
The Checkbook Series 

Electrical and Electronic 
Principles 3 Checkbook 
Second edition 

J O Bird 
BSc(Hons), CEng MIEE, FcollP, FIMA, MIElecIE 

A J C May 
BA, CEng, MIMechE, FIElecIE, MBIM 

NEWNES 



Newnes 
An imprint of Butterworth-Heinemann Ltd 
Linacre House, Jordan Hill, Oxford OX2 8DP 

r ^ P A R T OF REED INTERNATIONAL BOOKS 

OXFORD LONDON BOSTON 
MUNICH NEW DELHI SINGAPORE SYDNEY 
TOKYO TORONTO WELLINGTON 

First published 1981 
Reprinted 1986 
Second edition 1989 
Reprinted 1991 

© Butterworth-Heinemann Ltd 1989 

All rights reserved. No part of this publication 
may be reproduced in any material form (including 
photocopying or storing in any medium by electronic 
means and whether or not transiently or incidentally 
to some other use of this publication) without the 
written permission of the copyright holder except in 
accordance with the provisions of the Copyright, 
Designs and Patents Act 1988 or under the terms of a 
licence issued by the Copyright Licensing Agency Ltd, 
90 Tottenham Court Road, London, England W1P 9HE. 
Applications for the copyright holder's written permission 
to reproduce any part of this publication should be addressed 
to the publishers. 

British Library Cataloguing in Publication Data 
Bird, J. O. 

Electrical engineering 
1. Questions and answers for technicians 
I. Title Π. May A. J. C. 
621.3076 

ISBN 0 7506 0336 4 

Printed and bound in Great Britain by 
Courier International Ltd, Tiptree, Essex 



Note to readers 
Checkbooks are designed for students seeking technician or equivalent qualification 
through the courses of the Business and Technician Education Council (BTEC), 
the Scottish Technical Education Council, Australian Technical and Further 
Education Departments, East and West African Examinations Council and other 
comparable examining authorities in technical subjects. 

Checkbooks use problems and worked examples to establish and exemplify the 
theory contained in technical syllabuses. Checkbook readers gain real under­
standing through seeing problems solved and through solving problems themselves. 
Checkbooks do not supplant fuller textbooks, but rather supplement them with an 
alternative emphasis and an ample provision of worked and unworked problems, 
essential data, short answers and multi-choice questions (with answers where 
possible). 
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Preface 
This textbook of worked problems provides coverage of selected material from the 
Business and Technician Education Council's Bank of objectives in Electrical and 
Electronic Principles at NIII level. However it can also be regarded as a basic 
textbook in Electrical Principles for a much wider range of courses. It provides a 
follow-up to the Electrical and Electronic Principles 2 Checkbook. 

The aim of the book is to introduce students to the basic electrical principles 
needed by technicians in fields such as electrical engineering, electronics and 
telecommunications areas. 

Each topic considered in the text is presented in a way that assumes in the reader 
only the knowledge attained at BTEC level II (or equivalent) in Electrical and 
Electronic Principles and in Mathematics. 

This practical second edition electrical and electronic principles book contains 
some 200 illustrations, nearly 150 detailed worked problems, followed by some 450 
further problems with answers. 

This second edition of the book incorporates new material on Nortons theorem, 
modulation, filter and attenuation circuits, in addition to a number of other minor 
amendments. 

The authors would like to express their appreciation for the friendly co­
operation and helpful advice given to them by the publishers. 

J O Bird 
A J C May 
Highbury College of Technology 
Portsmouth 
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1 Circuit theorems 

A. MAIN POINTS CONCERNED WITH D.C. CIRCUIT ANALYSIS 

1 The laws which determine the currents and voltage drops in d.c. networks are: 
(a) Ohm's law, (b) the laws for resistors in series and in parallel, and (c) Kirchhoffs 
laws. In addition, there are a number of circuit theorems which have been devel­
oped for solving problems in electrical networks. These include: 
(i) the superposition theorem, 
(ii) Thévenin's theorem, 
(iii) Norton's theorem, and 
(iv) the maximum power transfer theorem. 

2 The superposition theorem states: 
7/1 any network made up of linear resistances and containing more than one 

source ofemf, the resultant current flowing in any branch is the algebraic sum 
of the currents that would flow in that branch if each source was considered 
separately y all other sources being replaced at that time by their respective 
internal resistances. * 
(See Problems 1 and 2) 

3 The following points involving d.c. circuit analysis need to be appreciated 
before proceeding with problems using Thevenin's and Norton's theorems: 
(i) The open-circuit voltage, E, across 

terminals AB in Fig 1 is equal to 10 V, since 
no current flows through the 2 Ω 
resistor and hence no voltage drop occurs. 

(ii) The open-circuit voltage, E, across 
terminals AB in Fig 2(a) is the same as the 
voltage across the 6 Ω resistor. The ciruit 
may be redrawn as shown in Fig 2(b) 

"'tèi)™ 
by voltage division in a series circuit, 
i.e. E = 30 V 
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(iii) 

(iv) 

(v) 

(vi) 

For the circuit shown in Fig 3(a) represent­
ing a practical source supplying energy, 
V = E—Ir, where E is the battery emf, 
V is the battery terminal voltage and r is 
the internal resistance of the battery. For 
the circuit shown in Fig 3(b), V 
V = E-{-Dr, i.e. V = E+Ir 
The resistance 'looking-in' at terminals AB 
in Fig 4(a) is obtained by reducing the circuit 
in stages as shown in Figs 4(b) to (d). Hence 
the equivalent resistance across AB is 7 Ω. 
For the circuit shown in Fig 5(a), the 3 Ω 
resistor carries no current and the p.d. across 
the 20 Ω resistor is 10 V. Redrawing the circuit 
gives Fig 5(b), from which 

* , ( _ ! _ ) X , 0 = 4V 

If the 10 V battery in Fig 5(a) is removed 
and replaced by a short-circuit, as shown 
in Fig 5(c), then the 20 Ω resistor may 
be removed. The reason for this is that a 
short-circuit has zero resistance, and 20 Ω 
in parallel with zero ohms gives an equivalent 

Figi 

(a) 

£ 

-OB 

50V 
■ 

£ 

4Λ 

T 
T 

6Π 

A 
A 

— O 

Fig 2 (b) 

/ 

{ 
(a) 

/ 

i 
Fig 3 

o J 

(b) 

20 x 0 resistance of ^ — ■ = , i.e. 0 Ω. The circuit is then as shown in Fig 5(d), 

which is redrawn in Fig 5(e). From Fig 5(e), the equivalent resistance 
across AB. 

r = %^A + 3 = 2.4+3 = 5.4 Ω 6 + 4 

(vii) To find the voltage across AB in Fig 6: 
Since the 20 V supply is across the 5 Ω and 15 Ω resistors in series then, by 

voltage division, the voltage drop across AC, VAC = (ς_Γις) (20) = 5V. 

Similarly, VCB = ( y y ^ ) ^ ) = 16 V. Kc is at a potential of +20 V. 
VC-VAC = +20-5 = 15 V and VR Vr-VRr = +20-16 = 4 V. 

Hence the voltage between AB is VA - VB = 1 5 - 4 = 11 V and current would 
flow from A to B since A has a higher potential than B. 
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(b) 
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--7Ω 
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(c) Fig 4 (d) 

10V 

6Ω 

I Γ|2οη 
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L J 
(a) 
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Fig 5 

6Ω 4Q 

-OB 

(e) 

Fig 6 



Fig 7 

(viii) In Fig 7(a), to find the equivalent resistance 
across AB the circuit may be redrawn as in 
Figs 7(b) and (c). From Fig 7(c), the equivalent resistance across AB 
_ 5 X 1 5 ^ 12X3 

5 + 1 5 12 + 3 
= 3.75+2.4 = 6.15 Ω 

(ix) In the worked problems in section B it may be considered that 
Thévenin's and Norton's theorems have no obvious 
advantages compared with, say, Kirchhoff's laws. 
However, these theorems can be used to analyse part of a 
circuit and in much more complicated networks the 
principle of replacing the supply by a constant voltage 
source in series with a resistance (or impedance) is 
very useful. 

Thévenin's theorem states: 
'The current in any branch of a network is that which would result if an emf 
equal to the p.d. across a break made in the branch, were introduced into the 
branch, all other emf s being removed and represented by the internal resistances 
of the sources.' 
The procedure adopted when using Thévenin's theorem is summarized below. 
To determine the current in any branch of an active network (i.e. one 
containing a source of emf): I 

->~ (i) remove the resistance R from that branch, 
(ii) determine the open-circuit voltage, E, across the 

break, 
(iii) remove each source of emf and replace them by their 

internal resistances and then determine the resistance, 
r, 'looking-in' at the break, 

(iv) determine the value of the current from the equivalent 
circuit shown in Fig 8, i.e. T _ E Fig 8 
(See Problems 3 to 8). ~R + r 

A source of electrical energy can be represented by a source of emf in series 
with a resistance. In para. 5, the Thévenin constant-voltage source consisted of 
a constant emf E in series with an internal resistance r. However this is not the 
only form of representation. A source of electrical energy can also be 
represented by a constant-current source in parallel with a resistance. It may be 
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shown that the two forms are equivalent. An ideal constant-voltage generator 
is one with zero internal resistance so that it supplies the same voltage to all 
loads. An ideal constant-current generator is one with infinite internal 
resistance so that it supplies the same current to all loads. 
Norton's theorem states: 
'The current that flows in any branch of a network is the same as that which 
would flow in the branch if it were connected across a source of electrical 
energy, the short-circuit current of which is equal to the current that would 
flow in a short-circuit across the branch, and the internal resistance of which is 
equal to the resistance which appears across the open-circuited branch 
terminals. ' 
The procedure adopted when using Norton's theorem is summarized below. 
To determine the current flowing in a resistance R of a branch AB of an active 
network: 
(i) short-circuit branch AB 
(ii) determine the short-circuit current Isc flowing in the branch 
(iii) remove all sources of emf and replace them by their internal resistance (or, 

if a current source exists, replace with an open-circuit), then determine the 
resistance r, 'looking-in' at a break made between A and B 

(iv) determine the current / flowing in resistance R from the Norton equivalent 
network shown in Fig 9, i.e. 

<7h> 

Fig 9 

Ó B 

Note the symbol for an ideal current source (BS 3939, 1985) shown in Fig 9 
(See Problems 9 to 13) 

9 The Thévenin and Norton networks shown in Fig 10 are equivalent to each 
other. The resistance 'looking-in' at terminals AB is the same in each of the 
networks, i.e. r. 

ΐΦ 
-oA 

Fig 10 -oB 

o A 

O B 

(a) (b) 
(Note the symbol for an ideal voltage source in Fig 10 which may be used as an 
alternative to the battery symbol.) 



If terminals AB in Fig 10(a) are short-circuited, the short-circuit current is 

given by —. If terminals AB in Fig 10(b) are short-circuited, the short-circuit 

current is Isc. For the circuit shown in Fig 10(a) to be equivalent to the circuit in 

Fig 10(b) the same short-circuit current must flow. Thus Isc = —. Fig 11 shows 

a source of emf E in series with a resistance r feeding a load resistance R. 

τ: ir- li r E E /r ( r \ E 

From Fig 11. I = = 7 =77- = -
6 ' r + R (r + R)/r \r + R) r 

\7TR) ISC i.e./ = 

■ΐΦ 

B 

Fig 11 

f / 

Fig 12 

From Fig 12, it can be seen that, when viewed from the load, the source appears 
as a source of current Isc which is divided between r and R connected in 
parallel. 

Thus it is shown that the two representations shown in Fig 10 are equivalent. 
(See Problems 14 to 17) 

10 The maximum power transfer theorem states: 
'The power transferred from a supply source to a load is at its maximum when 
the resistance of the load is equal to the internal resistance of the source'. 
Hence, in Fig 13, when R = r the power transferred from the source to the load 
is a maximum. 

11 Varying a load resistance to be equal, or almost equal, to the source internal 
resistance is called matching. Examples where resistance matching is 
important include coupling an aerial to a 
transmitter or receiver, or in coupling a 
loudspeaker to an amplifier where coupling source 
transformers may be used to give maximum 
power transfer. 

With d.c. generators or secondary cells, 
the internal resistance is usually very small. 
In such cases, if an attempt is made to make 
the load resistance as small as the source 
internal resistance, overloading of the 
source results. Fig 13 

D Load 
. R 

I 
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12 A method of achieving maximum power transfer between a source and a load 
is to adjust the value of the load resistance to 'match' the source internal resis­
tance. A transformer may be used as a resistance matching device by connecting 

* i 

Fig 14 
/Vi 

*2 

N2 V2
l 

it between the load and the source. The reason why a transformer can be used 
for this is shown below. With reference to Fig 14: 

V2 RL = — and R* 
h 

Vl 

For an ideal transformer, Vx = [ — ) V, and /, = I — ) 

the equiva 

V_L= W V1
 =(M* v2 _ (ΝΛ\ 

h ΪΝΛ^ \N2) I2 [N-J *' 

Hence by varying the value of the turns ratio, the equivalent input resistance of 
a transformer can be 'matched' to the internal resistance of a load to achieve 
maximum power transfer. 
(See Problems 18 to 25) 

Thus the equivalent input resistance Rl of the transformer is given by: 

B. WORKED PROBLEMS ON CIRCUIT THEOREMS 

SUPERPOSITION THEOREM 

Problem 1 Fig 15 shows a circuit 
containing two sources of emf, each 
with their internal resistance. Deter­
mine the current in each branch of the 
network by using the superposition 
theorem. 

Fig 15 

ir^m 
Mfc 

r^n*tv 

k»'ft 

Procedure: 
1 Redraw the original circuit with source E2 removed, being replaced by r2 only, 

as shown in Fig 16(a). 
2 Label the currents in each branch and their directions as shown in Fig 16(a) and 
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determine their values. (Note that the choice of current directions depends on 
the battery polarity, which, by convention is taken as flowing from the positive 
battery terminal as shown.) R in parallel with r2 gives an equivalent resistance of 
1><ί=0.8Ω 4+1 
From the equivalent circuit of Fig 16(b) 
r _ Ex _ 4 
1 rx +0.8 2+0.8 

= 1.429 A 
From Fig 16(a) 

h = 
and 

h = 

& ) ' ■ 
-

& ) '■ 

= L( 1.429) = 

= 1(1.429) = 

0.286 A 

1.143 A 

Redraw the original circuit with 
source £, removed, being replaced 
by rx only, as shown in Fig 17(a). 

* A 

\r 

1 ' 1 ' 

*η*Ε-*-ι\ι ^=2V 

(a ) 

£i:4V 
^ ~ 

D»« 0 

(a) (b) 

(b) 

Fig 16 (above) 

Fig 17 (left) 

L· 

4 Label the currents in each branch and their directions as shown in Fig 17(a) and 
determine their values. r\ in parallel with R gives an equivalent resistance of 

2 Χ ! = 8 = Ι . 3 3 3 Ω 
2+4 6 
From the equivalent circuit of Fig 17(b) 

I - £2 - 2 
4 l.333+r2 1.333+1 

= 0.857 A 

From Fig 17(a) 

2 /, (2^4) '4=£«>.857) = 0.286A 

/ 6 = ( A ) / 4 = | ( 0 . 8 5 7 ) = 0.571A 

Superimpose Fig 17(a) on to Fig 16(a) as shown in Fig 18. 



1Λ c ~ t <*Ί 

Σ ft 
! 

f1 = 4v[_ 

0 ; r 0 

0858Α 02β6Α 
> 9 > 

ψθ572Α 

Μ?=4Λ 

£"2= 2V 

r2=in 

Fig 18 Fig 19 

Determine the algebraic sum of the currents flowing in each branch. Resultant 
current flowing through source 1, i.e. 

/j-Zg = 1.429-0.571 
= 0.858 A (discharging) 

Resultant current flowing through source 2, i.e. 

7 4 - / 3 =0.857-1.143 
= -0.286 A (charging) 

Resultant current flowing through resistor/?, i.e. 

/ 2 + / 5 =0.286+0.286 
= 0.572 A 

The resultant currents with their directions are shown in Fig 19. 

Problemi For the circuit shown inJ%&20, find, usm&thé superposition 
theorem, (a) the current flowing in:^^;pd-aiËTÇiitt''the 18 0 resistor, (b) 
the current in the 8 V battery and (ç) the current jathe 3 V battery. 

1 Removing source E2 gives the circuit of Fig 21(a). 
2 The current directions are labelled as shown in Fig 21(a), I\ flowing from the 

positive terminal of Ex. 
From Fig 21(b) 
/, =-^-= -8_ = 1.667 A 1 3+1.8 4.8 

£"i = 8v* 

£"2=3V 
£"1 = βν 

» f > 

t72 

(a) 

£Ί = βν 

/ i 
—>-

(b) 

Q 2XV 
2*V 

Fig 20 Fig 21 
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From Fig 21(a) 

' ' - ( Î B Ï ) ' · - ä ( l i W ) - I Ä , A 
and 

h- fe+ïs) 7l " = J2_ 
20 

(1.667) =0.167 A 

3 Removing source E\ gives the circuit of Fig 22(a) (which is the same as Fig 22(b)). 
4 The current directions are labelled as shown in Figs 22(a) and 22(b), 74 flowing 

from the positive terminal of E2. 

—r— 4 
*» 

3V I 1 
3Λ ISA 

I5 1 
1 5/6 
(b) 

(/1+/5) 

Fig 22 (left) 

Fig 23 (below) 

(/3-/e) 

1*J1 ;2 57in 
3 + 18 

From Fig 22(c) 
II 

IA 2+2.571 4.571 
From Fig 22(b) 

18 

= - ^ - =0.656 A 

/s V3+18/ u 
i^- (0.656) = 0.562 A 

' (3+I8J 

21 
(0.656) = 0.094 A 

£,x8V 
|c /2+/4 ) 

f2
s 3 v 

5 Superimposing Fig 22(a) on to Fig 21(a) gives the circuit in Fig 23. 
6 (a) Resultant current in the 18 Ω resistor = / 3 - / 6 = 0.167-0.094 = 0.073 A 

Pd across the 18 Ω resistor = 0.073 X 18 = 1.314 V 
(b) Resultant current in the 8 V battery = Ιγ +/5 = 1.667+0.562 = 2.229 A 

(discharging) 
(c) Resultant current in the 3 V battery 72+/4 = 1.500+0.656 = 2.156 A 

(discharging) 

10 



THÉVENIN'S THEOREM 

Problem 3 Use Thévenin's theorem to find the current flowing in the 10 Ω 
resistor for the circuit shown in Fig 24(a). 

/? :5fL /?3--5fl 

/?=10fl T 7$fk..n 
-OA 

- O B 

(b) 

/V-2n| | \\R2--sa +—L [*] | |/? = ion 

OB 

(c) (d) 
Fig 24 

Following the procedure in para 5: 
(i) The 10 Ω resistance is removed from the circuit as shown in Fig 24(b). 
(ii) There is no current flowing in the 5 Ω resistor and current Ιγ is given by 

/, = 1 0 = J O - = i A h R,+R2 2+8 1 A · 

P.d. across Λ2 = Λ /?2 = 1 X 8 = 8 V. 
Hence p.d. across AB, i.e. the open-circuit voltage across the break, £ = 8V. 

(iii) Removing the source of emf gives the circuit of Fig 24(c). 
Resistance, r = R3 + j * l R * = 5 + | ^ - | = 5+1.6 = 6.6 Ω 

R i -\-R 2 2 + o 

(iv) The equivalent Thévenin's circuit is shown in Fig 24(d). 
Current / = - £ - = , , ,8^ , = τ^- = 0.482 A R+r 10+6.6 16.6 
Hence the current flowing in the 10 Ω resistor of Fig 24(a) is 0.482 A 

Problem 4 For the network shown in Fig 25(a) determine the current in the 
0.8 Ω resistor using Thévenin's theorem. 

Following the procedure of para 5: 
(i) The 0.8 Ω resistor is removed from the circuit as shown in Fig 25(b). 

(ii) C u r r e n t / , = n ^ R = j § = 1.2 A 

11 



(a) (b) 

/ 
O A i f OA I > f A 

6Λ II ^— iV=2.4nlloea T £ = 4 8 v p 

(e) (d) (e) 

Fig 25 

P.d. across 4 Ω resistor = 4^ = (4)(1.2) = 4.8 V 
Hence p.d. across AB, i.e. the open-circuit voltage across AB, E = 4.8 V 
(iii) Removing the source of emf gives the circuit shown in Fig 25(c). The equi­

valent circuit of Fig 25(c) is shown in Fig 25(d), from which, 
resistance r = ^ 4 = | i = 2.4 Ω. 4 + 6 10 

(iv) The equivalent Thévenin's circuit is shown in Fig 25(e), from which, 
E _ 4.8 _4.8 current / = r+R 2.4+0.8 3.2 

= 1.5A = current in the 0.8 Ω resistor. 

Problem 5 Use Thévenin's theorem to determine the current /flowing in 
the 4 Ω resistor shown in Fig 26(a). Find also the power dissipated in the 
4 Ω resistor. 

Following the procedure of para 5: 
(i) The 4 Ω resistor is removed from the circuit as shown in Fig 26(b). 

(ii) Current /, = ^ ^ = ±z? = | A. 
Γ\ +/"2 Z + l O 

P.d. across AB, E = £Ί - / , r, = 4 - | (2) = 21 V (see para 3(iii)). 

(Alternatively, p.d. across AB, E = £2 - / , r2 = 2- (- | V 1 ) = 2} V. 
(iii) Removing the sources of emf gives the circuit shown in Fig 26(c), from 

which resistance r = - — - = } Ω. 
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-^rr 
E~>-2\l 

Ε""Λ"4=Τ\λ-
O A 

/? = 4Λ 

- O A 

- O B 

(e) (d) Fig 26 

(iv) The equivalent Thévenin's circuit is shown in Fig 26(d), from which 

current,/= ^_- = ^— = ^ = A- = 0.571 A 
r+R 2^+4 14/3 14 

= current in the 4 Ω resistor. 
Power dissipated in 4 Ω resistor, P = I2R = (0.571)2(4) = 1.304 W 

Problem 6 Determine the current in the 5 Ω resistance of the network shown 
in Fig 27(a) using Thévenin's theorem. Hence find the currents flowing in 
the other two branches. 

Following the procedure of para 5: 
(i) The 5 Ω resistance is removed from the circuit as shown in Fig 27(b). 
(ii) Current /, = i | ± i = J | = 6.4 A 

P.d. across AB, Ε = Εγ - / , r, = 4-(6.4)(0.5) = 0.8 V (see para 3(iii)). 
(Alternatively, E = E2-Ixrx = -12-(-6.4)(2) = 0.8 V) 

(iii) Removing the sources of emf gives the circuit shown in Fig27(c), from which 
.0.5X2 _ 1 

resistance r ■ = 0.4Ω 0.5+2 2.5 
(iv) The equivalent Thévenin's circuit is shown in Fig 27(d), from which, 

current / : 0.8 .0.8 = 0.148 A r+R 0.4+5 5.4 
= current in the 5 Ω resistor 

From Fig 27(e), voltage V=IR3 = (0.148)(5) = 0.74 V. 
From para 3(iii), V=E\- IA*\ 

i.e. 0.74 = 4-(IA X0.5) 

13 



. 4-0.74 _ 3.26 = 6.52 A Hence current, IA = _ : 
A 0.5 0.5 

Also from Fig 27(e)y V=-E2 + IBr2 (see para 3(iii)) 
i.e. 0.74 = -12+(/Ä)(2) 

Hence current IB = Χ-^ψΛ = Ώψ = 6.37 A 

[Check, from Fig 27(e), IA=IB + U correct to 2 significant figures (KirchhofPs 
current law).] 

Ey- AM 

0-5ΩΙ 

Fig 27 

-0-4 

- θ £ 

(c) 

ΐ 
' £ : 0 ' 8V 

Γ:0 ·4Α 

/= 0-148Α 

(e) 

(d) 

A ! 4 ' ti 
-è- T η D*3=5n 

^ = 4 v T ΜΓ2 = 2Π T 

Problem 7 Use Thévenin 's theorem to determine the current flowing in the 
3 Ω resistance of the network shown in Fig 28(a). The voltage source has 
negligible internal resistance. 

Following the procedure of para 5: 
(i) The 3 Ω resistance is removed from the circuit as shown in Fig 28(b). 

2 
(ii) The 1 =-Ω resistance now carries no current. 

P.d. across 10 Ω resistor = (ΤΤ£Ύ) ( 2 4 ) = 16 V (see para 3(v)). 
Hence p.d. across AB, E = 16 V 

14 



i f-n 5Ω 

10Ω 20Ω 

A 13 f ì 5Ω 

(a) 

et2· 

u n sa Ao—{ μ^-ι ι-^· 1 

: 111 
(c) 

BO 

ι | π 5Ω 

(d) 

Fig 28 
Ί 

/ 

(e) 

£"=16V f 
(iii) Removing the source of emf and replacing it by its internal resistance means 

that the 20 Ω resistance is short-circuited as shown in Fig 28(c) since its 
internal resistance is zero. The 20 Ω resistor may thus be removed as shown 
in Fig 28(d) (see para 3(vi)). 

From Fig 28(d), resistance, r · j 2 + 10X5 _ !2 + 50 = 5Ω 10+5 3 15 
(iv) The equivalent Thévenin's circuit is shown in Fig 28(e), from which 

- JL_ = JA_ = 16 
' r+R 3+5 current, / : ■ = 2 A = current in the 3 Ω resistance 

Problem 8 A Wheatstone Bridge network is shown in Fig 29(a). Calculate 
the current flowing in the 32 Ω resistor, and its direction, using Thévenin's 
theorem. Assume the source of emf to have negligible resistance. 

Following the procedure of para 5: 
(i) The 32 Ω resistor is removed from the circuit as shown in Fig 29(b). 

(ii) The p.d. between A and C, VAC = ( ^ ^ ) (£) = ( 2 Τ Π ) ( 5 4 ) 

= 8.31 V 
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The p.d. between B and C, VBC = ( ^ τ ) <£) = ( ^ V14+3/ 
= 44.47 V 

(54) 

Hence the p.d. between A and B = 44.47-8.31 = 36.16 V 
Point C is at a potential of +54 V. Between C and A is a voltage drop of 
8.31 V. Hence the voltage at point A is 54-8.31 = 45.69 V. Between C and B 
is a voltage drop of 44.47 V. Hence the voltage at point B is 54—44.47 = 9.53 V. 
Since the voltage at A is greater than at B, current must flow in the direction 
A to B. (See para 3(vii)). 

£*=54V 

(e) 

1 -if 
1 4-163Π M 

3Π .ΙΦ 
36 16 V 

1*5= 
32Ω 

Cf) 

Fig 29 

(iii) Replacing the source of emf with a short-cicuit (i.e. zero internal 
resistance) gives the circuit shown in Fig 29(c). The circuit is redrawn and 
simplified as shown in Fig 29(d) and (e), from which the resistance between 
terminals A and B, 
. _ 2X11 ■ 14X3 _ 2 2 . 42 

2+11 14+3 13 17 = 1.692 + 2.471= 4.163 Ω. 
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(iv) The equivalent Thevenin's circuit is shown in Fig 29(f)', from which, 
1 A. + , E 36.16 current / = - ^ - = , , " , , , , , 4.163+32 r+R5 

Hence the current in the 32 Ω resistor of Fig 29(a) is 1 A, flowing from A 
toB 

NORTON'S THEOREM 

Problem 9 Use Norton's theorem to determine the current flowing in the 
10 Ω resistance fot the circuit shown in Fig 30(a). 

5Ω 

10 V 

8Ω 

2Ω 

10 Ω 

(a) 

10 V A 

2Ω 

8Ω \lSC 

(b) 

10 V 

2Ω 

(c) 

he 

Fig 30 

Following the procedure of para. 8: 
(i) The branch containing the 10 Ω resistance is short-circuited as shown in 

Fig 30(b). 
(ii) Fig 30(c) is equivalent to Fig 30(b). Hence Isc = y = 5 A 
(iii) If the 10 V source of emf is removed from Fig 30(b) the resistance 

'looking-in' at a break made between A and B is given by: 
2 x 8 

'2 + 8 1.6Ω 
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(iv) From the Norton equivalent network shown in Fig 30(d) the current in the 
10 Ω resistance, by current division, is given by: 

/ = (Γ6τίπ-ο) ( 5 ) = °·482Α' 
as obtained previously m problem 3 using Thévenin's theorem. 

Problem 10 Use Norton's theorem to determine the current / flowing in the 
4 il resistance shown in Fig 31(a). 

2Ω 

4Ω 

4vf(P ®\lV I 4vf(b Of2V 

1Ω 

(a) 

2Ω 1Ω 

(b) 

Vsc 

Isc = 4 A 1 

Θ 
r = 2/3 Ω 

4Ω 

(c) 

Fig 31 

Following the procedure of para. 8: 
(i) The 4 Ω branch is short-circuited as shown in Fig 31(b). 
(ii) From Fig 31(b), Isc = Ix +12 = y + y = 4 A. 
(iii) If the sources of emf are removed the resistance 'looking-in' at a break 

made between A and B is given by: 
2 x 1 2 0 
2 + 1 3 

(iv) From the Norton equivalent network shown in Fig 31(c) the current in the 
4 Ω resistance is given by: 



/ = ( γ2— j (4) = 0.571 A, as obtained previously in problems 1 and 5 

using the theorems of superposition and Thévenin. 

Problem 11 Determine the current in the 5 Ω resistance of the network 
shown in Fig 32(a) using Norton's theorem. Hence find the currents flowing 
in the other two branches. 

4V 

0.5 Ω 
12 V 

5Ω 

2Ω 

(a) 

h 

1 *Ir 
0.5 Ω 

Ψ 

T 4 V 

r 
S-12V 

1 

2Ω 

1 X 1 

vsc 

(b) 

/ 5 C = 2 A 

Fig 32 (c) 

Following the procedure of para. 8: 
(i) The 5 Ω branch is short-circuited as shown in Fig 32(b). 

(ii) FromFig32(b),Isc = Il-I2=^-^=S-6 = 2A 

(iii) If each source of emf is removed the resistance 'looking-in' at a break 
made between A and B is given by: 

° · 5 x 2 Λ A n 
Γ = 05 -^ = ° · 4 Ω 

(iv) From the Norton equivalent network shown in Fig 32(c) the current in the 
5 Ω resistance is given by: 

/ = ί jr-^—^ 1 (2) = 0.148 A, as obtained previously in problem 6 using 

Thevenin's theorem. 
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The currents flowing in the other two branches are obtained in the same 
way as in problem 6. Hence the current flowing from the 4 V source is 
6.52 A and the current flowing from the 12 V source is 6.37 A 

Problem 12 Use Norton's theorem to determine the current flowing in the 
3 Ω resistance of the network shown in Fig 33(a). The voltage source has 
negligible internal resistance. 

1 ! Ω 5Ω 
1 · i — i . 

[ 1 1 ' 

3Ω 10 Ω 
[ J 20 Ω f 

(a) 

Λ 

he ' 

5Ω 
1 I m 

t 

r 24 V 
Ι ]20Ω ^ 

24 V 

m 24V 

B 
(c) 

/ 

B 

5Ω 

r 1 

J 

10 Ω 

> ' 

he 

A 

he 

B 

' 

A i 

r 1 

Π - . i 

= 4.8 A 

5 

5Ω 
É-ί l-H r i i ' 

10Ω 20 Ω (J 

(b) 

5Ω 
i I L·^ 

10 Ω 20 Ω 

(d) 

/ 

1 

■ ' JL 

3|Ω T 

i — y 

A 

ι |Ω 

3Ω 

R 

24 V 

(e) Fig 33 (0 

Following the procedure of para. 8: 
(i) The branch containing the 3 Ω resistance is short-circuited as shown in Fig 

33(b). 
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24 (ii) From the equivalent circuit shown in Fig 33(c), Isc = — = 4.8 A. 
(iii) If the 24 V source of emf is removed the resistance 'looking-in* at a break 

made between A and B is obtained from Fig 33(d) and its equivalent circuit 
shown in Fig 33(e) and is given by: 

10x5 50 , l n 
Γ = ΪΟΤ5=Ϊ5 = 3*Ω 

(iv) From the Norton equivalent network shown in Fig 33(f) the current in the 
3 Ω resistance is given by: 

/ = [ q i . Λ . 3 ) (4-8) = 2 A, as obtained previously in problem 7 using 
Thévenin's theorem. 

♦ 15 A 

Θ 

15 A l 

4Ω 8Ω 

6Ω 2Ω 7Ω @ 

(a) 

4Ω 

4Ω A 8Ω 
I r \ 
| 15 A 

H 6Ω 7Ω 

B 
1 4 è 

7Ω 

Fig 34 

/SC=9AA 

2Ω 
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Problem 13 Determine the current flowing in the 2 Ω resistance in the 
network shown in Fig 34(a). 

Following the procedure of para. 8: 
(i) The 2 Ω resistance branch is short-circuited as shown in Fig 34(b). 
(ii) Fig 34(c) is equivalent to Fig 34(b). Hence Isc = I g-^-τ ) (15) = 9 A by 

current division. \ / 
(iii) If the 15 A current source is replaced by an open-circuit then from Fig 

34(d) the resistance 'looking-in' at a break made between A and B is given 
by (6 + 4) Ω in parallel with (8 + 7) Ω, i.e. 

r (10)(1S) 150 
Γ = ΪΟΤΤ5 = 25" = 6 Ω 

(iv) From the Norton equivalent network shown in Fig 34(e) the current in the 
2 Ω resistance is given by: 

^ ( β Τ ϊ ) (9) = 6.75 A 

THÉVENIN AND NORTON EQUIVALENT NETWORKS 

Problem 14 Convert the circuit shown in Fig 35 to an equivalent Norton 
network. 

10 V Id) 
2 Ω 

- O A 

-OB 

Fig 35 

' S C = 5 A 1 

O A 

OB 

Fig 36 

If terminals AB in Fig 35 are short-circuited, the short-circuit current Isc 

-f-5*. 
The resistance 'looking-in' at terminals AB is 2 Ω. Hence the equivalent Norton 
network is as shown in Fig 36. 

Problem 15 Convert the network shown in Fig 37 to an equivalent Thévenin 
circuit. 
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4A A 

O A 

12vt(b 

Γ = 3 Ω 

- o A 

O B -OB 

Fig 37 Fig 38 

The open-circuit voltage E across terminals AB in Fig 3 7 is given by: 

E = (Isc)(r) = (4)(3) = 12V. 

The resistance 'looking-in' at terminals AB is 3 Ω. Hence the equivalent 
Thévenin circuit is as shown in Fig 38. 

Problem 16 (a) Convert the circuit to the left of terminals AB in Fig 39(a) to 
an equivalent Thévenin circuit by initially converting to a Norton equivalent 
circuit, (b) Determine the current flowing in the 1.8 Ω resistor. 

*i=tfb ά)\Ε2= 

12 V Ivy ψ | 2 4 ν 
L = 3 Ω 

A 
- o -

1.8 Ω 

r2 = 2Ω 

(a) B 

o A 

Γ2 = 2 Ω 

16 A i 

o A 

O B 

19.2 V i(T) 

1.2 Ω 

- O A 

(d) 
- O B 

Fig 39 
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(a) For the branch containing the 12 V source, converting to a Norton equiv-
12 aient circuit gives / i f = - r = 4 A and r{ = 3 Ω. For the branch containing 

24 the 24 V source, converting to a Norton equivalent circuit gives lSC2 = -y 
= 12Aandr2 = 2Œ. 2 

Thus Fig 39(b) shows a network equivalent to Fig 39(a). 
From Fig 39(b) the total short-circuit current is 4 + 12 = 16 A and the total 

resistance is given by: - 2 = 1.2 Ω. 

Thus Fig 39(b) simplifies to Fig 39(c). 
The open-circuit voltage across AB of Fig 39(c), 
£·=(16)(1.2) = 19.2 V 
and the resistance 'looking-in' at AB is 1.2 Ω. Hence the Thévenin 
equivalent circuit is as shown in Fig 39(d). 

(b) When the 1.8 Ω resistance is connected between terminals AB of Fig 39(d) 
the current / flowing is given by: 

• 1 9 · 2 =6.4 A 1.2+1.8 

Problem 17 Determine by successive conversions between Thévenin and 
Norton equivalent networks a Thévenin equivalent circuit for terminals AB 
of Fig 40(a). Hence determine the current flowing in the 200 Ω resistance. 

For the branch containing the 10 V source, converting to a Norton equivalent 

network gives ISCI = ^ T ^ = 5 mA and rx = 2 kΩ. 

For the branch containing the 6 V source, converting to a Norton equivalent 

network gives ISC2 = ^ ^ = 2 mA and r2 = 3 kΩ. 

Thus the network of Fig 40(a) converts to Fig 40(b). 
Combining the 5 mA and 2 mA current sources gives the equivalent network of 
Fig 40(c) where the short-circuit current for the original two branches 

2 x 3 considered is 7 mA and the resistance is ^—r = 1.2 kΩ. 

Both of the Norton equivalent networks shown in Fig 40(c) may be converted to 
Thévenin equivalent circuits. The open-circuit voltage across CD is (7 x 10~3) 
(1.2 x 103) = 8.4 V and the resistance 'looking-in' at CD is 1.2 kΩ. The 
open-circuit voltage across EF is (1 x 10~3)(600) = 0.6 V and the resistance 
'looking-in' at EF is 0.6 kΩ. Thus Fig 40(c) converts to Fig 40(d). Combining 
the two Thévenin circuits gives E = 8.4 - 0.6 = 7.8 V and the resistance r = 
(1.2 + 0.6)kß = 1.8kn. 
Thus the Thévenin equivalent circuit for terminals AB of Fig 40(a) is as shown 
in Fig 40(e). 
Hence the current / flowing in a 200 Ω resistance connected between A and B is 
given by: 

7.8 7.8 - f t A 
: = 3.9 mA 1800 + 200 2000 
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1mA 

r<D-i 

10 V KP " Ϊ Φ 
2kQ 

H l· 
600Ω 

A 
- o -

200Ω 

3kΩ 

(a) 

'rdh 1mA 

5 mA À 

a 
L 2 mA 

-I 1-+-0A 
600Ω I 7mA 

2kΩU 
θ 3kΩ Θ 

r<Dn 
• 4 I 1-i-oA 

E 600Ω F 

1.2 kQ 

-OB 
(b) 

8.4VÎ0 0<iV 
3 — o A 

D 
—· 

(c) 

- o A 

- O B 

0.6 kΩ « vfQ 

1.2 kn 1.8 kΩ 

-OB -OB 
(d) (e) 

Fig 40 
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MAXIMUM POWER TRANSFER THEOREM AND RESISTANCE MATCHING 

Problem 18 The circuit diagram of Fig 41 shows dry cells of source emf 
6 V, and internal resistance 2.5 Ω. If the load resistance RL is varied from 0 
to 5 Ω in 0.5 Ω steps, calculate the power dissipated by the load in each case. 
Plot a graph of RL (horizontally) against power (vertically) and determine 
the maximum power dissipated. 

When RL = 0, current / = -^5- - = ~-=- - 2.4 A and power dissipated in 

RL,P = J2RL , i.e. P = (2.4)2(0) = 0 W. 

I 

E- 6v-

r =2·5Π 

* L 

Fig 41 Fig 42 

and 

E 
r+RL 

/ , = / 2 ^ = ( 2 ) 2 ( 0 . 5 ) = 2W. 
2.5+0.5 : 2A 

When R, 1.0 Ω, current / = =—-== 1.714 A and P = (1.714)2 ( 1.0) = 2.94 W. L — ' — 2.5+1.0 
With similar calculations the following table is produced: 

RL (Ω) 
/ = - * -

r+Rj 
P = I2RL (W) 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
2.4 2.0 1.714 1.5 1.333 1.2 1.091 1.0 0.923 0.857 0.8 

0 2.00 2.94 3.38 3.56 3.60 3.57 3.50 3.41 3.31 3.20 

A graph of RL against P is shown in Fig 42. The maximum value of power is 
3.60 W which occurs when RL is 2.5 Ω, i.e. maximum power occurs when 
RL — r> which is what the maximum power transfer theorem states. 

Problem 19 A d.c. source has an open-circuit voltage of 30 V and an 
internal resistance of 1.5 Ω. State the value of load resistance that gives 
maximum power dissipation and determine the value of this power. 

The circuit diagram is shown in Fig 43. From 
the maximum power transfer theorem: 
For maximum power dissipation, RL = r — 1.5 Ω f=30V 

From Fig 43, current / = -j=~ 
/"+/vy 

Power P = I2RL = ( 1 0 ) 2 ( 1 . 5 ) ; 

30 
1.5+1.5 

150W 

= 10A 

Fig 43 

I® .4 
/ 
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Problem 20 Find the value of the load resistor RL shown in Fig 44(a) that 
gives maximum power dissipation and determine the value of this power. 

Using the procedure for Thévenin's theorem given in para 5: 
(i) Resistance RL is removed from the circuit as shown in Fig 44(b). 
(ii) The p.d. across AB is the same as the p.d. across the 12 Ω resistor. 

Hence E (γ^τοί (15)= 12V U2+3/ 
(iii) Removing the source of emf gives the circuit of Fig 44(c), from which, 

12X3 _ 3 6 . resistance, r - 12+3 15 

IL, 

(a) 

(c) 

2.4Ω 

A 
o-

Î 15V 

(b) 

Lì 
£=12V 

r=2 ACi 

(d) Fig 44 

(iv) The equivalent Thévenin's circuit supplying terminals AB is shown in Fig 
44(d), from which 

E current, / = - , _ r+RL 

For maximum power, RL 

current, 7 = - ^ =2.5 A 

-- r = 2.4 Ω. Thus 

Power, P, dissipated in load RL,P = I2RL = (2.5)2(2.4) = 15 W 

Problem 21 A transformer having a turns ratio of 4:1 supplies a load of 
resistance 100 Ω. Determine the equivalent input resistance çf the 
transformer. 

From para. 12, the equivalent input resistance, R\ = ί —M RL 

- ( - ] (100)=; 1000 Ω 
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Problem 22 The output stage of an amplifier has an output resistance of 
112 Ω. Calculate the optimum turns ratio of a transformer which would 
match a load resistance of 7 Ω to the output resistance of the amplifier. 

The circuit is shown in Fig 45. 
The equivalent input resistance, R\ of the transformer needs to be 112 Ω for 
maximum power transfer. From para. 12, 

,=©■, 

i.e. ^L =V(16) = 4 

Hence the optimum turns 
ratio is 4:1 

D-t-O 

/?L= 7Π 

Fig 45 

Problem 23 Determine the optimum value of load resistance for maximum 
power transfer if the load is connected to an amplifier of output resistance 
150 Ω through a transformer with a turns ratio of 5:1. 

The equivalent input resistance RY of the transformer needs to be 150 Ω for 
maximum power transfer. 

From para. 12,/?! = ( — ] RLi from which RL =RJ—) = 150(M = 6 Ω 

Problem 24 A single-phase, 220/1 760 V ideal transformer is supplied from 
a 220 V source through a cable of resistance 2 Ω. îf the load across the 
secondary winding is 1.28 kÜ determine (a) the primary current flowing and 
(b) the power dissipated in the load resistor. 

The circuit diagram is shown in Fig 46. 

(a) Turns ratio — = — = - ^ - = ^ 
1760 8 N2 V2 

Equivalent input resistance of the 
transformer, 

2 

= (i-)2(i:28X 103) = 20Ω 

220V /?L=1280il 

Fig 46 
Total input resistance, Rm =R+Rl = 2+20 = 22 Ω 

/ = ! j _ - 2 2 0 
1 RIN 22 

Primary current, = 10 A. 
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(b) For an ideal transformer — = — , from which I2 = /, ( — ] = 10 ( - ^ _ ) 

= 1.25 A 
Power dissipated in load resistor RL,P = l2RL

 = (1 25)2(1.28 X 103) 
= 2000 watts or 2 kW 

Problem 25 An a.c. source of 24 V and internal resistance 15 kß is matched 
to a load by a 25:1 ideal transformer. Determine (a) the value of the load 
resistance and (b) the power dissipated in the load. 

The circuit diagram is shown in Fig 47 
(a) For maximum power transfer Rx 

needs to be equal to 15 ki2. 

From para. 12, Rx = ( -î- j RL , from 

which load resistance, RL = R A — 

= (15 0 0 0 ) ^ = 2 4 Ω 

Fig 47 

(b) The total input resistance when the source is connected to the matching 
transformer isR^+Ri, i.e. 15 kn+15ki2 = 30 ki2. 

