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THEORY PART 1

ELECTRICAL AND ELECTRONIC PRINCIPLES 11
UNIT NUMBER U86/329
BTEC

CIRCUIT THEORY

] N

1. Applies circuit theory to the solution of simple circuit pr 5.
a. Applies ohm'’s law 1o the solution of problems relating to series-parallel
combinations of resistors.

THE UNIT OF CURRENT

The unit of current is the ampere, abbreviated by the symbol A. The ampere may be defined in
terms of the force between conductors.

An ampere is defined as the constant current that flows in each of two infinitely-long parallel
straight conductors of negligible cross-sectional area separated by a distance of one metre in
vacuo when the force between these conductors is equal to 2 X 10 -7 newtons per metre length.
This definition is simply illustrated in Fig. 1.

I Im

If the currents flow in the same direction, the force is attractive, if the currents flow in the
opposite direction as shown in Fig, 1, the force is repulsive.
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A

Fig. | Two infinitely long conductors placed | m apart.

CURRENT FLOWS DUE TO THE EXISTENCE OF A POTENTIAL
DIFFERENCE (VOLTAGE) BETWEEN TWO POINTS IN AN ELECTRICAL
CONDUCTOR.

Electrical current is the flow of electrical charge and current flows through a resistor when a
source of energy is supplied.

Let us consider a circuit where a d.c. source of e.m.f. £ and negligible internal resistance is
connected across a resistor R, as shown in Fig. 2.

A
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b

]

Fig. 2 Conventional current and voltage.



Conventionally, it is assumed that the current / flows from the positive terminal of the e.m.f.
source to the negative terminal as shown in Fig. 2.

It is observed that the current / flows from A to B via the resistor, therefore the point A is positve
with respect to the point B, and the potential difference across R is deuoted by V.,

The arrowhead denotes that A is positive and the tail end of the arrow denotes that B is negative.
Fig. 3 shows the convention of current and potential difference in a passive component, the
resistor.
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Fig. 3 Conventional current and voltage in a passive component.
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Fig. 4 Conventional current and voltage in an active component.

The cell has an e.m.f. (electromotive force) E as shown in Fig. 4, the positive side is denoted by
the arrowhead and the negative side is denoted by the tail end of the arrow. Observe that in Fig.
3, [ and V are opposing each other and in Fig. 4, [ and E are in the same direction. Note that
current flows only if the circuit is closed. Refering to Fig. 2, we have E-V=00rE-IR=00r
E=V=IR.

THE POTENTIAL DIFFERENCE (P.D.)

The potential difference between two points in a circuit is the electrical pressure or voltage

quired to cause the flow between the points. The unit of potential difference in the volt,
V. The volt is defined as the p.d. across a resistance of one ohm carrying a current of one ampere.
The p.d. between two points is one volt if one joule of energy is used in sending one coulomb of
charge between them.

1 joule
Tuike 1 coulomb’

The unit of quantity of electric charge is the coulomb. One coulomb is the quantity of electricity
conveyed by a current of one empere flowing for one second.



OHM'S LAW

Ohm’s Law states that the polential difference across a conductor is proporional to the current
flowing through the conductor, provided the tempereature is constant, that is

Ve f

where o< is the proportionality sign and this sign is replaced by an equal sign by introducing a
constant, R, in the equation

V=RI

where R = the resistance of the conductor,

R= V _ Potential difference accros the conductor
1 Current through the conductor :

LINEAR AND NON LINEAR RESISTORS

For linear resistors, the ratio of V over [ (V/I} is always the same and it is equal to the value of the
linear resistance, R.

For non-linear resistors, the ratio of V/I is different at different values of V or at different values
of I. The following worked examples are used to illustrate the difference between linear and non
linear resistors.

WORKED EXAMPLE |

Tests on linear and non-linear resistors resulted in the following readings:-

V (volts) 0 15 25 35 45 60
I{mA) 0 7.5 125 175 225 30} LINEAR
R () () () () () ()
I (mA) 0 2 75 225 4 80

NON LINEA
RO () () () () () ()] NONLNEAR

Complete the table and plot the following graphs:

(i) 1 against V for the linear and non linear resistors.
(ii) R against V for the linear and non linear resistors.
Using the above graphs draw your conclusions.

SOLUTION 1
(i) LINEAR RESISTOR

v 15

R=7= 5505 =2000QaV=15vols
v 25

R=—= =2 =2 .
I 125%x10-* ,000 €2 at V = 25 volis



V_ 35 _ -
R= = 175x 103 = 2,000 £2 at V = 35 volis
v 45
== —F— = aVvs=
R = Zsx105 2,000 € at 45 volts
R=Y= 0 _50000atV=60vols.
! 30x 10
1 -
Ll L] ] 1] 3 =
POTENTWAL DIFFEREMCE,T futs)
Fig. 5 Graph of I against V, the gradient is the same everywhere and the relationship is linear
and passes through the origin.

A graph of I in mA is plotted against V (volts). It is lincar and passes through the origin. The
gradient is the same everywhere and the ratio V// is 2,000 £2. Even when the current through R is
zero and V is zero, the resistance is 2,000 €2

NON LINEAR RESISTOR
Atv=15vos,R=Y= 15 75000
I~ 2x10-
v 25
(V=25vols, R= Y= 25 -33330
" = ™ 510
atV=35volts, R= Y= —35 _ _ 15550
I 225x10°
atV=4svols, k= Y= 4 1040
I 44x10°
atV=60vols,R= ¥ = 60 750
I 80x10°
L
1
§h

POTENTUAL DIFFERENCE. ¥ (it}

Fig.6 Graph of f against V, the gradient at different points is different. The relationship is non-
linear.



The graph of / (mA) against V (volts) is non lincar and the gradient at the five different values of
V are not the same.

(i) FOR THE LINEAR CASE

R (L) is plotted against V (volts) and is shown to be horizontal line, indicating that the
resistance is constant,

(i1) FOR THE NON LINEAR CASE
LINEAR BESISTOR

toog—— COMRTANTERISTANCR

BESHTANCE, B [abess)
g

L o ] 3 3 3 o
W

. 3 ¥ FOTEMTLAL DIFFERENCE, ¥ [raffa)
Fig. 7 Graph of R against V. R is constant for all the values of V.

R (82} is ploted against V (volts) and is shown to be a curve, indicating that the resi ¢
decreases as the voltage is increasing.

i i i

RESISTANCE, R {ohea)

o W

- ] 4o L] -]
Fig.8 Graph of R against V, R varies at different valucs of vollage.

SERIES RESISTORS
Three resistors in series can be connected as shown in Fig, 9, Fig. 10, Fig. 11 and Fig. 12

Fig. 9 Resistors in series. Fig. 10 Resistors in series.

Fig. 11  Resistors in series. Fig. 12 Resistors in series.
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In all the circuits in Figs. 9, 10, 11 and 12 above, it is observed that the current through each
resistor is the same, therefore the resistors are in series. The sum of the p.d.s around a closed
loop is zero or the sum of the voltages in a series circuit is equal to the total applied e.m.f.,
V-IR —IR,-IR,=0
orV=IR +IR, + IR,

taking / as a common factor

V=R +R, +R,).
Let R, be the total resistance of the circuit

V=IR,

therefore R, = R, + R, +R,.

The total or equivalent resi eof a ber of resistors c¢ 1 in series is given by the
sum of the individual resistances.

RESISTORS IN PARALLEL
Three resistors in parallel can be connected as shown in Fig. 13

—
L B

e
4 SIS

It is observed that the potential difference across each resistor is V, therefore the three resistors
are in parallel.

The sum of the currents in resistors connecied in parallel is equal to the current into the parallel
network

I=1+1,+1,
. : o g VoV, V.V
If R, is the total resistance of the circuit, then / VIR, and hence R R R R,
where I, = VIR, I,=VIR,, I,=VIR,, according to ohm’s law. Taking V asa cammun factor on

the right hand side of the equation
Vi _pflol,d
r=Y [R," R R,)
dividing both sides of the equation by V

1
z+ R LD

=

1 |
L=
R, R 1



The equivalent resistance R, of three resistors connected in parallel is given by the equation
above.

If the number of resistors is extended to n r.he.n —
Forn=2

1 1

| 1
S—d—t, toto
R, R, R,

[

g gl
RoORTR
R, +R,

1 RR
i i i T | - 2
It is convenient to re-arrange this formula as K, = “RE, or R, = R +K,

Thus the total resistance of two resistors in parallel is expressed as the product of the two
resistors over their sum. This formula is only applicable for two resistors in parallel. This
formula is useful to remember as

_ product )

sum
Re-amranging equation (1)

L) _ RR+RR+RR,

E TS Y
R,"R 'R, R

I 3

taking the reciprocal of each side, we have

RR2R|
" RR,+RR,+RR,

This formula is not so easy to remember, but useful for 3 resistors in parallel.
Taking the reciprocal of each side of equation (1)
Rz —
1.1, 1
RI RZ 'R_l
SERIES AND PARALLEL RESISTORS NETWORKS
WORKED EXAMPLE 2

Determine the total resistance of the networks between A and 8 showing clearly all the steps of
your solution and expressing the results in three significant figures,



5 iN series/f

Network of

-
Q

Fig. 15

Fig. 14

Fig. 17

Fig. 19

Fig. 20



SOLUTION 2
@) Ry,=R+ RRff; =1+ i’:—; =1+: =220

(i) Ry =R + Rfﬁjm‘:u X8 e1=1427347=1370
ﬁ“)Rw:R"TLsz:*R RE, +RR’:R’R+R,RE g::““}*?gig::iﬁ

R,=424+10+3=1724Q.

An easier way 1o find the combination of the three resistors in parallel is to use the fact that, the
total resistance of two equal resistors in parallel is equal to the half value of one, thus 12 £ in
parallel with 12 € is a 6 £ resistor then 6 £ in parallel with the third 6 £2 resistor gives the
combination 3 €.

s w _ RAR RR RRR,
V) Ru=p R +RR +RR, * K, +R, * RR,+RR, +RR,

g o 4x2xl 4x2 i Tx10x15
w= AxTidxi+2x]l TA+2 TTX10+Tx15+10%15

R,=0571+133+323=513Q
R,=513Q.

RR, RR R .
O KoKt Rk 4 RRARA SRR, KRR TRRR, KRR RHR,

R,=1+ g‘ 4x5%6 Tx8x9x10
= 243 Ax5+4%6+5x6 Tx8xI+TxBXx10+TxIx10+8x9x 10

Ryp=1+12+162+208=591Q.
The four paralle] resistors can be found easier as follows:-

1 1 1 1
=— d— +o 4+ — =0143+ 0,125+ 0,111 + 0.1 =0.479
R TR +R! g *io 143 + 5 +

...
<
=

1aking the reciprocals, we have

R,=208Q,
. RR _ RRR
o) R = 5k Rr= R+ RR SRR,

R,=R, +R,,



(R, +R, )R R.R
R+ Nty = 1 R,
R,I+R,2+R, R +R,
Ry Ryy Rra R
A B A
o—_ {11 S 3
B
o
—J
Fig.21 Network of resistors in series/parallel.

_ Rzﬁ} _ S0x25
b ErET Ny ~ieid

po RRR, _ 68 %37 x 68 L0

2" RR +RR +RR, ~ 68x37+68x68+37x68
Ry=R, +R =167+17.7=3440Q

R 344x10
R= R+X, +R = m+3{]=7.75+30=37.39
R=318Q
RR, 37.8x 100
Rw=Rek, = 378+i00 = 2744
R, - o _
(“])er R, +R, R"z_ R‘+iis Rp=Br + Ry,

_ RR, _ (R+RR
R'R,+Rﬂ Ra= R +R+R,

R 2x4 4 R 12x6 72
B Kok =2a% = 3~1338 Rk +k = 12+6 = 8-40

R, +R +R, =133 +4=533Q

2 208+ 1.
N Rfﬁ." = % -1920 Row BWLIDIE .00
T (] »

R W= 208+192+16

b. Derives and applies the concept of proportional voltage and current division
in circuit anualysis.



THE CURRENT DIVIDER

L O

Fig. 22 Current divider. Equivalent circuit.

The total resistance for the circuit is

= KRy
'™ R +R,
V._ RR,
I = R +K,
RR
Versk!
[V _RR 1 _ R
R SRR, R CRER!
R,
= g ¥R
v RR 1 R
= =21 = .l
b=k =r+k, '® = K+r'!
R
R L
L= g3E
WORKED EXAMPLE 3
Calculate the currents in the 1 £ and 2 £ resistors.
I
L L
oviE R |2 Raf f2a
Fig. 23 Current divider.
SOLUTION 3
The total resistance of the circuit
RR, _1x2 2
B pk 133 39

(1)

- (2)



The total current [ = : =

Using equations (1) and (2)

wehave /,=2 (15)=10A

(15)=5A.

1
.f:=i

WORKED EXAMPLE 4

The total current in fig 22, /=2 A, If R, = 10 KQ and R, = 30 KQ, determine the currents /, and

L

SOLUTION 4
R 30x10° 60
L= g3F, =i+ 0xi0° X2= 4 =154

5,=2-15=05A.

Fig. 24 Current divider.

WORKED EXAMPLE 5
Infig.22,if/, =5 A,R,=10Q and / = 12 A, determine the value of R,.

SOLUTION 5
L=i-1,=12-5=7A

p.d. across R, =1,R, =7 x 10 =70 volis
pd. across R, =70=1R,

70
=7 140



12A

%
R[]l

Fig. 25 Curremt divider.
THE POTENTIAL DIVIDER

The potential divider or potentiometer is used in order to obtain a variable voltage from a
constant voltage supply.

Consider the circuit in Fig. 26. The input voltage is fixed (V) and the output voliage (V) is taken
at the terminals A and B,

Igld
i

R [ b A
Rz
K
Ls
By changing the position of the sliding contact A, we can obtain any voltage from zero to the
value of V.

Fig. 26 Potential divider.

V =1(R, +R,) where the sliding contact divides the resi ¢ R into resi R and R,
V,=IR,

V=IR+R,) 3

V,=IR, O]

Dividing equation (3) by equation (4)
V IR +R)

v, TIE;
we have Y oo K
Vl R2
R,
or V= RI - R}V
WORKED EXAMPLE 6

If V= 100 volts R, = 10 KQ, R, =90 K£1, calculate V', the p.d. across R, and V, across R,



SOLUTION 6

V= _& x 100 = Tl;_%xlmllﬂvolls

Y10x10° + 90 x 10°

V=V, +V,=10+90=100V.

Ot ~—— ag— e
—— -

Fig. 27 Potential divider
WORKED EXAMPLE 7
The circuit diagram of a potential divider or 100 Q is as showm in Fig. 28.

AB is connected across a 100 V d.c. supply and CD is connected across a 5 € resistor which
takes a current of | A. Determine the position of the sliding contact, X.

Fig.28 Potential divider
SOLUTION 7
Let R, and R, be the resistances of the 100 £2. The total resistance of the circuit is

i R
R,=R,+ E,'?ﬁ;

The total current, [ = VIR, .

'[bw
B
Fig.29 Loaded potential divider
Let the resistance of AX =R, then BX =R, = 100 - R,
100
R +(100-R)S

TO0-R, +5
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o ” R, 100-R,
the current DRLHIE Rz_‘_’RLf‘m R'FRI
100-R
therefore TDT]TRI_-:'_ Jul
_— 100-R, 100 =1
v 100- R+5 R +(100-R)5 =
100-R, +5

(100-R ) 100 (100 =R, +5)

{T00=R, + 3 (R (100~ R, +5) + 5 (100-R] = |

100 (100 - R,) = R (100 R, +5) + 5 (100~ R,)
10,000 - 100 R, + 100 R, ~R2+5 R, + 500~ 5R,
~200R, +9,500=0

—
g o 200% V200°-4x9,500 _ 2004472

] 2 2

R,=12236 Qor R, =77.64 .

The former is disregarded, and therefore R, = 77.64 Q

WORKED EXAMPLE 8
Calculate R, in the network shown in Fig. 30.
I

Fig. 30 Loaded potential divider
SOLUTION 8

The p.d. across the 20 £ resistor = 20 x 2 = 40 V therefore the p.d. across R, =240 -40 =200V
the p.d. across the 160 — R, resistor is 40 V the current through the (160 — R,) resistor is

40
L=
' 160-R,
40 - 200
I=1+2= ]60—R,+2_ R,
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40R, +2R, (160~ R,)=200(160-R,)
40R, +320R, ~2 R, = 32,000 - 200 R,
2R72-200R, - 360 R, +32,000=0

R?*-280R, +16,000=0

280 £V280°-4x 10,000 _ 280+120
2

R = 2

1

500 160
R = =5 =250Q orR = 5 =800

R, =80 £ is the correct value as 160 — 250 produces a negative resistance.

SUMMARY 1

OHM’S LAW

THE POTENTIAL DIFFERENCE ACROSS A CONDUCTOR 1S PROPORTIONAL TO THE
CURRENT FLOWING THROUGH THE CONDUCTOR, PROVIDED THE TEPMERATURE
1S CONSTANT.

CURRENT DIVIDER

THE CURRENT THROUGH ONE RESISTOR OF TWO RESISTORS IN PARALLEL IS
EQUAL TO THE RATIO OF OTHER RESISTOR OVER THE SUM OF THE TWO
RESISTORS TIMES THE TOTAL CURRENT

.

hegsr !

where /| is the current through R, /, is the current through R, and / is the total current,

VOLTAGE DIVIDER

THE VOLTAGE ACROSS A RESISTOR OF RESISTANCE R, OF TWO RESISTORS IN
SERIES 1S EQUAL TO THE RATIO OF R, TO R, + R, TIMES THE TOTAL VOLTAGE

R
VI = m}l’

Rl
Vi =RJ—+R-2V

where V, is the p.d. across R, V, is the p.d. across R,, and V is the total voltage.



EXERCISES 1

1. Three resistors of 1, 2 and 3 1 are connected in parallel. If the total current taken is 12 A
find the current through each resistor,

(Ans. 6.55 A, 3.28 A, 2.18 A)

2. Tworesistors of 3 Q and 5 £ are connected in parallel. If the total current taken is 1 A find
the current through each resistor,

(Ans. 0.625 A, 0.375 A)

3. Tworesistors of 2 £ and 8 £ are connected in parallel. If the total current taken is 5 A find
the current through each resistor,

(Ans. 1 A, 4 A)

4. Determine the currents, /,, and [, shown in Fig, 31.
36A
I

Fig. 31 Current divider
(Ans. 1.2 A, 24 A)

5. Determine the currents [, 1, and /, as shown in Fig. 32.

2A
o—>

I I Iy

o
Fig. 32 Currents in parallel circuit
(Ans. 0.853 A, 0.64 A, 0.512 A)

6. If the total resistance of the network is 1 €2, in Fig. 33,
(1) Find the value of the resistance, R.

(i) Find the currents /| and /, and the total current taken from the supply, /.

I
Oo—p ' '
L Iz oA
R
o—

Fig. 33 Currents in parallel circuit
(Ans. (1) 1.91 Q (ii) 6.37 A, 2.37 A, 19.1 A)
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7. The total resistance of this combination of resistors is 10 €, in Fig. 34,
Determine the value of R, R,, R, and R,

o

o

Fig. 34 Resistor in parallel circuit
(Ans. 100 ©Q, 509, 333 Q, 25 Q)

B. The resistance of a moving coil instrument is 5 €2 and it is provided with a shunt of
resistance 0.0005 £2. Find the current in the instrument when used 10 measure 15 A,

{Ans. 1.5 mA)

9. A resistor R is connected across a 100 V supply. A voltmeter of resistance 1,500 €2 1s
connected between the centre of the resistor and one side of the supply. Determine R if the
voltmeter reading is 35 V.

{Ans. 2570 L)

10. Two resistors are connected in series as shown in Fig. 35 and Fig. 36 and the voltmeters V|
and V, are connected in turn to measure the p.d. across R, and across R,

Determine the values of R, and R, if V= 80 volts and V, = 100 volts.

- 200V

Fig. 35 The effect of the resistance of a voltmeter

0k

200V
Fig. 36  The effect of the resistance of a volimeter
(Ans. R, = 2,000 &, R, = 2,500 Q)
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Determine the value of the potential difference across the 5 Q resistor, V, in Fig. 37 (Ans.

167 V)
(25}

O- o]
Fig. 37 Potential divider

. Determine the value of the the p.d. across the two 10 KQ resistor, V, as shown in Fig. 38.

‘T
T 1 25k}

ooV

I— 1

b [
|

Fig.38 Loaded potential divider
(Ans. 16.7 V)

Determine the value of V by employing
(i) the potential divider method

(ii} the current divider method

in Fig, 39. (Ans. 4.29 volis)

I 5 I. -
—J | S

1ov o

[J»

R T

Fig. 39 Ladder network. Potential divider principle.

