductors will be covered in Chapter 6.

Table 1.1  Some atomic constants

Abbreviation Mass Value Units

Relative Mass 
to the Electron 

Mass (me)
Charge in C 
(coulombs)

Elementary 
charge

e 1.602 × 10−19

Electron me 9.109 × 10−31 kg 1 −1.602 × 10−19

Proton mp 1.673 × 10−27 kg 1800 (approx.) +1.602 × 10−19

Neutron mn 1.675 × 10−27 kg 1800 (approx.) 0
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1.2  ELECTRIC DC VOLTAGE AND CURRENT SOURCES

Two types of independent sources are available, voltage and current sources. 
A source is said to be independent when either its nominal voltage or current 
is constant and does not depend on any other voltage or current present in a 
circuit. In a later section, we will cover the concept of dependent sources. The 
ideal voltage source produces a constant voltage across its terminals, regard-
less of the current that is being drawn from it by a load. Conversely, an ideal 
current source produces a constant current to a load connected across its 
terminals regardless of the voltage that is developed across the load. Let us 
now address the concepts of electric current and voltage.

1.2.1  Electric Current and Voltage

A net flow of electric charges through a circuit establishes an electric current. 
Note that conductors in isolation, such as a piece of copper not connected to 
anything else, contain free electrons or conduction electrons that randomly 
move. Such electrons do not constitute an electric current since in any cross 
section of the copper wire, the net amount of charge moved through the wire 
is zero. The emphasis here is on the word “net”; the net flow of charge consti-
tutes an electric current. Current is defined as

 i t
dq
dt

( ) ,=  (1.1)

where i(t) represents electric current as a function of time and dq/dt is the net 
variation of charge with respect to time. Traditionally, electric current was 
referred to as current intensity. In most places, the term “current” is used, 
which is a short form of current intensity. The letter i denotes current, while 
dq differential of charge over dt differential of time refers to the net passage 
of charge during a time interval through a cross section of the conductor. On 
the other hand, a voltage can be interpreted as the “pressure” that needs to 
be asserted in a circuit in order to cause electric current to flow.

Throughout the book, we will assume that a conductor or a wire is ideal 
and will have zero resistance to the flow of current, unless it is stated otherwise. 
The unit of resistance is the ohm (Ω). Electric components that have greater 
than 0 Ω resistance are called resistors. The current that flows through a resis-
tor times the resistance value equals the voltage drop that is produced across 
such resistor. Conventional current in a resistor flows from higher voltages or 
potentials to lower voltages or potentials.

Figure 1.1 depicts a resistor, a current flowing through it, and the voltage 
with its polarities that is produced across the resistor. The current through the 
resistor times its resistance value equals the voltage obtained across the resis-
tor terminals. Mathematically,
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 V IR= .  (1.2)

Equation (1.2) states the voltage across a resistor is proportional to the current 
flowing through it. The constant of proportionality is the resistor value R. 
Equation (1.2) is Ohm’s Law. In Figure 1.1a, a resistor powered by a DC 
source is shown; Figure 1.1b depicts the variation of resistor voltage versus 
current variation. The slope of the line V = I R is the resistance value. Ohm’s 
law in Equation (1.2) denotes a linear variation of the voltage across the resis-
tor versus the current flowing through it.

Figure 1.1  Ohm’s Law: (a) DC voltage source powering a resistor; (b) linear variation of resis-
tor voltage versus current.
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1.2.2  DC Voltage and Current Sources

We all have some familiarity with electricity and electronics. We have seen 
flashlights, batteries, battery chargers, lightbulbs, portable electronic devices, 
and electrical and electronic appliances such as toasters and microwave ovens.

Flashlight batteries, toy batteries, and automobile batteries are all examples 
of DC voltage sources. DC stands for direct current, and what this means is 
that the current polarity that the source supplies does not change; that is, the 
current always flows in the same direction through the load.

An idealization of the DC voltage source is that its DC voltage is always 
constant with respect to time and independent of the amount of current that 
it may supply. In practical devices such as batteries, that voltage is “somewhat” 
constant, and it varies based on factors such as temperature, environmental 
factors, mechanical vibration, age of the battery, and use of the battery. 
However, unless we state otherwise, the first-order approximation of a battery 
is that of a constant or DC voltage source.

Current sources are as also idealized like DC voltage sources. An everyday 
example of a current source is a battery charger. A battery charger provides 
a constant current to recharge a battery with rechargeable chemistry. Note 
that not all batteries are rechargeable. No attempt should be made to recharge 
batteries that are not of the rechargeable kind, since this causes a hazard to 
the user. Another example of a current source is that of a transistor hooked 
up to operate as a current source.

A DC voltage source may not always be a chemical battery. It may, for 
example, be built with electronic components that behave largely like a DC 
source. An example of this is a DC power supply (see Figure 1.2).

When a DC voltage source is not being used, it must be stored in an open-
circuit condition (refer to Figure 1.3a). That means nothing is connected to the 
positive and the negative electrical terminals. Upon connecting an element 

Example 1.1 Given a 10-V DC voltage source that is connected across a 
0.1 Ω resistor, calculate for the current that will flow through the resistor.

Solution to Example 1.1

From Equation (1.2),

 V IR= .

And since

 I V R= / ,

 I = =1 V/ 1 A0 0 1 00. .Ω



6  FROM THE BOTTOM UP: VOLTAGES, CURRENTS, AND ELECTRICAL COMPONENTS

such as a lightbulb across the voltage source terminals, a current flows through 
the circuit that was just established. Figure 1.3b shows a DC voltage source, 
which in this case is actually a battery connected with wires to a lightbulb.

The battery exerts “pressure” into the circuit by displacing charges. The net 
flow of charge with respect to time is called an electric current. Physically, an 
electric current consists of a net flow of electrons. That is, the electronic current 
leaves the negative terminal of the source, goes through the lightbulb, and 
returns back into the positive terminal of the source. However, the traditional 
interpretation is that current flows from the positive terminal of the source 
through the lightbulb and back into the negative terminal of the source. 
Throughout this book, the traditional or conventional current flow will be 
used. This is what most of the electrical engineering literature assumes.

Figure 1.2  Mathematical representation of a DC voltage source as a function of time.
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Figure 1.3  DC voltage source in (a) open-circuit condition and (b) loaded with a lightbulb.
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The lightbulb depicted in Figure 1.3 is in effect a resistor. The voltage 
applied and the resistance of the lightbulb determines the current that will be 
present in the closed circuit. Resistance is the opposition that a resistor pres-
ents to the net flow of current. In other words, the DC voltage source voltage 
is basically constant, regardless of the amount of current that is being drawn 
form the source. Naturally, this is an idealization of what a DC voltage source 
is, or what we would like it to be. Real voltage sources do not behave that way; 
their output voltage is quite constant as long as the current flowing through 
the circuit is considerably less than what the total current pumping capability 
of the source is. More details on this topic will be provided when the internal 
resistance of a source is addressed, later in this chapter.

DC current sources, on the other hand, produce a constant current when a 
lightbulb or a resistive element establishes a closed loop circuit and the voltage 
across it will depend strictly on the resistive value placed across the current 
source and the current value. Just like with the DC voltage source, the DC 
current source is an idealization. Real current sources can provide a constant 
current as long as the voltage across the resistor does not produce an excessive 
voltage. Figure 1.4 depicts a constant DC current as a function of time.

Figure 1.5a depicts a DC current source in a standby condition, that is, with 
its terminals short-circuited to each other. A current source should not be left 
open-circuited because the voltage that gets developed across its terminals 
would grow without bound. A real or physical current source would self-
destruct or become severely damaged if its terminals were left in an open-
circuit condition. Figure 1.5b depicts a DC current source with a resistor 
connected across its terminals. In Figure 1.5a,b, both states of the current 
source are benign states or normal states. In both cases, the current supplied 
by the current source is identical.

Figure 1.4  Mathematical representation of a DC current source as a function of time.
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The ideal current source with a resistive element in a closed circuit (Fig. 
1.5) provides a constant current, and the voltage across the terminals of the 
current source depends on the value of the resistor across the current source 
times the current supplied by the source. Changes of the resistor values across 
the current source will produce proportional changes of the voltage across the 
current source. Note that the resistor (or load) across a current source pro-
duces higher voltages as the load resistor increases in value, because the 
current remains constant. For the case that the load resistor is very large, the 
voltage across the current source will be very large. When current sources are 
in open-circuit condition, the voltage across its terminal grows without bound. 
Real current sources would self-destruct quickly under an open-circuit condi-
tion. The current source must always be short-circuited when not in use (refer 
to Figure 1.5a). The voltage across a shorted current source is zero because 
the wire across the current source has zero resistance. However, the current 

Figure 1.5  DC current source (a) in short-circuit condition and (b) loaded with a resistor.
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supplied by a shorted current source is its nominal value of current. For 
example, a 10 A current source must be shorted when not supplying any 
current to a load. This current has a value of 10 A. When the current source 
is loaded by a resistor (Fig. 1.5b), the 10 A times the value of the resistor 
determines the voltage across the resistor. Note that since the current supplied 
by a current source remains constant as the resistor becomes larger in value, 
the voltage becomes larger as well.

In the extreme case if the value of the resistor is an open circuit, or infinitely 
many ohms, the voltage developed across the ideal current source is infinite.

In mathematical terms, an open-circuit current source produces an indeter-
mination. The voltage source on the other hand must never be short-circuited 
because if we did, the current that the voltage source would supply to the short 
circuit is infinitely large, that is, also an indetermination (unbounded current). 
A real or physical short-circuited voltage source would also self-destruct 
rather quickly. Figure 1.6 depicts an open-circuit voltage source and a short-
circuited current source. These are the benign or idle states for the voltage and 
the current sources. Figure 1.7 depicts ill-defined or undesirable states for  
a voltage and current source, respectively. A voltage source cannot survive 
short-circuited conditions, like a current source cannot survive an open-
circuited condition. If they did, their reliability would be severely affected after 
that. Finally, let us be 100% clear about it: Figure 1.7 depicts circuits that fall 
under the “do-not-do-this-at-home-or-at-work” category.

1.2.3  Sources Internal Resistance

No real voltage source has a capacity of generating an infinite current upon 
being short-circuited. Similarly, no real current source can produce an infinite 
voltage across its terminals if left open-circuited. Real sources have their 

Figure 1.6  Sources benign states: (a) for a voltage source; (b) for a current source.
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physical limitations. To account for these limitations, a voltage source is 
modeled with a current-limiting resistor in series, and a current source is 
modeled with a voltage-limiting resistor in parallel with the current source. 
Figure 1.8a,b depicts models of physical voltage and current sources with their 
respective series and parallel resistors. The series resistance in the voltage 
source represents the current limitation characteristic that a voltage source 
has. Note that if the voltage source of Figure 1.8a is 10 V and has an internal 
resistance of 1 Ω, the total short-circuit current capability of this source is its 
open-circuit voltage V divided by its internal resistance rinternal:

 I V rshort circuit constant source open circuit voltage inte- _ _ - _ /= rrnal.  (1.3)

In particular for the example stated above, this short-circuit current is 
10 V/1 Ω = 1 A. The internal resistance distinguishes a real voltage source 
from an ideal voltage source, which is assumed to have an infinite capability 
of generating current. Its internal resistance limits the current that can be 
drawn from a real or physical voltage source. This limitation is stated by Equa-
tion (1.3). When referring to Figure 1.8a, it is important to say that the internal 
resistance is an integral part of the real DC source, and the real DC source is 
modeled by an ideal DC source in series with the source internal resistance 
in series.

Similarly for the DC current source (refer to Figure 1.8b), the paralleled 
resistor with the current source represents or models the finite voltage-
generating capability that an open-circuited current source has. We can write 
the current voltage relationship for the real current source modeled in Figure 
1.8b as follows:

Figure 1.7  Ill-defined (hazardous) states: (a) for a voltage source; (b) for a current source.
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Figure 1.8  Modeling of real sources: (a) voltage source; (b) current source.
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 I V rconstant source current current source internal- -  /=  (1.4)

Note that Equations (1.3) and (1.4) are governed by Ohm’s law.
So, if we have a 10 A current source with its internal resistance of 10 Ω, 

using Equation (1.4), we determine that the maximum output voltage that this 
current source produces is 10 A·10 Ω = 100 V. Note that the open-circuit 
voltage of a real current source cannot exceed the limits imposed by Equation 
(1.4). The open-circuited ideal current source would produce a very large 
voltage across its terminals.
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1.3  ELECTRIC COMPONENTS: RESISTORS, INDUCTORS, 
AND CAPACITORS

There are three fundamental circuit elements in electric circuits. These are 
resistors, inductors, and capacitors. From a circuit analysis point of view, we 
are interested in the voltage versus current as well as the current versus 
voltage relationships that exist for every one of these circuit elements. All 
three components, resistors, inductors, and capacitors, are said to be passive 
elements to differentiate them from active elements. Passive components do 
not have gain, while active components do. Active components will be covered 
in Chapters 5 and 6.

1.3.1  Resistors

The resistor is an electric component usually made with some of the resistive 
materials such as carbon, metal film, or paste. Other materials are used, but 
the ones mentioned are the most common. Resistor technologies vary, and the 
most common are metal thin film and thick film, metal strip, wire wound, foil, 
and composition.

A resistor opposes the flow of electric current. As the current flows through 
the resistor, a voltage is developed across such resistor. The voltage drop across 
the resistor follows Ohm’s law, which states that the voltage across the resistor 
equals the current flowing through it, times the resistance value. Figure 1.9 
shows the circuit symbol that represents a resistor. Figure 1.9 depicts a posi-
tive current and a positive voltage on the resistor (a), a negative current and 
a negative voltage (b), a positive current and a negative voltage (c), and a 
negative current and a positive voltage (d).

The current voltage and voltage current relationship on a resistor is  
given by Ohm’s law, Equation (1.2), which we repeat for the reader’s 
convenience:

 V IR f I= = ( ),

where f(I) is a linear function of I equal to I R.
And conversely,

 I V R= /  (1.5)

 I g V= ( ),  (1.6)

where g(V) is a linear function of V and equals V/R. The term 1/R, the inverse 
of the resistance, is called the conductance G. Using G in Equation (1.6), it 
becomes

 I GV= .  (1.7)
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Figure 1.9  Circuit symbol of a resistor showing current and voltage polarities.
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In Equation (1.5), V is the voltage across the resistor in volts, I is the current 
flowing through the resistor in amperes, and R is the resistor value in ohms. 
In Equation (1.7), I is in amperes, G in siemens (or mho), and V in volts.

The unit of resistance is the Ω, and R represents resistance. The inverse of 
the resistance (1/R) in DC circuit analysis is called conductance (G), and it is 
measured in siemens (S), where 1 S = Ω−1, formerly also referred to as a mho 
(ohm spelled backward). Common values of resistors range from very small 
fractions of an ohm up to several megaohms (1 MΩ = 106 Ω). This is a good 
point to introduce the most common prefixes used in the SI system of units.

Table 1.2 shows the internationally accepted power of 10 factors, their 
names, and their symbols. The most commonly used prefixes in electrical engi-
neering and computer sciences range from 1024 (yotta) down to 10−24 (yocto). 
Within such range, some prefixes are more common than others.
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When selecting a resistor from a data sheet, there are key parameters that 
cannot be ignored to make a good component selection. Such resistor param-
eters are

(a) Resistance value in Ω
(b) Resistor power rating in W
(c) Resistor tolerance in ±%
(d) Temperature coefficient of resistance in ±ppm/°C, which stands for 

parts per million per Celsius degree or 10−6/°C.

Other defined parameters that characterize resistors may vary a little bit from 
manufacturer to manufacturer. For a more complete list of precision resistor 
parameters, access the first reference of the Further Reading section at the 
end of the chapter.

Resistance values range from a small fraction of an ohm all the way up to 
a few MΩ (1 M = 106 Ω). The electronic industry standardized the resistor 
values based on the E-series according to Table 1.3. For example, for 1% toler-
ance resistors, 96 values per decade are chosen in an equally spaced basis. The 
resistor values follow the following geometric progression:

 N n /k= −10 1 .  (1.8)

In Equation (1.8), N is the nominal resistance value at position n, and k is 96 
for the E96 series. For example, for series E96, using Equation (1.8) for n = 1, 
2, 3 . . . , the progression of resistance values becomes

 1 1 2 1 5. , . , .00 0 0 …  (1.9)

The resistor values of (1.9) have been rounded.
In Equation (1.8), k refers to a decade of resistors values such as 1 Ω, 10 Ω, 

100 Ω, and so on, while “n” is the series number. For example, for the E96 

Table 1.2  Prefixes used with the International System of Units (SI)

Factor Name Symbol Factor Name Symbol

1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro μ
1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 fempto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deka da 10−24 yocto y
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Table 1.3  Common Values of Resistor Tolerances

Series Tolerance Comments

E3 50% 3 steps per decade. No longer used.
E6 20% 6 steps per decade. No longer used.
E12 10% 12 steps per decade. No longer used.
E24 5% 24 steps per decade. Not commonly used.
E48 2% 48 steps per decade. Commonly used.
E96 1% 96 steps per decade. Commonly used.
E192 0.5%, 0.25%, 0.1% 

or higher
192 steps per decade. Commonly used in high 

accuracy and precision designs.

Example 1.2 Assume that a 1 MΩ resistor has a ±100 ppm/°C temperature 
coefficient within an operating temperature range of −25°C to +125°C. Further 
assume that the resistor is exactly 1 MΩ at 20°C (i.e., assume the resistor has 
zero tolerance ±0%):

(a) What will the resistor value range be for the above temperature range?
(b) What will the resistor value range be if in addition to the temperature 

range, a ±1% tolerance is assumed?

series, there are 96 (i.e., the reason for Equation (1.8) is to obtain the same 
number of steps within each decade of resistor values). Ultimately, the goal is 
to limit the number of resistor values or the inventory that manufacturers and 
distributors would have to have to handle otherwise.

For example for the E48 series of standardized resistor values, using Equa-
tion (1.8), the first three values are 100, 105, and 110 Ω. E48 is the ±2% toler-
ance series. Note that each of the three values mentioned plus and minus their 
2% tolerance are

 98 100 102Ω Ω Ω< < .  (1.10)

 102 9 105 107 1. . .Ω Ω Ω< <  (1.11)

 107 8 110 112 2. . .Ω Ω Ω< <  (1.12)

It is easy to see that none of the values including their tolerance overlap. The 
same applies to all values for all ohmic decades of all other series. The toler-
ance of a resistor is the deviation in percent that the actual value of a resistor 
can deviate from its nominal value at room temperature. Room temperature 
for some manufacturers is defined as 20°C, for others is 25oC. However, when 
the resistor is in use, the temperature surrounding the resistor will cause its 
nominal value to increase or decrease. Resistor manufacturers specify the 
maximum/minimum resistance variation of their components for a certain 
temperature span.
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Solution to Example 1.2a

When the resistor operates at +125°C,

 
1 100 125 20 1 100 10 105

10 500

6M ppm/ C C C MΩ Ω
Ω

× + ° × ° − ° = ± × × ×
= ± = ±

−[ ] ( )

, 11 05 125. % . of the resistor nominal value C°
 (1.13)

When the resistor operates at −25°C,

 
1 100 25 20 1 100 10 45

4500 0 4

6M ppm/ C C C MΩ Ω
Ω

× − ° × − ° − ° = ± × × ×
= ± = ±

−[ ] ( )

. 55 25% . of the resistor nominal value C− °
 (1.14)

From Equations (1.13) and (1.14), we conclude that for a −25°C to +125°C 
temperature range, the resistor varies from −0.45% up to 1.05% from its 
nominal value.

Solution to Example 1.2b

In Example 1.2a, the resistance variation was just due to the resistor tempera-
ture coefficient over the operating temperature range. If in addition the resis-
tor nominal value will be its value ±tolerance (%). That means that if the 
resistor has a ±2% tolerance, its value can vary between −2% (or 980,000 Ω) 
to +2% (or 1,020,000 Ω); a total of 1.05% due to its temperature coefficient 
operating in the −25oC to +125oC temperature range. Thus, at the high end the 
resistor value can be +1% due to tolerance and +1.05% operating at +125oC; 
that is a total of 2.05%. At the low end, the resistor value can be −1% due to 
tolerance and −0.45% operating at −25oC, that is, a total of −1.45% from its 
nominal value.

Resistor Tolerances: The most commonly used resistor tolerances for electri-
cal and electronic applications are ±1% and ±2%. Many years ago, ±5%, ±10%, 
and ±20% were commonly used. When dealing with high precision analog 
electronics, ±0.1% tolerance is available. When higher precision is required, 
metal foil resistors and ultrahigh precision metal film resistors are available. 
Metal foil resistor tolerances of up to ±0.005% tolerance are available, and 
special metal film resistors of up to ±0.01% are also available.

Example 1.3 Resistor Value, Tolerance, and Power Rating Selection
So let us assume that we need to select a resistor R to establish a constant 
current of 100 mA. The resistor will have 12 V DC ±120 mV applied across 
its terminals. Assume that the DC source and resistor R will always operate 
at 20°C and no temperature changes will occur. Determine (1) a reasonable 
resistor value, (2) its tolerance, and (3) its power rating that can keep the load 
current at 100 mA ±2% under all voltage variations and resistor variations 
due to its tolerance.
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Solution to Example 1.3

If the voltage (V) were exactly 12 V without any variations and the resistor 
were exactly 120 Ω, the current would be, by virtue of Equation (1.2),

 I = =12 120 100V/ mAΩ .  (1.15)

The statement that the resistor will always operate at 20°C is equivalent to 
saying that its temperature coefficient is zero or that there are no resistor 
variations due to temperature changes.

Let us start adding the real requirements to the problem. We are told that 
the voltage can vary ±120 mV or ±1% from its nominal value of V = 12 V. 
Thus,

 11 88 12 12. . .V V V< <  (1.16)

If we assume that we have a perfect resistor of 120 Ω with a 0% tolerance, then

 11 88 120 12 120 12 12 120. . ,V/ V/ V/Ω Ω Ω< <  (1.17)

which leads to

 99 101mA I mAΩ < < .  (1.18)

From Equation (1.16) we can state that having a ±120 mV voltage variation 
and a perfect resistor of 120 Ω, the current I will be bounded between 99 mA 
and 101 mA, or 100 mA ±1%.

Now let us introduce the concept that the resistor R is not perfect, and let 
us assume that it has a tolerance of ±1%.

Then the resistor value will range from

 118 80 121 20. . .Ω Ω< <R  (1.19)

Using the resistor R range obtained in Equation (1.19) and combining it with 
all possible variation of the voltage V, it yields

 V Rmax max/  (1.20)

 V Rmin min/  (1.21)

 V Rmax min/  (1.22)

 V Rmin max/  (1.23)

where

 V V Vmax  of  V V V= + = + =( % ) . . .1 12 0 12 12 12  (1.24)
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 V V Vmin  of V V V= − = − =( % ) . . .1 12 0 12 11 88  (1.25)

 R R Rmax of= + = + =( % ) ( . ) . .1 120 1 2 121 2Ω Ω Ω  (1.26)

 R R Rmin of= − = − =( % ) ( . ) . .1 120 1 2 118 8Ω Ω Ω  (1.27)

Using Equations (1.24) through (1.27) in Equations (1.20) through (1.23), we 
obtain

 V Rmax max/ V/ mA= =12 12 121 2 100 0. . . .Ω  (1.28)

 V Rmin min/ V/ mA= =11 88 118 8 100 0. . . .Ω  (1.29)

 V Rmax min/ V/ mA= =12 12 118 8 102 0. . . .Ω  (1.30)

 V Rmin max/ V/ mA= =11 88 121 2 98 0. . . .Ω  (1.31)

Equations (1.28) through (1.31) provide all the possible extreme variations of 
current I. And from Equations (1.22) and (1.21), it can be seen that current I 
varies approximately ±2% from its nominal value of 100 mA.

Finally, the power dissipated by resistor R will be V2/R. To account for 
voltage and resistor variations, we need to calculate

 P V R1 min/ W maximum= =max . ( ).2 1 236  (1.32)

 P V R2 max/ W minimum= =min . ( ).2 1 164  (1.33)

 P V R3 max/ W= =max . .2 1 212  (1.34)

 P V R4 min/ W= =min . .2 1 188  (1.35)

By inspection of Equations (1.32) through (1.35), Equation (1.32) shows the 
maximum dissipated power, and Equation (1.33) shows the smallest dissipated 
power.

Commonly available resistor power ratings are 0.063 W, 0.1 W, 0.125 W, 
0.2 W, 0.25 W, 0.5 W, 1 W, 2 W, and 5 W for most electronic and some electrical 
applications. For special high-power electrical applications, the power ratings 
go well beyond 5 W, such as 10 W, 20 W, 50 W, 75 W, 100 W, 500 W, 1 kW, and 
above.

For our example, the most logical choice is to select a 2-W power-rated resistor.

Answers to Example 1.3

(a) R = 120 Ω, (b) ±1%, (c) 2 W.
R can be 120 Ω ±1%, 2 W. When the voltage varies from 12 V ±1%, current 

I remains within ±2% of its nominal value of 100 mA. Note that choosing a 
1 W resistor is not an option since the minimum power dissipation exceeds 
1 W; 2 W resistor is the next given resistor power rating that provides a head-
room of 0.764 W or 76.4% more with respect to 1 W.
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1.3.2  Resistors in Series and in Parallel

Two or more resistors are connected in series when the same current flows 
through all of them. Referring to Figure 1.10, resistors R1, R2, and R3 are in 
series. Why? Because if a positive terminal of a voltage source is applied to 
the free end of one resistor in the series, and the negative terminal of the 
source is applied to the free terminal of the last resistor in the series, the 
current flowing through such circuit is identical for all resistors.

Generalizing the above concept, “n” resistors in series are equivalent to the 
sum of all n resistors. n is an integer and the total number of resistors in series.

 R R R R Rn i

i

n

1 2 3+ + + + = ∑… .  (1.36)

Two resistors in series are equivalent to the sum of each of the resistors.

Figure 1.10  Resistors in series.

R1 R2 R3 Rn

Example 1.4 Resistors in Series
Given a 1 kΩ, a 3 kΩ, and a 100 Ω resistor in series, find the series equivalent 
resistance.

Solution to Example 1.4

1000 Ω + 3000 Ω + 100 Ω = 4100 Ω = 4.1 kΩ.

Example 1.5 Resistors of Significantly Different Values
Given 1 MΩ and 1 kΩ resistors, find their series equivalent resistance.

Solution to Example 1.5

Not different from the previous example, the solution is 1,000,000 Ω + 1000 
Ω = 1.001 MΩ.

Example 1.6 Let us assume that both resistors of the previous example have 
±1% tolerance. What is the series equivalent resistance of both resistors with 
an error of approximately ±1%?
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Since the value of the 1 kΩ resistor is much smaller than 1% of the value of 
the series equivalent resistor, found in the earlier part of this example to be 
1.001 MΩ, the entire value of the small resistor can be neglected. The approxi-
mate answer is 1 MΩ ±10,000 kΩ, which is within a ±1% error. Note that a 
1% error of 1 MΩ from Equation (1.37) is 10,000 Ω.

Resistors in parallel are those resistors that are connected such that the 
voltage across all of them is the same. Figure 1.11, depicts “n” resistors in 

Figure 1.11  Resistors in parallel.

(a)

(b)

R1

R1

R2

R2

R3

R3

Rn

Rn

Solution to Example 1.6

With ±1% tolerance, it is easy to see that

 ± = ±1 10 000% ,of 1 MΩ Ω  (1.37)

and

 ± = ±1 1 10% .of kΩ Ω  (1.38)
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Example 1.7 Given two resistors in parallel, R1 = 3 Ω and R2 = 6 Ω, find the 
total equivalent resistance.

Solution to Example 1.7

Applying Equation (1.39),

 Rparallel equiv- /= × + =3 6 3 6 2( ) .Ω  (1.40)

parallel. Note that part (a) and part (b) of the figure represent the exact same 
circuit.

Given two resistors R1 and R2 in parallel, the total parallel equivalent resis-
tance (Rparallel-equiv) is

 R
product of both resistor values

sum of both
parallel equiv- = − − − −

− − −− −resistor values
.  (1.39)

Equation (1.39) can be arithmetically expressed as follows:

 
1 1 1

1 2R R Rparallel equiv-

= +  (1.41)

 R
R R
R R

parallel equiv- = ⋅
+

1 2

1 2

,  (1.42)

where Rparallel-equiv refers to the parallel equivalent resistor of R1 and R2. Note 
that Equations (1.41) and (1.42) are equivalent.

Generalizing from Equation (1.41), the parallel equivalent resistance of n 
(where n is an integer) that represents the number of resistors equals

 1 1 1 1 11 2 3/ / / / /-R R R R Rparallel equiv n= + + + +… .  (1.43)

Upon covering Kirchhoff’s laws in the next section we will justify the computa-
tions to find series and parallel equivalent resistors.

Example 1.8 Given three resistors in parallel, where R1 = 3 Ω, R2 = 6 Ω, and 
R3 = 2 Ω, calculate the parallel equivalent resistor.

Solution to Example 1.8

Using Equation (1.43), we obtain

 
1 1 1 1

1 2 3R R R Rparallel equiv-

,= + +  (1.44)
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Example 1.9a Given 10 resistors in parallel of equal value, find the parallel 
equivalent resistor of the group of 10.

Solution to Example 1.9a

Using Equation (1.43) for “n = 10” resistors in parallel, we find that

 1/ / 1/ 1/ 1/-R R R R Rparallel equiv = + + + +1 … ,  (1.47)

where Equation (1.43) has 10 equal terms because all 10 resistors have the 
same value.

From Equation (1.43), we obtain

 1 10/ /-R Rparallel equiv =  (1.48)

or

 R Rparallel equiv- /= 10.  (1.49)

Example 1.9b Given two resistors in parallel where one is 1 kΩ and the other 
one is 1 Ω, find the total equivalent resistance.

Solution to Example 1.9b

Using Equation (1.43) one more time, we obtain

 1/ / /-Rparallel equiv = +1 1 1 1000,  (1.50)

from where we obtain that

 Rparallel equiv- /= =1000 1001 0 999001. .Ω  (1.51)

Corollary from Example 1.9

The parallel of one resistor with another one that is several orders of magnitude larger 
than the first one is approximately equal to the smaller resistor value.

and using the corresponding values for R1, R2, and R3, we get that

 1/ 1/3 1/6 1/2-Rparallel equiv = + + ,  (1.45)

from where

 Requiv = 1 Ω.  (1.46)
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Example 1.10 Given three resistors, where R1 = 1 Ω, R2 = 27 Ω, and R3 = 
500 Ω, calculate the parallel equivalent resistance of the three resistors.

Solution to Example 1.10

Using Equation (1.43) from above,

 1/ / / /-R R R Rparallel equiv = + +1 1 11 2 3

 1 1 1 1 27 1 500 1 0 9624/ / / / /Requiv = + + = .

 Requiv = 0 9624. Ω

Note that the parallel equivalent resistor of 0.9624 Ω is smaller than the small-
est given resistor, which is 1 Ω.

Corollary from Example 1.10

The reader should be convinced that

Given n resistors, R1, R2, . . . , Rn where R1 < R2 < . . . < Rn, the total parallel equiva-
lent resistor is always smaller than R1. In other words, a number of resistors in parallel 
has a parallel equivalent which is numerically smaller than the smallest resistor value.

1.3.3  Resistivity: A Physical Interpretation

Figure 1.12 shows a conductor made of a conductive material. The most 
common conductive materials are metals; copper is the most abundant and 
the least expensive metal to mass-produce electrical wire. Although in many 
practical applications it is reasonable to assume that the total resistance of a 
conductor is close to 0 Ω, actually, it is not 0. So for some applications, the true 
resistance of a conductor needs to be taken into account.

The resistance of a conductor is given by

 R L A= ρ / ,  (1.52)

Figure 1.12  Conductor of length L and cross-section A.

Length L

Cross-Sectional Area A
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where ρ (lowercase Greek letter rho) is the material resistivity in ohm meter 
(Ωm), L is the length of the conductor in meters (m), and A is the cross-
sectional area of the conductor in meters squared (m2).

Figure 1.12 depicts a conductor of length L and cross-section A. Resistivity 
ρ is an electric characteristic of the material used, and it varies with tempera-
ture. Most commonly, resistivity is specified at room temperature of 20°C.

Table 1.4 lists some of the most common conductor and insulator materials 
and their resistivity.

Note that the range in resistivity between a conductor and an insulator such 
as glass minimally ranges from 10−8 to 1010; this is 19 orders of magnitude!

Table 1.4  Resistivity of some materials at room temperature (20°C) [2]

Material
Resistivity ρ in 
(Ω·m) at 20°C Conductor or Insulator?

Silver 1.62 × 10−8 Conductor
Copper 1.69 × 10−8 Conductor
Gold 2.35 × 10−8 Conductor
Aluminum 2.75 × 10−8 Conductor
Magnanina 4.82 × 10−8 Conductor
Tungsten 5.25 × 10−8 Conductor
Iron 9.68 × 10−8 Conductor
Platinum 10.6 × 10−8 Conductor
Glass 1010 to 1014 Insulator
Fused quartz ∼1016 Insulator

a Magnanin is an alloy with a very small temperature coefficient of resistivity.

Example 1.11 Assume that we have a DC voltage source that can produce 
100 A of current at a constant 12 V. What voltage level will be present across 
the resistive load, without neglecting the voltage drop across the copper wires? 
Assume that you are using 10 mm2 cross-section copper wires and that the 
one-way wire length (from source to load) is 1 m and the ambient tempera-
ture is 20°C. For illustration purposes of this problem, the reader is strongly 
referred to the circuit diagram of Figure 1.1 at the beginning of this chapter.

Solution to Example 1.11

If the resistance of the wires was 0 Ω, the load would see exactly 12 V at 100 A. 
We need to take into account the wire resistance, then:

From Equation (1.52), R = ρ L/A.
Since one-way length of the wire is 1 m, the round-trip length of the wire is 

2 m. From Table 1.4, copper resistivity is 1.69 × 10−8 Ωm at a room temperature 
of 20°C. A cross section of 10 mm2 equals 0.0001 m2. Plugging all the values 
into Equation (1.52) yields
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1.3.4  Resistance of Conductors

It is interesting to observe that for a given conductor material, for example, 
copper, the resistance of the conductor equals to its resistivity, which depends 
on the material, times the length of the conductor (L), and it is inversely pro-
portional to the conductor cross-sectional area (A) according to Equation 
(1.52).

So if the length of a conductor is doubled, all other factors remaining equal, 
the resistance of such conductor doubles. If the thickness (i.e., cross section) 
of a conductor doubles, while all other factors remain equal, the resistance of 
the conductor becomes half of the original resistance.

Resistivity ρ, is a temperature-dependent parameter, and it is a character-
istic of the material. A good empirical approximation of how resistivity varies 
with temperature is

 ρ ρ ρ α− = −0 0 0( ),T T  (1.55)

where α is called the temperature coefficient of resistivity, ρ0 is the resistivity 
at the reference temperature, usually 20°C (or 293K [kelvin degrees]), T0 is 
the reference temperature (20°C in our case), and ρ and T are respectively the 
resistivity and the temperature of the conductor at the temperature of interest, 
or at the unknown temperature. Equation (1.55) is linear and remains linear 
for most engineering problems over a wide temperature range around 20°C. 
Table 1.5 lists the temperature coefficient of resistivity α for some metals.

1.4  OHM’S LAW, POWER DELIVERED AND POWER CONSUMED

A voltage source happens to behave very much like a constant pressure water 
pump. The voltage source pushes the current through the electric circuit very 
much like a water pump pushes a volume of water through the closed-loop 
hydraulic case as depicted in Figure 1.13a, which shows an electrical circuit 
with a DC voltage source, a conductor or wire and a resistor, and Figure 1.13b 

 Rwire = × × =− −( . ) .1 69 10 2 10 3388 4Ω Ωm m/ m2 µ  (1.53)

Since the current flowing through the wires is 100 A, the voltage drop across 
the load wires is

 V IRdrop across wires- - wire A mV= = × × ⋅ =−100 338 10 33 86 Ω . .  (1.54)

Answer to Example 1.11

The voltage that the load resistor will see is 12 V − 0.0338 V = 11.9662 V.
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Figure 1.13  (a) An electric circuit and (b) its hydraulic analogy.
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Constant
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Pump

Constrictive Path

Fluid Flow Rate
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(a)

(b)

Table 1.5  Temperature coefficients of resistivity for some metals [2]

Metal (α) Temperature Coefficient of Resistivity [K−1]

Silver 4.1 × 10−3

Copper 4.3 × 10−3

Gold 4.0 × 10−3

Aluminum 4.4 × 10−3

Manganina 0.002 × 10−3

Tungsten 4.5 × 10−3

Iron 6.5 × 10−3

Platinum 3.9 × 10−3

a An alloy with an extremely low value of α.
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which depicts the hydraulic analogy of the electric circuit. The constant pres-
sure pump is the analog to the electric voltage source. The pipe is analogous 
to the wiring, and the pipe with flow restriction is analogous to the resistor.

In Figure 1.13a, we can state that the current that flows through resistor R 
is proportional to the voltage applied across its terminals. Equation (1.2) is 
repeated here for the reader’s convenience.

Ohm’s Law

 V IR= .  (1.56)

In Equation (1.56), V is the voltage across the resistor, I is the current flowing 
through resistor R, and R is the resistor value. Note from Figure 1.13a that V 
is the same as the voltage of the DC source applied.

The summary and a side-by-side comparison between the circuit elements 
and those of the hydraulic analogy in Figure 1.13 are presented in Table 1.6.

Rearranging terms of Equation (1.56), it yields

 I V R= /  (1.57)

and

 R V I= / .  (1.58)

SI units in Table 1.1 refer to the international system of units (in French Le 
Système International d’Unités) that was established worldwide by the General 
Conference of Weights and Measures in 1960. Note that Ohm’s law can be 
expressed in any of the three forms given by Equations (1.56), (1.57), or (1.58), 
where in all three equations, I is the current flowing through resistor R, and V 
is the voltage across resistor R terminals.

Now back to Joule’s law, a resistor will consume or dissipate in the form of 
heat an amount of power given in watts (W) in the SI system. This power 

Table 1.6  Electrical and hydraulic analogies

Electric Circuit Hydraulic Analogy

Element SI Units Element SI Units

DC voltage source V (volts) Constant 
pressure pump

Kg/m2

Current A (coulomb/s) Volume flow rate Liter/s
Resistor Ω (ohms) Flow constrictive 

pipe
There is no unit of 

resistance for a water 
flow constrictive pipe.
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equals the product of the voltage across the resistor times the current flowing 
through it or

 P VI= .  (1.59)

Plugging Ohm’s law Equation 1.56 into power Equation 1.59, one can see that 
the power consumed by a resistor can also be expressed according to Equa-
tion (1.60):

 P I V= 2 .  (1.60)

Finally, using Ohm’s law Equation (1.57) into power Equation (1.59) yields

 P V R= 2 / .  (1.61)

In terms of units, note that

 [ ] [ ] [ ] [ ] [ ] [ ] [watts volts amperes amperes ohms volts / ohms2 2= ⋅ = ⋅ = ]],  (1.62)

and using the appropriate SI abbreviations for each unit in Equation (1.62) 
becomes

 [ ] [ ][ ] [ ] [ ] [ ] [ ].W V A A V /2 2= = =Ω Ω  (1.63)

It is important to emphasize from Equations (1.60) and (1.61) that the power 
dissipated or consumed by a resistor increases with the square of the current 
flowing through it, and the power also increases with the square of the voltage 
applied directly across such resistor.

Example 1.12 Given the circuit of Figure 1.14 where the DC voltage source 
V = 10 V, the load resistor 0.1 Ω, find the current in the circuit.

Solution to Example 1.12

The current I in the circuit is calculated using Ohm’s law from Equation (1.57), 
and it becomes

 I V R= = =/ V/ A10 0 1 100. .Ω  (1.64)

Answer to Example 1.12

100 A
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The purpose of Examples 1.12 and 1.13 is twofold. First, note that regardless 
of the value of the load resistance, which is 0.1 Ω in Example 1.12 and 0.001 Ω 
in Example 1.13, the voltage across the resistor is constant and equal to 10 V. 
Second, note that the ideal voltage source violates Ohm’s law under the 
extreme case, that is, when the load resistor value is 0 Ω. The voltage source 
produces the same voltage at its output terminals regardless of the current 
being drawn from it. However, when the load is 0 Ω, meaning when the ter-
minals of the voltage source are short-circuited, the current cannot be deter-
mined, because the resistance across its terminals is 0 Ω, and the voltage of 
the source is a finite number (10 V in our example); thus, 10 V divided by 0 is 
an undetermined quantity. In theory, the current approaches an infinitely large 
value. In actuality, the source will attempt to deliver a very large current, but 
it will only deliver a maximum number of amperes only for a short period of 

Example 1.13 Using the circuit of Figure 1.14, assume that the source is still 
10 V, but the value of the resistor is now just 1 mΩ (or 0.001 Ω). Recalculate 
the current developed in the circuit.

Solution to Example 1.13

From Equation (2.3), the current is

 I V R= = =/ V/ A10 0 001 10 000. , .Ω  (1.65)

Answer to Example 1.13

10,000 A (ten thousand amperes!)

Figure 1.14  Circuit for Example 1.12 with a DC voltage source and a load resistor.

+

_

V = 10 V R = 0.1 Ω

I



30  FROM THE BOTTOM UP: VOLTAGES, CURRENTS, AND ELECTRICAL COMPONENTS

time. If this short-circuit condition is indefinitely applied, then the most likely 
outcome is at least one or more of the listed events: a damaged voltage source, 
burnt wires, smoke, even fire, and a serious hazard to people in the neighbor-
hood. Do not try this at home or at any other place.

From Example 1.12 we find that the voltage source has to provide 100 A 
and maintain its 10 V across its terminals. From Example 1.13, the source has 
to provide 10,000 A and maintain its 10 V across its terminals. Clearly, the ideal 
model of a voltage source cannot hold up for extremely large currents because 
generating 10,000 A is an almost an unreal amount of current, too high for 
most standards.

The association of a resistor in series with the ideal voltage source adds  
a dose of reality to the modeling of a voltage source. This added resistor is 
referred to as the internal resistance of the voltage source.

1.4.1  Voltage Source Internal Resistance

No real battery or DC voltage source can generate an infinite amount of 
current for any length of time. Even if the current is not infinite, no battery 
can supply a fixed amount of current at a constant voltage indefinitely. These 
concepts seem pretty familiar because most of us probably had a flashlight or 
a car battery replaced, even if the battery is of the rechargeable type like a 
lead-acid car battery. Real batteries, unlike ideal DC voltage sources, have a 
finite lifetime. The ability of a fully charged and good battery to supply a given 
amount of energy, which means supplying a current at a voltage for a finite 
amount of time, depends on the battery construction, battery type, materials 
used, size, weight, discharge rate, temperature, resistance, time, and age of the 
battery. Clearly, real batteries neither have the capability of generating an 
infinite current nor that of generating a constant current indefinitely. The first-
order approximation that we need to introduce into the ideal voltage source 
model is a non-zero Ohm internal resistance. In the real world, such resistance 
is a function of all of the factors mentioned such as temperature and discharge 
rate or usage of the battery. But for most practical purposes, it is reasonable 
enough to assume that the internal resistance of the battery is not zero, and 
under normal battery operating conditions, such internal resistance remains 
fairly constant. Figure 1.15 represents a circuit model of a real battery.

The real battery is depicted within the dotted box, and it is composed of 
two basic components, an ideal voltage source in series with a current limiting 
resistance or what we refer to as the battery internal resistance. Note that there 
is no access to the internal node, where the positive terminal of the battery 
connects to the internal resistance.

Note that the model in Figure 1.15 is a mathematical representation of  
the battery and is just a first-order approximation. The model represents the 
finite amount of current capability of the battery. Why is it only a first-order 
approximation? Because the model that includes the internal resistance does 
not account for the increase of its internal resistance as the battery looses 
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current-generating capability due to usage, temperature, and any other factors 
over time.

As the battery ages or becomes discharged, its capacity of generating current 
diminishes and that can be modeled as the internal resistance increasing in 
value with respect to time. Note that as time goes by, the ampere-hour rating 
of the battery diminishes; the battery is being discharged. Figure 1.16 depicts 
an alkaline battery discharge characteristics. Ampere-hours versus power 
delivered by the battery are plotted for different battery output voltages.

Figure 1.15  First-order approximation model of a real battery, showing its non-zero internal 
resistance.
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Example 1.14 For example, let us assume we get a battery that is rated to 
provide 12 V in open-circuit mode, that is, no load. Let us further assume that 
we model such battery to have an internal resistance of 1 Ω. What does 
this mean?

Solution to Example 1.14

The internal resistance of the battery is in a way a figure of merit of the battery. 
It expresses what can conceivably be the absolute largest current that the 
battery can supply if its terminals are short-circuited. The battery short-circuit 
current is given by

Short Circuit Current I Open Circuit Voltage V Internshc oc-   -   /= aal Resistance rint  .  
(1.66)

 I V rshc oc int= / .  (1.67)

 Ishc = =12 1 12V/ AΩ .  (1.68)
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In practical terms, real batteries will not be able to supply their short-circuit 
current for very long (maybe for just a few seconds if that long). However, the 
internal resistance inclusion within the ideal voltage source model provides a 
touch of realism when modeling the battery. Note that modeling the battery 
with an ideal voltage source means that the short-circuit current that the 
source can supply is infinitely large. Inclusion of an internal resistance limits 
the current to a finite number. As the battery supplies power to a load, it 
becomes discharged; which is equivalent to the battery internal resistance to 
grow in ohmic value as time progresses.

Example 1.15 Assume that we have five different batteries all of which have 
a 10 V open-circuit voltage. However, each one of the batteries has a different 
internal resistance:

(a) 0.1 Ω, (b) 1 Ω, (c) 2 Ω, (d) 5 Ω, and (e) 10 Ω.
(b) What is the short-circuit current for each one of the batteries?

Solution to Example 1.15

Since the short-circuit current of a battery is its open-circuit voltage divided 
by its internal resistance from Equation (1.67), it yields that

Figure 1.16  Alkaline battery discharge characteristic curves.
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(a) Ishc = 10 V/0.1 Ω = 100 A
(b) Ishc = 10 V/1 Ω = 10 A
(c) Ishc = 10 V/2 Ω = 5 A
(d) Ishc = 10 V/5 Ω = 2 A
(e) Ishc = 10 V/10 Ω = 1 A.

Figure 1.17  A parallel-plate capacitor: the area of the plates is A, and the separation between 
the plates is d; the dielectric used is air.

d
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It is important to emphasize from Example 1.15 that the larger is the numerical 
value of the battery’s internal resistance, the smaller is its short-circuit current. 
Shortly we will see that a battery with higher internal resistance also has less 
capacity of generating a voltage closer to its open-circuit voltage when a load 
is connected across the battery terminals. This example will be addressed again 
when we cover Kirchhoff’s laws.

1.5  CAPACITORS

The most basic capacitor consists of two metallic or conducting plates in paral-
lel, separated by a dielectric. A dielectric is an insulator, and it can be air, mica, 
polystyrene, transformer oil, glass, porcelain, or many others. Figure 1.17 
depicts a parallel-plate capacitor with its two terminals. Each plate is con-
nected to a capacitor terminal.

When we apply a DC voltage E across the capacitor plates, electrical charges 
(q) become accumulated on both plates of the capacitor. The positive side of 
the DC source will accumulate positive charges, and the negative side of the 
source will accumulate negative charges. Figure 1.18 depicts the parallel-plate 
capacitor, energized by a battery V. The voltage difference that exists across 
the capacitor is identical to the voltage V produced by the battery after all 
transients are over.
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It can be experimentally proven that the charge accumulated in the capaci-
tor is proportional to the voltage applied across the capacitor. The constant of 
proportionality is referred to as C, the capacitance of the capacitor. The unit 
of capacitance is the farad (F), which practically speaking is a very large unit. 
More common values of everyday use capacitors are in μF, nF, or pF.

In mathematical terms,

 q CV= ,  (1.69)

where q is electric charge, C is capacitance, and V is the voltage impressed 
across the capacitor terminals. From units perspective from Equation (1.69), 
it can be seen that

 [ ] [ ][ ] [ ] [ ][ ].coulombs farads volts or C F V= =  (1.70)

The voltage V applied across the capacitor plates creates an electric field set 
up by the battery. Once the capacitor is charged, it takes some finite, but non-
zero amount of time for the capacitor charging to occur; the plate connected 
to the negative of the battery accumulates negative charges or electrons, while 
the plate connected to the positive of the battery lacks negative charges. 
Should the wires and the battery be quickly removed, the charges on the plates 
of the capacitor will remain for as long as the capacitor is not discharged. 
Figure 1.19 shows two ways to discharge the capacitor after removing the 
battery across its terminals. Discharging the capacitor by short-circuiting its 
terminals may be a very hazardous operation, in particular when the capaci-
tance value is large, and the voltage stored in the form of charge inside the 
capacitor is large. Discharging the capacitor, with an appropriately sized resis-
tor, is safer. The discharge is more gradual and the resistor has to be sized to 

Figure 1.18  Capacitor with battery applied across its terminals.
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handle the capacitor charge that will be dissipated by the resistor in the form 
of heat.

1.5.1  Physical Interpretation of a Parallel-Plate  
Capacitor Capacitance

It can be experimentally determined that the capacitance exhibited by the 
parallel-plate capacitor with air as dielectric is proportional to the dielectric 
constant of free space, to the area of the parallel plates, and inversely propor-
tional to the separation d of the plates; see Equation (1.72). The dielectric 
constant of air is quite close to that of free space (1.0006 εo). And the dielectric 
constant of free space εo is a physical constant determined to be

 εo = × =−8 85 10 8 8512. . .F/m pF/m  (1.71)

The parallel-plate, air-dielectric, capacitor capacitance equals

 C
A
d

air = εo ,  (1.72)

where Cair is capacitance in farads with air dielectric, A is the plate area in m2, 
and d is plate’s separation in meters. If instead of air or free space in between 
the capacitor plates we introduce a dielectric, the capacitance of the new 
capacitor with the dielectric different from air will be k times bigger than the 
capacitance of the original capacitor of capacitance given by Equation (1.74). 
What is the value of k? k is the relative dielectric constant of the used dielectric 
material.

Figure 1.19  Discharging of a charged capacitor: (a) short-circuiting its terminals; (b) placing 
a resistor across its terminals.
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For example, if the dielectric is FR4 material, frequently used to fabricate 
printed circuit boards, the relative dielectric constant is approximately

 k = =ε εFR o/4 4 5. .  (1.73)

k is the relative dielectric constant of the material, FR4, in our example; εFR4 
is the dielectric absolute dielectric constant. k is always greater than one for 
dielectrics other than air and vacuum.

Combining Equation (1.72) with Equation (1.73), we obtain the capacitance 
of a parallel-plate capacitor with a dielectric in between its plates:

 C k
A
d

kCair= =εo ,  (1.74)

where k is the relative dielectric constant of the material used, the other 
parameters are the same ones described before. Looking at Equations (1.72) 
and (1.74), it is interesting to observe that with a dielectric other than air (or 
vacuum), a capacitor of the same structure (e.g., parallel-plate capacitor with 
area A and plate separation d) has a capacitance k times higher than the same 
capacitor with air as its dielectric.

Table 1.7 shows the dielectric constants for some materials relative to free 
space dielectric constant.

1.5.2  Capacitor Voltage Current Relationship

From Equation (1.69), charge in a capacitor is proportional to the voltage 
applied across its terminals.

Thus,

 q CV= .  (1.75)

Table 1.7  Table of dielectric constants of some materials measured at room 
temperature (20°C) [2]

Material Relative Dielectric Constant k

Vacuum (free space) 1
Air (at 1 atmosphere of pressure) 1.0006
Polystyrene 2.6
Paper 3.4
Porcelain 6.5
Silicon 12
Germanium 16
Standard FR4 Epoxy Glassa 4.5
Cyanate Estera 3.8
Teflona 2.2

a Dielectric material commonly used to fabricate printed circuit boards (PCBs).
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Differentiating the above equation with respect to time yields

 dq
dt

d
dt

CV= ( ),  (1.76)

and since the capacitance is a constant parameter, then

 i t
dq
dt

C
dV
dt

( ) = = ,  (1.77)

where i(t) is the electric current flowing through the capacitor, dq/dt is the 
definition of current, C is the capacitance value, and dV/dt is the variation of 
the voltage across the capacitor with respect to time.

Equation (1.77) is of utmost important equation and describes the voltage 
and current behavior on a capacitor. It is an experimentally determined 
expression and is valid for all current and voltage waveforms on a capacitor.

Example 1.16 Given the voltage across a capacitor is a sinusoidal function 
of time,

 v t V ftpeak( ) sin( ),= −2π ϕ  (1.78)

where:

• Frequency (f) is the inverse of the sinusoidal waveform period T.
• Phase angle (φ) is the angle with respect to the origin of the time axis 

that the waveform is shifted from. For a left-shifted sine waveform, the 
phase angle is positive; for a right-shifted waveform, the phase angle is 
negative.

• Amplitude (Vpeak) is also called the peak value of the waveform.

Figure 1.20 depicts a sinusoidal voltage waveform and all of its parameters.

1.5.3  Capacitors in Series

Capacitors are said to be in series when they are in a circuit where the same 
current flows through all of them. Figure 1.21 depicts n capacitors in series, 
where n is an integer.

A DC voltage source is connected across the three capacitors in series. The 
positive terminal of the source is connected to the left-most terminal of the 
the left hand side capacitor; the negative terminal of the source is connected 
to the right-most terminal of right hand side capacitor.

Since the current is the same flowing through all three capacitors, they all 
have identical charge (q). The sum of all the voltage differences across each 
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capacitor equals to the DC source voltage whose positive terminal is placed 
across the first series capacitor free terminal and its negative terminal con-
nected to the last capacitor free terminal:

 VBATT = + + + +V V V V1 2 3 n… .  (1.79)

We are now interested in finding the series equivalent value of all n capacitors 
connected in series. For each capacitor we have that

 V q C V q C V q C V q Cn n1 1 2 2 2 3/ / / /= = = =; ; ; ; ; ,…  (1.80)

since all have the same amount of charge q. Plugging Equation (1.80) into 
Equation (1.79) we get

Figure 1.21  Capacitors in series.
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Figure 1.20  Sinusoidal voltage waveform as a function of time.
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V V V V V

q C q C q C q C

q C C C

BATT n

n

= + + +
= + + + +
= + + +

1 2 3

1 2 3

1 2 31 1 1

…
…/ / / /

/ / /( …… + 1/Cn ).
 (1.81)

From above we know that the series equivalent capacitance Cseries-equiv has the 
total voltage VBATT across it and charge q within it. Thus, from Equation (1.81) 
we have

 1/ 1/ 1/ 1/ 1/- 1 2 3C C C C Cseries equiv n= + + + +( )…  (1.82)

or

 
1 1

1C Cseries equiv ii

n

-

.=
=∑  (1.83)

Example 1.17 Capacitors in series: Given three capacitors in series, C1 = 2 μF, 
C2 = 3 μF, and C3 = 6 μF, find the series equivalent capacitance.

Solution to Example 1.17

Applying Equation (2.83) we obtain that

 1 1 2 1 3 1 6 1/ / / / which leads to- -C Cseries equiv series equiv= + + =, µFF.

Figure 1.22  Capacitors in parallel.

C C C C21 3 nVc

1.5.4  Capacitors in Parallel

Capacitors are said to be in parallel when they are in a circuit where the same 
voltage is applied to their terminals. Figure 1.22 depicts n capacitors in 
parallel.

A voltage source is connected across the n capacitors in parallel. All n 
capacitors have the exact same voltage applied across their terminals.

For each capacitor we have that

 V C q C q C q Cn n= = = = =q / / / /1 1 2 2 3 3 … .  (1.84)
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Since all have the same voltage across, a parallel equivalent capacitance  
Cparallel-equiv such that its charge equals to the sum of the charges of each one of 
the capacitors in parallel, exists. Thus,

 q q q q q C Vn parallel equiv parallell equiv1 2 3+ + + + = =… - - ,  (1.85)

and since

 q C V q C V q C V q C Vn n1 1 2 2 3 3= = = =; ; ; .…and  (1.86)

Plugging Equation (1.86) into Equation (1.85),

 C V C V C V C V C Vn parallell equiv1 2 3+ + + + =… - ,  (1.87)

which leads to

 C C C C Cparallell equiv n- = + + + +1 2 3 … .  (1.88)

Or in a more compact form,

 C Cparallell equiv i
i

n

- =
=∑ 1

.  (1.89)

Example 1.18 Given a 10 nF, 0.1 μF, and 140 pF capacitor, calculate the total 
parallel equivalent capacitance of all three capacitors in parallel.

Converting all capacitances to pF, we obtain
10 nF = 10,000 pF and 0.1 μF = 100,000 pF.
Applying Equation (1.89),

 Cparallell equiv_ pF= + + =10 000 100 000 140 110 140, , , .

1.5.5  Energy Stored in a Capacitor

The electrical energy is

 
Energy capacitor average voltage

average current throug

= ×( )

(

  

  hh the capacitor time  ) .×
 (1.90)

From Equation (1.75),

 C qV=  (1.91)
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and

 q It I taverage= = ,  (1.92)

where I is the average current through the capacitor, Iaverage.
From Equations (1.91) and (1.92) we obtain the average value of current 

through the capacitor:

 I CV taverage = / .  (1.93)

When a capacitor is charged with a constant current, the voltage across it 
grows linearly with time from zero to V volts, so that the average voltage across 
the capacitor is

 V Vaverage = 1
2

.  (1.94)

Plugging Equations (1.93) and (1.94) into Equation (1.90), the energy stored 
in the capacitor is

 Energy CVcapacitor = 1
2

2,  (1.95a)

where C is the capacitance value in farads, V is the voltage across the capacitor 
in volts, and the energy is in joules.

Example: Energy Stored by a Capacitor
A 100 μF capacitor has been connected to a 400-V DC source for a very 

long time. What amount of energy will the capacitor be holding upon removal 
of the 400-V source?

From Equation (1.95a),

 Energy CV= 1
2

2

Thus,

 Energy = × × × =−1
2

100 10 400 86 2 J.

1.5.6  Real Capacitor Parameters and Capacitor Types

Real capacitors have the following parameters that characterize them:
C, their capacitance expressed in farads, this is the most important param-

eter of a capacitor; like the resistance is to a resistor.
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Figure 1.23  Simple model of a real capacitor.

C

ESR = Equivalent Series Resistor

ESR ESL

ESL = Equivalent Series Inductance

The maximum constant voltage that can be applied to a capacitor dielectric 
is what capacitor manufacturers call the capacitor voltage rating. Depending 
on the type of capacitor dielectric the voltage can be from a few volts to hun-
dreds of volts.

Some dielectric materials used are, for example, ceramics, mica, or 
polystyrene.

A real or physical capacitor does not behave entirely like a capacitor; it also 
has a small value of resistance in series referred to as the equivalent series 
resistance (ESR). This ESR is due to the fact that the dielectric is not a perfect 
insulator and inevitably has some resistance. Capacitors also have some 
unavoidable stray inductance because they have leads or terminals that have 
a small non-zero inductance. Figure 1.23 depicts a possible model used to 
describe the imperfections of a real capacitor.

The ESR accounts for the non-zero resistance of the dielectric material 
while the equivalent series inductance (ESL) mostly accounts for the inductive 
parasitic effects that the capacitor leads have. Of course other electrical capaci-
tor models are possible. Capacitor manufacturers sometimes indicate the 
capacitor model they use for the data sheet specifications. Some capacitor 
manufacturers specify a dissipation factor DF in %. DF is defined as

 DF X fCC= = = ×tan ( ) .δ πloss angle ESR/ 2 ESR  (1.95b)

In Equation (1.95b), XC is the absolute value of the capacitive reactance, which 
equals 1/2πfC, where f is the frequency of the sinusoidal signal applied to the 
capacitor. Chapter 2 will cover capacitive reactance in more detail.

Table 1.8 lists some of the most popular types of capacitors, their dielectric, 
and some of their electrical characteristics.

Capacitor Component Selection To select capacitors, we need to start by 
finding out their key purpose in the application. Let us assume for simplicity 
that we look at only three basic kinds of applications: bulk decoupling,  
high frequency decoupling, and precise timing control. Bulk decoupling 
requires large capacitance values; generally, the exact value is not as important 
as the fact of obtaining large amounts of capacitance. Moreover, these capaci-
tors need to operate with frequencies that are typically well under 100 kHz. 
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Practically speaking, one farad is an extremely large unit of capacitance. Large 
capacitance values are in the several thousands of microfarads (μF) and up.

The capacitors’ ESR is usually not as important as it is to obtain a huge 
amount of capacitance for the bulk capacitance application. The operating 
voltage at which the capacitor will be subjected to in the application should, 
under no circumstances, be more than about 50% of the capacitor-rated 
voltage for good reliability. For example, if a number of capacitors will be 
connected in parallel across a 5-V source, the capacitors must be rated at a 
voltage of at least 10 V or more. The higher the voltage rating of the capacitor, 
the bigger the capacitor usually is, so if volume or real estate on the printed 
circuit board is a prime factor, a very large voltage-rated capacitor may not 
be suitable for such application. On the other hand, the closer the capacitor 
voltage rating is to the voltage that the capacitor will be withstanding (5 V in 
our example), the shorter will be the long-term reliability of the capacitor. As 
a good rule of thumb, people pick at least a rated voltage that is twice the 
maximum voltage at which the capacitor will be subjected to. Naturally, the 
higher is such voltage, the harder it is to obtain a more generous voltage 
margin. As another example, in electronic circuits, a very common voltage used 
is 3.3 V. Capacitance values of a few pF are easily obtained with voltage ratings 
of 50 V or higher. Microfarad-valued capacitors are easily obtained in 10 V, 
16 V, and some higher voltage ratings. But when the capacitance values are 
many hundreds or even thousands of microfarads, the size of capacitor becomes 
very large with a high voltage rating such as 100 V and above.

High-frequency decoupling capacitors do not necessarily require as large a 
capacitance value, but they require good behavior of the capacitors at higher 
frequencies. High frequencies for decoupling capacitor mean frequencies of 
many thousands of kilohertz and above. The capacitors need to preferably be 
more stable in value and their ESR needs to be much smaller than those of 
capacitors used for bulk decoupling. Finally, in timing applications, capacitors 
are used as analog timing elements. It is required for the capacitance to be as 
accurate in value as possible; their capacitance value should also be stable 
under temperature variations, aging of the component, and changing operating 
conditions. And finally, it is also required that the ESR of the capacitor be 
small. This produces capacitor smaller losses and also plays a role in the capaci-
tor accuracy characteristics.

1.6  INDUCTORS

An inductor mainly consists of a copper wire wound around either a nonmag-
netic core (air-core inductor) or a magnetic core. The core is the physical 
medium that holds the copper wire in place in relatively large inductors. Most 
importantly, the iron-core of an inductor allows one to obtain a much higher 
inductance per unit volume. For example, assume two inductors of the same 
dimensions, same wire gauge, same number of turns, and same volume. One 
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has an air-core and the other one has an iron core. The iron-core inductor 
inductance value will be thousands of times the inductance of the same induc-
tor built with an air-core. This directly depends on the relative permeability 
(μR) of the iron-core ferromagnetic material. We will cover more on magne-
tism and permeability of materials later in this chapter. Small air-core induc-
tors generally do not need any media to hold the copper turns since they 
usually have a handful of turns. A thin layer of enamel electrically isolates the 
wound wire. The purpose of the insulating enamel is to keep multiple coil turns 
and multiple layers of turns from short-circuiting each other. Inductors used 
in power applications typically require higher inductance values than those 
inductors used in radio frequency (RF) applications. In RF, usually the induc-
tor is used for the purpose of building a high-frequency tank circuit or tuned 
circuit and high frequencies (usually many megahertz) drive down the size of 
the inductor. On the other hand, on power applications, the high current 
requirements and the relatively low switching frequencies of the switch-
ing power supplies (in the order of hundreds of kilohertz) drive the size of the 
inductors up.

1.6.1  Magnetism

There are some minerals that have magnetic properties. Figure 1.24 shows 
lines of force created by the magnetic field produced by a naturally magnetized 
bar. The two ends of the magnetic bar are referred to as the north and the 
south poles. Note that opposite poles produce attracting lines of force (Fig. 
1.24a), and like poles produce opposing lines of force (Fig. 1.24b).

When an electric current flows through a conductor, such current pro-
duces a magnetic field in the surroundings of the conductor. Figure 1.25  
depicts a current-carrying conductor that penetrates a piece of cardboard in 
a perpendicular direction to the cardboard surface. Iron filings that are arbi-
trarily placed on the cardboard and in proximity to the current-carrying con-
ductor will become rearranged in the shape of concentric rings around the 
conductor.

What is the direction of the concentric magnetic force field lines around 
the conductor? Let us refer one more time to Figure 1.25. When the current 
flows from top to bottom, the concentric magnetic field lines will be in a clock-
wise direction looking at the concentric rings from the top of the cardboard. 
This is also referred to as the right-hand rule. Referring now to Figure 1.26, a 
current is flowing from below the surface of this sheet of paper toward the 
reader. Concentric lines of magnetic force are formed in the surroundings of 
the current on all the planes, which are perpendicular to the current flow. 
Assume that you embrace with your right hand the current-carrying conductor 
with the right-hand side thumb pointing upward or toward the viewer. The 
right thumb represents the current direction, and the other four fingers embrac-
ing the current-carrying conductor represent the direction of the magnetic 
field.



Figure 1.24  (a) Magnetic bar with opposite polarity poles produces attracting lines of force; 
(b) magnetic bar with same polarity poles produces repelling lines of force.
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Figure 1.25  Magnetic field force produced around a current-carrying conductor.
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The right-hand rule is analogous to the rotational and longitudinal motions 
of a screw into a piece of wood. Referring to Figure 1.27, when an observer 
looks at the head of the screw, and the screw is rotated in the clockwise direc-
tion, the screw length will penetrate the piece of wood. The analogy here is 
that the longitudinal displacement of the screw is analogous to the current 
flowing through a conductor, and the clockwise rotation of the screw is analo-
gous to the direction of the magnetic field created around the current-carrying 
conductor.

Figure 1.26  Right-hand rule.
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The bottom-up current penetrates from below the sheet of paper of
this picture

Figure 1.27  Right-hand screw rule.
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Figure 1.28a shows a current “i” carrying conductor, the current flows from 
the bottom up, through a perpendicularly applied magnetic field B. Magnetic 
field B is perpendicular to the surface of this sheet, coming toward the viewer. 
Small black circles represent the tips of the vector field arrows. A force on the 
conductor is exerted in the direction shown by dF. Mathematically, the force 

Figure 1.28  Magnetic forces produced by a current-carrying conductor: (a) current i flows from 
the bottom up; (b) current i flows from the top to the bottom; (c) isometric view of vectors dF, 
idl, B that corresponds to part (a); (d) isometric view of vectors dF, idl, B that corresponds to 
part (b).
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equals the vector or cross product of idl with magnetic field B. Figure 1.28a is 
associated with the Biot–Savart equation: dF = idl × B, and it is graphically 
represented in Figure 1.28c. Note that the three vectors, dF, idl, and B are 
shown in three perpendicular planes in three dimensions. For Figure 1.28a, its 
corresponding vectors are shown in Figure 1.28c: dF along the x-axis; idl along 
the y-axis, and B along the z-axis. The operator × stands for cross product or 
vectorial product, a mathematical operation among vectors.

Similarly, Figure 1.28b shows a conductor with the current flowing from top 
to bottom; the magnetic field B is perpendicular to the sheet of paper on this 
book. Figure 1.28d is associated with Figure 1.28b which graphically expresses 
the vector or cross product of idl and magnetic field B to generate force dF.

Biot–Savart’s law is fundamental in the understanding of electric motors 
and it is expressed by

Biot–Savart Law

 dF idl B= × ,  (1.96)

where dF is a differential of force, idl is current times differential of length, 
and B is the magnetic field. The × sign is the mathematical symbol for the cross 
product, also referred to as the vector product.

The units of force (dF) are newtons, units of idl in amperes-meters, and B 
in webers (Wb). Biot–Savart’s Law can be expressed in its equivalent form, 
substituting idl with

q v, where q is the charge of the particle and v its velocity. This yields

Lorentz Law

 dF qv B= × .  (1.97)

In Equation (1.97) dF, v, and B are vectors. Finally, it is important to emphasize 
that the vector or cross products graphically shown in Figure 1.28c,d follow 
the convention adopted by the right-hand rule, discussed earlier.

Looking one more time at Figure 1.28a,b, the dotted line drawn conductor 
is the deflection that the wire will experience due to the forces produced by 
the given current and magnetic field directions.

1.6.2  Magnetic Field around a Coil

An alternating current (AC) flowing through an inductor or coil (Fig. 1.29) 
produces a magnetic flux from the contribution of each one of its turns. An 
AC voltage or current is one whose polarity alternates between a positive and 
a negative direction at some constant frequency. Deeper coverage of AC cir-
cuits is addressed in Chapter 2.
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The larger the number of turns, the larger will be the magnetic flux. The 
magnetization effect from each one of the coil turns is additive, as if each turn 
was a small magnet. The contribution of all turns produces a magnetic field 
(B), also called the magnetic induction field B or flux density B. Flux density 
for a magnetic field perpendicular to a cross-sectional area is

 B
A

= φ
,  (1.98)

where B is the magnetic field or flux density in teslas (T) or weber/m2 
(Wb/m2), ϕ is magnetic flux in webers, and A in m2 is the cross-sectional area 
through which the lines of flux travel through.

Figure 1.29  Iron-core inductor with AC excitation.
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Figure 1.30 depicts a natural permanent magnet bar in proximity to an air-
core coil. A back and forth motion of the permanent magnet causes the flux 
density to vary with respect to time. This time, varying flux induces an electro-
motive force (emf) on the upper coil of Figure 1.30. An important difference 
between an AC-induced magnetic field and the magnetic field of a permanent 
magnet is that the permanent magnet field is constant with respect to time 
when the bar is stationary, and in such case, we can call it a DC field. The AC-
induced field B is alternating with respect to time (Fig. 1.29). The AC current 
produced by the induced emf (Fig. 1.30) is produced by a permanent magnet 
because its flux is varied with respect to time by moving the magnetic bar back 
and forth.

Referring again to the iron-core inductor of Figure 1.29, if we assume now 
that the iron-core now has an air-core of the same dimensions, there will also 

Figure 1.30  Magnetic induction produced by movement of permanent magnet bar.
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be a time-varying magnetic flux upon a current flowing through the coil, but 
the intensity or strength of such magnetic flux will be considerably smaller. 
How much smaller depends on the specifics of the iron material and the air-
core. The reason is that magnetic flux or magnetic line forces travel much more 
easily through a ferromagnetic material than through air. The property or 
parameter that characterizes magnetic materials is called permeability. In prac-
tical terms, relative permeability is more frequently used, and relative per-
meability is defined as the magnetic material permeability divided by the 
permeability of vacuum or free space. Relative permeability is dimensionless. 
Permeability of air is close to that of vacuum.

 µ µ µ= ⋅o r.  (1.99)

The permeability of vacuum also referred to as the permeability of free space 
is a physical constant, and it was determined experimentally to be

Permeability of Free Space

 µo = ⋅−4 1 Wb/A m7π 0 .  (1.100)

The relative permeability of free space is 1. The relative permeability of mag-
netic materials ranges from as little as 10 to as much as several hundreds of 
thousands. For example, the permeability of 3–6% FeSi ranges from 1000 to 
10,000.

1.6.3  Magnetic Materials and Permeability

In relation to their capacity of allowing the passage of magnetic lines of force, 
materials can be classified into four categories:

• Nonmagnetic materials like vacuum, air, wood, paper, and plastic. These 
materials have no effect on the passage of magnetic lines of force.

• Diamagnetic materials which show a small opposition to magnetic lines 
of force. For most practical purposes are nonmagnetic materials. Exam-
ples are copper and silver. Their μ < μo or their μr < 1.

• Paramagnetic materials which somewhat assist the passage of magnetic 
lines of force. Examples are aluminum and platinum. Their permeability 
is μ > μo or their relative permeability is μr > 1.

• Ferromagnetic materials, sometimes simply called magnetic materials, 
which greatly assist the passage of magnetic lines of force through them. 
Some magnetic materials are iron, nickel, cobalt, steel (an iron alloy), 
and ferrites (ceramic composite materials). Ferromagnetic materials’ 
permeability is usually much larger than that of free space μo. μr, the 
relative permeability of magnetic materials is usually several thousands 
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or hundreds of thousands larger than the relative permeability of free 
space. Note: By definition the relative permeability of free space or air 
is 1, because we are referring the relative permeability of free space to 
its permeability.

1.6.4  Electromagnetic Induction and Inductor  
Current–Voltage Relationship

We studied that an AC current induces a magnetic field. The converse is also 
true. An alternating magnetic field produces an AC current.

Michael Faraday* experimentally discovered electromagnetic induction. 
Given an electrical setup like the one shown in Figure 1.30, if we move a 
permanent magnet back and forth over the coil, an electromagnetic force (or 
emf) is generated across the coil terminals, and an electric current will be 
generated in the circuit with the coil and the resistor. It is very interesting to 
note that there is no physical or electrical contact between the magnetic bar 
and the coil. Alternatively, an emf can be generated by switching on and off 
the switch in the primary circuit as shown by Figure 1.31. The switching action 
will cause a time-varying magnetic flux produced by the iron-core inductor. 
This magnetic flux will be magnetically coupled onto the stationary secondary 
winding coil and an emf will be produced across the secondary inductor. Such 
emf will generate a current that will flow through resistor R.

Electromagnetic induction allows the generation of an electromagnetic 
force by the net movements of charges with respect to time.

In Figure 1.31, the opening and closure of the switch causes a time-varying 
current in the primary side of the circuit. This varying current produces a 
magnetic flux in the primary circuit loop. The varying magnetic flux due to the 
current in the primary coil induces an emf on the secondary coil. This emf 
produces a current in the secondary coil. The induced emf in the secondary 
coil is equal to the rate at which the flux changes with respect to time or in 
mathematical form,

 emf d dt= − Φ / .  (1.101)

Equation (1.101) is referred to as the Faraday–Lenz law, where Φ is the mag-
netic flux and t is the time variable. dΦ/dt is the derivative of Φ with respect 
to time.

The minus sign in front of dΦ/dt means that the induced emf opposes the 
change of flux. In other words, the induced current has a direction such that 
the magnetic field due to the current opposes the change in magnetic flux 
induced by the current in the primary coil.

* Michael Faraday was an English physicist and chemist (1791–1867). He is most known for 
having discovered electromagnetic induction and the laws of electrolysis.
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Figure 1.31  Magnetic induction generated electromotive force (emf) using an on/off switch.
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The inductance (L) of a single turn coil is defined as

 L i= Φ / .  (1.102)

When the coil has N number of turns, the inductance L becomes

 L N i= Φ / .  (1.103)
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In Equation (1.103), N Φ is defined as the magnetic flux linkage. The induc-
tance of a coil is a measure of the flux linkage per unit of current. The unit of 
inductance is defined as a henry (H).

Rearranging terms in Equation (1.103), we obtain

 N LiΦ = .  (1.104)

Differentiating Equation (1.104) yields

 d N dt Ldi dt( ) .Φ / /=  (1.105)

Since N, the number of inductor turns is constant, Equation (1.105) becomes

 Nd dt Ldi dtΦ / /= ,  (1.106)

where N dΦ/dt is the voltage drop across the inductor L or vL(t). The magni-
tude of the voltage across an inductor depends on the rate of change of the 
current flowing through the inductor with respect to time.

Then, the fundamental voltage current relationship of an inductor is

 v t Ldi dtL( ) .= /  (1.107)

The minus sign from Lenz law is dropped, since we are only interested in the 
magnitude of the voltage across the inductor. In circuit analysis, when a current 
enters the inductor, the voltage drop across the inductor has the polarity and 
direction shown based on the direction of the current as depicted in Figure 1.32.

Figure 1.32  Inductor voltage drop polarity and current direction.
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Example 1.19 Determine the voltage waveform across an inductor knowing 
that its current waveform is 2 A DC and the inductance value is L = 0.1 mH.

Solution to Example 1.19

From Equation (1.107), the voltage–current relationship in an inductor is

 v t Ldi dtL( ) .= /
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Since i = 2 A DC, the derivative of a constant is zero; thus, the voltage across 
the inductor is zero when a DC current flows through it. Idealized inductors 
have a zero-ohm winding resistance. Real inductors, however, have a winding 
resistance larger than zero ohm, whose value depends on the length of the 
wire used, its cross section, and the resistivity of the wire material used. (Refer 
again to Eq. 1.52 on resistivity.)

More generally, we can affirm that regardless of the inductance value, a DC 
current flowing through an inductor will develop 0 V of AC voltage across the 
inductor terminals.

Example 1.20 Determine the voltage developed across inductor terminals 
when a sinusoidal current that is a function of time (t) flows through it. The 
sinusoidal current is depicted in Figure 1.33, and three key parameters deter-
mine the sinusoidal current:

• Frequency (f ): the inverse of the sinusoidal waveform period T.
• Phase angle (φ): the angle with respect to the origin of the time axis that 

the waveform is shifted.
• Amplitude: also called the peak value of the waveform.

Figure 1.33 depicts a sinusoidal current waveform that conforms to Equation 
(108):

 i t I ftpeak( ) sin( ).= +2π ϕ  (1.108)

Figure 1.33  AC current waveform.
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For this example we assume that

 I fpeak = =1 A Hz and  is zero degrees, , .1000 ϕ  (1.109)

Where the unit of peak current is the ampere, the unit of frequency is second−1 
(s−1), also called hertz and abbreviated Hz. The unit of phase angle is either 
degrees or radians. When the phase is expressed in degrees, the “o” has to be 
explicitly shown next to the number of degrees. If radians are used, then no 
units are indicated next to the phase angle in radians. The radian is considered 
to be dimensionless. From high school geometry, let us remember that 2π 
radians or simply 2π equals 360o. So, for example, a 45o angle equals to π/4 (i.e., 
π/4 radians).

Rewriting Equation (1.108) with the parameters given by Equation (1.109) 
leads to

 i t t( ) sin( ) .= + °1 2 A000 0π  (1.110)

This can be simply stated as

 i t t( ) sin( ) .= 2000π A  (1.111)

The argument of the sinusoidal waveform in Equation (1.111), 2πft is also 
referred to as ωt; where ω (the Greek letter omega) is called the sinusoidal 
waveform angular frequency or pulsation. Its units are hertz or s−1. In some 
electrical engineering literature, the units of ω are also referred to as radians 
per second (rad/s). Since the radian is a dimensionless unit, hertz and rad/s are 
basically the same thing.

Figure 1.33 depicts the waveform described by Equation (1.111) with a zero 
phase angle.

Solution to Example 1.20

 v t Ldi dtL( ) .= /  (1.112)

The voltage across the inductor produced by the sinusoidal current given  
by Equation (1.112) is easily calculated plugging Equation (1.111) into Equa-
tion (1.112).

Thus,

 
v t L

d
dt

t

v t L t

L

L

( ) [sin( )]

( ) cos( ).

=

= =

2

2 2

000

000 000

π

π π
 (1.113)

Figure 1.34 shows both the sinusoidal current through the inductor and the 
sinusoidal voltage developed across the inductor terminals. It is important to 
note that the voltage waveform leads the current waveform by 90o. Note: 
Cosine and sine waveforms are both referred to as sinusoidal waveforms in a 
general sense.
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Figure 1.35  Inductors in series.
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Figure 1.34  Sinusoidal current and voltage on an inductor.
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1.6.5  Inductors in Series

When inductors are connected in series, and there is no mutual coupling 
among the magnetic fields produced by each inductor in the series, the current 
flowing through the series of inductor is the same. Upon the series of inductors 
being excited by a time-varying current, each inductor develops a voltage 
across its terminals given by Equation (1.107), repeated here for the reader’s 
convenience:

 v t Ldi dtL( ) .= /

Referring to Figure 1.35, the current in series with the inductors is the same, 
and each inductor develops a voltage across its terminals given by Equation 
(1.107). This voltage may be different for every inductor since individual 
inductances may be different.

Given L1, L2, L3, . . . and Ln, current i(t) develops the following voltages 
across each inductor:
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Example 1.21 Inductors in series: Given three inductors L1 = 25 nH, 
L2 = 75 nH, and L3 = 50 nH, determine the series equivalent inductor of L1, 
L2, and L3. Assume that the magnetic field produced by each inductor does 
not couple with the magnetic field produced by any of the other inductors.

Solution to Example 1.21

From Equation (1.120) we can state that

 L L L Lseries equivalent- = + +1 2 3.  (1.121)

Solving for the given values of inductance,

 Lseries equivalent- nH nH nH nH= + + =25 75 50 150 .  (1.122)

 v t L di dtL1 1( ) = /  (1.114)

 v t L di dtL2 2( ) = /  (1.115)

 v t L di dtL3 3( ) = / …  (1.116)

and

 v t L di dtLn n( ) .= /  (1.117)

The sum of each inductor generated emf equals to the sum of the total emf 
applied across the complete series of inductors. Mathematically,

 
v t v t v t v t v t

L di dt L di dt L
total L L L Ln( ) ( ) ( ) ( ) ( )= + + + +

= + +
1 2 3

1 2 3

…
/ / ddi dt L di dtn/ /+ +… ,

 (1.118)

and since the current through the series of inductors is the same for all induc-
tors, then

 v t L L L L di dttotal n( ) ( ) .= + + + +1 2 3 … /  (1.119)

Thus, we can say that the equivalent series inductor equals the sum of each 
individual inductance in series:

 L L L L Lseries equivalent n- = + + + +1 2 3 … .  (1.120)

Figure 1.35 depicts a series of inductors. Note that the current in the circuit is 
the same for every inductor.
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1.6.6  Inductors in Parallel

When inductors are connected in parallel, and there is no mutual coupling 
among the magnetic fields produced by each inductor in the parallel arrange-
ment, the voltage across all the inductors in parallel is the same. Refer to 
Figure 1.36 for an arrangement of inductors in parallel. Upon the paralleled 
inductors being excited by a time-varying voltage, each inductor has across its 
terminals the same time-varying voltage. According to Equation (1.107), 
repeated here for convenience one more time,

 v t Ldi dtL( ) .= /

Integrating the voltage across the inductor yields

 i t
L

v t dtL( ) ( ) .= ∫1  (1.123)

Referring to Figure 1.36, the voltage is the same for all inductors, and since 
each inductance may be different (i.e., L1 ≠ L2 ≠ . . . ≠ Ln), the current through 
each inductor is

 i t
L

v t dtL1
1

1
( ) ( )= ∫  (1.124)

 i t
L

v t dtL2
2

1
( ) ( )= ∫  (1.125)

 i t
L

v t dtL3
3

1
( ) ( )= ∫ …  (1.126)

 i t
L

v t dtN
N

L( ) ( ) .= ∫1
 (1.127)

From Equations (1.124) through (1.127), it can be seen that if we add the cur-
rent of each of the inductors and name it itotal-parallel-equivalent-L(t), there must exist a 
value of inductance that is equivalent to all of the inductances in parallel.

Figure 1.36  Inductors in parallel.
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Example 1.22 Given L1 = 5 μH and L2 = 10 μH, determine the parallel 
equivalent inductor.

Solution to Example 1.22

Since

 
1/ 1/ 1/

1/5

-

-

L L L

L

parallel equivalent

parallel equivalent

= +

=
1 2,

( µµ µ µH 1/ H 3 33 H1+ =−10 ) . .
 (1.131)

Thus, for

 i t i t i t i t i ttotal parallel equivalent L n- - - ( ) ( ) ( ) ( ) ( ).= + + +…+1 2 3  (1.128)

There must exist a total parallel equivalent inductance such that

 

i t
L

v ttotal parallel equivalent L
parallel equivalent

L- - -
-

( ) ( )= 1
ddt

L
v t dt

L
v t dt

L
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L
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L L

L
n

L

∫

∫ ∫
∫ ∫

= +

+ + +

1 1

1 1
1 2

3

( ) ( )

( ) ( ) .…

 (1.129)

Now, since the voltage across each inductor is identical, we obtain from Equa-
tion (1.129) that

 
1 1 1 1 1

1 2 3L L L L Lparallel equivalent n-

.= + + + +…  (1.130)

Example 1.23 Given five identical inductors whose value is 45 nH, determine 
the parallel equivalent inductor of all five 45 nH inductors in parallel. Assume 
that the magnetic field produced by each inductor does not couple with the 
magnetic field produced by any of the other inductors.

Solution to Example 1.23

From Equation (1.130) we have that

 1/ / / / / /-L L L L L Lparallel equivalent = + + + +1 1 1 1 11 2 3 4 5.  (1.132)
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Figure 1.37  Inductors sharing same iron core.
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But since

 L L L L L1 2 3 4 5 45= = = = = nH,  (1.133)

 1 1 45 1 45 1 45 1 45 1 45/ / nH / nH / nH / nH / nH-Lparallel equivalent = + + + +( )),  (1.134)

from where it is immediate to find that

 Lparallel equivalent- 45 nH/ nH= =5 9 .  (1.135)

1.6.7  Mutual Inductance

Given an N-turn inductor and an AC voltage source excitation across its ter-
minals, we know from Faraday’s law of induction that

 Flux Linkage N Li t  λ = =Φ ( )  (1.136)

and

 v Nd dt Ldi dtL = =Φ / / ,  (1.137)

where N is the number the inductor turns, Φ is the magnetic flux, and L is the 
self-inductance of the coil or simply the inductance. Refer to previously seen 
Figure 1.29 where the flux of the sole inductor is drawn. The term coil and 
inductor will be interchangeably used. However, an inductor is an ideal circuit 
element that only has inductance; a coil more commonly refers to a physical 
inductor, which is predominantly inductive, but it may also have some parasitic 
(usually undesirable) resistive and capacitive properties.

Applying the right-hand rule in Figure 1.37, we determine from the direc-
tion of the current flow the direction of the magnetic flux Φ. From Faraday’s 



INDUCTORS  63

law, a voltage is induced on the inductor only if the flux Φ varies with respect 
to time. This flux variation need not be a sinusoidal time-varying flux; it just 
needs to be a time-varying flux. If the voltage exciting the inductor is DC or 
constant with respect to time, no voltage is induced across the inductor, and 
the inductor behaves as a virtual short circuit to the DC source. Why is it a 
virtual short? Real inductors or coils have a finite amount of DC resistance 
due to the resistance of its winding. However, such resistance is relatively 
small, typically some small fraction of an ohm, and is thus a virtual short circuit 
to DC.

We will analyze the interaction of two magnetically coupled coils. One coil 
is referred to as the primary, and drawn on the left-hand side of the circuits; 
the right-hand side coil is referred to as the secondary in Figures 1.38 through 
1.40. The primary is assumed to have N1 turns and the secondary has N2 turns. 
The coils are assumed to be physically located in close proximity and static 
with respect to each other. Three cases will be analyzed:

1. Primary is excited by a time-varying voltage source, secondary is open-
circuited and there is no secondary current flow.

2. Primary is open-circuited, no primary current flows, and the secondary 
is excited by a time-varying voltage source.

Figure  1.38  Magnetically coupled primary and secondary coils: primary excitation, open-
circuited secondary.

Primary Winding Secondary Winding

Magnetic flux coupled to the secondary generated by the primary current.

Magnetic flux in the primary generated by the primary current. This flux does not
couple to the secondary, that is why it referred to as primary leakage flux.

Open Circuit

i1(t)
i2(t) = 0

V1(t) V2(t)N1 N2

F21(t)

F21(t)

FL1(t)

FL1(t)



64  FROM THE BOTTOM UP: VOLTAGES, CURRENTS, AND ELECTRICAL COMPONENTS

3. Primary is excited by a time-varying voltage source, and current flows 
through the primary and secondary circuits.

Case 1 Let us analyze Case 1 by inspection of Figure 1.38.
The primary current i1(t) produced by voltage source v1(t) in Figure 1.38 

generates a magnetic flux:

 Φ Φ Φ11 1 21= +Leakage ,  (1.138)

where ΦLeakage1 (ΦL1) is the flux produced by primary current i1(t) that does 
not couple to the secondary inductor; it is also referred to as the leakage 
flux of the primary inductor. Φ21 is the flux produced by current i1(t) that 
couples between secondary inductor and the primary inductor. Φ21 is also 
called the mutual flux in the secondary due to the current in the primary. 
Since the secondary is an open circuit, there is no current in the secondary 
circuit; that is, i2(t) = 0. Faraday’s law gives the voltage induced in the 
secondary:

 v t d dt N d dt2 2 2 21( ) ,= =λ / /Φ  (1.139)

where λ2 is the flux linkage on the secondary coil (refer to Figure 1.38).

If linearity* holds, then

 N M i t2 21 21 1Φ = ( ),  (1.140)

where the term M21 is referred to as the mutual inductance between induc-
tor 2 and inductor 1. The unit of mutual inductance is the henry, the same 
unit used for inductance and self-inductance. Now we can rewrite Equation 
(1.139) in terms of mutual inductance Equation (1.140) as follows:

 v t N d dt M di t dt2 2 21 21 1( ) ( ) .= =Φ / /  (1.141)

The mutual inductance term M21 is a constant because the relative position 
of the primary and secondary inductors is fixed. The inductance or self-
inductance of the primary winding is

 L i t N1 1 1 11( ) ,= Φ  (1.142)

* Linearity in magnetically coupled inductors holds when the inductors have an air-core. When 
the inductors have ferromagnetic cores, linearity holds when the cores are operated with currents 
well below from their core saturation (nonlinear) regions.
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Figure  1.39  Magnetically coupled primary and secondary coils: secondary excitation and 
open-circuited primary.

Primary Winding Secondary Winding

Magnetic flux coupled to the primary generated by the secondary current.

Magnetic flux in the secondary generated by the secondary current. This flux does
not couple to the primary, that is why is referred to as secondary leakage flux.

Open Circuit

i1(t) = 0
i2(t)

V1(t) V2(t)N1 N2

F12(t)

F12(t)

FL2(t)

FL2(t)

where Φ11 is given by Equation (1.138).
Using Equation (1.137), the voltage on the primary is then

 v t L di t dt N d dt1 1 1 1 11( ) ( ) .= =/ /Φ  (1.143)

Case 2 Let us analyze Case 2 by inspection of Figure 1.39.
We see that the primary is open-circuited and no current flows through 

this circuit, and the secondary is excited by a time-varying voltage source.
The secondary current i2(t) produced by voltage source v2(t) in Figure 

1.39 generates a magnetic flux:

 Φ Φ Φ22 2 12= +Leakage ,  (1.144)

where ΦLeakage2 is the flux produced by secondary current i2(t) that does not 
couple to the primary inductor; it is also referred to as the leakage flux of 
the secondary inductor. Φ12 is the flux produced by current i2(t) that couples 
between primary inductor and the secondary inductor. Φ12 is also called the 
mutual flux in the primary due to the current in the secondary. Since the 
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primary is open circuit, there is no current in the primary circuit; that is, 
i1(t) = 0. The flux linkage of the primary circuit is

 λ1 1 12= N Φ .  (1.145)

Using Equation (1.136) and Faraday’s law lead to the voltage induced in 
the primary:

 v t N d dt1 1 12( ) .= Φ /  (1.146)

If linearity holds then,

 N M i t1 12 12 2Φ = ( ),  (1.147)

where the term M12 is referred to as the mutual inductance between induc-
tor 1 and inductor 2, due to current i2(t). The unit of mutual inductance is 
the henry, the same unit used for inductance and self-inductance. Now we 
can rewrite Equation (1.146) in terms of mutual inductance Equation 
(1.147) as follows:

 v t N d dt M di t dt1 1 12 12 2( ) ( ) .= =Φ / /  (1.148)

The mutual inductance term M12 is a constant because the relative position 
of the primary and secondary inductors is fixed.
The inductance or self-inductance of the primary winding is

 L i t N2 1 2 22( ) ,= Φ  (1.149)

where Φ22 is given by Equation (1.144).

Case 3 This is the most general case, that is, when there is nonzero current 
on both the primary and secondary circuits. We assume for this case that 
the primary is excited by a time-varying source, and a resistor or load in 
the secondary allows the induced voltage on the secondary to produce a 
current that flows through R.

From Equations (1.138) and (1.44), repeated here for the reader’s 
convenience,

 Φ Φ Φ11 1 21= +Leakage

 Φ Φ Φ22 2 12= +Leakage .

Referring now to Figure 1.40, we find that the fluxes in the primary and 
secondary are respectively,
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 Φ Φ Φ Φ Φ Φ1 1 21 12 11 12= + + = +Leakage .  (1.150)

 Φ Φ Φ Φ Φ Φ2 2 12 21 21 12= + + = +Leakage .  (1.151)

Then the flux linkages for the primary and secondary are

 λ1 1 11 1 12= +N NΦ Φ .  (1.152)

 λ2 2 21 2 22= +N NΦ Φ .  (1.153)

Finally, differentiating the flux linkages, the complete primary and second-
ary voltages for the basic transformer are obtained:

 v L di t dt M di t dt1 1 1 12 2= ±( ) ( )/ /  (1.154)

 v M di t dt L di t dt2 21 1 2 2= ±( ) ( ) ,/ /  (1.155)

where M12 = M21 = M.

Figure 1.40  Magnetically coupled primary and secondary coils. Primary excitation and sec-
ondary with resistive load.
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Equations (1.154) and (1.155) have been derived assuming that the wind-
ings directions are not known. It is not always possible to know the windings 
directions of a pair of mutually coupled inductors; consequently, the dot 
convention is used.

The Dot Rule for Coupled Inductors
It is not always possible or practical to know the directions of the windings of 
a pair of mutually coupled inductors. Dots are assigned in the following 
manner: pick one inductor, say the primary, and place a dot where the current 
to be injected enters the winding. Determine the flux created by such current 
using the right hand rule. The flux generated in the secondary inductor from 
Lenz law has to oppose the direction of the primary flux. Remember that the 
secondary current also has to meet with the right-hand rule with respect to 
the secondary flux. Now assume you would load the secondary, place the dot 
on the secondary terminal where this natural current leaves the secondary 
winding.

Summary of the dot rules:

1. When both primary and secondary currents enter (or leave) the dotted 
inductor terminals, the sign on the M (mutual inductance) terms shall 
have positive sign so that the equations are

 v L di t dt M di t dt1 1 1 12 2= +( ) ( ) ./ /  (1.156)

 v M di t dt L di t dt2 21 1 2 2= +( ) ( ) ./ /  (1.157)

2. When one current enters the dotted terminal of one inductor and leaves 
the dotted terminal of the other inductor, the signs on the M terms shall 
have negative signs so that the equations are

 v L di t dt M di t dt1 1 1 12 2= −( ) ( ) ./ /  (1.158)

 v M di t dt L di t dt2 21 1 2 2= − +( ) ( ) ./ /  (1.159)

The dots on the end of each coil are markings, typically made by the trans-
former manufacturer to indicate the relative polarities of the windings mutual 
voltages. Given that we find a dot on the primary and a dot on the secondary, 
the dot on the primary inductor indicates that a current entering this side of 
the inductor produces an induced voltage with its positive sign on the dotted 
side of the secondary inductor.

Figure 1.41 shows a transformer with its respective windings dots. In Figure 
1.41 v1(t) produces a current into the dot, and induced voltage v2(t) produces 
a current with the direction shown by i2(t).

Figure 1.42 shows the dotted primary and secondary inductors. As usual, 
the primary current enters the dotted primary winding. The dotted secondary 
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shows the positive polarity of the induced voltage and the direction of the 
secondary current [7].

1.6.8  Energy Stored by an Inductor

The energy held by an inductor between times t0 and t1 is given by

 w t w v t i t dtL L

t

t

( ) ( ) ( ) ( ) ,− = ∫0
0

 (1.160)

where v(t) is the voltage across the inductor, and i(t) is the current through it.
Since

 v i Ldi t dt( ) ( ) ,= /  (1.161)

plugging Equation (1.161) in Equation (1.160) leads to

 w t w Li t di tL L

t

t

( ) ( ) ( ) ( )− = ∫0
0

 (1.162)

Figure 1.41  Dotted convention for two mutually coupled inductors (Case 1).
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v1(t) v2(t)N1 N2 R

+ +

Figure 1.42  Dotted convention for two mutually coupled inductors (Case 2).
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 w t w Li tL L( ) ( ) ( ) ,− =0
1
2

2 J  (1.163)

where wL(0) is the initial energy of the inductor, L is its inductance, and i(t) 
the current flowing through it. In particular, for a pair of mutually coupled 
inductors (a transformer), the energy held by the transformer equals

 w t w L i t L i t Mi t i tL L( ) ( ) ( ) ( ) ( ) ( )− = + ±0
1
2

1
2

1 1
2

2 2
2

1 2  (1.164)

where in Equation (1.164), the plus sign applies if both currents enter or leave 
the dotted marked inductor terminals, and it is minus if one current enters a 
dotted terminal, while the other current leaves its dotted terminal [7].

1.6.9  Inductor Nonlinearity

The magnetic flux Φ(t) of an inductor of inductance L is proportional to the 
current flowing through such inductor, provided that the core used does not 
get saturated by the amount of current flowing through the inductor winding:

 Φ( ) ( ).t Li tL=  (1.165)

Equation (1.165) remains linear if an air-core is used. Similarly, Equation 
(1.165) remains linear when a ferromagnetic core is used, and the current does 
not exceed the linear limits of the magnetic flux to current relationship. This 
means, as long as the ferromagnetic core does not get saturated. L is the con-
stant of proportionality in Equation (1.165) and in most practical cases is time 
independent and strongly depends on the geometry of the coil winding and 
the type of core used.

Figure 1.43 depicts the nonlinear flux–current relationship that exists on a 
ferromagnetic core. The magnetic flux Φ, also equal to the magnetic inductance 
field B per unit area, maintains proportionality to the voltage applied to the 
inductor terminals. The magnetic field intensity H is proportional to the current 
flowing through the inductor times the number of turns.

Alternatively, some manufacturers present the flux-current (Φ − i) charac-
teristic curve instead of the B-H characteristic curve.

Figure 1.43 graphically depicts the hysteresis phenomenon. Let us start at 
i = 0 and Φ = 0, the origin of coordinates; as current i is increased, flux Φ 
follows curve A until it reaches point i = i1 and Φ = Φ1. Note that the magnetic 
flux saturates the core at this point. Core saturation means that as the current 
continues to increase, the flux will no longer increase in a significant fashion. 
As current i decreases, tracing over curve B, flux Φ becomes zero at i = −i2. If 
we continue pushing current in the minus direction toward −i3, the core will 
eventually saturate (flattened curve at i = −i3 and Φ = −Φ3). Upon increasing 
the current toward the positive direction, the flux increases, but it is still nega-
tive. When the current reaches a value of i4, the flux becomes zero, and it is no 
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longer negative (lower portion of curve C). If we continue to increase the 
current in the positive direction, curve C will finally meet point i = i1 and 
Φ = Φ1.

According to the best of our knowledge there are no close form equations 
describing the B-H (Φ − i) characteristics of ferromagnetic materials. Core 
manufacturers empirically obtain such magnetic curves.

The slope of the B-H curve at each point determines the permeability μ of 
the ferromagnetic material:

 µ µ µ= =R o B H/ .

When the relative permeability of the ferromagnetic material is almost con-
stant for all points throughout the B-H curve, the material behaves linearly.

1.6.10  Inductor Component Selection

Inductor selection requires not only a good understanding of the desired cir-
cuit performance but also the data sheet information available on the inductor 

Figure 1.43  Magnetic characteristic (Φ-i) or B-H curve of an iron-core inductor.
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provided by the manufacturer. The purpose of this section is to present some 
general guidelines of the key parameters and factors that need to be taken 
into consideration when an inductor is selected.

For example, Table 1.9 shows an excerpt from a typical inductor data sheet.
To use the data sheet parameters properly, one must have some understanding 

of what the parameters mean and how they were derived. Most manufacturers 
will not show all the performance parameters of their inductors under all possible 
and different sets of operational conditions. This would become practically pro-
hibitive, since the testing and characterization cost of inductors would rise.

Following the entries of Table 1.9, after the part number entry, the induc-
tance is provided. Inductance is the most basic parameter for selecting the 
inductor. This may be based on the energy storage capability required by the 
inductor or by the volt-second capacity, derived from equation vL = L di/dt. 
Associated with the inductance value is the tolerance; it is common to see a 
wide spread tolerance, that is, ±20% is common.

The next parameter is the DC resistance (DCR) of the inductor wire. This 
resistance depends on the wire material, its gauge, and its length (or number 
of turns). DCR is almost always some fraction of an ohm for relatively small 
inductors used in the electronics industry. Industrial and heavy-duty inductors 
are not addressed by this example. The inductor’s self-resonant frequency 
(SRF) is the frequency at which the inductor resonates naturally with its para-
sitic distributed capacitance. The resonating frequency is the frequency at 
which the inductive reactance equals the capacitive reactance. For all practical 
purposes, the inductor should be used at a frequency one order of magnitude 
lower than its self-resonating frequency. The topic inductive and capacitive 
reactances will be addressed in more depth in Chapter 2.

Isat stands for the saturation current that the inductor can take just before 
its inductance goes down in value. Typically, manufacturers define Isat as the 
current at which the inductance drops down by 10% of its nominal value at 
room temperature. Finally, the IRMS current provides a measure of how much 
average current can continuously flow through the inductor while producing 
less than some specified temperature rise. This figure contains the ambient tem-
perature at which it was measured and the temperature range at which the 
inductor will be used, taking into account self-heating effects of the inductor.

Table 1.9  Typical printed circuit board inductor data sheet excerpt

Part Number

L ± 20%a DCR (max) SRF Isat
b IRMS

c

(μH) (Ω) (MHz) (A) (A)

Valued 100 0.020 10 10 7

a Inductance tested at 100 kHz, 0.1 VRMS.
b Inductance drop = 10% typ. at Isat.
c For 40°C temperature rise typ. at IRMS.
d All parameters tested at 25°C.
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Shall any of the inductor manufacturers’ parameters not be sufficiently 
explicit on the use of the inductor, it is the responsibility if the circuit designer 
to test the inductor and characterize its behavior for the desired operating 
conditions. As a conservative rule of thumb, it is wise to use an inductor up to 
some fraction, like 50% or 75% of the smaller of the two rated currents, that 
is, Isat and IRMS. The circuit designer should not be surprised that not all manu-
facturers specify both currents discussed.

1.7  KIRCHHOFF’S VOLTAGE LAW (KVL) AND KIRCHHOFF’S 
CURRENT LAW (KCL)

An electric circuit or network consists of a number of electric components, 
independent or dependent current, and voltage sources interconnected to each 
other. Figure 1.44a through f shows a variety of circuit topologies that are 
commonly seen in electrical and electronics engineering applications.

Note that the blank rectangles represent virtually any R, L, or C circuit 
series or parallel combination. However, in this section, and without loss of 
generality, we will apply Kirchhoff’s laws when such rectangular shaped ele-
ments are resistors.

Note that when the Lattice Network of Figure 1.44f has an electrical element 
loading the two right-hand side terminals, the topologies of the Lattice and 
the Wheatstone bridge structures are identical.

Vinput Voutput

(a)

Vinput Voutput

(b)

Figure  1.44  Various circuit topologies: (a) T-network or Y-network; (b) π-network or delta-
network; (c) ladder network; (d) bridged-T-network; (e) bridge or Wheatstone bridge network; 
and (f) lattice network.
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Voutput
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Figure 1.44  (Continued )
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Student Exercise: Redraw a Lattice network with a resistor on its two right-
hand side terminals and justify that it indeed matches the Wheatstone 
bridge topology.

Other circuit structures, which are common in engineering applications, are 
derivatives of the ladder networks. In general, they are referred to as window-
pane topologies. Figure 1.45a through d shows a few examples of them.

(a)

(b)

Figure  1.45  Window pane topologies networks: (a) 2-window; (b) 3-window; (c) 4-window; 
(d) 6-window.
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(c)

(d)

Figure 1.45  (Continued )
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The graph or the topology of a circuit or network consists in finding the 
skeleton of the circuit. Replacing every element in the circuit with a line does 
that. For example the graph or topology of one of the circuits of Figure 1.45b 
is shown in Figure 1.46.

Circuit Definitions: Branches, Nodes, and Loops

Referring to the circuit topology of Figure 1.47a, segments ab, bc, cd, da, bd, 
and ac are the branches or links in the network. We will use the term branch. 
The junction of two or more branches is a node. A loop in a network is a closed 
path formed by a number of connected branches. For example, for the circuit 

Figure 1.46  (a) 3-window network; (b) its topology.
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d
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Figure 1.47  (a) Original 3-window pane circuit; (b) loop 1; (c) loop 2; (d) loop 3; (e) loop 4; 
(f) loop 5; (g) loop 6; (h) loop 7.
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whose topology is drawn in Figure 1.46, all the possible loops are shown in 
Figure 1.47.

Now let us assume a single loop circuit like the one depicted by Figure 1.48.
V1 and V2 are DC voltage sources. R1, R2, and R3 are all in series in the 

circuit shown.

KVL states that in any closed loop path in a network or circuit, the algebraic sum of 
all branch voltages equals to zero at all times.

An alternative way of stating KVL is

At any instant of time, in a closed loop path in a network, the sum of all the voltage 
rises must equal the sum of all the voltage drops.

V1 and V2 are both voltage rises, since they generate a rise in voltage. The 
current I developed in the series circuit produces voltage drops on each one 
of the resistors. I R1 = vR1 is the voltage drop across resistor R1; I R2 = vR2 is 
the voltage drop across resistor R2; and I R3 = vR3 is the voltage drop across 
resistor R3.

Before using KVL, let us establish a direction we will be traveling around 
the loop. Arbitrarily, we will assume that we travel the loop in a clockwise 
direction. Voltages rises with their positive terminal before their negative 
terminal and in the direction of traveling the loop are negative. Whereas volt-
ages rises with their negative terminal before their positive terminal and in 
the direction of traveling the loop are positive. Current I flows through the 
resistors from higher potentials to lower potentials. In this example, all three 
voltage drops have the same sign; however, in multiloop circuits, that may not 
be the case. Current I was arbitrarily assumed to flow from left to right as 
shown in the circuit of Figure 1.48. More examples will follow to explain this.

Applying KVL to the circuit of Figure 1.48, we obtain that

 V V v v vR R R1 2 1 2 3 0− − − − = ,  (1.166)

Figure 1.48  Single loop circuit, with two DC voltage sources.