V _ 24 Primary current, Ιγ 

Ni I. 
N2 /, 

30 000 

, from which I2 

30 000 
: 0.8 mA 

= / , i ^ L J = ( 0 . 8 X 1 0 " 3 ) ( ^ ) = 20Χ IO"3 A 

Power dissipated in the load R,,P = h2RL = (20 X 10_3)2(24) 
= 9600X 10~6 W = 9.6mW 

I B 
C. FURTHER PROBLEMS ON CIRCUIT THEOREMS 

SHORT ANSWER PROBLEMS 

1 Name two laws and three theorems which may be used to find currents and 
p.d.'s in electrical circuits. 

2 State, in your own words, the superposition theorem. 
3 State, in your own words, Thevenin's theorem. 
4 State, in your own words, Norton's theorem. 
5 State the maximum power transfer theorem. 
6 What does 'resistance matching' mean? 
7 State a practical source to which the maximum power transfer theorem is 

applicable. 
8 Derive a formula for the equivalent resistance of a transformer having a turns 

ratio Νχ \Νι and load resistance R^. 
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MULTI-CHOICE PROBLEMS (answers on page 191) 

1 For the circuit shown in Fig 48, the internal resistance, r, is given by: 

(a) F = 2 T : ( b ) i T ^ (c) Έ=ν^ΰ)ξΪΓ 

M 

Fig 48 

1Ω 2Π 

A o — O Z 3 Ψ UZU—I 

ΠΐΟΩ 6Λ 

B o 1 1 1 I 1 1 
Fig 50 

Fig 49 

Fig 51 

2 For the circuit shown in Fig 49, voltage Kis: 
(a) 12V;(b)2V;(c)10V;(d)0V. 

3 For the circuit shown in Fig 49, current Ix is: (a) 2 A; (b) 14.4 A; (c) 0.5 A; 
(d)0A. 

4 For the circuit shown in Fig 49, current I2 is: 
(a) 2 A; (b) 14.4 A; (c) 0.5 A; (d) 0 A. 

5 The equivalent resistance across terminals AB of Fig 50 is: 
(a) 9.31 Ω; (b) 7.24 Ω; 
(c) 10.0 Ω (d) 6.75 Ω. 

6 With reference to Fig 51, which of the following statements is correct? 
(a) KPÖ = 2 V ; ( b ) K p 0 = 1 5 V 
(c) When a load is connected between P and Q, current would flow from Q to P. 
(d) VPQ = 20 V. 

7 In Fig 51, if the 15 V battery is replaced by a short-circuit, the equivalent 
resistance across terminal PQ is: 
(a) 20 Ω; (b) 4.20 Ω; (c) 4.13 Ω; (d) 4.29 Ω. 

8 For the circuit shown in Fig 52, maximum power transfer from the source is 
required. For this to be so, which of the following statements is true? 
(a) R2 - 10 Ω; (b) R2 = 30 Ω; (c) R2 * 7.5 Ω; (d) R2, = 15 Ω. 

9 The open-circuit voltage E across termins XY of Fig 53 is: 
(a) 0 V; (b) 20 V; (c) 4 V; (d) 16 V. 

10 The maximum power transferred by the source in Fig 54 is: 
(a) 5 W; {b) 200 W; (c) 40 W; (d) 50 W. 

11 A load is to be matched to an amplifier having an effective internal resistance of 
10 Q via a coupling transformer having a turns ratio of 1:10. The value of the 
load resistance for maximum power transfer is: 
(a) 100 Ω; (b> 1 k«; (c) 100 mil,; (d) I πιΩ. 
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Source 
I 

ion 

12V 

^=30X1 \R2 

Fig 52 

4Ω. l20V 

Fig 53 

£ « 2 0 V 

I 

Fig 54 

CONVENTIONAL PROBLEMS 

Superposition theorem 

1 Use the superposition theorem to find currents I\, I2 and 73 of Fig 55(a). 
[ / 1 = 2 A ; / 2 = 3 A ; / 3 = 5A] 

2 Use the superposition theorem to find the current in the 8 Ω resistor of Fig 55(b). 
[0.385 A] 

5V| 

Λ '2 
■ * — t — < -

Y/3 
I&5V 30VI I ΙΐΟ' 

8A 
I m I l o a n I 12Π I | 2 n V I ΜΛ 

( b ) (a) 

£ι=ιονΓ T JT 

+ i" L i 
i 

(c) 

5Ω Λ I |6Ω 
20 Ω 

^ 2 4 V ^ 5 

(d ) 

Fig 55 
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Use the superposition theorem to find the current in each branch of the network 
shown in Fig 55(c). 

[10 V battery discharges at 1.429 A; "I 
4 V battery charges at 0.857 A; 

LCurrent through 10 Ω resistor is 0.572 AJ 
Use the superposition theorem to determine the current in each branch of the 
arrangement shown in Fig 55(d). 

" 24 V battery charges at 1.664 A; 1 
52 V battery discharges at 3.280 A; 

LCurrent in 20 Ω resistor is 1.616 A. J 

Thévenin 's theorem 
5 Use Thevenin's theorem to find the current flowing in the 14 Ω resistor of the 

network shown in Fig 56. Find also the power dissipated in the 14 Ω resistor. 
[0.434 A; 2.64 W] 

6 Use Thevenin's theorem to find the current flowing in the 6 Ω resistor shown in 
Fig 57and the power dissipated in the 4 Ω resistor. [2.162 A; 42.07 W] 

HM 
Fig 56 

4A 
1=3 

6Ω 

Fig 57 

7 Repeat problems 1-4 using Thévenin's theorem. 
8 In the network shown in Fig 58 the battery has negligible internal resistance. 

Find, using Thevenin's theorem, the current flow in the 4 Ω resistor. 
[0.918 A] 

9 For the bridge network shown in Fig 59, find the current in the 5 Ω resistor, and 
its direction, by using Thevenin's theorem. [0.153 A from B to A] 

ion en 

Fig 58 Fig 59 

Norton 's theorem 
10 Repeat problems 1-6, 8 and 9 using Norton's theorem. 
11 Determine the current flowing in the 6 Ω resistance of the network shown in 

Fig 60 by using Norton's theorem. [2.5 mA] 
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4 6mA 

Fig 60 

12 Convert the circuits shown in Fig 61 to Norton equivalent networks. 

50 V 

2Ω 

KP ΦΙ 
[(a) 7SC = 25A, Γ = 2Ω-Ι 
L(b) /sc = 2mA,r = 5fìJ 

10 mV 

5Ω 

Fig 61 -o o-
(a) (b) 

13 Convert the networks shown in Fig 62 to Thévenin equivalent circuits. 
r (a )£ = 20V, Γ = 4 Ω Ί 
1(b) £,= 12mV,r = 3fìJ 

5 A l i 4mA 

Θ 3Ω 

Fig 62 (b) 
14 (a) Convert the network to the left of terminals AB in Fig 63 to an equivalent 

Thévenin circuit by initially converting to a Norton equivalent network. 
(b) Determine the current flowing in the 1.8 Ω resistance connected between A 

andBinF/g55 r(a) E= 18V,r= 1.2Ω 
A L(b) 6A 

Fig 63 

16ν|φ2ΐν|φ 

2a(] "( l 
1.8 Ω 
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15 Determine, by successive conversions between Thévenin and Norton equivalent 
networks, a Thévenin equivalent circuit for terminals AB of Fig 64. Hence 
determine the current flowing in a 6 Ω resistor connected between A and B. 

2 A [£ = 9jV,r=lfì; l jVA] 

Ä 
2Ω 

vfcb 4"ν|φ φ | 
3Ω 

-OA 

10 V 

2Ω 
-oB 

Fig 64 

16 For the network shown in Fig 65, convert each branch containing a voltage 
source to its Norton equivalent and hence determine the current flowing in the 
5 Ω resistance. [1.22 A] 

Fig 65 
5Ω 

lOvfcb Svfq) 6Vf® 

i 4Ω 4Ω 

5Ω 

Maximum power transfer theorem and resistance matching 
17 A d.c. source has an open-circuit voltage of 20 V and an internal resistance of 

2 Ω. Determine the value of the load resistance that gives maximum power 
dissipation. Find the value of this power. [2 Ω ; 50 W] 

18 Determine the value of the load resistance RL shown in Fig 66 that gives 
maximum power dissipation and find the value of the power. 

[RL = 1.6 Ω;Ρ= 57.6 W] 

m 
Fig 66 

19 A transformer having a turns ratio of 8:1 supplies a load of resistance 50 Ω 
Determine the equivalent input resistance of the transformer. [3.2 kΩ] 

20 What ratio of transformer is required to make a load of resistance 30 Ω appear 
to have a resistance of 270 Ω? [3:1] 
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21 State the maximum power transfer theorem. 
Determine the optimum value of load resistance for maximum power transfer if 
the load is connected to an amplifier of output resistance 147 Ω through a 
transformer with a turns ratio of 7:2. [ 12 Ω] 

22 A single-phase, 240/2 880 V ideal transformer is supplied from a 240 V source 
through a cable of resistance 3 Ω. If the load across the secondary winding is 
720 Ω determine (a) the primary current flowing and (b) the power dissipated in 
the load resistance. [(a) 30 A; (b) 4.5 kW] 

23 A load of resistance 768 Ω is to be matched to an amplifier which has an 
effective output resistance of 12 Ω. Determine the turns ratio of the coupling 
transformer. [1:8] 

24 An a.c. source of 20 V and internal resistance 20 kΩ is matched to a load by a 16:1 
single-phase transformer. Determine (a) the value of the load resistance and 
(b) the power dissipated in the load. [(a) 78.13 Ω; (b)20 mW] 
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2 Single-phase series 
a.c. circuits 

A. MAIN POINTS CONCERNED WITH SINGLE-PHASE SERIES A.C. 
CIRCUITS 

1 In a purely resistive a.c. circuit, the current IR and applied voltage VR are in 
phase. See Fig 1(a). 

2 In a purely inductive a.c. circuit, the current IL lags the applied voltage VL by 
90° (i.e. π/2 rads). See Fig 1(b). 

JR A ' L A H 

C 
HI-

CIRCUIT 
DIAGRAMS 

VL 

f . A 

LL ->/, 

- > / c 

PHASOR 
DIAGRAMS 

(a) (b) (c) Figi 

3 In a purely capacitive a.c. circuit, the current Ic leads the applied voltage Vc by 
90° (i.e. π/2 rads). See Fig 1(c). 

4 In a purely inductive circuit the opposition to the flow of alternating current is 
called the inductive reactance, XL. 

XL = ^ = 2wfL Ω 
lL 

where/is the supply frequency, in hertz, and L is the inductance, in henry's. 
5 In a purely capacitive circuit the opposition to the flow of alternating current is 

called the capacitance reactance, Xc. 
1 X -Vc Ω c i- lirfC 

where C is the capacitance in farads. 
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CIRCUIT DIAGRAM 
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PHASOR DIAGRAM 

M 

(a) 

V* 
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Κ.(-/-*ί> 

■*<-//?> 

M 

(b) 

I'R 

c 

-Ih 
ĉ 

Fig 2 

R̂ / VR ir IR) 

irIXç) z 

In an a.c. circuit containing inductance L and resistance R, the applied voltage F 
is the phasor sum of VR and VL (see Fig 2(a)) and thus the current /lags the 
applied voltage F by an angle lying between 0° and 90° (depending on the values 
of VR and VL ), shown as angle <f>. In any a.c. series circuit the current is common 
to each component and is thus taken as the reference phasor. 
In an a.c. series circuit containing capacitance C and resistance R, the applied 
voltage Kis the phasor sum of VR and Vc (see Fig 2(b)) and thus the current / 
leads the applied voltage F by an angle lying between 0° and 90° (depending on 
the values of VR and F c ) , shown as angle a. 
In an a.c. circuit, the ratio applied voltage (F)/current CO is called the impedance Z, 

ί . ε . Ζ = ^ Ω 
/ 

From the phasor diagrams of Fig 2, the 'voltage triangles' are derived 
(a) For the R-L circuit: V = >/( VR

2 + VL
2 ) 

and tan φ 

(by Pythagoras' theorem) 

(by trigonometric ratios) 

(b) For the R-C circuit: F = 
and tan a = —-

y/iVj + V*) 

10 If each side of the voltage triangles in Fig 2 is divided by current /then the 
'impedance triangles' are derived. 
(a) For the R-L circuit: Z = y/(R2 +XL

2 ) 

tan φ = —- , sin φ — —- and cos φ — — 
R Z Z 

(b) For the R-C circuit: Z = y W 2 +XC
2 ) 

tana R 
xc A R 

sin a = —̂  and cos a = — 
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<K-W 

(b) VC('-IXC) 

WTL-^C) 

> / 

(V*L > 

A ^L( - /AL) 

(d) 

IMPEDANCE TRIANGLE IMPEDANCE TRIANGLE 

VVC{-.1XC) 

Fig 3 

11 In an a.c. series circuit containing resistance R, inductance L and capacitance C, 
the applied voltage Kis the phasor sum of VRi VL and Vc (see Fig 3). VL and Vc 
are anti-phase, i.e. displaced by 180°, and there are three phasor diagrams possible-
each depending on the relative values of VL and Vc. 

12 WhenXL>XC(Fig3(b)): Z = y/[R2+(XL-Xc)2] 
and tan 0 = ( * L ~ * c ) 

R 
13 WhenXC>XL (Fig3(c)): Z = ^[R2HXC-XL)2Ì 

(XC-XL) and tan a = —± — 

14 When XL = Xc (Fig 3(d)), the applied voltage Kand the current / are in phase. 
This effect is called series resonance. At resonance: 
(i) VL = Vc 
(ii) Z = R (i.e. the minimum circuit impedance possible in an L-C-R circuit). 

(iii) / R 
(i.e. the maximum current possible in an L-C-R circuit) 

(iv) Since XL = Xc, then 2vfrL = ; 
1 -, from which, fr 

1 
2*s/(LC) 

Hz, 
2vfrC 

where fr is the resonant frequency. 
(v) The series resonant circuit is often described as an acceptor circuit since it has 

its minimum impedance, and thus maximum current, at the resonant frequency. 
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(vi) Typical graphs of current / and impedance Z against frequency are shown in 
Fig 4. 

Impedance, Z 

Current,/ 

fr 

y 

Frequency 

Fig 4 \Z\ and / plotted against frequency 

15 At resonance, if R is small compared with XL and Xc, it is possible for VL and Vc 
to have voltages many times greater than the supply voltage (see Fig 3(d)). 
Voltage magnification at resonance = voltage across L (or C) 

supply voltage V 
This ratio is a measure of the quality of a circuit (as a resonator or tuning device) 
and is called the Q-factor. 

VL =I*L_ =^L _ 2nfrL 
V 

Hence Q-factor : 

IR 
(Alternatively, Q-factor = — 

R R 

" IR R 
1 

2nfrCR ) 
At resonance fr 

Hence Q-factor = 

1 
2vao 
2*frL _ 

i.e. 2nfr 
1 

1 

vuo 

y/(LC) 

16 Figure 5 shows how current /varies with frequency in an R-L-C 
series circuit. At the resonant frequency fr, current is a maximum value, shown 
as Ir. Also shown are the points A and B where the current is 0.707 of the 
maximum value at frequencies f\ and/2. The power delivered to the circuit is 
PR. At / = 0.707 In the power is (0.707 Ir)2 R = 0.5 frR, i.e., half the power 
that occur« at frequency fr. The points corresponding t o / i and / 2 are called the 
half-power points. The ctistance between these points, i.e. {fi - / i ) , is called the 
bandwidth. 
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It may be shown that Q fr 
fl-fi 

Current ' 

0 .707/ r 

Fig 5 fi fr h Frequency 

Bandwidth and half-power points / , ,/2 

17 Selectivity is the ability of a circuit to respond more readily to signals of a 
particular frequency to which it is tuned than to signals of other frequencies. 
The response becomes progressively weaker as the frequency departs from the 
resonant frequency. Discrimination against other signals becomes more 
pronounced as circuit losses are reduced, i.e., as the Q-factor is increased. Thus 
Qr =fr/(fi ~f\) *s a measure of the circuit selectivity in terms of the points on 
each side of resonance where the circuit current has fallen to 0.707 of its 
maximum value reached at resonance. The higher the Q-factor, the narrower 
the bandwidth and the more selective is the circuit. Circuits having high Q-
factors (say, in the order of 100 to 300) are therefore useful in communications 
engineering. A high Q-f actor in a series power circuit has disadvantages in that 
it can lead to dangerously high voltages across the insulation and may result in 
electrical breakdown. 

For example, suppose that the working voltage of a capacitor is stated as 
1 kV and is used in a circuit having a supply voltage of 240 V. The maximum 
value of the supply will be \ß(240), i.e., 340 V. The working voltage of the 
capacitor would appear to be ample. However, if the Q-factor is, say, 10, the 
voltage across the capacitor will reach 2.4 kV. Since the capacitor is rated only 
at 1 kV, dielectric breakdown is more than likely to occur. 

Low Q-factors, say, in the order of 5 to 25, may be found in power 
transformers using laminated iron cores. 

A capacitor-start induction motor, as used in domestic appliances such as 
washing-machines and vacuum-cleaners, having a β-factor as low as 1.5 at 
starting would result in a voltage across the capacitor 1.5 times that of the 
supply voltage; hence the cable joining the capacitor to the motor would require 
extra insulation. 
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18 For series-connected impedances the total circuit impedance can be represented 
as a single L-C-R circuit by combining all values of resistance together, all values 
of inductance together and all values of capacitance together (remembering that 

for series connected capacitors - = — 
C Ci 

1 + — + ). For example, the circuit 
. C2 

of Fig 6(a) showing three impedances has an equivalent circuit of Fig 6(b). 

Impedance 1 impedance 2 impedance 3 

Ά 

{RfR2+R3) Ui+Z-2) C 

(b) 
Fig 6 

19 (a) For a purely resistive a.c. circuit, the average power dissipated, P , is given by 
P= vi = Î1R = V2/R watts (V and / being r.m.s. values). 

(b) For a purely inductive or a purely capacitive a.c. circuit, the average power is 
zero. 

(c) For an R-L, R-C or L-C-R series a.c. circuit, the average power dissipated, P, 
is given by : P = VI cos φ watts or P — I2R watts ( V and / being r.m.s. values). 

fsin S=VI ^Q'-i/Ism <p 

^Icos<p 

(c) CURRENT TRIANGLE 

w P--VIcos<t> 

(b) POWER TRIANGLE 

Fig 7 
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20 Fig 7(a) shows a phasor diagram in which the current /lags the applied voltage V 
by angle 0. The horizontal component of V is F cos 0 and the vertical component 
of Kis Ksin ψ. If each of the voltage phasors is multiplied by /, Fig 7(b) is 
obtained and is known as the 'power triangle'. 

Apparent power, S = VI Voltamperes (VA) 
True or active power, P = VI cos φ watts (W) 

Reactive power, Q—VI sin 0 reactive 
Voltamperes (var) 

21 If each of the phasors of the power triangle of Fig 7(b) is divided by K, Fig 7(c) 
is obtained and is known as the 'current triangle*. The horizontal component of 
current, / cos 0, is called the active or the in-phase component. The vertical com­
ponent of current, / sin 0, is called the reactive or the quadrature component (see 
Problems). T r u e p o w e r i > 

22 Power factor -Apparent power S 
For sinusoidal voltages and currents, power factor = — = ■ c o s r 

S VI 
i.e. p.f. = cos 0 = ̂  (from Fig 2) 

(The relationships stated in paras. 20 to 22 are also true when current /leads 
voltage V.) 

B. WORKED PROBLEMS ON SERIES A.C. CIRCUITS 

R-LA.C. circuits 

Problem J A coil has a resistance 0f 15 Ü and an inductance 25A6 mB. Calculate 
(a) the inductive reactance, (b) the impedance and (c) the current taken from a 
200 V, 50 Uz supply, Find also the phase angle between the supply voltage and 
current. 

R = 15Ω;Ζ, = 25.46 mH = 25.46 X 10~3 H ; / = 5 0 H z ; V = 200 V 
(a) Inductive reactance XL = 2 vfL = 2π(50)(25.46 X IO"3 ) = 8.0 Ω 

(b) Impedance Z =y/(R2+XL
2) =^/(\52+&.02) = 17.0Ω, 

(c) Current / = £ = ^ - = 11.76 A 

The circuit and phasor diagrams and the voltage and impedance triangles are as 
shown in Fig 2(a). 

Since tan 0 = — , φ = arctan — = arctan -1— = 28° 4' lagging R R 15 
('Lagging' infers that the current is 'behind' the voltage and is in the position 
shown on the phasor diagram, since phasors revolve anti-clockwise.) 

Problem 2 A pure inductance of 1.273 mH is connected in series with a pure 
resistance of 30 Q, If the fr$quer$y of the sinusoidal supply is 5 kHz and the p.d. 
across the 30 Û resistor is 6 V, determine the value of th$ supply voltage and the 
voltage across tht Ì ,273 mH inductance Draw the phasor diagram. 

42 



The circuit is shown in Fig 8(a). 
Supply voltage, V = IZ 

Current I =-4 VR _ 6 _ 
30 

0.20 A 

Inductive reactance X, = 2nfL = 2π(5 X 103)( 1.273 X 10~3) = 
Impedance, Z = yJ{R2+XL

2) =V(30 2 +40 2 ) = 50 Ω 
Supply voltage V = IZ = (0.20)(50) = 10 V 
Voltage across the 1.273 mH inductance, VL = IXL = (0.2)(40) 

40 Ω 

: 8 V 

/?=30A Z.= 1 273mH 

Ik R̂=6V 

V 

(a) 
Fig 8 

y=iov 

The phasor diagram is shown in Fig 8(b). (Note that in a.c. circuits, the supply 
voltage is not the arithmetic sum of the p.d.'s across components but the phasor 
sum.) 

Problem 3 A coil of inductance 159.2 mH and resistance 20 Ω is connected in 
series with a 60 Ω resistor to a 240 V, 50 Hz supply. Determine (a)the impedance 
of the circuit, (b) the current in the circuit, (c) the circuit phase angle, (d) the p.d. 
across the 60 Ω resistor and (e) the p.d, across the coil, (f) Draw the circuit phasor 
diagram showing all voltages. 

The circuit diagram is shown in Fig 9(a). When impedances are connected in 
series the individual resistances may be added to give the total circuit resistance. 
The equivalent circuit is thus shown in Fig 9(b). 

CON 
i 
i flc=2on /? = 6on R-SOCL L-159 2mH 

Z.*159-2mH| 

A/ 

240V, 50H7. 

(a) 

h' 

Fig 9 
24 OV, 50Hz 

(b) 

Inductive reactance XL = IvfL = 2π(50)( 159.2 X IO"3) = 50 Ω 
(a) Circuit impedance, Z = s/{R^+XL

2) = V ( 8 ° 2 + 5 ° 2 ) = 9 4 · 3 4 Ω 
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(b) Circuit current, / = ■? = ^ - = 2.544 A 
Z 94.34 

(c) Circuit phase angle φ = arctan -^ = arctan 50/80 = 32° lagging. 
ΈΧΟΧΆ Fig 9(a). 

(d) VR=IR= (2.544X60) = 152.6 V 
(e> VCOJL = IZCOIL > where ZCOIL 

= ^(RC
2+XL>) 

=V(202+502) = 53.85 Ω 
Hence VC0IL = (2.544)(53.85) 

= 137.0 V 
(f) For the phasor diagram, shown in Fig 10. 

k=240V 

V, =IX, ■■ (2.544X50) = 127.2 V 
VRCOIL = IRc = ( 2 · 5 4 4 Χ 2 ° ) = 5 0·88 V 

Klcoil = 5 0 8 8 V lfc = l52 6 v ' 

Fig 10 

The 240 V supply voltage is the phasor sum of VCOIL and VR. 

Problem 4 A coll of resistance 45 & and inductance iOS.3 mH has an alternating 
voltage, v ** 141A sin $MA t voKs appüed across & Calculate (a) the inductive 
reactance» (b) to circuit impedance* <c) the current &©wa*& (4) the pd* across 
the resistance, (e> the p.d, across the inductance and (I) the phase angle between 
the supply voltage and current« 

Since v = 141.4 sin 628.4 t then VMAX = 141.4 volts and ω = 2π/= 628.4 rads/s. 
The r.m.s. voltage, K = 0.707 X 141.4 = 100 V 

and the supply frequency,/ = ^ ^ = 100 Hz. 
2π 

(a) Inductive reactance,^ = 2ir/L = 2π(100)(105.3 X IO"3) = 66.16 Ω 
(b) Circuit impedance Z = y/(R2+XL

2) =N/(452+66.162) = 80 Ω 

(c) Current / = Γ = !P0 = i .25 A 
Z 80 

(d) P.d. across the resistance, VR = IR = (1.25)(45) = 56.25 V 
(e) P.d. across the inductance, VL = IXL = (1.25)(66.16) = 82.7 V 

y 
(f) Phase angle between supply voltage and current, φ = arctan - £ 

= arctan ^ p = 55° 47' lagging 

fraMem S A 25 V, I kHz supply is connected across a coil having an inductance 
of 0.60 mH and resistance 2 Π. Determine the supply current and its phase angle, 
and the active and reactive components of the current» showing each 0η a phstsm 
diagram. 
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Inductive reactance XL = 2irfL 
= 2π(1 X 103)(0.60 X 10"3) = 3.77 Ω / F i9 1 1 

Impedance Z = y/(R 2 +XL
2 ) / c o s φ= 

= N/(22+3.772) = 4.268 Ω 2 ?45A 
Supply current / = ζ = -^- = 5.858 A 

Z 4· 2 68 / 62* 3' ^ \ 7= 5 858V 

Phase angle, φ = arctan -jj- = arctan - y - N . / 
= 62° 3' lagging ^ N . / 
Active component of current = / cos φ, ^ ν / 
where cos 0 = | = (5.858) (βΛ = 2.745 A It^„4 A 

Reactive component of current = / sin φ, where sin φ = -— 

= ( 5 · 8 5 8 ) ( S ) = 5 · 1 7 4 Α 

The phasor diagram is shown in Fig 11 where the active (or 'in-phase' 
component) is 'in-phase' with the supply voltage V. 

R-CA.C. circuits 

Problem 6 A resistance of 40 Ü is connected ia mim with a SO #F capacitor, 
if the <œtnbtaiion j» connected across a 240 V, SO Ha, supply, calculate 
(it) the impedance, (b> the current me (c) tne phase angle between tfee supply 
voltage and the oirmit 

/ ? = 4 0 Ì 2 ; C = 5 0 M F = 5 0 X IO"6 F; V= 240 V ; / = 50 Hz. 
The circuit diagram is as shown in Fig 2(b). 

Capacitive reactance Xc = ^ = 2 * 5 0 X 5 0 X 1 0 - ) " " ^ " 

(a) Impedance Z =s/(R1+Xc
1)=yJ(402+63.66*) = 15.i%Sl 

( b ) current / = f = ^ _ = 3.192 A 

(c) From Ffe 2W, phase angle a = arctän - ^ = arctan ^ 7 ^ = 57° 51' leading. 
R 4U 

('Leading' infers that the current is 'ahead' of the voltage and is in the position 
shown on the phasor diagram, since phasors revolve anticlockwise.) 
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Problem 7 A capacitor C is connected k series with a 10 Û resistor across a 
supply of frequency 100 Hz. A current of 2 A flows and the circuit impedance is 
26 Ω. Calculate (a) the value of capacitor C, (b) the supply voltage, (c) the circuit 
phase angle, (d) the p.d. across the resistor, and (e) the p.a. across the capacitor. 
Draw the phasor diagram. 

(a) Impedance Z = V ( ^ 2 + ^ c 2 ) · HenceXc =^/(Z2-R2) = v / (26 2 -10 2 ) = 24 Ω 

c 2itfC . Hence capacitance C 1 1 

(b) Since Z = - , then V = /Z = 
2nfXc 

(2)(26) = 52 V 

(c) Circuit phase angle a = arctan —£ 

= arctan ? i = 67° 23' leading 

(d) P.d. across #, FÄ = IR = (2)(10) = 20 V 
(e) P.d. across C, F c = IXc = (2)(24) = 48 V 
The phasor diagram is shown in Fig 12, 
where the supply voltage V is the phasor 
sum of VR and Vc. 

2π( 100X24) 
F = 6 6 . 3 1 M F 

7-.2A 

—> 

| /=52V Fig 12 

L-C-/? A C . circuits, series resonance and Q-Jactor 

Problem S A coil of resistance 75 O and inductance 150 mH in series with 
an 8 μψ capacitor, k connected to a 5Ô0 Vv 200 m supply, Calculate (a) the 
current flowing, <b) the phase difference between the supply voltage and current, 
(c) th^ voltage across the coil and (d) the voltage across the capacitor. Sketch the 
phasor diagram* 

The circuit diagram is shown in Fig 5, page 38. 
Inductive reactance,XL = 2π/Ι = 2π(200)(150 X IO"3) = 188.5 Ω 

1 1 - = 99.47 Ω Capacitive reactance, Xr = 
2nfC 2π(200)(8Χ IO"6) 

Since XL > Xc the circuit is inductive (see phasor diagram in Fig 3(b)) 
XL-XC = 188.5-99.47 = 89.03 Ω 
Impedance Z =y/[R*+tfL-Xc)2] =Vt(75)2+(89.03)2 ] = 116.4Ω 
(a) Current / = | = ^ ^ = 4.296 A 

(b) From Fig 3(b), phase angle 0 = arctan l^L~X^ = a r c t a n / 8 9 Ό 3 \ 

= 49° 53' lagging 
(c) Impedance of coil, Z œ / L = y/{R2+X*) =V[75 2 + 188.52] = 202.9 Ω 

Voltage across coil, VC0JL = IZcaL = (4.296)(202.9) = 871.7 V 

Phase angle of coil, Θ = arctan -~ = arctan ^ ^ = 68° 18' lagging 
R 75 
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(d) Voltage across capacitor, Vc — IXC 
= (4.296X99.47) = 427.3 V 
The phasor diagram is shown in Fig 13. 
The supply voltage V is the phasor 
sum of VC0IL and Vc. 

I-A 296A 

l/c = 427-3V Fig 13 

Problem 9 The following three impedances are connected in series across a 40 V, 
20 kHz supply: <i) a resistance of 8 Ut (n) a coil of inductance 130 μΗ and 5 & 
resistance and (iii) a 10 Π resistor in series with a 0,25 μ¥ capacitor. Calculate 
(a) the circuit current, (b) the circuit phase angle and (c> the voltage drops across 
each impedance. 

The circuit diagram is shown in Fig 14(a). Since the total circuit resistance is 
8 + 5 + 10, i.e. 23 Ω, an equivalent circuit diagram may be drawn as shown in 
Fig 14(b). 
Inductive reactance, XL = 2nfL = 2π(20 X 103)(130 X 10"6) = 16.34 Ω 

1 _ . . _ i _ l 
Capacitive reactance, Xc ^fc 2 π ( 2 0 χ 1Q3 ) (Q 2 5 χ 1 0 _ 6 } 

- 31.83 Ω 

I 1 
! ΘΠ I 

*k 
(a) 

I 5Ώ. 13O0JH | 

v2 

I 10A 0 25pF I 

40V, 20 kHz 

M 

(b) 

23Λ 130ΛΙΗ 0 25JJF 

^vw> | μ 

Fig 14 

Since Xc > XL the circuit is capacitive (see phasor diagram in Fig 3(c)). 
XC-XL = 31.83-16.34 = 15.49 Ω 
(a) Circuit impedance, Z =y/[R2+(Xc-^L)2 1 = V [ 2 3 2 + 1 5 · 4 9 2 ] = 27.73 Ω 

Circuit current, -.v=J0_ = 1 4 4 2 A 
Z 27.73 
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(b) From Fig 3(c) y circuit phase angle φ - a r c t a n (^ψι ■■ arctan 

= 33° 58' leading 
(c) From Fig 14(a). Vl=IRl= (1.442)(8) = 11.54 V 

V2 =IZ2 = V ( 5 2 + 16.34 2 ) = (1.442)(17.09) = 24.64 V 
V3 =/z3 = V ( 1 0 2 + 3 1 . 8 3 2 ) = (1.442X33.36) = 48.11 V 

The 40 V supply voltage is the phasor sum of Vx, V2 and V3 

Problem 10 Determine the 
p.d.'s Vx and V2 for the circuit 
shown in Fig 15 if the 
frequency of the supply is 
5 kHz. Draw the phasor 
diagram and hence Is S ^ : 

determine the supply voltage 
Kand the circuit phase angle. 

:,,.,....,.,,,..,,,,,:,,,:f:: 

m 
11 

Fig 15 

For impedance Zx : Rl = 4 Ω and XL = 2wfL = 2π(5 X 103)(0.286 X 10"3) 
= 8.985 Ω 

Vl =izx =Iy/(R2+XL
2) = V ( 4 2 + 8 - 9 8 5 2 ) = 4 9 - 1 8 v 

Phase angle φι = arctan L-±) = arctan ( ^ | ^ j = 66°0' lagging 

1 _ 1 For impedance Z2 : R2 = 8 Ω and Xc — 2nfC 2π(5 X 103)(1.273X 10~6) 
= 25.0Ω 

V2 = IZ2 = Iy/{R2 +XC
2 ) = 5V(82 +25.02 ) = 131.2 V 

Phase angle φ2 = arctani-^j= arctan fà^) = 72° 15' leading. 

The phasor diagram is shown in Fig 16. 
The phasor sum of Vx and V2 gives the 
supply voltage F of 100 V at a phase angle 
of 53° 8' leading. These values may be 
determine by drawing or by calculation 
—either by resolving into horizontal and 
vertical components or by the cosine 
and sine rules. 

1^ = 49187 

7--5A 

Fig 16 

Problem 11 A coil having a resistance of 20 Π and inductance 80 mH is connected 
In series with a 5 0 μΨ capacitor across a 150 V supply. Ât what frequency does 
resonance occur? Calculate tne current flowing at Hie resonant frequency. 
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Resonant frequency fr = — -^Lc,~Hwm Η*Ψ) 
= ! = -^— = 79.58 Hz 

2π / V 4 0 0 \ 2π<20> 
V IO4/ 

At resonance, impedance Z = R 
Hence current at resonance / = - = —— = 7.5 A R 2U 

fyobhm 12 Hie current at resonance in a series L-C-Ä circuit is 200 μ A. If the 
applied voîtage is 5 mV at a frequency of 100 m%> and the circuit inductance is 
50 ï&H, find (a) the circuit résistance and (b) the circuit capacitance, 

(a) Current / = 200μΑ = 200 X IO"6 A; Voltage V = 5 mV = 5 X 10"3 V 
At resonance, impedance Z — R. 

τ> V- 5X1Q-3 - 5X106 _ 2 5 o Hence resistance R = - - ^ χ 1Q_6 - 2 (χ ) χ 1Q3 25 M 

(b) At resonance *L = ^ , i.e. 2π/ΓΖ, = — 2*frC 

Hence capacitance C ^ ^ l ^ " ( 2 π x 1 0 0 X 103)*(50 X IO"3) F 

= (10»X103) pF = 50.7PF 
4π2(1010)(50) F 

mbtem IS A series circuit comprises a coil of resistance 2 a and inductance 
m 8*H, and a SO #F capacitor. Determine tfee Q f̂actor of the circuit at resonance« 

Atreso„a„ce,Q-factor = L V © - & { $ $ & " W ( g f w ) 
= I V(2000) = 22.36 

Problem 14 A coil of negHg&Je resistance and inductance 100 mH is connected 
in series with a capacitance of 2 MF and a resistance of 10& acrossa 50 ^variable 
frequency supply* ^termine (a) the resonant frequettcy* (b) the dorent at 
resonance, (c) the voltages across the coil and the capacitor at resonance, and 
(d> the CKactor of the circuit. 

1 1 1 

(a) Resonant frequency, fr - ~ 2Vao - ^ χ ί ) - 2 W © 

= —J = -^j— = 355.9 Hz 
2TFV/20 2V20 

104 
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(b) Current at resonance / = - = 77Γ = ^ A 

(c) Voltage across coil at resonance, VL = IXL =I(2nfrL) 
= (5)(2πΧ 355.9 X 100 X 10"3) = 1118 V 

1 Voltage across capacitance at resonance, Vc = IXC 2nfrC 
5 

2π(355.9)(2 X 10~6) 
1118V 

V, Vc 
(d) Q-factor (i.e. voltage magnification at resonance) = — or — 

r 2nfrL i 
[Q-factor may also have been determined by —-— or - — 

= 1118=22.36 
50 

R 2nfrCR 

or l-yj(fy (see para. 15) 

Problem 15 A filter in the form of a series L-R-C circuit is designed to 
operate at a resonant frequency of 5 kHz. Included within the filter is a 
20 mH inductance and 10 Ω resistance. Determine the bandwidth of the 
filter. 

Q-factor at resonance is given by 

_ œrL (2 π 5000)(20xl0-3) _ f i l 
Qr = ~RT = ÏÔ = 6 2 · 8 3 

Since Qr=fr/ifi-f\\ 
f 5000 

bandwidth, {f2 - / , ) = g - = | ^ j = 79.6 Hz 

POWER IN A.C. CIRCUITS 

Problem 16 An instantaneous current / = 150 sin ωί mA flows through a 
pure resistance of 4 kfi. Determine the power dissipated in the resistor. 

Power dissipated, P = I2R, where / is the r.m.s. value of current. 
If / = 150 sin ωί mA, then IMAX = 150 mA and r.m.s. current, / = 0.707 X 150 
= 106.1 mA = 0.1061 A 
Hence power P = I2R = (0.1061 )2 (4000) = 45.03 W 

Problem 17 A coil of inductance 40 mH and resistance 30 Ω is connected to 
a 200 V, 80 Hz supply. Calculate the power dissipated. 

Inductive reactance, XL = 2nfL = 2π(80)(40 X 10~3) = 20.11 Ω 
Impedance Z =^(R2+XL

2) =^/(302 +20.112) = 36.12 Ω 
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Current / = X- = ^ - = 5.537 A 
Z 36.12 

To calculate power dissipated in an a.c. circuit either of two formulae may be used. 
(i) P = I2R= (5.537)2(30) = 919.8 W, or 

(ii) P=VI cos 0, where cos φ = - = - ^ - = 0.8306 
Z 36.12 

Hence P = (200)(5.537)(0.8306) = 919.8 W 

Problem 18 A pure inductance is connected to a 100 V, 50 Hz supply and 
the apparent power of the circuit is 250 VA. Find the value of the 
inductance. 

S °50 Apparent power, S - VI. Hence current / = - = -— = 2.5 A 
V 100 

Inductive reactance, X, = V= - ° - - 40 Ω 
/ 2.5 

Since X, = 2π/Ι, inductance L = ---- = - ^ - - = 0.1 27 H or 127 m H 7- 2π/ 2π50 

Problem 19 A transformer has a rated output of 300 kVA at a power factor 
of 0.8. Determine the rated power output and the corresponding reactive 
power. 

VI = 300 kV A = 300 X 103 V A; p.f. - 0.8 = cos 0 
Power output, P = VI cos 0 = (300 X 103)(0.8) = 240 kW 
Reactive power Q = VI sin 0 
If cos 0 = 0.8, then 0 = arccos 0.8 = 36° 52' 
Hence sin 0 - sin 36° 52' - 0.6 
Reactive power, Q = (300 x ΚΡχθ.ό) = 180 kvar 

Problem 20 A load takes 150 kW at a power factor of 0.6 lagging. Calculate 
the apparent power and the reactive power. 

True power P = 150 kW = VI cos 0. Power factor = 0.6 = cos 0 

Apparent power, S = VI = ■ - = kVA. 
0.6 

Angle 0 = arccos 0.6 = 53° 8'. Hence sin 0 = sin 53° 8' = 0.8 
Hence reactive power, Q = VIsin ψ = (250 x 103)(0.8) = 200 kvar 

Problem 21 The power taken by an inductive circuit when connected to a 
240 V, 50 Hz supply is 800 W and the current is 4 A. Calculate (a) the 
resistance, (b) the impedance, (c) the reactance, (d) the inductance, (e) the 
power factor and (0 the phase angle between voltage and current. 

(a) Power. P = I2R. Hence R = ζ = 8 ^ ° = 50 Ω 
I2 42 

(b) Impedance, Z = V = ^ 4 - = 60 Ω 

(c) SmwZ=y/(R2+XL
2)\hc\\XL = y/{Z2 R2 ) = y/(602 -502 ) = 33.17 Ω 
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(d) Inductive reactance, X, = 2irfL. Hence L = — - = Λ 2π/ 2π50 
= 0.1056 H or 105.6 mH 

(e) Power factor = JDiej>ower_ = VUos± = 800 = Q 8 3 3 3 
apparent power VI (240)(4) 

(f) p.f. = cos φ = 0.8333. Hence phase angle, φ = arccos 0.8333 
= 33° 34' lagging 

Problem 22 A series circuit comprising a capacitor and a resistor takes 
225 W at a power factor of 0.75 from a 120 V, 100 Hz supply. Determine (a) 
the current flowing, (b) the phase angle, (c) the resistance, (d) the impedance 
and (e) the capacitance. 

(a) Power factor = t r u e P o w e r , i.e. 0.75 225 
apparent power ( 120)(/) 

225 Hence current / = = 2.5 A (120X0.75) 
(b) Power factor = 0.75 = cos φ. Hence phase angle, φ = arccos 0.75 

= 41° 25' leading 

(c) Power, P = I2R. Hence R = £- = -=?ÎL = 36 Ω 

(d) Impedance Z = ^=1-^- = 48 Ω 
/ 2.5 

(e) Capacitive reactance, Xc = yJ(Z2 -R2 ) = V(482 - 3 6 2 ) = 31.75 Ω 

Xr = . Hence capacitance, C = —-— = F 
C 2TT/C v 2nfXc 2π(100X31.75) 

= 50.13 MF 

Problem 23 A single phase motor is connected to a 400 V, 50 Hz supply. 
The motor develops 15 kW with an efficiency of 80Vo and a power factor of 
0.75 lagging. Determine (a) the input kVA's, (b) the active and reactive 
components of the current, and (c) the reactive Voltamperes. 

(a) Efficiency = o u t P u t power = output power _ output power 
input power VIcosφ (VI) (p.f.) 

Hence-8«- = 1 5 X 1Q3 , from which, VI = ^ X lOj» = 2 5 0 0 0 V A . 
100 (VI)(0J5) (0.80X0.75) 

Therefore, input kilovoltamperes = 25 kV A 

(b) Current taken by motor = input Voltamperes = VJ_ = 25J£0. 
voltage V 400 

= 62.5 A 
Active or in-phase component of current = / cos φ = (62.5)(0.75) 

= 46.88 A 
Since p.f. = cos0 = 0.75 then 0 = arccos 0.75 = 41.41° 
Hence sin φ = sin 41.41° = 0.661 4 

52 



Reactive or quadrative component of current = / sin φ = (62.5)(0.661 4) 
= 41.34 A 

(c) Reactive Voltamperes = VI sin φ = (400)(41.34) = 16.54 kvar 

C. FURTHER PROBLEMS ON SERIES A.C. CIRCUITS 

SHORT ANSWER PROBLEMS 

1 Draw phasor diagrams to represent (a) a purely resistive a.c. circuit, (b) a purely 
inductive a.c. circuit, and (c) a purely capacitive a.c. circuit. 

2 What is inductive reactance? State the symbol, the unit and the formula for 
determining inductive reactance. 

3 What is capacitive reactance? State the symbol, the unit and the formula for 
determining capacitive reactance. 

4 Draw phasor diagrams to represent (a) a coil (having both inductance and resis­
tance), and (b) a series capacitive circuit containing resistance. 

5 What does 'impedance' mean when referring to an a.c. circuit? 
6 Draw and 'impedance triangle' for an R-C circuit. From the triangle derive an 

expression for (a) impedance, and (b) phase angle. 
7 State two formulae which may be used to calculate power in a series a.c. circuit. 
8 What is series resonance? 
9 Derive a formula for resonant frequency/,, in terms of L and C 
10 What does the Q-factor of a series circuit mean? 
11 State three formulae used to calculate the Q-factor of a series circuit at resonance. 
12 State an advantage of a high Q-factor in a series high-frequency circuit. 
13 State a disadvantage of a high Q-factor in a series power circuit. 
14 Define 'power factor'. 
15 Define (a) apparent power, (b) reactive power. 
16 In an a.c. circuit (a) the horizontal component of current is called 

the 
and (b) the vertical component of current is called 

the 
17 Define (a) bandwidth, (b) selectivity 

MULTI-CHOICE PROBLEMS (answers on page 191) 

1 An inductance of 100 mH connected across a 100 V, 50 Hz supply has an 
inductive reactance of (a) 10π ki2; (b) 10π Ω; (c) ΙΟΟΟπ Ω; (d) π Ω. 

