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Preface

Electric Power System Applications of Optimization is intended to introduce
optimization, system theory, foundations of different mathematical program-
ming techniques, and application to selected areas of electrical power engin-
eering. The idea is to present theoretical background material from a
practical power system point of view and then proceed to explore applica-
tions of optimization techniques, new directions, and continuous application
problems. The need for such a book stems from the extensive and diverse
literature on topics of optimization methods in solving different classes of
utility operations and planning problems.

Optimization concepts and algorithms were first introduced to power
system dispatching, resource allocation, and planning in the mid-1960s in
order to mathematically formalize decision making with regard to myriad
objectives subject to technical and nontechnical constraints. There has been a
phenomenal increase in research activities aimed at implementing dis-
patched, resource allocation problems and at planning optimally. This
increase has been facilitated by several research projects (theoretical papers
usually aimed at operation research communities) that promote usage of
commercial programs for power system problems but do not provide any
relevant information for power engineers working on the development of
power system optimization algorithms. Most recently, there has been a
tremendous surge in publications on research applications, especially on
optimization in electric power engineering.

However, currently no book serves as a practical guide to the fundamental
and application aspects of optimization for power system work. This book is
intended to meet the needs of a diverse range of groups interested in opti-
mization application. They include university faculty, researchers, students,
and developers of power systems who are interested in or who plan to use
optimization as a tool for planning and operation. The focus of this book is
exclusively on the development of optimization methods, foundations, and
algorithms and their application to power systems.

The focus was based on the following factors. First, good references that
survey optimization techniques for planning and operation are currently
available but they do not detail theoretical formulation in one complete
environment. Second, optimization analysis has become so complex that
examples that deal with nonpower system problems are only studied and
many issues are covered by only a few references for the utility industry.
Finally, in the last decade, new optimization technologies such as interior
point methods and genetic algorithms (GAs) have been successfully intro-
duced to deal with issues of computations and have been applied to new
areas in power system planning and operation.
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This book provides both the analytical formulation of optimization and
the various algorithmic issues that arise in the application of various
methods in power system planning and operation. In addition, it also pro-
vides a blend of theoretical approach and application based on simulation.
Figure P.1 shows a summary of the main areas and topics covered for the
benefit of power=non-power engineers as well as other optimization experts.
The readers here are exposed to the foundations of classical optimization
theories, which are extended to linear and nonlinear programming, integer
programming, and dynamic programming (DP).

This book then provides direct applications of these technologies from the
operation research domain to electric power systems. It also provides foun-
dation knowledge and references in power systems operation, optimization,
and control as background to the new readers. State estimation (SE), optimal
power flow (OPF), pricing, and unit commitment (UC) are presented as
applications in this book. In addition, new advances in the field of adaptive
critics design have spurred interest in research and practical applications of
approximate DP. The final chapter of the book combines fundamental the-
ories and theorems from functional optimization, optimal control, and DP to
explain new adaptive or approximate dynamic programming (ADP) con-
cepts and its variants.

A summary of the chapters is as follows: in Chapter 2, we revise
electric power system models, power system component modeling, reactive
capabilities, ATC, and AGC. It concludes with illustrated examples.
In Chapter 3, we introduce the theoretical concepts and algorithms for

Optimization theory

   Linear programming
   Quadratic programming
   Nonlinear programming
   Lagrange relaxation
   Dynamic programming
   Genetic algorithms

Mathematical basis in
classical and functional

optimization

Power system issues Optimization principles

Advance optimization frontiers in
adaptive dynamic programming

Introduction to power
systems basics and

operational challenges

Electric power systems
applications areas

   State estimation (SE)
   Optimal power flow
    (OPF)
   Pricing
   Unit commitment (UC)

FIGURE P.1
Summary of the main topics in text.
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power-flow computation using different numerical methods with illustrative
examples and applications for practical simulation studies.

To treat the problem of optimization in a concise form, Chapter 4 deals
with classical unconstrained and constrained techniques with simple appli-
cations to power systems. This chapter concludes with illustrative examples.
Chapter 5 is dedicated to linear programming theory, methods, and its
extension to integer programming, postoptimization (often referred to as
sensitivity analysis), and its application to power systems, with illustrative
examples at the end. Chapter 6 deals with new trends in optimization theory
such as interior point optimization methods for both linear and quadratic
formulation. It includes examples and applications to power systems. In
Chapter 7, we discuss the nonlinear programming technique and its exten-
sion to recent interior point methods such as barrier methods. The computa-
tional algorithm for each of the nonlinear programming variants is also
presented.

Chapter 8 presents the DP optimization algorithm with illustrative
examples. In Chapter 9, the Lagrangian relaxation concept and algorithm are
discussed. Their applicability to UC and resource allocation is also described.
In Chapter 10, the decomposition method for solving large-scale optimization
problems is presented with illustrative examples following the procedure.

In Chapter 11, for operation and computation of system variables and
constraints used in OPF, power flow, and power system security assessment,
accurate representation of the system data, information, and parameters is
mandatory. Several techniques are used, such as SE algorithms, filtering
algorithms, and predictive control. We summarize herein the SE with appli-
cations for power system data processing.

In Chapter 12, OPF modeling and selected programming techniques
derived from earlier chapters are used for solving difficult objective functions
with constraints in power system operation and planning. Illustrative
examples are also included.

In Chapter 13, as a result of power system restructuring, market strategies
and pricing have recently become important issues. They are designed for the
principle of OPF and hence from natural extension of well-known economic
description with constraints. We present here a summary of economic prin-
ciples and price theory necessary for optimal zonal control and marginal
prices. These formulations are given in a general form and are amenable for
the use of several of the classical static or dynamic optimization concepts
provided in earlier chapters.

Chapter 14 addresses UC concepts, formulation, and algorithms. Examples
and applications to power systems dispatching are also presented here.
Chapter 15 presents GAs as tools for optimization and discusses the defin-
ition of GA computation, approach, and algorithm. Application areas of GAs
as a computational tool in power system operation and planning are also
described.

Chapter 16 introduces a new topic that is of current interest to engineers
and scientists with advantages such as overcoming several shortfalls of static
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optimization with a deterministic variable. Static optimization is used in
most power system operations and planning. These limit the problems
that are to be solved. In cases where a system model has dynamics or
predictability, some level of stochastic knowledge of optimal control is
needed. However, the use of DP and optimal control has been discussed in
nonlinear programming books. Recent progress made to accelerate both
predictive and stochastic nature is handled by adaptive dynamic critics
(reinforcing learning algorithm). As we seek solutions to power system
performance in real time, new advances in optimization technologies are
proposed. This forms the basis of the revised Chapter 16. Here, we summar-
ize the Euler–Lagrange=Pontryagin principle with the unified theory of
Hamilton–Jacobian–Bellman (HJB) from their derivatives, leading to the
basis for adaptive dynamic critics. The capability of these new advances is
used in solving problems of optimization, placement of flexible AC trans-
mission devices, UC, real-time pricing, and several others.

Notably, in order to accommodate the determination of optimal power
system performances for practical, real-time systems with uncertainty and
stochasticity in data and system modeling, this book introduces new
advancement in adaptive dynamic critics for optimal control. Several case
studies in support of the new types of advanced dynamic optimization are
presented as new material in this book. They involve general optimizations
for the example applications of ADP to stochastic OPF, UC, etc.

It is hoped that the application areas discussed here will offer the reader an
overview of classical optimization methods without sacrificing the rudiments
of the theory. Those working in the field or willing to engage in OPF will find
the material useful and interesting as a reference or as a good starting point
to engage in power system optimization studies.

A significant portion of the material presented here is derived from new
ideas generated through sponsored projects, professional society meetings,
panel sessions, and popular texts in operation research in which I have had
personal involvement. These include research and development efforts,
which were generally supported by funding agencies such as the Electric
Power Research Institute, the National Science Foundation, and Howard
University. I wish to acknowledge the significant contribution made by the
engineers of Bonneville Power Authority, Commonwealth Edison, and the
Department of Energy in the development and testing of OPF using variants
of optimization techniques such as GAs and interior point methods.

This book would not have been possible without the help of the students in
the optimization and power system group at the Center for Energy Systems
and Control (CESaC) at Howard University and CESaC’s research staff
who provided dedicated support in OPF algorithm testing, problem solving,
and the tasks of preparing this book for publication. I am indebted to my
colleagues for their keen interest in the development of the first and this
subsequent edition of the book. These include Professor Kenneth Fegly of the
University of Pennsylvania, Professor Bruce Wollenberg of the University of
Minnesota, Professor Emeritus Hua Ting Chieh of Howard University, and
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Professor Mohammed El Hawary of Dalhousie University who offered valu-
able criticism during the preparation of this book.

Finally, I wish to thank my admirable students in the CESaC family for
their help in typing and editing. Finally, I offer my deepest personal thanks to
those closest to me who have provided support during the time-consuming
process of writing this book.

James A. Momoh
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1
Introduction

1.1 Structure of a Generic Electric Power System

Although no two electric power systems are alike, all share some common
fundamental characteristics including the following:

1. Electric power is generated using synchronous machines that are
driven by turbines (steam, hydraulic, diesel, or internal combustion).

2. Generated power is transmitted from the generating sites over long
distances to load centers that are spread over wide areas.

3. Three-phase AC systems comprise the main means of generation,
transmission, and distribution of electric power.

4. Voltage and frequency levels are required to remain within tight
tolerance levels to ensure a high-quality product.

The basic elements of a generic electric power system [1,3] are displayed in
Figure 1.1. Electric power is produced at generating stations (GS) and trans-
mitted to consumers through an intricate network of apparatus including
transmission lines, transformers, and switching devices.

A transmission network is classified as

1. Transmission system

2. Subtransmission system

3. Distribution system

The transmission system interconnects all major GS and main load centers in
the system. It forms the backbone of the integrated power system and
operates at the highest voltage levels (typically, 230 kV and above). The
generator voltages are usually in the range of 11–35 kV. These are stepped
up to the transmission voltage level, and power is transmitted to transmis-
sion substations where the voltages are stepped down to the subtransmission
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level (typically, 69–138 kV). The generation and transmission subsystems are
often referred to as the bulk power system.

The subtransmission system transmits power at a lower voltage and in
smaller quantities from the transmission substation to the distribution sub-
stations. Large industrial customers are commonly supplied directly from the
subtransmission system. In some systems, as expansion and higher voltage
levels become necessary for transmission, the older transmission lines are
often relegated to subtransmission function.

The distribution system is the final stage in the transfer of power to the
individual customers. The primary distribution voltage is typically between
4.0 and 34.5 kV. Primary feeders at this voltage level supply small industrial
customers. The secondary distribution feeders supply residential and com-
mercial customers at 120–240 V.

GS

GS GS

Small
GS 

Industrial
customer

Distribution
substation

Industrial
customer

Distribution
transformer

Subtransmission
Subtransmission

and
distribution

system

Commercial Residential

120/240 V
Single-phase

secondary feeder

Three-phase primary
feeder 

12.47 kV 

115 kV 

Bulk power
system

Transmission
substation

500 kV

115 kV

Tie line

345 kV

Transmission system
(230 kV)

230 kV

To subtransmission and
distribution

Trans-
mission
system

(500 kV)

Tie line to
neighboring

system

20 kV

500 kV

24 kV

230 kV500 kV

22 kV

FIGURE 1.1
Basic elements of a power system.
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1.2 Power System Models

In order to be able to control the power system from the point of view of
security, one is required to know two basic things: the mathematical models
of the system and the variety of control functions and associated objectives
that are used. In this section some general remarks about power system
models are given.

In Figure 1.2, we show the basic decomposition of the system into a set of
generators that deliver electrical power to the distributed load by means of a
network. In our subsequent discussion we start by describing the load, then
the network, and finally the generators.

In assessing load behavior as seen from a substation, one is interested
typically in items such as the following:

System generation
control

Load frequency control

Frequency Tie flows    

Schedule

Prime
mover

and control

Excitation
system and

control 

Generator

Field
current

Electrical
power  

Speed 

Speed/
power

Voltage 

Shaft 
power

Supplementary
control

Transmission controls
Reactive power and voltage

control, HVDC transmission
and

Frequency Tie flows Generator
power

Other generating units and
associated controls

Generator
power

FIGURE 1.2
Subsystems of a power system and associated controls.
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. Present value of real power consumed in megawatt (MW) and the
associated power factor (or reactive power)

. Forecast values of real and reactive power over a range of future
times—next few minutes, to days and years

. Load response characteristics (e.g., lumped circuit representation or
transfer function) for fluctuations in substation voltage and fre-
quency

By knowing the real and reactive components of substation loads (present
or forecast), one can establish a complete picture for a steady-state bulk
power demand in the system. Furthermore, by identifying load response
characteristics one can adequately evaluate the dynamic behavior of the
demand in the presence of disturbances and feedback controllers.

The network portion of the system consists of the transmission, sub-
transmission, and distribution networks. This division is based on voltage
levels, and, consequently, on the ratings of various circuits. Typically, power
transmission is done at voltages that can range from 115 to 765 kV. The
transmission network is not necessarily radial. In fact, it has many closed
loops as required for reliable supply purposes. Subtransmission (65–40 kV)
and distribution (20–115 kV) systems are primarily radial when operated.
Because of this arrangement, analysis at the bulk power levels considers only
the transmission portion of the network. From a transmission substation,
real and reactive power will flow radially to the load through a sequence of
step-down transformers and power lines.

In modeling the network elements, one should identify the type of problem
being analyzed. Under normal conditions, the load fluctuates very slowly
compared to transient time constants associated with transmission lines. And
since system frequency is maintained at its nominal value quite accurately,
the lumped circuit representation of transmission lines is quite adequate. On
the other hand, if electromagnetic transients resulting, for example, from
lightning strikes are being investigated, then wave equations should be
considered. In our present context, the lumped circuit representation can be
very adequate.

In a block diagram of a typical generator, the blocks correspond to the
main components of the power plant. The significant outputs of the gener-
ator as measured at the terminals are its

Voltage magnitude (kV)

Real power produced (MW)

Reactive power produced (MVAr)

Speed (in radians and denoted by w¼ 2pf, where f is the frequency)

Under normal conditions, three of those quantities are continuously con-
trolled by the power plant. These are the terminal voltage, the frequency
(speed), and real power output. The output voltage V is subtracted from the
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specified voltage V0 and the difference is an error signal that drives the
exciter system. The exciter, in turn, modifies the field voltage of the turbo-
alternator in such a way that V becomes closer in value to V0. The same
feedback concept applies to the control of frequency and real power. In this
case, however, the corresponding error signal drives the governor system.
The governor controls valve openings of the turbine, which in turn control its
speed and mechanical power output. The power error signal can also go back
to the prime mover (boiler, in the case of steam generation), so that more, or
less, steam is generated.

The exciter normally has a fast response (10�2–10�1 s). The governor-
turbine system is slower (0.1–1 s) in its response. However, since the load
is much slower in its changes than the response times, it is safe to assume that
perfect control is always present; that is, normal operation is, to a high
degree, sinusoidal steady-state operation. Only when events that are fast
relative to governor-turbine or exciter response times, one would worry
about the steady-state operation. Thus, in the presence of network faults, or
immediately following switching operations, one needs to consider transient
or dynamic representation of the system.

1.3 Power System Control

Before discussing how the system is controlled, one needs to briefly sum-
marize the means by which control action is obtained.

First, let us understand the meaning of control as it applies to the power
system case. The system is normally designed so that certain quantities can be
manipulated by means of devices. Some of these are the so-called status quan-
tities. By means of power circuit breakers, a transmission line is open (status¼
OFF) or dosed (status¼ON). Some of them are integer variables (tap-settings
on power transformers). And the rest are continuous variables such as the real
power output of a generator. The control devices can be simple, like fuses, or
highly complex dynamic systems, like exciters and governors.

Control action is attained by the manipulation of all control devices that
exist on the system. This is achieved in order to meet different, but consistent
objectives, and through a variety of means. The general objectives of system
control are listed in order as follows:

1. Protection of major pieces of equipment and of system integrity

2. Continuity of high-quality service

3. System secure operation

4. System economic and environmentally acceptable operation

5. Emergency state control

6. Restorative control in minimum time
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As a rule, control action is based on information derived from direct meas-
urements and inferred data. Each control device will require certain kinds of
information based on the following considerations:

Speed-of-response requirements

Impact of control action (i.e., global vs. local)

Relative importance of different pieces of information (e.g., local vs.
distant information)

Some examples of this are now in order. For a short-circuit fault on a
transmission line, the main objective is to protect the system from going
unstable (losing synchronism) and to protect the line from serious damage.
This is achieved by correct breaker action, which will open that line and
isolate it from the system. Normally, however, other neighboring lines and
transformers feel the effect of the short circuit. Hence, it is important to open
the faulted line first. By means of offline short-circuit analysis, relay settings
are established so that the faulted line will open first. Hence, the only needed
online information for that purpose is line current. This is strictly local
information.

In a more complicated situation, we can look at the problem of maintain-
ing a satisfactory voltage profile in the system. Scheduled generator ter-
minal voltage is attained by means of local feedback control to the exciter.
The values of scheduled voltages, which are the set points in the feedback
loop, are established from an analysis of the entire system’s operating
conditions. In most cases, offline analysis of the system yields values of
scheduled voltages. Modern, energy control centers (ECC) have the capabil-
ity of processing global online information and updating voltage profile set
points [5].

The function of an electric power system is to convert energy from one of
the naturally available forms to the electrical form and to transport it to the
points of consumption. Energy is seldom consumed in the electrical form
but is rather converted to other forms such as heat, light, and mechanical
energy. The advantage of the electrical form of energy is that it can be
transported and controlled with relative ease and with a high degree of
efficiency and reliability. A properly designed and operated power system
should, therefore, meet the following fundamental requirements:

1. It must be able to meet the continually changing load demand for
active and reactive power. Unlike other types of energy, electricity
cannot be conveniently stored in sufficient quantities. Therefore,
adequate spinning reserve of active and reactive power should be
maintained and appropriately controlled at all times.

2. It should supply energy at minimum cost and with minimum eco-
logical impact.
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3. The ‘‘quality’’ of the power supply must meet certain minimum
standards with regard to the factors:

a. Constancy of frequency

b. Constancy of voltage

c. Level of reliability

Several levels of controls involving a complex array of devices are used to
meet the above requirements. These are depicted in Figure 1.2, which iden-
tifies the various subsystems of a power system and the associated controls.
In this overall structure, there are controllers operating directly on individual
system elements. In a generating unit these consist of prime mover controls
and excitation controls. The prime mover controls are concerned with speed
regulation and control of energy supply system variables such as boiler
pressures, temperatures, and flows. The function of the excitation control is
to regulate generator voltage and reactive power output. The desired MW
outputs of the individual generating units are determined by the system
generation control.

The primary purpose of the system generation control is to balance the
total system generation against system load and losses so that the desired
frequency and power interchange with neighboring systems (tie flows) is
maintained.

The transmission controls include power and voltage control devices, such
as static VAr compensators, synchronous condensers, switched capacitors
and reactors, tap-changing transformers, phase-shifting transformers, and
high voltage direct current (HVDC) transmission controls.

These controls described above contribute to the satisfactory operation of
the power system by maintaining system voltages and frequency and other
system variables within their acceptable limits. They also have a profound
effect on the dynamic performance of the power system and its ability to cope
with disturbances.

The control objectives are dependent on the operating state of the power
system. Under normal conditions, the control objective is to operate as
efficiently as possible with voltages and frequency close to nominal values.
When an abnormal condition develops, new objectives must be met to
restore the system to normal operation.