1 2 3

1 2

+ - - -++

1 2 3
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Example 1.24 Given the circuit of Figure 1.49, determine the KVL equations 
for loops 1 and 2.

Solution to Example 1.24

Figure 1.49 indicates the two loops chosen. For the left-most loop, we have

 V V VR R1 1 3= + .  (1.167)

And for the right-most loop, we have

 V V VR R2 2 3= + .  (1.168)

Note that the loop directions (see arrows in Fig. 1.49) have been arbitrarily 
chosen.

Let us remember that an algebraic sum is a sum where every addend or 
sum member is taken into account with its respective sign. This is what Equa-
tion (1.166) shows.

Figure 1.49  Circuit for KVL, Example 1.24.
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Example 1.25 Apply KCL to the Two-Loop Circuit Given in Figure 1.49

Solution to Example 1.25

Let us apply KCL at node A of the circuit given in Figure 1.49. Node G 
(Ground) is assumed to be the reference node, which is the node with respect 
to which all other node voltages are referenced. Figure 1.49 shows branch 
current directions in the circuit, which can be arbitrarily assigned. Based on 
the current directions assumed for node A,

 I I I3 1 2= + .  (1.169)

Note that we may also write the KCL equations for node G and that leads to

 I I I1 2 3+ = .  (1.170)

It should be clear that both Equations (1.169) and (1.170) are identical. Thus, 
just one of the equations is used.

Example 1.26 Using the circuit of Figure 1.49, assume that R1 = 6 Ω, R2 = 3 Ω, 
R3 = 10 Ω, V1 = 5 V, and V2 = 4 V. Write the KCL equation for node A and 
KVL equations for loops 1 and 2 as shown on the figure.

For the reader’s convenience Figure 1.49 is repeated here and referred to 
as Figure 1.50.

Practice Problem Choosing different loop traveling directions, rewrite 
KVL for the circuit of Figure 1.49. Prove that your new equations are alge-
braically equivalent to Equations (1.167) and (1.168).

KCL states that the algebraic sum of all branch current at a node is zero at all instants 
of time.

Algebraic sum means to take into consideration the direction of flow of the 
current, that is, its sign. We can arbitrarily choose that any current entering 
a node is positive, and any current leaving a node is negative. The opposite 
can also be assumed. The important fact is to pick one current direction 
convention and keep such direction consistently throughout the solution of 
the complete circuit.

An alternative way of stating KCL is

The sum of currents entering a node must equal the sum of currents leaving such 
node at all instants of time.



82  FROM THE BOTTOM UP: VOLTAGES, CURRENTS, AND ELECTRICAL COMPONENTS

Equations (1.171) through (1.173) are three linearly independent equations, 
and since we have three unknowns which are I1, I2, and I3, we obtain unique 
solutions for each branch current.

Plugging the resistor and voltage sources values given into Equations 
(1.172) and (1.173) we obtain

 5 6 101 3= +I I .  (1.174)

 4 3 102 3= +I I .  (1.175)

 I I I3 1 2= + .  (1.176)

Solution to Example 1.26

By inspection of Figure 1.50 and applying KCL for node A,

 I I I1 2 3+ = .  (1.171)

Applying KVL on loop 1,

 V I R I R1 1 1 3 3= + .  (1.172)

Applying KVL on loop 2,

 V I R I R2 2 2 3 3= + .  (1.173)

Figure 1.50  Circuit for KVL.
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The solving of the three simultaneous Equations (1.174) through (1.176) is left 
as an exercise to the reader. As promised on the Preface, this book covers 
hardware essentials, and it is not intended to be a math book.

The solutions for the three currents are

 I1 0 2315= . .A  (1.177)

 I2 0 1296= . .A  (1.178)

 I3 0 3611= . .A  (1.179)

All three numerical results were rounded to the fourth decimal place. Let us 
plug results given by Equations (1.177) through (1.179) into Equations (1.174) 
through (1.176):

 5 0 2315 6 0 3611 10= × + ×. . .  (1.180)

 4 0 1296 3 0 3611 10= × + ×. . .  (1.181)

 0 3611 0 1296 0 2315. . . .= +  (1.182)

It is also easy to verify that the voltage at node A (Fig. 1.50) is

 V I RA = 3 3.  (1.183)

 VA = × =0 36111 10 3 6111. . .A VΩ  (1.184)

It is also instructive to realize that node voltage VA also equals from Figure 
1.50 using KVL:

 V V I RA = −1 1 1.  (1.185)

Using the values for V1, I1, and R1 in Equation (1.185) we find that

 VA = − × =5 0 2315 6 3 6111. . .V  (1.186)

Applying KVL to loop 2 of the circuit of Figure 1.50,

 V V I RA = −2 2 2 .  (1.187)

And using the values known for V2, I2, and R2 yields

 VA = − × =4 0 1296 3 3 6112. . .V  (1.188)

In summary, the nodal voltage VA was found using one set of KVL Equations 
(1.174) and (1.175) and found to be the same when using an alternate set of 
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KVL equations given by Equations (1.185) through (1.187). Keep in mind that 
due to the use of finite precision (4 decimal places in our example), the 
numbers may not be 100% exact. This is just due to numerical round-off errors 
and not to Kirchhoff’s laws.

Practice Problem 1.27: Using the numerical Example 1.26, find solutions 
for the KVL and KCL equations expressed with rational numbers, instead 
of rounded or truncated decimal numbers to prove that KVL and KCL are 
exact.

Example 1.27 Given the three-mesh circuit of Figure 1.51, state KVL equa-
tions for meshes: ABG, BCG, and ABC, and KCL equations for node B.

Solution to Example 1.27

By inspection of the circuit of Figure 1.51 we write the following KVL 
equations:

Mesh ABG:

 V I R I R1 1 1 4 4= +  (1.189)

Mesh BCG:

 V I R I R2 2 2 4 4= +  (1.190)

Mesh ABC:

 0 1 1 2 2 3 3= − +I R I R I R  (1.191)

Node B:

 I I I1 2 4+ =  (1.192)

Equations (1.189) through (1.192) are a set of linearly independent simultane-
ous equations and four unknowns. The unknowns are: I1, I2, I3, and I4.

Practice Problem 1.28: Using the circuit provided by Figure 1.51, assume 
the following resistor and voltage values:

 R R R R V V1 2 3 4 1 21 2 3 4 5 6= = = = = =Ω Ω Ω Ω, , , , , .and V

For the given numerical resistor and voltage values, find the numerical values 
of I1 through I4. Hint: Equations (1.189) through (1.191) constitute a set of 
linearly independent simultaneous equations. Solving, we obtain
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Figure 1.51  Three-mesh circuit with two voltage sources.
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 I1 0 428571= . .A  (1.193)

 I2 0 714286= . .A  (1.194)

 I3 0 333333= . .A  (1.195)

 I4 1 14286= . .A  (1.196)

Using the circuit of Figure 1.51 is easy to verify that all currents comply with 
KCL.

State the remaining KCL equations not stated above (i.e., nodes A and C), 
and plug in the numerical values obtained in Equations (1.193) through (1.196) 
to validate KCL. Finally, using the found values of currents, validate KVL 
Equations (1.189) through (1.191).

Example 1.28 State the KVL and KCL of the loops and nodes found on the 
circuit of Figure 1.52. Assume that the value of each resistor (R1 through R4) 
is 1 Ω, V = 6 V, and I = 5 A.

Provide numerical answers for currents I1 through I4, node voltages VB and 
VC. Finally, determine the current that the voltage source V supplies, that is, IV1

Writing KVL and KCL for above circuit,
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Mesh ABG:

 V I R I R= +1 1 3 3  (1.197)

Mesh BCG:

 V I R I RCG = +2 2 3 3  (1.198)

Mesh ABC:

 0 1 1 2 2 4 4= − +I R I R I R  (1.199)

And for the nodes:
Node A:

 I I IV 1 4 1+ =  (1.200)

Node B:

 I I I1 2 3+ =  (1.201)

Node C:

 I I I= +2 4  (1.202)

Figure 1.52  Circuit for Example 1.29: apply KVL and KCL.
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Node G:

 I I IV 1 3+ =  (1.203)

Solving a set of linearly independent equations we obtain

 VB = 4 6. .V

 VC = 7 8. .V

 I1 1 4= . .A

 I2 3 2= . .A

 I3 4 6= . .A

 I4 1 8= . .A

 IV 1 0 4= − . .A

Practice Problem 1.30: Verify that all answers given above meet Kirch-
hoff’s Equations (1.197) through (1.203).

1.8  SUMMARY

This chapter covers the essentials of DC circuits. It starts with resistors, capacitors, 
and inductors, all three passive circuit elements, and voltage and current sources. 
The emphasis on this chapter is on DC or direct current circuits. The fundamental 
laws of circuit analysis are presented: Ohm’s law and Kirchhoff’s voltage and 
current laws are the pillars to solve simple as well as complicated circuits. Mag-
netics basics were also presented.

It is important that the reader works out as many problems as possible 
reading and reading the chapter as often as it is necessary.
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PROBLEMS

1.1 What is electrical conductivity of a material?

1.2 Which atomic particles have zero charge?

1.3 Which atomic particles have a mass about 1800 times larger than the 
mass of an electron?

1.4 Name the four types of materials based on their electrical characteristics.

1.5 How is an electric current defined?

1.6 Assume you have an automobile battery that has a 12-V nominal output 
voltage and a nominal internal resistance of 20 mΩ. We safely apply a 
short circuit across the battery terminals. Assume that the internal resis-
tance of the battery does not change in a significant manner during the 
first few seconds after applying the short circuit. What is the current that 
the battery will deliver within the first couple of seconds?

1.7 We are given two DC voltage sources; one of them has a 12-V open-
circuit voltage and an internal resistance of 1 Ω, the second source also 
has a 12-V open-circuit voltage and an internal resistance of 0.5 Ω. 
Which of the two sources is capable of delivering more current? Calcu-
late the short circuit current of each source.

1.8 A resistor has 150 V applied across it and the current through it is 10 A. 
Find the value of resistance.

1.9 Given the circuit of Figure 1.53, calculate the current through the resis-
tor for Figure 1.53a–c. What conclusion can you make as the resistor 
across the DC voltage source increases? What is the voltage across the 
resistor for all three cases?

1.10 Given the circuit of Figure 1.54, calculate the voltage across the resistor 
for Figure 1.54a–c. What conclusion can you make as the resistor across 
the DC current source increases? What is the current through the resis-
tor for all three cases?

1.11 Given 1 MΩ nominal valued resistor, of a ±5% accuracy rating and a 
temperature coefficient of ±300 ppm/°C, calculate the resistance range 
that the resistor will span for a temperature range of −50°C to +150°C. 
Assume that the resistor nominal value provided is such, at 25°C.

1.12 Repeat Problem 1.11 for 1 MΩ resistor of ±5% accuracy rating, with a 
±50 ppm/°C temperature coefficient.

1.13 Referring to the circuits of Figure 1.55a through l, which circuits are 
meaningless from a circuit analysis perspective? For each case, explicitly 
state the reason why each circuit is meaningless or not. In all cases, make 
an attempt to calculate the voltage and/or current in all the circuit  
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Figure 1.53  Circuit for Problem 1.9.
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Figure 1.54  Circuit for Problem 1.10.
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Figure 1.55  Circuit for Problem 1.13.
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Figure 1.55  (Continued )
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Figure 1.56  Circuit for Problems 1.14 through 1.18.
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elements and sources whenever possible. If it is not possible, justify why 
it is not.

1.14 Given the circuit of Figure 1.56, calculate the equivalent resistance 
between points A and B.

1.15 Given the same circuit of Figure 1.56, assume that the series of the 1 Ω 
and 2 Ω resistors is replaced with a 0 Ω resistance. Calculate the equiva-
lent resistance between points A and B.

1.16 Given the same circuit of Figure 1.56, assume that the 18 Ω resistor is 
removed from the circuit and replaced with a short circuit. Calculate 
the equivalent resistance between points A and B.

1.17 Given the same circuit of Figure 1.56, assume that only one of the 12 Ω 
resistors is replaced with a short circuit. Calculate the equivalent resis-
tance between points A and B.

1.18 Given the same circuit of Figure 1.56, assume that the 3.15 Ω resistor is 
removed from the circuit and replaced with a short circuit. Calculate 
the equivalent resistance between points A and B.

1.19 Calculate the resistance of a 35-mm2 cross-section copper wire that is 
1 km long. Assume the room temperature is 20°C.

1.20 Repeat Problem 1.19 using silver for the wire material.

1.21 Repeat Problem 1.19 using gold for the wire material.
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1.22 This question is not addressed by the material covered in this chapter. 
(Just for fun.) If the resistance of a gold wire is higher than that of a 
copper or a silver wire of the same cross section, length, and tempera-
ture, why do you believe that in some applications, for example, inte-
grated circuit manufacturing, gold is used over copper and silver?

1.23 Which is the resistance value of the copper wire of Problem 1.19 if the 
ambient temperature of the wire is 100°C?

1.24 What is the resistance value of a 110 V, 100 W-rated lightbulb? At what 
temperature and current value do you believe that you have informa-
tion to provide the answer? Justify your answers.

1.25 An ideal voltage source has an infinite capacity of generating current. 
Explain what is the point in paralleling two ideal voltage sources of the 
same voltage?

1.26 How should a real current source be connected so as not to damage the 
real device or create huge voltages?

1.27 Given two parallel-plate capacitors of the same plate area, and the same 
plate separation, assume that one has air as dielectric while the other 
one has Teflon. Which capacitor has a higher capacitance value?

1.28 If we apply a sinusoidal current source to a capacitor, draw the given 
current waveform and the voltage waveform developed across the 
capacitor.

1.29 A capacitor of value C is completely discharged. If a constant DC 
current source is indefinitely applied across the capacitor terminals, 
what does the voltage waveform as a function of time look like? Why?

1.30 Calculate the total equivalent capacitance between points A and B of 
the circuit of Figure 1.57.

1.31 Calculate the energy stored in a 100 μF capacitor with 1 kV applied 
across its terminals after a long period of time.

1.32 How much charge does the capacitor in Problem 1.31 have when it is 
fully charged?

1.33 Assume that we want to build a gigantic 1-F capacitor. We want to 
implement it with two square parallel metallic plates separated by a 
10 mm air dielectric. Knowing that ε0 = 8.85 × 10−12 F/m, determine the 
area of the plates needed. Translate your area result into acres. Ignore 
practical difficulties building the capacitor.

1.34 What can you conclude about the size of the capacitor from Problem 
1.33?

1.35 Research problem: Using the World Wide Web, find the following features:



PROBLEMS  95

Figure 1.57  Circuit for Problem 1.30.
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(1) Operational temperature range and (2) standard capacitance toler-
ances of the following capacitor dielectrics:

NPO/COG
X5R
X7R
Y5U
Z5U

1.36 Find at least five ferromagnetic materials, which can be either natural 
elements or man-made. Annotate the approximate relative permeability 
of each one. Hint: Access the World Wide Web.

1.37 Review the inductors section of this chapter; derive an equation for 
straight coil inductance which is a function of the core length, the loop 
effective area, the number of wire turns, and the core permeability.

Refer to Figure 1.58 for a graphical representation of the inductor.

1.38 Calculate the total equivalent inductance of the circuit of Figure 1.59 
between points A and B.

1.39 Figure 1.41d depicts a transformer. Two coupled inductors constitute a 
transformer. The input inductor on the left is the primary; the output 
inductor on the right is the secondary. An ideal transformer receives AC 
current and voltage at a power level and produces at its output the same 
power level, but voltage and current are transformed by the following 
idealized equations:
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Figure 1.59  Inductor combination.
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Figure 1.58  Inductor graphical representation.

Effective length =

Effective loop area = A

Wire windings

Note: For the sake of simplicity only a
handful of wire turns are shown.

Core

 v i v i1 1 2 2=

 v N v N1 2 2 1=

 i N i N1 1 2 2=

In the given equations, v1 is the primary voltage or excitation, i1 is the 
primary current, v2 is the output or secondary voltage, i2 is the secondary 
current, N1 is the primary number of wire turns, and N2 is the secondary 
number of wire turns.

An ideal transformer differs from a real one in that the ideal trans-
former coupling between primary and secondary is assumed to be 100%; 
there is no leakage flux. High power, 50/60 Hz transformers work very 
close to such model. Radio-frequency (RF) transformers do not follow 
that closely the ideal transformer model.
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Figure 1.60  KVL/KCL circuit for Problem 1.42.
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If the primary voltage is 240 V and the primary current is 10 A, 
determine the secondary voltage and secondary current. Assume that 
the transformer is ideal and its N1/N2 turns ratio is 4/1.

1.40 Based on your knowledge of an air-core inductor and an iron-core 
inductor, which one will store a larger amount of magnetic energy if the 
same current flows through both of them, and why?

1.41 An iron-core inductor becomes saturated because a current higher than 
its maximum saturation current is applied to it. (a) Which is the value 
of inductance L after the inductor is fully saturated? (b) Is the saturated 
inductor behaving in linear mode? (c) Which will be the current value 
through the inductor after it becomes fully saturated? (d) Explain one 
way by which the core saturation can be eliminated.

1.42 Using KVL and KCL equations for the circuit depicted in Figure 1.60,
(a) Find the voltage and current on each resistor. (b) Find the current 
that each voltage source provides. (c) Verify that the sum of the powers 
produced by all sources equals to the power consumed by all resistors.
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2

ALTERNATING  
CURRENT CIRCUITS

2.1  AC VOLTAGE AND CURRENT SOURCES, ROOT MEAN SQUARE 
VALUES (RMS), AND POWER

When we plug a toaster into an electrical outlet in our kitchen, insert a slice 
of bread into a slot, we notice that the toaster starts to get hot very quickly. If 
we take a peek in the slot where the slice of bread is, we can see that the 
internal wires in the toaster become red hot. The toaster-heating elements are 
approximately 1 to 2 kW rated resistors, depending on the toaster make and 
model, rated to operate at the household AC supply voltage. This is a simple 
example of an alternating current (AC) voltage source, supplying an AC 
current to the toaster-heating elements in operation. Both of these waveforms, 
voltage and current, vary sinusoidally with respect to time. The AC current, 
being “pushed” by the AC voltage source, is the cause of heat being produced 
in the immediate vicinity of the toaster-heating element. The outlet on the 
kitchen wall is the point where we connect the appliance to the AC voltage 
source. The AC volt age source from the electric utility company is usually 
located in a remote site, far away from the home. In most households in the 
Unites States, the standard AC voltage is 120 V. The 120 V refers to the root 
mean square (RMS) value of the sinusoidal waveform, where RMS is defined 
mathematically by the following equation:

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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 f
T

f t dtRMS

T

= ∫1 2

0

[ ( )] .  (2.1)

Equation (2.1) is the RMS value of waveform f(t).
In Equation (2.1) T is the period of the waveform. The waveform f(t) can be 

either a voltage or a current, and t is the time, the independent variable. RMS 
of a waveform is also referred to as the effective value of the waveform.

When f(t) is a sinusoidal waveform such as v(t) = V sin (ωt + θ); V is the 
amplitude (or peak value) of the sinusoidal waveform in volts, ω is its angular 
frequency equal to 2πf, where f equals the inverse of the sinusoid’s period T 
or the sinusoid frequency, given in units of second−1 or hertz, and θ is the 
sinusoidal waveform phase shift. The units of the angular frequency ω are 
given in radians per second. Solving Equation (2.1) for a sinusoidal voltage, 
the RMS value of it is

 V V Veffective RMS= = ≅/ V2 0 707. ,  (2.2)

where V is the peak value or magnitude of the sinusoidal waveform. So the 
120 V at the kitchen outlet is the RMS value of the sinusoidal waveform that 
the electric utility company provides to U.S. households. Also applying Equa-
tion (2.2) to a current waveform, i(t) = I sin (ωt + θ), we find that its RMS value 
is also

 I I Ieffective RMS= = 0 707. .  (2.3)

In Equation (2.3) I is the peak value or amplitude of the current waveform.

2.1.1  Ideal and Real AC Voltage Sources

An ideal AC voltage source is one that produces a sinusoidal voltage that 
varies with time. Most importantly, the amplitude and the RMS value of such 
voltage source does not vary based on how much current the load across the 
source terminals is drawing. This means that the internal resistance of an ideal 
AC voltage source is zero. So whether the voltage source supplies no current 
or very large currents, the voltage amplitude and RMS value remain constant. 
It is also true that the waveforms retain their sinusoidal shape and original 
frequency f and phase angle θ. On the other hand, a real AC voltage source 
amplitude does not remain constant with the level of current being supplied 
by the real AC voltage source. This concept is similar to that of ideal and real 
DC voltage sources. The real AC voltage source can be modeled as an ideal 
AC voltage source in series with its internal resistance, the real AC voltage 
source internal resistance is not zero, and it is a finite number as shown by 
Figure 2.1.
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• The internal resistance of an ideal AC voltage source is zero, which means 
that the source can supply an unlimited current to its load.

• In contrast, real AC voltage sources cannot provide infinite current when 
the source terminals are short-circuited.

• The internal resistance of a real AC voltage source is never zero and it is 
a finite number.

• The internal resistance of a real AC voltage source is always greater than 
0 Ω.

• The internal resistance is an indicator of the current sourcing capability 
of the voltage source.

Figure 2.1  Representation of (a) ideal and (b) real AC voltage sources.

v(t)

v(t)

= V sin (wt + q)max

= V sin (wt + q)max

r internal

r internal

= 0

(finite number, not zero)

(a)

(b)

Example 2.1 Ideal versus Real Voltage Sources
Let us assume that we have an ideal voltage source, this can be a DC or an 
AC source. An ideal voltage source has zero internal resistance. Thus, a load 
connected across the terminals of the voltage source can draw any amount of 
current dictated by the load value. For example, given an ideal 12-V DC source 
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connected across a 10 Ω, 1 Ω, 0.1 Ω, 0.01 Ω, or any other resistor value (except 
for zero), the current is always determined by Ohm’s law. A 10 Ω resistor 
draws 12 V/10 Ω = 1.2 A from the ideal 12-V source. The 1 Ω resistor draws 
12 V/1 Ω = 12 A; a 0.1 Ω draws 12 V/0.1 Ω = 120 A and the 0.01 Ω resistor 
draws 12 V/0.01 Ω = 1200 A from the voltage source. Now what happens if the 
resistor placed across the ideal voltage source has a 0 Ω value? The current 
that the ideal voltage source would have to supply is infinite. So to be realistic 
with how much current an ideal voltage source can supply, it is fair to say that 
any amount of current desired can be provided by the source, but not  
an infinite current. Using circuit simulators, if we simulated a short-circuited 
voltage source with a 0-Ω internal resistor, it produces an indetermination.

For the ideal AC voltage source, there is conceptually no difference with 
respect to the ideal DC source. The key difference is that the AC source sup-
plies a perfectly sinusoidal time varying waveform; which has a peak value or 
amplitude, a frequency, and a phase angle.

Sinusoidal Waveforms: A sinusoid, from basic trigonometry, is a periodic 
waveform that repeats itself with a period T; it is also positive half of the time, 
and it is negative the other half of the time. Figure 2.2 shows a sinusoidal 
voltage of frequency f, amplitude V, and phase θ. Figure 2.3 shows a sinusoidal 
source applied to a resistor.

When we discussed DC circuits we stated that V = I R (Ohm’s law), where 
I and V are DC values of current and voltage, respectively. For sinusoidal-
varying waveforms v(t) and i(t), Ohm’s law holds true as well:

Generalized Form of Ohm s Law’

 v t i t R( ) ( )=  (2.4)

Figure 2.2  Sinusoidal voltage.
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Example 2.2 Assume an ideal AC voltage source that generates a voltage 
equal to v(t) = Vpeak sin (ωt + θ), Vpeak = 12 V, ω = 2π 1 rad/s, and θ = 0°. Evalu-
ate the current waveform obtained for the following resistive loads RL: (a) 
10 Ω; (b) 1 Ω; (c) 0.1 Ω, and (d) 0.01 Ω.

Answer to Example 2.2

From Equation (2.4), since v(t) = i(t) RL, thus i(t) = Vpeak/RL sin (ωt + θ).
Thus, we obtain

(a) i(t) = 1.2 sin (2πt) for RL = 10 Ω;
(b) i(t) = 12 sin (2πt) for RL = 1 Ω;
(c) i(t) = 120 sin (2πt) for RL = 0.1 Ω; and
(d) i(t) = 1200 sin (2πt) for RL = 0.01 Ω.

All currents are given in amperes.

Figure 2.3  An AC voltage source applied across a resistor.

R

v(t)= V sin (wt − q)max

Equation (2.4) holds for all values of time such that t ≥ 0. Moreover, Equa-
tion (2.4) is not limited to sinusoidal-varying waveforms but to any real-world 
time-varying currents and voltages that are functions of time. Finally, Equation 
(2.4) tells us that whatever the current as a function of time waveform is,  
the voltage developed across such resistor is proportional to the current 
waveform.

In particular, when v(t) = V sin (ωt + θ) and i(t) = I sin (ωt + θ),

 V t RI tsin( ) sin( ).ω θ ω θ+ = +  (2.5)

Figure 2.4 below depicts a plot of Equation (2.5). Note that both current and 
voltage waveforms are sinusoidal and proportional to each other. Resistance 
R is the constant of proportionality. It is also important to note that the angular 
frequency ω (or 2πf ) is the same for the current and voltage waveforms.
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From Figure 2.4, we can see that both sine waves are exactly in-phase. This 
means that the voltage and current peak values occur at the same time, as well 
as their valleys (negative peaks), zero crossings, and so on.

Referring to the toaster example powered by a sinusoidal voltage source, 
we calculate that the instantaneous power consumed by the resistor is

 p t v t i t( ) ( ) ( ).=  (2.6)

In particular, when v(t) = V sin (ωt + θ) and i(t) = V sin (ωt + θ),
then

 p t VI t( ) sin ( ).= +2 ω θ  (2.7)

Figure 2.4  Resistor with sinusoidal voltage, current, and instantaneous power.
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From the trigonometric equality,

 sin ( cos ).2 1
2

1 2x x= −  (2.8)

Using Equation (2.8) in Equation (2.7), we obtain

 p t VI t( ) cos( ) .= − +[ ]1
2

2ω θ  (2.9)

Equation (2.9) is the instantaneous power on resistor R. Refer to Figure 2.4 
which depicts, from top to bottom, voltage across the resistor, current through 
the resistor, instantaneous power consumed by the resistor, and the average 
power on the resistor.

Equation (2.9) has two terms, a constant power term equal to

 1
2

VI.  (2.10)

The second term varies with twice the original frequency and is given by Equa-
tion (2.11):

 – cos( ).
1
2

2ω θt +  (2.11)

The average power consumed by the resistor is given by

 P
T

p t dtaverage

T

= ∫1
0

( ) .  (2.12)

Integrating Equation (2.12), where p(t) is given by Equation (2.9), yields

 P VIaverage =
1
2

.  (2.13)

V and I, respectively, are the peak values of voltage and current.
The resistor will dissipate an amount of heat that is the average value of  

its instantaneous power. Again looking at Equation (2.9), the average value 
of p(t) is

 P
T

VI t dtaverage

T

= +∫1 2

0

sin ( ) .ω θ  (2.14)
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And solving the integral of Equation (2.14) yields

 P VIaverage =
1
2

.  (2.15)

V and I are respectively the amplitude (or peak values) of voltage and current.
Integrating the term

 – cos( )
1
2

2ω θt +  (2.16)

between 0 and period T, yields zero.
Now from Equations (2.2) and (2.3), we know that for sinusoidal 

waveforms,

 V V VRMS = ≈/ 2 0 707.  (2.17)

and

 I I IRMS = ≈/ 2 0 707. .  (2.18)

Substituting the VRMS and IRMS values in Equation (2.15), we obtain that

 P I Vaverage RMS RMS= .  (2.19)

The average power dissipated by a resistor when a sinusoidal current flows 
through it, developing a sinusoidal voltage across it, is the product of the RMS 
(or effective) values of such current and voltage.

The RMS values of current and voltage on the resistor are thermally equiva-
lent to DC values of same current and voltage. The following example explains.

Example 2.3 Power Calculations on a Resistor Powered by an AC Voltage
Given a 10 Ω resistor R, with an AC voltage source v(t) applied across its 
terminals, where v(t) = 25 sin (2π 60t), where f = 60 Hz, note that the phase θ, 
in this example has a value of zero. Note: The peak value of the sinusoidal 
waveform above is 25 V.

(a) Determine the value of the AC current developed through the 
resistor.

(b) Find the average AC power dissipated by the resistor finding the AC 
waveform corresponding RMS values.

(c) Find equivalent values of DC voltage and DC current that will produce 
the same power dissipation as the RMS values of the AC waveforms 
produce.
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Solution to Example 2.3

(a) The current through the resistive circuit is

 

i t v t R

t

t

( ) ( )

sin( )

. sin( ) .

=
=
=

/

/

A

25 10 120

2 5 120

π
π

(b) Using Equations (2.17) and (2.18), we find the RMS values of voltage 
and current waveforms are

 V VRMS = ≅/ V2 17 68. .  (2.20)

 IRMS = ≅I/ A2 1 77.  (2.21)

Thus, the power dissipated by the resistor equals

 P V Idissipated RMS RMS= = =17 68 1 77 31 29. . . .V A W

(c) Since VRMS = 17.68 V and IRMS = 1.77 A, DC values of 17.68 V and 
1.77 A will produce the same power dissipation of

 
P V I V I

P
dissipated RMS RMS DC DC

dissipated

= =
= × =17 68 1 77 31 29. . . .W

 (2.22)

From a thermal perspective, the resistor sees no difference between the power 
produced by sinusoidal current and voltage or by equivalent DC values.

Example 2.4 Given a 1 Ω resistor and a 1 A DC current source, determine 
the peak value of an AC current source with a 1 Ω load, which produces the 
same power dissipation as the DC source. Hint: The resistor dissipates 1 W in 
DC and must also dissipate 1 W in AC.

Solution to Example 2.4

Given that the DC current value is 1 A, a sinusoidal AC current with an RMS 
current of 1 A will produce the same power dissipation as the DC value. Thus, 
the peak value of the sinusoidal current is 1 2 1 41× ≈ . A. Refer to Equation 
(2.18).

2.1.2  Ideal and Real AC Current Sources

An ideal AC current source is one that produces a current that varies in a 
sinusoidal fashion with respect to time. Most importantly, the amplitude of  
an ideal AC current source does not vary based on how much voltage gets 
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Figure 2.5  (a) Ideal and (b) real current source models in standby mode.

internali(t) = I sin (wt + q)max

i(t) = I sin (wt + q)max

i(t)

i(t)

r

(a)

(b)

developed across the current source, based on the load that it has across its 
terminals. So whether the current source supplies current to a short-circuit 
load or a very light load (resistor of high ohmic value), the current amplitude 
remains constant. The internal resistance of an ideal current source is infinitely 
large; this means that regardless of the load applied across its terminal, the 
current remains constant and the voltage is given by the current times the 
voltage across the load. The standby condition of a current source is obtained 
by short-circuiting the current source terminals. When ideal current source 
terminals are left open-circuited, the voltage developed across the current 
source approaches an infinitely large value. When we have a real current source 
and leave its terminals open-circuited, the voltage developed across the current 
source terminals is very large, and there is a great likelihood of damaging the 
current source. A real AC current source amplitude does not remain constant 
with the level of voltage being developed across the real AC current source. 
An ideal current source is depicted in Figure 2.5a. The real AC current source 
can be modeled as an ideal AC current source in parallel with its internal 
resistance, as shown by Figure 2.5b. Current source terminals, whether  
the source is real or ideal, must always be short-circuited when no load is  
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connected to its terminals (standby mode). Why? Because when the current 
source terminals are open-circuited, then the ideal and real current source 
voltage approaches a very large voltage value.

Just like with DC circuit voltage sources, an AC voltage source is in a 
standby mode when its terminals are in an open-circuit condition; its open-
circuit voltage is read, but since there is no load applied across its terminals, 
no current is delivered by the voltage source.

An ideal or real AC current source in standby mode must have its terminals 
short-circuited, or a 0-Ω resistance across its terminals. A current source is in 
a benign state when its terminals are short-circuited. Figure 2.6a shows a basic 
voltage source with internal resistance and load resistance in series. Figure 
2.6b depicts an ideal load line of an ideal 10-V voltage source with internal 

Figure 2.6  (a) Voltage source model with internal resistance; (b) different internal resistance 
voltage sources models under the same load condition.
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resistance rint0 = 0 Ω, and three real voltage sources with internal resistances 
of rint1 = 0.1 Ω, rint2 = 0.2 Ω, and rint3 = 0.3 Ω. All four voltage sources have a 
10-A current load. It is important to note that for equal current loading, the 
output voltage (load voltage VL) of the source with the largest internal resis-
tance (rint3) is the lowest. The ideal source with zero internal resistance pro-
duces the highest possible voltage, which is 10 V. The load line equation is 
given from Kirchhoff’s and Ohm’s laws by

 V V r IL oc int L= − .  (2.23)

In Equation (2.23) VL is the voltage across the load (VL). Refer again to 
Figure 2.6a.

The load voltages for each load line equation for rint0, rint1, rint2, and rint3 for 
Voc = 10 V and load current IL = 10 A, respectively, are

 V V r IL oc int L= − =0 10 V.  (2.24)

 V V r IL oc int L= − = − × =1 10 0 1 10 9. .V  (2.25)

 V V r IL oc int L= − = − × =2 10 0 2 10 8. .V  (2.26)

 V V r IL oc int L= − = − × =3 10 0 3 10 7. .V  (2.27)

Exercise: For Equations (2.25), (2.26), and (2.27) determine the actual load 
resistance RL at the given conditions.

For Equation (2.25), the output or load voltage is 9 V, and since the load 
current is 10 A, then RL = 9 V/10 A = 0.9 Ω. Similarly for Equation (2.26), 
RL = 8 V/10 A = 0.8 Ω and for Equation (2.27), RL = 7 V/10 A = 0.7 Ω.

Figure 2.7 depicts an ideal load line of an ideal 10-A current source with 
internal resistance rint0 → ∞ and three real current sources with internal resis-
tances of rint1 = 10 Ω, rint2 = 5 Ω, and rint3 = 3.333 Ω. All four current sources 
have a load that causes the load voltage to be 10-V. It is important to note that 
for equal voltage at the load, the current of the source with the numerically 
smallest internal resistance (rint3) produces the lowest load current. The goal 
is to obtain as much of the current source current to flow through the load. 
The ideal source with an infinite internal resistance produces the highest pos-
sible load current IL, which is 10 A. For the example on hand a current source 
with a 10-Ω internal resistance and 10 V at the load produces 9 A through the 
load and 1 A through the internal resistance. A current source with a 5-Ω 
internal resistance and 10 V at the load produces 8 A through the load and 
2 A through the internal resistance. Finally, a current source with a 3.3333-Ω 
internal resistance and 10 V at the load produces 7 A through the load and 
3 A through the internal resistance. Refer to Equations 2.24 through 2.27.

The load line equation is given from Kirchhoff’s and Ohm’s laws by  
Equation (2.28):
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 I I
V
r

L
L

int

= − .  (2.28)

In Equation (2.28), IL is the current through the load resistance RL, I is the 
total current that the current source supplies, rint is the current source internal 
resistance, and VL is the load voltage or the voltage across RL (RL does not 
appear in Equation (2.28), refer to Figure 2.7a for the location of RL). Thus, 
using Equation (2.28), the line load equations for rint0, rint1, rint2, and rint3 for 
I = 10 A and load voltage VL = 10 V, respectively, are

 I I rL int= = → ∞10 0A because, .  (2.29)

 I I
V
r

L
L

int

= − = − =
1

10 10 10 9( ) ./ A  (2.30)

Figure 2.7  (a) Current source model with internal resistance; (b) different internal resistance 
current sources at the same load voltage.
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 I I
V
r

L
L

int

= − = − =
2

10 10 5 8( ) ./ A  (2.31)

 I I
V
r

L
L

int

= − = − =
3

10 10 3 333 7( . ) ./ A  (2.32)

Independent current source I can be a DC current or an AC current source. 
When using a DC current source, I simply is the current DC value; when using 
an AC current source, I is typically the peak value of the sinusoidal current.

2.2  SINUSOIDAL STEADY STATE: 
TIME AND FREQUENCY DOMAINS

When sinusoidal voltage or current sources excite an RLC network, the sinu-
soidal voltage and current waveforms are of the same angular frequency ω in 
sinusoidal steady state. Sinusoidal steady state means that transient behavior 
is over. For the circuit given in Figure 2.8, which shows an AC voltage source 
in series with a resistor R, capacitor C, and inductor L, we can state the circuit 
equations using Kirchoff’s voltage law (KVL) and Kirchoff’s current law 
(KCL) directly in the time domain.

The time domain circuit equations for a resistor, capacitor, and inductor are 
summarized in Table 2.1 from previous sections of this chapter. The various 
scientists and engineers that developed basic circuit theory throughout most 
of the 19th century experimentally obtained such equations. It is important to 
state that the equations of Table 2.1 hold true regardless of the waveform that 
excites each element. For example, for a resistor, if its current iR(t) is a constant 
(DC), then its voltage vR(t) is a constant, since the voltage–current behavior 
is vR(t) = iR(t)R. Similarly, if the resistor current is a sinusoidal function of time, 
so will be the voltage across it. A second example for an inductor, if its current 
is a sinusoidal waveform with respect to time, the voltage developed across 
such inductor varies proportionally to the derivative of its current with respect 
to time. That is, vL(t) = Ldi(t)L/dt.

Figure 2.8  Series RLC circuit with sinusoidal voltage source.

R L C

v(t) = V sin (wt−q)
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2.2.1  Resistor under Sinusoidal Steady State

Based on the voltage–current relationships for R in Table 2.1, when

 i t I tR ( ) sin( ).= +ω θ  (2.33)

 v t i R IR t V tR R( ) sin( ) sin( ).= = + = +ω θ ω θ  (2.34)

V, the peak voltage, is defined as:

 V IR= .  (2.35)

In Equation (2.35), I is the peak value of the current waveform and R is the 
resistor value.

Previously seen Figure 2.4 depicts the voltage and current waveform of a 
resistor with sinusoidal excitation. Figure 2.4 also shows the instantaneous 
power on the resistor and the average value of the power dissipated. Important 
facts to observe are that both voltage and current waveforms are exactly in 
phase; that is, they both have the same zero crossings, positive and negative 
peaks.

2.2.2  Inductor under Sinusoidal Steady State

Based on the voltage–current relationships for L in Table 2.1, when

 i t I tL( ) sin( ).= +ω θ  (2.36)

 v t Ldi dt LI t V tL L( ) cos( ) cos( ).= = + = +/ ω ω θ ω θ  (2.37)

V peak is defined as

 V LI= ω ,  (2.38)

Table 2.1  Voltage–current and current–voltage relationships for electric components 
(Universal time domain equations)

Circuit Element
Basic Voltage–Current 

Relationship
Basic Current–Voltage 

Relationship

R vR(t) = iR(t) R i t
v t

R
R

R( )
( )

=

L v t L
di t

dt
L

L( )
( )

= i t
L

v t dtL L

t

( ) ( )=
−∞
∫1

C v t
C

i t dtC C

t

( ) ( )=
−∞
∫1

i t C
dv t

dt
C

C( )
( )

=
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where ω is the angular frequency of the exciting current, I is the peak value 
of the current waveform, and L is the inductor value.

Figure 2.9 depicts the voltage and current waveform of an inductor with 
sinusoidal excitation. An important fact to observe is that the voltage wave-
form leads the current waveform by 90° (or π/2 radians). It is also interesting 
to note that the peak value of the voltage waveform (V) is a frequency-
dependent term (recall that ω = 2πf ). We will discuss instantaneous power in 
the inductor shortly.

2.2.3  Capacitor under Sinusoidal Steady State

Based on the voltage–current relationships for C in Table 2.1, when

 v t V tC ( ) sin( ).= +ω θ  (2.39)

 i t Cdv dt CV t I tC C( ) cos( ) cos( ).= = + = +/ ω ω θ ω θ  (2.40)

Figure 2.9  Inductor under sinusoidal voltage, current, and instantaneous power.
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I, the peak current, is defined as:

 I CV= ω ,  (2.41)

where ω is the waveform angular frequency, C is the capacitance value, V is 
the peak value of the voltage waveform; thus, I is the peak value of the current 
waveform through the capacitor.

Figure 2.10 depicts the current, voltage, and instantaneous power wave-
forms of a capacitor with sinusoidal excitation. An important fact to observe 
is that in a capacitor, the current waveform leads the voltage waveform by 90° 
(or π/2 rad). It is also interesting to note that the peak value of the current 
waveform (i c) is an angular frequency-dependent term (ω = 2πf ). We will 
discuss instantaneous power in the capacitor shortly.

Figure 2.10  Capacitor under sinusoidal voltage, current, and instantaneous power.
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From Equations (2.33) through (2.41), Table 2.2 summarizes the results 
obtained.

Note: Figures 2.9 and 2.10 depict degrees in their horizontal axis; this is totally 
equivalent to display time, where 90° is 1/4 of a sinusoidal period, 180° is half-
a-period, and so on.

When circuits operate in sinusoidal steady state, it is particularly useful  
to use complex numbers instead of manipulating time domain equations. 
When using time domain equations, differential equations need to be solved. 
When dealing with complex numbers, complex algebra manipulations are 
required instead of having to solve differential equations. This topic will be 
addressed further in the section about phasors.

2.2.4  Brief Complex Number Theory Facts

The purpose of this section is to provide a brief review on complex numbers 
and their basic operations.

Mathematically, “i” is the imaginary number unit; however, electrical engi-
neers prefer to use “j” because the letter i is reserved for current.

Complex number theory begins with its fundamental assumption or 
definition:

 j = −1  (2.42)

A complex number z is a number of the form a + jb, where a is the real part 
of the complex number z, Re {z} = a and b is the imaginary part of z, Im {z} = b.

Complex number:

 z a jb= +  (2.43)

is said to be represented in rectangular form. Complex numbers can be repre-
sented on the complex plane. The horizontal axis of this plane is used to 
represent the real part of the complex number, and the vertical axis or the  

Table 2.2  Time domain equations for R, L, and C with sinusoidal excitation

Electric Element Voltagea Currenta
Voltage–Current 

Phase Relationship

Resistor vR(t) = V sin (ωt + θ) iR(t) = I sin (ωt + θ) vR and iR are 
in-phase

Inductor vL(t) = V cos (ωt + θ) iL(t) = I sin (ωt + θ) vL leads iL by 90o

Capacitor vC(t) = V sin (ωt + θ) iC(t) = I cos (ωt + θ) iC leads vC by 90o

a All waveforms are referred to as sinusoidal, regardless whether they are expressed by a sine or 
a cosine function.
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j-axis is used to represent the imaginary part of the complex number. Figure 
2.11 shows the complex plane, and on the plane there are four examples of 
complex numbers.

In particular, a complex number with its zero real part is said to be a pure 
imaginary number. Conversely, a complex number with zero imaginary part is 
said to be a real number.

Examples of pure imaginary numbers in rectangular form are

0 3 3+ =j j ;

0 4 5 4 5+ =j j. . ;

 0 1+ =j j;

0 + =j jπ π.

Figure 2.11  Complex plane showing complex numbers in rectangular form.
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Examples of real numbers in rectangular form are

 + + =1 0 1j ;

 π π− =j0 ;

 23 7 0 23 7. . ;+ =j

 1 0 1+ =j .

2.2.4.1 Complex Numbers in Polar Form Complex numbers can also be 
represented in polar form. Figure 2.12 shows a complex number with real part 
a, imaginary part b, and how it relates to its modulus or absolute value ρ (rho) 
and its phase angle θ (theta) with respect to the real axis.

From Figure 2.12 and trigonometric identities, one can see that the absolute 
value of the complex number is related to its rectangular component as follows:

 ρ = +a b2 2 .  (2.44)

Figure 2.12  Complex numbers in rectangular and in polar forms.

First QuadrantSecond Quadrant

Third Quadrant Fourth Quadrant

j

R

Z = a + jb =

90° = π/2 rad

270° = 3π/2 rad

0° = 0 rad
180° = π rad

b

a

r

q

qr



118  ALTERNATING CURRENT CIRCUITS 

The phase angle θ, also called the argument of z, is related to its rectangular 
components as follows:

 θ = 





−tan ,1 b
a

 (2.45)

where a and b are respectively the real and imaginary part of complex 
number z.

The complex number in polar form is represented as follows:

 z = ∠ρ θ.  (2.46)

Figure 2.12 also depicts the four quadrants within the trigonometric circle:

Quadrant I encompasses angles in the range: 90° < θ < 0°
Quadrant II encompasses angles in the range: 180° < θ < 90°
Quadrant III encompasses angles in the range: 270° < θ < 180°
Quadrant IV encompasses angles in the range: 360° < θ < 270°

where 0°, 90°, 180°, 270°, and 360° angles are the boundaries between 
quadrants.

It is also important to note that the following convention is also accepted:
Negative angles whose angle absolute value is within the range: 90° < |θ| < 0° 

are in Quadrant IV.

Example 2.5 Negative angles whose angle absolute value is within the range:
90° < |θ| < 0°.
−30°, −5°, and −75° are all examples of angles that reside in Quadrant IV.

Example 2.6 Negative angles whose angle absolute value is within the range:
180° < |θ| < 90°.
−110°, −145°, and −175° are all examples of angles that reside in Quad-

rant III.

Example 2.7 Negative angles whose angle absolute value is within the range:
270° < |θ| < 180°.
−190°, −205°, and −265° are all examples of angles that reside in Quad-

rant II.

Example 2.8 Negative angles whose angle absolute value is within the range:
270° < |θ| < 360°.
−280°, −300°, and −334° are all examples of angles that reside in Quad-

rant I.
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Example 2.9 Convert the following complex numbers from rectangular form 
to polar form:

(a) z0 = 2 + j3
(b) z1 = −5 + j4
(c) z2 = −1 − j5
(d) z3 = 4 − j6

Applying Equations (2.43) through (2.45) for (a) through (d) we obtain

(a) z0 = 2 + j3 = (22 + 32)½ ∠tan−1 (3/2) = 3.606∠56.31°
(b) z1 = −5 + j4 = [(−5)2 + 42]½ ∠tan−1 [4/(−5)] = 6.403∠141.34°
(c) z2 = −1 − j5 = [(−1)2 + (−5)2]½ ∠tan−1 [(−5)/(−1)] = 5.099∠258.69°
(d) z3 = 4 − j6 = [42 + (−6)2]½ ∠tan−1 [(−6)/4] = 7.211∠−56.31°

2.2.4.2 Complex Numbers in Euler’s Form From Euler’s identity,

 z = = +ρ ρ θ θθe jj (cos sin ),  (2.47)

where ρ is the modulus or amplitude of the complex number z and θ the angle 
that its module has with respect to the real axis; complex number z then is

 z = = ∠ρ ρ θθe j .  (2.48)

From Euler’s equality, Equation (2.47), it can be seen by looking at the rect-
angular representation of a complex number, previously given by Equation 
(2.43), that

 Re{ } cosz = =a ρ θ  (2.49)

and

 Im{ } sinz = =b ρ θ  (2.50)

Equations (2.49) and (2.50) show a direct conversion of complex number from 
polar form into Euler form.

Example 2.10 Convert the following complex numbers from polar form to 
Euler’s form:

 z1 3 606 56 31= ∠ °. .

 z2 6 403 141 34= ∠ °. .
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2.2.4.3 Arithmetic Operations with Complex Numbers

2.2.4.3.1  Rectangular Form Addition/Subtraction

 Given and c thenz z z z1 2 1 2= + = + + = + + +a jb jd a c j b d, ( ) ( ).  (2.51)

 Given and thenz z z z1 2 1 2= + = + − = − + −a jb c jd a c j b d, ( ) ( ).  (2.52)

From Equations (2.51) and (2.52), it can be seen that for addition or subtrac-
tion in rectangular form, real parts get added or subtracted, and imaginary 
parts get added or subtracted.

 z3 5 099 258 69= ∠ °. .

 z4 7 211 56 31= ∠ − °. .

The conversion from polar form is straightforward; it just uses the modulus 
and the phase angle in Euler’s equation. Yielding

 z e j
1

56 313 606 56 31 3 606= ∠ ° = °. . . .

 z e j
2

141 346 403 141 34 6 403= ∠ ° = °. . . .

 z e j
3

258 695 099 258 69 5 099= ∠ ° = °. . . .

 z e j
4

56 317 211 56 31 7 211= ∠ − ° = °−. . . .

Example 2.11 Given complex numbers z0, z1, z2, and z3 in rectangular form, 
perform the following operations: (a) z0 + z1; (b) z2 − z3; (c) z1 + z2 − z3; and (d) 
−z0 − z2.

 z0 = +2 3j

 z1 = − +5 4j

 z2 = − −1 5j

 z3 = −4 6j

Solutions to Example 2.11

(a) z0 + z1 = (2 − 5) + j(3 + 4) = −3 + j7
(b) z2 − z3 = (−1 − j5) − (4 − j6) = −1 − 4 − j5 + j6 = −5 + j
(c) z1 + z2 − z3 = −5 + j4 − 1 − j5 − (4 − j6) = −10 + j5
(d) −z0 − z2 = −(2 + j3) − (−1 − j5) = −1 + j2
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2.2.4.3.2  Polar and Euler’s Forms Addition/Subtraction To add or subtract 
complex numbers in polar or Euler’s forms, it is convenient to convert the 
complex numbers to rectangular form, do the addition (or subtraction), and 
convert the results back to polar or Euler’s form.

2.2.4.3.3  Rectangular Form Multiplication

 Given and thenz z z z1 2 1 2= + = + × = + × +a jb c jd a jb c jd, ( ) ( ).  (2.53)

Performing the term-by-term multiplication of both complex numbers in rect-
angular form and taking into account that j2 = −1, leads to

 z z1 2× = − + +( ) ( )ac bd j ad bc  (2.54)

Example 2.12 Multiplication of complex numbers given in rectangular form.
Given z1 = 8 + j6, z2 = 2 − j1; find the product z1 × z2 operating with both 

numbers in their given rectangular form.

Solution to Example 2.12

 
z z1 2× = + − = + − + × − ×

= + + − = +
( )( ) ( )( )8 6 2 1 16 6 1 6 1 8

16 6 12 8 22 4

j j j j j j

j j j

2.2.4.3.4  Euler’s and Polar Forms Multiplication Given: z1 1 1 1
1= = ∠ρ ρ θθe j  

and z2 2 2 2
2= = ∠ρ ρ θθe j , respectively in Euler’s form and polar form.

The product is obtained by multiplying ρ1 and ρ2, and by adding their 
respective phase angles, θ1 + θ2, so that the final product is

 z z1 2× = + +( ) .( )ρ ρ θ θ
1 2

1 2e j  (2.55)

Equation (2.55) is in Euler’s form and similarly in polar form:

 z z1 2× = + ∠ +( ) ( ).ρ ρ θ θ1 2 1 2  (2.56)

Example 2.13 Find the product of z1 and z2. z1 = 12∠25° and z2 = 3∠60.

Solution to Example 2.13

Applying Equation (2.55), we calculate the desired product:

 z z1 2× = ∠ ° × ∠ ° = ∠ ° + ° = ∠ °( ( ) . ( ) .12 25 3 60 12 3 25 60 36 85
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2.2.4.3.5  Rectangular Form Division

 Given and then / /z z z z1 2 2 1= + = + = + +a jb c jd c jd a jb, ( ) ( ).  (2.57)

Multiplying the numerator and denominator by the complex conjugate of the 
denominator allows rationalizing the complex number. That is, it eliminates 
the imaginary part of the number of the denominator.

Since the denominator in the given case is

 ( ),a jb+

its complex conjugate has the same real part but complementary imaginary 
part; that is,

 Complex Conjugate ( ) .a jb a jb+ = −  (2.58)

Since z1 = a + jb, its complex conjugate is indicated as

 z1
* = −a jb.  (2.59)

Then,

 z z2 1/ =
+ −
+ −

( )( )
( )( )
c jd a jb
a jb a jb

 (2.60)

 
( )( )

( )
( ) ( )

( )
.

c jd a jb
a b

ac bd j ad bc
a b

+ −
+

=
+ + −

+2 2 2 2  (2.61)

Example 2.14 Division of complex numbers given in rectangular form.
Given z2 = 8 + j6, and z1 = 2 − j1, find the quotient z2/z1 using both numbers 

in rectangular form.

Solution to Example 2.14

 
z z2 1/ /= + − =

+ +
− +

=
− + +

( ) ( )
( )( )
( )( )

( )
(

8 6 2 1
8 6 2 1
2 1 2 1

16 6 12 8
j j

j j
j j

j
22 1

10 20
5

2 4

2 2+

=
+

= +

)

.
j

j

 (2.62)

2.2.4.3.6  Polar and Euler’s Forms Division  Given: z1 = = ∠ρ ρ θθ
1 1 1

1e j  and 
z2 = = ∠ρ ρ θθ

2 2 2
2e j , where we define z2 as the dividend and z1 as the divisor.

The quotient of z2/z1 is obtained by dividing the modulus of the dividend 
by the modulus of the divisor (ρ2/ρ1), and by subtracting the divisor phase 
angle θ1 from the dividend phase angle θ2 so that the final quotient is
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 z z2 1/ /= −( ) ( )ρ ρ θ θ2 1 2 1e j  (2.63)

in Euler’s form and similarly in polar form:

 z z2 1× = ∠ −( ) ( ).ρ ρ θ θ2 1 2 1/  (2.64)

Example 2.15 Find the quotient of z2/z1, where z2 = 3∠60° and z1 = 12∠25°.

Solution to Example 2.15

Applying Equation (2.64) we calculate the desired quotient:

 z z2 1/ /= ∠ ° × ∠ ° = ∠ ° − ° = ∠ °( ) ( ) ( ) . .3 60 12 25 3 12 60 25 0 25 35  (2.65)

2.3  TIME DOMAIN EQUATIONS: FREQUENCY DOMAIN IMPEDANCE 
AND PHASORS

The basic equations describing the voltage–current relationships, where 
voltage and current are functions of time in resistors, capacitors, and inductors 
(see Table 2.1), are referred to as the time domain equations of those electric 
components. Those equations were experimentally determined. In the particu-
lar case that we need to deal with sinusoidal steady-state regime, current and 
voltage waveforms have a single frequency, and they vary sinusoidally with 
respect to time; it is possible to manipulate the waveform with phasors instead 
of the time domain differential or integral equations.

We will address phasors shortly, but the main advantage of using phasors, 
provided that the circuit is in sinusoidal steady state, is that the voltage and 
current calculations need not be in the time domain; consequently, no differ-
ential equations need to be solved. Phasors allow current and voltage calcula-
tions to be made with simple arithmetic equations. The catch is that such 
arithmetic is complex arithmetic; real and imaginary numbers are involved.

2.3.1  Phasors

A sinusoidal voltage or current waveform varying with respect to time, such as

 v t V t( ) sin( )= +ω θ

can also be described with a phasor of amplitude or peak value V, rotating 
at a constant angular frequency ω, and θ its phase shift with respect to zero 
degrees. Figure 2.13 depicts a phasor rotating in counterclockwise direction 
generating as it rotates each ordinate or sine value of our sinusoid.

For Figure 2.13 above, the phase angle θ is assumed to be zero, which is the 
reason why the sine wave in the time domain begins at the origin of the time axis.
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Figure 2.13  Phasor-generated sine wave with zero-phase angle.
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Example 2.16 Determine the phasor of the following sinusoidal, time domain 
equation.

Given: v(t) = V sin (ωt + θ), where V = 20 V, ω = 60 rad/s, and θ = 45°.
Rewriting the sinusoidal waveform with the given numerical values results in

 v t t( ) sin( ).= − °20 60 45

We can represent the sinusoidal waveform with its generating phasor instead 
of using the time-varying sine function. The phasor is: 20∠45°. Figure 2.14 
depicts this phasor.

Example 2.17 Phasor of sinusoidal waveform i(t) = 5 sin (60t + 30°).
i(t) is a current waveform, of a 5 A peak amplitude, 60 rad/s angular fre-

quency ω, and a 30° phase angle θ. The phasor is: 5∠30°.
Figure 2.15 depicts such current phasor.

2.3.2  The Impedance Concept

The impedance of a circuit element, where a circuit element can be a resistor, 
an inductor or a capacitor, is defined as the ratio of its voltage phasor V divided 
by its current phasor I. So referring to the time domain equations for R, L, 
and C circuit elements (Table 2.1) with sinusoidal excitation, we will find their 
equivalent voltage and current phasor to determine what their impedance is. 
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Figure 2.14  Phasor of sinusoidal waveform: v(t) = 20 sin (60t − 45°).

V = 20 V 

45º

w = 60 rad/s

Figure 2.15  Current phasor for current waveform i(t) = 5 sin (60t − 30°).

I = 5 A

30º

wt = 60 rad/s
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Before proceeding much further, it is important to emphasize that the imped-
ance concept is only meaningful at one angular frequency and when the volt-
age and current waveforms are sinusoidal. To evaluate the phasors for each 
circuit element, we will make use of Table 2.2. For the reader’s convenience, 
Table 2.2 is repeated here:

Example 2.18 Given a sinusoidal voltage and current equal to

 v t tR ( ) sin( )= − °120 2 60 45π  (2.67)

and

 i t tR ( ) sin( ),= − °20 2 60 45π  (2.68)

* A pure resistor, also called an ideal resistor, means within this context, that the resistor exclu-
sively has resistive properties and has no parasitic inductive or capacitive characteristics.

Table 2.2  Time domain equations for R, L, and C with sinusoidal excitation

Electric Element Voltagea Currenta
Voltage–Current 

Phase Relationship

Resistor vR(t) = V sin (ωt + θ) iR(t) = I sin (ωt + θ) vR and iR are 
in-phase

Inductor vL(t) = V cos (ωt + θ) iL(t) = I sin (ωt + θ) vL leads iL by 90o

Capacitor vC(t) = V sin (ωt + θ) iC(t) = I cos (ωt + θ) iC leads vC by 90o

a All waveforms are referred to as sinusoidal, regardless whether they are expressed by a sine or 
a cosine function.

2.3.3  Purely Resistive Impedance

For a resistor from Table 2.2 we have that both sinusoidal voltage and current 
are in phase, so the impedance of a pure* resistor is a real number, expressed 
by Equation (2.66):

 Z V IR R R= / .  (2.66)

In Equation (2.66), VR is the voltage phasor that corresponds to the time-
varying sinusoidal voltage developed across the resistor. IR is the current 
phasor that corresponds to the time-varying current through the resistor.

That is, vR(t) = V sin (ωt + θ). IR is the current phasor of the sinusoidal time-
varying waveform that flows through the resistor. ZR denotes impedance and, 
in a general sense, V, I, and Z are complex numbers (actually referred to as 
phasors). However, because both voltage and current phasors are always in 
phase on a resistor, the actual impedance for a pure resistor is a real number. 
Often times, the impedance of a pure resistor is referred to as simply R, the 
resistance itself.
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where vR = 120 V is the voltage peak value, ω = 2π 60 rad/s, ( f = 60 Hz), and 
phase angle θ is 45° for the resistor voltage waveform of Equation (2.67). 
Similarly for the current waveform, iR = 20 A is the current peak value, ω = 
2π 60 rad/s, ( f = 60 Hz), and phase angle θ is 45° (Eq. 2.68).

Determine the voltage and current phasors on the resistor and the resistor 
value.

Solution to Example 2.18

From Equation (2.66) we can see that the voltage phasor corresponding to 
such time domain waveform is

 VR = ∠ °120 45  (2.69)

and the current phasor is

 IR = ∠ °20 45 .  (2.70)

Thus, ZR = 120/20 = 6 Ω, a real number, which means that the impedance is 
purely resistive in this case.

Note that the resistive impedance turns out to be a real number after all. 
This will not happen with inductors and capacitors. In general, impedance 
phasors will always be of the complex form, with nonzero real and imaginary 
parts, when a circuit contains resistance, plus inductance and/or capacitance.

Graphical interpretation of phasors VR = 120–45° and IR = 20–45°
Both phasors VR and IR rotate at a constant angular frequency ω = 
2π 60 rad/s = 376.98 rad/s, and since both phasors are in phase, their phase 
difference is zero. Figure 2.16 is a representation of both phasors in the complex 
plane.

2.3.4  Inductive Impedance: Inductive Reactance

For an inductor, from Table 2.2, we have that the sinusoidal voltage across the 
inductor leads the sinusoidal current through the inductor by 90°. The imped-
ance of a pure* inductor is

 Z V IL L L= / .  (2.71)

In Equation (2.71), VL is the voltage phasor that corresponds to the time-
varying sinusoidal voltage developed across the inductor. That is, vL(t) = 
V cos (ωt + θ). IL is the current phasor of the sinusoidal time-varying waveform 
that flows through the inductor. ZL denotes impedance and in a general sense, 

* A pure inductor also called an ideal inductor means, in this context, that the inductor exclusively 
has inductive properties and no parasitic resistive or capacitive characteristics.
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Example 2.19 Given: a sinusoidal voltage and current equal to

 v tL( ) cos( )= + °45 2 100 20π  (2.72)

and

 i t tL( ) sin( ).= + °5 2 100 20π  (2.73)

From trigonometry we know that

 cos sin .x xleads by 90°  (2.74)

Thus

 v t i tL L( ) ( )leads by 90°  (2.75)

We can now proceed and determine that the respective phasors for vL(t) and 
iL(t) are

Figure 2.16  Resistor voltage and current phasors.

|VR|= 120 V

|IR|= 20 A

w = 2π60 rad/s

q = 45°

VL, IL, and ZL are complex numbers (they are also referred to as phasors). 
However, because on a pure inductor its voltage phasor always leads the 
current phasor by 90°, the actual impedance of a pure inductor is a pure imagi-
nary number (i.e., has zero real part).
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Example 2.20 Determine the voltage and current phasors and the impedance 
of the pure inductor from Example 2.19.

Equations (2.76) and (2.77) are repeated here for the reader’s convenience:

 VL = ∠ °45 110 .  (2.78)

 IL = ∠ °5 20 .  (2.79)

From Equations (2.78) and (2.79), since we know that the impedance of an 
inductor is the ratio of voltage and current phasors, this leads to

 
Z

Z
L

L

= ∠ ° − °
= = ∠ °

45 5 110 20

9 90

/ ( )

Ω
 (2.80)

or simply

 XL = ∠ °9 90Ω ( )in polar form  (2.81)

or

 XL j= 9 Ω ( ),in rectangular form  (2.82)

where XL is defined as the reactive inductance of the given inductor. The reac-
tive inductance, Equation (2.81), represents a pure imaginary number as pre-
dicted earlier.

 VL = ∠ °45 110  (2.76)

and

 IL = ∠ °5 20 ,  (2.77)

where |VL| = 45 V, ω = 2π 100 rad/s, ( f = 100 Hz), and phase angle θ is 110° for 
the inductor voltage waveform of Equation (2.61). Similarly for the current 
waveform, IL = 5 A, ω = 2π 100 rad/s, ( f = 100 Hz), and the phase angle θ 
is 20°.

Using Equation (2.71) with Equations (2.76) and (2.77), we get that ZL = 
VL/IL = 9Ω∠90° = j9Ω, an imaginary number.

We can further look at equations for vL and iL from Table 2.2 since

 v t V tL( ) cos( )= +ω θ  (2.83)

and

 i t I tL( ) sin( ),= +ω θ  (2.84)
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also remembering from Table 2.2 that vL(t) = LdiL(t)/dt. Using this equation 
into Equations (2.83) and (2.84) we obtain for

 v t Ldi t dt Ld I t dtL L( ) ( ) [ sin( )]= = +/ /ω θ  (2.85)

 v t LI tL( ) cos( ),= +ω ω θ  (2.86)

where the term (ωLI) is the peak voltage V of Equation (2.86) for vL(t):

 V V LIpeak= = =ω XL ,  (2.87)

where |XL| is the absolute value of the inductive reactance given in Equation 
(2.71). The absolute value of the inductive reactance equals the absolute value 
of the inductor impedance, because its impedance real part is zero.

Again identifying the phasors for time domain Equations (2.85) and (2.86), 
we get that for an inductor,

 V I XL L L= .  (2.88)

Equation (2.88) is very important because it describes Ohm’s law in phasor 
form or for an inductor when used in sinusoidal steady state. Note that all 
three terms, VL, IL, and XL, are complex numbers, and in a general sense they 
have magnitude and phase.

From Equations (2.78) and (2.79), the impedance of a pure inductor in 
rectangular form is

 Z X V I Z XL L L L L L= = = =/ for an inductorj Lω ( , ).  (2.89)

Graphical interpretation of inductor phasors VL = 45–110° and IL = 5–20°
Both phasors VL and IL are rotating at a constant angular frequency ω = 
2π 100 rad/s = 628.30 rad/s; both phasors are separated by a fixed 90° phase 
difference, where VL leads IL by 90°. Figure 2.17 is a representation of both 
VL and IL inductor phasors in the complex plane. Note that the initial phase 

Figure 2.17  Inductor voltage and current phasors.

IL
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= 5 A

w
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* A pure capacitor, also called an ideal capacitor, means in this context, that the capacitor exclu-
sively has capacitive properties and has no parasitic resistive or inductive characteristics.

Example 2.21 Given a capacitor with a sinusoidal voltage and current 
equal to

 v t tC ( ) sin( )= + °14 2 2 45π MHz  (2.91)

and

 i t tC ( ) cos( ).= + °2 2 2 45π MHz  (2.92)

Thus

 v t tC ( ) sin( )= × + °14 4 10 456π  (2.93)

and i t tC ( ) cos( )= × + °2 4 10 456π  (2.94)

We can see from (2.93) and (2.94) that the capacitor current leads the capaci-
tor voltage by 90°. Please also refer to Table 2.2.

 Capacitor phasor I leads capacitor phasor V byC C 90°  (2.95)

We can now proceed and determine that the respective phasors for vC(t) 
and iC(t) are

 VC = ∠ °14 45  (2.96)

angle from both the inductor voltage and capacitor current were eliminated 
from Figure 2.17.

2.3.5  Purely Capacitive Impedance: Capacitive Reactance

For a capacitor from Table 2.2 we have that the sinusoidal current through the 
capacitor leads the sinusoidal voltage drop across the capacitor by 90°. The 
impedance of a pure* capacitor is

 Z = V /IC C C,  (2.90)

where VC is the voltage phasor that corresponds to the time-varying sinusoidal 
voltage developed across the inductor, i.e., vC(t) = V sin (ωt + θ). IC is the 
current phasor of the sinusoidal time-varying waveform that flows through the 
capacitor. ZC denotes impedance, and in a general sense, VC, IC, and ZC are 
complex numbers (actually referred to as phasors).

However, because on a pure capacitor its current always leads the voltage 
phasor by 90°, the actual impedance of a pure capacitor is a pure imaginary 
number (has zero real part).
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and since IC leads VC by 90°

 IC = ∠ °2 135 ,  (2.97)

where VC = 14 V peak voltage, ω = 12.57 Mrad/s, (f = 2 MHz), and phase 
angle θ is 45° for the capacitor voltage waveform of Equation (2.91). Similarly 
for the current waveform, IC = 2 A peak current, ω = 12.57 Mrad/s, (f = 2 MHz), 
and phase angle θ is 135°.

Determine the voltage and current phasors and the impedance of the pure 
capacitor.

Solution to Example 2.21

From Equation (2.91), we can see that the voltage phasor corresponding to 
such time domain waveform is

 VC = ∠ °14 45 .  (2.98)

And from Equation (2.95), the current phasor is

 IC = ∠ °2 135 .  (2.99)

From Equations (2.98) and (2.99), we know that since the impedance of a 
capacitor is the ratio of voltage and current phasors, this leads to

 
Z

Z 9
C = ∠ ° − °

= = ∠ − °
14 2 45 135

7 0

/ ( )

C Ω
 (2.100)

or simply

 X 9C = ∠ − °7 0Ω ( ).in polar form  (2.101)

Or

 
XC = −

=
j in rectangular form

j also in rectangular form w

7

1 7

Ω
Ω

( )

( ) ( ,/ iithout rationalizing j).
 (2.102)

In Equation (2.102), XC is defined as the reactive capacitance of the given 
capacitor. The reactive capacitance, Equation (2.102), represents a pure imagi-
nary number as predicted earlier.

We can further look at equations for vC and iC from Table 2.2, and since

 v t V tC ( ) sin( )= +ω θ  (2.103)
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and

 i t I tC ( ) cos( ),= +ω θ  (2.104)

also remember from Table 2.1 that iC(t) = CdvC(t)/dt. Using this expression 
into Equations (2.103) and (2.104) we obtain for

 v t Cdv t dt Cd V t dtC C( ) ( ) [ sin( )]= = +/ /ω θ  (2.105)

 v t CV tC ( ) cos( ),= +ω ω θ  (2.106)

where the term ω C V is the peak voltage V of Equation (2.106):

 V V CVpeak= = ω .  (2.107)

Again identifying the phasors for time domain Equations (2.104) and (2.106), 
we get that for a capacitor,

 V I X .C C C=  (2.108)

Equation (2.108) is very important because it describes Ohm’s law in phasor 
form, for a capacitor when used in sinusoidal steady state. Note that all three 
terms, VC, IC, and XC are complex numbers that have magnitude and phase.

In general, for a pure capacitor, the reactive capacitance is given by

 Z XC C= = = −
1 1

j C
j

Cω ω
.  (2.109)

Note that |XC| = 1/ωC is the absolute value of the capacitive reactance.

Graphical interpretation of inductor phasors VC = 14–45° and IC = 2–135°
Both phasors VC and IC are rotating at a constant angular frequency ω = 2π 
2 Mrad/s = 12.57 Mrad/s; both phasors are separated by a fixed 90° phase 
difference, where VC lags IC by 90°. Figure 2.18 is a representation of both VC 
and IC capacitor phasors in the complex plane.

2.3.6  R, L, and C Impedances Combinations

From the previous three sections we can summarize that the impedances for 
R, L, and C elements are

 Z V /IR R R= = R  (2.110)

 Z X V /IL L L L= = = j Lω  (2.111)

 Z = XC C = = −
1 1

j C
j

Cω ω
.  (2.112)
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Given any R, L, C circuit series and parallel combinations of impedance are 
handled similarly to how serial and parallel combinations of resistors are cal-
culated. In DC circuit calculations with resistors, all the operations are done 
with real numbers. In AC, sinusoidal steady-state analysis impedances are in 
general complex numbers and in phasor form. Note: The concept of impedance 
and phasors is defined for the frequency domain. Impedance and phasors do 
not make any sense in the time domain.

Example 2.22 Compute the series equivalent impedance of ZR, ZC, and ZL.

 Z Z Z Zseries-equivalent R C L= + + .  (2.113)

Given that ZR = 10 Ω, ZL = j 60 Ω and ZC = −j30 Ω, calculate the series equiva-
lent impedance.

Since

 Z Z Z Zseries-equivalent R C L= + + ,  (2.114)

using the given values leads to

 
Zseries-equivalent = − +

= +
10 30 60

10 30

Ω Ω Ω
Ω Ω

j j

j (in rectangfular fform)
 (2.115)

and

 
= + ∠− +
= ∠ °

( ) arctan( )

. . ( ).

10 30 30 10

31 62 71 57

2 2 1 2/ /

in polar form
 (2.116)

Figure 2.18  Capacitor voltage and current phasors.
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Example 2.23 For the previous example, calculate the values of capacitance 
and inductance assuming that the angular frequency is 1 Mrad/s.

Solution to Example 2.23

From Equations (2.111) and (2.112) we know that 

 Z X V /IL L L L= = = j Lω .  (2.117)

 Z XC C= = = −
1 1

j C
j

Cω ω
.  (2.118)

Since ω = 1 Mrad/s and since |ZL| = |jωL| = ωL,

 L = = = = × −ZL / Mrad/s / Mrad/s H H1 60 1 60 60 10 6Ω µ ,

and for C, using Equation (2.118),

 C = = × = = × −1 1 1 30 33 33 33 33 10 9/ / Mrad/s nF Fω ZC Ω . . .

Example 2.24 Parallel Equivalent Impedance
Given that ZR = 10 Ω, ZL = j60 Ω and ZC = −j30 Ω, calculate the parallel 
equivalent impedance in rectangular, polar, and Euler’s forms.

Similarly to what we did with resistors, we do it with impedances, but 
remembering that impedances are phasors, or complex numbers with magni-
tude and phase, then,

 
1 1 1 1

Z Z Z Zparallel-equivalent R L C

= + + .  (2.119)

It is convenient to transform the given impedance into their polar forms, which 
are ZR = 10 Ω∠0°, ZL = 60Ω∠+90°, and ZC = 30Ω∠−90°.

Then using Equation (2.119) and using the impedances in polar form we 
obtain

 1/Zparallel-equivalent = ∠ ° + ∠− ° + ∠+ °1 10 0 1 60 90 1 30 90/ / /Ω Ω Ω .  (2.120)

After converting each impedance term on the right-hand side of Equation 
(2.120) from polar form into rectangular form, adding the three of them and 
then obtaining the inverse of the addition, leads to

 1/Zparallel-equivalent = + −1 10 1 60 30/ /j j  (2.121)

 Zparallel-equivalent = −9 729 1 622. . ,j  (2.122)

where Equation (2.122) is the equivalent impedance in rectangular form.
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2.4  POWER IN AC CIRCUITS

Circuits on sinusoidal steady state draw power from their sinusoidal power 
source. When R, L,C circuits are connected to a sinusoidal power source, some 
of the power drawn by the circuit is consumed by it; this is called real, true, 
active, or average power. Active power is measured in Watts (W). Active power 
is power that the load takes from the source to perform useful work. Active 
power gets converted into heat on the resistive part of the impedance. The 
capacitors and/or inductors present in the circuit cause the source to produce 
some additional power that is not consumed by the load. In the capacitor case, 
this power establishes the electric field on the capacitor itself; in the inductor 
case, this power establishes the magnetic field on the inductor. The power 
drawn from the power source by the capacitive and inductive elements does 
not produce any active power. This capacitive and inductive power is referred 
to as reactive power, and it is measured in reactive volt-amperes (VAR). The 
total power taken by a load from the AC power source is some combination 
of the total active power plus the total reactive power. This total power is 
referred to as the apparent power (S), measured in volt-amperes (VAs). So 
what is the relationship between apparent (S), active (P), and reactive (Q) 
powers?

We will answer this question soon, but first let us study the instantaneous 
power drawn by a resistor, a capacitor, and an inductor when they are fed by 
an AC source.

Let us go over active, reactive, and apparent power one more time. Active 
or real power is the easiest to understand. And it is the total energy absorbed 
by the resistive component of the load during each sinusoidal cycle. Energy is 
measured in units of power (W) multiplied by units of time, for example, watt-
seconds or watt-hours. Real or active power is measured in watts.

The physical meaning of reactive power is not as easy or intuitive to under-
stand. Reactive power, denoted by Q, refers to the maximum value of instanta-
neous power absorbed by the reactive component of the load. The instantaneous 
reactive power is alternatively positive and negative, twice per sinusoidal cycle. 
For an inductor, refer to Figure 2.9, and for a capacitor, refer to Figure 2.10. 
Note that the instantaneous power in a reactive element (i.e., either an induc-
tor or a capacitor) is positive for the first quarter of the sinusoidal cycle, and 

 Zparallel-equivalent = ∠− °9 863 9 465. .  (2.123)

And finally,

 Zparallel-equivalent = − °9 863 9 465. .e j  (2.124)

where Equation (2.122) is in rectangular form, Equation (2.123) is in polar 
form, and Equation (2.124) is in Euler’s form.
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then it becomes negative during the second quarter of the cycle, positive on 
the third quarter, and negative on the final quarter cycle. Refer to Figures 2.9 
and 2.10. Positive instantaneous power means that the generator provides 
power to the reactive load; negative instantaneous power means to the load 
returns the power back to the source. Note that the average or active power 
consumed by a reactive element is zero on a cycle per cycle basis. Active and 
reactive powers are related, and the combination of both is referred to as 
apparent power measured in VAs. In the next several sections we will discuss 
instantaneous power in resistors, inductors, and capacitors. This will lead to 
active, reactive, and apparent powers and their relationship which is explained 
by means of the triangle of powers.

2.4.1  AC Instantaneous Power Drawn by a Resistor

From Table 2.1, when a sinusoidal current and voltage are produced on a resis-
tor, we know that both waveforms are in phase. And from Equation (2.9), 
repeated here for the reader’s convenience, the instantaneous power on the 
resistor is

 p t VI VI tR ( ) cos( ),= − +1 2 1 2 2/ / ω θ  (2.125)

where V and I are respectively peak values of voltage and current.
We also have seen (from Eqs. 2.12 through 2.19) that the average power 

consumed by the resistor is evaluated as follows:

 P /average-resistor = −∫1 2
0

T I V V I t dtRMS RMS RMS RMS

T

[ sin( )] ,ω  (2.126)

which leads to

 P /average = =1 2VI I VRMS RMS  (2.127)

because the term VRMS IRMS sin 2ωt average value is zero.
Earlier in this Chapter, Figure 2.4 shows the sinusoidal current, voltage on 

a resistor, the instantaneous power, and the average power consumed by the 
resistor. It is important and interesting to observe that the average power 
consumed by the resistor always flows from the AC power source into the 
resistor. Such average power is always positive.

2.4.2  AC Instantaneous Power Drawn by a Capacitor

The instantaneous power drawn by a capacitor is the product of its instanta-
neous voltage and current. From previous sections we know that the instan-
taneous voltage across the capacitor lags the instantaneous current waveform 
by 90°. That is to say,
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 V jX IC C C= − in phasor form or the frequency domain  (2.128)

and

 I t V tC Ccos( ); sin( ) ,ω θ ω θ+ + in the time domain  (2.129)

where in both Equations (2.128) and (2.129), IC and VC are respectively the 
peak values of AC current and AC voltage on the capacitor. As usual, ω is the 
angular frequency and θ is an arbitrary phase angle. Note that θ shows up on 
both AC current and voltage. For simplicity and without loss of generality we 
will assume that θ is zero.

The product of its AC voltage and current gives the instantaneous power 
on the capacitor;

 p t v t i tC C C( ) ( ) ( ),= ×  (2.130)

where we substitute the waveforms from Equation (2.129) into Equation 
(2.130) and obtain

 p t V t I tC C C( ) sin( ) cos( )= ×ω ω  (2.131)

 = V I t tC C sin( )cos( ).ω ω  (2.132)

In Equation (2.132), VC and IC are respectively the peak voltage and current 
values.

Using the following trigonometric identity in Equation (2.132),

 sin sin cos2 2x x x=  (2.133)

leads to

 = 1 2 2/ V I tC C sin ω  (2.134)

 = V I tRMS RMS sin ,2ω  (2.135)

where V VRMS C= / 2 and I IRMS C= / 2 are the RMS values of voltage and 
current.

 P /average-capacitor = ∫1 2
0

T V I t dtRMS RMS

T

sin ω  (2.136)

 Paverage-capacitor = 0.  (2.137)

From Equation (2.137) we observe that the average power consumed by the 
capacitor during an AC period is zero. Referring to the double frequency 
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instantaneous power waveform of Figure 2.10, it is possible to see that the 
integral of the instantaneous power waveforms between an integral number 
of cycles T is zero.

Again referring to Figure 2.10, it can be seen that the instantaneous power 
drawn by the capacitor is alternatively positive and negative every quarter of 
a period of the original voltage and current waveforms. When the instanta-
neous power is positive, it means that the source is providing instantaneous 
power to the capacitor; when the instantaneous power is negative, the capaci-
tor is returning power to the source. This is what originates the capacitive 
reactive power in a capacitor, and it is sometimes called as the entertaining 
power between the source and the capacitor.

2.4.3  AC Instantaneous Power Drawn by an Inductor

The instantaneous power drawn by the inductor is the product of its instanta-
neous voltage and current. From previous sections we know that the instan-
taneous voltage across the inductor leads the instantaneous current waveform 
by 90°. That is to say,

 V jX IL L L= in phasor form or the frequency domain  (2.138)

and

 V t I tL Lcos( ); sin( ) ,ω θ ω θ+ + in the time domain  (2.139)

where in both equations above, VL and IL are respectively the peak values of 
AC voltage and AC current. As usual, ω is the angular frequency and θ is the 
phase angle.

Note that θ shows up on both AC voltage and current. For simplicity and 
without loss of generality we will assume that θ is zero.

The product of its AC voltage and current gives the instantaneous power 
on the inductor.

 p t v t i tL L L( ) ( ) ( ),= ×  (2.140)

where we substitute the waveforms from 2.139 into Equation (2.140) and obtain

 p t V t I tL L L( ) cos sin= ×ω ω  (2.141)

 = V I t tL L cos sinω ω  (2.142)

Using the following trigonometric identity in Equation (2.142),

 sin sin cos2 2x x x=  (2.143)
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leads to

 = 1 2 2/ V I tL L sin ω  (2.144)

 = V I tRMS RMS sin ,2ω  (2.145)

where V VRMS L= / 2 and I IRMS L= / 2 are the RMS values of voltage and 
current:

 P /average-inductor = ∫1 2
0

T V I t dtRMS RMS

T

sin .ω  (2.146)

Evaluating the integral

 Paverage-inductor = 0.  (2.147)

From Equation (2.147) we can see that the average power consumed by the 
inductor during a sinusoidal AC period is zero. Refer to previously seen Figure 
2.9. From this figure it can be seen that the instantaneous power drawn by the 
inductor is alternatively positive and negative every quarter of a period. A period 
refers to the voltage or current period. Both voltage and current waveforms on an 
inductor have the same frequency when the excitation is sinusoidal.

When the instantaneous power is positive, it means that the source is pro-
viding instantaneous power to the inductor; when the instantaneous power is 
negative, the inductor is returning power to the source. This is what originates 
the inductive reactive power in an inductor, and it is sometime called as the 
entertaining power between the source and the inductor.

2.4.3.1 AC Power Triangle Active, capacitive reactive, inductive reactive, 
and apparent powers are geometrically related by the power triangle. When 
an impedance Z has all three electric components (R, L, and C), the active 
power, dissipated on the resistive part of the impedance, is drawn horizontally 
and is denoted as P. The inductive reactive power is represented vertically and 
pointing toward the positive side of the complex plane. It is denoted as Q 
inductive and has a positive sign. The capacitive reactive power is represented 
vertically and pointing down toward the negative side of the complex plane. 
It is denoted as Q capacitive and has a negative sign. The active and net reac-
tive power (inductive reactive power or capacitive reactive power) are related 
to each other by the Pythagorean relationship, from phasor analysis:

 S P Q2 2 2= + ,  (2.148)

where S in VA is the apparent power; P is the active power in watts consumed 
by the resistive part of the impedance; Q is the net reactive power in VAR 
(reactive volt-ampere).
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Figure 2.19 depicts active power with net inductive reactive power, and 
Figure 2.20 depicts active power with net capacitive reactive power.

From basic trigonometry it can be observed that

 P S= cosϕ  (2.149)

and

 Q S= sin ,ϕ  (2.150)

where φ is defined as the power factor for sinusoidal steady state.
Thus,

 Power Factor PF= = cos .ϕ  (2.151)

Figure 2.19  Power triangle with net inductive reactive power.
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For sinusoidal steady state, it can also be observed that

 PF /= P S.  (2.152)

Power factor is an important figure of merit that electric utility companies 
observe closely. The utility company does not want its customer’s electrical 
loads to demand too much reactive power. Why? Because the electric genera-
tors need to produce an excess power (reactive power) that does not end up 
as useful work developed at the load. Remember that reactive power is power 
that is supplied by the generator to the load and returned back from the load 
to the generator on a cyclical basis. When a capacitor’s electric fields and 
inductor’s magnetic fields are created, they cause for the existence of capaci-
tive and inductive reactive power respectively. Ideally, the electric utility 
company wants that reactive power to be zero, or in other words, they want 
to see a very close to unity power factor (PF = 1). From Equation (2.151) for 
PF to be one, φ has to be zero. For inductive loads, the current through the 
inductor lags the voltages across it, and the power factor is said to be lagging. 
For capacitive loads, the current through the capacitor leads the voltage across 
it, and the power factor is said to be leading.

Figure 2.20  Power triangle with net capacitive reactive power.
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After all being said, why is it that important that the power factor of an 
electrical load be one or very close to one? The reasons are that if power factor 
is smaller or much smaller than one, the utility company electric generator  
has to generate excessive power that will not end up being used by the load 
as active power. Let us remember that the load produces useful work con-
suming active power. The power distribution wiring needs to be thicker if  
the power factor is smaller than one. The dimensioning of the power distri-
bution wiring must be made based on the apparent power drawn by the  
load. This ensures that the AC power distribution wires to the load are appro-
priately sized.

Example 2.25 Determine the total apparent, active, and reactive power that 
a 2 Ω resistive load with a unity power factor draws from an AC 220 VRMS 
voltage generator.

Solution to Example 2.25

Since

 S P Q2 2 2= +  (2.153)

where

 P S= cosϕ  (2.154)

and

 Q S= sinϕ  (2.155)

where cos φ equals one, as stated by the problem assumption, thus, φ equals 
0° and sin φ = 0.

From Equations (2.154) and (2.155),

 P S=  (2.156)

and

 Q = 0  (2.157)

where

 P S V RRMS= = = = =2 2220 2 24 2 24 2/ / kW kVA. .

In this example the apparent power equals the active power dissipated by the 
load, and there is zero reactive power between the generator and the load.
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Example 2.26 Determine the total apparent, active, and reactive powers that 
an impedance of an absolute value of 11 Ω, and an inductive power factor of 
0.8. The impedance draws 20 ARMS from a 220 VRMS AC voltage generator. Also 
determine the impedance real and imaginary parts.

Solution to Example 2.26

Since apparent power

 S I VRMS RMS=  (2.158)

 S = =20 220 4400A V VA.

And since

 S P Q2 2 2= +  (2.159)

where

 P S= cosϕ  (2.160)

and

 Q S= sinϕ  (2.161)

 P = × =4400 0 8 3520. W

and where cos φ equals 0.8, as stated by the problem assumption, thus, φ = 
36.87° and sin φ = 0.6.

Then,

 Q = × =4400 0 6 2640. .VAR

 R Z= ° =cos . .36 87 8 8 Ω  (2.162)

and

 X ZL = ° =sin . .36 87 6 6 Ω  (2.163)

where XL is inductive.
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2.5  DEPENDENT VOLTAGE AND CURRENT SOURCES

Dependent sources produce either a voltage or a current, where such voltage 
or current depends on either a voltage or a current on some other part of the 
circuit or network.

Dependent sources are widely used to model active circuits like operational 
amplifiers, transistor-based amplifiers, and transistors such as bipolars and 
MOSFETs.

There are four basic kinds of dependent sources; two dependent voltage 
sources and two dependent current sources. Within each type there are current- 
and voltage-controlled sources.

The four types of dependent sources are listed below:

1. Voltage-controlled dependent voltage source or VCVS
2. Current-controlled dependent voltage source or CCVS
3. Voltage-controlled dependent current source or VCCS
4. Current-controlled dependent current source or CCCS

2.5.1  Voltage-Controlled Voltage Source (VCVS)

The voltage-controlled voltage source is a dependent source that allows us to 
model a voltage amplifier. Without knowing yet about the internals of a voltage 
amplifier, we can define such a circuit element as a two-port device. One input 
port that receives and input voltage Vin and one output port that generates an 
output voltage which is a magnification of the input voltage Vin by some con-
stant A, where A stands for amplification factor or simply its amplification.

Figure 2.21 depicts the symbol diagram of a VCVS which is very appropri-
ate to model the behavior of a voltage amplifier, such as the one just described.

Figure 2.22 depicts the use of a VCVS in a circuit example. Note that 
Vout = A Vin; thus, A has to be dimensionless because A = Vout/Vin, and its units 
are then volts/volts. 

Note that in the VCVS circuit example, the voltage source of value Vout = 
A Vin produces an output voltage that depends on the value of input voltage Vin, 

Figure 2.21  Voltage-controlled voltage source.
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which is shown across resistor R2. Just to wrap up this example, let us evaluate 
the overall output voltage of the complete circuit, V2 as a function of Vsig.

From Figure 2.22, using KVL, we can write for the left-hand side loop that

 V
R

R R
Vin sig=

+
2

1 2

.  (2.164)

Using KVL for the right-hand side loop we get

 AV I R Rin out out L= +( ).  (2.165)

Combining Equation (2.164) with Equation (2.165), and since V2 = Iout × RL, 
it yields

 V
A

R R
R

R
R R

V
out L

L sig2
2

1 2

=
+ +

.  (2.166)

2.5.2  Current-Controlled Voltage Source (CCVS)

A current-controlled voltage source is a dependent source that allows us to 
model a trans-resistance amplifier. Without knowing yet about the internals 
of a trans-resistance amplifier, we can define such a circuit element as a two-
port device. One input port that receives and input current Iin and one output 
port that generates an output voltage which is a magnification of the input 
current Iin by some constant Γ (rho), where Γ stands for trans-resistance ampli-
fication factor or simply its amplification Γ. Note that the units of Γ are ohms.

Figure 2.23 depicts the symbol diagram of a CCVS which is very appropri-
ate to model the behavior of a trans-resistance amplifier. Figure 2.24 depicts 
the use of a CCVS in a circuit example. Note that Vout = Γ Iin; thus, Γ is in ohms, 
because Γ = Vout /Iin units are volts/ampere.

Figure 2.22  Use of a VCVS in a circuit example.
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Note that in the CCVS circuit example of Figure 2.24, the voltage source 
of value Vout = Γ Iin produces an output voltage that depends on the value of 
input current Iin, which flows in the circuit of R1 and R2 and excited by Vsig.

2.5.3  Voltage-Controlled Current Source (VCCS)

A voltage-controlled current source is a dependent source that allows us to 
model a trans-conductance amplifier. Without knowing yet about the internals 
of a trans-conductance amplifier, we can define such a circuit element as a 
two-port device. One input port that receives and input voltage Vin and one 
output port that generates an output current which is a magnification of the 
input voltage Vin by some constant G, where G stands for trans-conductance 
amplification factor or simply its amplification G, where G has conductance 
units (Ω−1).

Figure 2.25 depicts the symbol diagram of a VCCS which is very appropriate 
to model the behavior of a trans-conductance amplifier, such as the one just 
described.

Figure 2.26 depicts the use of a VCCS in a circuit example. Note that Iout = 
G Vin.

Figure 2.23  Current-controlled voltage source.
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Note that in the VCCS circuit example the current source of value:
Iout = G Vin produces an output current that depends on the value of input 

voltage Vin, which is shown across resistor R2.

2.5.4  Current-Controlled Current Source (CCCS)

A current-controlled current source is a dependent source that allows us to 
model a current amplifier. Without knowing yet about the internals of a current 
amplifier, we can define such a circuit element as a two-port device. One input 
port that receives and input current Iin and one output port that generates an 
output current which is a magnification of the input current Iin by some con-
stant β, where β stands for current amplification factor or simply its amplifica-
tion β. Note that β has no dimensions since it is obtained as the ratio of two 
currents. A current amplifier is also referred to as a buffer. We will see in later 
chapters that buffers can be implemented with transistors or with operational 
amplifiers.

Figure 2.27 depicts the symbol diagram of a CCCS which is very appropriate 
to model the behavior of a current amplifier, such as the one just described.

Figure 2.28 depicts the use of a CCCS in a circuit example.
Note that in the CCCS circuit example the voltage source of value Iout = β Iin 

produces an output current that depends on the value of input current Iin, 
which is shown in the circuit of Figure 2.28.

Figure 2.25  Voltage-controlled current source.
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2.6  SUMMARY OF KEY POINTS

This chapter covers the fundamentals of AC circuits. It is important to under-
stand the concept of effective value (RMS) of voltage and current and the role 
they play on R, L, and C elements and how they produce different kinds of 
AC power: active, reactive, and apparent. It is also of great interest to know 
how to manipulate circuit equations in the time domain as well as in the fre-
quency domain. In the time domain, derivatives and integrals of current or 
voltage usually apply. In the frequency domain, phasors replace the tedious-
to-deal-with differential equations. Phasor diagrams make AC circuit calcula-
tions easier. The catch is that this method works when the voltage and current 
frequencies are the same. “Dependent sources” is a topic of great interest to 
model electronic devices or active devices that have gain. More on this subject 
is covered in Chapters 5 and 6.

FURTHER READING

1. Charles Alexander and Matthew Sadiku, Fundamentals of Electric Circuits, 2nd ed., 
McGraw Hill, New York, 2004.

2. Charles Monier, Electric Circuit Analysis, Prentice Hall, Upper Saddle River, NJ, 
2001.

3. David Bell, Fundamentals of Electric Circuits, 4th ed., Prentice Hall, Upper Saddle 
River, NJ, 1988.

Figure 2.27  Current-controlled current source.
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Figure 2.29  50% duty cycle square-wave voltage waveform for Problem 2.2.
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PROBLEMS

2.1 A toaster is rated at 1 kW and for an AC voltage of 120 V at 60 Hz.
(a) Determine the resistance of the toaster, before its temperature 

increases. Assume that the resistance is at room temperature.
(b) Determine the RMS value of current flowing through the toaster 

when it is dissipating 1 kW.
(c) Determine the peak value of the current through the toaster when 

it is dissipating 1 kW.
(d) If the resistance of the toaster has +/−10% tolerance, calculate the 

minimum and maximum power that the toaster will consume 
under the two extremes of resistance values.

2.2 Evaluate the RMS value of the voltage waveform drawn in Figure 2.29. 
Assume that the peak amplitude of the waveform is 1 V, its period T is 
1 msec, and 50% duty cycle.

2.3 Evaluate the average DC voltage waveform for the double rectified 
sine-wave waveform depicted in Figure 2.30. Analytically, the wave-
forms can be described as follows:

 v t t t( ) sin ; := ≤ ≤ω for /π 2 0

 v t t t( ) sin ; := − ≤ ≤ω for /π π2

This alternatively can be expressed as

 v t t( ) sin .= ω

2.4 Calculate the RMS value of a 10 A DC current.
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Figure 2.30  Double rectified sine-wave waveform for Problem 2.3.

T = 2

v(t)

T = p p

Vpeak

time

2.5 Given an RLC-series circuit, where R = 10 Ω, L = 320 nH, C = 100 µF, 
find the absolute value of the impedance of the circuit at the following 
frequencies:
(a) 1 Hz
(b) 10 Hz
(c) 100 Hz
(d) 1 kHz
(e) 10 kHz
(f) 100 kHz
(g) 1 MHz, and
(h) 10 MHz.

2.6 For an RLC-series circuit, where R = 10 Ω, L = 320 nH, C = 100 µF, 
calculate the absolute value of inductive reactance and the capacitive 
reactance at the following frequencies:
(a) 1 Hz
(b) 10 Hz
(c) 100 Hz
(d) 1 kHz
(e) 10 kHz
(f) 100 kHz
(g) 1 MHz, and
(h) 10 MHz.

2.7 (a) For the circuit given in Problem 2.5, find the frequency at which the 
absolute value of the inductive reactance equals the absolute value  
of the capacitive reactance (i.e., resonance condition). (b) At this fre-
quency find the peak value of current for a 1-V peak sinusoidal voltage 
at the resonant frequency.

2.8 The circuit of Problem 2.5 is said to be at its resonant frequency when 
the absolute value of its inductive reactance equals the absolute value 
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of its capacitive reactance. The resonant frequency was calculated in 
Problem 2.7. Assuming a 1-V peak sinusoidal voltage, (a) find the value 
of current in the circuit at a frequency equal to 10 times the resonant 
frequency of the circuit, and (b) find the value of current in the circuit 
at a frequency equal to one-tenth of the resonant frequency of the 
circuit.

Draw conclusions from the numerical answers that you obtain for 
this problem.

2.9 An impedance of value Z = (400 + j 350) Ω is connected to a sinusoidal 
voltage of 416 V RMS. (a) Compute the apparent, active, and reactive 
powers that the impedance absorbs from the AC generator. (b) Deter-
mine the power factor of the circuit.

2.10 Establish the time domain equations (i.e., differential equations) of an 
RLC-series circuit powered by a sinusoidal voltage source v(t) = Vpeak 
sin (ωt + θ). Hint: The final equation is a second-order differential equa-
tion with constant coefficients.

2.11 Establish the time domain equations (i.e., differential equations) of a 
parallel RLC circuit powered by a sinusoidal current source i(t) = Ipeak 
sin (ωt + θ).

Hint: The final equation is a second-order differential equation with 
constant coefficients.

2.12 Given a 10 Ω resistor in series with a 10 µF capacitor, and an AC voltage 
source of Vin = 100 V ej0, of a 1 kHz frequency, determine: (1) if the 
current through the circuit leads or lags the input voltage Vin across the 
RC series; (2) the phase angle between the input voltage and the circuit 
series current), and (3) the phase angle between the voltage source and 
the voltage across the capacitor.

2.13 Given an RLC series circuit, where R = 100 Ω, L = 1 µH, and C = 10 µF, 
determine the frequency at which the circuit goes into resonance.

2.14 Express the series impedance given in Problem 2.12 in complex nota-
tion. Hint: Z(jω).

2.15 Given that Z1 = (30 + j 25) Ω and Z2 = (20 − j 15) Ω, calculate: (1) the 
series combination of both impedances, and (2) the parallel combination 
of both impedances.

2.16 Given impedance (Z1 = 30 + j 25) Ω, find the value of inductance of its 
inductive reactance at a frequency of 1 kHz.

2.17 Given impedance (Z2 = 20 − j 15) Ω, find the value of the capacitive 
reactance of the impedance at a frequency of 1 kHz.

2.18 Given an RLC series circuit, where R = 5 Ω, the reactive reactance is 
+j 18 Ω, and the capacitive reactance is −j 10 Ω connected to a sinusoidal 
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Figure 2.31  RLC series circuit for Problem 2.18.

Ω Ω Ω

Vin

voltage source Vin of RMS value of 100 V, determine the circuit complete 
phasor diagram. The following phasors must be shown: (1) circuit current 
phasor, I, (2) resistor voltage phasor, VR, (3) capacitive reactance volt-
age phasor, VC, and (4) inductive reactance voltage phasor, VL. Find and 
show on the phasor diagram all the numerical phase angle values 
between the current and the three voltages (Fig. 2.31).

2.19 Given an RLC series circuit with an impedance Z = 100 − j 45 at 60 Hz, 
assume that the circuit is energized by a 240 V 60 Hz sinusoidal voltage 
generator. (1) Calculate the real, apparent, and reactive power of the 
circuit, and (2) calculate the circuit power factor.

2.20 Given the circuit of Figure 2.32, note that I = 5 V1, between node 2 and 
ground, is a voltage-controlled current source (VCCS), whose output 
current value is I = 5 V1, and the control voltage is V1 = 10 V. Calculate 
the voltage at every node with respect to ground and the currents 
through every resistor, the independent voltage source, and the VCCS.

Figure 2.32  Circuit for Problem 2.20.

+

-
V1

R1

2 3R RI = 5 V1

= 5 Ω

= 15 Ω= 10 V = 2 Ω

Node 1 Node 2

VCCS
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Figure 2.33  Circuit for Problem 2.21.

R2 = 40 kΩ

Rout = 5 Ω

F = 10 inI

D

Vg = 3 V

R1 = 20 kΩ

RL = 45 Ω+
-

inI

A B C

CCCS

2.21 Given the circuit of Figure 2.33, note that the element between node C 
and ground is a current-controlled current source (CCCS), whose output 
current is 10 Iin, and the control current is Iin. Calculate the voltage at 
every node (A through D) with respect to ground and the currents 
through every resistor, the independent voltage source, and the VCCS 
dependent source.
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3
CIRCUIT THEOREMS  

AND METHODS OF 
CIRCUIT ANALYSIS

3.1  INTRODUCTION

Circuit analysis is finding the current and voltage on every element of the 
circuit being analyzed. In previous chapters we addressed solving circuits using 
Ohm’s and Kirchhoff’s laws. This chapter will enhance your portfolio of circuit-
solving techniques by introducing new circuit methods of analysis. The methods 
covered in this chapter are superposition, Thévenin’s, Norton’s, Mesh, and 
Nodal methods. But why do we need so many more methods? The answer is 
an issue of practicality. Solving a circuit becomes easier with more knowledge 
of different methods. This helps the person solving a circuit in several ways. 
Many times the number of variables in a circuit is too large, and thus difficult 
to solve by hand. If we have a computer to solve the circuit, why do I care 
about the number of variables? Well so far in our world, computers are faster 
but may not always generate the correct answer. It is important that we, as 
circuit analysis engineers, have at least a rough idea if the numerical answer 
that the computer will provide is within reasonable expectations. It is always 
important to be able to do a rough analysis to understand if computer findings 
are at least meaningful for the given circuit and within the expected range. All 
the following methods will ultimately allow us to use a checks and balances 
approach to circuit solving.

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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3.2  THE SUPERPOSITION METHOD

The superposition method is applicable and valid for solving circuits if the 
circuit is linear. In a general sense, a function f(x) is said to be linear if-and-
only-if* the following conditions are met:

1. Function f(x) domain and its range are linear spaces over the same scalar 
field.

2. Homogeneity Property: For all values of x in the function domain and 
every scalar α then

 f x f x( ) ( ).α α=  (3.1)

3. Additivity Property: For every pair of element domains x1 and x2, the 
following holds:

 f x x f x f x( ) ( ) ( ).1 2 1 2+ = +  (3.2)

It can be observed that Equation (3.1) holds when f(x) is a linear function.
In general a function f(x), that has the form:

 f x ax b( ) ,= +  (3.3)

where a is the slope of the line and b is its y-intercept, is said to be linear only 
if its y-intercept is zero. That is,

 f ( ) .0 0=  (3.4)

Important Points:

 f ax b( ) ,x = +  (3.5)

for b ≠ 0, is NOT a linear function. However, Equation (3.5) is still the equa-
tion of a straight line. The function

 f x ax( ) =  (3.6)

is linear for any value of a and x [1].
Graphically we state that a line that goes through the origin of coordinates 

is a linear function. However, a line, whose equation does not go through the 

* The symbol “⇔” stands for “if-and-only-if,” meaning that logically, it is a necessary and sufficient 
condition.
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origin of coordinates, is not a linear function. Figure 3.1a,b show lines that are 
linear functions and lines that are not linear functions.

Let us present an example of the homogeneity property given that

 f x x( ) = 3  (3.7)

and α = 4.5, we need to verify that Equation (3.1) holds for all values of x 
when applied to Equation (3.7):

 f x x( . ) ( . ).4 5 3 4 5=  (3.8)

To prove that the homogeneity property holds, let us present Table 3.1.

Figure 3.1  (a) Lines that are linear functions; (b) lines that are not linear functions.

y = f(x)

y = f(x)

y3

y1

y2

y4

y6

y5

x

x

(a)

(b)
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The entries of this table are:

Column 1: x
Column 2: f(x) = 3x
Column 3: α
Column 4: α f(x) and
Column 5: f(α x)

By inspection of Table 3.1’s columns 4 and 5, it is clear that Equation (3.1) 
holds. Without loss of generality we can state Equation (3.1) will hold for the 
infinitely many values of x for the given f(x) and for any given value of α.

In reference to the additivity property we will prove that it is met by a linear 
function in a graphical way (Fig. 3.2).

By inspection of Figure 3.2 we can see that Equation (3.2) holds, repeated 
for the reader’s convenience

 f x x f x f x( ) ( ) ( ).1 2 1 2+ = +

Homogeneity and additivity properties together are completely equivalent to 
stating that a linear function complies with the superposition property:

 f x x f x f x( ) ( ) ( ).α α α α1 1 2 2 1 1 2 2+ = +  (3.9)

So when a function complies with Equation (3.9), it is said to be linear. Con-
versely, when a function is linear, it complies with Equation (3.9).

Logically, the above is stated as follows:
Given f(x), a function whose domain is x, and its range f(x) is a

 Linear function f x x f x f x⇔ + = +( ) ( ) ( ).α α α α1 1 2 2 1 1 2 2

Table 3.1  Table used to exemplify numerically the homogeneity property

Col 1 Col 2 Col 3 Col 4 Col 5

x f(x) = 3x α α f(x) f(α x) = 4.5 × (3x)
0 f(0) = 3 × (0) = 0 4.5 4.5 × (0) = 0 4.5 × [3 × (0)] = 0
1 f(1) = 3 × (1) = 3 4.5 4.5 × (3) = 13.5 4.5 × [3 × (1)] = 13.5
2 f(2) = 3 × (2) = 6 4.5 4.5 × (6) = 27 4.5 × [3 × (2)] = 27
3 f(3) = 3 × (3) = 9 4.5 4.5 × (9) = 40.5 4.5 × [3 × (3)] = 40.5
n f(n) = 3 × (n) = 3 n 4.5 4.5 × (3 n) = 13.5 n 4.5 × [3 × (n)] = 13.5 n

Note: Col stands for Column.

Example 3.1 Prove that the equation of a straight line f(x) = 4x + 7, not 
passing through the origin of coordinates (i.e., b ≠ 0), is not a linear function 
of x.



Figure 3.2  The validity of the additivity property for a linear function. (a) Linear function evalu-
ated at x1: f(x1); (b) linear function evaluated at x2: f(x2); (c) linear function evaluated at x1 + x2: 
f(x1 + x2) = f(x1) + f(x2).

x

x

y = f(x)

y1 = f(x1)

y2 = f(x2)

x1

x2

(a)

(b)

y = f(x)

x

y  = f(x1 + x2)

x1 + x2

(c)
y = f(x)
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3.2.1  Circuits Superposition

Let us now apply the superposition property to electric circuits. Assume that 
we are given an electrical circuit that can contain any number of resistors, in 
the black box represented in Figure 3.3. Two external voltage sources are 
applied to the circuit. We also refer to these two voltage sources as the circuit 
excitations. The output of the circuit is referred to as the circuit response.

Solution to Example 3.1

Simply using the homogeneity property, Equation (3.1), f(α x) = α f(x).
It can be seen that f(x) = 4x + 7 is not a linear function because

 f x x( )α α= +4 7  (3.10)

and

 α α α αf x x x( ) ( ) .= + = +4 7 4 7  (3.11)

From Equations (3.10) and (3.11) we see that

 f x f x( ) ( ).α α≠  (3.12)

Thus, function f(x) = 4x + 7, the equation of a straight line, is not a linear func-
tion from the standpoint that it does not comply with Equation (3.9). Nonethe-
less, f(x) = 4x + 7 is the equation of a straight line.