2 When the frequency of an a.c. circuit containing resistance and inductance is 
increased, the current (a) decreases; (b) increases; (c) stays the same. 

3 In Problem 2, the phase angle of the circuit (a) decreases; (b) increases; (c) stays 
the same. 

4 When the frequency of an a.c. circuit containing resistance and capacitance is 
decreased, the current (a) increases; (b) decreases; (c) stays the same. 

5 In Problem 4, the phase angle of the circuit (a) increases; (b) decreases; (c) stays 
the same. 
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6 A 10 μ¥ capacitor is connected to a 5 kHz supply. The capacitive reactance is 

(a) i ^ k ß ; (b) 1- Ω; (c) iS- Ω; (d) ^ πιΩ. 
π 10 π π 

7 In a series a.c. circuit the voltage across a pure inductance is 15 V and the voltage 
across a pure resistance is 8 V. The supply voltage is (a) 17 V; (b) 23 V; (c) 7 V; 
(d) 1.875 V. 

8 The impedance of a coil, which has a resistance of A ohms and an inductance of 
B henry's, connected across a supply of frequency C Hz is (a) 2TTBC; (b) A+B; 
(c)y/(A2+B2);(a)^{A2+(27TBC)2}. 

9 In Problem 8, the phase angle between the current and the applied voltage is 

given by: (a) arctan/^V (b) arctan(^^\ ; (c) arctan (-^—\ ; (d) tan fi*ML\ . 

10 Which of the following statements is false? 
(a) The product of r.m.s. current and voltage gives the apparent power in an 

a.c. circuit. 
(b) Impedance is at a minimum at resonance in an a.c. circuit. 
(c) Current is at a maximum at resonance in an a.c. circuit. 
( d ) Apparent power = p o w e r f a c t o r 

true power 
11 In an R-L-C a.c. series circuit a current of 2 A flows when the supply voltage is 

100 V. The phase angle between current and voltage is 60° leading. Which of the 
following statements is false? 
(a) The circuit is effectively capacitive. 
(b) The apparent power is 200 V A. 
(c) The equivalent circuit reactance is 50 Ω. 
(d) The true power is 100 W. 

12 A series a.c. circuit comprising a coil of inductance 100 mH and resistance 1 Ω 
and a 10 μΓ capacitor is connected across a 10 V supply. At resonance the p.d. 
across the capacitor is (a) 10 kV; (b) 1 kV; (c) 100 V; (d) 10 V. 

CONVENTIONAL PROBLEMS 

R-L A.C. circuits 
1 A coil has a resistance of 6 Ω and an inductance of 15 mH and is connected to a 

25 V, 50 Hz supply. Calculate (a) the inductive reactance; (b) the impedance; 
(c) the current and (d) the phase angle between the voltage and current. 

[(a) 4.71 Ω; (b) 7.63 Ω; (c) 3.28 A; (d) 38°8' lagging] 
2 A coil takes a current of 3 A from a 24 V d.c. supply. When connected to a 150 V, 

50 Hz a.c. supply the current is 10 A. Calculate (a) the resistance; (b) the impedance 
and (c) the inductance of the coil. 

[(a) 8 Ω; (b) 15 Ω; (c) 40.39 mH] 
3 A pure inductance of 3.24 mH is connected in series with a resistance of 20 Ω. 

If the frequency of the sinusoidal supply is 2 kHz and the p.d. across the resistance 
is 15 V, determine the value of the supply voltage and the voltage across the pure 
inductance. Draw the phasor diagram. 

[34.02 V; 30.53 V] 
4 An alternating voltage given by v = 100 sin 314.2 / volts is applied across a coil 

of inductance 100 mH and resistance 30 Ω. Determine (a) the circuit impedance; 
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(b) the current; (c) the p.d. across the resistance; (d) the p.d. across the inductance, 
and (e) the circuit phase angle. 

[(a) 43.44 Ω; (b) 1.628 A; (c) 48.84 V; (d) 51.15 V; (e) 46°19' lagging] 
5 A 40 V, 2.5 kHz supply is connected across a coil having an inductance of 0.40 mH 

and resistance 3 Ω. Determine the supply current and its phase angle and the active 
and reactive components of the current, showing each on a phasor diagram. 

[5.745 A; 64°29' lagging; 2.475 A; 5.185 A] 

R-CA.C. circuits 
6 A 60 μ¥ capacitor and a resistance of 40 Ω are connected in series across a 250 V, 

50 Hz supply. Calculate (a) the impedance; (b) the current; and (c) the phase angle 
between voltage and current. 

[(a) 66.44 Ω; (b) 3.763 A; (c) 52°59' leading] 
7 A 15 Ω resistor is connected in series with an unknown capacitor C across a 

200 Hz frequency supply. The circuit impedance is 30 Ω when a current of 3 A 
flows. Calculate (a) the value of capacitor C; (b) the supply voltage; (c) the circuit 
phase angle; (d) the p.d. across the resistor; and (e) the p.d. across the capacitor. 
Draw the phasor diagram. 

[(a) 30.63 MF; (b) 90 V; (c) 60° leading; (d) 45 V; (e) 77.94 V] 
8 A 32 μΡ capacitor and a 40 Ω resistor are connected in series across a 300 V 

supply. If the current flowing is 5 A find (a) the frequency of the supply; (b) the 
p.d. across the resistor and (c) the p.d. across the capacitor. 

[(a) 111.2 Hz; (b) 200 V; (c) 223.6 V] 

L-C-R a.c. circuits, series resonance and Q-factor 
9 A coil of inductance 74 mH and resistance 28 Ω in series with a 50 μ¥ capacitor 

is connected to a 250 V, 50 Hz supply. Calculate (a) the impedance; (b) the 
current flowing; (c) the phase difference between voltage and current; (d) the 
voltage across the coil; and (e) the voltage across the capacitor. Sketch the phasor 
diagram. 

[(a) 49.16 Ω; (b) 5.085 A; (c) 55° 17' leading: (d) 185.1 V; (e) 323.7 V] 
10 Three impedances are connected in series across a 100 V, 2 kHz supply. The 

impedances comprise: 
(i) an inductance of 0.45 mH and 2 Ω resistance, 

(ii) an inductance of 570 μΗ and 5 Ω resistance, and 
(iii) a capacitor of 10 μΡ and 3 Ω resistance. 

Assuming no mutual inductive effects between the two inductances calculate 
(a) the circuit impedance; (b) the circuit current; (c) the circuit phase angle and 
(d) the voltage across each impedance. Draw the phasor diagram. 
[(a) 11.12 Ω; (b) 8.99 A; (c) 25°56' lagging; (d) 53.92 V; 78.53 V; 76.46 V] 

7=?A 

Fig 17 

11 For the circuit shown in Fjg 17 determine the voltages V\ and V2 if the supply 
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frequency is 1 kHz. Draw the phasor diagram and hence determine the supply 
voltage V and the circuit phase angle. 

[ Vx = 26.0 V; V2 = 67.05 V; V = 50 V; 53°8' leading] 
12 A coil having an inductance of 50 mH and resistance 10 Ω is connected in series 

with a 40 μ¥ capacitor across a 100 V supply. At what frequency does resonance 
occur? Calculate the current flowing at the resonant frequency. 

[112.5 Hz; 10 A] 
13 The current at resonance in a series L-C-R circuit is 5 mA. If the applied voltage 

is 300 mV at a frequency of 50 kHz and the circuit capacitance is 0.03 μ¥, find 
the circuit resistance and inductance. 

[60Ω:337.7μΗ] 
14 A series circuit comprises a coil of resistance 20 Ω and inductance 2 mH and a 

500 pF capacitor. Determine the Q-factor of the circuit at resonance. If the supply 
voltage is 1.5 V, what is the voltage across the capacitor? 

[100; 150 V] 
15 Calculate the inductance of a coil which must be connected in series with a 

2000 pF capacitor to give a resonant frequency of 250 kHz. 
[202.6 μΗ] 

16 A coil of inductance 50 mH and negligible resistance is connected in series with 
a 5 μ¥ capacitor and a resistance of 12.5 Ω across a 200 V, variable frequency 
supply. Calculate (a) the resonant frequency; (b) the current at resonance; 
(c) the voltage across the coil and the capacitor at resonance; and (d) the Q-factor 
of the circuit. 

[(a) 318.3 Hz; (b) 16 A; (c) 1600 V; (d) 8] 
17 A coil of inductance 0.2 H and 10 Ω resistance is connected in series with a 

capacitor across a 150 V, 100 Hz supply. If the current is in phase with the supply 
voltage, determine the value of the capacitance and the p.d. across its terminals. 

[ 12.67 MF; 1884 V] 

Power in a.c. circuits 
18 A voltage v = 300 sin ωί volts is applied across a resistance of 10 kΩ. Find the 

power dissipated in the resistor. 
[4.50 W] 

19 A 10 juF capacitor is connected to a 200 V, 100 Hz supply. Determine the true 
power and the apparent power. 

[0; 251.3 VA] 
20 A coil of inductance 5 mH and resistance 20 Ω is connected to a 40 V, 1 kHz 

supply. Calculate the power dissipated. 
[23.07 W] 

21 A pure inductance is connected to a 120 V, 60 Hz supply and the apparent power 
of the circuit is 200 VA. Find the value of the inductance. 

[191 mH] 
22 A motor takes a current of 12 A when supplied from a 240 V a.c. supply. Assuming 

a power factor of 0.75 lagging find the power consumed. 
[2.16 kW] 

23 A transformer has a rated output of 200 kVA at a power factor of 0.7. 
Determine the rated power output and the corresponding reactive power. 

[140 kW; 142.8 kvar] 
24 The reactive load on a substation is 120 kvar and the apparent power supplied is 

150 kVA. Calculate the corresponding power and power factor. 
[90kW;0.6] 
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25 A load takes 90 kW at a power factor of 0.75 lagging. Calculate the apparent 
power and the reactive power. 

[120 kVA; 79.37 kvar] 
26 The power taken by an inductive circuit when connected to a 200 V, 50 Hz 

supply is 1.2 kW and the current is 8 A. Calculate (a) the resistance; (b) the 
impedance; (c) the reactance; (d) the inductance; (e) the power factor and (f) the 
circuit phase angle. 
[(a) 18.75 Ω; (b) 25 Ω; (c) 16.54 Ω; (d) 52.65 mH; (e) 0.75; (0 41°25' lagging] 

27 A capacitor connected in series with a resistor takes 300 W at a power factor of 
0.80 from a 150 V, 200 Hz supply. Calculate (a) the current flowing; (b) the 
circuit phase angle; (c) the resistance; (d) the impedance, and (e) the capacitance. 

[(a) 2.5 A; (b) 36°52' leading; (c) 48 Ω; (d) 60 Ω; (e) 22.10 μ¥] 
28 A single'phase motor is connected to a 415 V, 50 Hz supply. The motor develops 

12 kW at an efficiency of 75% and a power factor of 0.8 lagging. Determine (a) 
the input kVA; (b) the active and reactive components of the current; and (c) 
the reactive voltampers. 

[(a) 20 kVA; (b) 38.55 A; 28.91 A; (c) 12 kvar] 
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3 Single-phase parallel 
a.c. circuits 

MAIN POINTS CONCERNED WITH SINGLE-PHASE PARALLEL A.C. 
CIRCUITS 

In parallel circuits, such as those shown in Fig 7, the voltage is common to each 
branch of the network and is thus taken as the reference phasor when drawing 
phasor diagrams. 
R-L parallel circuit. In the two branch parallel circuit containing resistance R and 
inductance L shown in Fig 1(a), the current flowing in the resistance, IR , is 
in-phase with the supply voltage V and the current flowing in the inductance, IL , 
lags the supply voltage by 90°. The supply current I is the phasor sum of IR and 
lL and thus the current / lags the applied voltage V by an angle lying between 0° 
and 90° (depending on the values of IR and IL ), shown as angle φ in the phasor 
diagram. 
From the phasor diagram: / = y/(JR

2 +//* ), (by Pythagoras' theorem) 

where IR 

tan φ 

_ V 
R 

IR 

and IL 

, sin φ = 

_ V 

= ^ a n d 
/ 

IR cos φ = — 

(by trigonometric ratios) 

Circuit impedance, T 

R-C parallel circuit. In the two branch parallel circuit containing resistance R and 
capacitance C shown in Fig Kb), IR is in-phase with the supply voltage V and the 
current flowing in the capacitor, Ic, leads V by 90°. The supply current I is the 
phasor sum of IR and Ic and thus the current / leads the applied voltage V by an 
angle lying between 0° and 90° (depending on the values of IR and / c ) , shown 
as angle a in the phasor diagram. 
From the phasor diagram : / = y/(IR

 2 +/c
2 ), (by Pythagoras' theorem) 

where JR = - and Ic = — 
R XQ 

Ic Ic IR tan a = —- , sin a = — and cos a = — (by trigonometric ratios) 
IR I I 

Circuit impedance Z = -
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CIRCUIT DIAGRAM PHASOR DIAGRAM 

7R R 
I > d=3 1 

1 I A*« A 

(a ) 

(b) 

/ Λ 

Figi 

( i) 

A7c 

V ^ 
-^ 

H i . t 
I- Ir'A 

V 

4 Ζ,-C parallel circuit. In the two branch parallel circuit containing inductance L and 
capacitance C shown in Fig 1(c), IL lags V by 90° and Ic leads F by 90°. 
Theoretically there are three phasor diagrams possible—each depending on the 
relative values of IL and Ic : 
(i) IL > Ic (giving a supply current, I = IL —Ic lagging V by 90°) 
(ii) 
(iii) 

IC>L (giving a supply current, 
(giving a supply current, 

Ic-
0). 

IL leading V by 90°) 

The latter condition is not possiole in practice due to circuit resistance inevitably 
being present (as in the circuit described in para. 5). 

For the L-C parallel circuit, lL I r = ^ 

I = phasor difference between IL and Ic, and Z — ~ . 
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LR-C parallel circuit. In the two branch circuit containing capacitance C in 
parallel with inductance L and resistance R in series (such as a coil) shown in 
Fig 2(a), the phasor diagram for the LR branch alone is shown in Fig 2(b) and the 
phasor diagram for the C branch is shown alone in Fig 2(c). Rotating each and 
superimposing on one another gives the complete phasor diagram shown in Fig 2(d). 

KA ^V 

/A 

^R 

Hh 
it 

V 
(a) 

» / c 

Fig 2 (f) 7LR 

->v 

The current ILR of Fig 2(d) may be resolved into horizontal and vertical compon­
ents. The horizontal component, shown as op is IIR cos φι, and the vertical 
component, shown as pq is ILR sin 0 i . There are three possible conditions for this 
circuit: 
(i) Ic> IJR sin 0! (giving a supply current / leading V by angle 0-as shown in 

Fig 2(e)). 
(ii) IJR sin φ> Ic (giving / lagging V by angle 0-as shown in Fig 2(f)). 

(iii) Ic = ILR sin 0! (this is called parallel resonance, see para. 10). 
There are two methods of finding the phasor sum of currents IIR and Ic in 
Figs 2(e) and (f). These are: (i) by a scaled phasor diagram, or (ii) by resolving 
each current into their 'in-phase' (i.e. horizontal) and 'quadrature' (i.e. vertical) 
components (see chapter 2, para. 21). 
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/ , - - £ 

With reference to the phasor diagrams of Fig 2: 
Impedance of LR branch, ZLR = y/(R2+XL

2) 

Current, ILR = ^- — _c 

Supply current / = phasor sum of ILR and Ic (by drawing) 
—\/{(JLR COS0!)2 +{ILR sin 0I ~ / c ) 2 } (by calculation) 

where ~ means 'the difference between'. 

Circuit impedance Z = — 

tan 0! = — = — , sin φι = : 
D 

and cos 0i = -£S— 
%LR 

t a n ^ , / « « i n » . ~ / c 
4Ä COS# 

For any parallel a.c. circuit: 
True or active power, 

or 
Apparent power, 
Reactive power, 

and cos 0 = _'LR COS0! 

P = VI cos 0 watts (W) 
P = IR

2R watts 
S = VI Voltamperes (VA) 
Q — VI sin 0 reactive Voltamperes (VAr) 

Power factor = true power = g = c o s 0 
apparent power S 

(These formulae are the same as for series a.c. circuits.) 
(see Problems 1 to 7) 

10 (i) Resonance occurs in the two branch circuit containing capacitance C in 
parallel with inductance L and resistance R in series (see Fig 2(a)) when the 
quadrature (i.e. vertical) component of current ILR is equal to Ic. At this 
condition the supply current / is in-phase with the supply voltage V. 

(ii) When the quadrature component of ILR is equal to Ic then: 

Ic — ILR sin 0X (see Fig 3) •'c ^ 

Hence - ^ = (^-\ ( ^ ) , (from para. 8) 

from which, ZLR
2 = XCXL = ( 2 π / , Ι ) ^ - ± ^ = | 

Hence [S/(R2+XL
2)]2 

( 2 π / Γ Ι ) 2 = | - * 2 

i.e. parallel resonant frequency,/,. = ^-\j( ^ Ί Hz 

(1) 
■fr(=A.R cos^) 

Π . >■ ," > | / 

= ^and/?2+JT7
2 = ^ 

C z C 
WLR sin φ , 

Fig 3 

(When R is negligible, then/r = , which is the same as for series 
2ny/(LC) r e s o n a n c e ) 
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(iii) Current at resonance, 

Ir = ILR cos φι (from Fig 3) 

■ (έ;) (t) ("°""""81 

= VR 

z 2 
However from equation (1), ZLR

2 = — 

Hence 7, = ^ = ψ (2) 

C 
The current is at a minimum at resonance. 

(iv) Since the current at resonance is in-phase with the voltage the impedance of 
the circuit acts as a resistance. This resistance is known as the dynamic 
resistance, RD (or sometimes, the dynamic impedance). 

From equation (2), impedance at resonance : . V 

RD 

_ L 
RC 

_ L 
RC 

i.e. dynamic resistance, RD = — ohms 
RC 

(v) The parallel resonant circuit is often described as a rejector circuit since it 
presents its maximum impedance at the resonant frequency and the resultant 
current is a minimum. 

11 Currents higher than the supply current can circulate within the parallel branches 
of a parallel resonant circuit, the current leaving the capacitor and establishing 
the magnetic field of the inductor, this then collapsing and recharging the 
capacitor, and so on. The Q-factor of a parallel resonant circuit is the ratio of the 
current circulating in the parallel branches of the circuit to the supply current, 
i.e. the current magnification. 
Q-factor at resonance = current magnification = circulating current 

supply current 
Jç_ -JLR sin<fti 

ILR COS0! COS0! R 
2nfL 

i.e. Q-factor at resonance = —r— (which is the same as for a series circuit) 
R 

(see Problems 8 to JO). 
Note that in a parallel circuit the Q-factor is a measure of current magnification, 
whereas in a series circuit it is a measure of voltage magnification. 

12 At mains frequencies the Q-factor of a parallel circuit is usually low, typically 
less than 10, but in radio-frequency circuits the Q-factor can be very high. 

13 For a particular power supplied, a high power factor reduces the current flowing 
in a supply system and therefore reduces the cost of cables, switch-gear, trans­
formers and generators. Supply authorities use tariffs which encourage electricity 
consumers to operate at a reasonably high power factor. 

Industrial loads such as a.c. motors are essentially inductive (R-L) and may 
have a low power factor. One method of improving (or correcting) the power 
factor of an inductive load is to connect a static capacitor C in parallel with the 
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I A -tf 

(a) 

Fig 4 

=>V 

load (see Fig 4(a)). The supply current is reduced from IJR to / , the phasor sum 
of ILR and Ic, and the circuit power factor improves from cos φι to cos φ2 

(see Fig 4(b)). 
(See Problems 11 to 14). 

B. WORKED PROBLEMS ON PARALLEL A.C. CIRCUITS 

Problem 1 A 2Q U resistor is connected in parallel with an inductance of 
2.387 mH across a 60 V, Î kHz supply. Calculate (a) the current in each branch; 
<b) tht supply current; (c) the circuit phase angle; (d) the circuit impedance; and 
(e) the power consumed. 

The circuit and phasor diagrams are as shown in Fig 1(a). 

(a) Current flowing in the resistor, 

Current flowing in the inductance, IL 

!R 

'L 

_ V _ 
R 

_ V 

= 6 0 - 3 A 
20 

_ V 
2-nfL 

60 : 4 A 
2π( 1000X2.387 X 10~3)" 

(b) From the phasor diagram, supply current, / =\/(lR
2 +^/ 2 ) =\/(32 + 4 2 ) = 5 A 

(c) Circuit phase angle φ = arctan — = arctan — = 53° 8' lagging 
IR 3 

(d) Circuit impedance, Ζ = - = ^ - = 1 2 Ω 

(e) Power consumed P = VI cos φ = (60)(5)(cos 53° 8') = 180 W 
(Alternatively, power consumed P = IR

2R = (3) 2 (20) ^ 180 W) 

Problem 2 A 3 0 μψ capacitor is connected in parallel with an 80 St resistor 
across a 240 V, 50 Hz supply. Calculate (a) the current in each branch; (b) the 
supply current ; (c) the circuit phase angle; (d) the circuit impedance; (e) the 
power dissipated and (f) the apparent power, 
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The circuit and phasor diagrams are as shown in Fig Kb). 

(a) Current in resistor IR = - = — - = 3 A 

: 2wfCV = 2π(50)(30 X 10-6)(240) Current in capacitor IQ = -J— 
Xc 

V 
1 

2nfC 

(b) Supply current 
= 2.262 A 

/ = ^ ( / / ?
2 + / c , 2 )= v / (3 2 +2 .262 2 ) = 3.757A 

/ 9 9^9 
(c) Circuit phase angle, a = arctan -£- = arctan ^—— =37° Γ leading 

IR 3 

(d) Circuit impedance Z = ^ = - ^ - = 63.88 Ω 
(e) True or active power dissipated P = VI cos a = (240)(3.757) cos 37° Γ 

= 720W 
(Alternatively, true power P = IR

2R = (3)2(80) = 720 W) 
(0 Apparent power, S = VI = (240)(3.757) = 901.7 VA 

Problem 3 A capacitor C is connected in parallel with a resistor M across a 
120 V, 20Û Hz supply* The supply current is 2 A at a power factor of 0.6 
leading. Determine the values of C and R. 

The circuit diagram is shown in Fig 5(a). 
Power factor = cos φ = 0.6 leading. Hence φ = arccos 0.6 = 53° 8' leading. 
From the phasor diagram shown in Fig 5(b), IR = I cos 53° 8' = (2)(0.6) = 1.2 A 

and Ic = / sin 53° 8' = (2)(0.8) = 1.6 A 
(Alternatively, IR and Ic can be measured from a scaled phasor diagram.) 

7 = 2AA 

y=120V 

Fig 5 (b) 

From the circuit diagram, IR =^ from which R = y- = —— = 100 Ω R /o 1.2 

and In 
V _ 2vfCV, from which C = -?— 

2-nfV 
1.6 

2π(200)(120) 
10.61 μ¥ 

Problem 4 A pure inductance of 120 mH is connected in parallel with a 25 \LV 
capacitor and the network is connected to a 100 V, 50 Hz supply. Determine 
(a) the branch currents; (b) the supply current and its phase angle; (c) the 
circuit impedance; and (d) the power consumed. 
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The circuit and phasor diagrams are as shown in Fig 1(c). 
(a) Inductive reactance XL = 2-nfL = 2π(50)(120 X 10~3) = 37.70 Ω 

Capacitive reactance Xr = —— = 7- = 127.3 Ω 
c 2nfC 2π(50)(25 X IO"6) 

Current flowing in inductance / , = — = = 2.653 A 
1 XL 37.70 

Current flowing in capacitor / , , = — = 1QQ = 0.786 A c Xc 127.3 
(b) lL and lç are anti-phase. Hence supply current I = IL -Ic - 2.653-0.786 

= 1.867 A 
The current / lags the supply voltage V by 90° (see Fig l(c)(i). 

(c) Circuit impedance Z = - = - ^ - = 53.56 Ω 
/ 1.867 

(d) Power consumed P = VI cos φ = ( 100)( 1.867)(cos 90°) = 0 W 

Problem S Repeat Problem 4 for the condition when the frequency is changed 
to 150 Hz 

(a) Inductive reactance, XL = 2π(150)(120 X IO"3) = 113.1 Ω 

Capacitive reactance, ΧΓ= . Λ * ζ— = 42.44 Ω 
c 2π(150)(25Χ 10"6) 

Current flowing in inductance, IL = — = -1^0- = 0.884 A 

Current flowing in capacitor, In = — = = 2.356 A 
c Xc 42.44 

(b) Supply current, / = lQ-lL = 2.356-0.884 = 1.472 A leading F by 90° 
(see Fig l(c)(ii). 

(c) Circuit impedance, Z = - = - ^ - = 67.93 Ω 
/ 1.472 

(d) Power consumed, P = VI cos φ = 0 W (since φ = 90°) 

From Problems 4 and 5: 
(i) When XL < Xc then IL > Ic and / lags V by 90°. 

(ii) When XL > Xc then IL < Ic and / leads V by 90°. 
(iii) In a parallel circuit containing no resistance the power consumed is zero. 

Problem 6 A coil of inductance 159,2 mH and resistance 40 Q is connected in 
parallel with a 30 ßV capacitor across a 240 V, 50 Hz supply* Calculate (a) the 
current in the coil and its phase angle, <b) the current in the capacitor and its 
phase angle, (c) the supply current and its phase angle, <d) the circuit impedance, 
(e) the power consumed, (f) the apparent power and (g) the reactive power. Draw 
the phasor diagram, 

The circuit diagram is shown in Fig 6(a). 
(a) For the coil, inductive reactance XL = litfL = 2π(50)(159.2 X 10~3) = 50 Ω 

Impedance Zx =y/(R2+XL
2) = V(402+502) = 64.03 Ω 

Current in coil, / = Ü = -2gL = 3.748 A LR Zi 64.03 
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/ Λ s 
R-.40CÌ Z. = 159 2mH 

7 L R | 

i-

(a) 

Je ^t 
Ç- 30JJF 

l^=240V. 50 Hz 

Fig 6 

V- 240V 

Branch phase angle φχ 
y 

■ arctan — = arctan 
R 

50. 
40 

(b) Capacitive reactance, Xc 
, 1 
'ivfC 

1 
2π(50)(30Χ 10~b) 

: arctan 1.25 
: 51° 20' lagging (see phasor 

diagram in Fig 6(b)) 
106.1 Ω 

_ V _ 240 = 2.262 A leading the supply voltage by 90° Current in capacitor, Ic = ~-~- β r r > v 0 
Xc 106.1 (s e e p h a s o r diagram of Fig 6(b)). 

(c) The supply current / is the phasor sum of ILR and Ic. This may be obtained 
by drawing the phasor diagram to scale and measuring the current / and its 
phase angle relative to V. (Current / will always be the diagonal of the 
parallelogram formed as in Fig 6(b)). Alternatively the currents ILR and Ic 
may be resolved into their horizontal (or 'in-phase') and vertical (or 'quadrature') 
components. The horizontal component of ILR is 

ILR cos (51° 20') = 3.748 cos 51° 20' = 2.342 A 

The horizontal component of Ic is Ic cos 90° = 0. 
Thus the total horizontal component, IH = 2.342 A 
The vertical component of ILR = -ILR sin (51° 20') = -3.748 sin 51° 20' 

= -2.926 A 
The vertical component of Ic = Ic sin 90° = 2.262 sin 90° = 2.262 A 
Thus the total vertical component, Iy = -2.926+2.262 = -0.664 A 
IH and Iy are shown in Fig 7, from which, 

/=Vt(2.342)2+(-0.664)2] = 2.434 A 

Angle φ = arctan 5 | | 1 = 15° 50' lagging. 

Hence the supply current / = 2.434 A lagging F by 15° 50'. 

240 

7H= 2 342A 

(d) Circuit impedance Z .V 
' I 2.434 

= 98.60 Ω 

(e) Power consumed 
(Alternatively P = 

(0 Apparent power 
(g) Reactive power 

P = VI cos φ = (240X2.434) cos 15° 50' = 562 W 
2R (in this case) = (3.748)2(40) = 

S=VI= (240X2.434) = 584.2 V A 
Q = VI sin 0 = (240)(2.434)(sin 15° 50') 

562 W) 

159.4 var 
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Problem 7 À coil of inductance 0*12 H and resistance 3 kU is connected in 
parallel with a 0,02 μψ capacitor and is supplied at 40 V at a frequency of 5 kHz, 
Determine (a) the current in the coil, and (b) the current in the capacitor, 
(c) Draw to scale the phasor diagram and measure the supply current and its 
phase angle. Calculate (d) the circuit impedance and (e) the power consumed. 

The circuit diagram is shown in Fig 8(a). 
(a) Inductive reactance, XL = 2nfL = 2π(5000)(0.12) = 3770 Ω 

Impedance of coil, Zy = y/(R2+XL
2) =N/[(3000)2+(3770)2] =4818Ω 

Current in coil, I,a = _ V 40 
Zi 4818 

X, 

= 8.30 mA 

Branch phase angle φ = arctan — = arctan ;* ~- =51.5° lagging. 
R 3000 

A?=3kfl Z. = 0 12H 

V u C=OO?MF| 

-Hl· 
cW-

0 2 4 « β 10 12 mA 

y=40v,5kHz 

Fig 8 

(b) Capacitive reactance, Xc = 

Capacitor current, Jc = 

- > | / = 40V 

/J_R= 8-30 mA 

1 _ 1 
litfC 2π(5000)(0.02 X 10~6) 

V _ 40 

= 1592Ω 

1592 25.13 mA leading V by 90°. 

(c) Currents ILR and lQ are shown in the phasor diagram of Fig 8(b). The 
parallelogram is completed as shown and the supply current is given by the 
diagonal of the parallelogram. The current / is measured as 19.3 mA leading 
voltage V by 74.5° 
(By calculation, I=y/WLR cos 5\.5°)2+(IC-ILR sin51.5°)2] = 19.34A 

lr-liR sin51.5°\ _ 0 and 0 = arctan c LR g—) =74.5° 
\ ILR cos 51.5° / 

(d) Circuit impedance, Z : 40 = 2.073 ΙίΩ 
/ 19.3 X 10" 

(e) Power consumed, P = VI cos φ = (40)(19.3 X 10"3)(cos 74.5°) = 206.3 mW 
(Alternatively, P = IR

2R = ILR
2R = (8.30 X 10~3)2(3000) = 206.7 mW) 

Problem 8 A pure inductance of 150 mH is connected in parallel with a 40 μψ 
capacitor across a 50 V, variable frequency supply. Determine (a) the resonant 
frequency of the circuit and (b) the current circulating in the capacitor and 
inductance at resonance. 
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The circuit diagram is shown in Fig 9. 

(a) Parallel resonant frequency,/ = — Λ/ί — — ι 
r l^XLC L2) 

However, resistance R = 0. Hence, 

/, h<(ic)-hA\ V(150X 10"3)(40 

(b) Current circulating in L and C at resonance, 

X 10~6)/ 

L-- 150mH 

d^~^>\ 
Hh 

C-40uF 

50 V 

Fig 9 

V_ _ \— = 2nfCV 

2*frC 

Hence ICIRC = 2π(64.97)(40 X 10"6)(50) = 0.816 A 

(Alternatively, Ic 
50 

XL 2nfrL 2π(64.97)(0.15) = 0.817 A) 

Problem 9 A coil of inductance 0.20 H and resistance 60 Û is connected in 
parallel with a 20 μΨ capacitor across a 20 V, variable frequency supply. Calculate 
(a) the resonant frequency; (b) the dynamic resistance; (c) the current at 
resonance and (d) the circuit Q-factor at resonance. 

(a) Parallel resonant frequency,/ = —*/( — ——I 

1 
2π 
1 

. // \ (6Q)2 \ 
V^(0.20)(20X 10~6) (0.2)2/ 

, = J_ +- V(250 000-90 000) = - ^ 0 6 0 000) 
ζπ 2π 

~ (400) 2π 
63.66 Hz 

(b) Dynamic resistance, Rn = — = 0.2 
RC (60)(20X 10~6) 

166.7 Ω 

(c) Current at resonance, / = 20 = 0.12A 

(d) Circuit Q-factor at resonance = 1^1ÎL = 2π(63.66)(0.2) = χ 3 3 
R 60 

Alternatively, Q-factor at resonance = current magnification (for a parallel 

2irfrCV= 2π(63.66)(20 X 10-6)(20) = 0.16 A 

circuit) : 

' Xc 

= 'Λ 
V 
1 

2nfrC 

Hence Q-factor = .0.16 
0.12 

1.33, as obtained above. 
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Ffobkm Ì0 A coil of inductance 10Q mH and resistance 8€Ô Ü fe connected 
in patafiei with a variable capacitor across a i 2 V, 5 kHz supply. Detenni»« for 
the condition when the supply cuttmt is a minimum: (a) the capacitance of the 
capacitor, (b> the dynamic resistance, (c) the supply current, and (à) the (Hector, 

(a) The supply current is a minimum when the parallel circuit is at resonance. 

Resonant frequency, fr = ^ V i / T ; ~ Jj) 

1 R2 
Transposing for C gives: (2nfr)2 = --— - -γ 

K J'} L2 LC 

C = 1 L K ) 2 + S! 
When A = 100 mH, R = 800 Ω and / = 5000 Hz, 
C= ? 

100 X 10-3 {(2,5000)^ ( i o o ^ Q _ 3 ) 2 j 

1 
" 0.1 [π2108 +(0.64)IO8 

IO6 
— » F 

0.1(10.51 X IO8) 
= 0.009 515 μ¥ or 9.515 nF. 

, u h . . D L _ 100 X IO"3 _ ! , 1 4 , 0 (b) Dynamic resistance, RD = CR ~ ^ 5 1 5 x 1 0-9)(800) "
 1 3 " 1 4 * " 

(e) Supply current at resonance, ' r = jjp = 1 3 1 4 x 1 Q 3 = ° ' 9 1 3 m A ' 

,ix~e , . 2 π / ^ _ 2π(5000)(100 X IO"3) _ ? Q? (d) Q-factor at resonance = ' = —v ^— *- - -3-9J 

/ V/Xr IvfCV 
Alternatively, Q-factor at resonance = -j— = = —j-— 

V r r 

= 2π(5000)(9.515 X 10~9)(12) = 3 9 3 
0.913 X IO"3 

Problem 11 A single-phase motor takes 50 A at a power factor of 0,6 lagging 
from a 240 V, 50 Hz supply. Determine (a) the current taken by a capacitor 
connected in parallel with the motor to correct the power factor to unity, and 
(b) the value of the supply current after power factor correction. 

The circuit diagram is shown in Fig 10(a). 
(a) A power factor of 0.6 lagging means that cos <f> = 0.6 

i.e. φ = arccos 0.6 = 53° 8'. 
Hence IM lags V by 53° 8' as shown in Fig 10(b). 
If the power factor is to be improved to unity then the phase difference 
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■Θ-
7Μ= 5 0 Α Α J Q 

\ > IK 
7t 

ό-β-

Fig 10 

V- 240V, 50 HZ 

(a) 

between supply current / and voltage V is 0°, i.e. / is in phase with V as shown 
in Fig 10(c). For this to be so, 1Q must equal the length ab, such that the 
phasor sum of lM and Ic is /. 
ab = lM sin 53° 8' = 50(0.8) = 40 A. 
Hence the capacitor current Ic must be 40 A for the power factor to be 
unity. 

(b) Supply current I = IM cos 53° 8' = 50(0.6) = 30 A. 

Problem 12 A 400 V alternator is supplying a load of 42 kW at a power 
factor of 0.7 lagging. Calculate (a) the kVA loading and (b) the current taken 
from the alternator, (c) If the power factor is now raised to unity find the new 
kVA loading 

(a) Power = VI cos φ = (VI) (power factor) 

Hence K/ = E2wer = 42XA9Ì = 6 0 k V A 
p.f. 0.7 

(b) r / = 60 0 0 0 V A . H e n c e / = ^ ° - ^ 0 _ = ^ - 9 ^ = 150A 
V 400 

(c) The kVA loading remains at 60 kVA irrespective of changes in power 
factor. 

Problem 13 A motor has an output of 4.8 kW, an efficiency of 80% and a 
power factor of 0.625 lagging when operated from a 240 V, 50 Hz supply. It 
is required to improve the power factor to 0.95 lagging by connecting a 
capacitor in parallel with the motor. Determine (a) the current taken by the 
motor; (b) the supply current after power factor correction; (c) the current 
taken by the capacitor; (d) the capacitance of the capacitor, and (e) the kvar 
rating of the capacitor. 

(a) Efficiency = EPweroutpul ^ ^ ^_ = _ 4 8 0 0 
power input 100 power input 

Power input ,4800 
' 0.8 ; 6000 W. 

Hence, 6000 = VIM cos φ = (240)(1MX0.625), since cos φ = p.f. = 0.625 

Thus current taken by the motor, 1M - 6000 
(240X0.625) 

= 40 A 
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> V- 240 V 

/ M = 4 0 A 

51*19' 

>V 

The circuit diagram is shown in Fig 11(a). 
The phase angle between Ι„ and V is given by : 
0 = arccos 0.625 = 51° 19 hence the phasor diagram is as shown in Fig 1Kb). 

(b) When a capacitor C is connected in parallel with the motor a current Ic flows 
which leads F by 90°. The phasor sum of IM and Ic gives the supply current /, 
and has to be such as to change the circuit power factor to 0.95 lagging, i.e. 
a phase angle of arccos 0.95 or 18° 12' lagging, as shown in Fig 11(c). 
The horizontal component of 1M (shown as oa) = 1M cos 51° 19' 

= 40 cos 51° 19 '= 25 A 
The horizontal component of / (also given by oa) = / cos 18° 12' = 0.95 / 
Equating the horizontal components gives: 25 = 0.95 / 

25 Hence the supply current after p.f. correction, / = —— 26.32 A 

(c) The vertical component of lM (shown as ab) = lM sin 51 
: 31.22 A 

19' 
40 sin 51° 19' = 

The vertical component of / (shown as ac) = / sin 18° 12' 
= 26.32 sin 18° 12 '= 8.22 A 

The magnitude of the capacitor current Ic (shown as be) is given by 
ab-ac, i.e. 31.22-8.22 = 23 A 

(d) Current Ic 

from which 

V _ V— =2*fCV, 
1 

2TT/C 

2ir/K 
23 

2π(50)(240) 
F = 305 juF 

(e) kvar rating of the capacitor = - r ^ = _** ' = 5.52 kvar 

In this problem the supply current has been reduced from 40 A to 26.32 A 
without altering the current or power taken by the motor. This means that the 
size of generating plant and the cross-sectional area of conductors supplying both 
the factory and the motor can be less—with an obvious saving in cost. 

Problem 14 A 250 V, 50 Hz single-phase supply feeds the following loads (i) 
incandescent lamps taking a current of 10 A at unity power factor; (ii) 
fluorescent lamps taking 8 A at a power factor of 0.7 lagging; (iii) a 3 kVA 
motor operating at full load and at a power factor of 0.8 lagging and (iv) a 
.static capacitor. Determine, for the lamps and motor, (a) the total current; 
(b,1 the overall power factor and (c) the total power, (d) Find the value of the 
static capacitor to improve the overall power factor to 0.975 lagging. 
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A phasor diagram is constructed as shown in Fig 12(a), where 8 A is lagging 
voltage V by arccos 0.7, i.e. 45.57°, and the motor current is 3000/250, 
i.e. 12 A lagging F by arccos 0.8, i.e. 36.87°. 

(a) The horizontal component of the currents = i0 cos 0° + 12 cos 36.87° 
+ 8 cos 45.57° 

= 10+9.6+5.6 = 25.2 A. 
The vertical component of the currents = 10 sin 0°+12 sin 36.87° 

+ 8 sin 45.57° 
= 0+7.2+5.713 = 12.91 A 

From Fig 12(b), total current, 1L =v/[(25.2)2+(12.91)2 ] = 28.31 A 

at a phase angle of φ = arctan ( \~; J , i.e. 27.13° lagging. 

(b) Power factor = cos φ = cos 27.13° = 0.890 lagging. 
(c) Total power, P = VIL cos0 = (250)(28.31)(0.890) = 6.3 kW 
(d) To improve the power factor, a capacitor is connected in parallel with the 

loads. The capacitor takes a current Ic such that the supply current falls 
from 28.31 A to /, lagging V by arccos 0.975, i.e. 12.84°. The phasor 
diagram is shown in Fig 13. 

■^ y=250V 

27-13* 
121 

Fig 13 

oa = 28.31 cos 27.13° = / cos 12.84° 

Hence 7 = 2 8 . 3 1 ^ 2 7 . 1 3 ° = 2 5 . 8 4 A 

IL·- 28 31 A 

,28.31 cos 27.13° 
cos 12.84° 

Current 7C = be = (ab-ac) = 28.31 sin 27.13°-25.84 sin 12.84° 
= 12.91-5.742 = 7.168 A 

/ c ™ 

27T/C 

= 2vfCV 

1r 
Hence capacitance C = —-— 2π/ν 

7.168 F = 91.27nF 2π(50)(250) 
Thus to improve the power factor from 0.890 to 0.975 lagging a 91.27 μ¥ 
capacitor is connected in parallel with the loads. 



C. FURTHER PROBLEMS ON PARALLEL A.C. CIRCUITS 

SHORT ANSWER PROBLEMS 

1 Draw the phasor diagram for a two-branch parallel circuit containing capacitance C 
in one branch and resistance R in the other, connected across a supply voltage V. 

2 Draw the phasor diagram for a two-branch parallel circuit containing inductance L 
and resistance R in series in one branch, and capacitance C in the other, connected 
across a supply voltage V. 

3 Draw the phasor diagram for a two-branch parallel circuit containing inductance I 
in one branch and capacitance C in the other for the condition in which inductive 
reactance is greater than capacitive reactance. 

4 State two methods of determining the phasor sum of two currents. 
5 State two formulae which may be used to calculate power in a parallel a.c. 

circuit. 
6 State the condition for resonance for a two-branch circuit containing capacitance C 

in parallel with a coil of inductance L and resistance R. 
7 Develop a formula for parallel resonance in terms of resistance R, inductance L 

and capacitance C. 
8 What does the Q-factor of a parallel circuit mean? 
9 Develop a formula for the current at resonance in terms of resistance R, inductance 

L, capacitance C and supply voltage V. 
10 What is dynamic resistance? State a formula for dynamic resistance. 
11 Explain a simple method of improving the power factor of an inductive circuit. 
12 Why is it advantageous to improve power factor? 

MULTI-CHOICE PROBLEMS (answers on page 191) 

A 2-branch parallel circuit, containing a 10 Ω resistance in one branch and a 
100 μΡ capacitor in the other, has a 120 V, 2/3π kHz supply connected across it. 
Determine the quantities stated in Problems 1 to 8, selecting the correct answer 
from the following list. 
(a) 24 A; (b) 6 Ω; (c) 7.5 k«; (d) 12 A; (e) arctan 3/4 leading; (0 0.8 leading; 
(g) 7.5 Ω; (h) arctan 4/3 leading; (i) 16 A; ö) arctan 5/3 lagging; (k) 1.44 kW; 
(1) 0.6 leading; (m) 22.5 Ω; (n) 2.4 kW; (o) arctan 4/3 lagging; (p) 0.6 lagging; 
(q) 0.8 lagging; (r) 1.92 kW; (s) 20 A. 
1 The current flowing in the resistance. 
2 The capacitive reactance of the capacitor. 
3 The current flowing in the capacitor. 
4 The supply current. 
5 The supply phase angle. 
6 The circuit impedance. 
7 The power consumed by the circuit. 
8 The power factor of the circuit. 
9 A 2 branch parallel circuit consists of a 15 mH inductance in one branch and a 

50 μΡ capacitor in the other across a 120 V, l/π kHz supply. The supply 
current is: 
(a) 8 A leading by π/2 rads (b) 16 A lagging by 90° 
(c) 8 A lagging by 90° (d) 16 A leading by π/2 rads. 

73 



10 The following statements, taken correct to 2 significant figures, refer to the 
circuit shown in Fig 14. Which are false? 
(a) The impedance of the R-L branch is 5 Ω. 
(b) 1LR = 50 A; (c) Ir = 20 A; (d) L = 0.80 H; 
(e) C = 16 μ¥; (0 The 'in-phase' component 

of the supply current is 30 A 
(g) The 'quadrature' component of tife supply 

current is 40 A (h) / = 36 A. (i) Circuit phase 
angle = 33° 4Γ leading. 