Major system failures are rarely the result of a single catastrophic disturb-
ance causing collapse of an apparently secure system. Such failures are
usually brought about by a combination of circumstances that stress the
network beyond its capability. Severe natural disturbances (such as a tor-
nado, severe storm, or freezing rain), equipment malfunction, human error,
and inadequate design combine to weaken the power system and eventually
lead to its breakdown. This may result in cascading outages that must be
contained within a small part of the system if a major blackout is to be
prevented.
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Protecting isolated systems has been a relatively simple task, which is
carried out using overcurrent directional relays with selectivity being
obtained by time grading. High-speed relays have been developed to meet
the increased short-circuit currents due to the larger size units and the complex
interconnections.

For reliable service, an electric power system must remain intact and be
capable of withstanding a wide variety of disturbances. It is essential that the
system be operated so that the more probable contingencies can be sustained
without loss of load (except that connected to the faulted element) and so that
the most adverse possible contingencies do not result in widespread and
cascading power interruptions.

The November 1965 blackout in the northeastern part of the United States
and Ontario had a profound impact on the electric utility industry. Many
questions were raised and led to the formation of the National Electric
Reliability Council in 1968. The name was later changed to the North
American Electric Reliability Council (NERC). Its purpose is to augment
the reliability and adequacy of bulk power supply in the electricity systems
of North America. The NERC is composed of nine regional reliability
councils and encompasses virtually all the power systems in the United
States and Canada. Each regional council has established reliability criteria
for system design and operation. Since differences exist in geography, load
pattern, and power sources, criteria for the various regions differ to some
extent.

Design and operating criteria play an essential role in preventing major
system disturbances following severe contingencies. The use of criteria
ensures that, for all frequently occurring contingencies, the system will, at
worst, transit from the normal state to the alert state, rather than to a more
severe state such as the emergency state or the in extremis state. When the
alert state is entered following a contingency, operators can take actions to
return the system to the normal state.

1.4 Power System Security Assessment

Power system security is the ability of the bulk power electric power system
to withstand sudden disturbances such as electric short circuits or unantici-
pated loss of system components [5]. In terms of the requirements for the
proper planning and operation of the power system, it means that following
the occurrence of a sudden disturbance, the power system will

1. Survive the ensuing transient and move into an acceptable steady-
state condition.

2. In this new steady-state condition, all power system components
operate within established limits.
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Electric utilities require security analysis to ensure that, for a defined set of
contingencies, the above requirements are met. The analysis required to
survive a transient is complex, because of increased system size, greater
dependence on controls, and more interconnections. Additional compli-
cating factors include the operation of the interconnected system
with greater interdependence among its member systems, heavier transmis-
sion loading, and concentration of the generation among few large units at
light loads.

After the 1965 blackout, various efforts went into improving reliable sys-
tem operation. Several reliability criteria and emergency guidelines were
introduced by the Federal Power Commission (FPC) and North American
Power System Interconnection Committee (NAPSIC). Summaries of these
guidelines are given in Ref. [2, Appendix]. These guidelines and criteria
represent efforts by the government and the utilities to improve control
and operational practices.

More important, however, were the efforts by various researchers and
specialists in what has come to be known as the secure control of the
power system. In DyLiacco’s pioneering work [6], the power system is
judged to reside at any instant of time in any of three operating states:
normal, emergency, and restorative.

Under normal steady-state operating conditions all customer demands are
met and all equipments operate below its rated capacity. Theoretically speak-
ing, the requirement of meeting customer demands is expressed mathemat-
ically by means of a set of equations (equality constraints) of the type

h1(x1, . . . , xn; u1, . . . , um) ¼ 0

h2(x1, . . . , xn; u1, . . . , um) ¼ 0

..

.

hn(x1, . . . , xn; u1, . . . , um) ¼ 0,

(1:1)

where
x1, . . . , xn is a set of dependent (state) variables
u1, . . . , um is a set of independent (input, demand, or control) variables

Typically these equality constraints correspond to the so-called load-flow
equations. The constraints relative to equipment can be written, in general,
in the following form:

g1(x1, . . . , xn; u1, . . . , um) � 0

g2(x1, . . . , xn; u1, . . . , um) � 0

..

.

gl(x1, . . . , xn; u1, . . . , um) � 0:

(1:2)
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They correspond to items such as upper and lower limits on power gener-
ation by a given unit, current limits on transmission lines and transformers,
and so on.

Mathematically, the normal operating state is defined whenever the utility
system considered satisfies Equations 1.1 and 1.2.

Following certain disturbance events (short circuits due to faults, loss of
generation, loss of load, and others) some of the inequality constraints may
be violated. For example, a line may become overloaded, or system fre-
quency may drop below a certain limit. In these cases the system is in the
emergency operating state.

Finally, the system may exist in a situation where only a fraction of the
customers are satisfied without overloading any equipment. In this case only
a portion of the system is in the normal state. As a result, not all the equality
constraints are satisfied, but the inequality constraints are. Such a state is
called the restorative operating state.

Symbolically, we can rewrite Equations 1.1 and 1.2 in the following form.

h(x,u) ¼ 0

g(x,u) � 0

)
: (1:3)

With this notation, we summarize our definition of the three operating states
as follows:

Normal state

h(x,u) ¼ 0

g(x,u) � 0:

Emergency state (need to change g(x,u) to not less than or equal to)

h(x,u) ¼ 0

g(x,u) � 0:

Restorative state

h(x,u) 6¼ 0

g(x,u) � 0:

The security of the system is defined relative to its ability to withstand a
number of postulated disturbances. A normal state is said to be secure if,
following any one of the postulated disturbances, the system remains in the
normal state. Otherwise, it is insecure.

In the online operation of the system, one monitors the different variables
that correspond to its operating conditions. This monitoring process is called
security monitoring. The process of determining whether the system is in the
secure normal state is called security assessment.
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In the process of security assessment it may be concluded that the system is
in the insecure normal state. In that case, the system operator will attempt to
manipulate system variables so that the system is secure. This action is called
preventive control. If, on the other hand, the system is in an emergency state,
then two types of control action are possible. In the first type, called corrective
control, action is possible whereby the system is sent back to the normal state.
If corrective control is not possible, then emergency control is applied [6].
This control can be due to relay-initiated action, automatic control, or oper-
ator control. In any case, the system will drift to the restorative state as a
result of emergency control. Finally, in the restorative state, control action is
initiated to restore all services by means of restorative control. This should
put the system back to the normal state. Figure 1.3 illustrates the various
transitions due to disturbances as well as various control actions.

1.5 Power System Optimization as a Function of Time

The hourly commitment of units, the decision whether a unit is on or off
at a given hour, is referred to as unit commitment. Hourly production

Insecure
normal

state

Emergency
stateRestorative

state

Secure
normal

state

Normal state
Transition due to

control action

Transition due to
a disturbance

Preventive
control

Corrective
control

Emergency
control

Restorative
control

FIGURE 1.3
Operating states of a power system.
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of hydroelectric plants based on the flexibility of being able to manage
water reserve levels to improve system performance is referred to as the
hydrothermal problem and hourly production of coal generation or a dual
purpose plant is called the dual purpose problem. Scheduling of unit main-
tenance without violating reserve capacity while minimizing the production
cost is referred to as a maintenance scheduling problem. The interdependence
among the various control optimization problems as the time horizon
expands from seconds to years is shown in Figure 1.4.

In power system operation and planning, there are many optimization
problems that require real-time solutions such that one can determine the
optimal resources required at minimum cost within a given set of constraints.
This scheduling is done over time (minutes, hours, days, etc.). In this regard,
we classify the problem as either operational or planning. Notably, in the
operations scheduling problem, we usually extend the studies up to 24 h. On
the other hand, planning problems are solved in the time frame of years.

In analyzing the optimization problem, there are many controllable
parameters of interests. There are many objective functions and constraints
that must be satisfied for economic operation. (These objectives and

Automatic
generation

control

Minimize area control error
subject to machine and system

dynamics constraints 

Optimal
load
flow

Minimize instantaneous
cost of

operation or other indices

Unit commitment
hydrothermal
dual problem

Minimize expected cost of
operation or other indices

Hydrothermal
dual problem

Minimize expected cost 
of operation

Hydrothermal
interchange
coordination

Minimize expected cost of
operation with reliability

constraints

Maintenance
scheduling,
interchange

Minimize expected cost of
operation with reliability

constraints

Maintenance
scheduling,
generation

Minimize expected 
investment and operational

costs with reliability 

Seconds

Minutes

Hours

Days

Weeks

Months

Years

Time
function

Process control   Optimization 

FIGURE 1.4
Time horizon of the power system optimization problem.
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constraints are quantified later.) Methods exist for solving the resulting
economic dispatch problem as a function of time when we incorporate the
constraints of the system and typically the economic dispatch problem
evolves. It uses mathematical techniques such as linear programming (LP),
unconstrained optimization techniques (using Lagrange multipliers), and
nonlinear programming (NLP) to accommodate the constraints [4]. The
availability of these techniques in addressing this problem has been noted.
Other variations on the economic dispatch problem are hydrothermal and
unit commitment problems.

Dynamic programming (DP), Lagrange relaxation technique, and Bender’s
decomposition algorithm are used to solve this class of optimization prob-
lem. Another method in power system operation and control is the optimal
maintenance of units and generators.

Finally, in the same realm is the optimal power flow (OPF), which holds
the promise of extending economic dispatch to include the optimal setting
of under load tap-changers, generator real and reactive powers, phase-shifter
taps, and the like. OPF has been expanded as new problems arise to include
new objective functions and constraints. And OPF has attracted researchers
to the development of new optimization algorithms and tests as a routine
base. Other applications extending the work to optimization of the
network include VAr planning, network expansion, and availability transfer
capability.

At the distribution end, loss minimization, data estimation, and network
reconfiguration have demanded optimum decision making as a planning
problem as well as an operations problem. There are mathematical optimiza-
tion techniques ranging from LP to evolutionary search techniques that can
be employed to obtain optimum distribution networks.

There is a need to summarize the essential mathematical methods that
have been fully developed, tested, and utilized on a routine basis for security
analysis of the power system. The selection of the appropriate optimization
technique depends on the system as defined by the objective functions and
the constraints. The constraints are divided into two classes, namely, tech-
nical and nontechnical. The class of technical constraints includes network,
equipment, and device constraints. The class of nontechnical constraints
includes social, environmental, and economic limitations.

1.6 Review of Optimization Techniques Applicable
to Power Systems

In the early days of power system operation, the OPF tool was defined in
terms of the conventional economic dispatch problem aimed at determining
the optimal settings for control variables in a power system with respect to
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various constraints. However, the capability of power system optimization
tools has been broadened to provide solutions for a wide range of utility-
dependent problems. Today, the OPF tool is used to solve a static constrained
nonlinear optimization problem whose development has followed closely
the advances in numerical optimization techniques and computer technol-
ogy. Commonly available OPF packages can solve very large and complex
power system formulations in a relatively short time.

Generally, OPF requires solving a set of nonlinear equations, describing
optimal and secure operation of a power expressed as

Minimize F(x,u)

while satisfying g(x,u)¼ 0

h(x,u) � 0,

where
g(x,u) is the set of nonlinear equality constraints (power flow equations)
h(x,u) is the set of inequality constraints of vector arguments x and u
x is the vector of dependent variables consisting of bus voltage magni-
tudes and phase angles, as well as MVAr loads, fixed bus voltages,
line parameters, and so on

u is the vector of control variables

Vector u includes the following:

Real and reactive power generation

Phase-shifter angles

Net interchange

Load MW and MVAr (load shedding)

DC transmission line flows

Control voltage settings

Load tap changer (LTC) transformer tap settings

Common objectives in a power system include

Active power cost minimization

Active power loss minimization

Minimum control shift

Minimum number of controls scheduled

Examples of the associated equality and inequality constraints are

Limits on all control variables

Power flow equations
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Generation=load balance

Branch flow limits

Bus voltage limits

Active and reactive reserve limits

Generator MVAr limits

Corridor (transmission interface) limits

The optimization methods that are incorporated in the OPF tools can be
classified based on optimization techniques such as

LP based methods

NLP based methods

Integer programming (IP) based methods

Separable programming (SP) methods

Notably, LP is recognized as a reliable and robust technique for solving awide
range of specialized optimization problems characterized by linear objectives
and linear constraints. Many commercially available power system optimiza-
tion packages contain powerful LP algorithms for solving power system
problems for both planning and operator engineers. LP has extensions in the
simplex method, revised simplex method, and interior point techniques.

Interior point techniques are based on the Karmarkar algorithm and
encompass variants such as the projection scaling method, dual affine
method, primal affine method, and barrier algorithm.

In the case of the NLP optimization methods, the following techniques are
introduced:

Sequential quadratic programming (SEQ)

Augmented Lagrangian methods

Generalized reduced gradient method

Projected augmented Lagrangian

Successive LP

Interior point methods

The basic formulation is then extended to include security and environmen-
tal constraints, which have become very important factors in power system
operation in the past few decades. Special decomposition strategies are also
applied in solving large-scale system problems. These include Benders
decomposition, Lagrangian relaxation, and Talukdar–Giras optimization
techniques.

In recent years, the advancement of computer engineering and the
increased complexity of the power system optimization problem have led
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to greater need and application of specialized programming techniques
for large-scale problems. These include DP, Lagrange multiplier methods,
and evolutionary computation methods such as genetic algorithms. These
techniques are often hybridized with many other techniques of intelligent
systems, including artificial neural networks, expert systems, Tabu-search
algorithms, and fuzzy logic.
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2
Electric Power System Models

2.1 Introduction

The power industry in the United States has been engaged in a changing
business environment for quite some time now, moving away from a cen-
trally planned system to one in which players operate in a decentralized
fashion with little knowledge of the full state of the network, and where
decision making is likely to be market driven rather than based on technical
considerations.

The new environment differs markedly from the one in which the system
previously has been operated. This leads to the requirement of some new
techniques and analysis methods for system operation, operational and long-
term planning, and the like.

Electrical power systems vary in size, topography, and structural compon-
ents. However, the overall system can be divided into three subsystems:
generation, transmission, and distribution. System behavior is affected by
the characteristics of every major element of the system. The representation
of these elements by means of appropriate mathematical models is critical to
the successful analysis of system behavior. For each different problem, the
system is modeled in a different way. Here, power system under steady
constraints has been extended to include load conditions, thermal limits,
stability constraints, congestion limits, and other constraints in pricing mech-
anism, which are introduced in numerous real-life applications discussed in
subsequent chapters of this book.

This chapter describes some system models for analysis purposes and
introduces concepts of power expressed as active, reactive, and apparent,
followed by a brief review of three-phase systems and the per unit system
representations (Sections 2.3 and 2.4). Section 2.5 discusses modeling the
synchronous machine from an electric network standpoint. Reactive capabil-
ity curves are examined in Section 2.6 followed by discussion of static and
dynamic load models later in Section 2.11. We now introduce some funda-
mental concepts and background knowledge required in understanding
power systems analysis.
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2.2 Complex Power Concepts

The electrical power systems specialist is, in many instances, more concerned
with electrical power in the circuit rather than current. As the power into an
element is basically the product of the voltage across and current through it,
it seems reasonable to swap the current for power without losing any
information.

In treating sinusoidal steady-state behavior of an electric circuit, some
further definitions are necessary. To illustrate, a cosine representation of
the sinusoidal waveforms involved is used.

Consider an impedance element Z¼Z=f connected to a sinusoidal voltage
source y(t) that is given by y(t)¼Vm cos vt. Figure 2.1 shows the typical load
circuit. The instantaneous current in the circuit shown in Figure 2.1 is

i(t) ¼ Im cos(vt� f),

where the current magnitude is

Im ¼ Vm=jZj:

The instantaneous power is given by

p(t) ¼ y(t)i(t) ¼ VmIm cos(vt) cos(vt� f)½ �:

Using the trigonometric identity

cosa cosb ¼ 1
2
cos(a� b)þ cos(aþ b)½ �,

we can write the instantaneous power as

p(t) ¼ VmIm
2

[ cosfþ cos(2vt� f)]:

The average power pav is seen to be

pav ¼ VmIm
2

cosf: (2:1)

FIGURE 2.1
Load circuit.

v(t)
i(t)

Z = Z ∠f

+
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Since through one cycle, the average of cos(2vt�f) is zero, this term there-
fore contributes nothing to the average of p.

It is more convenient to use the effective (or root mean square [rms])
values of voltage and current than the maximum values. Substituting
Vm ¼ ffiffiffi

2
p

(Vrms), and Im ¼ ffiffiffi
2

p
(Irms), we get

pav ¼ VrmsIrms cosf: (2:2)

Thus, the average power entering any network is the product of the effective
values of terminal voltage and current and the cosine of the phase angle,
which is called the power factor (PF). This applies to sinusoidal voltages and
currents only. For a purely resistive load cos f¼ 1, the current in the circuit is
fully engaged in conveying power from the source to the load resistance.
When reactive (inductive or capacitive) as well as resistive elements are
present in the network, a component of the current in the circuit is engaged
in conveying energy that is periodically stored in and discharged from the
reactance. This stored energy, being shuttled to and from the magnetic field
of an inductance or the electrostatic field of a capacitance, adds to the
magnitude of the current in the circuit but does not add to the average
power.

The average power in a circuit is called active power and the power that
supplies the stored energy in reactive elements is informally called reactive
power. Active power is denoted P, and the reactive power is designated Q.
They are expressed as

P ¼ VI cosf (2:3)

Q ¼ VI sinf, (2:4)

where
V and I are the rms values of terminal voltage and current
f is the phase angle by which the current lags the voltage
P and Q are of the same dimension (J=s)

We define a quantity called the complex or apparent power, designated S,
of which P and Q are orthogonal components. By definition

S ¼ Pþ jQ ¼ VI*

¼ VI cosfþ jVI sinf

¼ VI( cosfþ j sinf):

Using Euler’s identity, we thus have

S ¼ VIejf

¼ VIfff:
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If we introduce the conjugate current defined by the symbol asterisk (*),

I* ¼ jIjfff,

it becomes obvious that an equivalent definition of complex or apparent
power is

S ¼ VI*: (2:5)

We can write the complex power in two alternative forms by using the
relationships V¼Z�I and �I¼YV.

Multiplying the phasors by V, we obtain the complex power diagram in
Figure 2.2. Inspection of the diagram as well as the previous development
leads to a relation for the PF of the circuit:

cosf ¼ P
jSj :

2.3 Three-Phase Systems

The major portion of all the electric power presently used is generated,
transmitted, and distributed using balanced three-phase voltage systems.
The single-phase voltage sources referred to in Section 2.2 originate in
many instances as part of a three-phase system [1]. Three-phase operation
is preferable to single-phase because a three-phase winding makes more
efficient use of generator copper and iron. Power flow in single-phase circuits
was shown in the previous section to be pulsating. This drawback is not

FIGURE 2.2
Phasor diagram for complex
power relationships.

Real

Imaginary axis

0

Q =VI sinf

P =VI cosfV
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present in a three-phase system as shown later. Also, three-phase motors
start more easily and, having constant torque, run more satisfactorily than
single-phase motors. However, the complications of additional phases are
not compensated by the slight increase of operating efficiency when systems
higher than three-phase systems are used.

A balanced three-phase voltage system consists of three single-phase volt-
ages having the same magnitude and frequency but time-displaced from one
another by 1208. Figure 2.3a shows a schematic representation where the
single-phase voltage sources appear in a Y connection; a D configuration is
also possible as discussed later. A phasor diagram showing each of the phase
voltages is given in Figure 2.3b. As the phasors revolve at the angular
frequency v with respect to the reference line in the counterclockwise (des-
ignated as positive) direction, the positive maximum value first occurs for
phase a and then in succession for phases b and c. Stated in a different way, to
an observer in the phasor space, the voltage of phase a arrives first followed
by that of b and then that of c. For this reason the three-phase voltage of
Figure 2.3 is said to have the phase sequence abc (order, phase sequence, and
rotation all mean the same thing). This is important for certain applications.
For example, in three-phase induction motors, the phase sequence deter-
mines whether the motor rotates clockwise or counterclockwise.