Fig. 40 shows a d.c. source connected across a variable load resistance R. The e.m.f. of the
source is 6 V, its internal resistance is 1 €. The table below shows the current through the
load in amperes, the load resistance in ohms and the power dissipated in the load in wats.

IA) 6 () 4 () 3 () 24 ()2
RO 0 5 - 1 1 ko122
P(W) 0 () 8 () 9 () 864 () 8.
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Complete the table and plot P against R and from your graph determine the maximum
power dissipated in the load and note the value of R where this power occurs. Draw you
conclusions. (Ans. 9W, R=r =10)

Fig. 40 Maximum power transfer
15. Fig. 41 shows a series-parallel resistor network with the given data.

Fig. 41 Loaded potential divider
Calculate the value of R showing clearly the steps of your solution.
{Ans. 6 L)

16. (a) Determine the total resistance of the network shown in Fig. 42.

Fig. 42 Network of resistors. Determination of currents.

(b) If the p.d. across AB is 10 volts. Determine: (i) the total current, /,,
(ii) the current, /,,
(i) the current, /..

(Ans. () 2502 (b)(M4A (i)2A (i) L3 A



KIRCHHOFF’S LAWS

c.  Applies Kirchhoff’s Laws to problems involving not more than two unknowns.

NODE OR JUNCTION OF A NETWORK

A node or a junction is shown in Fig. 43 as the bold dot at N. Currenis flow into, or out of the
node or junction.

Fig. 43 Many wires connected to a commaon point (node or juncrion)
CONNECTION OF CURRENT FLOW

If the currents flowing into the node are assumed to be positive then the currents flowing out of
the node are negative. If the currents flowing into the node are assumed to be negative then the
currents flowing out of the node are positive.
KIRCHHOFF'S CURRENT LAW (K.C.L.)
The sum of the currents flowing at the junction is equal to zero. Referring to Fig. 43

L+l +l -1,-1,=0
or —f,—l -1 +L+1=0
We can clearly see that it does not matter which currents are positive and which currents are
negative. If I, 1, I, are positive then [,. I, are negative and if /,, /.. I, are negative then /., I, arc
positive.
LOOP OR MESH OF A NETWORK
A simple loop or mesh is shown in Fig. 44.

Fig. 44 One loop or mesh

where there is continuity of current and the loop is closed. It starts from the positive pole of the
em.f, E, through the resistor R, the load, the internal resistance, r, of the cell, and finishes at the
negative pole of the e.m.f.

VOLTAGE AND CURRENT CONVENTIONS

The current { is assummed to flow from the positive pole of £ to the negative pole of £. The p.ds
established in the network of Fig. 44 arc one across E, one across R and one across r, Fig. 45
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shows the first p.d. across the cell which is an active component.

Fig. 45 Conventional current and voliage in an active component.

The positive terminal is shown by the arrow head of the voltage arrow and the negative terminal
is shown by the tail end of the arrow.

{ and V the active device are in the same direction. The other voltages are shown across the
passive components, R and r.

Fig. 46 shows the current flowing through the passive component from A to B, and since the
current flows from A to B, A is more positive than B.

I R
Ay B

v
Fig. 46 Conventional current and voltage in a passive component.
{ and V are in opposition.

Similarly the p.d. across r is as shown in Fig. 47. I flows from C to D, and C is more positive
than D the arrow head shows the more positive potential.

D r I ¢
—{

N
Fig. 47 Conventional current and voltage in a passive component.
The p.d.s around the closed loop of Fig. 48 may be writtenas E—- IR - Ir=0 ()

considering the anticlockwise p.d., E, to be posilivi‘am! clockwise p.d.s Ir and /R to be negative.
-L- —_—

_—

Iy

R
—
L

IR

Fig. 48 Conventional currents and voltages in a one loop or mesh circuit.
Alternatively, if we consider the clockwise p.d. positive then the anticlockwise p.d. is negative.
This is shown if we change all the signs of equation (2)




~E+IR+Ir=0
therefore Ir+IR=E
_ E
L3 ;_r+R

KIRCHHOFF'S VOLTAGE LAW (K.V.L.)

The sum of the e.m.f.s around the closed loop is ZERO.
Referring to Fig. 48.

E-IR-Ir=0
or E=l(R+r).

It is very important for the student 10 practice and understand the conventions of currents and
voltages for active and passive components.

For this reason, the student should mark the currents and the p.d.s for various networks shown
below.

WORKED EXAMPLE 9

Determine the current in each branch and the magnitude and direction of the p.d. between points
A and C, for the circuit in Fig. 49.

Determine also, the values V,, and V., and hence V, ..

Fig. 49 Conventional currents and voltages in a two loop or mesh circuit.
SOLUTION 9
Assume the currents flow as shown.
Applying KVL to loops ABDA and BEDB, ABDA
2=, (=4 -8B +1)-20 +1)=0

or 151 +100,=12
or I +2u,=24 (1)
BEDB loop

200, +1)+8 (I +1,)+2.51,+1.51,=24
or 100, + 141, =24



o [T,+14,=24 sl

Solving the simultancous equations (1) and (2)

M, +20,=24
I+ 14,=24 *(=3)
3, + 21, =24 Adding
-3, -4.20,=-12
-221,=-48
24
IL={7=218A

From equation (2), /, + 1.4 (2.18) =24
1,=-0.652
V=4l +8 (I +1)=4(-0.652) + 8 (-0.652 + 2.18)
V,-=-2.608 + 12.224
Vo =9.62 volts.

V=41, +10 (I, + 1) = 141, + 10/,
Vip=14(-0.652) + 10x2.18=-9.128 + 21.8
V=127 volts.

Vo =2.50,+ 10, +1,) = 101, + 12.51,
V,p= 107, + 12,51, = 10 (-0.652) + 12.5 (2.18)
V=652 +27.25

Vg = 20.7 volts.

Vp+V=V,
V=V =V,=127-207
Ve =-8 volts.

therefore E is positive with respect to A.

WORKED EXAMPLE 10

Draw the assumed direction of branch current in the following circuit diagrams and hence mark
the direction of potential differences across each component.

Use small arrows for currents and large arrows for voltages.



SOLUTION 10
e
20v 25v
s} o Ii e
eed [ o
40V
Fig. 50
——{1]
v
A i {52} B
2v
10:3 |
Fig. 51
| — —p “— . —
—<—]i —71 ——|———
2y I v
g D ’ . L
p——ii =3 B A i| >
IV 10V
i, . = <
——i} {10} E {10} »—0
5V 1
Fig. 52 Fig. 53
— o <
1
2.5V 4
.‘_
- 15} B
1 -1,
———<i
L 3sv

Fig. 54 Fig. 55






27

WORKED EXAMPLE 11
Use Kirchhoff's laws to calculate (a) the three branch currents in the circuit of Fig. 62

A

T aov
Fig. 62

(b) the potential difference between A and E, stating which point is at the higher potential.

E
(40 }—+—{60] l
{20 == _30V

SOLUTION 11

(a) Let the currents be as shown in the diagram of Fig. 63. The p.d. across each component is
marked by a large arrow.

Applying Kirchhoff’s laws for the loops: ABCDA and BEFCB, we have

Fig. 63
ABCDA loop

80 =401, + 120 (I, - 1)
or 160/, - 120/, = 80

or [4r1,-31,=2 ()
BEFCB loop
120 (7, - I,) - 601, = =30

or 120/, - 1801, =30

or 4l -6l,=-1 V)

Solving the simultaneous equations (1) and (2)
Al -3, =2 (D)
41, -6l =~1 )
Equation (1) minus equation (2)
M =3
IL=1A.
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Substituting in equation (1) this value
4, -31=2
4l =5
I,=125A.
The three branch currents through 40 €2, 60 © and 120 Q are: 1.25 A, 1.00 A and 0.25 A,

() V,, =401, + 607, =40(1.25) + 60(1) = 50 + 60
V=110 volts

A is at a higher potential than E.

WORKED EXAMPLE 12

Use Kirchhoff’s laws to obtain the values of the currents /,, /, and /, in Fig. 64.

L I,

w

Fig. 64 T } I,

SOLUTION 12
Mark the voltages across the passive and active components by large arrows, in the Fig. 63,

A ]

I Ig
AL 1 12 I‘T
il &
36 36Y

RS
Fig. 65 o c E
Loop ABCDA

Taking a clockwise direction around this loop
36+60-4/ -121,=0
or 41 +12,=96

o S0

Loop BDECB

Taking again a clockwise direction around this loop
121,-31,-60=0but [, =1, ~1,

or  120,-31 +3/,=60

or -3 + 151, =60

or - +5[,=20 e (2)
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Solving the simultaneous equations

1,+31,=24 e (D)
-1, -51,=20 (2

adding (1) and (2) we have
81, =44

2
!2= T =535 A.

From (1)1, +3(5.5) = 24
1,=24-165=75A0r[,=735A
1,=75A
L=1-1,=75-55=20A

1,=20A.

WORKED EXAMPLE 13
(a) (i) State the number of junctions or nodes that exist in the circuit of Fig. 66.

{ii) Assuming that the branch currents are flowing as shown in the circuit of Fig. 66,
apply Kirchhoff"s current law and write down an equation ai one of the junctions.

(iii) State and label the number of loops that exist in the circuit of Fig. 66. Apply

Kirchhoff's voltage law, and write down two equations of two such loops, in terms of
I and I,
1 2

{iv) Solve the two simultaneous equations you have obtained in (ii) and (iii) giving your
answers in three significant figures.
(v) Redraw the circuit of Fig. 66 and indicate the branch currents and p.d.s by small and
large arrows.
A B

| }

-'|' 15v I sov
! Iy

F E

Fig. 66

(b) For the circuit shown in Fig. 67 calculate the resistance between the terminals A and B.

e e

Fig. 67



SOLUTION 13

(a) (i)
(i)

There are two junctions or nodes, namely the points B and E
AlB

L+1-1,=0

ALE

I=1,-1,

(iii) Three loops

(iv)

ABEFA, BCDEB, and ABCDEFA.
Two such loops are:
ABEFA loop
15+ 71 =35I,
15+7(,-1)-51,=0

12, +71,=-15

BCDEB loop
S0=21,+T
Ty ~1) + 20, =50

Solving the equations (1) and (2) simultaneously
ST +9L,=50  ...(1)x(12)
=12, +7,=-15 ...Q)x(-T)
Multiplying (1) by 12 and (2) by (~7) we have

841, + 1081, = 600... (3)
841, -491,=105 .. (4)

Adding equations (3) and (4)
591, = 705

L=1195A

substituting in (1)

1, +9(11.95) = 50

71, =50 107.55

1,=822A

I=1,-1,=1195-822=373A

1=3T3A.
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{v) The direction of currents are correct as shows in Fig. 68.

Fig. 68
(b) Mark the terminals as shown in Fig. 69.

A R R A R; B

Fig. 69
R has a terminal A and a terminal B
R, has a terminal A and a terminal B
R, has a terminal A and a terminal B

therefore the three resistors are re-drawn as shown in Fig. 70, showing three common
terminals A and three common terminals B.

A
o A

Fig. 70

g = RRR, " 4x12%6 SR
4~ RR,+RR +RR, 4x12+4x6+12x6

S (O

1oL L] 025400833 +0.1666=05
MRM 4+12+6 + +
orRym e =300

=05

SUMMARY 2

KIRCHHOFF'S CURRENT LAW (K.C.L.)

THE SUM OF THE CURRENTS FLOWING AT A JUNCTION OR NODE IS EQUAL TO
ZERO

KIRCHHOFF'S VOLTAGE LAW (K.V.L.)
THE SUM OF THE EMF'S AROUND A CLOSED LOOP IS EQUAL TO ZERO.
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EXERCISES 2

1. Using Kirchhoff's Laws calculate the current in each branch of the circuit of Fig. 71

o 1
Lo r

+,

_T sV _T W
Fig. 71 Kirchhoff's Laws
(Ans.1.175 A, —-0.41 A, 0.765 A)

2. Using Kirchhoff's Laws, calculate:
() the three branch currents in the circuit of Fig. 72

Fig. 72 Kirchhoff's Laws

(b) the p.d. between the points P and Q,

{c) the p.d. between the points X and ¥,

(Ans. (3) 81.7 A, 1.27 A, 830 A(b) IOV (c) 10 V)

3. Calculate the current in each circuit when the tapping is set such that AC = 25 (1, in Fig. 73

Fig. 73 Kirchhoff's Laws.
(Ans. 561 A, —4.82 A)

4. Apply Kirchhoff’s current Law (K.C.L.) to the junction A and Kirchhoff's Voltage Law
(K.V.L.) to the loops (1) and (2) of the circuit, of Fig. 74, and hence find /, and /,.
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Fig. 74 Kirchhoff’s Laws
(Ans. —1.87 A, 4.06 A)

Determine the currents / , I, and /, in the circuit of Fig. 75.

L I L
05 03
+ +

T iy T 12v

Fig. 75 Kirchhoff's Laws
(Ans. 7.86 A, I, =0.95 A)

Calculate the current in the network of Fig. 50.
(Ans. 583 A)

Referring to the circuit of example 10 Fig. 52, determine the currents /,, 7, and [, which are
assumed to flow from the positive terminals or poles of the cells 2V, 3 V and 5 V
respectively. Redraw the circuit by inserting the actual flow of currents. State the discharging
and charging currents,

(Ans. —0.3125 A, 0.075 A, 0.2375 A)

Calculate the current through the load of 100 Q in the circuit of Fig. 53.
(Ans. 4 A 4.1 A)

Determine the magnitude and direction of the load current in the circuit of Fig. 54 and the
p.d. across the load.

(Ans. 2.02 A, 1.99A,045 V)

Determine the actual currents through the 50 V, 20 V and 100 V d.c. supplies of Fig. 57
redraw the circuit indicating the actual currents flowing.

(Ans. —44 A, -14.8 A, 58.8 A)
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. Determine the currents through the resistors 12, 5 Q and 15 Q and the p.d. across A and B

of Fig. 58.
(Ans. 5.26 A, 3.95A,1.32 A,19.73 V)

. Calculate the currents through the 100 V and 200 V d.c. supplies of Fig. 59.

(Ans. 48.5 A, -25.8 A)

. Determine the p.d. across A and B of Fig. 59.

(Ans. 22.14 V)

. Determine the equivalent resistance between A and G, the diagonal of the cube or resistors

of Fig. 58, employing Kirchhoff's Laws. (Ans. 5/6 Q).

. Two batteries of e.m.f s of 5 V and 10 V have internal resistances of 1 £ and 5.5 Q

respectively are connected in parallel across a load of 4.5 € resistance. Determine the
branch currents,

L A L

sy 2 tov

{0 5

(Ans. 0.144 A, 0.935 A, 1.079 A)

Two batteries of e.m.f s of 110 V and 120 V have internal resistances of 20 (2 and 40 Q
respectively are connected in parallel across a load of 100 . Determine the p.d. across the

load. (Ans. 100 V)
7 vy

2 tlov . 120V

a0 40

Two batteries of e.m.fs of 10 V and 5 V have internal resistances of 1 £ and 1.5 Q
respectively are connected in parallel across a 10 £2 local. Determine the load current.

A L :

1oy Sy

o
18 i

(Ans.1=175A)



ELECTRIC FIELDS

3. Applies the fundamental laws and properties of electric fields to problems involving
capacitors
a. Introduces the concepts of electric field and electric flux to explain the forces
of attraction and repulsion between charged bodies and defines electric field
strength, potential and potential difference in terms of force and work done
on a unit charge.

COULOMB’'S LAW

The mechanical force, F, in newtons excried between two charged bodies is given by the
formula

_ 00
F=gm

where @, and Q, are the charges of the bodies. r is the distance between the charges and e s the
permittivity of the medium.

If the charges are unlike, the force is artractive and if the charges are like, the force is repulsive.
This formula describes Coulomb’s law, the force is proportional to the product of the charges,
and the force is inversely proportional to the square of their distance apart, r. If the medium is
vacuum or free space then £is £, and is the permittivity of free space (€, = 8.85 x 10" F/m). The
force is reduced appreciably if the permittivity of the medium is high.

ELECTRIC FIELDS

A charged sphere has an electric field, that is, represented by a field of radial electric lines as
shown in Fig. 76. Two parallel plates with positive charge on one plate has an electric field,
represented by parallel lines as shown in Fig. 77.

Fig. 76 Fig. 77

The region around the electric charge @ constitutes an electric field because any other charge
placed in that region experiences a mechanical force given by Coulomb’s law.

Therefore any region in which electric charges experience mechanical forces is called an
electric field.
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ELECTRIC FLUX

An electric field is represented by electric lines of force or electric flux. Electric flux emanates
from a positive charged body as shown in Fig. 76.

Electric flux is equal 1o the electric charge @ coulombs.
Q@ = electric flux {coulombs).

ELECTRIC FLUX DENSITY
The surface arca of a sphere is given by 4 7r * where r is the radius of the sphere.

The electric flux, (2, that emanates in three dimensions from the sphere has an electric flux
density

=0

D= . (2)

D stands for displacement of electric flux density (coulombs per square metre) (C/m?)
Q denotes electric flux in coulombs (C)
A denotes area in square metres (m?).

ELECTRIC FIELD STRENGTH

The electric field strength is given in newtons per coulomb or volts per metre (V/m) and is
denoted by the symbol E.

If the potential difference between the two parallel plates is V and the distance separated by the
plates is d, then the electric field sirength is given by

E=

4
d . (3)

If a very small, positive point charge @ is placed at any point in an electric field and it
experiences a force F, then the field strength E at that point is defined by the equation

F
i
@

the electric field strength is the force in newtons per unit charge and its direction is that of the
force F, thus the field strength E is a vector.

b.  Expresses field strength in terms of potential gradient.

Potential gradient is the drop in potential per metre in the direction of the electric field.

The work done by a positive point charge of one coulomb in moving a short distance dv metres
in the direction of the field is E dx joules.

The potential difference in volts between two points is equal to the work done, in joules, in
moving one coulomb of charge from one point to the other.

dv=Edx

the potential gradient is therefore given by E as
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&

E= &

- (3

c. Establishes the relationship between electric field strength and electric flux
density and defines relative permittivity and permittivity of free space.

The ratio of the electric flux density to the electric field strength gives the permittivity of the
medium

D
E= = sl

D = electric flux density (coulombs per unit area)

E = electric field strength (volis per metre)

£ = absolute permittivity (farads per metre)

€ =gg where g =permittivity of free space
€,=8.85x 102 FM

£ = relative permittivity (no dimensions)

..c:,: —_ (D

d. Defines capacitance as the constant of proportionality between charge and potential
difference and establishes the relationship between capacitance and the physical
dimensions of a pair of parallel plates.

THE CAPACITOR
Any two conductors between which an electric field can be maintained form a capacitor:

Consider two parallel plates as shown in Fig. 78 subject to a p.d. of V volts, one
&

Fig. 78 Two parallel plate capacitor.
plate is positively charged and the opposite plate is negatively charged.

CAPACITANCE OF A PARALLEL PLATE CAPACITOR
The capacitance, C = Q/V where @ is the charge in coulomb and V' is the p.d. across the plates

o]
I
=

m
"
o=
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m|o
]
™
™

Cnm

For n plates of metal foil interleaved with a dielectric of mica or waxed paper, C is given by

<
o
™
(o]
e

:%

_ EgA(n- 1)
C= —d

Fig. 79 Several parallel plate capacitor.

e. Derives expressions for energy stored by a capacitor

A p.d. of V volts is applied across a capacitor C, the charge on the capacitor is given as
Q=CVv

The charge Q is directly proportional to the p.d. applied, V
Q=V

The energy stored, W is equal to QV joules
W=0V.

Assuming that the capacitor is initially uncharged, the energy at that instant is zero. When V' is
applied, the energy stored is W = QV. The total energy stored in the capacitor is the average or
mean value

0+ 0V 1
W= — = 0V
2 ZQ

w=1ov

| =

but @=CV
w=1l@viv= 1cw
2 2

W=_cwv . (10)

=
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the energy stored in a capacitor is thus proportional to the p.d. squared, therefore it is greatly
dependent on the voltage.

f. Solves problems relating to uniform fields in simple dielectrics involving the
relationships established in a to e.

WORKED EXAMPLE 14

A 150 uF capacitor is connected across a 150 V d.c. supply. Determine (i) the charge (ii) the
energy stored,

SOLUTION 14
(i) Q=CV=150x10"%150=22.5mC

Gy W= E‘cvi% 150 x 104 150° = 1.69 J.

WORKED EXAMPLE 15

A pd. of 100V d.c. is applied across the plates of a two-plate capacitor of capacitance 0.01 pF.
The effective area of each plate is 100 mm? and the absolute permittivity of the dielectric is 150
pF/m

Determine: (i) the electric flux density
{ii) the electric field intensity
(iii) the relative permittivity
£ =8.85x10-" F/m.