Figure 3.3  Electrical linear circuit with two external voltage sources: v1 and v2.

Voutput

v

v

1

2

Black Box
Linear Circuit
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If we have a linear circuit where x is the excitation and y = f(x) is its 
response, the superposition property tells us that

Given:

y1 = f(v1), where y1 is the response of the circuit due to excitation v1 and
y2 = f(v2), where y2 is the response of the circuit due to excitation v2.

The sum of the circuit responses y1 + y2 = f(v1) + f(v2) equals the response of 
the sum of the circuit excitations y1 + y2 = f(v1 + v2).

Moreover, thanks to the linearity of the circuit, we can also calculate the 
response of the circuit to excitation v1 while excitation v2 is inhibited. This 
yielding the response y1 for v2 = inhibited. Similarly, we can calculate the 
response of the circuit y2 when excitation v1 is inhibited. Finally, adding the 
individually found responses we obtain

 y yv v1 2 2( ) ( ).for inhibited for 1 inhibited= =+  (3.13)

Equation (3.13) provides the complete response of the circuit due to nonin-
hibited excitations or the response of the circuit due to both excitations applied 
simultaneously.

When the excitation is a voltage source v, inhibiting the excitation means 
to replace the voltage source with a short circuit (v = 0). When the excitation 
is a current source i, inhibiting the excitation means to remove the current 
source from the circuit, or open-circuiting the current source.

To follow up with the circuit given in Figure 3.3, we can solve the circuit by 
superposition, which means by applying one excitation at a time, while inhibit-
ing the other one. The complete response of the circuit is obtained by adding 
each of the individual responses as Figure 3.4a,b show. So the total response 
of the circuit is

 V V Voutput output due to v output due to v= +- - - - - - 21 .  (3.14)

So now we may ask the question, why is it better to use superposition to solve 
a circuit, if it seems that the number of steps grows in the process? So let us 
address this question with an example.

Example 3.2 Given the circuit of Figure 3.5, find the current I2 through resis-
tor R2 using superposition.

Now let us apply superposition. Calculate the current through R2 but only 
due to the presence of the V = 12 V excitation, removing or open-circuiting 
current source I. We obtain the circuit shown in Figure 3.6, which clearly is 
simpler to solve than the original circuit of Figure 3.5. By inspection of circuit 
in Figure 3.6, the 12 V source is applied directly across R1, thus the current 
through R1 is easily calculated using Ohm’s law:
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Figure 3.4  Application of superposition to the circuit of Figure 3.3: (a) circuit response due to 
v1 when v2 = 0; (b) circuit response due to v2 when v1 = 0.

Black Box
Linear Circuit

due to v2

 v2 = 0

 v1 = 0

 v1

 v2

Voutput

Black Box
Linear Circuit due to v1

Voutput

(a)

(b)

 I1 V/= 12 6 Ω.  (3.15)

Now let us calculate the current through the series of R2 and R3. Thus, current 
I23 is

 I23 2 3= +V/ R R( ).  (3.16)
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Using the numerical values from Figure 3.6 leads to

 I23 12 V/ 3 3 A= + =( ) .Ω 2  (3.17)

Now we need to calculate the current that flows through R2 when excitation 
V = 12 V is replaced by a short circuit. We present this circuit in Figure 3.7.

By close examination we can see that R1 is short-circuited, so basically only 
R2 and R3 are in parallel with the 3 A current source. This circuit is shown in 
Figure 3.8.

Figure 3.5  Circuit for Example 3.2.

V = 12 V I = 3 A

R = 6 Ω1

R = 3 Ω

R = 3 Ω

2

2

3

= 2 – 1.5 = 0.5 AI

Figure  3.6  Example 3.2: Removing current source I and applying superposition under the 
effect of V.

V = 12 V
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R = 3 Ω
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I23 (I Open)

I1



164  CIRCUIT THEOREMS AND METHODS OF CIRCUIT ANALYSIS 

By inspection of Figure 3.8 note that the circuit was redrawn eliminating 
the presence of R1, because it was short-circuited (see Fig. 3.7). Clearly we see 
now that the 3-A current source I delivers current to two equal valued resis-
tors in parallel R2 and R3. From Kirchoff’s current law (KCL) we know that 
the current has to be divided equally between R2 and R3. Thus, the current 
flowing through R2, after the elimination of the 12-V voltage source, is 1.5 A.

Finally, to complete the application of superposition for Example 3.2, we 
present the previously obtained currents that flow through R2. When the 3-A 
current source was removed, the current through R2 flowed from left to right, 
as shown in Figure 3.9, under Idue to V=12 V. When the 12-V voltage source was 

Figure  3.7  Removing voltage source V and applying superposition under the effect of 
current I.

R = 6 Ω1

R = 3 Ω

R = 3 Ω

2

3

I = 3 A

Figure 3.8  Example 3.2: Eliminating the short circuited resistor R1.

R = 3 Ω R = 3 Ω2 3

I2

I = 3 A

(For V = 0)
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removed, the current through R2 flowed from right to left, as shown in Figure 
3.9, under Idue to I=3 A.

The net resulting current of 0.5 A, flows through R2 due to the simultaneous 
effect of both the voltage and the current sources in the direction on the larger 
current of 2 A.

Figure 3.9  Net current flowing through resistor R2.

V = 12 V I = 3 A

R = 6 Ω1

R = 3 Ω

R = 3 Ω

2

3

2

Current through R due to 12 V after opening of 3 A Current Source

Current through R due to 3 A Current Source after shorting of 12 V Source

(due to V=12V)I = 2 A

I = 1.5 A(due to I=3 A)

Net Current Flow through R is: 2 A − 1.5 A = 0.5 A in the direction of the larger current

2

2

2

Total due to both voltage and current sources
present is I = 2.0 − 1.5 = 0.5 A

= 2 − 1.5 = 0.5 AI

2

2

2

3.3  THE THÉVENIN METHOD

The Thévenin method is very powerful since it allows one to replace a large 
linear circuit with a voltage source and a resistor in series. Such voltage is 
referred to as the Thévenin voltage and the resistor is called the Thévenin 
resistor. If we are dealing with an AC circuit, the term resistor is replaced with 
impedance. From Chapter 2, impedance is a combination of R, L, and C circuit 
elements.
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* Circuit elements refer to resistors in DC circuits; but it refers to resistors, inductors, and capaci-
tors in AC circuits.

The linear circuit, to be replaced, can contain any number of circuit ele-
ments*, independent and/or dependent voltage, and current sources. It is 
important to note that the controlling voltage or current of the dependent 
sources need to reside within the same linear circuit that is to be replaced with 
the Thévenin equivalent circuit.

Figure 3.10 shows a DC linear circuit and its Thévenin equivalent circuit. 
The Thévenin equivalent voltage is a DC source for the DC case. Figure 3.11 
shows an AC linear circuit and its Thévenin equivalent. The Thévenin equiva-
lent voltage is an AC source for the AC case.

In both Figures 3.10 and 3.11, the load can even be a nonlinear load, it is 
not required for it to be linear, as the circuit that will be replaced with its 
Thévenin equivalent does. The arbitrary load may also have dependent voltage 
or current sources. Their controlling voltage or current shall be within the 
arbitrary load circuit itself.

Figure 3.10  DC Thévenin equivalent of a DC circuit.

DC Linear Circuit
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b
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V

Thévenin

Thévenin

a

b

Same DC Arbitrary Load

Figure 3.11  AC Thévenin equivalent of an AC circuit.
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3.3.1  Application of the Thévenin Method

Methodology to find the Thévenin equivalent circuit: (as it applies to Example 
3.3, Fig. 3.12)

1. First slice the portion of the circuit that we want to find the Thévenin 
equivalent circuit at two nodes only. This circuit has to be linear.

In our example we have drawn a dotted line a-b. The portion of the 
circuit that we want to Thévenize is on the left-hand side of the dotted 
line. Ensure that if dependent sources are present on the circuit to be 
Thévenized, the slicing of the circuit must not separate the dependent 
sources from their respective controlling variables.

2. The Thévenin voltage is calculated as follows: separate the circuit to be 
Thévenized at the terminals a and b from the associated circuit that is 
on the right-and side of the dotted line. The Thévenin voltage (VThévenin) is 
calculated as the open-circuit voltage across terminals a and b. In particu-
lar, this is the voltage across resistor R3 for our example of Figure 3.12a.

3. To calculate the Thévenin resistance for DC circuits or the Thévenin 
impedance in AC circuits, inhibit in the linear circuit to be Thévenized 
all the independent voltage and current sources. To inhibit a voltage 
source, each source should be replaced with a short circuit. Open-
circuiting or simply removing the current source from the circuit inhibits 
a current source. No action needs to be taken with dependent voltage or 
current sources. However, it is appropriate to remind the reader that any 
dependent sources in the linear circuit to be Thévenized must have their 
controlling variable within the same circuit to be Thévenized. Once all 
independent sources have been inhibited, calculate the resistance in the 
DC case (or the impedance in the AC case) seen across terminals a and 
b. The result is what we call the Thévenin resistance (or impedance) 
referred to as either RTh (or ZTh).

4. The entire circuit on the left of the dotted line can now be replaced by 
the series of the Thévenin voltage source and the Thévenin resistance 
(or impedance).

Example 3.3, which follows, goes explicitly over a numerical applica-
tion of Thévenin.

Example 3.3 Given the circuit of Figure 3.12a, find the Thévenin equivalent 
circuit at the left of the a-b dotted line. Use the Thévenin equivalent circuit 
found to calculate the current of the original circuit.

Referring to Figure 3.12a, we want to find the Thévenin equivalent of the 
circuit to the left of the a-b dotted line. Separating this circuit from the rest of 
the circuit on the right side of the a-b dotted line, we next find the open-circuit 
voltage across resistor R3. This is the Thévenin voltage, and it is calculated as 
follows applying Kirchoff’s voltage law (KVL):
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Figure 3.12  Circuit to apply the Thévenin method: (a) original circuit; (b) Thévenin equivalent 
on left of portion not to be Thévenized; (c) merging of the found Thévenin equivalent with the 
non-Thévenized portion of the circuit.
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 V V R R RTh = +1 3 1 3/( )  (3.18)

 VTh = × + =10 3 6 3 3 333/ V( ) . .  (3.19)

The Thévenin resistance RTh is calculated by inhibiting (short-circuiting) the 
10-V voltage source and calculating the resistance seen to the left of the a-b 
dotted line.

This yields the parallel of R1 and R3:

 R R R R RTh = × + =( ) ( ) .1 3 1 3 2/ Ω  (3.20)

Next we substitute the circuit to the left of the a-b dotted line with its Thévenin 
equivalent, which is a 3.333-V DC source, from Equation (3.19) in series with 
RTh = 2 Ω, from Equation (3.20). Finally, in Figure 3.12c we merged the 
Thévenin equivalent circuit with the rest of the untouched right-hand side 
original circuit. The resulting circuit is almost trivial and allows us to calcu-
late the current in the circuit by Ohm’s law in a straightforward fashion. We 
connect the found Thévenin equivalent circuit with the right-hand side circuit 
of Figure 3.12b. Combining the two voltage sources into Vnew, we obtain Figure 
3.12c:

 I = − =( . ) . .5 3 333 V/ A5 0 3334Ω  (3.21)

Example 3.4 Given the circuit of Figure 3.13a, find the Thévenin equivalent 
circuit of the circuit to the left of the a-b dotted line. Reattach the equivalent 
circuit to resistor R3 to calculate the current through R3.

Figure 3.13a shows the originally given circuit, while Figure 3.13b shows the cir-
cuit to-be-Thévenized not connected to its load R3. At this point we calculate 
the Thévenin voltage; the open-circuit voltage across terminals a and b needs to 
be determined. To proceed with this calculation, we will use the superposition 
method; refer to the circuit of Figure 3.13b. We will split the problem into two 
easier problems to solve. We will compute the voltage Vab due to the effect of 
8-V voltage source V, open-circuiting the current source I. This will yield VTh due 

to 8 V. On the second step we calculate Vab due to the effect of the 1-A current 
source I, short-circuiting the 8-V voltage source. This will yield VTh due to 1 A. Upon 
obtaining those two partial voltages, the total voltage, which is the Thévenin 
voltage, is the algebraic sum of VTh due to 8 V and VTh due to 1 A. An algebraic sum 
refers to performing a sum taking into account the signs or polarities of the 
voltages involved. In our particular case, both polarities are positive.

Let us refer to Figure 3.14a and b to see how we partition the originally 
given circuit (Fig. 3.13a) into two separate circuits, each of which will be driven 
by one of the sources while the other source is inhibited.

Referring to Figure 3.14a we calculate VTh due to 8 V as follows:

 V VR R RTh due to  V 2 /8 1 2= +( ).  (3.22)
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Using the respective values in Equation (3.22) from Figure 3.14a, we obtain

 VTh due to  V / V8 8 12 4 12 6= × + =( ) .  (3.23)

Now referring to Figure 3.13b, we calculate VTh due to 1 A as follows:
By KCL we can see by inspection that

 1 1 2= +( ) ( ),V R V Rab ab/ /  (3.24)

where: Vab/R1 and Vab/R2 are respectively the currents through resistors R1 
and R2.

Using the component values from Figure 3.13b into Equation (3.24) yields

 1 1 4 1 12= +Vab( )./ /  (3.25)

 V VTh due to ab  A 3 V1 = = .  (3.26)

Figure 3.13  Circuit for Example 3.4: (a) original circuit; (b) sliced circuit to which Thévenin is 
applied.
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Figure 3.14  Superposition method for Thévenin Example 3.4: (a) effect of V = 8 V voltage 
source, 1 A current source open-circuited; (b) effect of I = 1 A current source, 8 V voltage 
source short-circuited; (c) elimination of all sources to compute the Thévenin resistance.
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Now from the results of Equations (3.23) and (3.26) we add both voltages 
leading to

 V VTh due to Th due to  V   A V V V8 1 6 3 9+ = + = .  (3.27)

Now we need to calculate the Thévenin resistance (refer to Figure 3.14c). The 
voltage source is replaced by a short circuit and the current source is open-
circuited. RTh is simply the parallel of resistors R1 and R2. So now we have all 
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the elements of the Thévenin equivalent circuit. These are shown in Figure 
3.15a. In Figure 3.15b, the Thévenin equivalent circuit is joined to resistor  
R3. Finally, the current through R3 is simply calculated using Ohm’s law, 
leading to

 I V R RTh Th= + = + =( ) ( ) .3 9 3 6 1/ A  (3.28)

Figure 3.15  (a) Thévenin equivalent of Example 3.4; (b) Thévenin equivalent merged with the 
resistive load.
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3.4  NORTON’S METHOD

Several decades after the invention of the Thévenin method, American engi-
neer Edward Norton invented an analysis method which bears his name today. 
Norton’s method of analysis is the dual of Thévenin’s method. Duality, in 
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Table 3.2  Some dual pairs

Resistance Conductance
Inductance Capacitance
Voltage Current
Voltage source Current source
Node Mesh
Open circuit Short circuit
KVL KCL
Thévenin Norton
Elements in series Elements in parallel

Figure 3.16  (a) Thévenin equivalent circuit; (b) Norton equivalent circuit.
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circuit analysis, refers to circuits that can be described by the same set of equa-
tions and solutions, except that certain elements are interchanged.

Table 3.2 lists the dual-pair elements.
The dual of a Thévenin equivalent circuit is its Norton’s equivalent.
Figure 3.16 shows the dual of Thévenin equivalent. Thévenin is a series of 

two elements; Norton is transformed by duality into a parallel of two elements. 
The Thévenin voltage source becomes a Norton current source. The Thévenin 
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Example 3.5 Given the Thévenin equivalent circuit of Figure 3.16a, find the 
Norton equivalent circuit. Assume that VTh = 24 V and RTh = 4 Ω.

Using the source transformation from Equations (3.31) and (3.32), the 
Norton current source is calculated as follows:

 I V RNorton Th Th= = =/ / A24 4 6 .  (3.33)

resistance becomes a Norton conductance. For more details on duality in 
circuit theory, the reader is referred to the Bibliography at the end of the 
chapter.

In Figure 3.16b the value of the Norton current source is given by

 I V RNorton Th Th= /  (3.29)

The Norton current is obtained short-circuiting the Thévenin equivalent circuit 
and calculating the current that flows through the short. So the Norton current 
source (INorton) is the short-circuit current in the Thévenin equivalent circuit.

And the Norton resistance is

 R RThN = .  (3.30)

Note the Norton equivalent resistance is identical to the Thévenin equivalent 
resistance. For the sake of simplicity we will continue to use RTh whether we 
use the Thévenin or the Norton equivalent circuits.

3.4.1  Source Transformations

Every voltage source in series with a resistance or impedance can be converted 
into a parallel equivalent of a current source in parallel with a conductance 
or admittance.

Equations (3.31) and (3.32) address the source transformations between 
Thévenin and Norton equivalent circuits. The equations below address the 
source transformation when we have an AC Thévenin source and in series with 
a Thévenin impedance.

 I = V /ZNorton Th Th  (3.31)

and

 Z = ZN Th.  (3.32)

It is important to understand that the current, voltage, and impedance in Equa-
tions (3.31) and (3.32) are all phasors. Some textbooks define the Norton 
admittance YN = 1/ZN, which is consistent with Equations (3.31) and (3.32).
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The Norton equivalent resistance equals the Thévenin resistance:

 R RTh N= = 4 Ω.  (3.34)

The source transformation method allows the conversion of a Thévenin equiv-
alent circuit into a Norton equivalent circuit and vice versa. There is a direct 
way to obtain the Norton equivalent circuit from the given circuit, without 
previously finding its Thévenin equivalent. This is the topic of the following 
section.

3.4.2  Finding the Norton Equivalent Circuit Directly  
from the Given Circuit

The procedure follows:

1. Separate the circuit for which the Norton equivalent circuit is to be found 
from the rest of the circuit or its load. If there are any dependent voltage 
or current sources in the circuit for which the equivalent circuit is to be 
found, the dependent source and its control variable must reside within 
such circuit.

2. To find the Norton resistance, calculate it exactly as the Thévenin resistance 
was calculated. Inhibit all voltage and current sources in the circuit. That is, 
open-circuit all current sources, and short-circuit all voltage sources.

3. Calculate the Norton equivalent current source by shorting terminals a 
and b of the circuit whose Norton equivalent circuit is to be found. Refer 
to Figure 3.17. The Norton current source IN is the calculated short-
circuit current that flows through shorted terminals a and b.

4. The Norton equivalent of the original circuit is the parallel of IN and RTh 
(remember that RTh and RN are always identical).

Example 3.6 Find the Norton equivalent circuit of the circuit of Figure 3.17b. 
Use the found Norton equivalent circuit to calculate the load current IL 
through resistor RL, refer to Figure 3.17a.

By inspection of Figure 3.17b, inhibiting all voltage and current sources, we 
find that the Norton resistance equals the series of R1 and R2 in parallel with 
R3. Thus,

 R R R R R R R RN Th= = + + +( ) ( ).1 2 3 1 2 3/  (3.35)

Using the given values for the resistors,

 R RN Th= = + + + =( ) ( ) .3 3 6 3 3 6 3/ Ω  (3.36)

Let us calculate the Norton current source using Equation (3.33). Prior to this 
calculation, let us simplify the circuit from Figure 3.17b a little further.



176  CIRCUIT THEOREMS AND METHODS OF CIRCUIT ANALYSIS 

Figure 3.17  Finding the Norton equivalent circuit for Example 3.6: (a) original circuit; (b) circuit 
from which to find Norton’s equivalent circuit.
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By inspection of the circuit in Figure 3.17b note that V and R1 are in series, 
on the left side of nodes x and y. We can do a source transformation of V and 
R1 to convert them into a current source in parallel with a resistor.

 I I V R V Rshort circuit Norton Th Th- / /= = = 1.  (3.37)

 I I Ishort circuit Norton ST- / A= = = =21 3 7 .  (3.38)

The result of this source transformation is provided in Figure 3.18b. Note that 
after such source transformation, the 3 Ω resistor R1 appears in Figure 3.18b 
renamed as RST. The Norton current calculated in the source transformation 
is presented as IST = 7 A. Note: The subscript ST stands for source transforma-
tion. Then, using the Norton equivalent circuit for the voltage source transfor-
mation and substituting it into the original circuit of Figure 3.17b, we obtain 
Figure 3.19a.

So let us combine the two current sources into one, thus 6 A + 7 A = 13 A 
and name this current ICombined (refer to Figure 3.19b). Now let us short-circuit 
the terminals a and b and calculate the Norton short circuit current. This will 
be done in four steps, with Equations (3.39) through (3.42).

Figure 3.18  Source transformation as an interim step toward finding the Norton equivalent: 
(a) Thévenin equivalent; (b) Norton equivalent.
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Figure 3.19  (a) Circuit of Example 3.6 after a source transformation; (b) circuit of Example 
3.6 after combination of the two current sources; (c) final Norton equivalent circuit: Example 3.6.
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From Figure 3.19b and since R2 and RST are in parallel, we get

 V I R R R Rpq Combined ST ST= +2 2/( ),  (3.39)

where Vpq is the voltage across the terminals of the (13 A) ICombined current source.
Note: In Figure 3.19b, the shorting of terminals a and b, essentially elimi-

nates resistor R3 from the circuit seen in Figure 3.19a. Since this voltage Vpq is 
the same as the voltage across the parallel of RST and R2, by Ohm’s law:



THE MESH METHOD OF ANALYSIS  179

3.5  THE MESH METHOD OF ANALYSIS

The mesh method of circuit analysis is based on KVL. It provides a more 
effective way of deriving circuit equations virtually by quick inspection of the 
circuit. The mesh method is more suitable and intuitive when the circuit con-
tains independent voltage sources. The method is somewhat less intuitive when 
current sources are also included and probably the least intuitive when depen-
dent voltage and current sources are also present. The mesh method solves for 
mesh currents as opposed to finding individual branch currents for every 
circuit branch. This is advantageous because the number of unknowns is some-
what reduced.

We will address the methodology of writing mesh equations for various 
circuits via examples that will grow in complexity.

 I I R R R R Rshort circuit Combined ST ST= +[ ( )]2 2 2/ /  (3.40)

Eliminating R2 from numerator and denominator:

 I I R R Rshort circuit Combined ST ST= +/( )2  (3.41)

Now using the values for Equation (3.41) from Figure 3.19b:

 Ishort circuit = + =13 3 3 3 6 5/ A( ) . .  (3.42)

This short circuit current of 6.5 A will be the Norton equivalent current source 
of the originally provided circuit (Fig. 3.17b). The 3-Ω resistor RST from Equa-
tion (3.36) is the Thévenin resistor of the equivalent model, as it can be seen 
in Figure 3.19c.

The final step, Figure 3.19c, is to attach the 7-Ω load resistor RL to the 
Norton equivalent circuit and calculate the current through RL.

Thus, we obtain

 V I R R R Rab Norton N L N L= +[ ( )]./  (3.43)

Thus, the current through RL is:

 I V RL ab L= / .  (3.44)

Plugging the value of Vab from Equation (3.44) into Equation (3.43)

 I I R R RL Norton N N L= +[ ( )]./  (3.45)

 IL = 1 95 A. .  (3.46)
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The following assumptions when using the mesh method are made:

1. All circuits that we will analyze are planar. The mesh method does not 
work for non-planar circuits.

2.  A mesh is a closed loop that does not contain other loops within it.

Planar circuits are those circuits that can be drawn on a plane without its 
branches crossing each other. Nonplanar circuits are those that cannot be 
drawn or redrawn without one or more branches crossing. Figure 3.20 presents 
examples of planar and nonplanar circuits. Nonplanar circuits are outside the 
scope of this book and are studied in advanced circuit analysis courses. Careful 
observation of Figure 3.20a reveals that the circuit is actually planar; however, 
at first sight it initially may appear nonplanar. Circuit Figure 3.20b is the exact 
same circuit as that in a. Finally, c is a true nonplanar circuit.

Figure 3.21 shows a simple circuit with two meshes: one of them is: a-b-c-
d-a, the second one is b-e-f-c-b. It is important to observe that a-b-e-f-c-d-a is 
a loop and not a mesh, because it includes one previously defined mesh.

3.5.1  Establishing Mesh Equations. Circuits with Voltage Sources

Let us assume we have a two-mesh circuit as the one shown in Figure 3.22. 
Note that the circuit has three independent voltage sources, three resistors and 
two meshes. We also introduce the concept of mesh currents. Mesh current II 
is the current in the mesh formed by elements V1, R1, R2, and V2. Mesh current 
III is the current in the mesh formed by elements V2, R2, R3, and V3. The branch 
currents are Ib1, Ib2, and Ib3. It is important to see that mesh currents are not 
in general the same as branch currents. Note that mesh currents are named 
with Roman numeral subscripts in this example, whereas branch currents are 
named with regular number subscripts.

Branch current Ib1 is the current that flows through the branch that contains 
voltage source V1 and resistor R1. Similarly, branch current Ib2 is the current 
that flows through the branch that contains V2 and R2; and branch current Ib3 
is the branch current that flows through elements R3 and V3. So let us look 
into the relationship that exists between branch currents and mesh currents.

In particular for the circuit shown in Figure 3.22, the following are how the 
branch and mesh currents relate to each other:

 I II b= 1  (3.47)

 I I II II b− = 2  (3.48)

 I III b= 3,  (3.49)

where in Equations (3.47) through (3.49) the currents in the left-hand side of 
the equal signs are mesh currents. The currents on the right-hand side of the 
equal sign are branch currents. Once we establish the mesh equations for the 
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Figure 3.20  Planar and nonplanar circuits: (a) nonplanar circuit, that is, planar circuit in dis-
guise; (b) same planar circuit redrawn; (c) true nonplanar circuit.
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given circuit, the mesh currents are the unknowns in the mesh method of 
analysis. Since we have two meshes, we will be able to obtain two mesh equa-
tions and solve for the unknown mesh currents II and III. The branch currents 
in each specific circuit element are calculated using Equations (3.47) through 
(3.49) after the mesh currents are found.
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Figure 3.21  Meshes and loops in a circuit.
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Figure 3.22  Two-mesh equations for Example 3.7.
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Initially we will apply KVL to each mesh, but work with mesh currents 
instead of branch currents. So for

 Mesh 1 1 2 1 2: ( ) .V V I R I I RI I II− = + −  (3.50)

 Mesh 2 2 3 2 3: ( ) .V V I I R I RII I II− = − +  (3.51)

Note that the direction of the mesh currents was arbitrarily chosen to be 
clockwise. When applying KVL to each mesh we travel each mesh in the 
clockwise direction too. It is usually a headache to the reader, understanding 
why is that currents directions and the direction of traveling the meshes are 
picked arbitrarily? The simple answer to this is that as long as the voltage rises 
and voltage drops signs are respected in a consistent manner, the numerical 
answer will provide a positive sign when such current direction was assigned 
in the way in which it was assumed; or it will provide a negative sign if the 
current actually flows in the direction opposite to the one assumed. Do not 
get hung up on this; solving problems will clarify these apparently confusing 
arbitrary choices.
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So now let us regroup the terms of Equations (3.50) and (3.51) with respect 
to the mesh currents and obtain

 Mesh 11 2 1 2 2: ( ) .V V I R R I RI II− = + −  (3.52)

 Mesh 2 2 3 2 2 3: ( ).V V I R I R RI II− = − + +  (3.53)

Equations (3.52) and (3.53) are a system of simultaneous linear equations that 
allows us to find the two unknown mesh currents II and III.

We can also rewrite the system of simultaneous equations in matrix form 
as follows:

 
V V

V V

R R R

R R R

I

I
I

II

1 2

2 3

1 2 2

2 2 3

−
−

=
+ −

− +
.  (3.54)

Example 3.7 Now let us consider a numerical example using the circuit of 
Figure 3.22 and mesh equations in matrix form, from Equation (3.54), assum-
ing the following component values:

 R R R1 2 33 1 3= = =Ω Ω Ω, , .  (3.55)

 V V V1 2= = =V 1 V 2 V2 3, , .  (3.56)

Using the values from Equations (3.53) and (3.54) into the mesh equation 
obtained in Equation (3.52) we obtain

 
2 1

1 2

3 1 1

1 3 1

−
−







=
+ −
− +













I

I
I

II

.  (3.57)

Solving matrix Equation (3.57) we obtain

 II = 0 2. .A  (3.58)

 III = −0 2. .A  (3.59)

Using the mesh to branch currents relationships from Equations (3.47), (3.48), 
and (3.49) we obtain

 I II b= =1 0 2. A  (3.60)

 I I II II b− = = − − =2 0 2 0 2 0 4. ( . ) .A A A  (3.61)

 I III = = −b A3 0 2. .  (3.62)

Refer to Figure 3.23 to see the original circuit from Figure 3.22 with the added 
mesh and branch currents values found in the above calculations.

To verify the correctness of the numerical results, work out the mesh equa-
tions of circuit of Figure 3.23, using the results of Equations (3.58) through 
(3.62). Make sure that KCL for all nodes and KVL for all meshes are met.
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Example 3.8 Given the circuit of Figure 3.24, derive the mesh equations; find 
all the branch currents as functions of the mesh currents and the voltage at 
node A with respect to ground. Provide numerical answers for all of the cur-
rents and voltages requested.

By inspection of the circuit in Figure 3.24 we can write the mesh equations 
in the same way we did it for the previous problem, using KVL:

 Mesh 1 1 2 1 2: ( ) ( ) .V V I I R I I RI III I II− = − + −  (3.63)

 Mesh 2 2 3 2 3: ( ) ( ) .V V I I R I I RII I II III− = − + −  (3.64)

 Mesh 3 4 4 3 1: ( ) ( ) .V I R I I R I I RIII III II III I= + − + −  (3.65)

Regrouping Equations (3.63) through (3.65) based on each of the mesh cur-
rents, we obtain

 Mesh (1 1 2 1 2 2 1: ) .V V I R R I R I RI II III− = + − −  (3.66)

 Mesh (2 2 3 2 2 3 3: ) .V V I R I R R I RI II III− = − + + −  (3.67)

 Mesh 3 2 3 1 3 1 3 4: ( ).V V I R I R I R R RI II III− = − − + + +  (3.68)

We will come back to Equations (3.66) through (3.68) when we will cover 
finding out the mesh equations simply by inspection of the circuit; eliminating 
the steps where we applied KVL, Equations (3.63) through (3.65).

Now rewriting Equations (3.66) through (3.68) in matrix form we get

 

V V

V V

V

R R R R

R R R R

R R R R R

I

I

I

I

II

III

1 2

2 3

4

1 2 2 1

2 2 3 3

1 3 1 3 4

−
− =

+ − −
− + −
− − + +

..  (3.69)

Using the numerical values from Figure 3.24 into matrix Equation (3.69), we 
obtain

Figure 3.23  Two-mesh equations solutions for Example 3.7.
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−
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+ − −
− + −
− − + +

I

I

I

I

II
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.  (3.70)

Solving the matrix above, it yields:

 II = 1 36364. .A  (3.71)

 III = 2 54545. .A  (3.72)

 IIII = 2 A.  (3.73)

By inspection of the circuit of Figure 3.24 we see that the branch to mesh 
current relationships are

 I I Ib I III1 = − .  (3.74)

 I I Ib I II2 = − .  (3.75)

 I I Ib II III3 = − .  (3.76)

 I Ib III4 = .  (3.77)

Plugging the values of II (Eq. 3.71) through IIII (Eq. 3.73) into Equations (3.74) 
through (3.77) yields:

Figure 3.24  Mesh analysis for circuit for Example 3.8.
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 Ib1 0 63644= − . .A  (3.78)

 Ib2 1 18182= − . .A  (3.79)

 Ib3 0 54545= . .A  (3.80)

 Ib4 2= A.  (3.81)

By inspection of the branch currents in Figure 3.24 and the results of Equa-
tions (3.78) through (3.81) we can see that results for currents Ib1 and Ib2 
produced negative results. This means that if we go back to Figure 3.24, cur-
rents Ib1 and Ib2 actually flow in the opposite direction as that shown in the 
picture.

Finally, it is easy to see that voltage at node A with respect to ground (or 
VA) equals

 V V I RA b= −1 1 1.  (3.82)

Plugging the given and the calculated values into Equation (3.77) we obtain

 VA = − − =5 0 63644 1 5 63643( . ) . .V  (3.83)

As an additional exercise to the reader, verify that all the branch currents, 
given by Equations (3.74) through (3.77), numerically comply with KCL. The 
reader should also verify numerically that all KVL Equations (3.66) through 
(3.68) hold. Hint: Use the calculated values and plug them into the appropriate 
circuit equations.

Example 3.9 Writing Mesh Equations by Inspection of the Circuit
Let us start first with the circuit of Example 3.7, Figure 3.22. We repeat this 
circuit for the reader’s convenience in Figure 3.25.

Let us study the circuit diagram carefully. Mesh 1 contains voltage sources 
V1 and V2 and resistors R1 and R2. Mesh current II is defined to travel mesh 1 
in the clockwise direction. Mesh 2 contains voltage sources V2 and V3 and 
resistors R2 and R3. Mesh current III is defined to travel mesh 2 also in a clock-
wise direction.

3.5.2  Establishing Mesh Equations by Inspection of the Circuit

From the example problems already addressed, we notice that we have been 
working with circuits that only have voltage sources. Because of this, it is more 
suitable and also straightforward to derive mesh equations using KVL around 
each mesh. What we will do in this section is to skip the writing of the circuit 
equations using KVL, as we did for Example 3.7; see Equations (3.52) and 
(3.53).
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Referring to the previously obtained mesh equations in matrix form, refer 
to Equation (3.54), we repeat them here again for the reader’s convenience:

 
V V

V V

R R R

R R R

I

I
I

II

1 2

2 3

1 2 2

2 2 3

−
−

=
+ −

− +
 (3.84)

So now referring to matrix Equation (3.84), note that the vector column of 
voltages has 2 × 1 dimensions and elements:

 v V V1 1 2= − .  (3.85)

and

 v V V2 2 3= − .  (3.86)

The 2 × 2 resistance matrix has elements

 a R R a R11 1 2 12 2= + = −  (3.87)

 a R a R R21 2 22 2 3= − = +  (3.88)

The 2 × 1 vector column of currents contains mesh currents II and III. Usually 
the mesh currents are the unknowns to be found.

We can also express the mesh equations with Ohm’s law in matrix form:

 V R I= ,  (3.89)

where | V | is a 2 × 1 voltage column, |R| is a 2 × 2 resistance matrix, and |I| is 
a 2 × 1 current column.

For the construction of the mesh equations in matrix form, we make the 
following observations:

Figure 3.25  Circuit for Example 3.9 finding mesh equations by circuit inspection.
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The top element of the voltage column v1 equals the algebraic sum (taking 
into account the sign of each source) of the voltage sources in mesh 1, traveling 
mesh 1 in the clockwise direction. That is V1 − V2 from Equation (3.85).

The bottom element of the voltage column v2 equals the algebraic sum of 
the voltage sources of mesh 2 traveling mesh 2 in the clockwise direction. That 
is V2 − V3 from Equation (3.86)

Now for the resistive matrix, element a11 will always have the sum of all the 
resistive elements in mesh 1. Note that this sum will always be a sum of posi-
tive numbers.

For the resistive matrix, element a22 will always have the sum of all the 
resistive elements in mesh 2. Note that this sum will always be a sum of posi-
tive numbers.

Let us concentrate on the a12 term of the resistive matrix. We see (Fig. 3.25) 
that resistor R2 is a common element between meshes I and II. And since mesh 
current II flows in the clockwise direction, while mesh current III flows through 
R2 in the opposite direction; the contribution of the III R2 term will have a 
negative sign. Note that if both mesh currents had been chosen such that they 
both flowed through the common element in the same direction, then the sign 
of term III R2 would have been positive.

Finally, for the resistance matrix terms a21 is the term in mesh 2 that is 
common to mesh 1. For the same reason, since mesh current III flows in the 
opposite direction of mesh current II, the term a21 will have a negative sign.

The column of mesh currents simply contains the unknown mesh currents 
to be found which are II and III. Let us also observe that the resistance matrix 
will always have positive elements on its main diagonal: that is, elements a11 
and a22. The reciprocal terms (a12 and a21) may be both positive and both nega-
tive depending on the directions chosen for the mesh currents, as explained 
earlier. Finally, if the circuit is passive, that means it does not contain any 
dependent sources, elements a12 and a21 are identical in sign and magnitude. 
This is to say that the resistance matrix is symmetrical.

Important Points: Deriving Mesh Equations by Circuit Inspection:
Resistance Matrix: Main diagonal always contains positive elements, none of 
which can be zero.

If the circuit is passive the resistance matrix is symmetrical (i.e., a12 = a21).

A passive circuit only contains resistors, inductors, or capacitors, but it cannot 
contain dependent voltage or dependent current sources. Some examples 
using dependent sources will be given in Chapter 6.

Drill Problem 3.10: Using the previously seen methodology, find out by 
inspection the mesh equations for the circuit of Figure 3.26 (this is the same 
circuit used for Example 3.8).
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3.5.3  Establishing Mesh Equations When There Are also  
Current Sources

The mesh method of analysis is very straightforward when the circuit contains 
voltage sources. However, if the circuit in addition to containing voltage 
sources contains current sources, some changes will occur in the mesh  
equations. To better understand the differences, let us address this with 
Example 3.11.

Figure 3.26  Mesh equations by circuit inspection for Drill Problem 3.10.
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Example 3.11 Refer to the circuit of Figure 3.27 to work on this example.

Some Important Notations Pertaining to Circuits:
Referring to the circuit of Figure 3.27: Note that the voltage across resistor R1 
is VA − VREF = VA − 0 = VA

The voltage across resistor R2 assumes the highest voltage at node B with 
respect to node A is denoted VBA, which is also equal to VB − VA. It also means 
that node B is more positive than node A. Note that if the voltage at node B 
is less positive than the voltage of node A, then VB − VA is a negative number. 
For example, If VB = 4 V and VA = 5 V, then VB − VA = −1 V.

On the other hand, if we want to talk about the voltage across resistor R2, 
where the higher voltage is assumed to be at node A, and the lower voltage 
is at node B, the voltage across R2 is VAB which is also equal to VA − VB. Also 
note that VAB = −VBA.

The voltage across current source IS1 is VDA. The voltage at node D is 
assumed to be larger than the voltage at node A. That is: VDA = VD − VA.
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Similarly, the voltage across current source IS2 is VB. The voltage at node B 
is assumed to be higher than the voltage at node VREF; note that VREF was 
defined as our reference or zero-volt ground node.

So now by inspection of circuit of Figure 3.27 we see four meshes, that is, 
I, II, III, and IV. Starting with mesh I, if we want to establish the mesh equa-
tions for this mesh, we cannot use the value of the current source IS2 in the 
KVL equations since the voltage across current source IS2 is VB. We can then 
write mesh I equation as follows:

 Mesh I V I I R I RB IV I I = − −( ) 2 1  (3.90)

 Mesh II V I I R I I RB II IV II III = − + −( ) ( )3 4  (3.91)

 Mesh III V I R I I RIII III II − = + −1 5 4( )  (3.92)

It is not necessary to write the equation for Mesh IV since mesh current IV 
(IIV) is known numerically. That is,

 I IIV S= 1.  (3.93)

The last equation we need is current source IS2 which equals the differences 
between mesh currents III and II. That is,

 I I IS II I2 = − .  (3.94)

Figure 3.27  Mesh equations of circuits with voltage and current sources for Example 3.11.
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Refer to Figure 3.28, the super-mesh just described is shown after the physical 
removal of current source IS2. Remember this step is justified by Equations 
(3.95) and (3.96).

Referring to Figure 3.28, note that independent current source IS1 is identi-
cal to the selected mesh current IIV. In a typical circuit, like the one of Figure 
3.27, the independent current and voltage sources are known; the same goes 
for the resistors. Generally, the mesh currents are unknown. But let us talk 
about how many mesh current equations we need and how many mesh cur-
rents are unknown. We have a total of four mesh currents II, III, IIII, and IIV. 

Now if we subtract Equation (3.91) from Equation (3.90), the unknown voltage 
VB is eliminated from the result and we obtain

 ( ) ( ) ( ) .I I R I R I I R I I RIV I I IV II III II− − + − + − =2 1 3 4 0  (3.95)

Reordering Equation (3.95) grouping by mesh currents yields

 − + − + + + + =I R R I R R I R I R RI II III IV( ) ( ) ( ) .1 2 3 4 4 2 3 0  (3.96)

The elimination of voltage VB from Equations (3.95) and (3.96) is equivalent 
to thinking as merging meshes I and II; this new merged mesh is called a super-
mesh. This super-mesh consists of elements R1, R2, R3, and R4 after the elimina-
tion of current source IS2.

Figure 3.28  The creation of the super-mesh for Example 3.11.
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We already mentioned that IIV is numerically known because it is equal to the 
value of independent current source IS1, see Figure 3.27. Thus, the only unknown 
mesh currents are: II, III, and IIII. To find the three unknown mesh currents we 
need three linearly independent equations. The first one is Equation (3.96) and 
the other two are Equations (3.92) and (3.94). We repeat these three key equa-
tions here for the reader’s convenience. Since we also know from Equation 
(3.93) that mesh current IIV is known and equals IS1, we replace IIV with IS1 in 
Equation (3.96) and obtain

 − + − + + + + =I R R I R R I R I R RI II III S( (1 2 3 4 4 1 2 3 0) ( ) ) .  (3.97)

 − = + −V I R I I RIII III II1 5 4( ) .  (3.98)

where IS2 = III − II

In a typical problem all resistors R1 through R5, the two current sources IS1 
and IS2, and voltage source V1 are numerically known.

What we just did mathematically with Equation (3.97) is the following:
The voltage VB across current source IS2 is not initially known and Equation 

(3.96) eliminates VB. This merges or creates a so called super-mesh with meshes 
I and II. Two meshes that share a current source are referred to as an essential 
mesh. So we re-draw the circuit of Figure 3.27 showing the newly formed 
super-mesh and it is shown in Figure 3.28. On the other hand, mesh IV is 
nonessential because its current source IS1 is not shared with any other mesh. 
Thus, we eliminate (or open circuit) current source IS1. These steps along with 
the super-mesh are both shown in the circuit of Figure 3.29.

Figure 3.29  Circuit for Example 3.11 after the elimination of all independent current sources.
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It is important to state that a super-mesh does not have a current of its own. 
Note that the original mesh currents II through IIV continue to flow through 
the elements of the newly formed super-mesh in Figure 3.29. This is certainly 
a requirement which was derived by Equation (3.96). We will show next a 
simpler method using the super-mesh concept of deriving Equation (3.96), 
without having to write the individual equations for meshes I and II as we did 
previously.

Following the super-mesh of Figure 3.29, travel the super-mesh in the direc-
tion indicated by the heavy arrow accounting for all voltage drops and rises. 
In our example, the super-mesh does not have any voltage rises (i.e., voltage 
sources) of its own; however, it may have them in other examples.

 I R I I R I I R I II I IV II IV II III1 2 3 R+ − + − + − =( ) ( ) ( ) .4 0  (3.99)

Since mesh current IIV equals the current IS1 (Fig. 3.27),

 I IIV S= 1.  (3.100)

After regrouping terms in Equation (3.99) around, the mesh current becomes:

 − + − + + + + =I R R I R R I R I R RI II III S( ( (1 2 3 4 4 1 2 3 0) ) ) .  (3.101)

Note that Equation (3.101) is identical to Equation (3.97).
The fourth and last equation is for essential mesh III. This is probably the 

simplest equation to write since it contains only a voltage source and we need 
to write the mesh equation using KVL. Note: An essential mesh is one that 
has current sources, and it is not a super mesh.

 Mesh III V I I R I RIII II III − = − +1 4 5( ) .  (3.102)

Solving the four equations, which we rewrite below for the reader’s conve-
nience, all mesh currents, are numerically obtained.

 − + − + + + + =I R R I R R I R I R RI II III S( ( (1 2 3 4 4 1 2 3 0) ) ) .  (3.103)

 − = + −V I R I I RIII III II1 5 4( ) .  (3.104)

 I I IS II I2 = − .  (3.105)

A system of three simultaneous linear equations with three unknowns; Equa-
tions (3.103) through (3.105), is solved to obtain mesh currents II, III, and IIII.

Remember that IIV is already known by inspection of the circuit of Figure 
3.27, Equation (3.100).

By inspection of the circuit of Figure 3.30 we can find the branch currents 
on every resistor as a function of their mesh currents.
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 Branch current through resistor R I IB I   1 1= = .  (3.106)

 Branch current through resistor R I I IB IV   I2 2= = − .  (3.107)

 Branch current through resistor R I I IB II IV   3 3= = − .  (3.108)

 Branch current through resistor R I I IB II III   4 4= = − .  (3.109)

 Branch current through resistor R I IB III   5 5= = .  (3.110)

Figure 3.30  Circuit to solve by mesh analysis method for Example 3.12.
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Example 3.12 Using the circuit of Figure 3.27, and assuming the element 
values given by Equations (3.111) through (3.118), calculate the values of all 
four mesh currents. Hint: Use Equations (3.103) through (3.105).

Once the mesh currents are obtained, calculate the branch currents through 
resistors R1 through R5. Hint: Use Equations (3.106) through (3.110). Then, 
calculate the voltages at nodes A, B, C, and D with respect to ground.

 R1 1= Ω,  (3.111)

 R2 2= Ω,  (3.112)

 R3 3= Ω,  (3.113)

 R4 4= Ω,  (3.114)
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 R5 5= Ω,  (3.115)

 IS1 2= A,  (3.116)

 IS2 5= A,  (3.117)

 V1 1= V.  (3.118)

The circuit is presented again for the reader’s convenience in Figure 3.30.
Using the circuit values given by Equations (3.111) through (3.118), plug-

ging them into mesh Equations (3.103) through (3.105), we obtain the follow-
ing mesh currents:

The author assumes that the reader can solve a system of linear simultane-
ous equations. Bear in mind that one of this book’s goals is to learn circuit 
analysis; however, it is not the main goal of this book to walk the reader 
through solving algebraic equations.

Then,

 II = −2 01351. .A  (3.119)

 III = 2 98649. .A  (3.120)

 IIII = 1 21622. .A  (3.121)

 I found by circuit inspectionIV = 2 A    ( ).  (3.122)

Now, using Equations (3.106) through (3.110) to calculate the branch currents, 
we obtain

 I IB I1 2 01351= = − . .A  (3.123)

 I I IB I IV2 4 01351= − = − . .A  (3.124)

 I I IB II IV3 0 98649= − = . .A  (3.125)

 I I IB II III4 1 77027= − = . .A  (3.126)

 I IB III5 1 21622= = . .A  (3.127)

Refer one more time to Figure 3.30 to see the branch current directions and 
compare them with the signs of Equations (3.123) through (3.127).

Note that branch current IB1 was defined in the same direction as mesh 
current II; however, the numerical result of IB1 = −2.01351 A means branch 
current IB1 actually flows from node A to the reference node. It is also true 
that branch current IB2 defined to flow from node B into node C, because of 
the negative sign of its result, actually flows from C to B.

By inspection of Figure 3.30 we can easily find the corresponding nodal 
voltages as function of their branch currents and their respective branch 
resistors.
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 V I RA B= − 1 1.  (3.128)

 V V I RA B B− = 2 2.  (3.129)

 V V I RB C B− = 3 3.  (3.130)

 V I RC B= 4 4.  (3.131)

 V I RD B= 5 5.  (3.132)

Now plugging the values of branch current and resistors into (we find the 
nodal voltages)

 VA = 2 013521. .V  (3.133)

 VB = 10 0405. .V  (3.134)

 VC = 7 08108. .V  (3.135)

 VD = 6 08108. .V  (3.136)

Let us note that from Equation (3.133), VA is a positive voltage with respect 
to ground, which means that VGND − VA = 0 − VA = −VA = IB1  × R1, which is 
consistent with the direction which branch current IB1 has in Figure 3.30 and 
its negative result given by Equation (3.123).

Similarly note that nodal voltage VA is positive but smaller than the nodal 
voltage at VB (i.e., VA < VB or 2.01351 V < 10.0405 V). That explains why based 
on the direction defined for branch current IB2 (Fig. 3.30), the numerical result 
is negative; that is, from Equation (3.124)

 IB2 4 01351= − . .A

On a final note on this example, mesh currents are defined currents just for 
the mesh method of analysis. Mesh currents are not currents that can be 
directly measured, like branch currents can.

3.5.4  Establishing Mesh Equations When There Are  
also Dependent Sources

In this section we will address a circuit with an independent voltage source 
and also a dependent current source. We will see that the mesh equations can 
be stated simply starting with the circuit KVL equations. The fact that there 
is a dependent source does not change significantly how KVL equations need 
to be written. We will find then that a constraint equation links the dependant 
source output (a current 4IA in our next example) and its independent variable 
(IA). Finally, we will see that the matrix mesh equations lead to a nonsymmetri-
cal matrix, because a dependent source represents an active device. More on 
dependent sources will be covered on the chapter on transistors.
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Example 3.13 Establish the mesh equations starting with KVL: Let us refer 
to the circuit of Figure 3.31. There is a dependent voltage source, whose output 
voltage is, 4IA, which is referred to as the dependent variable or the voltage 
source output. The current IA is the control variable of our dependent source. 
This current IA is defined to be the current that flows through the 10-Ω resistor, 
with the direction shown in Figure 3.31. Keep in mind that dependent sources 
(current of voltage types) are mathematical models to represent devices that 
have gain. You cannot buy a dependent source in a battery store or anywhere 
else; a dependent source is a circuit-modeling concept. We will address the 
meaning of gain when studying operational amplifiers and transistorized cir-
cuits. Finally, we add that in cases that have dependent sources, the author 
prefers not to address a by-inspection method, because its rules are more 
complex than those for the straightforward cases of mesh equations with just 
independent voltage sources.

Using the already predefined mesh current of Figure 3.31, we can write for 
each mesh their respective mesh equations using KVL around each mesh:

 Mesh I I I I1: 24 10 121 2 1 3= − + −( ) ( ).  (3.137)

 Mesh I I I I I2: 0 10 24 42 1 2 2 3= − + + −( ) ( ).  (3.138)

 Mesh I I I I IA3: − = − + −4 12 43 1 3 2( ) ( ).  (3.139)

Note that in Mesh 3 (3.139), term –4IA is a voltage not a current; refer again 
to Figure 3.31.

By inspection of the circuit in Figure 3.31, it is easy to see that

 I I IA = −1 2.  (3.140)

Figure 3.31  Establishing mesh equations for circuits with a dependent source.
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Equation (3.139) shows branch current IA expressed as a function of the circuit 
mesh currents. Now regrouping terms in Equations (3.137) through (3.139) 
and using Equation (3.140) to eliminate the use of IA, we obtain the following 
mesh equations:

 Mesh I I I1: 24 22 10 121 2 3= − − .  (3.141)

 Mesh I I I2: 0 10 38 41 2 3= − + − .  (3.142)

 Mesh I I I3: 0 8 8 161 2 3= − − + .  (3.143)

Dividing by two on both sides of the equal sign Equations (3.141) and (3.142), 
dividing (3.143) by eight, and rewriting them in their matrix form yields:
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Solving the matrix system, one obtains that

 I1 2 25= . .A  (3.145)

 I2 0 75= . .A  (3.146)

 I3 1 5= . .A  (3.147)

And using Equation (3.140) for IA,

 IA = − =2 25 0 75 1 5. . . .A  (3.148)

The actual matrix solving is left as an exercise to the reader.
Notice that as predicted, the resistance matrix in Equation (3.144) is not 

symmetrical, that is, because there was a dependent source in the circuit. That 
is, a23 = −2 is not equal to a32 = −1. Question to the reader: Which other ele-
ments of matrix (3.144) prove that the matrix is not symmetrical?

3.5.4.1  Commentary  on  Mesh  Analysis  Note that given a circuit with 
only voltage sources and “n” meshes, there are n mesh currents that can be 
defined. This yields a system of n independent equations with n unknowns.

However, if there are any current sources in a mesh, each current source 
reduces the number of linearly independent equations by one per current 
source per mesh. Finally, if the circuit contains at least one dependent source, 
the resistance matrix will not be symmetrical like it is in the case of a passive 
circuit. A passive circuit only contains resistors (additionally capacitors  
and inductors if it is an AC circuit) and independent voltage and/or current 
sources.
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3.6  THE NODAL METHOD OF ANALYSIS

The nodal method of circuit analysis is based on KCL. It provides a more 
effective way of deriving circuit equations virtually by quick inspection of the 
circuit. The nodal method is more suitable and intuitive when the circuit con-
tains independent current sources. The method is somewhat less intuitive when 
voltage sources are also included and probably the least intuitive when depen-
dent voltage and current sources are present. For a circuit that contains n 
nodes, one of the nodes is arbitrarily chosen as the reference node or ground, 
and the remaining “n − 1”nodal voltages of the circuits are typically the 
unknowns. We will address the methodology of writing KCL equations for 
various circuits via examples that will grow in complexity.

Unlike the mesh method, the nodal method works for planar and nonplanar 
circuits. It is commonly the method of choice of some electric and electronic 
circuit simulation programs.

3.6.1  Establishing Nodal Equations: Circuits with Independent 
Current Sources

Let us assume that we have a circuit such as the one presented in Figure 3.32. 
By inspection we see that the circuit has four nodes. The reference node is 
usually chosen to be at the bottom of the circuit. Additionally, the nonrefer-
ence nodes are: A, B, and C.

Figure 3.32  Circuit with current sources to establish nodal equations.
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Using KCL at each of the nodes we obtain

 Node A I I V R V V RA A B / /: 1 3 1 2− = + −( ) .  (3.149)

 Node B I V V R V V RB A B C / /: 2 2 3= − + −( ) ( ) .  (3.150)

 Node C I V R V V RC C B / /: 3 4 3= + −( ) .  (3.151)

Regrouping Equations (3.149) through (3.151) around their nodal voltages we 
obtain

 Node A I I V R R V RA B / / /: ( ) ( ).1 3 1 2 21 1 1− = + −  (3.152)

 Node B I V R V R R V RA B C / ( / / /: ( ) ) ( ).2 2 2 3 31 1 1 1= − + + −  (3.153)

  Node C I V R V R RB C / / /: ( ) ( )3 3 3 41 1 1= − + +  (3.154)

In the above three equations we have three unknowns, the nodal voltages VA, 
VB, and VC. Once those voltages are found, the branch currents in every branch 
element can easily be calculated using Ohm’s law.

Let us make a notation simplification, remembering that the inverse of a 
resistance R is its conductance G, where G = 1/R.

We can re-write Equations (3.152) through (3.154) in matrix form and they 
become:
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where [I] is a 3 × 1 column of current sources. The 3 × 3 matrix in Equation 
(3.155) is referred to as the conductance matrix [G]. The vector of nodal volt-
ages contains all nonreference node voltages, VA, VB, and VC. Equation (3.155) 
can be written in a more compact form and that is

 I G V[ ] = [ ][ ].  (3.156)

Equation (3.156) is another matrix form of Ohm’s law using the conductance 
matrix G.

Example 3.14 Find the nodal voltages VA, VB, and VC and currents on resis-
tors R1 through R4 in the circuit of Figure 3.32. Hint: Use Equations (3.152) 
through (3.154) or matrix system (Eq. 3.155).

Referring again to the circuit of Figure 3.32 and using the corresponding 
values for the independent current sources and resistors we rewrite Equation 
(3.155) as follows:
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Example 3.16 Refer to the circuit of Figure 3.33. On first sight the circuit 
appears to be complicated; however, after looking at it for some time and 
understanding its topology, it is not so.

Although the circuit contains six resistors and six independent current 
sources, its topology is not that much different from that of the circuit of  
Figure 3.32.

Note that our circuit, Figure 3.33, still has three nonreference nodes and a 
reference node (ground). For simplicity and convenience, the nonreference 
nodes are named A, B, and C.

So although this circuit has many more resistors and current sources than 
the one of Figure 3.32, it is still a circuit whose nodal equations matrix is 3 × 3, 
that is, three rows by three columns. Let us assume that the elements of the 

Solving the linear system of three equations with three unknowns we obtain 
for the nodal voltages:

 VA = 0 947368. .V  (3.158)

 VB = 26 7368. .V  (3.159)

 VC = 27 3684. .V  (3.160)

Having obtained the nodal voltages we can use them to calculate the branch 
currents for resistors R1 through R5. Thus:

 I V RB A1 1 0 947368 6 0 157895= = =/ / A. .  (3.161)

 I V V RB B A2 2 26 7368 0 947368 5 5 15789= − = − =( ) ( . . ) ./ / A  (3.162)

 I V V RB C B3 3 27 3684 26 7368 4 0 157895= − = − =( ) ( . . ) ./ / A  (3.163)

 I V RB C4 4 27 3684 4 6 84211= = =/ / A. . ,  (3.164)

where, in Equation (3.161), current IB1 flows from node A to ground; in Equa-
tion (3.162) IB2 flows from node B into node A; in (3.163) IB3 flows from node 
C into node B. Finally, in (3.164) IB4 flows from node C to ground.

Drill Problem 3.15: Using the circuit of Figure 3.32 and the found branch 
currents given by Equations (3.161) through (3.163), check that KCL is met 
at nodes A, B, C, and VREF (the grounded node).

3.6.2  Establishing Nodal Equations by Inspection:  
Circuits with Current Sources

The nodal equations of circuits with current sources and a relatively small 
number of nodes are quite easy to determine. Let us start working on the 
circuit of the next example.
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first row of our matrix 3 × 3 are: a11, a12, a13. Second row elements are: a21, a22, 
a23; and the third row elements are: a31, a32, a33. The system of three nodal equa-
tions and three unknowns is provided first. Then we will look at every equation 
term and identify how it is associated to the given circuit diagram.

Again referring to Figure 3.33 by inspection of the circuit we have

 Node A I I I G G G V G V G VS S S A B C : 1 2 6 1 2 6 2 6+ − = + + − −( ) .  (3.165)

 Node B I I I G V G G G V G VS S S A B C : 3 2 4 2 2 3 4 4− − = − + + + −( ) .  (3.166)

 Node C I I I G V G V G G G VS S S A B C : 4 6 5 6 4 4 5 6+ − = − − + + +( ) .  (3.167)

A general inspection of Equations (3.165) through (3.167) should make it clear 
that each equation is written for every nonreference node and the effects of 
the other nonreference node over the node in question. Equation (3.165) cor-
responds to node A, Equation (3.166) corresponds to node B, and Equation 
(3.167) corresponds to node C. In particular in Equation (3.165), we observe 
that it has a current term on the left-hand side of the equal sign. The term 
(G1 + G2 + G6)VA expresses the effect of all conductances connected to node 

Figure 3.33  Circuit for Example 3.14: establishing nodal equations by inspection.
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A; the term: −G2VB expressed the effect of adjacent node B over node 
A. Finally, the last term: −G6VC expresses the effect of adjacent node C over 
node A.

Referring to Figure 3.33 let us go over every term of Equation (3.165) one 
more time. The left hand term of Equation (3.165) is the algebraic sum of the 
currents at node A. Currents flowing into the node are positive, while currents 
leaving the node are negative. Thus, the term: IS1 + IS2 − IS6. The first term to 
the right of the equal sign: (G1 + G2 + G6)VA consists of the sum of all the 
conductances directly connected to node A, that is, conductances G1, G2, and 
G6. Because they are all connected to node A, they need to be multiplied by 
VA. The next term of Equation (3.165), that is, −G2VB, contains a term that is 
minus the conductance between nodes A and B times nodal voltage VB. G2 is 
also referred to as the shared conductance between nodes A and B. Finally, 
the last term of Equation (3.165), that is, −G6VC, is minus the shared conduc-
tance between nodes A and C (−G6) times the nodal voltage VC. Similarly, we 
can go over Equation (3.166). In the current term IS3 − IS2 − IS4, note that IS3 
enters node B, that is why IS3 has a positive sign, while currents IS2 and IS4 
leave node B, thus their negative sign. Continuing with Equation (3.166), 
the term: −G2VA denotes the influence of node A over node B. The next term, 
(G2 + G3 + G4)VB shows the effect of the actual node in question, that is, 
node B, and the sum of all conductances connecting to such node times its 
nodal voltage VB. Finally, term: −G4VC expresses the influence of node C over 
node B.

Last, let us briefly describe Equation (3.167). The current term: IS4 − IS5 + IS6 
is the sum of the currents entering node C minus the currents leaving node C. 
Term: −G6VA shows the impact of node A over node C through their shared 
conductance G6. Term: −G4VB shows the impact of node B over node C through 
their shared conductance G4. Finally, term: (G4 + G5 + G6)VC is the effect of 
all conductances connecting to node C, times its nodal voltage VC.

Now that we have gone over the terms of Equations (3.165) through (3.167), 
it is easy to convert such equation into their matrix form:
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 (3.168)

In the above matrix equations we have that

 a G G G a G a G11 1 2 6 12 2 13 6= + + = − = −; ; .  (3.169)

 a G a G G G a G21 2 22 2 3 4 23 4= − = + + = −; ; .  (3.170)

 a G a G a G G G31 6 32 4 33 4 5 6= − = − = + +; ; .  (3.171)

Note all the main diagonal elements of the [G] matrix, a11, a22, and a33 
are always nonzero and positive. Additionally, if the circuit matrix has no 
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Example 3.17 Again, using the circuit of Figure 3.33, calculate the numerical 
values of nodal voltages VA, VB, and VC. After you find the three nodal voltages, 
find the currents through every resistor. Hint: Use Equations (3.165) through 
(3.167) or solve the matrix system given by Equation (3.168).

For this example, all we have to do is to use the values given for the inde-
pendent current sources and the resistors and solve Equation (3.168).

So plugging in the appropriate values into matrix Equation (3.168) we 
obtain
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 (3.175)

dependent sources, that is to say, the circuit is passive and thus its matrix is 
symmetrical.

A symmetrical matrix is that whose elements that are mirrored around its 
main diagonal are identical. In general aij = aji for i and j from 1 to 3, but i ≠ j. 
In particular for our example this means that

 a a12 21= .  (3.172)

 a a13 31= .  (3.173)

 a a23 32= .  (3.174)

We will provide the method without applying KCL, as it was done in the previ-
ous section and stating directly the procedural steps:

1. For arithmetic convenience, convert every resistor into its equivalent 
conductance. That is, G = 1/R.

2. Identify all nonreference nodes and the reference node. This step is 
already given in our example.

3. Determine the conductance matrix [G] which will have dimensions of 
(number of nodes − 1) × (number of nodes − 1), in our example: 3 × 3.

4. Determine the independent current sources column vector [I].
5. Write the matrices in the form: [I] =  [G][V],

where [V] is the column of nodal voltages or the unknowns. In our example:

 V

V

V

V

A

B

C

[ ] =


















THE NODAL METHOD OF ANALYSIS  205

Remember that the 3 × 3 matrix coefficients are formed by sum of the con-
ductances (not the resistances) given by the circuit of Figure 3.33.

Solving Equation 3.175 we obtain the following nodal voltages:

 VA = 0 84812. .V  (3.176)

 VB = 1 02857. .V  (3.177)

 VC = 3 23609. .V  (3.178)

The current for every resistor are simply given by Ohm’s law:
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3.6.3  Establishing Nodal Equations When There Are also  
Voltage Sources

The nodal method is more suitable and straightforward, when the circuit only 
contains current sources, because the method is derived using KCL at each 
nonreference node. It is also possible to apply the nodal method when, in 
addition to current sources, voltage sources are present. This, even though it 
is somewhat less intuitive, it simplifies the nodal equations by one equation 
per voltage source that constitutes a super node.

Example 3.18 Refer to Figure 3.34 to solve the three-node circuit that con-
tains two independent current sources and two independent voltage sources. 
The nonreference nodes are clearly labeled: A, B, and C. We cannot apply 
nodal analysis as usual because of the presence of the voltage sources. It is not 
possible to know the currents through the independent voltage sources, before 
making any calculations. Inspecting the circuit of Figure 3.34 carefully, we can 
see that even though there are three nodes in the circuit, the voltage at node 
A is already known, it actually is V1 = 4 V. We can also see by inspection that 
the difference of nodal voltages VB and VC equals the value of the voltage 
source V2 = 3 V. That is, V2 = VB − VC = 3 V.
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So there are two constraint equations:

 V V VB C2 3= − = V.  (3.179)

 V VA1 4= = V.  (3.180)

Nodes B and C are encircled in Figure 3.34, and they are defined as a super-
node.

Note that at the indicated super-node, KCL also applies. So the sum of all 
super-node entering current equals the sum of all super node leaving currents, 
that is,

 I I I I I IS S2 2 3 1 1 4+ + + = + .  (3.181)

Since IS1 = 5 A and IS2 = 2 A, then Equation (3.181) becomes

 I I I I2 3 1 47+ + = + .  (3.182)

Figure 3.34  Circuit to be solved by the nodal method.
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Additionally, by inspection of the circuit of Figure 3.34, we see that

 I V R VB B1 1 5= =/ / .  (3.183)

 I V V R V VA C A C2 2 1= − = −( ) ( ) ./ /  (3.184)

 I V V R V VA B A B3 3 3= − = −( ) ( ) ./ /  (3.185)

 I V R VC C4 4 8= =/ / .  (3.186)

Using Equations (3.183) through (3.186) in Equation (3.182) we obtain

 ( ) ( ) .V V V V V VA C A B B C− + − + = +/ / / /1 3 7 5 8  (3.187)

Solving Equation (3.187) with constraint Equations (3.181) and (3.182), we 
obtain the values for VB and VC.

 VB = 9 47236. .V  (3.188)

 VC = 6 47236. .V  (3.189)

Now since all the nodal voltages are known, we can easily find the branch 
currents through all the resistors using Equations (3.183) through (3.186).

 I V R VB B1 1 5 1 89447= = =/ / A. .  (3.190)

 I V V R V VA C A C2 2 1 2 47236= − = − = −( ) ( ) . ./ / A  (3.191)

 I V V R V VA B A B3 3 3 1 82412= − = − = −( ) ( ) . ./ / A  (3.192)

 I V R VC C4 4 8 0 809045= = =/ / A. .  (3.193)

To determine the currents of each of the independent voltage sources, it is a 
simple application of KCL. This is left as an exercise to the reader.

3.6.4  Establishing Nodal Equations When There Are  
Dependent Sources

Let us analyze a circuit that contains two independent current sources, an 
independent voltage source and a dependent voltage source. An example of 
this nature is likely as complex as it can be, to solve by hand.

Example 3.19 Using the circuit of Figure 3.35 establish the nodal equations 
for the circuit using KCL.

By inspection of the circuit of Figure 3.35 we can see that the 10-V depen-
dent voltage source has a control voltage V, which is the voltage developed 
across the independent 10-A current source, with the shown polarity. Nodes 
C and D are super-nodes. The voltage at node D with respect to ground is 
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25 V. The only nodal equations that we need to establish are those at nodes A 
and B.

One more time referring to the circuit in Figure 3.35, let us note that the 
currents entering node A are 10 A (an independent current source), and 
branch current I2, while branch current I3 leaves node A. Additionally, we 
observe that for node B, the 8 A-independent current source and both branch 
currents I1 and I2 leave node B.

Since that branch current I1 flows from node B to node C, thus

 I V VB C1 1 9= −( ) ( )./ /  (3.194)

Branch current I2 flows from node B to node A. Thus,

 I V VB A2 0 5= −( ) . ./  (3.195)

Branch current I3 flows from node A to ground, and

 I VA3 0 25= / . ,  (3.196)

Figure 3.35  Circuit for Example 3.19: nodal method containing dependent sources.
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we can establish the two nodal equations:

at Node A:

 10 0 25 0 5= − −V V VA B A/ /. ( ) .  (3.197)

and

at Node B:

 − = − + −8 1 9 0 5( ) ( ) . .V V V VB C B A/ / /  (3.198)

Now, regrouping equations and finding the inverses of the resistances in Equa-
tions (3.197) and (3.198), we obtain the nodal equations for the circuit:

 Node A V VA B : 10 4 2 2= + −( ) .  (3.199)

 Node B V V VA B C : − = − + + −8 2 9 2 9( )  (3.200)

Note that Equations (3.199) and (3.200) are two equations with three unknown 
nodal voltages: VA, VB, and VC. Again by inspection of the circuit of Figure 3.35 
we can write one constraint equation that relates nodal voltage VC to the 
dependent source voltage V:

By inspection of the circuit we can see that

 10 V = VC.  (3.201)

 VA = − =10 9 V V  V.  (3.202)

And

 V V VC A= − .  (3.203)

Using Equations (3.201) and (3.202) into Equations (3.199) and (3.200) and 
solving for the nodal voltages we get

 VA = 2 2381. .V  (3.204)

 VB = 1 71429. .V  (3.205)

 VC = 2 4867. .V  (3.206)

And since V = VC − VA from Equation (3.203),

 V V= − =2 48677 2 2381 0 24867. . . .  (3.207)

Now that we have all the nodal voltages, the calculation of the branch currents 
easily follows:
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3.6.4.1  Commentary  on  Nodal  Analysis  Note that given a circuit with 
only current sources and “n” nodes, there are “n − 1” necessary and sufficient 
linearly independent nodal equations required to find the n nodal voltages. 
However, if there are any voltage sources in the circuit, this creates so-called 
super-nodes. Each super-node voltage source reduces the number of nodal volt-
ages by one per source. Finally, if the circuit contains at least one dependent 
source, the resistance matrix will not be symmetrical like it is in the case of a 
passive circuit. A passive circuit only contains resistors (additionally capacitors 
and inductors if it is an AC circuit) and independent sources.

3.7  WHICH ONE IS THE BEST METHOD?

We looked at the following circuit theorems and methods of analysis:

1. Superposition theorem
2. Thévenin theorem
3. Norton theorem
4. Source transformations
5. Mesh method of analysis
6. Nodal method of analysis

It is strictly the user, you, who has to make a decision of what method to use. 
Not everyone will necessarily agree that one method is better than another one. 
However, it is true, if one is comfortable using any of the methods presented, 
equally well, sometimes using one method instead of another one can really 
speed up the circuit solving process, particularly when this is done by hand.

3.7.1  Superposition Theorem Highlights

It is a divide-and-conquer approach. Given a circuit with multiple independent 
current or voltage sources, one is able to calculate the effect of all sources by 

 I1 6 95238= − . .A  (3.208)

 I2 1 04762= − . .A  (3.209)

 I3 8 95238= . .A  (3.210)

 I4 22 5132= . .A  (3.211)

The current through the 25-V independent voltage source is: 14.5132 A and the 
current through the voltage-controlled voltage source 10 V is 5.56085 A.

The reader is strongly encouraged to apply KCL to each node of the circuit 
of Figure 3.35 to validate that the calculated currents are correct.
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enabling one source at a time while inhibiting all other ones. This is repeated 
until every source was enabled in a mutually exclusive fashion. The algebraic 
sum of the individual effects leads to the composite result, that is, as if all the 
sources were applied simultaneously. This method only works with linear cir-
cuits, usually the majority of circuits that we will be dealing with, but be careful 
it is not all of them (e.g., a diode is a nonlinear device). Superposition of power 
quantities does not apply even if the circuit is linear. The applicability of super-
position applies to the currents and voltages of linear circuits. The most inter-
esting feature of superposition is that one solves a larger number of problems, 
where each problem is easier to solve. Or at least that should be the idea when 
applying this method.

It works with independent and dependent sources, AC and DC voltages and 
currents. However, it is important to note that when applying superposition, 
the dependent sources must not be inhibited like the independent sources are 
(i.e., one at a time); the dependent sources must be left alone. Some Problems 
at the end of the chapter will allow you to practice solving circuits by super-
position with dependent and independent sources.

3.7.2  Thévenin Theorem Highlights

Thévenin theorem allows one to replace a piece of a circuit that we choose, 
with a Thévenin voltage source in series with a Thévenin resistance (or imped-
ance). Many times this simplifies solving the circuit. Thévenin applies to linear 
circuits with independent and dependent voltage and current sources and AC 
and DC voltages and currents. When dealing with dependent sources, just like 
when applying superposition, we do not touch (or inhibit) the dependent 
sources. The reason is that dependent sources have their own control variable. 
Finally, upon slicing a circuit to find its Thévenin equivalent, if the sliced circuit 
contains a dependent voltage or current source, you must make sure that the 
control variables of such sources do not get separated from the circuit being 
Thévenized.

3.7.3  Norton’s Theorem Highlights

Norton’s theorem allows one to replace a piece of a circuit that we choose, 
with a Norton current source in parallel with a Norton resistance (or imped-
ance). The Norton resistance is calculated in exactly the same way as the 
Thévenin resistance. Norton only applies to linear circuits with independent 
and dependent voltage and current sources and AC and DC voltages and cur-
rents. When dealing with dependent sources, just like when applying superpo-
sition, we do not touch (or inhibit) the dependent sources. The reason is that 
dependent sources have their own control variable. Finally, upon slicing a 
circuit to find its Norton equivalent, if the sliced circuit contains a dependent 
voltage or current source, you must make sure that the control variables of 
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such sources do not get separated from the circuit whose Norton equivalent 
is being sought.

3.7.4  Source Transformations Highlights

This method basically derives from the convertibility that exists between inde-
pendent voltage into independent current sources, by applying Thévenin and 
Norton Theorems. An independent voltage source in series with a resistor (or 
impedance) can be converted into an independent current source in parallel 
with the same resistor (or impedance).

So upon solving a circuit with a large number of mixed current and voltage 
sources, it may become convenient to either transform all the current sources 
into voltage sources or vice-versa in order to apply the by-inspection mesh or 
nodal methods. So whether we apply Thévenin, Norton, or source transforma-
tions, it is important to note that the Thévenin resistance (or impedance) is 
identical to the Norton equivalent resistance (or impedance).

3.7.5  Mesh Method of Analysis Highlights

The mesh method applies to circuits that are planar. Recall that a planar circuit 
is one that can be drawn without any branches crossing any other. Beware that 
there are circuits that may appear to be nonplanar; however, redrawing them 
reveals that they are actually planar. This method is more appealing when we 
have voltage sources in the meshes, because it uses KVL as its main method 
of analysis.

This method seems more intuitive and easier to approach with the “by 
inspection method” earlier described, but only when voltage sources are 
present. When current sources are present, it reduces the number of mesh 
equations by one per current source. The mesh method with both voltage and 
current sources also has a by inspection method, but we do not cover this on 
this text. The by-inspection method with voltage and current sources is some-
what more complicated to memorize. The mesh method applies when there 
are dependent sources as well. Finally, it can be said that the mesh method is 
usually an attractive choice when the number of meshes is small.

3.7.6  Nodal Method of Analysis Highlights

The nodal method is a more general method than the mesh method. The nodal 
method applies to planar and nonplanar circuits. This method is more appeal-
ing to use when the circuit contains current sources because it fundamentally 
uses KCL for the analysis. The method, however, is also applicable when there 
are voltage sources. This creates a reduction in the number of nodal equations 
of one by voltage source. There is also a by inspection nodal method which is 
intuitive and easier to apply when only current sources are present. The by 
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Figure 3.36  Circuit example to be solved by six different methods.
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inspection nodal method also exists for current and voltage sources but it is 
less intuitive to apply, thus we do not cover it.

3.8  USING ALL THE METHODS

To help determine which method is more effective, the circuit of Figure 3.36 
will be solved by all six methods covered throughout this chapter. These are: 
superposition, Thévenin, Norton, source transformations, mesh, and nodal.

3.8.1  Solving Using Superposition

Let us present Example 3.20 to appreciate the different approaches to solving 
circuits using the different methods presented in this chapter. Refer to the 
circuit of Figure 3.36. The problem to solve in this example is to find the value 
of the nodal voltage A with respect to ground.

Example 3.20 Solving the Circuit of Figure 3.36 by Superposition
This is a circuit with three independent voltage sources and three resistors. 
Solving this problem by superposition takes three steps to disable one source 
at a time and calculating the value of voltage A. In a fourth and last step, we 
calculate the composite solution by obtaining the algebraic sum of the three 
previous results.

Proceeding with this problem, we break this circuit down into three simpler 
circuits. Refer to Figure 3.37 parts a, b, and c.
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Figure 3.37  Solving circuit of Example 3.20 by superposition: (a) only source V1 is present; 
(b) only source V2 is present; (c) only source V3 is present.
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Circuit of Figure 3.37a is the original circuit powered by source V1, while 
sources V2 and V3 are inhibited (replaced with short circuits). The circuit of b 
is powered by source V2 while V1 and V3 are inhibited. Finally, the circuit of c 
is powered by source V3, while V1 and V2 are inhibited.

So for the circuit of Figure 3.37a we have

 V V R R R R RA due to V| [ )]( ).1 1 1 2 3 2 3= +/( // //  (3.212)

Equation (3.212) tells us that voltage VA is the voltage across the parallel of 
resistors R2 and R3. The current through the circuit is the voltage V1 divided 
by the series combination of R1 and (R2//R3), thus we arrive at Equation 
(3.212). R2//R3 is short-hand notation for the calculation of R2 in parallel with 
R3. Plugging in the component values from Figure 3.37a into Equation (3.212) 
we get

 VA due to V| [ . )]( . ) .1 3 2 0 5 1 0 5 1 3 7= + =/( // // / V  (3.213)

For the circuit of Figure 3.37b, the reasoning is similar as the case before. Thus,

 V V R R R R RA due to V| [ )]( )2 2 2 1 3 1 3= +/( // //  (3.214)

Plugging in the component values from Figure 3.37b into Equation (3.214) 
we get:

 VA due to V| [ ( . )]( ) .2 6 0 5 2 1 2 1 24 7= + =/ // // / V  (3.215)

For the circuit of Figure 3.37c, the reasoning is similar as the case before.  
Thus,

 V V R R R R RA due to V| [ ( )]( ).3 3 3 1 2 1 2= +/ // //  (3.216)

Plugging in the component values from Figure 3.37c into Equation (3.216)  
we get

 VA due to V| [ ( . )]( . ) .3 4 1 2 0 5 2 0 5 8 7= + =/ // // / V  (3.217)

 V V V VA = = =3 7 0 01 2 3/ V due to excitation when and, .  (3.218)

 V V V VA = = =24 7 0 02 3/ V due to excitation when and1, .  (3.219)

 V V V VA = = =8 7 0 03 1 2/ V due to excitation when and, ,  (3.220)

Adding all three voltages at node A, due to voltage excitations V1, V2, and V3 
we obtain

 V V VA due to V A due to V A due to V| | | .1 2 3 3 7 24 7 8 7 5+ + = + + =/ / / V  (3.221)
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Note: In this particular case, because all the voltages are positive, there is no 
difference between their sum and their algebraic sum.

Since VA is known, it is now easy to find branch currents I1, I2. and I3.

 I V V RA1 1 1 3 5 2 1= − = − = −( ) ( ) ./ / A  (3.222)

 I V V RA2 2 2 6 5 0 5 2= − = − =( ) ( ) . ./ / A  (3.223)

 I V V RA3 3 3 4 5 1 1= − = − = −( ) ( ) ./ / A  (3.224)

Referring back to the circuit of Figure 3.36 note that current I2 is positive; thus, 
it flows in the same direction assumed in the circuit. Currents I1 and I3 flow in 
the opposite direction than the one originally assumed. This is consistent with 
the fact that VA = 5 V, which is smaller than V2 but it is higher than V1 and V3. 
Remember, current flows from high voltages to lower voltages, and its flow is 
considered positive.

3.8.2  Example 3.21: Solving the Circuit of Figure 3.36 by Thévenin

Now let us analyze the same circuit of Figure 3.36 using Thévenin’s theorem. 
We refer to the step-by-step procedure following the circuits in Figures 3.38 and 
3.39. So the first thing we do is to slice the original circuit such that one piece is 
to be Thévenized while the remaining circuit will not be touched, initially.

We do exactly that if Figure 3.38a−c, respectively, show the circuits to cal-
culate the Thévenin voltage and resistance.

Figure 3.38a shows the calculated Thévenin voltage and resistance, of 16/3 V 
and 1/3 Ω, respectively.

The calculation of VTh simply is the open-circuit voltage at terminals A and 
B of the circuit of Figure 3.38a. Note that this circuit is a single mesh circuit 
and applying KVL to it we obtain

 V V I R Rmesh2 3 2 3− = +( )  (3.225)

and

 V V I RTh mesh= −2 2.  (3.226)

Solving Equations (3.225) and (3.226) we obtain that

 Imesh = − + =( ) ( . ) .6 4 0 5 1 4 3/ / A  (3.227)

Thus, from Equation (3.226),

 VTh = − = − =6 4 3 1 2 6 2 3 16 3( )( ) ./ / / / V  (3.228)

From Figure 3.38c we see that RTh is the parallel of R2 and R3; that is, RTh = 1/3 Ω.
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Figure 3.38  Example 3.21: (a) circuit to be Thévenized; (b) circuit used to find VTh; (c) circuit 
used to find RTh.
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Figure 3.39 shows the final steps, the Thévenin equivalent circuit, and the 
attachment of the Thévenized circuit to the portion of the circuit that was not 
Thévenized.

The only things left are to apply KVL to the circuit of Figure 3.39b  
which is

 V V I R RTh Final Th− = +1 1( ),  (3.229)

Figure 3.39  (a) The Thévenin equivalent; (b) the Thévenin equivalent circuit reattached to the 
left side of the sliced circuit, which was not Thévenized.
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and calculate the voltage across nodes A and B.

 V V I RAB Th Final Th= − .  (3.230)

Now using the numerical values for the terms of Equation (3.230) inspecting 
Figure 3.39b it yields

 IFinal = 1 A.  (3.231)

and

 VAB = 5 V.  (3.232)

3.8.3  Example 3.22: Solving the Circuit of Figure 3.36 by Norton

In a similar fashion, the original circuit of Figure 3.36 can be solved using 
Norton’s theorem. We use Figures 3.40 and 3.41 to follow the step-by-step 
process. We slice the circuit to which we will apply Norton in Figure 3.40a. The 
circuit to which Norton will be applied is on the right-hand side of the dotted 
line. Next we compute the short-circuit current, that is, the Norton current IN 
seen on the circuit of Figure 3.40b, and calculate the Norton resistance with 
the circuit of Figure 3.40c. The Norton current of Figure 3.40b can be calcu-
lated using any other method of choice. You may choose to use KCL and state 
that the Norton or short-circuit current IN of Figure 3.40b is

 I V R V RN = +2 2 3 3/ / ,  (3.233)

which numerically yields

 IN = 16 A.  (3.234)

Note that the above takes into account that the voltage at node A is identical 
to the voltage at Ground or 0 V. Why? Because nodes A and Ground are tied 
together by a wire of zero resistance, thus both nodes are really the same  
node and they are at the same voltage level. Now looking at Figure 3.40c, the 
Norton resistance is the parallel equivalent of R2 and R3 and it is RN = 1/3 Ω. 
Recall that to calculate the Norton resistance, we short-circuit voltage  
sources and open-circuit current sources. Our example only has two voltage 
sources V1 and V2, which are short-circuited to calculate the Norton resistance, 
Figure 3.40c.

Moving now to Figure 3.41 we draw the Norton equivalent circuit attached 
to the left-hand side of the original circuit that was left alone at slicing time, 
see Figure 3.40a. We use KCL at node A and state that

 ( ) .V V R V RA A N1 1 16− + =/ /  (3.235)
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Plugging numerical values into Equation (3.235) it yields that

 VA = 5 V.  (3.236)

Note that in the circuit of Figure 3.40, VA is now zero because node A is 
grounded; refer to Figure 3.40b.

Figure 3.40  Example 3.22: (a) slicing the circuit; (b) calculating the Norton current; (c) calcu-
lating the Norton resistance.
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As a final step, we can apply a source transformation to the series circuit 
formed by V1 and resistor R1 of Figure 3.41. This last step, not shown in Figure 
3.40, will convert the entire circuit into a single current source in parallel with 
a single resistor.

Drill Problem: Derive the above final step in Example 3.22, using Figure 3.41. 

3.8.4  Example 3.23: Solving the Circuit of Figure 3.36 Using  
Source Transformations

Referring again to the original circuit of Figure 3.36, it is easy to see that we 
have three voltage sources in series with a resistor. Applying Thévenin’s to 
Norton’s source transformation to each source and its resistor in series, we 
convert them into a current source in parallel with a resistor.

The equations to do this are:

 I V RN 1 1 1 3 2 1 5= = =/ / A. .  (3.237)

 I V RN 2 2 2 6 0 5 12= = =/ / A. .  (3.238)

 I V RN 3 3 3 4 1 4= = =/ / A.  (3.239)

The resistances in parallel with each one of the Norton current sources are 
the same resistors that were in series with each voltage source.

From Figure 3.42a we see that the parallel independent current sources 
equal to their algebraic sum of currents. The resistors in parallel are combined 
into a single parallel equivalent resistor, shown in Figure 3.42b

Thus, the total resulting current is obtained adding Equations (3.237) 
through (3.239), and this is

 I I I IN N N Ntotal1 2 3 17 5+ + = = . .A  (3.240)

Figure 3.41  Example 3.22: Norton equivalent circuit attached to original circuit left out.
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The total equivalent parallel resistance, that is, 2 Ω in parallel with 0.5 Ω and 
in parallel with 1 Ω equals

 R R R Rpar equiv- // // // // /= = =1 2 3 2 0 5 1 2 7. Ω  (3.241)

and the nodal voltage,

 V I RA Thtotal par equiv= =- V5 .  (3.242)

Note: The operator “//” stands for parallel equivalent resistor: so that a//b is 
equal to: (ab)/(a + b).

Figure  3.42  (a) Voltage source to current source transformation of circuit of Figure 3.36; 
(b) Norton resistance.
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3.8.5  Example 3.24: Solving the Circuit of Figure 3.36 Using  
the Mesh Method

The circuit of Figure 3.36 is repeated in Figure 3.43. In addition to the original 
information two mesh currents IM1 and IM2 have been arbitrarily defined. Note 
that IM1 was chosen to flow in the counter clockwise direction in mesh 1. IM2 
was chosen to flow in the clockwise direction in mesh 2. Now we can start 
writing the mesh equations for this circuit.

 Mesh 1 2 1 1 2 2 1 1: ( )V V I I R I RM M M− = + +  (3.243)

 Mesh 2 2 3 2 1 2 2 3: ( ) .V V I I R I RM M M− = + +  (3.244)

Distributing and regrouping Equations (3.243) and (3.244) by mesh currents 
we obtain

 Mesh 1 2 1 1 1 2 2 2: ( )V V I R R I RM M− = + +  (3.245)

 Mesh 2 2 3 1 2 2 2 3: ( ).V V I R I R RM M− = + +  (3.246)

Important observation: In Equations (3.245) and (3.246) the IM2R2 and IM1R2 
terms have a positive sign because both mesh currents IM1 and IM2 flow through 
R2, the common element between both meshes, in the same direction. We could 
have also obtained Equations (3.245) and (3.246) directly by inspection of the 
circuit in Figure 3.43.

We plug into Equations (3.245) and (3.246) the values from Figure 3.43  
and get

Figure 3.43  Circuit of Figure 3.36 solved by the mesh method.

A

V = Reference Node Voltage = 0 V = GROUNDREF

IM1 M2IR1 = 2 Ω R2 = 0.5 Ω R3 = 1 Ω

V2 = 6 VV1 = 3 V V3 = 4 V
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 6 3 2 0 5 0 51 2− = + +I IM M( . ) . .  (3.247)

 6 4 0 5 1 51 2− = +I IM M. . .  (3.248)

Solving Equations (3.247) and (3.248) for IM1 and IM2 we obtain

 IM1 1= A.  (3.249)

 IM 2 1= A.  (3.250)

Finally, by inspection of the circuit of Figure 3.43 we see that

 V V I I RA M M= − +2 1 2 2( ) .  (3.251)

And again plugging the values from Figure 3.43 and from Equations (3.249) 
and (3.250) we obtain

 VA = 5 V.  (3.252)

3.8.6  Example 3.25: Solving the Circuit of Figure 3.36 Using  
the Nodal Method

Figure 3.44 addresses the solving of this circuit by the nodal method. Note that 
the circuit of Figure 3.44 has actually four nodes (A, B, C, D, and VREF). But 
fortunately, the nodal voltages at nodes B, C, D with respect to VREF are 
known. That is,

Figure 3.44  Solving the circuit of Figure 3.36 using the nodal method.
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 V VB = =1 3 V.  (3.253)

 V VC = =2 6 V.  (3.254)

 V VD = =3 4 V.  (3.255)

So in actuality there is one nonreference node and an unknown nodal volt-
age VA.

Nodes B, C, D are super nodes, and we can state the single nodal equation 
needed to solve VA. By inspection of the circuit of Figure 3.44, the single nodal 
equation is

 ( ) ( ) ( ) .V V R V V R V V RA A A− + − + − =1 1 2 2 3 3 0/ / /  (3.256)

Now plugging the values from Figure 3.44 into Equation (3.256) it yields

 ( ) ( ) . ( ) .V V VA A A− + − + − =3 2 6 0 5 4 1 0/ / /  (3.257)

Solving for VA we obtain that

 VA = 5 V.  (3.258)

3.9  SUMMARY AND CONCLUSIONS

After all six methods have been used, the reader is encouraged to go over 
them at least one more time to understand each of the techniques used. 
Leaving personal preferences aside, the nodal and the source transformation 
methods are quite brief and powerful. For example, look at the single Equation 
(3.257) used with the nodal method. The nodal method allows one to solve the 
problem with a single nodal equation because of the presence of super nodes. 
The source transformation method allows solving the problem with simple 
arithmetic. Now whether one can state that these two are the easiest methods 
is a different story. Clearly, superposition breaks down a single problem into 
three simpler ones. In some ways this introduces more opportunity to make 
an arithmetic error. Thévenin and Norton are not so bad. Finally, the mesh 
method allows us to solve for voltage VA writing two equations. Ultimately, it 
is the reader who can clearly state which is the easiest and fastest method to 
apply for him or her, this becoming more of a personal preference and not an 
absolute fact.
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Figure 3.45  Circuit for Problem 3.1.
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PROBLEMS

3.1 For the circuit in Figure 3.45 determine using the superposition method: 
(1) Current delivered by the current source I, (2) voltage across resistor 
R, (3) current through resistor R, (4) voltage across current source I, (5) 
power delivered by voltage source V, (6) power delivered by current 
source I, (7) power consumed by resistor R.

3.2 For the circuit in Figure 3.46 determine using the superposition method 
the power consumed by resistors R1, R2, and R3, and the power delivered 
by voltage sources V1, V2, and V3.

3.3 For the circuit given in Figure 3.47, find the voltage value at node A 
using superposition. Note that the circuit has two independent voltage 
sources and one voltage-controlled voltage source (VCVS). Hint: When 
you apply superposition, eliminate the independent sources one at a 
time. Never eliminate the dependent source and its control voltage.
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Figure 3.46  Circuit for Problem 3.2.
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Figure 3.47  Circuit for Problem 3.3.
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3.4 For the circuit given in Figure 3.48, find the voltage at node A using 
superposition. Note that the circuit has two independent sources and 
one VCVS. Hint: When you apply superposition, eliminate the indepen-
dent sources one at a time. Never eliminate the dependent source and 
its control voltage or current.
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Figure 3.48  Circuit for Problem 3.4.
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Figure 3.49  Circuit for Problem 3.5.
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3.5 For the circuit given in Figure 3.49, find the voltage between node A 
and ground. Apply any circuit solving method of your preference.

3.6 For the circuit given in Figure 3.50, calculate the power consumed by 
load resistor RL = 2 Ω.

3.7 Using the circuit of Figure 3.46 and assuming that V2 = 0 V, recalculate 
using any circuit analysis method the power consumed by resistors R1, 
R2, and R3, and the power delivered by voltage sources V1, and V3.

3.8 Using the circuit of Figure 3.51, apply any circuit analysis method to 
determine current I3 through resistor R3. Hint: This problem is much 
simpler than what it appears to be.
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Figure 3.50  Circuit for Problem 3.6.
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Figure 3.51  Circuit for Problem 3.8.
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3.9 Using the circuit of Figure 3.52, apply Thévenin’s method as many times 
as needed, to find current I4 through resistor R4.

3.10 Using the circuit of Figure 3.52, find current I4 through resistor R4 trans-
forming all voltage sources to current sources and applying KCL.

3.11 Using the circuit of Figure 3.52, find current I4 through resistor R4 using 
superposition.

3.12 Using the circuit of Figure 3.52, find current I4 through resistor R4 using 
source transformations. Hint: Convert voltage sources into current 
sources and apply KCL.

3.13 Using the circuit of Figure 3.53, find the voltage across and current 
through every resistor, that is, R1 through R4.
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Figure 3.52  Circuit for Problems 3.9 through 3.12.
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Figure 3.53  Circuit for Problem 3.13.
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3.14 Calculate the total power delivered by all sources and consumed by all 
resistors in the circuit of Figure 3.54. Hint: There may be situations when 
a source does not deliver power, because it is being charged by some 
other source in the circuit. Question: Is that the case for this example? 
Justify your answer.

3.15 Find branch currents I1, I2, and I3 of the circuit of Figure 3.55.

3.16 Apply mesh analysis to calculate branch currents I1, I2, and I3 of the 
circuit of Figure 3.56.



Figure 3.54  Circuit for Problem 3.14.
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Figure 3.55  Circuit for Problem 3.15.
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Figure 3.56  Circuit for Problem 3.16.
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Figure 3.57  Circuit for Problem 3.17.

V1 VV2 3

2 A 5 A 1 A

10 A

R1 = 9 Ω

R2 = 3 Ω

R4 = 6 Ω

R5 = 1 Ω 

R3 = 10 Ω
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3.17 Apply nodal analysis to calculate node voltages V1, V2, and V3 of the 
circuit of Figure 3.57.

3.18 Apply nodal analysis to calculate node voltages V1 and V2 of the circuit 
of Figure 3.58.

3.19 Apply Norton’s analysis to calculate node voltages V1 and V2 of the 
circuit of Figure 3.58.

3.20 Applying superposition calculate node voltages V1 and V2 of the circuit 
of Figure 3.58.
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4
FIRST- AND SECOND-

ORDER CIRCUITS  
UNDER SINUSOIDAL  

AND STEP EXCITATIONS

4.1  INTRODUCTION

First-order circuits are very important in electrical and electronic engineering. 
Many higher order circuits can be reduced to a first-order circuit. Analyzing 
the behavior either in the time or in the frequency domains of a first-order 
circuit is unquestionably simpler than analyzing that of a higher order circuit. 
Essentially, first-order circuits have a single energy storage device. Such  
devices can be either a capacitor or an inductor. Examples of circuits that  
can be reduced to first-order circuits under certain conditions are electronic 
amplifiers, operational amplifiers, servomechanisms, electric motors, and other 
control networks.

Let us present an example of a first-order circuit.

Example 4.1 RL Series First-Order Circuit
Given a circuit that contains one resistor in series with an inductor, such as 
the one shown in Figure 4.1, we can calculate the output voltage to input 
voltage ratio as a function of frequency. Such ratio of voltages in the frequency 
domain is commonly referred to as H(jω), where H(jω) is called the circuit 
transfer function.

 H j j j( ) ( ) ( ).ω ω ω= V Vout in/  (4.1)

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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Previously reviewing the material from Chapter 3 on AC analysis we can easily 
calculate H(jω) for the circuit in Figure 4.1.

The current in the RL circuit is calculated as follows:

 I V= +in R j L/( )ω ,  (4.2)

where I and Vin are respectively the current and voltage phasors of the circuit.
Now the output voltage Vout is calculated by multiplying the circuit current 

times the impedance or reactance of inductor L. Thus, we obtain

 V Vout in( ) ( ) ( ).j j j L R j Lω ω ω ω/ /= +  (4.3)

And finally, our transfer function is

 H j j j j L R j L( ) ( ) ( ) ( ).ω ω ω ω ω= = +V Vout in/ /  (4.4)

Furthermore, rationalizing the denominator, that is, multiplying numerator 
and denominator of Equation (4.4) by the complex conjugate of the denomi-
nator, (R − jω L), we obtain

 H( )
( )

j
L j RL

R L
ω ω ω

ω
=

+
+

=
2 2

2 2  (4.5)

 =
+

+
+

ω
ω

ω
ω

2 2

2 2 2 2

L
R L

j
RL

R L( ) ( )
 (4.6)

Equation (4.6) is of the form a + jb where the terms a and jb are frequency 
dependent. Additionally term jb is of inductive nature.

We can also write the time domain circuit equation for the circuit of Figure 
4.1; this leads to

Figure 4.1  Circuit for Example 4.1, a first-order series RL circuit.
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4.2  THE FIRST-ORDER RC LOW-PASS FILTER (LPF)

Let us investigate the RC circuit of Figure 4.2. This circuit is excited by a 
sinusoidal voltage waveform. Elements R and C are in series, the input voltage 
is applied to the two elements in series, the output is taken across the capacitor 
terminals.

4.2.1  Frequency Domain Analysis

Let us calculate the transfer function of this circuit:

 H /( ) ( ) ( ).j j jω ω ω= V Vout in  (4.8)

The impedance of the resistor and capacitor in series is

 Z j R j Cseries ( ) .ω ω= + 1/  (4.9)

Figure 4.2  First-order RC low-pass filter.
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 v t i t R L
di t
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in ( ) ( )

( )
,= +  (4.7)

where vin(t) is the excitation, i(t) is the current through the circuit, i(t)R is the 
voltage drop across the resistor, and L d i(t)/dt is the voltage drop across the 
inductor.

Equation (4.7) is the time domain first-order differential equation that 
describes the circuit on hand.

The highest derivative in a differential equation determines the order of 
the differential equation.
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Then the current through the circuit is

 Vin( ) ( ).j Z jseriesω ω/  (4.10)

The above current times the impedance or reactive capacitance of the capaci-
tor 1/jωC equals the output voltage Vout (jω), thus we get

 H( )
( )
( )

.j
V j
V j j RC

out

in

ω ω
ω ω

= =
+

1
1

 (4.11)

Remember that from Chapter 3, ω is the angular frequency, which equals 2πf, 
where f is the frequency of the sinusoidal waveform in hertz.

Equation (4.11) describes the ratio of output voltage to input voltage of the 
RC circuit given by Figure 4.2, again referred to as the circuit transfer function 
in the frequency domain.

So let us now construct a table to plot the values of the transfer function 
H(jω) for a given R and a given C. The product

 RC  (4.12)

is referred to as the circuit time constant. We will plot the transfer function of 
Equation (4.11) using two separate plots. One plot is for its magnitude, and 
the second plot for its phase, both are functions of frequency. Note that trans-
fer function of Equation (4.11) is a complex quantity and as such, it has mag-
nitude and phase.

4.2.2  Brief Introduction to Gain and the Decibel (dB)

It is common in circuit theory to refer to the output to input voltage ratio as 
the gain of the circuit. In the case of a first-order RC LPF circuit, such gain is 
always one* or less than one. Active circuits are those circuits containing 
operational amplifiers or transistors that usually are designed to have a gain 
larger than one. More on active circuits will be covered in Chapter 6.

When the gain is greater than 1, it is referred to as gain, but when the 
gain is less than 1, it is sometimes referred to as attenuation, or simply as a 
less-than-one gain. Passive first-order circuits have gains that are one or strictly 
less than 1.

When we talk about gain without any units associated to it, it is simply a 
ratio of voltages, thus it has no units because gain units are volts/volts. In circuit 
analysis, it is very common to define a new unit for gain and attenuation called 
the decibel (dB).

* Mathematically speaking, the gain of an RC circuit may be very close to 1, but it is never exactly 
1. In practical terms the gain is 1 for frequencies one-tenth of the cutoff frequency and below.
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The decibel is defined as follows for a ratio of voltages:

 Gain in dB log V Vout in= 20 10 / .  (4.13)

It is important to mention that the argument of a decimal log must be a posi-
tive number. The log of a number less than or equal to zero is undefined.

So note that the gain (without units or in volts/volts), is also referred to, as 
the linear gain of a circuit. For example, given a circuit with a linear gain of 
10, by virtue of Equation (4.13) the gain in dB becomes:

 20 10 1 2010log ( ) ./ dB=  (4.14)

For a circuit whose linear gain is 0.1, or an attenuation of 10, the gain in dB 
becomes:

 20 1 10 2010log ( ) ./ dB= −  (4.15)

So from Equations (4.14) and (4.15) larger than one gains have units of posi-
tive decibels, while attenuations are always given in negative decibels. Note 
that a linear gain of 1 is:

 0 20 1 110dB /= log ( ).  (4.16)

When we refer to a circuit with a gain of 1 or a gain of zero dB, we are talking 
about the exact same thing.

To summarize the relation between linear gain and logarithmic or gain in 
decibel we develop Table 4.1.

Positive linear gains are above 1 and negative linear gains are below 1. On 
the other hand, following Table 4.1, a −20 dB and a −40 dB gains can also be 
referred to as 20 dB and 40 dB attenuations, respectively.

Table 4.1  Relationship between linear 
gain or attenuation and gain in decibel

Linear Gain (V/V) Gain (dB)

0.01 −40
0.1 −20
1 0

10 20
100 40

1,000 60
10,000 80

100,000 100
1,000,000 120
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Example 4.2 Bode Plots of an RC LPF Transfer Function
Continuing with the circuit given in Figure 4.2 with transfer function given by 
Equation (4.11), the transfer function is repeated below for the reader’s 
convenience:

 H j
V j
V j j RC

out

in

( )
( )
( )

.ω ω
ω ω

= =
+

1
1

 (4.17)

We define a new term, the cutoff angular frequency ω0 in radians per second 
and the cutoff frequency f0 in hertz, as

 ω0 1= /RC,  (4.18)

where:

 ω π0 02= f .  (4.19)

4.2.3  RC LPF Magnitude and Phase Bode Plots

Since gains may range from very small to very large values, plotting the gain 
in decibel is very advantageous. A very large range of gains, for example from 
0.01 to 100,000 V/V, looks somewhat cumbersome when plotted in a linear 
scale. The gains are extremely compressed at low gain values and extremely 
expanded for large gain values.

To more evenly distribute the gain along the height of the y-axis the mag-
nitude of the gain is plotted in decibel. Since the decibel is a logarithmic func-
tion, plotting gain in decibel is effectively gain in a logarithmic scale. Plotting 
the gain values in decibel (e.g., −40 dB for a linear gain of 0.01 and +100 dB 
for a linear gain of 100,000) allows the plot to have the same amount of verti-
cal space allocated to display all the values of gain.

The horizontal axis of the magnitude Bode plot is frequency. Similarly  
to what is done to gain, frequency is plotted in logarithmic scale. So if we  
are interested in plotting the gain as a function of frequencies from 0.01 Hz 
to 100 kHz, the x-axis is scaled logarithmically. Doing this allows us to see 
the frequency range in a decompressed fashion. Plotting the frequency as a 
linear quantity would make the frequency axis very compressed at low fre-
quencies and greatly expanded at high frequencies. So for all practical pur-
poses, a Bode magnitude plot displays decibel linearly and frequency 
logarithmically; thus, it is a semi-log plot; but since the decibel is a logarithmic 
function, the magnitude plot is a log-log plot for gain in decibel versus fre-
quency in hertz.

The phase portion of the Bode plot of a transfer function displays degrees 
in the vertical axis and logarithmic frequency along the x-axis. Degrees are 
always plotted in a linear scale, because the range of degrees is in general not 
very large as gains or frequencies are.
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Now let us assume that our filter has a cutoff frequency f0 of 1 KHz, thus from 
combining Equations (4.18) and (4.19) we obtain

 f RC0 1 2= / π  (4.20)

and from Equation (4.20)

 RC f= =1 2 159 1550/ sπ . .µ  (4.21)

From Equation (4.18) the term RC is known as the circuit time constant τ 
(Greek letter tau) and its units are ohms multiplied by farads, which lead to 
time in seconds in the SI system of units (see Chapter 1).

For our particular example,

 τ = 159 155. .µs  (4.22)

Important Point
The time constant τ of the circuit, that is, the RC product, determines the 
circuit frequency behavior.

The cutoff frequency of the circuit f0 is a very important characteristic of a 
circuit, as we will see shortly.

Now we can rewrite Equation (4.17) using ω0 and this becomes

 H j
V j
V j j jf f

out

in

( )
( )
( )

.ω ω
ω ω ω

= =
+

=
+

1
1

1
10 0/ /

Since the cutoff frequency of the circuit is 1 kHz, we will pick to start plotting 
the Bode plots from frequencies much smaller than the cutoff frequency. In 
our case we will start at 1 Hz, somewhat arbitrarily we pick a high end fre-
quency of 1 MHz.

Let us construct a table listing frequency on the leftmost column followed 
by the linear magnitude of our transfer function and a third and last column 
with the phase angle of our transfer function. Remember that the transfer 
function of interest given by Equation (4.11) is a complex number that has a 
magnitude and a phase.

The magnitude is

 H j
j RC j RC RC

ω
ω ω ω

( ) =
+

=
+

=
+

1
1

1
1

1

1 2( )
 (4.23)

and since 1/RC = ω0 from Equation (4.18), simply becomes

 H jω
ω ω

( ) =
+

1

1 2
0( / )

.  (4.24)
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The phase of Equation (4.11) is

 ∠ = −H /( ) arctan( ).jω ω ω0  (4.25)

So our Table 4.2 follows:
Table 4.2 lists frequencies in the leftmost column, the magnitude as a dimen-

sionless number (volts/volts) in the center column and the phase in degrees in 
the rightmost column. In electronics the preferred way of displaying magni-
tude is in decibel. The output to input voltage ratio, which we will refer to as 
a gain, is usually expressed in decibels. A decibel was defined by Equation 
(4.13), which we repeat for the reader’s convenience.

 V V in dB log V Vout in out in/ /= 20 10 .  (4.26)

We can easily verify using Equation (4.26) that for a gain ratio of 1 the gain 
in decibel equals 0 dB; for a gain ratio of 10, the gain equals 20 dB; a gain ratio 
of 100, the gain equals 40 dB; and a for gain ratio of 1000 equals 60 dB. So for 
every order of magnitude that the gain goes up, the gain in decibel goes up by 
20 dB. On the other hand, for a gain of 0.1, the gain in decibel equals −20 dB, 
for 0.01 it equals −40 dB, for 0.001 it equals −60 dB, and so on.

Figure 4.3 depicts the magnitude and phase Bode plots of the RC LPF 
tabulated in Table 4.2.

Important Points
For a first-order RC LPF circuit, the gain is close to 0 dB at frequencies below 
one-tenth of the cutoff frequency f0.

For a first-order RC LPF circuit the gain at the cutoff frequency f0 is 
−3.01 dB.