2.3.1 Y-Connected Systems

With reference to Figure 2.4, the common terminal n is called the neutral or
star (Y) point. The voltages appearing between any two of the line terminals
a, b, and c have different relationships in magnitude and phase to the
voltages appearing between any one line terminal and the neutral point n.
The set of voltages Vab, Vbc, and Vca are the line voltages, and the set of
voltages Van, Vbn, and Vcn are referred to as the phase voltages. Consider-
ation of the phasor diagrams provides the required relationships [1,3].

(a)

a

c

b

120�

120�

120�

Vbn

Van

Vcn

Reference
line

(b)

FIGURE 2.3
(a) Y-connected three-phase system and (b) corresponding phasor diagram.
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The effective values of the phase voltages are shown in Figure 2.5 as Van,
Vbn, and Vcn. Each has the same magnitude, and each is displaced 1208 from
the other two phasors. To obtain the magnitude and phase angle of the line
voltage from a to b (i.e., Vab), we apply Kirchhoff’s voltage law:

Vab ¼ Van þ Vnb: (2:6)

Equation 2.6 states that the voltage existing from a to b is equal to the voltage
from a to n (i.e., Van) plus the voltage from n to b. Thus, Equation 2.6 can be
rewritten as

Vab ¼ Van � Vbn: (2:7)

Since for a balanced system, each phase voltage has the same magnitude, let
us set

jVanj ¼ jVbnj ¼ jVcnj ¼ Vp, (2:8)

30�

Vbn = Vp ∠ -120�

Vcn = Vp ∠ -120�

Van = Vp ∠ 0�

FIGURE 2.4
Phase and magnitude relations between the phase and line voltage of a Y-connection.

FIGURE 2.5
Relation between phase and line
currents in a D connection.

a

b
c

a�

b�

c�

Ica

Iab

Ibc

Iaa�

Ibb�

Icc�
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where Vp denotes the effective magnitude of the phase voltage. Accordingly,
we may write

Van ¼ Vpff0� (2:9)

Vbn ¼ Vpff�120� (2:10)

Vcn ¼ Vpff�240� ¼ Vpff120�: (2:11)

Substituting Equations 2.9 and 2.10 in Equation 2.7 yields

Vab ¼ Vp(1� 1ff�120�)

¼
ffiffiffi
3

p
Vpff30�: (2:12)

Similarly we obtain

Vbc ¼
ffiffiffi
3

p
Vpff�90� (2:13)

Vca ¼
ffiffiffi
3

p
Vpff150�: (2:14)

The expressions obtained above for the line voltages, VL, show that they
constitute a balanced three-phase voltage system whose magnitudes are

ffiffiffi
3

p
times as those of the phase voltages. Thus, we write

VL ¼
ffiffiffi
3

p
Vp: (2:15)

A current flowing out of a line terminal a (or b or c) is the same as that
flowing through the phase source voltage appearing between terminals n
and a (or n and b or n and c). We can thus conclude that for a Y-connected
three-phase source, the line current equals the phase current. Thus

IL ¼ Ip, (2:16)

where
IL denotes the effective value of the line current
Ip denotes the effective value for the phase current

2.3.2 Delta-Connected Systems

We now consider the case when the three single-phase sources are
rearranged to form a three-phase D connection as shown in Figure 2.6. It is
clear from inspection of the circuit shown that the line and phase voltages
have the same magnitude:

jVLj ¼ jVpj: (2:17)
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The phase and line currents, however, are not identical, and the relationship
between them can be obtained using Kirchhoff’s current law at one of the line
terminals.

In a manner similar to that adopted for the Y-connected source, let us
consider the phasor diagram shown in Figure 2.6. Assume the phase currents
to be

Iab ¼ Ipff0
Ibc ¼ Ipff�120�

Ica ¼ Ipff120�:

The current that flows in the line joining a to a0 is denoted Iaa0 and is given by

Iaa0 ¼ Ica � Iab:

As a result, we have

Iaa0 ¼ Ip[1ff120� � 1ff0],

which simplifies to

Iaa0 ¼
ffiffiffi
3

p
Ipff150�:

Similarly

Ibb0 ¼
ffiffiffi
3

p
Ipff30�

Icc0 ¼
ffiffiffi
3

p
Ipff�90�:

FIGURE 2.6
A D-connected three-phase source. Vbc

Vca

Vab

Icc�

Iaa� Ibb�

Iba

Ica

30�
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2.3.3 Power Relationships

Note that a set of balanced three-phase currents yields a corresponding set
of balanced line currents whose magnitudes are

ffiffiffi
3

p
times the magnitudes of

the phase values:

IL ¼
ffiffiffi
3

p
Ip,

where IL denotes the magnitude of any of the three line currents.
Assume that a three-phase generator is supplying a balanced load with the

three sinusoidal phase voltages:

ya(t) ¼
ffiffiffi
2

p
Vp sinvt

yb(t) ¼
ffiffiffi
2

p
Vp sin(vt� 120�)

yc(t) ¼
ffiffiffi
2

p
Vp sin(vtþ 120�),

with the currents given by

ia(t) ¼
ffiffiffi
2

p
Ip sin(vt� f)

ib(t) ¼
ffiffiffi
2

p
Ip sin(vt� 120� � f)

ic(t) ¼
ffiffiffi
2

p
Ip sin(vtþ 120� � f),

where f is the phase angle between the current and voltage in each phase.
The total power in the load is

p3f(t) ¼ ya(t)ia(t)þ yb(t)ib(t)þ yc(t)ic(t):

This can be expanded as

p3f(t) ¼ 2VpIp sin (vt) sin(vt� f)½
þ sin (vt� 120�) sin(vt� 120� � f)

þ sin (vtþ 120�) sin(vtþ 120� � f)�:

Using a trigonometric identity, we get

p3f(t)¼VpIp 3cosf� cos(2vt�f)þcos(2vt�240��f)þcos(2vtþ240��f)½ �f g:

Note that the last three terms in the above equation add up to zero. Thus, we
obtain

p3f(t) ¼ 3VpIp cosf:
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When referring to the voltage level of a three-phase system, by convention,
one invariably understands the line voltages. From the above discussion,
the relationship between the line and phase voltages in a Y-connected
system is

jVLj ¼
ffiffiffi
3

p
jVj:

The power equation thus reads in terms of line quantities:

p3f ¼
ffiffiffi
3

p
jVLjjILj cosf:

We note that the total instantaneous power is constant, having a magnitude
of three times the real power per phase.

We may be tempted to assume that the reactive power is of no importance
in a three-phase system since the Q terms cancel out. However, this situation
is analogous to the summation of balanced three-phase currents and voltages
that also cancel out. Although the sum cancels out, these quantities are still
very much in evidence within each phase.

We extend the concept of complex or apparent power (S) to three-phase
systems by defining

S3f ¼ 3VpI*p,

where the active and reactive powers are obtained from

S3f ¼ P3f þ jQ3f

as

P3f ¼ 3jVpjjIpj cosf
Q3f ¼ 3jVpjjIpj sinf:

In terms of line values, we can assert that

S3f ¼
ffiffiffi
3

p
VLI*L

and

P3f ¼
ffiffiffi
3

p
jVLjjILj cosf

Q3f ¼
ffiffiffi
3

p
jVLjjILj sinf:
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2.4 Per Unit Representation

In power system analysis, it is usually convenient to use a per unit system to
normalize system variables. The per unit system offers computational sim-
plicity by eliminating units and expressing system quantities as a dimension-
less ratio. Thus

X(in per unit) ¼
X(actual quantity)

X(base value of equation)
:

A well-chosen per unit system can minimize computational effort, simplify
evaluation, and facilitate understanding of system characteristics. Some base
quantities may be chosen independently and quite arbitrarily, while others
follow automatically depending on fundamental relationships between sys-
tem variables. Normally, the base values are chosen so that the principal
variables will be equal to one per unit under rated operating conditions.

In the case of a synchronous machine, the per unit system may be used to
remove arbitrary constants and simplify mathematical equations so that they
may be expressed in terms of equivalent circuits. The basis for selecting the per
unit system for the stator is straightforward, but it requires careful consider-
ation for the rotor. The Lad-base reciprocal per unit system is discussed here.

The following base quantities for the stator are chosen (denoted by sub-
scripts).

es base, peak value of rated line-to-line voltage (V)
is base, peak value of rated line-to-line current (A)
fbase, rated frequency (Hz)

The base value of each of the remaining quantities is automatically set and
depends on the above as follows:

vbase ¼ 2pfbase (electrical rad=s)

vm base ¼ vbase
2
pf

(mechanical rad=s)

Zs base ¼ es base
is base

(V)

Ls base ¼ es base
vbase

(H)

cs base ¼ Ls base � is base ¼ es base

vm base
(Weber turns)

VA3f,base ¼ 3Erms baseIrms base

¼ 3
2
es base � is base (VA):
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2.5 Synchronous Machine Modeling

In power system stability analysis, there are several types of models
used for representing the dynamic behavior of the synchronous machine.
These models are deduced by using some approximations to the basic
machine equations. Section 2.5 begins with a brief introduction to machine
equations [2,5].

The stator voltage equations expressed in per unit notations are given by

�ed ¼ d�cd

d�t
� �cq �v� �Ra

�id

�eq ¼ d�cq

d�t
þ �cd �v� �Ra

�iq

�e0 ¼ dc0

d�t
� �Ra

�i0:

(2:18)

The corresponding flux linkage equations may be written as

�cd ¼ ��Ld�id þ �Lafd�ifd þ �Lakd�ikd

�cq ¼ ��Lq�iq þ �Lakq�iq

�c0 ¼ ��L0�i0:

(2:19)

The rotor circuit base quantities should be chosen so as to make the flux
linkage equations simple by satisfying the following:

1. Per unit mutual inductances between different windings are to be
reciprocal. This will allow the synchronous machine model to be
represented by simple equivalent circuits.

2. All per unit mutual inductances between stator and rotor circuits in
each axis are to be equal.

The following base quantities for the rotor are chosen, in view of the Lad-base
per unit system choice.

�ed ¼ d�cd

d�t
� �cq �v� �Ra

�id

�eq ¼ d�cq

d�t
þ �cd �v� �Ra

�iq

�e0 ¼ d�c0

d�t
� �Ra

�i0:

(2:20)

Momoh/Electric Power System Applications of Optimization 65886_C002 Final Proof page 28 20.11.2008 11:33am Compositor Name: VAmoudavally

28 Electric Power System Applications of Optimization



Per unit rotor flux linkage equations are given by

�cd ¼ ��Ld�id þ �Lafd�ifd þ �Lakd�ikd
�cq ¼ ��Lq�iq þ �Lakq�iq
�c0 ¼ ��L0�i0:

(2:21)

Since all quantities in Equations 2.18 through 2.21 are in per unit, the super
bar notation is dropped in subsequent discussions.

If the frequency of the stator quantities is equal to the base frequency, the
per unit reactance of a winding is numerically equal to the per unit induct-
ance. For example:

Xd ¼ 2pfLd (V):

Dividing by Zs base¼ 2pfbase Ls base, if f¼ fbase, the per unit values of Xd and Ld
are equal.

2.5.1 Classical Representation of the Synchronous Machine

The per unit equations completely describe the electrical and dynamic per-
formance of a synchronous machine. However, except for the analysis of
very small systems, these equations cannot be used directly for system
stability studies. Some simplifications and approximations are required for
the representation of synchronous machines in stability studies. For stability
analysis of large systems, it is necessary to neglect the transformer voltage
terms pcd and pcq and the effect of speed variations. Therefore, the machine
equation [3] described by Equations 2.20 and 2.21 becomes

ed ¼ �cq � Raia
eq ¼ cd � Raia
efd ¼ pcfd þ Rfdifd:

8<
: (2:22)

For studies in which the period of analysis is small in comparison to T0
d0 the

machine model is often simplified by assuming E0
q constant throughout the

study period. This assumption eliminates the only differential equation asso-
ciated with the electrical characteristics of the machine. A further approxima-
tion, which simplifies the machine representation significantly, is to ignore
transient saliency by assuming that x0d ¼ x0q and to assume that the flux linkage
also remains constant. With these assumptions, the voltage behind the transi-
ent impedance Ra þ jx0d has a constant magnitude. The equivalent circuit is
shown in Figure 2.7. The machine terminal voltage phasor is represented by

eVt ¼ E0ffd� Ra þ jx0d
� �eIt:
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2.6 Reactive Capability Limits

Synchronous generators are usually rated in terms of the maximum kVA
load at a specific voltage and PF (often 80%, 85%, or 90% lagging) that they
can carry continuously without overheating. The active power output of the
generator is usually limited to a value within the kVA rating by the capability
[4] of its prime mover. By virtue of its voltage regulating system, the machine
normally operates at a constant voltage whose value is within þ5% of rated
voltage. When the active-power loading and voltage are fixed, either arma-
ture or field heating limits the allowable reactive-power loading. A typical set
of reactive-power capability curves for a large turbine generator are shown in
Figure 2.8. They give the maximum reactive-power loadings corresponding

FIGURE 2.7
Equivalent circuit of machine.
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FIGURE 2.8
Reactive capability curves of a hydrogen-cooled generator at rated voltage.
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to various power loadings with operation at rated voltage. Armature heating
is the limiting factor in the region from unity to the rated PF (0.85 in Figure
2.8). For lower PFs, field heating is limiting. Such a set of curves forms a
valuable guide in planning and operating the system of which the generator
is a part.

Also shown in Figure 2.8 is the effect of increased hydrogen pressure on
allowable machine loadings. The PF at which a synchronous motor operates,
and hence its armature current, can be controlled by adjusting its field
excitation. The curve showing the relation between armature current and
field current at a constant terminal voltage and with a constant shaft load is
known as a V-curve because of its characteristic shape.

2.7 Prime Movers and Governing Systems

The prime sources of electrical energy supplied by utilities are the kinetic
energy of water and the thermal energy derived from fossil fuels and nuclear
fission. The prime movers convert these sources of energy into mechanical
energy that, in turn, is converted to electrical form by the synchronous
generator. The prime mover governing system provides a means of control-
ling power and frequency. The functional relationships among the basic
elements associated with power generation and control are shown in
Figure 2.9. This section introduces the models for hydraulic and steam
turbines and their respective governing systems.

2.7.1 Hydraulic Turbines and Governing Models

The hydraulic turbine model describes the characteristics of gate opening m
and output mechanical power. In power system dynamic analysis, the

Energy supply
system

Valve or gate Speed governor GeneratorTurbine

Speed

FIGURE 2.9
Power generation and control.
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hydraulic turbine is usually modeled by an ideal lossless turbine along with
consideration of the ‘‘water hammer’’ effect caused by the water inertia,
given by

Pm

m
¼ 1� Tws

1þ Tws
, (2:23)

where Tw is water-starting time.
Because of the water hammer effect, a change in gate position produces an

initial turbine power change that is opposite to that which is sought. For
stable control performance, a large transient (temporary) droop with a long
resetting time is required. This is accomplished by introducing a transient
gain-reduction compensation in the governing system. The compensation
retards or limits the gate movement until the water flow and power output
have time to catch up. The governing system model is shown in Figure 2.10.

The governing system model is given by

dX1

dt
¼ h

TG
dm
dt

¼ �mþ X1

TR
dX2

dt
¼ �X2 þ RTTRh

Tp
dh
dt

¼ �hþ Ks(vref � vr � RpX1 � X2),

(2:24)

where
Tp is the pilot valve and servomotor time constant
Ks is the servo gain
Ta is the main servo time constant

11

hmax open

hmax close

h

wr

wref
m

Rp

1 + sTR

1 + sTp 1 + sTG

sTRRT

Ks 1
s

X2

X1

Maximum gate
position = 1Dead

band

Pilot valve
and

servomotor

Minimum gate
position = 0

Gate
servomotor

Permanent droop

Transient droop

+

- -

FIGURE 2.10
Governing system model.
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Rp is the permanent droop
RT is the temporary droop
TR is the reset time
hmax open is the maximum gate opening rate
hmax close is the maximum gate closing rate
m is the gate position

2.7.2 Steam Turbines and Governing System Models [2,5]

A steam turbine converts stored energy of high pressure and high tempera-
ture steam into rotating energy. The input of the steam turbine is the control
valve position (DVcv), while its output is the torque (DTm). In power stability
analysis, a first-order model is used for a steam turbine; that is

DTm

DVcv
¼ 1

1þ sTCH
, (2:25)

where TCH is the time constant.
Comparing the turbine models for hydraulic and steam turbines, it is clear

that the response of a steam turbine has no peculiarity such as that exhibited
by a hydraulic turbine due to water inertia. The governing requirements of
steam turbines, in this respect, are more straightforward. There is no need for
transient droop compensation.

The governing system model is given by

TG
dDVcv

dt
¼ �DVcv þ X1

dX1

dt
¼ Ks(vref � vr � RpX1):

(2:26)

A typical governing model for a steam turbine is shown in Figure 2.11.
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FIGURE 2.11
Governing model for steam turbine.
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2.8 Automatic Gain Control

Within an energy management system, the generation scheduling and con-
trol function control the electrical power output of generators so as to
supply the continuously changing customer power demand in an economical
manner. This function is largely provided by an automatic generation
control (AGC) program operating within the control center computer. The
power system dispatcher also plays an important role, interacting with the
program to incorporate current operating conditions. The basic objectives of
power system operation during normal operating conditions associated with
AGC are

1. Matching total system generation to total system load

2. Regulating system electrical frequency error to zero

3. Distributing system generation among control areas so that net area
tie flows match net area tie flow schedules

4. Distributing area generation among area generation sources so that
area operating costs are minimized

The first objective is conventionally associated with the terms primary or
governor speed control; turbine speed governors respond proportionally to
local frequency deviations and normally bring the frequency rate of change
to zero within a time frame of several seconds. The latter three objectives are
accomplished by supplementary controls directed from area control centers.
The second and third AGC objectives are classically associated with the
regulation function, or load-frequency control, while the fourth is associated
with the economic dispatch function of AGC. The regulation and economic
dispatch functions typically operate in time frames of several seconds and
several minutes, respectively.

2.8.1 Power Control in a Multigenerator Environment

Consider the case of a number of generating units connected by a transmis-
sion system, with local loads at each generator bus as shown in Figure 2.12.
We are interested in active power flows and assume that we can use the
active power model with all voltages set equal to their nominal values. The
objective of the analysis is to obtain an incremental model relating power
commands, electrical and mechanical power outputs, and power angles for
the different generators. We note that the analysis may be easily extended to
include pure load buses in the model; however, here we assume that every
bus is a generator bus.

At each bus, Pgi¼PDiþPi, where Pi is the total injected active power
from the ith bus into the transmission system. Assume an operating point
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given by Po
gi ¼ Po

Di þ Po
i and then Po

gi ¼ Po
gi þ DPgi, Po

Di ¼ Po
Di þ DPDi,

and Po
i ¼ Po

i þ DPi; we get the relationship between increments:

DPgi ¼ DPo
Di þ DPi:

For each generator we use the linearized version of the swing equation. Thus,
we consider

MiD€di þDiD _di þ DPGi ¼ DPMi, (2:27)

where di is the angle of the internal voltage of the ith generator. We number
the generators so that the ith generator is connected to the ith bus.