SOLUTION 15
@ D=2 =& - QUXITXIN _ o4 oy
) E=2 = 00 =10 = 667x10'Vim
(iii) £=£¢,

g=& = 130XI0F _ 6gs

T e 88x10"

"

WORKED EXAMPLE 16

A two plate capacitor has an effective area of 75 cm® and the dielectric is air of 7.5 mm. A d.c.
p.d. of 100V is applied. Calculate:

(i} the potential gradient in the dielectric
(ii) the capacitance
{i1i) the electric flux



(iv) the electric flux density
£ =8.85x 107" F/m.

SOLUTION 16
i = E = —lm =
iy E= o = ey 13.3KV/m
EE A BESX10 P x1xT5x 10
(ii) C-—Lﬂ';— = 510 =R.85pF

(jii) Q=CV=885x10"x100=885x10-"°C

D=2 = B85X107" 4 110 C/me.

A 75%x10*

WORKED EXAMPLE 17

A capacitor is formed by two parallel metal plates each of area 1,000 mm? and separated by a
dielectric 0.5 mm thick. The capacitance of this arrangement is 500 pF and a d.c. p.d. of 20,000
V is applied to the terminals .

Calculate: (i) the charge on the plates
(ii) the relative permittivity of the dielectric
(iiii) the electric flux density
(iv) the energy stored

£ =8.85x 10" F/m.
SOLUTION 17
(i) @=CV=500x10"x20,000=10puC

[ 10104

i) e= 2o A _ 1000x10% _ 001
E"V 20000~ 4x107
d 0.5x10

£=025x10"F/m

e 025x10° _

&= ¢ “Basxi0w 52
L0 10x10% ;
(iii) D= A= 1000x10°4 =0.01 C/m

%cvz= % X500 % 102 (20,000 = 0.1 J
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8. Deduces expressions for the equivalent capacitance of capacitors connected in
series and parallel, solves simple problems and compares predicted and measured
values for series and parallel capacitor combinations.

CAPACITORS IN SERIES

Consider two capacitors in series connected to a d.c. supply as shown in Fig. 80.

| Cs]

Vi——V,

Fig. B0 Capacitors in series
Let V, and V, be the two p.d.s across C| and C, respectively.

The total charge of the circuit is also the charge on each capacitor since @ = Ir and [ is the same
when the capacitors are charged

Using KVL V=V +V, (D

andsinceQ=CVorV= ~ ,V =

and substituting in (1), Q.0 + o
C c C

I 2

dividing each term by Q, we have

1
S il
+C2 (2)

1
c

el

If there are n capacitors in series, the formula is extended to

1 —_1. _I.
PRk

2

1 1
L I
C.‘ = +C‘ ( )

CAPACITORS IN PARALLEL
The total charge of the system is shared between the two capacitors
0=0,+0, - @)

Fig. 81 shows the circuit of two capacitors in parallel

< I |C|
«l -

c,“(:a
-

+15a

Fig. 81 Two capacitors in parallel
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Substituting these values in equation (4) we have
CV=C,V+C,V
dividing each term by V

The system can be extended to n capacitors in parallel, then the total capacitance

) C=C,+C,+C,+..4+C, | ...(6)

WORKED EXAMPLE 18
Determine the equivalent capacitance of the capacitor networks of Fig. 82, 83, 84, 85:

Cy Cs [
I
WF 20F 3uF
Fig. 82 Capacitors in series
€ | csl
{uF 2pF
l °s:| C‘I: !
3F 4pF

Fig. 83 Capacitors in series and parallel

]
1
10pF
Cary
11
20uF
Ca
sopr
>
Fig. 84 Capacitors in parallel
_°'_||_
S %y onf .
11 4]
iuF  5pF Capy
11
{OpF
Cs )

Fig. 85 Capacitors in series and parallel
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SOLUTION 18
(i) Referring to Fig. 82

Lo 10
O
+

therefore C =% ng

Ix2x3 6
1

GG
o C= Tr3CCiCr, = TRIvTx3+a%3 X107 =17 WF

CJC: cC, [IxZ 3><4) G. TZ

) CoCrtCr® T 40, T +C,"\T+1 * T34

(iii} Referring to Fig. 83
C=C,+C,+C,=(10+20+30) pF = 60 pF

ceC,  1x5
) Cr» it ™ 1+5”F“6“F

C;,=Cy+C,=(10+ 10) uF = 20 uF

C, C (5/6) 20

"6 ;C = SR Do

C, +(0.8 + 100) pF = 100.8 pF

WORKED EXAMPLE 19

For the circuit shown in Fig. 86 calculate:
(i) the equivalent capacitance

(ii) the p.d. across the 30 puF

(iii} the total energy stored.

S
E -
G S gy
L% e iéﬂ_
C2p
11
10pF
-

Fig. 86 Capacitors in series and parallel



SOLUTION 19

(i)

(i)

(iii)

The equivalent capacitance can be found by first taking C, and C, in parallel Cr] =C +C,

CT| CJ .
T+, =, then taking C, and C,

then taking the two capacitors C,Iand C, in series,

ol
in parallel, C, + C, = C,_and finally C = % , the equivalent capacitance
5 T:

C1‘=CI+C,:(15+ 10) pF = 25 pF

. GL 25xIS

= = = 9375
TG +C, 25415 a W

Cy,=Cp+C,= (9375 + 10) uF = 19.375 uF

30 % 19.375

In order to find the p.d. across 30 uF capacitor, we have to consider Fig. 87 where C; and
C,, are in series across the 100 V d.c. supply

|
30uF 19:375uF
e
+|8=
ooy

Fig. 87 Equivalent circuit of capacitors

The total charge of the system is found from the formula @ =CV=11.77 =« 100 x 10
Q@ =1177 uCor 1.18 pC

The p.d. across 30 uF is found from V = A/C

1L177%10-

V= W=392vohs
w=—; =—11, X 1177 % 10 x 1002 = 0.059 J
W=59ml

Identifies and distinguishes between capacitors of differing construction and
characteristics and relates dielectric strength to working voltage.

Most practical capacitors have their plates separated by an insulating material which is called a
dielectric. It was shown earlier that the effect of introducing a diclectric was to increase the
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capacitance of the capacitor, according to the formula

EEA

3t

T
where €, is the relative permittivity of the dielectric constant.

It is important that the dielectric shall be able to withstand the potential gradient applied on it
when the capacitor is charged.

The resistance of the dielectric layer is Known as the insulation resistance which must be
extremely high for a good component, in the order G €. The insulation resistance depends on
the area and thickness of the dielectric and falls with increase in temperature.

For a large capacitance, the thickness of a dielectric is thin and the insulation resistance
therefore will be low.

If the potential gradient applied to a capacitor is exceeded from the quoted by the manufacturer,
the insulation is likely to break down.

A capacitor is rated to withstand a maximum working voltage.

Different dielectric materials differ in the potential gradient they can withstand and to test a
particular material, a dielectric of 1mm thick is placed between the two electrodes, and the p.d.
is then increased gradually across the plates until the insulation resistance breaks down. The
potential gradiem sufficient to cause breakdown of the insulation is called the dielectric strength
of the material and is expressed in KV per mm. The dielectric strength in KV/mm for some
materials is given.

Material Dielectric
Strength KV/mm
Glass 20
Mica 40 to 100
Polythene 40
Barium Titanate 4
Air 1
il (Insulating) 40
SUMMARY 3
F= 22, (N) e=¢e£ (F/m)
dner? ne
_2 ] _ EE
D—Z(C!m) C= i (F)
E=Y (v
= (V/m)

F
E= 5 (NO) c= =22 @



=d_\:' =
E th(\(,-‘m) g=cv
=2 =l 1
£ E(F."l'n) W 2C‘-"{J)
Capacitors in series l=—l+—l-|-...+-l—
cC C C C

Capacitors inparallel C=C, +C,+ ... +C,

EXERCISES 3

A parallel plate capacitor has a capacitance of 100 pF. What will be the new value of
capacitance if the effective plate area is reduced by 50% and the dielectric thickness is
doubled?

(Ans. 25 pF).

(a) What factors determine the capacitance existing between a parallel metal plates?

{b) Write down the formula for the capacitance connecting the above factors and state the
unit of each physical quantity.

(¢) For a given capacitor write down the expressions stating the units employed relating:
(i) the potential difference and charge
(ii) the potential difference and stored energy.

Two air-spaced metal plates insulated from each other are mounted so as to form a parallel
plate capacitor. When the distance between the plates is 2.5 mm the capacitance is 5 pF.
Determine the capacitance when the spacing is increased to 3.5 mm.

How will the value of the original capacitor be affected if the whole is immersed in oil
having a relative permittivity of 57

(Ans. 3.57 pF, 25 pF)
A p.d. of 15 KV is applied to the terminals of a capacitor consisting of two circular plates,

each having an area of 100 cm?, separated by a dielectric 2.5 mm thick. If the capacitance is
100 pF, calculate:

(i) the electric flux

(ii) the electric flux density

(iii) the relative permittivity of the dielectric (g, = 8.85 x 10 '* F/m).

(Ans. () 1.5pC (i) 1.5x 10~ C/m? (iii) 2.82)

A capacitor is charged with 100 uC, if the energy stored is 1 puJ find (i) the p.d. (ii) the value
of the capacitance.

(Ans. (i) 0.02 V (ii) 5,000 uF)

Two capacitors A and B have capacitances of 10 pF and 20 pF respectively.
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Calculate the voltage across A and the energy stored in A when A and B are connected (i) in
series and (ii) in parallel with a d.c. supply of 20 V in both cases.

(Ans. (i) 13.3 V, 888 pJ (ii) 20 V, 2 mJ)

Two capacitors 10 pF and 30 pF are connected in series. Across both of these is connected
a capacitor of 20 pF. The whole combination is connected across a 100 V d.c. supply.
Calculate: (i) the equivalent capacitance

(ii) the p.d. across the 30 uF capacitor

(iii} the charge on 10 pF capacitor

(iv) the energy stored by the 20 pF capacitor.
(Ans. (i) 27.5 mF (ii) 750 mC (iii) 750 mC (iv) 0.1 J)

A 1 F capacitor charged to a p.d. of 100 V is connected across a second uncharged
capacitor of 2 uF, the source of voltage being removed before the second capacitor is
added to the first.

Find (i) the resulting p.d. across the combined capacitors

(ii) the energy stored in each capacitor before and after paralleling. Comment on the
results obtained.

(iii) if the two capacitors were discharged and then connected in series across the 100V
supply what would be the voltage across each capacitor?

(Ans. (i) 33.3 V (ii) 0.005 J, 0 J; 554 pJ, 1,109 pJ, 5mJ, 1.66 mJ, Loss 3.34 mJ (iii) 66.7 V,
333V)
Calculate: (i)  the charge on each capacitor before C is connected.

(ii) the total energy stored

(iii) the value of C which when connected in parallel with the 20 pF capacitor
would change V,, to 60 V with the same supply.

-

&

_{.L,_'_&i
2o0pF

Nt — ¥y - A

S 200V ————0

Fig. 88 Series-parallel capacitors sharing charge.
(Ans. (i) 1.33 mC (ii) 0.132 J, 140 V, 60 V (iii) 3.3 uF)
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10. Determine the total value of capacitance for each capacitor system in Fig. 89 and Fig. 90

gl M

Fig. 89 Series-parallel capacitors

—EH A

Fig. 90 Series-parallel capacitors

When C is (a) 1 uF and C is (b) 10 pF.
3

(Ans. (a) 0.5 uF, 5 uF (b) 15 WF, 3 uF)




MAGNETIC FIELDS

4. Applies the fundamental laws governing magnetic fields to the solution of problems
relating to magnetic circuits and materials.
a. Introduces the concept of the magnetic field and magnetic flux to explain the
forces of attraction and repulsion between magnetised bodies and defines
magnetic field strength.

MAGNETIC FIELD

A number of magnetic lines make up a magnetic field. A bar magnet or a permanent magnet
possesses a magnetic field which can be detected by a small compass needle or by sprinkling
iron filings in the field. The field due to a bar magnet is illustrated in Fig. 91, while the magnetic
field due to a solenoid is shown in Fig. 92,

Fig. 91 The magnetic field round a bar magnet

¥
BLEANAR

¢p

P ]

Fig. 92 The magnetic field due to a solenoid

MAGNETIC FLUX

The magnetic lines shown are flowing from the north pole, N and into the south pole. The
magnetic lines do nor intersect,

The magnetic lines of force or the magnetic flux is d d by the Greek letter ¢ and it is
expressed in webers (Wb). Faraday introduced the lines of flux as a pictorial method of
representing the distribution of a magnetic field and they are used to define field quantitatively.

The magnetic fields of two like poles and 1wo unlike poles are shown in Fig. 93 and Fig. 94.

Fig. 93 Like magnelic poles
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Fig. 94 Unlike magnetic poles

In Fig. 93 the magnetic field between the like poles is weak, and in Fig. 94 the magnetic field
between the unlike poles is strong. The former field exhibits a force of repulsion and the lauer
field exhibits a force of attraction.

MAGNETIC FIELD STRENGTH OR MAGNETISING FORCE

The magnetic potential difference or the magnetomotive force (m.m.f.) is produced by the
current flow in a number of turns N. The m.m.f. is given by

F=IN (ampere-turns) Ar

The same current is used N times and it is shown in Fig. 95

Fig. 95 The magnetic potential difference (m.m.f.)
This is analogous to the e.m.f. in an electric circuit.

The magnetic field strength, H, is the m.m.f., F, per metre length, /, of the flux path

F _IN
= =L (Al
H 7 T (Atim)

where [ is the length of the flux path or the magnetic length.

WORKED EXAMPLE 20

A toroid shown in Fig. 96 is wound uniformly with 1000 turns and carries a current / = 2 A, the
mean diameter of the toroid is 30 cm. Determine the magnetic field strength.

Fig. 96 The toroid.
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SOLUTION 20
The magnetic flux, ¢, flows in the direction shown according to the corkscrew rule and the
magnetic length is 2D, the flux path

_IN _ 2x1000

il

=12,122 At/m

b. Establishes the relationship between magnetic field strength and magnetic flux
density and defines relative permeability and the permeability of free space.

MAGNETIC FLUX DENSITY

The magnetic line of flux ¢ webers which cross an area A m? is termed as magnetic flux density,
B

B= % (tesla or Wb/m?)

In Fig. 97, the magnetic flux, ¢, crosses the cross sectional area, A, to give the flux density.

Fig. 97 Flux density

PERMEABILITY

The relationship between magnetic field gth and magnetic flux density is given by the
equation

B

H

and p=p .

The ratio of B to H is termed as absolute permeability g where y_ is the permeability of free
space which is a constant given as 4x 10 77 H/M (henrys per metre) and p is the relative
permeability which is a number and has no dimensions (4, = 1 for a non-magnetic material).

The permeability is a measure of the magnetic performance of a material.

c. Investigates the effect of the core material on the performance of an electromagnet,
compares magnetisation characteristics of typical ferromagnetic materials obtained
by measurement and deduces the range of values of relative permeability.

AN ELECTROMAGNET,

A number of turns are wound on a ferromagnetic core as shown in Fig. 98.
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Fig. 98 The electromagnet.
When the switch, S, is closed, current [ flows in the windings thus setting up a magnetic as
shown of flux density ¢. This is the principle of an elec gnet. Its ad ges over the

permanent bar magnet is that it may be switched on and off as required. It is a temporary magnet
and must be made of soft iron.

Referring to the previous formular.

=%,  u=N

A 1 au

i

=p=p H,.

If the core is non-magnetic then g_= [ and the ratio B/H is minimum. If the core is ferromagnetic
then y_is large (e.g. 7,000) and B/H is large.

MAGNETIC MATERIALS

Iron, nickel, cobalt and certain alloys of these metals can be made into strong magnets, and are
known as ferromagnetic materials.

Steel is an alloy of iron, made by adding small percentage of carbon 10 pure iron and it is a much
harder metal than pure iron.

A permanent magnet can be made by placing a steel bar or rod inside a solenoid and the current
switched on. The steel becomes a magnet and can pick up pieces of certain metals.

Alloys of nickel and cobalt are used for making powerful permanent magnets and are called
ferrites. These magnetize strongly and are not easily demagnetized. Ferrites have a high
electrical resistance, and hence the current and power loss are extremely small.

The graph of B against H for magnetic and non-magnetic material is shown in Fig. 99.

B
m

Nen-magnetic

W ()

Fig. 99 B/H graphs for ic and non ic materials.

The magnetization curve for a magnetic material is non-linear and for a non-magnetic material
is linear. The former has a variable permeability and the latter a constant permeability, this is
shown in Fig. 100 where y is plotted against H.
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Fig. 100 p /H graphs for magnetic and non-magnetic

There are ‘soft’ magnetic materials and ‘*hard” magnetic materials. The former have high
saturation 8 and low loss (iron, steel, silicon steel, nickel-iron alloys (30— 70% N), cobalt - iron
alloys, manganese and aluminium oxides (ferrites) and the latter have high residual magnetic,
effect. The BH curves for the soft and hard magnetic materials are shown in Fig. 101

7

Fig. 101  BH curves for soft and hard materials.

Magnetisation curves for silicon iron, mild steel, and cast iron are shown in Fig. 102, The
relative permeability plotted against the flux density for these materials are shown in Fig. 103,

14
o
18 9t e
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Fiua denatty
Fig. 102 BH curves for various materials. Fig. 103 Curves of relative permeability
against flux density for various
materials,

It can be deduced from the graphs of g /B that values of y_= 5000 for silicon iron at B=0.75 T,
H, = 2,500 for cast iron at 8 = 0.225 T and g_= 2600 for mild steet at B = 0.625 T may be
obtained.

d.  Relates magnetomotive force, reluctance and magnetic field strength and solves
problems involving magnetic circuits having not more than a single change of
dimension, material or air-gap using data from magnetisation curves.



RELUCTANCE

The student is familiar with the word resistance of an electric circuit, that is the controlling
component of current in an electric circuit is the resistor,

Reluctance, 8, is the analogous quantity in a magnetic circuit

Reluctance = § = % = Magnetomotive force (D

flux

and it is expressed in A/Wb (amperes/weber). Reluctance is analogous to resistance in an
electric circuit. The formula of equation (1} is analogous to the formula of resistance, R = Vil
which is ohm's law.

Fig. 104 which indicates the property of the reluctance which is the magnetic resistance of the
magnetic circuit.

l" 5 h 1

i !

\—arF ]
—_—

Fig. 104 Reluctance

5= = =

f2)

alm

B
HHA

The relationship between m.m.f., reluctance and magnetic field strength, H is given

B

F F
S= WA = i upA O
WORKED EXAMPLE 21

A coil of 500 turns, wound on ring of magnetic material, carries a current of LA. The length and
cross-sectional area of the flux path in the ring are 500 mm and 1000 mm? respectively. The
realtive permeability, u_= 3500 and 1 = 4n x 10" H/m. Determine (i) the magnetic flux density
(ii) the reluctance,

SOLUTION 21
- E_ IN SR
S= %" A and g =B = N
=T
@ B=mu % _ 4nx10 xz,?]()xlxsm —44T
s IN 1x500 _
(ll) S- E - W -|.]3,636Nw‘)
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WORKED EXAMPLE 22

A piece of iron has a magnetic length of 150 mm a cross-sectional area of 500 mm’, and a
relative permeability of 550. Find the reluctance of the iron. (4, =4nx 10 - H/m)

SOLUTION 22
S= ﬁ = ﬁ = IN = INT = !
¢ BA  Hup A INppA ppA
§= L = 0.15 = 434,059 A/Wb.

HopA 4% 107 % 550 x 500 % 10 ¢

AIR GAP
A toroid of a magnetic material has a radial cut as shown in Fig. 105,

Fig. 105 A radial cut in a toroid.

The magnetic flux set up in the core is shown which also passes through the air gap.

‘The magnetic circuit is now made up of two reluctances in series since the magnetic flux is the
same in the core and in the air gap, assuming no magnetic leakage occurs.

The magnetic lengths are [, that of the iron, and [, that of the air gap.
The total reluctance of the magnetic circuit is given by

§= Sr + S- = !J + Iﬂ
uopA A

L. r o
since g = 1 for the air gap.

It is obvious that the effect of the air gap is to ir the rel e of the magnetic circuit,
This argument is analogous to that of one electric circuit, the total resistance is equal to the sum
of the resistances since the same current flows through each resistor.
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COMPARISON BETWEEN ELECTRIC AND MAGNETIC CIRCUIT

ELECTRIC CIRCUITS MAGNETIC CIRCUITS

TERM SYMBOL| UNIT TERM SYMBOL UNIT
Current 1 A Flux '] Wh
Electromotive E v Magnetomotive F A
force force
Current Density J Afm? Flux density B Whim? (T)
Resistance R Q Reluctance A/Wb
Conductivity c Sfm Permeability H H/m
Resistivity P Qm iy m/H

PERMEABILITY IS ANALOGOUS TO CONDUCTIVITY

1

L _RA o B .
R—pz orp= T - ag= —-RA—Cmﬂll.CllVlty

B _wA_ o _ 1 ili
B=fF =Fi ~“FA = Sia  Pomesbiliy
i b o 1
S§S=-—={—| — analogoustoR = -_—
& =(z) z walos © 7

therefore % is analogous to p or i is anologous to 0.