For a first-order RC LPF, the circuit the gain drops at a rate of −20 dB 
per decade from its cutoff frequency. This is to say that the gain drops by 
20 dB for a frequency 10 times f0, it drops another 20 dB for a frequency 100 
times f0, another 20 dB for a frequency 1000 times f0, and so on. (Refer to 
Table 4.3.)

Table 4.2  RC LPF transfer function: magnitude and phase as a function of frequency

Frequency (Hz) Linear Gain (V/V) Phase (Degrees)

1.000 0.999999500 −0.05729576
10.000 0.999950007 −0.57293870

100.000 0.995037481 −5.71059313
1,000.000 0.707117209 −44.99999998

10,000.000 0.099506625 −84.28940686
100,000.000 0.009999795 −89.42706130

1,000,000.000 0.001000029 −89.94270424



THE FIRST-ORDER RC LOW-PASS FILTER (LPF)  241

The frequency axis does not have a zero or origin of frequencies because 
log of zero is nonexistent. The lowest frequency can be represented with a 
value as small as we desire, but not with zero.

Frequency is represented logarithmically for both magnitude and phase 
plots.

The magnitude or gain in decibel is represented linearly. There is a 0 dB 
origin for the vertical axis because the scale is linear in decibels.

The phase in degrees is represented linearly on the vertical axis.
The phase of an RC LPF is approximately 0° at frequencies below 1/10 

of f0. The phase of an RC LPF is approximately −90° at frequencies larger 
than 10 f0. At f0 the phase equals −45°.

Although the definition of the decibel may initially seem capricious, it is actu-
ally a better way that allows us to visualize the growth or the decay of the gain 
in a magnitude plot.

From the calculation in Table 4.2 we will build Table 4.3 that will contain 
the magnitude in decibels. Frequency, magnitude (linear gain), and phase are 
shown with a generous number of decimal places.

4.2.4  RC LPF Drawing a Bode Plot Using Just the Asymptotes

To draw the asymptotes of the Bode plots of our circuit (Fig. 4.2) we will 
normalize frequency. Instead of listing on the frequency axis the actual cutoff 

Figure 4.3  Exact magnitude and phase Bode plots of the first-order circuit of Example 4.2.
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frequency value of 1 KHz, we will denote this frequency as f0, so lower fre-
quencies will be a tenth, a one-hundredth, and so on of f0. Similarly, frequencies 
above f0 are 10 times, 100 times, and so on of f0. Figure 4.4 shows these normal-
ized frequencies on the horizontal axis.

From Table 4.3 and Figure 4.3 we see that the magnitude asymptotically 
approaches 0 dB from the cutoff frequency f0 to smaller frequencies. Also from 
the cutoff frequency to higher frequencies, the gain drops at a constant rate 

Figure 4.4  First-order RC LPF asymptotic Bode plots: magnitude and phase.
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of −20 dB per decade. But at the cutoff frequency, the gain is approximately 
−3 dB. In linear terms, this means that the amplitude of the sinusoidal wave-
form that excites the RC circuit becomes attenuated to about 70% from its 
original value. Referring one more time to Table 4.3, we can see that at the 
cutoff frequency f0 the output voltage magnitude is 0.707 of the original input, 
which has a magnitude of 1. That is, the output magnitude is approximately 
70.7% of the input magnitude.

In a similar fashion, we can see that the phase is −45° at f0. One more time 
looking at the phase in Table 4.3, we see that the phase at about one-tenth of 
f0 is −5.7°. And for even lower frequencies, the phase asymptotically approaches 
0°. On the other hand, at a frequency of 10 times f0, the phase is approximately 
5.7° below −90°.

So when Bode plots need to be drawn by hand, drawing its asymptotes is 
the preferred and quickest way of constructing magnitude and phase plots. 
This process not only saves a tremendous amount of number crunching but 
also makes the understanding of the plots more clear. The magnitude and 
phase plots are commonly referred to as the frequency response of the circuit. 
Figure 4.4 shows the asymptotic Bode plots for the circuit of Figure 4.2. Note 
that the gain is 0 dB flat from very low frequencies approximately up to the 
cutoff frequency f0. The second magnitude asymptote simply decays from f0 at 
a rate of −20 dB per decade. Once the magnitude asymptotes are drawn one 
can fill in by hand, the approximated gain curves. It is important to realize that 
the gain at f0 is −3 dB and not 0 dB as Table 4.3 shows.

For the phase, we can also draw its plot using the phase asymptotes. The 
phase is a little bit more involved than the magnitude at least initially. Let us 
start with frequencies well below f0, up to one-tenth of f0, we draw a straight 
line at zero degrees from low frequencies all the way up to 1/10 of f0. At a 
frequency of 10 times f0 the frequency asymptote is a horizontal line at −90 
degrees, starting at 10 f0 continuing at −90° into higher frequencies. From Table 
4.3, we know that at the cutoff frequency f0, the phase is −45°. Looking at 
Figure 4.4, we now draw a straight line of a phase angle of 0 degrees at 1/10 

Table 4.3  RC LPF transfer function: magnitude in dB and phase as a function of 
frequency

Frequency (Hz)
Normalized 

Frequency f/f0

Linear Gain 
(V/V) Gain in dB

Phase 
(Degrees)

1.000 0.001 f0 0.999999500 0.00 −0.05729576
10.000 0.01 f0 0.999950007 0.00 −0.57293870

100.000 0.1 f0 0.995037481 −0.04 −5.71059313
1,000.000 1 f0 0.707117209 −3.01 −44.99999998

10,000.000 10 f0 0.099506625 −20.04 −84.28940686
100,000.000 100 f0 0.009999795 −40.00 −89.42706130

1,000,000.000 1,000 f0 0.001000029 −60.00 −89.94270424
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of f0 all the way to −90° at 10 f0, such that this straight line passes through a 
−45° phase at f0. In this way the phase asymptotes are drawn. Now one can 
draw by hand the approximate phase curves. Note that at 1/10 of f0 and at 10 
f0 the phase is about 5.7° below zero degrees and 5.7° above −90°. Finally, it is 
important to note that the phase curve has an inflexion point at −45°, see 
Figure 4.3.

4.2.5  Interpretation of the RC LPF Bode Plots in the Time Domain

We will use the asymptotically drawn Bode plots to explain the meaning of 
the Bode magnitude and phase plots in terms of sinusoidal inputs applied to 
the RC LPF circuit. The same concepts can be extended to the actual (or exact) 
Bode plots that are tabulated in Table 4.3. So referring to Figure 4.4, the 
asymptotic Bode plots tell us the following:

First let us assume that a sinusoidal waveform of 1 V peak amplitude and 
a frequency of 0.01 f0 is applied to the input of the first-order RC LPF. The 
output voltage waveform that will be observed across the capacitor terminals 
is for all practical purposes equal in magnitude to the input waveform and 
equal in frequency with no phase shift with respect to the input. That is, both 
inputs and outputs have the same magnitude: 1; and both input and output 
sinusoidal waveforms are in phase (phase = 0°). The lower the input waveform 
frequencies with respect to the cutoff frequency of the RC filter, the more 
accurate the preceding statement is. Refer to the numerical values of linear 
gain and gain in dB for frequencies much smaller than f0 in Table 4.3.

Assume now that a sinusoidal input waveform of 1 V peak-amplitude and 
of a frequency f0 (equal to the circuit cutoff frequency) is applied to the input 
of the RC circuit. The output voltage across the capacitor will be a sinusoidal 
waveform of peak amplitude 30.3% smaller than the input amplitude; however, 
it will still be of the same frequency, as the input waveform; but the output 
will be lagging the input by a 45 degree-phase. Forty five degrees is an eight of 
a full sinusoidal cycle.

Let us consider now that a sinusoidal input waveform of 1 V peak-amplitude 
and of a frequency 10 times larger than f0, which is applied to the input of the 
RC circuit. The output voltage across the capacitor will be a sinusoidal wave-
form of peak amplitude 10 times smaller (20 dB) than the input amplitude; 
however, it will still be of the same frequency, as the input waveform; but the 
output will be lagging the input by about −84.3 degrees (almost −90 degrees). 
Clearly examining again the exact plots of Figure 4.3, the higher is the fre-
quency of the input waveform with respect to the circuit cutoff frequency, the 
closer the output to input phase will be to −90 degrees. If the input waveform 
frequency is 100 times f0 the output amplitude, while the input amplitude is 
always 1 V, the output waveform amplitude will be 100 times smaller (40 dB) 
than the input waveform amplitude. This behavior goes on and on, for every 
time the frequency goes up by a factor of 10 from the gain decays another 
20 dB. (Refer again to Figs. 4.3 and 4.4.)
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4.2.6  Why Do We Call This Circuit a LPF?

From the Bode plots just presented in Figures 4.3 and 4.4, it is clear to see that 
frequencies well below the cutoff frequency f0 do not get attenuated, they just 
pass through the circuit with a 0 dB gain (linear gain of 1), and a zero-degree 
phase shift. Frequencies well above the cutoff frequency become attenuated. 
We also see that the higher the frequency is above f0, the higher the attenu-
ation. The attenua tion grows by 20 dB for every order of magnitude that the 
frequency grows above f0. Alternatively, the gain decreases at a rate of 20 dB 
per decade of frequency.

In summary, the RC circuit just analyzed allows low frequency signals to go 
through the circuit without attenuation and without phase-shift, whereas the 
high frequencies become progressively attenuated as the input signal fre-
quency goes up. At frequencies beyond 10 times the cutoff frequency, output 
signals exhibit a phase shift of approximately –90°. In reference to our RC 
LPF, which are low and which are high frequencies? The reference frequency 
is f0 the filter cutoff frequency. One-tenth below f0, the frequency is considered 
low. Ten times above f0, a frequency is considered high.

4.2.7  Time Domain Analysis of the RC LPF

Now let us analyze the time domain equations of the low-pass RC circuit. 
Referring one more time to the circuit of Figure 4.2, it is possible to establish 
the differential equation for such circuit. Let us apply Kirchoff’s voltage law 
(KVL) for the series of elements.

 v t i t R v tin o( ) ( ) ( ),= +

where vin(t) is the excitation or the circuit input voltage.
i(t) is the current through the circuit, thus i(t) R is the voltage drop across 

the resistor and vo (t) is the voltage across the capacitor:
We will define a unit-step function excitation u(t) as follows:

 u t t( ) = ≥1 0for

and

 u t t( ) .= <0 0for

So applying the unit step function u(t) to the input of RC LPF we have that

 v t u tin ( ) ( )=

and substituting vin with u(t) into vin(t) = i(t) R + vo(t), yields:

 u t i t R v to( ) ( ) ( ).= +  (4.27)
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Since the current through the resistor and the capacitor have the same value,

 i t Cdv t dto( ) ( ) .= /  (4.28)

Plugging Equation (4.28) into Equation (4.27) leads to

 u t RC
dv t

dt
v to

o( )
( )

( ),= +  (4.29)

where Equation (4.29) is a first-order differential equation.
From calculus considerations to solve differential equations, the solution of 

Equation (4.29) has the form

 v t A A eo
t( ) = + −

1 2
/τ  (4.30)

where A1 and A2 are two constants and τ is the circuit time constant RC. A1 
is the steady-state value of the output voltage since

 for t → ∞,

 v t Ao( ) .→ 1  (4.31)

This means that A1 is the final value of output voltage vo(t)after the transient 
is over. We call this final value Vfinal.

Thus,

 V Afinal = 1.  (4.32)

Also note that the initial value of the output voltage vo(t)is found by making 
t = 0. Thus, from Equation (4.30),

 = = = +V v A Aoinitial ( ) .0 1 2  (4.33)

Finally plugging Equations (4.32) and (4.33) in Equation (4.30) we obtain that

 v t V V V eo final initial final
t( ) ( ) .( )= + − − /τ  (4.34)

Equation (4.34) is a general solution for a first-order circuit or a circuit with 
a single-time constant. We will use Equation (4.34) several times throughout 
this text and the homework problems.

Example 4.3 Given the single-time constant circuit of Figure 4.2, assuming 
that the input voltage is a unit-step function u (t − 1), R = 1 MΩ, C = 1 μF, 
calculate the final value of the output voltage vo(t) across the capacitor. Plot 
the output voltage waveform for positive values of time. Figure 4.5 displays 
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the input step function and the output as a function of time. Note that u (t − 1) 
is displaced or delayed from the origin of time by 1 second.

Now, since R = 1 MΩ and C = 1 μF, the time constant τ is 1 second. Now 
using Equation (4.34) and knowing that Vinitial = 0 V, Vfinal = 1 V we obtain

 v t eo
t( ) .( )= − − −1 1 /τ  (4.35)

Equation (4.35) is plotted in Figure 4.5 from time 0 to 10 seconds. Note that 
at time t = 2 seconds the output voltage vo(t) has risen to

 v eo( ) . .( )2 1 0 63212 1= − =− − /τ  (4.36)

Observing the waveform vo(t) in Figure 4.5, Equation (4.36) tells us that after one 
time constant the output reaches approximately 63% of its final value. After five 
time constants the output voltage across the capacitor reaches approximately 
99% of its final value. Figure 4.6 displays several step input responses to circuits 
that have a range of time constants from 0.1, 0.5, 1, 2, 5, and 10 seconds. The 
shorter the time constant of the circuit, the faster the output voltage will approach 
its final value. So for our Figure 4.6, the circuit with τ = 0.1 second has the fastest 
response of all the waveforms displayed. On the other hand, the circuit with τ = 10 
seconds has the slowest response. Notice that this waveform (10-second time 
constant) just reaches 63% of its final value after one time constant. The trajec-
tory of the output waveform for a 10-second time constant is only shown for two 
time constants (20 seconds). If we had plotted the Figure 4.6 up to t = 50 seconds, 
the waveform would have reached 99% of 1 V.

Figure 4.5  Unit step response of first-order RC LPF.
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Figure 4.6  Unit step responses of RC LPF of time constants 0.1, 0.5, 1, 2, 5, and 10 seconds.
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4.2.8  First-order RC LPF under Pulse and Square-Wave Excitation

We defined a unit step excitation u(t) using Equation (4.29) in the previous 
section.

Let us combine to unit step functions such that the first one u(t) is added, 
to a second u(t) that is delayed by tp seconds and inverted, so that:

 u u t tp( ) ( ).t − −  (4.37)

Equation (4.37) is the expression of a single pulse of width tp.
Applying such pulse to an RC LPF and its responses are shown in Figure 

4.7 for a number of time constants. Note that for small time constants like 0.01 
second and 0.05 second the output voltage waveform resembles the input 
more closely that the larger time constant curves. As the circuit time constant 
increases, the output waveform looks less exponential and more linear (2, 5, 
and 10-second time constants).

Now let us consider a square-wave input, as the one shown in Figure 4.8. 
Such waveform is a continuous train of pulses that swings between 0 V and 
1 V with a 50% duty cycle. The waveform starts at 1 V at zero time for 1 
second, at this time it drops very quickly to 0 V for another second. After this 
last second at 0 V, the earlier described process repeats itself indefinitely. Note 
that the period T of this pulse train is 2 seconds.

Let us apply such excitation to the input of a first-order RC LPF. We will 
look at the responses of several RC LPF with time constants equal to 0.01, 
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Figure 4.7  First-order RC LPF and pulse responses for various time constants.
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Figure 4.8  The outputs of all nine different time constants RC LPF circuits.
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0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 seconds. Note that the smallest time constant 
is 1/200th of the 2-second period of the excitation. The longest time constant 
is five times the period of the excitation.

Figure 4.8 shows 50% duty cycle square-wave driving RC LPF of nine dif-
ferent time constants, for two full excitation periods (i.e., 4 seconds).

The shorter is the time constant with respect to the excitation period, the 
faster the output of each RC circuit follows the 50% duty cycle square-wave 
input. For example, referring to Figure 4.8, the output of the circuit whose time 
constant is 0.01 seconds closely follows the square-wave input, some rounding 
is seen at the end of the rising and falling edges of the output response. Addi-
tionally, this behavior of reaching fairly quickly a steady state is reached virtu-
ally from the first excitation period. Now let us concentrate on the slowest 
time constant circuit of 10 seconds. Note that because this time constant is 
actually larger than the excitation period, it takes some time for the output of 
the 10-second time constant circuit to reach a steady-state value. Within this 
context, a steady-state value refers to the waveform moving up and down with 
time such that its average value settles down to a constant value, and it does 
not change significantly anymore. Figure 4.9 depicts the similar waveforms of 
those of Figure 4.8 display but for a much longer period of time, that is, 30 
seconds. Note that Figure 4.9 only displays responses for nine different circuit 
of time constants equal to: 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 seconds. Care-
fully observing the 10-second time constant circuit response, we see that during 
the first 20 seconds starting at zero time, the output little by little rises as 

Figure 4.9  Square-wave responses of RC LPF of various time constants.
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seconds go by. Then somewhere in the neighborhood of 30 seconds, the output 
settles around the mean value of the square-wave input. Since our input has 
a 50% duty cycle and swings between 0 and 1 V, its mean value is exactly 0.5 V. 
The average value to which the output voltage will settle is 0.5 V. Figure 4.9 
does not quite show when the 10 seconds time constant circuit settles to 0.5 V 
because a few more seconds should have been plotted. Because the drawing 
becomes too busy and for a longer time, the author determined that 30-second 
was a better time frame to display. Looking at Figure 4.9 once more, the second 
slowest 5-second time constant response, second waveform from the time axis, 
more clearly reaches 0.5 V. On the other hand, note that those responses 
whose circuits have very fast time constant relative to the period of the square-
wave excitation, simply follow relatively closely their input. Such responses 
will never settle to an average value of 0.5 V of the input waveform.

4.2.9  The RC LPF as an Integrator

When a first-order RC LPF has a large time constant in comparison with the 
time that it takes for the input signal to make an appreciable change, the 
voltage drop across the output capacitor is small compared to the drop across 
the resistor. Referring again to Figure 4.2, the current through the circuit is

 i t CdV t dto( ) ( )= /  (4.38)

and since Vo is small compared to the voltage across resistor R then,

 i t V Rin( ) .= /  (4.39)

Combining Equations (4.38) and (4.39) we obtain

 CdV t dt V Ro in( ) ,/ /=  (4.40)

which, after some algebraic manipulation and integration on both sides of the 
equal sign, it becomes

 V RC V dto in= ∫1/ .  (4.41)

Equation (4.41) states that the output voltage of our RC LPF circuit is pro-
portional to the integral of the input voltage. The constant of proportionality 
is 1/RC.

Referring again to the responses of Figures 4.8 and 4.9, it is clear to note 
that the shorter the time constant of the circuit with respect to the period  
of the square-wave excitation, the output signal tends to follow the input 
waveform. This is noted for time constants of 0.01, 0.05, and 0.2 seconds. For 
longer time constants such as 5 and 10-second, the circuit behaves more like 



252  FIRST- AND SECOND-ORDER CIRCUITS UNDER SINUSOIDAL AND STEP EXCITATIONS  

an integrator. Notice that the integral of a (constant) horizontal line is a ramp. 
Indeed waveforms responses for 5- and 10-second time constants like fairly 
linear ramps and not so much exponential as described by Equation (4.34).

Summary of Important Points about RC LPFs in the Frequency Domain 
and Integrators in the Time Domain
A first-order RC LPF circuit allows sinusoidal frequencies smaller than one 
order of magnitude of its cutoff frequency to go through the circuit with little 
attenuation and no significant change in phase with respect to the input 
sinusoidal.

Sinusoidal frequencies of one order of magnitude higher that the cutoff 
frequency of the circuit become attenuated by 20 dB.

Sinusoidal frequencies of at least one order of magnitude higher that the 
cutoff frequency of the circuit or higher, approach a −90-degree phase shift 
with respect to the sinusoidal input.

The same first-order RC circuit performs time integration of the signals 
that are at least one order of magnitude higher in frequency than the filter 
cutoff frequency.

A practical limitation of the integrator implemented with a first-order RC 
LPF circuit is that the integrated output signal is attenuated, while other lower 
frequency signals below the cutoff frequency pass through the filter practi-
cally unaltered. We will see how to overcome these problems using an opera-
tional amplifier in Chapter 5.

4.3  THE FIRST-ORDER RC HIGH-PASS FILTER (HPF)

Let us investigate the RC circuit of Figure 4.10. This circuit is excited by a 
sinusoidal voltage waveform. Elements R and C are in series, the input voltage 

Figure 4.10  First-order RC high-pass filter (HPF).
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is applied to the two elements in series, the output is taken across the resistor 
terminals.

4.3.1  RC HPF Frequency Domain Analysis

Let us calculate the transfer function of this circuit:

 H /( ) ( ) ( ).j j jω ω ω= V Vout in  (4.42)

The impedance of the resistor and capacitor in series is

 Z j R
j C

series ( ) .ω
ω

= +
1

 (4.43)

Then, the current through the circuit is

 Vin( ) ( ).j Z jseriesω ω/  (4.44)

The above current times the resistance equals the output voltage Vout (jω), thus 
we get

 H
/

( )
( )
( )

j
V j
V j

R
R j C

out

in

ω ω
ω ω

= =
+

=
1

 (4.45)

After some algebraic manipulations,

 =
+
j RC

j RC
ω

ω1
.  (4.46)

Remember that from Chapter 2, ω is the angular frequency, which equals 2πf, 
where f is the frequency of the sinusoidal waveform in hertz. We also define 
the angular cutoff frequency:

 ω0 1= /RC,  (4.47)

and the RC HPF cutoff frequency,

 f RC0 1 2= / π .  (4.48)

Equation (4.46) describes the ratio of output voltage to input voltage of the 
RC circuit given by Figure 4.10, again referred to as the circuit transfer func-
tion in the frequency domain. Using the definition for f0 by Equation (4.48), 
we can rewrite the transfer function of the circuit as follows:
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ω ω ω
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=
+
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 (4.49)

 H
/

/
( )

( )
jω ω ω

ω ω
=

+
0

2
01

 (4.50)

 ∠ = −H j / /( ) ( ),ω π ω ω2 0arctan  (4.51)

where Equation (4.50) is the linear magnitude of Equation (4.49). Equation 
(4.51) is the phase in radians of Equation (4.49).

So let us now construct a table to plot the values of the transfer function 
H(jω) for a given RC HPF with a cutoff frequency f0. Assuming a 1 kHz cutoff 
frequency f0,

 RC = =1 2 1000 159 155/ sπ . .µ  (4.52)

We will plot the transfer function of Equation (4.49) using two separate plots. 
One plot is for its magnitude and the second plot for its phase, both as func-
tions of frequency. Note that transfer function Equation (4.49) is a complex 
quantity and as such, it has magnitude and phase. Repeating the procedure 
that we previously used for the RC LPF we will tabulate the magnitude and 
phase values for the RC HPF. We show the outcome of such calculations in 
Table 4.4.

The gain and phase values of Table 4.4 have been calculated finding the 
magnitude and phase of the complex expression given by Equation (4.49).

Figure 4.11 depicts the exact magnitude and phase Bode plots for the RC 
HPF, generated using the values of Table 4.4.

4.3.2  Drawing an RC HPF Bode Plot Using Just the Asymptotes

To draw the asymptotes of the Bode plots of our first-order RC HPF (Fig. 
4.10), we will normalize the frequency axis. Instead of listing on the frequency 
axis the actual cutoff frequency value of 1 kHz, we will denote this frequency 

Table 4.4  RC HPF transfer function: magnitude and phase as functions of frequency

Frequency (Hz)
Normalized 

Frequency f/f0

Linear Gain 
(V/V) Gain in dB

Phase 
(Degrees)

1.000 0.001 f0 0.001000253 −60.00 89.94270424
10.000 0.01 f0 0.010002036 −40.00 89.42706130

100.000 0.1 f0 0.099528982 −20.04 84.28940687
1,000.000 1 f0 0.707296534 −3.01 45.00000002

10,000.000 10 f0 0.995318596 −0.04 5.710593139
100,000.000 100 f0 1.000233088 0.00 0.572938695

1,000,000.000 1,000 f0 1.000282601 0.00 0.057295758



THE FIRST-ORDER RC HIGH-PASS FILTER (HPF)  255

as f0, so lower frequencies will be a tenth, a one-hundredth, and so on of f0. 
Similarly, frequencies above f0 are 10 times, 100 times, and so on of f0. Figure 
4.11 shows these frequencies on the horizontal axis.

From Table 4.4 we see that the magnitude asymptotically approaches 0 dB 
from the cutoff frequency f0 to higher frequencies. Also from the cutoff fre-
quency to lower frequencies, the gain drops at a constant rate of 20 dB per 
decade. But at the cutoff frequency the gain is approximately −3 dB. In linear 
terms, this means that the amplitude of the sinusoidal waveform of frequency 
equal to f0, the cutoff frequency of our circuit that excites the RC circuit, 
becomes attenuated down to about 70.7% from its original value. Referring 
one more time to Table 4.4 we can see that at the cutoff frequency f0, the output 
voltage magnitude is 0.707 of the original input, which has a magnitude of 1. 
That is, the output magnitude is approximately 70.7% of the input 
magnitude.

In a similar fashion we can see that the phase is +45° at f0. One more time 
looking at the phase in Table 4.4, we see that the phase at one-tenth of f0 is 
about +84.3°. And for even lower frequencies, the phase asymptotically 
approaches +90°. On the other hand, at a frequency 10 times f0, the phase is 
approximately 5.7° more than the high frequency value of the phase, which 
is 0°. For all frequencies higher than about 10 times f0, the phase of the HPF 
is approximately 0 degrees (Figure 4.11).

We can also draw the HPF phase Bode plot using the phase asymptotes. 
Let us start with frequencies well below f0, up to one-tenth of f0, we draw a 

Figure 4.11  First-order RC HPF exact Bode plots.
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straight line at +90 degrees from low frequencies all the way up to 1/10 of f0. 
At a frequency of 10 times f0, the phase asymptote is a horizontal line at 0 
degrees, continuing into higher frequencies. From Table 4.4, we know that at 
the cutoff frequency f0, the phase is +45°. Looking at Figure 4.12, we now draw 
a straight line of a phase angle of 90° at 1/10 of f0 all the way to 0° at 10 f0, 

Figure 4.12  First-order RC HPF Bode plots asymptotes: magnitude and phase.
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such that this straight line passes through a +45° phase at f0. In this way, the 
phase asymptotes are drawn. Now one can draw by hand the approximate 
phase curves. Note that at 1/10 of f0 and at 10 f0, the phase is about 5.7° below 
+90° and about 5.7° above 0°, respectively. Finally, it is important to note that 
the phase curve has an inflexion point at 45°, see Figure 4.12. Figure 4.12 
depicts the asymptotes of the magnitude and phase Bode plots for a first-order 
RC HPF.

Important Points about the First-Order RC HPF
For a first-order RC HPF the circuit gain at the cutoff frequency f0 is −3.01 dB.

For a first-order RC HPF the gain is practically 0 dB at 10 f0 all the way 
to larger frequencies.

From f0 down in frequency the gain starts decreasing at a 20 dB per decade 
rate. So that at 0.1 f0 the gain is 20 dB below 0 dB. At 0.01 f0 the gain is another 
20 dB below, or 40 dB below the 0 dB gain line. At 0.001 f0 the gain is another 
20 dB below the preceding decibel at the previous decade in frequency or 
60 dB below the 0 dB gain line. This gain behavior continues to drop 20 dB 
as the frequency decreases by an order of decimal magnitude.

The frequency axis does not have a zero or origin of frequencies because 
log of zero is nonexistent. The lowest frequency can be represented with a 
value as small as we desire, but not with zero.

Frequency is represented logarithmically for both magnitude and phase 
plots.

The magnitude or gain in dB is represented linearly. There is a 0 dB origin 
for the vertical axis because the scale is linear in dB.

The phase in degrees is represented linearly on the vertical axis.
The phase of an RC HPF is approximately +90° at frequencies below 1/10 

of f0. The phase of an RC HPF is 0° at frequencies larger than 10 f0. At f0 the 
phase equals +45°.

4.3.3  Interpretation of the RC HPF Bode Plots in the Time Domain

We will use the asymptotically drawn Bode plots to explain the meaning of 
the Bode magnitude and phase plots in terms of sinusoidal inputs applied  
to the first-order RC HPF circuit (Fig. 4.12). We will explain this section at 
a faster pace because of the similarity that exists with first-order RC LPF, 
Section 4.2.

First let us assume that a sinusoidal waveform of 1 V peak amplitude and 
a frequency of 0.01 f0 is applied to the input of the first-order RC HPF. The 
output voltage waveform that will be observed across the resistor terminals is 
40 dB (a factor of 100) smaller than the 1 V input. At 0.1 f0, the output wave-
form is 20 dB (factor of 10) smaller than the 1 V input. At the cutoff frequency 
f0, the output magnitude is 3 dB below the 1 V input, meaning that the output 
is 70.7% of 1 V.
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For the phase of the RC HPF, there is 90° phase shift for frequencies below 
1/10th of f0. A phase of +45° exists at the cutoff frequency. Finally, the phase 
becomes close to 0° (actually 5.7°) for 10 times f0 and practically 0° at 100 f0 
frequencies and above.

4.3.4  Why Do We Call This Circuit an HPF?

From the Bode plots just presented in Figures 4.11 and 4.12 it is clear to see 
that frequencies below 1/10th of the cutoff frequency f0 get attenuated. Fre-
quencies above 10 times the cutoff frequency pass through the circuit with 
little or no attenuation. In summary, the RC circuit just analyzed allows high 
frequency signals to go through the circuit without attenuation, whereas the 
low frequencies become progressively attenuated as the input signal frequency 
goes below 1/10th of f0. In summary, our first-order RC HPF greatly attenuates 
low frequencies and passes high frequencies without any significant attenua-
tion. As usual, low frequencies are those that are smaller than 1/10th of f0, and 
high frequencies are those that are larger than 10 times f0. It is also interesting 
to notice that at frequencies equal to 10 f0 and above, the region of frequency 
at which the gain is 0 dB, the phase shift is also 0°. The range of frequencies 
starting at 10 f0 and going to larger frequencies is the pass-band frequency 
range of the filter. Within such range, signals pass through the filter unaltered 
in magnitude and in phase.

4.3.5  Time Domain Analysis of the RC HPF

Now let us analyze the time domain equations of the high-pass RC circuit. 
Referring one more time to the circuit of Figure 4.10, it is possible to establish 
the differential equation for such circuit. Simply applying KVL for the series 
of elements,

 v t v t i t Rin cap( ) ( ) ( ) ,= +  (4.53)

where vin(t) is the excitation or the circuit input voltage, i(t)R equals the output 
voltage vo(t) and vcap(t) is the voltage across the capacitor of our RC HPF.

From Figure 4.10 we see that

 v t v t v tcap in o( ) ( ) ( ).= −  (4.54)

Also,

 i t C
d v t v t

dt
in o( )

[ ( ) ( )]
=

−  (4.55)

because [vin(t) − vo(t)] is the voltage across the capacitor.
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Since the current times the resistor R is the output voltage vo(t), then,

 v t RCdv t dt RCdv t dto in o( ) ( ) ( ) .= −/ /  (4.56)

Rearranging terms, Equation (4.56) becomes

 dv t
dt RC

v t
dv t

dt
o

in0 1( )
( )

( )
,+ =  (4.57)

where Equation (4.57) is a first-order differential equation. When input vin(t) 
is a step function u(t), the solution is given by Equation (4.34), repeated here 
for the reader’s convenience.

 v t V V V eo final initial final
t( ) ( ) .( )= + − − /τ  (4.58)

In particular for our RC HPF, Figure 4.10, we calculate the values of the initial 
and final values from circuit boundary considerations.

The initial value of the output waveform is 1 V, the magnitude of our step 
input excitation function u(t). Why? Because upon impressing the 1-V pulse 
at the input of the circuit, assuming that the capacitor is initially discharged, 
the capacitor behaves like a short circuit to the 1-V edge. The final value  
of the output voltage after the transient behavior of the output is 0 V. Note 
that the capacitor has a blocking effect to the DC value of the step input. The 
output waveform will have no average value.

Now using Equation (4.54) and knowing that Vinitial = 1 V, Vfinal = 0 V we 
obtain

 v t eo

t

( ) .=
−

τ  (4.59)

Equation (4.59) is plotted in Figure 4.13 with six different time constant values: 
0.1, 0.5, 1, 2, 5, and 10 seconds from time 0 to 20 seconds. By observation of 
the response curve for time constant 10, note that its value is down to 36.8% 
from its original value of 1 V after 10 seconds from the origin of time.

Note that an RC HPF with a time constant of 10 seconds, at time t = 10 
seconds, the output voltage vo(t) decays from its initial value of 1 V to

 v eo( ) . .10 0 368
10
10= =

−
V  (4.60)

The same is true for all other waveforms, as an example the response curve 
for 1-second time constant is down to 36.8% of its original value of 1 V after 
1 second.

Back to Equation (4.58), we can verify that after five time constants, the 
response of the RC HPF will be down from its initial value of 1 V to 1% of 1 V.
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4.3.6  First-Order RC LPF under Pulse and Square-Wave Excitation

Let us apply a pulse of unity magnitude and 1-second duration to a first-order 
RC HPF with a 1-second time constant. The excitation and the corresponding 
response can be seen in Figure 4.14. The positive portion of the response is 
not new to us, since this is what we previously obtained in Figure 4.13 upon 
applying a unit-step. The difference in this example is that we are not applying 
a step, but a pulse. The 1-second pulse shown on the top of Figure 4.14 can be 
thought as the sum of a unit step at the origin, plus a 1-second delay inverted 
unit step. The equation for such step follows:

 u t u t( ) ( ).− − 1  (4.61)

The positive portion of the response to such unit pulse is shown on the bottom 
section of Figure 4.14, and it is very much what we obtained for a unit step.
This positive portion of the response is exponential and follows Equation 
(4.58). The difference in this case is that we are applying a pulse. The pulse 
cuts short the step at 1 second. So at such time, a negative 1-V step  
is applied to the to the circuit input. Note that the response of the circuit  
due to this negative 1-V step applied at time = 1 second, will also be exponen-
tial but will start at t = 1 second and 1 volt below the voltage of magnitude 
Vp in the first exponential in Figure 4.14. From that point on, the pulse 
over the exponential response from the negative portion continues to decay 

Figure 4.13  Unit step response of an RC HPF for six different time constants.
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exponentially (actually to increase exponentially) toward 0 V. After several 
time constants, the response reaches a zero value. Let us ask ourselves, what 
is the voltage Vp at time t = 1 second? Using Equation (4.58) and knowing that 
the circuit time constant is 1 second, we obtain

 V ep = = +−1 1 0 368/ V. .  (4.62)

The voltage at which the negative portion of the exponential response begins 
at t = 1 second is:

 0 368 1 0 632. . .− = − V  (4.63)

It is important to observe that the average value of the complete response to 
the pulse, that is, the positive and the negative exponentials, have an average 
value of 0 V. In other words, the response has no DC component. Another way 
of saying this is that the area under the positive exponential equals the area 
above the negative exponential with respect to the time axis in both cases.

Now let us consider a square-wave input, as the one shown in Figure 4.15. 
Such waveform is a continuous train of pulses that swings between 0 V and 
1 V with a 50% duty cycle. The waveform starts at 1 V at zero time for 1 
second, at this time it drops very quickly to 0 V for another second. After this 
last second at 0 V, the earlier described process repeats itself indefinitely. Note 
that the period T of this square wave is 2 seconds.

Figure 4.14  First-order RC HPF input pulse response.
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Let us apply such excitation to the input of a 1-second time constant first-
order RC HPF. Note that during the first period of the square-wave input the 
response of the HPF settles down to a periodic response. The waveform indi-
cated by points A, B, C, and D is a transient waveform; the second portion of 
the response, D, E, F, G, H, and I becomes the waveform that will be repeated 
over and over as long as the excitation is applied to the input. In our next 
example, Figure 4.16, the excitation input is the same as in the previous 
example, 0 V to 1 V swing, 50% duty cycle square wave, period T = 2 seconds. 
But now the time constant of the HPF is very small compared to the period 
of the excitation, that is, τ is 0.1 seconds. The RC circuit is much faster that the 
period of the excitation; this is the cause why the response attains steady-state 
value within the first period of the excitation.

Our next and final example of an RC HPF response to a square-wave input 
is applied to a circuit with a 100-second time constant. This is slower than the 
2-second period of the excitation. Referring to Figure 4.17, it is clear to see 
that it takes in the order of 300 seconds (or three time constants) for the 
response to attain its steady state.

It is important and interesting to observe from Figures 4.15–4.17 that 
regardless of the RC circuit time constant, once the response attains a steady 
state, the average value or DC component of the response is zero. Let us 
remember that this occurs because of the DC blocking capacitor in the circuit. 
That is to say the output waveform has a zero average or zero DC value after 
the output transient behavior is over.

Figure 4.15  50% duty cycle square-wave driving RC HPF.
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4.3.7  The RC HPF as a Differentiator

From Equation (4.57), repeated here for the reader’s convenience,

 dv t
dt RC

v t
dv t

dt
o

in0 1( )
( )

( )
.+ =  (4.64)

When the RC time constant and the output voltage are small, Equation (4.64) 
becomes

 v t RC
dv t

dt
o

in( )
( )

.=  (4.65)

Equation (4.65) shows that under the conditions previously stated, the output 
voltage is proportional to the derivative of the input voltage.

As an example of differentiation, let us look back at Figure 4.16, the RC 
HPF has a time constant of 0.1 second, which is smaller than the excitation 
2-second period. Note that the circuit produces the derivative of the input 
waveform; the positive going transitions of the square-wave input become 
positive spikes, the negative going transitions become negative spikes upon 
the square wave becoming differentiated. Note that the constant levels of the 
square wave are zero, because the derivative of any constant is zero. As a 
counterexample of what is not a differentiator, refer this time to Figure 4.17, 

Figure 4.16  Square-wave excitation applied to a 0.1-second time-constant RC HPF.
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the time constant of this RC HPF is 100 seconds (a large number), while the 
period of the excitation waveform is still 2 seconds as in Figures 4.15 and 4.16.

The plot shown presents the signals after its transient portion, in other 
words, in steady state condition. Note that the input square wave of 50% duty 
cycle, period of 2 seconds, swings between 0 V and 1 V. This input waveform 
contains a non-zero DC component of 0.5 V. The RC HPF allows the wave-
form to pass straight through with little attenuation, but notice that its DC 
component of 0.5 V has been removed by the filter. This is noticed by the fact 
that the output now swings between −0.5 V and +0.5 V, its peak to peak ampli-
tude is still 1 V, no change with respect to the input. One more time referring 

Figure 4.17  Second square-wave excitation applied to a 100-second time-constant RC HPF, 
in steady state.
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to Figure 4.17, looking closely at the output waveform of the filter, we notice 
a slight slope on the top and the bottom of the output waveform positive and 
negative cycles. The reason for this is that the filter passes through high fre-
quencies; however, it changes the phase of each frequency component by a 
positive 90° phase. Figure 4.17 displays the HPF response 280 seconds after 
the excitation was applied at the origin of time, 0 second.

Summary of Important Points about RC HPFs in the Frequency Domain 
and Differentiators in the Time Domain
A first-order RC HPF circuit allows sinusoidal waveforms of frequencies 
larger than one order of magnitude of its cutoff frequency to go through the 
circuit with little attenuation and with a 0° phase shift with respect to the 
sinusoidal input.

Sinusoidal waveforms whose frequencies are one order of magnitude 
lower than the cutoff frequency of the circuit are blocked by the RC HPF by 
being attenuated by 20 dB. Frequencies two orders of magnitude smaller than 
the cutoff are attenuated 40 dB. This goes on at a rate of 20 dB attenuation 
per decade. The phase of all frequencies at least one order of magnitude lower 
than f0 experience an approximate +90-degree phase shift.

The same first-order RC circuit performs time differentiation of the signals 
that have frequencies at least one order of magnitude lower than than the 
filter cutoff frequency.

A practical limitation of the differentiator implemented with a first-order 
RC HPF circuit is that the differentiated output signal is attenuated, while 
other higher frequency signals above the cutoff frequency pass through the 
filter practically unaltered. We will see how to overcome these problems using 
an operational amplifier in Chapter 5.

4.4  SECOND-ORDER CIRCUITS

Second-order circuits are described by second-order ordinary differential 
equations with constant coefficients. Refer to Equation (4.66) to observe a 
second-order circuit differential equation:

 a
d f t

dt
a

df t
dt

a f t0

2

2 1 2
( ) ( )

( ).+ +  (4.66)

In Equation (4.66), f(t) usually is i(t) or v(t), respectively current or voltage 
varying with respect to time. a0, a1, and a2 are the constant coefficients, typically 
real numbers. t is time, the independent variable.

Equation (4.66) may be equated to zero or to a constant or to a function 
of time. Equation (4.66) equates the differential equation to zero, thus Equa-
tion (4.67):
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 a
d f t

dt
a

df t
dt

a f t0

2

2 1 2 0
( ) ( )

( ) .+ + =  (4.67)

The differential equation of Equation (4.67) describes a second-order circuit 
without any external excitation. When Equation (4.66) is equated to a con-
stant, it is usually when the second-order circuit is excited by a step. From now 
on, we will refer to a circuit described by a differential equation of the form 
given by Equation (4.66) simply as a second-order circuit. Second-order cir-
cuits have one inductor, one capacitor, and they may or may not have a resis-
tor. When the second-order circuit does not have any resistors, it is said to be 
lossless.

4.5  SERIES RLC SECOND-ORDER CIRCUIT

We will analyze now a series RLC circuit, with a step input. Figure 4.18 depicts 
such a circuit.

From the circuit of Figure 4.18 we can derive the time domain equations. 
We obtain

 L
di t

dt
i t R v VC step

( )
( ) .+ + =  (4.68)

In Equation (4.68), the first term on the left is the voltage drop on the induc-
tor, the voltage drop on the resistor follows, and vC is the drop across the 
capacitor. The differential equation, that is, Equation (4.68) is equated to Vstep, 
assumes that a step input is applied to the circuit at time t = 0.

Since

 i C
dv t

dt
C

C=
( )

,  (4.69)

Figure 4.18  RLC series circuit with a step input excitation.
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Then

 v
C

i t dt
C

i t dtC C= =∫ ∫1 1
( ) ( ) ,  (4.70)

because iC(t) equals i(t). We are analyzing a series circuit so the current through 
any one of its elements is the same current in the circuit.

We plug Equation (4.70) into Equation (4.68):

 L
di t

dt
i t R

C
i t dt Vstep

( )
( ) ( ) .+ + =∫1  (4.71)

Differentiating Equation (4.71) and rearranging terms, we obtain

 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + =  (4.72)

In Equation (4.72) i(t) is the current through the capacitor which is the same 
as the current through the series circuit. When we solve, or find the solutions 
for differential Equation (4.72), we are finding the value of i as a function of 
time.

To find the solution of differential Equation (4.72), we will always end up 
with solutions that are functions of the following form:

 i t k es t
1 1

1( ) .=  (4.73)

 i t k es t
2 2

2( ) .=  (4.74)

Note that two solutions are found because it is a second-order system.
Equations (4.73) and (4.74) are solutions of Equation (4.72), and this means 

that if we plug each of the solutions into the differential equation, the solution 
will satisfy the mathematical operations of differential Equation (4.72). In 
Equations (4.73) and (4.74), k1, s1, k2, and s2 are constants, which can be real, 
imaginary, or complex. The differential equation solutions will determine three 
classic behaviors of second-order systems. These are

1. Overdamped,
2. Critically damped, and
3. Underdamped.

The reader is encouraged to plug Equation (4.73) into Equation (4.72)  
and validate the equation; similarly with Equation (4.74). So let us now  
plug a generic solution of the form of Equation (4.73) to our differential Equa-
tion (4.72):
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 d ke
dt

R
L

d ke
dt

ke
LC

st st st2

2
0

( ) ( )
.+ + =  (4.75)

Computing the derivatives of Equation (4.75) we obtain

 s ke
R
L

ske
LC

kest st st2 1
0+ + = .  (4.76)

Since est can never be zero for any finite time t, we can eliminate the instances 
of kest from Equation (4.76) and obtain

 s
R
L

s
LC

2 1
0+ + = .  (4.77)

Equation (4.77) is called the characteristic equation of our differential 
equation.

Now, finding the roots for Equation (4.77) yields

 s s
R
L

R L
LC

1 2
2

2
1
2

4
1

, ( ) .= − ± −/  (4.78)

The roots of the characteristic equation are of three possible types:

1. Both roots are real and different, or
2. Both roots are real and equal, or
3. Both roots are complex conjugates*

The solutions of differential Equation (4.72) have one of the following forms:

 i t k e k es t s t( ) : := +1 2
1 2 both roots are real and different overdaamped  (4.79)

 i t k k t e t( ) ( ) : := +1 2
α both roots are real and identical criticallly damped  (4.80)

 i t k t k t e t( ) ( cos sin ) : := + −
1 2ω ω α roots are complex conjugates undderdamped  

(4.81)

When the roots of the characteristic equation are complex conjugates, the 
roots have the following complex notation:

 s s j1 2, .= − ±α ω  (4.82)

* There is a fourth case when the roots are complex conjugate but pure imaginary. However, this 
is a special case of Equation (4.81).
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In Equations (4.80) and (4.81),

 α ζω= − n,  (4.83)

where ξ is defined as the damping factor, and ωn is the natural or undamped 
frequency.

ω in Equation (4.84) is called the damped frequency, equal to

 ω ω ζ= −n 1 2 .  (4.84)

Based on Equation (4.72), repeated here for the reader’s convenience,

 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + =  (4.85)

We can find the relationship between the damping factor ξ, the damped fre-
quency ω, and the undamped or natural frequency ωn with the circuit R, L, 
and C components.

From Equation (4.72) R/L is defined as 2ξωn. 1/LC is ωn
2, that is, the square 

of the circuit natural frequency. The notation using ξ and ωn is commonly used 
in control theory. Given those new defined parameters, we can rewrite Equa-
tion (4.77) as follows:

 s
R
L

s
LC

s sn n
2 2 21

2+ + = + +ζω ω .  (4.86)

In reference to Equations (4.77) through (4.79), constants k1 and k2 are evalu-
ated for a specific problem like ours, by the knowledge of the circuit initial 
conditions. Exponents s1 and s2 are the roots of the characteristic equation. 
Referring to Equation (4.80), α is the real part of the s1 and s2 roots of our 
system. And ± ω is the imaginary part of the complex conjugate roots, also 
called the damped frequency. Referring once more to Figure 4.18 at time t = 0 
when the voltage step is applied, the current in the circuit cannot change instan-
taneously, because the inductor is initially opposed to any current changes. 
Thus, i(0+) = 0. This means that the second and third voltage terms of Equation 
(4.68) are zero. The iR term is zero because i(0+) = 0 and vC because the initial 
voltage across the capacitor is zero. Equation (4.68) is reduced to

 di
dt

V

L
step( )

.
0+

= amp re per secondè

Example 4.4 Using the circuit of Figure 4.18, assume the following circuit 
components parameters:

 R = = =5 1
1
6

Ω, ,L H C F  (4.87)

And a step input of 1 V at t0+.
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Note: The large values of inductance and capacitance are simply used to 
simplify the arithmetic of the problem.

Referring to Equation (4.72), repeated here for the reader’s convenience, 
thus,

 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + =  (4.88)

Using the values provided by (4.87) in Equation (4.88) yields

 d i t
dt

di t
dt

iC C
C

2

2
5 6 0

( ) ( )
.+ + =  (4.89)

The characteristic equation of Equation (4.89) is

 s s2 5 6 0+ + = .  (4.90)

The roots of Equation (4.84) are

 s s1 22 3= − = −; .  (4.91)

Thus, the solution of Equation (4.88) is of the form

 i t k e k eC
s t s t( ) .= +1 2
1 2  (4.92)

Using the roots of the characteristic equation, Equation (4.92) becomes

 i t k e k eC
t t( ) .= +− −

1
2

2
3  (4.93)

Let us determine constants k1 and k2 based on the problem initial conditions.
For t = 0, Equation (4.93) becomes:

 0 1 2= +k k .  (4.94)

Now taking the derivative of Equation (4.92) yields

 di t
dt

k e k et t( )
.= − −− −2 31

2
2

3  (4.95)

 di t
dt

V
L

( )
.

0
1

+

= =  (4.96)

Because the current in the series circuit is zero, the inductor current cannot 
instantaneously change at t = t0+. The voltages across the capacitor and resistor 
are zero.
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As previously explained, using Equation (4.95) with the numerical values 
on-hand we obtain

 1 2 31 2= − −k k .  (4.97)

Solving the system of simultaneous Equations (4.94) and (4.97) yields

 k k1 21 1= = −; .  (4.98)

Using the values of k1 and k2 from Equations (4.98) and (4.93), we obtain the 
complete current response:

 i t e eC
t t( ) = −− −2 3 <<< overdamped case  (4.99)

This example had a characteristic equation with two real and distinct roots; 
this is an overdamped-type response. In the next example we will study the 
response of the same second-order RLC circuit but with characteristic equa-
tion roots that are real and both are identical to each other. Since Example 
4.4 was covered in great detail, the next two examples will be dealt without 
that many steps.

Example 4.5 Using the circuit of Figure 4.18, assume the following circuit 
component parameters:

 R L C= = =4 1
1
4

Ω, ,H F  (4.100)

and a 1-V step input. Derive an equation for the transient response of the 
circuit current, i(t).

From Equation (4.88),

 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + =  (4.101)

Equation (4.101) holds because we are dealing with the same series RLC 
circuit. Using the value given by Equation (4.100), Equation (4.101) becomes

 d i t
dt

di t
dt

iC C
C

2

2
4 4 0

( ) ( )
.+ + =  (4.102)

From Equation (4.102) the characteristic function is

 s s2 4 4 0+ + = .  (4.103)
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The roots of Equation (4.103) are s1, s2 = −2; that is, −2 is a double root of 
characteristic Equation (4.103).

The solution will have the form of Equation (4.80), repeated below for the 
reader’s convenience:

 i t k k t eC
t( ) ( ) .= +1 2

α  (4.104a)

Same as before for t0
+, when the step is applied to the circuit, since the inductor 

will not allow an instantaneous current change, iC(t) = 0 at the initial time t0+.
Thus,

 i t kC ( ) .0 10+ = =  (4.104b)

Differentiating Equation (4.104a) after we substitute k1 with 0, we obtain

 di t
dt

k teC t( )
.= α α

2  (4.105)

Evaluating Equation (4.105) at time t0+, yields

 di t
dt

k teC t( )
.0

2 1
+

= =α α  (4.106)

Since thenα = −2,

 k2
1
2

= − .  (4.107)

Using Equations (4.104) and (4.107), the solution is

 i t teC
t( ) = −1

2
2 <<< critically damped case  (4.108)

Example 4.6 This example will address the series RLC circuit, with a 1-V 
step input when the roots of the characteristic equation are complex conju-
gates: R = 2 Ω, L = 1 H, C = 1/2 F.

The second-order differential equation that describes such system is

 d i t
dt

di t
dt

iC C
C

2

2 2 0
( ) ( )

.+ + =  (4.109)

The circuit characteristic equation is

 s s2 2 2 0+ + = .  (4.110)
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The roots of Equation (4.109) are

 s s j1 2 1 1, .= − ±  (4.111)

The general solution of Equation (4.109) is of the form

 
i t k e k e

e k e k e
C

j t j t

t jt jt

( )

( )

( ) ( )= + =
= +

− + − −

− −

1
1 1

2
1 1

1 2

 (4.112)

which is also of the general form previously shown by Equation (4.81):

 i t e k t k tC
t( ) ( cos sin ).= +−

3 4  (4.113)

Note: The mathematical equivalence between Equations (4.112) and (4.113) 
is justified with Euler’s identity; that is,

 e t j tj t± = ±ω ω ωcos sin .  (4.114)

Repeating Equation (4.81) for the reader’s convenience,

 i t k t k t eC
t( ) ( cos sin )= + −

1 2ω ω α  (4.115)

and now we equate Equations (4.113) and (4.115):

 e k t k t e k e k et t jt jt− − −+ = +( cos sin ) ( ).3 4 1 2  (4.116)

From Euler’s Equation (4.114) it can be shown that

 cosω
ω ω

t
e ej t j t

=
− −

2
 (4.117)

and

 sin .ω
ω ω

t
e e

j

j t j t

=
+ −

2
 (4.118)

Expanding the right-hand side term of Equation (4.116) using Euler’s identi-
ties we obtain

 e k t k t e k t j t k t j tt t− −+ = − + −( cos sin ) [ (cos sin ) (cos sin )].3 4 1 2  (4.119)

Rearranging terms on the right-hand side of Equation (4.119) and comparing 
them against the left-hand side of Equation (4.119) we obtain that

 k k k k j k k3 1 2 4 1 2= + = −and ( ).  (4.120)
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The initial conditions for this problem are exactly the same as what they were 
for Examples 4.4 and 4.5.

 i t
di

dt
C

C( )
( )

.0 0
0

1+ =
+

=and  (4.121)

We evaluate the left-hand side term of Equation (4.119) at time t = 0+ and get

 i e k k kC ( ) ( cos sin ) .0 0 0 00
3 4 3+ = + = =−  (4.122)

Now since k3 is 0,

 di t
dt

d
dt

e k tC t( )
( sin ).= −

4  (4.123)

Thus,

 di t
dt

k e t e tC t t( )
( cos sin ).= −− −

4  (4.124)

Since the initial condition 
di

dt
C ( )0

1
+

=  from Equation (4.121), we evaluate 

Equation (4.124) at time t = 0+
And this yields

 di
dt

k e eC ( )
( cos sin )

0
0 0 14

0 0= + =− −  (4.125)

 k4 1= .  (4.126)

Now we are ready to find our particular solution for

 i t e k t k tC
t( ) ( cos sin ).= +−

3 4  (4.127)

Recall that k3 = 0 and k4 = 1. Thus,

 i t e tC
t( ) sin ( . )= − <<< underdamped case Table 4 5  (4.128)

Exercise for the reader: Technically speaking there is a fourth case, when 
the roots are pure imaginary and conjugate. Find the series RLC circuit 
voltage response across the capacitor due to a 1-V step voltage. Hint: 
Assume that the characteristic equation is s2 + 1 = 0. Determine the values 
of all three circuit components for the given characteristic equation.
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Table 4.5  Time domain step-input responses

Case Type of Roots Time Domain Response

Overdamped Negative real and 
distinct

Critically 
damped

Negative real and 
equal

Underdamped Complex 
conjugates with 
negative real 
parts

4.6  SECOND-ORDER CIRCUIT IN SINUSOIDAL STEADY STATE: 
BODE PLOTS

In this section we will observe the behavior of a second-order circuit in the 
frequency domain. That is to say we will look at its magnitude in decibels and 
its phase in degrees.

The circuit of Figure 4.18 depicts a second-order RLC circuit. We are inter-
ested in the voltage across the capacitor. Let us apply an AC voltage source 
to the input of the series.

Now we can calculate the ratio of the output voltage over the input voltage 
of the circuit.

The total impedance seen by the AC source is the series of the R, L, and C 
circuit elements. That is,

 Z j R j L
j C

( ) .ω ω
ω

= + +
1

 (4.129)

We are interested in the output voltage, which is the voltage across the capaci-
tor. If we think of the R, L series as one impedance, say we call it Z1, and 
we think of the capacitor as being impedance which we call Z2, we have 
then

 Z j R j L1( )ω ω= +  (4.130)
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and

 Z j
j C

2
1

( ) .ω
ω

=  (4.131)

The output voltage is calculated as if the impedances worked as resistor 
dividers.

Thus,

 
V
V

Z
Z Z

out

in

=
+

2

1 2

.  (4.132)

However, it is important to understand that all the voltages and impedances 
in Equation (4.132) are complex numbers, because they are representing com-
ponents operating at a the same sinusoidal frequency.

Plugging the values from Equations (4.130) and (4.131) into Equation 
(4.132), replacing the variable jω with the operator s yields after doing some 
arithmetic:
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 (4.133)

Note: The s operator is called the Laplace variable or operator. We simply used 
the operator as a substitute for the complex number jω. A whole entire course 
can be taken on the Laplace transforms and its applications. Certainly, this is 
not the book to read about Laplace transforms.

Equation (4.133) is also referred to as the circuit or system transfer 
function.

This is the transfer function that we will plot to understand the magnitude 
and the phase behavior with respect to frequency.

The denominator of Equation (4.133) is a second-order equation (nothing 
new here). This denominator can be factored as (s −root1).(s −root2), where 
root1 and root2 are the denominator roots.

For the sake of simplicity and a clear presentation, we will assume the fol-
lowing numerical values for R, L, and C.

Assume that: L = 1 H, C = 1 F, and we plot 10 magnitude and 10 phase plots 
for the following values of R in ohms: 0.1, 0.3, 0.6, 0.9, 1, 2, 3, 4, 5, 10. Figure 
4.19 is a computer generated Bode plot (magnitude and phase) for the transfer 
function given by Equation (4.133).

The purpose of this demonstration is to reveal the most important charac-
teristics that a second-order system transfer function Bode plot has. Also 
compare those against the first-order Body plots at the beginning of this 
chapter.
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Figure 4.19  Magnitude and phase Bode plots of RLC circuit.
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Figure 4.19 shows magnitude and phase plots on the same sheet. The unit 
of magnitude is the decibel, the unit of phase is the degree.

Magnitude characteristics:
10 different magnitude plots are shown for the 10 given values of R.

The natural frequency fn, according to Equation (4.86), is ωn LC2 1= / , where 
ωn = 2πfn, which for L = 1 H and C = 1 F, fn = 0.15924 Hz. By inspection of 
Figure 4.19 we see that the magnitude peaks for small damping rations, and 
as the damping factor increases, the magnitude becomes less “peaky.”

It is also of importance to mention that the magnitudes peak at the natural 
frequency of the circuit:

 f
LC

n =
1

2π
[ ].hertz  (4.134)

The negative slope of the magnitude plots are −40 dB per decade. Once the 
magnitude is at a frequency greater than or equal to 10 times the natural 
frequency, the slope is −40 dB/dec regardless of the damping ratio of the circuit.

Phase characterisitics:
The phase changes from 0 degrees to −180 degrees in approximately two 
decades of frequency. This statement is more accurate for lower damping 
ratios. The natural frequency is the crossover point for all phase plots. All 
phase plots will cross over at the fn regardless of the value of the damping 
ratio. The phase crossover point for the second-order system is −90 degrees.
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4.7  DRAWING THE SECOND-ORDER BODE PLOTS USING 
ASYMPTOTIC APPROXIMATIONS

The approximate methodology allows one to get very quickly approximate 
magnitude and phase plots. The Bode plots of a second-order system can be 
constructed as the composite plots of 2 first-order Bode plots.

In a generic way, assume that the natural frequency is fn. Following the 
asymptotic magnitude plot of Figure 4.20, we see that for frequencies less than 
or equal to 1/10 fn the magnitude plot is approximated by a 0 dB line.

From frequency fn, we draw a line with a −40 dB/dec slope.

Figure 4.20  Asymptotic method for a second-order system Bode plots.
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For the phase, we approximate it with a zero degree phase line at frequen-
cies less than or equal to 1/10 × fn. We then draw a horizontal phase line start-
ing at a frequency greater or equal to 10 × fn. Finally and once more referring 
to Figure 4.20, we draw a line for the phase from 0 degrees at 1/10 of fn all the 
way through the −180 degree point at a frequency 10 times fn.

4.8  SUMMARY

We looked at two of the most fundamental circuits in electrical and electronics 
engineering, the first-order RC LPF and HPF. They are first-order circuits 
because they have a single energy storage element, a capacitor. Their time 
domain equations are first-order differential equations. The circuits are fully 
characterized; that is, their time behavior as well as their frequency behavior 
are completely known by their RC time constant.

The RC LPF as its name states allows low frequencies to pass through it 
unaltered. The RC HPF allows high frequencies to pass through it, unaltered.

The behavior of an RC LPF can be that of an LPF or that of an integrator at 
frequencies well above the filter cutoff frequency. The behavior of an RC HPF 
can be that of an HPF or that of a differentiator at frequencies well below the 
filter cutoff frequency.

The RC LPF integrates when the frequency of the signal to be integrated 
is at least 10 times f0 or more. The RC HPF differentiates when the frequency 
of the signal to be differentiated is at most 0.1 times f0 or less. Recall that f0 is 
for both, HPF and LPF, their cutoff frequency.

Second-order circuits, have one capacitor and one inductor in addition to 
some resistance. Those two energy-storing circuit elements are what cause the 
overshooting and undershooting of the second-order time response, of course 
depending on the damping ratio. The larger the damping ratio, the smoother 
the response and no overshoot/undershoot will be observed. The smaller the 
damping ratio, the larger the overshoots and undershoots will be. Overshoot-
ing and undershooting are phenomena not observed in first-order circuits. For 
overshooting and undershooting to occur, the circuit has to be a second-order 
system or higher.
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Figure 4.21  Circuit for Problem 4.4.

1 A 1 µ

PROBLEMS

4.1 Given an RC low-pass filter circuit, like the one shown in Figure 4.2, 
assume that R = 1 kΩ and C = 1 μF. (a) Determine the filter cutoff fre-
quency, (b) determine the time constant of the circuit, and (c) draw the 
magnitude and phase asymptotic Bode plots of such filter for the fol-
lowing frequencies: 0.01 f0, 0.1 f0, 1 f0, 10 f0, 100 f0, where f0 refers to the 
cutoff or corner frequency. Make sure to use semi-log paper to draw the 
Bode plots.

4.2 For an RC low-pass filter with R = 1 kΩ and C = 1 μF, determine the 
steady-state output vout( jω) magnitude and phase when the a sinusoidal 
voltage vin( jω) is applied at the input. Tabulate magnitude and phase 
for the following frequencies: 0.01 f0, 0.1 f0, 1 f0, 10 f0, 100 f0, where f0 refers 
to the cutoff or corner frequency. Note: vout( jω) is the voltage across the 
capacitor.

4.3 For the circuit given in Figure 4.22, initially the capacitor is completely 
discharged. Determine the voltage that the capacitor will get charged 
up to, after the switch is closed instantaneously at time to and waiting 
for two circuit time constants.

4.4 Recall the current–voltage relationship of the voltage across a capacitor 
and the current flowing through it, is given by: iC (t) = CdVC/dt. (a) Calcu-
late the voltage developed across an initially discharged 1 μF capacitor 
when a DC current source is applied as shown by Figure 4.21. (b) Justify 
your answer based on the capacitor current–voltage relationship.

4.5 Using the circuit depicted by Figure 4.23, (a) draw the current through 
the 10 nH inductor when the square wave shown is applied to the induc-
tor for two complete periods; (b) determine the current numerical value 
at t = 1 μs; (c) determine the current numerical value at t = 2 μs.
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Figure 4.22  Circuit for Problem 4.3.
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Figure 4.23  Circuit for Problem 4.5.
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Figure 4.24  Circuit for Problem 4.6.
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Figure 4.25  Circuit for Problem 4.7.
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4.6 Using the circuit depicted by Figure 4.24, (a) determine the output 
voltage Vo(t) equation as a function of time, when the switch is quickly 
closed, (b) draw the output voltage vo(t), (c) determine the output 
voltage after 10 μs from closing the switch, and (d) Determine the 
output voltage after one second from closing the switch.

4.7 The switch in Figure 4.25 has been closed for a very long time in position 
A. At time t = 0, the switch is quickly moved to position B. (a) Deter-
mine the equation of i(t) for t > 0; (b) draw current i(t) for t > 0.

4.8 The switch in Figure 4.26 has been closed for a very long time in position 
A. At time t = 0, the switch is quickly moved to position B. (a) Deter-
mine the equation of i(t) for t > 0; (b) draw current i(t) for t > 0.

4.9 Given the circuit of Figure 4.27, (a) determine the circuit time constant, 
(b) determine the circuit cutoff frequency f0, and (c) construct the mag-
nitude and phase Bode plots using the asymptotic method for the trans-
fer function: Vout(jω)/Vin(jω). Use as frequency range, 2 decades below 
cutoff frequency f0 up to 2 decades above f0.
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Figure 4.26  Circuit for Problem 4.8.
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Figure 4.27  Circuit for Problem 4.9.
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4.10 For the RL series circuit of Figure 4.28, (a) determine the transfer func-
tion of the circuit, that is, Vout(jω)/Vin(jω); (b) determine the circuit cutoff 
frequency f0; (c) determine and draw the asymptotic Bode plots for the 
magnitude and the phase of the transfer function; the frequency range 
used should be from 0.01 f0 to 100 f0. This is a total of four decades of 
frequency; (d) which type of filter this circuit represents?

4.11 The capacitor in the circuit of Figure 4.29 is charged up to 50 V DC 
when the switch is open. Upon closing the switch very quickly, deter-
mine the transient current as a function of time that will flow through 
the circuit. Note: The circuit that initially charged the capacitor is not 
shown.

4.12 For the circuit of Figure 4.30, (a) calculate the circuit transfer function 
as a function of jω; (b) calculate the cutoff or corner frequency of the 
circuit; (c) draw the asymptotic magnitude and phase Bode plots.

4.13 For the circuit of Figure 4.30, determine the current transient response 
for a step input voltage of 0 to 1.
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Figure 4.28  Circuit for Problem 4.10.
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Figure 4.29  RC circuit for Problem 4.11.
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4.14 For an RC high-pass filter, such as the one shown in Figure 4.10, if 
R = 100 Ω and C = 0.159 μF, (a) derive the transfer function of the 
circuit Vout(jω)/Vin(jω); (b) draw the magnitude and phase Bode plots 
from 2 frequency decades below the corner frequency up to 2 decades 
above the corner frequency.

4.15 Assume that you are given an RC low-pass filter, whose corner fre-
quency is 10 kHz. Calculate the exact magnitude in decibels and phase 
in degrees at 100 Hz, 10 kHz, and 100 kHz.

4.16 For the filter shown in Figure 4.31, assume a 1-V step is applied to the 
input. (a) Derive a time domain equation of the current through the 
circuit, (b) calculate the circuit time constant, and (c) plot the current 
response for two time constants. Hint: Apply Thévenin to simplify the 
problem.

4.17 Refer to the circuit of Figure 4.32. Determine the time domain equation 
of the current as a function of time. Make sure that you find all the initial 
conditions of the circuit. Assume that the capacitor is initially discharged. 
Hint: Apply Thévenin to the left-hand side of the 47 μF capacitor to 
simplify the problem.

Figure 4.31  Circuit for Problem 4.16.
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Figure 4.33  Circuit for Problem 4.19.
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4.18 Refer to the second-order RLC series circuit of Figure 4.18. A 1-V step 
input voltage is applied at time t0, all the circuit initial conditions 
are zero.

(a) State the time domain equation of the circuit; ensure that you 
show the equation as a second-order system equation. (b) In a general 
fashion, explain the consequences when the roots are

(i) negative real and different, (ii) negative real and equal, and (iii) 
when the root are complex conjugates.

4.19 Refer to the second-order RLC parallel circuit of Figure 4.33. Assume 
that a 1-A step input current is applied at time t0, all the circuit initial 
conditions are zero.

(a) State the time domain equation of the circuit inductor current; 
ensure that you show the equation as a second-order system equation. 
(b) In a general fashion, explain the consequences when the roots are

(i) negative real and different, (ii) negative real and equal, and (iii) 
when the roots are complex conjugates.
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5
THE OPERATIONAL 

AMPLIFIER AS A  
CIRCUIT ELEMENT

5.1  INTRODUCTION TO THE OPERATIONAL AMPLIFIER

The operational amplifier, more commonly known as op amp, is an analog 
circuit. Op amps perform many arithmetic functions, linear and nonlinear 
operations in the analog or continuous domain. Op amps are also used in 
several kinds of analog amplifiers and active filters. They are also used to 
implement nonlinear circuits such as voltage comparators and continue to 
have a widespread use in the field of analog electronics. In its very early years 
of electronics, the beginning of the twentieth century, the first op amps were 
implemented with vacuum tubes, later on with transistors, and most currently, 
op amps are available in a single (or monolithic) integrated circuit (IC) device. 
That is to say that the transistors that implement the op amp itself reside within 
the IC. Why, if the basic components of an op amp are transistors, do we choose 
to cover op amps prior to the introductory chapter on electronic devices 
(diodes, bipolar, and MOSFET transistors)? The reason is simple and justifi-
able: op amps can be dealt with as circuit elements without necessarily knowing 
all the details of their internals. In this chapter we will start using dependent 
sources, to model the operation of op amps. Moreover, the op amp can perform 
a variety of functions that can be easily understood without initially having 
the knowledge of how the actual integrated circuit is designed. Finally, an op 
amp can be effectively used as a circuit element knowing the behavior of its 

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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inputs and output terminals and knowing its parameters from the manufac-
turer’s data sheet. Op amp parameters are indicators of how much a real op 
amp deviates from an idealized model of an op amp. It is in the interest of the 
circuit designer using op amps to establish when the op amp-based circuit 
behaves as if its op amps were ideal and when they are not. When op amp-
based circuits have nonidealities, the circuit designer has to take such devia-
tions from the ideal op amp into account to predict their circuit behavior more 
accurately.

5.2  IDEAL AND REAL OP AMPS

It is extremely useful to use a model of an idealized op amp. In many applica-
tions, as we will see later throughout this chapter, the idealized behavior is just 
a first-order approximation of the way the op amp works as a circuit element. 
Later on, we will add the influence of the real op amp parameters that may 
not let an op amp-based circuit to always be analyzed as an idealization. Our 
goal in this chapter is to understand the ideal op amp, understand how its 
inputs and output work. It is also our goal to know when and what to take 
into account from the manufacturer’s data sheet, which otherwise would not 
be correct with the idealized model. Finally, one of our goals is to address and 
analyze the most important and useful linear and nonlinear applications using 
op amps.

The most basic symbol of an op amp is given in Figure 5.1. It has two inputs, 
a noninverting or positive input and an inverting or negative input. It also has 
a single output. The most generic way of representing an op amp, whether it 
is a real one or an idealized one, is the one seen in Figure 5.1a. A more com-
plete graphical representation is to draw the power terminals that provide 
positive and negative power sources to the real op amp internals, Figure 5.1b. 
Warning to the reader: some technical publications, data sheets, or textbooks 
draw the positive input at the top left of the op amp symbol, some others draw 
the negative input at the top left. However, many other publications inter-
change the location of the positive and negative inputs. Thus, the reader has 
to be very cautious and find out which are the noninverting and the inverting 
inputs of the op amp. Confusing the correct input may mislead one into a 
completely incorrect interpretation of the function of an op amp-based circuit.

Some of the most basic ideal op amp characteristics are

(a) Open-loop gain is infinite: ∞, or AOL → ∞
(b) The noninverting and inverting terminals do not draw or source any 

current from or into the op amp. Zinput = Zi = ∞, means that its input 
impedance is infinitely high.

(c) The output of the op amp can provide an infinitely large current. In 
other words, the op amp output impedance is zero (Zoutput = 0 or 
Zo = 0).
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(d) When the op amp is operated in linear mode using negative feedback, 
the voltage difference between the noninverting and inverting input 
is infinitesimally small.

 ∆V V V= − →+ − 0

We will come back to the negative feedback concept shortly.
(e) Bandwidth of an ideal amplifier is infinite, because the ideal amplifier 

can react to signals of any frequency equally well. Bandwidth in a real 
op amp refers to small signal bandwidth, that is, signals whose peak-
to-peak amplitudes are a small fraction of the op amp power supply 
rail. For example, signals of a 1 V for a ±15-V powered op amp are 
considered to be small signal amplitudes.

(f) Slew-rate: For large signal behavior, that is, for signals that are com-
parable to the power supply rail magnitude in a real op amp, slew-rate 
is a finite and nonzero number. This is because real op amps take time 
to react to large voltage swings. Typically, slew-rates are expressed in 
volts per microsecond.

Figure 5.1  Graphic representation of an op amp (a) idealized or real op amp without power 
terminals, (b) real op amp showing its power terminals.
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(g) Offset voltage: Zero for the ideal case. This value is nonzero for real 
op amps since their negative and positive inputs cannot be perfectly 
matched.

(h) Bias current: Zero for an ideal op amp. This value is nonzero for real 
op amps since their negative and positive inputs cannot be perfectly 
matched.

(i) Offset current (difference of bias currents at positive and negative 
inputs): Zero for the ideal op amp. This value is nonzero for real op 
amp because bias currents, even when finite, cannot be perfectly 
matched.

(j) Common Mode Rejection Ratio (CMRR): The ratio of differential 
mode gain and the common mode gain, usually expressed in dBs.

Table 5.1 summarizes the idealizations made above for an ideal op amp.
As we discuss more op amp-based circuits, we will introduce some more of 

the ideal op amp characteristics. We will be able to go a long way using the 
top four characteristics mentioned in Table 5.1. For now, in what way real op 
amps parameters differ from the idealizations of Table 5.1? Without getting 
into much detail this early in the chapter, we will just say that for a real op 
amp, none of the characteristics listed in Table 5.1 is true. Upon studying  
real op amp data sheet parameters, we will expand what that means in a more 
qualitative manner.

5.3  BRIEF DEFINITION OF LINEAR AMPLIFIERS

Let us study the basic linear amplifiers that are available, before we zoom into 
the operational amplifier-based circuits. Op amp-based circuits are usually 

Table 5.1  Some operational amplifiers idealizations

Parameter Ideal Value

Open-loop gain (AOL) Infinite
Input resistance Ri (more generically input impedance) Infinite
Output resistance Ro (more generically output impedance) Zero
Voltage difference (ΔV) between noninverting and inverting inputs, 

when negative feedback path exists. That is, the op amp is working 
in a linear application. Note: This is not true when the op amp 
operates in open-loop mode or with positive feedback.

Zero

Bandwidth (refers to small signal response capability) Infinite
Slew-rate (refers to large signal response capability) Infinite
Offset voltage Zero
Bias current Zero
Offset current Zero
Common Mode Rejection Ratio (CMMR) Infinite
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special cases of the most generic cases of the four types of amplifiers that we 
will cover in this section.

An amplifier is a two-port device that receives an input signal and produces 
and output that is proportional to some constant, that we call the amplifier 
gain or A, which stands for amplification factor. In general, the gain of an 
amplifier (unlike the gain of an ideal op amp) is finite. Generally when we talk 
about amplifiers, we will always refer to linear amplifiers, unless it is otherwise 
stated. For example, multipliers are nonlinear amplifiers, whereas adders, sub-
tractors, inverters, buffers, and difference amplifiers all are linear amplifiers.

Four key types of linear amplifiers exist from the point of view of the kind 
of input and output signals that they involve:

(a) Voltage amplifier
(b) Current amplifier
(c) Trans-conductance amplifier
(d) Trans-resistance amplifier

A voltage amplifier receives an input voltage and produces an amplified output 
voltage. A current amplifier receives an input current and produces an ampli-
fied output current. A trans-resistance amplifier receives an input current and 
produces an amplified output voltage. A trans-conductance amplifier receives 
an input voltage and produces an amplified output current.

It is common practice to cascade amplifiers. That means connecting the 
output of one into the input of the next one. It is common to cascade two or 
three stages of amplifiers in that way. The input stage of an amplifier typically 
loads the output of an amplifier that precedes it. Figure 5.2 presents three 
cascaded amplifiers.

Figure 5.3 depicts the four amplifiers types described above.
The voltage amplifier of Figure 5.3a has an ideal infinite input resistance, a 

zero output resistance, and a voltage gain of

 Ri → ∞

 Ro = 0

 A v vv o i= / .  (5.1)

The current amplifier of Figure 5.3b has an ideal zero input resistance, an 
infinite output resistance, and a current gain of

Figure 5.2  Cascaded amplifiers.

Gain G1 Gain G2 Gain G3
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Figure 5.3  Amplifier types: (a) voltage, (b) current, (c) trans-conductance, (d) trans-resistance.
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 Ri = 0

 Ro → ∞

 A i iI o i= / .  (5.2)

The trans-conductance amplifier of Figure 5.3c has an ideal infinite input 
resistance, an infinite output resistance, and a trans-conductance gain of

 Ri → ∞

 Ro → ∞

 A i vo iG = / .  (5.3)

The trans-resistance amplifier of Figure 5.3d has an ideal zero input resistance, 
a zero output resistance, and an open circuit trans-resistance gain of

 Ri = 0

 Ro = 0

 A v iR o i= / .  (5.4)

But what do Equations (5.1) through (5.4) mean? Let us start with Equation 
(5.1) on the voltage amplifier and let us refer to Figure 5.3a. The voltage ampli-
fier is modeled with a voltage-controlled voltage source (VCVS). A voltage 
amplifier has an input resistance (in more general terms we say that it is an 
input impedance), and from an ideal point of view, we do not want the input 
stage of the amplifier to load the source that is driving it. So that is the reason 
why, ideally speaking, a voltage amplifier should have an infinite input resis-
tance. This in effect means that the amplifier does not draw any current from 
its driving source. A finite output resistance of a voltage amplifier is what 
would actually limit a real amplifier from driving current to a load connected 
across its output terminals. Since ideally one wants the amplifier to have no 
current sourcing limitation, thus we say that the ideal voltage amp should have 
a zero output resistance.

For the current amplifier of Figure 5.3b the amp is modeled by a current-
controlled current source (CCCS). The controlling input is the input current 
ii; we want the amplifier to be controlled by the current and not by a voltage 
developed across its input resistance. Thus, in this case, the ideal current ampli-
fier should have a zero input resistance, since the input current has to enter 
the amplifier for control purposes. For the same amplifier, notice that the 
output resistance is in parallel with the output current source Ai ii; we certainly 
do not want all the output current to be drained or consumed by its output 
resistance, we want the output current to go to the load. Thus, the output 
resistance of an ideal current amplifier wants to be infinite. The trans-
conductance amplifier of Figure 5.3c is modeled with a voltage-controlled 
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current source (VCCS). The controlling input is voltage vi, so we want the ideal 
trans-conductance amplifier not to draw any current from its driving input 
source; thus, the need for an infinite input resistance. The infinite output resis-
tance of the trans-conductance amp is justified in the same way as the output 
resistance of the current amplifier was. The trans-resistance amp is modeled 
with a current-controlled voltage source (CCVS); the input is controlled by 
current ii, thus we want a zero input resistance for the trans-resistance ampli-
fier, just like we have it for the current amplifier. The output of the trans-
resistance amplifier of Figure 5.3d behaves just like the output of the voltage 
amplifier, thus we want the ideal trans-resistance amplifier to have a zero 
output resistance to drive any load. Finally, let us note that the gain of the 
trans-resistance (AR) and trans-conductance (AG) amplifiers have respectively 
units of ohms and ohms−1. Current and voltage amplifiers have dimensionless 
amplification factors.

5.4  LINEAR APPLICATIONS OF OP AMPS

Linear applications of op amps refer to those circuits that have a linear rela-
tionship between output and input, whereas nonlinear applications do not. The 
most common linear applications are inverting amplifiers, noninverting ampli-
fiers, buffers, and difference amplifiers. Other interesting op amp-based linear 
circuits are integrators and differentiators.

5.4.1  The Inverting Amplifier

Let us now look at op amp-based circuit show of Figure 5.4. This circuit is 
called an inverting amplifier configuration. To analyze how this circuit works, 
we will assume that the op amp of the inverting amplifier is ideal. Let us care-
fully describe by inspection of Figure 5.4 how this circuit is connected. First, 

Figure 5.4  Op amp-based inverting amplifier configuration.
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besides the op amp, we have two external resistors. Resistor R1 is connected 
from the input source V1 to the inverting input terminal of the op amp. Resis-
tor R2 connects the output of the op amp back to the inverting input of the 
op amp. This path from the output to the inverting input of the op amp is 
referred to as a negative feedback path. We will see that all linear circuits 
implemented with op amps have a negative feedback path. Finally, the nonin-
verting input of the op amp is tied to reference ground.

Example 5.1 Calculate the output voltage to input voltage ratio, Vo/Vi or the 
voltage gain of the circuit of Figure 5.4, assuming that the op amp is ideal.

Because the op amp has a negative feedback path, we can assume that the 
voltage difference between inverting and noninverting inputs is zero (see 
Table 5.1). Now because the noninverting input is tied to ground, then the 
voltage at the inverting input is referred to as being virtually grounded. People 
refer to as this node as being “virtual ground.” The closer is the op amp to the 
idealization, the truer that statement becomes. Now we can state a Kirchoff’s 
current law (KCL) equation at virtual ground node A:

 I I1 2=  (5.5)

because i = 0.
But since

 I
V
R

1
1

1

=  (5.6)

because node A is virtually grounded, and since

 I
V V

R
V
R

A o
2

0

2

= −
−

= −
2

,  (5.7)

VA is zero because it is virtually grounded.
At this point, let us refer to Figure 5.4 one more time. Note that the entire 

current I1 that flows through R1 also flows through R2, because there is no 
current at all going into or out of the inverting terminal of the ideal op amp, 
i = 0, Equation (5.5).

So now combining Equations (5.6) and (5.7) yields:

 
V
V

R
R

o

1

2

1

= − .  (5.8)

Equation (5.8) is the approximated closed-loop voltage gain of the inverting 
amplifier, which assumes an infinite op amp AOL. Equation (5.8) is also com-
monly referred to as the inverting amplifier closed-loop gain (CLG). Such 
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CLG is approximate because the ideal op amp parameters have been assumed 
(Table 5.1). Note that the absolute magnitude of this gain is the ratio of R2 
and R1, whereas its sign is negative. It is important to observe that the CLG 
of the amplifier, Equation (5.8), depends only on the external resistors, and it 
is independent of the op amp, as long as the op amp open-loop gain is “large 
enough” and other op amp idealizations are met (Table 5.1).

Figure 5.5  Modeling finite open-loop gain: model used to analyze an inverting configuration 
CLG with a finite-open-loop gain op amp.
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5.4.1.1  Effects of Finite Op Amp Open-Loop Gain in the CLG  Now let 
us investigate what happens when the open-loop gain of the op amp is large, 
but not quite as large as it would have to be. We will see next how to quantify 
when the open-loop gain of the op amp is large enough for Equation (5.8) to 
be accurate. We will calculate the error we make using Equation (5.8) when 
the open-loop gain is finite. Figure 5.5 shows an op amp model where the 
open-loop gain is no longer infinite (AOL < ∞). The output is modeled with a 
VCVS that depends on ΔV, which is the difference between the noninverting 
and the inverting input voltages.

Upon making the above assumptions, not only AOL is finite but also ΔV is 
no longer zero. Figure 5.5 shows the usage of the model of a configured as an 
inverting amplifier with two external resistors, R1 and R2.

Let us assume that the one nonideality of the op amp model that we are 
interested in is its finite open-loop gain. By inspection of the circuit of Figure 
5.5 we can state that

 I I1 2= .

Because the op amp model still assumes that the input resistance of the op 
amp is infinite, thus

 i = 0.
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Additionally,

 ( ) / ( ) / .V V R V V RA A o1 1 2− = −  (5.9)

Since the open-loop gain is assumed to be finite, then

 V V AA o OL= / .

And since the positive input is grounded (0 V), the voltage at node A has 
to be

 V V AA o OL= − / .  (5.10)

Using Equation (5.10) in Equation (5.9) and doing a little bit of algebra we 
arrive at

 V V
R R

A
R R

o

OL

/
/

( / )
.1

2 1

2 11
1

1
= −

+ +
 (5.11)

Equation (5.11) shows the CLG of the inverting amplifier of Figure 5.4 when 
the open-loop gain is finite. We will also refer to this as the true value CLG. 
Note that if

 AOL → ∞,

then Equation (5.11) becomes

 V V R Ro / / .1 2 1= −  (5.12)

Equation (5.12) is the CLG of the inverting amplifier with an infinite AOL op 
amp or simply the estimated or approximated CLG.

Example 5.2 Assume a ratio of R2/R1 = 1, using Equation (5.11), evaluate 
Vo/V1 for the following values of AOL: 1, 10, 102, 103, 104, 105, 106, and 107. Deter-
mine the error that exists between the more accurate close loop gain of Equa-
tion (5.11) with respect to the approximated CLG given by Equation (5.12).

Let us define the absolute value of the error between the two CLGs as the 
difference of the absolute values of Equations (5.12) and (5.11):

 Abs Error Estimated Value True Value_ _ _= −
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 Abs Error R R
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( / )
 (5.13)

And the relative error:

 Relative Error Abs Error True Value_ _ _  = ×( / ) [%]100

 Relative Error
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×  (5.14)

Table 5.2 depicts an inverting amplifier CLG absolute and relative errors for 
various finite values of AOL for a CLG of 1. Table 5.3 depicts the same values 
as Table 5.2 but for a CLG of 10.

It is interesting and important to note that for small CLG of 1 of an invert-
ing amplifier, for a finite op amp open-loop gains (AOL) of 60 dB and higher 
(Table 5.2), the relative error that exists between the CLG assuming an op 
amp with an infinite open-loop gain versus the CLG with a finite op amp 
open-loop gain is just 0.2%. This is quite a small error for the CLG equation. 
Since most op amps today have gains of at least 80 dB, the closed-loop error 
gain of the inverting amplifier with finite AOL is practically the same as the 

Table 5.2  Inverting amplifier closed-loop gain (CLG) errors for finite AOL and CLG of 1

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 1 (CLG = 1) 
with Finite AOL

CLG = 1 
Absolute Error

CLG = 1 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 0.333333 0.666667 200.000000
10 20 0.833333 0.166667 20.000000

100 40 0.980392 0.019608 2.000000
1,000 60 0.998004 0.001996 0.200000

10,000 80 0.999800 0.000200 0.020000
100,000 100 0.999980 0.000020 0.002000

1,000,000 120 0.999998 0.000002 0.000200
10,000,000 140 1.000000 0.000000 0.000020
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Table 5.3  Inverting amplifier closed-loop gain (CLG) errors for finite AOL and CLG 
of 10

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 10 (CLG = 10) 
with Finite AOL

CLG = 10 
Absolute Error

CLG = 10 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 0.833333 9.166667 1,100.000000
10 20 4.761905 5.238095 110.000000

100 40 9.009009 0.990991 11.000000
1,000 60 9.891197 0.108803 1.100000

10,000 80 9.989012 0.010988 0.110000
100,000 100 9.998900 0.001100 0.011000

1,000,000 120 9.999890 0.000110 0.001100
10,000,000 140 9.999989 0.000011 0.000110

gain with an infinite op amp open-loop gain (just a 0.02% error; again refer 
to Table 5.2). Now when the CLG of the inverting amplifier is higher than  
1, in our example of Table 5.3, we assume a CLG of 10, note that for a  
finite open-loop gain of 60 dB, the CLG relative error of the amplifier is 1.1% 
(Table 5.3).

We can generalize and state that the larger the op amp AOL, the more accu-
rate is the approximated CLG of Equation (5.8). When the op amp AOL is not 
as large, then Equation (5.11) should used for better accuracy. However, once 
we have selected “an” op amp, AOL is fixed. So under these conditions, as pre-
sented by the Tables 5.2 and 5.3, the larger the CLG that is desired, the less 
accurate it will be when compared to another CLG that is smaller. For example, 
this is to say that given an op amp with a 100 dB AOL, implementing an invert-
ing configuration of a CLG of 1 will be more accurate than an inverting con-
figuration of a CLG of 10. Once more looking at Tables 5.2 and 5.3, we have 
an error of 0.002% for a CLG of 1 and an error of 0.011% for a CLG of 10, 
in both cases for an AOL of 100 dB.

5.4.1.1.1  Effect  of  Op  Amp  Output  Swing  Due  to  Saturation  A real op 
amp has to receive power from positive and negative power supplies. Some 
op amps are designed to operate off a unipolar power supply; we will in 
general assume that the op amps we use require plus and minus power supplies 
unless it is otherwise stated. So we need to ask ourselves the following ques-
tion, what can the maximum output of an op amp be? Regardless of whether 
the op amp is used in a linear or a nonlinear application, closed-loop or open-
loop (will cover open-loop applications when talking about comparators), the 
highest and lowest output of the amplifier cannot exceed its power supply rails 
minus a saturation voltage (VSAT) imposed by the op amp. For example, if an 
op amp is operated from a +15-V and −15-V power supplies, if the op amp 
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VSAT is 2 V below the positive rail and 2 V above the negative rail, its output 
shall always be within a voltage range of −13 V to +13 V. From now on, even 
though we will continue to deal with ideal op amps, we will assume that our 
ideal op amp requires positive and negative power, and its output shall be 
required to stay away from the saturation limits.

Example 5.3 Design an inverting amplifier with resistors and assume you 
have an ideal op amp. Let us assume that we want a CLG of −4. (a) Determine 
some possible resistor value pairs. (b) Determine the maximum and minimum 
input signal values not to saturate the op amp. Assume the op amp is powered 
from +15 V/−15 V supplies and for the output not to saturate the op amp is 
allowed excursions from +13 V to −13 V.

Solution to Example 5.3

(a) the simplest combination of values that come to mind are 4 kΩ and 1 kΩ 
resistors. Other combinations of values such as 80 kΩ and 20 kΩ, or 400 kΩ 
and 100 kΩ are possible. This should pose a question on our mind: how large 
or how small such resistor values can be. Could we use a 400 MΩ and a 
100 MΩ? Since we are assuming that we are dealing with an ideal op amp even 
400 MΩ and 100 MΩ are fine to use because their ratio provides a CLG of −4 
in an inverting amplifier configuration. Later on we will see that it may not be 
possible to use arbitrarily large or arbitrarily small resistor values when we use 
real-world op amps. We will see that there are upper limits as well as lower limits 
for the resistor values we can choose.

(b) Now, since the op amp output swing cannot exceed +13 V and cannot 
be under −13 V, the largest possible input signal magnitude is determined by 
dividing:

 13 4 3 25/ . .= V  (5.15)

So the input signal should not exceed +3.25 V and should not be under −3.25 V 
for the inverting amplifier not to saturate. Why? Because if the input signal is 
+3.25 V, then

 3 25 4 13. ( ) ,V. V− = −  (5.16)

and when the input signal is

 − − = +3 25 4 13. ( ) .V. V  (5.17)

So keeping the input within −3.25 V and +3.25 V voltage range will prevent 
the op amp from saturating. This is sometimes referred to as the op amp hitting 
or exceeding the power rails.
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What happens, with the circuit of Example 5.3, when we saturate the op 
amp-based inverting amplifier? If the input is outside of the voltage range 
discussed, that is, ±3.25 V, the output of the op amp will not try to go beyond 
its positive output saturation voltage (VSAT) or below its negative saturation 
voltage (–VSAT). Figure 5.6a,b,c present three examples of what occurs when 
the inverting amplifier op amp output becomes saturated. In essence, the op 
amp-based circuit ceases to work as the inverting amplifier that we were trying 

time

time

15 V

10 V

5 V

0 V

−5 V

−10 V

−15 V

Input Signal

Output
Signal

Inverting Amplifier output signal.
Actual Vo due to amplifier saturation = −13 V

Inverting Amplifier Input signal : 5 V

Op amp positive supply rail

Op amp negative supply rail

0 V

5 V

(a)

Figure 5.6  Inverting amplifier (gain = −4) circuit with signals exceeding the output saturation 
limits. (a) 5 V DC input, (b) −5 V DC input, and (c) 5 sin (2π 1 kHz) sinusoidal input.
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Figure 5.6  (Continued )

to implement. When the input times the amplifier gain exceeds the maximum 
voltage that the op amp can produce at its output, which is +15 V − 2 V = 13 V 
for positive outputs and when the op amp output is less than 
−15 V − (−2 V) = −13 V, the output of the op amp is clipped. This means that 
the output will never be over +13 V or be below −13 V. Referring again to 
Figure 5.6c, note that the clipped sinusoidal output waveform is a sinusoidal 
up until the clipping voltage limits are reached by the output. Such limits are 
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±13 V. Note that the top part of Figure 5.6c depicts the output as if the invert-
ing amplifier could reproduce it with a linear gain of −4. The lower portion of 
Figure 5.6c shows what actually happens to the output because of the op amp 
saturation. This effect is called clipping and causes a usually undesired nonlin-
earity. Note: Figure 5.6c ignores the inverting sign of the CLG for simplicity.

Note that in all three cases, the maximum signal value times −4, the invert-
ing gain of the amplifier, leads to a voltage of −20 V DC for case (a), +20 V 
DC for case (b), and −20 sin (2π 1 kHz) for (c). However, in all three cases, 
the inverting amplifier op amp output cannot go beyond ±13 V.

Figure 5.7 shows the same inverting amplifier of a gain of −4 V, when a 
sinusoidal signal of 3 sin (2π 1 kHz) gets well amplified by a factor of −4 
without any clipping or distortion.

The output waveform in Figure 5.7 does not saturate on either positive or 
negative cycles.

20 V peak

+13 V

−13 V

This would be the output voltage if the
amplifier did not saturate

Clipping due to output saturation

Clipping due to output saturation

time

time

(c)

Figure 5.6  (Continued )
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The 3 V peak input sinusoidal waveform is not shown in Figure 5.7. Since 
the inverting amp gain is −4 V, the magnitude of the positive and negative 
peaks of the output do not exceed ±12 V.

5.4.1.1.2  Powering and Decoupling the Op Amp-Based with Positive and 
Negative Supplies  Most op amps require two-polarity power supplies. Only 
special op amps require a single polarity supply. Figure 5.8 shows the intercon-
nection required for two 15-V power supplies for the op amp to effectively 
see a +15 V at its +VDD power pin and −15 V at its –VDD power pin. In addi-
tion to the power supplies, the op amp requires what is usually referred to as 
decoupling capacitors. Decoupling capacitors need to be placed very near the 
op amp power pins, to eliminate any stray inductance on the wire leads. It is 
the decoupling capacitors that keep the voltage across the op amp power pins 
constant and without electrical noise. When the output or inputs of the op amp 
make transitions, the power supply cannot instantaneously supply the ±15-V 
power that the op amp requires at all times to operate correctly. The instan-
taneous voltage during such time is supplied for a short time by the decoupling 
capacitors, until the power supplies have time to respond to the transient.

What value of decoupling capacitor we need? As usual we need to make 
some assumptions about the situation, if that is not already given to us. Assume 
the power supplies can respond to the changes in power supply current demand 
in 1 ms, but no sooner than that. Then we have to size the ±VDD decoupling 
capacitors to hold voltage level of the supplies constant for at least 1 ms at 
not less than the normal VDD value minus 100 mV. Also assume that the opera-
tional amplifier requires at most 10 mA of current of each of its supplies. 
However, the capacitor will not be able to maintain strictly a constant voltage. 

Figure  5.7  Inverting amplifier with a sinusoidal input that does not cause the op amp to 
saturate.
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Figure 5.8  Op amp power (a) +VDD and −VDD, (b) decoupling capacitors.
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As time passes, the decoupling voltage across each capacitor will droop a little 
bit. Why? The voltage–current relationship that governs the electrical behavior 
of a capacitor is

 i t C dv t dt( ) ( ) / .=  (5.18)

So let us use Equation (5.18) to calculate a capacitor value that will hold the 
voltage to 100 mV or less for 1 ms. Plugging in the numbers into Equation 
(5.18) and replacing differentials by finite increments we obtain

 i t C v t t( ) ( ) / ,= ∆ ∆  (5.19)

where

 C i t t v t= ( ) / ( )∆ ∆  (5.20)

 C = × =0 010 0 001 0 1 100. . / . .µF  (5.21)

Figure 5.8a depicts the generation of +VDD and −VDD, and Figure 5.8b shows 
the 100 µF decoupling capacitors just calculated, connected to the op amp 
power supply pins.

Note that the other terminal of each capacitor not connected to a power 
supply rail, connects to ground.

After the charge of the capacitors is depleted, so that they would not be 
able to continue to supply the 15 V less 100 mV, the power supply is ready to 
supply current again and not only powers the op amp at this time, but also 
recharges the decoupling capacitors.

5.4.2  The Noninverting Amplifier

An op amp-based noninverting amplifier circuit is shown in Figure 5.9.
Let us point out the similarities and differences that exist between this 

circuit and the inverting amplifier of Figure 5.4. Both amplifiers have negative 
feedback. Note that on both amplifiers, the output voltage is sampled and fed 
back into the inverting input. The noninverting amplifier, however, has the 
input voltage V1 applied to the positive or noninverting input; this is not the 
case for the inverting amplifier. Assuming that the op amp is ideal, we will 
calculate the output to input voltage ratio or the closed-loop transfer function 
of the noninverting amplifier. Remember that our ideal amplifier, however, 
requires power, and it will saturate if the output gets too close to either supply 
rail.

Node A is virtually close to input voltage V1, because the amplifier uses 
negative feedback and ΔVis practically zero; the voltage at node A is V1. So, 
by inspection of Figure 5.9, we have

 I V R1 1 1= − /  (5.22)
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Figure 5.9  Noninverting amplifier.
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and

 V V I Ro1 2 2− = .  (5.23)

Now, since there is no current entering or exiting the op amp inverting 
terminal,

 I I1 2= .  (5.24)

Combining Equations (5.22) through (5.24) yields

 
V
V

R
R

o

1

2

1

1= + .  (5.25)

Equation (5.25) is the approximated transfer function of the closed loop gain 
of the noninverting amplifier. It is approximated because ideal op amp param-
eters have been assumed (Table 5.1). Note that the sign of the output matches 
the sign of the input waveform. Additionally, it is important to note that the 
CLG (1 + R2/R1) is always strictly greater than one if both resistors are greater 
than 0 Ω. The noninverting amplifier ±input signal times the CLG (1 + R2/R1) 
must be less than the absolute value of the power supply rail.

Example 5.4 Given a noninverting amplifier like the one shown in Figure 
5.9, assuming that the op amp is ideal, but with an op amp VSAT = ±13 V, and 
input V1 is ±1 V maximum, determine the maximum CLG of the noninverting 
amplifier that will not allow the output to become saturated. Assume ±15 V 
power supplies.
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5.4.2.1  Effects of Finite Op Amp Open-Loop Gain in the Closed-Loop 
Equation of the Noninverting Amplifier  In a very similar manner as it was 
done with the inverting amplifier configuration assuming a finite open-loop 
gain op amp model, we arrive at the noninverting amplifier CLG which is:

 V V
R R

A
R R

o

OL

/
/

( / )
.1

1 2

1 2

1

1
1

1
=

+

+ +
 (5.28)

The op amp circuit model used to derive Equation (5.28) is given by the circuit 
of Figure 5.10 where AOL is assumed to be finite.

Solution: Since the closed loop of the noninverting amplifier is: (1 + R2/R1), 
the supply rail is +15 V, and VSAT = 13 V, the maximum positive and negative 
swings that the amplifier can have is ±13 V. Note that this amplifier will only 
swing to the negative voltage rail if the input is negative.

 ± = ±13 1 13V V/ .  (5.26)

Then using Equation (5.26) with Equation (5.25) we have

 ± = + = ±V V
R
R

o / .1
2

1

1 13  (5.27)

From Equation (5.17) we determine that the R2/R1 ratio must equal 12. So for 
example R2 = 12 kΩ and R1 = 1 kΩ.

Figure 5.10  Model of noninverting amplifier with finite AOL.
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Using Equation (5.25) as the estimated value of the CLG and Equation 
(5.28) as the true value of the CLG for an op amp with finite open-loop gain 
AOL, we can calculate the absolute and relative errors of the noninverting 
amplifier CLG equation when the op amp AOL is finite.

Tables 5.4 and 5.5 show the errors that exist for a noninverting amplifier 
configuration for CLGs of 2 and 20 for various values of AOL.

5.4.3  The Buffer or Noninverting Amplifier of Unity Gain

The buffer amplifier is a special case of the noninverting amplifier. Referring 
to the circuit in Figure 5.9, if R2 approaches 0 and R1 approaches infinity, then 
Vo = V1.

Table 5.4  Noninverting amplifier closed-loop gain (CLG) errors for finite AOL: for an 
estimated CLG of 2

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 2 (CLG = 2) 
with Finite AOL

CLG = 2 
Absolute Error

CLG = 2 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 1.333333 0.666667 50.000000
10 20 1.833333 0.166667 9.090909

100 40 1.980392 0.019608 0.990099
1,000 60 1.998004 0.001996 0.099900

10,000 80 1.999800 0.000200 0.009999
100,000 100 1.999980 0.000020 0.001000

1,000,000 120 1.999998 0.000002 0.000100
10,000,000 140 2.000000 0.000000 0.000010

Table 5.5  Noninverting amplifier closed-loop gain (CLG) errors for finite AOL: for an 
estimated CLG of 20

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 20 (CLG = 20) 
with Finite AOL

CLG = 20 
Absolute Error

CLG = 20 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 0.952381 19.047619 2,000.000000
10 20 6.666667 13.333333 200.000000

100 40 16.666667 3.333333 20.000000
1,000 60 19.607843 0.392157 2.000000

10,000 80 19.960080 0.039920 0.200000
100,000 100 19.996001 0.003999 0.020000

1,000,000 120 19.999600 0.000400 0.002000
10,000,000 140 19.999960 0.000040 0.000200
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For the reader’s convenience, we repeat the gain equation of the noninvert-
ing amplifier given by Equation (5.25):

 
V
V

R
R

o

1

2

1

1= + .  (5.29)

Expressing Vo as a function of V1 and resistors R1 and R2, and taking the limit 
of the expression for R1 → ∞ and R2 → 0, we obtain

 limV R R V Vo
R
R

1
2 0

2 1 1 11
→∞
→

= +( ) =/ .  (5.30)

Figure 5.11a depicts a unity gain noninverting amplifier or simply a buffer.
So what is the meaning of Vo = V1? Literally, it means that the output 

voltage is equal to the input voltage. If we connect just a wire between V1 and 
V0 without having any op amp in between, we get the same voltage relation-
ship. To explain the importance of the circuit of Figure 5.11a we need to assume 
that the idealized input resistance of the op amp is actually finite and not 
infinite like it is for the ideal op amp model. Additionally, we will assume that 
the op amp AOL is also finite. This op amp model described with finite input 
resistance and open-loop gain is presented in Figure 5.11b and the buffer 
amplifier, using the op amp model from Figure 5.11b, is shown in Figure 5.11c

Writing the Kirchhoff equations for the circuit of Figure 5.11c and realizing 
that

 V V V A V Vo OL o1 1 1− = − −( ),

we find that

 A V V A ACL o OL OL= = + ≈/ / ( )1 1 1  (5.31)

 R A R A RinCL OL in OL in= + ≈( ) .1  (5.32)

ACL is the CLG of the buffer amplifier and RinCL is the closed-loop input resis-
tance of the buffer amplifier. Because for a buffer amplifier the input voltage 
is quite approximately equal to the output voltage, Equation (5.31), this ampli-
fier is also called a voltage follower.

Rin is the op amp input resistance, usually of several mega-ohms. AOL is the 
op amp open-loop gain. RinCL stands for the closed-loop input resistance of the 
buffer amplifier, not the op amp input resistance.

From Equation (5.32) it is clear to see that since Rin is in the order of several 
mega-ohms, AOL is in the order of 106 V/V, the closed-loop input resistance of 
the buffer amplifier configuration (see Figure 5.11c) is in the order of 1012 Ω. 
The closed-loop input resistance of the buffer amplifier is the effective resis-
tance that the input V1 sees at the noninverting input terminal of the amplifier. 



Figure 5.11  (a) Buffer amplifier, (b) op amp with model finite Rin and AOL, (c) actual buffer 
amplifier circuit using the model from part (b).
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So for input signals in the order of 1 V, the current drawn by the buffer ampli-
fier is in the order of pico amps (10−12 A)!

Based on what we just discussed, the buffer amplifier, which operates as a 
unity gain noninverting amplifier, is in effect a current amplifier. The output 
of the buffer circuit is converted to a voltage with much higher drive capability 
than the pico amp input current. It can also be proven from the circuit of 
Figure 5.11c by adding a finite (nonzero) Rout between the plus sign of the AOL 
ΔV-controlled source and the output voltage Vo, that the effective output resis-
tance of the buffer amplifier is

 R
R

A
outCL

out

OL

=
+( )

,
1

 (5.33)

where Rout is the op amp output resistance, which we have assumed to be zero 
in the ideal op amp model. In a real op amp, Rout is larger than zero and typi-
cally is a small fraction of an ohm to a few ohms. RoutCL is the effective output 
resistance that the buffer amplifier presents to a load that can be connected 
at its output. Let us consider the following numerical example to quantify the 
significance of finite Rin and finite AOL.

Example 5.5 The circuit of Figure 5.12a consists of a resistor divider formed 
with R1 and R2. The intent of this resistor divider is to provide 5 V to any load. 
This will only work with some accuracy if the load resistance is much higher 
than 1 kΩ. But in the circuit example the load resistance is also 1 kΩ. The load 
has a loading effect on the 5 V at node A of the resistor divider. After stating 
the circuit Kirchhoff equations and solving them we determine that the voltage 
across RLOAD is 3.333 V, this is considerably lower than the desired 5 V. Figure 
5.12b shows the circuit divider circuit to which a buffer amplifier configuration 
was added to right side of node A. The output of the buffer drives RLOAD. Since 
the buffer does not draw any significant current from the resistor divider, the 
buffer supplies to RLOAD practically the 5 V at the input of the buffer to RLOAD. 
The advantage of this circuit (Fig. 5.12b) is that for load resistances much 
larger than 1 kohm, the op amp-based buffer can supply the current required 
by the load. To continue to work with this example, consider the circuit of 
Figure 5.12a and calculate the voltage at RLOAD, when RLOAD = 1 Ω, 100 Ω, 
10 kΩ, 100 kΩ, and 1 MΩ, refer to Table 5.6 for the numerical answers of this 
example.

By Kirchhoff, the voltage at node A is

 V
V R R

R R R
A

input LOAD

LOAD

=
⋅

+
( / / )

( / / )
.2

1 2
 (5.34)

Plugging into Equation (5.34) 1 Ω, 100 Ω, 10 kΩ, 100 kΩ, and 1 MΩ we obtain 
Table 5.6.
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Figure 5.12  (a) Resistor divider loaded with a resistor at node A and no buffer amplifier, (b) 
resistor divider load with a resistor after buffering node A, with a voltage follower.
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Table 5.6  Load effect on circuit without and with buffering op amp

RLOAD (Ω)
VA (V); Figure 5.12a without 

Op Amp
Vo (V); Figure 5.12b with 

Op Amp

1 0.00998004 5.0
100 0.098039216 5.0

10,000 4.761904762 5.0
100,000 4.975124378 5.0

1,000,000 4.997501249 5.0

It is interesting to note that the larger the load resistance value is with 
respect to the values of the resistor dividers, when no buffer amplifier is used, 
then the better is the output voltage accuracy. For instance, for 1 MΩ load 
resistance, without using a buffer amp, the voltage across the load is quite close 
to 5 V. For 1 Ω, that is not the case; that is, 0.00998004 V is much lower when 
compared against the 5 V obtained using the buffer amplifier.