We next consider the behavior of PDi. In general, PDi depends on both the
voltage magnitude and frequency. In our active power model we assume
that the voltage magnitudes are fixed at their nominal values, and we
therefore need not consider the voltage magnitude dependence. Concerning
the frequency dependence, we assume that PDi increases with frequency.
This assumption is in accordance with observed behavior. We would also
like to be able to introduce changes in load as external (disturbance) inputs.
Thus, we can imagine the sudden increments in load due to the switching of
an electrical device that draws a specified power. In accordance with this
description, for small changes in frequency, we assume that

PDeei ¼ Po
Di þ

@PDi(vo)
@vi

Dvi þ DPLi, (2:28)

where the first two terms describe the linearization of the frequency depend-
ence of the load and DPLi is the change of load input, by switching, referred
to previously. Note that the operating-point frequency is vo, which is

~ ~ ~

Transmission 
grid 

V1 V2

Pg2 Pg nPg1

Vn

PDnPD2PD1

…

FIGURE 2.12
Simplified network model for an n-generator power system.
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expected to be close to but not necessarily equal to the nominal system
frequency vo¼ 2p60. In defining the frequency at each bus, we note that
the instantaneous (phase a) voltage is

yi(t) ¼
ffiffiffi
2

p
jVij cos votþ uoi þ Dui(t)

� �
: (2:29)

Thus, by taking the time derivative of the argument of the cosine function,
we get

vi ¼ vo þ D _ui (2:30)

and thus

Dvi ¼ vi � vo ¼ D _ui: (2:31)

Defining DLi¼ @PDi(vo)=@vi, and using Equation 2.31, we can replace Equa-
tion 2.28 with

DPDi ¼ DLiD _ui þ DPLi: (2:32)

Also, we can get

MiD€di þDiD _di þDLiD _ui þ DPLi þ DPi ¼ DPMi: (2:33)

We next calculate DPi, assuming that the line admittance parameters are
purely imaginary,

Pi ¼
Xn
k¼1

jVijjVkjBik sin(ui � uj), (2:34)

where ui is the phase angle of the bus voltage Vi. Assuming that voltage
magnitudes jVij are constants, then the terms jVijjVkjBik are constants by
linearizing Equation 2.34 around the operating point. For variety, instead
of using the Taylor series, we can proceed as follows, using trigonometric
identities.

Pi ¼ Po
i þ DPi ¼

Xn
k¼1

jVijjVjjBik sin uoi þ Dui � uok � Duk
� �

¼
Xn
k¼1

jVijjVjjBik sin uoi � uok
� �

cos(Dui � Duk)

þ cos uoi � uok
� �

sin(Dui � Duk): (2:35)
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This result is exact. As we let the increments go to zero we get

DPi ¼
Xn
k¼1

jVijjVjjBik cos uoi � uok
� �

(Dui � Duk), (2:36)

which is the same as the linearization result found by using the Taylor series.
Defining Tik ¼ jVijjVkjBik cos uoi � uok

� �
, we get

DPi ¼
Xn
k¼1

Tik(Dui � Duk): (2:37)

The constants Tik are called stiffness or synchronizing power coefficients. The
larger the Tik, the greater the exchange of power for a given change in bus phase
angle. We are now in a position to substitute Equation 2.37 into Equation 2.33.
First, however, we make a further approximation. We assume coherency
between the internal and the terminal voltage phase angles of each generator
so that these angles tend to ‘‘swing together.’’ Stated differently,we assume that
the incrementsDdi andDui are equal. The assumption thatDdi¼Dui significantly
simplifies the analysis and gives results that are qualitatively correct.

Making the assumption, and substituting Equation 2.37 into Equation 2.33,
we get for i 2, . . . , n,

MiD€di þ eDiD _di þ DPi ¼ DPMi � DPLi, (2:38)

whereeDi¼DiþDLi

DPi ¼
Pn

k¼1 Tik(Ddi � Ddk)

From the way DLi adds to Di, we expect the (positive) load dependence on
frequency to contribute to system damping.

The preceding relations are shown in the form of block diagram in Figure
11.10. The reader is invited to check that with KPi¼ 1=eDi and TPi¼Mi=Di,
Figure 11.10 represents Equation 2.38 in form of block diagram. In Figure 2.13

s
1KPiGPi =

1 + sTPi

DPi

DPMi

DPMi Ddi = Dwi 

Ddi
+

-

-

FIGURE 2.13
Generator block diagram.
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we have Dvi as an output and DPMi as an input and can close the power
control loop by introducing the turbine governor block diagram.

2.8.2 AGC System Models

2.8.2.1 Case A: Two Generating Units

In this case, we have two synchronizing coefficients to consider, T12 and T21.

T12 ¼ jV1jjV2jB12 cos uo1 � uo2
� �

T21 ¼ jV1jjV2jB21 cos uo2 � uo1
� �

:

Since T12¼T21, the block diagram for the two units may be combined and we
can describe the operation of the system in qualitative terms as follows.
Starting in the steady-state Dvl¼Dv2¼ 0, suppose that additional load is
switched onto bus 2 (i.e., DPL2 is positive). Initially, the mechanical power
input to generator 2 does not change; the power imbalance is supplied from
the rotating kinetic energy. Thusv2 begins to drop (i.e.,Dv2 goes negative). As
a consequence,Dd2 decreases and the phase angle d1� d2 across the connecting
transmission line increases. Thus the transferred power P12 increases. The
sending-end power P12 and the receiving-end power –P12 both increase. Unit
1 sees an increased power demand and v1 begins to drop. Each governor
senses a frequency (speed) drop and acts to increase the mechanical power
output from its turbine. In the steady-state there is a new (lower) system
frequency and an increased P12. The frequency may then be restored and P12

adjusted, if desired, by operator action (i.e., by adjustment of Pc1 and Pc2).
We next consider an example in which we calculate the steady-state

change frequency by automatic (governor) control and see the benefit of
the interconnection in quantitative terms. We consider the more general
case when both PL1 and PL2 change.

1. Controlled two-area systems: The response curves indicate that, as in
the single-area case, we must add integral control to our system. Let
us state, first, the minimum requirements the system should meet.

2. Suggested control-system specifications: We require that our system
meet the four-point specifications that we stipulated for the single-
area system. In addition, we require that the steady-state tie line
power variation, following a step load change, must be zero. This
requirement guarantees that each area, in steady state, absorbs its
own load, the guiding principle in pool operation.

3. Tie line bias control strategy: Since we must now use a strategy that
will cause both the frequency and the tie line deviations to vanish,
we adopt integral control, as in the single-area case, but with the tie
line deviation added to our area control error; that is, we attempt
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ACE1 ¼ DPtie1 þ B1Df1
ACE2 ¼ DPtie2 þ B2Df2:

(2:39)

The speed changer commands are thus of the form

DPc1D� KI1

ð
(DPtie1 þ B1Df1) dt

DPc2D� KI2

ð
(DPtie2 þ B2Df2) dt:

(2:40)

The constants KI1 and KI2 are integrator gains, and the constants B1

and B2 are the frequency bias parameters. The minus signs must be
included since each area should increase its generation if either its
frequency error Dfi or its tie line power increment DPtie.i is negative.

4. Static system response: The chosen strategy will eliminate the steady-
state frequency and tie line deviations for this reason: following a
step load change in either area, a new static equilibrium, if it exists,
can be achieved only after the speed changer commands DPc1 and
DPc2 have reached constant values. But this evidently requires that
both integrands in Equation 2.40 be zero; that is

DPtie1,stat þ B1Dfstat ¼ 0

DPtie2,stat þ B2Dfstat ¼ 0:
(2:41)

In view of Equation 2.41, these conditions can be met only if

Dfstat ¼ DPtie1,stat ¼ DPtie2,stat ¼ 0:

Note that this result is independent of the B1 and B2 values. In fact,
one of the bias parameters (but not both) can be zero, and we still
have a guarantee that the previous equation is satisfied.

5. Prime mover response: At this point, we can construct a block diagram
of a governor-prime mover obtaining mass=load model. Suppose
that this governor experiences a step increase in load

DPL(s) ¼ DPL

s
: (2:42)

The transfer function relating the load change DPL to the frequency
change Dv is

Dv(s)¼DPL(s)
(�1=MsþD)

1þ (1=R)(1=1þ sTG)(1=1þ sTCH)(1=MsþD)

� �
: (2:43)
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The steady-state value of Dv(s) may be found by

Dvsteady state ¼ lim
s!0

sDv(s)½ � ¼ �DPL(1=D)
1þ (1=R)(1=D)

¼ �DPL

(1=R)þD
: (2:44)

Note that if D were zero, the change in speed would simply be
Dv¼�RDPL. If several generators (each having its own governor
and prime mover) were connected to the system, the frequency
change would be

Dv ¼ �DPL

(1=R1)þ (1=R2)þ � � � þ (1=Rn)þD
: (2:45)

2.9 Transmission Subsystems [3,6]

The transmission network subsystem involves complexities in busbar inter-
ties, transformers, and in the transmission links themselves.

1. Busbars are often interconnected by circuit breakers in such a manner
to allow switching flexibility (i.e., single or groups of circuits may be
outaged without undesirable outaging of key buses or other circuits).
A bus tie circuit breaker presents somewhat of a mathematical diffi-
culty in that opening of the breaker in the computer study requires
‘‘outaging’’ of a zero impedance tie. The problem is overcome by
considering adjacent buses tied by a bus tie-breaker as being tied
by a very low impedance ‘‘line’’ (e.g., j0.00001 per unit impedance).

2. Transformer-magnetizing branch is occasionally required in EHV
studies at off-peak hours when the magnetizing current may be a
considerable fraction of the total transformer current. If the trans-
former is located at bus i, inclusion of the magnetizing reactance as a
lumped ground tie at bus i is usually adequate.

3. Models for tap-changing transformers and phase-shifters should also
include tap and phase-shift limits. These limits may not be symmet-
rical about the nominal setting. If a tap-changing under load (TCUL)
voltage regulating the transformer or phase-shifter hits a limit, that
limit should be retained regardless of the results of calculating Df
and Dt.

4. Transmission line itself is usually modeled as a lumped series imped-
ance and two lumped-shunt capacitive susceptances. The latter occur
on each line terminal and represent line-charging capacitance. If the
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total line-charging susceptance is jB, a tie of jB=2 siemens per unit
occurs at each line terminal. The value of B depends on the line
configuration and in the case of cables is usually obtained from a
computer program.

5. For very long transmission circuits, occasionally the long-line model
is used. At 60 Hz, this factor is significant only for the longest lines
(e.g., 625 km, which is approximately 1=8 the wavelength). In some,
higher frequency signals are involved, and the corresponding shorter
1=8 wavelength point is approximately 37,500=f km (where f is in
hertz). The long-line equations for voltage V(x) and current I(x) at a
point x measured from bus 1 are

V(x) ¼ V1 cosh gx� I1Zc sinh gx (2:46)

I(x) ¼ �I1 cosh gxþ V1

Zc
sinh gx, (2:47)

where
subscript 1 denotes bus 1
g andZc are the propagation constant and characteristic impedance

of the line, respectively

The sign convention in Equations 2.46 and 2.47 is such thatþ I1 flows in the
direction ofþx. Let bus 2 be the other line terminal located at x¼ l, and let the
voltage at bus 2 be V2 and the current be þI2,

V2 ¼ V1 cosh gl� I1Zc sinh g‘

I2 ¼ �I1 cosh gl� V1

Zc
sinh g‘:

(2:48)

Solving for the currents in terms of voltages,

I1

I2

" #
¼

1
Zc tanh gl

�1
Zc sinh gl

�1
Zc sinh gl

1
Zc tanh gl

2
6664

3
7775

V1

V2

" #
(2:49)

is obtained. Equation 2.48 involves a bus admittance matrix, which can be
realized by the two-port pi section shown in Figure 2.14. The bus 1 to
ground tie is the row sum 1, the bus 2 ground tie is identical, and the off-
diagonal entry in Equation 2.48 is the negative of the admittance between
buses 1 and 2.
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2.10 Y-Bus Incorporating the Transformer Effect

The following types of transforms are discussed:

1. Fixed tap transformer

2. Tap-changing under load (TCUL) transformer

3. Phase-shifting transformer

2.10.1 Fixed Tap-Setting Transformer

A transformer with a fixed-tap setting is represented by an impedance or
admittance Ypq in series with an ideal autotransformer. For such a trans-
former at bus p in the line Lp-q, we have from Figure 2.12 the transformer
ratio:

Vp

Vt
¼ itq

Ip
¼ a: (2:50)

Hence

Ip ¼
itq
a
¼ (Vt � Vq)

ypq
a

: (2:51)

But from Equation 2.49 we have

Vt ¼
Vp

a
: (2:52)

Substituting Equation 2.52 into Equation 2.51, we have

Ip ¼ (Vp � aVq)
ypq
a2

(2:53)

FIGURE 2.14
Simplified network model for an
n-generator power system.

2
Y

2
Y

V1 V2
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and also

Iq ¼ (Vq � Vt)ypq

¼ (aVq � Vp)
ypq
a
: (2:54)

Such a transformer at bus p in the line p–q can be represented by the
equivalent p-circuit shown in Figure 2.15.

The corresponding currents of the equivalent circuit (Figure 2.15) are

Ip ¼ (Vp � Vq)Aþ VpB (2:55)

Iq ¼ (Vq � Vp)Aþ VqC: (2:56)

Now equating the terminal currents Ip and Iq of Figure 2.15, and letting
Vp¼ 0, Vq¼ 1, we have from Equations 2.53 and 2.55,

Ip ¼ � ypq
a

¼ �A;

that is

A ¼ ypq
a
: (2:57)

Similarly, we get

Iq ¼ ypq ¼ Aþ C:

Hence

C ¼ ypq � A ¼ ypq �
ypq
a

¼ 1� 1
a

	 

ypq: (2:58)

p A q
IqIp

CB

FIGURE 2.15
Equivalent p-circuit of fixed
tap transformer.
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Similarly for B, we equate terminal current Ip for Equations 2.53 and 2.55.
Thus, we get

(Vp � aVq)
Ypq

a2
¼ (Vp � Vq)Aþ VpB: (2:59)

Substituting for A¼Ypq=a, and letting Vp¼ 1, Vq¼ 0, we get

B ¼ Ypq

a2
� ypq

a
¼ 1

a2
� 1

a

� �
ypq

¼ 1
a

1
a
� 1

� �
ypq: (2:60)

With the substitutions of A, B, and C from Equations 2.57, 2.58, and 2.60,
Figure 2.15 takes the form of Figure 2.16.

Thus to represent this transformer in the elements of a YBUS matrix:

Ypp ¼ yp1 þ � � � þ ypq
a

þ � � � þ ypn þ 1
a

1
a
� 1

� �
ypq

¼ yp1 þ � � � þ ypq
a2

þ � � � þ ypn; (2:61)

that is, this element is changed. Moreover,

Ypq ¼ Yqp ¼ � ypq
a

(2:62)

and also,

Yqp ¼ yq1 þ � � � þ ypq
a

þ � � � þ yqn, . . . 1� 1
a

� �
ypq

¼ yq1 þ � � � þ yqp þ � � � þ yqn; (2:63)

that is, there is no change in this element.

FIGURE 2.16
Equivalent p-circuit of the trans-
former.

p Ypq/a q

C = (1 – 1/a) 
Ypq

1/a(1/a – 1)YpqB

Momoh/Electric Power System Applications of Optimization 65886_C002 Final Proof page 44 20.11.2008 11:33am Compositor Name: VAmoudavally

44 Electric Power System Applications of Optimization



2.10.2 TCUL Transformer

In this case, the taps of the transformer are changed to maintain voltage
magnitude within a specified tolerance. Normally, taps are changed once in
two iterations and the corresponding values of Ypp, Ypq, and Yqq are calcu-
lated such that for any bus p, we have

Vk
p � Vscheduled

p

��� ��� < r: (2:64)

However, to avoid excessive calculations, the series impedance of the equiva-
lent p-circuit is set equal to the series impedance of the transformer and the
shunt parameters B and C are changed to reflect the changes in taps.

(Vp � Vq)Aþ VpB ¼ (Vp � aVq)
ypq
a2

(2:65)

with A¼ ypq,

(Vp � Vq)ypq þ VpB ¼ (Vp � aVq)
ypq
a2

;

that is

B ¼ 1
a
� 1

	 

1
a
þ 1

	 

� Vq

Vp

� �
ypq: (2:66)

Similarly taking Equations 2.53 and 2.55 for Iq and substituting A¼ ypq, we
have

[Vq � Vp]ypq þ VqC ¼ (aVq � Vp)
ypq
a
: (2:67)

From Equation 2.67, we obtain

C ¼ 1� 1
a

	 

ypq

Vp

Vq
: (2:68)

Subsequently, only the elements Ypp and Yqq are calculated with the change in
tappings.

2.10.3 Phase-Shifting Transformer

Tap-changing is a means of voltage control and accompanying reactive-
power control. Transformers may also be used to control phase angle and,
therefore, active-power flow. Such special transformers are termed phase-
shifting transformers or simply phase-shifters. Beyond the limits of rating,
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tap-setting range and phase-shift range, there are economic considerations.
Phase-shifters are costly and there are numerous economically more advan-
tageous alternative methods of active-power control. The principal use of
phase-shifters is at major intertie buses where the control of active-power
exchange is especially important.

A phase-shifter is a three-phase device, which inserts a voltage Vpsr into
each line. If Vser is out of phase with the line-to-neutral voltage of the source
Van, the phase-shifter output voltage V0

an will be controllable. Thus the phase
of V0

an depends on Vpsr. The magnitude of V0
an also varies with Vpsr. It is

possible to construct a controller that will cause only the phase of V0
an to vary

while keeping the magnitude unchanged. The details of the dependence of
jV0

anj with the amount of phase shift depends on the phase-shifter design.
A phase-shifting transformer is represented by an ideal transformer with a

complex turn ratio (aþ jb) in series with impedance or admittance ypq as
shown in Figure 2.17. We have Vp¼Vr and

Vp

Vs
¼ Vr

Vs
¼ as þ jbs: (2:69)

Since the power loss in the ideal autotransformer is negligible, we have from
Figure 2.17

V*
p ipr ¼ V*

s isq;

that is

isq=ipr ¼ V*
p=V

*
s ¼ as � jbs: (2:70)

Now

isq ¼ (Vs � Vq)ypq;

then

ipr ¼
isq

as � jbs
¼ (Vs � Vq)

� �
ypq=(as � jbs): (2:71)

Ip Iq

Ip

Isqp r q
Ip(as + jbs): 1

Ideal autotransformer
Vr Vs

Ypq

FIGURE 2.17
Phase-shifting transformer model.
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But since from Equation 3.44,

Vs ¼
Vp

as þ jbs
, (2:72)

by substituting Equation 2.73 in Equation 2.72 we obtain

ipr ¼ Vp � (as þ jbs)Vq
� �� �

ypq=a2s þ b2s
� �

: (2:73)

Similarly

iqs ¼ (Vq � Vs)ypq

¼ (as þ jbs)Vq � Vp
� � ypq

as þ jbs
: (2:74)

Now we calculate the elements of the YBUS matrix by conducting a
short-circuit test. The diagonal element Ypp is found by connecting a unit
voltage source at the pth bus (i.e., Vp¼ 1 pu) and short circuiting the
remaining buses (i.e., substituting the voltages at other buses as zero); then
we get

Ip ¼ Ypp ¼ Ip1 þ Ip2 þ � � � þ ipr
¼ [Vp � V1]yp1 þ [Vp � Vp2]yp2 þ � � � þ ipr

¼ yp1 þ yp2 þ � � � þ Vp � (as þ jbs)Vq
� �

ypq=a2s þ b2s : (2:75)

As Vp¼ 1 pu and Vi¼ 0 for i¼ 1, . . . , n, i 6¼ p, we get

Ip ¼ Ypp ¼ yp1 þ yp2 þ � � � þ ypq=a2s þ b2s
� �þ � � � ; (2:76)

that is, this element is changed.
Similarly for Yqq, we let Vq¼ 1 pu and the rest of the bus voltages be set to

zero; we get

Iq ¼ Yqq ¼ Iq1 þ Iq2 þ � � � þ IqS
¼ [Vq � V1]yq1 þ [Vq � V2]yq2 þ (as þ jbs)Vq � Vp

� �
yqq=as þ jbs: (2:77)

Since Vq¼ 1 pu and the rest of the bus voltages viz. V1¼V2 � � � ¼ 0, we get

Iq ¼ Yqq ¼ yqi þ yq2 þ � � � þ ypq, (2:78)

that is no change.
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For mutual admittances, say Yqp, we apply Vp¼ 1 pu and measure Iq
keeping other bus voltages equal to zero (i.e., Iq¼YqpVp) but since
Vp¼ 1 pu we get from Equation 2.75,

Iq ¼ Yqp ¼ � ypq
as þ jbs

: (2:79)

For Ypq we keep Vq¼ 1 and the rest of the buses are short circuited; then from
Equation 2.75 we get

Ip ¼ Ypq ¼ � ypq
as � jbs

: (2:80)

Moreover, Ypq 6¼ Yqp. Now the complex turn ratio asþ jbs¼ a[cos uþ j sin u]
where

jVpj ¼ ajVsj: (2:81)

However, if u is positive, the phase of jVpj is advanced, that is, leading with
respect to that of jVsj or Vq.