WORKED EXAMPLE 23

A 1500 tumn coil is wound on an iron ring having a c.s.a. of 10 cm?, and a mean diameter of 0.15
m. There is a radial saw cut | mm wide in the ring.

Calculate the current in the coil for a flux of 1 mWb in the ring. The B/H curve for the iron is as
follows:

B(T) 0.62 0.88 1.03 1.13 1.18
H(A/m) 150 250 350 450 550

u,=4rx 107" H/m
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SOLUTION 23
The magnetisation curve B/H is plotted on Fig. 106,

Bir)sz,

b 0o wo o0 400 . 0 H (Afm)

Fig. 106 B/H Curve
A= 12102
B=ga 10 10~ !

From the graph of Fig. 106, H = 320 A/m corresponding to B = | T. If the air gap is not taken
into account then H, = 320 = INi0.471

1,1500

H, AT

or 1500 f,=0.471 x 320

320 % 0.471

=0.1A
1500

current due to the iron, [, =

Ho= 7172 g 1 ™ WA T anxi07x 10X 10 = 105775 Afm.

Se 1L ¢ 0 1%10-
1

The total magnetic field intensity
H =320+ 795,775 = 796,095 A/m

Current due to the air gap

HI 7957750001 _
1= T = 0 =0.531 A

The total current = 0.1 + 0.531 = 0.631 A.

e. Displays hysteresis loops on a C.R.O. and observes the effects of variation of
magnetic material and magnetic field strength.

HYSTERESIS

Hysteresis is a Greek word meaning ‘lagging’ and in this context, means that the flux density, B,
is lagging behind the magnetic field i ity or magnetising force, H, when a specimen of
ferromagnetic material is taken through a cycle of magnetisation.
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The specimen is initially in a demagnetised state. As H increases, the magnetisation curve is
non-linear as we saw previously and is shown as OA in Fig. 107.

B

Remorsrsd

Y

i‘:i >

"
i

Fig. 107 Hysteresis loop

At A it saturates, that is, B is substantially constant as H increases beyond the point A. If H or [
is decreased from its value H,, the curve now follows the path AB, where at B, OB = B, when H
=0B_=remanent flux density. Reversing the current, the path follows, BC, CD, DE, EF and one
complete cycle is traced when it ends a1 A.

OF = H_=coersive force, when B = zero tesla. The closed loop ABCDEFA, is called a hysteresis
loop when H has been reduced from /, to zero the iron is still magnetised in the positive
direction and the magnetic flux density at that point is called the remanent flux density, since
there is a residual magnetism in the iron. The amount of negative magnetising force which must
be applied in order to annul the remanent flux density is called the coersive force.

The remanent flux density corresponding to saturation of the material is called remanence and
the corresponding coercive force is called coercivity.

f.  States that hysteresis loop is proportional to the area of the loop and explains the
importance of hysteresis loss for a.c. excited devices.

The energy stored in the magnetic material is proportional to the area of the loop. If can be
shown that the energy expended per cycle per cubic metre is equal to the area of the hysteresis
loop in joules.

Steinmitz devised an empirical formula, namely

Energy dissipated = 1) B '* joules per m’ per cycle
where 77 is the hysteresis coefficient and has numerical value between 250 and 300 for 4%
silicon steel, 500 for sheet steel, 750 — 3000 for cost iron steel and 3,000 — 4000 for cost iron.
Energy dissipated per second = 7jf B '® in joules per m * where f is the frequency. Therefore the
power loss = nf B_'* W/m >,

SUMMARY 4
F=lIn S=Fi¢
H=INI S=lupA
! !
B=g¢iA szs-"'s-:;g,—',d"ﬁ
BiH=p for series magnetic circuits



ELECTRICAL & . ELECTRONIC PRINCIPLES II

ERRATA

P17 6 L=2734 P.322.1. 30A (1.27A) 83.0A (8.30A)
P33 9. 198A(1.99A), 0.60V(0.45V)

P.34 13.  Fig. 6l (Fig. 59), 14. Fig. 60 (Fig. 58)

P.36 second line from the bottom dV = — Edx

P.37 z--':;".,.(s) 6th line --%,,.(6) 11th line €, = 9.85 x 10~ Ffm
P4l llthline V= g P.44 6th from the bottom 100° (1002) 8th from the

bottom Q=C; V,I"=cg. 9th from the bottom 1.18 mC
H

P.59 3. Ans. 1.19A,2,121,000A/ Wb, 0.75T), 4. Ans. (a) 2080 (1.25)
5. Ans (b) 500,000A/Wb, 500,000A/Wb, N = 333) second line from
the bottom 0.5 mWh (500 mWb)
P.60  7th line (Ans. 0.96A) 4th from the bottom 628 yWh (628 mWh)
P.66  4th from the bottom 40 (50), E = — 40 volts

P.67 first line e — = — 800 As.
Solution 28. 3333 volts (- 3333 volts)

P.68 2nd from the bottom 200 (700), - 75 x 107 (75 x 107 %)

P.73 Solution 33 — 100 volts (— 50 valts) P.77 8. 1:10(10:1)
P.84 Solution 43 i = 0.3535 sin (ls.s'oe: = :—;] A

P.87 last line z,=m.in(m—§] P88 last line Ans. md:(m:u»ﬁ]_

P.938thline ¥ =V, +¥;  P.103 Solution 51 (ii) 95.4mA
(i) Vp=143V. ¥, =3V V. =0949V () 0.137 W (2.4 A)

P.119 18th line f= -_'1; P.126 20d from the bottom 0.625A (0.025A),

P.127 8th from the bottom /, = 0.64 A (0.04 A)




P.128 Fig. 208 0.00050(0.00050) P.134 2nd from the bottom 4/, = 22.5,P.135 6th
from the bottom — 0.32/, = — 1.3 P.138 8th from the bottom 15 x 0.04 = 0.60.

|
P.1496th line $=—1_ . " _ 0% . 0001
BbA M dmx 10T 1000 x TS % 107% 4w x 1077 x 75 x 107

- D6+ 16 _ 5 121,000 A/WS, 1160 B = 112 X 1000

—_—— =075T
75 x 104 1591

L _ 400000 = — 0628

12th 4. (@) S = - e
B, o dx x 1077 pA

0.621
D =20 cm, | = 20x = 0.628 -—— e = 2083.3 ~ 2080t0 3 S.F.
- 0 Cs-dﬂ.ﬂ?-‘xlﬂ"

‘l
B A B4

(b) N=250,I=IA8=

= 400,000 + 400,000= 800,000 A/'Wb

. [/ 0.5
P.1505th line (b) S, = —— = = 500,000 A/Wb
" popd 4xx107x10°A

b _eswet 0310 008 o o
5 bl dm 1074 s Sx10'dn 107! 20m e lG Sy
S5=5+85=5x10+5x10"=1 x 10° AfWb

]
N=1X1F %05 x 1070 ppy e
15
S LT | 025 2 0.001

o, A B A 4x107T1TTx2x107% 4x 10" x2x 104

- 9,600,000 A/Wb - — & 11000
100 x 10-* 100 x 10~ ¢

I=0964
P.152 4.3nd line 3.93 /s (393 m/s)

P.156 last line r;ﬁ%ﬁ:}’m- nw

P.162 13, Fig. 246 V2

P.165 7th line from the bottom 4.8V (48V)

P.1672nd line from the bottom Fig. 255 (250)
7th line from the bottom Fig. 254 (259).




EXERCISE 4

1

A ring specimen of cost steel has a mean length of 50 cm and a cross sectional area of 10
cm’.

If 300 twrns of wire are wound uniformly round the ring, calculate the current required in
these tumns to set up a magnetic flux of 750 L Wb in ring and gap. (1, = 1000 for cost steel
and g = 4% 10" H/m (Ans. 1 A)

A perspex toroid has a mean circumference of 75 cm and a ¢.s.a of 10 cm?. The oil consists
of 500 turns and carries a current of 5 A.
Calculate : (i) the magnetomotive force

(ii) the magnetic field intensity

(iii) the flux density

(iv) the total magnetic flux
(Ans. (i) 2,500 A (i) 3,333 A/m (iii) 4.19m T (iv) 4.19 p Wb)
A coil having 1000 turns is wound on an iron core having a mean length of 100 cm and
c.s.a of 7.5 cm?. Calculate the current required to produce a flux-density if 1.5 T in the core.

What would be the value of the flux-density of there was an equavalent of a 1| mm air gap in
the ring and current remained the same.

4, =1000,and g =4xx 10" H/m.

(Ans. 1.19 A 1,591 A/Wb, 997 T)

(a) A ring speciment made of steel-alloy has a mean diameter of 20 ¢m and a cross-

sectional area of 6 cm?, In a certain magnetic test the reluctance of the ring is found to
be 400,000 A/Wb. calculate the relative permeability of the steel-alloy in this case.

{b) A radial airgap is now made in the ring and it is uniformly wound with a coil of 250
wrns. When a current of 1 A flows in the coil, it is found that the reluctance of the air
gap is the same as that for the ring, which is the same as that in (a). Calculate the
magnetic flux set up in the ring.

(Ans. (a) 1.25, (b) 313 p Wh)

{a) Make a neat sketch of a hysteresis loop and with its aid explain the terms:
(b) (i) remanent flux density, B,
(ii) Coersive force, H,
(iif) initial magnetisation,
(iv) magnetic saturation.
(b) A ring specimen of cost steel has radial air gap 0.5 mm long cut through the ring and
the air gap has a reluctance of 5 x 10° A/Wb. The ring has a mean length of 50 cm and

relative permeability of 1000. Calculate the number of tums wound on the ring if 1.5
A is required in these tums to set up a fux of 500 mWb

(Ans. (a) (b) 398 A/Wb, 500,398 A/Wb, N = 167)
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A ferromagnetic toroid has a mean circumference of 25 cm, a cross sectional area of 2 cm?
and is wound with a coil of 1000 turns,

A | mm radial air gap is cut in the toroid. Calculate the coil current required to establish a
flux of 100 p Wb in the toroid.

A magnetisation curve for the specimen is given: B (T) 0.47 0.60 0.66
H(A/m) 2,000 3000 4,000

(Ans. 192 pA)

(i) Write down an equation for the resistance of a copper wire in terms of its length and

cross sectional area, giving the units for each quantity. Give the analogous expression
in a magnetic circuit and explain the term of each quantity and the respective units.

(ii) Write down an equation for the magnetomotive force in terms of magnetic flux,
magnetic length, permeability and cross sectional area. Give the analogous expression
in an electric circuit.

A ferro magnetic toroid ring with a mean total length round the iron of 400 mm, the cross-
section being 400 mm? the number of turns wrapped round uniformly is 100 and the direct
current is 5 A, Calculate:

(i) the reluctance of the ring

(i) the flux in the iron

popu =4x % 10 H/m

(Ans. (i) 795,775 AfWh, (ii) 628 mWb)

In question 8 an air gap of 4 mm is cut calculate the reluctance in the air gap what is the
total reluctance of the circuit? What is the effect of cutting an air gap?

(Ans. 8,761, 560 A/Wb)



ELECTROMAGNETISM

5. Applies the fundamental principles and laws governing electromagnetic induction.
a. Explains the motor principles in terms of the interaction between a magnetic
field and a current - carrying conductor and applies the relationship F = Bli

to simple situations.

THE MAGNETIC EFFECT OF CURRENT

Consider a current-carrying conductor as shown in Fig. 108. A magnetic field is set up around
the conductor according to the corkscrew rule as shown in the diagram or the right hand

gripping rule. 1

Fig. 108 The magnetic field around a current carrying conductor.

Fig. 109 shows the current flowing out of the paper and Fig. 110 shows the current flowing into

the paper.

Fig. 109 The current flowing out of the paper.

©

Fig. 110 The current flowing into the paper.

The force on the conductor, F, in newtons depends directly on the flux density, B, the length of
the conductor, { and the current flowing through the conductor, I,

F =Rl

Ifthecurrent /=1 A, /=1 m, B =1 T then the force on the conductor F = | newton. If the
conductor makes an angle 8 with the magnetic field then F is given

F=8Bllsin 6.
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MOTOR PRINCIPLE
The left hand rule illustrates clearly the motor principle as shown in Fig. 111,
F
§
Fig. 111  The Left Hand Rule. 1

The thumb, the first finger and the middle finger of the left hand when they are stretched out at
right angles mutually, we have the force along the thumb, the magnetic field B along the first
finger and the current along the middle finger.

If a current - carrying conductor is placed at right angles to a magnetic field as shown in the
Fig. 112, the conductor

, 1

N

Fig. 112 Magnetic field being by a current-carrying conductor.

is moved upwards out of the paper with a force F = Bif, where B is the flux density set up
between the north and south, / is the length of the conductor in the magnetic field, and / is the
current flowing through the conductor. The current | generates a force, F, out of the paper. This
is the motor principle. If the current is reversed then the force acts into paper. Fig. 113 and Fig.
114 show the forces into and out of the paper respectively.

Fig. 113 Left and Rule.

Fig. 114 Right Hand Rule.
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WORKED EXAMPLE 24

A conductor 45 ¢m in length and carrying a current of 0.3 A is placed at right angles to a
magnetic field having a flux density of 1.0 T. Calculate the force on the conducior.

SOLUTION 24
F=8l

where B = flux density in teslas (T)
I =length of conductor (m)
I = current in amperes (A)
F = force in newtons (N)
F=1x03x045=0.135N.

b.  Observes the production of induced voltage and describes it as due to change in
flux linkage.

Consider the simple situation shown in Fig. 115

S+

* -
Fig. 115 Induced e.m.f. Lenz's Law,

A stationary coil is connected to a resistor for continuity. A permanent magnet is moved along
the arrow shown towards the coil. The flux linkage, ¥ ¢ is changing whilst the magnet is
moving. Due to this change in flux linkage, an induced e.m.f. e, is established across R as
shown. If the magnet moves now in the opposite direction as hown in Fig. 116, the induced

Fig. 116 Induced e.m.f. Lenz’s Law,

e.m.f. is reversed. The induced e.m.f, i% directly proportional to the rate of change of flux
linkage.

d
=% N
e Ir(tt»)
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Since N is the number of tums of the coil which is constant

d¢
e=N _d'l'
the induced e.m.f. is directly proportional to the rate of change of flux,
If there is no rate of change of flux, there is no induced e.m.f.

¢. Establishes the relationships E = Blv and E = N d@/dt and used them to solve
simple problems.

metheabuvcE:N‘i,—?

Considering a conductor of length / and placed at right angle to a magnetic field as shown in
Fig. 117. The conductor cuts the

e

5

. ——LJ—-
b/l

N

Fig. 117 A conductor cutting a magnetic field at right angles.
magnetic field with velocity v (m/s).

The distance moved in 7 seconds is given as vr. For a conductor N = 1

_,dé _ . d(BA)
E=N dr =N dt
_, d(BA)
Bwl =

sinceA=I(vt)=1w
d
E= a (Blve)

since B, I and v are constants and ¢ is the only variable, Blv gf (t)=Blv
E =Bl

E is the induced e.m.f. in the conductor, /, cutting a magnetic field of flux density B with a
velocity v.

WORKED EXAMPLE 25

A conductor is moved at 15 m/s through a magnetic field having a flux density of 1 T.
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Calculate (a) the e.m.f, induced per metre length of the conductor and (b) the force per metre
length opposing this movement if the conductor is connected in a circuit having a total
resistance of 1 Q.

SOLUTION 25
(a) E=Bly
v=15mfs, B=IT

the e.m.f. incluced per metre, f =Bv=1x15=15 Y .
m

(by F=Bil
f:fmccpermctre:&f:l><|5=|5me
w¥og B
where [ = R 15 A,

WORKED EXAMPLE 26

A coil of 1,000 tums is subjected to a flux change at the rate of 15 mWb/s. Determine the
magnitude of the induced e.m.f.

SOLUTION 26

The magnitude of the induced e.m.. is given by the formula

R
E=N%

E=1000x15x 107 =15 volis

where ‘L—? =15x 10" Whs.

d. Explains the historical and technical significance of Fara day’s and Lenz’s Laws.

Fig. 115 extablishes an induced e.m.f. such that it opposes the motion. Fig. 116 establishes an
induced e.m.f. such that it opposes again the motion. Figures [15 and 116 show clearly Lenz's
law and this is indicated algebraically by a negative sign

=-N40
E=-N% ()

If L is the selt-inductance of the coil in Fig. 115 and Fig. 116, there is an induced e.m.f. in the
coil due 1o the change of current.

di

Pk dr

- (2)



66
The induced e.m.f. is directly proportional to the rate of change of current. If there were no
change in current, the induced e.m.f. would be zero.

Equations (1) and (2) are known as the Faraday’s laws of electromagnetism. From equation (2),
the self-inductance may be defined

Self-inductance = - el

rate of change of current
E

tx @
dt

neglecting the negative sign in this case as it only indicates direction of induced e.m.f. or
current.

di
E=-N ¥ i and E=—L F are the

laws due to Faraday and the negative sign is due to Lenz’s Law.

WORKED EXAMPLE 27

A centre-tapped coil of 1,000 turns is mounted on a magnetic core and has a self-inductance of
50 mH. Calculate:

(i) the induced e.m.f. when the flux changes at the rate of 40 mWh/s
(ii) the self-inductance of each half of the coil and

(iii) the rate of current change in the coil.

SOLUTION 27
A centre-tapped coil of 1000 turns is shown in Fig. 118,

1000 turns

500 500
furns turns

Fig. 118 Centre-tapped coil

iy E=-N ‘% =—1000 x 50 x 10 -* = =50 volts
(ii) The total self-inductance = 50 mH, the self-inductance of each half coil is 25 mH.
di

(i) E=-L ar

re-arranging the formula
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di =50

= HaloT =-LO00AA.

WORKED EXAMPLE 28

A current varying in the manner shown in the diagram of Fig. 119 is passed through a coil
having an inductance of 500 mH.

Fig. 119 Current/time graph time (ms)

Calculate the e.m.f. induced in the coil during the periods OA, AB and BC.

SOLUTION 28

During the period 0A
o, odi (10-0) .y :
E=-L = =-05x% a—oxio= = 5,000 volts
during the period AB
e (10-10) _ 0o _
E=-05 @-1)x10°7 =-0.5x X107 =0V
during the period BC
z _©0-10) _ _ Sx1¢¥ ,
E=-05 B3-Hx107 = 13 =-3,333 volts.

This example clearly establishes Lenz's Law.

e.  Describes the concept of eddy currents and eddy current loss, explaining their
significance under conditions of a.c. magnetisation

Coils normally are wound on ferromagnetic materials in order to increase the self-inductance., If
the ferro-magnetic materials are solid, eddy currents flow in the solid material which cause a
power loss and thus decreases the efficiency of the device.

To reduce these "Eddy currents”, the resistance of the core is increased by replacing it with thin
painted laminations.

Eddy currents are objectionable in generator and motor armature and transformer cores, in
which they cause power losses and hence the efficiencies are decreased.

Understands the concepis of self-and mutual inductance and relates these to the transformer
principle.
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f.  Defines self-inductance of a coil in terms of the proportionality of flux linkages
and current in a linear magnetic medium and describes the production of induced
voltage due to change in flux linkages.

SELF INDUCTANCE OF COIL
L
E=ta =Y 3%
o E _ induced e.m.f.
di rate of change of current
dt

L = self-inductance
at steady state
LI =N¢

No

L=.f

The self-inductance is directly proportional to the flux linkages (N$) and inversely proportional
to the current.

WORKED EXAMPLE 29
The flux linked with a coil changes steadily from 5 mWb to 75 mWb in 7 ms, The average value
of induced e.m.f. is 150 V. How many tums are there on the coil?

SOLUTION 29

E=N % = the average induced e.m.f.

" ¥
150 =N (75x103-5x10%) 70

Tx107 Ll s

N = 15 the number of turns.

WORKED EXAMPLE 30

A current of 200 mA flowing in a 75 mH coil is reversed linearly in 150 ms. Calculate the value
of the e.m.f. induced in the coil.

SOLUTION 30
o, odi S (<T00-200) | 0
E=-L 4 -75x10 x10
dt 150x 10~
E= 13X400 o 165 0.2 volts.

150
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b. Deduces and applies the relationship L. = N?z and E =L %

DESIGNING A COIL
_No N = !
L= 7 at steady state, H = T and § = LA
o DDA NBAN, . NABE s Ao W W
ST T TH T TH CCVRAT TTppa TS

the self-inductance depends greatly on the number

L=

b:iz

of tums and it is inversely proportional to the reluctance.
L=Npp, 4

and since y1, A and / are constants then the self-inductance depends on N7 and the type of

material with relative permeability, i, A coil wound on a ferro-magnetic material gives a much

higher self-inductance than when it is wound on a non-magnetic material.

c. Defines mutual inductance and describes the production of induced voltage due
to change of mutual flux linkage.