314  THE OPERATIONAL AMPLIFIER AS A CIRCUIT ELEMENT 

5.4.4  The Inverting Adder

Figure 5.13 shows the circuit topology of an inverting adding amplifier. We 
only show a three-input circuit; however; the circuit can easily be generalized 
to n-inputs, where n is an integer. Let us analyze this circuit to determine the 
output voltage as a function of all the circuit resistors and the input voltages. 
We will do the analysis assuming that the op amp is ideal.

Since the op amp is ideal and the circuit has negative feedback, the voltage 
difference across the inverting and noninverting inputs of the op amp is zero 
(ΔV = V+ − V− = 0).

Additionally, since the input resistance of the op amp is infinite and using 
KCL we have that

 I I I IF1 2 3+ + = .  (5.35)

Now since the negative input of the op amp is virtually grounded, we have 
using Equation (5.35) and applying Ohms law to each circuit branch:
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V
R

o

F
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3

3

+ + = − .  (5.36)

Figure 5.13  Three-input inverting adder amplifier.
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Doing some algebra on Equation (5.36) we obtain

 V R
R

V
R

V
R

Vo F= − + +





1 1 1

1
1

2
2

3
3 .  (5.37)

We usually prefer to make R1 = R2 = R3 = R so that Equation (5.37) becomes

 V
R
R

V V Vo
F= − + +( ).1 2 3  (5.38)

Equation (5.38) is also referred to as the inverting adder with constant gain 
output voltage, since the ratio RF/R is the same for all the inputs. When the input 
signals are audio frequency signals, the circuit is also called an audio mixer.

Example 5.6 Derive the output voltage equation of an n-input inverting 
adder with constant gain circuit. Assume the op amp is ideal.

Proceeding just like we did to obtain Equations (5.36)–(5.38), we simply 
generalize them to have n-inputs and obtain the following:
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V
R

V
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3

+ + + + = −…  (5.39)

 V R
R

V
R

V
R

V
R

Vo F
n

n= − + + + +





1 1 1 1

1
1

2
2

3
3 � .  (5.40)

We usually prefer to make R1 = R2 = R3 = . . . = Rn = R so that Equation (5.40) 
becomes

 V
R
R

V V V Vo
F

n= − + + + +( ).1 2 3 �  (5.41)

Important note about inverting adders of any number of inputs:
In order for the inverting adder circuit to operate linearly and without satura-
tion, it is required that

 V R
R

V
R

V
R

V
R

VSAT F
n

n> + + + +





1 1 1 1

1
1

2
2

3
3 � .  (5.42)

And when R1 = R2 = R3 = . . . = Rn = R, then

 V
R
R

V V V VSAT
F

n= + + + +( ) .1 2 3 �
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5.4.5  The Difference Amplifier

Figure 5.14 shows the circuit of an op amp-based difference amplifier. Let us 
analyze the circuit to calculate the output to inputs relationship of this 
amplifier.

First, let us note that the op amp has negative feedback, like all previous 
configurations did. The feedback is negative because the output is sampled 
and injected back into the inverting terminal of the op amp. Then assuming 
our op amp is ideal and since it has negative feedback, the ΔV or the voltage 
difference between the noninverting and inverting inputs is infinitely small or 
practically zero.

By inspection of Figure 5.14 we see that ΔV, which is the difference between 
node voltages B and A, is practically zero. So the voltage at node A is identical 
to the voltage at node B. We will refer to this voltage as VA. Moreover, it is 
easy to see that

 V V
R

R R
VA B= =

+
4

3 4
1.  (5.43)

The current that flows through resistor R1 is

 I V V RA1 2 1= −( ) / .  (5.44)

Figure 5.14  Op amp-based difference amplifier.
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Plugging the value of VA from Equation (5.43) into Equation (5.44) we obtain

 I
V

R
R R

V

R
1

2
4

3 4
1

1

=
−

+ .  (5.45)

Current I2 through resistor R2 is

 I V V RA o2 2= −( ) / .  (5.46)

Again plugging the value of VA from Equation (5.43) into Equation (5.46) we 
obtain

 I

R
R R

V V

R
2

4

3 4
1 0

2

= +
−

.  (5.47)

Since I1 = I2, equating Equations (5.45) and Equation (5.47) we get
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−
.  (5.48)

Carefully doing the algebra on Equation (5.48) we obtain the output of the 
difference amplifier as a function of its two input voltages and resistors R1 
through R4:

 V
R R

R
R

R R
V

R
R

Vo =
+



 +





 −1 2

1

4

3 4
1

2

1
2 .  (5.49)

Equation (5.49) is the difference amplifier transfer function when all resistors 
(R1 through R4) are different in value. Additionally, Equation (5.49) is the 
expression of the difference amplifier gain when the op amp is assumed to be 
ideal.

Ideal difference amplifiers only amplify the difference of the two input 
signals and fully reject the average of the sum of the two input signals, also 
referred to as the common mode input signal. This means that Equation (5.50) 
is nonzero and Equation (5.51) is zero for an ideal op amp-based difference 
amplifier.

 Differential input signal : V V Vidiff = −1 2  (5.50)

 Common mode input signal V V Vicm   1
2: ( ).1 2+  (5.51)

However, in the real world, difference amplifiers will not only amplify the 
differential mode input signal, but also the common mode signal to some 
extent.
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The following equation is an expression of the output voltage produced by the 
presence of both types of gains, the differential and the common mode:

 V A V A Vo diff idiff cm icm= + .  (5.52)

It is important to note that the difference amplifier of Figure 5.14 is nonideal 
even if it is implemented with an ideal operational amplifier. Why is this so? 
Because a real difference amplifier, regardless of using an ideal or a real op 
amp, has both differential and common mode gains that are not zero. The 
common mode gain is different from zero due greatly to the resistor inaccura-
cies. Using the circuit of Figure 5.14 we can calculate the value of the common 
mode gain by injecting an input of the same polarity to both the inverting and 
noninverting inputs of the difference amplifier. Figure 5.15 depicts the com-
bined input signal to determine the difference amplifier common mode gain.

If the op amp used for the difference amplifier is ideal, again we have that 
the ΔV is zero, that is, node A and node B are at the same voltage level; 
however, the voltage at node A (and B) is not zero. Again making the usual 
assumptions about ideal op amps, we calculate the voltage at node B, as the 
one produced by the common mode input voltage Vicm and the resistor divider 
formed by R3 and R4 (Fig. 5.15):

Figure  5.15  Common mode input signal to determine the difference amplifier common 
mode gain.
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 V V V
R

R R
A B cm= =

+






4

3 4

.  (5.53)

From the circuit of Figure 5.15 we see that

 I
V V

R
cm A

1
1

=
−

.  (5.54)

Plugging Equation (5.53) into Equation (5.54) we obtain

 I
V

R
R R

V

R

cm cm

1
1

=
−

+
4

3 4 .  (5.55)

We also have that

 I

R
R R

V V

R

cm o

2
2

= +
−4

3 4 .  (5.56)

And since I1 = I2, we get
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.  (5.57)

Doing some algebra on Equation (5.57) and expressing everything in terms of 
Vo/Vcm we get
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1 .  (5.58)

Equation (5.58) is the equation of the common mode gain of the difference 
amplifier.

Since we want a difference amplifier to have a zero common mode gain, so 
that it amplifies only differential signals and it eliminates common mode input 
signals. For the common mode gain to be zero, the right-hand side term of 
Equation (5.58) needs to be zero. This is achieved by having the following 
resistor ratios:

 
R
R

R
R

2

1

4

3

= .  (5.59)

When Equation (5.59) is met. the common mode gain of the difference ampli-
fier with an ideal op amp becomes zero. Thus:
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Example 5.7 Given a difference amplifier just like the one in Figure 5.14, 
determine the value of the differential mode gain, using Equation (5.52) as 
the condition that inhibits the common mode gain. Assume that the op amp 
is ideal.

So using the general expression for the difference amplifier gain from Equa-
tion (5.49), which we repeat here for the reader’s convenience is

 V
R R

R
R

R R
V

R
R

Vo =
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 +
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1
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1
2 .  (5.61)

Equation (5.61) consists of differential and common mode gains. Doing some 
algebraic manipulations on Equation (5.61) we obtain
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1
2 .  (5.62)

Then, plugging the condition given by Equation (5.59) into Equation (5.62), 
we get an expression for the differential amplifier gain, rid of any common 
mode gain, thus:

 V
R
R

V Vo = −2

1
1 2( ).  (5.63)

Referring once more to Figure 5.14 note that V1 is the input to the noninvert-
ing side of the difference amplifier, while V2 is the input to the inverting side 
of the amplifier.

A closer look at Equation (5.63) reveals that the difference between V1 and 
V2 is amplified by the ratio of R2/R1. This ratio is called the difference amplifier 
gain. Remember that Equation (5.63) is valid when the condition given by 
Equation (5.59) is met.

Additionally, if

 R R R R1 2 3 4= = = ,  (5.64)

Equation (5.63) becomes

 V V Vo = −1 2 .  (5.65)

Equation (5.65) is the expression of the difference amplifier output voltage 
strictly as a function of the difference between voltages V1 and V2.

 A
V
V

cm
o

cm

= = 0.  (5.60)
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5.4.6  The Inverting Integrator

If we have an inverting amplifier configuration and replace the resistor in the 
feedback loop with a capacitor, the circuit obtained is an integrator. Figure 
5.16 depicts an integrator using an op amp. The output to input voltage ratio 
in the frequency domain is then

 V V
j C
R j RC

o /
/

.1
1 1

= − = −
ω

ω
 (5.66)

In the time domain and referring to Figure 5.16 we have that

 I I1 2= ,  (5.67)

where

 I V R1 1= /  (5.68)

and

 I C
dV
dt

o
2 = − .  (5.69)

Figure 5.16  Pure integrator circuit using an ideal op amp.
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Combining Equations (5.67) through (5.69 yields

 
V
R

C
dV
dt

o1 = − .  (5.70)

Integrating Equation (5.70) and expressing the output voltage Vo, the follow-
ing is obtained:

 V
RC

V dto = − ∫1
1 .  (5.71)

The Bode plots of an integrator given by Equation (5.66) are shown in Figure 5.17.
The integrator design frequency is fo = 1/2π RC where R and C are the 

values of the resistor and capacitor of the integrator circuit shown in Figure 
5.16. It is important to notice the difference between the op amp-based inte-
grator of Figure 5.16 and the first order RC LPF from Chapter 4, Figure 4.4. 
The op amp-based integrator has an infinite gain at DC or at zero frequency. 
The gain or magnitude decreases at a constant rate of 20 dB per decade. The 
first-order RC LPF integrator circuit, which has no op amp, has a 0 dB gain at 
frequencies below the integrator f0 cutoff frequency and the gain decays at a 
constant rate of 20 dB per decade above f0. Refer to this previously discussed 
circuit Bode plots in Figure 4.4. So what does this all mean in terms of practical 
operation of the integration? The op amp-based integrator has an infinite gain 
at DC, so if the input signal to be integrated is constant, the op amp will satu-
rate. That is the reason why op amp integrators implemented like in Figure 
5.16 are not quite that practical. One needs to add a semiconductor switch in 
parallel with the capacitor to reset the op amp output by discharging the 
capacitor, to let the integration restart. Another issue with the op amp-based 
integrator of Figure 5.16 is that any noisy signals below the integrator f0 fre-
quency become amplified more than the integrated frequency. We will shortly 
address a practical integrating op amp-based circuit that performs better than 
the one being presented and does not have the deficiencies just mentioned. It 
is also important to mention that the circuit of Figure 5.16 has a constant phase 
shift of −90° for all frequencies, whereas the first-order RC integrator does not 
(refer to Figure 4.4).

5.4.7  The Inverting Differentiator

If we have an inverting amplifier configuration and replace the resistor in the 
input path with a capacitor, the circuit obtained is a differentiator. Figure 5.18 
depicts a differentiator using an op amp. The output to input voltage ratio in 
the frequency domain is then

 V V j RCo i/ .= − ω  (5.72)



LINEAR APPLICATIONS OF OP AMPS  323

Figure 5.17  Op amp-based pure integrator asymptotic Bode plots.
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In the time domain and referring to the differentiator of Figure 5.18 we have that

 I I1 2= ,  (5.73)

where

 I
V

j C

1
1

1
=

ω

 (5.74)
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and

 I
V
R

o
2 = − .  (5.75)

Combining Equations (5.74) and (5.75) according to Equation (5.73) it yields

 
V
V

j RCo

1

= − ω .  (5.76)

Equation (5.76) is the expression of a differentiator transfer function in the 
frequency domain. We will also determine the time domain equation of the 
differentiator output voltage. Again by referring to Figure 5.18 we see that 
I1 = I2. Since current I1 through the capacitor is

 I CdV dt1 1= /  (5.77)

and

 I V Ro2 = − / .  (5.78)

Combining Equations (5.77) and (5.78) we obtain the expression of the output 
voltage for the inverting differentiator:

 V RC
dV
dt

o = − 1 .  (5.79)

Figure 5.18  Pure differentiator circuit using an ideal op amp.
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The Bode plots of a differentiator derived from the frequency domain 
Equation (5.76) are shown in Figure 5.19.

The differentiator frequency is f0 = 1/2π RC where R and C are the values 
of the resistor and capacitor of the differentiator circuit shown in Figure 5.18. 
It is important to notice the difference between the op amp-based differentia-
tor of Figure 5.18 and the first-order RC HPF differentiator from Chapter 4, 

Figure 5.19  Asymptotic Bode plots of a pure differentiator.
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Figure 4.10. The op amp-based differentiator has a negative infinite gain at 
DC. The gain or magnitude increases at a constant rate of 20 dB per decade 
of frequency. The first-order RC HPF differentiator circuit (Chapter 4, Fig. 
4.10), which has no op amp, has a negative gain that increases at 20 dB per 
frequency decade from very low frequencies up until the filter cutoff fre-
quency. Above this frequency, the op amp-less differentiator gain is 0 dB. Refer 
to the previously discussed circuit in Chapter 4, Figures 4.10 and 4.12. So what 
does this all mean in terms of practical operation of the differentiator? The 
op amp-based differentiator of Figure 5.18 actually will not work properly. 
Why? Because the gain at higher frequencies becomes extremely large; in fact, 
this high frequency gain is so large that any noisy or unwanted signals of a 
frequency higher than that of the signal that we intend to differentiate over-
whelms the output of the op amp, effectively saturating it, and the op amp may 
even oscillate from rail to rail. To make the circuit of Figure 5.18 work, one 
has to limit the gain of the differentiator at very high frequencies. The imple-
mentation of such circuit, which will be used as a practical differentiator as 
well as an integrator, is discussed in the next section.

5.4.8  A Practical Integrator and Differentiator Circuit

We already discussed the reasons why the integrator circuit of Figure 5.16 and 
the differentiator circuit of Figure 5.18 will not operate properly. We summa-
rize those results again. The integrator has an infinite gain at DC and thus it 
saturates the op amp output when a DC level is integrated for some finite 
time. The differentiator has an infinite gain for infinitely high frequencies, thus 
causing any high frequency unwanted signals to saturate the op amp and 
masking the differentiated signals of interest.

A practical solution to mitigate both of those problems is to limit the gain 
of the integrator at low frequencies and to limit the gain of the differentiator 
at very large frequencies. The circuit that does just that is depicted in Figure 
5.20. Its corresponding asymptotic and exact Bode plots are presented in 
Figures 5.21 and 5.22, respectively.

The circuit in Figure 5.20 shapes the gain characteristics at low frequencies 
and at high frequencies. Refer once more to Figures 5.21 and 5.22. These 
figures show a fairly constant band-pass gain characteristic of 20 dB between 
cutoff frequencies f2 and f3. It behaves as a differentiator for all those signals 
of frequencies at f1 and below, and it behaves as an integrator for those fre-
quencies at f4 and above. The cut-off frequencies are the −3 dB gain frequen-
cies, for this particular example f2 = 100 Hz and f3 = 10 kHz. Frequency range 
f2 through f3 defines the circuit mid-frequency band.

In other words our circuit combines the differentiating and integrating 
characteristics of both pure differentiator and pure integrator, and provides a 
flat gain band-pass characteristic at mid frequencies. Frequencies below f1 are 
attenuated at a rate of +20 dB/decade. Frequencies above f4 are attenuated at 
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a rate of −20 dB/decade. At mid-band frequencies the gain is quite constant 
and it is 20 dB. Such gain is mainly determined by the ratio of R2 over R1.

In a general sense our practical circuit is designed such that at frequencies 
f2 through f3 the ratio of the impedance module of R2 in parallel with C2 over 
the impedance module of the series of R1 and C1 is 10, thus a 20 dB gain. 
Capacitor C1 and resistor R2 determine f1 at 0 dB gain, the high end of the 
differentiating frequency range. C2 and R1 determine f4 at 0 dB, and it is the 
low end or the beginning of the integrating frequencies.

Our practical circuit phase behavior ranges from −90° at low frequencies 
to +90° at high frequencies. Now since the op amp produces a −180° phase 
shift, the overall circuit phase spans from −90° (+90° to 180°) from very low 
frequencies down to −270° (−90° to 180°) at high frequencies. The −180° phase 
shift is caused by the negative sign of the op amp-based inverting configuration 
output voltage over input voltage transfer function, that is, Vo /Vin = −R2/R1.

We can see that the topology of the circuit of Figure 5.20 is that of an invert-
ing amplifier where

 Z

R
j C

2

2
2

1
1

=
+ ω

 (5.80)

Figure 5.20  A practical differentiator, integrator, and band-pass filter circuit schematics.
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Figure 5.21  Asymptotic Bode plots of a practical differentiator, integrator, and band-pass filter.

0.1 1 10 10 10 10 10 10

hertz

0 dB

-20 dB

-180 deg.

-90 deg.

+20 dB/decade

Differentiator frequencies20 dB

40 dB Magnitude

Phase

5 6432

Integrator frequencies

-20 dB/decade

0.1 1 10 10 10 10 10 105 6432

Band pass (mid-band frequencies)

f1 2f

-270 deg.

hertz

-135 deg.

-225 deg.

3 4f f

f1 2f 3f 4f

0.1 1 10 102 10
3

104 105
10

6

hertz



LINEAR APPLICATIONS OF OP AMPS  329

and

 Z R
j C

1 1
1

1
= +

ω
.  (5.81)

The transfer function of the circuit of Figure 5.20 is
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Using Equations (5.80) and (5.81) in Equation (5.82) we obtain
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Doing some algebraic manipulations with Equation (5.83) we arrive at

 V V
j R C

j R C j R C
o in/

( )( )
.= −

+ +
ω

ω ω
2 1

2 2 1 11 1
 (5.84)

Equation (5.84) has one zero at the origin in the numerator and two zeros on 
the denominator. Numerator zeros are simply referred to as zeros of the trans-
fer function. Denominator zeros are referred to as poles of the transfer 
function.

Figure 5.22  Exact Bode plots of a practical differentiator, integrator, and band-pass filter. See 
the Appendix to this chapter for a larger version.
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Example 5.8 Design a pass band amplifier that has the following characteristics:

(a) Pass band gain = 20 dB
(b) 0 dB gain and end of differentiation at f1 = 10 Hz
(c) Low cutoff frequency f2 = 100 Hz
(d) High cut-off frequency f3 = 10 kHz
(e) 0 dB gain and beginning of integration at 100 kHz

Assume you can use an ideal op amp.
The circuit topology is just like the circuit shown in Figure 5.20.
From Equations (5.88)–(5.90) and the given characteristics of the desired 

band pass amplifier with combined differentiating and integrating properties, 
we have the following:

 f / R C1 2 11 2 10= =π Hz  (5.91)

 f / R C2 1 11 2 100= =π Hz  (5.92)

 f R C f R C3 2 2 4 1 21 2 10 1 2 100= = = =/ / .π πkHz and kHz  (5.93)

We can rewrite Equation (5.84) using the following definitions:

 ω1
2 1

1
=

R C
 (5.85)

 ω2
1 1

1
=

R C
 (5.86)

 ω ω3
2 2

4
1 2

1 1
= =

R C R C
and  (5.87)

where ω1 = 2πf1, ω2 = 2πf2, ω3 = 2πf3, and ω4 = 2πf4 thus,

 f R C1 2 11/2= π  (5.88)

 f R C2 1 11/2= π  (5.89)

 f R C f R C3 2 2 4 1 21/2 and 1/2= =π π  (5.90)

We can plot Equation (5.84) either by writing a computer program that cal-
culates the magnitude and the phase of Equation (5.84) or using the asymp-
totic Bode plot methodology. We have to keep in mind that Equation (5.88) 
is the frequency at which the transfer function magnitude has 0 dB gain and 
the differentiation in the time domain ends. Equation (5.89) is where the first 
pole of the transfer function is placed, and f3 (in Eq. ((5.90)) is where the 
second pole of the transfer function is placed. Finally, f4 is the frequency at 
which the gain is 0 dB and integration begins.

We will go over a numerical example to clarify the generation of the trans-
fer function given by Equation (5.84).
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Important Points 
The differentiating frequencies of the amplifier are at and below f1 (10 Hz 

and below).
The band pass flat gain of 20 dB is between f2 = 100 Hz and f3 = 10 kHz.
The integrating frequencies of the amplifier are at and above f4 (100 kHz 

and above).
The current circuit topology will work as a differentiator, a band pass 

amplifier, and an integrator in the three different frequency ranges discussed 
above (see Figs. 5.21 and 5.22).

5.5  OP AMPS NONLINEAR APPLICATIONS

The most significant and widely used nonlinear application using op amps is 
when op amps operate in open loop. The op amp under such operation is 
referred to as a comparator, and op amp manufacturers optimize op amp 
parameters to operate them as comparators. So it is common for IC manufac-
turers to sell op amps and comparators. So what is a comparator? A compara-
tor is designed to operate in open loop; its output swings between specified 
upper and lower limits. A very desirable feature is that the comparator wants 
to be fast to swing its output upon a detected voltage difference at its inputs. 
Usually comparators do not have internal compensating capacitors. On the 
other hand, op amps have internal compensating capacitors. The lack of com-
pensation capacitors allows comparators to be faster than op amps. Op amps 
are designed to be accurate and stable; op amps have good DC and AC behav-
ior. On a final note, most comparators have an open collector or open drain 

The mid-band frequency gain of our amplifier has to be 20 dB. This means  
that the amplifier closed loop gain has to be 10. Arbitrarily, we can choose 
R2 = 10 kΩ, thus R1 must be 1 kΩ, thus 20 log10 (10) = 20 dB. Using these 
values for R1 and R2 in Equations (5.91)–(5.93) we obtain

 C1 1 59= . µF  (5.94)

 C .2 1 59= . nF  (5.95)

Also remember that

 R1 1= kΩ  (5.96)

and

 R .2 10= kΩ  (5.97)

Figure 5.22 shows exact Bode magnitude and phase plots of the transfer func-
tion given by Equation (5.84) using the numerical values given by Equations 
(5.94) through (5.97).
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output; this means that its output can be connected to supply levels that may 
not necessarily be those of the comparator power supplies. This flexibility 
allows an easier interface of comparators to digital circuits.

5.5.1  The Open-Loop Comparator

The comparator is typically used in open-loop mode to compare when the 
signal level at the one of the inputs is greater or smaller that the signal level 
at the other input terminal. Since a comparator gain is very high, just like that 
of an open-loop op amp, upon detecting a difference between its inputs, the 
output will swing to the positive rail when V+ > V−. The output will swing to 
the negative rail when V− > V+. V+ refers to the input signal at the noninvert-
ing input of the comparator. V− is the signal at the inverting input of the 
comparator. Figure 5.23 shows a comparator operating with its inverting input 
tied to ground and an arbitrary waveform at its noninverting input. Note that 
when the input signal at the positive input is above zero the comparator output 
swings to its positive rail.

The output swings to the negative rail when the noninverting input signal 
is negative or below ground.

Figure 5.23 assumes that the comparator output used is very fast when 
reacting to a change of the noninverting input. Such circuit is called a nonin-
verting zero-crossing detector. Note that since the inverting input of the com-
parator is grounded, it is at 0 V; every time the noninverting input is above 
zero, the output of the comparator saturates toward the positive rail, otherwise 
it saturates to the negative rail. We can easily design an inverting zero-crossing 
detector by swapping the inputs to the comparator of Figure 5.23. This means 
tying the ground to the noninverting input and connecting the input signal Vin 
to the inverting input.

5.5.2  Positive and Negative Voltage-Level Detectors  
Using Comparators

5.5.2.1  Positive Level Detectors  Let us assume that we want to detect 
when a signal Vin is above a positive DC voltage level, which we will refer to 
as VREF. Let us also assume that every time signal Vin is above VREF, we want 
the output of the comparator to indicate this with a high output level at Vout. 
Figure 5.24 shows a possible implementation of such circuit.

Note that the reference voltage VREF is connected to the inverting input of 
the comparator. The input signal Vin is tied to the noninverting input of the 
comparator. The comparator shows its positive and negative power supply 
levels. For simplicity, the decoupling capacitors are not shown. Let us see how 
this circuit works; each time Vin is greater than VREF, the comparator output 
will saturate to the positive +VSAT level. When Vin is less than VREF the com-
parator output will saturate at the negative −VSAT level. Although Figure 5.24 
shows a sinusoidal waveform for Vin, there is no restriction on waveform Vin, 
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Figure 5.23  Open-loop comparator operation with grounded inverting input.
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it can be a saw-tooth, an exponential or even a piece-wise linear waveform. 
The positive-level detector of Figure 5.24 is referred to as a noninverting 
detector because the comparator output signals with a high level Vout at +VSAT 
when the input signal Vin is greater than the reference voltage. This is the 
simplest and most straightforward variation of the four types of level detectors 
that we will study in this section. When confused with the subsequent detector, 
make sure that you always come back to the one described by Figure 5.24. 
This will let one understand the concepts more easily than any of the other 
three will. The inverting positive-level detector is implemented in Figure 5.25. 
Note that the input signal is now applied to the inverting input of the compara-
tor, while the reference voltage is applied to the noninverting input.

Figure 5.24  Noninverting positive-level detector.
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5.5.2.2  Negative-Level  Detectors  Just like there are two polarities of 
positive-level detectors, that is, inverting and noninverting, there are also two 
kinds of negative-level detectors. Negative level refers to the sign of the voltage, 
to which the input signal is being compared. Figure 5.26 depicts a noninverting 
negative-level voltage detector. Vin the input signal is applied to the positive 
input of the comparator, while the negative input of the comparator has a 
negative reference voltage. Note that VREF negative terminal is connected to 
the comparator inverting input, while the positive terminal of VREF is grounded.

Finally, for the inverting level negative edge voltage level detector, VREF and 
Vin are swapped. Figure 5.27 depicts the inverting negative voltage-level detec-
tor. Note that when Vin is above the negative reference level (–VREF), the 
output of the comparator is at −VSAT.

Figure 5.25  Inverting positive-level detector.
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Summary of Voltage Level Detectors:

1. Noninverting positive-level detector (see Fig. 5.24)
2. Inverting positive-level detector (see Fig. 5.25)
3. Noninverting negative-level detector (see Fig. 5.26)
4.  Inverting negative-level detector (see Fig. 5.27)

5.5.3  Comparator with Positive Feedback (Hysteresis)

Comparators work well in open-loop mode if the signal Vin at its input varies 
rapidly and it is not noisy. However, if a noisy input signal Vin is present, there is 

Figure 5.26  Noninverting negative voltage-level detector.
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a good opportunity for the open-loop comparator to oscillate once or more times 
before settling on its steady state either +VSAT or −VSAT output voltage level. 
Figure 5.28 shows a comparator operating in open-loop; the input signal has on 
top of it a noisy signal of much higher frequency than the input. We can observe 
that before the output settles to its final and correct value, the comparator  
output oscillates momentarily; this is referred to as chattering. A straightforward 
way of significantly reducing or eliminating this problem is to provide a little bit 
of positive feedback from the comparator output back into its positive input.

Taking a fraction of the output voltage and feeding it back to the noninvert-
ing input of the comparator provides positive feedback into the comparator. 

Figure 5.27  Inverting negative voltage-level detector.
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Figure 5.29 shows a comparator with resistors R1 and R2 that provide positive 
feedback. The circuit is configured as a noninverting zero voltage-level detec-
tor. Let us understand how the resistors provide hysteresis to the circuit.

The upper threshold voltage is the output voltage times the resistor divider 
formed by R1 and R2. Thus,

 V
R

R R
VUT SAT=

+
2

1 2

.  (5.98)

Figure 5.28  Comparator operating in open-loop mode that exhibits chattering.
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Figure 5.29  Comparator with hysteresis eliminates chattering.
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When the comparator output voltage is equal to +VSAT the upper threshold 
voltage given by Equation (5.98) is a fraction of VSAT. If Vin plus any noisy and 
unwanted components are present and are in absolute magnitude smaller that 
VUT, the comparator snaps to +VSAT and will get locked at +VSAT. As Vin 
decreases below 0 V (the ground level) +VSAT will eventually snap out of +VSAT 
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and will switch to −VSAT. Now −VSAT produces a voltage called the lower thresh-
old, which is equal to

 V
R

R R
VLT SAT= −

+
2

1 2

.  (5.99)

The noise on top of Vin is still smaller in magnitude that the VLT. The compara-
tor output locks up at −VSAT now. As the input continues to decrease well below 
ground, the output of the comparator stays at −VSAT. Not until Vin grows above 
ground the whole cycle repeats itself indefinitely. Every time the comparator 
output locked up to either +VSAT or −VSAT, the undesirable chattering seen in 
the open-loop case of the previous section has been eliminated. Figure 5.29 
shows a comparator with hysteresis.

Example 5.9 Given a 100 Hz triangular waveform, and assuming that noise 
signals of ±10 mV can be riding on the signal, design the hysteresis circuit 
divider to avoid chattering of the combined signal plus noise on a noninverting 
zero voltage detector. Let us assume that the positive and negative supplies 
of the comparator are respectively + and −15 V. Also assume that you checked 
the comparator data sheet and the + and −VSAT voltages are respectively + and 
−14 V.

Choosing R2 = 100 kΩ and R1 = 100 Ω, using these values in Equations 
(5.98) and (5.99) we find that

 V
R

R R
V

k
k

UT SAT=
+

=
+

≅2

1 2

100
100 100

14 14
Ω

Ω Ω
V mV  (5.100)

and

 V
R

R R
V

k
k

LT SAT= −
+

= −
+

≅ −2

1 2

100
100 100

14 14
Ω

Ω Ω
V mV.  (5.101)

The total hysteresis voltage, or the voltage range for which the error on the 
signal is eliminated, is given by

 V V VH UT LT= − = 28 mV.  (5.102)

Note that when the input signal goes above the upper threshold, the output 
voltage drops down to –VSAT. The peak-to-peak noise voltage on the input 
signal has to be greater than or equal to 28 mV (the hysteresis voltage given 
by Equation (5.102)), to pull the input signal below the lower threshold and 
cause a false zero crossing. So as long as the peak-to-peak noise on top of the 
input signal does not exceed the hysteresis voltage range (VH), the false cross-
ing will not occur. Since for this example we are told that the peak-to-peak 
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5.6  OPERATIONAL AMPLIFIERS NONIDEALITIES

The actual electrical characteristics of real op amps are more complicated than 
those of the idealized op amp. The op amp is implemented with either bipolar 
or JFET transistors. The basic op amp consists of three main stages cascaded 
one after the other. The input stage is a transistorized differential stage, a level 
shifting stage follows the first stage and the last stage is an output stage that 
performs a differential to single ended output conversion. Differential signals 
come in pairs; there is a noninverted signal and an inverted signal to carry 
information over two separate wires. This provides to the signal better noise 
immunity; this is to say that the signals are more protected against noise or 
unwanted signals. Single ended signals are referenced with respect to ground 
and do not have as good noise immunity as differential signals do.

The differential input stage of the op amp has imperfections due to the fact 
that it is impossible to fabricate perfectly matched transistors. The currents in 
or out of the inverting and noninverting inputs are not really zero. They are 
nonzero and but small in magnitude, and they are referred to as the bias cur-
rents. There is an IB+ (positive input bias current) and an IB- (negative input bias 
current). We will model this behavior of the input stage of the op amp with to 
current sources of values IB+ and IB-. Figure 5.30 shows the model of a real op 
amp with the imperfections that we describe throughout this entire section. It is 
important to say that such bias currents are not only nonzero, but also they are 
not equal to each other and may flow in or out of their respective op amp input. 
The magnitude of the difference of the positive and negative bias current is 
referred to as the offset current (IOS). The numerical value of the offset current 
generally is a fraction of the bias current. A voltage source models the offset 
voltage of the amplifier. The offset voltage (VOS) of the op amp is the voltage 
that is required to apply across its inputs to obtain a 0 V output with the op amp 
in an open-loop condition. Differential impedance appears across both op amp 
inputs and common mode impedance appears between the inputs and ground. 
This impedance models the finite common mode the real op amp has. Figure 
5.30 depicts an op amp model with some real electrical parameters.

The input stage has two AC current sources (IN) and an AC voltage source 
(VN) that model noise components that unavoidably exist in the op amp. 
Finally, for the input imperfections, we have to mention that both bias currents 
and offset voltages vary or drift with temperature variations. Manufacturers 
usually specify these parameters at one temperature, for example, at 25°C and 
at a range of temperatures, such as −40°C to 85°C.

Let us now talk about the output stage of the real op amp. The output of 
the op amp has a nonzero and finite output resistance (Ro), which is modeled 

noise can be up to 20 mV and since the comparator hysteresis was designed 
to tolerate 28 mV of peak-to-peak noise, we still have a positive margin over 
the required immunity to noise.
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Figure 5.30  Model of a real operational amplifier.

-

+

C

+

-

VOS

VN

IN

IB-

IN

ZCM

Z
D

IF
F

IB+

DVin

AOL DVin Rout Vout



OP AMP SELECTION CRITERIA  343

in series with the output generator AOL (Fig. 5.30). Generator AOL models the 
finite nature of the op amp open-loop gain. In actuality AOL is really large, but 
it is not infinite. The op amp open-loop gain is also a function of frequency, 
and it is usually modeled with a capacitor hanging from the output of the op 
amp to ground. This RC network at the output of the op amp is also referred 
to as the op amp single pole approximation. The op amp manufacturer speci-
fies the device behavior with frequency with the open-loop gain bandwidth 
and with the op amp gain-bandwidth product. Both of these parameters model 
the frequency behavior of the op amp under small signal excitation. A small 
signal for an op amp is a signal whose amplitude is about one order of mag-
nitude smaller that its supply voltage. For large signal operation, the slew-rate 
of the op amp determines how fast the op amp can react to changes. Slew is 
usually specified in volts per microsecond. A slow op amp may have a 0.5 V/µs 
slew-rate, while a high speed one may have a 6000 V/µs slew-rate.

There are a few more real parameters of an op amp such as common mode 
rejection ratio (CMRR), which provides information as to how much common 
mode signals become attenuated, by the op amp. CMRR is also a frequency-
dependent parameter. Power supply rejection ratio specifies how sensitive the 
op amp operation is to variation of it power supply rails. This section intends 
to cover some of the most fundament imperfections that most op amp manu-
facturers specify. Beware that this list is not complete and there are manufac-
turers that provide more or less complete data sheet specifications for their 
devices. Table 5.7 summarizes some commonly specified op-amp parameters.

5.7  OP AMP SELECTION CRITERIA

Op amps are generally classified by the following characteristics:

1. DC parameters (offset voltage, bias and offset currents, and their drift 
with temperature) as precision op amps,

2. Low noise,
3. Speed (gain-bandwidth product and slew-rate),
4. Single or dual rail power supply,
5. Single, dual, or quad (1, 2, or 4 amplifiers) in a package,
6. Rail-to-rail output voltage swing,
7. Maximum common mode input voltage, low power consumption.Ulti-

mately most manufacturers provide online tools to their customers to 
select any of their op amps by a selection of any number and combina-
tion of parameters offered by the manufacturer. Other characterizations 
exist; just a few of the most popular ones were listed above.

Why can’t we have all of the parameters optimized and not worry about select-
ing op amps? The reason is that improving some op amp parameters imposes 
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Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

(Note 7)

LM741A LM741 LM741C

Supply Voltage ±22V ±22V ±18V

Power Dissipation (Note 3) 500 mW 500 mW 500 mW

Differential Input Voltage ±30V ±30V ±30V

Input Voltage (Note 4) ±15V ±15V ±15V

Output Short Circuit Duration Continuous Continuous Continuous

Operating Temperature Range −55˚C to +125˚C −55˚C to +125˚C 0˚C to +70˚C

Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C

C˚001C˚051C˚051erutarepmeTnoitcnuJ

Soldering Information

N-Package (10 seconds) 260˚C 260˚C 260˚C

J- or H-Package (10 seconds) 300˚C 300˚C 300˚C

M-Package

Vapor Phase (60 seconds) 215˚C 215˚C 215˚C

Infrared (15 seconds) 215˚C 215˚C 215˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of
soldering

surface mount devices.

ESD Tolerance (Note 8) 400V 400V 400V

Electrical Characteristics (Note 5)

Parameter Conditions LM741A LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage TA = 25˚C

RS ≤ 10 kΩ 1.0 5.0 2.0 6.0 mV

RS ≤ 50Ω Vm0.38.0

TAMIN ≤ TA ≤ TAMAX

RS ≤ 50Ω Vm0.4

RS ≤ 10 kΩ 6.0 7.5 mV

C˚/Vµ51tesffOtupnIegarevA

Voltage Drift

Input Offset Voltage TA = 25˚C, VS = ±20V ±10 ±15 ±15 mV

Adjustment Range

Input Offset Current TA An0020200202030.3C˚52=

TAMIN ≤ TA ≤ TAMAX 70 85 500 300 nA

C˚/An5.0tesffOtupnIegarevA

Current Drift

Input Bias Current TA An00508005080803C˚52=

TAMIN ≤ TA ≤ TAMAX 0.210 1.5 0.8 µA

Input Resistance TA = 25˚C, VS = ±20V 1.0 6.0 0.3 2.0 0.3 2.0 MΩ
TAMIN ≤ TA ≤ TAMAX M5.0, Ω
VS = ±20V

Input Voltage Range TA = 25˚C ±12 ±13 V

TAMIN ≤ TA ≤ TAMAX ±12 ± V31

LM
74

1

Table 5.7  Real op amp parameters (National LM741, reproduced with permission of Texas 
Instruments Incorporated)
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Electrical Characteristics (Note 5) (Continued)

Parameter Conditions LM741A LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Large Signal Voltage Gain TA = 25˚C, RL ≥ 2 kΩ
VS = ±20V, VO = ± Vm/V05V51

VS = ±15V, VO = ± Vm/V0020200205V01

TAMIN ≤ TA ≤ TAMAX,

RL ≥ 2 kΩ,

VS = ±20V, VO = ± Vm/V23V51

VS = ±15V, VO = ± Vm/V5152V01

VS = ±5V, VO = ± Vm/V01V2

Output Voltage Swing VS = ±20V

RL ≥ 10 kΩ ± V61

RL ≥ 2 kΩ ± V51

VS = ±15V

RL ≥ 10 kΩ ±12 ±14 ±12 ±14 V

RL ≥ 2 kΩ ±10 ±13 ±10 ±13 V

Output Short Circuit TA = 25˚C 10 25 35 25 25 mA

TtnerruC AMIN ≤ TA ≤ TAMAX Am0401

Common-Mode TAMIN ≤ TA ≤ TAMAX

Rejection Ratio RS ≤ 10 kΩ, VCM = ± Bd09070907V21

RS ≤ 50Ω, VCM = ± Bd5908V21

Supply Voltage Rejection TAMIN ≤ TA ≤ TAMAX,

VoitaR S = ±20V to VS = ±5V

RS ≤ 50Ω Bd6968

RS ≤ 10 kΩ 77 96 77 96 dB

Transient Response TA = 25˚C, Unity Gain

sµ3.03.08.052.0emiTesiR

%55020.6toohsrevO

Bandwidth (Note 6) TA zHM5.1734.0C˚52=

Slew Rate TA = 25˚C, Unity Gain 0.3 0.7 0.5 0.5 V/µs

Supply Current TA Am8.27.18.27.1C˚52=

Power Consumption TA = 25˚C

VS = ± Wm05108V02

VS = ± Wm58055805V51

LM741A VS = ±20V

TA = TAMIN Wm561

TA = TAMAX Wm531

LM741 VS = ±15V

TA = TAMIN Wm00106

TA = TAMAX Wm5754

Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits.

LM
741

Table 5.7  (Continued )
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Electrical Characteristics (Note 5) (Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj  
max. (listed under “Absolute Maximum Ratings”). Tj = TA + (θjA PD).

Thermal Resistance Cerdip (J) DIP (N) HO8 (H) SO-8 (M)

θjA (Junction to Ambient) 100˚C/W 100˚C/W 170˚C/W 195˚C/W

θjC (Junction to Case) N/A N/A 25˚C/W N/A

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specified, these specifications apply for VS = ±15V, −55˚C ≤ TA ≤ +125˚C (LM741/

specifications are limited to 0˚C ≤ TA ≤ +70˚C.
Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).
Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 8: Human body model, 1.5 kΩ in series with 100 pF.

Schematic Diagram

LM
74

1
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LM741A).  For the LM741C/LM741E, these

Table 5.7  (Continued )
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technological trade-offs. For example, if we want a high-precision op amp with 
excellent DC parameters and low drift, it will usually not be as fast as an op 
amp optimized for speed. Unfortunately, it is beyond the scope of this book 
to get into the op amp integrated circuit design techniques that address such 
issues in detail.

It is important for the reader to be aware that not all manufacturers publish 
the exact same list of parameters. There are various reasons for that; one of 
them is the cost of testing the op amps to guarantee every parameter pub-
lished. Also not all manufacturers abbreviate or use the same nomenclature 
for the op amp parameters. It is the job of the op amp user to read very care-
fully how each manufacturer defines their parameters. For example, for some 
op amps, you may have a list of the most important parameter like input offset 
voltage, bias current, offset current, open-loop-gain, and so on, defined with 
typical, minimum, and maximum values at room temperature, most commonly 
25°C/77°F and for +/−15 V power supplies. Then they publish the exact same 
list of parameters previously mentioned which are valid for their entire operat-
ing temperature range, for example, from −40°C to +85°C for +/−15-V power 
supplies. The important message here is that when one compares op amp or 
comparator parameters from different manufacturers, it is imperative to read 
each manufacturer’s data sheet very carefully, and become aware of the condi-
tions under which such parameters are being specified. Table 5.7 reproduces 
an LM741 op amp real data-sheet.

5.8  SUMMARY

This chapter is an overview of some of the most commonly used op amp-based 
circuits. Generally speaking, circuit designers use the op amp transfer func-
tions derived, assuming the op amp is an ideal element. Most times that is 
correct for most routine applications. A routine application is one that is not 
high-precision demanding, or very high speed, or extremely low noise for 
example. However, when one designs highly sophisticated op amp applica-
tions, more care has to be paid and use the op amp model with the parameters 
that are most important for such application. One should model op amps 
introducing most important electrical parameters for the application. As an 
example, if one is interested in a high DC precision application, offset voltage, 
current, and bias currents should be introduced into the model; however, 
parameters like the gain-bandwidth product is certainly not important because 
the signals we are dealing with are DC signals. Conversely, if we have a very 
high speed, AC-coupled op amp application, certainly gain-bandwidth product 
is of utmost importance, while DC parameters are not important. Why are  
DC parameters not important? Because if an op amp is AC-coupled, that 
means that the input signals into the op amp as well as the output signal are 
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capacitively coupled to their respective front-end and back-end stages, thus 
blocking the DC and AC errors due to offsets.

FURTHER READING

1. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 
McGraw-Hill, New York, 1988.

2. Walter G. Jung, ed., Op Amp Applications, Analog Devices, Norwood, MA, 2004.
3. Robert F. Coughlin and Frederick F. Driscoll, Operational Amplifiers and Linear 

Integrated Circuits, Prentice Hall, Englewood Cliffs, NJ, 1991.
4. Hank Zumbahlen, ed., Basic Linear Design, Analog Devices, Norwood, MA, 2007.

PROBLEMS

5.1 Mention five ideal operational amplifier parameters.

5.2 Using linear-dependent current or voltage-controlled sources, establish 
models for the following linear amplifiers:
(a) Voltage amplifier
(b) Current amplifier
(c) Trans-conductance amplifier
(d) Trans-resistance amplifier

5.3 Explain in your own words why a voltage amplifier features Ri → ∞, 
Ro = 0, and A v vv o i= / . 

5.4 Explain in your own words why a current amplifier features Ri = 0, 
Ro → ∞, and A i io iI = / .

5.5 Explain in your own words why a trans-conductance amplifier features 
Ri → ∞, Ro → ∞, and A i VG o i= / .

5.6 Explain in your own words why a trans-resistance amplifier features 
Ri = 0, Ro = 0, and A v iR o i= / .

5.7 Design an ideal op amp-based amplifier that has a gain of −2; draw the 
circuit.

5.8 Implement an ideal op amp-based circuit that produces the following 
arithmetic operation:

 V V Vout = − +1 23 .  (5.103)

In Equation (5.103) V1 or −V1 can be used as an input voltage, so is V2, 
but not (3 V2). Implement the circuit with the smallest number of op 
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amps and explain why you can, or cannot implement it differently (i.e., 
with more or less op amps).

5.9 Assume that you have an op amp-based inverting amplifier; assume 
that the op amp used is ideal except for its gain. Complete Table 5.8 
knowing the op amp open-loop gain and the ideal op amp-based invert-
ing amplifier CLG. Refer to Table 5.8’s first and second columns from 
the left.

5.10 For the circuit given in Figure 5.31, calculate the value of the output 
voltage VOUT. Assume an ideal op amp.

5.11 For the circuit given in Figure 5.32, calculate the value of the output 
voltage VOUT. Assume an ideal op amp.

5.12 Assume that you have an op amp in buffer amplifier configuration. The 
buffer CLG is 1 assuming an ideal op amp. Now assume the open-loop 
gain of the op amp (AOL) is finite. For finite open-loop gains of 103, 104, 
105, and 106 determine the CLG of the buffer amplifier and the relative 
error in ppm (parts per million).

5.13 Implement with the smallest possible number of ideal op amps the fol-
lowing analog expression:

 V K V K V dt K
dV
dt

out = + +∫1 1 2 2 3
3 ,  (5.104)

where K1, K2, and K3 in Equation (5.103) are arbitrary constants. V1, V2, 
and V3 are input voltages that vary with respect to time, and Vout is the 
total output voltage as shown by Equation (5.104). Hint: It is fine to use 
resistors and capacitors in addition to the op amps.

Table 5.8  Table for Problem 5.9: inverting amplifier with finite AOL

Open-Loop 
Gain (AOL)

Ideal Closed-
Loop Gain 

(AOL → ∞) (dB)

Closed-Loop Gain 
(CLG) Accounting 

for Finite AOL

Absolute 
Error = 

CLG − ICLG

Relative Error = 
(CLG − ICLG) × 

100/CLG (%)

1000 −2
10,000 −2

100,000 −2
1,000,000 −2

1,000 −20
10,000 −20

100,000 −20
1,000,000 −20
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Figure 5.31  For Problem 5.10.
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Figure 5.32  For Problem 5.11.
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Figure 5.33  For Problem 5.15.
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5.14 Find an alternate manner, also using ideal op amps, of implementing 
Equation (5.104). Hint: It is fine to use resistors and capacitors in addi-
tion to the op amps.

5.15 Given the circuit of Figure 5.33 calculate (a) Vout, (b) VA, (c) VB, (d) VC, 
(e) VD, (f) VE, (g) I1, (h) I2, (i) I3, and (j) I4. Assume ideal op amps. Do 
not change the assumed directions for the currents.

5.16 Given the circuit of Figure 5.34 determine the circuit transfer function: 
Vout (jω)/Vin (jω). Note: Express the final transfer function as a ratio of 
binomials with zeros and poles. Zeros are referred to as the numerator 
roots or zeros. Poles are referred to as the denominator roots or zeros.

5.17 For the circuit of Figure 5.34 assume the following component values: 
R1 = 1 kΩ, C1 = 1 µF, R2 = 10 kΩ, and C2 = 100 pF. Draw the asymptotic 
magnitude and phase Bode plots from 1 Hz to 1 MHz.

5.18 For the circuit of Figure 5.34 assume the following component values: 
R1 = 1 kΩ, C1 = 1 µF, R2 = 10 kΩ, and C2 = 100 pF. Draw the exact mag-
nitude and phase Bode plots from 1 Hz to 1 MHz. Only calculate mag-
nitude and phase values for 1 Hz, 10 Hz, . . . , 1 MHz.
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Figure 5.34  For Problems 5.16, 5.17, and 5.18.
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Figure 5.35  For Problem 5.19.
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5.19 For the circuit of Figure 5.35 determine (a) Vout for Vin = −1 V, (b) Vout 
for Vin = 0 V, (c) Vout for Vin = 1 V, (d) Vout for Vin = 2 V, (e) Vout for 
Vin = 3 V. (f) Also for all five cases (a) through (e), calculate the voltage 
difference: Vin − VREF.

5.20 Research problem: Using Web sites of some op amps and comparator 
manufacturers, determine the fundamental differences between real-life 
operational amplifiers and comparators. Examples of some manufactur-
ers are: http://www.linear.com, www.intersil.com, http://www.ti.com, and 
http://www.analog.com

http://www.linear.com
http://www.intersil.com
http://www.ti.com
http://www.analog.com
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6
ELECTRONIC DEVICES: 

DIODES, BJTs, 
AND MOSFETs

6.1  INTRODUCTION TO ELECTRONIC DEVICES

Diodes, bipolar junction transistors (BJTs), and metal oxide field effect transis-
tors or MOSFETs are the most common and most important electronic devices 
in use today. The junction field effect transistor or JFET is the predecessor of 
the MOSFET. Due to space reasons we will not address the JFET. This chapter 
presents to the reader the most basic and important considerations from a 
circuit analysis point of view of how to deal with diodes and transistors in the 
most common hardware applications. Some of such applications are: how do 
basic single-stage amplifiers work; how can we calculate the correct value of 
a resistor to correctly turn on a light-emitting-diode or LED; what are open 
collector and open drain outputs; why do we need them; how do we calculate 
the correct pull-up resistor value; and how do we increase the current drive 
capability of an integrated circuit output that needs to drive multiple chips or 
other discrete circuits. This chapter focuses on the characteristics and use of 
the three devices of our chapter title, their behavior, and their use in the most 
basic circuits that scientists and engineers need to know. It is not within the 
scope of this book to study electronic devices semiconductor physics concepts. 
Only a minimum of semiconductor physics will be addressed in particular 
when we cover MOSFETs. We generally take an approach of studying the 

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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electronic device, knowing its current–voltage relationship and its small signal 
model for AC analysis.

6.2  THE IDEAL DIODE

The diode is the simplest and most fundamental electronic device. Its idealized 
model describes the diode as a two-terminal device that acts like a mechanical 
switch. When the switch is closed, the ideal diode has a zero-ohm forward 
resistance. When the switch is open, the ideal diode has an infinitely large 
reverse resistance. Figure 6.1a shows the electronic symbol of a diode, indicat-
ing its two terminals, the anode (A) and the cathode* (K). When the current 
through the diode flows from anode to cathode, the diode is said to be forward 
biased or ON. When a diode is forward biased, an external element in the 
circuit, such as a series resistor, is responsible for limiting the amount of 
current that flows through the turned-on diode. When the current through the 
diode intends to flow from cathode to anode, the diode is said to be reversed 
biased or OFF. Figure 6.1b shows the model of an ideal diode turned ON. 
While Figure 6.1c shows the model of an ideal diode turned OFF. Figure 6.1d 
depicts the ideal diode model I-V (current–voltage) characteristics. The bold 
positive current shown in Figure 6.1d represents the diode operating in a 
forward biased mode, that is the current flows through the diode from anode 
to cathode; this means that the anode is at a higher potential than the cathode. 
The external circuit must limit the forward current that flows through a forward 
biased diode; otherwise the diode would get destructed if such current was not 
limited. This portion of the forward biased region also indicates to us that the 
ideal diode forward voltage drop is zero. When the diode is in reverse biased 
mode, no current flows through the diode. The external circuit also limits the 
voltage across a reverse biased diode.

The diode I-V characteristic is nonlinear, thus the diode is a nonlinear 
element. Figure 6.1d shows the nonlinear characteristic formed by two linear 
segments; it is also appropriate to refer to such characteristic as piecewise 
linear. When the diode is used at a particular operating point, although the 
diode is a nonlinear device, it is possible and accurate to analyze the diode as 
a linear circuit element for such application.

Figure 6.2a shows a forward biased ideal diode. The current through this 
ideal diode equals the voltage applied divided by the series resistance, in our 
case 10 V/100 Ω = 1 mA. The forward biased diode has a zero ON or forward 
resistance.

The reverse biased diode of Figure 6.2b does not allow any current flow, 
and it has a −10 V reverse voltage applied across its cathode and anode. The 

* Cathode derives from the Greek word “Kathodes”, that is why it is traditionally abbreviated 
with the letter “K.”
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Figure 6.1  The ideal diode: (a) diode circuit symbol; (b) ideal diode turned ON; (c) ideal diode 
turned OFF; (d) ideal diode I-V characteristic.
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reverse biased diode has an infinite resistance so that no current can flow 
through the circuit under those conditions.

6.2.1  The Half-Wave Rectifier

A half-wave rectifier consists of a diode and a resistor in series; a sinusoidal 
input waveform is applied between the diode anode and the free end of the 
resistor. The output voltage is taken across the resistor. Figure 6.3a shows  

Figure 6.2  (a) Forward biased ideal diode; (b) reverse biased ideal diode.
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Figure  6.3  (a) Half-wave rectifier; (b) half-wave rectifier waveforms: IR(t), Vin(t), Vout(t), and 
VD(t) = Vin(t) − Vout(t).
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a half-wave rectifier circuit. Figure 6.3b depicts the current i(t) through 
the circuit, the sinusoidal input voltage waveform Vin(t); the voltage VD(t) the 
anode-to-cathode voltage across the diode; the voltage VR = Vout(t) across the 
resistor

Let us describe how the circuit of Figure 6.3a works. Let us refer to the 
waveforms of Figure 6.3b. When the sinusoidal input voltage Vin(t) is greater 
than zero, the diode becomes forward biased; this occurs for input phase angle 
ranges: 0 to π, 2π to 3π, 4π to 5π, which according to Figure 6.3b respectively 
correspond from 0 to 0.5 ms, 1 to 1.5 ms, 2 to 2.5 ms, and so forth. Note that 
for our specific waveform, its period 2π equals 1 ms. When the ideal diode is 
forward biased, the voltage drop across it is zero; refer to waveform 
VD(t) = Vin − Vout, for time segments from 0 to 0.5 ms, 1 to 1.5 ms, 2 to 2.5 ms, 
and so forth. When Vin(t) is negative, the diode is an open circuit because it 
becomes reverse biased; the voltage VD(t) across the diode is the negative cycle 
of the input sine-wave for phase angles of 1π to 2π, 3π to 4π, 5π to 6π (equiva-
lently 0.5 to 1 ms, 1.5 to 2 ms, 2.5 to 3 ms), and so forth. The output voltage 
Vout(t) across resistor R is equal to the positive half cycle of the input for phase 
angle ranges: 0 to π, 2π to 3π, 4π to 5π (equivalently for 0 to 0.5 ms, 1 to 1.5 ms, 
2 to 2.5 ms), and so forth. For phase angles: 1 to 2π (0.5 to 1 ms), etc., the 
voltage across resistor R is zero. Finally, the current through the circuit has to 
have the same shape as the voltage across the resistor, because the resistor is 
a linear component. Now let us recall Kirchhoff’s laws from earlier chapters. 
By inspection of the circuit of Figure 6.3a, Kirchoff’s voltage law (KVL) 
affirms that

 V t V t Vin D R( ) ( ) .= +  (6.1)

Carefully examining the waveforms of Figure 6.3b, it is easy to verify that 
Equation (6.1) is met. This tells us that both linear and nonlinear circuits meet 
KVL. This is a very powerful statement, particularly since diodes did not exist 
during Kirchhoff’s times.

Once more note the shapes of the current i(t) and the voltage Vout(t)’s first 
and last waveforms of Figure 6.3b have the same shape. Current i(t) is unidi-
rectional and positive. If we eliminated the diode with a short-circuit current 
i(t) would be sinusoidal, because only the source and the resistor are present 
in the circuit. We are just one simple next step away from obtaining a DC 
voltage level across resistor R. This is achieved by placing a capacitor of the 
appropriate value across load resistor R. Figure 6.4 shows the output wave-
form across the load resistor for capacitance values of: 5 µF, 10 µF, and 50 µF. 
Note that the larger the capacitor, the smoother is the DC waveform obtained. 
In all cases, the DC waveform is not a perfect horizontal straight line, it  
is rather a waveform that exhibits ripple. One can reduce the ripple by  
incrementing the capacitor size; however, the ripple cannot be completely 
eliminated.
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6.2.2  The Full-Wave Bridge Rectifier

The circuit of Figure 6.3a rectifies only half of the sinusoidal input waveform. 
This means that only the positive half of the sinusoidal cycle is preserved, the 
negative half cycle becomes zero at the load resistor; this is assuming that there 
is no filtering capacitor across resistor R. The circuit of Figure 6.5a shows a 
four-diode bridge excited by a sinusoidal input Vin and the load resistor R 
across terminals Vout and Vout_Ret.

The circuit works as follows: when Vin is positive, signs in Figure 6.5a apply, 
diodes D1 and D2 conduct current through the circuit established between a 
positive Vin, D1, R, and D2. D1 and D2 are at this time forward biased, since for 
ideal diodes, the forward voltage drop is zero, drops across D1 and D2 are zero 
during this first half-period. Diodes D3 and D4 remain reversed biased at this 
time. The current through resistor R flows from terminal Vout to Vout_Ret, thus 
Vout is at a higher potential than Vout_Ret. The difference Vout-Vout_Ret is another 
form of referring to the voltage across resistor R where node Vout is more posi-
tive than node Vout_Ret. When Vin is negative, signs are opposite to those shown 
in Figure 6.5a, diodes D3 and D4 are forward biased, while D1 and D2 are 
reversed biased. The current flows from Vin, through D3, R, and D4. Note that 
this time, the current through R also flows from node Vout to Vout_Ret. The wave-
form obtained across resistor R terminal is referred to as a full-wave rectified 
sine wave. Figure 6.5b shows waveforms Vin and Vout-Vout_Ret the voltage across 
resistor R.

Figure 6.4  Half-wave rectifier with smoothing capacitor to reduce ripple.

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 10 ms
7 V

8 V

9 V

10 V
–10 V

–5 V

0 V

5 V

10 V

50 µF

10 µF

5 µF

V (Vin)

V (Vout)



THE IDEAL DIODE  361

+

(a)

0.0 ms 0.5 ms 1.0 ms 1.5 ms 2.0 ms 2.5 ms 3.0 ms 3.5 ms 4.0 ms 4.5 ms 5.0 ms
–10 V

40 V

90 V

–100 V

–50 V

0 V

50 V

100 V

(b)
V (Vin)

V (Vout)-V (Vout_ret )

Figure 6.5  (a) Full wave rectifier; (b) voltage waveforms: Vin and VD = Vout − Vout_Ret; (c) current 
waveforms through four diodes: ID1, ID2, ID3, ID4 and load current IR.
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Continuing to look at the four-diode bridge circuit, we now take a look at 
the currents that flow through everyone of the circuit elements, the input 
voltage source, each of the four diodes, and load resistor R. Figure 6.5c shows 
the current waveforms through each diode ID1, ID2, ID3, and ID4, and the current 
waveform on load resistor R, IR. It is very interesting again to find that all the 
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Figure 6.5  (Continued )
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currents comply with Kirchoff’s current law (KCL). Similarly, it can be shown 
that the voltages across every one of the circuit elements also comply with 
KVL.

Carefully observe the current waveforms of Figure 6.5c: ID1, ID2, ID3, ID4, and 
IR. It is important to refer to the circuit of Figure 6.5a to observe the direction 
of every current every diode and load resistor. Plot the current waveform Iin 
of the sinusoidal input source Vin.

Example 6.1 Draw all the voltage waveforms for the full wave rectifier circuit 
of Figure 6.5a. Such waveforms are: Vin, VD1, VD2, VD3, VD4, and VR. Figure 6.6 
presents all the waveforms requested. Note that at every node on the circuit, 
KVL is met. For example:

 V V Vin D D= −1 3

which is also equivalent to:

 V V V Vin D R D= + +1 2 .

Note that in Figure 6.6:

VD1 = Vin − Vout: is the voltage across diode 1
VR = Vout − Vout_ret: is the voltage across load resistor R
VD2 = Vout_ret − GND = Vout_ret: is the voltage across diode 2
VD3 = −Vout: is the voltage across diode 3
VD4 = Vout_ret − Vin: is the voltage across diode 4

Voltages across diodes have been defined as the difference between the anode 
and the cathode voltages.

The reader is encouraged to graphically add the appropriate waveforms to 
verify the validity of KVL. Beware of the plotted waveform polarites.

6.2.3  The Real Silicon Diode I-V Characteristics: Forward-Bias, 
Reverse-Bias, and Breakdown Regions

A real diode has an I-V characteristic as depicted by Figure 6.7. On the first 
quadrant, for positive anode-to-cathode voltage and current, the diode does 
not start conducting in its forward biased region until the forward voltage 
exceeds approximately 700 mV. After this voltage level is exceeded the diode 
conducts, and the diode external circuit only limits the current through it. In 
many cases, this external circuit is a resistor in series with the diode. The equa-
tion that models the behavior of the current through a diode as a function of 
its voltage is

 i eD S
V nVt I D T( ) ( )/= − 1  (6.2)
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Figure 6.6  Voltage waveforms in full-wave rectifier: input voltage, voltages across four diodes, 
and voltage across the load.
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VD4 = V(vout_ret)-V(vout)

VD3 = –V(vout)

VD2 = V(vout_ret)

VR = V(vout)-V(vout_ret)

VD1 = V(vin)-V(vout)

V(vin)

Equation (6.2) describes the current through the diode. IS is the diode satura-
tion current, VD is the anode-to-cathode voltage across the diode, n, the emis-
sion coefficient is a constant that is usually 1 for integrated circuit diodes and 
n = 2 for discrete diodes. VT, the thermal voltage is defined from physical 
considerations as:
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 V
kT
q

T =  (6.3)

where 

k = Boltzmann’s constant = 1.38 × 10−23 J/K
T = the absolute temperature in kelvin = 273 + temperature in °C
q = the magnitude of electronic charge = 1.60 × 10−19 C.

The thermal voltage VT is approximately 26 mV at a room temperature of 300 °K.
The diode forward voltage drop has a negative temperature coefficient, which is

 
∆V
V

D

T

= − °2 mV C/ .  (6.4)

Equation (6.4) tells us that for every degree C in temperature rise of the diode 
junction, its forward voltage drop decreases by 2 mV. This property of Silicone 
diode junctions is typically used to know the internal temperature of inte-
grated circuits.

Referring again to Figure 6.7, we see that the forward current of the diode 
is negligible for voltages below about 0.5 V.

Figure 6.7  Diodes: three regions of their I-V characteristics:
For VD > 0 the diode is in the forward-bias region, conducts significant current once VD > VTh

For −VZK < VD < 0 the diode is in the reverse-bias region
For VD < −VZK the diode is in the breakdown region.
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The current starts having significant value once a diode forward voltage 
threshold of approximately 0.6 V–0.7 V is reached.*

When the diode voltage VD is negative the exponential term in Equation 
(6.2) becomes very small compared to the constant 1, thus Equation (6.2) 
becomes

 iD St I( ) ≅ −  (6.5)

where IS is also referred to as the reverse bias saturation current. Current IS 
has a positive temperature coefficient and it approximately doubles for every 
10°C of temperature rise. This current is quite constant as the reverse bias 
voltage varies, and the temperature does not change (see Fig. 6.7, reverse-bias 
region). IS can be in the order of 10−14 to 10−15 A. As VD continues to decrease 
(i.e., becomes larger in magnitude but negative in sign) the diode enters the 
breakdown region. The voltage −VZK is denoted the Zener voltage knee. 
Regular diodes are not designed to be operated in the breakdown region; 
however, another type of device, the Zener diode, is purposely designed to 
operate in the breakdown region. At a reverse voltage of −VZK, the diode 
characteristic is a virtual straight line (Fig. 6.7) so that means that within a 
range of reverse current, the voltage remains practically within a very small 
variation. Zener diodes are particularly used in voltage regulators.

Example 6.2 A silicon diode has the following characteristics:
Reverse saturation current at 20 V and 25°C = 25 nA.
Using Equation (6.2), determine the diode forward voltage drop for forward 

diode currents of (a) 5 mA, (b) 10 mA, (c) 20 mA, (d) 100 mA, and (e) 
300 mA. This diode is fabricated so that it can conduct safely a current as high 
as 300 mA. Assume that the diode emission coefficient n is 2.

Using Equation (6.2) and a thermal voltage of 26 mV at 25°C we find:

(a) At 5 mA, VD = 2 × 0.026 ln [5 × 10−3/25 10−9] = 0.630 V
(b) At 10 mA, VD = 2 × 0.026 ln [10 × 10−3/25 10−9] = 0.670 V
(c) At 20 mA, VD = 2 × 0.026 ln [20 × 10−3/25 10−9] = 0.710 V
(d) At 100 mA, VD = 2 × 0.026 ln [100 × 10−3/25 10−9] = 0.790 V
(e) At 300 mA, VD = 2 × 0.026 ln [300 × 10−3/25 10−9] = 0.850 V

Note that for forward currents of 5 mA up to 300 mA, the increase in current 
is by a factor of 60 or 6000%, the diode forward voltage drop just increases 
by 220 mV or by 35%.

Why? The answer is to be provided by the reader.

* Power diodes, which are larger than general purpose and signal diodes, may have significantly 
higher forward drop voltages. It is not uncommon to see 1 V or more of forward voltage drop on 
a power diode.
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6.2.4  Two More Realistic Diode Models

We have seen that the I-V characteristic of the diode is very steep when the 
diode forward voltage drops exceeds 600 mV. Thus, a better model than the 
ideal diode model can be produced taking into account the 600 mV forward 
diode drop. Figure 6.8a shows a circuit that models the diode with more 
realism than the idealized model of Figure 6.1. The 600 mV DC source in series 
with the diode, opposes the flow of current until the diode anode voltage is 
strictly greater than 600 mV with respect to the negative terminal of the 
600 mV DC source. Figure 6.8b depicts the current–voltage characteristics of 
such diode model. This model is better than the ideal diode model because it 
takes into consideration a voltage forward drop of 600 mV. Let us remember 
that one of the most realistic equations used to model the real diode was the 
one given by Equation (6.2). Such equation takes into account thermal voltage, 
diode forward voltage drop, emission coefficient n, reverse saturation current 
IS, which is used for the forward and reverse-bias regions.

Figure 6.8  (a) A better ideal diode model including the forward voltage drop; (b) I-V charac-
teristics of such diode model.
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Figure 6.9  (a) Forward biased diode model including forward drop and forward resistance; 
(b) diode model I-V characteristics.
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An even better model than the one presented in Figure 6.8 is one that 
models the forward voltage drop with a line that starts at zero current at 
600 mV and has a positive slope that mimics the diode finite inverse of its 
forward resistance (1/rD).

Figure 6.9a shows the circuit model including the 600 mV forward drop  
and diode forward resistance. Figure 6.9b depicts the I-V characteristics of 
such model. Such model is called the diode piecewise linear model. For the 
diode in reversed bias mode, the model is still an open-switch, not shown in 
Figure 6.9.
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Example 6.3 Assuming the diode model of Figure 6.9 find the forward 
current of the diode that has the following characteristics: rD = 20 Ω, forward 
voltage modeling source 600 mV. Use the circuit of Figure 6.10.

From Figure 6.10 we can state the following circuit equation:

 V V r IRin D D− = +I .  (6.6)

Using the numerical values from the circuit we obtain:

 10 0 6 20 100− = +. ( ).I  (6.7)

From Equation (6.7) we obtain I = 0.078 A.

Figure 6.10  Circuit for Example 6.3: DC source in series with diode model.
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6.2.5  Photodiode

An incident light on a reverse-biased photodiode causes a flow of current 
through the photodiode. Basically a photon of sufficient energy hitting the 
photodiode causes an electron to become mobile, causing a photocurrent.

The symbol of a photodiode is presented in Figure 6.11.

6.2.6  Light Emitting Diode (LED)

An LED basically works in the opposite way a photodiode works. A forward 
current flowing through an LED causes the LED to emit photons or light. 
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Figure 6.12a depicts the circuit symbol of an LED. A combination of a photo-
diode and an LED in the same integrated circuit package constitutes what is 
referred to as an optoisolator. The LED part of the opto converts an electrical 
signal into light. The photodiode portion receives the light emitted by the LED 
and produces an electrical signal. Figure 6.12b shows the circuit symbol of a 
typical optoisolator. This device is suitable to perform electrical-isolation 
between the input and output of the optoisolating device. This can be done to 
reduce electronic noise from propagating from one electronic stage to another, 
or for safety reasons such as in the case of medical instruments. The optoisola-
tor can also be used to reduce the propagation of electromagnetic interference 
(EMI) in a communication system.

Figure 6.11  Symbol of a photodiode.

Figure 6.12  (a) LED symbol; (b) optoisolator symbol.
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6.2.7  Schottky-Barrier Diode

The Schottky-barrier diode is formed by making a metal to n-type semicon-
ductor junction. This is unlike a regular junction diode that consists of a 
semiconductor-to-semiconductor junction formed with n-type and p-type 
material. The metal part of the Schottky works as the anode, while the semi-
conductor part is the cathode. A very distinct characteristic of Schottky-barrier 
diodes is their much lower forward voltage drop, usually around 200–300 mV. 
However, there is penalty for using a Schottky diode, their reverse saturation 
current is two to three orders of magnitude larger than that of their junction 
diode counterparts. Figure 6.13 shows the circuit symbol of a Schottky-barrier 
diode.

6.2.8  Another Diode Application: Limiting and Clamping Diodes

Junction and Schottky diodes are good devices to protect integrated circuits 
inputs. IC inputs usually must not be allowed to make voltage levels swings 
above the IC upper power supply rail or below the lower power supply rail. 
The lower supply rail on cases where the IC is only powered by a single posi-
tive power supply is the return or ground of that rail.

Figure 6.13  Circuit symbol of a Schottky-barrier diode.

Anode Cathode

Example 6.4 Figure 6.14 shows an IC powered to a voltage called VDD and 
VSS. In many cases, VDD can be 3.3 V and VSS 0 V or ground. Diode D1 protects 
the input of the IC from exceeding a voltage higher than its VDD power supply 
level. Diode D2 protects the input from going below the 0 V level. In other 
words, it prevents the input from going very negative. The purpose of the 
clamping or limiting diodes is to protect the IC. Note that the input line of the 
protected IC may be driven by another IC or circuit, the series resistance R 
in line between the input and the common node between diodes D1 and D2 is 
to prevent a large current surge when the input either is well above VDD or 
well below VSS (ground). Now let us recall that real diodes have a finite and 
non-zero forward voltage drop. The diode D1 protection is actually limited to 
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6.2.9  Diode Selection

The most important parameters of a diode are listed in Table 6.1. They would 
be advertised by the diode manufacturer as being at one temperature, typically 
25°C or valid at a temperature range, for example: 0°C to 70°C.

Upon selecting a diode for an application, none of the specified parameters 
should ever be exceeded under any conditions. Doing so may not necessarily 
make the device fail, but it can certainly reduce its useful life. Table 6.1 only 
lists some of the key parameters; manufacturers also publish curves for some 
of the parameters to give a better idea to the diode circuit application designer 
what the limits of the parameters are for slightly different conditions than 
those published on the table.

clamping the input to VDD + VD, where VD is D1 diode forward voltage drop. 
Diode D2 protection is limited to clamping the input to VSS − VD.

Summarizing the upper diode prevents the input signal from going one 
diode drop above the IC VDD. The lower diode prevents the input signals from 
going more negative than a diode drop below ground.

Figure 6.14  Diodes clamping the inputs of an IC.

IC

VDD

Input

VSS

D1

2D

R



THE IDEAL DIODE  373

Example 6.5 Let us assume that one wants to design a half-wave rectifier 
that has to operate under the following conditions: Sinusoidal input waveform: 
120 VRMS, frequency 60 Hz, and peak load current 1 A. Assume that the accu-
racy we want for the rectified output is 120 V ± 1%. Determine the forward 
voltage, breakdown voltage, peak reverse voltage, reverse recovery time, and 
power dissipation of a general-purpose diode that you need to select. Since 
the RMS value of the input waveform is 120 V, the peak voltage is 
120 × 1.41 = 169.2 V peak. Forward voltage: since 1% of 169.2 V is approxi-
mately 1.7 V, any general-purpose Silicon diode that has a forward drop of 
0.6–0.7 V will meet our requirements.

Since the sinusoidal input has a  ± 169.2 V of peak value, we need to ensure 
that when our diode is reversed biased, it can tolerate without any stress 
169.2 V as its reverse voltage. If we picked a diode with about a 15–20% 
margin, the reverse voltage rating would have to be 200 V. Let us assume that 
we want more margin than that to obtain excellent reliability of the diode, so 
we pick a diode with a 400-V repetitive breakdown voltage. This provides more 
than a generous 100% margin. A diode that handles a 2-A forward peak 
current will satisfy the requested conditions. Many general-purpose diodes 
handle more than 2 A, so this is not a hard find. Since the frequency of opera-
tion of the diode is 60 Hz, this means that the period of the 60 Hz signal is 
16.67 ms. Within the 16.67 ms period, the diode has to be turned on once and 
turned off once, so the diode shall have timing margin to handle a signals 
changing every approximately 8 ms. It is easy to find general-purpose diodes 
for power supply applications that have switching recovery times in the order 
of ns. So speed wise, we can pick any diode that switches at the speed required.

Since the forward peak current shall not be over 1 A, 1 A × 1 V = 1 W 
power dissipation. Note that 1 V is the maximum forward voltage drop of the 
diode, so the diode will not dissipate more than 1 W at maximum current.

Summary:
Forward voltage drop VD = 0.7 V to 0.8 V Typ; Max. VD ≈ 1.2 V.

Table 6.1  Some diode key parameters

Parameter Test Condition Symbol Min. Typ. Max. Units

Forward voltage At IF = 10 mA VF 0.6 1 V
Breakdown voltage At reverse current 

IR = 100 µA
VR 100 V

Peak reverse 
current

At VR = 75 V IR 5 µA

Diode capacitance VR = 0 CD 4 pF
Freq = 1 MHz

Reverse recovery 
time

IF = 10 mA to tRR 4 ns
IR = 1 mA
VR = 6 V, RLOAD = 100 Ω

Power dissipation PD 0.5 W
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6.3  BIPOLAR JUNCTION TRANSISTORS (BJT)

Transistors and diodes are devices generally fabricated with silicon (Si). Silicon 
is one of the most abundant elements on the planet. After considerable pro-
cessing silicon can be obtained from sand. In the earlier years of transistor 
fabrication, germanium was also used. However, the use of silicon proved to 
be superior and easier to manufacture transistors with. Silicon is the predomi-
nant material used for the fabrication of electronic devices and integrated 
circuits today.

6.3.1  Basic Concepts on Intrinsic, n-type and p-type 
Silicon Materials

We know that silicon is an element of the periodic table of elements. One of 
its characteristics is that it has an atomic number of 14; that is, it has 14 elec-
trons that spin around the silicon atom nucleus. The electrons are distributed 
around the nucleus in different energy levels; these levels used to be referred 
to as electron shells. Elements can have up to seven energy levels. Such levels 
are 1 through 7, where 1 is the level closest to the nucleus and energy level 7 
is the energy level farthest away from the nucleus. The silicon atom has 2 
electrons in energy level 1, 8 electrons in energy level 2, and 4 electrons in 
energy level 3. Energy levels 1 and 2 are complete, but energy level 3 is com-
plete when it contains 8 electrons. Level 3 is silicon’s highest energy level and 
is also referred to as the valence shell. Figure 6.15 depicts the seven electron 
energy levels 1 through 7, each energy level has a maximum number of elec-
trons that can exist in it. Although there are seven levels, only four of those 
levels are used by the known periodic table elements.

Element silicon with atomic number 14 has the following electron configu-
ration notation:

 Silicon Electron Configuration : 1s 2s 2p 3s 3p2 2 6 2 2

Silicon atoms have a tendency of uniting with other silicon atoms in order to 
complete their valence shell with 4 more atoms, so that their valence shell 
becomes complete with 8 electrons. Silicon atoms stick together and each atom 
has four electrons on its own valence shell and four more electrons are shared 
from neighboring silicon atoms. The sharing of valence electrons between two 

Repetitive breakdown voltage VR = 400 V.
Reverse recovery time tRR = anything considerably faster than 8 ms, any 

value in the ns range is trivial to obtain.
Power dissipation PD = 2 W, this allows a nice 100% margin so that the 

diode not only dissipates less power than it has to but also may not need to 
be equipped with a heat-sink to remove the heat energy from the diode.
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or more atoms produces a covalent bond between such atoms. Covalent bonds 
hold the atoms together, forming a structure denominated a crystal. Because 
every atom in the crystal structure is bonded to four other atoms, the electrons 
are not free to move within the crystal. Intrinsic silicon refers in simple terms 
to pure silicon with no other elements in its crystalline structure. Because of 
the covalent bonds just described, silicon and germanium are not good conduc-
tors of electricity. Figure 6.16 depicts a small portion of the periodic table of 
elements. Silicon and germanium are elements that have four electrons in their 
valence shell. Also present are what we will refer to as dopants: boron (B) and 
gallium (Ga) are elements that have three electrons in the valence shells. 
Phosphor (P) and arsenic (As) are elements that have five electrons in their 
valence shell. When intrinsic silicon is doped with certain amounts of boron 
or gallium the doped new structure has a deficit of electrons. It is said that the 
doped silicon is p-type material; the absence of an electron is referred to as a 

Figure 6.15  Electron energy levels.
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hole, a hole has a positive charge and its magnitude is equal to the magnitude 
of the charge of an electron. When intrinsic silicon is doped with certain 
amounts of phosphor or arsenic, the doped structure has excess of electrons. 
This silicon structure doped with phosphor or arsenic is referred to as n-type 
material. Again pure silicon is called intrinsic silicon. When impurities are 
added to it, it becomes extrinsic silicon. When the impurities added to intrinsic 
silicon are elements from Group III, like boron, these are called acceptors, 
because they can accept extra electrons into the crystal. When the impurities 
added to the intrinsic silicon are elements from Group V, like phosphor, these 
impurities are called donors, because they can easily loose or donate an extra 
electron to the crystalline structure.

There is a vast amount of literature that covers semiconductors physics. In 
this introductory section we have not even scratched the surface of it. The 
main intent of this section is to provide the reader with the basic concepts 
behind intrinsic, n-type and p-type doped silicon. For further details on semi-
conductors refer to the Further Reading section at the end of this chapter.

6.3.2  The BJT as a Circuit Element

We will study the BJT almost entirely from a circuit behavior point of view. 
We will be concerned with the voltages across its terminals and its currents, 
how they change and how they need to be set in order for the transistor to 
operate as either an amplifier or a linear device, as a switch or a nonlinear 
device. There are two types of bipolar transistors, the NPN and the PNP. Figure 
6.17 shows a simplified diagram of the structure of NPN and PNP transistors.

Bipolar transistors have three terminals, the collector, the base, and the 
emitter. For an NPN transistor whose schematic symbol is depicted in Figure 
6.18, three fundamental voltages and currents are defined: vCE, vBE, and vCB 
and iC, iB, and iE. Voltage vCE is the collector to emitter voltage drop; this 
voltage is positive for NPN transistors. vBE is the base to emitter junction 
voltage, and vCB is the collector to base junction voltage. From KVL it is easy 
to see that

 v v vCE BE CB= +  (6.8)

Figure 6.16  Small section of the periodic table of elements.
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and from KCL,

 i i iE C B= +  (6.9)

where in Equations (6.8) and (6.9) vCE is the collector to emitter voltage drop, 
vBE is the base to emitter junction voltage drop, vCB is the collector to base 
junction voltage drop, iE is the emitter current, iC is the collector current, and 
iB is the base current, respectively.

Note that the differences between voltages and currents in NPN and PNP 
transistors are that when a voltage is positive in the NPN-type device, the same 
voltage is negative in its counter part, the PNP device. Similarly, if a current 
is positive in the NPN, the same current is negative in the PNP.

6.3.3  Bipolar Transistor I-V Characteristics

For simplicity we will mostly concentrate describing the NPN transistor first. 
Later on some material on the PNP will be covered. A family of curves 

Figure 6.17  Simplified bipolar transistor structures: (a) NPN; (b) PNP.
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referred to as the current–voltage (I-V) characterizes the transistor. Figure 
6.19 depicts the I-V characteristics of an NPN bipolar transistor.

The transistor I-V curves depict collector current versus collector-emitter 
voltage drop in the horizontal axis. The base current is used as a parameter 
for collector current versus collector-emitter voltage pairs. If we did not  
plot the I-V curves using the base current as a parameter, we would be 
forced to use three-dimensional plots, which are much harder to draw and 
visualize on a flat piece of paper. For the curves depicted in Figure 6.19, 
iB6 > iB5 > . . . > iB1.

For example, referring again to Figure 6.19, note that for a base current of 
1 mA the collector current starts from zero iC and zero vCE. iC ramps up some-
what linearly and then it virtually flattens out with a slight positive slope. We 
will later see that due to the Early effect, a slight positive slope is observed in 
the collector current curves. For a base current of 2 mA, iC versus vCE is plotted 
somewhat above the curve for 1 mA of base current. The larger is the base 
current, the higher will be the corresponding iC = f(vCE) curve.

Three key areas of operation are identified in the I-V curves of Figure 
6.19. The region adjacent to the collector current axis, the vertical axis, is the 

Figure  6.18  (a) Schematics symbols of an NPN transistor, its voltages, and currents; 
(b) symbol, voltages, and currents for a PNP transistor.
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saturation region; the region adjacent to the horizontal axis or the collector-
emitter voltage is the cutoff region. Everything else is basically the so-called 
active region of the device.

An NPN transistor acts as a device that allows collector current, which is 
almost equal in magnitude to the emitter current; go through the NPN struc-
ture. A thin layer of P material constitutes the base of the transistor. The 
voltage that injects current into the base terminal has control over the amount 
of collector current that goes through the collector to emitter terminals of the 
device. We have seen that from Equation (6.9), the emitter current is the sum 
of collector and base current. Practically speaking, the base current is quite 
small, about two orders of magnitude smaller than the collector and emitter 
currents. So the approximation:

 i iE C≅  (6.10)

is valid for many applications. The reader, however, is cautioned not to use 
Equation (6.10) liberally. It is a good opportunity to introduce the DC current 
gain factor of the transistor, referred to as its β (Greek letter beta). β relates 
collector and base currents as follows:

 i iC B= β .  (6.11)

Figure 6.19  I-V characteristics curves of an NPN transistor.
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β is generally a number around 100 (i.e., 20–50) for power transistors, but it is 
usually 100–500 for signal (small) transistors. Note that β has no units, and it 
is the transistor current gain factor. β is one of the transistor most important 
figures of merit. β is also referred to as the static or DC current gain of the 
transistor, and it is sometimes denoted as hfe; the “h” stands for the transistor 
hybrid parameters model, which is beyond the scope of our book. The suffix 
“fe” stands for forward and common emitter configuration.

We will explain later in this chapter what a common emitter configuration 
is.

Using Equation (6.11) in Equation (6.9) we obtain that

 i iE C= +
iC
β

.  (6.12)

Doing some algebra on Equation (6.12) we arrive at

 i iC E=
+

⋅
β

β 1
 (6.13)

where the term β β/( )+ 1  is defined as the transistor’s alpha (α); note that α 
always is a number slightly smaller than unity. α also is a dimensionless bipolar 
transistor parameter.

 α β
β

=
+ 1

.  (6.14)

Example 6.6 Calculate the value of α for a transistor with a β of 200.
Solution: Using Equation (6.14) we obtain that α = 200/(200 + 1) = 0.995.
Unfortunately β is not constant, and it varies for different collector cur-

rents and transistor temperature. Figure 6.20 depicts how β changes with 
collector current and with temperature. Notice the bell-shaped curves, the  
top curve is for a junction temperature of 125°C, the second one is for  
25°C, and the bottom curve is for −55°C. Also note that generally β or hfe 
grows for larger collector currents, but up to a point, beyond which it decays 
(Fig. 6.20).

It can be proven from semiconductor physics that the collector current equals

 I I eC S

vBE
vT= −







1  (6.15)
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where IS is the reverse saturation current of the BJT base-emitter junction, 
vBE is the base-emitter junction forward voltage drop, and vT is the thermal 
voltage. vBE typically is 0.6 V or 0.7 V for small signal silicon devices. vT is the 
thermal voltage of the junction which at a room temperature of 300 K is 
approximately 26 mV. Based on the value of exponent vBE/vT = 0.6/0.026 ≅ 23 
and since e23 >>> 1 Equation (6.15) is simplified to

 I IC S

v
v
BE

T= e .  (6.16)

The junction reverse saturation current is an extremely small current that 
flows through a reversed biased pn junction. For an ideal junction (either a 
diode junction or a transistor base-emitter junction), the reverse current is 
zero, for real junctions, it is a finite number typically in the range of 10−17 to 
10−14 A. Using Equation (6.16), knowing the junction temperature, IS the 
reverse saturation current of the BJT, and the DC collector current IC, one can 
easily find the vBE forward biased voltage drop.

Figure 6.20  β variation with collector current and temperature.
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Example 6.7 Assume that the collector current of an NPN transistor is 1 mA, 
IS = 10−15 A, and the junction temperature is 300 °K, determine the value of 
the forward biased base-emitter junction voltage drop.
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Solution: Using Equation (6.16) we rewrite it as:

 
I
I

eC

S

v
v
BE

T= .  (6.17)

Taking the natural logarithm of both sides of the equation, and plugging the 
values given in the example we obtain that

 ln
I
I

v
v

C

S

BE

T

=  (6.18)

and rearranging terms,

 v v ln
I
I

BE T
C

S

= .  (6.19)

Plugging vT = 0.026 V, IC = 0.001 A, and IS = 10−15 A into Equation (6.19), it 
yields

 vBE = 0 718. .V  (6.20)

6.3.4  Biasing Techniques of Bipolar Transistors

When the bipolar transistor operates as an amplifier, it needs to be biased in 
the active mode. In the absence of input signals to be amplified, the DC oper-
ating point of the transistor must be at point Q shown in Figure 6.21. Q is 
approximately halfway between the collector-emitter voltage spanned and 
halfway between the collector current spanned. We will elaborate more on this 
concept shortly.

For a bipolar transistor to be in the active mode or region, the base-emitter 
junction has to be forward biased, and the collector-base junction must be 
reverse biased. Referring to Figure 6.21, when both referred junctions are 
forward biased, the transistor is saturated; under saturation the collector to 
emitter voltage VCEsat is minimal (typically about 0.2–0.3 V) since the transistor 
is acting as a closed (turned-on) switch. When both of the junctions are reverse 
biased, the transistor is said to be cutoff. No collector and no emitter currents 
flow through it. Finally, when the base-emitter junction is reverse biased and 
the collector-base junction is forward biased, the transistor is said to be in its 
reverse active mode of operation. This mode is not shown in Figure 6.21. The 
reverse active mode of operation is not a preferred mode to operate the tran-
sistor because its current gain parameter β is not as large as it is in the active 
mode. This is due to the fact that neither NPN nor PNP transistors are sym-
metrical. The emitter is more heavily doped than its collector. The reverse-
active mode is seldom used.
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Table 6.2  Bipolar junction transistors mode of operation

Mode of Operation Emitter-Base Junction Collector-Base Junction

Active Forward Reverse
Reverse-Activea Reverse Forward
Saturation Forward Forward
Cutoff Reverse Reverse

a Not commonly used.

Figure 6.21  NPN transistor operating or quiescent point.
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Table 6.2 shows the four regions of operation of a bipolar transistor. Table 
6.2 applies to both NPN and PNP bipolar transistors.

When the BJT is used as a digital element or as a switch, it is mainly used 
in two modes, either saturation or cutoff. When the switch or the transistor is 
ON, it is saturated; when the transistor is OFF, the transistor is cutoff. When 
the transistor is used as a switch, it goes from saturation to cutoff and vice 
versa. Figure 6.22 depicts an NPN and a PNP BJTs in their active regions. Note 
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Figure 6.22  (a) NPN BJT in the active region; (b) PNP BJT in the active region.
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* Current-limiting resistors should be added, as it will be seen in the following sections on biasing.

that the emitter-base junction of both transistors is forward biased, while the 
collector-base junction of both transistors is reverse biased.

The circuits of Figure 6.22 are just conceptual drawings solely to show the 
polarities of the transistor junctions; both NPN and PNP transistors comply 
with the active mode described by Table 6.2.

Moreover, circuits of Figure 6.22 are not working biasing circuits.*
The careful observer should note that the NPN BJT of Figure 6.22a has its 

base-emitter junction forward biased while the collector-base junction is 
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reverse biased. Also note that the NPN BJT collector current flows from the 
collector through the transistor N region, the base current flows into the base 
P region. Both collector and base currents get added at the base-emitter junc-
tion and out of the emitter terminal flows the emitter current. For the PNP 
case, note that the voltages are reversed in polarity, and the currents flow in 
the opposite direction to those of the NPN BJT.

6.3.5  Very Simple Biasing

Now let us look at the transistor circuit of Figure 6.23. We will consider the 
following values: RC = 50 Ω, RB = 10 kΩ, and VCC = 5 V. Assume the transistor 
β is 100 and ignore IS the reverse saturation current of the transistor.

The biasing circuit of Figure 6.23 is the simplest of all the ones that we will 
cover. Its purpose is to show the reader two methodologies to solve BJT-based 
biasing circuits. Our first Example 6.8 will show an approximated method. The 
second Example 6.9 will show a slightly more accurate method of solving the 
same problem.

Figure 6.23  Very simple BJT biasing.
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Example 6.8 Assume that VCC = 5 V, RC = 50 Ω, RB = 10 KΩ, and β = 100. 
Let us assume that we want to find the collector-to-emitter voltage which also 
equals the collector-to-ground voltage, since the emitter is grounded. Using 
the circuit of Figure 6.23 we make an initial guess of the base-emitter junction 
forward voltage drop. Assuming that vBE = 0.6 V (our initial guess), the base 
current is calculated as follows:

 I V v RB CC BE B= −( ) / .  (6.21)

Plugging the numerical values given into Equation (6.21) we obtain

 IB = − =( . ) / , .5 0 6 10 000 440 µA  (6.22)

Since β = 100, then

 IC = × = =100 440 44 000 0 044µ µA A A, . .  (6.23)

The collector-emitter voltage drop VCE also equal to VC, because the emitter 
is grounded, is calculated as follows:

 V V I RC CC C C= − ×  (6.24)

Since RC = 50 Ω and Ic = 0.044 A from Equation (6.23), then

 VC = − × = − =5 0 044 50 5 2 2 2 8. . . .V  (6.25)

Example 6.9 Assume the same circuit of Figure 6.23 is used for this example. 
Assume the same parameters: VCC = 5 V, RC = 50 Ω, RB = 10 kΩ, and β = 100. 
The reverse saturation current is IS = 10−14 A. Check to see if the results 
obtained for Equations (6.23) and (6.25) become a little more accurate by 
taking into account IS.

Using the results given by Equations (6.23) and (6.25) as our initial guess, 
let us now verify how close to the initial guess of 0.6 V for vBE is. Using Equa-
tion (6.19) for vBE we have that

 v v
I
I

BE T
C

S

= = ( ) =ln . ln . . .0 026 0 044 10 0 75714 V  (6.26)

With the new vBE value obtained with Equation (6.26), we reevaluate Equation 
(6.21) thus:

 I V v RB CC BE B= − = − =( ) / ( . ) / , . .5 0 757 10 000 424 30 µA  (6.27)

Since β = 100 and IC = β IB, then

 IC = =42 430 0 04243, . .µA A  (6.28)



BIPOLAR JUNCTION TRANSISTORS (BJT)  387

6.3.6  Resistor Divider Biasing

The biasing scheme seen in the previous section is very sensitive to the varia-
tions of β. Since it is common for transistors of the same type and charac-
teristics, to have a wide range of β, which could easily be from 100 to 200, 
the very simple biasing scheme of Figure 6.23 is not very practical or useful. 
We will investigate a circuit whose biasing is less sensitive to β variations. 
Referring to Figure 6.24a we see that the base-emitter voltage vBE is estab-
lished by the resistor divider formed by R1 and R2 if the base current is signi-
ficantly smaller than the current that flows through the divider top resistor  
R1. Thus:

 v
R

R R
VBE CC=

+
2

1 2

.  (6.31)

However, if the base current is comparable to the resistor divider current, a 
more accurate method of calculating the vBE than Equation (6.31) must be 
used. What we do is apply Thévenin’s Theorem to the left of the base node 
labeled with a “B,” Figure 6.24a. The parallel of resistors R1 and R2 produces 
the Thévenin resistance:

 R
R R

R R
Thev =

+
1 2

1 2

.  (6.32)

The Thévenin voltage to the left node B, with the right-hand side of the circuit 
removed, is calculated with the following expression, and referring to Figure 
6.24b,

 V
R

R R
VThev CC=

+
2

1 2

.  (6.33)

And since VC = VCC – IC RC, then

 VC = − × = − =5 0 04243 50 5 2 1215 2 8785. . . .V  (6.29)

One more time we recalculate the value of vBE using Equation (6.19), thus:

 v v
I
I

BE T
C

S

= = ( ) =ln . ln . . .0 026 0 04243 10 0 75614 V  (6.30)

Since the recalculated value of vBE Equation (6.30) is 155.6 mV off the assumed 
vBE = 0.6 V. If we are satisfied with the result we do not iterate. Otherwise, we 
iterate the calculations again for a more accurate approximation. The solutions 
to our example are Equations (6.27) through (6.30).
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Figure 6.24  Resistor divider biasing method.
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Example 6.10 Using the circuit of Figure 6.24, assume that R1 = 65 kΩ, 
R2 = 15 kΩ, RC = 2 kΩ, VCC = 5 V, β = 100, and IS = 10−17 A. Calculate IB, IC, vBE. 
Make your first vBE guess equal to 0.8 V, verify that your final vBE is within 
40 mV or less than the initial guess. You may have to iterate the process more 
than once to achieve the result wanted. Once the final value of vBE is computed, 
find the collector-emitter voltage of the BJT and the voltage drop across resis-
tor RC.

We will go over this example a little faster since it is similar to the previous 
one.

We compute VThev in the usual way:

 V
R

R R
Thev =

+
=

+
=2

1 2

15
15 65

5 0 9375V VCC . .  (6.39)

 RThev = =R R1 2 12 188// , .Ω  (6.40)

Using Equations (6.32) and (6.33) and referring again to Figure 6.24b, we write

 V I R vThev B Thev BE= + .  (6.34)

Using Equations (6.32) and (6.33) in Equation (6.34) and rearranging terms 
we obtain

 v
R

R R
V I

R R
R R

BE CC B=
+

−
+

2

1 2

1 2

1 2

.  (6.35)

Recalling Equation (6.16) which is repeated below for the reader’s 
convenience,

 I IC S

v
v
BE

T= e .  (6.36)

Finally, combining Equations (6.35) and (6.36) yields

 I I
V I R

v
C S

Thev B Thev

T

=
−



exp .  (6.37)

Rewriting Equation (6.37) to express the base current we obtain

 I V v
I
I R

B Thev T
C

S Thev

= −









ln . ,

1
 (6.38)

where in Equation (6.38) IB is the base current, VThev is given by Equation 
(6.33), IC is the collector current, IS is the reverse saturation current, and RThev 
is given by Equation (6.32).



390  ELECTRONIC DEVICES: DIODES, BJTs, AND MOSFETs

Using the values found in Equations (6.39) and (6.40) and assuming vBE = 0.8 V 
in Equation (6.34) we get

 I V v RB Thev BE Thev= − = − =( ) / ( . . ) / , . .0 9375 0 8 12 188 11 282 µA  (6.41)

Then, since

 I IC B= = × =β 100 11 282 1128 2. . .µ µA A  (6.42)

And using the value of IC from Equation (6.42) in Equation (6.19) copied right 
below for the reader’s convenience,

 v v
I
I

BE T
C

S

= = ( ) =−ln . ln . . .0 026 1128 2 10 10 0 84126 17 V  (6.43)

The result for vBE is close, but not as close as the example requirements, so we 
recalculate Equations (6.41), (6.42), and (6.43) using vBE = 0.8412 V. Thus,

 I V v RB Thev BE Thev= − = − =( ) / ( . . ) / , . .0 9375 0 8412 12 188 7 9 µA  (6.44)

Then, since

 I IC B= = × =β 100 7 9 790. .µ µA A  (6.45)

And using the value of IC from Equation (6.45) in Equation (6.19) copied right 
below for the reader’s convenience,

 v v
I
I

BE T
C

S

= = ( ) =−ln . ln . .0 026 790 10 10 0 8326 17 V  (6.46)

Since 0.832 V is within 40 mV of the initial guess for vBE = 0.8 V, we are done 
with the iterations, but not done with the example.

Since IC = 790 µA,

 V I RR C CC = = × =−790 10 2000 1 586 . .V  (6.47)

Since VCC = 5 V, then

 V V VCE CC RC= − = − =5 1 58 3 42. . .V  (6.48)

The resistor divider method is better than the very simple biasing method; 
however, there is still dependence of the error obtained calculating the collec-
tor current IC if the resistors vary only a small percentage. This can be numeri-
cally validated applying Equation (6.36) to a slight change of collector current. 
The reason should be clear that the exponential Equation (6.36) converts a 
small deviation of IC into a large vBE deviation. So this circuit is still of little 
practical value.
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6.3.7  Emitter Degeneration Resistor Biasing

The circuit used for this method is shown in Figure 6.25. We can appreciate 
that there is just one difference between the circuits of Figures 6.25 and 6.24. 
The circuit of Figure 6.25 has an emitter resistor, but Figure 6.24 does not. This 
resistor will make the circuit more independent of β and vBE if the other circuit 
parameter values are chosen correctly. It is also important to mention that the 
emitter of the BJT with the emitter degeneration resistor is not grounded, like 
it is in the case of the circuit of Figure 6.24a.

Let us refer to the circuit of Figure 6.25a, without ignoring the base current. 
Let us partition the circuit to the left of the base of the BJT. Let us find using 
Thévenin the equivalent of the circuit formed by resistors R1 and R2 powered 
by VCC. Figure 6.25b shows that the voltage at the transistor base with respect 
to ground is

 V
R

R R
VB CC=

+
2

1 2

.  (6.49)

Assuming that the current through the resistor divider is at least 10 times 
larger than the transistor base current (Fig. 6.25),

 V
V

R R
IB

CC
B=

+
>>>

1 2

.  (6.50)

We can also write for the base-emitter loop:

 V v I RB BE E E= + .  (6.51)

Since IE = IB + IC and IC = β IB, then

 I IE B= +( ) .β 1  (6.52)

Plugging Equation (6.52) into Equation (6.51) leads to

 V v I RB BE B E= + +( ) .β 1  (6.53)

Thus: If VB >> vBE and the voltage drop across RE is at least a good fraction 
of vBE, for example 200 mV, RE “absorbs” the changes in VB due to variations 
of vBE. But there is a drawback; we will see later on that this reduces the gain 
when the circuit operates as an amplifier. So nothing comes for free.

However, at the same time, we have to be careful about keeping the transis-
tor in its active region, that is, forward biased base-emitter junction and reverse 
biased collector-base junction. So the value of collector voltage with respect 
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Figure 6.25  (a) Biasing with emitter degeneration resistor; (b) Thévenin equivalent.
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Example 6.11 Using the circuit of Figure 6.25a determine the resistor values 
(RC and RE) such that the collector current is 2 mA. Assume that VCC = 10 V, 
β = 70, and IS = 4 × 10−17 A all at room temperature: (1) Find suitable values 
of R1 and R2 such that the circuit remains largely insensitive to vBE and β varia-
tions. (2) Make sure that the transistor is biased and it is in the active region.

We can establish with this example the design criteria for this biasing circuit. 
In order to have insensitivity to variations of vBE and β, we must design to 
meet Equations (6.50), (6.52), and (6.54).

First let us calculate vBE:

 v v
I
I

BE T
C

S

= = × ×( ) =− −ln . ln / . .0 026 2 10 4 10 0 8203 17 V

Let us then assume that vBE is 0.8 V.
Since we want to achieve

 
V

R R
ICC

B
1 2+

� ,  (6.55)

let us make

 
V

R R
ICC

B
1 2

10
+

= .  (6.56)

Since IC = 2 mA, then IB = IC/β = 28.6 µA and VCC = 10 V, plugging these 
values into Equation (6.56), we obtain that

 R R1 2 34 965+ = , .Ω  (6.57)

Since vBE is 0.8 V and imposes a small voltage drop of 0.2 V across RE, the 
voltage at the transistor base to ground is thus

 V
V R
R R

v I R
R

B
CC

BE E E=
+

= + = =2

1 2

210
34 965

1
,

.  (6.58)

Thus,

 R R2 13 497 31 469= =. . .k and kΩ Ω

to ground shall meet the following requirement for the transistor to be in its 
active region:

 V V I R VC CC C C B= − > .  (6.54)
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6.3.8  Self-Biased Staged

The circuit of Figure 6.26 depicts a BJT with a self-biasing resistor RB.
Note that the collector voltage is

 V V I RC CC C C= − .  (6.60)

It is also important to notice that VC always is larger than the base voltage VB.
By further inspection of the circuit of Figure 6.26, we can also see that

 V I R vC B B BE= + .  (6.61)

Merging the right-hand sides of Equations (6.60) and (6.61) and remembering 
that IC = β IB, we obtain

 I
V v

R
RC

CC BE

C
B

=
−

+
β

.  (6.62)

Additionally, using Equation (6.54) repeated below for the reader’s 
convenience,

 V V I R VC CC C C B= − > .  (6.59)

We have to ensure that the transistor collector-base junction is reversed biased.
Let us assume that since VB = 1 V, we want VC = VB + 4 V = 5 V to meet 

Equation (6.59).
Using Equation (6.59) where VC = 5 V leads to

 RC = 2 5. .kΩ

For part (b), since the collector is at 5 V and the base is at 1 V, the collector-
base junction is reversed biased. Since we assumed a 0.2 V across RE, the 
base-emitter junction is forward biased and has a forward vBE drop of 0.8 V. 
The BJT is in the active region.

Exercise: Use the circuit from the previous example, that is, R2 = 1 kΩ, 
R1 = 9 kΩ, RC = 3 kΩ, RE = 200 Ω, VCC = 10 V. Replace the transistor with 
another transistor that has a β = 200 and IS = 10−17 A. Calculate the collec-
tor, emitter and base currents, the collector voltage, the emitter voltage,  
and vBE.

What conclusions do you obtain when you compare these results with the 
previous example results?
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Figure 6.26  Self-biased bipolar transistor.
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Example 6.12 Using the circuit of Figure 6.26, assume VCC = 5 V, RB = 10 kΩ, 
RC = 1 kΩ, β = 200, VT = 0.026 V, and IS = 10−16 A. Determine IC and vBE.

Using Equation (6.62) and initially assuming that vBE = 0.8 V, we obtain

 IC =
−

+
=

5 0 8

1 000
10 000

200

4
.

,
,

.mA  (6.63)

Now, using the obtained IC, let us recalculate the value of vBE using

 v V
I
I

BE T
C

S

= =
×

=
−

−ln . ln . .0 026
4 10

10
0 814

3

16
V  (6.64)
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Figure 6.27  Voltages and currents: (a) NPN transistors; (b) PNP transistors.
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Since vBE = 0.814 V and the originally guessed value was 0.8 V, we decide not 
to recalculate the collector current IC because there is only a 14 mV difference 
between the initial guess for vBE (0.8 V) and the recalculated vBE (0.814 V).

6.3.9  Biasing Techniques of PNP Bipolar Transistors

Let us take a look at the NPN and PNP transistors voltage and currents. Refer 
to Figure 6.18a,b, which we repeat here in Figure 6.27 for the reader’s 
convenience.

The NPN transistor, part (a) requires positive vBE for a forward biased BE-
junction and a positive vCB for a reversed biased CB-junction. Currents IB, IC, 
and IE are positive and flow in the direction shown in Figure 6.27a. On the 
other hand, PNP transistors require a negative vBE for a forward biased 
BE-junction and a negative vCB for a reversed biased CB-junction. Currents 
IB, IC, and IE are negative and flow in the opposite direction as shown in 
Figure 6.27b.

Taking into account the above considerations, biasing a PNP transistor is 
not much different from biasing an NPN. The biasing techniques studied for 
NPNs are valid for PNPs. Due to space reasons, we will only mention the 
circuit of biasing PNP with emitter degeneration resistor. Figure 6.28 shows 
such circuit mainly for the purpose of showing voltages and currents. Concep-
tually, all the concepts that are applicable to NPN transistors biasing also apply 
to PNPs.

Note that the current flows shown in Figure 6.28 are the actual current 
directions. Remember that on a PNP transistor all the voltages that were posi-
tive for an NPN are negative for a PNP. Similarly, the same concept applies to 
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Figure 6.28  PNP transistor biasing with emitter degeneration resistor.
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the currents; currents that are positive for the NPN transistors are negative  
or flow in the opposite direction on the PNP transistors. Carefully compare 
Figures 6.25a for an NPN and Figure 6.28 for a PNP.

6.3.10  Small Signal Model and Single-Stage Bipolar  
Amplifier Configurations

In this section we will study the three basic amplifier topologies, the common-
emitter, common base, and common collector. In doing so we will use a simple 
low-to-medium frequency transistor small signal model, called by some authors 
as the hybrid-π model. Large signal analysis, or amplifier analysis with signals 
that are comparable in magnitude to the transistor biasing voltages, and mul-
tistage amplifiers are beyond the scope of this book. 

One of the simplest bipolar transistor models is the one shown in Figure 
6.29 even though the model is simple; it is very useful for the understanding 
of many transistor-based circuits.