Figure 2.18 shows a generalized model of a phase-shifter in which both
voltage magnitude and phase angle vary. The equivalent tap position is t(f)
which is only a function of the phase setting f. If no voltage variation occurs,
t¼ 1. The phase-shifter admittance is Yij. Figure 2.19 shows a further equiva-
lent. Note that in Figure 2.19

jVij ¼ jV0
i j

di0 ¼ di þ f

and the complex volt–amperes entering the phase-shifter at bus i are deliv-
ered to bus i0. Let bus i0 be introduced into the [d, V]T vector, but only in the d

Phase
shifter

Bus i

Bus jYijt

Unloaded bus
voltage, t ∠ f

FIGURE 2.18
Generalized model of a phase-shifter.
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subvector. Also, rather than writing di0 in this subvector, we introduce the
unknown phase shift f:

[d2, . . . , dN , f1, . . . , fN , V2, . . . , Vi, Viþ1, . . . , VN]T:

Note that V0
i is missing from the jVbusj subvector. Also note that the partial

derivatives @P=@di 0 and @Q=@di 0 are equal to @P=@f and @Q=@f, respectively,
since d0i ¼ di þ f. The missing voltage magnitude element is counterbalanced
by amissingDQ0

i expression. Thus the size of J is 2(N� 1)� nf by 2(N� 1)� nf,
where nf is the number of phase-shifters in the network.

The procedure for handling a phase-shifter bus where f adjusts itself
to give Pf

i (see Figure 2.18) injected into bus i is as follows:

1. Construct the Ybus using the conventional algorithm without con-
necting buses i0 and i, or buses i0 and k.

2. Use the equivalent circuit in Figure 2.19 to connect buses i0 and k. Use
the initialized value of f to find t. The equivalent tap-setting is a
function of f in general (this depends on the phase-shifter design).

3. Construct the Jacobian matrix. Eliminate the DQ expression at bus i
and eliminate jVj at bus i.

4. Consider Pf
i the specified power through the phase-shifter, as

injected into i and as the only load at i0.
5. Perform one iteration in the power flow study and repeat as

required.

To determine the effect of changes in real and reactive generation sources on
the overall power flow, the simplest approach is by trial and error. The
generators, power, and voltage levels are maintained to match the desired
load and voltage profile. A power-flow analysis is made and the correspond-
ing flow picture is examined. If equipment loadings are outside their desired

Ideal phase-shifterBus i Bus ktyik

(t - 1)yikt (t - 1)yik

Ps
iPs

i

Pi + jQi Pj + jQj

FIGURE 2.19
Equivalent circuit of a phase-shifter.
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limits, adjustments are made to the set points and a new power-flow analysis
is performed. It is hoped that the procedure would converge upon a suitable
power-flow picture iteratively.

2.11 Load Models [3]

The prespecified S load (i.e., independent of bus voltage) is a reasonable
representation for buses with a large percentage of rotating machines, loads,
and voltage-regulated loads. Other alternative load models include the fol-
lowing:

1. Loads whose jSj demand is proportional to jVj2. This type of load is a
prespecified impedance load and is common when the load contains
significant incandescent lighting and resistive heating.

2. Loads whose jSj demand is proportional to jVj1. This type of load is a
prespecified current load and is common when the load contains
significant rectifier loads and certain types of synchronous machine
loads.

It has been suggested that the actual load be modeled as a linear combination
of each of the load types mentioned (constant S load in which jSj a jVj0,
constant current load in which jSj a jVj1, and constant impedance load
in which jSj a jVj2). Such an approach would require considerable know-
ledge of the load composition or a knowledge of the active and reactive-
power variation with jVj (from a historical perspective). Load models
are traditionally classified into two broad categories: static models and
dynamic models.

2.11.1 Static Load Models

A static load model expresses the characteristic of the load at any instant of
time as algebraic functions of the bus voltage magnitude and frequency at
that instant. The active power component P and the reactive-power compon-
ent Q are considered separately.

The load characteristics in terms of voltage are represented by the expo-
nential model:

P ¼ P0
V
V0

	 
a

Q ¼ Q0
V
V0

	 
a
,

(2:82)
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where
P and Q are active and reactive components of the load when the bus

voltage magnitude is V
Subscript ‘‘0’’ identifies the values of the respective variables at the

initial operating condition

The parameters of this model are the exponents a and b. With these exponents
equal to 0, 1, or 2, the model represents constant power, constant current, or
constant impedance characteristics, respectively. For composite loads, their
values depend on the aggregate characteristics of load components.

An alternative model that has been widely used to represent the voltage
dependence of loads is the polynomial model:

P ¼ P0 p1
V
V0

	 
a
þ p2

V
V0

	 

þ p3

� �

Q ¼ Q0 q1
V
V0

	 
a
þ q2

V
V0

	 

þ q3

� �
:

(2:83)

This model is commonly referred to as the ZIP model, since it is composed of
constant impedance (Z), constant current (I), and constant power (P) com-
ponents. The parameters of the model are the coefficients P1–P3 and Q1–Q3

which define the proportion of each component.
Multiplying the exponential model or the polynomial model as follows

represents the frequency dependence of load characteristics by a factor.

P ¼ P0
V
V0

	 
a
(1þ KpfDf )

Q ¼ Q0
V
V0

	 
a
(1þ KqfDf )

(2:84)

or

P ¼ P0 p1
V
V0

	 
a
þ p2

V
V0

	 

þ p3

� �
(1þ KpfDf )

Q ¼ Q0 q1
V
V0

	 
a
þ q2

V
V0

	 

þ q3

� �
(1þ KqfDf ),

(2:85)

where Df is the frequency deviation, given as ( f� f0).
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2.12 Available Transfer Capability

The introduction of competition in the power industry will increase the
search for better utilization of transmission facilities. A necessary condition
to support competition is open access by market participants to the trans-
mission network. Several open access schemes are currently being discussed.
Transmission companies are facing several challenges in the new economic
environment including the assessment of adequate transmission charges and
the choice of the best transmission investment options. These aspects have
motivated the development of methodologies to evaluate existing power
transfer capabilities and transmission margins. Under FERC Orders 888
and 889, all transmission providers must determine and offer for sale ATC
taking into account existing obligations and allowing appropriate margins
to maintain reliability. There is a growing body of work dealing with
determination of ATC. The main intention is to evaluate the ability of a
network to allow for the reliable movement of electric power from areas of
supply to areas of demand. The framework of analysis may or may not
take into account the stochastic nature of loads and equipment availability.
Also, either DC or AC models can assess the performance of the electric
network.

2.12.1 ATC Definition and Formulation

Total transfer capability (TTC) determines the amount of electric power that
can be transferred over the interconnected transmission network in a reliable
manner based on all the following conditions.

For the existing or planned system configuration, and with normal (pre-
contingency) operating procedures in effect, all facility loadings must be
within normal ratings and all voltages must be within normal limits. The
electric systems must be capable of absorbing the dynamic over swings, and
remain stable, following a disturbance that results in the loss of any single
electric system element, such as a transmission line, transformer, or generat-
ing unit. Dynamic power savings subside following a disturbance that results
in the loss of any single electric system element as described and after
operation of any automatic operating systems. But before any postcontin-
gency operator-initiated system adjustments are implemented, all transmis-
sion facility loadings should be within emergency ratings and all voltages
within emergency limits. When precontingency facility loadings reach nor-
mal thermal ratings at a transfer level below that at which any first contin-
gency transfer limits are reached, the transfer capability is defined as the
transfer level at which such normal ratings are reached. In some cases
depending on the geographical area, specified multiple contingencies may
be required to determine the transfer capability limits. If these limits are more
restrictive than the single contingency limits, they should be used. With this
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very general definition, we note that the TTC is a function of system thermal,
voltage, and transient stability limits and is given by

TTC ¼ min [thermal limits, voltage limits, transient stability limits]:

Transmission reliability margin (TRM) is the amount of transfer capability
necessary to ensure that the interconnected transmission network is secure
under a reasonable range of system conditions. This measure reflects the
effect of various sources of uncertainty in the system and in system operating
conditions. It also captures the need for operational flexibility in ensuring
reliable and secure system operations.

Capacity benefit margin (CBM) is the amount of transfer capability
reserved by load-serving entities to ensure access to generation from inter-
connected neighboring systems to meet generation reliability requirements.

ATC then is defined to be a measure of the transfer capability remaining in
the physical transmission network for further commercial activity over and
above already committed uses. It is given by the relationship

ATC ¼ TTC --- TRM --- CBM --- existing transmission commitments:

FERC requirements call for the calculation and posting (on the OASIS) of
continuous ATC information for the next hour, month, and for the following
12 months.

Several regions have already started calculating and posting ATCs. How-
ever, there are certain inconsistencies in their calculation that need to be
addressed:

. Use of real-time conditions for ATC calculation.

. Use of accurate power flow methods to calculate ATC rather than
DC power flows or linear interpolation techniques.

. Power system flows are not independent.

. Individual users do not coordinate their transmission system use.

. Limiting effects on a transmission system are nonlinear functions of
the power flow.

2.12.2 ATC Calculation

The ATC problem is the determination of the largest additional amount of
power above some base case value that can be transferred in a prescribed
manner between two sets of buses: the source, in which power injections are
decreased by an offsetting amount. Increasing the transfer power increases
the loading in the network, and at some point causes an operational or
physical limit to be reached that prevents further increase. The effects of
contingencies are taken into account in the determination. The largest value
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of transfer power that causes no limit violations, with or without a contin-
gency, is used to compute the TTC and ATC.

Limits checked for the base case are normal branch flow limits, normal
corridor transfer limits, bus voltage limits, and voltage collapse condition.
For contingency cases, the limitations checked are the emergency branch
flow limits, emergency corridor transfer limits, bus voltage limits, bus change
limits, and voltage collapse condition.

The following is a summary of the steps for determining the ATC for a list
of source=sink transfer cases for one time period, usually 1 h.

1. Establish and solve the base case power flow for the time period.

2. Select a transfer case.

3. Use continuation power flow (CPF) to make a step increase in
transfer power.

4. Establish a power flow problem consisting of the base case modified
by the cumulative increases in transfer power from step 3.

5. Solve the power flow problem of step 4.

6. Check the solution of step 5 for violations of operational physical
limits.

7. If there are violations, decrease the transfer power to the minimum
amount necessary to eliminate them.

8. Solve the power flow problem of steps 4–6 for each listed contin-
gency.

9. If there are violations, decrease the transfer power by the minimum
amount necessary to eliminate them. This is the maximum transfer
power for the case.

10. Compute the ATC from the interface flows in the adjusted solution
of step 7.

11. Return to step 2 for the next transfer case.

2.13 Illustrative Examples

Example 2.13.1

The system in Figure 2.20 is known to be balanced and is a negative sequence
network. Assuming that

Zline ¼ 10:0ff�15� (V) and Vac ¼ 208ff�120� V
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find

1. Voltages Vac, Vbc, Vbn, Vcn

2. Currents Ia, Ib, and Ic
3. Total three-phase power S3f

SOLUTION

1. Line voltages are

Vca ¼ �Vac ¼ 208ff�120� þ 180 ¼ 208 ¼ ff60� V

Vab ¼ Vacff120� ¼ 208ff60� þ 120� ¼ 208ff180� V

Vbc ¼ Vabff�240� ¼ 208ff180� � 240� ¼ 208ff�60� V:

Phase voltages are

Van ¼ Vabffiffiffi
3

p ff30� ¼ 208ffiffiffi
3

p ff180� þ 30� ¼ 120ff210� V

Vbn ¼ Vanff�240� ¼ 120ff210� � 240� ¼ 120ff�30� V

Vcn ¼ Vbnff120� ¼ 120ff�30� þ 120� ¼ 120ff90� V:

2. Line current

For the Y-connected network, the line current¼ phase current,

�Ia ¼ Van

Zline
¼ 120ff210�

10ff�15�
¼ 12ff195� V

�Ib ¼ �Iaff�240� ¼ 12ff195� � 240� ¼ 12ff�45� V
�Ic ¼ �Ibff120� ¼ 12ff�45� þ 120� ¼ 12ff75� V:

3. Three-phase power

S3�f ¼
ffiffiffi
3

p
*208*12* cos (15�) ¼ 4175:9 W

Z

ZZ
n

Ia a

c b FIGURE 2.20
Y-connected network for Example 2.13.1.
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Example 2.13.2

In Figure 2.21, find the total complex power delivered to the load. Assume that

Zc ¼ �j0:2 V

ZL ¼ þj0:1 V

R ¼ 10 V:

SOLUTION

Yequivalent ¼ 1
R
þ 1
Zc

þ 1
ZL

¼ 1
10

þ 1
�j0:2

þ 1
j0:1

¼ 0:1þ j5� j10 ¼ (0:1� j5) V:

The total complex power is defined as S¼VI*¼V(VY)*. Or we can say
S*¼V*I¼V*(VY)¼V2Y¼ (1.0)2(0.1 – j5.0). The total complex power is S¼ 0.1þ
j5 VA.

Example 2.13.3

You are given two system areas connected by a tie line with the following
characteristics.

Area 1 Area 2

R¼0.01 pu R¼ 0.02 pu

D¼ 0.8 pu D¼ 1.0 pu

Base MVA¼ 2000 Base MVA¼1000

A load change of 100 MW occurs in area 2. Assume both areas were at nominal
frequency (60 Hz) to begin

S

ZC ZL R

+

-

1 ∠0�

Load 

FIGURE 2.21
Composite R–L–C Load for Example 2.13.1

Momoh/Electric Power System Applications of Optimization 65886_C002 Final Proof page 56 20.11.2008 11:33am Compositor Name: VAmoudavally

56 Electric Power System Applications of Optimization



1. What is the new steady-state frequency in Hertz?

2. What is the change in tie-line flow in megawatt?

SOLUTION

Based on the information in Section 2.8, if several generators (each having its own
governor and prime mover) were connected to the system, the frequency droop
characteristics b1 and b2 are given by

b1 ¼ 1
R1

þD1

	 

; b2 ¼ 1

R2
þD2

	 


) b1 ¼ 1
0:01

þ 0:8 ¼ 100:8 pu and b2 ¼ 1
0:02

þ 1:0 ¼ 51:0 pu:

Using a common base of 1000 MVA, the frequency droop characteristics becomes

b1 ¼ 100:8� 2000
1000

¼ 201:6 pu and b2 ¼ 51:0� 1000
1000

¼ 51:0 pu:

Calculating the change in frequency based on the load change in area 2

Dv ¼ �DPL2
b1 þ b2

¼ �DPL2
(1=R1)þ (1=R2)þD1 þD2

:

The change in load is given as DPL2¼ 100 MW¼ 100=1000¼ 0.1 pu.

Hence, Dv ¼ �0:1
201:6þ 51:0

¼ �0:00039588 pu:

(a) We have
Dv

vo
¼ Df

fo
¼ �0:00039588 pu

) Df ¼ 60(�0:00039588) ¼ �0:023753 Hz

and the new frequency becomes

f ¼ 60� 0:023753 ¼ 59:976 Hz:

(b) Change in tie flow is given by

DPtie ¼ �b1Dv ¼ �DPL2 (1=R1)þD1ð Þ
(1=R1)þ (1=R2)þD1 þD2

¼ �(201:6)(�0:00039588)

¼ 0:07981 pu

) DPtie ¼ 0:07981 pu� 1000 MW ¼ 79:81 MW:

This analysis shows that 79.81 MW of power is being supplied from area 1
to area 2 to meet the 100 MW load increase in area 2.
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2.14 Conclusions

The chapter explained major basics for modeling different components in
typical electric power systems. First, the concept of electric power was
introduced expressed in terms of active, reactive, and apparent power.
Second, a review of three-phase systems was introduced. Finally, the syn-
chronous machine model from an electric network standpoint was presented;
the reactive capability curves are also examined. Furthermore, the model was
extended to handle the excitation system governor models. Static and
dynamic load models were also discussed.

2.15 Problem Set

PROBLEM 2.15.1

In Figure 2.22, assume that

jV1j ¼ jV2j ¼ 1:00 pu

Zline ¼ 0:1ff85�:

1. For what nonzero u12 is S12 purely real?

2. What is the maximum power, �P12, that can be received by V2,
and at what u12 does this occur?

3. When u12¼ 858, what is the active power loss in the line?

4. For what value u12 is �P12¼ 1.00 pu?

PROBLEM 2.15.2

Draw the power circle diagram in the case jV1j ¼ 1.05, jV2j ¼ 0.95,
Zline¼ 0.1 pu at 858. Find

1. P12(max)

2. u12 at which we get P12(max)

3. �P12(max)

4. u12 at which we get �P12(max)

5. Active power loss in the line when u12¼ 108

FIGURE 2.22
Simple two-bus power system network for
Problem 2.15.1.

V2V1

S12 -S12
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PROBLEM 2.15.3

In Figure 2.23, assume that

V1 ¼ 1:00ff0� pu

Given that

Zline ¼ 0:10þ j0:10

SD1 ¼ 0:50þ j0:50

SD2 ¼ 0:50þ j0:50,

select QG2 such that jV1j ¼ 1.00 pu. In this case what are QG2, SG1, and
arg V2?

PROBLEM 2.15.4

A three-phase, Y-connected synchronous generator is rated for a 600 kVA
and 6.9 kV. The reactance of the stator winding is Xs¼ j3.97 V=phase.
Express Xs in per units on the machine ratings as its bases.

PROBLEM 2.15.5

A three-phase, 500 kVA, 6.9 Y=1.2 Y–kV transformer has series impedance
referred to the low-voltage side of ZT2

¼ 0.72ff808 V=phase. Express ZT in
per unit.

PROBLEM 2.15.6

A three-phase synchronous generator having Ra¼ 0 and XS¼ 1.0 pu is
operating as a generator with Vt¼ 1.00 pu, pf¼ 1.0, and power
delivered¼ 1.00 pu.

1. Determine EF1 and d1, for this operation.

2. Obtain Ia, pf2, and d2 for EF2¼ 1.6 pu with P¼ constant.

V2V1

SD2SD1

SG1

Zline

~
jQG2

FIGURE 2.23
Power system model for Problem
2.15.3.
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PROBLEM 2.15.7

Consider a load connected across an AC voltage source where the load
impedance is given by RLþ jXL and the series source impedance is given
by RSþ jXS. Determine the optimum values for RL and XL for maximum
power transfer to the load.

PROBLEM 2.15.8

Consider the two area systems shown in Figure 2.24. The system charac-
teristics are given in the figure.

PA
Go

¼ PA
L ¼ 1500 MW

RA ¼ 0:015

PA
Go

¼ PB
L ¼ 5000 MW

RB ¼ 0:008:

Assume a load increase of 100 MW occurs in area 1; determine the change
in frequency and the ACE in each area.

PROBLEM 2.15.9

Given the block diagram of the two interconnected areas shown in
Figure 2.25.