MUTUAL INDUCTANCE BETWEEN TWO COILS

Mutual inductance only exists between two coils. Consider two coils A and B which are
mutually coupled as show in Fig. 120, where M is the mutual inductance.

Fig. 1200 Two coils closely coupled with mutual inductance M.

Twao coils are said to have a mutual inductance of 1 henry if an e.m.f. of 1 volt is induced in the
secondary when the primary current changes at the rate of 1 ampere per second.

When the swilch § is closed, the current in coil A changes, the induced e.m.f. in coil B is given as

di, do,
E,=M & =N."a
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WORKED EXAMPLE 31

Two coils A and B are mutually coupled, the mutual inductance between them being 0.25 H. If
the coils have 500 tumns each, determine the induced e.m.f. in coil B when

(i) the current in coil A changes at 75 A/s
(ii) the flux linking the coil changes at 0.5 Wb per second.

SOLUTION 31

. di

(i) E,=M Efl =025%75=18.75 volis
i3 dé,

(i) E,=N —5* =500x0.5 =250 volts.

COILS CONNECTED IN SERIES AIDING

Two coils A and B are connected on an iron former as shown in Fig. 121 in series aiding

AT

Fig. 121 Two coils connected in series aiding.

If the self-inductance of A is L, and the self-inductance of B is L, the total self-inductance is
given by

L=L +L,+2M
where M is the mutual inductance of the two coils,

COILS CONNECTED IN SERIES OPPOSING

Two coils A and B are connected on an iron former as shown in Fig. 122

.A B. .A B.
8 ‘ 5 $

Fig. 122 Two coils connected in series opposing.
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If again the self-inductance of A is L, and the self-inductance of B is L, the total self-inductance
is given by

L=L,+L,-2M.

WORKED EXAMPLE 32

Two coils, A and B, have self-inductances of 10 mH and 20 mH respectively. When connected
in series aiding the total inductance is 35 mH. Calculate the mutual inductance and estimate the
total inductance of the coils when they are connected in series opposing.

SOLUTION 32

Referring to Fig. 121
L,=10mH and L, =20 mH
L=L +L,+2M
Ix0P=10x102+20x 10 +2M
(B5-30)=107=2M
M=25mH

Referring 1o Fig. 122
L=L +L -2M
=10x107+20x 107 -2x25x 107
=30x 107 -5x= 10"

L=25x10-"H
therefore
L=25mH

INDUCTIVE AND NON INDUCTIVE CIRCUITS

Siraight copper wires possess a very small self-inductance, if the copper wires are in the form of
a coil, the self-inductance is more predominant.

To increase the self-inductance the coil is wound on a magnetic circuit.

Therefore straight copper wires, coils on non-magnetic and coils on magnetic circuits are
inductive.

Non-inductive circuits such as high stability resistors and incandescent lamps are made of wires
bent back on itself since the field due to current flowing in one direction cancels that due to
current flowing in opposite direction Fig. 123 shows the consiruction of a non-inductive
resistor.
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- D

Fig. 123 Non-inductive resistor. Wire is bent back on itself.

d. Describes the transformer principle in terms of Lenz's Law and induced volts per
turn, deducing the effect of turns ratio on voltage ratio.

THE TRANSFORMER PRINCIPLE

Twa coils of tums N, and N, are wound on a ferro-magnetic core as shown in Fig, 124,

fe,

Fig. 124 The basic principle of a transformer.

The coil N’ is connected to an a.c. supply E, and the coil N, is connected to a load. The former
coil is called the primary and the latter coil is called the secondary. Applying Faraday's laws of
electromagnetism

E=-N, =¥ ...(1) and E,= N, ‘ff—?...(z}

assuming that the rate of change of flux is the same, that is, no flux leakage occurs dividing
equation (1) by equation (2)

d¢
E_HNa N
E, N de N,

dt

E N

Foa r

E_' -—N’ o 43)

Therefore, the ratio of the induced e.m.f. of the primary to the induced e.m.f. of the secondary is
equal to the turns ratio.

Assuming no power loss between the primary and secondary, the primary volt-amperes are
equal to the secondary voli-amperes

EJ =EJ,
E I,

or E=7 (4

P

combining equations (3) and (4), we have
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E, N 1
EI-AT'-}T ‘1‘(5)

e. Deduces that energy stored in an inductor is éu 2,
Power is the rate of doing work

P = power in waits

W = energy or work in joules

P= ‘:” orW = Pr=Elt=IRIt = IR,

When an inductor is completely demagnetised and is connected across a d.c. supply, the current
initially is zero and hence the energy is zero, t seconds Lm.er the inductor is energised and the

d:)“*

current has grown to a finite value i, the induced e.m.f, 1sL &t ® and its energy will be [L 5

¥, - 1 Y
The energy stored in the inductor = [LQ) Pdi= Lfdi:[li.f’} =1
dr 2 o 2
0 a

The current grows from i = o, to i = [, the final steady current.

The energy stored in an inductor from i=otoi=/is W= 4 u= the energy stored in an inductor
at any instant is W= 1 Ll where i is the instantaneous curtcnl.

WORKED EXAMPLE 33

(i) Calculate the e.m.f. induced in an inductance of 500 mH when the current is changing at a
rate of 200 A/s.

(if) Calculate the energy stored in this inductance when the current is 5 A.
SOLUTION 33

Gy Beil ;ﬂ_-sonxm 200 = =50 volts

(i) W = %qu %xint]x 10 x 5% = 6.25 joules.

WORKED EXAMPLE 34
Calculate the energy contained in an inductance of 5 H carrying a current of 1 A.

SOLUTION 34
I e R SV E
W=oLl=3 5x12=25].

f. Solves problems on self-inductance, mutual inductance and the transformer
principle.

THE RESISTANCE VIEWED AT THE PRIMARY OF A TRANSFORMER
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Consider a simple transformer in Fig. 125 whose a.c. input resistance is required

Ny Nz

Fig. 125 The a.c. input resistance al the primary of the transformer

E N,
From the equation —* = - = % we have
2 NI 1

and load R = = (3)

.,
=L

The a.c. input resistance viewed at the primary terminals, R in is given

R = 5= Input voltage_

» 1, “Input current

substituting in this equation, equations (1) and (2)

=)
hE)
e 50

E
and finally substituting R = F&, we have
2
Ny

R,=|v) R..O8)
()
the resistance viewed at the primary.

WORKED EXAMPLE 35

An ideal transformer having a 50:1 step down ratio, has a load current and voltage of 0.2 A and
50V respectively. Calculate the primary current and voltage.

SOLUTION 35
Using equation
L =N

A N,

N.
or [ = 1]\;
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1,=02-1=4ma
50
Using equation
E N

< 2R |
E,” N

2

N,
or a=ig=mxm=umv

WORKED EXAMPLE 36

A 5:1 step down transformer has a primary voltage supply of 240 V and a secondary load
resistance of 1,000 1. Calculate : (i) the resistance at the primary terminals

(ii) the secondary voltage and
(iii) the primary and secondary currents

SOLUTION 36

5 N2

W R=({1R
in [N}]
Rh=5’xl.0(l1_—.25.0009

=48 volts

WORKED EXAMPLE 37

A coil is wound with 1,000 tums. A current of 2 amperes flowing in the coil produces a flux of
100 pWh. Determine the value of the sell-inductance.,

SOLUTION 37
Al steady state
LI=N¢ ()
_pdi__ydd
from the equations E = L F -N =
from equation (1)
the self-inductance L = 5’{9
1,000 100x 10~
Lz = 2

L =50mH.
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WORKED EXAMPLE 38
A coil having an inductance of 225 mH is carrying a current of 20 A. Calculate the induced
e.m.f. in the coil when the current is:-

(i) reduced to zero in 0.05 seconds

(ii) reversed in 1.05 seconds

(iii) increased to 50 A in 3 seconds.

SOLUTION 38
i di 5 (0-20)
(i) E= _LE -225x 10 005 =90V

(i) E=-L 9 =225x10 £20-20) _1gov
& 0.05

(iii) E=-L ﬂ=--2'25 1

_, (50-20)
dt . -

=225V.

SUMMARY 5

Left and Right Hand Rules are shown in Fig. 126 and Fig. 127.

F F
8 B
1 1
Fig. 126 Left Hand Rule Fig. 127 Right Hand Rule
1. F=Bllsin® F = force on a conductor (N)
2. E=Blv - B = flux density (T)
3. E=-Lg I'=Current (A)
4. E=-N% 1= length of conductor (1)
5. LI =N ¢ steady stale 8 = angle between the straight conductor and
7 magnetic field (degrees)
6. E=M 5 E = induced e.m.£. (V)
7. E,=N, ?'z v = velocity (mfs)
8. W= LI* L = self-inductance (H)
9. % ;l‘ .gi = rate of change of current (A/s)
? = rate of change of flux
(Wb!s)
10. % = % N = number of turns

M = mutual inductance (H)
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W = energy stored (J)

Ny 2
1L.R = [F'] R E, = primary voltage (V)

% E, = secondary voltage (V)
R, = a.c. resistance at the input terminals of
the transformer ()

—! = turns-ratio

R, ,,= load resistance (£2).

EXERCISE 5

The force on a conductor of 0.5 m is 0.25 N and the conductor carries a current of 50 mA
and is placed at right angles to a magnetic field. D ine the flux density of the magnetic
field. (Ans. 10 T).

A conductor 40 cm in length and carrying a current of 150 mA is placed at 80° to a
magnetic field having a flux density of 0.9 T. What is the angle of the conductor to the
magnetic field having the same flux density and the force on the conductor is 1/5 that of the
first case. (Ans. 11.32°).

A conductor at right angles to a uniform magnetic field of flux density, 50 mT has 10 cm of
its length in the field. Calculate the current required to cause a force of 100 mN to act on the
conductor. (Ans. 20 A).

A rectangular coil 20 em long and 15 cm wide and consisting of one tum is rotated about its
longer axis at 500 r.p.m. in a uniform magnetic field of 1 T field is situated normal to the
axis. Determine the e.m.f. induced in the single turn coil, and in a similar coil of 100 tums.
(Ans. 079V, 79 V).

An em.f. of 5 volts is induced in a coil due to a flux change at the rate of 0.5 Whys.
Calculate the number or turns of the coil. (Ans. 10).

Calculate the e.m.f. induced in an inductance of 200 mH when the current is changing at a
rate of 500 A/s. (Ans. 100).

With the aid of two coils closely coupled together explain what is meant by murtual

inductance. Two coils A and B are mutually coupled, the mutual inductance between them

being 0.2 H. Calculate the e.m.f. in coil B when the current in coil A changes at 100 A/s.

(Ans. 20 V).

An ideal step up transformer having a turns ratio of 10:1 is connected to a supply voltage of

240 V. The secondary load is a resistor of 12 K€ Calculate:

(i) the secondary voltage and current

(ii} the primary current

(iii) the resistance viewed at the primary terminals. (Ans. (i) 2,400 V, 0.2 A (ii) 2 A,
(iii) 120 L.

(i) Show that the self-inductance of a coil is directly proportional to the number of turns
quared and the | bility of the magnetic material.

(i) Show that the reluctance of non-magnetic material is constant for all values of current,
(i1i) Show that the reluctance of a magnetic material varies with the current.

Explain briefly and clearly the construction of inductive and non-inductive components
using conducting wires.



ALTERNATING VOLTAGES AND CURRENTS

6 . Displays waveforms and determines the main parameters used to describe and
measure them.

a. Defines the terms amplitude, period, frequency, instantaneous, peak-to-peak
r.m.s average in relation to alternating (sinusoidal and non-simusoidal) and
unidirectional waveforms and used an oscilloscope to display and measure
these parameters.

ALTERNATING SINUSOIDAL WAVEFORMS

Fig. 128 shows an altemating sinusoidal waveform of two cycles, the y-axis is A sin ar and the

X-axis is o,
Asina,

B '\/ o

1 eycle
Fig 128 A.C. sinusoidal waveform.

Trigonometrically this waveform is represented by the equation

y=A sin axr
The waveform commences at the origin O.
AMPLITUDE
The maximum or peak value is called the amplitude and it is represented by A.
PERIOD
The period is the time taken to trace out one complete cyele and it is represented by T.
FREQUENCY
The frequency is the number of cyeles traced out in one second and is represented by f.
INSTANTANEOUS

The instantancous value of y is that value at a ceriain instant ¢, (1, for example).
Alf, y=y =Asin ax,y, is the instantancous valuec of yat r =1

PEAK TO PEAK

The peak-to-peak value is the value between the maximum or peak positive value and the
maximum of peak negative value. In this case, the peak-to-peak value 2 A,

R.M.S. (ROOT MEAN SQUARE)

The r.m.s. is the square root value of the mean squares. This is best illustrated as follows:

o 0| 30| 60 [90] 120150 180 210| 240 | 270 300 | 330 | 360
= el =

asine® (0| 1a|B3a |4 [2a|3a 0|24 34| a[3alta] o

Araint 0|0 1A% 342 (A2 [3a2 442 | 0| Jaz[ 342 Arfdar|laz| o
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J'I--L:},::}_:L: Loare3 gagany3as . Las
Eif..i._‘li +:4 _+4_A +4 A +n+44 +4 A+ A +4.4 +4»Il +0
The means squares =\ / 12
s A - o
= 2 =0.707 A approximately.
¥2

AVERAGE

The average value of one complete cycle is zero since the positive area of the half eycle cancels
the negative area of the other half cycle.

The average value of one half cycle is given as % = 0.637 A approximately.
NON SINUSOIDAL WAVEFORMS

Non sinusoidal waveforms such as the triangular and square waveforms are shown in Fig. 129
and Fig. 130 respectively.

A
A
ma

'

time

fe—vau T
Fig. 130 Square waveforms,

These waveforms are called complex or non-sinusoidal waves. The amplitude and the period are
shown on the diagrams.

b.  Defines form factor and determines the approximate average and r.m.s. vaiue of
given sinusoidal and non-sinusoidal waveforms.
A sinusoidal waveform

rms value 0707 A
average value — 0.637 A

= L1

Form factor =

For any sinusoidal current or voltage the form factor is the same and it is always 1.11
approximately to three significant figures,

For a non-sinusoidal waveform the form factor is different and should be determined for each
waveform.
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Uses phasor and algebraic representation of sinusoidal quantities.
a. Defines a phasor quantity.

PHASOR OR PHASOR DIAGRAM
A phasor quantity has magnitude and direction.

A current in a circuit is 3 A and leads the voltage by 25°. If the voltage is taken as a reference, a
horizontal line of indefinite magnitude, then three units are scaled along a positive direction of
25° to the voltage. If the current lags by 25° then three units are scaled along a negative
direction of 25°, Fig 131 represents the phasor quantity of current with respect to the voltage.

I leading ¥
25 ftage,

Ihagins\'

Fig. 131 Leading and Lagging currents.

b. Determines the resultant or the addition of two sinusoidal voltages by graphical
and phasor representation.

PHASOR REPRESENTATION

WORKED EXAMPLE 39
Two sinusoidal voltages are applied across two components in a circuit

E, =10 sin ot
E, =20 sin (ot + n/2).

Determine the resultant total voltage across the circuit and express in the form
E,=E_sin (@)

SOLUTION 39

Since E, is a reference phasor quantity, it is drawn 10 units horizontally and since E, is 90°
leading or 1/2 leading, it is drawn up perpendicularly 20 units as shown in Fig. 132,

Fig. 132 Phasor representation of voltages £, and E, and their resultant £,
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The resultant in this case is the hypotenuse of the right angled triangle.
El=E '+E}
E = Y201+ 10" =22.36.
From the right - angled triangle OE E_, tan 8= ?g =2 and hence 8 = 63.43°,
The resultant is given by
E,=2236sin (ax +63.43%)
but @ is the angular velocity in radians per second, ax is the angle in radian and radian and it is

better to express 8 in radians

63.43° = 63.43° x =L1I°

X

180°
E,=2245in  (w+ 1119

the resultant voltage in three significant figures.

GRAPHICAL REPRESENTATION

WORKED EXAMPLE 40

IfE, = 10sin ar and £, = 20 sin (ex + 1/2) determine graphically £, + E,.

SOLUTION 40

o of & | & | b | af in 12 idg— 3Bl 5% (nd =
sin 0 005 | 0866|1 | 0866 05 |0 | 05 | 0.866|-1 | 0866 05 |0
= 10 5in B¢ 0|5 (866 |10 |866 |5 0 | -5 | -866 |-10| 866 |5 |0
sinfe+ 5 ) 1]os00 fos |0 |-05 -0se6 -1 | -0866 |05 | 0|05 |oses|s
£=wsin(eexf20r732 [ 10 [0 [-10 |72 |20 | 7% -0 | ofsw0 jim32|20
E+E, M0[223 | 187 | 10| <134 | 123 | -20 | 223 | -187 |-10] -1.34 J-lz.z {20

Fig. 133 shows the plot of the resultant waveform, E, + E, against ax.

Ey+Ey
(Votts)

Fig. 133 Resultant waveform for £ and E,, leading by 63°.

The amplitude of the resultant waveform is approximately 22.4 and the waveform lead by about
LI=
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T.ITLS. -m—l 1

(v) Form factor = average " g3 -

(vi) v=100sin (3,142 x 1 x 10~ + g ) =100 sin -%‘

= mo(-_é )= =50 volts.
(b) i=100sin3,1421A

this is taken as a reference since we draw a horizontal phasor of 100 V equivalent to 5 cm (that is
20 V per cm is the scale). The voltage is drawn at 30° to the horizontal and equal to 5 cm.

Fig. 135 represents the current and voltage in a phasor diagram.

L'
v
S
Fig. 135 vleads i by 30° or g ¢
WORKED EXAMPLE 43
{a} Write down the mathematical expressi presenting a sinusoidal current having an r.m.s.

value of 250 mA and frequency 2,500 Hz and leading a voltage by a phase angle of 75°.

(b) Write down the mathematical expression representing a sinusoidal voltage having a peak
value of 100 V and a periodic time of 2.5 ms and lagging a current by a phase angle of n/9.

SOLUTION 43
(a) f=zsoxw-’~’isin(zn2.5m:+5]_"2m.
{+ - 0 I - ilt_‘
where 757 =75 % &>~ 12

i =sin (15,7080 +5 13) A

® v=100sin@n 220 - Zyy

2.5 9
where T= L =2.5ms
&
1 1000

f = 35%10 = 25 =40Hz

v = 100 sin (2513.3t - ; ).

8. Determines power in an a.c. resistive circuit from given data.

Power in a resislive a.c. circuil is given by the r.m.s. value of current squared times the
resistance of the resistor
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P=I'R
where / = r.m.s. value of current
v
or P= R

where V = r.m.s. value of voltage.

The power absorbed by a resistive load in an a.c. circuil is given simply by the product of the
r.m.s. values of voltage and current.

P=Iv
where I and V are the r.um.s. values of current and voltage.

Since the phase difference between the voltage and current wavefonns in an a.c. resistive circuit
is zero then cos 0 = 1 and P = JV. But the phase difference between [ and V in non-resistive
components is finite and this affects the power absorbed by the load. This will be covered in
dedail in the next chapter. ’

If v=V_sin ex is applied to a circuit of resistance R €2, the resulting current is represented by
i=1_sinax.
The power at any instant = P =V =/ _sin ex V_ sin ¥
Mean power over acycle = (mean value of ;%) x R
= (mean value of / ? sin’ ax) x R
2 !

" R=_m x.f""xR
2 i V2

P=IxIxR=I'R=VL

Fig. 136 Shows the instantaneous values of current, voltage and power

Fig. 136 Power curve for an a.c. resistive curve,
Equation of power curve is given by

p=iv=1_V,_sin® ox

fu VJI'
S (1 = cos 2ax).
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WORKED EXAMPLE 44

A current wave of equation { = 10 sin a¥ mA is flowing through a 1,000 Q non-inductive
resistor. Calculate the p.d. across the circuit and the instantaneous value of the power at
wr =mf2.

SOLUTION 44
The p.d. across the 1 K€ resistor v =i x 1,000 = 10,000 sin ax mV
= 10 sin ax V'
The instamtaneous value of the power =p = iv
p=10x 10" sin w x 10 sin ax

=10.1 sin® o
when ar = ; , sin® @r = sin® ; =landp=0.1 W,
SUMMARY 6

i=1I sin(artd)

v=V_sin (ot )
i, v are instantaneous values of current and voltage respectively
1 .V, are the peak values of current and voltage respectively
I, V are the r.m.s. values of current and voltage respectively

I, v,
I= 5 and V= 3
w=2nf = angular velocity radians per second
f = frequency in Hz
T = 1/f periodic time in seconds
¢ = phase angle in radians.
Positive phase angle (leading)
Negative phase angle (lagging)

r.m.s. value

Form factor= ————_—_ |
average value

Form factor = 1.11 for sinusoidal waves.
Average value of current or vollage
2
1= v.a 2y,
.