(j) Circuit impedance = 6.9 Ω; V'- 250v, ^kHz 
(k) Circuit power factor = 0.83 lagging. 
(1) Power consumed = 9.0 kW Fi9 1 4 

11 Which of the following statements is false? 
(a) The supply current is a minimum at resonance in a parallel circuit. 
(b) The Q-factor at resonance in a parallel circuit is the voltage magnification. 
(c) Improving power factor reduces the current flowing through a system. 
(d) The circuit impedance is a maximum at resonance in a parallel circuit. 

12 An LR-C parallel circuit (similar to Fig 12) has the following component values: 
R = 10 Ω, L = 10 mH, C = 10 MF, V = 100 V. Which of the following statements 
is false? 
(a) The resonant frequency fr is 1.5/π kHz. 
(b) The current at resonance is 1 A. 
(c) The dynamic resistance is 100 Ω. 
(d) The circuit Q-factor at resonance is 30. 

CONVENTIONAL PROBLEMS 

1 A 30 Ω resistor is connected in parallel with a pure inductance of 3 mH across a 
110 V, 2 kHz supply. Calculate (a) the current in each branch; (b) the circuit 
current; (c) the circuit phase angle; (d) the circuit impedance; (e) the power con­
sumed, and (0 the circuit power factor. 

[(a) IR = 3.67 A, IL = 2.92 A (b) 4.69 A ] 
(c) 38° 30' lagging (d) 23.45 Ω (e) 404 W 

L(f) 0.783 lagging J 
2 A 40 Ω resistance is connected in parallel with a coil of inductance L and 

negligible resistance across a 200 V, 50 Hz supply and the supply current is 
found to be 8 A. Draw a phasor diagram to scale and determine the inductance 
of the coil. [102 mH] 

3 A 1500 nF capacitor is connected in parallel with a 16 Ω resistor across a 10 V, 
10 kHz supply. Calculate (a) the current in each branch; (b) the supply current; 
(c) the circuit phase angle; (d) the circuit impedance; (e) the power consumed; 
(0 the apparent power; and (g) the circuit power factor. Draw the phasor 
diagram. 

Ra) / Ä = 0.625 A , / c = 0.942 A; (b) 1.13 A; (c) 56° 28' leading;] 
L(d) 8.85 Ω; (e) 6.25 W; (0 11.3 VA; (g) 0.55 leading. J 

4 A capacitor C is connected in parallel with a resistance R across a 60 V, 100 Hz 
supply. The supply current is 0.6 A at a power factor of 0.8 leading. Calculate 
the value of R and C. [R = 125 Ω; C = 9.55 μ¥] 

5 An inductance of 80 mH is connected in parallel with a capacitance of 10 μ¥ 
across a 60 V, 100 Hz supply. Determine (a) the branch currents; (b) the supply 
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current; (c) the circuit phase angle; (d) the circuit impedance and (e) the power 
consumed. 

[(a) Ic = 0.377 A, IL = 1.194 A; (b) 0.817 A; (c) 90° lagging;] 
L(d) 73.44 Ω; (e) 0 W. J 

6 Repeat problem 5 for a supply frequency of 200 Hz. 
[(a) Ic = 0.754 A, IL = 0.597 A; (b) 0.157 A; (c) 90° leading;] 
L(d) 382.2 Ω; (e) 0 W. J 

7 A coil of resistance 60 Ω and inductance 318.4 mH is connected in parallel with 
a 15 μ¥ capacitor across a 200 V, 50 Hz supply. Calculate (a) the current in the 
coil; (b) the current in the capacitor; (c) the supply current and its phase angle; 
(d) the circuit impedance; (e) the power consumed; (f) the apparent power and 
(g) the reactive power. Draw the phasor diagram. 

["(a) 1.715 A; (b) 0.943 A; (c) 1.028 A at 30° 53' lagging;] 
L(d) 194.6 Ω; (e) 176.4 W; (f) 205.6 VA; (g) 105.5 var. J 

8 A 26 nF capacitor is connected in parallel with a coil of resistance 2 ΙίΩ and 
inductance 0.20 H across a 100 V, 4 kHz supply. Determine (a) the current in 
the coil; (b) the current in the capacitor; (c) the supply current and its phase 
angle (by drawing a phasor diagram to scale, and also by calculation); (d) the 
circuit impedance; and (e) the power consumed. 

[(a) 18.48 mA; (b) 62.83 mA; (c) 46.17 mA at 81° 29' leading;] 
L(d) 2.166 k ß ; (e) 0.684 W. J 

9 A 0.15 μ¥ capacitor and a pure inductance of 0.01 H are connected in parallel 
across a 10 V, variable frequency supply. Determine (a) the resonant frequency 
of the circuit, and (b) the current circulating in the capacitor and inductance. 

[(a) 4.11 kHz; (b) 38.74 mA] 
10 A 30 μ¥ capacitor is connected in parallel with a coil of inductance 50 mH and 

unknown resistance R across a 120 V, 50 Hz supply. If the circuit has an overall 
power factor of 1 find (a) the value of R; (b) the current in the coil and (c) the 
supply current. [(a) 37.7 Ω; (b) 2.94 A; (c) 2.714 A.] 

11 A coil of resistance 25 Ω and inductance 150 mH is connected in parallel with a 
10 μ¥ capacitor across a 60 V, variable frequency supply. Calculate (a) the 
resonant frequency; (b) the dynamic resistance; (c) the current at resonance and 
(d) the Q-factor at resonance, [(a) 127.2 Hz (b) 600 Ω (c) 0.10 A (d) 4.80] 

12 A coil having resistance R and inductance 80 mH is connected in parallel with a 
5 nF capacitor across a 25 V, 3 kHz supply. Determine for the condition when 
the current is a minimum, (a) the resistance R of the coil; (b) the dynamic 
resistance; (c) the supply current; and (d) the Q-factor. 

[(a) 3.705 kΩ; (b) 4.318 kΩ; (c) 5.79 mA; (d) 0.40.] 
13 A 415 V alternator is supplying a load of 55 kW at a power factor of 0.65 lagging. 

Calculate (a) the kVA loading and (b) the current taken from the alternator. 
(c) If the power factor is now raised to unity find the new kVA loading. 

[(a) 84.6 kVA; (b) 203.9 A; (c) 84.6 kVA.] 
14 A coil of resistance 1.5 kΩ and 0.25 H inductance is connected in parallel with 

a variable capacitance across a 10 V, 8 kHz supply. Calculate (a) the capacitance 
of the capacitor when the supply current is a minimum; (b) the dynamic resis­
tance, and (c) the supply current, [(a) 1561 pF; (b) 106.8 kΩ; (c) 93.66 μΑ.] 

15 A single phase motor takes 30 A at a power factor of 0.65 lagging from a 240 V, 
50 Hz supply. Determine (a) the current taken by the capacitor connected in 
parallel to correct the power factor to unity; and (b) the value of the supply 
current after power factor correction. [(a) 22.80 A; (b) 19.5 A.] 

16 A motor has an output of 6 kW, an efficiency of 75% and a power factor of 
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0.64 lagging when operated from a 250 V, 60 Hz supply. It is required to raise 
the power factor to 0.925 lagging by connecting a capacitor in parallel with the 
motor. Determine (a) the current taken by the motor; (b) the supply current 
after power factor correction; (c) the current taken by the capacitor; id) the 
capacitance of the capacitor and (e) the kvar rating of the capacitor. 

[(a) 50 A; (b) 34.59 A; (c) 25.28 A; (d) 268.2 μ¥; (e) 6.32 kvar.] 
17 A supply of 250 V, 80 Hz is connected across an inductive load and the power 

consumed is 2 kW, when the supply current is 10 A. Determine the resistance 
and inductance of the circuit. What value of capacitance connected in parallel 
with the load is needed to improve the overall power factor to unity? 

[R = 20 Ω, L = 29.84 mH; C = 47.75 μ¥] 
18 A 200 V, 50 Hz single-phase supply feeds the following loads: (i) fluorescent 

lamps taking a current of 8 A at a power factor of 0.9 leading; (ii) incandescent 
lamps taking a current of 6 A at unity power factor; (iii) a motor taking a 
current of 12 A at a power factor of 0.65 lagging. Determine the total current 
taken from the supply and the overall power factor. Find also the value of a 
static capacitor connected in parallel with the loads to improve the overall 
power factor to 0.98 lagging. [21.74 A; 0.966 lagging; 21.68 μ¥] 
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4 Three-phase systems 

A. MAIN POINTS CONCERNED WITH THREE-PHASE SYSTEMS 

Generation, transmission and distribution of electricity via the National Grid 
system is accomplished by three-phase alternating currents. 
The voltage induced by a single coil when rotated in a uniform magnetic field 
is shown in Fig 1 and is known as a single-phase voltage. Most consumers are 

nduced 
EMF 

e 

0 
r i 

90e 

Ri 

V*R 

ied\ 
1 

270° /360* 

Figi 

fed by means of a single-phase a.c. supply. Two wires are used, one called the 
hve conductor (usually coloured red) and the other is called the neutral conductor 
(usually coloured black). The neutral is usually connected via protective gear to 
earth, the earth wire being coloured green. The standard voltage for a single-phase 
a.c. supply is 240 V. The majority of single-phase supplies are obtained by connec­
tion to a three-phase supply (see Fig 5). 
A three-phase supply is generated when three coils are placed 120° apart and the 
whole rotated in a uniform magnetic field as shown in Fig 2(a). The result is 
three independent supplies of equal voltages which are each displaced by 120° 
from each other as shown in Fig 2(b). 
(i) The convention adopted to identify each of the phase voltages is: 

R-red, Y-yellow, and B-blue, as shown in Fig 2. 
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Fig 2 

(ii) The phase-sequence is given by the sequence in which the conductors pass 
the point initially taken by the red conductor. The national standard phase 
sequence is R, Y, B. 

A three-phase a.c. supply is carried by three conductors, called 'lines' which are 
coloured red, yellow and blue. The currents in these conductors are known as 
line currents (IL ) and the p.d.'s between them are known as line voltages (VL ). 
A fourth conductor, called the neutral (coloured black, and connected through 
protective devices to earth) is often used with a three-phase supply. 
If the three-phase windings shown in Fig 2 are kept independent then six wires 
are needed to connect a supply source (such as a generator) to a load (such as 
motor). To reduce the number of wires it is usual to interconnect the three 
phases. There are two ways in which this can be done, these being: (a) a star 
connection, and (b) a delta, or mesh, connection. Sources of three-phase supplies, 
i.e. alternators, are usually connected in star, whereas three-phase transformer 
windings, motors and other loads may be connected either in star or delta. 

(i) A star-connected load is shown in Fig 3 where the three line conductors are 
each connected to a load and the outlets from the loads are joined together 
at N to form what is termed the neutral point or the star point. 
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voltages. Phase voltages are generally denoted by Vp. 
(iii) The voltages, VR Y, VYB and VBR are called line voltages. 
(iv) From Fig 3 it can be seen that the phase currents (generally denoted by / ) 

are equal to their respective line currents IR, IY and IB , i.e. for a star 
connection: 

(vi) 

(v) For a balanced system: 

(vii) 

8 (i) 

(ii) 

- ly - Iß, VR - Vy 
VRY= VYB~ VBR> ZR = Zy = 

and the current in the neutral conductor, IN = 0. 
When a star connected system is balanced, then the neutral conductor is 
unnecessary and is often omitted. 

(a) Fig 4 

The line voltage, VRY, shown in Fig 4(a) is given by VRY = VR—VY. 
(VY is negative since it is in the opposite direction to VRY.) In the phasor 
diagram of Fig 4(b), phasor VY is reversed (shown by the broken line) and 
then added phasorially to VR (i.e. VRY = VR +(— VY )). By trigonometry, or 
by measurement, VRY =\/3VR , i.e. for a balanced star connection: 

V3 V. 

(See Problem 6 for a complete phasor diagram of a star-connected system.) 
The star connection of the three phases of a supply, together with a neutral 
conductor, allows the use of two voltages—the phase voltage and the line 
voltage. A 4-wire system is also used when the load is not balanced. The 
standard electricity supply to consumers in Great Britain is 415/240 V, 
50 Hz, 3-phase, 4-wire alternating current, and a diagram of connections is 
shown in Fig 5. 
A delta (or mesh) connected load is sliown in Fig 6 where the end of one 
load is connected to the start of the next load. 
From Fig 6, it can be seen that the line voltages VRY, 
respective phase voltages, i.e. for a delta connection: 
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(iii) Using Kirchhoff s current law in Fig 6, IR = IRY-IBR
 = ^RY^(~^BR )· F r o m 

the phasor diagram shown in Fig 7, by trigonometry or by measurement, 
IR = \ / 3 JRY, i.e. for a delta connection: 

V3/0 

9 The power dissipated in a three-phase load is given by the sum of the power 
dissipated in each phase. If a load is balanced then the total power P is given by: 
P = 3 X power consumed by one phase. 
The power consumed in one phase = I 2R or VI cos φ (where φ is the phase 
angle between V and / ). 

For a star connection V = -j- and / -'&h COS0 

= y/3 VLIL cos<i 

IR 

Fig 6 Fig 7 
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For a delta connection, V - V and / = -^- hence P = 3>V, ■m COS0 p >/3 
= ^/3 F^/7 cos 0. 

Hence for either a star or a delta balanced connection the total power P is given by: 
P =y/3 VLIL cos φ watts or /> = 3Ip

2Rp watts. 
Total volt-amperes, S = >/3 KL 7L volt-amperes. 

Currentcoil 

M/ 

Wattmeter 2 

Fig 8 

Fig 9 

Wattmeter 1 

Fig 10 
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10 Power in three-phase loads may be measured by the following methods: 
(i) One-wattmeter method for a balanced load. 

Wattmeter connections for both star and delta are shown in Fig 8. 
Total power = 3 X wattmeter reading 

(ii) Two-wattmeter method for balanced or unbalanced loads. 
A connection diagram for this method is shown in Fig 9 for a star-connected 
load. Similar connections are made for a delta-connected load. 
Total power = sum of wattmeter readings = Px +P2. 
The power factor may be determined from: 

tan φ = V5 ffi + p2* (see Problems 12 and 15 to 18). 
ΛΡι+Ρι) 

It is possible, depending on the load power factor, for one wattmeter to have 
to be 'reversed' to obtain a reading. In this case it is taken as a negative 
reading (see Problem 17). 

(iii) Three-wattmeter method for a three-phase, 4-wire system for balanced and 
unbalanced loads, (see Fig 10) 
Total power = P1+P2 +P3 

11 (i) Loads connected in delta dissipate three times more power than when 
connected in star to the same supply. 

(ii) For the same power, the phase currents must be the same for both delta 
and star connections (since power = 3 / 2 R ), hence the line current in the 
delta-connected system is greater than the line current in the corresponding 
star-connected system. To achieve the same phase current in a star-connected 
system as in a delta-connected system, the line voltage in the star system is 
■y/3 times the line voltage in the delta system. 

Thus for a given power transfer, a delta system is associated with larger 
line currents (and thus larger conductor cross-sectional area) and a star 
system is associated with a larger line voltage (and thus greater insulation). 

12 Advantages of three-phase systems over single-phase supplies include: 
(i) For a given amount of power transmitted through a system, the three-phase 

system requires conductors with a smaller cross-sectional area. This means a 
saving of copper (or aluminium) and thus the original installation costs are 
less. 

(ii) Two voltages are available (see para. 7). 
(iii) Three-phase motors are very robust, relatively cheap, generally smaller, have 

self-starting properties, provide a steadier output and require little maintenance 
compared with single-phase motors. 

B. WORKED PROBLEMS ON THREE-PHASE SYSTEMS 

Problem ί Three loads, eaeh of resistance 30 £lt are connected in star to a 
415 V, 3-phase supply. Détermine (a) the system phase voltage; (b) the phase 
current and (c) the line current, 

A '415 V, 3-phase supply' means that 415 V is the line voltage, Vf . 
(a) For a star connection, Vl =y/3 V 

y a*r 
Hence phase voltage, Vp = -j- = ^j~ = 239.6 V or 240 V correct to 

* v 3 significant figures. 
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(b) Phase current, / = - £ = ?40 = 8 A 
P Rp 30 

(c) For a star connection, 1=1, 
p L 

Hence the line current, IL = 8 A 

Prebtem 2 A star-connected load consists of three identical coiis each of 
resistance 30 & and inductance 127.3 mH. If the une current is 5,08 A, 
calculate the Ime voltage if Hie supply frequency & 50 Hz, 

Inductive reactance XL = 2π/Ζ, = 2π(50)( 127.3 X 1(Γ3) = 40 Ω 
Impedance of each phase Z = y/(R2+XL

2) =V(30 2 +40 2 ) = 50 Ω 
V 

For a star connection h — I = —P-
L p z 

P 
Hence phase voltage V =1 Z = (5.08)(50) = 254 V 
Line voltage VL =y/3Vp = V 3 (254> = 440 V 

Pmbkm S The three coiis in Pmbkm 2 are now connected in delta to the 
440 V, 50 Hz, 3~phase supply. Determine (a) the phase current ami (h) the line 
current 

Phase impedance, Z = 50 Ω (as above) and for a delta connection K = V£ 

V V AAC\ 
(a) Phase current, / = -B. = -L = = y . = 8.8 A 

P Zn Zn 50 
p p 

(b) For a delta connection, IL =y/3 Ip =y/3 (8.8) = 15.24 A 
Thus when the load is connected in delta, three times the line current is taken 
from the supply than is taken if connected in star. 

Pmbkm 4 Three identical capacitors are connected in delta to a 415 V, 50 Ha, 
3-phase supply. If the line current is 15 A, determine the capacitance of each of 
the capacitors. 

For a delta connection / £ = y/3 I 

Hence phase current / = -^ - =-^r- = 8.66 A 
P V 3 V 3 

V V 
Capacitive reactance per phase, Xc = —P = — (since for a delta connection 

lp *p VL = *V-
Hence Xr = ^ = 47.92 Ω c 8.66 
Xn — , from which capacitance, C = = F 

c 2nfC F 2wfXc 2π(50)(47.92) 
= 66.43 μ¥ 

ftoblem S Three eoiis each having resistance 3 Ω and Inductive reactance 4 U 
are connected (i) in star and (ii) in delta to a 415 V, 3~pha$e sap#f#- Calculate 
for each connection (a) the line and phase voltages mid (b) the phase and Une 
currents. 
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(i) For a star connection: IL = / and VL =y/3V 
(a) A 415 V, 3-phase supply means that the line voltage, VL = 415 V 

Phase voltage, - r L 
V3 

= l i i = 240 V 
V3 

(b) Impedance per phase, Zp =y/(R2+XL
2) =^(32+42) = 5 n 

I = ^ = 2 4 0 Phase current, = 48 A 

Line current, 
(ii) For a delta connection: 

(a) Line voltage, 
Phase voltage, 

(b) Phase current, 

Line current, 

IL=Ip=4SA 
VL=V

P a n d / ^ ^ / p 
VL = 415 V 

Vp = VL =415 V 

' , = ^ = ^ = 8 3 A 

IL =V 3 / p =V3(83> = 144A 

Problem 6 A balanced, ttae*wlre» star-conneeted: 
voltage of 240 V,a line current of 5 A and a 
Draw the complete phasor diagram. 

.» 3-phase load has a phase 
power factor of 0.966. 

The phasor diagram is shown in Fig 11. 
Procedure to construct the phasor diagram: 

^R Y= 415 V 

\ l/p=240V 

»■ΎΒ 

0 50 100 150 200 
Voltageiv) 

Fig 11 
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(i) Draw VR = Vy = VB = 240 V and spaced 120° apart. (Note that VR is 
shown vertically upwards—this however is immaterial for it may be drawn in 
any direction.) 

(ii) Power factor = cos φ = 0.966 lagging. Hence the load phase angle is given 
by arccos 0.966, i.e. 15° lagging. Hence IR = Ιγ - Ιβ = 5 A, lagging 

(iii) Vi 

Y and VB respectively by 15 
RY - r R - w y (phasorially). Hence Vy is reversed and added phasorially 

to VR . By measurement, VRY = 415 V (i.e.V3(240)) and leads VR by 30°. 
Similarly, VY VB and VD 

Problem 7 A 415 V, 3 phase, 4 wire, star-eonnected system supplies three 
resistive loads as shown in fig 12. Determine (a) the current in each line and 
(b) the current in the neutral conductor. 

(a) For a star-connected system VL = V5 VP 

K L _415 . Hence \ß~v5 

12 kW 

Fig 12 

Power P Since current / = ττ-τ: ?>for a resistive load Voltage V 

+u T PR 2 4 0 00 inn A 
then lR = -R = —- = m A 

_ i V _ 1 8 0 0 0 
IY-V;-~2ÄÖ--15A 

A _ PB 12000 _ n A 
ma lB=vi = -2ÄÖ- = 50A 
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♦ IR = 100 A 

Fig 13 IB = 50 A -
^/ y =75A 

(b) The three line currents are shown in the phasor diagram of Fig 13. Since 
each load is resistive the currents are in phase with the phase voltages and 
are hence mutually displaced by 120°. The current in the neutral conductor 
is given by: 

IN = IR + IY + h phasorially. 

Io =100 A 

Fig 14 

IB = 50 A 

Fig 14 shows the three line currents added phasorially. 
oa represents IR in magnitude and direction. 
From the nose of oa, ab is drawn representing IY 
in magnitude and direction. 
From the nose of ab, be is drawn representing IB in magnitude and 
direction. 
oc represents the resultant, IN. By measurement, IN = 43 A 
(Alternatively, by calculation, considering IR at 90°, IB at 210° and IY at 
330°: 
Total horizontal component = 100 cos 90° 4- 75cos330° + 50cos210° =21.65 
Total vertical component = 100 sin 90° + 75 sin 330° -I- 50 sin 210° = 37.50 
Hence magnitude of IN = VÎ21.652 + 37.502) = 43.3 A) 
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Problem 8 Three 12 Ω resistors are connected in star to a 415 V, 3-phase 
supply. Determine the total power dissipated by the resistors. 

Power dissipated, P=y/3VLIL cos 0 or P=3I2R . 

Line voltage, V. = 415 V and phase voltage V =4Ü_ = 240 V p V3 

(since the resistors are star-connected) 

Phase current, / = - £ = _Ji = 240 = 20 A 
P Zn R n 12 

p p 

For a star connection, I, = I = 20 A 
For a purely resistive load, the power factor = cos φ = 1 
Hence power P=y/3 VLIL cos0 = ̂ /3 (415)(20)(l) = 14.4 kW 

orpowQrP = 3I2Rn =3(20)2(12) = 14.4 kW 

Problem 9 The input power to a 3-phase a.c. motor is measured as 5 kW. If 
the voltage and current to the motor are 400 V and 8.6 A respectively, 
determine the power factor of the system. 

Power, P = 5000 W; Line voltage VL = 400 V; Line current, IL = 8.6 A 
Power, P=yJ3 VLIJ cos0 

Hence power factor = cos φ = P = -jOOO — = 0 8 3 9 
y/3VLIL V 3 ( 4 0 0 ) ( 8 · 6 ) 

Problem 10 Three identical coils, each of resistance 10 Ω and inductance 
42 mH are connected (a) in star and (b) in delta to a 415 V, 50 Hz, 3-phase 
supply. Determine the total power dissipated in each case. 

(a) Star-connection 
Inductive reactance XL = 2π/Ι = 2π(50)(42 X IO"3) = 13.19 Ω 
Phase impedance Zp =y/{R2+XL

2) = V O 0 2 + 13.192) = 16.55 Ω 

Line voltage V. = 415 V and phase voltage, V =—£- = ~^~ = 240 V 
V 3 V 3 

Phase current / = -*- = - ^ - = 14.50 A 
P Zp 16.55 

Line current I{ = / = 14.50 A 

Power factor = cos φ = -P- = ——z-c = 0.6042 lagging 
Z 16.55 

Power dissipated P =y/3 VJL cos φ =V3(415)(14.50)(0.6042) = 6.3 kW 
(Alternatively P = 3Ip

2Rp = 3(14.50)2(10) = 6 3 kW) 

87 



(b) Delta-connection 
VL = vp = 4 1 5 V ; zp = 1 6 · 5 5 Ω ' c o s Φ = ° · 6 0 4 2 lagging (from above). 

Phase current Ip = -ß- = - ^ | - = 25.08 A 

Une current 7£ = V 3 / p = V 3 ( 2 5 · 0 8 ) = 4 3 · 4 4 A 

Power dissipated P = ^/3 VLIL cos 0 = V3(415)(43.44)(0.6042) = 18.87 kW 
(Alternatively P = 31p

2Rp = 3(25.08)2(10) = 18.87 kW) 
Hence loads connected in delta dissipate three times the power than when 
connected in star and also take a line current three times greater. 

Problem 11 A 415 V, 3-phase a.c. motor has a power output of 12.75 kW 
and operates at a power factor of 0.77 lagging and with an efficiency of 
85%. If the motor is delta-connected, determine (a) the power input; (b) the 
line current and (c) the phase current. 

(a) Efficiency = power output H e n c e gL = 12 750 
power input 100 power input 

from which, power input = 1 1 7 5 | | J 0 0 = 15 000 W or 15 kW 

(b) Power, P = y/3 VLIL cos 0, hence line current, IL y/3 VL cos φ 

- 15 000 = 2 7 1 0 A 
V3(415)(0.77) Ζ Λ 1 ϋ Α 

(c) For a delta connection, IL =yJ3I . Hence phase current, / ~~^p{ ~ —'~pr~ 

= 15.65 A 

Problem 12 (a) Show that the total power in a 3-phase, 3-wire system using 
the two-wattmeter method of measurement is given by the sum of the 
wattmeter readings. Draw a connection diagram. 
(b) Draw a phasor diagram for the two-wattmeter method for a balanced 

load. 
(c) Use the phasor diagram of part (b) to derive a formula from which the 

power factor of a 3-phase system may be determined using only the 
wattmeter readings. 

(a) A connection diagram for the two-wattmeter 
method of power measurement is shown in 
Fig 15 for a star-connected load. 
Total instantaneous power, p = eR iR +eYiY+eBiB

 a^d in any 3 phase 
system iR +iY +iB = 0. Hence iB — —iR —iY. 
Thus, p=eRiR+eYiY+eB(-iR-iY) 

= (eR -eB )iR +(eY -eB )iY 
However, (eR - e#) is the p.d. across wattmeter 1 in Fig 15 and (eY - eB) is 
the p.d. across wattmeter 2. 
Hence total instantaneous power 
p = (wattmeter 1 reading) + (wattmeter 2 reading) = px +p2. 
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Wattmeter 1 

R o 

Wattmeter 2 Fig 15 

"RB<slfc-»fe> 

^^Q(:\/y-VB) 

Wattmeter 
2 

Fig 16 

The moving systems of the wattmeters are unable to follow the variations 
which take place at normal frequencies and they indicate the mean power 
taken over a cycle. Hence the total power, P = Ρχ +Ρ2 for balanced or 
unbalanced loads. 

(b) The phasor diagram for the two-wattmeter method for a balanced load 
having a lagging current is shown in Fig 16, where VRB = VR - VB and 
VYB = VY-VB (phasorially). 

(c) Wattmeter 1 reads VRBIR cos (30°-0) = Px 
Wattmeter 2 reads VYBIY cos (30°+0) = P2 

pi _VRBJR cos (30°-0) _cos(3O°-0) 
î>2~ ~ VYBIy cos (30°+0) " c o s (30°+0) ' 
since IR = IY and VRR = VYR for a balanced load. 
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Hence ^ - = cos 30° œs 0+sin 30° sin 0 ( f r o m c o m p o u n d a n g l e f o r m u l a e ) 
P2 cos 30 cos 0—sin 30 sin p 

Dividing throughout by cos 30° cos 0 gives: 

- Ld.Il Uß 

, (since ^ - = tan 0) 
P2 l - t a n 3 0 tan0 i 1_ t , cos0 

V3 
P P 

Cross-multiplying gives: Px - — tan 0 = P2 + —ττ tan Φ· 
V 3 V 3 

D o 1 +—hr tan0 
Λ_ = l+tan3O°tan0 = x/3 

Hence Λ - ^ 2 = ( Λ + ^ ) V3 
from which tan 0 = V 3 \~B—B~) 

0, cos 0 and thus power factor can be determined from this formula. 

Problem 13 A 400 V, 3-phase star connected alternator supplies a delta-
connected load, each phase of which has a resistance of 30 Ω and inductive 
reactance 40 Ω. Calculate (a) the current supplied by the alternator and (b) 
the output power and the kVA of the alternator, neglecting losses in the line 
between the alternator and load. 

A circuit diagram of the alternator and load is shown in Fig 17. 
V 

(a) Considering the load: Phase current, Ip = - £ 

Vp = VL for a delta connection. Hence Vp = 400 V 
Phase impedance, Zp =^(Rp

2+XL
2) = Λ / ( 3 ° 2 + 4 ° 2 ) = 50 Ω 

For a delta-connection, line current, IL =\/3Ip = ^ 3 ( 8 ) = 13.86 A 
Hence 13.86 A is the current supplied by the alternator. 

(b) Alternator output power is equal to the power dissipated by the load, 

i.e. P = V 3 VLIL cos 0, where cos 0 = -£· = ^- = 0.6 
50 

Hence P = ν / ^ 4 0 0 ) ^ 3 · 8 6 ) ^ 0 · 6 ) 
= 5.76 kW 

Alternator output 
kVA,S=y/3VLIL 
= x/3(400)( 13.86) 
= 9.60 kVA 

Fig 17 ALTERNATOR 
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Problem 14 Each phase of a delta-connected load comprises a resistance of 
30 Ω and an 80 μ¥ capacitor in series. The load is connected to a 400 V, 
50 Hz, 3-phase supply. Calculate (a) the phase current; (b) the line current; 
(c) the total power dissipated and (d) the kVA rating of the load. Draw the 
complete phasor diagram for the load. 

(a) Capacitive reactance, Xc 

Phase impedance, 

Power factor = cos φ 

1 1 = 39.79 Ω 
2-nfC 2π(50)(80Χ IO"6) 

Zp =^/(Rp
2+Xc

2) =V(302+39.792) = 49.83 Ω 

= ^E - 3 Q 

49.83 
; 0.602. Hence φ = arccos 0.602 

: 52° 59' leading. 
Phase current,.L· 

Hence 

and Vp = VL for a delta connection. 

: Ä =8.027 A 
49.83 

(b) Line current /7 = y/3 lp for a delta-connection. 
Hence IL =yJ3> (8.027) = 13.90 A 

l/L-_ W--400V 

/ L ^ 

Fig 18 

(c) Total power dissipated,P = y/3 VLIL cos0 =V/3(400)(13.90)(0.602) 
= 5.797 kW 

(d) Total kVA, S =y/3 VLIL =V3(400)( 13.90) = 9.630 kVA 
The phasor diagram for the load is shown in Fig 18. 

Problem 15 Two wattmeters are connected to measure the input power to a 
balanced 3-phase load by the two-wattmeter method. If the instrument 
readings are 8 kW and 4 kW, determine (a) the total power input and (b) the 
load power factor. 
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With reference to para. 10(ii): 
(a) Total input power P = Px +P2 = 8+4 = 12 kW 

V/3 

Hence φ = arctan—— = 30° 

Power factor = cos φ = cos 30° = 0.866 

Problem 16 Two wattmeters connected to a 3-phase motor indicate the total 
power input to be Ϊ2 kW. The power factor is 0.6. Determine the readings 
of each wattmeter. 

If the two wattmeters indicate Px and P2 respectively then Px +P2 = 12 kW (1) 

( P —P \ 
1 and power factor = 0.6 = cos φ 

Pi "^Ρι' 
Angle φ = arccos 0.6 = 53° 8' and tan 53° 8' = 1.3333 

Hence 1.3333 = v 3 ( / > 1 ~ / > 2 )
 f r o m w h i c h /> _/> = 12(1.3333) = 9.237 kW (2) 

12 ^ 3 
Adding equations (1) and (2) gives: 2PX = 21.237, i.e. Λ = 3J_^1Z_ = 10.62 kW 

Hence wattmeter 1 reads 10.62 kW 
From equation (1), wattmeter 2 reads (12-10.62) = 1.38 kW 

Problem 17 Two wattmeters indicate 10 kW and 3 kW respectively when 
connected to measure ttie input power to a 3-phase balanced load, the 
reverse switch being operated^*h£in#^ 
Determine (a) the input power and (b) the load power factor. 

Since the reversing switch on the wattmeter had to be operated the 3 kW 
reading is taken as - 3 kW. 
(a) Total input power, P = Ρλ +P2 = 10+(-3) = 7 kW 

«-♦-V>^)-V3({^)-V>(^-»'«' 
Angle φ = arctan 3.2167 = 72° 44'. 
Power factor = cos φ = cos 72° 44' = 0.297 

Problem 18 Three similar coils, each having a resistance of $ Q and an 
inductive reactance of 8 U are connected (a) in star and (b) in ddta» across a 
415 V, 3-phase supply. Calculate for each connection the readings On each 
of two wattmeters connected to measure the power by the two-wattmeter 
method. 

(a) Star connection: VL — \J^Vp and IL = lp 

Phase voltage, Vp =-j- = ^ψ- and phase impedance, Zp
 :=^/(Rp

2+XI
2) 

V 3 V 3 =^(8*+8 2 ) ' 
V Λ i c/ /i = 11.31 Ω 

Hence phase current, L = JL = 4 1 W j = 21.18 A p Zn 11.31 
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Total power /> = 3 Ip
2Rp = 3 (21.18)2(8) = 10766W 

If wattmeter readings are Λ and Ρ2 then Λ +P2 = 10 766 ( 1 ) 
Since Rp = 8 Ω and XL = 8 Ω, then phase angle φ = 45° (from impedance 

triangle) 
_y/3(Pl-P2) ■"(S3)· tan φ=χ/3( ' π , hence tan 45° = -

10 766 

from which Ργ -P2 = 1 0 7 6 6 ( 1 ) = 6216 W (2) 
V3 

Adding equations (1) and (2) gives: 2P1 = 1 0 766+6216 = 16 982 W 
Hence px = 8491W 
From equation (\),P2 = 10 766-8491 = 2275 W 

When the coils are star-connected the wattmeter readings are thus 8.491 kW and 
2.275 kW. 
(b) Delta connection: VL = Vp and/L = V 3 / p 

Phase current, / = _£ = _1I5_ = 3559 A p Zp 11.31 
Total power P = 3 / 2/?_ = 3 (36.69)2(8) = 32 310 W 

'p "p 
Hence />, +P2 = 3 2 310 W (3) 

V ^ i W 32 310 
from which Pi -P2 = 3 2 3i0 = 18 650 W (4) 

V 3 

Adding equations (3) and (4) gives: 2PX = 50 960, from which Px = 25 480 W 
From equation (3), P2 = 32 310-25 480 = 6830 W 

When the coils are delta-connected the wattmeter readings are thus 25.48 kW and 
6.83 kW. 

C. FURTHER PROBLEMS ON THREE-PHASE SYSTEMS 

SHORT ANSWER PROBLEMS 

1 Explain briefly how a three-phase supply is generated. 
2 State the national standard phase sequence for a three-phase supply. 
3 State the two ways in which phases of a three-phase supply can be inter­

connected to reduce the number of conductors used compared with three, 
single-phase systems. 

4 State the relationships between line and phase currents and line and phase 
voltages for a star-connected system. 

5 When may the neutral conductor of a star-connected system be omitted? 
6 State the relationships between line and phase currents and line and phase 

voltages for a delta-connected system. 
7 What is the standard electricity supply to consumers in Great Britain? 
8 State two formulae for determining the power dissipated in the load of a 3-phase 

balanced system. 
9 By what methods may power be measured in a three-phase system? 
10 State a formula from which power factor may be determined for a balanced 

system when using the two-wattmeter method of power measurement. 
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11 Loads connected in star dissipate the power dissipated when 
connected in delta and fed from the same supply. 

12 Name three advantages of three-phase systems over single-phase systems. 

MULTI-CHOICE PROBLEMS (answers on page 191) 

Three loads, each of 10 Ω resistance, are connected in star to a 400 V, 3-phase 
supply. Determine the quantities stated in Problems 1 to 5, selecting the correct 
answers from the following list. 

(a) 40. A; (b)V3 (16) kW; (c) ^ V; (d)y/3 (40) A; (e)V3 (400) V; 
V 3 Λ/3 

(f) 16 kW; (g) 400 V; (k) 48 kW; (i) 40 A. 
1 Line voltage. 
2 Phase voltage. 
3 Phase current. 
4 Line current. 
5 Total power dissipated in the load. 
6 Which of the following statements is false? 

(a) For the same power, loads connected in delta have a higher line voltage 
and a smaller line current than loads connected in star. 

(b) When using the two-wattmeter method of power measurement the power 
factor is unity when thè wattmeter readings are the same. 

(c) a.c. may be distributed using a single-phase system with 2 wires, a three-phase 
system with 3 wires or a three-phase system with 4 wires. 

(d) The national standard phase sequence for a three-phase supply is R, Y, B. 

Three loads, each of resistance 16 Ω and inductive reactance 12 Ω are connected in 
delta to a 400 V, 3-phase supply. Determine the quantities stated in problems 7 to 12, 
selecting the correct answer from the following list. 
( a ) 4 ß ; (b)V3(400)V; (c)>/3 (6.4) kW; (d) 20 A; (e) 6.4 kW; (0 V 3 (20) A; 

(g) 20 Ω; (h) ψ A; (i) ^ V; G) 19.2 kW; (k) 100 A; (1) 400 V; (m) 28 Ω. 
\ /3 γ 3 

7 Phase impedance. 
8 Line voltage. 
9 Phase voltage. 
10 Phase current. 
11 Line current. 
12 Total power dissipated in the load. 

CONVENTIONAL PROBLEMS 

1 Three loads, each of resistance 50 Ω are connected in star to a 400 V, 3-phase 
supply. Determine (a) the phase voltage; (b) the phase current and (c) the line 
current. [(a) 231 V; (b) 4.62 A; (c) 4.62 A.] 

2 If the loads in Problem 1 are connected in delta to the same supply determine 
(a) the phase voltage; (b) the phase current and (c) the line current. 

[(a)400V;(b)8 A; (c) 13.86 A.] 
3 A star-connected load consists of three identical coils, each of inductance 
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159.2 mH and resistance 50 Ω. If the supply frequency is 50 Hz and the line 
current is 3 A determine (a) the phase voltage and (b) the line voltage. 

[(a)212V;(b)367V.) 
4 Obtain a relationship between the line and phase voltages and line and phase 

current for a delta connected system. Three inductive loads each of resistance 
75 Ω and inductance 318.4 mH are connected in delta to a 415 V, 50 Hz, 
3-phase supply. Determine (a) the phase voltage; (b) the phase current, and 
(c) the Une current. [(a) 415 V; (b) 3.32 A; (c) 5.75 A.] 

5 Three identical capacitors are connected (a) in star, (b) in delta to a 400 V, 
50 Hz 3-phase supply. If the line current is 12 A determine in each case the 
capacitance of each of the capacitors. [(a) 165.4 μ¥; (b) 55.13 μΡ.] 

6 Three coils each having resistance 6 Ω and inductance L H are connected 
(a) in star and (b) in delta, to a 415 V, 50 Pz, 3-phase supply. If the line 
current is 30 A, find for each connection the value of L. 

[(a) 16.78 mH;(b) 73.84 mH] 
7 A 400 V, 3 phase, 4 wire, star-connected system supplies three resistive loads of 

15 kW, 20 kW and 25 kW in the red, yellow and blue phases respectively. 
Determine the current flowing in each of the four conductors. 

IR= 64.95 A, IY = 86.60 A ] 
IB = 108.25 A, IN= 37.50 A J 

8 Determine the total power dissipated by three 20 Ω resistors when connected 
(a) in star and (b) in delta to a 440 V, 3-phase supply. 

[(a) 9.68 kW; (b) 29.04 kW] 
9 Determine the power dissipated in the circuit of Problem 3 [1.35 k W] 
10 A balanced delta connected load has a line voltage of 400 V, a line current of 

8 A and a lagging power factor of 0.94. Draw a complete phasor diagram of the 
load. What is the total power dissipated by the load? [5.21 kW] 

11 A 3-phase, star-connected alternator delivers a line current of 65 A to a balanced 
delta-connected load at a line voltage of 380 V. Calculate (a) the phase voltage 
of the alternator, (b) the alternator phase current and (c) the load phase current. 

[(a) 219.4 V; (b) 65 A; (c) 37.53 A.] 
12 Three inductive loads, each of resistance 4 Ω and reactance 9 Ω are connected 

in delta. When connected to a 3-phase supply the loads consume 1.2 kW. 
Calculate (a) the power factor of the load; (b) the phase current; (c) the line 
current and (d) the supply voltage. 

[(a) 0.406; (b) 10A;(c) 17.32 A; (d) 98.49 V.] 
13 The input voltage, current and power to a motor is measured as 415 V, 16.4 A 

and 6 kW respectively. Determine the power factor of the system. [0.509] 
14 A 440 V, 3-phase a.c. motor has a power output of 11.25 kW and operates at 

a power factor of 0.8 lagging and with an efficiency of 84%. If the motor is 
delta connected determine (a) the power input; (b) the line current and (c) the 
phase current. [(a) 13.39 kW; (b) 21.96 A; (c) 12.68 A.] 

15 Two wattmeters are connected to measure the input power to a balanced 
3-phase load. If the wattmeter readings are 9.3 kW and 5.4 kW determine 
(a) the total output power; and (b) the load power factor. 

[(a) 14.7 kW;(b) 0.909.] 
16 8 kW is found by the two-wattmeter method to be the power input to a 

3-phase motor. Determine the reading of each wattmeter if the power factor of 
the system is 0.85. [5.431 kW; 2.569 kW] 

17 Show that the power in a three phase balanced system can be measured by two 
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wattmeters and deduce an expression for the total power in terms of the watt­
meter readings. When the two-wattmeter method is used to measure the input 
power of a balanced load, the readings on the wattmeters are 7.5 kW and 
2.5 kW, the connections to one of the coils on the meter reading 2.5 kW having 
to be reversed. Determine (a) the total input power and (b) the load power 
factor. [(a)5kW;(b)0.277.] 

18 Three similar coils, each having a resistance of 4.0 Ω and an inductive reactance 
of 3.46 Ω are connected (a) in star and (b) in delta across a 400 V, 3-phase 
supply. Calculate for each connection the readings on each of two wattmeters 
connected to measure the power by the two-wattmeter method. 

[(a) 17.15 kW, 5.73 kW; (b) 51.46 kW, 17.18 kW.] 
19 A 3-phase, star-connected alternator supplies a delta connected load, each phase 

of which has a resistance of 15 Ω and inductive reactance 20 Ω. If the line 
voltage is 400 V, calculate (a) the current supplied by the alternator and (b) the 
output power and kVA rating of the alternator, neglecting any losses in the line 
between the alternator and the load, [(a) 27.71 A; (b) 11.52 kW; 19.2 kVA] 

20 Each phase of a delta connected load comprises a resistance of 40 Ω and a 40 μΡ 
capacitor in series. Determine, when connected to a 415 V, 50 Hz, 3-phase 
supply (a) the phase current; (b) the line current; (c) the total power dissipated 
and (d) the kVA rating of the load. 

[(a) 4.66 A; (b) 8.07 A; (c) 2.605 kW; (d) 5.80 kVA.] 
21 (a) State the advantages of three-phase supplies. 

(b) Three 24 μ¥ capacitors are connected in star across a 400 V, 50 Hz, 3-phase 
supply. What value of capacitance must be connected in delta in order to 
take the same line current? [8 μ¥] 
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5 D.C. transients 

A. MAIN POINTS CONCERNED WITH D.C. TRANSIENTS 

Transients in series connected C—R circuits 
1 When a d.c. voltage is applied to a capacitor C, and resistor R connected in 

series, there is a short period of time immediately after the voltage is connected, 
during which the current flowing in the circuit and the voltages across C and R 
are changing. These changing values are called transients. 

2 Charging 
(a) The circuit diagram for a series connected C-R circuit is shown in Fig 1. 

When switch S is closed, then by Kirchhoffs voltage law: 

V = VC+VR (1) M. R 

(b) The battery voltage V is constant. The capacitor ' 

A' voltage vc is given by q/C, where q is the charge 
on the capacitor. The voltage drop across R is 
given by iR, where i is the current flowing in the 
circuit. Hence, at all times: 

^ - £ + « (2) F i g / 
At the instant of closing S, (initial circuit condition), assuming there is no 
initial charge on the capacitor, q0 is zero, hence vCo is zero. Thus from 
equation (1), V = 0+vRo , i.e. VRQ = V. This shows that the resistance t a 
current is solely due to R, and the initial current flowing, /0 = / = V/R. 