The basic model has an input resistance of rπ, between the base and the 
emitter terminals. The output is modeled with a voltage-controlled current 
source gmVπ, where gm is the trans-conductance of the transistor and its value 
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Figure 6.29  Bipolar transistor small signal model.
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depends on the bias collector current and the transistor thermal voltage vT, 
which is about 26 mV at room temperature of 300 K. Thus,

 g
I
V

m
C

T

= .  (6.65)

So for example, for a 10-mA collector DC current, the transistor trans-
conductance equals

 g
I
V

m
C

T

= = = =−10
26

0 385 0 3851mA
mV

S. . .Ω  (6.66)

The voltage Vπ, refer one more time to Figure 6.29, is the voltage drop across 
the input resistance rπ. The input resistance rπ is given by the ratio of β and gm, 
that is,

 r
gm

π
β

= .  (6.67)

The labels of the model terminals are: B, C, and E, where B stands for base, 
C for collector, and E for emitter. Finally, it is important to understand that 
the small signal model is the same whether the transistor is a PNP or an NPN. 
Table 6.3 summarizes the three key parameters of the BJT small signal model. 
The output resistance of the model primarily takes into account the fact that 
the IC-VCE characteristic curves do not have a zero slope beyond saturation. 
The characteristic curves of real BJTs have a slightly positive slope even 
beyond the collector current saturation level. Initially, it is meaningful to 
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ignore the Early voltage effect in the output resistance ro, and an infinite ro 
may be assumed in parallel with the dependent current source gm vπ, not shown 
in Figure 6.26. When greater precision is desired, inclusion of the Early effect 
finite and non-zero output resistance in parallel with the current source of 
Figure 6.29 is required.

Small signal models are used to understand the small signal or the AC 
behavior of the transistor, typically under sinusoidal excitations of small mag-
nitudes within a range of frequencies of interest. How small is a small signal? 
There are no hard rules, but we can state that a small signal has an amplitude 
in the order of one-tenth or less of the power supply rail. For example if 
VCC = 10 V, 1-V signals or less are considered small. The purpose of biasing a 
transistor is to establish a quiescent (Q) or DC operating point. When we 
analyze an amplifier, under small signal operation, the input signals are 
applied on top of the DC voltages and currents that bias the transistor. For 
simplicity and without loss of generality, let us assume that a single sinusoidal 
signal of one frequency is applied to the input of the amplifier. By the super-
position theorem, the signal moves the DC operating point of the amplifier 
DC voltage and current. Correspondingly, the DC output voltage and current 
are displaced by some amount that is proportional to the input signal times 
the gain factor of such amplifier. Let us elaborate more on this in the next 
section.

6.3.11  Common Emitter (CE) Configuration

This configuration is the most commonly used stage when designing transistor-
ized amplifiers. The emitter is typically grounded for AC or DC currents. In 
our example in Figure 6.30, the emitter has an emitter capacitor CE, whose 
value is chosen to virtually be a short circuit at the lowest frequencies to be 
handled by the amplifier. Thus, the emitter is not grounded for DC components 
because of RE; however, the emitter is grounded for all AC components within 

Table 6.3  BJT small signal model: key parameters

Parameter Parameter Name
Brief Description 
(only if needed) Calculation Units

gm Trans-
conductance

gm = IC/VT (Siemens)

rπ Transistor input 
resistance

Base-to-emitter 
input resistance

rπ = β/gm (Ω)
also: gm rπ = β

ro Transistor output 
resistance

Finite output 
resistance due 
to the Early 
Voltage VA

ro = VA/IC (Ω)
When the Early 

voltage is neglected:
ro → ∞
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Figure 6.30  Common emitter configuration stage.
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the frequency range of interest.* The input signal VS to be amplified is applied 
at the base terminal; the amplified output is obtained at the collector Vout. 
Capacitor CS value is chosen so that the capacitor is a virtual short circuit at 
the lowest frequency of interest. Figure 6.30 depicts a CE configuration.

The sinusoidal signal generator is the input signal; the amplified output is 
obtained at Vout. Capacitor CS AC couples the signal generator into the base 
of the amplifier, while at the same time the capacitor prevents the DC biasing 
from being disturbed. Capacitor CE is a virtual short circuit to AC currents. 
Thus, the emitter degeneration resistor RE does not reduce the AC gain of the 
amplifier. At the same time, RE provides DC biasing independence from the 
transistor’s β and vBE. Figure 6.31 depicts the AC small signal model of the CE 
configuration. The BJT’s small signal model has replaced the bipolar transistor 
in Figure 6.31. The VCC power supply is a short circuit to AC frequencies, thus 
the collector resistor upper terminal of the model is grounded. Note that 
capacitor CS does not appear in the circuit of Figure 6.31 because it behaves 
as a short circuit to AC frequencies. More interestingly, capacitor CE and resis-
tor RE do not show up on the small signal model either, because CE acts as a 
short circuit across resistor RE.

* Note: If a capacitor is a virtual short circuit to some low-frequency signal, it will be an even 
better short circuit for signals of higher frequency.
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Resistors R1 and R2 are in effect in parallel with each other and connected 
between the transistor base and ground because the VCC source is a short to 
AC frequencies. Now we are ready to start inspecting the circuit of Figure 6.31 
to calculate the amplifier gain, its input, and output resistances.

Referring to the small signal common emitter stage of Figure 6.31 we 
observe that

 V g R vout m C= − π  (6.68)

Since

 v VSπ =  (6.69)

Thus,

 G
V
V

g RCE
out

S
m C= = − ,  (6.70)

where in Equation (6.70) GCE is the common emitter stage voltage gain, Vout 
is the stage output or collector voltage, VS is the input voltage or signal, gm is 
the BJT’s trans-conductance, and RC is the collector resistor. Note that the 
voltage gain has a negative sign; this means that there is a 180° phase shift 
between the output and the input.

Let us briefly discuss the concepts of input resistance and output resistance 
of an amplifier. The input resistance of an amplifier is the resistance that a test 
voltage sees when there is no load at the output of the amplifier. Figure 6.32a 
depicts the test voltage and the test current applied at the amplifier input with 
an open-circuited output.

Figure 6.31  Common emitter stage with BJT’s small signal model.
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 R V Iin Test Test= / .  (6.71)

Using the concept of input resistance from Equation (6.71), we apply it to our 
circuit of Figure 6.31 and get

 R
r R

r R
in

P

P

=
+

π

π

.
,  (6.72)

where in Equation (6.72) rπ is the BJT’s input resistance and RP is the parallel 
of resistors R1 and R2 in Figures 6.30 and 6.31.

The output resistance of the amplifier is obtained inhibiting sources at  
the input; since the input source is a voltage source, inhibiting it means to 
replace it with a short circuit. Then we apply a test voltage at the output of 

Figure 6.32  (a) Amplifier input resistance; (b) amplifier output resistance.
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the amplifier and the resistance that such test voltage sees is the output resis-
tance of our amplifier. Refer to Figure 6.32b for the conceptualization of 
output resistance Rout.

Now referring one more time to the small signal equivalent circuit of the 
common emitter configuration of Figure 6.31 we proceed to compute the 
amplifier output resistance. We first replace the signal generator with a short 
circuit; we see the results of this in Figure 6.33. Shorting the input source also 
shorts voltage vπ, then it is easy to see that the current source of the circuit 
given by gm vπ becomes zero; that is to say, there is no current injected by this 
voltage-dependent current source. After applying the test voltage and current 
at the output of this stage, the output resistance seen is just RC. Thus,

 
V
I

R RTest

Test
out C= = .  (6.73)

Inclusion of the Early Effect in the Output Impedance Calculation
In Table 6.3 we presented without proof, that the finite output resistance of a 
transistor, when better accuracies are desired, is computed as follows:

 r V Io A C= / ,

where IC is the collector bias current and VA is the Early voltage, a transistor 
parameter. Equation (6.73) for output resistance of the common emitter 
amplifier changes to the following when one includes the Early voltage effect:

Figure 6.33  Common-emitter output resistance calculation.
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V
I

R R r
R r

R r
Test

Test
out C o

C o

C o

= = =
+

/ / .  (6.74)

6.3.12  Common Emitter (CE) Configuration with 
Emitter Degeneration

When a resistor is placed between the emitter and ground of the common 
emitter configuration, the amplifier gain is reduced. This is not necessarily 
harmful; on the contrary, it benefits the linearity of the amplifier, many times 
a desirable feature to pay for at the expense of a reduced gain. This common 
emitter degeneration is applied not only to DC signals but also to AC signals 
when resistor RE bypassing capacitor CE is removed; see Figure 6.31. The 
gain of the amplifier without common emitter degeneration resistance was 
addressed by Equation (6.70). Accounting the emitter degeneration resistance 
in the small signal model (CE capacitor removed) can be derived from Figure 
6.34 recalculating the gain of the amplifier after removing CE. We just present 
the result of such gain, which is:

 G
g R

g R
CE

m C

m E
 with emitter degeneration resistor = −

+1
 (6.75)

which also equals to

 G
R

g
R

CE
C

m
E

 with emitter degeneration resistor = −
+1

 (6.76)

Another important fact in a common emitter configuration with emitter 
degeneration is that the amplifier input impedance seen between the base and 
ground becomes

 R r Rin CE E  with emitter degeneration resistor = + +π β( ) .1  (6.77)

Equation (6.77) is derived from the circuit presented in Figure 6.34.
The importance of Equation (6.77) is that the total input resistance of the 

amplifier with emitter-degeneration is that the input resistance can be very 
large because of the (β + 1) factor. It also interesting to mention that from an 
output impedance point of view, the emitter degeneration resistor does not 
change the output impedance at all, assuming that the Early effect is neglected. 
Thus,

 R Rout CE C with emitter degeneration resistor .=
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Figure 6.34  Common-emitter amplifier with emitter degeneration resistor.

r g
m

V

B C

E

+

−

V

ER

VX

I X

RC

r

B

+

−

V

ER

IX

Rin

( + 1 )

VX
p

ppp

p

b



406  ELECTRONIC DEVICES: DIODES, BJTs, AND MOSFETs

Example 6.13 Given the circuit of Figure 6.30, assume the following compo-
nent values: R1 = 20 kΩ, R2 = 100 kΩ, RC = 50 Ω, and RE = 100 Ω, the supply 
is VCC = 10 V. (1) Calculate IC, IB, VCE,VRE, and β. (2) Also calculate for the 
found value of β the BJT trans-conductance gm and rπ of the hybrid-π small 
signal model. At all times ignore the BJT Early effect; that is, ro → ∞. Assume 
the reverse saturation current IS = 7.11 × 10−15A at room temperature of 300 
K and VBE = 0.763 V.

Solution to Example 6.13

From Equation (6.16), repeated here for the reader’s convenience, we find for 
IS = 7.11 × 10−15 A, vBE = 0.763 V, and vT = 0.026 V that

 I IC S

v
v
BE

T= =e mA39 5. .  (6.78)

Using the above given values in the circuit of Figure 6.30, and applying 
Thèvenin to the resistor divider on the left of the BJT base node, we obtain

 R
R R

R R
V

R
R R

VThev Thev CC=
+

=
+

1 2

1 2

2

1 2

; .  (6.79)

Equations (6.79) were obtained just as Equations (6.32) and (6.33) were 
obtained, using the resistor divider method.

For the Thevenized portion of the circuit we can write KVL equations, to 
find the base current:

 I V V V RB Thev BE E Thev= − −( ) /  (6.80)

where VThev = 8.33 V and RThev = 16,667 Ω are calculated from Equations (6.79) 
using the given values of R1, R2, and VCC. Voltage VE is the voltage drop across 
resistor RE. This voltage is approximately equal to IC RE; a more exact value 
is IE RE. Since IC ≈ IE, the error in the approximation is small, because 
IC + IB = IE, and the value of base current is quite small. Using the value of 
IC = 39.5 mA, we get that

 V I RE C E≈ = × =0 0395 100 3 95. . .V

Plugging the value of VE = 3.95 V into Equation (6.80) we obtain: IB = 217 µA.
Since we calculated the collector current IC and base current IB, 

β = IC/IB = 182. Referring one more time to the circuit of Figure 6.30 we can 
see that the collector-emitter voltage:

 V V I R VCE CC C C E= − − .
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6.3.13  Common-Base (CB) Configuration

The common-base configuration has a grounded base, the input signal is 
applied between the emitter and ground and the output of the amplifier is 
extracted between its collector and ground. Figure 6.35 walks us through the 
gain calculation of the CB topology. This topology is simplified since biasing 
is not fully shown. Note that input voltage Vin does not have any resistors in 
series to bias this stage.

Figure 6.35b allows us to see that the stage gain is

 G V V g RCB out in m C= =/ .  (6.81)

It is very important to realize that the CB topology gain is equal to the abso-
lute value of the CE topology gain. The CE gain has, unlike the CB gain, a 
negative sign; see Equation (6.70).

Next we will inspect Figure 6.36a,b to do a basic calculation of the input 
resistance of the CB stage. Note that using KCL at node E

 I g V
r

V V g
r

X m m= − +



 = − +



π

π
π π

π

1 1
.  (6.82)

Plugging the corresponding values, we obtain that

 VCE = − ×( ) − =10 0 0395 50 3 95 4 08. . . .V

For part b of this example, since gm = IC/VT and rπ = β/gm, we obtain that

 g rm = =1 52 119. .S and π Ω

The results for part (a) are regrouped and presented here:

 IC = 39 5. mA

 IB = 217 µA

 VCE = 4 08. V

 VRE = 3 95. V and

 β = 182

and for part b):

 gm S= 1 52.

and

 rπ = 119 Ω.
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Figure  6.35  (a) CB stage used to calculate the gain; (b) CB stage with the hybrid-π small 
signal model.
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Figure 6.36  (a) Common base stage Rin calculation; (b) common base stage with small signal 
model.
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And most importantly and again from Figure 6.36b since:

 − =V Vinπ .  (6.83)

Plugging Equation (6.83) into Equation (6.82) yields

 R V I g
r

in X X m= = +



/ / .1

1

π
 (6.84)

If rπ is large, then 1/rπ is small and we can approximate Equation (6.84) with

 R gin m≈ 1 / .  (6.85)

Note that it is not unusual for rπ to be about 1 kΩ and for gm about 
50 mA/26 mV ≈ 1.923 S for signal transistors, thus Equation (6.85) is quite 
accurate. Both Equations (6.83) and (6.84) assume that the Early effect is 
negligible (i.e., ro → ∞).

Let us investigate the output resistance of the CB topology. To do that we 
provide an AC ground to the emitter input, as seen in Figure 6.37a. Then we 
replace the BJT with its hybrid-π small signal model, apply a test output 
voltage, which generates a test input current. As usual, Rout is given by the ratio 
of the test voltage and input. It is clear to see from Figure 6.37b that

 R Rout C= ,  (6.86)

where Equation (6.86) ignores the Early effect, since it assumes that the tran-
sistor ro is infinite. Taking the early effect into account, Equation (6.86) becomes 
a more accurate expression given by

 R R r
R r

R r
out C o

C o

C o

= =
+

/ / .  (6.87)

The previously seen CB topologies covered so far mainly showed their small 
signal model, but they lacked their biasing circuitry. The next circuit, Figure 
6.38a, depicts a CB topology with its biasing circuitry as well as its AC paths, 
including DC blocking capacitors.

We will speed up the pace a little bit describing this circuit, because of some 
similarities with the biasing circuits covered for the CE topology. Referring to 
Figure 6.38a we see that resistors R1 and R2 provide a biasing voltage to 
forward bias the base-emitter junction; RC and RE provide the means to reverse 
bias the collector-base junction and to establish the collector and emitter cur-
rents. Now from an AC standpoint the input signal generator (Vgen) with its 
internal resistance (Rgen) is AC coupled via Cin into the emitter input. The 
purpose of Cin is not to disturb the biasing voltage of the stage. At the base 
terminal capacitor CB provides an AC short-circuit path to the base. The base 
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ends up AC grounded as desired. The load resistor RL that does not participate 
in the stage biasing is AC coupled via CL and in effect, it is in parallel with RC 
for AC components. It is also important to see that the input resistance seen 
by the input signal generator is the parallel of the basic CB stage (1/gm) in 
parallel with the emitter resistor RE. Thus, in effect, the CB stage Rin becomes

 R g R
R
g R

in m E
E

m E

= ( ) =
+

1
1

/ / / .  (6.88)

Figure 6.37  (a) CB topology used to calculate the stage output resistance; (b) CB topology 
after replacing the BJT with its hybrid-π small signal model.
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Figure 6.38  (a) CB topology showing biasing circuitry and AC paths; (b) CB topology where 
the BJT was replaced with its hybrid-π small signal model.
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To evaluate the overall voltage gain,

 G V VCB out gen= /  (6.89)

We see from Figure 6.38a that voltage Vinternal equals for AC components to

 V V
R

R R
internal gen

in

in gen

=
+

,  (6.90)

where Rin is the parallel combination of 1/gm and RE as shown in Figure 6.38b 
and Equation (6.88).

Since

 V V g Rout internal m Par/ =  (6.91)

where

 R
R R

R R
Par

C L

C L

=
+

.  (6.92)

Combining Equations (6.89) through (6.92) yields

 G V V
g R R R

g
R R

R R
CB out gen

m E gen E
m

C L

C L

= =
+ + +

/
( )

.
.

1
1 1 /

 (6.93)

Example 6.14 Let us assume that a 50 Ω coaxial transmission line cable 
needs to drive the input of amplifier with an input resistance of 10 kΩ. In order 
to maximize power transfer from one stage to the next, the output impedance 
of the driving stage, the transmission line in this case, must match the input 
impedance of the receiving stage, the CB amplifying stage. The output imped-
ance of the CB stage must match the input impedance of the circuit down-
stream. Figure 6.39a shows this downstream circuit simply as Rin. Refer to 
Figure 6.39a to view the circuit set up. Design a common base amplifier con-
figuration that presents an input impedance of 50 Ω to the coax signals. The 
amplifier output impedance must be 10 kΩ to match the input impedance Rin 
of the stage that need to be driven.

Solution to Example 6.14

From Equations: (6.86) and (6.88) we know that:

 R Rout C= .
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Ignoring the Early effect of the BJT, and

 R g R
R
g R

in m E
E

m E

= ( ) =
+

1
1

/ / / .  (6.94)

We need the CB stage Rin to be 50 Ω, and we need an Rout = 10 kΩ. Since 
Rout = RC, if we obtain a BJT with a gm of 1/53 Ω or 0.0188679 S and RE = 1 kΩ, 
it yields

Figure 6.39  Common base (CB) design, Example 6.14, and CB stage.
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 R g Rin m E= ( ) = ≈1 53 1000 50/ / / / / .Ω

And since we are ignoring the Early effect, ro → ∞, thus Rout simple equals RC, 
hence:

 Rout = 10 kΩ.

Finally, the CB amplifier needs to be biased such that a gm of 0.0188679 S is 
obtained. Since gm = IC/VT and VT = 0.026 V at room temperature, then we 
need a collector biasing current of

 I g VC m T= = × =0 0188679 0 026 0 49. . . .mA

The selection of resistors R1 and R2 are left as an exercise to the reader.

6.3.14  The Common-Collector (CC) Configuration

The CC configuration is also commonly referred to as emitter follower. This 
configuration has the BJT’s collector AC grounded terminal. The input to this 
stage is applied between the base and ground, the output is sensed between 
the emitter and ground. The core circuit of the emitter follower is depicted in 
Figure 6.40. Note that the collector is tied to VCC, thus its AC signals are effec-
tively grounded.

When the input voltage grows, more base current is injected into the BJT, 
causing the collector and emitter currents to increase. The output voltage Vout 
is never higher than the input voltage Vin. Voltage increments in the base cause 
increments in the voltage Vout across RE than can never keep up with the base 
voltage because of the base-emitter voltage drop. Figure 6.41 depicts an emitter 
follower stage BJT small signal model.

Looking at the small signal model of Figure 6.41 we can state KCL equa-
tions at node Vout and obtain

 
V
r

g V
V
R

m
out

E

π

π
π+ = .  (6.95)

Doing some algebra on Equation (6.95) and taking into account that: β = gm 
rπ (from Table 6.3),

 V
r V

R
out

E
π

π

β
=

+
⋅

1
.  (6.96)

From the circuit of Figure 6.41 we can see that

 V V Vin out= +π .
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Combining Vin with Equation (6.96) we obtain

 G
V
V r

R

CC
out

in

E

= =
+

+

1

1
1

1π

β
.

,  (6.97)

and since

 
r rπ π

β β+
≈

1
.  (6.98)

Using Equation (6.98) in Equation (6.97) yields

 G
V
V

R

R
g

CC
out

in

E

E
m

= ≈
+ 1

.  (6.99)

From Equation (6.99) it is clear to see that the CC topology voltage gain is 
always positive and less than unity.

Now let us look at the emitter follower stage gain, when fed by an input 
signal with source resistance (RS). Figure 6.42a depicts the circuit with the 
input signal associated with a source resistance. We now proceed to find out 

Figure 6.40  Core structure of an emitter follower stage.
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the gain for this circuit. We apply Thévenin’s Theorem to the circuit of Figure 
6.42a. We select the emitter resistor to be the element we keep, while we look 
into replacing the rest of the circuit with its Thévenin’s equivalent; as usual we 
inhibit independent voltage source Vin; that is, we replace it with a short circuit. 
Remember that Thévenin’s Theorem does not want you to remove any depen-
dent sources. We calculate the Thévenin resistance injecting a Thévenin voltage 
source between the emitter and ground nodes. Figure 6.41b depicts the circuit 
used to calculate the Thévenin’s resistance.

Applying KCL at node E to the circuit of Figure 6.42b we obtain

 
V
r

g V Im Thev
π

π
π+ = −. .  (6.100)

By inspection of the circuit we find

 − =
+

V
r

r R
V

S
Thevπ

π

π
.  (6.101)

Combining Equations (6.101) and (6.100) it yields

 Z V I
r R

Thev Thev Thev
S= =

+
+

+
/ π

β β1 1

Figure 6.41  Emitter follower stage small signal model.
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and since rπ/(β + 1) ≈ rπ/β = 1/gm (ZThev) becomes:

 Z V I
g

R
Thev Thev Thev

m

S= = +
+

/
1

1β
 

The Thévenin voltage is VThev = Vin, and using ZThev from above according to 
the circuit of Figure 6.42b, which basically is a resistor divider, leads to

 
V
V

R

R
R

g

out

in

E

E
S

m

=
+

+
+

β 1
1

.  (6.102)

The input impedance of the emitter follower stage is calculated from the 
transistor and small signal circuit model of Figure 6.42. A voltage VX is injected 
into the input of the stage, a current IX is produced. The input resistance Rin 
is the ratio of VX and IX. Applying KCL at node E of the circuit of Figure 6.42b 
we obtain

 V V I g V RX X m E= + +π π( ) .  (6.103)

Since from Figure 6.43b we have that

 V I rXπ π= .  (6.104)

Plugging Equation (6.104) in Equation (6.103) we obtain (see also Fig. 6.44b)

 V I r I g I r RX X X m X E= + +π π( )  (6.105)

and since from Table 6.3

 g rm π β= .  (6.106)

Plugging Equation (6.106) in Equation (6.105) after a little bit of algebra 
results to

 R
V
I

r Rin emitter follower
X

X
E - = = + +π β( ) .1  (6.107)

It is important to see that the input impedance of an emitter-follower stage is 
identical to the input impedance of a common-collector stage with emitter 
degeneration resistance; refer to Equations (6.107) and (6.77).

Now let us calculate the output impedance of an emitter-follower stage. 
Figure 6.44c,d depicts the output impedance and its components.
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Figure 6.42  (a) Emitter-follower with source resistance small signal circuit model; (b) emitter-
follower with source resistance small circuit model used to calculate RThev.
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The computation of the emitter-follower output impedance components is 
performed using Figure 6.44c,d. Referring now to Figure 6.44c,d, the output 
impedance of the follower stage is simply the parallel of the two output imped-
ance components, hence:

 R
g

R
Rout

m

S
E= +

+






1
1β

/ /  (6.108)

Equation (6.108) ignores the Early effect. Taking this effect into account, the 
output impedance becomes

 R
g

R
R rout

m

S
E o= +

+






1
1β

/ / / /

where gm is the transistor’s transconductance, RS is the input signal internal 
resistance also called the source resistance, β is the transistor current gain 
parameter, RE is the emitter resistor, and ro is the transistor model output 
resistance due to the Early effect.

6.4  METAL OXIDE FIELD EFFECT TRANSISTOR (MOSFET)

The n-channel enhancement mode MOSFET, also called an NMOS transistor 
is discussed next. Later on we will briefly discuss the p-channel enhancement 
mode MOSFET (or PMOS) and the two depletion type MOSFETs (n-channel 
D-MOSFET and p-channel D-MOSFET).

Figure 6.43  Emitter follower gain: input resistance calculation with source resistance using 
Thévenin’s Theorem.
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Figure  6.44  (a) Emitter-follower circuit and input impedance calculation; (b) follower small 
signal model to calculate input resistance; (c) emitter-follower for the calculation of output 
resistance; (d) emitter-follower with calculated output resistance.
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The enhancement mode n-channel MOSFET may conduct an electric 
current between its drain and source terminals when a positive voltage is 
applied to the gate. Figure 6.45 depicts the basic structure of an n-channel 
enhancement mode MOSFET. The drain-to-source current is controlled by the 
magnitude of the gate voltage. For the time being, we are describing the 
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Figure 6.44  (Continued )
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Figure 6.45  Basic MOSFET structure.

++

Table 6.4  MOSFET types

Enhancement Mode Depletion Mode

n-channel p-channel n-channel p-channel
Induced channel Induced channel Implanted channel Implanted channel

enhancement mode n-channel MOSFET. Table 6.4 lists the four MOSFET 
types that are available.

MOSFETs have either three or four terminals. Gate, Drain and Source in 
all cases and in some cases discrete MOSFETs have a fourth terminal or the 
body terminal that may be externally connected to the desired voltage. For 
medium to low frequencies, the MOSFET gate current is zero because the 
silicon dioxide behaves as an insulator (Fig. 6.45).

Only upon operating the MOSFET at high frequencies there may be a 
nonzero or significant gate current due to the internal parasitic capacitances 
within the device structure. Within our coverage of MOSFETs we will not deal 
with the MOSFET operating at high frequencies. High frequencies are con-
sidered those frequencies well above audio frequencies or 20 kHz. For example, 
in applications where MOSFETs are used at hundreds of kHz, such as in 
switching power supplies, MOSFET gate currents are not negligible. Unlike 
the bipolar transistor, which conducts majority as well as minority carriers, 
MOSFET currents are unipolar and its current consists of majority carriers. 
N-channel MOSFETs conduct currents of electrons while p-channel types 
conduct currents of holes.
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Figure 6.46  MOSFET operating with VGS < VTH, ID = 0.
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6.4.1  MOSFET I-V Characteristics

Let us look into the behavior of the n-channel MOSFET from “currents and 
voltages” point of view. Figure 6.46 depicts an n-channel enhancement mode 
MOSFET with its source terminal grounded and a positive voltage VDS applied 
to its drain. If the gate voltage applied is under the so-called MOSFET thresh-
old voltage VTH, no drain-to-source current flows through the MOSFET sub-
strate (Fig. 6.46) and no channel between the drain and source has been 
formed yet. More positive charge accumulates on the gate and negative ions 
form in the substrate with higher positive gate voltages. This is referred to as 
the depletion region.

The MOSFET is said to be “off.” As the gate voltage VG increases beyond 
the threshold voltage (VTH) free electrons are attracted to the region between 
the silicon dioxide and the substrate and creates a channel. It is said that the 
channel is induced. When this channel is created, the MOSFET starts conduct-
ing a current from drain to source. The larger VGS becomes, the deeper the 
channel. Note that the gate never conducts any current (in low and mid-
frequencies operation), and the gate acts like a capacitor controlling the 
channel length and depth. Referring again to Figure 6.46, it is important to 
note that there are two diodes, one of them between the p-substrate and the 
drain and a second diode between the p-substrate and the source. It is impor-
tant not to allow these diodes to conduct any current when the MOSFET is 



METAL OXIDE FIELD EFFECT TRANSISTOR (MOSFET)  425

still off, thus the p-substrate is grounded, preventing such diodes from becom-
ing forward biased and current flowing through them.

The current voltage relationship of the NMOS MOSFET is given without 
proof and it is

 I C
W
L

V V V VD n ox GS TH DS DS= − −
1
2

2 2µ [ ( ) ].  (6.109)

In Equation (6.109) μn is the carrier mobility of the electrons in the n-channel, 
Cox is the capacitance formed by the oxide in between gate polysilicon and the 
p-substrate, this capacitance is greatly controlled by the thickness of such 
oxide. W is the width of the channel, L is the length of the channel, W/L is 
referred to as the aspect ratio of the MOS transistor, VGS is the gate to source 
voltage applied, VTH is the MOSFET threshold voltage, and VDS is the MOSFET 
drain-to-source voltage. Once a MOSFET technology is chosen, the oxide 
thickness (tox) is fixed and cannot be changed, the aspect ratio W/L is under 
control of the integrated circuit designer.

As the gate voltage is gradually increased, the MOSFET practically acts as 
a variable resistor. During this region of operation, the drain current (ID) 
maintains a linear relationship with respect to the drain-to-source voltage 
(VDS). The slope of this part of the I-V curve equals 1/RDSon, where RDSon is the 
drain-to-source on-resistance of the MOSFET. Equation (6.109) is a nonlinear 
relationship between ID and VDS. When:

 V V VDS GS TH� 2 ( )−  (6.110)

Equation (6.109) reduces to

 I C
W
L

V V VD n ox GS TH DS≈ −µ ( )  (6.111)

Since

 R V IDSon DS D= /  (6.112)

Plugging Equation (6.111) into Equation (6.112) we obtain:

 R
C

W
L

V V
Dson

n ox GS TH

=
−

1

µ ( )
.  (6.113)

Equation (6.113) means that for very small VDS values the parabola given 
by Equation (6.109) is approximated by the linear behavior of Equation  
(6.112). By inspection of Equation (6.113), it is interesting to see that the tran-
sistor RDson is directly proportional to the channel length (L) and inversely 
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proportional to the channel width (W). This should also be an intuitive conclu-
sion. Equation (6.109) is the expression of the drain current for all values of VDS, 
and it is the equation of a parabola. If we took the first derivative of Equation 
(6.109), find its zero and then evaluate its second derivative at the same point, 
which would yield a negative result. So without doing the mathematical deriva-
tion, it can easily be stated that Equation (6.109) has a maximum at

 V V VDS GS TH= − .  (6.114)

So evaluating Equation (6.109) using the value of VDS from Equation (6.114) 
we find

 I C
W
L

V VD MAX n ox GS TH, ( )≈ −
1
2

2µ  (6.115)

The maximum value of IDS shown by Equation (6.115) is the value of current 
when

 V V VDS GS TH> − .  (6.116)

When the MOSFET operates under such conditions, that is, Equation (6.116), 
it is said to be in its saturation region of operation as depicted by Figure 6.47.

It is important to observe that Equation (6.115) is independent of VDS. This 
says that the curves for the drain current become constant, and independent 
of VDS after the pinch-off voltage, that is, VDS = VGS − VTH. After the MOS 
transistor reaches the pinch-off voltage, the drain current does not significantly 
change with VDS. Such statement is true provided that we do not take into 
account a second-order effect referred to as channel length modulation. Figure 
6.47a,b describes the different regions of the MOSFET operation given by 
Equations (6.109) through (6.116).

The channel length moves with the change of VDS. This effect can be visual-
ized in Figure 6.48: (a) shows the induced channel, (b) shows the pinched-off 
channel, and (c) shows channel length modulation.

The channel length modulation effect is accounted for in Equation (6.115) 
by multiplying it by the factor: (1 + λ VDS) that yields

 I C
W
L

V V VD n ox GS TH DS= − +
1
2

12µ λ( ) ( ).  (6.117)

In Equation (6.117), λ is called the channel length modulation coefficient.
The effect that channel length modulation produces on the drain current 

characteristics is a slight positive slope as shown in Figure 6.49. Another 
second-order effect is the body effect; this takes place when the substrate 
potential grows above zero, and this causes the threshold voltage to increase. 
We will not consider the body effect in this book.
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Figure 6.47  (a) MOSFET triode and saturation regions; (b) MOSFET triode region.

6.4.2  MOSFET Small Signal Model

The small signal model of a MOSFET is similar to the small signal model of 
the bipolar transistor. The basic model consists of a voltage-controlled current 
source (VCCS), its current value is gm VGS, where gm is the MOSFET trans-
conductance and VGS is the gate to source controlling voltage. The transistor 
trans-conductance is given by

 g
I

V
m

D

GS

=
∂

∂
.  (6.118)
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Using Equation (6.118) for the saturation region without the effect of channel 
length modulation we obtain:

 g C
W
L

V Vm n ox GS TH= −µ ( ).  (6.119)

The accountability of the channel length modulation, that is, the dependence 
of the saturation current with VDS, is included with the addition of an output 
resistor ro, where

 r
I

V C
W
L

V V I
o

D

DS
n ox GS TH

D

=
∂

∂




 =

−
≈

−1

2

1
1
2

1

µ λ λ( )
.  (6.120)

Figure 6.51 depicts the small signal, low, and medium frequencies equivalent 
model of a MOSFET.

6.4.3  MOSFET Biasing Techniques

Let us start by pointing out the fundamental differences and similarities 
between bipolar and MOS transistors at the terminal voltage and current 
levels. Table 6.5 basically summarizes key differences and similarities between 
BJTs and MOSFETs. However, Table 6.5 does not address differences and 
similarities directly pertaining to semiconductor physics.

ID
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Figure 6.47  (Continued )
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Figure 6.48  (a) Induced channel but not pinched-off yet; (b) pinched-off channel; (c) channel 
length modulation effect.
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Taking into account the facts listed in Table 6.5, it is possible to find some 
similarities as well as differences biasing BJTs and MOSFETs. The remainder 
of this chapter will leverage on the previously addressed BJT material and is 
presented in a more speedy fashion.

Let us consider the MOSFET circuit of Figure 6.50; we want to bias the 
transistor such that it operates in the saturation region. Ignoring channel 
length modulation we have that

 V
R

R R
VG DD=

+
2

1 2

.  (6.121)

Figure  6.49  N-channel MOSFET: I-V characteristics depicting the effect of channel length 
modulation.
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Figure 6.50  N-channel MOSFET biasing.
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Figure 6.51  MOSFET small signal equivalent model for low and mid frequencies.
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It is important to recognize that voltage VG at node G in Figure 6.50 refers to 
the gate voltage with respect to ground and not to the gate voltage with respect 
to the MOSFET source terminal.

From KVL we can see that

 V V I RG GS D S= + .  (6.122)

Combining Equations (6.121) and (6.122) we obtain

 
R

R R
V V I RDD GS D S

2

1 2+
= + .  (6.123)

Table 6.5  Some fundamental circuit differences and similarities between BJTs and 
MOSFETs

BJT MOSFET

Difference: BJT has no body or substrate Difference: MOSFET has a substrate
Difference: When VBE = VCE BJT is at the 

edge of the active region
Difference: MOSFET is at the edge of 

saturation if VD is below VG − VTH

Difference: Finite (nonzero) base current Difference: Zero gate current at mid 
and low frequencies

Difference: Exponential IC − VBE 
characteristics

Difference: Square law dependence 
between ID and VGS

Difference: Most BJTs have the same IS 
reverse saturation current

Difference: MOSFETs have selectable-
by-design W/L aspect ratios

Difference: Two BJT types: NPN and PNP Difference: Four MOSFET types: 2 
enhancement mode types: n-channel 
and p-channel and 2 depletion mode 
types: n-channel and p-channel

Three regions of operation: saturation, 
active, and cutoff (*)

Three regions of operation: triode 
(includes deep triode region), 
saturation, and cutoff (*)

(*) May qualify as a similarity and as a 
difference

(*) May qualify as a similarity and as a 
difference

Difference: BJT saturation region is not 
the same as MOSFET saturation region

Difference: MOSFET saturation 
region is not the same as BJT 
saturation region

Similarity: base, collector, and emitter Similarity: gate, drain, and source
Similarity: Voltage controlled-current 

source-based small signal model
Similarity: Voltage controlled-current 

source-based small signal model
Similarity: common emitter amplifier Similarity: common source amplifier
Similarity: common collector amplifier Similarity: common drain amplifier
Similarity: common base amplifier Similarity: common gate amplifier
Similarity: BJT can operate as a switch Similarity: MOSFET can operate as a 

switch
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Since the saturation current of the MOSFET, from Equation (6.115) is

 I C
W
L

V VD n ox GS TH= −
1
2

2µ ( ) ,  (6.124)

combining Equation (6.123) with Equation (6.124) it yields

 
R

R R
V V

R
C

W
L

V VDD GS
S

n ox GS TH
2

1 2

21 1
2+

−



 = −µ ( ) .  (6.125)

Performing some algebraic operations on Equation (6.125) yields

 V V V V V V
R

R R
V VGS a TH a TH TH a DD= − − + −( ) − +

+
( ) 2 2 2

1 2

2  (6.126)

 V V V V V
R V
R R

VGS a TH a a
DD

TH= − − + +
+

−



( ) 2 2

1 2

2  (6.127)

where

 V
C

W
L

R
a

n ox S

=
1

µ
.

Finally, we must verify that: VDS > VGS − VTH to satisfy the saturation condition.
When we solve problems it will be more straightforward and faster to use 

Equation (6.115) to calculate drain current. Making initial guesses of VGS to 
calculate ID will take longer to converge.

Example 6.15 Using the circuit of Figure 6.50 assume the following values: 
VDD = 10 V, R1 = 40 kΩ, R2 = 100 kΩ, RS = 200 Ω, and MOSFET parameters: 
VTH = 0.5 V, μnCox = 100 µA/V2, W/L = 50, and λ = 0. Calculate the maximum 
allowable value of RD for the MOSFET to remain on the edge of saturation. 
Assume VGS = 3 V.

Solution to Example 6.15

From inspection of Figure 6.50, we can state that

 V V I RGG GS D DS= + .  (6.128)

In Equation (6.128) VGG is the gate voltage to ground. Since the gate current 
is negligible

 V
R

R R
VGG DD=

+
=2

1 2

7 14. .V  (6.129)
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And since

 I C
W
L

V VD n ox GS TH= −
1
2

2µ ( ) ,  (6.130)

using the values provided by the example, Equation (6.130) yields

 ID = 15 63. .mA

The condition for the MOSFET to be on the edge of saturation is 

VDS = VGS – VTH,

and since VGS = 3 V and VTH = 0.5 V, it yields

VDS = 2.5 V.

By inspection of Figure 6.50, we see that VDD = RDID + VDS + RSID. Using the 
given values in the above equation, 10 = RD 0.01563 + 2.5 + 200 0.01563. From 
the above equation we find the value of RD to be 

RD ≅ 280 Ω.

6.4.4  Common Source (CS) Configuration

The MOSFET CS configuration is very similar to the BJT common emitter 
configuration. The gain of this circuit turns out to be −gm RD which is basically 
the same expression given for the common emitter. Figure 6.52 depicts a 
common source amplifier and its small signal model. Figure 6.52b shows that 
the channel length modulation coefficient λ = 0, thus ro → ∞, calculation of 
the voltage gain leads to

 G g RCS m D= −  (6.131)

ignoring channel length modulation.
Taking into account channel length modulation, that is, finite and nonzero 

ro, the voltage gain becomes

 G g rCS m o= − ( // ).RD  (6.132)

It is important and interesting to observe that for the CS stage Rin approaches 
infinity,

 Rin → ∞  (6.133)

at mid and low frequencies of operation.
The CS stage output impedance is Rout = RD ignoring channel length modu-

lation, or Rout = RD // ro do taking into account channel length modulation.
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Figure  6.52  MOSFET CS amplifier: (a) MOSFET-based circuit; (b) small signal equivalent 
model at low and mid frequencies.
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Figure  6.53  CS amplifier with source degeneration: (a) MOSFET-based circuit; (b) small 
signal equivalent model.
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6.4.5  Common Source (CS) Configuration with Degeneration

The source terminal degeneration resistor has the same effect in the MOSFET 
amplifier as it does in the BJT. Figure 6.53 depicts a CS amplifier with emitter 
degeneration resistor.

From the circuit of Figure 6.53b we have
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Figure 6.54  MOSFET CG topology.
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Thus,

 V
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g R
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m S

=
+1

.  (6.135)

Since current gm VGS flows through resistor RD we have that

 V g V Rout m GS D= −  (6.136)

and

 G
V
V

g R
g R

R

g
R

CS
out

in

m D

m S

D

m
S

 with source degeneration = = −
+

= −
+1 1

..  (6.137)

The reader is encouraged to compare MOSFET Equation (6.137) with the 
bipolar transistor expression given by Equation (6.76).

6.4.6  Common Gate (CG) Configuration

The MOSFET CG configuration resembles the BJT CB topology. Looking at 
the circuit of Figure 6.54, the circuit virtually operates like the BJT-based CB. 
It can easily be seen that the voltage gain of the CG topology is

 Gv-CG m Dg R=  (6.138)

Note that the gain for this topology does not have an inverting sign.
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Let us look at the input and output impedances of the CG topology. Neglect-
ing the channel length modulation effect we come up with the small signal 
equivalent model and apply a voltage VTest at the source input, the gate is AC 
grounded and we find Rin of the stage. Similarly we apply VTest at the drain 
output of the stage with both the gate and the source grounded. This is virtually 
identical to what we did with the BJT-based CB configuration. Both circuits 
used to calculate Rin and Rout are shown in Figure 6.55a,b respectively.

As expected, due to the similarity with the bipolar-based CB circuit, we 
obtain

Figure 6.55  (a) CG small signal model to calculate Rin; (b) CG small signal model to calcu-
late Rout.
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 R
g

in
m

=
1

 (6.139)

and

 R Rout D= .  (6.140)

Moreover, when the input voltage applied at the source has a source resistance 
in series, the gain voltage gain stage is

 G
R

g
R

CG
D

m
S

 with source resistance =
+1

.  (6.141)

6.4.7  Common Drain (CD) Configuration or Source Follower

The source follower amplifier receives the input signal at the gate terminal, 
and it senses the output signal at the source terminal. The drain is grounded 
for AC signals.

The voltage gain of this stage can be derived by inspection of the circuits 
in Figure 6.56. As expected, the voltage gain of the source follower is by simi-
larity with the BJT follower equal to

 
V
V

g R rout

GS
m S o= ( / / )  (6.142)

 V V Vin GS out= +  (6.143)

 G
V
V

g R r
g R r

CD
out

in

m S o

m S o

= =
+

( / / )
( / / )1

 (6.144)

6.4.8  Other MOSFETs: Enhancement Mode p-Channel and Depletion 
Mode (n-Channel and p-Channel)

The enhancement mode p-channel MOSFET, also called a PMOS transistor 
is fabricated on an n-type substrate or body. Heavily doped p+ regions are 
created in the substrate to form the drain and the source. The PMOS device 
operates just like the NMOS, but some important differences exist. The PMOS 
transistor operates with negative VGS and VDS. The threshold voltage VTH is 
negative. The current ID enters the source terminal and leaves through the 
drain terminal. A p-channel is induced when

 V V VDS GS TH> −  (6.145)

The drain saturation current for the PMOS or enhancement mode p-channel 
MOSFET is
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Figure 6.56  Circuits used to calculate the source follower gain and it includes the effects of 
channel length modulation (λ > 0).
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 I C
W
L

V V V VD Sat p ox GS TH DS DS, [ ( ) ]= − − −
1
2

2 2µ  (6.146)

μp in Equation (6.146) is the majority carriers (holes) mobility. Equation 
(6.146) also assumes that the channel length modulation factor λ is zero.

Now taking into account a nonzero λ channel length coefficient, the PMOS 
transistor drain current becomes

 I C
W
L

V V V V VD Sat p ox GS TH DS DS DS, [ ( ) ]( )= − − − +
1
2

2 12µ λ  (6.147)
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Similarly to the NMOS transistor, the PMOS transistor has a triode region 
current:

 I C
W
L

V V V VD triode p ox GS TH DS DS, [ ( ) ]= − − −
1
2

2 2µ  (6.148)

The p-channel MOSFET has holes as charge carriers. Remember that the 
n-channel MOSFET has electrons as charge carriers. Symbols for all four 
MOSFET types listed in Table 6.4 are shown in Figures 6.57 and 6.58. Different 
authors use slightly different schematic symbols. Figures 6.57 and 6.58 address 
some of the most common symbols used.

Note in Figure 6.59 the equation for the saturation drain current as a func-
tion of VGS is also quadratic like the ID − VGS curve for the NMOS transistor, 
but it is rotated 180° around the current axis; refer to Figure 6.57b. The reason 
is that PMOS transistors have negative VTH and negative VGS. Strictly speaking, 
the current drawn should be negative, but for simplicity of the graphic repre-
sentation it is not; that is, ID is drawn as a positive current as it is most com-
monly done in the MOSFET literature.

All equations for NMOS transistors are applicable to PMOS transistors 
provided that the electron mobility (μn) used for n-channel devices is replaced 
with the hole mobility (μp) for p-channel devices. Additionally and hopefully 
to reduce confusion between positive and negative voltages, one can simply 

Figure 6.57  Enhancement mode MOSFET symbols: (a) n-channel; (b) p-channel.

(a) (b)
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Figure 6.58  Depletion mode MOSFET symbols: (a) n-channel; (b) p-channel.

(a) (b)

Figure 6.59  Depicts the ID-VGS transfer curve characteristic of the PMOS transistor.
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take the absolute values of voltages VDS, VGS, and VTH, so that the equations 
basically look the same. The reader is encouraged to rewrite the n-channel 
enhancement mode equations for ID in both the triode and the saturation 
regions for the p-channel enhancement mode device. In integrated circuits 
NMOS and PMOS transistors are used, such technology is referred to as 
Complementary MOS technology (CMOS). CMOS is the most prevalent tech-
nology of integrated circuits at the time of this writing. Unfortunately, CMOS 
technology is well beyond the scope of this book.

Table 6.6 summarizes NMOS and PMOS transistors characteristics.

6.4.8.1  Depletion  Type  MOSFETs  For the sake of completeness we 
address depletion type MOSFETs; however, they are not as commonly used 
as enhancement-type devices are. The fundamental difference between the 
enhancement and the depletion device is that the depletion device does not 
need a gate voltage to induce a channel. Depletion type devices have a physi-
cally implanted channel. So, for example, when dealing with an n-channel 
depletion device, it just takes a positive VDS voltage to be applied with VGS = 0, 
and the device will conduct current through the implanted channel. Again the 
channel is not induced like it is for the enhancement-type device. Figure 6.60 
depicts the ID versus VGS transfer characteristic for an n-channel depletion 
device and for an n-channel enhancement device. In order not to overlap both 
curves, the absolute values of the threshold voltages are assumed to be 
different.

Figure 6.61 depicts the ID versus VGS transfer characteristic for a p-channel 
depletion device and for a p-channel enhancement device.

6.5  SUMMARY

This chapter is quite long and covers key electronic devices from the bottom 
up. It has been the intent of the author not to cover a great deal of semicon-
ductor physics, but just enough of it to understand circuit-level operation of 
diodes, bipolar, and MOS transistors. Some of the most important applications 
with diodes were covered. Biasing and the most common amplifiers configura-
tions were addressed with bipolar and MOS transistors. Because of the simi-
larities of some bipolar and MOSFET-based amplifiers, the MOSFET material 
heavily relies on having done circuit equations and derivations with the bipolar 
junction transistor examples. The junction field effect transistor or JFET was 
not covered because of space reasons. The JFET was a predecessor of the 
MOSFET. MOSFETs are more heavily used than any other transistor, includ-
ing bipolars. NMOS and PMOS transistors are used in CMOS technology, the 
dominating IC technology at this time.



Table 6.6  NMOS and PMOS transistors characteristic

Enhancement Mode n-channel (NMOS) characteristics
1 Drain current for the triode 

region (no channel length 
modulation)

I C
W
L

V V V VD n ox GS TH DS DS, [ ( ) ]triode = − −1
2

2 2µ

2 Drain current for the triode 
region for VDS <<< 2 
(VGS − VTH) (no channel length 
modulation)

I C
W
L

V V VD n ox GS TH DS, ( )triode ≈ −µ

3 Drain current at the beginning of 
the saturation region for: 
VDS = VGS − VTH

I C
W
L

V VD n ox GS TH, ( )Max = −1
2

2µ

4 Drain current in the saturation 
region including channel length 
modulation.

I C
W
L

V VD n ox GS TH,Sat DSV= − +( )1
2

12µ λ( )

5 RDSon

For VDS << 2 (VGS − VTH)
R

C
W
L

V V
DSon

n ox GS TH

=
−

1

µ ( )  (see a)

6 Turn-on and turn-off conditions If: VGS < VTH, then ID = 0 regardless of the 
value of VDS

If: VGS > VTH, then ID > 0
Threshold voltage VTH (is a 

positive quantity for NMOS)

7 Transconductance gm g
W
L

V V C
W
L

Im GS TH n ox D= − =µn oxC ( ) 2µ

Enhancement Mode p-channel (PMOS) characteristics
1 Drain current for the triode 

region (no channel length 
modulation)

I triodeD p ox GS TH DS DSC
W
L

V V V V, [ ( ) ]= − − −
1
2

2 2µ

2 Drain current for the triode 
region for VDS <<< 2 ( 
VGS − VTH) (no channel length 
modulation)

I C
W
L

V V VD p ox GS TH DS, ( )triode ≈ − −µ

3 Drain current at the beginning of 
the saturation region for: 
VDS = VGS − VTH

I C
W
L

V VD p ox GS TH, ( )Max = − −1
2

2µ

4 Drain current including channel 
length modulation)

I C
W
L

V V VD p ox GS TH DS, ( )Sat = − −( )1
2

12µ λ

5 rDSon

For VDS << 2 (VGS − VTH)
r

C
W
L

V V
Dson

p ox GS TH

=
−

1

µ ( )
 (see a)

6 Turn-on and turn-off conditions If VGS < VTH, ID = 0 regardless of the value 
of VDS

Threshold voltage VTH (is a 
negative quantity for PMOS)

Turn on condition: VGS > VTH, ID < 0

7 Trans-conductance gm g
W
L

V V C
W
L

Im GS TH p ox D= − =µp oxC ( ) 2µ

a Note that since electron mobility is larger than hole mobility, for a given oxide thickness Cox 
and aspect ratio W/L an n-channel (NMOS) rDSon is smaller than a p-channel (PMOS) rDSon, under 
the same voltage conditions.
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Figure 6.60  n-Channel depletion and enhancement MOS transistors operating in saturation.
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Figure 6.61  p-Channel depletion and enhancement MOS transistors operating in saturation.
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Figure 6.62  Circuit for Problem 6.1.
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PROBLEMS

6.1 The circuit of Figure 6.62 find the following voltages and currents: (a) I1, 
(b) I2, (c) ID1, (d) I3, (e) ID2, (f) VR1, (g) VR2, (h) VR3. Assume the diode 
D1 forward voltage drop is 0.61 V and D2’s forward drop is 0.53 V.
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Figure 6.63  Circuits for Problem 6.2.
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6.2 Given the circuits of Figure 6.63, assuming all diodes are ideal, determine 
the voltages VD, VR, and currents ID indicated for circuits (a), (b), and (c).

6.3 For the circuit of Figure 6.64, the square wave Vg is applied to circuit as 
shown. Assuming that the diodes and op amp are real devices, draw the 
following waveforms: (a) Vg, (b) IR, (c) ID1, (d) ID2, (e) Vin, and (f) Vout. 
Hint: Assume the diode forward drop is 0.6 V and the op amp saturates 
at ±13 V.
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Figure 6.64  Circuits for Problem 6.3.
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6.4 For the circuit of Figure 6.65, draw the following waveforms: (a) Vsig, 
(b) IR, (c) ID1, (d) ID2, (e) Vin, and (f) Vout. Assume that the op amp is 
ideal and assume that the diodes forward voltage drop is 600 mV.

6.5 Assume that you have a 2N3904 NPN transistor. Using a biasing circuit 
topology such as the one presented in Figure 6.26, assume your VCC 
supply is 10 V. Find the resistor values for RB and RC to bias the transis-
tor with a collector current of 10 mA and a VCE of 5 V at a 25°C 
ambient temperature. Assuming that the resistors have a zero ppm/°C 
temperature coefficient, and that the 10 V supply does not change due 
to temperature variations, find: (a) VCE and IC at −55°C, and (b) VCE 
and IC at 123°C. Hint: β, the DC current gain is given as by hFE on the 
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Figure 6.65  Circuits for Problem 6.4.
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datasheet. Search for National’s, or Fairchild’s 2N3904 datasheet to  
find hFE.

6.6 Assume that you have a 2N3904 NPN transistor. Using a biasing circuit 
topology such as the one presented in Figure 6.26, assume your VCC 
supply is 10 V. Find the resistor values for RB and RC to bias the transis-
tor with a collector current of 10 mA and a VCE of 5 V at a 25°C ambient 
temperature. Assuming that the resistors have a 200 ppm/°C tempera-
ture coefficient, and that the 10 V supply does not change due to tem-
perature variations, find: (a) VCE and IC at −55°C, and (b) VCE and IC 
at 123°C. Hint: β, the DC current gain is given as hFE on a Fairchild 
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Figure 6.66  Circuit for Problems 6.8, 6.9, 6.10 and 6.11.
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Semiconductors bipolar transistor datasheet. Practically speaking β, the 
DC current gain and hFE, an H-model parameter, are interchangeable.

6.7 Repeat Problem 6.6 using the circuit biasing topology of Figure 6.23.

6.8 Using the circuit topology of Figure 6.66, assume the following values: 
VCC = 15 V, VS = 1 m V peak sine-wave, with 0 DC offset, and 1 kHz 
frequency, R1 = 140 kΩ, R2 = 140 kΩ, RC = 100 Ω, RE = 50 Ω, CS = 10 µF, 
CL = 10 µF, and RL = 8 Ω. Assume a transistor β = 300 and VBE = 0.74 V; 
determine: (a) the transistor operating point Q, that is, VCE, IB, IC, and 
IE, and (b) the small signal voltage gain of the amplifier circuit.

6.9 Using the circuit of Figure 6.66 calculate the amplifier input impedance. 
Refer to Figure 6.66.

6.10 Using the circuit of Figure 6.66 calculate the amplifier output 
impedance.

6.11 Using the circuit of Figure 6.66, establish all the effects that short circuit-
ing the RE and CE parallel combination has on: (a) the biasing point of 
the transistor, (b) the small signal gain of the amplifier. Hint: for part 
(a) determine the new values of VCE, IB, IC, and IE.
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Figure 6.67  Circuit for Problems 6.12 and 6.13.
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6.12 The two-transistor circuit depicted by Figure 6.67 is called a Darlington 
pair configuration. (a) Knowing that the DC current gains for Q1 and 
Q2 are respectively β1 and β2 determine the overall DC current gain of 
the Darlington pair. (b) Determine the Darlington pair base-emitter 
voltage drop when the pair is in the active region.

6.13 Derive an equivalent Darlington pair configuration using two PNP 
bipolar transistors. Refer to Figure 6.67.

6.14 The circuit depicted by Figure 6.68 can be used to drive an LED. Let us 
assume that the base will be driven with a square wave that switches 
between 0 V and 5 V. Knowing that the LED reaches maximum bright-
ness for 10 mA, determine: (a) the value of resistor RLED, and (b) a 
reasonable value for resistor RBASE.

Assume that you are asked to use a 2N3904 NPN transistor.

6.15 For the circuit of Figure 6.69, assume R1 = R2 = 550 kΩ, RD = RS = 4 kΩ, 
VDD = 12 V. (a) Calculate the drain current ID and (b) determine in 
which region the MOSFET operates in. Hint: assume the MOSFET is in 
saturation and validate this condition, else assume the MOSFET is in 
its triode region and validate its operation. (c) if the value of resistor R2 
is changed to 0 Ω, determine without using any equations, the operating 
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Figure 6.68  Circuit for Problem 6.14.
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region of the MOSFET. Assume the MOSFET has VTH = 2 V, μnCox = 
100 µA/V2, W/L = 50 and λ = 0.

6.16 For the circuit of Figure 6.70, calculate the appropriate values for RD 
and RS to keep the transistor at ID = 1 mA and VD = 2 V. Assume the 
following MOSFET parameter:

 VTH = 2 V.

6.17 For the circuit of Problem 6.16 determine the DC gate current.

6.18 For the MOSFETs of Figure 6.71 determine the transistor region of 
operation. Assume that: VTH = 1.5 V.

6.19 For the MOSFETs of Figure 6.72 determine the transistor region of 
operation. Assume that: (a) µp oxC W L( )/ A/V= 100 2µ , (b) VTH = −0.4 V, 
and (c) λ = 0.



Figure 6.69  Circuit for Problem 6.15.
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Figure 6.70  Circuit for Problem 6.16.
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Figure 6.71  Circuits for Problem 6.18.
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Figure 6.72  Circuits for Problem 6.19.
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7

COMBINATIONAL CIRCUITS

7.1  INTRODUCTION TO DIGITAL CIRCUITS

Digital design is concerned with the design of digital electronic circuits. Digital 
circuits are required to handle just two voltage levels, a true level and a false 
level. Because these circuits handle two basic levels as opposed to infinitely 
many voltage levels as analog circuits do, they are more reliable. They last 
longer. Also, they are more consistent than analog circuits by repeatedly gen-
erating the same results under the same input conditions. The best-known 
digital system today is the computer; many computer-based products are man-
ufactured today. The low cost, the reliability, the versatility of such circuits 
allows incorporating computers in virtually all intelligent products at the 
present time. Two main classes of digital circuits cover the world of digital 
design. The first is combinational circuits. They are digital circuits that produce 
outputs when the inputs are presented to them. Such circuits have no memory. 
The second kind of digital circuit is the sequential circuit, or those digital 
circuits that have memory capability. Combinational circuits will be the subject 
of Chapters 7 and 8. Sequential circuits will be addressed in Chapter 9.

7.2  BINARY NUMBERS: A QUICK INTRODUCTION

This chapter assumes that the reader has some knowledge about numbering 
systems, in particular binary and hexadecimal numbering systems. We will 

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.



BINARY NUMBERS: A QUICK INTRODUCTION  457

move at a fast pace throughout this subject, hopefully not to bore anyone and 
at the same time present the needed fundamentals. A binary number is rep-
resented with two uniquely defined digits, ones and zeros. A binary digit is 
generically referred to as a bit, which stands for binary term. Any integer 
number can be represented with the appropriate number of ones and zeros.

Let us consider three-bit binary numbers first. If we exhaustively come up 
with all the binary combinations of three binary terms it is easy to see that the 
list in Table 7.1 contains all the possible binary combinations. In this chapter 
we will only address positive or unsigned binary numbers. In the next chapter 
we will cover positive as well as signed or negative numbers.

The algorithm to generate base 10 or decimal numbers is simple and we 
use it all the time, without even giving it a second thought. In base 10 we have 
10 uniquely defined digits, 0 through 9. With those 10 digits we can write all 
possible integer numbers as long as we have the freedom of having enough 
digits to represent the largest number that we are interested in. For example, 
if we are asked to write all the possible 3-decimal digit integers; the first 
decimal number is (000)10 while the largest one is (999)10. We know that after 
(000)10 comes (001)10 then (002)10 and so on until (009)10. Now we ran out of 
uniquely defined digits so we reset the least significant decimal digit to zero 
and set to 1 the digit left to the rightmost decimal digit or the least significant 
decimal digit. We now compose (010)10, then (011)10, and so on until we reach 
(019)10. This algorithm is repeated and we clearly know from grade school how 
to come up with all the 3-digit decimal numbers all the way up to (999)10 or 
any other larger sequence of them.

Now if we want to do the same thing for a different base number, like for 
integer binary numbers, the algorithm is no different from what we already do 
with decimal numbers. The possibly “new” thing is that we only have two 
uniquely defined bits, so that we exhaust the use of each bit sooner than we 
do when dealing with the decimal numbering system. The sequence of all the 
possible 3-bit integer binary number was listed in Table 7.1. Note that the 
binary number 01100111 as an 8-bit number consists of eight bits; each bit 

Table 7.1  List of all possible three-bit unsigned binary 
numbers with their decimal equivalents

3-Bit Binary Numbers (Base 2) Decimal (Base 10)

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7
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position is referred to as: b7 b6 b5 b4 b3 b2 b1 b0, where bit b0 is referred to as 
the least significant bit or LSB and b7 is the most significant bit or MSB of our 
8-bit wide number.

So since b7 b6 b5 b4 b3 b2 b1 b0 = 01100111, that means that every bit is 
weighted in the following fashion:

 
0 2 1 2 1 2 0 2 0 2 1 2 1 2 1 2

64 32 4 2 1 103

7 6 5 4 3 2 1 0

1

× + × + × + × + × + × + × + ×
= + + + + = ( ) 00.

After computing the sum above the equivalent decimal number is (103)10

 = + + + + =64 32 4 2 1 103 10( ) .

Continuing with 8-bit binary integers, 8 bits span 28 = 256 uniquely defined 
8-bit binary combinations. The reader should convince herself that zero in 8-bit 
binary is: 0000_0000 and 255 is 1111_1111, the largest possible 8-bit unsigned 
binary integer. The underscores used to separate four-bit groups is simply to 
enhance the readability of the number. The reader not too familiar with binary 
sequences is encouraged to write down the complete binary sequence starting 
at (0000_0000)2 ending at (1111_1111)2.

Hexadecimal numbers have 16 uniquely defined symbols:
0, 1, 2,…, 9, A, B, C, D, E, F. Table 7.2 lists the first 16 hexadecimal (or hex) 

numbers, their binary and decimal equivalents.

Table 7.2  List of 16 uniquely defined hex digits, their binary and 
decimal equivalents

Hexadecimal 
(Hex, Base 16) Binary (Base 2) Decimal (Base 10)

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
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Example 7.1 Represent the decimal number (183)10 in binary and in hex.

Solution to Example 7.1

Initially we are not sure how many bits the number (183)10 requires in binary 
representation. To sort of figure out the number of bits required, let us list the 
powers of two:

Note from Table 7.3 that the number (128)10 can be represented in binary 
simply by writing:

 ( _ ) ( ) .1000 0000 1282 10=

Similarly 128 + 64 = (192)10 is written as:

 ( _ ) ( ) .1100 0000 1922 10=

Since we want to write the number (183)10 in binary representation we know 
that 8 bits will suffice. To convert from decimal to binary, algorithmically we 
proceed as follows:

We divide (183)10 by 2 to give an integer quotient of 91 and a remainder of 
½. This process is repeated until the integer quotient becomes zero. We record 
all the operations as shown below:

Integer quotient Remainder Bit position Weight
183/2 = 91 + ½ b0 = 1(LSB) 1
91/2 = 45 + ½ b1 = 1 2
45/2 = 22 + ½ b2 = 1 4
22/2 = 11 + 0 b3 = 0 8
11/2 = 5 + ½ b4 = 1 16
5/2 = 2 + ½ b5 = 1 32
2/2 = 1 + 0 b6 = 0 64
1/2 = 0 + ½ b7 = 1(MSB) 128

From above we conclude that (183)10 = (1011_0111)2.

Table 7.3  Some powers of two and bit 
position in a binary number

Powers of 2 Binary Bit Position

20 = 1 b0

21 = 2 b1

22 = 4 b2

23 = 8 b3

24 = 16 b4

25 = 32 b5

26 = 64 b6

27 = 128 b7
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Now to convert (183)10 to hex we simply translate each group of four bits 
into their hex equivalent starting with the LSB position according to Table 7.2, 
thus:

 ( ) ( _ ) ( ) .183 1011 0111 710 2 16= = B

In Chapter 8 we will address some interesting ways of representing positive 
and negative binary numbers. This will be useful to design digital arithmetic 
circuits.

7.3  BOOLEAN ALGEBRA

In 1854, English mathematician and philosopher George Boole developed 
what is known today as Boolean algebra. Later on in 1938, American engineer 
and mathematician Claude Elwood Shannon also introduced a two-valued 
algebra he denominated switching algebra. Boolean algebra, also known as 
switching algebra, consists of binary variables and the logical operations 
among them. All logic variables that we will deal with have a binary value; 
that is, they can only take one out of two possible values, either 1 or 0, which 
we can associate with a true value and a false value, respectively, or vice-versa. 
Why do we need to deal with logic that only handles two values or two logic 
levels? Because it is easier and it is more reliable to develop, build, and use 
circuits that handle two values rather than circuits that handle infinitely many 
or many more values than just two. Circuits that handle infinitely many values 
are commonly referred to as analog circuits. Analog circuits are not as reliable, 
repeatable, and maintainable as digital circuits are.

The three most important logic operations are:

AND, OR, NOT

If we group these operators as follows: group (1) AND, NOT group (2) OR, 
NOT it is interesting to state that all possible binary or combinational func-
tions, regardless of their length or complexity, can be implemented with just 
the operators of either group (1) or (2). We will come back to this concept 
once we study the fundamental logic rules and operations.

7.3.1  AND Logic Operation

Given a two-variable switching function f(A, B), where A and B are binary-
valued variables, function f can be exhaustively represented with the aid of a 
truth table.
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Table 7.4  Truth table for the AND logic operator

Input A Input B Output f(A,B) = A B

0 0 0
0 1 0
1 0 0
1 1 1

Example 7.3 Derive the truth table for of three-input variable binary-valued 
function g (A, B, C). The And-ing of three or more variables does not change 
the significance of the AND operator. In general the And-ing of any number 
of binary-valued variables is true when the true value of each independent 
variable (A, B, C, . . . ) is true. For all other cases our function is false. This is 
succinctly listed in Table 7.5.

Binary-Valued Functions: Example 7.2 Let A and B be two-valued binary 
independent variables. Let us assume that variable A means: it-is-a-sunny-day 
and variable B means: the-soil-is-dry. Further assume that when A is true it 
takes the value 1, when B is true it also takes the value 1. We want to come 
up with a binary-valued function f of variables A, B that is true (1) when both 
A and B are both true, else f is false (0). Table 7.4 explicitly and fully describes 
that requirement.

Now let us assume that the meaning of function f is: “turn-on-watering-
system.” So it seems intuitive to think that f = A And’ed with B is true when 
both A and B are true, else f is false. The logic symbol for the AND operator 
is a dot or the absence of it. For example:

 f ( , ) . .A B A And-ed with B A B AB= = =

We will interchangeably place the AND “.” (dot) or leave it out trying to make 
the logic expression more readable.

A true means: it-is-a-sunny-day while, A false means: NOT it-is-a-sunny-day, 
or grammatically more pleasant, false A means “it is not a sunny day.”

This can be written in two ways: it is a sunny day− − − − = ( )it-is-a-sunny-day ’
Similarly B true means: “the-soil-is-dry” while B false means: NOT 

“the-soil-is-dry”
Finally, it is also important to see that function f is binary-valued as well; 

refer to Table 7.4.

7.3.2  OR Logic Operation (Also Called Inclusive OR, or XNOR)

Let us begin with a little more advanced logic function, the 3-variable OR or 
inclusive OR. Given the three binary-valued independent variables A, B, C, 
function h(A,B,C) = A + B + C is true if and only if any one or more 
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independent variables are true, else h (A,B,C) is false. The “+” signs are not 
arithmetic signs, they represent the logic OR (or inclusive OR) operation. This 
OR is referred to as being inclusive because the output function is true not 
only whenever each independent variable is true, but also includes the case 
when one or more than one independent variable is true. We will cover shortly 
the two-variable exclusive OR, which requires that both independent variables 
have the opposite true value for the exclusive OR function to be true.

Table 7.6 depicts a three-variable inclusive OR function.

Exercise: Derive the truth table of a two-variable inclusive OR function.

7.3.3  NOT Logic Operation or Inversion—NAND and NOR

Inversion is the simplest of all logic operations. Given a binary-valued function 
f of an arbitrary number of independent binary-valued variables and its associ-
ated truth table, NOT f or f  truth table is generated by changing function f 
output column ones with zeros and zeros with ones.

Table 7.6  Three-variable OR truth table

Input C Input B Input A Output h (A, B, C) = A + B + C

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 7.5  Three-variable AND truth table

Input C Input B Input A Output g (A, B, C) = A.B.C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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Example 7.4 Let us define a function f AB=  which we will refer to as A 
NAND’ed with B. The letter “N” in the acronym “NAND” stands for negation 
or not.

Referring to our originally studied function f = AB, in Table 7.4, function 
f AB=  is simply annotated in truth table of Table 7.7.

In the above table, output f column, f(A,B) = AB, has been complemented 
bit-by-bit to form the column of our NAND function that is f AB= .

Example 7.5 Let us define a function g A B= +  which we will refer to as A 
NOR’ed with B. The letter “N” in the acronym “NOR” stands for negation or 
not. Table 7.8 presents the truth table of a two-variable OR under column g 
and NOR, under column g.

Table 7.7  Truth table for the AND & NAND logic operators

Input A Input B Output f(A,B) = AB Output f AB(A B, ) =

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Table 7.8  Truth table for the OR & NOR logic operators

Input A Input B Output g(A,B) = A + B Output g A B= +

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

7.3.4  Exclusive OR Logic Operation or XOR

The two-variable XOR is defined as true whenever an independent variable 
is true while the other one is false. Additionally when both variables have the 
same true value the XOR is false. Table 7.9 below presents the truth table 
of a two-variable exclusive-or function and the two-variable equivalence 
function.

Another way of defining the two-variable XOR is:

 A XOR B A B AB AB  = ⊕ = + .  (7.1)
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Table 7.9  Exclusive or and equivalence truth tables

Input A Input B
Output f(A,B) = A ⊕ B = A 

XOR B

Output f A B( , )A B A= ⊕ =  
EQUIVALENCE B = A 

XNOR B

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Equation (7.1) is interpreted from Table 7.9 as follows: A exclusive-or B is true 
whenever (A is true and B false) or (when A is false and B is true). The paren-
theses used in the previous sentence emphasize the precedence of the logical 
operations. Note that A B⊕  is not true when both A and B have the same 
logic value. This is the reason why the XOR is referred to as an exclusive-OR, 
it excludes the cases for which both A and B have the same true value. (Two 
binary variables have the same true value whenever both are true or both are 
false.) Remember that A + B (A inclusive-OR B) is true when both A and B 
are true in addition to being true when either only A or B is true.

The negation of A B⊕  or A B⊕  is referred to as A equivalence B or A 
XNOR B. Refer one more time to Table 7.9. Similarly, A B A⊕ =  equiva-

lence B is defined as true whenever (A and B are true) or (A and B are true), 
else A equivalence B is false.

7.3.5  DeMorgan’s Laws, Rules, and Theorems

DeMorgan’s laws are the most powerful Boolean algebra rules. There are two 
of them. First we will state the two-variable laws, then we will present the 
generalized multivariable rules. Let A and B be two-valued independent vari-
ables, then

 Rule 1( ) .A B A B+ =  (7.2)

 Rule 2( ) . .A B A B= +  (7.3)

It is appropriate to prove these rules and we will do that using truth tables.
We build Table 7.10 containing independent variables A and B, then we will 

generate columns corresponding to the following functions: A, B, A + B, 
A B+ , AB. Shall the column corresponding to A B+  equal to column AB we 
can affirm that Rule (1) holds.

Adding functions: A B. , (A B+ ) under columns viii and ix we also prove 
Rule (2).

Looking at the results of Table 7.10 we observe that columns vi and vii 
are identical, this proves that: Rule (1) A B AB+ =  is true. Similarly, we observe 
that columns viii and ix are identical, thus proving Rule (2) A B A B. = + .
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Both Rules (1) and (2) can be generalized for n binary valued variables W0, 
W1, W2, . . . Wn-1, where n is an integer.

Generalized DeMorgan Rule (1)

 W W W W W W W Wn n0 1 2 1 0 1 2 1+ + + + =− −… …. . . .  (7.4)

Generalized DeMorgan Rule (2)

 W W W W W W W Wn n0 1 2 1 0 1 2 1. . . . .… �− −= + + + +  (7.5)

Exercise: Prove using truth tables that DeMorgan’s Rules (1) and (2) 
hold for four variables. Hint: Four variables will span 16 unique binary 
combinations.

7.3.6  Other Boolean Algebra Postulates and Theorems

We present in this section some other basics postulates and theorems used in 
Boolean algebra. Most of them are quite intuitive and a few others are not so 
intuitive. Postulates need not be proven, theorems generally are. Only some 
less intuitive theorems will be proven.

Assume that Table 7.11 uses binary-valued variables: X, Y, and Z.

Example 7.6 Using Boolean postulates and theorems, find the comple-
ment the following Boolean expressions. Reduce the expressions as much as 
possible.

(a) f X Y XY Y X( , ) = +
(b) f X Y Z X Y Z( , , , ) ( )W W= +

(a) We first apply DeMorgan’s rules to the complement of equation (a) and 
then apply the distributive postulate to the complemented function, we obtain:

 f XY XY= + .

Table 7.10  Truth table to prove 2-variable DeMorgan’s rules

i ii iii iv v vi vii viii ix

A B A B A + B A B+ AB A B. (A B+ )

0 0 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1
1 0 0 1 1 0 0 1 1
1 1 0 0 1 0 0 0 0
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Table 7.11  Boolean algebra postulates and theorems

Part (1) Part (2): Its Dual

Identity postulate X + 0 = X X . 1 = X
Idem-potent postulate X X+ = 1 X .X = X
Neutral element postulate X + 1 = 1 X . 0 = 0
Complements postulate X X+ = 1 X . X = 0
Distributive postulate X (Y + Z) = XY + XZ X + YZ = (X + Y)(X + Z)
Involution theorem (Double negation) X X=
Commutative theorem X + Y = Y + X X . Y = Y .X
Associative theorem X + (Y + Z) = (X + Y) + Z X (YZ) = (XY)Z
Absorption theorem X + XY = X X (X+Y) = X

Note that all the postulates and theorems only apply to ANDs, ORs, or NOTs operators.
Some of the above postulates and theorems may or may not apply to exclusive- and/or equiva-
lence operations.

(b) Applying distribution, complementing, and applying De Morgan’s rule to 
Equation (b), we obtain:

 f WXZ YZ f WXZ YZ W X Z Y Z= + = = + + +, . ( )( ).then

Let us use distribution one more time, thus:

 f W X Z Y Z WY XY Y Z WZ XZ Z= + + + = + + + + + =( )( )

Observe the four right-most terms above; let us apply absorption three con-
secutive times, among terms: YZ WZ XZ Z+ + + .

Hence:

 YZ WZ XZ Z YZ WZ Z YZ Z Z+ + + = + + = + = .

Finally, f WY XY Z= + + .

7.3.7  The Duality Principle

Table 7.11 lists the most important postulates and theorems in Boolean algebra. 
The previously covered DeMorgan Laws present a good example of duality. 
Let us look back at Equations (7.2) and (7.3). The duality principle states that 
one rule (e.g., rule 1) may be obtained for the other one (2) by interchanging 
operators and identity elements. For our example, using DeMorgan Laws, we 
interchange OR and AND operators and replace 1’s with 0’s and 0’s with 1’s. 
Also refer to the complements postulate to see how operators are inter-
changed and 1’s and 0’s are swapped.
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7.3.8  Venn Diagrams

In order to prove some of the theorems in Table 7.11, instead of using truth 
tables, we will use Venn diagrams. Venn diagrams provide a graphical method-
ology to visually perform logic operations in a very intuitive fashion. Each 
variable such as A, B, and so on is represented with a circle. All variables must 
be within a single rectangular area, which is referred to as the universal set, 
which is a frame of reference where all variables reside. The purpose of having 
a universal set is to easily draw A and its complement A. Figure 7.1 (a) depicts 
variable A, which is represented by the area within the circle (A is the area 
outside of A but within the universal set), (b) shows A inclusive-or B (note 
the complete area of both variables A, B), (c) depicts the common area to 
both A and B, thus area AB is cross-hatched, (d) shows A XOR B (observe 
that the cross-hatched areas are also equivalent to AB AB+ ), and finally (e) 
shows the complement of A XOR B.

Using the concepts just learned about Venn diagrams we will use them to 
prove graphically some of the theorems listed in Table 7.11.

Figure 7.2 depicts the graphical justification of the absorption theorem, part 
1. Part (a) shows X, part (b) shows XY, and part (c) shows the ORing of 
X + XY = X.

Figure 7.3 shows the graphical representation of the dual of the first absorp-
tion part 2. X (X + Y) = X (from Table 7.11).

Exercise: Show using Venn diagram the validity of DeMorgan Rules (1) 
and (2).

7.4  MINTERMS: STANDARD OR CANONICAL SUM OF PRODUCTS 
(SOP) FORM

Binary variables may appear in their normal form, sometimes referred to as 
their true form, and their complemented form. For example, given A a binary-
valued variable, we can have A and A. If we consider two binary variables, 
such as A and B, since each one of them can take its true and complemented 
value, both variables together span four unique binary combinations. Table 
7.12 depicts two variables and their four combinations and also three variables 
and their eight unique binary combinations.

Each of those binary combinations of the ANDed variables is referred to 
as a minterm. Generalizing the preceding concept given n variables, such n 
variables can span 2n unique binary combinations. Each of those combinations 
is shown in Table 7.12 for 3 and 2 variables.

Note that each minterm is the logic product or the ANDing of the variable 
in question, not complemented when they represent ones and complemented 
when they represent zeros. It is also important to say that variable A was 
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Figure  7.1  Venn diagrams (a) A and its complement A; (b) A + B = A Inclusive-or B; 
(c) AB = A and B; (d) A ⊕ B = A Exclusive-or B; (e) A B A⊕ =  Equivalence B.
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+
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Figure 7.2  Absorption Theorem (a) X; (b) XY; (c) X + XY = X.
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Figure 7.3  Absorption theorem part (2) (a) X; (b) X + Y; (c) X (X + Y ) = X.
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chosen to represent the LSB of each minterm. Without loss of generality, any 
variable name can represent any bit position. The ordering is simply a matter 
of convenience. As long as one chooses a way of doing things, it is better and 
less error-prone to stick to a methodical way of defining your minterms.

Table 7.12  Three-variable and two-variable minterms

3-Variable Minterms 2-Variable Minterms

C B A Minterm Acronym B A Minterm Acronym

0 0 0 CBA m0 0 0 BA m0

0 0 1 CBA m1 0 1 BA m1

0 1 0 C BA m2 1 0 BA m2

0 1 1 C BA m3 1 1 BA m3

1 0 0 CBA m4

1 0 1 CBA m5

1 1 0 CBA m6

1 1 1 CBA m7

Example 7.7 Given a three-variable function f C B A CBA CBA CBA( , , ) = + + , 
write the function as a sum of minterms. Table 7.13 presents a 3-variable func-
tion table listing all of its minterms. By inspection of function f(C, B, A) we 
can identify that the function contains three minterms that are ORed (or logi-
cally summed). The first minterm is m7, the second one is m1 and the third and 
last one is m4.

So our function f C B A CBA CBA CBA( , , ) = + +  can also be written in a 
so-called sum-of-products form (SOP), and after rearranging its minterms in 
an ascending order we obtain:

 f C B A( , , ) = + +m m m1 4 7  (7.6)

which in a more compact form can be written as:

 f C B A( , , ) ( , , ).= ∑ 1 4 7  (7.7)

Function f(C, B, A) is written by Equation (7.7) in a canonical or standard 
sum-of-products form (SOP). Each minterm is generically referred to as a 
product, the logic AND is equivalently called a logic product because of its 
similarity with regular arithmetic. And it is a sum-of-product because each 
minterm present in the function is ORed or logically added. The OR operation 
is also called a logic sum or simply a sum if the context clearly is that of a logic 
OR-ing.
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Example 7.8 Given function f(C, B, A) = CA + BA, expand it to represent it 
in its canonical SOP form.

Solution to Example 7.8

The given function clearly is not already given as a sum of its minterms.
What we need to do is to create “logic redundancies” that do not affect 

the original logic of the function. For example, ANDing terms like (CC), 
since ( )CC = 1 and ANDing 1 to any logical expression does not alter its origi-
nal logic, is a way of creating such redundancy. Another type of possible 
redundancy is ANDing terms like (B B+ ) to the original function, which will 
not alter the initial logic of the function because ( )B B+ = 1. Proceeding with 
our function f:

 f C B A CA BA( , , ) .= +  (7.8)

Since (Eq. 7.8) term CA is missing the literal B we AND the term (BB) with 
the term CA without changing the original logic of function f. At the same 
time we create a redundancy to the term BA by ANDing the term (CC) with 
the term BA. Hence:

 f C B A CA BB CC BA( , , ) ( ) ( ) .= +  (7.9)

Applying logic product distribution and making sure that variables are con-
sistently organized from C down to A (e.g., CBA)

 f C B A CBA CBA CBA CBA( , , ) .= + + +  (7.10)

Eliminating only the second instance of the term CBA because it is redundant 
yields:

 f C B A CBA CBA CBA( , , ) .= + +  (7.11)

Table 7.13  Three-variable function of Example 7.7

3-Variable Minterms

C B A Minterm f(C, B, A)

0 0 0 CBA 0
0 0 1 CBA 1
0 1 0 C BA 0
0 1 1 C BA 0
1 0 0 CBA 1
1 0 1 CBA 0
1 1 0 CBA 0
1 1 1 CBA 1
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7.5  MAXTERMS: STANDARD OR CANONICAL PRODUCT OF SUMS 
(POS) FORM

Given any logic function in its standard SOP form, taking its complement 
we obtain a product-of-sum form (POS). Each POS term is referred to as a 
maxterm.

Table 7.14 lists all the minterms for a three-variable function and its 
corresponding complements. Such complements are defined as the function 
maxterms.

Binary-valued functions not only can be expressed in a standard SOP form, 
but also in a standard product-of-sums (POS) form. Let us explain with the 
following example.

Table 7.14  Minterms and maxterms for three-variable functions

C B A Minterm
Minterm Acronym 

mi = Mi Maxterm
Maxterm Acronym 

Mi = mi

0 0 0 CBA m0 C + B + A M0

0 0 1 CBA m1 C B A+ + M1

0 1 0 C BA m2 C B A+ + M2

0 1 1 C BA m3 C B A+ + M3

1 0 0 CBA m4 C B A+ + M4

1 0 1 CBA m5 C B A+ + M5

1 1 0 CBA m6 C B A+ + M6

1 1 1 CBA m7 C B A+ + M7

Rewriting Equation (7.11) in SOP form and rearranging terms:

 f C B A( , , ) ( , , ).= + + = ∑m m m5 7 3 3 5 7  (7.12)

Example 7.9 Given the following function in standard SOP form, convert it 
to its standard POS form.

 f C B A( , , ) ( , , ).= + + = ∑m m m6 7 3 3 6 7  (7.13)

The following steps will lead to the expected results:
It is intuitive to see that if a function f is given in standard SOP form, such 

as Equation (7.13), then its complement ( f ) also in standard SOP form will 
list all those minterms that are not listed in function f. That is to say:

 f C B A( , , ) ( , , , , ).= + + + + = ∑m m m m m0 1 2 4 5 0 1 2 4 5  (7.14)
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Note that from Table 7.11 of postulates and theorems, idem potent, which 
states that:

X X+ = 1, does justify f and f  expressed by Equations (7.13) and (7.14).
Now let us proceed to take the complement of f , thus from Equation (7.14):

 f C B A m m m m m( , , ) .= + + + +0 1 2 4 5

Applying Boolean algebra on f
=
, using the minterm and maxterm definitions 

from Table 7.14 we obtain:

f C B A C B A C B A C B A C B A= + + + + + + + + + + + + + +( ) ( ) ( ) ( ) ( ).  (7.15)

Identifying every maxterm from Equation (7.15) with the aid of Table 7.14 we 
find that:

 f f= = M M M M M0 1 2 4 5.  (7.16)

Equation (7.16) can be written in POS compact form using the symbol π to 
indicate multiplication, hence:

 f = ∏( , , , , ).0 1 2 4 5  (7.17)

Equation (7.17) is a standard POS form for the originally given function f. It 
is very important to remember that the π symbol indicates that the numerals 
within the parentheses are maxterms and not minterms.

Example 7.10 Let us consider designing a logic block that receives three 
input binary variables X, Y, and Z and we want it to have a single output which 
detects whenever two or more of the inputs are ones, else we want to output 
to be zero. Derive the truth table for such circuit.

Let us draw a truth table with three inputs and one output. Simply follow 
the example requirements, whenever we see two or more ones in any Z Y X 
row we must write a one at the output, all other cases require a zero output. 
A digital circuit such as the one just described is called a majority detector 
circuit. Refer to Table 7.15 for a truth table of the majority circuit.

The standard SOP form for our majority detector circuit is:

 F Z Y X( , , ) ( , , , ).= ∑ 3 5 6 7  (7.18)

7.6  KARNAUGH MAPS AND DESIGN EXAMPLES

Unless we work with one or two variables, logic equations can become quite 
complex, particularly when we need to simplify them and express them as less 
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complicated expressions. Rather than using the postulates and theorems of 
Table 7.11, which can easily become cumbersome and lengthy, there is a meth-
odology attributed to Karnaugh, referred to as solving or simplifying logic 
equations using Karnaugh maps. This is the topic of this section. Let us begin 
defining the Karnaugh (K) map construction. For a two-variable map, we need 
to have a map with as many cells as minterms the number of variables spans. 
A two-variable K. map has 22 = 4 cells. A three-variable K. map has 23 = 8 cells, 
and so on. Figure 7.4 depicts a 2, 3, and 4-cell Karnaugh maps. We will start 
covering 2-variable maps progressing onto 3 and 4-variables.

7.6.1  Two-Variable Karnaugh Maps

The two-variable K. map is shown in Figure 7.4a. The map clearly shows the 
relationship between its cells (squares) and the two variables A and B.

Note that the 2-variable map is drawn such that the rightmost vertical 
column corresponds to variable A (i.e., A = 1), in true value or noncomple-
mented. The leftmost vertical column corresponds to A, A false or A comple-
mented. Similarly the bottom row corresponds to B (B = 1), and the top row 
corresponds to B (B = 0). The four-cell map becomes fully defined. Note that 
the cell at B = 0 and A = 0, corresponds to minterm 0. Cell at B = 0 and A = 1 
corresponds to minterm 1. Similarly, cell at B = 1 and A = 0 corresponds to 
minterm 2, and cell at B = 1 and A = 1 corresponds to minterm 3. So let us 
solve some problems to see the 2-variable Karnaugh map at work.

We will solve a handful of 2-variable maps in a somewhat intuitive fashion. 
Problem solving and K. map simplification will become clearer using 3 and 
4-variable maps. In some ways, 2-variable maps are too simple to appreciate 
the properties of K. map method. We will address simplification in the Kar-
naugh map sense more thoroughly after all the 2-variable examples.

Example 7.11 Refer to Figure 7.5a for this example.
Given function f(B, A) = m0 + m1 + m2 + m3, find a maximally simplified SOP 

form logic expression. As we discussed in earlier sections, canonical or standard 
SOP forms express a logic function as a logic sum (Or-ing) of the appropriate 

Table 7.15  Truth table of a majority detector circuit

Input Z Input Y Input X Output F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Figure 7.4  Two, three, and four-variable Karnaugh maps definition.
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Figure 7.5  Two-variable Karnaugh Maps examples: (a), (b), (c), (d), (e), and (f).
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minterms. Standard forms are not maximally simplified from the following cri-
teria. Minterms show all possible variables that the function has. For example, 
2-variable functions have two-bit minterms (e.g., such as BA); three-variable 
functions have three-bit minterms, and so forth. Some functions can be 
expressed in a simplified SOP form by reducing the number of variables of 
some or all of its original standard form SOP form minterms. Additionally, 
upon logic simplification, some minterms may disappear from the simplified 
SOP form, this yielding a logic sum of less terms than its corresponding stan-
dard SOP form. This new form is referred to as a simplified SOP form. Let us go 
over these concepts simplifying our given function f(B, A). By inspection of 
Figure 7.5a we can see that function f has ones in all of its minterms. It may not 
be clear right now, but it will become more obvious after we cover a few more 
examples that function f(B, A) is always true. This means that regardless of the 
individual values of variables A and B, f(B, A) is always true, that is f(B, A) = 1.

This fact is indicated in part (a) of Figure 7.5 by encircling all four 
minterms.

Summary of what a maximally simplified SOP form is in the K. map sense is:

1. Not all variables will necessarily show in every term being OR-ed.
2. The total number of OR-ed terms will not necessarily be the same number 

as the number of OR-ed terms in the function’s standard SOP form.
3. The simplified function will still have an SOP form, this means that it is 

implemented with just two-levels or logic like a standard SOP form. 
However, because of points (1) and (2), the number of OR terms will typi-
cally (although not all the time) be smaller and not all the variables will 
be present in each OR-ed term.

Example 7.12 Given a new function f(B, A) = m0 + m1, find a maximally 
simplified SOP form. Refer to Figure 7.5b to observe the K. map of our func-
tion. Note that the K. map has four distinct areas: A, A, B, and B. Moreover, 
area A graphically corresponds to the Or-ing or sum of minterms m1 and m3, 
(i.e., m1 + m3). Area A corresponds to the logic sum of m0 and m2 (i.e., m0 + m2). 
Similarly, area B corresponds to m2 + m3. Finally, B corresponds to m0 + m1. 
We can easily identify that our function can simply be represented by area  
B. This means that f(B, A) = m0 + m1 is logically equal to f B A B( , ) = . Other 
ways of proving that f B=  is true is by logic simplification or using truth tables 
or Venn diagrams.

For example, let us prove using logic simplification that f B A m m B( , ) = + =0 1

. Since:

 m BA m BA0 1= =and ,  

we write:

 f B A m m BA BA( , ) .= + = +0 1

f B A m m B( , ) = + =0 1
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Example 7.13 Now referring to the K. map of Figure 7.5c obtain a maximally 
simplified SOP form for f(B, A) = m1 + m2 + m3.

This example is slightly more involved than the previous ones. Now is a 
good point to start presenting the concept of adjacent cells. Adjacency in the 
K. map sense are those cells whose binary representation only differs by one 
bit. Let us inspect any 2-variable K. map. Cell 00 (corresponding to minterm 
m0) is adjacent to cell 01 because there is only one bit difference between 00 
and 01. Additionally, cell 00 is adjacent to cell 10 because of the same reason. 
However, cell 00 is not adjacent to cell 11 (minterm m3), because two bits differ 
between binary 00 and 11. In a generalized and graphical way, adjacent cells 
are those cells that are above, below, left. and right of a cell. Those cells that 
are diagonally placed with respect to the cell in question are not adjacent cells. 
So back to Example 7.13, let us start encircling as many adjacent cells as pos-
sible, such that the number of encircled cells is a power of two. When we can 
no longer encircle more adjacent cells in the first round, we repeat the process 
again, until we run out of cells to encircle. We must attempt to produce the 
smallest number of encirclements possible. Every new encirclement of cells 
may re-encircle previously encircled cells; this process usually ensures that the 
largest possible number of adjacent cells is obtained. In summary, Karnaugh 
map cells encirclements for the purpose of simplification should follow the 
following basic steps:

1. Combine the largest possible number of adjacent cells.
2. Such number of cells must be a power of two.
3. Minimize the overall number of encircled cells.
4. It may be convenient to re-encircle some previously encircled cells to 

reduce the overall number of variables that a term ends up having.

It is important to be aware that the methodology described does not neces-
sarily provide a unique solution. It will be up to the design engineer to adopt 
the most convenient solution for the application. It is also important to know 
that this technique highly depends on the expertise of the user. The more 
problems one solves, the better and the easier it will be to obtain a simplified 

Using the distribution property we obtain:

 f B A B A A( , ) ( )= +

and since from the idem-potent property from Table 7.11, A A+ = 1, hence:

 f B A B( , ) .=

Exercise: Prove that ( , )f B A m m B= + =0 1  using Venn diagrams.
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Example 7.14 Find maximally simplified SOP forms for the two functions 
given by Figure 7.5d,e. Both of these maps are handled at the same time 
because it is straightforward to see that one is the complement of the other. 
Addressing first Figure 7.5d, note that cells 01 and 10 are not adjacent in the 
K. map sense, because they differ by more than one bit position. Consequently, 
the best possible encirclement is to encircle each minterm separately. We can 
observe that this function:

 m m BA BA1 2+ = +  (7.19)

is A B⊕  from Equation (7.1). In a similar fashion, we can identify that Figure 
7.5e function:

 m m A B A equivalence B A NXOR B0 3+ = ⊕ = =   .  (7.20)

Just as for the previous case, its minterms 00 and 11 are not adjacent.
From Equations (7.19) and (7.20) we conclude that the standard forms for 

exclusive or and equivalence cannot be simplified in the K. map sense, because 
for each function, none of its minterms is adjacent to any other minterm within 
the function.

Example 7.15 For the K. map of Figure 7.5f find a maximally simplified 
SOP form.

Now it is easy to see that minterms 00 and 10 are adjacent. We encircle 
them and notice that they correspond to area A. Their simplified function is 
simply, A.

solution. Initially, it is strongly recommended to solve a problem in at least 
two or more possible ways.

Referring again to Figure 7.5c let us encircle cells 1 and 3. Clearly, we cannot 
encircle all three cells because 3 is not a power of 2. After encircling cells 1 
and 3, only minterm 2 remains uncircled. Let us encircle minterm 2 re-encircling 
minterm 3 which is adjacent to 2. We are done encircling all the minterms on 
the K. map that have ones. Looking again at Figure 7.5c, we can easily identify 
that the encirclement of cells 1 and 3 coincides with the area that corresponds 
to A. The encirclement of cells 2 and 3 corresponds to B. So the simplified 
function is:

 f B A m m m A B( , ) .= + + = +1 2 3

7.6.2  Three-Variable Karnaugh Maps

The three-variable map was defined in Figure 7.4b. Let us observe the adjacent 
cells. For example, cell 000 corresponding to minterm m0 has cells 001, 010, 
100; note all these cells differ by no more than one bit position with respect 
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to cell 000. Additionally, note that cells 011, 101, 110, and 111 are not adjacent 
with respect to cell 000.

Exercise: Explain why.

It is quite instructive to think about a 3-variable K. map as being rolled up on 
a cylindrical surface with a horizontal axis and also rolled up on a cylindrical 
surface with a vertical axis. Figure 7.6a depicts a 3-variable rolled up along a 
horizontal axis cylinder. Minterms m0, m1, m3, and m2 are respectively adjacent 
to minterms m4, m5, m7, and m6; either looking above or below minterms m0, 
m1, m3, and m2. Figure 7.6b depicts the same cylindrical surface whose axis is 
rotated 180°. In Figure 7.6a, minterms m0, m1, m3, and m2 are on the front of 
the cylinder while minterms m4, m5, m7, and m6 are on the back, thus the latter 
are not visible from the front. The opposite takes places in Figure 7.6b: mint-
erms m4, m5, m7, and m6 are on the front while minterms m0, m1, m3, and m2 are 
on the back.

Figure 7.7 depicts a 3-variable map wrapped around a vertical axis cylindri-
cal surface. Since the 3-variable map has 4 cells per row and 2 rows, we can 
only see two cells of each row in Figure 7.7a.

The front half of the cylinder. This top half contains minterms m0 and m1 
on the top row; and minterms m4 and m5 on the bottom row. To aid with the 
understanding of this spatial description, also refer to Figure 7.4b, which 
depicts the complete 3-variable map on a flat surface. Back to Figure 7.7a, as 
we rotate the cylinder 90° in the clockwise direction, while looking at the front 
of the cylinder, we see minterms m1 and m3 on the top front row, and minterms 

Figure 7.6  Spatial representation of a 3-variable map wrapped around a horizontal axis cylin-
drical surface. (a) Minterms 0, 1, 3, 2 on the front; (b) minterms 4, 5, 7, 6 on the front.

m0 m1 m3 m2

m4 m5 m7 m6

(a)

(b)
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m5 and m7 on the second row; see Figure 7.7b. Another 90° rotation in the 
same direction is depicted in Figure 7.7c, and one last 90° rotation is depicted 
in Figure 7.7d. What is the purpose of all these cylindrical surfaces rotations 
for? The ideas that want to be conveyed are an aid to identify adjacent cells 
without having to figure this out by inspecting every bit of every minterm. 
Note that adjacent cells in the horizontal direction can be observed using 
Figures 7.7a through 7.7d, which depict the cylinder along a vertical axis. For 
example, minterms adjacent to m1 are m3 to the right, Figure 7.7b and m0 to 
the left, Figure 7.7a. Similarly, this can also be appreciated when looking at 
the adjacent cells to minterm m4. Minterm m5 to the right of m4 is adjacent to 
m4, Figure 7.7a and m6 to the left of m4 is also adjacent to m4, Figure 7.4d. We 
use the cylindrical picture with a horizontal axis, Figure 7.6a,b when we want 
to find the adjacent cells to any minterm by looking either above or below the 
minterm of interest. Obviously, for the 3-variable map case, the cells above 
and below a minterm of interest are basically the same thing because the 

Figure 7.7  Spatial representation of a 3-variable map wrapped around a vertical axis cylindri-
cal surface.

(a) (b)

(c) (d)
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Example 7.16 Given a 3-variable function g C B A( , , ) ( , , , )= ∑ 2 3 4 5 , find a 
maximally simplified SOP form using K. maps. Figure 7.8 depicts function g 
minterms on a 3-variable K. map.

Solution to Example 7.16

Let us begin by encircling the largest possible number of adjacent minterms, 
such that that number is a power of two. We clearly obtain one grouping with 
minterms m2 and m3 and a second and last grouping produces the grouping of 
m4 and m5. The solution to this problem is particularly straightforward because 
we do not have other choices of encircling minterms that would produce 
similar results. Referring to Figure 7.8 we see that the maximally simplified 
SOP form yields:

 g C B A CB CB( , , ) ( , , , ) .= = +∑ 2 3 4 5

Note: The solution of Example 7.16 is the exclusive or of which variables? 
Answer: B, C.

Example 7.17 Given function w C B A( , , ) ( , , , )= ∑ 3 4 6 7 , find a maximally sim-
plified SOP form using K. maps. Representing the given function on the 
3-variable K. map of Figure 7.9a we encircle m6 and m7, then m3 and m7 and 
finally m4 and m6. We show this in Figure 7.9a and we obtained the following 
simplified function:

Figure 7.8  Three-variable map for Example 7.16.

3-variable map wraps around the cylinder, and it only has two rows. The 
4-variable K. map is really the first K. map that we are studying that will exhibit 
all the features seen in Karnaugh maps.
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Figure  7.9  Three-variable map for Example 7.16: (a) redundant enclosure m6 and m7; 
(b) redundancy removed.
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 w C B A BA CB CA( , , ) .= + +  (7.21)

If we carefully examine Figure 7.9a we can see a redundant enclosure of min-
terms m6 and m7 given by Equation (7.21) term C B; C B does not provide 
any more logical information. Figure 7.9b shows this term removed, so that 
our maximally simplified SOP form yields:

 w C B A BA CA( , , ) .= +  (7.22)

Exercise: Prove using truth tables that Equations (7.21) and (7.22) are 
logically equivalent.
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Figure 7.10  Four spatial views of a 4-variable map wrapped around a horizontal axis cylindri-
cal surface.
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7.6.3  Four-Variable Karnaugh Maps

The four-variable map spans 16 cells or minterms. The map is depicted in Figure 
7.4c. As usual, the minterms on this map have been encoded with variables:

DCBA, where A is the least significant bit variable and D is the most sig-
nificant bit variable. It should be clear that DCBA represents m0, DCBA 
represents m1 and so forth. Figure 7.4c also shows the groups of minterms for 
every one of its four variables. For the purpose of more easily visualizing 
adjacent cells, we can assume that the map is wrapped around a horizontal 
axis cylindrical surface as shown in Figure 7.10.
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Example 7.18 Given function G D C B A( , , , ) ( , , , , , , , , )= ∑ 1 4 6 7 8 9 10 11 15 , find 
a maximally simplified SOP form. Function G is given in Figure 7.12.

Solution to Example 7.18

Using a 4-variable map, we write the unity minterms according to the given 
function G. We encircle groups of adjacent minterms as shown in Figure 7.12. 
Pay close attention to the choices made grouping adjacent minterms. The 
groupings shown provide the least number of terms and the least number of 
variables per term.

The choices made lead to the following SOP simplification:

 G D C B A CBA DCA CBA DC( , , , ) .= + + +  (7.23)

Figure 7.10a depicts the 4-variable map wrapped around a horizontal cyl-
inder. The two top rows are the only ones visible to the reader. That is, row 
with minterms m0, m1, m3 & m2 and row with minterms m4, m5, m7, & m6. The 
other two rows are on the back of the cylindrical surface and cannot be seen 
by the reader. Figure 7.10b depicts the initial cylindrical surface rotated 90 
degrees in the direction shown by the arrow. Rows with minterms m4, m5, m7, 
& m6 and minterms m12, m13, m15, & m14 are visible to the reader; the other two 
rows of minterms are not visible. Similarly, after rotating another 90 degrees 
Figure 7.10b we obtain 7.10c which depicts the visible minterms and finally 
7.10d depicts the visible minterms after rotating the cylinder one more quarter 
of a turn.

Figure 7.10 allows us to determine simply by visual inspection adjacent 
minterm to any cell of interest by looking at the cell above and below the cell 
in question. For example, for cell m0, we see that m8 is adjacent to it because 
m0 is right below m8 according to Figure 7.10d. Minterm m4 is also adjacent to 
m0, since it is located right below m0 in Figure 7.10a.

To analyze the adjacencies left and right of any cell of interest we develop 
the spatial view of the 4-variable map wrapped around a vertical axis cylindri-
cal surface; this is depicted in Figure 7.11.

In this case we wrap around a vertical axis cylindrical surface our 4-variable 
map. Figure 7.11a depicts two of the four columns of minterms that are visible 
to the reader. These are: m0, m4, m12, & m8 and minterms m1, m5, m13, & m9. As 
before, the other two columns are not visible to the reader, since they are on 
the back of the cylinder of Figure 7.11a. The next three Figure 7.11b,c,e show 
the previous view of the cylinder rotated around its vertical axis 90 degrees at 
a time. Each figure depicts the two front columns that are visible to the reader. 
Using Figure 7.11, it is easy to visualize adjacent cells to the left and to the 
right of the cell of interest. Between Figures 7.10 and 7.11, all adjacent cells 
to any one of the 16-cell, 4-variable map can easily be found.
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Figure 7.11  Four spatial views of a 4-variable map wrapped around a vertical axis cylindrical 
surface.

(a) (b)

(c) (d)
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Figure 7.12  Four-variable Karnaugh map for Example 7.18.
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7.6.4  Five-Variable Karnaugh Maps

A simple way of handling the 5-variable map, which spans 32 minterms, is to 
use two 4-variable maps. One of the maps is created for the most significant 
variable equated to zero (or false), and the second map is created for the most 
significant variable equated to one (or true). We will use variables E, D, C, B, 
A where E is the most significant variable bit and A is the least significant 
variable bit. Figure 7.13 depicts the basic 5-variable, 32-minterm, Karnaugh 
map. The upper map is used for E and the lower map for E. The adjacencies 
within each map are no different than those adjacencies defined for the 
4-variable map. The additional adjacency criterion of the 5-variable map is 
across maps.

A cell on the E map that has the same relative position on the E map is by 
definition adjacent because their associated minterm would differ by only the 
most ignificant bit (variable E). Let us look at some examples: cell m0 and m16 are 
adjacent because m E D C B A0 = =. . . . 0_0000 and m E D C B A16 = =. . . . 1_0000, 
the only difference is their most significant bit (MSB); thus, since there is a 
single bit difference they are adjacent. Another example is given by minterms 
m15 and m31. m E D C B A15 = =. . . . 0_1111 and m31 = E.D.C.B.A = 1_1111, again 
they only differ by one bit.

Exercise: List all other adjacent cells between E and the E maps.
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Figure 7.13  Five-variable Karnaugh map definition.
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Figure 7.14  Five-variable map for Example 7.19.
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Example 7.19 Given the following function:

 W E D C B A( , , , , ) ( , , , , , , , , , , ),= ∑ 0 2 4 6 9 13 21 23 25 29 31  (7.24)

find a maximally simplified SOP form.
Figure 7.14 shows the minterms of function W. Minterms m0, m2, m4, and 

m6 encircled on the E map yield the simplified term E D A. . . Since minterms 
m0, m2, m4, and m6 have no adjacent minterms in map E, the term E D A. .  has 
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a leading E. Adjacent terms to the E map minterms m0, m2, m4, and m6 are E 
map minterms m16, m18, m20, and m22, but these last four minterms have zeroes 
(blank cells) on the E map. The first simplified term of function W is E D A. . . 
The next group of minterms on the E map is m13 and m9. The correspondingly 
adjacent group on the E map is m29 and m25. For each of the maps, this group 
is represented by the term D B A. . . Since this group is present on both maps, 
D B A. .  does not have either a leading E or E literal. Alternatively, consider 
that the D B A. .  group on the E map is annotated as E D B A. . . ; also consider 
the D B A. .  group on the E map is annotated as E D B A. . . . Now in the final 
expression we would have to write:

 E D B A E D B A. . . . . . ,+  (7.25a)

as part of the overall simplified expression for function W. But from Equation 
(7.25a), it is easy to observe that:

 E D B A E D B A E E D B A. . . . . . ( )( . . ).+ = +  (7.25b)

Since from Table 7.11 we know that:

 E E+ = 1.  (7.26)

Thus, Equation (7.25b) becomes:

 D B A. . .  (7.27)

Equation (7.27) is the second term of simplified function W, as shown by (7.28).
Finally, the third and last term of simplified W is obtained from the E map. 

Grouping minterms m21, m23, m29, and m31. This simplification turns out to be 
C.A and since it is only present on the E map, the complete term is E.C.A, 
which is the third and last term of the maximally simplified SOP form of func-
tion W, as shown by (7.28).

The complete maximally simplified function W given by Equation (7.24) is 
then:

 W E D C B A E D A D B A E C A( , , , , ) . . . . . . .= + +  (7.28)

7.7  PRODUCT OF SUMS SIMPLIFICATIONS

All Karnaugh map simplifications covered so far yielded a simplified sum of 
products form (SOP). When we want to produce a simplified product of sums 
form (POS) some changes need to be taken into account. Let us address those 
with the next example.
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Example 7.20 Given function:

 f D C B A( , , , ) ( , , , , , , , , )= ∑ 3 4 6 7 11 12 13 14 15  (7.29)

The ones marked in Figure 7.15a represent the minterms of function f. The 
cells marked with zeros (actually cells left blank) are all the minterms not 
included in f.