) "n av

P=1V=[R=V3R Power in a resistor.



SINGLE PHASE A.C. CIRCUITS

7. Uses a.c. circuit theory to solve simple series a.c. circuit problems.
a. Draws the phasor diagrams and related voltage and current waveforms for
circuits comprising.

*  Pure resistance
¢ Pure inductance
*  Pure capacitance

PURE RESISTANCE

An a.c, vollage source is applied across a pure resistor R. where V is the rnm.s. voltage and
1= VR r.m.s. current, Fig. 137.

-—y

Fig. 137 Pure non-inductive resistance.
WAVEFORMS

Fig. 138 shows the current in phase with the voltage.

Fig. 138  In phase waveforms
PHASORS

Fig. 139 shows the phasor diagram. If / is the reference phasor then V is in phase with /.

—r%

Fig. 139 Phasor diagram for a pure resistance.



PURE INDUCTANCE

An a.c. voltage source is applied across a pure inductance where V is the r.m.s. voltage and / is
the r.m.s. current. Taking [ as the reference phasor, the voltage leads the current by 907, Fig. 140
shows the circuit and Fig. 141 the relevant waveforms. The phasor diagram is shown in Fig.
142,

L
—Y Y
I4
(~)
pary

Fig. 140 Pure inductance.

WAVEFORMS

%9‘

Fig. 141  Out of phase waveforms, i lags v.

PHASORS \
90"
I

Fig. 142 Phasor diagram for a pure inductance.
PURE CAPACITANCE

An a.c. voltage source is applied across a pure capacitor where V is the r.m.s. voltage and / is the
r.mus. current, Fig. 143 shows the circuit. Taking / as the reference phasor, the voltage lags the
current by 90°,

|
ml
14
()
)
—V—»

Fig. 143 Pure capacilance.



on

The waveforms and phasors are showns in Fig. 144 and Fig. 145.

WAVEFORMS
) v
i
o) > ‘
Fig. 144 Out of phase waveforms, / leads v
PHASORS
”l I

Y
Fig. 145 Phasor diagram for a pure capacitance.
b.  Describes inductive reactance and capacitive reactance in terms of impeding the
flow of an alternating current and uses basic relationships to solve simple

problems.

INDUCTIVE REACTANCE

For Fig. 140 ,
X, = inductive reactance = ‘.} (ohm’s law)
X, =L (1)

CAPACITIVE REACTANCE

For Fig. 143

i 4 i
X, = capacitive reactance = I (ohm's law}
1

X = 2 1fC (€2).

WORKED EXAMPLE 45

(@) A pure resistor is subjected 10 an a.c. source of 100 V r.m.s. and the current drawn is 10 A
r.m.s. Calculate the resistance.

(b) A pure inductor is subjected 10 an a.c. source of 100 V r.m.s. (f = 50 Hz) and the current is
10 A r.m.s. Caleulate the reactance and hence the inductance.

{c) A pure capacitor is subjected to an a.c. source of 100 V. r.m.s. (f = 50 Hz) and the current is
10 A r.m.s. Calculate the reactance and hence the capacitance.
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SOLUTION 45

@ R=Y=10_p0
10

Vg TN
B B p g R
X, =2mL
X o 10 _3igmu
2nf  2m50
vV _ 100
=1 = =100
© X=7="7
Xr= I_
2
c=—L .1 __ _3183F
2nfX,  2m50(10)
WORKED EXAMPLE 46

{a} An inductor of 50 mH when subjected to an a.c. supply of 50 Hz draws 100 mA current.
Calculate the inductive reactance and the a.c. voltage.

(b) A capacitor of 500 pF when subjected to an a.c. supply of 150 Hz draws 200 mA current.
Calculate the capacitive reactance and the a.c. voltage.

SOLUTION 46
(@) X,=2nL=2rx50x50x107=157Q
V=IX,=100x 107 x157=157V

1 I
G X 2afc 2rx150% 500 % 10

V=IX_=200x 10-%x2.12=0424 V.

=21240

¢. Draws phasor diagrams corresponding to L-R and C-R series circuits.

L-R SERIES CIRCUIT

An inductor normally pe an a.c. resi e R which is shown in this case as a resistor in
series with a pure inductor. Fig. 146 shows the equivalent circuit of an inductor.

Fig. 146 L-R circuit.
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THE PHASOR

If 7 in the reference vector, V,, is in phase with [ and V| is leading [ by 90°. Fig. 147 shows the
phasor of an inductor.

Y v

A

Fig. 147 Phasor diagram of an inductor.

The resultant vector is V as shown in Fig. 147. The voltage triangle is shown in Fig. 148.

v
A
Ve
Fig. 148 Voltage triangle.
and applying Pythagoras theorem
V= ng = V“.‘

V,=IX,and V, = IR
VI=PX2+PRY=1' (X?+R?)

V = IVXZ+R%
CR SERIES CIRCUIT

RC Circuit is shown in Fig. 149

e Ve—re—Vg

-

Fig. 149 RC circuit.

Fig. 149 shows the r.m.s. current [ flowing through R and C. [ is the reference vector since it is
common through R and through C.

THE PHASOR

Fig. 150 shows the phasor diagram for the RC circuit in series. V, is in phase with [ and V' lags
1 by 90°.



Ve Y

Fig. 150 The phasor diagram for a capacitor in series with a resistor.

The voltage triangle is shown in Fig. 151

Ve
N

Fig. 151 Voltage triangle.

Vi=V2+V2

V.=IX_and V, = IR

Vi =PRI4 X2

Vi =R 4+X2)

V=TI VR*+X.2
d. Defines impedance as Z = VI,
IMPEDANCE
For Fig. 146 and Fig 149, impedance is defined as

V
Z= —.
I

v IVXER?
ForFig. 146 Z= — = ——————

I I

Z =VRFKE

V I YR*+X?
ForFig. 149Z= ~ = — =~ *4c

' I

Z =VR'+ X

e. Derives impedance triangle from voltage triangles and shows that Z* = R? + X?
and that tan & = X/R, sin ¢ = X/Z and cos ¢ = RIZ.

The impedance triangles are simply derived from the voltage triangle by dividing each side of
the Fig. 148 and Fig. 151 by [ since it is common.

Then we have Fig. 152 and Fig. 153 which are the impedance triangles.



R
Fig. 152 Impedance triangle for LR circuit.

Fig. 153 Impedance triangle for RC circuit.

From the impedance triangles we get the following equations, by applying Pythagoras theorem.
=R+ X and Z=R*+ X 2.

If ¢ is the phase angle, then we have from each triangle of Fig. 152 and Fig. 153

tan ¢ =X /R lan¢ =X /R
cos ¢ = R/Z cos & = RIZ
sing=X,/Z sing =X /Z.

f. Applies equations in c. d, and e to the solution of single branch L-R and C-R
series circuits at power and radio frequencies.

WORKED EXAMPLE 47

In an R-C series circuit the a.c. p.ds across R and C are respectively 30 V and 40 V. Calculate the
total a.c. p.d. applied.

SOLUTION 47
From the voltage triangle of Fig. 151V? =V 2+ V2
v =WisvE
Ve =30VandV, =40V
=V 307 +40° =Y 900 + 1600

=¥2500 =50V

WORKED EXAMPLE 48

In an L-R series circuit the a.c. supply voltage is 240 V and that across R is 100 V. Calculate the
p.d. across the inductor.
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1

-—

Fig. 136 Circuit and i, v waveforms.

The current through R and the voltage across R are in phase as shown, the r.m.s. current is [ and
the r.m.s voltage is V, the average power P =1V =V3R =[’R.

POWER IN A PURELY REACTIVE A.C. CIRCUIT

Fig. 155 and Fig. 156 show the circuits and relevant i, v waveforms.

L
LYY

14

)
Ny

-—N—

Fig. 155 The pure inductor and #, v, waveforms.

|
i 14

Q) .
o/

%
. /) N
Fig. 156 'The pure capacitor and i, v,, waveforms.

Al any instant, 1, the power is iv, p = iv, { and v are out of phase by 90° when i =0, v, is
maximum when v, =0, i is maximum. Similarly for the capacitor when i = 0, Ve is negative
maximum, when i is maximum v_ is zero and the average power is zero.

POWER IN A RESISTIVE/REACTIVE A.C. CIRCUIT

The average power in a resistive/reactive circuit depends on the phase angle.
P=1Vcosé.

Resistivefreactive a.c. circuits are shown in Fig. 157 and Fig. 158.
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i.  Derives the power triangle from the voliage triangle and identifies true power
(P}, apparent power (S), and reactive volt amperes (Q).

From the voltage triangles of Fig. 148 and Fig. 151, we multiply each side by I, we have the
power triangles as shown in Fig. 161 and Fig. 162 respectively.

SeIv Qa1y,

PnIV‘

Fig. 161 Power triangle for inductive circuit

Pe 1V,

.v
Su]V Qs1v

Fig. 162 Power triangle for capacitive circuit.
0 = reactive volt amperes =/ V sin ¢
§ = apparent power = [V
P =true power = [V cos §.
j. Defines power factor as true power! apparent power and show that where V and |
are sinusoidal, power factor = cos §.
POWER FACTOR

true power

Power factor = —— ——
apparent power

IVeos o

v

=cos §.
k. Explains that power dissipation in series L-R amd C-R a.c. circuits is I°R.

POWER DISSIPATION IN SERIES L-R A.C. CIRCUITS

The power dissipation in a pure inductor is zero and hence the only power which is dissipated is
in the resistor R. This power is P = /*R. Fig. 163 shows in L-R a.c. circuit.



Fig. 163 Power in L-R a.c. circuit.

POWER DISSIPATION IN SERIES C-R A.C. CIRCUIT

Similarly the power dissipation in a pure capacitor is zero and the only power which is
dissipated is in the resistor R. Again this power is P = I’R. Fig. 164 shows the R-C a.c. circuit.

Fig. 164 Powerin R-C a.c. circuit.
I Uses phasor diagrams to solve simple series L,C and R a.c. circuits.

R-L-C SERIES AC CIRCUIT

Fig. 165 shows the series RLC a.c. circuit subject to an a.c. supply of r.m.s. voliage V and r.m.s.

current I
L c " R

eV, —— - Vot— Vg —>
1
1 ()
~

Fig. 165 R-L-C series circuit.

There are three cases to consider
a IfV, >V,

b. IfV, <V,

c. IfV,=V..

The corresponding phasor diagrams are shown in Figs. 166, 167 and 168.
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Y%

e
Fig. 166 Phasor for V, >V,
Y

Fig. 167 Phasor forV, <V,

Ve
Fig. 168 Phasor for V, =V,

From these phasor diagrams, we have the impedance triangles shown in Fig. 169 and Fig. 170
corresponding to Fig. 166 Fig. 167, Fig. 168 has no impedance triangle, Z = R.

- xl.'xc

R
Fig. 169 Impedance triangle for the inductive case.
R
3 X=X,

Fig. 170 Impedance triangle for the capacitive case.
From Fig. 169 we have
Z= R+ (X, -X.)
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From Fig. 170 we have
Z= YR+ (XX,).

WORKED EXAMPLE 50

In the circuit shown in Fig. 171 calculate the following:
(i) The total impedance and phase angle of the circuit.
(ii) The voltage across the capacitor.

(iii) The voliage across the coil.

{v) The power developed in the circuit.

(vi) The power factor of the circuit.

L C R
52mH [ 100 |
i5pF

(~)}
a5y
§= 1000Hz

Fig. 171 A series RLC a.c. circuit.

SOLUTION 50
(i) X,=2rflL=2nx1,000x52x%10""=32678

1 i
X =— "= — .~ =10
CTA2RfC T 2mx1000x15%10-¢ 1060

From the impedance triangle of Fig. 169
Z= vV 100° +(326.7- 106y =331.5Q
using the equation Z= YR+ (X, - X ).

(ii) V.=1IX.=0.166 x 10.6 = 1.76 volis

where /= Y= 35 _0,166 A.
Z 331

(iii) V, =IR =0.166 x 100 = 16.6 volts
(iv) V, =1IX, =0.166 x 326.7 = 54.23 volis
(v) P=PR=0.166"x 100 = 2,76 waus

= _ R _ 100 _
(vi) cosd= — =3531s =0.302.
WORKED EXAMPLE 51

For the circuit shown in Fig. 172,
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BuF  2:5mM

F )
A28y

f= 2000Hz

Fig. 172 Series RLC a.c. circuit,
Calculate: (i) the impedance,
(ii) the total current,
(iii) the voltage across each component,
(iv) the power factor,
(v} the power dissipated.

SOLUTION 51
() X, =2nfL=2nx2000x25x10-"=3142Q

X.= =995Q

TN
€T 2nfC 2mx2,000x8x10°¢
Z= YR+ (X, =X, '= Y157+ (3142-995°=2620

v_25
Z 26.2

(iiy I= =04 A

(i) V,=04x15=06V
V,=04x3142= 126V
V. =04x995=398V

i _Kk_ 15
(iv) cosd= 7 = 262

v) P=IR=04%15=24W.

=0.573

m. Defines series resonance as accuring when the supply voltage and current are in
phase and sketches a phasor diagram showing that:

« V, =V at resonance
« V,_and V_may be much greater than the supply voltage.
SERIES RESONANCE

Series resonance occurs when the supply voltage and current are in phase.
Fig. 173 shows this condition.

Fig. 173 Series resonance.
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Z="V 207+ (159.2-94.25) = 67.96 Q
v _ 200

(l]) 1= —z‘“ = ﬁ =294 A

Xc = 159.2 - 94.25 i

(iii} 1an ¢ = = 70 =325
=729

The other component to be added must be a pure coil of reactance 159.2 — 94.25 = 65
approximately

X, =2nfL=65
L=_65 —103mH
2n % 100
suchl]'lal.\'L:Xr
vV _ 200
I=—=_19a,
*~ R 0

This problem is only a theoretical exercise since there is no pure coil in practice. Fig. 175 shows
the new circuit for resonance.
R c Ly Lz

|20 |
1opF 150mH  103mH

(<)
\“200v

=100 Hz
Fig. 175 103 mH is added to cause resonance.

WORKED EXAMPLE 53

A series circuit consists of a coil of induclance of 250 mH, a resistor of resistance 30 £), and a
capacitor of capacitance C. The circuit resonates when the supply is 240 V and the power
frequency is 50 Hz.

Calculate:
(i) the value of C
(ii) the resonant current
(iii) the voltage across the inductor
{iv) the power dissipated
(v) the Q-factor of the circuit
where Q=2rn fL/R.

SOLUTION 53
() X, =2rfL=2rx50%x250x%10-*=78.540Q
X,=78540Q
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1 v
RESONANCE: Z=R f = ——1[ = —
s 2nvLCc © R
V=0V
V.=QV
X X,
Q=3 0=¥.
EXERCISE 7

A capacitor of 100 pF capacitance is subjected to an a.c. supply of frequency 100 Hz.
Determine the capacitive reactance. (Ans. 15.9 Q).

An inductor of 50 mH inductance is subjected to an a.c. supply of frequency 60 Hz.
Determine the inductive reactance. (Ans. 18.9 Q).

The reactance of a capacitor is 100  when subjected 10 an a.c. supply of 50 V. Calculate
the current through the circuit. (Ans. 0.5 A).

The inductive reactance of a coil is 5 £2 when it is subjected 10 an a.c. supply which draws
5 A current. Calculate the a.c. supply. (Ans. 25 V).

Sketch neatly a sine wave of current, and in relation to this current sketch the voltage
waveform you would expect when this current passes through (i) a resistance (ii) an
inductance (iii) a capacitance. Label your diagrams.

A series circuit consists of an inductor of inductance 0.5 H and a resistor of resistance 50
€. A 240 V a.c. supply of frequency of 50 Hz is connected across the above circuit.
Calculate (i) the impedance of the circuit (ii) the current drawn from the a.c. supply (iii) the
p.d. across the pure inductor (iv) the p.d. across the resistor and hence check that the supply
voltage is 240 volts.

(Ans. (i) 164.9 Q, (ii) 1.46 A (iii) 229.3 V (iv) 73 V).

A coil takes a current of 5 A when connected to a 100 V d.c. supply, when the same coil is
connected to a 100 V 50 Hz a.c. supply the current drawn is 1 A. Explain why these
currents differ.

Calculate: (i) the resistance of the coil
(ii) the impedance of the coil at 50 Hz.
(Ans. 20 €2, 100 £2),

An inductor takes 10 A and dissipates 500 W when connected to a 200 V 50 Hz a.c. supply.

Calculate: (i) The impedance,
(ii) the power factor,
(iii) the resistance,
(iv) the inductance.
(Ans. (i) 20 £2 (i1) 0.25 (iii) 5 £ (iv) 61.6 mH).
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‘_: = BNA where A = bl the area of the rectangle
C
? = deflection per unit current

= current sensitivity

For maxiroum current sensitivity, B should be large, N is large, and A is large and ¢ must be as
small as it is possible.

THE SHUNT

A galvanometer is a sensitive ammeler, measuring very small currents. In order to obtain larger
currents, a resistor called the shunt is connected in parellel with the galvanometer.

Fig. 184 The shunt.

I, = R I
g
R,+R,

The terminals of the extended scale instrument, are, A’ and B,

THE MULTIPLIER

A multiplier is a large resistance R,, connected in series with the galvanometer in order to extend
the voltage scale. Fig. 185 shows the principle of multiplier.

Fig. 185 The multiplier.
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From Fig. 185 we have
V=1, R, +R,)

re-arranging the formula for R,

v
Ryz f_ _RG'

G

The new voltmeter terminals are now A and B.

WORKED EXAMPLE 54

A moving coil instrument has a resistance of 15 £2 and the full scale deflection is 50 mA. How
would you adapt this instrument for use as an ammeter reading (-5 amperes?

SOLUTION 54

In order to adapt the moving coil instrument to read full scale deflection of 5 A, a shunt is
connected across the instrument as shown in Fig. 186.

O—r— —0

5A
I_—{ﬁ_(;:;ﬁ)ﬁ‘

Fig. 186 Extended scale of am ammeter.

;=15
7 15+R,

15x35
4.95

R, =0.151515.

5=495

I5+R, = =15.151515

WORKED EXAMPLE 55

A moving coil instrument has a resistance of 15 £2 and the full scale deflection is 50 mA. How
would you adapt this instrument for use as a voltmeter reading 0—10 V?

SOLUTION 55

In order to adapt the moving coil instrument to read full scale deflection of 10 V, a multiplier
resistor is connected in series as shown in Fig. 187,

)

Fig. 187 Extended scale of a voltmeter. v
From Fig. 187 we have
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10 =50x 107" %15+ R, %5010
10,000 =50 (15 +R,,)
15+ R, =200

R, =185Q.

b.  Uses ammeters and voltmeters correctly in d.c. circuit measurement.

A BASIC AMMETER

A moving coil instrument is basically a d.c. ammeter and is used to detect current from a few
mA (milliamperes) to several hundred amperes. Galvanometers are used to measure small
currents, only in the range of pA (micro-amperes). They have a large number of turns, are very
sensitive and delicate instruments. Galvanometers have large resistances in the order of 50 Q or
100 £2 but in conjunction with shunts, the resistance is greately reduced. The higher the full
scale deflection (f.5.d.) the smaller is the resistance between the terminals. Therefore, ammeters
normally have a very small resistance between their terminals.

Ammeters are connected in series with the component whose current is required to be measured.

A BASIC VOLTMETER

A d.c. voltmeter is normally a moving coil d.c. ammeter with a large resistor connected in series
and thus voltmeters nommally have a very large resistance between their terminals.

Voltmeters are connected in parallel with the component whose voltage is required to be
measured.

AMMETER AND VOLTMETER METHOD FOR MEASURING RESISTANCE

There are two cases to consider:

(a) the measurement of a low value of resistance of the order of 10 £ and (b) the measurement of
a high value of resistance of the order of 5,000 €.

Fig. 188 shows the connection of the ammeter for low values of resistance,

Ip v
= [ Jor Do

Fig. 188 Measurement of low values of resistance,

The current indicated on the ammeter is the total current of the circuit.

If the resistance of the voltmeter, R, = 1,500 €, then the currents /, and [, are given by the
current divider as

_ 1500 ,_
k= {37 [=099341 ..
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I,= —= I=000661 ..(2)

In order to measure the resistance, R, a set of readings of / and V are noted as the rheostat is
varied, R is then calculated from the average value of the ratios of Vil, which will be slightly less
than the actual value.

The percentage error in this case will be about 0.66. This is shown in equation (2) and 1, is taken
to be approximately equal to the total current /.

Fig. 189 shows the connection of the ammeter for high values of resistance.