(c) A short time later at time tt seconds after closing S, the capacitor is partly 
charged to, say, qx coulombs because current has been flowing. The voltage 
vCi is now ql /C volts. If the current flowing is il amperes, then the voltage 
drop across R has fallen to /Ί R volts. Thus, equation (2) is now V = (q\/C)+i\ R. 

(d) A short time later still, say at time t2 seconds after closing the switch, the 
charge has increased to q2 coulombs and vc has increased q2/C volts. Since 
V = vc+vR and F is a constant, then vR decreases to i2R. Thus vc is increas­
ing and / and vR are decreasing as time increases. 

(e) Ultimately, a few seconds after closing S, (final condition or steady state 
condition), the capacitor is fully charged to, say, Q coulombs, current no 
longer flows, i.e. i = 0, and hence vR = iR = 0. It follows from equation (1) 
that vc = V. 

(0 Curves showing the changes in vc, vR and i with time are shown in Fig 2. 
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Time (s) »► f 
(a)Capacitor voltage transient 

Time(s) *-t 
(b) Resistor voltage transient Fig 2 

(c) Current transient 

The curve showing the variation of vc 
with time is called an exponential growth 
curve and the graph is called the 'capacitor 
voltage/time' characteristic. The curves 
showing the variation of vR and i with 
time are called exponential decay curves, 
and the graphs are called 'resistor 
voltage/time' and 'current/time' 
characteristics respectively. (The name 
'exponential' shows that the shape can be 
expressed mathematically by an exponential 
mathematical equation, see para. 5.) 

The time constant 
(a) If a constant d.c. voltage is applied to a series connected C-R circuit, 

a transient curve of capacitor voltage vc is as shown in Fig 2(a). 
(b) With reference to Fig 3, let the constant voltage supply be replaced by a 

variable voltage supply at time r j seconds. Let the voltage be varied so that 
the current flowing in the circuit is constant. 

(c) Since the current flowing is a constant, the curve will follow a tangent, AB, 
drawn to the curve at point A. 

(d) Let the capacitor voltage vc reach its final value of V at time t2 seconds. 
(e) The time corresponding to (t2—ti ) seconds is called the time constant of the 

circuit, denoted by the Greek 
letter 'tau', r. The value of the 
time constant is CR seconds, 
i.e., for a series connected vc 
C—R circuit, time constant, 
T — CR seconds. 

Since the variable voltage mentioned 
in para. 3(b) above can be applied 
at any instant during the transient 
change, it may be applied at / = 0, 

Fig 3 
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i.e., at the instant of connecting the circuit to the supply. If this is done, then 
the time constant of the circuit may be defined as: 

'the time taken for a transient to reach its final state if the initial rate 
of change is maintained'. 

There are two main methods of drawing transient curves graphically. 
(a) The tangent method—this method is shown in Problem 1. 
(b) The initial slope and three point method, this is shown in Problem 2 and is 

based on the following properties of a transient exponential curve. 
(i) For a growth curve, the value of a transient at a time equal to one time 

constant is 0.632 of its steady state value (usually taken as 63% of the 
steady state value); at a time equal to two and a half time constants is 
0.918 if its steady state value (usually taken as 92% of its steady state 
value) and at a time equal to five time constants is equal to its steady 
state value. 

(ii) For a decay curve, the value of a transient at a time equal to one time 
constant is 0.368 of its initial value (usually taken as 37% of its initial 
value), at a time equal to two and a half time constants is 0.082 of its 
initial value (usually taken as 8% of its initial value) and at a time equal 
to five time constants is equal to zero. 

The transient curves shown in Fig 2 have mathematical equations, obtained by 
solving the differential equations representing the circuit. The equations of the 
curves are: 

growth of capacitor voltage, vc = V [l—e CR ) = V [l—e T ) 
(- —) (--) 

decay of resistor voltage, vR = Ve CR = Ve T and 
(- —) (- - ) 

decay of current flowing, i — leCR = le T 

Discharging 
When a capacitor is charged (i.e. with the switch in position A in Fig 4), and 
the switch is then moved to position B, the electrons stored in the capacitor 
keep the current flowing for a short time. Initially, at the instant of moving 
from A to B, the current flow is such that the capacitor voltage vc is balanced 
by an equal and opposite voltage vR = iR. Since initially vc = vR = V, then 
i = / = V/R. During the transient decay, by applying Kirchhoff s voltage law to 
Fig- 4, Vc = vR- Finally the transients decay exponentially to zero, i.e. 
vc ~VR = 0· The transient curves representing the voltages and current are as 
shown in Fig 4. 
The equations representing the transient curves during the discharge period of a 
series connected C-R circuit are: 

(_ _ί_) (_ ±) 
decay of voltage, vc = vR — Ve CR — Ve T 

(- —) (- - ) 
decay of current, i = le CR = le T 

The application of these equations is shown 
in Problem 5. F\q4 
Transients in series connected L-R circuits 
When a d.c. voltage is connected to a circuit having inductance L connected in 
series with resistance R, there is a short period of time immediately after the 
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(a) Capacitor and resistor 
voltage transient 

Time(s) t 

(b) Current transient 
Fig 5 

voltage is connected, during which the current flowing in the circuit and the 
voltages across L and R are changing. These changing values are called transients. 
Current growth 
(a) The circuit diagram for a series connected L-R circuit is shown in Fig 6. 

When switch S is closed, then by Kirchhoff s voltage law: 
V = vL +vR (3) 

(b) The battery voltage V is constant. The 
voltage of the inductance is the induced 
voltage, i.e. 

*L = L w change of current change of time -I 
A' 

Fig 6 
(4) 

shown as L{di/dt). The voltage drop across 
R, vR is given by iR. Hence, at all times: 
V = L(di/dt)+iR 

(c) At the instant of closing the switch, the rate of change of current is such 
that it induces an e.m.f. in the inductance which is equal and opposite to V, 
hence V = vL 4-0, i.e. vL = V. From equation (3), because vL = V, then 
vR = 0 and / = 0. 

(d) A short time later at time t\ seconds after closing S, current ix is flowing, 
since there is a rate of change of current initially, resulting in a voltage drop 
oïiiR across the resistor. Since V (constant) : 

reduced and equation (4) becomes: 
di, 

vL +vR the induced e.m.f. is 

V = L 
dtx 

+ /, R. 

(e) A short time later still, say at time t2 seconds after closing the switch, the 
current flowing is i2, and the voltage drop across the resistor increases to 
i2R. Since vR increases, vL decreases. 

(0 Ultimately, a few seconds after closing S, the current flow is entirely 
limited by R, the rate of change of current is zero and hence vL is zero. Thus 
V = iR. Under these conditions, steady state current flows, usually signified 
by /. Thus, / = V/R, vR = IR and vL = 0 at steady state conditions. 

(g) Curves showing the changes in vL, vR and / with time are shown in Fig 7 and 
indicate that vL is a maximum value initially (i.e. equal to V), decaying 
exponentially to zero, whereas vR and / grow exponentially from zero to 
their steady state values of V and / = V/R respectively. 
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10 The time constant 
With reference to para. 3, the time constant of a series connected L-R circuit is 
defined in the same way as the time constant for a series connected C-R circuit. 
Its value is given by: 
time constant, τ = L/R seconds. 

11 Transient curves representing the induced voltage/time, resistor voltage/time and 
current/time characteristics may be drawn graphically, as outlined in para. 4. 
The methods of construction are shown in detail in Problems 6 and 7. 

T i m e (s) ► t 

(a) Induced vo l tage transient 

T i m e ( s ) 

(b) Resistor voltage transient 

T i m e ( s ) *~t 

(c ) C u r r e n t t r a n s i e n t 

Fig 7 

S B 

R̂ 
Y ' 

Fig 8 

12 Each of the transient curves shown in Fig 7 have mathematical equations, and 
these are: 

decay of induced voltage, 

growth of resistor voltage, 

growth of current flow, 

= Ve (-4*0 Ve (-f) 

V(\-e L )= V{\-e T) 
t_ 

i = I(\-e L ) = / ( l -
The application of these equations is shown in Problems 8 to 10. 

13 Current decay 
When a series connected L-R circuit is connected to a d.c. supply as shown 
with S in position A of Fig 8, a current / = V/R flows after a short time, 
creating a magnetic field (Φ α /) associated with the inductor. When S is moved 
to position B, the current value decreases, causing a decrease in the strength of 
the magnetic field. Flux linkages occur, generating a voltage vL , equal to 
L(di/dt). By Lenz's law, this voltage keeps current i flowing in the circuit, its 

101 



value being limited by R. Thus vL = vR . The current decays exponentially to 
zero and since vR is proportional to the current flowing, vR decays exponentially 
to zero. Since vL = vR, vL also decays exponentially to zero. The curves 
representing these transients are similar to those shown in Fig 5. 

14 The equations representing the decay transient curves are: 

decay of voltages, vL = 

decay of current, i = le 

15 

(-Ψ) = Ve 

ι ] = le 

Ve .<- 'r) 

ff) 

o—r^5-

The application of these equations is also 
shown in Problems 8 to 10. 

INPUT 

-TLTLTL 
Fig 9 

OUTPUT 
(toc.RQ) 

The effects of time constant on a rectangular wave 
By varying the value of either C or R in a series connected C-R circuit, the time 
constant (r = CR), of a circuit can be varied. If a rectangular waveform varying 
from +E to —E is applied to a C-R circuit as shown in Fig 9, output waveforms 
of the capacitor voltage have various shapes, depending on the value of R. When 
R is small, r = CR is small and an output waveform such as that shown in 
Fig 10(a) is obtained. As the value of R is increased, the waveform changes to 
that shown in Fig 10(b). When R is large, the waveform is as shown in Fig 10(c), 
the circuit then being described as an integrator circuit. 

o 

R small 
(a) (b) 

Fig 10 

C 

R large 
(c) 

INPUT 
J~LTL 

OUTPUT 
(toCR.O.) 

Fig 11 

16 If a rectangular waveform varying from +E to —E is applied to a series connected 
C-R circuit and the waveform of the voltage drop across the resistor is observed, 
as shown in Fig 11, the output waveform alters as R is varied due to the time 
constant, (τ = CR), altering. When R is small, the waveform is as shown in 
Fig 12(a), the voltage being generated across R by the capacitor discharging 
fairly quickly. Since the change in capacitor voltage is from +E to -E, the 
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Fig 12 
R large 

(b) 

change in discharge current is 2E/R, resulting in a change in voltage across the 
resistor of 2E. This circuit is called a differentiator circuit. When R is large, the 
waveform is as shown in Fig 12(b). 

^$^"*&i&$& k%i» 
B. WORKED PROBLEMS ON D.C. TRANSIENTS 

TRANSIENTS IN SERIES CONNECTEDC-R CIRCUITS 

Problem 1 A 15 μΡ uncharged capacitor is connected in series with a 47 k£i 
resistor across a 120 V, d.c. supply. Use the tangential graphical method to draw 
the capacitor voltage/time characteristic of the circuit. From the characteristic, 
determine the capacitor voltage for a time equal to one time constant after 
being connected to the supply and also two seconds after being connected to the 
supply. Also find the time for the capacitor voltage to reach one half of its 
steady state value. 

To construct an exponential growth curve, the time constant of the circuit and 
steady state value need to be determined. 
Time constant = CR = 15 //F X 47 kfì = 15 X 10~6 X 47 X 103 

= 0.705 s. 
Steady state value of vc is vc 
= V, i.e. vc = 120 V 
With reference to Fig 13, 
the scale of the horizontal 
axis is drawn so that it 
spans at least five time 
constants, i.e. 5 X 0.705 Λ -
or about 3^ seconds. The t 
scale of the vertical axis g» 
spans the change in the % 
capacitor voltage, that is, u 
from 0 to 120 V. .? 
A broken line AB is §. 
drawn corresponding to u 
the final value of vc. 
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Point C is measured along AB so that AC is equal to lr, i.e., AC = 0.705 s. 
Straight line OC is drawn. Assuming that about five intermediate points are 
needed to draw the curve accurately, a point D is selected on OC corresponding 
to a vc value of about 20 V. DE is drawn vertically. EF is made to correspond to 
lr , i.e., EF = 0.705 s. A straight line is drawn joining DF. This procedure of 
(a) drawing a vertical line through point selected, 
(b) at the steady-state value, drawing a horizontal line corresponding to IT, and 
(c) joining the first and last points, 
is repeated for vc values of 40, 60, 80 and 100 V, giving points G, H, I and J. 

The capacitor voltage effectively reaches its steady-state value of 120 V after 
a time equal to five time constants, shown as point K. Drawing a smooth curve 
through points O, D, G, H, I, J and K gives the exponential growth curve of 
capacitor voltage. 

From the graph, the value of capacitor voltage at a time equal to the time 
constant is about 75 V. It is a characteristic of all exponential growth curves, 
that after a time equal to one time constant, the value of the transient is 0.632 
of its steady-state value. In this problem, 0.632 X 120 = 75.84 V. Also from the 
graph, when t is two seconds, vc is about 115 Volts. [This value may be checked 
using the equation vc = V(l-e~ r / r ) , where V = 120 V, r = 0.705 s and t = 2 s. 
This calculation gives vc = 112.97 V.] 

The time for vc to rise to one half of its final value, i.e., 60 V, can be deter­
mined from the graph and is about 0.5 s. [This value may be checked using 
vc = V{\-e-tlT) where V = 120 V, vc = 60 V and r = 0.705 s, giving 
t = 0.489 s.] 

Problem 2 A 4 μψ capacitor is charged to 24 V and then discharged through a 
220 kQ resistor. Use the 'initial slope and three point' method to draw: 
(a) the capacitor voltage/time characteristic; (b) the resistor voltage/time charac­
teristic and (c) the current/time characteristic, for the transients which occur. 
From the characteristics determine the values of capacitor voltage, resistor 
voltage and current one and a half seconds after discharge has started. 

To draw the transient curves, the time constant of the circuit and steady state 
values are needed. 
Time constant, T = CR = 4X \0~6 X 220 X 103 = 0.88 s. 

Initially, capacitor voltage vc = vR = 24 V. / = — = =0.109 mA 
/v Ζ2Ό X 1U 

Finally, vc = vR = i = 0. 
(a) The exponential decay of capacitor voltage is from 24 V to 0 V in a time 

equal to five time constants, i.e., 5 X 0.88 = 4.4 s. With reference to Fig 14, 
to construct the decay curve: 

(i) the horizontal scale is made so that it spans at least five time constants, 
i.e. 4.4 s, 

(ii) the vertical scale is made to span the change in capacitor voltage, i.e., 
0 to 24 V, 

(iii) point A corresponds to the initial capacitor voltage, i.e., 24 V, 
(iv) OB is made equal to one time constant and line AB is drawn. This 

gives the initial slope of the transient. 
(v) the value of the transient after a time equal to one time constant is 

0.368 of the initial value (see para. 4), i.e., 0.368 X 24 = 8.83 V. 
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Fig 14 
T ime· (s) 

A vertical line is drawn through B and distance BC is made equal to 
8.83 V, 

(vi) the value of the transient after a time equal to two and a half time 
constants is 0.082 of the initial value, i.e., 0.082 X 24 = 1.97 V, 
shown as point D in Fig 14, 

(vii) the transient effectively dies away to zero after a time equal to five 
time constants, i.e., 4.4 s, giving point E. 

The smooth curve drawn through points A, C, D and E represents the decay 
transient. At 1 \ s after decay has started, vc — 4.4 V. [This may be checked 2 / using vc = Ve- t/τ, where V = 24, t = \j and r = 0.88, giving vc = 4.36 V.] 

(b) The voltage drop across the resistor is equal to the capacitor voltage when a 
capacitor is discharging through a resistor, thus the resistor voltage/time 
characteristic is identical to that shown in Fig 14. Since vR = vc, then at 1 ί 
seconds after decay has started, vR — 4.4 V (see (a) above). 

(c) The current/time characteristic is constructed in the same way as the capacitor 
voltage/time characteristic, shown in part (a) of this problem, and is as shown 
in Fig 15. The values are: 
point A: initial value of current = 0.109 mA 
point C: at lr, i = 0.368 X 0.109 = 0.040 mA 
point D: at 2.5r, i = 0.082 X 0.109 = 0.009 mA 
point E: at 57, i = 0. 
Hence current transient is as shown. At a time of 1 ί seconds, the value of 
current, from the characteristic is 0.02 mA. [This may be checked using 
/ = le(-tlr) w h e r e / = 0.109, / = \\ and r = 0.88, giving / = 0.0198 mA 
or 19.8μΑ.] 
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Fig 15 

Problem 3 A 20 μ¥ capacitor is connected in series with a 50 k£2 resistor and 
the circuit is connected to a 20 V, dx. supply. Determine 
(a) the initial value of the current flowing; 
(b) the time constant of the circuit; 
(c) the value of the current one second after connection; 
(d) the value of the capacitor voltage two seconds after connection and 
(e) the time after connection when the resistor voltage is 15 V. 

Parts (c), (d) and (e) may be determined graphically, as shown in Problems 1 and 2 
or by calculation as shown below. 

F = 2 0 V , C = 2 0 M F = 2 0 X 10~6 F, R = 50 ki2 = 50 X IO3 Ω 

(a) With reference to para. 2(b), the initial value of the current flowing is 

/ = E i e 20 
R ' " ' 50 X 103 = 0.4 mA 

(b) From para. 3(e) the time constant, τ = CR = (20 X 10~6) X (50 X 103) 
= 1 s 

(c) From para. 5, / = Ie~*'T. 
Working in mA units, / = 0.4e_1/1 = 0.4 X 0.368 = 0.147 mA 

(d) From para. 5, vc = K(l-6>-'/r) = 20(1-c"2/1) 
= 20(1-0.135) = 20X0.865 
= 17.3 V 

(e) From para. 5, vR — Ve~T/T 

Thus 15 = 20e-' / i , P - = e~*, i.e. é = ??.= %. 
20 15 3 

. 4 = 1 , Taking natural logarithms of each side of the equation gives t =ln —=ln 1.3333 
t = 0.288 s 

Problem 4 A circuit consists of a resistor connected in series with a 0,5 #F 
capacitor and has a time constant of 12 ms. Determine (a) the value of the 
resistor and (b) the capacitor voltage 7 ms after connecting the circuit to a 10 V 
supply. 
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(a) The time constant τ = CR, hence R = -
C 

i-e. R = - 1 * * | ^ = 24 X IO3 = 24 ki2 

(b) The equation for the growth of capacitor voltage is: 
vc = V(\-e~t/T) 
Since r = 12ms= 12 X 10~3 s, V = 10 V and / = 7 ms = 7 X 10"3 s, 

/ _ 7 X 10~3 \ 

then vc = 10 \\-e 12x 10"Ί = 10(1-e"0·583) 
= 10(1-0.558) = 4.42 V 

[The value of e~0·583 can be determined either by using a calculator 
or as follows: Let y = e-0.583 

iny = \ne-°·5^ 
i.e. In y = -0.583, by the rules of logarithms. 

Using natural log tables, the antilog of -0.5833, i.e. Γ.4167 is 0.5580 
Thus vc = 10(1-0.5580) 

= 4.42 V] 
Alternatively, the value of yc when t is 7 ms may be determined using the 
growth characteristic as shown in Problem 1. 

Problem 5 A capacitor is charged to 100 V and tîien discharged through a 
SO kU resistor, if tfjé Urne eomtaat of iìie eimiit I» ÙM s, determine: 
<$) tbs mim öf tip c a p e t e ; 
(b) the tÉàae to It» «vidtaariQlt«p}4B M to 2ft V; 

id) the voltage drop across the resistor when the capa.nu, i i i iä u^n u^n^r^g 

Parts (b), (c) and (d) of this problem may be solved graphically as shown in 
Problems 1 and 2 or by calculation as shown below. 
V= 100 V, r = 0.8s, R = 50 kß = 50 X 103 Ω 
(a) Since time constant, r = CR, C = r/Ä 

i.e. C = ° · 8 , = 16 uF 
5 0 X 1 0 3 M 

(b) vc = Ve~tlT 

20 =100e-i/°·8, i.e. L= €-ΦΛ 

Thus ei/0·8 = 5 and taking natural logs of each side, gives 

—^ = In 5, i.e., t = 0.8 In 5 

Hence t = 1.29 s 

(c) i = Je-* 

The initial current flowing, / = - = —*QQ = 2 mA 

Working in mA units, i = Ie~t/T = 2e ° " = 2e~0·625 

= 2X0.535 = 1.07 mA 
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(d)vÄ = Ve -t/T 

= 100e °·8 = lOOe"1·25 

= 100X0.287 = 28.7 V 

TRANSIENTS IN SERIES CONNECTED L-R CIRCUITS 

Problem 6 A relay has an inductance of Î00 mH and a resistance of 20 il, It te 
connected to a 60 V, d-c- supply. Use the initial slope and three point* method 
to draw the current/time characteristic and hmcs determine the value of current 
flowing at a time equal to two time constants and the time for the current to 
grow to !<$ A, 

Before the current/time characteristic can be drawn; the time constant and 
steady-state value of the current have to be calculated. 

Time constant, 

Final value of current, I 

_L _ 100 X 10" 
R 20 

: 5 ms 

: ^ = 6 0 = 3A 
R 20 

The method used to construct the characteristic is the same as that used in 
Problem 2. 
(a) The scales should span at least five time constants (horizontally), i.e. 25 ms, 

and 3 A (vertically). 
/(A) 

A 

T ~ " ? 

\~I7 

L LH 

a 

Ό 

Ê 

FJ 

1 
1 
1 
1 
1 
1 
1 

-4— l 

¥ 

►= , 1 ( 

1 

G 
> » «m s) Fig 16 

(b) With reference to Fig 16, the initial slope is obtained by making AB equal to 
1 time constant, (5 ms), and joining OB. 

(c) At a time of 1 time constant, CD is 0.632 X / = 0.632 X 3 = 1.896 A 
At a time of 2.5 time constants, EF is 0.918 X 7=0.918 X 3 = 2.754 A 
At a time of 5 time constants, GH is I = 3 A 

(d) A smooth curve is drawn through points 0, D, F and H and this curve is the 
current/time characteristic. 

From the characteristic, when / = 2r, / — 2.6 A. [This may be checked by calcu­
lation using / = I(\-e~^T), where 1=3 and t = 2r, giving / = 2.59 A] . Also, 
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when the current is 1.5 A, the corresponding time is about 3.6 ms. [This may be 
checked by calculation, using i 
giving t = 3.466 ms.] 

I(\-e-t/T) where / = 1.5, / = 3 and τ = 5 ms, 

Problem 7 The tïeld winding of a 1 ! 0 V, d.e, motor has a resistance of 15 O 
and a time constant of 2 s. Determine the inductance and use the tangential 
method to draw the current/time characteristic when the supply is removed and 
replaced by a shorting link. From the characteristic determine (a) the, current 
flowing in the winding 3 s after being shorted-out and (b) the time for the 
current to decay to 5 A. 

Since the time constant, r = - , L - RT 
R 

i.e. inductance, L = 15 X 2 = 30 H. 
The current/time characteristic is constructed in a similar way to that used in 
Problem 1. 
(i) The scales should span at least five time constants horizontally, i.e. 10 s, 

and / = V/R = 110/15 = 7.5 A vertically. 
(ii) With reference to Fig 17, the initial slope is obtained by making OB equal 

to 1 time constant, (2 s), and joining AB. 
/(A) 

**/(s) 

(iii) At, say, i = 6 A, let C be the point on AB corresponding to a current of 6 A. 
Make DE equal to 1 time constant, (2 s), and join CE. 

(iv) Repeat the procedure given in (iii) for current values of, say, 
4 A, 2 A and 1 A, giving points F, G and H. 

(v) Point J is at five time constants, when the value of current is zero. 
(vi) Join points A, C, F, G, H and J with a smooth curve, This curve is the 

current/time characteristic. 
(a) From the current/time characteristic, when t = 3 s, i = 1.2 A. 

[This may be checked by calculation using i - Ie~^7', where I =13,t = 3 
and T = 2, giving i = 1.64 A.] The discrepancy between the two results is 
due to relatively few values, such as C, F, G and H, being taken. 
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(b) From the characteristic, when i = 5 A, t = 0.65 s. [This may be checked by 
calculation using i = le'1'1', where i = 5, / = 7.3 and r = 2, giving t = 0.766 s.j 
The discrepancy between the graphical and calculated values is due to 
relatively few values such as C, F, G and H being taken. 

Problem 8 The winding of an electromagnet has an inductance of 3 H and a 
resistance of 15 Ω. When it is connected to a 120 V, d.c. supply, calculate: 
(a) the steady state value of current flowing in the winding; 
(b) the time constant of the circuit; 
(c) the value of the induced e.m.f. after 0.1 s; 
(d) the time for the current to rise to 85% of its final value; and 
(e) the value of the current after 0.3 s. 

(a) The steady state value of current is / = V/R, i.e. / = 120/15 = 8 A 
(b) The time constant of the circuit, τ = L/R = 3/15= 0.2 s 
Parts (c), (d) and (e) of this problem may be determined by drawing the 
transients graphically as shown in Problems 6 and 7 or by calculation as shown 
below. 
(c) The induced e.m.f., vL is given by vL - Ve~^T. The d.c. voltage V is 120 V, 

Ms 0.1 s and τ is 0.2 s, hence 
vL = 120é--°1/0·2 = 120é>-°·5 = 120 X 0.6065 

i.e. vL = 72.78 V 
(d) When the current is 85% of its final value, i = 0.85 /. 

Also / = /( 1 -e~t/T), thus 0.85/ = /( 1 -e~t/T) 
0.85 = \-e~t/T and τ = 0.2, hence 
0.85 = i-e-*'0·2 

e-t/0J2 = i_o.85 = 0.15 

et/0.2 = _ L · =6.6 
0.15 

Taking natural logarithms of each side of this equation gives: 
In e^0'2 = In 6.6, and by the rules of logarithms 

——In e = In 6.6. But In e = 1, hence 
0.2 

/ =0 .2 In 6.6 i.e./ = 0.379 s 
(e) The current at any instant is given by i = I(\—e~^T) 

When / = 8, t = 0.3 and τ = 0.2, then 
_(U_ 

,· =8(l-é> °-2) = 8 ( l - e - 1 · 5 ) 
= 8(1-0.2231) = 8 X 0.7769 i.e./ = 6.215 A 

Problem 9 A coil having an inductance of 6 H and a resistance of R Ω is 
connected in series with a resistor of 10 Ω to a 120 V, d.c. supply. The time 
constant of the circuit is 300 ms. When steady-state conditions have been 
reached, the supply is replaced instantaneously by a short-circuit. Determine: 
(a) the resistance of the coil: 
(b) the current flowing in the circuit one second after the shorting link has , 

been placed in the circuit; and 
(c) the time taken for the current to fall to 10% of its initial value. 
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(a) The time constant r = circuit inductance = _J^_ 
total circuit resistance R+10 

Thus R = L-\O = JL _ i o = 10Ω 
r 0.3 

Parts (b) and (c) may be determined graphically as shown in Problems 6 
and 7 or by calculation as shown below. 

(b) The steady-state current, / = £ = 12Q = 6 A 
R 10+10 

The transient current after 1 second, i = Ie~^T = 6e~1^3 

Thus * = 6<r3-3 =6X0.03567 
= 0.214 A 

(c) 10% of the initial value of the current is 10/100 X 6, i.e. 0.6 A 
Using the equation i = Ie~ ̂ T, gives 

0.6 =6<r'/°·3, 
i.e. QA=e-t/o.3OT et/o.3 =_6_ = 1 0 

6 0.6 
Taking natural logarithms of each side of this equation gives: 

t 
0.3 * = ln l0 

t =0.3 In 10 = 0.691 s 

Problem 10 An inductor has a negligible resistance and an inductance of 
200 mH and Is connected in series with a 1 k£fc resistor to a 24 V, d»& supply* 
Determine the time constant of the circuit and the steady-state value of the 
current flowing in the circuit. Find (a) the current flowing ia the catcuit at a 
time equal to one time constant, (b) the voltage drop across the inductor at a 
time equal to two time constants and (c) the voltage dtop aerosa the resistor 
after a time equal to three time constants, 

The time constant, r = - = -^- = 0.2 ms R 1000 

The steady-state current / = - = ~ - = 24 mA R 1000 
(a) The transient current, i = I(\-e~^T) and t = \τ 

Working in mA units gives, / = 24(1—e-(lr^r)) = 24(1— e~l) 
= 24(1-0.368) = 15.17 mA 

(b) The voltage drop across the inductor, vf = Ve~^T 

' = 24éT2r/T = 24e"2 

= 3.248 V 
(c) The voltage drop across the resistor, vR = V(\—e~^T) 

= 24(l-éT3T/r) = 24(1 -e~3) 
= 22.81 V 



C. FURTHER PROBLEMS 

SHORT ANSWER PROBLEMS 

A capacitor of capacitance C farads is connected in series with a resistor oïR ohms 
and is switched across a constant voltage d.c. supply of V volts. After a time of t 
seconds, the current flowing is / amperes. Use this data to answer Problems 1 to 10. 
1 The voltage drop across the resistor at time t seconds is vR = 
2 The capacitor voltage at time t seconds is vc = 
3 The voltage equation for the circuit is V = 
4 The time constant for the circuit is r = 
5 The final value of the current flowing is 
6 The initial value of the current flowing is / = 
7 The final value of capacitor voltage is 
8 The initial value of capacitor voltage is 
9 The final value of the voltage drop across the resistor is 
10 The initial value of the voltage drop across the resistor is 

A capacitor charged to V volts is disconnected from the supply and discharged 
through a resistor of/? ohms. Use this data to answer Problems 11 to 15 
11 The initial value of current flowing is / = 
12 The approximate time for the current to fall to zero in terms of C and R 

is seconds. 
13 If the value of resistance R is doubled, the time for the current to fall to zero 

is when compared with the time in Problem 12 above. 
14 The approximate fall in the value of the capacitor voltage in a time equal to 

one time constant is %. 
15 The time constant of the circuit is given by seconds. 

An inductor of inductance L henrys and negligible resistance is connected in series 
with a resistor of resistance R ohms and is switched across a constant voltage d.c. 
supply of Fvolts. After a time interval of t seconds, the transient current flowing is 
i amperes. Use this data to answer Problems 16 to 25. 
16 The induced e.m.f., vL opposing the current flow when t = 0 is 
17 The voltage drop across the resistor when t = 0 is vR = 
18 The current flowing when t = 0 is 
19 V, vR and vL are related by the equation V = 
20 The time constant of the circuit in terms of L and R is 
21 The steady-state value of the current is reached in practice in a time equal 

to seconds. 
22 The steady-state voltage across the inductor is volts. 
23 The final value of the current flowing is amperes. 
24 The steady-state resistor voltage is volts. 
25 The e.m.f. induced in the inductor during the transient in terms of current, 

time and inductance is volts. 

A series connected L-R circuit carrying a current of/ amperes is suddenly short-
circuited to allow the current to decay exponentially. Use this data to answer 
Problems 26 to 30. 
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26 The current will fall to % of its initial value in a time equal to 
the time constant. 

27 The voltage equation of the circuit is = 
28 The time constant of the circuit in terms of L and R is 
29 The current reaches zero in a time equal to seconds. 
30 If the value of R is halved, the time for the current to fall to zero is 

when compared with the time in Problem 29. 

MULTI-CHOICE PROBLEMS (answers on page 191) 

An uncharged 2 μΡ capacitor is connected in series with a 5 ΜΩ resistor to a 100 V, 
constant voltage, d.c. supply. In Problems 1 to 7, use this data to select the correct 
answer from those given below. 
(a) 10ms; (b)100V; (c)10s; (d)10V; (β)20μΑ; (f) 1 s; (g)0V; 
(h)50V; (i) 1ms; (j) 50 μΑ; (k) 20 mA; (1) 0 A. 
1 Determine the time constant of the circuit. 
2 Determine the final voltage across the capacitor. 
3 Determine the initial voltage across the resistor. 
4 Determine the final voltage across the resistor. 
5 Determine the initial voltage across the capacitor. 
6 Determine the initial current flowing in the circuit. 
7 Determine the final current flowing in the circuit. 

In Problems 8 and 9, a series connected C-R circuit is suddenly connected to a d.c. 
source of V volts. Which of the statements are false? 
8 (a) The initial current flowing is given by V/R. 

(b) The time constant of the circuit is given by CR 
(c) The current grows exponentially. 
(d) The final value of the current is zero. 

9 (a) The capacitor voltage is equal to the voltage drop across the resistor. 
(b) The voltage drop across the resistor decays exponentially. 
(c) The initial capacitor voltage is zero. 
(d) The initial voltage drop across the resistor is IR, where / is the steady-state 

current. 
10 A capacitor which is charged to V volts is discharged through a resistor ofR 

ohms. Which of the following statements is false? 
(a) The initial current flowing is V/R amperes. 
(b) The voltage drop across the resistor is equal to the capacitor voltage. 
(c) The time constant of the circuit is CR seconds. 
(d) The current grows exponentially to a final value of V/R amperes. 

An inductor of inductance 0.1 H and negligible resistance is connected in series 
with a 50 Ω resistor to a 20 V, d.c. supply. In Problems 11 to 15, use this data tò 
determine the value required, selecting your answer from those given below. 
(a) 5 ms; (b) 12.6V; (c) 0.4 A; (d) 500 ms; (e) 7.4 V; 
(0 2.5 A; (g)2ms; (h )0V; ( i )0A; (j) 20 V. 
11 The value of the time constant of the circuit. 
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12 The approximate value of the voltage across the resistor after a time equal to 
the time constant. 

13 The final value of the current flowing in the circuit. 
14 The initial value of the voltage across the inductor. 
15 The final value of the steady-state voltage across the inductor. 

CONVENTIONAL PROBLEMS 

Transients in series connected C-R circuits 
1 An uncharged capacitor of 0.2 μ¥ is connected to a 100 V, d.c. supply through 

a resistor of 100 ki2. Determine, either graphically or by calculation the capacitor 
voltage 10 ms after the voltage has been applied. [39.35 V] 

2 A circuit consists of an uncharged capacitor connected in series with a 50 ki2 
resistor and has a time constant of 15 ms. Determine either graphically or by 
calculation (a) the capacitance of the capacitor and (b) the voltage drop across 
the resistor 5 ms after connecting the circuit to a 20 V, d.c. supply. 

[(a) 0.3 μ¥; (b) 14.33 V] 
3 A 10 μ¥ capacitor is charged to 120 V and then discharged through a 1.5 ΜΩ 

resistor. Determine either graphically or by calculation the capacitor voltage 
2 s after discharging has commenced. Also find how long it takes for the voltage 
to fall to 25 V. [105.0 V; 23.53 s] 

4 A capacitor is connected in series with a voltmeter of resistance 750 ki2 and a 
battery. When the voltmeter reading is steady the battery is replaced with a 
shorting link. If it takes 17 s for the voltmeter reading to fall to two-thirds of 
its original value, determine the capacitance of the capacitor. [55.9 ^F] 

5 When a 3 μ¥ charged capacitor is connected to a resistor, the voltage falls by 
70% in 3.9 s. Determine the value of the resistor. [ 1.08 ΜΩ ] 

6 A circuit consists of a capacitor and resistor connected in series. When 
connected to a battery, sketch curves showing the variation of capacitor voltage, 
voltage drop across the resistor and current flow over the transient period. 

[See Fig 2] 
7 An uncharged capacitor is connected in series with a resistor across a d.c. supply. 

On the same axes sketch curves to show how (a) the current and (b) the capacitor 
voltage vary with time. [ See Fig 2 ] 

8 Explain the meaning of the term 'time constant' of a circuit comprising a 
capacitor and resistor connected in series with a constant voltage d.c. supply. 

[See para. 3] 
9 A 50 μΡ, uncharged capacitor is connected in series with a i ki2 resistor and the 

circuit is switched to a 100 V, d.c. supply. Determine: 
(a) the initial current flowing in the circuit, 
(b) the time constant, 
(c) the value of current when / is 50 ms and 
(d) the voltage across the resistor 60 ms after closing the switch. 

[(a) 0.1 A; (b) 50 ms; (c) 36.8 mA; (d) 30.1 V] 
10 An uncharged, 5 μ¥ capacitor is connected in series with a 30 k& resistor 

across a 110 V, d.c. supply. Determine the time constant of the circuit and the 
initial charging current. Use a graphicaljnethod to draw the current/time charac­
teristic of the circuit and hence determine'the current flowing 120 ms after 
connecting to the supply. 

[150ms,3 |mA; 1.65 mA] 
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11 An uncharged 80 μ¥ capacitor is connected in series with a 1 1<Ω resistor and is 
switched across a 110 V supply. Determine the time constant of the circuit and 
the initial value of current flowing. Derive graphically the current/time character­
istic for the transient condition and hence determine the value of current flowing 
after (a) 40 msand (b) 80 ms. [80 ms, 0.11 A; (a) 66.7 mA; (b) 40.5 mA.] 

12 A resistor of 0.5 ΜΩ is connected in series with a 20 μΡ capacitor and the 
capacitor is charged to 200 V. The battery is replaced instantaneously by a con­
ducting link. Draw a graph showing the variation of capacitor voltage with time 
over a period of at least 6 time constants. Determine from the graph the approxi­
mate time for the capacitor voltage to fall to 75 V. [9.8 s] 

Transients in series connected L-R circuits 
13 A coil has an inductance of 1.2 H and a resistance of 40 Ω and is connected to a 

200 V d.c. supply. Draw the current/time characteristic and hence determine the 
approximate value of the current flowing 60 ms after connecting the coil to the 
supply. [4.3 A] 

14 A 25 V d.c. supply is connected to a coil of inductance 1 H and resistance 5 Ω. 
Use a graphical method to draw the exponential growth curve of current and 
hence determine the approximate value of the current flowing 100 ms after 
being connected to the supply. [2 Al 

15 An inductor has a resistance of 20 Ω and an inductance of 4 H. It is connected 
to a 50 V d.c. supply. By drawing the appropriate characteristic find (a) the 
approximate value of current flowing after 0.1 s and (b) the time for the 
current to grow to 1.5 A. [(a) 1 A; (b) 0.18 s] 

16 A direct voltage is suddenly applied to a coil of resistance R ohms and inductance 
L henrys. Explain briefly why current does not rise immediately to its steady-
state value. [See para. 9] 

17 Explain briefly what you understand by the expression 'the time constant of a 
series connected L-R circuit'. Draw a graph to explain the significance of the 
term 'constant' and state the value of time constant in terms of L and R. 

[See para. 10 and worked Problem 1 ] 
18 The field winding of a 200 V d.c. machine has a resistance of 20 Ω and an induc­

tance of 500 mH. Calculate: 
(a) the time constant of the field winding, 
(b) the value of current flow one time constant after being connected to the 

supply, and 
(c) the current flowing 50 ms after the supply has been switched on. 

[(a) 25 ms, (b) 6.32 A, (c) 8.65 A] 

The effects of circuit time constant on a rectangular wave 
19 With the aid of a circuit diagram, explain briefly the effects on the waveform 

of the capacitor voltage of altering the value of resistance in a series connected 
C-R circuit, when a>rectangular wave is applied to the circuit. What do you 
understand by the term 'integrator circuit'? [See para. 15 ] 

20 With reference to a rectangular wave applied to a series connected C-R circuit, 
explain briefly the shape of the waveform when R is small and hence what you 
understand by the term 'differentiator circuit'. [See para. 16] 
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6 D.C. machines 

A. MAIN POINTS CONCERNED WITH D.C. MACHINES 

1 When the input to an electrical machine is electrical energy, (seen as applying a 
voltage to the electrical terminals of the machine), and the output is mechanical 
energy, (seen as a rotating shaft), the machine is called an electric motor. Thus 
an electric motor converts electrical energy into mechanical energy. 

2 When the input to an electrical machine is mechanical energy, (seen as, say, a 
diesel motor, coupled to the machine by a shaft), and the output is electrical 
energy, (seen as a voltage appearing at the electrical terminals of the machine), 
the machine is called a generator. Thus, a generator converts mechanical energy 
to electrical energy. 

3 The efficiency of an electrical machine is the ratio of the output power to the 
input power and is usually expressed as a percentage. The Greek letter, 'eta', V 
is used to signify efficiency and since the units are P o w e r , then efficiency has no 
units. Thus 

efficiency,,} = output power χ 1 0 0 % 
input power 

4 The action of a commutator In an electric motor, conductors rotate in a 
uniform magnetic field. A single-loop conductor mounted between permanent 
magnets is shown in Fig 1. A voltage is applied at points A and B in Fig 1(a). 

A force, F, acts on the loop due to the interaction of the magnetic field of 
the permanent magnets and the magnetic field created by the current flowing in 
the loop. This force is proportional to the flux density, B, the current flowing, /, 
and the effective length of the conductor, /, i.e. F = BU. The force is made up of 
two parts, one acting vertically downwards due to the current flowing from C to 
D and the other acting vertically upwards due to the current flowing from E to F 
(from Fleming's left hand rule). If the loop is free to rotate, then when it has 
rotated through 180°, the conductors are as shown in Fig Kb). For rotation to 
continue in the same direction, it is necessary for the current flow to be as shown 
in Fig Kb), i.e. from D to C and from F to E. This apparent reversal in the 
direction of current flow is achieved by a process called commutation. With 
reference to Fig 2(a), when a direct voltage is applied at A and B, then as the 
single-loop conductor rotates, current flow will always be away from the 
commutator for the part of the conductor adjacent to the N-pole and towards 
the commutator for the part of the conductor adjacent to the S-pole. Thus the 

/ 
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(a) 

(b) 

Figi 

forces act to give continuous rotation in an anti-clockwise direction. The arrange­
ment shown in Fig 2 is called a 'two-segment' commutator and the voltage is 
applied to the rotating segments by stationary brushes, (usually carbon blocks), 
which slide on the commutator material, (usually copper), when rotation takes 
place. 

In practice, there are many conductors on the rotating part of a d.c. machine 
and these are attached to many commutator segments. A schematic diagram of 
a multi-segment commutator is shown in Fig 2(b). 
d.c. machine construction. The basic parts of any d.c. machine are shown in 
Fig 3, and comprise: 
(a) a stationary part called the stator having, 

(i) a steel ring called the yoke, to which are attached 
(ii) the magnetic poles, around which are the 

Permanent 
Two-segment magnet 

commutator 
Brush 

(a) 

Commutator 
segment 

Single or 
mu l t i - loop 
conductor 

Fig 2 (b) 
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armature 

Fig 3 

(iii) field windings, i.e. many turns of a conductor wound round the pole core. 
Current passing through this conductor creates an electromagnet, 
(rather than the permanent magnets shown in Figs 1 and 2). 

(b) a rotating part called the armature mounted in bearings housed in the stator 
and having, 

(iv) a laminated cylinder of iron or steel called the core, on which teeth are 
cut to house the 

(v) armature winding, i.e. a single or multi-loop conductor system and 
(vi) the commutator, (see para. 4). 

The average e.m.f. induced in a single conductor on the armature of a d.c. 
machine is given by 
flux cut/rev _ 2ρΦ 
time of 1 rev l/n 
where p is the number of pairs of poles, Φ is the flux in Wb entering or leaving a 
pole and n is the speed of rotation in rev/s. Thus the average e.m.f. pt. conductor 
is 2ρΦη volts. If there are Z conductors connected in series, the average e.m.f. 
generated is ΊρΦηΖ volts. For a given machine, the number of pairs of poles p 
and the number of conductors connected in series Z are constant, hence the 
generated e.m.f. is proportional to Φη. But 2π« is the angular velocity, ω, in 
rad/s, hence the generated e.m.f. E is proportional to Φ and to ω, 
i.e. generated e.m.f., E <χ Φω (1) 
The power on the shaft of a d.c. machine is the product of the torque and the 
angular velocity, i.e. 
shaft power = Τω watts 
where T is the torque in N m and ω is the angular velocity in rad/s. The power 
developed by the armature current is EIa watts, where E is the generated e.m.f. 
in volts and Ia is the armature current in amperes. If losses are neglected then 
Τω = EIa. But from para. 6, E <* Φω 
Hence Γ ω « Φ ω / , i.e. Γ « Φ / (2) 

118 



The principal losses of machines are: 
(i) Copper loss, due to f-R heat losses in the armature and field windings. 