1. Derive the transfer function that relates DW1(s) and DW2(s) to
load change DPL(s).

2. For the following data (base power is 1000 MVA)

M1 ¼ 3:8 pu, D1 ¼ 0:9 pu, f o1 ¼ 60 Hz

M2 ¼ 4:0 pu, D2 ¼ 0:8 pu, f o2 ¼ 60 Hz

T ¼ 7:6 pu, DPL ¼ 200 MW, and R ¼ 0:05 pu,

calculate the final frequency.

A B

FIGURE 2.24
A two-area power system interface for Problem 2.15.8.
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FIGURE 2.25
Block diagram for the control of two interconnected areas for Problem 2.15.9.
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3
Power-Flow Computations

3.1 Introduction

Power flow (PF) is an evaluation tool for operation and planning for
determining the steady condition of operation [1,2]. As there is a lot of
enhancement of the computation for power system performance, we need
to assure the capability of PF to be guaranteed, stressed nature for congestion
stresses. The feasibility of PF solution is a necessary condition for pricing
theory and stability analysis as well as further robust optimal power flow
(OPF) program. Therefore stability for necessity of the performance of PF
tools becomes very important.

We must monitor and provide measures to achieve convergence through

. Appropriate selection of initial condition

. Handling of negative impedances

. Location of the swing bus

. Computation of losses

. Managing congestion and power balance under different operating
conditions

. Error handling and alert messages

. Final interpretation of results, especially for nonconvergence of the
PF methods

It should be noted that PF is a well-seasoned tool used by the industry and
researchers. Several packages are available in the market for easy access and
study both for industry and education [3].

PF studies are routinely used in planning, control, and operations of
existing electric power systems as well as planning for future expansion.
Satisfactory operation of power systems depends upon knowing the effects
of adding interconnections, connecting new loads, introducing new generat-
ing stations, or constructing new transmission lines before they are installed.
PF studies also allow us to determine the best size and the most favorable
locations for power capacitors both for improving the power factor and
also raising the bus voltages of the electrical network. PF studies help us
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determine the best location as well as the optimal capacity of proposed
generating stations, substations, or new lines.

In power system operations, a PF study is used to evaluate the state of the
system under a given operational condition and to allow the operator to
detect overloads and evaluate transfer limits. Contingency analysis relies on
load-flow studies designed to test for the effects of line or generator outages.
The information obtained from the load-flow studies includes the magnitude
and phase angle of voltages at each bus and the active and reactive PF in
each line.

The extensive calculations required for both PF voltage determination
requires the use of specialized computing tools [3–6]. This led to the design
of a special purpose analog computer called the AC network analyzer
in 1929. An AC network analysis was capable of simulating the operation
of the power system under existing conditions as well as proposed future
expansion. Programming digital computers for PF studies gained import-
ance, and the first computer-based planning studies were completed in 1956.
This change from the network analyzer to the digital computer has resulted
in greater flexibility, economy, accuracy, and faster operation.

3.2 Types of Buses for PF Studies

The buses in an electric power system network are generally divided into
three categories: generation bus, load bus, and slack bus, and two of the
following quantities are specified at each bus.

1. Magnitude of the voltage, jVj
2. Phase angle of the voltage, f

3. Active or real power, P

4. Reactive power, Q

The quantities specified at each of the bus types are:

1. Generation bus (or voltage-controlled bus): This is also called the P–V
bus, where the voltage magnitude jVj and real power P are specified.

2. Load bus: This is also called the P–Q bus, where the real power P and
reactive power Q are specified.

3. Slack or swing bus: This is also known as the reference bus where the
voltage magnitude jVj and phase angle f are specified. This bus is
selected to provide additional real and reactive power to supply
transmission losses since these are unknown until the final solution
is obtained. If the slack bus is not specified, then a generation bus
(usually with maximum real power P) is taken as the slack bus.
There can be more than one slack bus in a given system.
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Table 3.1 shows the load-flow bus specifications. The checked quantities are
the boundary conditions for the particular bus.

PF analysis is concerned not only with the actual physical mechanism
that controls the PF in the network, but also with how to select a best
or optimum flow configuration from among the myriad possibilities [1–6].
The following points summarize the more important features incorporated in
PF analysis:

1. Transmission links can carry only certain amounts of power;
therefore, links must not be operated too close to their stability or
thermal limits.

2. It is necessary to keep the voltage levels of certain buses within close
tolerances. This can be achieved by proper scheduling of reactive
power levels.

3. If the power system is part of a larger pool, it must fulfill certain
contractual commitments via its tie-lines to neighboring systems.

The overall PF problem can be divided into the following:

1. Formulation of a suitable mathematical network model: The model
must describe adequately the relationships among voltages and
powers in the interconnected system.

2. Specification of the power and voltage constraints that must apply to
the various buses of the network.

3. Numerical computation of the PF equations (PFEs) subject to speci-
fied constraints. These computations provide, with sufficient accur-
acy, the values of all bus voltages.

4. When all bus voltages have been determined, the actual PFs in all
transmission links are computed.

TABLE 3.1

Typical Load-Flow Bus Specifications

Bus Parameters

Bus
Classification

Real
Power Pi

Reactive
Power Qi

Voltage
Magnitude

jVj

Voltage
Argument

F Comments

Slack or
reference
bus

p
Must adjust net
power to hold
voltage constant

Voltage controlled
or P–V bus

p
Qmin � Q � Qmax

Load
or P–Q bus

p
Constant power,
constant impedance,
and constant current
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3.3 General Form of the PFEs

To understand PF in an electric power system, a mathematical model from
which the flow picture can be predicted must be established. This model is
the PFE. In the general case, consider the general bus i shown in Figure 3.1.
Its generation and load are assumed to be equal, SGi and SDi, respectively.
The bus power Si is thus given by

Si ¼ SGi � SDi ¼ PGi � PDi þ j(QGi �QDi): (3:1)

Transmission lines connect bus i to other buses k in the system. At most there
can be n� 1 such outgoing lines, each of which can be represented by a p
equivalent, with series and parallel admittances ysik and ypik, respectively.
If a line does not exist, its admittances simply are set at zero. The current
balanced equation is

Ii ¼ S*i
V*

i

¼ Vi

Xn
k¼1
k 6¼1

ypik þ
Xn
k¼1
k 6¼1

ysik(Vi � Vk)

¼ Vi

Xn
k¼1
k 6¼1

ysik(Vi � Vk)þ
Xn
k¼1
k 6¼1

(�ysik)Vk, for i ¼ 1, 2, 3, . . . , n: (3:2)

These equations can obviously be written in the form

Ii ¼ S*i
V*

i

¼ Yi1V1 þ Y12V2 þ � � �YiiVi þ � � �YinVn, for i ¼ 1, 2, . . . , n, (3:3)

Bus i Bus k

~
SGi = PGi + jQGi

ysik = gsik + jbsik

Generator 

Load 
SDi = PDi + jQDi

Ii
Vi

Vk

Series and shunt
transmission
components

FIGURE 3.1
General bus with generation, load, and outgoing lines.
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where

Yii D
Xn
k¼1
k 6¼1

(ypik þ ysik) (3:4)

and

Yik ¼ Yki D� 1
2
ysik: (3:5)

The n-dimensional bus current and bus voltage vectors are then introduced:

Ibus ¼
I1

..

.

In

2
664

3
775

Vbus ¼
V1

..

.

Vn

2
664

3
775

(3:6)

and the n� n-dimensional bus admittance and bus impedance matrices are

Ybus ¼ Yij
� �

n�n; Zbus ¼ Y�1
bus ¼ Zij

� �
n�n: (3:7)

3.3.1 PF Control by Transformer Regulation

To employ transformer ratio or angle setting for PF control we proceed to
choose transformer ratios and angular settings that appear to best meet the
specified requirements. By analyzing the PF results, one finds a basic differ-
ence between this type of control and source control.

Adjusting transformer settings will affect the Ybus matrix, while changes in
generation level will not change the Ybus matrix. Consider a two-bus system,
with a regulating transformer (RT) at bus 2 as shown in Figure 3.2a. The RT
has a complex transformation ratio

a ¼ jajffa: (3:8)

RT is representedasan ideal transformerand its effectsupon theYbusmatrixare
calculated. FromFigure 3.2b, it can be observed that the voltage and current on
the primary side of RT are equal to aV2 and I2=a*, respectively.V2 and I2 are the
secondary variables. The current balance at the two buses requires that

I1 ¼ S*1
V*

1

¼ V1Yp þ (V1 � aV2)Ys (3:9)
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and

I2
a*

¼ S*2
(aV2)*

¼ aV2Yp þ (aV2 � V1)Ys:

We rewrite Equation 3.9 and obtain the pair

I1 ¼ (Yp þ Ys)V1 þ (�aYs)V2

I2 ¼ (�a*Ys)V1 þ aa*(Yp þ Ys)V2:
(3:10)

As a result, we conclude that the addition of RT changes the Ybus to a new
value

Ybus ¼ Yp þ Ys �aYs

�a*Ys aa*(Yp þ Ys)

� �
: (3:11)

The addition of the RT has added the two additional variables jaj and a to the
previous ones and the linearized power balance equations will contain the

(a)

(b)

RT

SD2 

SecondaryPrimary V2V1 

SG2SG1

SD1 

Complex
turns ratio:
a = |a|

21

I1 YP/a*

Ys S2 

Yp

Primary
voltage = aV2

V2V1S1

I2Ideal regulating
transformer (RT) 

Is/a*

Secondary
voltage = V2

α

FIGURE 3.2
Two-bus example system demonstrating the use of the RT.
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added difference variables Djaj and Da. In a practical situation, the RT is
designed for either voltage magnitude or phase control. In the former case
a¼ 0 and jaj can be changed in discrete steps Djaj. In the latter case jaj is
constant and a can be changed in steps Da.

3.4 Practical Modeling Considerations

The power system model presented earlier is a simplified version of the
actual state of the operational network. There are some additional complex-
ities that deserve further consideration and more detailed modeling.

3.4.1 Generation Subsystem

The generator bus model presented thus far is a P–V model in which the
turbine controls hold the generated active power at a fixed level and the
machine voltage regulator maintains the bus voltage magnitude fixed. This
model may be unrealistic if the voltage regulator is unable to set the field
current to produce the desired bus voltage. Figure 3.3 shows a simplified
circuit diagram of the generator. To increase jVtj, the field current is increased
such that jEfj increases. Under constant generated power conditions, the
torque angle d decreases slightly, but the phase of the armature current Ia
will rotate such that the power factor angle f increases. Thus more reactive
power is injected into the bus. The limit on the control of jVtj occurs primarily
due to the limit on the field current (and hence the limit on Q). In most cases,
generators inject Q into the system since most loads have a lagging power
factor. Thus, the salient limitation is related to the upper field current limit.
In cases where the generator absorbs reactive power, the field current must
be decreased. The limitations in this region are twofold: limits imposed by
the maximum value of jIaj and practical stability limits associated with low
field currents. In the latter case the dominant limitation may depend on the
circuit power factor which always depends on the generator control designs.
In addition, the generator complex volt–ampere rating jSj warrants further

~ Vt

+

+

r jxs

Ef

FIGURE 3.3
Circuit diagram for a synchronous generator.
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attention. The generator jSj rating implies possible further limitation of Q
depending on the active power setting.

A simplified approach to generator field controller limits is usually fol-
lowed for PF studies: a single upper limit on the injected Q for each generator
is imposed. Under the assumption of an ideal P–V bus, the reactive power
mismatch is not calculated since there is no specified reactive power at a
generator bus. However, the Q generated by the machine must equal the
total line flow reactive powers,

Qgenerated at i ¼
XN
j¼1

jYijjyjyi sin(�uij þ di � dj):

To check whether the generated Q is below the upper limit,

Qgenerated at i < Qu
limit i

must hold. Similarly, the lower limit (Ql
limit i < 0) must be checked

Ql
limit i < Qgenerated at i < Qu

limit i: (3:12)

If Equation 3.12 is violated at the upper or lower limit, the P–V bus
model must be modified to reflect the physical reality. This usually entails
conversion of the P–V bus to a P–Q bus where the specified Q is set at
Qi

limit i or Qu
limit i as appropriate. The origin of Q limits of machines comes

from the several operating conditions cited earlier, including limits on arma-
ture current, limits on field current and voltage, and operational stability
requirements.

The concept and treatment of the slack bus requires further discussion. The
PF formulation precludes specifying active and reactive power at all buses
since the power lost in the transmission network is unknown. A formulation
in which P is specified at all buses is overspecified and will yield results
inconsistent with transmission losses. This is a mathematical consideration
that translates to an operating condition: one machine in the system is
usually operated such that the active power generated is set to hold the
area error active power at zero. The term area error refers to the generation
error in a given system, which causes a frequency error. If the net generation
in a given system (an area) is greater than the load plus losses, the excess
power injected will result in a net injected energy. This excess energy causes
the machines in the system to accelerate. In other words, the integral of the
error power (i.e., the error energy) becomes rotating kinetic energy. Similarly,
if the net generation is too low, the system kinetic energy (and, hence,
frequency) will decrease. The operational turbine setting is obtained at the
(slack) swing machine from the area error: a raise power signal is required
when the system frequency falls below the standard and a low power signal
is required when the system frequency is too high.
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The concept of a generalized swing machine was introduced in order to
distribute area power error over several machines. Thus, the swing power is
made up not at a single machine, but at several generators. Usually, a
production computer program still uses a single bus as a swing bus for
load-flow studies. One may encounter several swing buses in one load-
flow study involving more than one area. (For purposes of this discussion,
the term ‘‘area’’ refers to a coordinated power transmission network and
generation in which a single swing bus is present.) There are several tech-
niques for considering multiple swing buses, perhaps the simplest being
separate load flows in which intertie buses are separated. It is possible to
model the swing power in a distributed fashion (i.e., at several generators) by
employing several swing machines.

To incorporate the transformer model into the PF formula we describe the
various forms of the PF formulation, namely, the rectangular and the polar
forms.

The matrix Ybus represents the model of the passive portion of the n-bus
network, in system form. From Equations 3.4 and 3.5 we conclude the
following simple rules for finding the elements of the Ybus matrix:

1. Diagonal element yii is obtained as the algebraic sum of all
admittances incident to node i.

2. Off-diagonal elements yik¼ yki are obtained as the negative of the
admittance connecting nodes i and k.

It is usually the case that powers rather than currents are known. Then the
PFEs have the nonlinear form

S*i ¼ Pi � jQi ¼ V*
i

Xn
k¼1

YikVk, for i ¼ 1, 2, . . . , n: (3:13)

This is the general form of the PFE. It should be noted that the n PFEs
(Equation 3.13) are complex. These n equations therefore represent 2n real
equations:

Pi ¼
Xn
k¼1

jYikjjVijjVkj cos (dk � di þ gik)D fip, for i ¼ 1, 2, . . . , n (3:14)

Qi ¼ �
Xn
k¼1

jYikjjVijjVkj sin (dk � di þ gik)D fiq, for i ¼ 1, 2, . . . , n: (3:15)

Equations 3.14 and 3.15 express the balance of real and reactive powers at
bus i, respectively. The nodal current can be written in the power form:

Pi � jQi ¼ V*
i

� �Xn
j¼1

(YijVj): (3:16)
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Equation 3.16 can be expanded into various forms. Below are the commonly
encountered rectangular and polar formulations.

3.4.1.1 Rectangular Formulation

The bus voltages on the right-hand side can be substituted by using the
rectangular form Vi¼ eiþ jfi. Choose the rectangular form; then we have by
substitution

Pi ¼ ei
Xn
j¼1

(Gijej � Bij fj)

0
@

1
Aþ fi

Xn
j¼1

(Gij fj � Bijej)

0
@

1
A (3:17)

Qi ¼ fi
Xn
j¼1

(Gijej � Bij fj)

0
@

1
A� ei

Xn
j¼1

(Gij fj þ Bijej)

0
@

1
A, (3:18)

where the admittance is expressed in the rectangular form

Yij ¼ Gij þ jBij: (3:19)

3.4.1.2 Polar Formulation

Using the notation

Vi ¼ jVije j0i
¼ jVijffui, (3:20)

we obtain the following representation

Pi ¼ jVij
Xn
j¼1

jYijjjVjj cos(ui � uj � cij) (3:21)

Qi ¼ jVij
Xn
j¼1

jYijjjVjj sin(ui � uj � cij), (3:22)

where the admittance is expressed in the polar form: Yij¼ jYijjcij.

3.5 Iterative Techniques for PF Solution

PFEs are large-scale nonlinear sets of equations that require using iterative
techniques to obtain their solution. The following major methods are dis-
cussed: Gauss–Seidel (G–S) iterative technique, Newton–Raphson method
(N–R), and fast-decoupled Newton method.
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3.5.1 G–S Iterative Technique

This is a simple iterative method that was very popular in the early days of
digital computer-based PF analysis. The more powerful N–R method dom-
inates the field today. The G–S method is still used for small power systems
where program simplicity is more important than computing costs, and, in
many cases, it is used in large-scale systems to obtain an ‘‘initial solution’’ for
the N–R program [2].

3.5.1.1 G–S Algorithm

We consider solving an n-dimensional equation of the type

F(x) ¼ 0: (3:23)

We introduce the method by first solving the following scalar equation
iteratively.

f (x) ¼ 0: (3:24)

We need to reshape the given function f(x) into the alternative form

x ¼ F(x): (3:25)

For a given function f, it is always possible to find a function F. As an
example, consider the second-order equation

f (x) ¼ x2 � 2xþ 5 ¼ 0:

The function f(x) represents a parabola. We can obviously write f(x) as

x ¼ 1
2
x2 þ 5

2|fflfflfflffl{zfflfflfflffl}
F(x)

,

which is of the form of Equation 3.23.
Note that F(x) is not unique. In the present example we could also have

written

x ¼ 2xþ 5
x|fflfflffl{zfflfflffl}

F(x)

:

The algorithm is based on the following empirical reasoning.
The equations x� F(x)¼ 0 and f(x)¼ 0 must have identical roots. The

function x� F(x) represents a ‘‘boxed in’’ region between the sloping line x
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and the function F(x). As this region ‘‘thins out’’ to zero close to a root, that
root can be reached by a zigzag search process.

3.5.1.2 G–S Method Applied to the PFEs

3.5.1.2.1 Load Buses

For this case, real power P and reactive power Q are given. We assume an
n-node system including the slack bus S where both V and f are specified
and remain fixed throughout. Since jPj and jQj are given for all buses except
the slack bus, we have for any bus K,

IK ¼ PK � jQK

V*
K

, for
K ¼ 1, 2, . . . , n
K 6¼ S

	
, (3:26)

where S is the slack bus.
Now the performance equation in the bus frame of reference using Ybus

where ground is included as a reference node will be

IBUS ¼ [YBUS]VBUS: (3:27)

For an n-node system, there are n� 1 linear independent equations to solve.
Expanding Equation 3.27, we get

I1 ¼ Y11V1 þ Y12V2 þ � � �

and hence for Kth bus

IK ¼ YK1V1 þ YK2V2 þ � � � ¼
Xn
q¼1

YKqVq; (3:28)

that is,

IK ¼
Xn
q¼1

YKqVq, K ¼ 1, . . . , n; K 6¼ S

¼ YKKVK þ
Xn
q¼1
q6¼K

YKqVq: (3:29)

Thus

VK ¼ 1
YKK

IK �
Xn
q¼1
q 6¼K

YKqVq

2
64

3
75, for K ¼ 1, . . . , n; K 6¼ S:
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Substituting for IK from Equation 3.26, we have

VK ¼ 1
YKK

PK � jQK

V*
k

�
Xn
q¼1
q6¼K

YKqVq

2
64

3
75, (3:30)

where
K¼ 1, . . . , n
K 6¼ S

In the direct Gauss method, we assume guess values for voltage for all
buses except the slack bus where the voltage magnitude and phase angle are
specified and remain fixed. Normally, we set the voltage magnitude and
phase angle of these buses to be equal to that of the slack bus and work in the
per unit system (i.e., we may take in pu, the voltage magnitude and phase
angle as 1ff0). The assumed bus voltage and the slack bus along with P and Q
are substituted in the right-hand side of Equation 3.30 to obtain a new and
improved set of bus voltages. After the entire iteration is completed, the new
set of bus voltages is again substituted along with the specified slack bus
voltage in the right-hand side of Equation 3.30 to obtain a new set of bus
voltages. The process is continued until

jVkþ1
i � Vk

i j � «, (3:31)

where
k is an iteration count
« is a very small number, which depends upon the system accuracy and

is normally equal to 10�3 in the per unit system

The iterations are continued until the node of the bus voltage obtained at the
current iteration minus the value of the bus voltage at the previous iteration
is less than a chosen very small number and in this way we obtain the
solution for jVj and f.