RY

: o

Fig. 189 Measurement of high values of resistance.

The current indicated on the ammeter is the actual current that flows through the resistance
which is to be measured. But the voltmeter reading indicated will be slightly higher, since it will
be measuring the p.d. of the ammeter as well, so in this case the value of resistance R will be
slightly higher by considering the ratio of V/I.

In both the above methods, however, there are small errors.

c. Describes with the aid of diagrams the principles of operation of an ohm meter
and uses an ohm meter for the measurement of resistance.

THE BASIC PRINCIPLE OF AN OHM METER

A moving coil is connected in series with a variable resistor R, a battery of 3 V and the two
terminals A and B as shown in Fig. 190. When A and B are short circuited and R is adjusted for
full scale deflection of current, then this ponds 1o zero resi e between A and B.

The scale of chmmeter is calibrated as shown in Fig. 191,

+|I- A B |

Fig. 190 The ohmmeter.

Fig. 191 Calibrated scale of an chmmeter is non linear.
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The short circuit is now replaced with standard resistors of different values such as 100 €,
500 €2, 1,000 £, 10,000 £2 and they are placed in turn and then the resistance scale is calibrated
as shown in Fig. 191, Note that the scale will be non-linear.

To measure an unknown resistance R, it is placed between A and B terminals thus giving a
deflection which gives its value.

USE OF AN OHMMETER

Short circuit A and B and adjust R 1o give zero resistance. Zero (corresponds to f.s.d, of current).
Then replace the short circuit with the unknown resistance and read off its value from the
calibrated scale.

d. Explains the need for rectifier instruments and states the frequency and waveform
limitation inherent in moving-coil rectifier instruments.

RECTIFIER INSTRUMENT

A moving-coil instrument is used in conjunction with a rectifier bridge circuit in order to
provide an indication of alternating quantites. This arrangement is shown in Fig. 192,

Fig. 192  Rectifier instrument.

When A is positive with respect to 8, current flows through D, through the moving coil meter,
and D,.

When B is positive with respect to A, current flows through D, the moving coil meter and D,

The d.c. current, /,, flowing through the M.C., and the a.c. current I are connected by the
expression

where 1.11 as the form factor of the sinusoidal waveform applied as the a.c. signal.

Rectifier instruments have their scales calibrated in terms of r.m.s. quantities and the a.c. signals
are sinusoidal.

These instruments may be frequency limited, Rectifier moving coil instruments can be used on
frequencies up to several KHz.

e. Uses electronic and moving - coil multimeter correctly for the measurements of 1
and Vind.c. and a.c. circuits.

We have seen previously that voltmeters possess much higher resistances between their terminals,
than ammeters.



116

Voltmeters are therefore graded according to their ‘resistance per volt” at full scale deflection
(f.5.d.). The total resistance of the meter is that of the coil and the resistance of the multiplier. If
the full scale deflection is 100 pA amd the p.d. is 1 V between the terminals then the total
resistance, R, is given by
1 10°
R= ———— = = =10,000Q

100x10% 100
and the resistance per volt is 10,000 Q/V. A good grade voltmeter must have a resistance of at
least 1,000 /V.

Electronic voltmeters are widely used where the resistance between the terminals is of the order
of 10 M£2 and thus the current through the meter is negligible. Thus for accurate measurements
electronic voltmeters are preferred for d.c. and a.c. circuits.

f. Uses a wattmeter

THE DYNAMOMETER WATTMETER

The dynamometer wattmeter is the most commeonly used instrument in a.c. circuits. The
dynamometer instrument is a moving coil instrument in which the magnetic field is not provided
by a permament magnet, but by another pair of coils. The dynamometer principle is basically
made up of two fixed field coils and a moving coil, the current passes through the fixed coils and
sets up a magnetic field which is effectively uniform in the region around the moving coil. This
is illustrated in the Fig. 193.

1
f \Fixed colls
Fig. 193

The magnetic field is produced by the current /, flowing in two fixed circular coils which are
connected in series in this case (then can be connected in parallel also). The field between the
two coils is substantially uniform, and the moving coil, also circular, and carrying current /,
rotates in this field.

Therefore when a dy ter inst is used as a wattmeter the currents in the fixed and
moving coils are different.

The fixed coil curry the load current, and the moving coil carries a current proportional to the
voltage across the load.

The m.m.f.'s F, and F, act in the directions indicated, and the operating torque T is approximately
given by

T=KF, F,sin®

since F, is proportional to /, and F, to /,, and sin 8 in numerically equal to sin 8
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T=KI,1,sin @

when the instrument is used as an ammeter the moving coil is conriecled cither in series or in
parallel with the fixed coils, J, and /, are then both proportional to the surrent / being measured,
so the torque is proportional to I?, and the instrument reads true r.m.s.

The dynamometer instrument can thus be used on alternating current circuits. The wattmeter
connection on a single-phase circuit are usually made as shown in Fig. 194,

M L
[
I

Mains , Load
v+ \4

Fig. 194  wattmeter connection for measurement of power on a single-phase system. Normal
connection,

Using these connections, the current coils measure the true current taken by the load, but the
voltage coils measure the p.d. across the current coil in addition to the p.d. across the load. The
result is that the power loss in the current coils of the instrument is included in the indication.
The error is usually small, but a compensation can be made if the resistance r_of the current
coils is known. The power loss /%r_ is then calculated and subtracted from the wattmeter
reading.

Alternative connections are shown in Fig. 195.

big

Mains Load
V+ A

Fig. 195 wattmeter connections for measurement of power on a single-phase system Alternative
connections,

The voltage coil then measures the voltage across the load, but the current coil measures the
current taken by the voltage coil in addition to the current taken by the load. The result is that the
power loss in the voltage coil is indicated in the reading. Again the error is usually small, but
compensation can be made if the resistance r, of the voltage coil is known. The power loss
V3r, can then be calculated and subtracted from the wartmeter reading.

8. Uses double beam CRO in direct and indirect measurement of a.c. and d.c.
voltages and to measure period and frequency.

CATHODE RAY OSCILLOSCOPE (C.R.O.)

A cathode Ray Oscilloscope (C.R.0) with two amplifiers (double beam) is used o measure
voltages visually. That is, two waveforms may be displayed on the C.R.0O. at any one time and
thus the alternating voliage waveforms are studied. A special electronic circuit is built within the
C.R.O and is called the time base. The time base circuil produces an outpul voltage with the
saw-tooth waveform as shown in Fig, 196.



Fig. 196 Time base waveform.

The time base period = the sweeping time + the flyback time. This voltage is connected across
the x plates in such a way that the spot is scanned across the screen from left to the right
relatively slowly and is then flies back to the left hand side very quickly. This cycle then is
repeated. The voliage to be examined is connected across the Y-plates.

If the frequency of the time base is adjusted to be the same as the frequency on the y-plates, a
steady waveform will be displayed on the screen.

THE CATHODE RAY TUBE (C.R.T.)

The cathode ray tube is the heart of the C.R.O. and it is simply described here.

Brillancs  Focussing X-plates
= High voltage D.C. supply ———=
Fig. 197 Construction of an Electrostatic Cathode Ray Tube. (C.R.T.).

The C.R.T. is used to study the waveforms of d.c. and a.c. electrical voliages and currents. The
construction of a typical C.R.T. with electrostatic deflection and focusing is shown in Fig. 197.
It consists basically of the electron gun, the deflecting system of plates and the fluorescent
sCrcen.

An indirectly heated cathode in the form of a nickel cylinder with an oxide coated end cap. A
cylindrical grid, houses the cathode with negative potential for controlling the emitted electrons
from the cathode. The anodes A, and A, are discs with central, holes through which the electrons
pass, a cylindrical anode, the focusing anode, is placed between A, and A,. The beam passes
between two pairs of parallel deflecting plates, which are mutually perpendicular, the y-plates
and the x-plates. A p.d. across the x-plates produces a horizontal deflection and a p.d. across the
y-plates produces vertical deflection of the spot on the screen.
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The funnel-shaped part of the c.r.t. is coated internally with graphite and is earthed. This allows
the electrons which strike the screen to leak away. The screen however is coated with a
fluorescent powder, such as zinc sulphide (blue glow) or Z_ C orthosilicate (blue-green glow).

The C.R.O, has a high input impedance which means that it does not draw a high current. The
C.R.0. is a visual electronic voltimeter measuring a.c. and d.c. waveforms.

To measure a voltage, the peak-to-peak distance of the trace is measured in centimetres using
the graticule mounted in front of the screen. Knowing the sensitivity in volts per centimetre then
enables us to convert this reading into volis. The amplifier controls are calibrated in V/cm or
mV/cm, these calibrations are approximate.

PERIOD AND FREQUENCY MEASUREMENT X AND Y CONTROLS

The time base switch can be adjusted to measure the period and hence the frequency of the
waveform. Let us assume that one complete cycle of a sinusoidal waveform is displayed on the
screen, and that the length of the horizontal distance is 3.6 cm an the time base control is set at
100 psfem. The periodic time of the waveform is given by 3.6 cm % 100 psfem = 360 ps
(provided the C.R.O. is calibrated).

T=360x10"*s,
The frequency of the waveform is found to be

) Y
= 1= 3eoxi10s

=2,778 Hz
f=278KHz

-— b em ——=

Fig. 198 Period and frequency measurement of a sinusoidal waveform,

WORKED EXAMPLE 56

A sinusoidal waveform is displayed on the screen of an oscilloscope and the following
measurements where made on the graticule of the screen:

Peak - to - peak distance = 5.7 ¢m (vertical) horizontal distance between the two peaks = 4.8 cm.
The Y amplifier setting is 500 mV/cm and the time base setting is 100 ps/cm.

Determine the approximate r.m.s. vollage, period and frequency.

SOLUTION 56
Peak-to-peak voltage= 5.7 cm x 300 x 10 - V/em
=285V
Peak voltage = 1.43 V
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The d.c. supply is connected across one diagonal and the sensitive ammeter or galvanometer
across the other diagonal. R, and R, are two standard resistors of high accuracy, R, is a four or
five or six dial standard resistance box and R is the unknown resistance which is to be measured
by means of a null method. By adjusting R, it can be arranged that no current flows through G.

THE BALANCED CONDITION

Let { be the total current drawn from the d.c. supply £, and let /, and /, be the currents that will
flow through R, and R , and R, and R, respectively by adjusting R, so that no current flows
through G, the pointer is at the centre of the instrument. The p.d. across CD is zero and the
potential at C is equal to the potential at D.

p.d. across AC = p.d. across AD

IR =1LR, e ()
p.d. across CB = p.d. across BD
IR =LR, e (2)

Dividing equations (1) and (2)

;IRI _ ;2 'Ri
A
R R
e e (3)
v 3
transposing equation (3)

R'I
oe (B

R
. R! is called the arm's ratio

2
R, is multiplied by R, (R, is the multiply)
R, is divided by R, (R, is the divide)
R, can be one of three resistors. R, = 10 Q, R, = 100 Q, R, = 1,000 R, can be one of three
resistors R, = 1042, R, = 100 £, R, = 1,000 © R, is four, a five or a six dial variable resistance
box.

UNITS TENS HUNDREDS THOUSANDS TEN THOUSANDS

x10Q  x100Q x100Q % 1,000 Q % 10,000 2
HUNDRED THOUSANDS
» 100,000 Q
The basic principle of the Whealtstone bridge depends on the balanced equation
R
R = (R_') R,

For a resistance of 1.23 {2

10 ) _
R;(lmn 123=123Q

and for a resistance of 100,000,000 £2
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EXERCISE 8

L.

W

Sketch the basic construction of a moving coil instrument, and explain the principle of
operation.

A moving-coil milliammeter has a coil resistance of 10 £2 and gives a full scale deflection
of current of 15 mA.

(i) Calculate the value of the resistor required to enable the instrument to read 0-5 A,

(ii) Calculate the value of the resistor required to enable the milliammeter to read 0-500
V.(Ans. (i)0.03Q (u)33323.33Q).

A moving coil meter mc has a coil resi of 400 Q and a resistor of 600 Q is
connected in series with it. The movement requires a current of 2 mA for f.s.d. (full scale
deflection). Calculate the shunt resistance required to change the movement into a 0-1 A
ammeter.

(Ans. 2.004 Q).

Explain, with the aid of a suitable diagram the principle of operation of the Wheatstone
bridge. Derive from first principles an expression giving, for the balanced condition, the
unknown resistance in terms of the known quantities.

A 0to 50 V meter has resistance of 500,000 Q what addilional voltage multiplier resistor is
required to enable the meter to indicate 0 to 500V,

(Ans. 4.5 MQ).

For the Wheatstone bridge shown in Fig. 201.

Fig. 201 Wheatstone bridge.

Determine; (i) the value of R,

(ii) the p.d. across the 100 £

(iii) the current through the 500 £ resistor.
The bridge is at balance
(Ans, (i) 1250 D48V (i) 9.6 mA).

Explain with the aid of a circuit diagram what is meant by a potential divider and show how
two such potential dividers make up a wheatstone bridge circuit.

Compare the Wheatstone bridge with the ammeter and voltmeter methods for measuring
resistance.



10.

12.

13.
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An ammeter of resistance 0.05 £ has a shunt of resistance 0.015 £} connected across it.
What is the total current flowing when the current through the ammeter is 5 A7

(Ans. 21.7 A).
A voltmeter with resistance of 1,000 £2 is used to measure the p.d. between points A and B

of the circuit shown in Fig. 202. What is the voltmeter reading and how does this compare
with the true value.

Fig. 202 voltmeter measurement.
(Ans. 66.7 V).

. An ammeter and a voltmeter are used to check the resistance of a resistor which is marked

1 KQ. The circuit is connected as in Fig, 203, if the voltmeter has a resistance of 1 K find
the resistance value from the calculated instrument readings.

Fig. 203  Ammeter/voltmeter hod for ing

The resistance of the ammeter may be assumed to be negligible. State the error in the
calculated value.

(Ans. 51.55 V, 6.48 V).

A moving coil instrument gives full-scale deflection when the current through it is 10 mA
and the p.d. across itis S V.

(i) Calculate the resistance of the instrument.

(ii} Find the value of resistor required to enable the instrument 1o read 38 V at full-scale
deflection and illustrate your solution with a diagram.

(iii) Find the value of resistor required to enable the instrument to read 10 A at full scale
deflection and illustrate your solution with a diagram.

(Ans. (i) 500 Q (i) 3.3 KQ  (iii) 0.505 Q).

Construct a simple ohmmeter using an ammeter with a full-scale deflection of 15 mA a
variable resistor, and a 15 V battery. Draw the circuit for the arrangement.

Calculate the resistance indicated by the instrument when currents of (i} ImA (i) 5 mA
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and (iii) 10 mA are flowing in the circuits,
(Ans. (1) 14 KQ (i) 2KQ (iii) 0.5 KQ).

. Suggest a suitable method of measuring each of the following:

(i) The r.m.s value of a 100 Hz sinusoidal voltage of the order of 10 V.
(ii) The r.m.s. value of a 250 KHz sinusoidal voltage of the order of 100 mV.

(iii) The peak value of a voltage pulse of rectangular waveform of duration about 20 ps
and repeating every 100 ps.



SOLUTION PART II
SOLUTIONS 1

The total resistance is calculated from the formula

Aol Lo L

Rl‘ RI R"‘. R!
1_1,1,1_ 64342 _ 11
R 17273 6 6
R:EQ.

Fig. 204 shows the circuit.

Fig. 204 Parallel resistors.

The p.d. between A and B, V,, = 12 x -:—"l- = 6.55 V. The currents /, /, and /, can be
determined /, =V /1 =655 A, [,=V J2=328 A, [, =V, /3=2I18 A.

The circuit is shown in Fig. 205

Fig. 205 Current divider.

Using the current divider formulae

TR (BT
=gk, 1= gx1= g=0025A
Lo b S R o £ AT A
2RIk, 8T
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Fig. 206 shows the circuit

Fig. 206 Current divider.

R, 2 R,

I=—x5=1A [ ==

b R, +R, 10 ! R+R

Fig. 207 shows the circuit.

Fig. 207 Current divider.

1= y36=1 x36=12A

1710420 3
20 2

1= 6530 x36= 3 x36=24A.
1, 1 1 _20415+12 47
R, 30 40 50 600 ~ 600
Rr=%=l2‘sﬂ
The p.d. across the input = 12.8 x2 =256 V

25.6 25.6
= 30 =0.853 A, .fz—— =004 A,/ =
LT PR S O
R, B35 3VRT
1 1 1
mmles -a =
R 373 0.5238

1

R 0.5238“1'91{1
V,=pd.across R=10x191=19.1V

19.1 19.1
J']='T =63TA 31=T =273 A

28

=0512 A,
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Y 126374273 +10=19.1 A.
RT

The total current =/=0.1+02+03+04=1A.
The total voltage =1 x 10=10V

R=23=1000 R,= 43=50Q, R= g3

Fig. 208 shows the circuit.’

Fig. 208 Shunt.

51=(15-1)0.0005
51+ 0.0005 1 =0.0075

_ 0.0075 _ =
= 0003 = 1149985 10

d:
I'= 1.5 mA approximately.

Fig. 209 shows the circuit

&
R
100v %
ISy 1500n
J |
Fig. 209 Loaded potential divider.
R 51,500
2 =35 )
R« 1,500
2
3 %xi,sm
IBss— 7" ]=100 ..
(2 %xl,soo

Dividing equation (2) by equation (1) we have
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R 1,500
Ryis00
100 _R 2 .
35 2 Rxyism
i-i-l..ﬂl]
2
R % 1,500
== - #1
1.500
100 _ R
5~ 2x1s00t 1!
100 ,_ R
35 77 3000

R =2,571.4 Q hence R = 2,570 .

10,000

10. R, &, +10000 11=80 (D)
R, 1,=120 (2
Dividing (1) by (2)

R, 10,000 2
®,+ 10000)R, = 3 (3
= o e T @
R, + 10,000
I,R, =100 - (3)
Dividing (4) by (5)
R, 10,000 L6

R, (R, +10,000)
From (3) 30,000 R, = 2R, R, + 20,000 R,
From (6) 10,000 R, = R, R, + 10000 R,
Substituting 2 x (8) in (7)

30000R, =2RR, + 2R R, + 20 000R,

10,000 R, =4 R R,

R,=2,500Q
and substituting this value in (8)
10,000 x 2,500 = R, 2,500 + 10.000 R,
10,000 x 2,500 = 12,500 R,

_ 10,000 x 2,500

R =" 2500

=2,000 .

(N
- (8)
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Fig. 211 shows the graph of P against R.

EEEBREELEEERET

Fig. 211  Graph of Power against load resistance. Maximum Power Transfer.
The maximum power dissipation in the load is 9 W when R = 1 £2.
Therefore the maximum power dissipation occurs in the load when the load resistance is

equal to the intemal resistance.

15. Referring to Fig. 41, the p.d. across the 6 £ resistor = 6V the current through the 6 Q

msistur:E =1A
=1A
the total current =/ = +0.5=1+05=15Athe pd. across R=15-6=9V therefore
ng S
R_I,S =6Q.
16, (@R, =R, + RR, + RRR, =1+L§.!+ 3x3x3
R,+R, RR+RR +RR, I+1 3x3+3x3+3x3

1 1
=l+2+1l=1+-+1=250.
¥t ik

iy =10 _10
Dl =g =55 =4A
- ';|
(Il)f,‘: E‘:EA

s o Xs
iii) [, = 33 =1.3A.
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SOLUTION 2

1. Redrawing Fig. 71, we have Fig. 212 showing the currents and p.ds, through and across
respectively.
A B <
L Lol
T +
.T"' ..T -1 1
F E

Fig. 212 Kirchhoff’s Laws.

Assume that the currents flowing in the 5 V and 3 V batteries are /, and /, respectively, and
hence the load current through the 5 £ load is /, + I, by applying KCL. Mark the p.ds by
arrows as shown. Applying KVL to the loops ABCDEFA and BCDEB, we have

5-1 - +1)5=00r6l +5I,=5 (1)

3=, -, +1)5=00r-51,-1,=-3 ...(2)
Multiplying equation (1) by 5 and equation (2) by 6, we have
30/, +251,=25 e (3)

=30f, -420,=-18 ... (4)

Adding equations (3) and (4)

=171, =7

7
f2=—ﬁ=—ﬂ,4l A

the negative sign indicates that the assumed current /, is flowing in the opposite direction.
Substituting [, = -0.41 A in equation (1)
6l +51I, =5
6 -5x041 =5
6l, =705
1 =1175A
the assumed direction of /, is correct, therefore /| is the discharging current.
1 +1,=1175-041=0.7965 A.
Therefore I, = 1.175 A discharging current
1, =-0.41 A charging current
I, +1,=0.765 A the load current.
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Fig. 213 is the redrawn circuit showing the currents and voltages.

Fig. 213 Kirchhoff's Laws.