(ii) Iron (or core) loss, due to hysteresis and eddy-current losses in the 
armature. This loss can be reduced by constructing the armature of silicon 
steel laminations having a high resistivity and low hysteresis loss. At 
constant speed, the iron loss is assumed constant. 

(iii) Friction and windage losses, due to bearing and brush contact friction and 
losses due to air resistance against moving parts (called windage). At 
constant speed, these losses are assumed to be constant. 

(iv) Brush contact loss between the brushes and commutator. This loss is 
approximately proportional to the load current. 

The total losses of a machine can be quite significant and operating efficiencies 
of between 80% and 90% are common. 
When the field winding of a d.c. machine is connected in parallel with the 
armature, as shown in Fig 4(a), the machine is said to be shunt wound. If the 
field winding is connected in series with the armature, as shown in Fig 4(b), then 
the machine is said to be series wound. 

(a) Shunt-wound machine Fig 4 (b) Series-wound machine 

Depending on whether the electrical machine is series wound or shunt wound, it 
behaves differently when a load is applied. The behaviour of a d.c. machine under 
various conditions is shown by means of graphs, called characteristic curves or 
just characteristics. The characteristics shown in the paras below and in the 
worked problems are theoretical, since they neglect the effects of such things as 
armature reaction and demagnetising ampere-turns, which are beyond the scope 
of this text. 
Shunt-wound motor characteristics. The two principal characteristics are the 
torque/armature current and speed/armature current relationships. From these, 
the torque/speed relationship can be derived. 
(i) The theoretical torque/armature current characteristic can be derived from 

the expression Tec Φΐαί (see para. 7). For a shunt-wound motor, the field 
winding is connected in parallel with the armature circuit and thus the 
applied voltage gives a constant field current, i.e., a shunt-wound motor is a 
constant flux machine. Since Φ is constant, it follows that T & Ia, and the 
characteristic is as shown in Fig 5(a). 
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(ii) The armature circuit of a d.c. motor has resistance due to the armature 
winding and brushes, Ra ohms, and when armature current Ia is flowing 
through it, there is a voltage drop of IaRa volts. In Fig 5(b) the armature 
resistance is shown as a separate resistor in the armature circuit to help under­
standing. Also, even though the machine is a motor, because conductors are 
rotating in a magnetic field, a voltage, E « Φω, is generated by the armature 
conductors. By applying Kirchhoff s voltage law to the armature circuit 
ABCD in Fig 5(b), the voltage equation is V = E+IaRa, i.e. E = V-IaRa. 
But from para. 6,E <*Φη, hence n « Ε/Φ, i.e. 

speed of rotation, n a — oc V-LRa (3) 
Φ Φ 

For a shunt motor, V, Φ and Ra are constants, hence as armature current la 
increases, IaRa increases and V-IaRa decreases, and the speed is proportional 

| /α#α 

Fig 6 

Load current Ia 

(b) 
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to a quantity which is decreasing and is as shown in Fig 5(c). As the load on 
the shaft of the motor increases, Ia increases and the speed drops slightly. 
In practice, the speed falls by about 10% between no-load and full-load on 
many d.c. shunt-wound motors. 

(iii) Since torque is proportional to armature current, (see (i) above), the 
theoretical speed/torque characteristic is as shown in Fig 5(d). 

Series-wound motor characteristics. The torque/current, speed/current and 
speed/torque characteristics are discussed in Problem 7 (page 126) and the 
characteristics are shown in Fig 9. 
Shunt-wound generator characteristics. The two principal generator character­
istics are the generated voltage/field current characteristic, called the open-
circuit characteristic and the terminal voltage/load current characteristic, called 
the load characteristic. 
(i) The theoretical open-circuit characteristic. The generated e.m.f., is, is propor­

tional to Φω, (see para. 6), hence at constant speed, since ω = 2πη, £ α φ , 
Also the flux Φ is proportional to field current Ij until magnetic saturation of 
the iron circuit of the generator occurs. Hence the open circuit characteristic 
is as shown in Fig 6(a). 

(ii) The theoretical load characteristic. As the load current on a generator having 
constant field current and running at constant speed increases, the value of 
armature current increases, hence the armature volt drop, IaRa increases. The 
generated voltage E is larger than the terminal voltage V and the voltage 
equation for the armature circuit is V = E-IaRa. Since E is constant, V 
decreases with increasing load. The load characteristic is as shown in Fig 6(b). 
In practice, the fall in voltage is about 10% between no-load and full-load for 
many d.c. shunt-wound generators. 

Series-wound generator characteristic. The characteristic curve for a series-
wound generator is discussed in Problem 8 (page 126) 
The d.c. motor starter. If a d.c. motor whose armature is stationary is switched 
directly to its supply voltage, it is likely that the fuses protecting the motor will 
burn out. This is because the armature resistance is small, frequently being less 
than one ohm. Thus, additional resistance must be added to the armature circuit 
at the instant of closing the switch to start the motor. 

Resistor 

Fig 7 
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As the speed of the motor increases, the armature conductors are cutting flux 
and a generated voltage, acting in opposition to the applied voltage, is produced, 
which limits the flow of armature current. Thus the value of the additional arma­
ture resistance can then be reduced. 

When at normal running speed, the generated e.m.f. is such that no additional 
resistance is required in the armature circuit. To achieve this varying resistance in 
the armature circuit on starting, a d.c. motor starter is used, as shown in Fig 7. 
The starting handle is moved slowly in a clockwise direction to start the motor. 
For a shunt-wound motor, the field winding is connected to stud 1 or to L via a 
sliding contact on the starting handle, to give maximum field current, hence 
maximum flux, hence maximum torque on starting, since T « Φΐα. A similar 
arrangement without the field connection is used for series motors. 

16 Speed control of d.c. motors. 
(i) Shunt-wound motors. The speed of a shunt-wound d.c. motor, n, is 

proportional to (V - 7σ#α)/Φ, (see para. 11). The speed is varied either by 
varying the value of flux, Φ, or by varying the value of Ra. The former is 
achieved by using a variable resistor in series with the field winding, as shown 
in Fig 8(a) and such a resistor is called the shunt field regulator. As the value 
of resistance of the shunt field regulator is increased, the value of the field 
current, Ip is decreased. This results in a decrease in the value of flux, Φ, and 
hence an increase in the speed, since n α 1/Φ. Thus only speeds above that 
given without a shunt field regulator can be obtained by this method. Speeds 
below those given by ( V—IaRa )/Φ are obtained by increasing the resistance in 
the armature circuit, as shown in Fig 8(b), where 

naV-Ia(Ra+R) 
Φ 

Since resistor R is in series with the armature, it carries the full armature 
current and results in a large power loss in large motors where a considerable 
speed reduction is required for long periods. 

(ii) Series-wound motors. The speed control of series-wound motors is discussed 
in Problem 9 (page 127). 

■fo­

ia) Fig 8 (b) 

17 A stepping motor 'steps' from one fixed position to the next in a sequence of 
discrete movements - unlike the smooth and continuous rotation of the 
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machines previously discussed. Instead of having a continuous input signal, 
digital control with pulses are used. 
Stepping motors are used typically 
(i) as head positioners in floppy disc drives 

(ii) in computer-controlled X-Y plotters 
(iii) in teletype printers and 
(iv) in robotic applications. 
Modern stepping motors operate on the principle that various combinations 
and phasings of the fields, and the interaction between these fields and the rotor 
field within the motors causes the rotor to move a defined number of degrees -
either forward or backwards. The number of pulses and the frequency of the 
control signal determines the number of steps and the speed of rotation. A step 

360 angle of 1.8° is common, thus giving y-g-, i.e., 200 steps per revolution. 

B. WORKED PROBLEMS ON D.C. MACHINES 

Problem I A 200 V d.c. motor develops a shaft torque of 15 Nm at 1200 rev/min. 
If the efficiency is 80%, determine the current supplied to the motor. 

From para. 3, the efficiency of a motor = QH-tP11* power χ ÌQQ% 
input power 

The output power of a motor is the power available to do work at its shaft and 
is given by Τω or Τ(2πη) watts, where T is the torque in Nm and n is the speed 
of rotation in rev/s. The input power is the electrical power in watts supplied to 
the motor, i.e. VI watts. 

Thus for a motor, efficiency, η = τ(2πηϊ χ 100% 

ί(15)(2π)(1|50)ί 

' \ (200X1) ) 

Thus the current supplied, / = (15)(2π)(20)(100) = i i.s A 
(200X80) 

Problem 2 A 100 V ex; generator*sullies a current of 15 A when running at 
1500 rev/min. If the torque on the shaft driving the generator is 12 Nm, 
determine (a) the efficiency of the generator and (b) the power kiss In the 
generator. 

(a) From para. 3, the efficiency of a generator = output power χ l o m 
input power 

The output power is the electrical output, i.e. VI watts. The input power to 
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a generator is the mechanical power in the shaft driving the generator, i.e. 
Τω or Τ(2πη) watts, where T is the torque in Nm and n is speed of rotation 
in rev/s. Hence, for a generator 

efficiency, r? = ——— X 100% 
T{2tm) 

i.e. η = (100X15X100) 
(12)(2π)(±|£0) 

oU 

79.6%. 
= output power + losses 
= VI + losses 
= T(2m)-VI 

= | ( ΐ 2 ) ( 2 π ) ( 1 | ^ ] - [(100X15)] 

i.e. power loss = 1885-1500 = 385 W 

PmbtemS AieAii*t~wXH3*$4getmtó*ι«%aioçmàtâ&Mâpmmtm 

I ta k pmportwml t# tìmIteW cantal. < 

The generated e.m.f. E of a generator is proportional to Φω, (see para. 6), i.e. 
is proportional to Φ«, where Φ is the flux and n is the speed of rotation. It 
follows that E = Α:ΦΗ, where A: is a constant. At speed nl and flux Φι, 
Ει = &Φι « i . At speed n2 and flux φ2, Ε2 = \ίΦ2η2 · Thus, by division: 
El _ ΙζΦΐΠι _ Φιηί 

E2 Α:Φ2«2 Φ2«2 

The initial conditions are Ex = 150 V, Φ = Φι and n =nx. When the flux is 
reduced by 20%, the new value of flux is 80/100 of 0.8 of the initial value, 
i.e. Φ2 = 0.8Φ!. Since the generator is running at constant speed, n2 =ni. Thus 

^L = Φ±Ίΐ = φι"ι = J_ 
E2 Φ2η2 0.8Φ!«! 0.8 

that is, E2 = 150X0.8 = 120 V. 

Thus, a reduction of 20% in the value of the flux reduces the generated voltage 
to 120 V at constant speed. 

ftobtem 4 A 200 V, âx. ^lintrwoBoé-i^cit^r'te^:afj^tpr^fÉ^i^e-#f 

■ rev/Äta.If tW^fiààâ. Mit ^i^j^^té;^^^^^^^^^^^^ 

remains constant. λ> v/V/c'.',·' '";,'- ; ; ίοϊ/^'"^^^ 

The relationship E <* Φη applies to both generators and motors. For a motor, 
£ =V-IaRa, (see para. 11). 

Hence Et = 200-30 X 0.4 = 188 V, 
and E2 = 200-45 X 0.4 = 182 V. 

i.e. efficiency = 
(b) The input power 

Hence, Τ(2πη) 
i.e. losses 
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With reference to Problem 3, the relationship 

?L = Φγηι 

apphes to both generators and motors. Since the flux is constant, Φχ = Φ2. 

Φ, ν 1350 
Hence i M = <^_ . _ 22.5 X 182 

i o n Λ » ν / „ ' ' * 182 Φι Χη2 188 
= 21.78 rev/s. 

Thus the speed of the motor when the armature current is 45 A is 21.78 X 60 
rev/min, i.e. 1307 rev/min. 

Pr&bUm S The shaft torque of a diesel motor driving a 100 V u.c., shunt-wound 
generator Is 25 Nm, The armature current of the generator Is 16 À at this value of 
torque, If the shunt Ma regulator is adjusted so that the tlux is reduced by 15%, 
the torque Increases to 35 Mm. Determine the armature current at this new value 
of torque« 

The shaft torque T of a generator is proportional to ΦΙα, where Φ is the flux and 
Ia is the armature current. Thus, T = kΦIa where k is a constant. The torque at 
flux Φχ and armature current Ial is Tx = kΦιIal. Similarly, T2 = kto-il^. 

By division 

Hence — = 

Τχ 
T2 

25 
35 

Ia2 

_*ΦιΙβ1 _Φ1Ια1 

kΦ^Ia2 Φ2Ια2 
Φ1 X 16 

0.85Φ! X 1Δ 

= - 1 6 Χ 3 5 =26.35 A 

That is, the armature current at the new value of torque is 26.35 A. 

Problem 6 A 220 V, <tc shunt-wound motor runs at S0Ô rev/min and the 
armature current is 30 A, The armature circuit résistance h 0,4 & Determine 
(a) the maximum value of armature current if the ftux is mtòàmty reduced by 
10% and (b) to steady state value of to armature current at the new value of 
flux» assunun$ the shaft torque of the motor remains constant, 

(a) For a d.c. shunt-wound motor, E = V-IaRa. Hence initial generated e.m.f., 
Ei = 220-30 X 0.4 = 208 V. The generated e.m.f. is also such that E oc Φη, 
so at the instant the flux is reduced, the speed has not had time to change, and 
£ = 208Χ-5%= 187.2 V. 

100 
Hence, the voltage drop due to the armature resistance is 220-187.2, i.e., 
32.8 V. The instantaneous value of the current is 32.8/0.4, i.e. 82 A. This 
increase in current is about three times the initial value and causes an increase 
in torque, ( Γ « ΦΙα). The motor accelerates because of the larger torque value 
until steady state conditions are reached. 

(b) T oc Φΐα and since the torque is constant, 
ΦιΙα] —^2^02- The flux Φ is reduced by 10%, hence 
Φ2 = 0.9Φ!. 
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Thus, Φ! X 30 = 0.9Φ! X Ia2 

i.e. the steady state value of armature current, I. , 30 
0.9 

: 33^A. 

Problem 7 Sketch the torque/current» speed/current and speed/torque character­
istics for a d,c+) series-wound motor and with reference to e.m.f. and torque 
relationships for a dx, machine, explain their shape. 

In a series motor, the armature current flows in the field winding and is equal to 
the supply current /, (see Fig 4(b)). 
(i) The torque/current characteristic. It is shown in para. 7 that torque Γ α φ ^ . 

Since the armature and field currents are the same current, /, in a series 
machine, then Γ « Φ / over a limited range, before magnetic saturation of the 
magnetic circuit of the motor is reached, (i.e., the linear portion of the B-H 
curve for the yoke, poles, air gap, brushes and armature in series). Thus Φ oc / 
and T oc I2. After magnetic saturation, Φ almost becomes a constant and 

Speed Speed 

Fig 9 

Current / 

(b) 

Torque T 

(C) 

T oc /. Thus the theoretical torque/current characteristic is as shown in 
Fig 9(a). 

(ii) The speed/current characteristic. It is shown in para. 1 l(ii) that 
n oc (V-IaRa)fà. In a series motor, Ia = I and below the magnetic saturation 
level, Φ oc /. Thus n oc (V-IR)/I where R is the combined resistance of the 
series field and armature circuit. Since IR is small compared with V, then an 
approximate relationship for the speed is« oc \fj. Hence the theoretical 
speed/current characteristic is as shown in Fig 9(b). The high speed at small 
values of current indicate that this type of motor must not be run on very 
light loads and invariably, such motors are permanently coupled to their loads. 

(iii) The theoretical speed/torque characteristic may be derived from (i) and (ii) 
above by obtaining the torque and speed for various values of current and 
plotting the co-ordinates on the speed/torque characteristic. A typical speed/ 
torque characteristic is shown in Fig 9(c). 

Problem S Sketch the theoretical load characteristic for a series-wound generator 
and explain its shape with reference to the generated e.m.f. relationship for a dx . 
machine. Explain why it is not possible to obtain an open*circuit characteristic 
for a series-wound generator. 

The load characteristic is the terminal voltage/current characteristic. The gener­
ated e.m.f., E, is proportional to Φω and at constant speed ω (= 2πη) is a 
constant. Thus E is proportional to Φ. For values of current below magnetic 
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saturation of the yoke, poles, air gaps and armature core, the flux Φ is propor­
tional to the current, hence E oc /. For values of current above those required for 
magnetic saturation, the generated e.m.f. is approximately constant. The values 
of field resistance and armature resistance in a series wound machine are small, 
hence the terminal voltage V is very nearly equal to E. Thus the theoretical load 
characteristic is similar in shape to the characteristic shown in Fig 6(a). 

In a series-wound generator, the field winding is in series with the armature 
and it is not possible to have a value of field current when the terminals are open 
circuited, thus it is not possible to obtain an open-circuit characteristic. 

Problem 9 Explain how the speed of a dx, series-wound motor can be controlled 
by using (a) field resistance and (b) armature resistance techniques. 

(a) The speed of a d.c. series-wound motor is given by: 

where k is a constant, V is the terminal voltage, R is the combined resistance 
of the armature and series field and Φ is the flux. 

Thus, a reduction in flux results in an increase in speed. This is achieved 
by putting a variable resistance in parallel with the field winding and reducing 
the field current, and hence flux, for a given value of supply current. A circuit 
diagram of this arrangement is shown in Fig 10(a). A variable resistor connected 
in parallel with the series-wound field to control speed is called a diverter. 
Speeds above those given with no diverter are obtained by this method. 
+ Q-

Fig 10 

(b) Speeds below normal are obtained by connecting a variable resistor in series 
with the field winding and armature circuit, as shown in Fig 10(b). This effec­
tively increases the value of R in the equation 

and thus reduces the speed. Since the additional resistor carries the full 
supply current, a large power loss is associated with large motors in which a 
considerable speed reduction is required for long periods. 

C. FURTHER PROBLEMS ON D.C. MACHINES 

SHORT ANSWER PROBLEMS 

1 An electric converts electrical energy to mechanical energy. 
2 An electric motor converts energy to energy. 

127 



3 The efficiency of an electrical machine is given by the ratio 
; ; ; ; ; ; ; ; ; ; ; ; ; ^ %. 

In Problems 4 to 7, an electrical machine runs at n rev/s, has a shaft torque of T and 
takes a current of/ from a supply of voltage V. 
4 The power input to a generator is watts. 
5 The power input to a motor is watts. 
6 The power output from a generator is watts. 
7 The power output from a motor is watts. 
8 The generated e.m.f. of a d.c. machine is proportional to volts. 
9 The torque produced by a d.c. motor is proportional to Nm. 
10 In a series-wound d.c. machine, the field winding is in with the 

armature circuit. 
11 A d.c. motor has its field winding in parallel with the armature circuit. It is 

called a wound motor. 
12 In a d.c. generator, the relationship between the generated voltage, terminal 

voltage, current and armature resistance is given by E = 
13 The equation relating the generated e.m.f., terminal voltage, armature current 

and armature resistance for a d.c. motor is = 
14 A starter is necessary for a d.c. motor because the generated e.m.f. is . . . 

at low speeds. 
15 The speed of a d.c. shunt-wound motor will if the value of 

resistance of the shunt field regulator is increased. 
16 The speed of a d.c. motor will if the value of resistance in the 

armature circuit is increased. 
17 The value of the speed of a d.c. shunt-wound motor as the value 

of the armature current increases. 
18 At a large value of torque, the speed of a d.c. series-wound motor is 
19 At a large value of field current, the generated e.m.f. of a d.c. shunt-wound 

generator is approximately 
20 In a series-wound generator, the terminal voltage increases as the load current 

MULTI-CHOICE PROBLEMS (answers on page 191) 

1 Which of the following statements is false? 
(a) A d.c. motor converts electrical energy to mechanical energy. 

(b) The efficiency of a d.c. motor is the ratio i n P u t P°wer χ 1 0 Q % 
output power 

(c) A d.c. generator converts mechanical energy to electrical energy. 
(d) The efficiency of a d.c. generator is the ratio o u t P u t P o w e r χ ιοο% 

input power 

A shunt-wound d.c. machine is running at n rev/s and has a shaft torque of T Nm. 
The supply current is / A when connected to d.c. bus bars of voltage V volts. The 
armature resistance of the machine is Ra ohms, the armature current is Ia A and the 
generated voltage is E volts. Use this data to find the equations of the quantities 
stated in Problems 2 to 9, selecting the correct answer from the list given below. 
(a) V-IaRa; (b) E+IaRa; (c) VI\ 
(d) E-IaRa; (e) Γ(2™); (0 V+IaRa. 
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2 The input power when running as a generator. 
3 The output power when running as a motor. 
4 The input power when running as a motor. 
5 The output power when running as a generator. 
6 The generated voltage when running as a motor. 
7 The terminal voltage when running as a generator. 
8 The generated voltage when running as a generator. 
9 The terminal voltage when running as a motor. 
10 Which of the following statements is false? 

(a) A commutator is necessary as part of a d.c. motor to keep the armature 
rotating in the same direction. 

(b) A commutator is necessary as part of a d.c. generator to produce a 
uni-directional voltage at the terminals of the generator. 

(c) The field winding of a d.c. machine is housed in slots on the armature. 
(d) The brushes of a d.c. machine are usually made of carbon and do not 

rotate with the armature. 
11 If the speed of a d.c. machine is doubled and the flux remains constant, the 

generated e.m.f. 
(a) remains the same; (b) is doubled; (c) is halved. 

12 If the flux per pole of a shunt-wound d.c. generator is increased, and all other 
variables are kept the same, the speed 
(a) decreases; (b) stays the same; (c) increases. 

13 If the flux per pole of a shunt-wound d.c. generator is halved, the generated 
e.m.f. at constant speed 
(a) is doubled; (b) is halved; (c) remains the same. 

14 In a series-wound generator running at constant speed, as the load current 
increases, the terminal voltage 
(a) increases; (b) decreases; (c) stays the same. 

15 Which of the following statements is false for a series-wound d.c. motor? 
(a) The speed decreases with increase of resistance in the armature circuit. 
(b) The speed increases as the flux decreases. 
(c) The speed can be controlled by a diverter. 
(d) The speed can be controlled by a shunt field regulator. 

CONVENTIONAL PROBLEMS 

1 A 250 V, series-wound motor is running at 500 rev/min and its shaft torque is 
130 N m. If its efficiency at this load is 88%, find the current taken from the 
supply. [30.94 A] 

2 In a test on a d.c. motor, the following data was obtained. 
Supply voltage: 500 V. Current taken from the supply: 42.4 A. 
Speed: 850 rev/min. Shaft torque: 187 N m. 
Determine the efficiency of the motor correct to the nearest 0.5% [78.5%] 

3 (a) State the principal losses in d.c. machines. 
(b) The shaft torque required to drive a d.c. generator is 18.7 N m when it is 
running at 1250 rev/min. If its efficiency is 87% under these conditions and the 
armature current is 17.3 A, determine the voltage at the terminals of the 
generator. [123.1 V] 

4 A 220 V, d.c. generator supplies a load of 37.5 A and runs at 1550 rev/min. 
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Determine the shaft torque of the diesel motor driving the generator, if the 
generator efficiency is 78%. [65.2 N m] 

5 Describe the need for a commutator on the armature of a d.c. generator, 
using diagrams to illustrate your answer. 

6 Explain the function of a commutator on the armature of a d.c. motor. 
7 Draw a labelled diagram showing a cross-section of a two-pole d.c. machine. 

Describe the functions performed by the field windings, the armature, the 
commutator and the brushes. 

8 Determine the generated e.m.f. of a d.c. machine if the armature resistance is 
0.1 Ω and it (a) is running as a motor connected to a 230 V supply, the armature 
current being 60 A, and (b) is running as a generator with a terminal voltage of 
230 V, the armature current being 80 A. [(a) 224 V; (b) 238 V] 

9 A d.c. motor has a speed of 900 rev/min when connected to a 460 V supply. 
Find the approximate value of the speed of the motor when connected to a 
200 V supply, assuming the flux decreases by 30% and neglecting the armature 
volt drop. [559 rev/min] 

10 A d.c. generator has a generated e.m.f. of 210 V when running at 700 rev/min 
and the flux per pole is 120 mWb. Determine the generated e.m.f. 
(a) at 1050 rev/min, assuming the flux remains constant, 
(b) if the flux is reduced by one-sixth at constant speed, and 
(c) at a speed of 1155 rev/min and a flux of 132 mWb. 

[(a) 315 V; (b) 175 V; (c) 381.2 V] 
11 A 250 V d.c. shunt-wound generator has an armature resistance of 0.1 fo. 

Determine the generated e.m.f. when the generator is supplying 50 kW, neglecting 
the field current of the generator. [270 V] 

12 A series-wound motor is connected to a d.c. supply and develops full-load torque 
when the current is 30 A and speed is 1000 rev/min. If the flux per pole is 
proportional to the current flowing, find the current and speed at half full-load 
torque, when connected to the same supply. [21.2 A, 1415 rev/min] 

13 Sketch the theoretical speed/torque characteristic for (a) a series-wound, d.c. 
motor and (b) a shunt-wound, d.c. motor. Use the e.m.f. and torque relationships 
to explain their shapes. 

14 As the current supplied by a d.c. shunt-wound generator increases, the terminal 
voltage falls. Explain why the voltage falls and sketch the theoretical load 
characteristic for this generator. 

15 Explain the effect of the generated e.m.f. of a d.c. motor and why a d.c. motor 
starter is necessary. 

16 Explain why a d.c. shunt-wound motor needs a starter when connected to a 
constant-voltage supply and make a sketch of such a starter. 

17 One type of d.c. motor uses resistance in series with the field winding to obtain 
speed variations and another type uses resistance in parallel with the field 
winding for the same purpose. Explain why these two distinct methods are used 
and why the field current plays a significant part in controlling the speed of a 
d.c. motor. 

18 Explain the principle of a stepping motor. 
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7 Introduction to 
three-phase induction 
motors 

A. MAIN POINTS CONCERNED WITH AN INTRODUCTION TO THREE-PHASE 
INDUCTION MOTORS 

1 In d.c. motors, introduced in chapter 6, conductors on a rotating armature pass 
through a stationary magnetic field. In a three-phase induction motor, the 
magnetic field rotates and this has the advantage that no external electrical 
connections to the rotor need be made. 

The result is a motor which: (i) is cheap and robust, (ii) is explosion proof, 
due to the absence of a commutator or slip-rings and brushes with their 

Figi 
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associated sparking, (iii) requires little or no skilled maintenance, and (iv) has 
self starting properties when switched to a supply with no additional expenditure 
on auxiliary equipment. The principal disadvantage of a three-phase induction 
motor is that its speed cannot be readily adjusted. 

2 Production of a rotating magnetic field. When a three-phase supply is connected 
to symmetrical three-phase stator windings, the currents flowing in the windings 
produce a magnetic field. This magnetic field is constant in magnitude and 
rotates at constant speed as shown below and in Problem 1, and is called the 
synchronous speed. 

With reference to Fig 1, the windings are represented by three single-loop 
conductors, one for each phase, marked R$RF> Y S *V anc* ^S^F» t n e $ an(^ F 
signifying start and finish. In practice, each phase winding comprises many turns 
and is distributed around the stator; the single-loop approach is for clarity only. 

When the stator windings are connected to a three-phase supply, the current 
flowing in each winding varies with time and is as shown in Fig 1(a). If the value 
of current in a winding is positive, the assumption is made that it flows from 
start to finish of the winding, i.e., if it is the red-phase, current flows from Rs to 
RF, i.e. away from the viewer in Rs and towards the viewer in RF. When the 
value of current is negative, the assumption is made that it flows from finish to 
start, i.e. towards the viewer in an '£' winding and away from the viewer in an 
*F winding. 

Curr 

+ 

(a) 

Rs Fig 2 
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At time, say ΐγ, shown in Fig 1(a), the current flowing in the red phase is a 
maximum positive value. At the same time, tx, the currents flowing in the yellow 
and blue phases are both 0.5 times the maximum value and are negative. The 
current distribution in the stator windings is therefore as shown in Fig Kb), in 
which current flows away from the viewer, (shown as X) in Rs since it is positive,. 
but towards the viewer (shown as · ) in Ys and Bs, since these are negative. The 
resulting magnetic field is as shown, due to the 'solenoid' action and application 
of the corkscrew rule. 

A short time later at time t2, the current flowing in the red phase has fallen 
to about 0.87 times its maximum value and is positive, the current in the yellow 
phase is zero and the current in the blue phase is about 0.87 times its maximum 
value and is negative. Hence the currents and resultant magnetic field are as 
shown in Fig 1(c). At time t3, the currents in the red and yellow phases are 0.5 
of their maximum values and the current in the blue phase is a maximum negative 
value. The currents and resultant magnetic field are as shown in Fig 1(d). 

Similar diagrams to Fig Kb), (c) and (d) can be produced for all time values 
and these would show that the magnetic field travels through one revolution for 
each cycle of the supply voltage applied to the stator windings. By considering 
the flux values rather than the current values, it can be shown that the rotating 
magnetic field has a constant value of flux, (see Problem 1). 
The rotating magnetic field produced by three phase windings could have been 
produced by rotating a permanent magnet's north and south pole at synchronous 
speed, (shown as N and S at the ends of the flux phasors in Figs Kb), (c) and (d)). 
For this reason, it is called a 2-pole system and an induction motor using three 
phase windings only is called a 2-pole induction motor. 

If six windings displaced from one another by 60° are used, as shown in 
Fig 2(b), by drawing the current and resultant magnetic field diagrams at 
various time values, it may be shown that one cycle of the supply current to the 
stator windings causes the magnetic field to move through half a revolution. The 
current distribution in the stator windings are shown in Fig 2(b), for the time t 
shown in Fig 2(a). 

It can be seen that for six windings on the stator, the magnetic flux 
produced is the same as that produced by rotating two permanent magnet 
north poles and two permanent magnet south poles at synchronous speed. This 
is called a 4-pole system and an induction motor using six phase windings is 
called a 4-pole induction motor. By increasing the number of phase windings the 
number of poles can be increased to any even number. 

In general, i f / is the frequency of the currents in the stator windings and the 
stator is wound to be equivalent to p pairs of poles, the speed of revolution of 
the rotating magnetic field, i.e., the synchronous speed, ns is given by: 

«„ =■£- rev/s S P 
The principle of operation of the three-phase induction motor. The stator of a 
three-phase induction motor is the stationary part corresponding to the yoke of 
a d.c. machine. It is wound to give a 2-pole, 4-pole, 6-pole, rotating 
magnetic field, depending on the rotor speed required. The rotor, corresponding 
to the armature of a d.c. machine, is built up of laminated iron, to reduce eddy 
currents. 

In the type most widely used, known as a squirrel-cage rotor, copper or 
aluminium bars are placed in slots cut in the laminated iron, the ends of the bars 



(a) 

Fig 3 
(b) 

being welded or brazed into a heavy conducting ring, (see Fig 3(a)). A cross-
sectional view of a three-phase induction motor is shown in Fig 3(b). 

When a three-phase supply is connected to the stator windings, a rotating 
magnetic field is produced. As the magnetic flux cuts a bar on the rotor, an e.m.f. 
is induced in it and since it is joined, via the end conducting rings, to another bar 
one pole pitch away, a current flows in the bars. The magnetic field associated 
with this current flowing in the bars interacts with the rotating magnetic field 
and a force is produced, tending 

Stotor^ to turn the rotor in the same 
direction as the rotating magnetic 
field, (see Fig 4). 
Slip. The force exerted by the 
rotor bars causes the rotor to turn 
in the direction of the rotating 
magnetic field. As the rotor speed 
increases, the rate at which the 

Rotating magnetic 
field Fig 4 

rotating magnetic field cuts the rotor bars is less and the frequency of the 
induced emfs in the rotor bars is less. If the rotor runs at the same speed as the 
rotating magnetic field, no emfs are induced in the rotor, hence there is no 
force on them and no torque on the rotor. Thus the rotor slows down. For this 
reason the rotor can never run at synchronous speed. 

When there is no load on the rotor, the resistive forces due to windage and 
bearing friction are small and the rotor runs very nearly at synchronous speed. 
As the rotor is loaded, the speed falls and this causes an increase in the frequency 
of the induced emfs in the rotor bars and hence the rotor current, force and 
torque increase. The difference between the rotor speed, nr and the synchronous 
speed, ns, is called the slip speed, i.e. 
slip speed = ns-nr rev/s 

The ratio ——- is called the fractional slip or just the slip, s, and is usually 
ns 

expressed as a percentage. Thus 
ns-nr slip, s : X 100% 
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Typical values of slip between no load and full load are about 4 to 5% for small 
motors and 1 Vi to 2% for large motors. 

B. WORKED PROBLEMS ON AN INTRODUCTION TO THREE-PHASE 
INDUCTION MOTORS 

Problem I Show» by means of diagrams, that a rotating magnetic field of 
constant magnitude can be produced by applying a three-phase supply to three 
similar coils* displaced from one another by 120°, 

The three coils shown in Fig 5(a), are connected in star to a three-phase supply. 
Let the positive directions of the fluxes produced by currents flowing in the 
coils, be φΑ , φβ and 0C respectively. The directions of φΑ , φΒ and 0C do not 
alter, but their magnitudes are proportional to the currents flowing in the coils 
at any particular time. At time tx, shown in Fig 5(b), the currents flowing in the 
coils are: 
iB, a maximum positive value, i.e., the flux is towards point P; 
iA and ic, half the maximum value and negative, i.e. the flux is away from 
point P. 

These currents give rise to the magnetic fluxes φΑ , φΒ and φ€, whose magnitudes 
and directions are as shown in Fig 5(c). The resultant flux is the phasor sum of 
φΑ , φΒ and 0C, shown as Φ in Fig 5(c). At time t2, the currents flowing are: 
iB, 0.866 X maximum positive value; ic, zero and 
iA , 0.866 X maximum negative value. 
The magnetic fluxes and the resultant magnetic flux are as shown in Fig 5(d). 
At time ^ , 
iB is 0.5 X maximum value and is positive 
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iA is a maximum negative value, and 
ic is 0.5 X maximum value and is positive. 
The magnetic fluxes and the resultant magnetic flux are as shown in Fig 5(e). 

Inspection of Figs 5(c), (d) and (e) shows that the magnitude of the resultant 
magnetic flux, Φ, in each case is constant and is \lA X the maximum value of 
ΦΑ > ΦΒ ΟΓ Φα » b u t t h a t its direction is changing. The process of determining the 
resultant flux may be repeated for all values of time and shows that the magnitude 
of the resultant flux is constant for all values of time and also that it rotates at 
constant speed, making one revolution for each cycle of the supply voltage. 

Problem 2 The stator of a 3-phaae induction motor is connected to a 50 HE 
supply. If the stator is wound to give a 2-pole system» ima the synchronous 
speed of the motor ht rev/min, 

From para. 3, ns = f/p rev/s, where ns is the synchronous speed,/is the fre­
quency in hertz of the supply to the stator and p is the number of pairs of poles. 
Since the stator is connected to a 50 hertz supply,/= 50. The motor has a two-
pole system, hence p, the number of pairs of poles is one. Thus 

synchronous speed, ns = ψ = 50 rev/s = 50 X 60 rev/min = 3000 rev/min. 

Probkm S The stator of a 3-ohase, 4~pole Induction motor Is connected to a 
50 m supply, The rotor runs at 1455 rev/min at full load. Determine (a) the 
synchronous speed and (o) the slip at full load* 

(a) The number of pairs of poles, p = 4/2 = 2. The supply frequency / = 50 Hz. 

The synchronous speed ns = *- = — = 2 5 rev/s 
p 2 

(b) The rotor speed nr = 1 4 | i = 24.25 rev/s 
60 

The slip s = rhZÜL· χ j oo% 

= 2 5 2 4 ' 2 5 X 100% = 3% 

PmbUm 4 A 3-pfcase, m m induction motor has 2 poles. If fife «% k » at a 
certain ime, determine (a) the synchronous spe«d, (b) the speed oif the rotor me 
(c) the frequency of the induced e,jt*X's In the rotor, 

(a) /=60Hz, p = Z. = 1 . 

Hence synchronous speed, ns = *- = — = 60 rev/s 
P 1 

(b) Since slip, 5 = "l^ÜL χ ιοο% 
ns 

. 60-« r 2 = — - S - X 100 
60 
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i.e. nr = 60 - 2 X ^° =58.8rev/s 

i.e. the rotor runs at 58.8 X 60 = 3528 rev/min 
(c) Since the synchronous speed is 60 rev/s and that of the rotor is 58.8 rev/s. 

the rotating magnetic field cuts the rotor bars at (60—58.8), i.e. 1.2 rev/s. 
Thus the frequency of the e.m.f.'s induced in the rotor bars is 1.2 Hz. 

C. FURTHER PROBLEMS 

SHORT ANSWER PROBLEMS 

1 Name three advantages that a three-phase induction motor has when compared 
with a d.c. motor. 

2 Name the principal disadvantage of a three-phase induction motor when compared 
with a d.c. motor. 

3 Write down the two properties of the magnetic field produced by the stator of 
a three-phase induction motor. 

4 The speed at which the magnetic field of a three-phase induction motor rotates 
is called the speed. 

5 The synchronous speed of a three-phase induction motor is 
proportional to the supply frequency. 

6 The synchronous speed of a three-phase induction motor is . . . 
proportional to the number of pairs of poles. 

7 The type of rotor most widely used in a three-phase induction motor is called 
a rotor. 

8 The slip of a three-phase induction motor is given by: 

J = — — x 100%. 

9 A typical value for the slip of a small three-phase induction motor at full 
load is %. 

10 As the load on the rotor of a three-phase induction motor increases, the slip 

MULTI-CHOICE PROBLEMS (answers on page 191) 

1 Which of the following statements about a three-phase squirrel-cage induction 
motor is false? 
(a) It has no external electrical connections to its rotor. 
(b) A three-phase supply is connected to its stator. 
(c) A magnetic flux which alternates is produced. 
(d) It is cheap, robust and requires little or no skilled maintenance. 

2 Which of the following statements about a three-phase induction motor is false? 
(a) The speed of rotation of the magnetic field is called the synchronous speed. 
(b) A three-phase supply connected to the rotor produces a rotating magnetic 

field. 
(c) The rotating magnetic field has a constant speed and constant magnitude. 
(d) It is essentially a constant speed type machine. 

137 



3 Which of the following statements is false when referring to a three-phase 
induction motor? 
(a) The synchronous speed is half the supply frequency when it has 4 poles. 
(b) In a two-pole machine, the synchronous speed is equal to the supply 

frequency. 
(c) If the number of poles is increased, the synchronous speed is reduced. 
(d) The synchronous speed is inversely proportional to the number of poles. 

4 A 4-pole, three-phase induction motor has a synchronous speed of 25 rev/s. 
The frequency of the supply to the stator is: 
(a) 50 Hz; (b) 100 Hz; (c) 25 Hz; (d) 12.5 Hz. 

Problems 5 and 6 refer to a three-phase induction motor. Which statements are false? 
5 (a) The slip speed is the synchronous speed minus the rotor speed. 

(b) As the rotor is loaded, the slip decreases. 
(c) The frequency of induced rotor e.m.f.'s increases with load on the rotor. 
(d) The torque on the rotor is due to the interaction of magnetic fields. 

6 (a) If the rotor is running at synchronous speed, there is no torque on the rotor. 
(b) If the number of poles on the stator is doubled, the synchronous speed is 

halved. 
(c) At no load, the rotor speed is very nearly equal to the synchronous speed. 
(d) The direction of rotation of the rotor is opposite to the direction of rotation 

of the magnetic field to give maximum current induced in the rotor bars. 

A three-phase, 4-pole, 50 Hz induction motor runs at 1440 rev/min. In Problems 7 
to 10, determine the correct answers for the quantities stated, selecting your answer 
from the list given. 
(a) 12!/2 rev/s; (b) 25 rev/s; (c) 1 rev/s; (d) 50 rev/s; 
(e) 1%; (0 4%; (g) 50%; (h) 4 Hz; 
(i) 50 Hz; (j) 1 Hz. 
7 The synchronous speed. 
8 The slip speed. 
9 The percentage slip. 
10 The frequency of induced e.m.f.'s in the rotor. 

CONVENTIONAL PROBLEMS 

1 With the aid of diagrams, explain how a rotating magnetic field is produced 
when a three-phase supply is connected to the stator of an induction motor. 

2 Explain briefly what you understand by the term 'a six-pole induction motor'. 
3 The synchronous speed of a 3-phase, 4-pole induction motor is 60 rev/s. 

Determine the frequency of the supply to the stator windings. [120 Hz] 
4 The synchronous speed of a 3-phase induction motor is 25 rev/s and the 

frequency of the supply to the stator is 50 Hz. Calculate the equivalent number 
of pairs of poles of the motor. [2] 

5 A 6-pole. 3-phase induction motor is connected to a 300 Hz supply. Determine 
the speed of rotation of the magnetic field produced by the stator. 

[100 rev/s] 
6 A 6-pole, 3-phase induction motor runs at 970 rev/min at a certain load. If the 

stator is connected to a 50 Hz supply, find the percentage slip at this load. [3%] 
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7 A 3-phase, 50 Hz induction motor has 8 poles. If the full load slip is 2Vi%, 
determine (a) the synchronous speed, (b) the rotor speed and (c) the frequency 
of the rotor e.m.f/s. [(a) 750 rev/min; (b) 731 rev/min; (c) 1.25 Hz] 

8 Explain briefly, with the aid of sketches, the principle of operation of a 3-phase 
induction motor. 

9 Explain how slip-frequency currents are set up in the rotor bars of a 3-phase 
induction motor and why this frequency varies with load. 

10 Explain why a 3-phase induction motor develops no torque when running at 
synchronous speed. Define the slip of an induction motor and explain why its 
value depends on the load on the rotor. 

11 A 4-pole, 3-phase, 50 Hz induction motor runs at 1440 rev/min at full load. 
Calculate (a) the synchronous speed, (b) the slip and (c) the frequency of the 
rotor induced e.m.f.'s. [(a) 1500 rev/min; (b) 4%; (c) 2 Hz] 

12 A 12-pole, 3-phase, 50 Hz induction motor runs at 475 rev/min. Determine (a) 
the slip speed, (b) the percentage slip and (c) the frequency of rotor currents. 

[(a) 25 rev/min; (b) 5%; (c) 2.5 Hz] 

139 



8 Modulation 

A. MAIN POINTS CONCERNED WITH MODULATION 

1 The transmission of information such as speech, music and data over long 
distances requires the use of a carrier channel. It is common practice to 'carry' 
different communications, often called signals, at different frequencies to stop 
one signal from interfering with another. A signal can be shifted bodily from its 
original frequency band to another, this being achieved by 'modulating' one 
waveform with another. 

The mean frequency level to which a signal is moved is called the carrier 
frequency and the process of superimposing the information signal on the 
carrier is called modulation. The resultant signal is called the modulated signal. 
Many signals, such as telephone conversations, can be transmitted 
simultaneously along a single pair of lines by using modulation techniques. 
Modulation of a band of low frequencies onto a higher frequency carrier is 
fundamental to radio communications and using different carrier frequencies 
leads to numerous programmes being transmitted simultaneously. The carrier 
frequency is the frequency to which the receiver has to be tuned, for example, 
about 88 to 90 MHz for Radio 2, the signal which is heard being obtained from 
the modulated carrier by a process called demodulation. 

2 The carrier frequency must have one or more of its characteristics (i.e. 
amplitude, frequency and/or phase), varied by the information signal. When 
the amplitude of the carrier is changed by the information signal, the process is 
called amplitude modulation. To illustrate amplitude modulation, consider the 
signal to be a sinewave of frequency/m, as shown in Fig 1(a) and the carrier to 
be a sinewave of frequency/c, as shown in Fig 1(b). The result of amplitude 
modulation is shown in Fig 1(c), the signal information being duplicated on 
both sides of the carrier, as shown by the broken lines, which are construction 
lines outlining the pattern of change of amplitude of modulated waveform. 
This results in a band of frequencies over a range (fc -fm) to (fc +/m), i.e. the 
carrier frequency ± the signal frequency band. The frequency range between the 
highest and lowest of these frequencies is called the bandwidth (see Problem 1). 

3 Instead of varying the amplitude of the carrier waveform, the modulating signal 
may be used to vary the frequency of the carrier. An increase in signal 
amplitude then causes a change in the modulated signal frequency, which is 
proportional to the amplitude of the modulating signal. This is called frequency 
modulation and is shown for a cosine wave signal in Fig 2. 

When the signal amplitude is positive, the frequency of the carrier is 
modulated to be less than it was originally, shown as (a). The original carrier is 

/ 
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(a) Carrier (c) (b) Signal 

(b) (c) (a) Modulated signal 

Fig 2 

shown for reference. The modulated wave is in the same position as the original 
carrier when the signal amplitude is zero, as shown at (b). When the signal 
amplitude is negative, the frequency of the carrier is modulated to be greater 
than that of the original carrier, as shown at (c). 