3.5.1.3 G–S Iterative Technique

In the G–S method, the value of a bus voltage calculated for any bus
immediately replaces the previous values in the next step. This contrasts
the case of the Gauss method where the calculated bus voltages replace the
earlier value only at the end of the complete iteration. Normally the G–S
method converges much faster than the Gauss method; that is, the number of
iterations needed to obtain the solution is much less in the G–S method, as
compared to the Gauss method.

3.5.1.3.1 Generator Bus

This is the voltage-controlled bus where jPj and jVj are specified. However,
usually there is a limit on reactive power; that is, Qmax and Qmin to hold the
generation voltage within limits are also given. For any bus p we have
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Pp � jQp ¼ V*
p Ip (3:32)

and

Ip ¼
Xn
q¼1

YpqVq: (3:33)

Then substituting Equation 3.33 into Equation 3.32, we get

Pp � jQpIp ¼ V*
p

Xn
q¼1

YpqVq: (3:34)

As a result

Qp ¼ Imaginary

(
V*

p

Xn
q¼1

YpqVq

)
: (3:35)

The iterative process starts by assuming the values of bus voltages and the
phase angles, say jVj and f, from which we determine the real and imaginary
components (e.g., e and f ) of the bus voltages.

ep ¼ Vp cosfp

fp ¼ Vp sinfp:
(3:36)

For any bus p, Vp is specified and, therefore, the selected value of ep and fp
must satisfy Equation 3.37 approximately.

e2p þ f 2p ’ [jVpj scheduled]2, (3:37)

where Vp (scheduled) is the specified bus voltage for any bus p.
We now substitute the assumed values of ep and fp in Equation 3.35 to

calculate the reactive power Q. If the calculated reactive power exceeds Qmax

or is below Qmin, then we do the following:

If Q > Qmax, set Q ¼ Qmax or if Q < Qmin, set Q ¼ Qmin, (3:38)

and treat this bus as a load bus to find the voltage solution. If Equation 3.38 is
not true, then use the phase angle of this assumed bus voltage (i.e., fp) to
recalculate ep and fp for any bus p.

We know that fk
p ¼ tan�1



f kp
�
ekp
�
, where k is the iteration count. Assuming

this phase angle fp also to be that of the scheduled bus voltage Vp (for this
bus, fp is unknown but Vp is given), we get

ekp (new) ¼ jVp scheduledj cosfk
p

f kp (new) ¼ jVp scheduledj sinfk
p:

(3:39)

Momoh/Electric Power System Applications of Optimization 65886_C003 Final Proof page 76 14.11.2008 5:39pm Compositor Name: BMani

76 Electric Power System Applications of Optimization



We substitute the ekp and f kp from Equation 3.39 in Equation 3.30 to recalculate
bus voltages and the process is continued until the process converges. How-
ever, at every step the reactive power is also calculated to check whether the
calculated Q is within the limit.

3.5.1.3.2 Acceleration Factor

We use acceleration factors to increase the rate of convergence. The choice of
an acceleration factor depends upon the system and appropriate values
normally lie within 1.4–1.6. Then, after calculating ekþ1

p and f kþ1
p at the kþ 1st

iteration and knowing the acceleration factor, say a and b, we calculate the
new estimate for the bus voltages given as

ekþ1
p (accelerated) ¼ ekp þ a ekþ1

p � ekp
h i

f kþ1
p (accelerated) ¼ f kp þ b f kþ1

p � f kp
h i (3:40)

and this new estimate replaces the calculated values ekþ1
p and f kþ1

p .

3.5.1.4 Line Flow and Losses

After calculating bus voltages and their phase angles for all the buses, the line
flow and line losses are calculated. We assume the normal p representation
of the transmission line, as shown in Figure 3.4. Having found the solution of
bus voltages (both jVj and f for load buses and only f for a generation bus),
we calculate the line flows between any buses p and q.

Let ipq be the current flow from bus p toward q; then

ipq ¼ [Vp � Vp]Ypq þ Vp
Y0
pq

2
, (3:41)

where Vp and Vq are the bus voltages at the buses p and q that have been
calculated from the load-flow studies.

Yṕq
2

Yṕq
2

Bus q 

Vp
Vq

Bus p
΄

Ypq

FIGURE 3.4
p-representation of transmission line.
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The PF in the line p–q at the bus p is given by

ppq � jQpq ¼ V*
p ipq

¼ V*
p [Vp � Vq]Ypq þ V*

pVp
Y0
pq

2
: (3:42)

Similarly the line flow in the line p–q at bus q is given by

ppq � jQpq ¼ V*
q [Vq � Vp]Ypq þ V*

q Vq
Y0
pq

2
: (3:43)

The algebraic sum of Equations 3.42 and 3.43 is the line losses in the
element p–q.

3.5.2 N–R Method

The G–S iterative algorithm (Figure 3.5) is very simple but convergence
becomes increasingly slow as the system size grows. The N–R technique
(Figure 3.6) converges fast in less than 4–5 iterations regardless of system
size. It is popular for large system studies.

3.5.2.1 N–R Algorithm in the Scalar Case

In this method, we start with the scalar Equation 3.21. Assume an initial
solution x(0). We try to evaluate the error Dx(0) associated with our guess.
As x(0)þDx(0) by definition is the correct root then we must require that

f (x(0))þ Dx(0) ¼ 0: (3:44)

If we expand f(x) in a Taylor series around the initial guess value, we obtain

f (x(0))þ Dx(0)
df
dx

 �(0)
þ 1
2

Dx(0)

 �2 d2f

d2x

 !(0)
þ � � � ¼ 0: (3:45)

All derivatives are computed for x¼ x(0).
Assuming that the error is relatively small, then the higher-order terms can

be neglected and we have

f (x(0))þ Dx(0)
df
dx

 �(0)
� 0, (3:46)

from which we then compute an approximate value for the error

Dx(0) ¼ � f (x(0))

(df=dx)(0)
: (3:47)
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Form the bus admittance (Y-bus) for the network.

Initialization:
dK =0 " K=2, 3,..., G

" K=G + 1 , G + 2,..., NVKÐdK =1Ð0
Set K=1, tolerance eP, eQ

Set iteration count, INT = 1;
Also, set K=2.

Start

Input: Primitive network, slack bus, real and reactive
power at all buses except the slack bus, slack bus voltage

magnitude and phase angle, no. of buses, line connections.

Computations:

1. Solve K ¹ iV i
*YikVKYiiVi +QK = -Im

n

k =1

K =1
K ¹ i

S

2. Solve - S
n

YiKVK
V i

*
Pi - jQi

Yii
VK ÐdKc =Vi =

1

3. Set VK =VK
SpecifiedÐdKc

4. Substitute VK  in the equation of Qk, re-calculate and reset

Obtain ΔQK and ΔdK increment from the
   process iteration
Set Δxmax = max{ΔQK, ΔdK}

Set VK
o  ld =VK

n  ew

AB 

FIGURE 3.5
G–S method.

(continued)
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We add this error to the original guess and should thus obtain an improved
value x(1) for the root, that is,

x(1) ¼ x(0) þ Dx(0) ¼ x(0) � f (x(0))

(df=dx)(0)
:

Yes

old new

Yes 

No 

Calculate

1
,  i = G +1

n

YiKVK
K=1
K¹i

VG+1 = Yii V*i
-

Pi - jQi å

Resustitute new values and recalculate

Obtain ΔVG+1 and ΔdG+1 increment from the
   process iteration
Set Δxmax = max{ΔVG+1, ΔdG+1}

Set VG+1VG+1 =

Is K < G ?
(k = 3, 4,…, G)

K = K + 1 

K = K +1 

INT = INT + 1

Calculate Pi and Qi using

(Gik|Vi||Vk|cosdik + Bik|Vi||Vk|sindik)

(Gik|Vi||Vk|sindik - Bik|Vi||Vk|cosdik)

N
Pi =

Qi =

å
N

K =1

K =1

å

Calculate line flow, stack bus power, losses, etc.
Store/display all final results

AB

Is
G +1 £ K< N

? 

Convergence
satisfied?

Yes

End

FIGURE 3.5 (continued)
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Repeated use of this procedure thus yields the N–R algorithm:

x(yþ1) ¼ x(y) � f (x(y))

(df=dx)(y)
: (3:48)

We illustrate the method by finding the larger root of the quadratic equation
in x: f(x)¼ x2� 5xþ 4. Use the initial guess x(0)¼ 6.

Form the bus admittance (Y-bus) for the network.

Initialization: Assume bus voltages
Ek

( 0) for k = 1, 2, …, n: k ≠ s

Set iteration count, p = 0

Determine: Max ΔPp and Max ΔQ p

Computation:

{ek
p(eq

pGkq − fqp Bkq) + fk
p(fq

pGkq + eq
pBkq)}

{fk
p(eq

pGkq − fqp Bkq) − ek
p( fq

pGkq + eq
pBkq)}

n
Pk

p=

Qk
p=

q=1

q=1

n

K =1, 2,..., n;  K ≠  S

∑

∑

K=1, 2, ..., n; K ≠ S

ΔP k
p= Pk

scheduled − Pk
p

ΔQk
p= Qk

scheduled − Qk
p

Input: primitive network data, slack bus no.(s), real and
reactive powers at all buses except the slack bus, slack bus voltage

magnitude and phase angle, no. of buses (n)

Start

B A

FIGURE 3.6
N–R method.

(continued)
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We have

df
dx

¼ 2x� 5:

The computations proceed according to the following steps:

1. f (x(0))¼ f(6)¼ 62� 5� 6þ 4¼ 10.

2. df
dx

� �(0)
¼ 2� 6� 5 ¼ 7.

3. Dx(0)¼� 10=7¼�1.429.

4. x(1)¼ 6� 1.429¼ 4.571.

Calculate line
flows, line losses, etc.Set p = p + 1

K =1, 2, ..., n;  K ≠S

K =1, 2, ..., n;  K ≠S

Store/display: voltage magnitudes
and phase angles at all buses, line flows and

line losses, etc.

Solve voltage corrections for updating 

ΔPp

ΔQp

J1
p

ek
p +1= ek

p +Δek
p ;

ek
p = ek

p +1; f k
p = f k

p +1;

fk
p +1=f k

p +Δfk
p 

J3
p J4

p
J2

p Δe
Δf

No

Yes

B A

Are
|Max ΔPp| & |Max ΔQ p|

>∈?

Any further
iterations?

Yes

= 

End

.

No

FIGURE 3.6 (continued)
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Two additional iterations yield

x(2) ¼ 4:079

x(3) ¼ 4:002:

The correct value is 4 and we have thus arrived within 0.05% in only three
iterations. As in the case of the G–S algorithm, one does not have a full
convergence guarantee, unless the initial point is suitably chosen. This, of
course, is more important when attempting to solve large-scale, nonlinear or
multidimensional system of equations.

3.5.2.2 N–R Algorithm in the n-Dimensional Case

Consider now the solution of the n-dimensional Equation 3.21. By expanding
each equation in a Taylor series around the initial guess

x(0) ¼
x(0)1

..

.

x(0)n

2
664

3
775 (3:49)

and upon retaining only the first derivative terms we have

f1(x(0))þ @f1
@x1

 �(0)
Dx1 þ � � � þ @f1

@xn

 �(0)
Dxn � 0

..

. ..
.

fn(x(0))þ @fn
@x1

 �(0)
Dx1 þ � � � þ @fn

@xn

 �(0)
Dxn � 0:

(3:50)

We can write this system of n linear equations as follows:

f1(x(0))
..
.

fn(x(0))

2
664

3
775þ

@f1
@x1

 �(0)
� � � @f1

@xn

 �(0)
..
. ..

.

@fn
@x1

 �(0)
� � � @fn

@xn

 �(0)

2
66666664

3
77777775

Dx1
..
.

Dxn

2
64

3
75 �

0
..
.

0

2
4
3
5:

Or, in compact matrix–vector notation,

f(x(0))þ J(0)Dx(0) � 0: (3:51)

From this last equation, we then solve for the error vector

Dx(0) � �[J(0)]�1f(x(0)): (3:52)
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Upon adding this vector to the original guess and at the same time indicating
a repetitive process we obtain the N–R algorithm

x(yþ1) ¼ x(y) � [J(y)]�1f(x(y)): (3:53)

The n� n matrix J, having as its elements the partial derivatives @fi=@xj, is
referred to as a Jacobian. Use of this algorithm obviously necessitates the
need of inverting an n� n matrix in each iteration.

3.5.2.3 N–R Algorithm Applied to the PFEs

The solution of the power system problem of a nonlinear set of power
equations is popularly accomplished by using the N–R technique, which is
applicable to the rectangular and polar formulations of the problem. The two
cases are presented below.

3.5.2.3.1 Case A: Formulation of the N–R Method in Rectangular Form

Based on the help of the N–R iterations, the general nonlinear algebraic
equations of power are transformed into a set of linear algebraic equations
relating the changes in power (i.e., error in power) to the change in real and
reactive components of bus voltages with the help of the Jacobian matrix.
This is actually done by expanding the function by a Taylor’s series and
neglecting higher-order derivatives and higher power. It is necessary that the
initial guess be close to the solution point.

DP1

� � �
DPn�1

� � �
DQ1

� � �
DQn�1

2
6666666664

3
7777777775
¼

@P1

@e1

@P1

@en�1

@P1

@f1

@P1

@fn�1

@Pn�1

@e1

@Pn�1

@en�1

@Pn�1

@f1

@Pn�1

@fn�1

@Q1

@e1

@Q1

@en�1

@Q1

@f1

@Q1

@fn�1

@Qn�1

@e1

@Qn�1

@en�1

@Qn�1

@f1

@Qn�1

@fn�1

2
6666666666664

3
7777777777775

De1
..
.

Den�1

..

.

Df1

..

.

Dfn�1

2
6666666666664

3
7777777777775

(3:54)

where the nth bus is the slack bus. Equation 3.54 can be expressed as

DP
. . .
DQ

2
4

3
5 ¼

J1 ..
.

J2
. . . � � � � � �
J3 ..

.
J4

0
BB@

1
CCA

De
. . .
Df

2
4

3
5, (3:55)

where J1, J2, J3, and J4 are the elements of the Jacobian matrix that are
calculated from the expression of power as follows.
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Elements of J1
Off-diagonal elements

@Pp=@eq ¼ epGpq � fpBpq, for q ¼ p: (3:56)

Diagonal elements

@Pp

@ep
¼ 2epGpp � fpBpp � fpBpp

¼
Xn
q¼1
q 6¼p

[eqGpq � fqBpq]: (3:57)

Elements of J2
Off-diagonal elements

@Pp=@fq ¼ epBpq þ fpGpq q 6¼ p: (3:58)

Diagonal elements

@Pp=@fp ¼ epBpp þ 2fpGpp � epBpp

þ
Xn
q¼1
q6¼p

[ fqGpq � eqBpq]: (3:59)

Elements of J3
Off-diagonal elements

@Qp=@eq ¼ fpGpq þ epBpq, for q 6¼ p: (3:60)

Diagonal elements

@Qp=@ep ¼ fpGpp � fpGpp þ 2epBpp �
Xn
q¼1
q6¼p

[ fpGpq � eqBpq]: (3:61)

Elements of J4
Off-diagonal elements

@Qp=@fq ¼ fpBpq � epBpq, for q 6¼ p: (3:62)

Diagonal elements

@Qp

@fp
¼ epGpp þ 2fpBpp � epGpp þ

Xn
q¼1
q6¼p

[eqGpq � fqBpq]: (3:63)
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The following steps are performed in sequence to obtain the PF solution by
N–R method:

1. For load buses where P and Q are given, we assume the bus volt-
ages’ magnitude and phase angle for all the buses except the slack
bus where jVj and f are specified. Normally, we use a flat voltage
start; that is, we set the assumed bus voltage magnitude and its
phase angle (in other words the real and imaginary component e
and f of the bus voltages) equal to the slack bus values.

2. Substituting these assumed bus voltages (i.e., e and f), we calculate
the real and reactive components of power (i.e., Pp and Qp) for all the
buses p¼ 1, . . . , n� 1 except the slack bus.

3. Since Pp andQp for any bus p are given, the error in the power will be

DPk
p ¼ Pp (scheduled)� Pk

p

DQk
p ¼ Qp (scheduled)�Qk

p,
(3:64)

where
k is an iteration count
Pk
p and Qk

p are the active and reactive power values calculated
with the latest value of bus voltages at any iteration k

4. Elements of the Jacobian matrix (J1, J2, J3, and J4) are calculated with
the latest bus voltages and calculated power equations.

5. We then solve the linear set of Equations 3.54 by either an iterative
technique or by the method of elimination (normally by the Gaussian
elimination method) to determine the voltage correction, that is Dep
and Dfp at any bus p.

6. This value of voltage correction is used to determine the new esti-
mate of bus voltages as follows:

ekþ1
p ¼ ekp þ Dekp

f kþ1
p ¼ f kp þ Df kp ,

where k is an iteration count.

7. Now this new estimate of the bus voltage ekþ1
p and f kþ1

p is used to
recalculate the error in power and, thus, the entire algorithm starting
from step 3 as given earlier is repeated.

During each iteration, the elements of the Jacobian are calculated since they
depend upon the latest voltage estimate and calculated power. The process is
continued until the error in power becomes very small, that is,

jDPj < « and jDQj < «, (3:65)
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where « is a very small number. This method converges faster than the G–S
method and exhibits quadratic convergence properties. Moreover, while the
number of iterations to obtain the nominal solutions increases with the
problem size in the case of the G–S method, the number of iterations to
obtain a converged solution is nearly constant in the N–R method. Later,
we show that with the modified Newton method, nearly 5–6 iterations are
needed to obtain a solution although the time taken to complete an iteration
is nearly seven times as that of the G–S method.

Example 3.5.1

Solve the following two equations in x1 and x2 using the N–R method:

F1(x) ¼ x21 þ x22 � 4x1 ¼ 0

F2(x) ¼ x21 þ x22 � 8x1 þ 12 ¼ 0:

1. Find expressions for the elements of the Jacobian matrix and find the
correction increments Dx1, Dx2.

2. Calculate the first five iterations to find estimates of the solution using the
following initial guesses:

(a) x1 ¼ 2, x2 ¼ 4:

(b) x1 ¼ �5, x2 ¼ �5:

(c) x1 ¼ �0:1, x2 ¼ 1:

SOLUTION

The Jacobian elements are as follows:

@F1
@x1

¼ 2x1 � 4;
@F1
@x2

¼ 2x2;
@F2
@x1

¼ 2x1 � 8;
@F2
@x2

¼ 2x2:

Now, using the formulation for the typical N–R problem, we have

@F1
@x1

@F1
@x2

@F2
@x1

@F2
@x2

2
664

3
775 Dx1

Dx2

� �
¼ �F1(x)

�F2(x)

� �

2x1 � 4 2x2
2x1 � 8 2x2

� �
Dx1
Dx2

� �
¼ � x21 þ x22 � 4x1


 �
� x21 þ x22 � 8x1 þ 12

 �� �

:

The solution for Dx1, Dx2 is given by

Dx1
Dx2

� �
¼ 2x1 � 4 2x2

2x1 � 8 2x2

� ��1 � x21 þ x22 � 4x1

 �

� x21 þ x22 � 8x1 þ 12

 �

" #

Dx1
Dx2

� �
¼ 3� x1

� x21 þ x22 � 8x1 þ 12

 �

12x2

" #
:
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As a result the new estimates of the solution are given by

xnþ1
i ¼ xni þ Dxni
xnþ1
i ¼ xni þ 3� xn1


 �
xnþ1
i ¼ 3:

Note that x1 is independent of the starting point. In addition, the iterative formula
for x2 is

x(nþ1)
2 ¼ x(n)2 þ x2(n)1 � x2(n)2 � 6x(n)1 þ 12

2xn2

¼ x2n1 þ x2n2 � 6xn1 þ 12
2xn2

,

with xni ¼ 3,

x(nþ1)
2 ¼ x2n2 þ 3

2xn2
:

Tables 3.2 through 3.4 give different values of x1 and x2 at different iterations.