As usual we can obtain a simplified SOP form for f and this is:

 f D C B A C A D C B A( , , , ) . . . .= + +  (7.30)

Equation (7.30) is obtained with the map of Figure 7.15a.
Now let us consider the map of f complement (or simply f ). Refer to Figure 

7.15b.
From this figure we obtain a simplified SOP form for f , which is:

 f D C B A C A C B D B A( , , , ) . . . . .= + +  (7.31)

Now let us take the complement of Equation (7.31) and applying DeMorgan 
rules we obtain:

 f D C B A f D C B A C A C B D B A( , , , ) ( , , , ) ( )( )( ).= = + + + +  (7.32)

Equation (7.32) is a maximally simplified product of sums for function f(D, C, 
B, A).

Figure 7.15 depicts the maps for Example 7.20.

7.8  DON’T CARE CONDITIONS

When a logic circuit is designed, we obtain its truth table and we transform 
the standard sum of products form into a simplified sum of products or product 
of sums form.

The assumption always has been up until now, that all minterms were 
defined. This means that minterms were either one’s or zero’s. There are some 
applications where not all the possible binary combinations that a number of 
binary-valued variables spanned are actually used. When this is the case, it is 
convenient to define the unused binary combination as a third and not previ-
ously defined state. We call such state a don’t care. A don’t care is typically 
represented with an X. The advantage of defining this don’t care is convenient 
because the logic simplification can lead to an easier and more compact simpli-
fied SOP or POS form. Let us address this with an example.

Assume that we have a 4-bit binary-coded-decimal (BCD) number. A single 
digit 4-bit BCD number ranges from 00002 = 010 to 10012 = 910. If one wants to 
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Figure 7.15  Karnaugh maps for Example 7.20: (a) map of f; (b) map of f .
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express the number 1010 in BCD, one needs an extra BCD digit (a new 4-bit 
set) to represent 1010 = 0001_1001BCD. Table 7.16 lists some double digit BCD 
numbers, followed by their decimal and binary representations.

Table 7.16  Some Binary Coded Decimal Numbers 
and their decimal and binary representations

BCD Decimal Binary

0000_0000 0 0000_0000
0000_0001 1 0000_0001
0000_0010 2 0000_0010
0000_0011 3 0000_0011
0000_0100 4 0000_0100
0000_0101 5 0000_0101
0000_0110 6 0000_0110
0000_0111 7 0000_0111
0000_1000 8 0000_1000
0000_1001 9 0000_1001
0001_0000 10 0000_1010
0001_0001 11 0000_1011
0001_0010 12 0000_1100

. .
 .

. .
 .

. .
 .

0001_1000 18 0001_0010
0001_1001 19 0001_0011
0010_0000 20 0001_0100
0010_0001 21 0001_0101
0010_0010 22 0001_0110

Example 7.21 Design a BCD digit range detector: Our problem assumes that 
we want to design a combinational circuit that receives as input a single-digit 
4-bit BCD number. When the BCD digit is either 6, 7, or 8, we want the output 
of the range detector circuit to be a “1,” else we want such output to be “0.” 
We want to come up with a truth table for the range detector circuit. Addition-
ally provide a maximally simplified SOP form for the designed range detector 
circuit. Based on the requirements the truth table follows below. We define 
the BCD digit having bits DCBA, where A is the LSB and D is the MSB. Note 
that the problem implicitly assumes that the six 4-bit binary combinations 
1010 through 1111 will not be present at the inputs; refer to last six rows of 
Table 7.17.

From the truth table of Table 7.17 we can easily start filling out a four-
variable Karnaugh map with the values of output F. Figure 7.16 depicts the 
four-variable map for our BDC range detector. First, carefully observe the six 
don’t cares on minterms m10 through m15. As expected minterms m6, m7, and 
m8 are 1’s. All other minterms are 0’s.
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Here comes the most important part about simplifying with don’t care 
conditions.

Since the don’t care minterms will never be present at the DCBA inputs, it 
is to the designer’s advantage, to most conveniently adopt either a value of 1 
or 0 for the don’t cares in such way that it maximally simplifies the terms to 
be encircled.

Table 7.17  Truth table for a BCD range detector

Input D Input C Input B Input A Output F

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

Figure 7.16  Four-variable for map for BCD range detector.
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Figure 7.16 shows a possible way of encircling cells. For those don’t cares 
that end up within the picked enclosures of minterms we assume that they are 
valued as 1’s. For all other don’t cares we assume they are 0’s. However, in 
doing that we still do not change the don’t care notation on the Karnaugh map, 
that is, we leave the X.

The maximally SOP form for the BCD range detector is:

 F D C B A C B D A( , , , ) . . .= +  (7.33)

Exercise: Try other encirclements selecting other don’t cares and compare 
your results against Equation (7.33). What can you tell about your findings?

7.9  LOGIC GATES: ELECTRICAL AND TIMING CHARACTERISTICS

Logic gates are available in integrated circuit packages or as macros or com-
binational logic building blocks in Application Specific Integrated Circuits 
(ASICs), Complex Programmable Logic Devices (CPLDs), Field Program-
mable Gate Arrays (FPGAs), and other devices. Figure 7.17 depicts the most 
common schematic symbols of the most commonly used logic gates.

All of the above gates are conceptually and sometimes physically available 
with more than two inputs. There may be three, four, and more inputs in a 
gate. Using DeMorgan’s rules we will justify the logic equivalences given in 
Figure 7.17. For a positive AND gate, A ANDed with B is A.B. From DeMor-
gan’s rule (Eq. 7.3)

 A B A B. .= +  (7.34)

Equation (7.34) justifies the logic equivalence between Figure 7.17c,d.
Complementing Equation (7.34) yields:

 AB A B A B= = +. .  (7.35)

Equation (7.35) justifies the logic equivalence of Figure 7.17a,b.
From the other DeMorgan rule (Eq. 7.2) we have that:

 A B AB+ = .  (7.36)

Equation (7.36) justifies the logic equivalence between Figure 7.17g,h. Now 
complementing Equation (7.36) yields:

 A B A B A B+ = + = . .  (7.37)

Equation (7.37) justifies the logic equivalence between Figure 7.17e,f. Note 
that neither (i) nor (j) are logically equivalent. The same is true for (k) and 
(l). Figure 7.17i is the logic complement of Figure 7.17j. So is Figure 7.17k,l.
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Figure 7.17  (a) Positive AND gate; (b) negative OR gate; (c) NAND gate; (d) DeMorganized 
NAND gate; (e) positive OR gate; (f) negative AND; (g) NOR gate; (h) DeMorganized NOR 
gate; (i) Exclusive OR gate; (j) Exclusive NOR gate or Equivalence gate; (k) buffer, no inversion; 
(i) inverting buffer or inverter.
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Table 7.18  Some electrical characteristics of low voltage TTL (LVT)

Symbol Parameter Test Conditions

Limits Temperature 
Range: −40°C to 

+85°C

UnitsMIN TYP MAX

Recommended operating conditions
VCC DC supply 

voltage
2.7 3.3 V

VIH High-Level input 
voltage

2.0 V

VIL Low-level input 
voltage

0.8 V

IOH High-level output 
current

–20 mA

IOL Low-level output 
current

32 mA

Electrical characteristics
VOH High-level output 

voltage
VCC = 2.7 V, 

IOH = −6 mA
2.4 V

VOL Low-level output 
voltage

VCC = 2.7 V, 
IOL = 32 mA

0.4 V

IL Input leakage 
current applies 
to IIH and IIL

VCC = 3.6V, VI = VCC 
or GND (0 V)

±1 µA

7.9.1  Gates Key Electrical Characteristics

For the sake of brevity we will only consider gates that operate with 3.3 V  
TTL logic levels. TTL or Transistor-Transistor-Logic is a class of digital circuits 
built with bipolar transistors and resistors. TTL became at one point in time 
the most widespread logic family used in computers and almost all other elec-
tronic equipment. Within our context TTL is used to mean TTL-compatible-
logic-levels. The actual logic implementation may not necessarily be TTL, it 
just means that its input and output logic levels comply with the TTL family 
of integrated circuits levels. Other families of integrated circuits are CMOS 
and ECL. Today one can say that CMOS is the most widespread logic family 
of integrated circuits.

Table 7.18 defines the voltage logic levels for a zero (low voltage level) input 
and output and for a one (high voltage level) input and output. Note that 
expressing the state of an input or an output with a voltage level makes it 
independent as to whether the application that uses such gate or circuit with 
high true or low true signals.

Table 7.18 is a simplified real-device data sheet characteristics for the read-
er’s convenience. Figure 7.18 depicts a gate output driving another gate input. 
Both the high and the low levels are shown. Let us concentrate on the logic 
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zero or the low level. When a gate output drives a low level to the input of 
another gate, the output must not exceed VOL MAX voltage level which is 0.4 V 
for TTL compatible logic. While at the same time the input gate must be 
capable of accepting a low level that does not exceed a maximum level of 
VIL MAX of 0.8 V. Note that the difference between VIL MAX and VOL MAX is actu-
ally 0.4 V (400 mV), and it is referred to as the low-level noise margin for 
TTL-compatible logic. Similarly, when the output of a gate drives a high level 
to the input of another gate, the output must not be below VOH MIN of 2.4 V. It 
is also the case that a high output driving an input also has a 400 mV noise 
margin. The noise margin is a desirable voltage to have to account for system 
noise, power supply ripple, and other sources of noise that can couple onto 
the driving and the receiving lines of each gate.

Now what about the current specifications? That is, IOH, IOL, IIH, and IIL? 
When an output is at a high voltage level, the driving gate sources a current 
to the input gate, the sourced current flows outward from the output. Conven-
tionally, this current is negative (refer to the IOH entry in Table 7.18). When an 
output is at a low voltage level, the driving gate sinks current and sunk current 
conventionally has a positive sign (refer to the IOL entry in Table 7.18). IIH is 
the current into an input terminal when a specified high voltage level is applied 
to it. IIL is the current into an input terminal when a specified low voltage level 
is applied to it. IIH and IIL are typically found only on devices with bipolar 
inputs and that significantly have different levels of pull-down current to 
provide a logic low and pull-up current to provide a logic high. CMOS devices, 
however, just have an IL or a leakage current at the input. Such levels of IL are 
measured at both low and high bias conditions. Figure 7.18 depicts an output 
driving an input, indicating all the voltage levels.

For TTL logic levels, the switching threshold is around 1.5–1.6 V.

Figure 7.18  TTL output driving a TTL input.
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7.9.2  Gates Key Timing Characteristics

When a digital input signal is applied to a combinational circuit the output 
will not respond (or change) until the combinational circuit time-propagation 
delay elapses.

JEDEC, the Joint Electronic Device Engineering Council, is the semicon-
ductor engineering standardization body of the Electronics Industries Alli-
ance, a trade association that represents all areas of industry. JEDEC defines 
the propagation delay time as the time specified between reference points on 
the input and output voltage waveforms with the output changing from one 
defined level (either high or low) to the other defined level. Thus, there will 
be a tPHL and a tPLH, respectively, a high-to-low propagation delay (tPD), and a 
low-to-high propagation delay. The maximum value of tPD simply is the worst-
case or longest case of tPHL and a tPLH. Figure 7.19 depicts the propagation 
delay time that exists in a LVTTL combinational circuit, or simply just a 
LVTTL gate between an input and an output. Output 1 depicts both low-to-
high and high-to-low tPD. Output 2 depicts the same delays assuming it is the 
complement of Output 1. Note that the time references are measured at 1.5 V, 
or about half of the 3.3 V power supply rail. A 1.5 V is referred to as the 
LVTTL logic switching threshold. Although the switching threshold of the 
logic may vary, perhaps as much as ±0.5 V or more, what matters is that all 
the timing measurements be made consistently with respect to the same 1.5-V 
reference level.

Examples of tPD of integrated circuit gate delays are anywhere around 10 
ns (older TTL technology) to as little as a fraction of a nanosecond (for  
high speed CMOS technologies and ECL). Reference 5 in the Further  
Reading section has a discussion on TTL, CMOS, and ECL families of inte-
grated circuits.

Figure 7.19  Logic gate propagation delay times.
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7.10  SUMMARY

This chapter introduced the reader to combinational circuits, which are also 
referred to as circuits with no memory capability. Binary numbers were pre-
sented along with the essential elements of switching or Boolean algebra.

Standard or canonical SOP and POS forms are ways of representing logic 
functions. For the purpose of logic implementation, where usually we want the 
number of gates to be reduced as well as the number of inputs per gate to obtain 
simplified SOP and POS. Methods of simplification were presented by covering 
2 through 5-variable Karnaugh maps. K maps of 6 or more variables become 
somewhat impractical to use effectively. We will address other logic design tech-
niques to overcome using huge K. maps. Finally, we studied the most basic elec-
trical and timing characteristics of logic gates. The examples were centered 
around TTL-compatible logic levels gates, not necessarily implemented in TTL 
technology. Although it is completely true that TTL technology is obsolete, 
other logic families, like CMOS and BiCMOS, have adopted TTL levels to inter-
face to the many devices, such as line drivers, that continue to use TTL levels.
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PROBLEMS

7.1 Convert the following 16-bit positive binary numbers to decimal:
(a) 1101_1111_1010_0001
(b) 1111_1111_1111_1111
(c) 1000_0000_0000_0000
(d) 1000_1000_1000_1000
(e) 1001_0110_1100_0111

7.2 Convert the following 16-bit 2’s complement numbers to decimal:
(a) 1101_1111_1010_0001
(b) 1111_1111_1111_1111
(c) 1000_0000_0000_0000
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(d) 1000_1000_1000_1000
(e) 1001_0110_1100_0111

7.3 Convert the following 4-BCD-digit (16-bits) numbers to decimal:
(a) 1101_1111_1010_0001
(b) 1111_1111_1111_1111
(c) 1000_0000_0000_0000
(d) 1000_1000_1000_1000
(e) 1001_0110_1100_0111

7.4 Convert the following decimal numbers into 16-bit 2’s complement.
(a) 1537
(b) −10418
(c) 32700
(d) 0
(e) −32700

7.5 Using De Morgan’s rules, find simplified logic equivalent Boolean 
expressions:
(a) A B C+ +
(b) A C B. +
(c) A B A B A B A B. . . .+ + +
(d) A B C D A B C D A B C D. . . . . . . . .+ +

7.6 Express the following functions in SOP and POS canonical forms:

(a) F D A B BD= + +( )
(b) F yz wxy wxz wxz= + + +
(c) F A B B C= + +( )( )
(d) F = 1
(e) F = (xy + z)(y + xz)

7.7 Using Karnaugh maps find simplified sum-of-product forms for the fol-
lowing logic functions:
(a) f A B( , ) ( , , )= ∑ 0 1 3

(b) g A B C D( , , , ) ( , , , , )= ∑ 0 1 4 58 9

(c) h A B C D( , , , ) ( , , , , , , , )= ∑ 0 1 2 3 8 10 11 15

(d) k A B C D( , , , ) ( , , , , , , , , )= ∑ 1 3 4 7 8 9 10 11 14

7.8 Using Karnaugh maps find simplified product-of-sum forms for the fol-
lowing logic functions:
(a) f A B( , ) ( , , )= ∏ 1 2 3
(b) g A B C D( , , , ) ( , , , , , )= ∏ 0 1 4 5 8 9
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(c) h A B C D( , , , ) ( , , , , , , , )= ∏ 1 2 5 6 9 12 13 14
(d) k A B C D( , , , ) ( , , , , , , , , )= ∏ 1 3 4 7 8 9 10 11 14

7.9 Graphically depict a 3-variable XOR using Venn Diagrams.

7.10 Graphically depict a 4-variable XNOR using Venn Diagrams.

7.11 Generate the truth table of a 4-variable XOR function.

7.12 Obtain the truth table for the following Boolean function: 
F X Y Z X Y X Y Y Z( , , ) . . .= + + .

7.13 Write the sum-of-products form of a 3-variable XOR.

7.14 Write the product-of-sums form of a 3-variable XOR.

7.15 Obtain the truth table of a 4-variable majority logic circuit.
That is, majority is obtained whenever two or more variables are true, 

else majority is false.

7.16 Create a 2-level logic implementation of the majority function obtained 
in Problem 7.15.

7.17 Assume that you have an inverting gate with a 10 ns high-to-low and 
low-to-high propagation delay. If you connect the output of this gate to 
its input with a zero-delay wire, sketch the waveform that you would 
see with an oscilloscope. An oscilloscope is an instrument that allows 
one to visualize how an electric waveform varies with respect to time.

7.18 Given logic gates which all have a high-to-low and low-to-high 20-ns 
propagation delay, what is the maximum propagation delay of a function 
implemented in three levels of logic.

7.19 Given logic gates which all have a high-to-low and low-to-high 20-ns 
propagation delay, what is the maximum propagation delay of a function 
implemented in four levels of logic.

7.20 From doing Problems 7.18 and 7.19 what can you generalize when a 
logic function is implemented with more levels of logic? Clearly the 
propagation delay increases linearly with each new level of logic.
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8
DIGITAL DESIGN  

BUILDING BLOCKS  
AND MORE ADVANCED 

COMBINATIONAL CIRCUITS

8.1  COMBINATIONAL CIRCUITS WITH MORE THAN ONE OUTPUT

Not all combinational circuits have a single output, like it was presented 
throughout most of Chapter 7. As a matter of fact, many applications have 
multiple outputs. Let us examine this with an interesting example.

Example 8.1 Design a combinational circuit to decode a four-bit BCD number 
that drives segments of a seven-segment LED display. The display must light 
up showing the corresponding BCD number presented at the input of the 
decoder. Figure 8.1a depicts a seven-segment LED display. Each segment has 
been labeled with the letters a through g. The display has seven inputs, one per 
segment. Assume that a high-level voltage presented at the input of a segment 
turns such segment ON; else when a low-level voltage is presented, the segment 
is OFF. When we want the display to show the number 0, we must ensure to 
apply high-levels or one’s to segments: a, b, c, d, e, and f, while we need to 
present a zero to segment g. Figure 8.1b shows the wiring of a single segment, 
and Figure 8.1c shows the schematic representation where the LED is shown 
with its corresponding symbol. Both (b) and (c) show the current limiting resis-
tor that is placed in-series with the LED so that the appropriate current makes 
the LED shine when turned ON as the manufacturer specifies.

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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The LED driver, LED the current limiting resistor, and the LED segment 
are all assumed to be part of the display assembly. In addition to the seven 
LED segments, the assembly contains seven drivers and seven resistors.

Brief Calculation of the Current Limiting Resistor

Assume that the current through the LED for the intended typical luminous 
intensity required by the manufacturer is 10 mA. The manufacturer also speci-
fies a maximum forward voltage drop. This is VDROPMax = 2.0 V. Moreover, 
assume that our LED driver drives TTL-compatible voltage levels. Since the 

Figure 8.1  (a) Seven-segment display assembly; (b) detailed wiring and connectivity of one 
segment; (c) detailed wiring as shown in part (b) with the segment replaced with a LED sche-
matic symbol.
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Figure 8.2  Decoder driving a seven-segment LED display.

a

b

c

d

e

f
g

a

b

c

d

e

f

g

BCD-to-7-Segment Display
Decoder

Display internal wiring and components not shown

A

B

C

D

(LSB)

(MSB)

2 0

2

2

2

1

2

3

7-Segment LED Display

Input range: 0000, 0001, …, 1001

Figure 8.2 depicts the LED assembly driven by the BCD-to-seven segment 
decoder that we need to design. The inputs to the decoder are assumed to be 
BCD 0000, 0001 through 1001; the other six binary combinations (1010–1111) 
will be assumed not to be present as decoder inputs.

minimum voltage at the output of the driver is VOHMin = 2.4 V sourcing a 
current of 10 mA, the current limiting resistor value is calculated as follows:

 R
V V

L
OHMin DROPMax= − = − =

0 010
2 4 2 0

0 010
40

.
. .

.
,Ω  (8.1)

where VOHMin = 2.4 V is dictated by the driver TTL compatibility. The driver 
must be selected so that it can source at least 10 mA. A driver of somewhat 
higher current source capability may also be selected to do the job. Ultimately, 
the series resistor will limit the current needed by each segment.

Let us quickly check the amount of power that the resistor will dissipate.

 P RR L= ×ILED
2 .  (8.2)

Since ILED = 0.01 A and R = 40 Ω, thus:

 P mWR = ( ) × =0 01 40 42. .  (8.3)

Since some resistors available can handle 1/16 W (62.5 mW) we can use a 
1/16 W-rated resistor. The above analysis does not take into consideration 
variations of LED current and LED voltage forward drop, resistor variability, 
power supply changes, and temperature changes. The intent of the above cal-
culation is to provide the reader with the basics to calculate the current limit-
ing resistor value.
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Figure 8.3  Seven-segment LED display segments to numerical mappings.
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We will assume that we want the numbers 0 through 9 displayed as depicted 
by Figure 8.3. Additionally, let us remember that a high-level voltage turns a 
segment ON, while a low-level voltage turns it OFF.

At this point we are ready to start working on this example’s truth table, 
which is presented in Table 8.1.

Table 8.1 contains the BCD number bits (D, C, B, A) on the four left-hand 
side columns. Clearly A is the least significant bit (LSB). The columns for each 
segment are labeled as a, b, and so forth. It is very convenient and important 
to observe that since the last six binary combinations 1010 through 1111 are 
not present, because the input number is by definition a BCD number which 
only spans 0000 through 1001, it works out to our advantage to place don’t 
care conditions (X’s). So what needs to be done to find a simplified SOP forms 
for each the seven segments? Proceeding we obtain the following seven K. 
maps, depicted by Figure 8.4a through g.

The maximally simplified SOP forms for every segment are given below:

 Segment a ( , , ) .: , .a D C B A D B C A C A= + + +  (8.4)

 Segment b : ( , , , ) . .b D C B A C D B A B A= + + +  (8.5)

 Segment c : ( , , , )c D C B A D C B A= + + +  (8.6)



COMBINATIONAL CIRCUITS WITH MORE THAN ONE OUTPUT  507

Table 8.1  Truth table for Example 8.1, BCD-to-seven-segment decoder

BCD Input bits D: 
MSB, A: LSB Outputs to Segments

Displays NumberD C B A a b c d e f g

0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 1 0 1 1 0 0 0 0 1
0 0 1 0 1 1 0 1 1 0 1 2
0 0 1 1 1 1 1 1 0 0 1 3
0 1 0 0 0 1 1 0 0 1 1 4
0 1 0 1 1 0 1 1 0 1 1 5
0 1 1 0 1 0 1 1 1 1 1 6
0 1 1 1 1 1 1 0 0 0 0 7
1 0 0 0 1 1 1 1 1 1 1 8
1 0 0 1 1 1 1 0 0 1 1 9
1 0 1 0 X X X X X X X –
1 0 1 1 X X X X X X X –
1 1 0 0 X X X X X X X –
1 1 0 1 X X X X X X X –
1 1 1 0 X X X X X X X –
1 1 1 1 X X X X X X X –

 Segment d : ( , , , ) . . . . .d D C B A C B A C A C B B A= + + +  (8.7)

 Segment e : ( , , , ) . .e D C B A C A B A= +  (8.8)

 Segment f : ( , , , ) . . .f D C B A C A C B B A D= + + +  (8.9)

 Segment g : ( , , , ) . .g D C B A C B BA D CB= + + +  (8.10)

Each of the seven output functions (a through g) depends on the same four 
independent binary variables A, B, C, and D. Some of the functions have 
repeated terms, for example, taking a close look at Equations (8.4), (8.7), and 
(8.8) we see that they have a common term C A.  among them. When we do the 
logic implementation of functions (a) through (g) we only need to generate 
the term C A.  once, then feed it into Equations (8.4), (8.7), and (8.8). Before 
getting into the logic implementation of our seven functions let us identify all 
other repeated terms. These are: B A.  present in Equations (8.5) and (8.9) and 
term C B.  present in Equations (8.7) and (8.10), and term C.B present in Equa-
tions (8.9) and (8.10).

Following Equations (8.4) through (8.10) these are implemented with logic 
gates in Figure 8.5a through g. But we are not done yet. Each of the segment 
functions a, b, through g, is simplified SOP forms in a stand-alone sense. 
However, since we are implementing all seven functions, which are all func-
tions of input variables A, B, C, and D there are few other things that we can 
do in order to reduce the number of logic gates that we use. First by inspection 



508  DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

X

X

11

X

1

X

1

1 1

X

1 X

1

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

1

X

X

1

X

1

X

1

1 1 1

X

1 X

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

1

X

X

11

X

1

X

1

1 1

X

1 X

1

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7

8 9 11 10

12 13 15 14

X

X

1

X

1

X

1

1 1

X

X

1

Segment a Segment b

Segment c Segment d

6

(a) (b)

(c) (d)

Figure 8.4  Illustration of segments a through g.

of Figures 8.5a through g we can see that each function uses some subset of 
the variables A, B, C, and D and their complements (A, B, C, D); this means 
that once we have A, B, C, and D and generate their complements once, using 
four inverters, the variables, and their complements can be connected to each 
of the functions that require them. For example, referring to Figure 8.5a, we 
note that C is used in the lower AND gate. Additionally, C is used in Figure 
8.5b as an input to the four-input OR gate; thus we do not need to use a second 
inverter to generate C again. The same applies to other uses of C throughout 
the rest of the segment functions. Finally. the above is true for all input vari-
ables and their complements.

We can still reduce the number of logic gates a little more. Looking further 
at Figure 8.5a, note that the term C A.  is the fourth input of the OR gate for 



COMBINATIONAL CIRCUITS WITH MORE THAN ONE OUTPUT  509

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

X

X

1

XX

1

1 1

X

X
D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

1

X

X

1

XX

1

1

X

1 X

1

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

1

X

X

1

X

1

X

1

1

X

1 X

1

Segment e Segment f

Segment g

(e)

(g)

(f)

Figure 8.4  (Continued )

segment a. Term C A.  can also be found as the third input to the OR gate of 
Figure 8.5d and the first OR input of the OR gate of Figure 8.5e. What does 
this mean? It means that we do not to repeat the AND-ing logic that creates 
three different C A.  terms in (a), (d), and (e). We actually need just one AND 
gate that produces C A. , and this term is fed to all other users of the C A.  term. 
This saves us two AND gates. Something very similar occurs with terms B A.  
and C B. .

Exercise: Redraw the circuits of Figure 8.5a through g reducing the logic 
gates by: deleting repetitive logic terms produced by the AND gates.
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Figure 8.5  Seven-segment decoder logic implementation for segments a through g.

8.2  DECODERS AND ENCODERS

Decoders and encoders are combinational logic circuits. A binary decoder is 
a digital circuit that has n binary inputs and 2n outputs. For example, a decoder 
with three inputs produces eight outputs; this decoder is referred to as a 3-to-8 
decoder. Let us assume that the outputs are active high or high-true signals; 
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Figure 8.5  (Continued )

this means that an asserted signal is interpreted as a high level and this high 
level is a one. Conversely, an inactive or negated output is a low output and 
such low is a zero. Table 8.2 depicts the truth table for such a decoder. The 
LSB input is named A, while the MSB is named C. As expected, note that the 
three inputs span a total of 23 = 8 binary combinations, starting at 000 through 
111. Each of its 8 outputs is associated with each one of the eight binary com-
binations. In such way that input 000 is associated with Y0, input 001 is associ-
ated with Y1 and so on.

Each output Y0, . . . , Y7 is respectively associated to its output 000, . . . , 111. 
Outputs are asserted in a mutually exclusive fashion, that is, one at a time.

By inspection of Table 8.2 we see that if the input code to the decoder is 
100, output Y4 is 1 while all other outputs are zero. The truth table of our 
decoder has a fourth input that provides a master enable to the component. 
When the enable is high, the decoder works as we already described. When 
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the enable is zero or negated, all the decoder output are zero, thus the decoder 
is disabled. That is, no matter what the values of its three binary input bits are, 
the outputs remain low as long as the enable is low.

From another point of view, the decoder can be seen as a minterm genera-
tor. Note that our 3-bit input decoder produces Y0 = 1 upon input combination 
000.

Y0 is minterm m0 since C, B, and A are negated. Let us recall from the previ-
ous chapter that m C B A0 = . .  when we have a three-bit or three-variable func-
tion. The reader should convince herself that that is the case for every one of 
the eight minterms. Based on the decoder truth table, one cannot have more 
than one output asserted at any given time. Refer to Table 8.2 once more. The 
enable provides the decoder with a feature to negate all outputs regardless of 
the input present at inputs C, B, and A. This enable is useful when we want to 
make larger decoders with smaller ones. We will see that the enable allows us 
to interconnect the decoders in the appropriate manner. An example of this 
will be discussed soon. The decoder logic implementation is straightforward. 
Initially ignoring the decoder enable, we can think of our 3-to-8 decoder having 
eight three-input AND gates into which we present our eight binary combina-
tions 000 through 111. Let us name each AND gate as AND gate 0, 1, 2, and 
so forth. Upon presenting 000 to the inputs of AND gate 0 we want AND gate 
0 output to assert while all other 7 AND gates we want to see negated. Simi-
larly upon presenting 001 to the inputs of AND gate 1, we want AND gate 1 
output to be asserted while all other AND gate outputs need to be negated. 
This procedure is carried for all 8 AND gates to obtain our 3-to-8 decoder. 
Now it is time to go back to the decoder’s enable. Since we want the enable 
not to interfere with the decoder functionality when enable is 1, we just use 
four-input AND gates instead of the three-input ones used before. So upon 
enable being a 1 or asserted allows decoder operation as usual. When enable 
is negated all outputs are negated because a zero at the input of every one of 
the 8 4-input AND gates negates all outputs. Figure 8.6 depicts a possible logic 
implementation of a 3-to-8 decoder with an active high master enable.

Table 8.2  Truth table of a 3-bit decoder with an active high enable

Inputs Outputs

C (22) B (21) A (20) E Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1
X X X 0 0 0 0 0 0 0 0 0
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Figure 8.6  (a) Three-to-eight decoder with active high enable symbol; (b) a logic gate imple-
mentation of the decoder.
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Example 8.2 Using a 3-to-8 decoder implement the following logic function:

 f ( , , ) ( , , ).C B A = ∑ 2 5 7  (8.11)

Since function f is a three-variable function, and a 3-to-8 decoder is a 3-bit 
function minterm generator, the implementation of Equation (8.11) consists 
simply of OR-ing the three minterms m2, m5, and m7. Figure 8.7 depicts this 
implementation.

This is a good time to talk about the decoder unused outputs. Is there any-
thing wrong with that? From an electrical point of view, there is nothing wrong 
about leaving combinational circuit outputs floating or just simply not-
connected as Figure 8.7 shows. It is not correct though to leave any combina-

Note that the logic implementation of Figure 8.6b adopted the following 
notation to offer faster and easier readability of the circuit. The inputs A, B, 
and C may or may not have to be inverted depending on which AND gate 
output they need to assert. Instead of drawing explicitly an inverter at the 
input of every AND gate that requires its input to be inverted we draw a 
bubble. A bubble represents an inversion in the signal path in which it is drawn. 
For example, a NAND gate has a bubble at its output that means that the 
NAND is an AND followed by an inverter. Back to our Figure 8.6b explana-
tion, AND gate Y0 has to produce a 1 output upon enable = 1 and C.B.A = 000, 
thus AND gate Y0 has three bubbles to complement all three inputs A, B, and 
C. Similarly note that AND gate Y1 has only two bubbles to negate inputs C 
and B, while input A is presented to the AND without inversion. A similar 
reasoning follows for the rest of the AND gates. Just remember that decoder 
input A is the least significant bit (20), while decoder input C is the most sig-
nificant bit (22).

Figure 8.7  Decoder and gates implementation for Example 8.2.
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8.2.1  Making Larger Decoders with Smaller Ones

Decoders of larger sizes, such as 5-to-32, 6-to-64 or larger will likely have to 
be constructed with smaller available decoders. One of the limitations of dis-
crete IC decoders is that the larger they are, the larger is their number of pins. 
It is generally not practical for manufacturers to make huge decoders. Thus, it 
is usually left to the logic designer to assemble very large decoders using 
smaller ones or using programmable devices.

Example 8.3 Let us assume that we are given two 2-to-4 decoders with an 
active high enable input, and somehow we want to build with both of them 
plus some minimal amount of additional logic a 3-to-8 decoder. Of course for 
the sake of this example we will assume that we do not have or are not allowed 
to use a 3-to-8 decoder. Table 8.3 depicts the truth table of a 2-to-4 decoder 
with active high enable and active high outputs.

What we want to do is somehow connect two 2-to-4 decoders such that both 
jointly reproduce the truth table of a 3-to-8 decoder such as the one described 
by Table 8.2 at the beginning of the Decoders and Encoders Section. We will 
assume that the composite 3-to-8 decoder we are about to build will not neces-
sarily have an enable input. This is not a big imposition; it is just a requirement 
that we make not to add a few more gates to the logic.

Figure 8.8 depicts the interconnection of two 2-to-4 decoders. Let us under-
stand what such arrangement logically does.

tional circuit inputs non-connected or floating. Why? Because a floating input 
has no solid logic or voltage level driving such input. Since logic gates like all 
electronic circuits are susceptible to electrical and electronic noise, leaving a 
floating input is an opportunity for random noise to couple into the input and 
drive the input to the incorrect level. In summary, an unused input must be 
either tied down to zero ground or tied to a high voltage level or a one, typi-
cally the power supply voltage of the logic gate. Of course it is the job of the 
logic designer making the right choice to what input level to tie the unused 
input. As a quick example, let us look into a 3-input AND gate. Assume the 
gate is left over logic that we want to use for some other purpose on a board 
or part of a logic design. However, we only need a 2-input AND for this 
particular application. Can we still use the 3-input AND as a 2-input AND? 
The answer is yes, but we should not use the three inputs. Since we have an 
AND gate, tying the unused input to a high voltage level (logic one) in effect 
removes the third input out of the logic equation. The other two inputs of the 
AND gate behave as a 2-input gate.

Exercise: Prove the above statement with the use of a truth table. Are there 
any other ways to use a 3-input AND gate, so that it behaves as a 2-input 
AND gate?
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The upper 2-to-4 decoder is wired such that its four outputs Y0 through Y3, 
will behave as the Y0 through Y3 outputs of the composite 3-to-8 decoder that 
we are trying to build. The lower 2-to-4 decoder is wired such that its four 
outputs Y0 through Y3, will behave as the Y4 through Y7 outputs of the com-
posite 3-to-8 decoder. Furthermore, notice that both A and B inputs of each 
2-to-4 are tied together and in turn they will also become the composite 3-to-8 
decoder A and B inputs, where A is the LSB. Finally, the most interesting part 
of the design of Figure 8.8, is the way in which both enables are handled. The 
upper 2-to-4 decoder E enable input ties through an inverter to input C, the 
MSB of the composite decoder. Why? Note that upon C, B, and A binary 

Figure 8.8  Three-to-eight decoder implementation with 2-to-4 decoders and one inverter.
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Table 8.3  Truth table of a 2-to-4 decoder with active high enable

Inputs Outputs

B (21) A (20) E Y0 Y1 Y2 Y3

0 0 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1
X X 0 0 0 0 0
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Example 8.4 Assume that a single interrupt line, an input to a micro control-
ler, needs to have some logic in front of it to allow four interrupts to be fun-
neled into the micro controller single interrupt line. Additionally, we want our 
priority encoding logic to supply the interrupt priority level of the interrupt 
with the highest priority on the P1 and P0 binary encoded outputs. Refer to 
the priority encoder schematic symbol in Figure 8.9.

Assume that interrupt priority 3 (I3) is the highest while priority 0 is the 
lowest. If two interrupts assert at the same time, say 3 and 1; since 3 has higher 
priority than 1, we want the priority encoder to produce an encoded binary 3 
at its output P1 and P0. In addition we want our priority encoder to assert a 

combinations 000 through 011 being presented to the composite decoder, since 
C the MSB is inverted by the external inverter, the upper decoder behaves 
just like the composite 3-to-8 but just for the first four binary combinations of 
inputs (0 through 3). On the other hand, since the E enable of the lower 2-to-4 
decoder is directly connected to input C of the composite, the lower decoder 
operates as the 3-to-8 composite one for CBA binary combinations, four 
through seven.

Exercise: Carefully trace the behavior of the composite decoder of Figure 
8.8 and convince yourself that indeed it operates as a 3-to-8 decoder.

8.2.2  Encoders

An encoder is a combinational logic block that performs the inverse operation 
of a decoder. For example, for a 2-to-4 decoder, the associated encoder is a 
logic block with 4 inputs and 2 binary encoded outputs. An important combi-
national block used in embedded systems is the priority encoder. This encoder 
is important because it expands the number of interrupts that a micro control-
ler is capable of handling using a single micro controller interrupt input line.

Figure 8.9  Priority encoder schematic symbol.

I2

I1

I0

I3

P0

P1

Any_Interrupts?

Binary encoded outputs

Priority Encoder

Interrupt inputs



518  DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

Table 8.4  Priority encoder truth table

Interrupt Inputs Outputs

I3 I2 I1 I0 P1 P0 Any_Interrupts?

0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

Table 8.5  Depiction of the expansion of Table 8.4

Interrupt Inputs Outputs

I3 I2 I1 I0 P1 P0 Any_Interrupts?

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 1
0 0 1 1 0 1 1
0 1 0 0 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 1 1 1
1 0 0 1 1 1 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

third output to indicate that no interrupts are asserted. Table 8.4 presents a 
complete description of how we want our priority encoder logic to work. Note 
that Table 8.4 has several don’t-care conditions. For the first line, when no 
interrupts are asserted the Any Interrupts? output is negated meaning, there 
are no interrupts, thus the priority code bits P1 and P0 are don’t cares. For the 
next line of the truth table when interrupt I0 asserts, while I1, I2, and I3 are zero, 
priority code bits P1 P0 must become 00. For the last line of Table 8.4, if I3 
asserts regardless the state of interrupt bits I0, I1, and I2, priority code bits P1 
P0 must become 11 and the Any-Interrupts? output must assert.

Let us now consider the same priority encoder, explicitly assigning its 
24 = 16 values, to the four interrupt input lines, priority encoded outputs P1 
and P0 and Any_Interrupts?. As usual output Any_Interrupts? indicates the 
presence of an asserted interrupt at the input of the encoder. Thus, we obtain 
Table 8.5 for the same logic presented by Table 8.4, without using don’t cares 
in an explicit form.
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Figure 8.10  (a) Karnaugh map for P1; (b) Karnaugh map for P0.
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From Table 8.5 we can do the three Karnaugh map to find out the combi-
national logic of outputs: P1, P0, and Any_Interrupts? But let us look at the 
logic of output Any_Interrupts?

By carefully inspecting the truth table, it is easy to see that the logic for 
Any_Interrupts? is:

 Any_Interrupts? = + + +I I I I3 2 1 0.  (8.12)

This is clear because output Any_Interrupts? is zero only when all inputs are 
zero (Tables 8.4 and 8.5).

For outputs P1 and P0 we produce the K. maps of Figures 8.10a,b.
By inspection of Figure 8.10a,b we obtain the following:

 P I I1 3 2= +  (8.13)

 P I I I0 3 2 1= + . .  (8.14)

Drawing the logic gates of Equations (8.12) through (8.13) we obtain  
Figure 8.11.

8.3  MULTIPLEXERS AND DEMULTIPLEXERS 
(MUXES AND DEMUXES)

Many years ahead of digital multiplexers and demultiplexers, mechanical ver-
sions of them were available. These devices were initially called distributors 
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Figure 8.11  Logic implementation of the priority encoder for Example 8.4.
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and used mostly as part of telegraph equipment by the end of the nineteenth 
century. The purpose of these devices is to allow more than one transmitting 
data source to use a single serial line, connected between the n sources and n 
destinations. The serial line between source and destination is time-shared. Let 
us look at how this works looking at the scheme depicted in Figure 8.12. For 
simplicity, assume that there are just two transmitting sources, channel 0 and 
channel 1. Let us assume that each source transmits a bit (either a 0 or a 1) 
for 1 ms and does not transmit anything for another millisecond. It is conceiv-
able to synchronize the two transmitting sources such that when channel 0 
transmits it data bit, channel 1 rests; the next bit time channel 0 rests while 

Figure 8.12  Multiplexer (mux) and demultiplexer (de-mux) transmission/reception scheme.
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channel 1 transmits its data bit. For the sake of simplicity, let us not be con-
cerned with exact timing details of a real implementation.

When channel 0 transmitter has a bit to send over the line, channel 0 and 
its mux rotor must be engaged and channel 0 receiver and its de-mux rotor 
must be engaged. This connection has to persist for 1 ms, during which time a 
bit is transmitted from channel 0 transmitter (on the left) to channel 0 receiver 
(on the right). We are ignoring finite propagation delays over the serial line, 
rotor rotation times, and several other factors that should not matter at this 
point. After 1 ms, channel 1 transmitter has a bit to send over the line, channel 
1 and its mux rotor must be engaged, and channel 1 receiver and its de-mux 
rotor must be engaged. During this time bit 1 of channel 1 gets transmitted. 
This process repeats indefinitely or until no more transmissions are desired.

Today muxes and de-muxes can be designed to transport analog or digital 
signals. This chapter focuses on digital devices only.

8.3.1  Multiplexers

Digital multiplexers are devices that allow a number of data sources to route 
one out of the total data sources to its output. Let us assume that we have a 
four-input mux, at any given time one input is allowed to pass straight through 
the mux onto the output. At such time none of the other inputs can go through 
the mux. This scheme clearly works fine when the data path at the output  
of the mux can be time-shared by the various inputs to the mux. Multiplexers 
are referred to as being 1-of-2n, where n is the number of input channels. 
Conceptually we can have 2, 4, 8, 16, . . . , 2n input multiplexers. Table 8.6 
depicts the truth table of a 1-of-4 mux in a compact fashion using don’t care 
conditions. The same truth table is somewhat expanded in Table 8.7 by explic-
itly stating the values of each input channel data input. Note that in order to 
fully expand the truth table of Table 8.7, since there are seven inputs, the fully 
expanded truth table would have 27 = 128 entries! Clearly this is not practical, 
and it is not too clear to understand either.

Truth Tables 8.6 and 8.7 are easy to understand. They should be read in the 
same manner as the mux operates. For example when input 0 is selected (select 

Table 8.6  Compressed 1-of-4 multiplexer truth table

Enable Input Channel Data Select Line Output

E Ix S1 S0 Y

1 I0 0 0 I0

1 I1 0 1 I1

1 I2 1 0 I2

1 I3 1 1 I3

0 X X X 0
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lines set to select such input), regardless of what all other mux inputs input 
levels are (don’t cares), the selected input 0 passes straight through the mux 
to its output Y. The same is true for when input 1 or 2 or 3 is selected. The 
operation of the enable E is such that the mux does its thing (route input data 
to output), upon E being high. However, when E is low, the mux output is zero. 
The E input is useful when we want to build larger multiplexers using smaller 
ones.

Figure 8.13a depicts the schematic symbol of a 1-of-4 mux, and b of the 
same figure depicts a possible logic implementation of such mux.

It is not too hard to figure out the truth table of virtually any size mux just 
by similarity with the 1-of-4 mux just covered. For example, a 1-of-8 mux will 
have eight data inputs, three select lines to choose one out of eight inputs to 
go through the Mux, a master enable E, that allows us to concatenate the mux 
with others to build even larger multiplexers, and one output.

Exercise: Derive the truth table and a logic implementation of a 1-of-8 
mux. Assume that one has logic gates of the required number of inputs, to 
facilitate the task. This last assumption does not preclude generality to the 
exercise. If gates of the required number of inputs are not available or we 
are not allowed to use them, we can always build gates with larger number 
of inputs using multiple gates with a smaller number of inputs. For example 
an 8-input OR gate can be built in a number of ways according. Figure 8.14 
shows two possible implementations of an 8-input OR gate (a) using 4-input 
and 2-input gates (b) using all 2-input gates.

8.3.2  Building Larger Multiplexers

How do we construct a 1-of-8 mux using just 1-of-2 muxes? Assume that all 
of our 1-of-2 muxes have a master enable input pin. We can think of a mux 
having a funneling effect on its input data signals from left to the output on 

Table 8.7  Somewhat expanded or more explicit 1-of-4 multiplexer truth table

Enable Data Inputs
Data Control 

Line Output

E I0 I1 I2 I3 S1 S0 Y

1 0 X X X 0 0 0
1 1 X X X 0 0 1
1 X 0 X X 0 1 0
1 X 1 X X 0 1 1
1 X X 0 X 1 0 0
1 X X 1 X 1 0 1
1 X X X 0 1 1 0
1 X X X 1 1 1 1
0 X X X X X X 0
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the right. Let us refer to the graph depicted in Figure 8.15, if we start with a 
1-of-2 mux (Mux 1) we can feed with two other 1-of-2 muxes (Muxes 2 and 
3) a total of 4 signals into Mux 1. We repeat this process one more time and 
we can feed 8 signals into Mux1, using in addition to Muxes 2 and 3, Muxes 4, 
5, 6, and 7.

Figure 8.13  (a) 1-of-4 mux schematic symbol; (b) 1-of-4 mux logic implementation.
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But we are not done yet; we still need to identify data inputs I0 through I7 
of the overall composite 1-of-8 mux. So one more time referring to our picture 
of Figure 8.15, assume that the data select line of Mux 1 is assigned to be the 
MSB of the select lines of our composite 1-of-8 mux. The select lines of muxes 
2 and 3 are tied together and assigned to be the middle bit of the 3-bit select 
line group of our 1-of-8 mux. Finally, we assign the select line of muxes 4, 5, 
6, and 7 tied together to the LSB of the 3-bit select line group of our composite 
1-of-8 mux. Following what was just described can be seen depicted in Figure 
8.15. In Figure 8.15 the data paths are highlighted with heavy lines. The select 
lines are shown with a medium weight line. Finally, the master enable lines are 
all drawn with a lightweight line. Lines that cross and do not have a heavy dot 
at their intersection are not connected.

The techniques depicted in Figure 8.15 can be generalized to build virtually 
any mux of any desired number of inputs with other combination of smaller 

Figure 8.14  Eight-input OR gate implementation (a) using 4-input and 2-input gates; (b) using 
all 2-input gates.

(a)

(b)
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Figure 8.15  A 1-of-8 mux implementation using 1-of-2 muxes.
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muxes. Naturally the number of mux inputs is always 2S, where exponent S is 
the number of the mux select lines.

Exercise: (1) Using the techniques used for the 1-of-8 mux, build a com-
posite 1-of-32 mux. Hint: Use four 1-of-8 muxes and one 1-of-4 mux. (2) 
Try a different implementation with another mix of muxes.
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8.3.3  De-Multiplexers

From our previous example depicted in Figure 8.12 and knowing the logic of 
a decoder, we can appreciate that in a way a decoder can be used as a de-
multiplexer, in the sense that it reverses what multiplexers do to data. Figure 
8.16a shows wedged-shaped symbols for mux and de-mux. Such wedged 

Figure 8.16  (a) System level view of a mux/de-mux application; (b) 1-to-2 decoder with enable; 
(c) 1-to-2 decoder wired as a de-multiplexing device.
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symbols are preferred in computer architecture and systems illustrations. We 
will use a wedge for a mux in later chapters of the book that deal with com-
puter architecture. Figure 8.16b shows the schematic symbol of the simplest 
decoder one can have a 1-to-2 decoder, with a single select line, two outputs 
and its master enable line. Finally, Figure 8.16c depicts the use of a decoder as 
a de-multiplexer in our application of Figure 8.12.

8.4  SIGNED AND UNSIGNED BINARY NUMBERS

The binary numbers that we described on the previous chapter did not have 
any sign; they were just positive or unsigned binary numbers. If we have n bits 
to represent a positive number there are 2n binary combinations of such 
numbers. Now if we intend to represent positive as well as negative numbers, 
but continue to use binary-valued terms or bits, we must give up some of the 
positive number binary combinations and allocate them to the negative range. 
Why? Because we cannot use a negative sign to depict a negative number; this 
implies the need of three different symbols to represent numbers, the 1, the 0, 
and the “-” sign. We are supposed to represent positive and negative numbers 
with just ones and zeros. This will become clearer when we go over some 
examples.

8.4.1  One’s Complement Representation of  
Binary Numbers: Addition

Let us assume that we are working with 3-bit binary numbers. The 1’s comple-
ment of a binary number is defined as the bit-to-bit complementation of every 
one of its bits. For example, given the 3-bit binary number 010, its 1’s comple-
ment is 101. Similarly, given the 3-bit number 101, its 1’s complement is 010. 
It is easy to see that 1’s complementing a number twice in a row leads to the 
original number we started with. This is similar to the involution rule covered 
in the previous chapter (refer to Table 7.11 in Chapter 7).

Now what follows is the most important consideration about 1’s comple-
ment numbers, given n bits to represent a 1’s complement number, the most 
significant bit (MSB) is allocated to represent the number sign. A leading 0 
means the number is positive, a leading 1 means that the number is negative. 
The rest or the (n − 1) remaining bits are assigned to represent the number’s 
magnitude. Figure 8.17a depicts the bit assignments of an n-bit 1’s complement 
number, Figure 8.17b depicts the bit assignments for a three-bit (n = 3) 1’s 
complement number.

Now we know how to obtain the 1’s complement of a number and we know 
how the bits are assigned. Let us look into how we obtain the negative number 
of 3-bit positive 001.

Simply take the 1’s complement of 1, which leads to 110.

 1’s C(001) 110.=  (8.15)
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Equation (8.15) thus is the representation of decimal number −1 in three-bit 
1’s complement form. Conversely, given a 3-bit 1’s complement number such 
as 110, by inspection of the number’s MSB we know that we are dealing with 
a 3-bit negative number, check the MSB. One more time in order to find the 
magnitude of such negative number; again we take the 1’s complement of 110.

 1’ ( ) .s C 110 001=  (8.16)

Hence the given negative number (i.e., 110) magnitude is 1. Table 8.8 depicts 
the 1’s complement of all 3-bit positive numbers.

By inspection of Table 8.8 we can tell that if we want to use the 1’s comple-
ment representation for positive as well as negative numbers, the first four 
numbers under the 1’s Complement column have to be negative numbers, 
because they have a one MSB; whereas the last four binary combinations of 
the same column have to represent four positive binary numbers, because they 
have a leading zero.

Note from Table 8.8 that the number zero has two 1’s complement repre-
sentations, that is 000 and 111; that is positive zero and negative zero. We will 

Figure 8.17  One’s complement bit assignments (a) for an n-bit number; (b) for a 3-bit number.
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Table 8.8  3-bit binary numbers and their associated 1’s complement representation

Positive 3-Bit 
Binary Number

Positive 3-Bit Binary 
Decimal Equivalent 1’s Complement

1’s Complement 
Decimal Equivalent

000 0 111 −0
001 1 110 −1
010 2 101 −2
011 3 100 −3
100 4 011 3
101 5 010 2
110 6 001 1
111 7 000 0

Table 8.9  Basic rules for unsigned or positive binary addition

Augend Addend Sum Carry Out

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

see that 2’s complement is a better negative number representation system, 
which will be the topic of our subsequent section.

Table 8.9 depicts the basic addition of two single bit unsigned numbers, 
augend and addend, the results is the sum and the right most column is the 
carry out.

So after all of the above why is 1’s complement good or what is it for? We 
can add numbers in 1’s complement representation using the fundamental 
rules of unsigned binary addition given by Table 8.9.

8.4.1.1  Four-Bit 1’s Complement Representation  4-bit 1’s complement 
numbers range from 0000 (decimal +0) up to 0111 (decimal +7). Negative 4-bit 
1’s complement numbers range from 1000 (decimal −7) up to 1111 (decimal −0).

The algorithm to obtain the 1’s complement of an n-bit binary number is 
simply flipping its zeros to ones and its ones to zeros. Given that X is our n-bit 
binary number:

1sComplement X 1sComplement x x ,x x xn n n’ ( ) ’ ( , , , ) ,  = =− − −1 2 1 0 1… xx x xn−2 1 0, , ,…

Table 8.10 lists all 4-bit numbers in 1’s complement representation.
From Table 8.10 again we see that 4-bit 1’s complement numbers exhibit 

plus and minus zero or double representation for the number zero. As a matter 
of fact, all n-bit 1’s complement numbers will always produce double repre-
sentation of the number zero.
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Table 8.10  Four-bit 1’s complement numbers

Representation in 4-bit  
1’s Complement Assigned Decimal Number

0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 −7
1001 −6
1010 −5
1011 −4
1100 −3
1101 −2
1110 −1
1111 −0

Example 8.5 Given the following 4-bit 1’s complement numbers, perform the 
additions indicated below and double check your results using their decimal 
equivalent.

(a) 0100 + 0011,
(b) 0101 − 0001,
(c) 1011 + 0010,
(d) 1011 + 0110.

Solutions

With the aid of Tables 8.9 and 8.10 we perform the operation as follows:

(a) 0100 + 0011 = 0111 and in decimal: 4 + 3 = 7
(b) 0101 − 0001 = 0101 + (−1 in 1’s C) = 0101 + 1110 = 0011 and a carry of 

1 in order to achieve the correct decimal result of +4 (since we are 
subtracting 1 from 5) the carry must be wrapped around and added 
back to the previous sum. Thus:

 

Carry =
+

1

0101

1110

0011
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Finally add the carry and let us refer to it as the End-Around-Carry 
(EAC) of 1 so that:

 
0011

0001

0100

EAC +

in decimal we have that 5 − 1 = +4, which is the final answer. Note that 
the first addition and the addition of the EAC, the second addition, 
effectively take two addition times, to perform the complete sum.

(c) 1011 + 0010 = 1101 and in decimal, note that 1011 is −4 in 1’s Comple-
ment, and 1101 is −2. Thus: −4 + 2 = −2

(d) 1011 + 0110 = 0001 and a Carry = 1, treating the Carry as an EAC we 
obtain:
0001 + 0001 = 0010. In decimal we have that 1011 + 0110 = 0010, 
which is −4 + 6 = +2. Note that when dealing with the 1’s complement 
addition not wrapping around the carry and adding to the previously 
obtained addition will not lead to the correct answer.

Note that what we need to do when we want to subtract B from A, is to add 
A and minus B, plus any end-around carry (EAC) that comes out of the opera-
tion. Because of the subsequent addition of the EAC the 1’s complement 
subtraction method is twice as slow as the 2’s complement subtraction. Because 
of this fundamental reason 1’s complement subtraction is hardly used.

8.4.2  Two’s Complement Representation of  
Binary Numbers: Addition

Having learned 1’s complement representation well it is reasonably straight-
forward to understand 2’s complementation. The basic formula to obtain the 
2’s complement representation of X an n-bit number is:

 2 1 1’ ( ) ’ ( ) .s C X s C X= + ignoring the Carry out bit  (8.17)

The sign and magnitude format for 2’s complement numbers, i.e. MSB is 
the sign bit, rest of the bits are its magnitude, is identical to the bit assignment 
for 1’s complement numbers (see Fig. 8.17).

Why 2’s complement numbers, we might ask ourselves. There are two 
reasons for them; first we will see after applying Equation (8.17) that there is 
a single representation for the number zero. Secondly, 2’s complementation 
addition never has to add a carry as an EAC (like 1’s complement does), the 
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Table 8.11  Four-bit 2’s complement numbers

Representation in 4-bit  
2’s Complement Assigned Decimal Number

0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 −8
1001 −7
1010 −6
1011 −5
1100 −4
1101 −3
1110 −2
1111 −1

carry in a 2’s complement addition must be set to zero if there is no Cin from 
a less significant bit position. When carry out is ignored, the 2’s complement 
representation of the addition is obtained.

Table 8.11 depicts all four-bit 2’s complement numbers.

Example 8.6 Shows how to perform binary additions in 2’s complement 
representation. The decimal equivalents of the same operations are shown. 
Perform the following four-bit 2’s complement additions:

(a) 0100 + 0011
(b) 0111 + 1110
(c) 0101 + 1100
(d) 1011 + 1110

Solutions to Example 8.6

Use the algorithm presented by Equation (8.17) to perform 2’s complementation.

(a) 0100 + 0011 = 0111, in decimal: +4 + 3 = +7
(b) 0111 + 1110 = 0101 and a carry of 1, since carry out has to be ignored 

the result is: 0101, which in decimal is: +7 − 2 = +5
(c) 0101 + 1100 = 0001 and a carry out of 1, since the carry has to be 

ignored the result is 0001, which in decimal is: +5 − 4 = +1
(d) 1011 + 1110 = 1001 and a carry out of 1, since the carry has to be 

ignored the result is 1001, which in decimal is: −5 − 2 = −7
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8.4.3  Other Numbering Systems

Interestingly, infinitely many numbering systems exist. In computer software 
the most interesting and usual numbering systems, which we have not dis-
cussed yet, are the octal and the hexadecimal systems. We will very briefly 
touch on this subject since in the author’s experience most scientists and 
engineers already know those numbers. The octal numbering system is simply 
based on eight uniquely defined digits, which are: 0, 1, . . . , 7. This numbering 
system is referred to as base 8. The hexadecimal numbering system or base 
16, has 16 uniquely defined digits, which are: 0 through 9 and A through F. 
Table 8.12 depicts the first 18 decimal, octal, and hexadecimal numbers.

The arithmetic rules for adding octal-to-octal and hex-to-hex numbers are 
pretty similar to those of decimal arithmetic. Care must be exercised knowing 
the uniquely defined digits for each numbering representation.

8.5  ARITHMETIC CIRCUITS: HALF-ADDERS (HA) AND 
FULL-ADDERS (FA)

Arithmetic circuits can be designed using the same concepts that we use when 
designing any other logic circuits. Basically truth tables and simplification 
methods are used to design them. Let us assume that we want to design the 
logic implementation of an adding cell. That is, a circuit that reads an augend 
bit (A), an addend bit (B), and produces the sum bit (S) and its carry out (Cout). 
Such circuit is referred to as a half-adder (HA) because it does not handle the 
carry in bit as full-adders do. The full-adder (FA) receives three input bits: 
augend (A), addend (B), and carry in (Cin), and it produces the sum bit of all 
three input bits and a carry out (Cout) bit. Table 8.13 depicts the truth table for 
a half-adder.

We obtain a maximally SOP form for output bits Cout and S of our 
half-adder.

Table 8.12  Some decimal, octal, and hexadecimal numbers

Decimal Octal Hex Decimal Octal Hex

0 0 0 9 11 9
1 1 1 10 12 A
2 2 2 11 13 B
3 3 3 12 14 C
4 4 4 13 15 D
5 5 5 14 16 E
6 6 6 15 17 F
7 7 7 16 20 10
8 10 8 17 21 11
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Table 8.13  Half-adder truth table

Augend A Addend B (Carry out) Cout Sum S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Without doing an explicit 2-variable K. map it can be seen that:

 C ABout =  (8.18)

and

 S A B= ⊕  (8.19)

The logic implementation for the HA is given by Figure 8.18.
Table 8.14 depicts the truth table of a full-adder.

Figure 8.18  Half-adder logic implementation.
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Cout

S

Table 8.14  Full-adder truth table

(Carry in) Cin Augend A Addend B (Carry out) Cout Sum S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Using a 3-variable K. map we find simplified logic equations to express the 
sum bit S and Cout of the FA. Figure 8.19 depicts the K. maps to obtain the 
maximally simplified SOP form for output bits Cout and S. From the truth table 
(Table 8.14) we fill in the K. maps for both output bits, Cout and S, these are 
depicted in Figure 8.19.

Referring to Figure 8.19a it is evident that none of the minterms m1, m2, m4, 
and m7 has any adjacent minterms. So the simplified SOP and the canonical 
SOP forms are identical. Moreover, from the canonical equation:

 S C A B C A B C A B C A Bin in in in= = + + +∑( , , , ) . . . . . . . .1 2 4 7  (8.20)

and since a two-variable XOR is:

 A B A B A B⊕ = +. . ,  (8.21)

Figure 8.19  (a) Full-adder: K. map for Cout; (b) full-adder: K. map for S.
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Equation (8.21) is found to be logically equivalent to Equation (8.23) after 
some Boolean algebra manipulations; that is:

 S C A B C A B C A B C A B A B Cin in in in in= = + + + = ⊕ ⊕∑( , , , ) . . . . . . . . .1 2 4 7  
(8.22)

The simplified SOP form for output bit Cout is:

 C AB A B Cout in= + +( ) .  (8.23)

Writing the canonical form of Equation (8.23) by inspection of Figure 8.19b 
we obtain:

 C C A B C A B C A B C A Bout in in in in= + + +. . . . . . . . .  (8.24)

Grouping terms:

 C C A B A B C A B C A Bout in in in= + + +( . . ) . . . . .  (8.25)

Applying Equation (8.25) to Boolean algebra rules yields:

 C AB A B Cout in= + ⊕( ) .  (8.26)

The Cout of the FA has two alternate logic Equations (8.23) and (8.26).
The logic implementations of our full-adder S and Cout output bits are 

depicted in Figure 8.20.
Figure 8.21 depicts the schematic symbol diagram of a full-adder.
Note that this is the first time in this text that the schematic symbol of a 

combinational circuit is drawn in a somewhat nonconventional form. Conven-
tionally circuits are drawn with inputs on the left-hand side and outputs on 
the right-hand side. Full-adders violate those conventions for exceptionally 
good reasons. Note that the Cin input to the FA is drawn on the right hand 
side, while its Cout output is drawn on the left hand side of the symbol. Inputs 
A and B are drawn on top and output S at the bottom. Inputs at the top and 
outputs at the bottom of schematic symbols are within the conventional 
drawing criteria. The reason why Cin is on the right and Cout is on the left is 
primarily due to the arithmetic done by an FA; similar to hand addition opera-
tions carries move from right-hand side digits to more significant or left-hand 
side digits. In the next section we will see that an interconnection of full-adders 
allows us to build multi-bit adders.

8.5.1  Building Larger Adders with Full-Adders

When we perform the addition of two numbers, an augend and an addend, 
regardless of whether these numbers are decimal or binary, the addition algo-
rithm is always the same.
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Figure 8.20  (a) FA logic implementation of its S output; (b) FA logic implementation of its Cout 
output; (c) FA alternate logic implementation of its Cout output.
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Example 8.7 Given two 4-bit binary numbers, describe the algorithm that 
one utilizes in performing the complete addition. Assume our augend has bits 
A3A2A1A0 which can be annotated in a more compact fashion as A[3:0]. The 
addend of bits B3B2B1B0 can also be annotated as B[3:0].

To perform the addition of A[3:0] and B[3:0] we write both numbers as 
follows:

 

A A A A

B B B B

S S S S

3 2 1 0

3 2 1 0

3 2 1 0

+ .
 (8.27)

We will refer to the above layout of numbers, Equation (8.27) being formed 
by four slices, slice 0 the least significant slice, contains A0, B0, and S0, then slice 



538  DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

Figure 8.21  FA schematic symbol.

S

AB

Cout Cin
Full-Adder

* Cout is always produced by a preceding slice regarding of its value (0 or 1); unless fast carry logic 
is used.

Example 8.7 actually is the justification for drawing the FA inputs and output 
the way that they are shown in Figure 8.21. Having gone over the algorithm 
of Example 8.7 we can easily interconnect four FA’s to build a 4-bit binary 
adder. This time however since all FA’s have the same logic, there will an 
overall Cin to slice 0 and we will refer to it a C0. Figure 8.22a depicts an inter-
connection of full-adders that constitute a 4-bit binary adder. Figure 8.22b 
shows a more compact manner of showing a 4-bit binary adder. Figure 8.22b 
does not imply in any way how the adder is internally designed. It can be built 
with FA’s or other type of logic. Finally Figure 8.22c depicts the most compact 
form of all three of representing a 4-bit binary adder. These types of symbols 
are very convenient to use when we deal computer architecture issues and 
micro controllers in general.

1 contains A1, B1, and S1, and similarly for slices 2 and 3. Slice 3 is the most 
significant slice of our numbers.

The number arrangement depicted by Equation (8.27) is exactly what we 
do when we perform an addition with paper and pencil. For now let us assume 
that there is no Cin into slice 0. We begin the addition from the least significant 
slice by adding A0 and B0 to obtain S0. This sum may produce a Cout* from slice 
0 that has to propagate to slice 1. To obtain the sum for slice 1, or S1 we must 
add Cout from slice 0, which we will name as C1, to A1 and B1. The process 
continues in the same fashion for all the slices. The last slice, slice 3 of our 
example, produces C4, which is the overall Cout of the 4-bit addition.
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Figure 8.22  (a) 4-bit binary adders built with FA; (b) compact form of a 4-bit binary adder; 
(c) an even more compact form of a 4-bit binary adder.
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8.5.2  Notes about Full-Adder Timing

Let us assume a FA just like the one depicted in Figure 8.21. When all inputs 
are applied to the FA’s simultaneously, there are two delays; one of them is 
the delay that it takes for output S before to settle down to a valid value. The 
other delay is the time that it takes the Cout output to settle down and become 
valid. Since it takes some longer time for Cout to settle to a valid value, Cout 
practically becomes the gating factor or the slow timing path, for the complete 
sum to be ready. The complete sum refers to the availability of valid values for 
S and for Cout. Since S is valid a little earlier that Cout, we then say that Cout is 
the long path in the sum. Now let us call this longer delay the full-adder delay, 
which at the moment we do not care about its absolute value in nano-seconds. 
When we build a 4-bit adder like the one shown in Figure 8.22a note that we 
now call the complete sum the availability of all outputs of the 4-bit adder, i.e. 
valid S3, S2, S1, S0, and C4, which is also the overall carry out of the adder. From 
the 4-bit adder point of view we do not care (to a point) about the availability 
of valid internal carries that propagate through the adder. We do care about 
them from the perspective that the longer it takes for those carries to propa-
gate through the internal logic the longer it will take to obtain the complete 
sum. For the 4-bit adder of Figure 8.22a, implemented with full-adders, the 
overall adding time is four full-adder delays. So from the time the last input 
becomes valid at the adder input, we need to wait for the result sum and carry 
out for four full-adder delays. Should we take the sum reading before such 
time there is no guarantee about its correctness.

8.5.3  Subtracting with a 4-bit Adder Using 1’s 
Complement Representation

Let us continue our example with 4-bit wide 1’s complement numbers. Let us 
also recall from an earlier section of this chapter that if we need to subtract 
B from A, where A is the minuend and B is the subtrahend, this can be accom-
plish using 1’s complement arithmetic by adding the 1’s complement of B, the 
subtrahend to A, the minuend, await for the overall output carry of the 4-bit 
adder to become valid and add it back into the input carry of the adder. This 
last step is referred to as adding the End-Around-Carry (EAC). Figure 8.23 
shows how that implementation is done.

Referring to Figure 8.23a observe that the carry out of the 4-bit adder is 
tied back into the carry in. The subtraction is performed as the sum of A with 
the 1’s complement of B plus any end-around-carry (EAC):

 A B A B A s Complement B EAC− = + − = + +( ) { } .1’  (8.28)

Note that if we deal with 4-bit wide numbers then A = A[3:0] and B = B[3:0].
Because of the need to add the EAC, we have to wait to obtain the complete 

subtraction, which is two complete 4-bit adder delays. Figure 8.23b implement 
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Figure 8.23  (a) 4-bit binary adder configured as a subtractor using 1’s complement arithmetic, 
(b) hardwired logic for a 1’s complementer, (c) programmable logic for a 1’s complementer. 
(*) When the complement-control input signal (c) is high, the 4-bit input number at the 1’s 
Complementer logic will become 1’s Complemented at the 1’s Complementer 4-bit output. When 
the complement-control input signal (c) is low, the 4-bit input number at the 1’s Complementer 
logic will pass-through the 1’s Complementer logic to its 4-bit output unchanged.
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1's
Complementer

B [3:0]
_

Complement-Control
Input

0: Pass through

1: Complement

Logic one
(*)

(*) The one’s complementer of part c) is used

Cout inC

(a)

(b)

(c)



542  DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

Figure 8.24  2’s Complement 4-bit binary adder/subtractor.
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the simplest possible 1’s complementer, which is just a bit-to-bit inverter. Such 
one’s complementer is said to be hardwired. Figure 8.23c shows an implemen-
tation using XOR gates, why? This implementation allows one to use the same 
logic as pass-through logic when its control input is zero and it converts the 
logic into a 1’s complementer when the control input is a one. That means that 
the logic block depicted by Figure 8.23a could also be used as an adder and 
not just as a subtractor. Of course for this scheme to be complete we should 
multiplex or gate the end around carry, opening the EAC path when we con-
figure the logic as an adder and provide a path for the output carry to feed 
into the input carry when we configure it as a subtractor. For the sake of prac-
ticality, we simply now move on to the 2’s complement adder/ subtractor which 
is the most effective way of implementing and adder and a subtractor using a 
4-bit adder.

8.5.4  Subtracting with a 4-bit Adder Using 2’s 
Complement Representation

The 1’s complement adder/subtractor is interesting but it is not fast enough. 
We can do better if we do not have to wait for the carry out to travel its way 
to the carry in (EAC). So the 2’s complement version of the adder/ subtractor 
is presented in Figure 8.24. Note the EAC path, seen for the 1’s complement 
implementation is now not connected for the 2’s complement implementation. 
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Example 8.8 Draw a block diagram of a 4-bit 2’s complement adder/
subtractor that upon its control input being 0 it adds, but if the control input 
is 1 it subtracts using 2’s complement arithmetic. Equation (8.17) repeated 
below for the reader’s convenience shows the algorithm used to obtain the 2’s 
complement of an n-bit binary number

 2 1 1’ ( ) ’ ( ) .s c X s complement X= + ignoring the Carry out bit  (8.29)

Figure 8.24 below depicts the solution to Example 8.8.
Referring to Figure 8.24 let us see how the adder part works. Upon setting 

to zero the control input to the select line of the 1-of-2 mux, the overall adder 
Cin is zero and the 1’s complementer logic box is in pass-through mode, i.e. 
does not invert its inputs. The logic of Figure 8.24 simply adds with a high-level 
control input. When the control input is zero two things happen, the Cin is set 
to one and the one’s complementer logic box control input is also set to one. 
The 1’s complementer is set to complement mode and since the Cin to the 
adder/subtractor is set to 1, the logic is basically executing:

 A = A+ 1 1 2− = + −( ) + = +B A B s C B A s C B’ { } ’ { }.  (8.30)

Equation (8.30) in effect performs the subtraction of B from A in 2’s comple-
ment form.

It is important to remember that when using 2’s complement arithmetic the 
carry out has to be ignored.

8.6  CARRY LOOK AHEAD (CLA) OR FAST CARRY GENERATION

Let us now go back to our full-adder basic building block with its two logic 
equations, repeated below for the reader’s convenience:

 S A B Cin= ⊕ ⊕  (8.31)

 C AB A B Cout in= + ⊕( ) .  (8.32)

Since a basic multi-bit adder can be thought as a concatenation of full-adders, 
let us generalize Equations (8.31) and (8.32) for a FA slice. So let us re-write 
Equations (8.31) and (8.32) as if they were the equations of the ith slice.

 S A B Ci i i i+ = ⊕ ⊕1  (8.33)

 C A B A B Ci i i i i i+ = + ⊕1 ( )  (8.34)

where in Equation (8.33) we can appreciate that Ci is the Cin to the ith slice 
in question produced by its immediately less significant and adjacent slice, or 



544  DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

slice (i − 1)th. Similarly with Ci on Equation (8.34); and Ci+1 is the Cout of the 
ith slice.

We will describe a 4-bit adder, which has four slices, slice 0 is the least sig-
nificant slice and 3 is the most significant slice. Personalizing Equations (8.33) 
and (8.34) for each of our four slices we obtain the following logic expressions, 
where we are assuming that slice 0 is the least significant slice and slice 3 is 
the most significant slice of our 4-bit adder.

For all sum bits:

 Slice S A B C0 : 0 0 0 0= ⊕ ⊕  (8.35)

 Slice S A B C1 : 1 1 1 1= ⊕ ⊕  (8.36)

 Slice S A B C2 : 2 2 2 2= ⊕ ⊕  (8.37)

 Slice S A B C3 : 3 3 3 3= ⊕ ⊕  (8.38)

and for all the carryouts we obtain:

 Slice C A B A B C0 : ( )1 0 0 0 0 0= + ⊕  (8.39)

 Slice C A B A B C1 : ( )2 1 1 1 1 1= + ⊕  (8.40)

 Slice C A B A B C2 : ( )3 2 2 2 2 2= + ⊕  (8.41)

 Slice C A B A B C3 : ( ) .4 3 3 3 3 3= + ⊕  (8.42)

By close inspection of Equations (8.39) through (8.42) we see that since real 
logic gates have non-zero gate delays, C1 has to be generated by the Cout logic 
of slice 0 before the addition can proceed to slice 1. Similarly C2 has to be 
generated by slice 1 Cout logic before the addition can proceed to slice 2. 
Exactly the same is true for C3 and for C4.

Let us now make a couple of definitions, let the Ai Bi be Generatei or Gi 
terms for i ranging from 0 to 3. We will also define the term (A Bi i⊕ ) as the 
Propagatei term or Pi for i ranging from 0 to 3. With those new definitions we 
rewrite Equations (8.39) through (8.42) and we obtain:

 Slice C G P C0 : 1 0 0 0= +  (8.43)

 Slice C G PC1 : 2 1 1 1= +  (8.44)

 Slice C G P C2 : 3 2 2 2= +  (8.45)

 Slice C G P C3 : .4 3 3 3= +  (8.46)

Plugging C1 from Equation (8.43) into Equation (8.44) yields:

 Slice C G P G P P C1 : .2 1 1 0 1 0 0= + +  (8.47)
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Plugging Equation (8.47) into Equation (8.45) yields:

 Slice C G P G P P G P P P C2 : .3 2 2 1 2 1 0 2 1 0 0= + + +  (8.48)

Plugging Equation (8.48) into Equation (8.46) yields:

 Slice C G P G P P G P P P G P P P P C3 : .4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0= + + + +  (8.49)

Now let us carefully look at Equations (8.43), (8.47), (8.48), and (8.49). Note 
that each one of those equations, regardless of the number of terms and the 
number of inputs per AND gate, are all in SOP form, which means that they 
can all be implemented in just two levels of logic. Refer to Figure 8.25 and 
look at the logic implementations that produce carryouts: C1, C2, C3, and C4.

Using the defined generate Gi and propagate Pi terms in Equations (8.43), 
(8.47), (8.48), and (8.49) these can be rewritten as:

 Slice S G C0 : 0 0 0= ⊕  (8.50)

 Slice S G C1 : 1 1 1= ⊕  (8.51)

 Slice S G C2 : 2 2 2= ⊕  (8.52)

 Slice S G C3 : .3 3 3= ⊕  (8.53)

So based on Equations (8.43), (8.47) through (8.49), and Equations (8.50) 
through (8.53), the picture of a 4-bit adder with carry look ahead or fast carry 
generation is depicted in Figure 8.25.

Note that the adder has four clearly marked areas with horizontal dotted 
lines. Each area is a slice of the adder. Now for the sake of simplicity of the 
timing analysis that we will get into, assume that all logic gates on the diagram 
have the same propagation delay. This is not true, but the assumption simplifies 
the analysis without us getting lost in the details. Note that this adder (Fig. 
8.25) unlike the adder implemented with full-adders, (Fig. 8.22a), does not 
have a carry that propagates from the least to the most significant slice.

The adder with fast carry look ahead produces each slice’s carryout with 
three levels of logic gates. Carefully observe that the first level is the one that 
generates the Pi and Gi terms, the AND gates are the second level and the 
collecting OR gate is the third level. Finally is easy to observe that the sum bit 
requires one additional logic gate delay (exclusive OR) to produce the Si bit. 
The above statement is true for the entire adder, slices 0 through 3. It is also 
important to mention that the same adder with carry look ahead can be used 
to implement a subtractor by adding the 1’s complementing logic to the sub-
trahend. We could continue to discuss fast adders but because of space reasons, 
we refer the reader to the references at the end of this chapter.
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Figure 8.25  Logic implementation of a 4-bit adder with fast carry generation.
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8.7  SOME SHORT-HAND NOTATION FOR LARGE LOGIC BLOCKS

We covered several logic blocks like decoders, multiplexers and adders; in 
most cases we drew every bit of the logic block in an explicit fashion. For 
example look back at Figures 8.13a and 8.15. In computer architecture litera-
ture is common to see a very compact way of drawing multi-bit devices. 
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Assume we need a 1-of-4 multiplexer where each of its input is 32 bits wide. 
If we drew such device bit by bit it would look cumbersome and hard to read. 
Instead we draw a single line for each one of the 1-of-4 mux inputs and indicate 
with a short crossed line the number of bits the mux leg has. Note that output 
Y is a 32-bit wide output.

Figure 8.26 is a representation of the 32-bit wide 1-of-4 multiplexers in 
compact notation.

Note that such 32-bit wide mux can be constructed with thirty-two regular 
1-of-4 multiplexers.

Exercise: Get a large piece of paper and draw a detailed explicit drawing 
for the 32-bit 1-of-4- mux implemented with 32 individual 1-of-4 muxes.

We draw in a similar fashion very wide adders and subtractors. In the subse-
quent chapter we will use this compact notation more liberally which we will 
see that it also applies to registers, counters, and state machines. These are all 
sequential circuits (circuit with memory capabilities) not covered yet.

8.8  SUMMARY

This chapter covers a good number of combinational circuits: decoders,  
multiplexers, and arithmetic combinational circuits such as adders and 
subtractors.

The purpose of this chapter is to make the reader feel at ease designing 
virtually any simple or complicated combinational circuit by learning how to 
establish their truth table, how to do the logic simplification, and in some cases, 
how to partition big circuits into smaller ones to simplify the methodology or 
even clarify their behavior.

For in-depth coverage of arithmetic circuits the reader is referred to Refer-
ence [1].

Figure 8.26  Compact graphic representation of a 32-bit wide 1-of-4 multiplexer.
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FURTHER READING

1. Shlomo Waser and Michael J. Flynn, Introduction to Arithmetic for Digital System 
Designers, Holt, Rinehart and Winston, New York, 1982.

2. Robert L. Morris and John R. Miller, Designing with TTL Integrated Circuits, Texas 
Instruments Electronic Series, McGraw-Hill, New York, 1971.

3. Morris Mano, Digital Design, Prentice Hall, Upper Saddle River, NJ, 1984.

 

PROBLEMS

8.1 (a) Define the truth table for a logic circuit that given a three-bit posi-
tive binary number input, produces a four-bit output that equals the 
initial 3-bit number plus 7. This circuit has three inputs and four outputs; 
(b) Obtain the simplified SOP form of the four outputs; and (c) draw 
the circuit.

8.2 (a) Define the truth table for a logic circuit that given a four-bit binary 
number, produces a four-bit output that equals the initial 4-bit number 
1’s Complemented. This circuit has four inputs and four outputs; (b) 
Obtain the simplified SOP form of the four outputs; and (c) draw the 
circuit.

8.3 Implement the logic found for Problem 8.1 with the smallest possible 
multiplexer and any inverter gates as needed.

8.4 Implement each piece of logic found for Problem 8.2 with the smallest 
possible multiplexer and any inverter gates as needed.

8.5 Implement a 3-variable XOR function with the smallest possible mul-
tiplexer and inverter gates as needed.

8.6 Implement with the smallest possible decoder and minimal number of 
OR gates a 4-variable XOR function.

8.7 Without simplifying the logic, implement the following function entirely 
with NAND gates:

 f A B C D A B C A B D A B D( , , , ) . . . . . .= + +

8.8 Without simplifying the logic, implement the following function entirely 
with NOR gates:

 f A B C D A B C A B D A B D( , , , ) . . . . . .= + +

8.9 Write the truth table for a 4-bit positive binary adder with no carry in 
and no carry out. Implement and draw the circuit of the 4-bit input and 
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4-bit output positive binary adder with the smallest number of multi-
plexers of the smallest size possible and inverter gates as needed.

8.10 Implement and draw the circuit of the adder of Problem 8.9 with the 
smallest size and smallest possible number of decoders and OR gates 
as needed.

8.11 Draw the circuit of a two 4-bit input binary adder with carry in and carry 
out with fast carry-look-ahead logic. This circuit has 2 4-bit inputs, one 
overall carry-in input, one 4-bit output and one overall carry-out output. 
Use 4 single bit full-adders in addition to the carry-look-ahead logic.

8.12 Design and draw the circuit of a 1-of-8 multiplexer using only 1-of-2 
multiplexers. Write the truth table of the circuit to-be-designed.

8.13 Design and draw the circuit of a 1-of-16 multiplexer using some 1-of-2 
multiplexers and some 1-of-4 multiplexers. Write the truth table of the 
circuit to-be-designed.

8.14 Given a 4-bit 2’s Complement binary number design the logic that pro-
duces the absolute value of the 2’s Complement input. This circuit shall 
have a 4-bit input and 3-bit output. Write the truth table of the circuit 
to-be-designed.

8.15 Design a combinational circuit that given a 4-bit input produces the 
bit-to-bit OR of each one of the 16 binary input combinations. This 
circuit shall have 4 inputs and one output and must be implemented 
with the smallest possible decoder and OR gates if needed. Write the 
truth table of the circuit to-be-designed.

8.16 Implement a 3-bit XOR logic block entirely with NAND gates.

8.17 Implement a 3-bit XOR logic block entirely with NOR gates.
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9

SEQUENTIAL LOGIC AND 
STATE MACHINES

9.1  INTRODUCTION

Logic is classified in two main types: combinational and sequential. We covered 
examples of combinational circuits in the previous chapter. This chapter mainly 
deals with sequential logic circuits. Let us recall that combinational logic cir-
cuits are those whose outputs depend on the current inputs. Such outputs are 
considered good or stable after the gate propagation delays have settled down. 
Combinational circuits are logic circuits without memory capabilities. Sequen-
tial logic circuits’ outputs depend not only on the current inputs but also on 
their past history. This means that somehow sequential circuits must have some 
sort of memory. Such information in the sequential circuit memory is referred 
to as a state. Having added the memory concept to the sequential circuit, the 
outputs of a sequential circuit may depend on the current inputs and the 
current state or just on the current state. The terms sequential logic or state 
machine are often interchangeably used. Now within sequential state machines 
there are two categories of them: synchronous and asynchronous state 
machines. The majority of digital designs are done with synchronous logic. 
Synchronous designs are very well behaved and controlled by typically a fixed 
frequency clock, the clock supplies pulses at well-defined intervals of time. 
Asynchronous designs are not clocked and designers try to stay away from 
them because of their complexity and debug difficulties. In synchronous 
designs states can only change upon an active edge of the clock. Asynchronous 
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designs are useful when input signals to the circuit may change at any time. 
Asynchronous circuits must obtain a stable state before an input can change 
again. Simultaneous changes of more than one input at a time are usually 
prohibited in asynchronous circuits. When two different micro-controllers 
communicate to each other, since each one has its own synchronous clock 
domain, the interfacing between the two is done as if the circuits were asyn-
chronous with respect to each other. Examples of ways of allowing communi-
cation between independently synchronous machines are serial interfaces, 
such as RS-232, I2C, and so on. Another example of asynchronous signals that 
need to be interfaced to a synchronous machine are the external devices inter-
rupts that need to be routed to a micro-controller interrupt line. To accomplish 
that, asynchronous circuits, referred to as synchronizers and priority encoders 
are employed. Throughout this chapter the emphasis is given on synchronous 
state machines. 

It is important to visualize that almost anything built in electronics is or 
contains one or more state machines. A garden-watering control system with 
a soil humidity sensor embedded in the soil is a good example of a state 
machine. The watering system can be programmed to water for 5 minutes 
every day provided that the humidity sensor detects more soil moisture is 
needed. However, if the humidity sensor detects enough soil moisture, the 
watering period for that day can be skipped. Other examples of embedded 
state machines that we see on a daily basis are traffic lights, washing machines, 
alarm clocks, computerized controls in automobiles, like anti-lock braking 
systems (ABS), cash registers in stores, global positioning systems (GPS), all 
kinds of telephones and many more gadgets. Table 9.1 below summarizes the 
two types of sequential state machines that exist and some of their fundamen-
tal characteristics.

Table 9.1  Types of sequential logic circuits

Sequential Circuits (Have Memory)

Synchronous Asynchronous
Clocked Non clocked
Moore Mealy Outputs changes occur on response to 

a change on an input. Changing 
more than one input at any given 
time is avoided.

Outputs depend on 
present state only

Outputs depend on 
present state and 
current inputs

Simplest to understand Complicated to understand
Robust design. Preferred design practice. 

Very reliable behavior.
Hard to debug. Designers avoid them 

as much as practically possible. 
Whenever used they are usually 
interfaced with clocked state 
machines. Require synchronizing 
circuits.
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9.2  LATCHES AND FLIP-FLOPS (FF)

The fundamental memory element is the latch. A latch can memorize a binary 
state indefinitely as long as there is power to the circuit and no failures occur. 
The basic latch is built with two NOR gates or two NAND gates. More elabo-
rate combinations of latches and features can be obtained and are referred to 
as flip-flops. Figure 9.1 depicts an SR-latch implementation that with two NOR 
gates.

From Figure 9.1 we observe that the output of each NOR is fed back into 
one of the inputs of the adjacent NOR gate. That scheme is called a cross-
coupled NOR gate configuration. The S (Set) and the R (Reset) inputs are the 
controlling signals to the latch. The Q output or simply the noninverted output, 
and Q or the inverted output indicate the state the latch is in. Assuming one 
correctly uses the latch, it can only be in one of two possible states at any given 
time. The Set state is when the latched Q output holds a one (Q holds a zero). 
The Reset state is when the latched Q output holds a zero (Q holds a one). 
The Set state is also called the Preset state, while the Reset state is also called 
the Clear state. For consistency we will continue to talk just about Set and 
Reset states. The latch is said to be in a state (Set or Reset) after the transients 
and gate propagation delays effects are over. A very simple example of the 
use of a latch is to detect if a signal made a change from one state to the other. 
For example, we leave the house and would like to know if our telephone will 
ring at least once during our absence. Assume that the latch is initially in a 
Reset state and its Q output driving an LED, the LED is off and we leave the 
house. An off LED means the phone never rang. Assume that during our 
absence the phone rings, the LED will light up. When we come home we see 
the turned on LED. What happens if the phone ringed more than once, 
nothing would happen, the LED continues to be turned on. Note that a latch 
can only store one bit of information. We need more latches if we want to 
detect multiple rings. We will get there. The fact that the latch has two outputs 
it does not mean that it can store two bits; because after transients elapse the 
outputs are always complements of each other (provided that the latch was 

Figure 9.1  SR-latch with NOR gates.
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used correctly). We will analyze several cases to understand the SR-latch 
operation.

Case 1 The latch is initially Reset and then the SR inputs set it.
Let us remember that the output of a NOR gate is one only if both of its 

inputs are zero, and the output is one when either one of its inputs is one.
The following analysis can be followed with the aid of Figure 9.2. Observe 

that the S and R inputs of the latch are negated or zero. We need to check 
if the state of its outputs Q = 0 and Q = 1 is consistent with inputs S = 0 and 
R = 0. Since Q = 1 and R = 0, the top NOR gate produces a 0 at the Q output. 
Since Q = 0 and S = 0 the bottom NOR gate sustains a 1. Interchangeably, 
if we analyze the same conditions starting with the bottom gate we have 

Figure 9.2  Case 1: From a Reset latch to a Set latch: (a) latch circuit with sequence of inputs 
and outputs; (b) timing diagram.
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that since S = 0 and Q = 0 the gate output Q is 1. Now since the top gate 
has Q = 1 and R = 0 at its inputs the Q output sustains a 0. This analysis 
allows us to state that if the latch is already Reset and its inputs R and S 
are zeros that Reset state is held. We just concluded analyzing the initial 
state of the latch at time t = 0. Note that the timing diagram of Figure 9.2 
is in units of gate delays. That is, generally we will assume that both NOR 
gates have the same gate propagation delay. When we will make different 
assumptions they will be noted. Continuing with Figure 9.2, at time t = 1 
the S input goes high with a zero rise time (very very quickly), and it stays 
high for two gate delays. The first change that takes place in the circuit is 
on the lower NOR gate, because one of its inputs is S. S = 1 along with the 
zero from the Q output causes the lower gate output Q to change from 1 
to 0. This change takes no more that one gate delay, from t = 1 to t = 2. The 
new value of Q = 0 is fed into the upper NOR gate along with R = 0, this 
produces after one gate propagation delay a 1 at the upper gate output Q, 
so at time t = 3 the latch is in its new state, the Set state. Note that if the S 
input did not stay high for two gate delays the latch would not function 
correctly because the signals would not have time to fully propagate through 
both NOR gates. Input S drops back to 0 at time t = 3. So S had been high 
for the latch minimum required length of time. The latch is now Set (Q = 1) 
and remains Set as long as R = 0 and S = 0 as the timing diagram shows. 
The reader should validate that Set state is stable analyzing the latch like 
we did at the beginning of Case 1.

Figure 9.2a depicts the timing transitions at times 0, 1, 2, . . .

Case 2 Figure 9.3 shows the operation of latch initially Set, then being 
Reset by R = 1, S = 0. The reader is strongly encouraged to do a similar 
analysis to that made for Case 1.

Case 3 Figure 9.4 depicts a case with an initially Reset latch, is later Set 
once, then its inputs are held low (R = 0, S = 0) and Set again a second time. 

Figure 9.3  Case 2: From a Set latch to a Reset latch: (a) latch circuit with sequence of inputs 
and outputs; (b) timing diagram.
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Figure 9.4  Case 3: From a Reset latch to a Set latch followed by one more Setting: (a) latch 
circuit with sequence of inputs and outputs; (b) timing diagram.
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The importance of this case is to show that an already Set latch when Set 
again, remains Set, no changes.

Case 4 Shows a misuse of the latch. When both inputs are one (S = 1, 
R = 1) the latch no longer has complementary outputs. But this is not as 
bad as what follows. Upon both inputs dropping back to 0 a race condition 
takes place. Figure 9.5b timing diagram expresses that with question marks 
along the horizontal axis starting at time t = 3. If both gates delays are 
identical it is not possible to determine the state of outputs Q and Q. Their 
state is undetermined. However, if one gate is faster than the other one, the 
faster gate will race and dominate the end state of the latch. Both of these 
cases are depicted by Figure 9.6, which assumes that the top gate (gate 1) 
is faster than gate 2, and Figure 9.7 which assumes that the bottom gate 

Figure 9.5  Case 4: Nonallowed usage of the latch; both NOR gates have identical gate delays 
so that a final state is undetermined: (a) latch circuit; (b) timing diagram.
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(gate 2) is faster than gate 1. In summary, Figures 9.5, 9.6 and 9.7 are all 
representations of Case 4, the nonallowed case.

Having worked on all of the above examples we are now ready to write 
the characteristic table of the SR-latch. Table 9.2 summarizes the latch 
behavior.

9.2.1  NAND-Implemented R S/  Latch

An SR-latch implemented with NAND gates turns out to be an SR-latch with 
low-true or active low inputs. S becomes active when driven low, else S  is 
inactive. The same is true for R. R becomes active when driven low, and inac-
tive when driven high. It is important and also interesting to notice that the 
noninverted Q output is the output of the NAND gate whose input is S. Unlike 

Figure 9.6  Case 4: Nonallowed usage of the latch; top NOR gate is faster than bottom NOR 
gate: (a) latch circuit; (b) timing diagram.
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Figure 9.7  Case 4: Nonallowed usage of the latch; bottom NOR gate is faster than top NOR 
gate: (a) latch circuit; (b) timing diagram.
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Table 9.2  NOR-based SR-latch characteristic table

S R Q Q Description

0 0 Retains previously 
latched state of Q

Retains previously 
latched state of 
inverted Q

Holds the previously latched 
state

0 1 0 1 Reset
1 0 1 0 Set
1 1 0 0 Nonallowed condition. Outputs 

are no longer complements 
of each other. A race 
condition occurs upon both 
inputs being negated.
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the NOR-based SR-latch that has it Q output associated with the active high 
R input. Figure 9.8 shows the implementation of a NAND-based R S/  latch. 
Table 9.3 presents the characteristic table for a NAND-based latch.

Other than the differences observed on Table 9.3, the NAND-based latch 
is not different from the NOR-based latch. They both hold the previously 
latched state when both inputs are negated, they both can be in one of two 
possible states at any given time; the Q and Q loose their complementary 
nature upon both inputs being asserted at the same time. Finally, both latches 
exhibit a race condition when the inputs are negated immediately after being 
both asserted.

9.2.2  SR-Latch with Enable

We place an AND gate in front of every latch input and a clock pulse gates 
the flow of the S and R inputs to the latch. When the clock pulse is high the 
latch is a regular SR-latch, but when the clock pulse is low, the latch holds the 
previously latched state. Figure 9.9 depicts an SR-latch with enable.

Figure 9.8  NAND-based R S/  latch.
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Table 9.3  Characteristic cable for the  R S/  latch

S R Q Q Description

0 0 1 1 Nonallowed condition. Outputs 
are no longer complements of 
each other. A race condition 
occurs upon both inputs 
being negated.

0 1 1 0 Set
1 0 0 1 Reset
1 1 Retains previously 

latched state of Q
Retains previously 

latched state of 
inverted Q

Holds the previously latched 
state
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Figure 9.9  NOR-based SR-latch with clock pulse or enable.
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Table 9.4  NOR-based SR-latch with clock pulse or enable, characteristic table

R S Clock Pulse Q Q

0 0 1 Previously latched Q Previously latched inverted Q
0 1 1 1 0
1 0 1 0 1
1 1 1 Not-allowed Not-allowed
X X 0 Previously latched Q Previously latched inverted Q

Table 9.4 shows the SR-latch with enable characteristic table. Note that we 
called the enable (E) is also called clock pulse (CP). The emphasis is on the 
fact that the enable is a level sensitive control line, unlike flip-flops, which we 
will cover in other sections of this chapter, are clock-edge sensitive devices.

The NAND-based version of the latest follows for reference. Figure 9.10 
depicts the NAND-based latch. Table 9.5 contains the NAND-based latch 
characteristic table. Note that regardless of the clock pulse or enable control 
line, both latches implementations, either with NOR or NAND gates still have 
the nonallowed state that would lead to a race condition upon their inputs 
negating at the same time. One more time let us remember that the NOR-
based latch has active high inputs (R, S) while the NAND-based latch has 
active low inputs (R S, ). However, when we add the two NAND gates to gate 
the R S,  inputs into the NAND-based SR-latch, refer again to Figure 9.10, it 
is worth mentioning that the composite latch, which includes the gating NAND 
gates, acts as if it was an active high input device, whereas the internal NAND-
based SR-latch is still an active low input device. Refer to the annotations for 
the internal R S,  inputs (active low) and the external R,S inputs (active high) 
in Figure 9.10.

Whenever we want to refer to a latch with active high or active low inputs, 
with enable or without it, there are four new schematic symbols for them. Refer 
to Figure 9.11, which depicts the three types of latches that we have been discuss-
ing. It is important to note that regardless of the internal implementation of 
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circuit presented by a schematic symbol, its inputs and its characteristic table 
govern its behavior.

9.2.3  Master/Slave SR-Flip-Flop

SR-latches are useful in control applications. Latches with and without clock 
pulse enable are still not very precise because their Q outputs will not settle 
to their stable state as long as the enable is active or as long as the inputs do 
not settle. What we would like to have are devices that respond to either a 
low-to-high or a high-to-low going edge of the clock pulse or enable. Such 
devices, which are clock-edge sensitive or master slave devices, change state 
at the active edge of their clock. The clock is no longer called enable, it is just 
the clock input. An enable has the connotation of level sensitivity, whereas 
clocks have the connotation of edge sensitivity.

Figure 9.10  NAND-based SR-latch with clock pulse or enable.
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Table 9.5  NOR-based SR-latch with clock pulse or enable characteristic table

R S Clock Pulse Q(t + 1) Q t( )+ 1

0 0 1 Previously latched Q(t) Previously latched Q t( )
0 1 1 1 (Set) 0
1 0 1 0 (Reset) 1
1 1 1 1 (Not allowed) 1 (Not allowed)
X X 0 Previously latched Q(t) Previously latched Q( )t
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One master/slave configuration can be implemented with two cascaded 
SR-latches. Figure 9.12 shows the interconnection of both latches. Negative 
and a positive edge triggered flip-flops with their respective schematic symbols 
are shown.

Note a few differences between the symbols for latches and for flip-flops. 
All positive edge-sensitive devices show their clock with a small triangular 
symbol adjacent to the clock input line inside the device symbol. Negative 
edge-sensitive devices show their clock with a small triangular symbol adjacent 
to the clock input line and within the device symbol. Additionally, a bubble 
(inverting circle) is drawn at the base of the triangular symbol, just outside the 
symbol perimeter. Since clocks are inputs to flip-flop, clocks are drawn on the 
left-hand side of the schematic symbol. Figure 9.12 c and d depict, respectively, 

Figure 9.11  Latches schematics symbols: (a) SR-latch with active high inputs and no enable; 
(b) SR-latch with active low inputs and no enable; (c) SR-latch with active high inputs and an 
active high enable.
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symbols of a negative edge triggered SR flip-flop and a positive edge triggered 
SR flip-flop.

Let us analyze how the SR flip-flop of Figure 9.12a operates. The first SR-
latch is referred to as the master latch, while the right-hand side latch is the 
slave device. Note that both latches are simply active high inputs latches with 

Figure  9.12  SR-latches forming an SR master/slave flip-flop: (a) negative edge triggered 
SR flip-flop; (b) positive edge triggered SR flip-flop; (c) negative edge triggered flip-flop symbol; 
(d) positive edge triggered flip-flop symbol.
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active high enable input. The inverter in the clock line of the latches causes 
them to become enabled in a mutually exclusive fashion. When the left-hand 
side latch is enabled or open, the right-hand side one is disabled or latched, 
and vice versa. A latched SR-latch refers to the latch holding or preserving its 
output value due to its negated enable.* So let us present any of the three 
valid input combinations (i.e., R = S = 0, or R = 1, S = 0, or R = 0, S = 1) to the 
left-hand side latch. The rightmost latch will preserve or hold its outputs at 

Figure 9.13  Positive and negative edge triggered SR flip-flop timing.
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* A latch is said to be enabled when its outputs may change due to changes of its inputs. A latch 
is said to be disabled when its outputs are latched and will not change due to changes of its inputs.
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whatever state was previously latched, but the leftmost latch will act according 
to the setting of its inputs since its enable is active. The master latch transitions 
to the commanded new state;* the enable goes low, thus placing the master 
latch in hold mode. Now the slave latch sees a high clock because of the 
inverter in the clock line. The master holds it previously latched contents now 
and the slave gets commanded by the Q outputs of the master latch to change 
to the state commanded. Now let us look at this entire process as if the com-
plete master/slave configuration was a whole device to the external user, such 
user is the one that observes only the master inputs and the slave Q outputs. 
The change seen on the master-slave Q outputs occur as if the slave state 
outputs were changing on the negative transition of the clock. Figure 9.13 
depicts a timing diagram of a master/slave SR flip-flop. Although the R & S 
inputs, Q and Q internal output signals and the Q and Q outputs of the slave 
device are shown, it is important to look at the R & S inputs of the master 
device and the outputs of the slave device to appreciate the effect of the 
outputs changing at the negative edge of the clock. The Qinternal and Q ernalint  are 
important for the correct operation of the flip-flop, but at the flip-flop high 
level view, the most important signals to observe are R and S inputs and the 
flip-flop Q and Q outputs.

It is also important to see that the master/slave scheme did not in any way 
suppress the nonallowed conditions of both latches. That means that if both 
inputs R & S became asserted, the master would loose complementary outputs, 
both Qinternal and Q ernalint  will go to zero at time unit 2. Upon closing the master 
and opening the slave, both negated outputs of the master stage will propagate 
to the slave device, time unit 3. Between time units 2 and 3 both inputs R & 
S drop to zero. This will cause indeterminate output of the master stage upon 
its enable going high at time unit 3. On the next and low clock level the insta-
bility propagates to the slave stage at time unit 4. Figure 9.14 shows the opera-
tion of the SR-latch-based flip-flop under the nonallowed conditions, that is: 
R = S = 1 and then both negating simultaneously (R = S = 0).

9.2.4  Master/Slave JK Flip-Flop

It is meaningful to ask ourselves why don’t we suppress or fix the nonallowed 
condition of the SR latches and flip-flops. This exactly is what a JK flip-flop 
does. The JK (in short) is sort of the Cadillac of the flip-flops, as we will see 
very soon. The JK flip-flop not only has a master and a slave stages but also 
has some additional logic that blocks the nonallowed condition being present 
at its inputs. Figure 9.15 depicts the implementation of a JK using SR-latches, 
and inverter for the clock line and two AND gates to block the disallowed 
condition that would otherwise cause a race.

* Setting the R & S inputs at the desired levels and applying the clock to the flip-flop causes the 
issuing of a command. Such command can make the flip-flop transition to another state.
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Figure 9.14  SR flip-flop operating under nonallowed conditions.
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Let us inspect the JK and find out if it operates like the SR flip-flop at least 
under some input conditions. Assuming the JK is initially in the Set state and 
that its inputs J and K are zero, we know that the master latch should also be 
holding a Set state. Remember that a Set state means that Q = 1 and Q = 0. 
Notice the two AND gates, one fed by the Q output of the slave latch and the 
other AND fed by the Q output of the slave latch. Since we are assuming that 
both J & K are equal to 0 (this is our initial condition), the outputs of both 
AND gates produce zeros. These zeros feed the R and S inputs of the master 
stage latch. Thus, upon clocking this device as long as we want, while the JK 
inputs are negated, the flip-flop will preserve or hold the previously captured 
state. Such previous state in our example was the Set state. If we start the 
analysis all over again with just a minor change that the JK initial state is a 
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Reset we will arrive at the same conclusion. This means that our newly defined 
JK flip-flop holds the previous state for negated inputs J and K. This is so far 
no different than an SR flip-flop.

Assuming the JK flip-flop is again Set, if we bring the K input high and keep 
J low, note that the JK lower AND gate, is fed by a one from the Set state (or 
the Q output) and a 1 from the fact that K is high. Thus, the master stage SR 
latch sees the condition R = 1, S = 0, which after the clock allows to propagate 
the output of the master stage to the slave stage the JK flip-flop ends up in a 
Reset state. Similarly, if the JK is already Reset, clocking the condition R = 1, 
S = 0 will continue to Reset the JK, thus it stays Reset for as long as we keep 
clocking the flip-flop.

Now if we assume that out original JK flip-flop is either Set or Reset, input 
conditions are: R = 0, S = 1,the flip-flop will end up in a Set state for as long 
as we keep clocking the JK. So far the JK flip-flop behaves just like an SR 
flip-flop for the given conditions.

Now the JK becomes more interesting, assume an initially Set JK flip-flop 
and inputs J and K are both high, one more time following the logic of Figure 
9.15a the one at the Q output of the slave stage along with K input that is one, 
produces a one at the output of the lower AND with inputs Q and K. Remem-
ber that J is one and with its associated AND gate that receives a zero from the 

Figure  9.15  Negative edge-triggered master/slave JK flip-flop: (a) flip-flop logic circuit; 
(b) schematics symbol.
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Q output of the slave stage, thus it produces a zero at the S input of the master 
stage SR latch. In summary, the master latch sees R = 1 and S = 0. These condi-
tions produce the master latch to Reset. This Reset state propagates to the slave 
stage so that after a complete clock, the JK flip-flop Q output goes from 1 to 0.

Now what happens if we clock the JK FF one more time, while both inputs 
J and K are still 1? Now since the Q output of the slave stage is 0, with K = 1 
into the bottom AND gate produces a zero into the R input of the slave stage. 
However, since Q is 1 and J is 1, the top AND generates a 1 into the J input 
of the JK flip-flop. Upon such state of the inputs propagating through the 
master and slave stages, after one complete clock cycle, the Q output of the 
JK sets again. If we allow the clock to run indefinitely, the JK flip-flop Q output 
will toggle from 1 to 0 and from 0 to 1. Similarly, Q toggles from 0 to 1 and 
from 1 to 0. The above function of the JK just described does not preclude 
both inputs to the JK of being one.

Next we summarize the complete behavior of our negative edge triggered 
master/slave JK flip-flop. Table 9.6 summarizes the JK FF characteristic table.

Table 9.6 applies to negative clock edges. The same table applies to positive 
edge triggered JK flip-flop if under the Clock column we indicate an up-going 
arrow. The logic for a positive edge triggered JK and its schematics symbols 
are depicted in Figure 9.16.

The SR FF is very similar to the JK FF; the difference is that the SR does 
not support the simultaneous assertion of its R and S inputs. By inspection of 
the JK FF characteristic table, it is easy to see that only the last row of the JK 
would be equivalent to a nonallowed condition for the SR. We present the SR 
FF characteristic table in Table 9.7. Since generally we will be using positive 
edge triggered devices, the SR characteristic table is presented for rising clock 
edges.

9.2.5  Master/Slave T and D Type Flip-Flops

We will now study two more flip-flops and we will address them as particular 
cases of a JK. If we tie both inputs of a JK flip-flop together as shown in Figure 
9.17a, the JK is renamed T for Toggle flip-flop and its schematic symbol 
can be found in Figure 9.17b. Table 9.8 lists the characteristic table of a T 
flip-flop.

Table 9.6  Negative edge triggered master/slave JK 
flip-flop characteristic table

Clock J K Q(t + 1)

↓ 0 0 Hold (no change)
↓ 0 1 0 (Reset)
↓ 1 0 1 (Set)
↓ 1 1 Complement (toggle)
0 X X Hold (no change)
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The next and last flip-flop that we will cover is the D-type flip-flop or the 
Data flip-flop. The D-type flip-flop can be constructed by tying the JK inputs 
as depicted by Figure 9.17c; its schematic symbol is presented in Figure 9.17d.

The D-type flip-flop characteristic table is presented in Table 9.9.
The D flip-flop is commonly used to store a bit of information. It is in 

essence a 1-bit register. Remember that the SR latch studied earlier also stores 
one bit of information, but the latch is not a clocked device like the D flip-flop, 
the latch is referred to as an asynchronous device. Multi-bit registers are made 
with D flip-flops; a flip-flop per bit of storage is required. With the current 

Figure 9.16  Positive edge-triggered master/slave JK: (a) Flip-flop logic circuit; (b) schematics 
symbol.
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Table 9.7  Positive edge triggered master/slave SR 
flip-flop characteristic table

Clock S R Q(t + 1) Comments

↑ 0 0 Q(t) Hold (no change)
↑ 0 1 0 Reset
↑ 1 0 1 Set
↑ 1 1 Not-allowed Unpredictable
0 X X Q(t) Hold (no change)
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Figure 9.17  (a) Positive edge triggered master slave T flip-flop circuit diagram; (b) schematic 
symbol; (c) positive edge triggered master slave D flip-flop circuit diagram; (d) schematic 
symbol.