The modulating signal can be used to advance or retard the phase of the 
carrier in proportion to the amplitude of the modulating signal. This technique 
is called phase modulation and this also involves a variation of frequency. In 
this case it depends on the rate of change of phase and thus on both the 
amplitude and frequency of the modulating signal. The waveform shown is 
similar to that shown in Fig 2. 

4 In pulse modulation, the signal is sampled at a frequency which is at least twice 
that of the highest frequency present in the signal. Thus for speech, having 
frequencies ranging from about 300 Hz to 3.4 kHz, a typical sampling 
frequency is 8 kHz. Various forms of pulse modulation are used and include 
pulse amplitude modulation, pulse position modulation and pulse duration 
modulation (see Problem 5). 

In pulse code modulation, the signal amplitude is divided into a number of 
equal increments, each increment or level being designated by a number. For 
example, an amplitude divided into eight increments can have the instantaneous 
value of the amplitude transmitted by using the natural binary numbering 
system and three bits, the levels being transmitted as: 000, 001, 010, 011, , 
111. This concept is shown in Fig 3. 

Thus in pulse code modulation, an analogue signal is converted into a digital 
signal. Since the analogue signal can have any value between certain limits, but 
the resulting digital signal has only discrete values, some distortion of the signal 
results. The greater the number of increments used, the more closely the digital 
signal resembles the analogue signal. 
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B. WORKED PROBLEMS ON MODULATION 

Problem 1 A carrier of frequency 0.8 MHz is amplitude modulated by a 
signal having frequency components of 2 kHz, 4 kHz and 7 kHz. Determine 
the bandwidth of the modulated signal. 

The highest frequency is 800 000 + 7000 = 807 000 Hz, i.e. 807 kHz. 
The lowest frequency is 800 000 - 7000 = 793 000 Hz, i.e. 793 kHz. 
From para 2, bandwidth is the frequency range between the highest and lowest 
frequencies thus: 
bandwidth = 807 - 793 kHz 

= 14 kHz 

143 



The bandwidth is also given by twice the highest modulating frequency. Thus, 
bandwidth = 2 x 7 kHz 

= 14 kHz 

Problem 2 Explain the term demodulation and state briefly how it is 
achieved. 

When transmitting a signal over long distances, the process of superimposing 
the information signal on a carrier is called modulation. To extract the 
information signal at the receiving end, the process of modulation has to be 
reversed and is called demodulation. Consider a carrier having a frequency of 
10 kHz on which an information signal of frequency range 4 kHz has been 
superimposed. The frequency range of the modulated signal is from 6 kHz to 
14 kHz. When several carriers of different frequencies are being used, the 
modulated waveform must be isolated from the other carriers and their 
information signals. This is achieved by using a band pass filter (see chapter 
10). Since the original signal has a range of 4 kHz and occupies ±4 kHz, that is 
8 kHz as a modulated signal, it is necessary to reduce it to a signal of the 
original frequency range. This can be achieved by a rectifier circuit which 
removes the negative half of the modulated wave, as shown in Fig 4. However, 
most demodulation systems are more complex than the circuit shown. 

P^^M/i/ 
Modulated waveform 

r 
ϊ_ι 

Rectifying 

Signal 

Fig 4 

Problem 3 Define the terms frequency deviation, frequency swing and 
modulation index, when used in connection with frequency modulation. 
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Frequency deviation is a term used in frequency modulation and is defined as 
the peak difference between the instantaneous frequency of the modulated wave 
and the carrier frequency during one cycle of modulation. 

Frequency swing is the difference between the maximum and minimum 
values of the instantaneous frequency of a frequency modulated wave. 

The modulating index for a sinusoidal modulating waveform is the ratio of 
frequency deviation to the frequency of the modulating wave. Thus the 
modulating index is the ratio of the frequency deviation caused by a particular 
signal to the frequency of that signal. 

Problem 4 Compare amplitude modulation and frequency modulation in 
relation to bandwidth, power and signal-to-noise ratio. 

The principal advantage of amplitude modulation is the relatively simple 
circuitry used at the transmitting and receiving ends of the system. Such a 
system is used for medium and long wave sound broadcasting. The amplitude 
of the carrier is made to follow the fluctuations of the modulating signal. When 
the modulating signal occupies a bandwidth of B, the resulting bandwidth of 
the modulated signal is 2B and it has two symmetrical sidebands. Since either of 
the sidebands contains all the information, this method of transmission is 
wasteful of both bandwidth and power. In amplitude modulation much of the 
power is in the carrier, which does not contain any information. However, 
techniques are available which can eliminate one of the sidebands and when 
used, amplitude modulation is more economical of bandwidth when compared 
with frequency modulation. Frequency modulation uses less power than 
amplitude modulation due to power being transferred from the carrier to the 
side frequencies. Also, since the power being used in frequency modulation is 
constant, the transmitter output stages are designed to operate at their 
maximum efficiency all the time. The ratio of the required signal to the 
unrequired signal is called the signal-to-noise ratio and is measured in decibels. 
(Seepara 7, chapter 9.) Thus signal-to-noise ratio (dB) = 10 lg [(power in 
signal)/(power in noise)]. The effect of a noise signal mixing with a carrier is to 
produce a variation of amplitude, usually a small variation of phase and a 
consequent small variation in the resultant frequency. The variation of 
amplitude is the predominant effect and results in amplitude modulation having 
a higher signal-to-noise ratio than frequency modulation. In most frequency 
modulated systems the signal frequency variations swamp the much smaller 
frequency changes due to the interference. 

Problem 5 With the aid of a sketch, briefly explain the terms pulse 
amplitude modulation, pulse duration modulation and pulse position 
modulation. 

The principle of pulse amplitude modulation is shown in Fig 5(a), in which the 
amplitude of the pulse is proportional to the amplitude of the signal. The 
amplitude of the pulse may change during the 'on' period or alternatively it 
may be kept constant, resulting in the stepped waveform as shown in Fig 3. 

Fig 5(b) shows the principle of pulse duration modulation, the duration of 
the pulse being proportional to the amplitude of the signal. The position of the 
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pulse relative to some datum (such as the sampling time), is made proportional 
to the amplitude of the signal in pulse position modulation, as shown in 
Fig 5(c). 

Problem 6 Explain the term modulation index as applied to amplitude 
modulation and with the aid of a sketch show the effect of overmodulation. 
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Fig 6 

In amplitude modulation, let a carrier be a sinewave of the form 

a = A sin o)ct = φ 

When this is modulated by a sinewave of the form b = B sin comt, the ratio B/A 
is called the modulating index. (Other terms such as modulating factor are 
used). 

When the modulating index exceeds unity, distortion of the signal occurs, as 
is shown in Fig 6. 

This shows that the modulating index of an amplitude modulated wave 
should not exceed unity. In amplitude modulation, the amplitude of the carrier 
is constant thus the modulating index is proportional to the amplitude of the 
modulating signal. 

Problem 7 A carrier frequency of 2182 kHz is amplitude modulated by a 
telephony signal which contains frequencies ranging between 200 Hz and 
3 kHz. Determine (a) the limits of the sidebands, (b) the overall bandwidth 
and (c) the frequency gap between the sidebands. 

A modulated signal is invariably a complex waveform that is not sinusoidal and 
containing a range of frequencies. Let/Ί and/2 be the lowest and highest 
frequencies of the modulating signal and let/c be the carrier frequency. The 
lower sideband ranges from (fc-f\) to (fc - / 2 ) . The upper band of side 
frequencies ranges from (fc + / 2 ) to (fc + / i ) , as shown in Fig 7. 
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The frequencies corresponding to fuf2 and/c in this problem are: 
fi = 200 Hz,/2 = 3 kHz and/c = 2182 kHz. 
(a) The limits of the lower sideband are from (21821 - 0.2) to (2182 - 3) kHz, 

that is from 2181.8 kHz to 2179 kHz. 
The limits of the upper sideband are from (2182 + 3) to (2182 + 0.2) kHz, 
that is from 2183 kHz to 2182.2 kHz. 

(b) The bandwidth is from (fc +f2) to (fc -f2). But 
(fc +/2) - (fc ~h) = 2 x/2 = 6 kHz. 

(c) The frequency gap between the sidebands is from (fc +/{) to (fc -f\). But 
(fc +/i) - ifc ~f\) = 2 x / , = 2 x 200 = 400 Hz. 

C. FURTHER PROBLEMS ON MODULATION 

SHORT ANSWER PROBLEMS 

1 What is meant by the term carrier when used in connection with modulation? 
2 State an advantage of modulating a signal. 
3 Name three characteristics of a carrier wave which can be changed when it is 

modulated. 
4 Define bandwidth in terms of the carrier and signal frequency bands. 
5 Sketch two cycles of an amplitude modulated wave. 
6 Explain how frequency modulation differs from amplitude modulation. 
7 Briefly explain the basic principles of pulse modulation. 
8 Explain why some of the information signal is lost during pulse modulation. 
9 Explain briefly why demodulation is necessary. 
10 State where a filter may be used in a modualtion system. 

MULTI-CHOICE PROBLEMS (answers on page 191) 

Select the correct answer in the following problems: 
1 In amplitude modulation 

(a) the amplitude and phase of the carrier varies at the modulating frequency 
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(b) the amplitude and frequency of the carrier varies at the modulating 
frequency 

(c) the bandwidth is given by (fc -fm) 
(d) the carrier must have a higher frequency than the information signal. 

2 In frequency modulation: 
(a) the frequency of the carrier is varied by the amplitude of the modulating 

signal 
(b) the modulating signal is used to alter the phase of the carrier in proportion 

to the amplitude of the modulating signal 
(c) the amplitude of the carrier varies in proportion to the amplitude of the 

modulating signal 
(d) the signal causes the frequency of the modulating signal to vary. 

3 In pulse modulation: 
(a) the amplitude, duration or phase of the pulse may be varied 
(b) the information is transmitted as a continuous signal 
(c) the signal is sampled at a frequency which is at least twice the frequency of 

the carrier 
(d) the transmitted signal is an analogue signal. 

4 A carrier of frequency 1 MHz is amplitude modulated by a signal having a 
largest frequency component of 10 kHz. The bandwidth of the modulated 
signal is: 
(a) 0.9 MHz (b) 20 kHz (c) 10 kHz (d) 1.1 MHz. 

5 Compared with frequency modulation, amplitude modulation: 
(a) has a better signal-to-noise ratio 
(b) uses less power 
(c) uses more expensive equipment in transmitting and receiving 
(d) can have a smaller bandwidth. 

CONVENTIONAL PROBLEMS 

1 Explain why modulation is frequently used when transmitting a signal over long 
distances, with reference to (a) a telephone and (b) a broadcasting system. 

2 Sketch two cycles of an amplitude modulated waveform in which the carrier has 
a frequency of ten times the modulating wave and having a modulation factor 
of 0.4. 

3 A carrier of frequency 0.7 MHz is amplitude modulated by a signal, the 
frequency components of which are 1 kHz, 2 kHz and 5 kHz. Determine: 
(a) the bandwidth of the resultant modulated signal and 
(b) the frequency range covered by the lower sideband. 

List the side frequencies. 
[(a) 10 kHz, (b) 695 to 699 kHz, 695, 698, 699,702, 201 and 705 kHz] 

4 A carrier of frequency 800 kHz is amplitude modulated by a signal containing 
frequencies ranging from 50 Hz to 12 kHz. Determine: 
(a) the frequency limits of the sidebands, 
(b) the overall bandwidth of the modulated wave and 
(c) the frequency gap between the sidebands. 

[(a) 788 to 799.95 kHz and 800.05 to 812 kHz, (b) 24 kHz, (c) 100 Hz] 
5 With the aid of a sketch describe a system which converts an analogue signal 

system into a digital signal system. 
6 Discuss the advantages and disadvantages of an amplitude modulated system 

when compared with a frequency modulated system. 
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9 Measuring 
instruments and 
measurements 

A. MAIN POINTS CONCERNED WITH MEASURING INSTRUMENTSAND 
MEASUREMENTS 

1 In electronic systems, the ratio of two similar quantities measured at different 
points in the system, are often expressed in logarithmic units. By definition, 
if the ratio of two powers Ρλ and P2 is to be expressed in decibel (dB) units 
then the number of decibels, X, is given by: 

Z=101g Γ 2 (1) 

Pi Thus, when the power ratio, — = 1 then the decibel power ratio 
1 = 1 0 1 g l = 0 

p 
when the power ratio, — = 100 then the decibel power ratio 

1 = 1 0 1g l00=+20 
(i.e. a power gain), 

and when the power ratio, — = Ϊ0 t n e n *ne decibel power ratio 

- 1 0 Ι 8 ^ = - 1 0 , 
(i.e. a power loss or attenuation). 
Logarithmic units may also be used for voltage and current ratios. 
Power, P, is given by P = I2R or P = V1 JR. 
Substituting in equation (1) gives: 

If/?! =R2,thenX= l O l g f ^ J dB or X = l O l g i - ^ j d B 

i.e. X = 20 lg ( —] db or X = 20 lg ( — J dB 

(from the laws of logarithms). 
From equation (1), X decibels is a logarithmic ratio of two similar quantities 
and is not an absolute unit of measurement. It is therefore necessary to state a 
reference level to measure a number of decibels above or below that reference. 
The most widely used reference level for power is 1 mW, and when power levels 
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are expressed in decibels, above or below the 1 mW reference level, the unit 
given to the new power level is dBm. 

A voltmeter can be re-scaled to indicate the power level directly in decibels. 
The scale is generally calibrated by taking a reference level of 0 dB when a power 
of 1 mW is dissipated in a 600 Ω resistor (this being the natural impedance of a 
simple transmission line). The reference voltage V is then obtained from 

..... i x i < H = - £ i 
R 600 

P=^ from which, V = 0.775 volts. 

In general, the number of dBm, X = 20 lg 

Thus V = 0.20 V corresponds to 20 lg ' ° · 2 0 

V = 0.90 V corresponds to 20 lg 

= -11.77 dBm and 

+ 1.3 dBm, and so on. 

A typical decibelmeter, or dB meter, scale is shown in Fig 1. Errors are intro­
duced with dB meters when the circuit impedance is not 600 Ω. 
(See Problems 1 to 6). 
The cathode ray oscilloscope (CRO) 
may be used for the observation of wave­
forms and for the measurement of voltage, 
current, frequency, phase and periodic 
time. Double beam oscilloscopes are 
useful whenever two signals are to 
be compared simultaneously. The CRO 
demands reasonable skill in adjustment 
and use. However its greatest advantage is in observing the shape of a waveform-
a feature not possessed by other measuring instruments (see Problems 7 to 10). 
A Wheatstone bridge, shown in Fig 2(a) is used in d.c. circuits to compare an 
unknown resistance Rx with others of known values. R3 is varied until zero 
deflection is obtained on the galvanometer, G. At balance (i.e. zero deflection on 

Decibels 
( dBm 600 Ω.) Figi 

(a) Fig 2 

the galvanometer) the products of diagonally opposite resistances are equal to 
one another, 
i.e. Ä,Ä X 

from which RY 

R2R3 
R2R3 ohms. 

A Wheatstone bridge type circuit, shown in Fig 2(b), may be used in a.c. circuits 
to determine unknown values of inductance and capacitance, as well as resistance. 

151 



When the potential differences across Z3 and Zx (or across Z, and Z2) are equal 
in magnitude and phase, then the current flowing through the galvanometer, G, 
is zero. 

Z2Z3 
At balance, Zx Zx = Z2Z3, from which, Zx = Ω. 

There are many forms of a.c. bridge, and these include: the Maxwell, Hay, Owen 
and Heaviside bridges for measuring inductance, and the De Sauty, Schering and 
Wien bridges for measuring capacitance. A commercial or universal bridge is one 
which can be used to measure resistance, inductance or capacitance. 
Maxwell's bridge for measuring the inductance L and resistance r of an inductor 
is shown in Fig 3. 
At balance: L = R\R2 

R\R2 and r = 
* 3 

(see Problems 11 and 11 

From equation (1), R2 

equation (2), R3 

C henrys 

ohms 

)· 

RiC 
Ri 

(1) 

(2) 

nd from 

Hence * 3 = r \R,c) Cr 

If the frequency is constant then R3 

i.e. Q-factor : 

: ^ oc Q-factor. 

V 
(see chapter 2, para. 15). 

r r 
Thus the bridge can be adjusted to give a direct indication of Q-factor. 
The Q-factor for a series L-C-R circuit is the voltage magnification at resonance, 

. voltage across capacitor _ 
supply voltage 

The simplified circuit of a Q-meter, used for measuring Q-factor. is shown in 
Fig 4. Current from a variable frequency oscillator flowing through a very low 
resistance r develops a variable frequency voltage, Vr, which is applied to a series 
L-R-C circuit. The frequency is then varied until resonance causes voltage Vc to 
reach a maximum value. At resonance Vr and Vc are noted. 

V V 
Then Q-factor = —- = - ^ 

V, Ir 

In a practical Q-meter, Vr is 
maintained constant and the 
electronic voltmeter can be 
calibrated to indicate the 
Q-factor directly. If a variable 
capacitor C is used and the 
oscillator is set to a given 
frequency, then C can be 
adjusted to give resonance. 
In this way inductance L 
may be calculated using 

Fig 4 



Jr 2ναο 
Since Q = ^ÎL· , then R may be calculated. 

R 
Q-meters operate at various frequencies and instruments exist with frequency 

ranges from 1 kHz to 50 MHz. Errors in measurement can exist with Q-meters 
since the coil has an effective parallel self capacitance due to capacitance between 
turns. The accuracy of a Q-meter is approximately ± 5% (see Problem 13). 

10 Waveform harmonics 
(i) Let an instantaneous voltage v be represented by v = VM sin litft volts. This 

is a waveform which varies sinusoidally with time t, has a frequency/, and a 
maximum value VM. Alternating voltages are usually assumed to have wave­
shapes which are sinusoidal where only one frequency is present. If the wave­
form is not sinusoidal it is called a complex wave, and, whatever its shape, 
it may be split up mathematically into components called the fundamental 
and a number of harmonics. This process is called harmonic analysis. The 
fundamental (or first harmonic) is sinusoidal and has the supply frequency,/; 
the other harmonics are also sine waves having frequencies which are integer 
multiples of/. Thus, if the supply frequency is 50 Hz, then the third harmonic 
frequency is 150 Hz, the fifth 250 Hz, and so on. 

(ii) A complex waveform comprising the sum of the fundamental and a third 
harmonic of about half the amplitude of the fundamental is shown in 
Fig 5(a), both waveforms being initially in phase with each other. If further 
odd harmonic waveforms of the appropriate amplitudes are added, a good 
approximation to a square wave results. In Fig 5(b) the third harmonic is 
shown having an initial phase displacement from the fundamental. The 
positive and negative half cycles of each of the complex waveforms shown 
in Figs 5(a) and (b) are identical in shape, and this is a feature of waveforms 
containing the fundamental and only odd harmonics. 

(iii) A complex waveform comprising the sum of the fundamental and a second 
harmonic of about half the amplitude of the fundamental is shown in 
Fig 5(c), each waveform being initially in phase with each other. If further 
even harmonics of appropriate amplitudes are added a good approximation 
to a triangular wave results. In Fig 5(c) the negative cycle appears as a mirror 
image of the positive cycle about point A. In Fig 5(d) the second harmonic 
is shown with an initial phase displacement from the fundamental and the 
positive and negative half cycles are dissimilar. 

(iv) A complex waveform comprising the sum of the fundamental, a second 
harmonic and a third harmonic is shown in Fig 5(e), each waveform being 
initially 'in-phasc'. The negative half cycle appears on a mirror image of the 
positive cycle about point B. In Fig 5(f), a complex waveform comprising 
the sum of the fundamental, a second harmonic and a third harmonic are 
shown with initial phase displacement. The positive and negative half cycles 
are seen to be dissimilar. 

The features mentioned relative to Figs 5(a) to (f) make it possible to 
recognise the harmonics present in a complex waveform displayed on a CRO. 

11 Some measuring instruments depend for their operation on power taken from the 
circuit in which measurements are being made. Depending on the 'loading' 
effect of the instrument (i.e. the current taken to enable it to operate), the 
prevailing circuit conditions may change. 



The resistance of voltmeters may be calculated since each have a stated 
sensitivity (or 'figure of merit'), often stated in 'k£2 per volt' of FSD. A voltmeter 
should have as high a resistance as possible (—ideally infinite). In a.c. circuits the 
impedance of the instrument varies with frequency and thus the loading effect of 
the instrument can change. (See Problems 14 and 15.) 

12 Electronic measuring instruments have advantages over instruments such as 
the moving iron or moving coil meters, in that they have a much higher input 
resistance (some as high as 1000 ΜΩ) and can handle a much wider range of 
frequency (from d.c. up to MHz). 

The digital voltmeter (DVM) is one which provides a digital display of the 
voltage being measured. Advantages of a DVM over analogue instruments 
include higher accuracy and resolution, no observational or parallax errors and 
a very high input resistance, constant on all ranges. 
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A digital multimeter is a DVM with additional circuitry which makes it 
capable of measuring a.c. voltage, d.c. and a.c. current and resistance. 

Instruments for a.c. measurements are generally calibrated with a sinusoidal 
alternating waveform to indicate r.m.s. values when a sinusoidal signal is applied 
to the instrument. Some instruments, such as the moving iron and electro-
dynamic instruments, give a true r.m.s. indication. With other instruments the 
indication is either scaled up from the mean value (such as with the rectifier 
moving coil instrument) or scaled down from the peak value. 

Sometimes quantities to be measured have complex waveforms (see para. 10), 
and whenever a quantity is non-sinusoidal, errors in instrument readings can 
occur if the instrument has been calibrated for sine waves only. Such waveform 
errors can be largely eliminated by using electronic instruments. 

13 Errors are always introduced when using instruments to measure electrical 
quantities. Besides possible errors introduced by the operator or by the instru­
ment disturbing the circuit, errors are caused by the limitations of the instrument 
used. 

The calibration accuracy of an instrument depends on the precision with which 
it is constructed. Every instrument has a margin of error which is expressed as a 
percentage of the instruments full scale deflection. For example, an instrument 
may have an accuracy of ± 2% of FSD. Thus, if a voltmeter has a FSD of 100 V 
and it indicates say 60 V, then the actual voltage measured may be anywhere 
between 60 V ± (2% of 100 V), i.e. 60 ± 2 V, i.e. between 58 V and 62 V. 
As a percentage of the voltmeter reading this error is ± 2/60 X 100%, i.e. ± 3.33%. 
Hence the accuracy can be expressed as 60 V ± 3.33%. It follows that an instru­
ment having a 2% FSD accuracy can give relatively large errors when operating 
at conditions well below FSD. 

When more than one instrument is used in a circuit then a cumulative error 
results. For example, if the current flowing through and the p.d. across a resistor 
is measured, then the percentage error in the ammeter is added to the percentage 
error in the voltmeter when determining the maximum possible error in the 
measured value of resistance. (See Problems 16 to 18.) 

B. WORKED PROBLEMS ON MEASURING INSTRUMENTS AND 
MEASUREMENTS 

Problem 1 The ratio of two powers is (a) 2, (b) 30, (c) 1Ö00, (d) J 
Determine the decibel power ratio in each case. 

From para. 1, the power ratio in decibels, X, is given by: X = 10 lg 
p 

(a) When — = 2, X = 10 lg (2) = 10(0.30) = 3 dB 
P\ 
p 

(b) When— = 30, X = 101g(30)= 10(1.48) = 14.8 dB 
P\ 

(c) When— = 1000, X= 10 lg(1000) = 10(3.0) = 30 dB 

£ 
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(d) When— = - ! - = 0 . 0 5 , * = 10 lg (0.05)= 10(-1.30) = - 1 3 dB 
?! 20 

(a), (b) and (c) represent power gains and (d) represents a power loss or 
attenuation. 

Problem 2 The current input to a system is 5 mA and the current output 
is 20 mA. Find the decibel current ratio assuming the input and load resistances 
of the system are equal. 

From para. 2, the decibel current ratio = 20 lg IjA = 20 l g i ^ J = 20 lg 4 

= 20 (0.60) 
= 12 dB gain 

Problem 3 6% of the power supplied to a cable appears at the output terminals. 
Determine the power loss in decibels. 

p2 6 
If Pl = input power and P2 = output power then — = —— = 0.06 

Decibel power ratio = 10 lg i ^ - j = 10 lg (0.06) = 10(-1.222) 
* ' = -12 .22 dB 

Hence the decibel power loss is 12.22 dB 

Problem 4 An amplifier has a gain of 14 dB. Its input power is 8 mW. Find its 
output power, 

Decibel power ratio = 10 lg ί — ) where Px = input power = 8 mW, and 
P2 = output power. ^ 1 ' 

II 
Hence 14 = 10 lg ( -

M = ;(£ 
and 101·4 = — from the definition of a logarithm 

Λ 
Pi 

i.e. 25.12 = ~ 
P\ 

Output power, P2 = 25.12 Pl = (25.12)(8) = 201 mW or 0.201 W 

Problem 5 Determine, in decibels, the ratio of output power to input power of 
a 3 stage communications system, the stages having gains of 12 dB> Î5 dB and 
- 8 dB, Find also the overall power gain, 

The decibel ratio may be used to find the overall power ratio of a chain simply by 
adding the decibel power ratios together. 
Hence the overall decibel power ratio = 12+15-8 = 19 dB gain. 
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Hence 

IO1·2 = 15.85. 

,9 = . O . g ( £ ) 

1.9 = l g [—) a n d l 0 1 - 9 = — =79.4 
\Pi I Λ 

p 
Thus the overall power gain, — = 79.4 

Λ 

[For the first stage, 12= 10 lg I —I , from which — 

p2 p2 
Similarly for the second stage, — = 31.62 and for the third stage, — =0.158 

Λ "i 
The overall power ratio is thus 15.85 X 31.62 X 0.158 = 79.2] 

Problem 6 The output voltage from an amplifier is 4 V. If the voltage gain is 
27 dB, calculate the value of the input voltage assuming that the amplifier 
input resistance and load resistance are equal 

Voltage gain in decibels = 27 = 20 lg [y\ = 20 lg i^-J 

Hence ^ = lg (±\ 

3l-35 = 4 . f f r 0 , 
W 

10l-35 = A. ) f r o m which K, = ^ = ^ _ = 0.179 V. 

Hence the input voltage Vx is 0.179 V 

Probkm 7 For the CRO square voltage 
waveform shown in Fig 6 determine 
(a) the periodic time; (b) the frequency 

^and (c) th& peak to peak voltage: The 
*time/cm' (or timt base control) switch 
is on 100 #s/cm and the 'volts/cm* (or 
signal amplitude control) switch is on 
20V/cm. 

Fig 6 

(In Figs 6 to 9 assume that the squares shown are 1 cm by 1 cm.) 
(a) The width of one complete cycle is 5.2 cm. 

Hence the periodic time, T = 5.2 cm X 100 X 10~6 s/cm = 0.52 ms 

(b) Frequency, / : 1 _ 1 = 1.92 kHz 
T 0.52 X10~3 

(c) The peak to peak height of the display is 3.6 cm 
Hence the peak to peak voltage = 3.6 cm X 20 V/cm = 72 V 
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Problem 8 For the CRÖ display of a 
pulse waveform shown in Fig 7 the 
*tîme/cm' switch Is on 50 ms/cm and 
the 'volts/cm* switcu is on 0.2 V/cm. 
Determine (a) th& periodic time; (b) the 
frequency and (c) the magnitude of the 
p\û$û voltage, 

Figi 

(a) The width of one complete cycle is 3.5 cm. 
Hence the periodic time, T - 3.5 cm X 50 ms/cm = 175 ms 

(b) Frequency, ί=ψ= QT75 = 5 7 1 H Z 

(c) The height of a pulse is 3.4 cm 
Hence the magnitude of the pulse voltage = 3.4 cm X 0.2 V/cm = 0.68 V 

Problem 9 A sinusoidal voltage trace 
displayed by a CRÖ is shown in Fig 8, 
If the 'time/cm* switch is on 500 μδ/cm 
and the 'volts/cm' switch on 5 V/cm» 
find, for the waveform, <a) the frequency; 
(b) the peak to peak voltage (c) the 
amplitude and (d) the r,m»s„ value. 

Fig 8 

(a) The width of one complete cycle is 4 cm. Hence the periodic time, 7\ is 
4 cm X 500 μβ/αη, i.e. 2 ms. 

Frequency, / = X- = 2 χ\0_3 = 500 Hz 

(b) The peak to peak height of the waveform is 5 cm. 
Hence the peak to peak voltage = 5 cm X 5 V/cm = 25 V 

(c) Amplitude = X- X 25 V = 12.5 V. 

(d) The peak value of voltage is the amplitude, i.e. 12.5 V 
r.m.s. voltage = P^k voltage = \J£ = gM y 

V2 v 2 
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Problem 10 For the double beam 
oscilloscope displays shown in Fig 9 
determine (a) their frequency, (b) their 
r.m.s. values and (c) their phase differ­
ence, The 'time/cm* switch is on 100 μδ/cm 
and the *volts/cm' switch on 2 V/cm. 

]B 

A*-L· 

Ρ^)Φ 

"7 
Jj 

^ 

Fig 9 LdLLJ-

(a) The width of each complete cycle is 5 cm for both waveforms. 
Hence the periodic time, 7\ of each waveform is 5 cm X 100 μ$/αη, 

i.e. 0.5 ms 
1 ._ 1 Frequency of each waveform, / = T 0.5 X 10~3 

(b) The peak value of waveform A is 2 cm X 2 V/cm = 4 V 

Hence the r.m.s. value of waveform A 

2 kHz 

Az- = 2.83 V 
V2 

The peak value of waveform B is 2.5 cm X 2 V/cm = 5 V 

Hence the r.m.s. value of waveform B : 4 r = 3.54 V 
V2 

(c) Since 5 cm represents 1 cycle, then 5 cm represents 360°, i.e. 1 cm 

represents — = 72°. The phase angle φ = 0.5 cm = 0.5 cm X 72°/cm = 36° 

Hence waveform A leads waveform B by 36° 
(An alternative method for finding frequency and phase angle is by Lissajous 
figures.) 

Problem 11 Sketch a Maxwell bridge circuit arrangement suitable for measuring 
the inductance and resistance of a coil. Derive expressions for the inductance and 
resistance when the bridge is balanced, 

A Maxwell bridge circuit is shown in 
Fig 10. 
At balance the products of diagonally 
opposite impedances are equal. 
Thus ΖχΖ2 = Z3Z4. 

Using complex quantities, Zx = Rit Z2 

Z 

-Ri, 
Rsi—JXç) ■ product 
R3-jXc s u m 

and Z4 = r+jXL . 

Fig 10 
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Hence RiR2 = ^ ~ \ (r+jXL) 
{K3-]ÄC) 

i.e. R1R2(R3-jXc) = (-jR3Xc)(r+jXL) 
R1R2R3—JR1R2XC = ~JrR3Xç— i R3XçXi 

i.e. RlR2R3-jRlR2Xc = -jrR3Xc+R3XcXL (since/2 = -1) 
Equating the real parts gives: RXR2R3 = R3XCXL 

R\R2 from which 

i.e. 

Hence inductance, L = RlR: 

XL = 

2-nfL = 

» C henry 
Equating the imaginary parts gives: -R j 

from which, resistance, r = 

^7 
RiR2 

i 
27T/C 

R2 Xç 
RXR2 

- =R] 

= -rR2 

ohms 

\R2 

\XC 

(2π /0 

(1) 

(2) 

Problem 12 For the ax. bridge shown in Fig 10 determine the values of the 
inductance and resistance of the coil wheni?x = R2 =* 400 Ω, R3 ~ 5 k£fc and 
C = 7 . 5 M F . 

From equation (1) above, inductance! = RXR2C = (400)(400)(7.5 X 10~6) 
= 1.2 H. 

From equation (2) above, resistance, r = ——3 = (400)(400) = 3 2 ^ 
/?3 (5000) 

Problem IS When connected to a Q-meter an inductor is made to resonate at 
400 kHz, The Q-factor of the circuit is found to be 100 and the capacitance of 
the Q-meter capacitor is set to 400 pF. Determine (a) the inductance, and (b) 
the resistance of the inductor. 

Resonant frequency,/, = 400 kHz = 400 X 103 Hz. Q-factor = 100; 
Capacitance, C = 400 pF = 400 X IO"12 F. 
The circuit diagram of a Q-meter is shown in Fig 4. 

(a) At resonance, /„ = for a series L-C-R circuit. 
r 2ny/(LQ 

Hence 2π/_ = , from which (2π/_)2 = 
r ^(LQ r LC 

and inductance, L = - u 

(2nfr)2C (2π400 X IO3)2(400 X IO"12) 
= 396 μΗ or 0.396 mH. 

(b) Q-factor at resonance = —-— 
R 

from which resistance R = ^ = 2π(400 X 103)(0.396 X IP"3) = 9 9 5 Ω 
Q 100 
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Problem 14 A voltmeter having a FSD of 100 V and a sensitivity of i .6 k&/V 
is used to measure voltage Kj in the circuit of Fig 21. Determine (a) the value 
of voltage Vy with the voltmeter not connected, and (b) the voltage indicated by 
the voltmeter when connected between A and B, 

(a) By voltage division, Vx = (-~%~-1 100 = 40 V 
y40+60/ 

(b) The resistance of a voltmeter having a 100 V FSD and sensitivity 1.6 kf2/V 
is 100 VX 1.6ki2/V = 160 ki2. 

40kn B 60kq 

Vi 
Figli 

A 40k i l B 60 kA ^ 32 kA g 60kA 

ΠΞΓ 
l60kH 

100 V 
(a) 

-Ô Ô-

Fig 12 
100 V 

(b) 

When the voltmeter is connected across the 40 \&L resistor the circuit is as 
shown in Fig 12(a) and the equivalent resistance of the parallel network is given by 

/4OX 160\ 1 , 0 : , . /4OX 16θ\ ή kn, i.e. ( 4 0 χ 1 6 ή 
0/ \ 200 / 

, „ „ , .... , , ki2 = 3 2 k n . 
\ 4 0 + 1 6 0 / V 200 

The circuit is now effectively as shown in Fig 12(b). 
Thus the voltage indicated on the voltmeter is 

^32+60^/ 
100 V = 34.78 V 

A considerable error is thus caused by the loading effect of the voltmeter on the 
circuit. The error is reduced by using a voltmeter with a higher sensitivity. 

Problem 15 (a) A current of 20 A flows through 
a load having a resistance of 2 £Z. Determine the 
power dissipated in the load, (b) A wattmeter. 
whose current coil has a resistance of 0.01 Î2 R* 2Λ 
is connected as shown in Fig IS. Determine the 
wattmeter reading. 

Fig 13 

Supply 

(a) Power dissipated in the load, P = PR = (20)2(2) = 800 W 
(b) With the wattmeter connected in the circuit the total resistance RT i 

2+0.01 = 2.01 Ω 
The wattmeter reading is thus 12RT = (20)2(2.01) = 804 W 
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Problem 16 The current flowing through a resistor of 5 k& ± 0.4% is measured 
as 2.5 mA with an accuracy of measurement of ± 0.5%. Determine the nominal 
value of the voltage across the resistor and its accuracy. 

Voltage, V = IR =(2.5 X 10"3)(5 X 103)= 12.5 V 
The maximum possible error is 0.4%+0.5% = 0.9%. 
Hence the voltage, V= 12.5 V ± 0.9%. 0.9% of 12.5 V = 0.9/100 X 12.5 
= 0.1125 V = 0.11 V correct to 2 significant figures. Hence the voltage Kmay 
also be expressed as 12.5 ± 0.11 volts (i.e. a voltage lying between 12.39 V and 
12.61 V). 

Problem 17 The current / flowing in a resistor R is measured by a 0-10 A 
ammeter which gives an indication of 6.25 A. The voltage V across the resistor 
is measured by a 0-50 V voltmeter which gives an indication of 36.5 V. 
Determine the resistance of the resistor, and its accuracy of measurement if both 
instruments have a limit of error of 2% of FSD. Neglect any loading effects of 
the instruments. 

Resistance, R = ^= ^ - = 5.84 Ω 
/ 6.25 

Voltage error i s±2%of50V = ± 1.0V and expressed as a percentage of the 
voltmeter reading gives 
-±±- x 100% = ±2.74%. 
36.5 
Current error is ± 2% of 10 A = ± 0.2 A and expressed as a percentage of the 
ammeter reading gives 
i ö Ä X 100% = ±3.2%. 
6.25 
Maximum relative error = sum of errors = 2.74%+3.2% = ± 5.94%, 
5.94% of 5.84 Ω = 0.347 Ω. 
Hence the resistance of the resistor may be expressed as: 5.84 Ω ± 5.94%, 
or 5.84 ± 0.35 Ω (rounding off). 

Problem 18 The arms of a Wheatstone bridge ABCD have the following 
resistances: AB: Rt - 1000 a ± 1.0%; BC: R2 ~ 100Ω t 0.5%; CD: unknown 
resistance Rx ; DA: R3 » 432.5 Ω ± 0.2%. Determine the value of the unknown 
resistance and its accuracy of measurement. 

The Wheatstone bridge network is shown in Fig 14 and at balance: RiRx = R2R3 
i.e. ^ = M i = 0001(43^5) = 4 3 2 5 Ω 

x Rl 1000 
The maximum relative error of Rx is given by 
the sum of the three individual errors, i.e. 
1.0%+0.5%+0.2%= 1.7% 
Hence Rx = 43.25 Ω ± 1.7% 
1.7% of 43.25 Ω = 0.74 Ω (rounding off). 
Thus Rx may also be expressed as 
* , = 43.25 ± 0.74 Ω F i g 1 4 

162 



^m^^hUhm^ßm^wt^^Mmmm^^^^^^^^ 
C. FURTHER PROBLEMS ON MEASURING INSTRUMENTS AND 

MEASUREMENTS 

SHORT ANSWER PROBLEMS 

1 Express the ratio of two powers Px and P2 in decibel units. 
2 What does a power level unit of dBm indicate? 
3 Name five quantities that a CRO is capable of measuring. 
4 Sketch a Wheatstone bridge circuit used for measuring an unknown resistance in 

a d.c. circuit and state the balance condition. 
5 Name five types of a.c. bridge used for measuring unknown inductance, 

capacitance or resistance. 
6 What is a universal bridge? 
7 State the name of an a.c. bridge used for measuring inductance. 
8 Briefly describe how the measurement of Q-factor may be achieved. 
9 What is harmonic analysis? 
10 What is a feature of waveforms containing the fundamental and odd harmonics? 
11 Name two advantages of electronic measuring instruments compared with moving-

coil or moving-iron instruments. 
12 Why do instrument errors occur when measuring complex waveforms? 

MULTI-CHOICE PROBLEMS (answers on page 191) 

1 The input and output powers of a system are 2 mW and 18 mW respectively. 
The decibel power ratio of output power to input power is (a) 9; (b) 9.54; 
(c) 1/9; (dì 19.08. 

2 The input and output voltages of a system are 500 μν and 500 mV respectively. 
The decibel voltage ratio of output to input voltage (assuming input resistance 
equals load resistance) is (a) 1000; (b) 30; (c) 0; (d) 60. 
The input and output currents of a system are 3 mA and 18 mA respectively. 
The decibel current ratio of output to input current (assuming the input and 
load resistances are equal) is: 
(a) 15.56; (b) 6; (c) 1/6; (d) 7.78. 

4 Which of the following statements is false? 
(a) The Schering bridge is normally used for measuring unknown capacitances. 
(b) A.c. electronic measuring instruments can handle a much wider range of 

frequency than the moving coil instrument. 
(c) A complex waveform is one which is non-sinusoidal. 
(d) A square-wave normally contains the fundamental and even harmonics. 

5 A voltmeter has a FSD of 100 V, a sensitivity of 1 kn/V and an accuracy of ± 2% 
of FSD. When the voltmeter is connected into a circuit it indicates 50 V. Which 
of the following statements is false? 
(a) Voltage reading is 50 ± 2 V; (b) Voltage resistance is 100 ki2; 
(c) Voltage reading is 50 V ± 2%; (d) Voltage reading is 50 V ± 4%. 

Fig 15 shows double-beam CRO waveform traces. For the quantities stated in 
Problems 6 to 12, select the correct answer from the following list. 

163 



(a) 30 V; (b) 0.2 s; 

(g) 15 V; 

(k) 10 kHz; (1) 75 V; 

(p) 5 kHz; 

( O ^ V ; 

(q)34-V; 
V2 

(c) 50 V; 

(h) 100 MS; 

(m) 40 MS; 

(r) 25 kHz; 

6 Amplitude of waveform P. 
7 Peak-to-peak value of waveform Q. 
8 Periodic time of both waveforms. 
9 Frequency of both waveforms. 
10 r.m.s. value of waveform P. 
11 r.m.s. value of waveform Q. 
12 Phase displacement of waveform 

Q relative to waveform P. 

Fig 15 

(d) H - V; (e) 54° leading; 
V2 

( i )5£-V; G)250V; 
V 2 

(n) | | rad lagging; (o) ?4 -V: 

(s) ^ V ; 
V2 

V2 
it) γ | rad leading. 

P _ 

Q ^ 

. 
5 S · / / 0 2 

40 / , 

IOOJJS 

CONVENTIONAL PROBLEMS 

The ratio of two powers is (a) — ; (b) - ( c ) -

The ratio of two powers is (a) 3; (b) 10; (c) 20; (d) 10 000. Determine the 
decibel power ratio for each. [(a) 4.77 dB; (b) 10 dB; (c) 13 dB; (d) 40 dB] 

40 K 100 
Determine the decibel power ratio for each. 

[(a) - 1 0 dB; (b) -4.77 dB; (c) -16.02 dB; (d) - 2 0 dB] 
The input and output currents of a system are 2 mA and 10 mA respectively. 
Determine the decibel current ratio of output to input current assuming input 
and output resistances of the system are equal. [ 13.98 dB] 
5% of the power supplied to a cable appears at the output terminals. Determine 
the power loss in decibels. [13 dB ] 
An amplifier has a gain of 24 dB. Its input power is 10 mW. Find its output 
power. [2.51 W] 
Determine, in decibels, the ratio of the output power to input power of a 
4 stage system, the stages having gains of 10 dB, 8 dB, - 5 dB and 7 dB. Find 
also the overall power gain. [20 dB; 100] 
The output voltage from an amplifier is 7 mV. If the voltage gain is 25 dB 
calculate the value of the input voltage assuming that the amplifier input resistance 
and load resistance are equal. [0.39 mV] 
The voltage gain of a number of cascaded amplifiers are 23 dB, -5 .8 dB, -12.5 dB 
and 3.8 dB. Calculate the overall gain in decibels assuming that input and load 
resistances for each stage are equal. If a voltage of 15 mV is applied to the input 
of the system, determine the value of the output voltage. 

[8.5 dB; 39.91 mV.] 
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2 ' 05 5ms , 
5. \ I / ,0-2 ν ' / y100ps ίφ - (ìitnya 

Fig 16 

^^J 

2 1 0-5 
5 v W 1 ^ 

10-Y^\ »-(*/«.) 
3o'X_y 40 / | 

50 

02 
5ms 
S W / % « 

50m, J V ^ \ ^ 
- r , m % J ; 

500m· ^ ^ _ ^ Λ 
/ 1 s 

2s 
Fig 17 

2 0 - ( V/c„ 

Fig 18 

9 The scale of a voltmeter has a decibel scale added to it, which is calibrated by 
taking a reference level of 0 dB when a power of 1 mW is dissipated in a 600 Ω 
resistor. Determine the voltage at (a) 0 dB; (b) 1.5 dB and (c) - 1 5 dB. (d) What 
decibel reading corresponds to 0.5 V? 

[(a) 0.775 V; (b) 0.921 V; (c) 0.138 V; (d) -3.807 dBl 
10 For the square voltage waveform displayed on a CRO shown in Fig 16, find 

(a) its frequency and (b) its peak to peak voltage. 
[(a) 41.7 Hz; (b) 176V] 

11 For the pulse waveform shown in Fig 17, find (a) its frequency and (b) the 
magnitude of the pulse voltage. [(a) 0.56 Hz; (b) 8.4 V] 

12 For the sinusoidal waveform shown in Fig 18, determine (a) its frequency; 
(b) the peak to peak voltage and (c) the r.m.s. voltage. 