(a)

(b)

Let /| and 1, be the direction of the currents in the batteries and /, is the load current.
AtA, I +1, =1, therefore f, =1 -1,
Applying KVL to the loops PBAYP and BXQAB we have for the loop PBAYP
100 =1 +(, ~1,)50+/,
or 100 =521, - 501,
simplifying 50 =26/, - 25/, (1)
for the loop BXQAB

80+ (1, ~1,) 50 = 0.1, + 0.11,
80 = -501, + 50.21,

or 40 =-25/, + 25.11, . (2)
Multiplying equation (1) by 25 and equation (2} by 26 we have
1,250 = 650/, — 6251, . (3)
1,040 = -6501, + 652.6/, - (4)
adding (3) and (4)
2,290 =27.6/,
1,=8297 A

substituting this value in (1)
50 =26/ -25x82.97

261, = 50 +2074.25
L= = =8L7A
1T 212425
26
I,=1,-1,=81.7-8297=-127 A.

The assumed direction of the load current is incorrect —1.27 A flows in the opposite
dircction indicated, through the 50 Q. Therefore [, =81.7 A, I,=83.0A,/,=-1.27 A

Let V., be the p.d. between P and 0 and let V,, be the p.d. between X and Y.
Applying KVL to the loops PQAYP and XQAYX, we have



lfl+0.lfz+lr’m= 100
therefore VPQ =100-1,-0.14,
=100-81.7-0.1 x83.0
=100-81.7-83
=100-90
=10 volts
Vi +80 =014 + 1]

Ve =014+ 1 -80
=0.1(83) + 81.7 - 80
=83+81.7-80=83+17
= 10 volts.

3. Fig. 73 is now redrawn and it is equivalent to Fig. 214,

Fig. 214 Kirchhoffs Laws. Equivalent circuit. E B F

Applying KVL to the loops DACBED and CGFBC we have

DACBED 200 =251, + 75 (I, +1,)
CGFBC 50 =20, +(I,+1)75

simplifying 1007, + 75/, = 200

dividing each term by 25
41, +31,=8 ()
751, + 771, = 50 @
Multiplying (1) by 75 and (2) by (-4)
300/, +2251,=600 ... (3)
300/, — 3087, =-200 ... (4)
Adding (3) and (4)
831, =400
I, =482A

substituting this values in (1)
4.!. +3(-4.82)=8
41, =8+3(4.82)
41,=225
1,=3561 A
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4. Fig. 215 shows the direction of currents and the p.ds.

o A’}w oL
° ]

Fig. 215 Kirchhoff’s Laws.
Applying KCL at the junction A
IL+1=1I
Applying KVL to loop D
2=0.14,+1,
or 0.1/, +1 +1,=2
or LU +1,=2 ()
Applying KVL 10 loop @
3=02L+1,
or0.2l,+1 +1,=3
l,+121=3 (@
Multiplying equation (1) by 1 and (2) by (-1.1)
LU, +1,=2
-L1, =12 (1) 1, =3(-11)
or LIl +1,=2 )]
Sl -132,=33  ...(4)

Adding (3) and (4)
-0321, =13
I, =4.06A
substituting /, = 4.06 in (2)

1,=3-1.2(4.06)
I=-187A

1, flows in the opposite direction indicated.
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Fig. 216 shows the circuit with the currents and the voltages.

Fig. 216  Kirchhoff's Laws.

Atthe junction B/, =1 +1,

Applying KVL to the loops ABEFA and BCDEB, we have 18 - 12=0.5, - 0.3/,
or 0.5/, -03,=6 (D)

BCDEB 12=034,+15(, +1,)
or 151 + 1531, =12 e (3)

Multiplying equation (1) by —15 and equation (2) by 0.5 we have

7.51,+4.50,=-90 )
7.51,+7.651,= 6 )

Adding equations (3) and (4)
12,151, =-84
I, =-691 A
substituting this value in (1)
0.51,-0.3(-691)=6
051, =6~-2.07

I =32 =786A

1,=7.86 A
I=1+1,=786-691=095A.
Therefore /, =7.86 A, I, =-6.91 A and [, = 0.95 A.

40+25-10-20

ey o

Referring to Fig. 50 1=

Referring o Fig. 52, /, + I, + I, =0 hence I, = -1, - I, Loop ADBEA
3-2+42, -5L,=00r2, ~5L,==1  ..()
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Loop ADBCA
=3+ 5L, - 100, +5=00r5,- 10 (), ~1)=-2
or 10/, +151,==2 (2
Multiplying equation (1) by 3, we have
6f, - 151,=-3 - (3)
104, + 151,=-2 - (2)
adding (3) and (2)
161, =-5

P 1
== {g=-03125 A,

Substituting this value in (1)

2(-0.3125) =51, = -1

51,=-0.625 + 1 =0.375

L,=0075A
L=~ +1,)=-(-03125 + 0.075) = 0.2375 A.
The actual currents flow as shown in the diagram of Fig. 217.
-
_‘lz‘, =, 031254 |
e
L

0-075A

-
—{ 0 }—«—
_| ~ 0-2375A
Fig. 217  Actual currents Kirchhoff's Laws.
0.075 A and 0.2375 A are the discharging currents and 0.3125 A is the charging current.
Referring to Fig 53 and assuming that the currents flow from the positive terminal of the

batteries as shown by /, and /,, then the current through 100 Qs [, ~ I, since I + (f, -1} =
1, at the junction A

Loop ABDEA
104100/ -1,)=0

or 100/, - 100/, = ~10

or 100/, - 100/, = 10

or 10/,- 10/, =1 was (1)
loop ACBA
-30+10/, -10=0
40 =101,

1, =4A
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substituting in (1)
104,-4(10) =1
104, =41
L=4.1A
f-1,=4-41=-01A

the current should flow in the opposite direction from that indicated in the diagram.

Referring to Fig. 54, loop ADCBA
25- 150+ (I, -1)15=0
or 13.51 - 151,=-2.5
or 15/,—13.51, =25 (D

Loop ABDA
“15(,~1) +3.5-1.5[,=0
~ 151, +151,+3.5-1.51,=0
-151, + 13.51,=-3.5

or 15/, - 13.5[,=3.5 (D)
Multiplying (1) by 15 and (2) by 13.5, we have
-202.51, + 2251, =315 .. (3
202.51, - 182.251, = 47.25 e (4)
adding (3) and (4)
427751,=84.15
L=199A

Substituting this value in (2)
15/,-13.5(1.99)=35
151, =3.5 + 26.865
1,=202A
I -1=202-199=003 A
The p.d. across A and B, V,, = 15 x 0,03 = 0.45

Referring to Fig. 57, we have
L+1L+1,=0
L=l +1)
Applying KVL
Loop EBDAE
50-20+5I,-1, =0
orf -51,=30 )
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1= X 5.26=3.945 A
' 5415
L=-3x526=1315A

2% 7%

orly=I—1,=526-3945=1315A
V,,=5x1,=15x1,=5x3.945 = 19.725 volts

. Referring to Fig, 59

The total resistance of the load
10x20 20
=j0+20 =3 &

The circuit of Fig. 59 is now equivalent to the circuit of Fig. 219

Fig. 219 Kirchhoffs Laws.

Loop CABC 200 =1, + 20 ¢, +1)

23 20
? ;I + —i—f: =200
231, + 201, = 600 (D)
Loop BDAB
100 =21, + 2—;’- U, +1)
or %Ufld-%@ 1,=100
or 20/, + 26/, =300 e (2)
Multiplying (1) by 20 and (2) by -23 we have
4601, + 400/, = 12,000 e (3)
—4601, ~ 5981, = —6,900 e ()
adding (3) and (4)
~1981, = 5,100

I,=-258A
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substituting in (1)
231, 420 (-25.8) = 600
231, =600+ 516
I,=485A

. Referring to Fig. 61, we have

i 31;—1—5 =143 A

Vy=25-20=25-2x143
V., =25-2.86=22.14 volss.

. Referring to Fig. 60, we have. Let 3 [ be the supply current, since the circuit is symmetrical,

1 flows in AB, I flows in AD and I flows in AE, then I/2 flows in BC and BF, 1;2 flows in DC
and DH, 1/2 flows in EF and EH and the total current flowsoutat Gas 3 L.

Consider the loop ABCGA

1’=Ix1+—£xl+fx1

2
R=£=!+l+l=g+l+§ﬂ
3 3 6 3 3 6 6
3
R= ﬁﬂ,

. Fig. 220 shows the circuit required

Fig. 220 Kirchhoff’s Laws.
Applying KVL to loop ABEFCDA

S=I +(, +1)45

551, +4.51,=5 (D
Applying KVL to loop BEFCB

10=5.50,+4.5(, +1,)
4.51,+10L,= 10 )

Multiplying (1) by 4.5 and (2) by (=5.5), we have
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24751, + 20.251,=22.5 )
-24.751, - 551,=-55 .. (4)
adding (3) and (4)
-34.751,=-32.5
1,=0935 A
substituting this value in (1)
5.5 +4.5(0.935) =5
5.51,=5-4.2075
/,=0.144 A
1,+1,=0.144 +0.935=1.079 A.
Therefore the branch currents are:
1,=0144 A, [,=0935 A1, +[,= 1079 A.

. Fig. 221 shows the circuit required

Fig. 221 Kirchhoff's Laws.
KVL ABCDA loop 110 = 20/, + 100/, + 1001,
or 124, + 101, =11 wl®)
Loop BEFCB loop

120 = 401, + 100/, + 1001,

1001, + 140/, = 120
ot 107, + 141, = 12

or51|+?fl=6 v (2)
Multiplying (1) by 5 and (2) by (-12), we have
601, + 501, = 55 e (3)
601, - 841, =~ T2 )
adding (3) and (4)

341, =-17
1 |
IL.ea —=s =
-
L=05A

substituting this value in (1)
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121, +10(0.5) =11
12, =6
1,=05A
L +1,=05+05=1A.
The p.d. across the 100  resistor load =1 x 100= 100 V.

17. Fig. 222 shows the circuit.

A
“J_
o
l |

3
Fig. 222 Kirchhoff’s Law.

Applying KVL to the loops ABEFA and BCDEB
Loop ABEFA 10-5+ 15[, -1 =0

5v
G
5

1
l

B
L el
1
E

or [ -15,=5 e D)
Loop BCDEB 5 = 151, + 101, + 101,
or 101, +11.51,=5 e (2)
Multiplying (1) by (=10) and (2) by 1, we have
~101, + 151, =-50 .3
10/, +11.51,=§ (@)
adding (3) and (4)
26.51, = 45
h=-see=-11A

substituting this value to (1)
I, -15(-17)=5
I,=5-255
1,=345A

1 +1,=345-17=175A
1,=175A
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The energy stored in A = 5‘(;1{3: %xloxlﬂ*xllﬂ:

= RB8 ul.
(i) Fig. 224 shows the circuit of two capacitors in parallel.

5

{OpF

J_'a L3
g

Fig. 224 Two capacitors in parallel.
The pd. across C, =20 V.
The energy stored in A = 3 C, V,?

= %xmxlﬂ“xm‘

=2ml.

(i) The equivalent capacitance of the circuit of Fig. 225 is given by

" Il
I
fopF 30pF
Il
20uF
hd [

{oov

Fig. 225 series-parallel capacitors.
C= (mxso +20) uF

10+30
C=275yF.
" I 10 x 30
(ii) The charge on the 30 WF capacitor is found @ = 10+ 30 100 x 10 =750 uC
_Q_ 750x10™
the p.d. across the 30 uF = c- 30xi0F 25V.

(iii) The charge on the 10 uF capacitor is the same as that across the 30 pF, 750 uC.

() W= 3 CV2=1 x20x 10X 100°=0.1 ).
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The units of § are A/Wb, of / is m of A is m*, and g is henrys per metre.

(i) NI=¢S=¢

! y where S is the reluctance and = it it = absolute permeability.
r

The analogous expression in an electric circuit is that of ohm's law: e.m.f. = current

x resistance £ = IR current is therefore analogous to flux and voltage is analogous to

magnetomotive force or ampere-tums in a magnetic circuit.

! 400 10" 100
TUH A T 4nx10-x400x10% T ax = 03113 AWD

H §

iy e=M _ 100%5 _
() 9=7g = 395775 = 6WMWD.

The reluctance of the air gap is given by

BA
where y = 1
§= Znx 13 5 lgu.‘x jos = W]
=7957,747 A/Wh.
The total reluctance
§=8+S5,

§, = the reluctance of the iron
S, = the reluctance of the air gap.
I, =400 - 4 = 396 mm

400
§,=T795775 % 306 = 803,813

§=803,813 + 7,957,747
5 =18,761,560 A/Wb.
The total reluctance.
The effect of introducing the air gap is to increase the reluctance of the circuit. The

reluctance of the magnetic circuit with the gap is nearly 11 times larger than the reluctance
without the gap and hence the magnetic flux is 11 times smaller
IN 5% 100

=5 T sa01,560 =RV
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E=L %::200x]0"x500=100\’.

Two coils of self inductance L, and L, are placed close to each other as shown in Fig. 230.
When the current in L, changes then the e.m.f. induced across the load resistor, Ris E, =M
di/dr, that is, an induced e.m.f. across R is established where there is a change of current in
L

’

Fig. 230 Mutual inductance for coils close to each other.

When the coils are not placed close 1o each other, M may be negligible and the e.m.f.
induced across R is also negligible. The concept of mutual inductance is well illustrated.

d
E,=M 5 =02x100=20V.

P 1L _(ﬁ)}
E, TN 'rln.n AN,
N.

N =10,E, =240 Vand R = 12K Q.
1

240
(i) E,= V‘:V: = 7ji0 = 2,400 V note that the transformer is a step up.

2,400
L=_1= =02A.
PR TZpoo

5 02
NN, T 1107

(iii) R, = @1)2!{: (1—16)112.[!)0=120!1.

2

(i) 1= 2A.

(iy LI=N¢ H=INII

_Ne . BA _ .BA 4
L-—T =N HIN =N Hi =N*ppu Al

L=Np M, All
L depends greatly on the number of tumns and also depends on u, the relative
permeability of the magnetic material.

(i) §= F::‘T reluctance of a non- magnetic malerial the reluctance is independent of the /

and since § depends on /, i and A which are constants, it is constant.
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(iii} §= —— reluctance of a magnetic material
J!ﬂ

B g ¥ L W
SEA= N = A et

H= ﬁ and hence it is inversely proportional to /.

10. See text and Fig. 123

SOLUTIONS 6

1. (i) A non-sinusoidal wave is shown in Fig. 231

v
{rotts)
f——Sms—> %

Fig. 231 A non-sinusoidal waveform.

(ii) A sinusoidal current wave is shown in Fig. 232

Loma)

4

: \/ t
k) —

H———{m§ ————=

Fig. 232 A sinusoidal waveform.
1.,=100xV2 mA=141.4mA

T= 1 ms.

L
1000
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(iii) A sinusoidal voltage wave is shown in Fig. 233

v(wi)

o

N t
e\

"ﬁ-—m.s e —

Fig. 233 A lagging sinusoidal voliage wave

1. 1 _ 1000

f 50 50

30° = n/6 phase angle lagging.

T= ms =20 ms

2. v, =15sin axis a reference and it is drawn horizontally AB =15 V, BC = 25 V. Using the
cosine rule to the triangle ABC
AC? = AB* + BC?- 2 x AB % BC x cos 135°
=152 +25" -2 x 15 %25 (-0.707)
=225 + 625 + 530.25 = 1,380.25
AC = Y 1,380.25 =37.15 V = is the resultant.
The phase angle of the resultant, ¢ is found by the sine rule
25 _ 3115
sin ¢ sin 135°
sing= X135 _ 4958457
37.15
6=284°
Ve=v, +v,=37.15sin (ar -28.4°)
V,=37.15 sin (ax -28.4%)

o oL c
284°=28.4 x 180 0.496

therefore v, = 37.2 sin (ax - 0.496%).

The phasor diagram of Fig. 234 is drawn to scale by using a ruler, a set square and a
protractor. Use 10 V = 1 cm scale, Measure AC and the angle ¢.

3 G) V,=100Y2 =1414V
@) v, =2 x100 V2 =90

100 {2
(iii) V,,,, = ﬁr =100V
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(iv) @ =377 radians per second
n
v) f= 55 =60Hz

" 1
{vi) T= 50" 16.7 ms

(vii) v = 141.4 5in (377 x 5 x 10 ~* + n/4)

= 141.4 sin (1.885° + (1.78549)
= 141.4 sin 2.67
=642V

(viii) ¢ = m/4 leading.
_—
T 100 100
i =100 sin (500 nt t - 7/6) mA

sin (500 nt t - ®x/6)

Fig. 235 shows the waveforms of i and v which are in phase.

Fig. 235 waveforms in phase.

314,200 = 50 KHz
n

=2
(i) I = m%——"]:?[).?m

5. (@ ()f=

(i) i = 100 x 10 3 5in (314,200 x 2 x 10 5 —w/12)
= 100 x 10 -* sin (0.6284° — 0.2617293°)
=100 x 10 -* sin 0.3666¢
=100x 10 % 0.358
=35.8 mA.

(b) Power developed in the 2.2 KQ =/? R where [ is the r.m.s. value of current

P= (IOOX 10

2
2 ) 2200=11W.
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(c) Fig. 236 shows that the current lags the voltage by /12 or 15°.

.

wx\- foov

io0mA

Fig. 236 Phasor diagram.

Referring 10 Fig. 237

E, is drawn horizontally representing 10 V = 1 cm, OA = E, AB = E,, drawn at an angle of
60° Jeading to the horizontal, BC = E, drawn at angle of 90° lagging to the horizontal. The
resultant voltage is given by £ = 135 V since OC = 13.5 cm and its angle to the horizontal
is about 3°,

E,=E, sin (ax + 30°) or

E, =135 sin (ex + 0.052°).

Ey=60v

e
o

>

6 : Eq =100V
Fig. 237 Phasor diagram.

V=100Y2 volts
f=50Hz
v=V_  sinax
v=100Y2 V2 sin2nft =200sin2xx50¢=100
sin2nx50:=ﬁ =5 = sin /6.
x50t =nf6

i=200Y25in 8771

@y 1=200V2 X107 200,04 02 A
Vz
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(i) 2nfi=877¢
- 81 _
f= 55 =1396H

(iii) i=200Y2 sin877x 10 =200Y2 sin0.877°
=217.43mA =022 A.
Average power dissipated
(i) by calculation
P=PR=IV=VIR
=10Y2 x220=3,110.8 W.
(ii) from the waveform of power see graph in text of Fig. 136.

10x10-
v=>500sin (200 ¢ + n/10) V.

V=500 sin (Za:x e | S rnu'lo)

SOLUTIONS 7

X 1 1

<=omfC " 2mx100x 100x 10 - 13I8

X, =2nfl=2nx60x50x107=189Q.

2 Vo 50
orl= X, = 05 A.

X.= i

c

~|=

X, =

~l

orV=IX =5%x5=25V.

Fig. 238 shows the phase relationships for i, v, and v,.

A

Fig. 238 Waveforms out of phase.
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6. Fig. 239 shows the circuit.

Fig. 239 L-R series circuil.

) Z=VRI+X? = V500 +157.1% =1649Q.
where X, =27 x 50X 0.5 = 157.1 Q

Lo 240
{ii) I__164,9 =146 A

(i) V, =X, = 1.46 x 157.1 =2293 V

(iv) V, =IR=146%x50=T3V
v) VE=V2+V2=7314229.3

V= V7324220.32=240V.

7. Fig. 240 and Fig. 241 show the d.c. and a.c. circuits of LR in series.

L R
ASA
oo
I ]
joov
Fig. 240 LR d.c. circuit.
The 100 V is now across R since L is fully magnetised, R = 10 _ 20 Q. The resistance of
ey 5

the coil is 20 Q.

L R

_{'Y'V'\_:_.

IA

{ ~ }
Fig. 241 LR a.c. circuit. IOO\',5OH:



VvV _ 100
s —= — =

Z Z 1A
Z=100Q

the impedance of the coil at 50 Hz is 100 €.

® z= YRz = ¥ =g

10
(i) P=1Vcosd
P 500
0SO=TW = Tox200 =0

(iii) From the impedance triangle
R

cosd = Z

R=Zcos$=20x025=54Q.
(iv) Z2=R?+ X2
X2 =Z2-R?
X,= YZ-R*= 20~ 5= Ya00-25 = Y 375 = 1936
2L =19.36

19.36
L= == =61.6mH.
2n 50

(iy P=IVcose

i
COSO=Ty = 16 x240
vV 240
T =e =150

(i) Z=
(iii) From the equation cos ¢ = R/Z
R=Zcos$=15x%026=390

(iv) X, = VZ2-R'= V15-39°=1448Q

v) X, =2n/L
X, 14.48
L:W- 7 x50 =46.1 mH.

. Fig. 242 shows the LRC series circuit

Fig. 242 Series LRC circuit at resonance.
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