D Q

Q
_

J

K

T

Clock

Q

Q
_

J

K

T Q

Q
_

T

Clock

D Q

Q
_

D

Clock

Clock

(a) (b)

(c) (d)

Table 9.8  T-flip-flop characteristic table

Clock T Q(t + 1) Comment

↑ 0 Q(t) Hold (no change)
↑ 1 Q t( ) Complement (toggle)
0 X Q(t) Hold (no change)

Table 9.9  D-flip-flop characteristic table

Clock D Q(t + 1) Comment

↑ 0 0 Reset
↑ 1 1 Set
0 X Q(t) Hold (no change)

state-of-the-art technology, the D-FF is the most widely used sequential device. 
Field programmable gate arrays (FPGAs), application specific integrated cir-
cuits (ASICs), and programmable logic devices (PLDs) make use of the D-FF 
extensively. The D flip-flop is the most commonly used device. The other flip-
flops (SR, T, and JK) were more heavily used when medium scale integration 
(MSI) circuits use was more prevalent. Those MSI ICs were the very popular 
7400 series, manufactured by many different IC manufacturers for more than 
two decades.
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Those were the days when there were practically no FPGAs, ASICs, and 
PLDs. When these types of devices became available, they were not as widely 
used and their cost was high. That situation is practically reversed today.

9.3  TIMING CHARACTERISTICS OF SEQUENTIAL ELEMENTS

This section deals with the fundamental timing parameters that clocked 
sequential devices must meet in order to operate correctly. Given a flip-flop 
like an SR, JK, T, or a D-type, before an active edge of the clock, it is required 
that the inputs be stable before and after the active edge of the clock makes 
its active transition. A positive edge-triggered device active transition of its 
clock is a low-to-high clock transition. A negative edge-triggered device active 
transition of its clock is a high-to-low clock transition. The time required by 
the device inputs to be stable prior to the active transition of the clock is called 
the set-up time (tSU).

Additionally, the data inputs to the flip-flops are required to stay at the level 
that they were set up for a period of time immediately after the active edge 
of the clock. This time is referred to as the input data hold-time (tH). For 
example, if one wants to clock a high level into a D flip-flop, the high level must 
be stable before, during, and after the active edge of the clock by a total time 
given by tSU + tH. These two timing parameters insure that the delays and 
timing requirements of the master and slave stages within the flip-flops are 
met. When we studied SR-latches we learned that the minimum required delay 
for a single latch to produce a stable output is at least two-gate delays. To 
obtain some positive margin, the latch inputs should be stable some time 
longer than that minimum requirement. Luckily integrated circuit flip-flop 
manufacturers and ASIC manufacturers dictate the timing parameters required 
by their internal flip-flops. Another important timing parameter of a flip-flop 
is the clock-to-output propagation delay also called the clock-to-Q delay. Gen-
erally speaking the clock-to-Q (tCQ) and the clock to Q- -  (tCQ

) need not and they 
are usually not the same. Engineers calculating timing requirements usually 
pick the longest of both clock-to-output times. Figure 9.18 shows the set-up; 
hold time and clock-to-output parameters of a clocked device and how they 
are related to the active edge of the clock.

9.3.1  Timing of Flip-Flops with Additional Set and  
Reset Control Inputs

The four flip-flops that we studied (i.e., SR, JK, D, and T) may be available 
with two additional control inputs, Set and Reset. What is the purpose of these 
control inputs? Since flip-flops are used to design state machines, many times 
it is convenient to start or restart a flip-flop to a known state. Such state may 
be a Reset or a Set, depending on the application. Flip-flops available in inte-
grated circuits are usually made with asynchronous reset and set control 
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inputs. Other flip-flops are available with synchronous inputs. Asynchronous 
reset and set control inputs act on the state output of the flip-flop (the Q 
outputs) completely asynchronously with respect to the clock. We learned that 
flip-flops will only change state on or immediately after the active edge of the 
clock; and asynchronous control input will make the flip-flop change state 
virtually at any point between active clock edges. Synchronous set and reset 
inputs are like any other inputs of the flip-flop, like J or K inputs, they must 
meet the set-up and hold time requirements of the flip-flop and the flip-flop 
makes a transition to either the set or reset state on the next active clock edge. 
Figure 9.19 depicts a timing diagram of a flip-flop with asynchronous reset and 
one with synchronous reset. A flip-flop asynchronous reset or set input is 
required not to assert during an active clock transition, else possible timing 
malfunction may occur.

Note that in Figure 9.19a upon the assertion of the active high asynchronous 
reset, the Q output goes low virtually immediately or shortly after the Q 
output delay without waiting for the next active edge of the clock. This means 

Figure 9.18  Flip-flop timing parameters.
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that the present state is abruptly interrupted and the reset is applied at the Q 
output. In Figure 9.19b upon the assertion of the active high synchronous reset, 
the Q output waits until the active edge of the clock arrives, and then the Q 
output gets reset then. Naturally there is also a clock-to-output delay before 
the Q output changes to the zero state. It is important to see that in the 

Figure 9.19  Timing diagram showing (a) asynchronous reset and (b) synchronous reset.
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synchronous case the currently being executed state reaches completion and 
the reset state synchronously takes place on the subsequent active clock edge.

9.4  SIMPLE STATE MACHINES

Instead of defining what state machines are, we will present a simple example 
of a synchronous state machine; understand what it does, how it is described, 
and how it is designed. Later on we will make general statements as to what 
state machines are, but not without having gone over one simple but complete 
example.

Example 9.1 Define a 2-bit synchronous up binary counter with an asynchro-
nous reset: (1) Write its state table and (2) state diagram. (3) Perform a logic 
implementation of the counter using positive edge-triggered JK flip-flops.

Solution to Example 9.1

A 2-bit synchronous up binary counter is a 2-bit state machine. Upon clocking 
the state machine the counter will go through states 00, 01, 10, 11, and it will 
repeat that sequence of four states indefinitely, as long as it continues to be 
clocked. Figure 9.20 shows the state machine state diagram, while Table 9.10 
depicts the state table of the 2-bit counter. The purpose of the asynchronous 
reset is for external logic to reset the state machine upon power-up. If there 
was no reset the initial state of the state machine after power-up is unpredict-
able; in other words with no reset initializing the flip-flop, one cannot predict 
which will be the starting state.

Note that the state machine Q1 state bit is the MSB and Q0 is the LSB. The 
state machine has an asynchronous input, its Reset which we can easily imple-
ment using the asynchronous reset of the flip-flops to be used. Note that the 
state machine upon Reset being negated and receiving clocks it will walk 
through states 00, 01, 10, 11, 00, . . .  indefinitely. If at any time Reset goes high 
the state machine will abruptly go to state 00. Notice that all state transitions 
are conditioned by the Reset input, the present state and upon the reception 
of a clock the machine will move to its next state. Unfortunately, the state 
diagram does not show in a clean way the fact that Reset is asynchronous. If 
the design requirements would have been to do the same design with a syn-
chronous Reset, the state diagram would not change. Usually in state machine 
design Reset is one of the few or sometimes the only asynchronous control 
signal in the system. It is customary to synchronize asynchronous signals into 
the clock domain of the state machine that one is dealing with. 

State machines in a general sense have two main parts, its sequential  
logic, that is the flip-flops that memorize the state Q(t). They also have their 
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Figure 9.20  2-bit synchronous up binary counter state diagram.

Table 9.10  State table for the 2-bit counter of Example 9.1

Clock

Present State Next State Async. Reset Input

Q1(t) Q0(t) Q1(t + 1) Q0(t + 1) (Active high) Reset

↑ 0 0 0 1 0
↑ 0 1 1 0 0
↑ 1 0 1 1 0
↑ 1 1 0 0 0
0 X X 0 0 1

combinational logic, which is the logic used by the sequential portion of the 
machine to determine the inputs to the flip-flops that will generate the next 
state. Figure 9.21 depicts a high-level circuit diagram showing the state machine 
pieces. The block with the shape of a cloud represents combinational logic, or 
simply circuitry without memory. Note: having said that reset is needed to 
initialize the state of a machine, other methodologies are used to initialize state 
machines. One such method is designing scannable machines. All the state 
machine registers upon power on can be configured like a giant shift register 
and a known state is clocked in every flip-flop. Once all flip-flops are initialized 
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the state machine is placed back in its normal operating mode and begins to 
run. For a good reference in scannable systems refer to [1].

By inspection of Figure 9.21 we can observe that the present state through 
the combinational logic produces the outputs for flip-flops 1 and 2 inputs. Reset 
as stated earlier is directly applied to the asynchronous reset input that we 
assume the JK flip-flops already have. So we need to come up with four logic 
equations, which are the equations of the flip-flop inputs as a function of the 
present state. The equations follow:

 J Q Q1 1 0= f( ),  (9.1)

 K Q Q1 1 0= g( ),  (9.2)

 J Q Q0 1 0= h( ),  (9.3)

 K Q Q0 1 0= i( ), .  (9.4)

With the present state information and the combinational logic the inputs to 
each flip-flop is presented so that upon the next active edge of the clock the 
state machine goes to its next state. So before doing the design we need a dif-
ferent form of the JK flip-flop characteristic table that facilitates the design 
process. Such new table is the JK flip-flop excitation table. Actually, the excita-
tion table presents the same information provided by the characteristic table 
but in the following form:

Figure 9.21  2-bit up synchronous counter logic diagram.
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“What do the FF inputs need to be to make a transition from a determined 
present state to a desired next state when the active clock edge is present?” 
Review Table 9.6 with the JK FF characteristic table. Using Table 9.6  
we compose the excitation table for the JK FF. Table 9.11 depicts such excita-
tion table.

It is important to emphasize that since the excitation table has a present 
state and a next state column without showing the clock explicitly, the same 
table applies to positive as well as to negative edge-triggered devices. Let us 
recall from the previous chapter that X refers to a don’t care condition, either 
a 1 or a 0.

State Machine Design Process Our 2-bit counter has four states and we 
are using two flip-flops to implement it. A circuit designed with n flip-flops can 
support a maximum number of 2n states; this is the case in our example: 2-bit 
machine and four states. At times some sequential circuit designs have less 
than 2n states. So we need to be careful about what we do if the state machine 
accidentally lands in one of those unused states. For the design process we will 
merge the state table of the desired state machine (Table 9.10) with the excita-
tion table (Table 9.11) of the flip-flops to be used. We construct a new table 
that has present state, next state information, and the outputs of the combina-
tional circuit of Figure 9.21; such outputs are the flip-flop inputs. The new table 
is the excitation table for the complete design and Table 9.12 shows it.

Table 9.11  JK FF excitation table

Present State Next State JK FF inputs

Q(t) Q(t + 1) J K

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Table 9.12  Excitation table for the 2-bit counter design of Ex. 9.1 using JK FF

Inputs of 
Combinational 
Circuit

Next State

Outputs of Combinational 
Circuit

Present State Flip-Flop Inputs

Q1(t) Q0(t) Q1(t + 1) Q0(t + 1) J1 K1 J0 K0

0 0 0 1 0 X 1 X
0 1 1 0 1 X X 1
1 0 1 1 X 0 1 X
1 1 0 0 X 1 X 1
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Notice that the asynchronous Reset input was left out of the excitation table 
because it is directly hardwired to the asynchronous reset of the flops (Fig. 9.21).

The present and next state columns of Table 9.12 are identical to those of 
Table 9.10.

To fill in the columns for J1, K1, J0, and K0 of Table 9.12 we will proceed to 
work with FF-1 inputs first and FF-0 later. Let us ask ourselves what do inputs 
J1 and K1 need to be to go from a present state Q1(t) = 0 to next state 
Q1(t + 1) = 0. The answer to this is on Table 9.11 third line from the top, that 
is, J1 = 0 and K0 = X. So we proceed to fill in the first line under the J1 and K1 
columns with 0 and X, respectively. For the next entry: what do inputs J1 and 
K1 need to be to go from a present state Q1(t) = 0 to next state Q1(t + 1) = 1. 
Again from Table 9.11 the answer is J1 = 1 and K1 = X. This is the next entry 
under columns for J1 and K1. We continue doing the same process until we are 
done with columns J1 and K1. We do the same for flip-flop 0 columns J0 and 
K0. Having completed Table 9.12 we look at it from a different perspective 
when we need to design the combinational logic that the state machine 
requires, refer one more time to Figure 9.21. Imagine that we remove from 
Table 9.12 the two columns that correspond to the next state bits Q1(t + 1) and 
Q0(t + 1). What is left of Table 9.12 should be seen as a combinational logic 
truth table. This table has four outputs: J1, K1, J0, and K0. These four outputs 
are Equations (9.1) through (9.4), which are functions of the present state bits 
Q1(t) and Q0(t). To solve the four logic equations we can do four K. maps, one 
per output. Figure 9.22 shows the K. maps.

The SOP simplifications from each output follow:

 J Q1 0=  (9.5)

 K Q1 0=  (9.6)

 J0 1=  (9.7)

 K0 1= .  (9.8)

Note that the SOP functions for J1 and K1 became independent of Q1. J0 and K0 
end up being constants (Equations (9.7) and (9.8)). The actual circuit diagram 
for the complete state machine of Example 9.1 is redrawn with the actual logic 
found with Equations (9.5) through (9.8). Figure 9.23 shows the circuit.

9.4.1  SR Flip-Flop Excitation Table

To derive the excitation tables of the SR flip-flop we refer back to character-
istic table provided by Table 9.7. This table is repeated below for the reader’s 
convenience.

Starting with the SR flip-flop, this device basically works like the JK flip-
flop with the exception of the S = 1, R = 1 which is not allowed for the SR. 
Tables 9.13 and 9.14 show the SR FF characteristic and excitation tables, 
respectively.
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Figure 9.23  State machine for Example 9.1 logic implementation.
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Recall that to construct the excitation table of an SR FF we need to ask 
ourselves what do inputs S and R need to be prior to the active clock edge, to 
cause a transition from a given the present state to a desired next state? From 
Table 9.13, Row 1, states that S = 0 and R = 0 will do the job, because it holds 
the previous state. Also S = 0 and R = 1 (Table 9.13, Row 2) will do the same 
thing because this condition Resets the FF. Thus, S = 0 and R = X produces a 
transition from present state zero to next state zero; refer to Table 9.14, Row 
1 for S = 0, R = X. It is easy to see that S = 1 and R = 0 (Table 9.13, Row 3) 
Sets the FF and that S = 0 and R = 1 (Table 9.13, Row 2) Resets the FF. Finally, 
having a present state of one to transition to a next state of one we either Set 
the FF (S = 1 and R = 0) or hold the previous state (S = 0 and R = 0); thus, 
S = X and R = 0; refer to Table 9.14, Row 4.

9.4.2  T Flip-Flop Excitation Table

In a similar fashion, to derive the T FF excitation table we start with the T FF 
characteristic table (Table 9.15).

Again we ask ourselves the question: “what does input T need to be prior 
to the active clock edge, to cause a transition from a given the present state 
to a desired next state?” We start constructing the T FF excitation Table 9.16. 
So using the T FF characteristic Table 9.15, we see that to obtain a zero present 
state to zero next state transition, the T input needs to be a zero (hold, no state 

Table 9.13  SR FF characteristic table

Row Clock S R Q(t + 1)

1 ↑ 0 0 Hold last Q(t)
2 ↑ 0 1 0 (Reset)
3 ↑ 1 0 1(Set)
4 ↑ 1 1 Not-allowed
5 0 X X Hold last Q(t)

Table 9.14  SR FF excitation table

Row

Present State Next State
SR FF 
inputs

Q(t) Q(t + 1) S R

1 0 0 0 X
2 0 1 1 0
3 1 0 0 1
4 1 1 X 0
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change). This gets written as a zero entry under Row 1 for T FF input column 
of Table 9.16. To fill in the T input for Rows 2 and 3 of Table 9.16, inspecting 
Table 9.15 we see that in both cases input T must be a one. Finally, for Table 
9.15, Row 1, for the T FF not to change from present state 1 to next state 1, 
then T input needs to be a zero. This is shown on Table 9.16, Row 4 and under 
the T FF input column.

9.4.3  D Flip-Flop Excitation Table

Similar to the way we did with the SR and T excitation tables we create the 
D FF excitation table. Note that the D FF, which is the simplest one to under-
stand, simply copies whatever the D input is, to the Q output upon the active 
edge of the clock.

Since we want an excitation table to cause the usual four-row present state 
to next state transitions, the D input needs to be whatever we want the next 
state to become. Tables 9.17 and 9.18 depict the characteristic and the excita-
tion tables for a D FF.

Table 9.15  T-flip-flop characteristic table

Row Clock T Q(t + 1) Comment

1 ↑ 0 Q(t) Hold (no change)
2 ↑ 1 Q t( ) Complement (toggle)
3 0 X Q(t) Hold (no change)

Table 9.16  T FF excitation table

Row

Present State Next State T FF input

Q(t) Q(t + 1) T

1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Table 9.17  D Flip-flop characteristic table

Clock D Q(t + 1) Comment

↑ 0 0 Reset
↑ 1 1 Set
0 X Q(t) Hold (no change)



582  SEQUENTIAL LOGIC AND STATE MACHINES

Table 9.18  D FF excitation table

Row

Present State Next State D FF input

Q(t) Q(t + 1) D

1 0 0 0
2 0 1 1
3 1 0 0
4 1 1 1

Example 9.2 Let us now use the D flip-flop to implement a 2-bit up binary 
counter just like the one that we covered in Example 9.1. The counter will 
have an asynchronous reset input that upon being asserted it will force the 
counter to go to state Q1Q0 = 00. Implement the counter only with D flip-flops 
and the required next state combinational logic.

Clearly the state diagram for this counter is identical to the state diagram 
depicted in Figure 9.20. The logic implementation though is structurally similar 
to that of Figure 9.21, but the JK FF’s are replaced with D FF’s. Figure 9.24 
depicts the circuit diagram of our counter to be implemented with D FF’s. The 
design of the state machine control logic is implemented generating the excita-
tion table of the complete circuit using the D FF excitation tables and the state 
machine state diagram. Table 9.19 depicts Example 9.2 excitation table.

Proceeding to do the K. maps for D0 and D1 both as functions of present 
state bits: Q1(t) and Q0(t) we obtain the K. maps shown in Figure 9.25

Figure 9.24  2-bit binary up counter for Example 9.2.
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 D f Q t Q t Q0 1 0 0= =[ ( ), ( )]  (9.9)

 D Q t Q t Q Q1 1 0 0 1= = ⊕g[ ( ), ( )]  (9.10)

Equations (9.9) and (9.10) lead to the logic implementation presented in 
Figure 9.26.

Table 9.19  Excitation table for the 2-bit up counter design of Example 9.2 using D FF

Inputs of 
Combinational Circuit

Next State

Outputs of 
Combinational Logic

Present State Flip-flop inputs

Q1(t) Q0(t) Q1(t + 1) Q0(t + 1) D1 D0

0 0 0 1 0 1
0 1 1 0 1 0
1 0 1 1 1 1
1 1 0 0 0 0

Figure 9.25  K. maps for D FF inputs D0 and D1 as a function of the present state bits.
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The previous examples dealt with a synchronous state machine that made state 
transitions in an unconditional fashion. Except for the asynchronous Reset 
input to the flip-flops, (and of course the clock) there were no other inputs to 
the state machine. Let us now consider slightly more complex state machines. 
Assume that we want to design a machine that makes state transitions upon 
being on a certain state and upon an input being one or zero. Such state transi-
tions are referred to as conditional state transitions, because they depend on 
the state of an external state machine input in addition to the present state of 
the machine. Unconditional state transitions occur when the present to next 
state transition takes places irrespective of the level of the state machine 
external input. In a general sense, state machines can have a mix of conditional 
and unconditional state transitions or only one of the two kinds.
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Figure 9.26  Logic implementation of 2-bit up counter with D FFs.
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Example 9.3 Given the state diagram of Figure 9.27, (a) find the state table of 
the circuit and (b) perform a logic implementation of the state machine using D 
FF. Assume that the external state machine input A is synchronous to the state 
machine clock. This concept has to do with state machine timing requirements, 
which will be discussed in another section within this chapter. So do not worry 
a whole lot of the previous sentence right away, we will get to it in greater detail.

Figure 9.27 state diagram exhibits two different types of state transitions: 
conditional as well as unconditional transitions. The state machine has two bits 
of state and a single external and clock-synchronized input A. State transitions 
from state 00 to 11 or 01 are conditional transitions. The state diagram should 
be read as follows for those transitions: If the present state is 00 and input A 
is high the next state is 01, else if present state is 00 and input A is low the 
next state is 11. All other transitions, that is, from state 01 to 00, 11 to 00 and 
10 to 00, are unconditional state transitions. Let us make clear before the circuit 
is drawn that the state key is defined as Q1 Q0, where Q0 is the LSB of state. 
From the state diagram in Figure 9.27 we will construct the excitation table 
for the circuit to be designed. Note that the only conditional state transitions 
that exist are Rows 1 and 2 of Table 9.20; state transition from 00 to 11 occurs 
only upon input A being low. On Row 2 the state transition from 00 to 01 
occurs on A being high. Rows 3 through 8 all show unconditional state transi-
tions. For example, for the state transition 01 to 00 we can see in Rows 3 and 
4 that take place regardless of whether A is low or high.
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Carefully inspecting excitation Table 9.20 we have to obtain combinational 
equations for the D FF inputs D1 and D0 as functions of the present state and 
the external state machine input A. So imagining that the next states columns 
are gone from Table 9.20 we use such table as a truth table to find out the 
simplified products of sum logic equations for the D FF inputs D0 and D1.

 D1 1 0= f Q t Q t A[ ( ), ( ), ]  (9.11)

 D0 1 0= g Q t Q t A[ ( ), ( ), ].  (9.12)

We proceed creating the K. maps for each FF input, but note that for this 
example the K. maps are 3-variable maps which can be observed from Equa-
tions (9.11) and (9.12).

From the K. maps of Figure 9.28 we obtain:

 D Q Q A1 1 0=  (9.13)

and 

 D Q Q0 1 0= .  (9.14)

The logic implementation of our state machine using logic Equations (9.13) 
and (9.14) is depicted in Figure 9.29.

Figure 9.27  State diagram for Example 9.3.
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Table 9.20  Excitation table for the state machine design of Ex. 9.3 using D FF

Row

Combinational Circuit 
Inputs

Next State

Combinational 
Circuit Outputs

Present State
External 

Input
 Flip-Flop 

Inputs

Q1(t) Q0(t) A Q1(t + 1) Q0(t + 1) D1 D0

1 0 0 0 1 1 1 1
2 0 0 1 0 1 0 1
3 0 1 0 0 0 0 0
4 0 1 1 0 0 0 0
5 1 0 0 0 0 0 0
6 1 0 1 0 0 0 0
7 1 1 0 0 0 0 0
8 1 1 1 0 0 0 0

Figure 9.28  Karnaugh maps for Example 9.3.
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Example 9.4 Design a 3-bit down binary counter. Design an output called 
MIN-COUNT that detects when state 0 (000) is reached. The output must be 
a function of the state bits. Use D FFs. (1) generate the state diagram of the 
counter, (2) generate the circuit excitation table, (3) find the logic for output 
MIN-COUNT and (4) find the complete logic for the counter state machine. 
We will move a little faster throughout this example, since most of the concepts 
have already been explored in previous examples. Refer to Figure 9.30 for the 
state machine state diagram.

The excitation table (Table 9.21) follows from the state diagram. The state 
diagram of our down counter has unconditional state transitions. This means 
that no external input to the counter exists to prevent or allow any of the state 
transitions. The output logic has to detect state 000; this output must remain 
asserted during the time the counter is at state 000. Once the counter is in any 
other state, the output has to be negated. Thus, the logic for the MIN-COUNT 
output is a three input AND gate that receives inverted state bits: Q2(t), Q1(t), 
and Q0(t). By DeMorgan’s rule such gate is a three-input NOR gate.

Now to design the state machine we use excitation Table 9.21 come up with 
the excitation functions or the input equations of each state flip-flop: D2, D1, 
and D0 as a function of the three state bits Q2(t), Q1(t), and Q0(t). Proceeding 
as we did before, we need to produce three 3-variable Karnaugh maps to 
obtain a simplified SOP expression for each FF input.

From Figure 9.31 we obtain a simplified SOP forms for D2, D1, and D0:

Figure 9.29  Logic implementation of state machine for Example 9.3.
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Table 9.21  Excitation table for the down counter of Example 9.4

Present State Output Next State
D Flip-Flop 

Inputs

Q2(t) Q1(t) Q0(t) MIN-COUNT Q2(t + 1) Q0(t + 1) Q0(t + 1) D2 D1 D0

0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0 1 1
1 0 1 0 1 0 0 1 0 0
1 1 0 0 1 0 1 1 0 1
1 1 1 0 1 1 0 1 1 0

Figure 9.30  State diagram of 3-bit down counter for Example 9.4.
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Figure 9.31  Karnaugh maps for FF next state equations for Example 9.4: (a) D2 map; (b) D1 
map; (c) D0 map.
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 D Q Q Q Q Q Q Q2 2 1 0 2 1 2 0= + +  (9.15)

 D Q Q Q Q Q Q1 1 0 1 0 1 0= + = ⊕  (9.16)

 D Q0 0= .  (9.17)

Figure 9.32 depicts the implemented state machine of Example 9.4 with next 
state Equations (9.15), (9.16), and (9.17).

Figure 9.32  Implementation of state machine for Example 9.4.
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Example 9.5 A shift register: An n-bit shift register is an n-bit register that 
makes provision of shifting its stored data by one bit position at every active 
clock edge. It is possible to design shift registers that shift bits to the right or 
that can shift bits to the left. More elaborate shift registers can be designed to 
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shift left or right upon asserting a shift direction control input. In this example 
we will address a 4-bit shift register that shifts data from its LSB one bit posi-
tion to the left to a more significant bit. The LSB will get loaded with a zero. 
For example, given the 4-bit binary number 1010, shifting it left by one bit 
position leads to 0100; another shift left will produce 1000; another shift left 
produces 0000. Figure 9.33 depicts the left shifting of the example just described.

Shift registers are used in arithmetic and control type operations. Multipli-
cation and division algorithms use shift registers. Control applications can use 

Figure 9.33  Left shifting a four-bit number, loading the LSB with a zero: (a) left-shift operation; 
(b) four-bit shift register with D FF.
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9.5  SYNCHRONOUS STATE MACHINES 
GENERAL CONSIDERATIONS

State machines consist of three fundamental pieces of logic. The flip-flops, 
which serve as the memory elements, store state information. The next state 
logic is the logic that receives state information and external state machine 
inputs if any. The third and last piece is the logic that generates the machine 
outputs. The next state logic produces the correct signals to the flip-flops, so 
that the transition to the desired next state occurs. Figure 9.34a,b depict the 
two most important state machine architectures, the Moore and the Mealy 
state machines. Referring to Figure 9.34a we see a Moore machine block 
diagram. This machine has next state logic and flip-flops, which does not differ 
much from a Mealy (Fig. 9.34b) state machine. The fundamental difference 
between the Moore and Mealy is the way in which both state machines produce 
the control outputs. Moore machines produce their outputs with combina-
tional logic that is only function of the present state bits. Mealy state machines 
produce their control outputs with combinational logic that is a function not 
only of the present state bits but also the external inputs to the state machine.

This implies that the control outputs not only may change when the state 
is updated but also when the any of the state machine external inputs change. 
Note that it is customary in computer architecture literature to indicate clocked 
elements with memory (i.e., flip-flops) with a heavy trace where their Q outputs 
are. Sometimes when the heavy trace is shown the clock does not need to be 
explicitly drawn, as we did in Figure 9.34.

9.5.1  Synchronous State Machine Design Guidelines

The single most important step of designing a state machine is the complete, 
accurate and concise description of the problem that needs to be solved. This 
is in essence producing a specification. Now we need to translate such descrip-
tion into a state diagram. Determine the external state machines inputs and 
the control outputs. We also need to determine the number of states needed, 
try to minimize them if possible. Choose the flip-flops type to be used. Do the 
state assignments. There are three basic ways of making state assignments. The 
simplest one is to do binary state assignments, usually takes the smallest 
number of flip-flops but with more next state combinational logic. If we know 
that some state machine outputs need to be glitch free during their transition 

shift registers. Other uses of shift registers include serial-to-parallel and 
parallel-to-serial data conversion for data communication applications. 
Advanced central processing units (CPUs) use shift registers in conjunction 
with multiplexers to implement barrel shifters. Barrel shifters allow a CPU to 
perform shifts either left or right by any amount of desired bits, such that the 
amount of bits is within the width of the CPU registers, in a single clock cycle.
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Figure 9.34  State machine types: (a) Moore state machine; (b) Mealy state machine.
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to their active level, it is beneficial to Gray code encode the states. Gray code 
encoding is a binary code that only varies by one and only one bit between 
adjacent codes. Note that the following 3-bit Gray code sequence 000, 001, 011, 
010,110, 111, 101, 100 differs between adjacent terms by no more than one bit 
position. So if in addition to Gray code encoding the states, a state bit is chosen 
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to be a needed state machine output, then such output will be glitch-free. For 
example, if one of our state machine outputs is a WRITE signal, we definitely 
want this signal not to glitch, ever. State one-hot encoding is another technique 
that uses a flip-flop per state. Although this scheme uses more flip-flops that 
it would require if we binary encoded the states, it has the advantage that it 
is very simple to design and debug. Usually when designing state machines 
FPGAs using a few more flip-flops is not a problem when compared to the 
benefits that it provides. Care must be exercised upon resetting the state 
machine to a desired initial state. We create the excitation table of the state 
machine. That means to construct a table that shows the required excitation 
(flip-flop inputs) to obtain the desired next state for state/ input combination. 
This leads to the design of the next state logic. Finally, we decide how we want 
the outputs to be generated. Do we want a Moore machine, where the outputs 
are strictly functions of the state bits? Alternatively, do we need a Mealy 
machine, where the outputs depend not only on the state bits but also on the 
state machine inputs? Finally, we draw a complete schematics or logic diagram 
of the design. The above steps assume a fairly manual procedure to design 
state machine. These days CAD tools such as hardware description languages 
(HDL), Verilog and VHDL being the two most popular ones, allow a designer 
to design and simulate the behavior of the state machine before it is actually 
implemented with logic gates. HDLs are beyond the scope of this book. Refer-
ences to HDLs are cited in the Further Reading section of this chapter.

In summary, we can list the basic steps required to design synchronous state 
machines.

(a) Produce a complete and succinct state machine specification.
(b) Determine number of states needed, state machine inputs and outputs.
(c) Produce a state diagram and state assignments.
(d) Optionally minimize the number of states.
(e) If any unused states are present in the state machine designed, ensure 

that if for some undesired reason the state machine got into one or 
more of such states, that it finds a graceful way to continue operating, 
to recover or to stop.

(f) Choose the flip-flop type to be used.
(g) Produce the circuit excitation table.
(h) Design the next state logic using the excitation table.
(i) Design the output logic.
(j) All or some of the steps above will have to be repeated and refined 

until you reach at a satisfactory solution that meets the requirements.

It is important to keep in mind that there are three major factors that are 
present in any practical design that is done with the purpose of becoming a 
large volume product. From an engineering point of view the natural factor is 
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quality. Quality is associated with the idea that the machine works, reliably 
and consistently. The other two factors are that the project has to meet a given 
schedule and meet its cost targets. In essence quality, cost, and schedule are 
practically inseparable factors that at one point or another throughout the 
design cycle, will force engineering to make tradeoffs to meet the overall goals.

9.5.2  Timing Considerations: Long and Short Path Analyses

Synchronous state machines need to operate at some intended clock fre-
quency. But this is not all; most importantly, every clocked device has its own 
set-up and hold time requirements that need to be met at all times. Given a 
simple synchronous state machine such as the one in Figure 9.35, the timing 
path between to consecutive clock edges is:

 t t t TCOmax PDmax SUmin CLKmin+ + ≤  (9.18)

Figure 9.35  Long path analysis of a simple state machine.
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where tCOmax is the flip-flop maximum clock-to-output delay, tPDmax is the com-
binational logic maximum propagation delay, tSUmin is the minimum required 
set-up time that the manufacturers specifies for its flip-flop, and TCLKmin is the 
minimum required clock period to allow the required minimum set-up time 
to the flip-flop. Equation (9.18) has to be met individually for every one of the 
timing paths that exist in the circuit designed.

In particular and referring to the two-path state machine of Figure 9.35, 
Equation (9.18) can be written for each one of the long paths. One path, Path 
0, shown with very heavy lines, begins at the Q0 output of DFF-0, continues 
to the input of combinational logic B, the output of logic B ends at the D1 
input of DFF-1.The second long path, Path 1, is drawn with standard weight 
lines, begins at the Q1 output of DFF-1, continues through combinational logic 
A, and ends at the D0 input of DFF-0. Rewriting Equation (9.18) for path 0 
which starts at the Q0 output of DFF-0 and ends at the D1 input of DFF-1, we 
obtain.

 t t t TCO max PDBmax SU min CLKmin0 1+ + ≤ .  (9.19)

For the other path, beginning at the Q1 output of DFF-1 and ending at the D0 
input of DFF-0, we have:

 t t t TCO max PDAmax SU min CLKmin1 + + ≤0 .  (9.20)

In Equation (9.19) tCO0max is the maximum or longest clock-to-output delay of 
FF0, tPDBmax is the maximum propagation delay of combinational logic B and 
tSU1min is the minimum required set-up time needed by FF1, which is the des-
tination flip-flop of this path. Similarly, in Equation (9.20) tCO1max is the 
maximum or longest clock-to-output delay of FF1, tPDAmax is the maximum 
propagation delay of combinational logic A and tSU0min is the minimum required 
set-up time needed by FF0, which is the destination flip-flop of this path. Note 
that in order to meet set-up time requirements both long paths must be strictly 
less than TCLKmin. The state machine uses the same clock (at least from a logical 
standpoint) ; whichever path is the longest is the one that determines the 
maximum frequency of operation. This example ignores wire delays, transmis-
sion lines effects, clock skews, and signal integrity issues.

When a state machine path, such as the one given by Equations (9.19) or 
(9.20) is not met, we refer to this as being a long path (also referred to as the 
critical path of the state machine). Excessive long paths cause set-up time viola-
tions. Set-up and/or hold time violations of a flip-flop cause the device to 
temporarily go into an undefined or metastable state. Looking at Equation 
(9.18) it is clear to see that given a TCLKmin is equivalent to specifying a 
maximum operating frequency. So once TCLKmin is fixed, the three left-hand 
side terms in Equation (9.18) need to be such that their sum is strictly less 
than TCLKmin. When tCOmax + tPDmax + tSUmin equals TCLKmin, the set-up time of the 
flip-flop is just marginally met. In practice we want to have a small but positive 
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Figure 9.36  Short path analysis of a simple state machine.

margin to account for other factors such as noise, ground bounce and other 
electrical effects not accounted for by Equation (9.18). Long path analysis or 
set-up time calculations are an edge-to-edge phenomenon. In practical designs 
usually the term that can be significantly reduced in order to meet set-up time 
is the combinational logic propagation delay (tDmax). The reason is that once a 
family or type of flip-flop is selected for the design, the state machine designer 
has little or no control over tCO and tSU since these are flip-flop timing param-
eters. On the other hand, when every effort was made to meet Equation (9.18) 
either by reducing tPdmax or by changing flip-flops for faster ones (with smaller 
tCOmax and tSUmin), there is still a possibility of rearranging the circuit logic and 
topology. Shall this last attempt fail to meet Equation (9.18), there is no more 
option other than reducing the operating frequency of the state machine. 
Stretching out the clock cycle of the state machine is the last and least desir-
able mean to implement, when the machine violates set-up time.

We have not mentioned anything about hold time requirements yet. Hold 
time analysis is also referred to as short path analysis. Let us consider the 
simple circuit of Figure 9.36.

The circuit of Figure 9.36 is a synchronous divide-by-two counter. Let us 
look into the hold time requirements by its flip-flop. Since the complemented 
Q output is tied back into the D input at the time an active clock edge occurs 
the data present at the D input has to be held constant or stable not just before 
the clock edge but also immediately after the clock edge. So we then write this 
requirement as:

 t tCOmin Hmin≥ .  (9.21)

At first Equation (9.21) seems a bit awkward to understand. One of the 
reasons is that neither the clock period nor the set-up time show up in Equa-
tion (9.21). Since the data into the flip-flop is provided by its complemented 
Q output, fed directly with a zero delay wire, it is under the control of how 
fast is the clock-to-inverted-Q-output delay. This also determines how long 
the current data at the D input stays around (hold time requirement) imme-
diately after the clock edge. So that is the reason why it is important that the 
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Example 9.6 Given the simple state machine of Figure 9.36 assume the fol-
lowing flip-flop parameters are: tCOmin = 1 ns tCOmax = 5 ns, tSUmin = 3 ns and 
tHmin = 1.5 ns.

(a) Determine doing long path analysis, the highest frequency at which 
the flip-flop can be clocked reliably. Assume that zero timing margin 
on set-up is acceptable.

(b) Doing short path analysis, determine if there are any hold time viola-
tions. Assume that zero margin on hold time is acceptable.

Solution to Example 9.6

(a) For long path analysis for the circuit of Figure 9.36 we have that:

 t t t TCOmax PDmax SUmin CLKmin+ + ≤  (9.23)

where tCOmax = 5 ns, tPDmax = 0 ns and we assume that the wire has zero 
delay and tSUmin = 3 ns. We rewrite Equation (9.23) using the numerical 
values and it becomes:

 5 3+ + ≤0 tCLKmin.  (9.24)

Thus tCLKmin = 8 ns, which corresponds to a frequency of 125 MHz.
(b) Doing short path analysis and not to have a hold time violation the 

following is required:

 t tCOmin Hmin≥  (9.25)

where tCOmin = 1 ns and tHmin = 1.5 ns.

Clearly Equation (9.25) cannot be met with the values given so the circuit has 
a hold time violation. Note that regardless of the clock frequency you cannot 

clock-to-output minimum delay be larger than the hold time required by the 
flip-flop. Shall the flip-flop be too fast, that is, tCOmin < tH, a hold time violation 
takes place. Analyzing hold time violations or the lack of them is referred to 
as short path analysis. Just like in the set-up case, for hold time requirements 
Equation (9.21) wants the inequality to be “greater than or equal”. When tCOmin 
equals tH the flip-flop just barely meets hold time requirements. It is practically 
desirable for Equation (9.21) to exceed the hold time required by the flip-flop. 
In other words:

 t tCOmin H+ =positive-margin .  (9.22)
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fix the hold time violation. In ASIC design what engineers do is place a buffer 
between the D input and the Q output with a propagation delay of at least 
0.5 ns, for this particular example just to comply with the hold time required 
by the flip-flop. However, care must be exercised because helping the hardware 
meet hold time, degrades or takes away timing margin out of the set-up time. 
Now Equation (9.23) no longer has a 0 ns tPDmax term and it becomes 0.5 ns, 
and that reduces the maximum frequency of operation from 125 MHz down 
to 117.6 MHz (tCLK = 8.5 ns).

9.6  SUMMARY

This chapter covers sequential devices or devices with memory. Latches and 
flip-flops are the fundamental memory elements with which to build state 
machines. It is important to distinguish the latch from a flip-flop. Generally, a 
latch is basically an asynchronous device, it typically does not have a clock 
and is not sensitive to a clock edge. A flip-flop typically is referred to as a 
master/slave clock edge sensitive device. When in doubt, the reader should 
read the context carefully to determine which type of device the author is 
referring to. State machines are logic circuits that have combinational logic, 
that is, gates without feedback, plus sequential logic, or devices built using 
combinational logic with feedback. Remember that the basic latch was built 
with 2- NOR gates (alternatively with 2 NAND gates) with feedback in a 
cross-coupled configuration. Synchronous state machine are circuits whose 
flip-flops get clocked at the same time. State machines have state bits, and 
their next state upon applying the subsequent clock edge depends not only 
on the present state but also on the machine external inputs. We generally 
described two basic synchronous state machines, the Moore and the Mealy 
types. The basic difference between them is that the Mealy state machine 
produces outputs that are function of the state and external inputs. The Moore 
state machine produces outputs, which are only functions of the state. We 
designed state machine deriving excitation tables for the circuits, using any 
flip-flop type we really prefer to use. The D flip-flop is the predominant type 
used in programmable logic and ASICs. A general section on how to design 
state machines was provided. Such design emphasizes the state assignment an 
encoding types available: binary, Gray code and one-hot. Finally designers try 
to stay away from total asynchronous designs for reasons of design difficulty 
and not being easy to test. Generally designs are quasi-synchronous. Each 
state machine has its own clock domain; however, both of them need to inter-
face to each other. Timing analysis can be broken down in two major pieces: 
long-path and short-path timing analyses. It is a requirement that every path 
in a circuit has to comply with both to have a timing error-free (or metastability-
free) design.
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Table 9.22  State table for Problems 9.2 through 9.5

Clock Input A Present State Next State

↑ 1 00 10
↑ 0 00 01
↑ X 01 10
↑ 0 10 11
↑ 1 10 00
↑ 1 11 10
↑ 0 11 01
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PROBLEMS

9.1 Draw the circuit of a master-slave JK flip-flop entirely with NAND 
gates.

9.2 Implement the state machine whose state table is shown in Table 
9.22 with JK flip-flops and combinational gates. Draw the circuit 
schematics.

9.3 Implement the state machine whose state table is shown in Table 9.22 
with two D-type flip-flops and logic gates. Draw the circuit schematics.

9.4 Implement the state machine whose state table is shown in Table 9.22 
with a ROM of the smallest possible size; and using D-type flip-flops. 
Draw the circuit schematics.

9.5 Implement the state machine whose state table is shown in Table 9.22 
with 1-of-8 muxes and D-type flip-flops. Draw the circuit schematics.

9.6 For the state machine of Figure 9.37 derive a complete state table. Note 
that the state machine has 2 bits of state and two external inputs: A and 
B. Draw the circuit schematics.

9.7 Design the state machine, whose state diagram is shown by Figure 9.37 
using 2 JK flip-flops and some minimal number of logic gates. Draw the 
circuit schematics.



Figure 9.38  State diagram for Problem 9.12.
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9.8 Design the state machine of Figure 9.37 using 2 T-type flip-flops and 
some minimal number of logic gates. Draw the circuit schematics.

9.9 Design the state machine of Figure 9.37 using 2 D-type flip-flops and 
some minimal number of logic gates. Draw the circuit schematics.

9.10 Design the state machine of Figure 9.37 using the smallest size ROM 
and two D-type flip-flops. Draw the circuit schematics.

9.11 Design a 3-bit decrementing binary counter. Write the state table of the 
to-be-designed counter. Draw the circuit schematics.

9.12 Design a state machine that whose state diagram is given by Figure 9.38. 
(a) Do an implementation using the smallest possible ROM and the 
smallest possible number of D-type flip-flops. (b) Write a table with the 
micro-code for the ROM. Assume that input X is already synchronized 
to the state machine clock. Draw the circuit schematics.
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A SIMPLE CPU DESIGN

The design of a simplified central processing unit (CPU) is covered in this 
chapter. This design exemplifies a somewhat more involved and practical 
design than the examples studied in the previous chapter. This entire chapter 
basically is a huge example that shows the most important considerations 
when designing a simple CPU. We start defining the CPU instruction set and 
the machine instruction word. What the instructions do. The registers, memory, 
and combinational logic blocks are the components that the CPU requires to 
be able to execute the defined instruction set. We will also cover the design of 
the sequencer or control section of the machine with the details of its state 
diagram and circuit implementation. Finally, a system section covers some of 
the most important aspects, and sometimes overlooked issues of embedded 
system design: clocks, resets, power decoupling, and timing. The goal of this 
chapter is not only to cover a simple CPU but at the same time a complex 
enough design example that is more comprehensive than previously covered 
design examples. The basic approach taken is mostly bottom up.

10.1  OUR SIMPLE CPU INSTRUCTION SET

This section introduces the reader to our small CPU instruction set. The 
instruction set is carefully picked such that various types of the most popular 
machine language instructions are represented. We will not categorize this 

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
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design neither as a CISC or RISC example. CISC stands for Complex Instruc-
tion Set Computer and RISC stands for Reduced Instruction Set Computer. 
From a computer architecture point of view our design is closer to a von 
Neumann machine. This is an architecture that consists of a stored-program 
digital machine that has a central processing unit and a single separate memory 
unit that holds program instructions as well as data. An example of a RISC 
and CISC is covered in References 3, 4, and 6 in the Further Reading section.

The instruction set architecture (ISA) that our simple CPU supports con-
sists of a few but very significant instructions that all real-world machines 
support. The purpose of studying a very simple CPU is to prove basic archi-
tecture concepts to the reader, which later on we will use to add real world 
factors that embedded systems face. Such factors over and above the computer 
architecture are timing analysis of the CPU, how to clock the machine, the 
reset logic, and integrated circuit power decoupling.

The basic instructions that our simple CPU supports are: LOAD, STORE, 
AND, ADD, (unconditional jump) JMP, (conditional branch) BRNA, and 
(complement) CMPA.

Our CPU has a single accumulator register or simply register A. Register 
A is a 16-bit wide register. The computer memory has 4096 16-bit wide words, 
that is, 4K words. Since the memory has 4K memory locations, the address 
width required to address each word uniquely, is 12 since 212 is 4096. The 
program counter register or the PC is 12 bits wide and it is used to store the 
address of the instruction to be executed immediately after the currently being 
executed instruction. Summarizing our CPU has 16-bit wide data paths 
between register A and its memory. All memory accesses are done with a 12-
bit wide address. The PC stores the address of the to-be executed instruction. 
Our simple CPU has a single 16-bit word instruction word. The lower 12 bits 
are used as an address to memory for those instructions that require such 
address, while the upper four bits are allocated as operational code bits (opcode 
bits) format. Opcode bits are unique binary codes defined for every unique 
instruction that the CPU supports. Table 10.1 below depicts the organization 
of our CPU instruction word format.

 Opcode IWF= [ : ]15 12  (10.1)

 Address X IWF= [ : ].11 0  (10.2)

Now we are ready to explain what each instruction does from a programmer’s 
model point of view.

Table 10.1  Instruction word format (IWF) bit assignments

MSB LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operational code Memory address X
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10.2  INSTRUCTION SET DETAILS: REGISTER TRANSFER 
LANGUAGE (RTL)

Micro-operations are the most basic actions that digital computers make. 
Examples of micro-operations are: register to register transfers, register to 
memory location transfers, memory location to register transfers, perform a 
logic or arithmetic operation between a register and the contents of a memory 
location, storing the result in the register or in the memory location. Data trans-
fers are indicated as: X ← Y, where X and Y are registers. The contents of 
register Y, the source register, get transferred (in actuality is copied) to register 
X, the destination register. The original contents of Y are preserved. In addition 
to the data transfer itself; there may be conditions under which a transfer takes 
place. For example: If “a bit of some register is set” (i.e., the condition) transfer 
the contents of Memory location whose address is in the memory address reg-
ister MAR into register X. This is indicated as: X ← M [MAR], that is, specific 
sequences of micro-operations constitute macro-instructions or machine lan-
guage instructions. Such instructions, in binary form, are loaded into the main 
memory of our simple CPU and the CPU fetches, decodes, and executes them. 
Assembly language is a symbolic language that allows programmers to more 
easily write low-level machine language. An assembler typically translates the 
assembly language instructions into machine language before execution. Let us 
get started with our very simple CPU instruction set.

LOAD Instruction: Syntax LDA A, (X). This opcode is defined as 00002. 
This instruction reads the contents of memory location whose address is X 
and copies such contents into register A. It is important to recall that X is a 
12-bit address and that the memory contents at any memory address and the 
contents of register A are all 16 bits wide. The 16-bit data transfer that the 
LOAD instruction produces is indicated as:

 A X← ( ).  (10.3)

The LDA instruction does not affect the state of the S (Sign) bit. The S bit is 
usually part of a condition codes register (CCR) or Processor Status Word 
(PSW). This register holds bits that are set or reset based on some arithmetic 
or logic operation outcomes. Our simple CPU will one have a Sign bit in its 
CCR. The sign bit is the MSB of the results produced by the Arithmetic and 
Logic Unit (ALU), to be discussed shortly.

STORE Instruction: Syntax STA (X), A: Its opcode is 00012. This instruction 
reads the contents of register A and copies them into memory location whose 
address is X. The 16-bit data transfer that the STORE instruction produces is 
indicated as:

 ( ) .X A←  (10.4)

The STA instruction does not affect the state of the S (Sign) bit.
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ADD Instruction: Syntax ADD A, (X): Its opcode is 00102. The ADD 
instruction reads the contents of a memory location whose address is X, 
adds them to the value contained in register A, prior to the execution of 
the ADD, and produces the sum of these two 16-bit quantities, storing the 
result in register A. It is the programmer’s responsibility to have some desired 
value in register A prior to the execution of the ADD instruction. After the 
ADD instruction is executed the original contents of A are overwritten. The 
16-bit addition and data transfer that the ADD instruction produces is indi-
cated as:

 A A X← + ( ).  (10.5)

Execution of this instruction sets the sign (S) flag. The S flag is a registered 
copy of the accumulator MSB. When the accumulator is zero or positive the 
S bit is zero, when the accumulator is negative the S bit is one. The S bit has 
the same meaning as the MSB in a 2’s Complement number.

AND Instruction: Syntax AND A, (X): Its opcode is 00112. The AND 
instruction reads the contents of a memory location whose address is X, per-
forms a bit-to-bit logical AND of the read memory contents and register A 
bits, and stores the ANDing of these two 16-bit quantities in register A. It is 
the programmer’s responsibility to have some desired value in register A prior 
to the execution of the AND instruction. After the AND instruction is exe-
cuted the original contents of A are overwritten. The 16-bit data transfer that 
the AND instruction produces is indicated as:

 A A X← . ( ).  (10.6)

Execution of the AND instruction sets the sign flag accordingly.
JMP Instruction: Syntax JPM X: Its opcode is 01002. Upon execution of this 

unconditional instruction the PC gets loaded with address X, which is bits 11:0 
from the fetched instruction.

 PC X← .  (10.7)

The JMP instruction does not affect the S flag.
BRNA Instruction: Syntax BRNA X: Its opcode is 01012. This instruction is 

called branch on negative accumulator. This instruction looks at the Sign (S) 
bit, if the S bit is 1 (i.e., a negative 2’s Complement number is in the accumula-
tor) the PC gets loaded with address X, which are bits 11:0 from the fetched 
instruction. When the S bit is zero (accumulator is zero or positive) no change 
to the PC takes place. That is the PC remains incremented by one from the 
fetch cycle. This may sound a little confusing but it will be understood better 
when we will study the data path architecture of our simple CPU:

 If S 1  then PC X( ) .= ←  (10.8)
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The BRNA instruction does not affect the S flag; however it uses the S setting 
made by some prior instruction to the BRNA to make a decision.

CMP Instruction: Syntax CMP A: Its opcode is 01102. Upon execution 
of this instruction the contents of accumulator register A become 1’s 
complemented.

 A A← .  (10.9)

Execution of this instruction sets the S bit accordingly.
Table 10.2 summarizes the instruction set of our simple CPU.

10.3  BUILDING A SIMPLE CPU: A BOTTOM-UP APPROACH

Our CPU is required to have the registers and memory access that support 
the above-described instruction set. The CPU registers are part the program-
mer’s model of the CPU. However, there will invariably be other registers, 
mechanisms and devices that are totally transparent (or not visible) to the 
programmer. So before looking at the big view of the data path we will study 
bits and pieces of the fundamental elements that constitute such data path 
architecture.

10.3.1  The Registers

Our CPU needs registers. Registers are used to hold memory addresses, 
memory data read or memory data to be written. Registers also hold the 
operand of the ADD and AND instructions. Registers are typically built with 
D type flip-flops; however they are not just a free running group of flip-flops. 
Why not? If the registers were free running they would get loaded on every 

Table 10.2  Simple CPU instruction set

Instruction 
Syntax

Opcode (Binary) 
IWF [15:12]

Address X 
IWF [11:0]

Description of What 
Gets Executed

Affects 
Sign Flag?

LD A, (X) 0000 A valid address A ← (X) No
STA (X), A 0001 A valid address (X) ← A No
ADD A, (X) 0010 A valid address A ← A + (X) Yes
AND A, (X) 0011 A valid address A ← A . (X) Yes
BRNA X 0101 A valid address If S = 1 then 

PC ← X
No

JPM X 0100 A valid address PC ← X No
CMP A 0110 Bits [11:0] are 

ignored
A ← A− Yes
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single active edge of the clock. To achieve a selective load of a register we 
place a 1-of-2 Mux as shown in Figure 10.1. When the CPU control circuit 
drives a zero onto the mux select line, the register holds it data indefinitely 
because it keeps reloading itself with its own outputs for as long as clocks keep 
coming into the register. When a control circuit drives a one onto the mux 
select line, the external data placed on channel 1 of the mux gets loaded upon 
the active edge of the clock clocking the register.

For example if we have a data path like the one shown in Figure 10.2, which 
has four 8-bit registers A, B, C, and D. Assume that somehow all four registers 
have their own initial values. Let us assume that on the next clock edge we 
would like the contents of register A to get transferred to register B, overwrit-
ing the current value of B and preserving the current values of A, C, and D. 
The control required to do that has to assert the load input for register B and 
keep the load inputs of registers A, C, and D negated. The mux select lines 
have to select input channel 0, which feeds the contents of register A onto the 
inputs of all four registers. Upon the active clock edge only register B will get 
written with the contents of A because register B has its load control input 
asserted while the other three registers do not. So upon the active edge of the 
clock clocking all four registers synchronously perform the following data 
transfers:

Figure 10.1  Implementation of a register with synchronous load control.
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 B A←  (10.10)

 A A←  (10.11)

 C C←  (10.12)

 D D← .  (10.13)

Note from Equations (10.10) through (10.13) only B gets loaded with the 
contents of register A. Data transfers (Eqs. 10.11 through 10.13) show that A, 
C, and D preserve or hold their original contents, because their load control 
inputs are negated upon the assertion of the clock edge. It is very important 
to observe that although data transfers (Eqs. 10.10 through 10.13) are written 
in a sequence, actually all four of them take place concurrently. This is what a 
synchronous state machine does. For correct data transfers to take place, 
set-up and hold times of all flip-flops need to be met. We will address timing 
when we get to the control section of our simple CPU. Note that based on the 
simple data path depicted by Figure 10.2 we can transfer the contents of any 
one register to any two, or any three or all four registers. This is accomplished 
by asserting the load lines of all the registers we want the new data to get 
loaded into and by selecting the mux channel of the register that we want to 
source or provide the data.

Figure 10.2  Simple data path architecture to show synchronous data transfers.
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10.3.2  The Memory Access Path or Memory Interface

Our CPU main memory or simply its memory is an array of 4096 16-bit words 
or 4Kx16. Twelve address lines are required to access 4096 locations since 
212 = 4096. Each word is 16 bits wide so the data path to memory has 16 data 
lines. Memory is designed in such way that one 16-bit data word out of 4096 
words can be accessed at any given time. Our memory has two control input 
lines: a READ and a WRITE. READ and WRITE can be both negated (non-
asserted), but only one control input can be asserted at any given time. This 
means that we can only read a word from memory or write a word into 
memory at a time.

Practically two registers are needed to interface the CPU with its memory. 
The Memory Address Register or MAR register holds a memory address. The 
Memory Buffer Register or MBR receives the data read from memory on 
memory READS; or holds the data to-be-written into memory on memory 
WRITES. The interfacing protocol between the CPU and its memory is per-
formed via the MAR and MBR registers.

Using the MAR and the MBR the data path transfers below are required 
to read memory:

1. MAR ← Address; places desired address to read memory from, in the 
MAR.

2. MBR ← Memory [MAR]; retrieves the contents of memory location 
whose address is in the MAR.

For a memory write:

1. MAR ← Address; places desired memory address to write to in the 
MAR.

2. MBR ← Data; places desired data to be written into memory in the 
MBR.

3. Memory [MAR] ← MBR; performs the write. Transfers data from the 
MBR into the memory location whose address is in the MAR.

Figure 10.3 depicts the data path and interfacing registers with our memory 
array. Note that the MAR is 12 bits wide, because it has to hold a 12-bit address. 
The MBR is 16 bits wide because the memory data is 16 bits wide. The memory 
access path not only shows the path for the memory data but also the memory 
address path. Data path pictures usually do not include control signals, like 
the READ and WRITE controls for the memory. Register Q outputs are rep-
resented with a heavy line, refer to MAR and MBR in Figure 10.3. The register 
clock is implicit. So when we see a rectangle with one of its sides being very 
thick, it means that we have a register. Usually, the width of the register is 
indicated with a little forward slash followed by the width of the input and 
output buses in bits.
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10.3.3  The Arithmetic and Logic Unit (ALU)

Instructions ADD and AND respectively require arithmetic and logic to be 
performed on its operands. We will see within this chapter that two registers 
will hold the operands that the ALU receives on its two input legs P and Q. 
Both the ADD and the AND operations are performed with combinational 
logic. Such logic constitutes the ALU. Figure 10.4 shows a high-level block 
diagram of our ALU. Essentially our ALU has two 16-bit wide input legs, P 
and Q and a 16-bit output leg Z. The ALU is designed to perform the opera-
tions listed in Table 10.3. Although it may not be clear as to why we need all 
those operations now, please hang on and everything will come together when 
we stitch together all the components of our simple CPU.

10.3.4  The Program Counter (PC)

We mentioned earlier that the 12-bit wide PC holds the address of the to-be-
fetched instruction when an instruction is currently being executed. The PC 

Figure 10.3  Memory data path and interfacing registers.
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Table 10.3  ALU Basic operations

ALU Operation
High Level 
Description

ALU Function 
Select Code

Connect input leg Q to output leg Z PASS Q to Z 00
Complement input leg P and connect it to output 

leg Z
P  to Z 01

Arithmetic ADD of input legs P and Q send 
result to output leg Z

(P + Q) to Z 10

Logical bit-to-bit AND of input legs P and Q 
send result to output leg Z

(P . Q) to Z 11

Figure 10.4  (a) ALU high-level block diagram; (b) ALU block diagram.
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keeps track of which instruction within a program the CPU is at. A program: 
“a sequence of instructions with a defined purpose” is an oversimplified but 
correct view of what a program is. During the execution of most of the CPU 
instructions the PC gets incremented by one, since all of our instructions are 
one 16-bit word in length. So unless our program encounters an unconditional 
jump or a conditional branch instruction, the PC is always incremented by one. 
Upon a jump or branch instruction the PC wants to be loaded with a new 
destination or jump-to address. Such address, called address X, is fetched from 
memory along with the four-bit opcode. Once the PC gets loaded with this 
destination address X the jump will always fetch the next instruction from this 
new destination address. In the case of the BRNA (branch on negative accu-
mulator) the branching will occur if the condition of a negative accumulator 
(S flag set) was met before the BRNA instruction. If the branch condition is 
met the next instruction fetch takes place from the destination address X. If 
the branch condition is false the branch does not occur and the PC remains 
loaded with the address of the previous instruction incremented by one. From 
all of the above we need to have the PC perform at least three distinct func-
tions: hold its contents, auto-increment by one or get loaded with a new des-
tination address. Additionally the PC will have an asynchronous Reset input 
line to ensure that its contents are cleared upon power-up reset. Because of 
all of that functionality the PC is a little more involved that the accumulator 
A, MAR or MBR registers. One way of implementing the PC is with a counter, 
to obtain the auto-increment feature. The PC could use the CPU ALU to 
increment its contents by one, but this is not desirable because the PC would 
be using the ALU, which is a valuable resource of the CPU. Figure 10.5 depicts 
an implementation of the PC. Table 10.4 describes all the operations that the 
PC performs. Note that the PC implementation in itself is a simple synchro-
nous state machine. Its basic functions are: (1) hold, (2) increment by one, (3) 
external data synchronous load, and (4) synchronous reset (or clear). Note that 
the combinational logic between the PC input control lines (Incr, Load & 
Clear) and the 12-bit wide 1-of-4 mux has two select lines S1 and S0, is designed 
according to Table 10.4, look under columns PC Control Inputs and Mux Select 
Inputs. Note that Rows 1 through 4 of Table 10.4 defines the main functions 
of the PC combinational logic. In general control lines Incr, Load & Clear must 
be asserted in a mutually exclusive fashion, when all control inputs are negated 
the PC holds its previously clocked state. Assertion of two or three PC control 
inputs is not meaningful and to avoid this illegal condition whenever they are 
asserted the PC register will simply hold its previously clocked state. Refer to 
Table 10.4 Rows 5 through 8. Finally Row 9 indicates that when the clock into 
the PC is not active the PC register holds the previously clocked state. The 
asynchronous Reset line is not shown in Table 10.4 since this table is busy 
enough as it is. Figure 10.5 depicts a functional block diagram of the PC reg-
ister architecture.

Table 10.4 describes the operation or characteristic table of the PC register. 
Carefully read Table 10.4 while and also inspect Figure 10.5.



Figure 10.5  The program counter register (PC).
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Table 10.4  PC register characteristic table

Row Clock
High-true PC 

Control Inputs

Mux 
Select 
Inputs

PC Next State Output 
Becomes

PC Function#
Active 
Edge Clear Load Incr S1 S0 Qn+1[11:0]

1 ↑ 0 0 0 0 0 Qn+1 ← Qn[11:0] Hold
2 ↑ 0 0 1 0 1 Qn+1 ← Qn+1 Increment
3 ↑ 0 1 0 1 0 Qn+1 ← Ext-Datan[11:0] Load
4 ↑ 1 0 0 1 1 Qn+1 ← 0 Synchronous 

Clear
5 ↑ 0 1 1 0 0 Qn+1 ← Qn[11:0] Hold
6 ↑ 1 1 0 0 0 Qn+1 ← Qn[11:0] Hold
7 ↑ 1 0 1 0 0 Qn+1 ← Qn[11:0] Hold
8 ↑ 1 1 1 0 0 Qn+1 ← Qn[11:0] Hold
9 Inactive X X X X X Qn+1 ← Qn[11:0] Hold
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10.4  DATA PATH ARCHITECTURE: PUTTING THE LOGIC 
BLOCKS TOGETHER

Do not read this section until you have a good understanding of everything 
in this chapter that precedes this section. We will be heavily referring to previ-
ous sections, figures and tables. Once you are are ready we will begin to discuss 
how the individual logic blocks from Section 10.3 fit together. When our CPU 
has to execute an instruction it does it in three basic stages: (1) instruction 
fetch, (2) instruction decode (3) instruction execution. From a digital design 
standpoint each of the stages mentioned may be have one or more states.

10.4.1  Data Path: LDA Instruction Fetch, Decode and Execution RTL

When an instruction has to be fetched from memory the Program Counter 
Register (PC), which should have the address of the to-be-executed instruction 
has to transfer its contents to the MAR. To fetch an instruction means that the 
instruction has to be read from memory and be placed in some register within 
the CPU. Remember that our CPU instructions are only one 16-bit word long 
and it is not a multi-word instruction like in some advanced machines. The 
instruction upper four bits are the opcode and the lower 12 bits are address 
X. Refer to the ISW in Table 10.1. Upon being fetched, the instruction needs 
to be decoded; this tells the CPU what instruction was just fetched from 
memory and what else it needs to do. Upon the CPU figuring out which 
instruction it fetched, and assuming that in our example it was a LDA A, (X); 
the CPU knows that it requires bringing a word of data from a memory loca-
tion whose address is X. Such data are copied from memory into the memory 
MBR. Lastly the CPU transfers such word, now in the MBR, to accumulator 
register A. This last data path transfer finalizes the execution phase of the 
instruction. That is, A ← (X), refer to Table 10.2.

Let us look at the data path architecture diagram of Figure 10.6. Our com-
plete simple CPU data path and its main memory interface consist of four 
registers and the ALU. The PC register holds the address of the to-be executed 
instruction for the currently being executed instruction. The MAR register 
holds the address of a memory location the CPU wants to access. The MBR 
register is used to read data from and write data to memory. Remember that 
the PC register shown in Figure 10.6 is actually all the logic of Figure 10.5. We 
will explain the need for the MAR and the MBR multiplexers in the data path 
as we explain the operation of key instructions that use such muxes. Going 
back one more time to our LDA instruction, the fetch cycles consist of:

 1 MAR PC. .←  (10.14)

For this transfer to happen the selection of channel 1 of the MAR_MUX 
enables the PC to the MAR path. The transfer of the PC contents into the 
MAR is setting up the address from where to do the LDA instruction fetch 



616  A SIMPLE CPU DESIGN

from memory. Remember our instructions are all 16 bits wide and one word 
long. If Step (1) above happens to be the very first cycle that the CPU has to 
perform upon power-up reset or cold-start, the PC is previously cleared via its 
asynchronous clear line by the power-up reset circuitry (not shown), refer to 
Figure 10.5 to see the asynchronous clear line into the PC. The second data 
transfer that the LDA instruction requires is a memory read (or actual instruc-
tion fetch) that is:

 2 MBR M MAR PC PC. [ ]; .← ← + 1  (10.15)

Also at this time the contents of the PC are incremented by one. When the 
instruction completes with all its micro-operations the PC will already be 
pointing to the next instruction in memory. There is no reason to delay incre-
menting the PC or yet worse, to do it with a whole separate microinstruction. 
We will see shortly that if the PC needs to get loaded with a different value 

Figure 10.6  Data path architecture of our simple CPU.
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(instead of its incremented value) when JMP and BRNA instructions are 
executed, the PC will get overwritten with the address that these instructions 
jump or branch to. After micro-operation (2) the MBR has fetched complete 
instruction, 4-bit opcode and 12-bit address X. Notice that at the completion 
of step (2) both the MBR gets loaded with the contents of memory pointed 
to by the address held in the MAR and the PC is incremented by one. The is 
no resource conflict for those two operations to be performed on the same 
state (or clock); that is because we designed the increment PC function such 
that it does not use the CPU ALU to do this. Refer to Figure 10.5 note that 
the PC has its own increment control line.

The next step for the CPU is to decode the opcode bits, which are in bits 
MBR [15:12]. Hence:

 3 15 12 11 0. [ : ]; [ : ].Decode MBR MAR MBR ←  (10.16)

Step 3 is a good time to transfer MBR [11:0] (address X) to the MAR, since 
address X will be needed to get the operand from memory. The operand refers 
to the data in memory that needs to be copied into the MBR. The two micro-
operations in step three occur concurrently. Refer to Equation (10.16).

Now the CPU knows that the fetched instruction was an LDA and that data 
from memory location whose address is X has to be brought into the CPU 
MBR. Thus:

 4. [ ].MBR M MAR←  (10.17)

Remember that the address in the MAR is already X from Step 3.
The heart of the CPU data path is its ALU and accumulator register A. 

Note that the ALU can PASS the contents of the MBR connected to the ALU 
Q input leg straight into its accumulator register A. This portion of the data 
transfer is required for the final execution path of the LDA instruction. So the 
ALU is placed in PASS Q mode by the control logic and the data from 
memory, now in the MBR gets transferred to register A, in one clock cycle. 
Hence:

 5. .A MBR←  (10.18)

Summarizing, the complete sequence of micro-operations to fully fetch, decode 
and execute our LDA instruction follows:

 1. MAR PC←  (10.19)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.20)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.21)

 4. [ ]MBR M MAR←  (10.22)

 5. .A MBR←  (10.23)
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We will see later that the five micro-instructions given by Equations (10.19) 
through (10.23) occur in five clocks.

10.4.2  All Other Instructions: Fetch, Decode and Execution: RTL

Having gone through the LDA instruction fetch, decode and execution in 
detail we will go over the rest of the instructions a little faster. We will empha-
size the differences that each instruction presents with respect to a previously 
described instruction. To start with, it is important for the reader to know that 
all seven instructions of our simple CPU have the same identical fetch and 
decode steps. We will see in the control section that what we are calling steps 
are actually states of the controller state machine that steers the data transfers 
throughout the data path of the machine. In summary all instructions perform 
the same three states to do the instruction fetch (first two states) and instruc-
tion decode (third state). For the reader’s convenience these three states are 
repeated here:

 1. MAR PC←  (10.24)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.25)

 3 15 12 11 0. [ : ]; [ : ].Decode MBR MAR MBR ←  (10.26)

10.4.2.1  Store  Instruction  Having said that, let us look into the STA 
instruction and its difference with respect to LDA. Referring to Table 10.2 
STA stores data from register A into a memory location whose address is X. 
That is:

 ( ) .X A←  (10.27)

The STA (X), A instruction stores or writes the contents of register A into 
memory location whose address is X. LDA on the other hand reads memory 
from address X, refer to Equation (10.22). Continuing with our STA instruc-
tion, in its fourth state we need to transfer register A data into the MBR and 
in the fifth state we write A to memory. Note that the MAR is already loaded 
with address X from state (3), refer to Equation (10.26). Summarizing the five 
states of the STA (X), A:

 1. MAR PC←  (10.28)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.29)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.30)

 4. MBR A←  (10.31)

 5. [ ] .M MAR MBR←  (10.32)
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Basically states (4) and (5) (Eqs. 10.31 and 10.32) respectively, accomplish 
Equation (10.27), that is,

 ( ) .X A←

10.4.2.2  Add Instruction  Referring one more time to Table 10.2 the ADD 
A, (X) performs:

 A A X← + ( ).  (10.33)

ADD needs to read contents of memory location whose address is X and 
then add them to the existing contents of register A and store the results in 
A. So state four is identical to state four of the LDA instruction, which reads 
memory from location X into the MBR. The fifth state adds the read data now 
in the MBR to A and places the result in A. This last step overwrites the previ-
ous contents of A and sets the S bit accordingly. Thus ADD is:

 1. MAR PC←  (10.34)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.35)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.36)

 4. [ ]MBR M MAR←  (10.37)

 5. .A A MBR← +  (10.38)

The produce Equation (10.38) the CPU controller has to select the ALU ADD 
function select lines. Refer to Table 10.3.

10.4.2.3  And Instruction  From a data path or register transfer language 
(RTL) viewpoint AND is virtually identical to ADD. The sole difference is 
that the CPU controller selects the AND function of the ALU instead of the 
ADD. So for the AND instruction we have that:

 1. MAR PC←  (10.39)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.40)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.41)

 4. [ ]MBR M MAR←  (10.42)

 5. . .A A MBR←  (10.43)

10.4.2.4  Conditional Branch Instruction  Branch on negative accumula-
tor needs to check the state of the S bit, upon this bit being one it loads the 
PC with address X, which as usual is already in the MAR from state 3. If the 
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S bit is zero then the PC remains with its previous contents, which are PC + 1 
from state 2. Hence:

 1. MAR PC←  (10.44)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.45)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.46)

 4 1. ?If S bit =  (10.47)

 5. : .Then PC MAR←  (10.48)

10.4.2.5  Unconditional  Jump  Instruction  Simply requires loading the 
PC with the MAR that already has address X from state 3. This instruction 
only has four states, which are:

 1. MAR PC←  (10.49)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.50)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.51)

 4. .PC MAR←  (10.52)

10.4.2.6  Complement  Accumulator  Instruction  This is an instruction 
that already has its operand, that is, register A, in the CPU itself, it does not 
need to go to memory to read a location to get the operand like the AND and 
ADD instructions do. To generate A ← A−, the controller simply needs to select 
the ALU PASS P to Z mode to complement the accumulator and store it back 
into itself. Thus the CMP A instruction looks like:

 1. MAR PC←  (10.53)

 2 1. [ ];MBR M MAR PC PC← ← +  (10.54)

 3 15 12 11 0. [ : ]; [ : ]Decode MBR MAR MBR ←  (10.55)

 4. .A ← A  (10.56)

Figure 10.7 depicts a complete state diagram of all seven instructions. The state 
assignment of each state is not done in Figure 10.7 yet. This will be addressed 
when we design the CPU controller state machine. Notice that for all seven 
instructions we used the numbers (1), (2), etc. just to indicate the sequence of states 
in time. Those numbers should not be construed as the state number assignment.

10.5  THE SIMPLE CPU CONTROLLER

The controller is the state machine that orchestrates the functioning of the 
data path data transfers, registers loading, PC incrementing, synchronous 
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clearing, ALU function selection, MAR and MBR multiplexers steering, 
memory reads and writes, so that the instruction set is executed as described 
by its state diagram (Fig. 10.7). We need to first identify all the inputs and the 
outputs that our controller needs. This process has to be done by mainly careful 
inspections of Figures 10.6 and 10.7 and it is greatly a comprehensive process. 
Input signals to our controller are: (1) MBR [15:12] the opcode of each instruc-
tion. (2) The accumulator MSB stored in the S bit flip-flop (not explicitly 
shown on the data path diagram). (3) A system level asynchronous reset  
to clear the PC upon power-up. Outputs of the controller are listed by func-
tional block and are the following: (1) For register A: LOAD_A, (2) for the 
MAR: LOAD_MAR, (3) for the MBR: LOAD_MBR, (4) for the PC: INCR_
PC, LOAD_PC and CLEAR_PC all three signal being synchronous controls. 
(5) The asynchronous clear control for the PC: ASYNC_CLEAR_PC will be 
generated by the reset logic (not covered yet) and not by the controller. (6) 

Figure 10.7  Simple CPU state diagram.
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The MAR mux needs a MAR_MUX_SEL line, (7) the MBR mux needs a 
MBR_MUX_SEL line, (8) the ALU needs two bits of ALU_FUNCTION_
SELECT bits. (9) We need a READ and a WRITE control signals for the 
memory array. Finally four bits of state are needed for our controller because 
since our state diagram has 16 states or less (actually 15). In summary we have:

Five input bits for the controller and one input bit for the asynchronous 
CLEAR for the PC from the reset logic. Twelve control outputs and four state 
bits. State bits are outputs too. It is interesting to mention that a relatively 
large number of control signals are needed even though we are dealing with 
a very simple CPU.

10.5.1  State Assignments and Controller Implementation

Carefully reviewing RTL micro-operations (Eqs. 10.14 through 10.56) and the 
state diagram of Figure 10.7 we will make the following state assignments and 
justify their selection later. Starting with the first state at the top of Figure 10.7 
we assign to it the value of 0, then state 1 and 2 for the fetching and decoding 
states. For the LDA instruction, we assign states 3 and 4. States 5 and 6 for 
STA; states 7 and 8 for ADD; states 9 and 10 for AND; states 11 and 12 for 
the BRNA, state 13 for JMP, and state 14 for CMP A. There is only one state 
that remains unassigned, state 15. Since state 15 is an unused state we can 
design our controller state machine assigning unused state 15 to uncondition-
ally go to the machine instruction fetch, state 0. Another option is to make 
state 15 an isolated state (Fig. 10.8). Alternatively, if the CPU reaches state 15, 
for example upon power up reset or due to some failure mechanism, we may 
choose to force the user to re-start or power cycle the CPU, since the CPU 
would freeze. Although this may seem a little unreasonable, it may be a better 
choice than letting the computer start fetching instructions from perhaps not 
the correct memory address. Or perhaps with some other register contents 
corrupted.

Let’s talk about the state transitions that exist with the current state assign-
ment. All transitions from state 0 to 1, from state 1 to 2, from state 3 to 4, from 
state 5 to 6, from state 7 to 8, from state 9 to 10 and from state 11 to 12, are 
achieved by incrementing the previous state by one. For example, you reach 
state 10 by incrementing state 9 by one. All state transitions from state 4 to 0, 
6 to 0, 8 to 0, 10 to 0, 12 to 0, 13 to 0, and 14 to 0 are reached by clearing a state 
register of the to-be-designed state machine controller. Finally all transitions 
from state 2 to state 3, 5, 7, 9, 11, 13, and 14 are attained by loading the cor-
responding state into the state register. This has an important implication when 
we need to design the controller for our simple CPU. The reason is that the 
hardware implementation of the controller is greatly simplified because there 
are only three types of state transitions: that is, Increment, Load or Clear. This 
is the same register architecture as the one used for the PC register, refer one 
more time to Figure 10.5. We will implement the controller with a 4-bit state 
register and three 1-of-16 multiplexers. Figure 10.9 depicts the hardwired 
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Figure 10.8  State assignments of our simple CPU state diagram.
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implementation of the controller. It is called a hardwired implementation 
because it is not programmable or as easily changeable as it would be if we 
used a programmable memory device, such device is referred to as the micro-
sequencer or controller micro-store. Because of space reasons this book does 
not deal with micro-store based controllers. However, the reader can find 
material for further study under the Further Reading section at the end of this 
chapter.

The hardwired controller of Figure 10.9 is a clean and simple implementa-
tion. The logic has not been minimized in any way. The multiplexers are there 
to emphasize the function we want the state counter to take; these functions 
are increment, load or clear, all of them synchronous functions. The initial 
clearing of the state counter or register is accomplished with it asynchronous 
reset supplied by the reset or power-on circuit, not shown. Careful analysis of 
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Figure 10.9 in conjunction with 10.8 allows the reader to understand the way 
the controller walks through each and every one of the assigned states, depend-
ing on the instruction that is presented for external loading to the state counter. 
Table 10.5 shows the mapping that needs to be produced from each state to 
the appropriate assertion of the output control signals. The state bits to output 
signal mapping can be implemented with a Read Only Memory (ROM) or 
combinational logic gates to do the decoding to assert the appropriate control 
outputs. The reader is asked, as an exercise, to design the combinational logic 
described by Table 10.5. Hint: The inputs of the logic should be Q[3:0] the 
state bits of the controller state counter.

Figure 10.9  Hardwired implementation of our simple CPU controller or sequencer.
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In Table 10.5 several control output names have been abbreviated: for 
example LOAD_A is renamed: LD_A, to have more room on the table. Let 
us refer to the LDA instruction RTL given by Equations (10.19) through 
(10.23). Referring to Table 10.5, Figure 10.6 and the LDA RTL repeated for 
the reader’s convenience, we verify how Table 10.5 was filled in.

 State MAR PC0: ←  (10.57)

 State MBR M MAR PC PC1 1: [ ];← ← +  (10.58)

 State Decode MBR MAR MBR 2 15 12 11 0: [ : ]; [ : ]←  (10.59)

 State MBR M MAR3: [ ]←  (10.60)

 State A MBR4: .←  (10.61)

In state 0: we need to assert LD_MAR = 1 and MAR_MUX_SEL = 1 to 
transfer data from the PC into the MAR, and all other control signals need 
to be negated upon receiving the active edge of the clock. Once in state  
1: LD_MBR = 1, MBR_MUX_SEL = 1 and M_RD = 1 reads memory loca-
tion pointed to by the MAR and saves the read data in the MBR. Simultane-
ously the INC_PC = 1 to increment the PC by one. Once on state 2: The 
MBR[15:12] get looked at (decoded) by the controller and MBR[11:0] trans-
ferred to the MAR, so that LD_MAR = 1, MAR_MUX_SEL = 0. This micro-
operation just copied address X into the MAR. The controller asserts its 
LOAD Mux output to load a jump to state 3 to go to the LDA instruction 
execution sequence. On state 3 M_RD = 1, MBR_MU_SEL = 1 and LD_
MBR = 1 reads memory data from address X. Finally once in state 4 ALU_
FUNC_SEL = 00 (PASS Q to Z) and LD_A = 1 transfers the contents in the 
MBR to register A.

For the rest of the instructions the reader should refer to the state diagram 
with state assignments of Figure 10.8 and with the aid of Figure 10.6 (data path 
architecture) start verifying the correctness of the contents of the rest of Table 
10.5. Please allocate, as long a time as you need, the first time going through 
the complete table may take more than a few hours and more than one sitting. 
I have been there; please do not feel frustrated, this will only make sense once 
you go over the material exhaustively.

10.6  CPU TIMING REQUIREMENTS

This section will be concerned with identifying the timing paths in the machine 
data path, memory interface and controller. To study these paths we will make 
a reasonable assumption, which is that all clocks arrive at their registers clock 
inputs at the same time. This means that we assume that there is zero clock-
skew. Starting with the data path architecture of Figure 10.6 timing paths are 
simply identified starting from the Q outputs of a register working your way 
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though a combinational data path or simply through a bus wire into the D 
inputs of either the same or another register.

The following are the long paths in Figure 10.6:

1. PC Q outputs through MAR_MUX into MAR D inputs.
2. MRB Q outputs through MAR_MUX into MAR D inputs.
3. MBR Q outputs through ALU leg Q into A register D inputs.
4. Register A Q outputs through ALU leg P into register A D inputs.
5. Register A Q outputs through MBR_MUX into MBR D inputs.
6. MBR Q outputs into PC D inputs.
7. MAR Q outputs through memory address to data out through MBR_

MUX into MBR D inputs.
8. MBR Q outputs though memory data in and data out, through MBR_

MUX into MBR D inputs.

For the logic of the CPU controller of Figure 10.9 we can identify the following 
paths:

9. MBR Q outputs to state counter D inputs.
10. State counter Q outputs to INC MUX select lines to state counter INC 

input.
11. State counter Q outputs to LOAD MUX select lines to state counter 

LOAD input.
12. State counter Q outputs to CLR MUX select lines to state counter 

CLR input.
13. S-bit flip-flop Q output through INC Mux INC output into state 

counter INC input.
14. S-bit flip-flop Q output through CLR Mux CLR output into state 

counter CLR input.

When we want to study for each timing path their corresponding long path, 
to calculate if the set-up time is met we proceed as follows with path (1): We 
use the maximum clock-to-output time of the sourcing register, the maximum 
propagation delay of the combinational logic and the minimum set-up time 
required by the D input of the receiving register.

So when we want to study path (1) as a long path it becomes:

 1. .PC t t MAR tclock-to-output max delay max pd MAR_MUX SU+ +

Finally to determine if such path meets the set-up time requirement of the 
MAR register we need to check if:

 PC t t MAR t Tclock-to-output max delay max pd MAR_MUX SU clk+ + ≤ mmin.
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When we want to study the effect of the same path (1) as a short path, we 
consider the fastest or shortest delay at which the Q outputs of the PC travel 
plus the shortest delay through the MAR_MUX combinational logic. Since we 
want to analyze the corresponding short path we want the check if the follow-
ing inequality is met:

 PC t t MAR tclock-to-output min delay min pd MAR_MUX HOLD+ ≥ .

The reader is strongly encouraged to establish all 14 long path and 14 short 
path equations for the complete CPU. In general we find that the longest path 
usually is the path through the ALU because it has the largest amount of 
combinational logic. The usual short paths are those that connect registers Q 
outputs through short wires straight into registers D inputs. One such example 
in our CPU design is the MBR[15:12] to state counter inputs.

10.7  OTHER SYSTEM PIECES: CLOCK, RESET AND 
POWER DECOUPLING

10.7.1  Clock

The clock of a synchronous state machine is typically generated with a crystal-
based oscillator with good stability. Clocks are buffered and distributed to its 
loads in a point-to-point fashion. With the current sub-nanosecond rise/ fall 
times and clock frequencies of today, virtually all signals are interconnected 
point-to-point for optimal signal integrity and timing behavior. Clock buffers 
used should be preferably packaged within the same IC package and the wire 
lengths should be matched. When the clock frequencies are high, like several 
hundred megahertz crystal oscillators are not available so Phase Lock Loop 
circuits (PLL) are used to generate gigahertz range frequencies. PLLs are not 
within the scope of this book and an excellent reference [7] to this topic is 
given in the Further Reading section of this chapter.

10.7.2  Reset

Upon good power being applied to a CPU-based system, reset is the first 
hardware signal that the system requires to power-up correctly. In our simple 
CPU, reset clears the PC and the CPU controller state counter register. In real 
world systems reset initializes or clears all the appropriate registers on board 
or within programmable devices such as CLPDs and FPGAs, it also allows 
the clock generating circuit to start running. It is extremely important for the 
reset or Power-On Reset (POR) signal not to glitch, because that may cause 
registers to come out of reset at different times and the system to behave 
unpredictably. It is desirable to assert reset asynchronously to ensure that all 
resettable devices are cleared regardless of the state of their clock. However, 
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it is more advisable to negate reset synchronously. Reset should be released 
(negated) synchronously, because releasing reset in an uncontrolled environ-
ment (i.e., asynchronously) may cause its flip-flops or registers to go meta-
stable. Two problems may occur upon an asynchronous reset release: (a) the 
reset recovery time may be violated and (b) reset negation may occur at dif-
ferent clock cycles for different clocked elements. The reset recovery time is 
the time between when reset is negated and the time that the clock edge signal 
goes active again. Figure 10.10 depicts a very bad example of a reset circuit. 
It has multiple problems. Upon power-on, assuming a discharged capacitor, 
the low-true RESET signal will start at zero and has an exponentially increas-
ing waveform. This waveform may not be suitable for the ICs that receive the 
reset, because it may stay at the IC logic threshold too long. It may not apply 
reset for the required time because the exponential ramp up time is not very 
precise. Chips generally have a normal operating voltage plus and minus 5 or 
10 percentage points of such voltage. The assertion of reset with the circuit of 
Figure 10.10 is not very well defined. The diode that the circuit has across the 
10 kΩ resistor is to provide a quick discharge path of the capacitor if a user 
turns off the system and turns it back on quickly. A better scheme would use 
a Schottky diode since it has a lower forward voltage drop.

A somewhat improved reset is depicted in Figure 10.11.

Figure 10.10  A poor example of a reset circuit.

R = 1KΩ

Active low RESET signal

C = 1 µF

VDD
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Figure 10.11  Improved reset circuit.

1 µF

R = 1KΩ

The advantage of this circuit is that a Schmitt trigger logic gate is used to 
shape the reset pulse. A Schmitt trigger gate has built-in hysteresis properties, 
thus filtering out short-lived glitches and reset pulse variations.

An even better approach can be implemented with two D flip-flops syn-
chronously clocked, but having asynchronous reset inputs. The second flip-flop 
reduces metastability. The operation of this reset circuit is clean. Reset out is 
active low. It produces an asynchronous active high reset, even before the 
clock runs. But upon active low Reset_Out being released a low level (i.e., no 
reset) is synchronously clocked into active low reset_out. The two synchroniz-
ing flip-flops reduce the probability of metastable behavior to practically neg-
ligible levels. Figure 10.12 depicts such reset circuit. This circuit is commonly 
used at board level as well as in programmable devices level designs.

At the board level reset chips are available from several IC manufacturers, 
such as Analog Devices (ADI), Intersil, Maxim, ST Microelectronics, Texas 
Instruments (TI) and several others. Such ICs are referred to as supply voltage 
supervisors or reset chips. Supervisor circuits monitor system voltages from a 
range that may vary from about 0.5V to some upper voltage limit like 5 V. 
When the voltage dips below a preset threshold or when a manual reset (typi-
cally a pushbutton) drops to a logic low (active low manual reset) the active 
low open drain reset output asserts. It usually remains asserted low  
for a user-programmed time delay. An external resistor and capacitor time 
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constant usually control such time delay. These supervisor chips use a precision 
reference voltage to achieve good threshold accuracy (typically 1% or better). 
When the DC voltage to an embedded system dips below the required 
minimum voltage for proper operation, the supervisor circuit asserts the reset 
signal; this initiates a system shut down. Current flow stops and the voltage to 
the supervisor may increase due to decreased IR drop. This produces a false 
reset negation from the supervisor circuit, that is, the supervisor incorrectly 
turns the system back on. To mitigate that problem sensing voltage hysteresis 
is provided to the supervisory circuit. For more details on supervisory circuits 
refer to the websites of the IC manufacturers mentioned above. Examples  
of some power-on reset or supervisory ICs are: Intersil ISL6131, Maxim 
MAX691A, MAX700 and MAX800 series, Analog Devices ADM63xx series, 
TI TPS3808 series, and many others.

10.7.3  Power Decoupling

Just like any IC on a system good decoupling with low equivalent series resis-
tance (ESR) and low lead inductance capacitors must be supplied to every IC 
on the board. What is decoupling for? Power supplies provide voltage and 

Figure 10.12  Reset circuit with asynchronous assertion and synchronous negation.
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current to integrated circuits over the time they need to be operational. IC’s 
make sudden transitions, usually in the nanosecond range, of one or many of 
their inputs and output pins. Such fast signals transitions produce high current 
demands as the power across the IC droops a few millivolts. The power across 
the IC power pins droops, because there is no power supply that can have 
a time response to such a fast power demand. The power supply and its  
power distribution scheme, cables, traces and wires that route the power to 
the point of consumption, both have a finite and definitely non-zero response 
to current transients. For example 300 kHz switching power supplies, may have 
a bandwidth or capacity to respond to current transients of about 10 micro-
seconds. During these 10 microseconds the decoupling capacitors, placed in 
extremely close proximity to the IC being decoupled, provide the amount of 
current for the amount of time that the power supply requires to react and 
start to provide current to the IC. This indicates that the decoupling capacitor 
in a very first pass approximation has to be able to provide enough current 
for a certain minimum time allowing its voltage to droop no more than a 
predetermined limit. Such calculation is based on the basic equation than links 
current voltage and time in a capacitor. From Chapter 1 we know that such 
relationship is:

 i t C
dv t

dt
C

C( )
( )=  (10.62)

Let us consider the following numerical example to illustrate how to calculate 
the value of decoupling capacitance needed. Assume that our power supply 
has a bandwidth of 100 kHz, which means that it will be able to respond to 
current transients after 10 microseconds from the beginning of the current 
transient event. Assume that we want to have a maximum voltage droop across 
the IC power pins of no more than 300 mV. Finally assume that the current 
transient demanded by the IC is 1 A. From Equation (10.62) we calculate 
C as:

 C
i d t

dv t
C

C

= ( )
( ).

 (10.63)

Replacing differentials with finite time and voltage increments or decrements 
in Equation (10.63) we obtain:

 C = × × =
−1 10 10

0 300

6

.
. .33 333 Fµ

When decoupling calculations need to done more accurately equivalent series 
resistance (ESR) and lead inductance (ESL) of the capacitor should be taken 
into account. A very comprehensive treatment of this topic can be found  
in [1,2].
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10.8  SUMMARY

This chapter defined the instruction set of a very simple CPU. A data path 
architecture was presented to support the defined instruction set. Using such 
data path we covered the microinstructions of every machine language instruc-
tion or simply called a macroinstruction. We further developed the state 
diagram of the complete instruction set, and the sequencer design.. The longest 
instructions take five states or clocks to fully execute and the shortest ones 
take four clocks. We further look into some system level issues: timing, clocks, 
and their distribution, resets and power decoupling.
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PROBLEMS

10.1 Design the two new instructions shown at the bottom of Table 10.6
Note:
1. The new instruction set supports two more instructions: LD B, (X) 

and STA (X), B.
2. The CPU has one new 16- bit register: that is, register B.

(a) Make any needed modifications to the data path architecture 
of Figure 10.6.

(b) Draw a complete state diagram only of the two new instruc-
tions shown in Table 10.6.

10.2 In reference to Figure 10.9 the CPU controller:
(a) Redesign the control logic of Figure 10.9 using a minimally sized 

ROM and D-type registers for the new instruction set of Table 10.6.
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Table 10.6  New simple CPU instruction set

Instruction 
Syntax

Opcode 
(Binary) 

IWF [15:12]
Address X 
IWF [11:0]

Description of What 
Gets Executed

Affects 
Sign Flag?

LD A, (X) 0000 A valid address A ← (X) No
STA (X), A 0001 A valid address (X) ← A No
ADD A, (X) 0010 A valid address A ← A + (X) Yes
AND A, (X) 0011 A valid address A ← A. (X) Yes
BRNA X 0101 A valid address If S = 1 then PC → X No
JPM X 0100 A valid address PC ← X No
CMP A 0110 Bits [11:0] are 

ignored
A ← A

–
Yes

LD B, (X) 0111 A valid address B ← (X) No
STA (X), B 1000 A valid address (X) ← B No

(b) Draw the circuit schematic of the new simple CPU controller logic.
(c) Write the micro-code that the ROM needs to perform the com-

plete instruction set given by Table 10.6.

10.3 Assume we want to add another new instruction to Table 10.6 New 
Instruction Set. This new instruction is:

 OR A X A A X, ( ); ( )← +

The OR instruction does a bit-to-bit OR operation between the contents 
of memory location whose address is X and the contents of register A, 
it finally stores the result in register A, overwriting its original contents. 
Remember that the new instruction has to increment the contents of 
the PC just as any other instruction does.

(a) Enumerate and describe all the required changes to the data path 
architecture, and (b) the state diagram.

10.4 Assume we want to add another new instruction to Table 10.6 New 
Instruction Set. This new instruction is:

 NOP  clock cycles doing nothing; 5

The NOP should have a normal instruction fetch and decode cycles. The 
actual execute cycle should be long enough to use 5 cycles of the clock, 
including the fetch and decode phases.

Remember the new instruction has to increment the contents of the 
PC just as any other instruction does. However, the NOP must not 
change the contents of registers A and B and must not affect the ALU 
flag bit S (sign bit).
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(a) Enumerate and describe all the changes to the data path archi-
tecture, and the state diagram that apply.

10.5 Create an algorithm that allows one to add two 4-bit unsigned binary 
numbers and produce the resulting sum in BCD.

For example: 1001 + 0001 = 1010, binary nine plus binary one equals 
binary ten. Your algorithm should report the sum as: 0001_0000, which 
stands for ten in binary coded decimal (BCD). Similarly 0110 + 0101 = 
1011 should be reported as 0001_0001 (eleven in BCD). And a last 
example, 0011 + 0010 = 0101, binary 3 plus binary 2 equals equals five 
in BCD.

10.6 Design the logic hardware to implement the algorithm found in Problem 
10.5. Draw the circuit schematics of the logic.

10.7 Let us assume that we want to design a MOVE instruction that copies the 
contents of a memory location whose address is X, into another memory 
location whose address is Y. Such instruction must not affect ALU flags,  
it must increment the PC just as any other instruction does. The original 
(and likely unknown) contents of memory location Y are overwritten 
with the data copied from address X. Original contents of memory loca-
tion X remain unchanged. The syntax for such new instruction is:

 MOVE Y X Y X( ), ( ); ( ) ( )←

(a) Enumerate and describe any (and all) required changes to the data 
path architecture, (b) instruction word format (IWF), and (c) the state 
diagram.

For part (a) draw and show needed changes to the data path archi-
tecture of Figure 10.6. For part (b) generate the complete state diagram 
for the new instruction only.

10.8 For the circuit schematics of Figure 10.13 assume the following timing 
parameters:

D-type Flip-flop:

 t 2 nsCLK-to-QMAX =

 t nsCLK-to-Qmin = 1

 t nsSU = 1 5.

 t nsH = 0 5.

The circuit represents a hardwired shift register without external reset 
line or controls.

Assume that the wires are ideal and have no delays. Assume that the 
clock arrives at all flip-flop clock inputs at the same time, no clock skew.
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(a) Determine the maximum frequency at which the shift register can 
be reliably clocked.

(b) Determine the available hold time (short path) available to each 
flip-flop.

(c) Assume that flip-flop 1 clock has a rising edge at time 0 ns and 
flip-flop 2 receives the same logically rising edge 1 ns later. Deter-
mine the available hold time (short path) available to each flip-
flop. (This point and the next one no longer assume zero 
clock-skew.)

(d) Draw the following waveforms: clock 1, clock 2, FF1 input data, 
FF1 Q output, FF2 input data, and FF2 Q output, showing clock 
skews.

Figure 10.13  Circuit for Problem 10.8.
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INDEX

acceptors, 376
adders, see full-adders; half-adders
alternating current (AC) circuits, 98
amplifier, 287, 292–294

bipolar, 397–420
linear, 155–165, 290–294
linear applications of op amps, 294, 

299, 306, 314, 316, 321, 322, 326
non-linear applications of op amps, 

331, 332, 335, 336
small signal model, 397

apparent, see under power
arithmetic, 533
arithmetic and logic unit (ALU), 611
atoms, 1, 2

battery, 5, 6, 30–33
BiCMOS, 500
binary numbers, 456, 527, 531
Biot-Savart law, 49
bipolar junction transistor (BJT), 374

biasing, 378–382
biasing PNP transistors, 396
biasing resistor divider, 387
as a circuit element, 377
common base configuration, 407
common collector configuration,  

415
common emitter configuration, 399
electronic devices, 354
emitter degeneration resistor biasing, 

391

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.

follower configuration, see common 
collector configuration

self-biased, 394
small signal model, 397

BJT, see bipolar junction transistor
Bode plots, 238, 241, 244, 254, 257, 275, 

278
Boolean algebra, 460
Boolean algebra postulates and 

theorems, 465

canonical forms, see standard canonical 
forms

capacitive reactance, 131–133, 152,  
153

capacitor, 111, 114, 123, 124, 126, 127, 
131–133, 136–139, 142, 152

decoupling, 42–44, 304–306, 603, 628, 
631–633

dielectric constant, 35, 36
electric component, 12
parallel-plate, 33, 35, 36, 94
power drawn by, 137, 139
pure, 131
time domain equations, 115
under sinusoidal steady-state, 114
voltage and current phasors, 134

carry look ahead, 543
central processing unit (CPU)

design, 603
instruction set, 603

characteristic tables, see flip-flops
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charge, 1–3, 5, 6
circuit, 156

analysis, 155
first order, 233, 236, 241, 246, 279
linear, see amplifiers
second order, 233, 265, 266, 275, 278, 

279
theorems, 155

clock, 550, 551, 559–567, 571–575, 584, 
587, 590, 591–593, 595–599

cpu, 603, 604, 608, 609, 614, 617, 618, 
626–628

CMOS, 443, 497, 498–500
coil, see inductor
complex number, 115–122, 126, 128, 130, 

131, 133–135
controller, 618–620
counter, program, 604, 611, 614,  

615
current

electric, 3–11
electronic, 6
source, 3, 5, 7–11

current controlled current source 
(CCCS), 145–149, 154

current controlled voltage source 
(CCVS), 145, 146, 147

D flip-flop, 568, 581
data path architecture, 615
De Morgan laws, rules and theorems, 

464
decoder, 510–515
decoupling, 628, 631
de-multiplexers, 526
dependent sources

current controlled current source 
(CCCS), 148, 149

current controlled voltage source 
(CCVS), 145–147

finding the Norton equivalent circuit, 
175

establishing mesh equations when 
there are, 196

establishing nodal equations when 
there are, 207

Norton’s theorem highlights, 211
Thevenin, 167
Thevenin theorem highlights, 211

voltage controlled current source 
(VCCS), 145, 146, 147

voltage controlled voltage source 
(VCVS), 145

depletion mode, see metal oxide 
semiconductor field effect 
transistor

dielectric constant, 35, 36
difference amplifier, see operational 

amplifiers
differentiator, see filters
digital circuits, 456
diode, 354–357, 363, 367, 369, 371, 372
direct current (DC) circuits, 5, 87
donors, 376
don’t care, 491
dot rule, 68
duality principle, 466

effective value, 99, 105, 149; see also root 
mean square (RMS)

electric charge, 1, 3, 34
electric current, 3, 6, 12, 37, 45, 53, 88, 422
electric voltage, 3, 27
electromotive force (EMF), 51, 53, 54, 59
electron, 1–3, 5, 6
electronic devices, 354
EMF, see electromotive force
encoder, 510, 517
enhancement mode, see metal oxide 

semiconductor field effect 
transistor

Euler’s form, 119–123
excitation tables, see flip-flops

Faraday’s Induction Law, see induction
fast carry generation, 543
filters

differentiator, 263, 265, 279
first order, 233, 235
high-pass (HPF), 252–265, 279, 294
integrator, 251, 252, 279
low-pass (LPF), 235, 236, 238, 240–245, 

246, 248–252, 254, 257, 260, 279, 
280, 285

second order, 266, 275
flip-flops

characteristic tables, 568–570, 576
D-type, 568, 581
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excitation tables, 576–578, 580–583, 
586, 588

JK, 565
master/slave SR, 561
timing, 572
toggle or T-type, 568

frequency domain, 111, 123, 235, 253
frequency response plots, see Bode 

plots
full adders, 533, 536
full-wave rectifier, 360

gates, 495
logic, electrical and timing 

characteristics, 495, 497
MOSFET, 424, 427, 429, 432

half-adders, 533
half-wave rectifier, 357
hysteresis, 70, 336, 338–341, 630, 631

impedance, 123, 124, 126, 127, 128, 129, 
130–136, 140, 144, 151–153

induction, 49–51, 53
electromagnetic, 53, 54, 62
Faraday law of, 53, 62, 64, 66

inductive reactance, 130, 151, 152
inductor

electric component, 12
mutual inductance, 62–70
non-linearity, 70–73
parallel, 60–62
power drawn by, 136, 139, 140
pure, 127, 128, 129, 130, 133
series, 58, 59
time domain equations, 115
under sinusoidal steady-state, 113
voltage and current phasors, 134

integrator, see filters

JK flip-flop, 565

Karnaugh maps, 473, 474, 479, 484, 487
design examples, 473, 474, 479, 484, 

487
Kirchoff’s current law (KCL), 73, 81, 173, 

199
Kirchoff’s voltage law (KVL), 73, 79,  

173

latch, 552–559
characteristic table, 558, 560

latch SR, 559
linear amplifiers, see amplifiers
linear function, 156–160
load line, 108, 109
logic gates, 495, 497, 499
logic operation, see Boolean algebra
loop, 77, 78
Lorentz law, 49
LVTTL, 499

magnetic characteristic, 71
magnetic field, 45–51, 53, 54, 58, 59–61, 

70
magnitude Bode plot, see Bode plot
master/slave, 561, 565, 568
maxterms, 472
memory, 610
mesh method, 179–181, 189, 196, 199, 

210, 212, 213, 223, 225
with dependent sources, 196

metal oxide semiconductor field effect 
transistor (MOSFET)

biasing techniques, 428
common drain or source follower, 439
common gate configuration, 437
common source configuration, 434
common source configuration with 

emitter degeneration, 436
electronic device, 354, 420
enhancement mode p- channel, and 

depletion mode n-channel and 
p-channel, 439

I-V characteristics, 424
small signal model, 427

minterms, 467
MOSFET, see metal oxide 

semiconductor field effect 
transistor

multiplexers, 519, 521
mutual inductance, see inductor

nodal method, 199–207, 210
non-linear applications, see amplifiers
Norton’s method, 172–175, 210

Ohm’s law, 25, 26, 29, 101
one’s complement, see binary numbers
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op amp, see operational amplifier
operational amplifier, 287, 288, 294, 331, 

341, 342
buffer, 309
data sheet, 344
decoupling, see capacitor
difference, 316
inverting, 294
inverting differentiator, 322
inverting integrator, 321
non-idealities, 341
non-inverting, 316
power dissipation, 344, 373, 374
selection, 341
unity gain, 309

permeability, 45, 52, 53, 71, 95
phase Bode plot, see Bode plots
phasor, 115, 123–135, 138–140, 149, 153
photodiode, 369
polar form, 117–121, 123, 129, 132, 134, 

135
power, 98

AC instantaneous, 137, 138
active, 136, 137, 140, 141, 142, 143
apparent, 136, 137, 140, 141, 142, 143, 

144, 149
average, 103, 106, 136, 137, 138, 140, 

141
decoupling, see capacitor
instantaneous, 103, 104, 112, 113, 114, 

136, 137, 138, 139, 140
reactive, 136, 137, 139, 140
triangle, 137, 140, 141, 142

primary, see transformer
program counter, 611

RC circuit, see filters, high-pass and 
low-pass

rectangular form, 115–122, 129, 130, 132, 
135

register, 547, 551, 569, 575, 605, 607
reset, 322, 457, 552, 553–555, 558, 559, 

561, 567–576, 578, 580, 581, 594, 
603–605, 628–630

asynchronous, 571,572, 582, 583, 584, 
613, 614, 621, 622

synchronous, 572–574, 613, 631
resistance, see resistor

resistor, 98, 101, 102, 103, 104, 105, 106, 
107, 111, 115, 123, 124, 126, 128, 
134, 136, 137, 144, 146, 152, 153, 
154

electric component, 12
internal, 9–11
parallel, 19
polarities, 13
powered by a DC source, 4
powered by an AC voltage,  

105
power dissipation, 18, 105, 106
series, 19, 42, 355
temperature coefficient, 14–17
tolerances, 15
under sinusoidal steady-state, 112

RLC circuit, 266, 271–275, 277, 286
root mean square (RMS), 98, 99, 101, 

103, 105, 106, 137, 138, 140, 143, 
144, 149

Schottky diode, 371, 629
secondary, see transformer
shift register, 575, 590–592
simplification, see Karnaugh maps
sinusoidal, 98, 99, 101, 102, 103, 106, 111, 

113, 114, 124, 126
current, 106, 111, 127, 131, 137, 152
excitation, 112, 113, 114, 115
steady-state, 111, 112, 113, 115, 123, 

130, 133, 134, 141
voltage, 99, 101, 103, 105, 111, 113,  

123, 126, 127, 128, 131, 151, 152, 
153

waveform, 98, 99, 101, 105, 111, 124, 
125

source
AC voltage, 108, 111
current, 3
DC voltage, 108
dependant voltage, 145, 147
dependant current, 145, 146
follower, BJT, see common collector 

configuration
follower, MOSFET, see common drain 

configuration
ideal voltage, 98, 102, 103
real voltage, 100, 109
sinusoidal voltage, 103, 111
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transformation method, 174, 175, 177, 
178, 210, 212, 213, 221, 222, 225, 
229

voltage, 3, 5, 7, 30, 73, 79, 82, 85, 88, 94, 
98, 99, 100, 101, 103, 108

source transformations, 174, 175, 177, 
178, 210, 212, 213

SR flip-flop, 561
SR latch, 559
standard canonical forms

product of sums (POS), 472
sum of products (SOP), 467

state machines, 574
subtracting, 540, 542
superposition method, 156, 169, 171, 210, 

213, 226
synchronous state machines, 592

T flip-flop, 568, 580
Thevenin method, 165, 168, 172, 210

time domain, 123, 244, 245, 257, 258
timing, 571, 595, 626
transformer, 67, 68, 70
transistor

BJT, 354, 374, 420
MOSFET, 354
small signal model, 398, 399,  

427
TTL, 497, 498, 499
two’s complement, see binary numbers

Venn diagrams, 467
voltage, 1, 3, 29

electric, 3–11
polarities, 13
source, 25, 27

voltage controlled current source 
(VCCS), 147, 148, 153

voltage controlled voltage source 
(VCVS), 145
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