[(a) 7.14 Hz; (b) 220 V; (c) 77.78 V] 
13 A Maxwell bridge circuit ABCD has the following arm impedances: AB, 250 Ω 

resistance; BC, 15 μ¥ capacitor in parallel with a 10 kfì resistor; CD, 400 Ω 
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resistor; DA, unknown inductor having inductance L and resistance R. Determine 
the values of L and R assuming the bridge is balanced. [ 1.5 H; 10 Ω] 

14 A Q-meter measures the Q-factor of a series L-C-R circuit to be 200 at a 
resonant frequency of 250 kHz. If the capacitance of the Q-meter capacitor is 
set to 300 pF determine (a) the inductance L and (b) the resistance R of the 
inductor. [(a) 1.351 mH;(b) 10.61 Ω] 

15 (a) A current of 15 A flows through a load having a resistance of 4 Ω. Determine 
the power dissipated in the load, (bì A wattmeter, whose current coil has a 
resistance of 0.02 Ω is connected (as shown in Fig 13) to measure the power in 
the load. Determine the wattmeter reading assuming the current in the load is 
still 15 A. [(a) 900 W; (b) 904.5 W] 

16 A voltage of 240 V is applied to a circuit consisting of an 800 resistor in series 
with a 1.6 kΩ resistor. What is the voltage across the 1.6 kΩ resistor. The p.d. 
across the 1.6 kΩ resistor is measured by a voltmeter of FSD 250 V and 
sensitivity 100 Ω/V. Determine the voltage indicated. [ 160 V; 156.7 V] 

17 The p.d. across a resistor is measured as 37.5 V with an accuracy of ± 0.5%. The 
value of the resistor is 6 kΩ ± 0.8%. Determine the current flowing in the 
resistor and its accuracy of measurement. 

[6.25 mA ± 1.3% or 6.25 ± 0.08 mA] 
18 The voltage across a resistor is measured by a 75 V FSD voltmeter which gives 

an indication of 52 V. The current flowing in the resistor is measured by a 
20 A FSD ammeter which gives an indication of 12.5 A. Determine the resistance 
of the resistor and its accuracy if both instruments have an accuracy of ± 2% of 
FSD. [4.16 Ω ± 6.08% or 4.16 ± 0.25 Ω] 

19 A Wheatstone bridge PQRS has the following arm resistances: PQ, 1 kΩ ± 2%; 
QR, 100 Ω ± 0.5%; RS, unknown resistance; SP, 273.6 Ω ± 0.1%. Determine the 
value of the unknown resistance, and its accuracy of measurement. 

[27.36 Ω ± 2.6% or 27.36 ± 0.71 Ω] 
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10 Introduction to 
simple filter and 
attenuation circuits 

A. MAIN POINTS CONCERNED WITH SIMPLE FILTER AND 
ATTENUATION CIRCUITS 

1 A filter is a network designed to pass signals having frequencies within certain 
bands (called passbands) with little attenuation, but greatly attenuates signals 
within other bands (called attenuation bands or stopbands). 

2 A filter is frequency sensitive and is thus composed of reactive elements. Since 
certain frequencies are to be passed with minimal loss, ideally the inductors and 
capacitors need to be pure components since the presence of resistance results in 
some attenuation at all frequencies. 

3 Between the pass band of a filter, where ideally the attenuation is zero, and the 
attenuation band, where ideally the attenuation is infinite, is the cut off 
frequency, this being the frequency at which the attenuation changes from zero 
to some finite value. 

4 A filter network containing no source of power is termed passive and one 
containing one or more power source is known as an active filter network. 

5 Filters are used for a variety of purposes in nearly every type of electronic 
communications and control equipment. The bandwidths of filters used in 
communications systems vary from a fraction of a hertz to many megahertz, 
depending on the application. There are four basic types of filter sections, these 
being: 
(a) low-pass 
(b) high-pass 
(c) band-pass 
(d) band-stop 

(Sec problems 1 to 4) 
6 An attenuator is a device for introducing a specified loss between a signal 

source and a matched load without upsetting the impedance relationship 
necessary for matching. The loss introduced is constant irrespective of 
frequency; since reactive elements (L or C) vary with frequency, it follows that 
ideal attenuators are networks containing pure resistances. A fixed attenuator 
section is usually known as a 'pad'. 

7 Attenuation is a reduction in the magnitude of a voltage or current due to its 
transmission over a line or through an attenuator. Any degree of attenuation 
may be achieved with an attenuator by suitable choice of resistance values but 
the input and output impedances of the pad must be such that the impedance 
conditions existing in the circuit into which it is connected are not disturbed. 

/ 
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< - d = h - r - [ = l · ^ 

(a) T-network 
Figi 

τ; 
Jr 

-CZD- I 
L, 

(b) TT-network 

Thus an attenuator must provide the correct input and output impedances as 
well as providing the required attenuation. 
Attenuator sections are made up of resistances connected as T or n 
arrangements. Fig 1(a) shows a T-network, which is termed symmetrical if 
RA = RB and Fig 1(b) shows a π-network which is symmetrical if RE = RF. If 
RA Φ RB in Fig 1(a) and RE Φ RF in Fig 1(b), the sections are termed asymmetri­
cal. Both networks shown have one common terminal, which may be earthed, 
and are therefore said to be unbalanced. The balanced form of the T-network is 
shown in Fig 2(a) and the balanced form of the π-network is shown in Fig 2(b). 

RJ2 RJ2 

o-C 

o—C 

>^> 

3-^ 
RA/2 RB/2 

(a) Balanced T-network 

Fig 2 

Rn/2 

°~x 

I ■£ZZl· 
RD/2 

(b) Balanced π-network 

9 Networks in which electrical energy is fed in at one pair of terminals and taken 
out at a second pair of terminals are called two-port networks. 

For any passive two-port network it is found that a particular value of load 
impedance can always be determined which will produce an input impedance 
having the same value as the load impedance. This is called the iterative 
impedance for an asymmetrical network and its value depends on which pair of 
terminals is taken to be the input and which is the output; there are thus two 
values of iterative impedance, one for each direction. For a symmetrical 
network, the two iterative impedances are equal and this value is called the 
characteristic impedance. 

10 For the symmetrical T-attenuator shown in Fig 3, the characteristic impedance 
R0 is given by: 

R0 = \T{R\ + 2R{R2) 
or R0 = \f(RocRsc) 

where Roc = input resistance when the output is open-circuited 
Rsc = input resistance when the output is short-circuited 
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If the characteristic impedance /?0 and the attenuation 
N ( = ΤΓ ) are known for the T-attenuator of Fig 3, then: 

Α'=Λ»(^ττ)3ηα^=/?»(Λ^τ) 
(Sec problems 5 to 9) 

11 For the symmetrical π-attenuator shown in Fig 4, the characteristic impedance 
R0 is given by: 

«.- v(*s&) 
or /?0 = \f{RocRsc) 

Fig 4 

V2 

If the characteristic impedance R0 and the attenuation 

V̂ ί = -—■ ) are known for the π-attenuator of Fig 4y then: 

(See problems 10 to 14) 
12 Often two-port networks are connected in cascade, i.e. the output from the first 

network becomes the input in the second network, and so on, as shown in 
Fig 5. Thus an attenuator may consist of several cascaded sections so as to 
achieve a particular desired overall performance. 

If the cascade is arranged so that the impedance measured at one port and the 
impedance with which the other port is terminated have the same value, then 
each section (assuming they are symmetrical) will have the same characteristic 
impedance R0 and the last network will be terminated in R0. Thus each network 
will have a matched termination and hence the attenuation in decibels of 
section 1 in Fig 5 is given by a\ - 20 lg (K1/K2). Similarly, the attenuation of 
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Fig 5 Two-port networks connected in cascade 

section 2 is given by a2 = 20 lg (K2/K3), and so on. The overall attenuation is 
given by: 

* = 20 lg£ 

= 201g^ + 2 0 1 g ^ + . . + 2 0 1 g - ^ 

by the laws of logarithms, i.e., 
overall attenuation, a = a\ + a2 + .. + Λ„_/ 

Thus the overall attenuation is the sum of the attenuations (in decibels) of the 
matched sections. 
(See problems 15 and 16) 

B. WORKED PROBLEMS ON SIMPLE FILTER AND ATTENUATION 
CIRCUITS 

Problem 1 Describe the function of a low-pass filter section. 
Sketch the ideal and practical attenuation/frequency characteristic. 
State examples where such a filter is used. 

Fig 6 shows simple unbalanced T and π section filters using series inductors and 
shunt capacitors. If either section is connected into a network and a 
continuously increasing frequency is applied, each would have a frequency-
attenuation characteristic as shown in Fig 7(a). This is an ideal characteristic 
and assumes pure reactive elements. All frequencies are seen to be passed from 
zero up to a certain value without attenuation, this value being shown as/c, the 
cut-off frequency; all values of frequency about fc are attenuated. It is for this 
reason that the networks shown in Figs 6(a) and (b) are known as low-pass 
filters. The electrical circuit diagram symbol for a low-pass filter is shown in 
Fig 7(b). 

Summarizing, a low-pass filter is one designed to pass signals at frequencies 
below a specified cut-off frequency. 

When rectifiers are used to produce the d.c. supplies of electronic systems, a 
large ripple introduces undesirable noise and may even mask the effect of the 
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signal voltage. Low-pass filters are then added to smooth the output voltage 
waveform, this being one of the most common applications of filters in 
electrical circuits. Filters are employed to isolate various sections of a complete 
system and thus to prevent undesired interactions. For example, the insertion of 
low-pass decoupling filters between each of several amplifier stages and a 
common power supply reduces interaction due to the common power supply 
impedance. 

Fig 7(a) shows an ideal low-pass filter section characteristic. In practice, the 
characteristic curve of a low-pass prototype filter section looks more like that 
shown in Fig 8. The characteristic may be improved somewhat closer to the 
ideal by connecting two or more identical sections in cascade. This produces a 
much sharper cut-off characteristic, although the attenuation in the pass band 
is increased a little. 

Problem 2 Describe the function of a high-pass filter section and sketch the 
ideal and practical attenuation/frequency characteristic. 
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Fig 9 shows simple unbalanced T and π section filters using series capacitors 
and shunt inductors. If either section is connected into a network and a 
continuously increasing frequency is applied, each would have a frequency-
attenuation characteristic as shown in Fig 10(a). Once again this is an ideal 
characteristic assuming pure reactive elements. All frequencies below the cut­
off frequency fc are seen to be attenuated and all frequencies above fc are 
passed without loss. It is for this reason that the networks shown in Figs 9(a) 
and (b) are known as high-pass filters. The electrical circuit-diagram symbol for 
a high-pass filter is shown in Fig 10(b). 

Summarizing, a high-pass filter is one designed to pass signals at frequencies 
above a specified cut-off frequency. 

The characteristic shown in Fig 10(a) is ideal in that it is assumed that there is 
no attenuation at all in the pass-bands and infinite attenuation in the 
attenuation bands. Both of those conditions are impossible to achieve in 
practice. Due to resistance, mainly in the inductive elements the attenuation in 
the pass-band will not be zero, and in a practical filter section the attenuation in 
the attenuation band will have a finite value. In addition to the resistive loss 
there is often an added loss due to mismatching. 

Fig 10(a) shows an ideal high-pass filter section characteristic of attenuation 
against frequency. In practice, the characteristic curve of a high-pass prototype 
filter section would look more like that shown in Fig 11. 

Frequency 

Fig 11 
Attenuation 
band 

Pass-band 

Problem 3 Describe the function of a band-pass filter section. State an 
application of such a filter and sketch ideal and practical attenuation/ 
frequency characteristics. 

A band-pass filter is one designed to pass signals with frequencies between two 
specified cut-off frequencies. The characteristic of an ideal band-pass filter is 
shown in Fig 12. Such a filter may be formed by cascading a high-pass and a 
low-pass filter. fCH is the cut-off frequency of the high-pass filter and/CZ/ is the 
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Fig 13 

cut-off frequency of the low-pass filter. As can be seen,/CL >fCH for a band­
pass filter, the pass-band being given by the difference between these values. 
The electrical circuit diagram symbol for a band-pass filter is shown in Fig 13. 

Crystal and ceramic devices are used extensively in band-pass filters. They are 
common in the intermediate-frequency amplifiers of vhf radios where a 
precisely defined bandwidth must be maintained for good performance. 

A typical practical characteristic for a band-pass filter is shown in Fig 14. 

Low-pass 
characteristic 

Frequency 

Fig 14 
Attenuation 
band 

Pass-band Attenuation 
band 

Problem 4 Describe the function of a band-stop filter section. State an 
application of such a filter and sketch the ideal and practical attenuation/ 
frequency characteristic. 
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A band-stop filter is one designed to pass signals with all frequencies except 
those between two specified cut-off frequencies. The characteristic of an ideal 
band-stop filter is shown in Fig 15. Such a filter may be formed by connecting a 
high-pass and a low-pass filter in parallel. As can be seen, for a band-stop filter 
fcH >fcL>tne band-stop being given by the difference between these values. 
The electrical circuit diagram symbol for a band-stop filter is shown in Fig 16. 

Fig 16 

Sometimes, as in the case of interference from 50 Hz power lines in an audio 
system, the exact frequency of a spurious noise signal is known. Usually such 
interference is from an odd harmonic of 50 Hz, for example, 250 Hz. A sharply 
tuned band-stop filter, designed to attenuate the 250 Hz noise signal, is used to 
minimize the effect of the output. A high-pass filter with cut-off frequency 

Fig 17 Pass-band Stop-band Pass-band 
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greater than 250 Hz would also remove the interference, but some of the lower 
frequency components of the audio signal would be lost as well. 

A typical practical characteristic for a band-stop filter is shown in Fig 17. 

Problem 5 A symmaiical T-network has seti<s rc&tances & a$d shunt 
resistane«/^. S n o y t W ^ ^ 
by (i) Ro^SOU*IRiXÙ 

and (ii) R0 = \i(RocR^) 

Input 
Fig 18 port 

r^^Ti 
ï 

* 0 

Output 
port 

Fig 18 shows a symmetrical T-network terminated in an impedance R0. If the 
resistance 'looking-in' at the input port is also Rot then R0 is the characteristic 
impedance. 
(i) From Fig 18, 

yi _ o _ yi 

Hence ^ = R0 = R{ + *2^l
D

+R„ , since (Rl + Ä0) is in parallel with /?2> 

= R2 + RjR2 + RJRQ + /?i/?2 + #2^0 
/?! + /?2 + R0 

R2 + 2/?!Ì?2 + RlRp + #2^0 
tf, + R2 + * 0 

7ÄMS i?0(i?i + R2 + #o) = Ä? + 2/?i/?2 + #1^ο + #2#o 

/?„/?! + /?oi?2 + *o = R\ + 2Ä!Ä2 + R\Ro + *2*o 
i.e. /?£ = R2 + 2/?!Ä2 

from which, characteristic impedance, R0 = >/"(/?î + 2R\Ri) ( 1 ) 

(ii) If the output terminals of F/g 18 are open-circuited, then the open-circuit 
resistance, Roc = Ri + R2. 
If the output terminals of Fig 18 are short-circuited, then the short-circuit 

^1^2 _Ri + 2RiR2 

i.e. R0 

resistance, RS( /? ,+-Ri + R2 R i + R 2 

Thus /?oc/?5C = (Rl + Ä2) ( ^ l ^ 2 ) = *î + 2 Α Λ 

Comparing with equation (1) gives :R0 = \/~(RocRsc) (2) 
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Prùbiem 6 OàxkiM^ of the attenuator M 
sections shown in FÏB Ï9. .sections shown in Fig 19. 

8Ω 8Ω 10Ω 

21Ω 

I 
(a) 

ΙΟΩ 200Ω 200 Ω 

15Ω 

(b) 
Fig 19 

(c) 

From para 10 and equation (1), problem 5, for a T-section attenuator the 
characteristic impedance, R0 = \f(R] + 2RiR2). 
(a) R0 = \Λ(82 + (2)(8)(21)) = ^400 = 20 Ω 
(b) R0 = ^(lO2 + (2)(10)(15)) = ^400 = 20 Ω 
(c) R0 = v^(2002 + (2)(200)(56.25)) = \Λ62500 = 250 Ω 
It is seen that the characteristic impedance of parts (a) and (b) is the same. In 
fact, there are numerous combinations of resistances R\ and R2 which would 
give the same value for the characteristic impedance. 

Problem 7 For the attenuator network shown in Fig 20, deter mine (a) the 
input resistance when the output port is open-circuited, (b) the input 
resistance when the output port Is short-circuited, and (c) the characteristic 
impedance. 

15Ω 15Ω 

- ^ = > - r ^ Z Z ^ -

Fig 20 

Input 
port 

10Ω 

Output 
port 

For the T-network shown in Fig 20: 
(a) #ο ο=15 + 10 = 25Ω 
(b) Rsc = 15+U^j |=15 + 6 = 21 Ω 
(c) From para 10 and equation 2, problem 5, 

Ro = WocRsc) = \Λ(25)(21)] = 22.9 Ω 
(Alternatively, R0 = \Λ(/?2 + 2RXR2) = \Λ152 + (2)(15)(10)) 

= 22.9Ω) 
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Problem 8 For a symmetrical T-network attenuator the characteristic 
impedance is R0 and the attenuation N. Determine expressions for series 
resistance R\ and shunt resistance R2 in terms of R0 and N. 

Fig 21 

U "i 

R2 \\ 

Symmetrical T-pad attenuator 

A symmetrical T-network attenuator terminated in its characteristic impedance 
V\ R0 is shown in Fig 21. Attenuation N = JJ-
V2 

From Fig 21, 

Ü 
Rn 

i.e., 

i.e., 

Hence 

from which 

Voltage V=Vi-IiR{ = Vl-(^^R1 

Voltage V2 = ( -R ° ) V, by voltage division 

V2^Ro-RinrVi = N = Ro + Ri 
Vx R0 + R,V2 R0-Rl 

N(R0-Rl) = R0 + Rl 
NRo-NRi^Ro + Ri 

R0(N-l) = Rl(l+N) 

Ri=R, (N-l) 
1 ΛΧ°(Ν+ΐ) 

From para 10 and equation (1), problem 5, 
R0 = \f{R\ + 2RXR2) i.e., R2

0 = R} + IRfo 

(3) 

from which R2 
Rl-Ri 

2/?, 
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Substituting for Ri from equation (3) gives 
R2 - [R0(N- 1)/(N+ 1)P _ [R2(N + l)2 - R2(N- 1)2]/(Λί + l)2 

Kl 2[R0(N - 1)/(N + 1)] 2R0(N - 1)/(N + 1) 

i.e., 

Ri = 
R2[(N+l)2-(N-l)2] _ Rp^N2 + 2ΛΓ+ 1) - (N2 - 2ΛΓ+ 1)3 

2 2/?0(N - 1)(7V + 1) 2C/V2 - 1) 
*o(4N) 

2(7^ - 1) 

Hence R2=R0 ( ^ ϊ ) 

Problem 9 Design a T-section symmetrical attenuator pad to provide a 
voltage attenuation of 20 dB and having a characteristic impedance of 
600 Ω. 

491Ω 491Ω 
—CZZJ-r (ZZ> 

Α0 = 600Ω 
Fig 22 0 

121Ω 

I R0 =600Ω 

Voltage attenuation in decibels = 20 lg (Vi/V2). 
Attenuation, N = Vx/ V2i hence 20 = 20 lg N, from which N = 10. 
Characteristic impedance, R0 = 600 Ω. 
From equation (3), problem 8, 

resistanceΛ - RoiN~ l) - ^ 1 0 " ^ - 4910 resis tances- ( ^ + J} - ( 1 Q + 1 ) - 4 9 1 « 
From equation (4), problem 5, 

resistance*2 = tf0 ( j ^ y ) =600 ( g Ì ^ ) = m Ω. 

Thus the T-section attenuator shown in Fig 22 has a voltage attenuation of 
20 dB and a characteristic impedance of 600 Ω. 
(Check: From para 10 and equation (1), problem 5, 
Ro = \T(R\ + 2 /^2) = \Λ4912 + 2(491)(121)] = 600 Ω) 

Problem 10 A symmetrical π-network has series resistance Ri and shunt 
resistance R2. Show that the characteristic impedance R0 is given by 

0) *o = (J RM ) [I Ri+2R2) 
(ii) R0 - \fiRocRsc) 

file:///fiRocRsc


Fig 23 

*T 
«0 

Input 
port 

I 
I I 

Output 
port 

Figure 23 shows a symmetrical π-network terminated in an impedance R0. If the 
resistance 'looking-in' at the input port is also R0, then R0 is the characteristic 
impedance. 
(i) From Fig 23, 

Vi 
-=± = R0 = (R2) in parallel with [R^ in series with (R0 and R2) in parallel] 
h 

= (R2) in parallel with [ Ä, + γ ^ γ ] 

i.e., R0 = 

= (R2) in parallel with R\Ro ■+■ R\Ri + R0R2 
R0 + R2 ) 

R\Ro + R1R2 + R0R2. 
R0 + R2 

R2 + R\RQ + ̂ 1^2 + ̂ 0^2 "[ 
* o + *2 J 

(R\RIRQ + R\R\ + /^/g \ 

//?2^o + *S + R\RQ + *1*2 + *ο*2 \ 
\ Ro+Rl ) 

RXR2R0 + R\Rl + RoRi 
Rl + 2R2Ro + R\R0 + R\R2 

Thus (R0)(Rl + 2R2R0 + R\Ro + ̂ 1*2) = *i*2*o + *ι*ΐ + *o*2 
i.e., 2R2R2

0 + RÌR2
0 = RÌRÌ 

and J?2(2J?2 + ^ι) = R\R\ 
from which, characteristic impedance, 

(ii) If the output terminals of Fig 23 are open-circuited, then the open-circuit 
resistance, 

R2(/?i+/?2) =R2(R\+R2) 
oc R2 + Rl+R2 Ri+2R2 

If the output terminals of F/g 25 are short-circuited, then the short-circuit 
resistance, 

(5) 

180 



R --Mi 
Ave — " 

/ R2RX \ ^ R& 
\Ri+R2/ Rx+2 1R2 

Rx+R2 

Time p n - R^Rl + Rd Thus RocRsc- {Ri+2R2) 
Comparing with equation (5) gives: 

Ro — v(Roc Rsc) 
From above, and from problem 5, it is seen that the characteristic 
impedance R0 is given by R0 = \/~(Roc Rsc) whether the network is a 
symmetrical T or a symmetrical π. 

(6) 

Problem U Ottennio* the characteristic impedance for the TI section 
attenuator shown in Fig 24. 

15Ω 

5Ω 

Fig 24 

Input 
port 

5Ω 

Output 
port 

From para 11 and equation (5), problem 10, 

characteristic impedance R0= J ( / ^ ζ ) = V ( ï l f S ) ) 

i.e. Rn = 3.87 Ω 

Alternatively, Roc = 100 5(15 + 5) 
5 + (15 + 5) 25 4Ω 

_(5)(15)_75_ 
^ ~ 5 + 1 5 _ 2 0 " 3 · 7 5 Ω 

and R0 = \f(Roc Rsc) = \i[(4)(3J5)] = 3.87 Ω, as above. 

Problem 12 A symmetrical π-attenuator pad has a series arm of 500 Ω 
resistance and each shunt arm of 1 kü resistance. Determine (a) the 
characteristic impedance, and (b) the attenuation (dB) produced by the pad. 

The π-attenuator section is shown in Fig 25 terminated in its characteristic 
impedance, R0. 
(a) From para 11 and equation (5), problem 10, for a symmetrical π-attenuator 

section, 
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Fig 25 

/?! = 500Ω 
ο——t-*—ι y 

R2= 1 kÜ 

^Χ 
Ro = 1 ΙςΩ 

ι 
characteristic impedance, R0 = W ' ) 

Hence R0 
I / (500)(1000)2 \ 

1 \ 500 + 2(1000) / 4 4 L 

(b) From paras 1 and 2 of chapter 9, the power ratio in decibels 

and if Pi and P2 refer to power developed in two equal resistors then the 
power ratio in decibels 

= 20 l g - ^ = 20 l g ^ 

Alternatively, attenuation 

Thus from Fig 25', 

attenuation = 20 lg -j-

= 2 0 1 g ^ = 2 0 1 g ^ 

current Ix = 

division, i.e. 
( R2 + Ri+(RR

2Ro/(R2+Ro)) ) <*>· b y C U r r e n t 

Ιχ \ 1000 + 500 + 

, + {R2R0/{R2 

1000 
((1000)(447)/(1000 + 447)) ) 

= 0.553 /, 

and 

current F - ( Rl \ï - ( 1 0 0 0 Ì / - 0 h - \R2 + R0 Γχ~ Vl000 + 4 4 7 / ^ " U " 691 L 

Hence I2 = 0.691(0.553 /j) - 0.382 /, and / , / / 2 = 1/0.382 - 2.617 
Thus attenuation = 20 lg 2.617 = 8.36 dB 
(Alternatively, since I\/l2 = N, then the formula 

R2 = Ro ( w _ 1 (see para 11 and equation (7), problem 13) may be 

transposed for N, from which attenuation = 20 lg TV) 

Problem 13 For a symmetrical π-network attenuator the characteristic 
impedance is R0 and the attenuation N. Detennine expressions for series 
resistance Ri and shunt resistance R2 in terms of R0 and N. 
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Fig 26 

h 

ÎTP~TE 
'D '2 
» 9—»— 

R2 \V2 

ì —é— X 
Symmetrical π-attenuator 

A symmetrical π-network attenuator terminated in 
its characteristic impedance R0 is shown in Fig 26. 

Attenuation Ν = -ττ- ( = -r ) from which V2 = -r? v2 \ h ) N 
From F/g 25, current IX=IA+ IB and current Iß = Ic + ID- Thus 

current / 1 = ^ - = Î 4 + / C + /|) 

R2 R2 Ro R2 NR2NR0 

since F2 = V\/N, i.e.. 

Hence 

*o l\R2
+NR2

 + NR0) 

J-=-L+J-+J_ 
fl0 R2 NR2 NR0 

1 1 1 
* 0 Λ « 0 R2

 + ~NR2 

Ro\ N / R2\ N / 
J_ (N-l\ 1 / W + l \ 
Ro\ N ) R2\ N ) 

Thus 

Ä 2 =/?o 
(W+l) 

'(JV-l) 
From F/g 25, current /j = IA + 7Ä, and since the p.d. across R\ is (V\ - V2), 

V\ = Kt | Kt - K2 

/? 0 /?2 ^1 ^1 

ê=ê + ë -A s i n c e K 2 = K i / i V 

(7) 
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R0 R2
 + Ri NRi 

R0 R2 R1 \ N) 
1 ( N - l ) 1 /N-l\c .. ... 

T0 - RWTT) - * (-N- )from e q u a t , o n ( 7 ) · 

Roy N+l) Ä, V N I 
J_ ((N+l)-(N-\)\ =J_ (N-l\ 
Ro \ (N+l) ) Ri\ N ) 

R0\N+l) Rt \ N J 

Hence 

( ^ ) 

Problem 14 Design a it-section symmetrical attenuator pad to provide a 
voltage attenuation of 20 dB and having a characteristic impedance of 
600 Ω. 

From problem 9, N = 10 and R0 = 600 Ω 
From equation (8), problem 13, 

resistance /?i = R0 ( ^ ^ - ) =600 ( \nn0l ) = 2970 Ω or 2.971<Ω. 

From equation (7), problem 13, 

Thus the π-section attenuator shown in Fig 2 7 has a voltage attenuation of 
20 dB and a characteristic impedance of 600 Ω. 
(Check: From equation (15)), 

«.- VdaSc) -VteSÄ-— 
* r 2.97 kfì 

Fig 27 
R0 = 600n 

733Ω 733Ω 

I R0 =600Ω 



Probkm ISBvt Identical &Pm\Mm^titm are connected in cascade.Äe 
overall attenuation is 70 dB and the voltage input to the first section is j ; 
20 mV. ̂ termine /% 
(a) the attenuation of each individual attenuator section, f ; 
(b) the voltage output of the final stage, and ;$ 
(c) the voltage output of the third stage. -J 

(a) From para 12, the overall attenuation is equal to the sum of the 
attenuations of the individual sections and, since in this case each section is 
identical, the attenuation of each section = 70/5 = 14 dB 

(b) If Vx = the input voltage to the first stage and V0 = the output voltage of 
the final stage, then the overall attenuation = 20 lg (Vi/V0), i.e., 

(ϋ 70 = 20 lg l — 1 where V0 is in millivolts 

» - m 
io»-£ 
from which 
output voltage of final stage, 

V0 = -JpL = 6.32 X IO"3 mV = 6.32 μ\ 

(c) The overall attenuation of three identical stages is 3 x 14 = 42 dB. 
Hence 42 = 20 lg (Vi/V3), where K3 is the voltage output of the third stage. 
Thus 

42 . / 2 0 \ 
2Ô = lgU/ andl042/20 = ~ 

from which the voltage output of the third stage, 
K3 = 20/1021 = 0.159 mV 

Problem 16 A d.c. generator has an internal resistance of 450 Q and 
supplies a 450iHoad. 
(a) Design a T-network attenuator pad having a characteristic impedance of 

450 Ü which, when connected between the generator and the load, will 
reduce theload current to f of its initial value. 

(b) If two such networks as designed in (a) were connected in series between 
the generator and the load, determine the fraction of the initial current 
that would now flow in the load. 

(c) Determine the attenuation in decibels given by four such sections as 
designed in (a). 

The T-network attenuator is shown in Fig 28 connected between the generator 
and the load. Since it is matching equal impedances, the network is 
symmetrical. 
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Kb 
Generator 

450Ω 

Fig 28 

JF 
* ih 

450Ω 
load 

(a) Since the load current is to be reduced to | of its initial value, the 
attenuation, N=S. From equation (3), 

resistance, ^ = Ro(^~ }j = 4 5 0 j j - ^ i j = 3 5 0 Ω 

and from equation (4), 

resistance,R2 = R0 ( j y T T l ) = 4 5 0 ( j n r i j = 1 1 4 Ω 

(b) When two such networks are connected in series, as shown in Fig 29, 
current I\ flows into the first stage and \1\ flows out of the first stage into 
the second. Again, \ of this current flows out of the second stage, i.e., 
| x | Ilt i.e., 1/64 of Ix flows into the load. Thus 1/64 of the original 
current flows in the load. 

(c) The attenuation of a single stage is 8. Expressed in decibels, the attenuation 
is 20 lg (/i//2) = 20 lg 8 = 18.06 dB. From para 12, the overall attenuation 
of four identical stages is given by 18.06 + 18.06 + 18.06 + 18.06 i.e., 
72.24 dB 

450Ω 

/. I 350Ω 350Ω Ί 1-/, |~ 350Ω 350Ω "! Uih) 
» ο ι 1 · ι 1 ! η » ι 1 r ' ■ ' - 8 8 
» o i l 1 'Ρ 1 1 I ° * 1 1 1 ' 

) ! 

Γ \ 

114.3Ω ! | 

ι ° ι 

ι 1 ! 

114.3Ω | 

ι ° ι__ 

Fig 2 9 

450Ω 
load 
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C. FURTHER PROBLEMS ON SIMPLE FILTER AND ATTENUATION 
CIRCUITS 

SHORT ANSWER PROBLEMS 

1 What is an electrical * filter?' 
2 Define the term 'cut-off frequency' as applied to a filter. 
3 Describe briefly the function of a low-pass filter. Give one application. 
4 Sketch (a) ideal (b) practical, attenuation/frequency characteristics for a low-

pass filter. 
5 Describe briefly the function of a high-pass filter. 
6 Sketch (a) ideal (b) practical, attenuation/frequency characteristics for a high-

pass filter. 
7 Describe briefly the function of a band-pass filter. 
8 Sketch (a) ideal (b) practical, attenuation/frequency characteristics for a band­

pass filter. 
9 Describe briefly the function of a band-stop filter. 
10 Sketch (a) ideal (b) practical, attenuation/frequency characteristics for a band-

stop filter. 
11 What is an attenuator? 
12 What is meant by a 'two-port network'? Give an example. 
13 Explain briefly the terms (a) iterative impedance 

(b) characteristic impedance 
14 Derive equations for the characteristic impedance R0 of (a) a symmetrical 

T-attenuator (b) a symmetrical π-attenuator, in terms of the series resistance R\ 
and shunt resistance R2. 

15 What is meant by Cascading' attenuators? 

MULTI-CHOICE PROBLEMS (answers on page 191) 

1 A filter designed to pass signals with frequencies between two specified cut-off 
frequencies is called a 
(a) low-pass filter (b) high-pass filter (c) band-pass filter (d) band-stop filter 

2 A filter designed to pass signals at frequencies above a specified cut-off 
frequency is called a 
(a) low-pass filter (b) high-pass filter (c) band-pass filter (d) band-stop filter 

3 A filter designed to pass signals at frequencies below a specified cut-off 
frequency is called a 
(a) low-pass filter (b) high-pass filter (c) band-pass filter (d) band-stop filter 

4 A filter designed to pass signals with all frequencies except those between two 
specified cut-off frequencies is called a 
(a) low-pass filter (b) high-pass filter (c) band-pass filter (d) band-stop filter 

5 A T-section symmetrical attenuator pad with series resistance RA and shunt 
resistance RB is to provide a voltage attenuation of 12.04 dB and have a 
characteristic impedance of 600 Ω. The value of RA is 
(a) 1125 Ω (b) 360 Ω (c) 320 Ω (d) 1000 Ω 

6 For the attenuator described in problem 5, the value of RB is 
(a) 1125 Ω (b) 360 Ω (c) 320 Ω (d) 1000 Ω 

7 A π-section symmetrical attenuator pad with series resistance RA and shunt 
resistance RB is to provide a voltage attenuation of 19.08 dB and have a 
characteristic impedance of 400 Ω. The value of RA is 
(a) 1777.8 Ω (b) 90 Ω (c) 500 Ω (d) 320 Ω 
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8 For the attenuator described in problem 7, the value of RB is 
(a) 1777.8 Ω (b) 90 Ω (c) 500 Ω (d) 320 Ω 

9 The ratio of input to output voltage for a symmetrical T-attenuator is 10. Five 
identical such attenuators are cascaded. The overall attenuation is 
(a) 50 dB (b) 10 dB (c) 100 dB (d) 5 dB 

CONVENTIONAL PROBLEMS 

1 Determine the characteristic impedances of the T-network attenuator sections 
shown in Fig30. [(a) 26.46 Ω (b) 244.9 Ω (c) 1.342 kfì] 

10Ω 
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(O 

Determine the characteristic impedances of the π-network attenuator pads 
showninF/^37. [(a) 7.45 Ω (b) 353.6 Ω (c) 189.7 Ω] 
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A T-section attenuator is to provide 18 dB voltage attenuation per section and is 
to match a 1.5 kΩ line. Determine the resistance values necessary per section. 

[/?! = 1165 Ω,#2 = 384 Ω] 
A π-section attenuator has a series resistance of 500 Ω and shunt resistances of 
2 kΩ. Determine (a) the characteristic impedance, and (b) the attenuation 
produced by the network. [(a) 667 Ω (b) 6 dB] 
For each of the attenuator pads shown in Fig 32 determine (a) the input 
resistance when the output port is open-circuited, (b) the input resistance when 
the output port is short-circuited, and (c) the characteristic impedance. 

r (i) (a) 50 Ω (b) 42 Ω (c) 45.83 Ω 
L (ii) (a) 285.7 Ω (b) 240 Ω (c) 261.9 Ω J 

A television signal received from an aerial through a length of coaxial cable of 
characteristic impedance 100 Ω has to be attenuated by 15 dB before entering 
the receiver. If the input impedance of the receiver is also 100 Ω, design a 
suitable T-attenuator network to give the necessary reduction. 

[Ri = 69.8 Ω, R2 = 36.7 Ω] 
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7 Design (a) a T-section symmetrical attenuator pad, and (b) a π-section 
symmetrical attenuator pad, to provide a voltage attenuation of 15 dB and 
having a characteristic impedance of 500 Ω. 

r(a) / ? 1 =349Ω, /? 2 = 184Ω Ί 
L (b)/?ι = 1.36 kfì,/?2 = 716 fìj 

8 Determine the values of the shunt and series resistances for T-pad attenuators 
of characteristic impedance 400 Ω to provide the following attenuations: 
(a) 12 dB (b) 25 dB (c) 36 dB. f (a) Ri = 239.4 Ω, R2 = 214.5 Ω " 

φ ) # 1 = 3 5 7 . 4 Ω , / ? 2 = 45.14Ω 
(c) /?! = 387.5 Ω, R2 = 12.68 Ω J 

9 Design a π-section symmetrical attenuator network to provide a voltage 
attenuation of 24 dB and having a characteristic impedance of 600 Ω. 

[Ri= 4.736 kΩ,/?2 = 680.8 Ω] 
10 Explain what is meant by 'the characteristic impedance of an attenuator 

section'. Determine the values of the shunt and.series resistance for π-pad 
attenuator sections of characteristic impedance 600 Ω to give the following 
attenuations: 
(a) 8 dB (b) 20 dB (c) 32 dB. f (a) /?! = 634.1 Ω, R2 = 1393.7 Ω 

(b) Rx = 2.97 kΩ, R2 = 733.3 ! 
L (e) Ri = 11.94kΩ, R2 = 630.9 ί 

11 A battery of emf E and negligible internal resistance is connected across the 
input terminals of the T-network shown in Fig 33. Determine, in terms of E, the 
current drawn from the battery when (a) the output terminals are open-
circuited, (b) the output terminals are short-circuited, (c) the network is 

7Ω-ι 
ΙΩ 
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correctly terminated, (d) For the last case, determine the attenuation of the 
network in decibels. E 

( a ) 3 2 Ô A ( b ) Î95 A ( C ) 2 4 9 ^ 
(d) 9.09 dB 

12 A d.c. generator has an internal resistance of 600 Ω and supplies a 600 Ω load. 
Design a symmetrical (a) T-network and (b) π-network attenuator pad, having a 
characteristic impedance of 600 Ω which when connected between the generator 
and load will reduce the load current to } its initial value. 

r(a) /? i= 3 6 0 Ω , £ 2 = 320 Ω] 
L(b) Ri = 1125 Ω, R2 = 1000Ω] 

13 The input to an attenuator is 24 V and the output is 4 V. Determine the 
attenuation in decibels. If five such identical attenuators are cascaded, 
determine the overall attenuation. [15.56 dB; 77.80 dB] 

14 Four identical attenuator sections are connected in cascade. The overall 
attenuation is 60 dB. The input to the first section is 50 mV. Determine (a) the 
attenuation of each section, (b) the output of the final stage, and (c) the output 
of the second stage. [(a) 15 dB(b)50μV(c) 1.58 mV] 

15 A d.c. generator has an internal resistance of 300 Ω and supplies a 300 Ω load. 
(a) Design a symmetrical T-network attenuator pad having a characteristic 

impedance of 300 Ω which, when connected between the generator and the 
load, will reduce the load current to j its initial value. 

(b) If two such networks as in (a) were connected in series between the 
generator and the load, what fraction of the initial current would the load 
take? 

(c) Determine the fraction of the initial current that the load would take if six 
such networks were cascaded between the generator and the load. 

(d) Determine the attenuation in decibels provided by five such identical stages 
as in (a). r(a) Ri = 150 Ω, R2 = 225 Ω 1 

L(b) 1/9 (c) 1/729 (d) 47.71 dBj 
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Answers to 
multi-choice 
problems 

Chapter 1 (page 30): 1 (b); 2 (c); (3) (a); 4 (d); 5 (c); 6 (a); 7 (c); 8 (c); 
9(b); 10(d); 11(b). 
Chapter 2 (page 53): 1 (b); 2 (a); 3 (b); 4 (b); 5 (a); 6 (c); 7 (a); 8 (d); 
9(b); 10(d); 11 (c); 12(b). 
Chapter 3 (page 73): 1 (d); 2 (g); 3 (i); 4 (s); 5 (h); 6 (b); 7 (k); 8 (1); 
9 (a); 10 (d), (g), (i) and (1); 11 (b); 12 (d). 
Chapter 4 (page 94): 1 (g); 2 (c); 3 (a); 4 (a); 5 (0; 6 (a); 7 (g); 8 (1); 9 (1); 
10 (d); 11(f); 12 Ü). 
Chapter 5 (page 113): 1 (c); 2 (b); 3 (b); 4 (g); 5 (g); 6 (e); 7 (1); 8 (c); 
9 (a); 10 (d); Il (g); 12 (b); 13 (c); 14 (j); 15 (h). 
Chapter 6 (page 128): 1 (b); 2 (e); 3 (e); 4 (c); 5 (c); 6 (a); 7 (d); 8 (f); 
9 (b); 10 (c); 11 (b); 12 (a); 13 (b); 14 (a); 15 (d). 
Chapter 7 (page 137): 1 (c); 2 (b); 3 (d); 4 (a); 5 (b); 6 (d); 7 (b); 8 (c); 
9 (0; 10 Ü). 
Chapter 8 (page 148): 1 (d); 2 (a); 3 (a); 4 (b); 5 (d). 
Chapter 9 (page 163): 1 (b); 2 (d); 3 (a); 4 (d); 5 (cj; 6 (g); 7 (c); 8 (b); 
9 (p); 10(d); l l ( o ) ; 12 (n). 
Chapter 10 (page 187): 1 (c); 2 (b); 3 (a); 4 (d); 5 (b); 6 (c); 7 (d); 8 (a); 
9(c). 



Index 

A.C. bridges, 152 
Acceptor circuit, 38 
Active power, 42 

component, 42 
Amplitude modulation, 140, 145 
Apparent power, 42 
Attenuation, 167 

band,167 
Attenuator, 167 

T168, 176 
n 169,179 

Band-pass filter, 167, 173 
Band-stop filter, 167, 174 
Bandwidth, 39, 140 
Bridges, a.c. 152 
Brush-contact loss, 119 

Capacitive reactance, 36 
Characteristic impedance, 168 
Commutator, 116 
Complex wave, 153 
Copper loss, 119 
C.R.O., 151, 157 
Current triangle, 42 
Cut-off frequency, 167 

D.C. circuit analysis, 1 
machines, 116 

losses, 119 
transients, 97 

Decibel, 150, 155 
meter, 151 

Delta connection, 79 
Demodulation, 140, 144 
Differentiator circuit, 103 
Digital multimeter, 155 

voltmeter, 154 
Dynamic resistance, 62 

Filter, 167 
Frequency deviation, 145 

modulation, 140, 145 
swing, 145 

Friction and windage losses, 119 

Generator, 116 
constant-current, 5 
constant-voltage, 5 

Half-power points, 39 
Harmonics, 153 
High-pass filter, 167, 171 

Impedance, 37 
triangle, 37 

Induction motor, 131 
Inductive reactance, 36 
Integrator circuit, 102 
Iron loss, 119 
Iterative impedance, 168 

Losses of machines, 119 
Low-pass filter, 167, 170 

Machines, d .c , 116 
construction, 117 

Maximum power transfer theorem, 61, 62 
Maxwell's bridge, 152, 159 
Measurements, 153 

errors, 155 
Measuring instruments, 153 
Modulating index, 145, 146 
Modulation, 140 

amplitude, 140 
frequency, 140 
phase, 140 
pulse, 142, 145 
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Motor, 116 
induction, 131 
speed control, 122 
stepping, 122 

Norton's theorem, 5, 17 

Parallel a.c. circuits, 58 
resonance, 61 

Passband, 167 
Phase modulation, 140 

sequence, 78 
Power, 41, 50 

measurement, 82 
shaft, 118 
three-phase, 80 
triangle, 42 

Power factor, 42 
correction, 62 

Q-factor, 39, 62, 152 
Q-meter, 152, 160 
Quadrature component, 42 

Reactive power, 42 
Rejector circuit, 62 
Resistance matching, 7 
Resonance, 61 

parallel, 61 
series, 38 

Rotating magnetic field, 132 

Selectivity, 40 
Series resonance, 38 
Signal-to-noise ratio, 145 
Single-phase: 

parallel circuits, 58 
series circuits, 36 

Slip, 134 
Star connection, 78 
Starter, d.c. motor, 121 
Stepping motor, 122 
Stopband,167 
Superposition theorem, 1, 7 
Synchronous speed, 132 

Thévenin and Norton equivalent 
networks, 5, 22 

Thevenin's theorem, 4, 11 
Three-phase: 

induction motors, 131 
Three-phase systems, 77 

advantages of, 82 
Time constant, 98, 101 
Transformer matching, 7, 27 
Transients, 97 
Two-port networks, 168 

Voltage triangle, 37 

Waveform harmonics, 153 
Wheatstone bridge, 15, 151, 162 
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