TABLE 3.2

Iteration Process with Start Point (2, 4)

Iteration x1 x2

0 2 4

1 3 2.5
2 3 1.85

3 3 1.74

4 3 1.7321

5 3 1.73205

TABLE 3.3

Iteration Process with Start Point (�5, �5)

Iteration x1 x2

0 �c5 �5

1 3.0 �9.2
2 3.0 �4.763

3 3.0 �2.6964

4 3.0 �1.9045

5 3.0 �1.7399

6 3.0 �1.7321

7 3.0 �1.73205
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Example 3.5.2

Use the N–R method to find the roots of the equation

F(x) ¼ x3 � 6x2 þ 11x� 6:

Assume the following initial guesses: x¼ 0, 0.5, 1.5, 2.5, and 4.

SOLUTION

F(x) ¼ x3 � 6x2 þ 11x� 6

F0(x) ¼ 3x2 � 12xþ 11

Dx ¼ � F
F0

¼ � x3 þ 6x2 � 11xþ 6
3x2 � 12xþ 11

New estimates are given by

xnþ1 ¼ xn þ Dx:

For the different initial points the solution is developed in Table 3.5. Note that the
equation has roots at the points where x¼ 1.00, 2.00, and 3.00. We converged on
the first and the third roots depending on the starting estimate. The proximity of the
initial guess to the solution affects the N–R solutions of the problem.

TABLE 3.4

Iteration Process with Start Point (�0, 1)

Iteration x1 x2

0 �0.1 1

1 3.0 6.805

2 3.0 3.623

3 3.0 2.225

4 3.0 1.787
5 3.0 1.7329

6 3.0 1.73205

TABLE 3.5

Iteration Process of Example 3.5.2 with Different Initial Points

Iteration
Value of the Variable x at the End of Each Iteration

for the Five Initial Values Used

0 (initial) 0.0000 0.5000 1.5000 2.5000 4.0000

1 0.5450 0.8260 3.0000 1.0000 3.4500

2 0.8499 0.9677 — — 3.1500

3 0.9747 0.9985 — — 3.0300

4 0.9909 1.0000 — — 3.0009

5 1.0000 — — — 3.0000
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Example 3.5.3

For the network shown in Figure 3.7, do the following:

1. Compute the Y-bus admittance matrix.

2. Write down the load-flow equations of the problem using the rectangular
formulation.

The nodal admittances are given as

Y11 ¼ 4� j5, Y22 ¼ 4� j10, Y33 ¼ 8� j15

Y12 ¼ 0, Y13 ¼ �4þ j5, Y23 ¼ �4þ j10:

We also have

jV1j ¼ 1, u1 ¼ 0

P2 ¼ 1:7, jV2j ¼ 1:1249

P3 ¼ �2, Q3 ¼ �1:

SOLUTION

The load-flow equations are obtained utilizing the following formula:

Pi � jQi ¼ V*i
X

YijVj:

Recall Equation 3.23. To obtain the rectangular forms, we have for bus 1

P1 � 1Q1 ¼ (1þ j0 (4� j5)(1þ j0)þ (�4þ j5)(e3 þ jf3)½ �Þ:

This yields

P1 ¼ 4� e3 � 5f3:

�Q1 ¼ �5þ 5e3 � 4f3:

Y = 4 − j10 Y = 4 − j5~

Bus 1 

P3 = −2.00 pu
Q3 = −1.00 pu

Bus 2 

~

Bus 3 
P2 = 1.7 pu
|V2|=1.1249 pu

FIGURE 3.7
Single-line diagram for Example 3.5.3.
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For bus 2 we have

1:7� jQ2 ¼ (e2 � jf2) (4� j10)(e2 þ jf2)þ (�4þ j10)(e3 þ jf3)½ �:

This reduces to

1:7� jQ2 ¼ (4� j10)(e22 þ jf 22 )þ (e2 � jf2)(�4þ j10) * (e3 þ jf3):

Using

jV2j2 ¼ e22 þ f 22 ¼ (1:1249)2,

we obtain

1:7� jQ2 ¼ 5:0616� j12:654þ (�4þ j10) (e2e3 þ f1f3)þ j(f3e2 � f2e3)½ �:

Separating real and imaginary parts, we get

1:7 ¼ 5:0616� 4(e2e3 þ f2f3)� 10(f3e2 � f2e3)

�Q2 ¼ �10:654þ 10(e2e3 þ f2f3)� 4(f3e2 � f2e3):

We should include

(1:1249)2 ¼ e22 þ f 22 :

For bus 3 we have

�2þ j1 ¼ (e3 � jf3) (�4þ j5)þ (�4þ j10)(e2 þ jf2)þ (8� j15)(e3 þ jf3)½ �:

Separating real and imaginary parts, we get

�2 ¼ �4e3 þ 5f3 � e3(4e3 þ 10f2)þ f (10e2 � 4f2)þ 8 e23 þ f 23

 �

1 ¼ 5e3 þ 4f3 þ e3(10e2 � 4f2)þ f3(4e2 � 10f2)� 15 e23 þ f 23

 �

:

3.5.2.3.2 Case B: Formulation of the N–R Method in Polar Form

The PF problems using the N–R method can be formulated in polar coord-
inates. For any bus p, we have

Vp ¼ jVpje jdp, then V*
p ¼ jVpje�jdp (3:66)

Vq ¼ jVqje jdp, then Ypq ¼ jYpqje�jupq, (3:67)

where
d is the phase angle of the bus voltages
upq is the admittance angle
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As a result, for any bus p,

Pp � jQp ¼ V*
p

Xn
q¼1

YpqVq: (3:68)

Substituting Equation 3.105 into Equation 3.106, we have

Pp � jQp ¼
Xn
q¼1

jVpVqYpqje�j(upqþdp�dq): (3:69)

Thus

Pp ¼ Real V*
p

Xn
q¼1

YpqVq

2
4

3
5

¼
Xn
q¼1

jVpVqYpqj cos(upq þ dp � dq)

¼ jVpVpYppj cos(upp)þ
Xn
q¼1
q6¼p

jVpVqVpqj cos(upq þ dp � dq) (3:70)

and

Qp ¼ Imaginary V*
p

Xn
q¼1

YpqVq

2
4

3
5

¼
Xn
q¼1

jVpVqYpqj sin(Qpq þ dp � dq)

¼ jVpVpYppj sin upp þ
Xn
q¼1
q6¼p

jVpVqYpqj sin(upq þ dp � dq), (3:71)

for p¼ 1, . . . , n� 1 as the nth bus is a slack bus.
Now the linear N–R Equation in polar form becomes

DP
DQ

� �
¼

J1 ..
.

J2
. . . � � � � � �
J3 ..

.
J4

2
664

3
775 Dd

DjVj
� �

, (3:72)

where J1, J2, J3, and J4 are the elements of Jacobian J which can be calculated
from the power Equations 3.70 and 3.71 as follows:
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Elements of J1
Off-diagonal elements

@Pp

@dp

����
p 6¼q

¼ jVpVqYpqj sin(upq þ dp � dq): (3:73)

Diagonal elements

@Pp

@dp
¼ �

Xn
q¼1
q6¼p

jVpVqYpqj sin(upq þ dp � dq): (3:74)

Elements of J2
Off-diagonal elements

@Pp

@jVqj
����
p 6¼q

¼ jVpYpqj cos(upq þ dp � dq): (3:75)

Diagonal elements

@Pp

@jVpj
���� ¼ 2jVpYppj cos upp þ

Xn
q¼1
q 6¼p

jVqYpqj cos(upq þ dp � dq): (3:76)

Elements of J3
Off-diagonal elements

@Qp

@dq
¼ �jVpVqYpqj cos(upq þ dp � dq): (3:77)

Diagonal elements

@Qp

@dp
¼ �

Xn
q¼1
q6¼p

jVpVqPpqj cos(upq þ dp � dq): (3:78)

Elements of J4
Off-diagonal elements

@Qp

@jVqj
����
q 6¼p

¼ jVpYpqj sin(upq þ dp � dq): (3:79)

Diagonal elements

@Qp

@jVpj ¼ 2jVpYppj sin upp þ
Xn
q¼1
q6¼p

jVqYpqj sin(upq þ dp � dq): (3:80)
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The elements of the Jacobian are calculated based on the latest voltage
estimate and calculated power. However, the algorithm is the same as that
applied with the rectangular coordinates. Notably, the formulation in the
polar coordinates takes less computational effort and also requires less mem-
ory space.

The real power P is less sensitive to changes in the voltage magnitude DjVj
and similarly the reactive power Q is less sensitive to the changes in the
phase angle d. We can thus approximate Equation 3.72 as follows:

DP
DQ

� �
¼

J1 ..
.

0

� � � ..
. � � �

0 ..
.

J4

2
6664

3
7775 Dd

DjVj
� �

: (3:81)

In the case of a generator bus P and jVj are given. The real power P for any
bus p is given by

Pp ¼ Real V*
p

Xn
q¼1

YpqVq

2
4

3
5: (3:82)

and also for bus p, we have

jVpj2 ¼ e2p þ f 2p , (3:83)

where
Vp is the voltage magnitude
ep and fp are its real and imaginary components, respectively

The matrix equations relating the changes in bus powers and square of the
bus voltage magnitudes to the changes in the real and imaginary components
of the voltages are

DP
� � �
DQ
� � �

DjVj2

2
66664

3
77775

J1 ..
.

J2
� � � � � � � � �
J3 ..

.
J4

� � � � � � � � �
J5 ..

.
J6

2
6666664

3
7777775

De
� � �
Df

2
4

3
5, (3:84)

where

DjVk
pj2 ¼ jVp (scheduled)j2 � jVk

pj2
h i

(Vk
p is the calculated bus voltage after the kth iteration.)
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The elements of Jacobian are calculated as follows:

Elements of J5
Off-diagonal elements

@jVpj2
@eq

¼ 0, for q 6¼ p: (3:85)

Diagonal elements

@jVpj2
@ep

¼ 2ep: (3:86)

Elements of J6
Off-diagonal elements

@jVpj2
@fq

¼ 0, for q 6¼ p: (3:87)

Diagonal elements

@jVpj2
@fp

¼ 2fp, (3:88)

where
Vk

p is the bus voltage calculated at the kth iteration
Vp (scheduled) is the voltage given (i.e., specified) at any bus p as it is

the generation bus

Calculations for the elements J1, J2, J3, and J4 were discussed earlier. After
obtaining bus voltages, PF and line losses are calculated. We next give a
modified Newton method, which has several benefits over the conventional
N–R method.

Example 3.5.4

For the network shown in Figure 3.8, do the following:

1. Compute the Y-bus admittance matrix and state the initial bus voltages in
polar form.

2. Write down the load-flow equations of the problem using the polar
formulation.

SOLUTION

1. We have in polar form:

The diagonal terms of the Ybus
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Y11 ¼ 6:4031ff�51:34	

Y22 ¼ 10:77ff�68:199	

Y33 ¼ 17:00ff�61:928	:

The off-diagonal terms of the Ybus

Y12 ¼ 0

Y13 ¼ 6:4031ff128:66	
Y23 ¼ 10:77ff111:80	:

Furthermore, Yij¼ Yji since the admittance matrix is inherently symmetrical.
The bus voltages are represented as

V1 ¼ 1ff0
V2 ¼ 1:1249ffu2
V3 ¼ jV3jffu3:

1. We now can write the PFE for the three-bus system shown in Figure 3.8.

For bus 1, we have

P1 � jQ1 ¼ V*1 (Y11V1 þ Y12V2 þ Y13V3)

) P1 � jQ1 ¼ 6:4031ff�51:34	 þ 6:4031jV3jff128:66þ u3:

For bus 2, we have

P2 � jQ2 ¼ V*2 (Y12V1 þ Y22V2 þ Y23V3)

) 1:7� jQ2 ¼ 13:628ff�68:199	 þ 12:115V3ff118þ u3 � u2:

For bus 3, we have

P3 � jQ3 ¼ V*3 (Y13V1 þ Y23V2 þ Y33V3)

) �2þ j1 ¼ V3ff�u3[6:4031ff128:66	 þ 10:77ff111:8*1:1249
ffu2 þ 17ff�61:928*V3ffu3]:

y23 = 4 − j10 y13 = 4 − j5~

Bus 1 

P3=−2.00 pu
Q3= −1.00 pu

Bus 2 

~

Bus 3
P2 =1.7 pu
|V2|= 1.1249 pu

FIGURE 3.8
Single-line diagram.
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This reduces to

�2þ j1 ¼ 6:4031V3ff128:66	 þ 12:11V3ff111:8� u2 � u2

þ 17:00V3ff�61:928	:

We now separate the real and imaginary parts of the above equations such
that:

For bus 1

P1 ¼ 4þ 6:4031V3 cos(128:66þ u3)

�Q1 ¼ �5þ 6:4031V3 sin(128:66þ u3):

For bus 2

1:7 ¼ 5:6612þ 12:115V3 cos(111:8þ u3 � u2)

�Q2 ¼ �12:653þ 12:115V3 sin(111:8þ u3 � u2):

For bus 3

�2 ¼ 6:4031V3 cos(128:66� u3)þ 12:115V3 cos(111:8þ u2 � u3)

þ 8V2
3

1 ¼ 6:4031V3 sin(128:6� u3)þ 12:115V3 sin(111:8þ u2 � u3)

�15V2
3 :

The above six equations define the PF problems in polar form.

3.5.3 Fast-Decoupled PF Method

The fast-decoupled PF method is a very fast technique for computing the PF
solution, in which both speed and sparsity are exploited. The technique is an
extension of Newton’s method formulated in polar coordinates with certain
approximations.

The earlier PFE (i.e., Equation 3.72) using the N–R method can be
expressed in polar coordinates as

DP
DQ

� �
¼ H N

M L

� � Dd
DjVj
V

" #
, (3:89)

where H, N, M, and L are the elements (viz., J1, J2, J3, and J4) of the Jacobian
matrix. Since changes in real power (i.e., DP) are less sensitive to the changes
in voltage magnitude (DV) and changes in reactive power (i.e., DQ) are less
sensitive to the changes in angle (Dd), Equation 3.89 is written as

DP
DQ

� �
¼ H O

O L

� � Dd
DjVj
V

" #
: (3:90)
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Equation 3.90 consists of two decoupled equations:

[DP] ¼ [H][Dd] (3:91)

and

[DQ] ¼ [L]
[DV]
V

: (3:92)

The elements of the Jacobian (Equation 3.90) are defined again (Equation 3.88),

Hpq ¼
dPp

ddq
and Lpq ¼

dQp

dEq
jEqj:

Equations 3.91 and 3.92 for calculating the elements of the Jacobian
(H and L) are

Pp ¼
Xn
q¼1

jVpVqYpqj cos[upq þ dp � dq]

¼ jVpVpYppj cos upp þ
Xn
q¼1

jVpVqYpqj cos[upq þ dp � dq] (3:93)

and

Qp ¼ jVpVpYppj sin upp þ
Xn
q¼1
q6¼p

jVpVqYpqj sin [upq þ dp � dq]: (3:94)

The off-diagonal elements of H are

Hpq ¼
dPp

ddq
¼ jVpVqYpqj sin [upq þ dp � dq]

¼ jVpVqYpqj sin[upq] cos[dp � dq]þ cosupq sin[dp � dq]
� �

¼ jVpVqj Ypq sin upq cos[dp � dq]þ Ypq cos upq sin[dp � dq]
� �

¼ jVpVqj �Bpq cos [dp � dq]þ Gpq sin[dp � dq]
� �

: (3:95)

Similarly, the off-diagonal elements of L are

Lpq ¼
dQpjVqj
dVq

¼ jVpVqYqpj sin[upq þ dp � dq]

¼ jVpVqj Gpq sin[dp � dq]� Bpq cos[dp � dq]
� �

: (3:96)
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From Equations 3.95 and 3.96, it is evident that

Hpq ¼ Lpq ¼ jVpVqj Gpq sin[dp � dq]� Bpq cos[dp � dq]
� �

: (3:97)

The diagonal elements of H are given by

Hpp ¼
dPp

ddp
¼ �

Xn
q¼1
q6¼p

jVpVqYpqj sin[upq þ dp � dq]

¼ �
Xn
q¼1

jVpVqYpqj sin[upq þ dp � dq]� jVpVqYppj sin upp
2
4

3
5

¼ [þQp þ V2
pBpp]

¼ �V2
pBpp �Qp (3:98)

and the elements of L are given by

Lpp ¼
dQpjVpj
dVp

¼ j2V2
pYppj sin upp þ

Xn
q¼1
q6¼p

jVpVqYpqj sin[upq þ dp � dq]

¼ j2V2
pYppj sin upp þQp � jV2

pYppj sin upp
¼ Qpþ ¼ jV2

pYppj sin upp
¼ �V2

pBpp þQ: (3:99)

In the case of fast-decoupled PF formulation, the following approximations
are made.

cos[dp � dq] � 1

Gpq sin[dp � dq] 
 Bpq

and

Qp 
 BppV2
p : (3:100)

These approximations are made for the calculations of elements of JacobianH
and L, to yield

Hpq ¼ Lpq ¼ �jVpjjVqjBpq for q 6¼ p

and

Hpp ¼ Lpp ¼ �Bpq V2
p

��� ���: (3:101)
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Equations 3.91 and 3.92 with the substitutions of elements of Jacobian Equa-
tion 3.99 take the form

DP ¼ HDd,

that is,

[DPp] ¼ [Vp][Vq][B0
pq][Ddq] (3:102)

and similarly

[DQp] ¼ [Vp][Vq][Bpq
00 ][DV], (3:103)

where B0
pq and Bpq

00 are the elements of the [-B] matrix.
Further decoupling and the final algorithm for fast-decoupled PF studies

are obtained by the following:

1. Omit from B0 the representation of those network elements that affect
MVAr flows, that is, shunt reactances and off-nominal in-phase
transformer taps.

2. Omit from B00 the angle-shifting affects of phase-shifters.

3. Divide Equations 3.102 and 3.103 by Vp set Vq¼ 1 pu, and also
neglect the series resistances in calculating the elements of B0.

With these assumptions, Equations 3.102 and 3.103 take the following final
form:

DPp

Vp

� �
¼ [B0][Dd] (3:104)

and

DQp

Vp

� �
¼ [B0][DV], (3:105)

where both [B0] and [B00] are real and sparse and have the same structure
as H and L, respectively. Since they contain network admittances, they
are constant and need to be triangularized only once at the beginning of
the iterations. This algorithm results in a very fast solution of Dd and DV.

3.5.4 Linearized (DC) PF Method

The resistance of transmission lines is rather small compared to the react-
ances of those lines. Then the resistances are neglected to simplify the
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solutions. Considering the nominal p model of a medium transmission line,
we can represent the line with its inductive reactance only. Then the trans-
mission line parameters (ABCD) will be

A ¼ D ¼ 1ff0
B ¼ jXik, C ¼ 0

(3:106)

and the PFs through the line are

PS ¼ �VSVR

X
cos (90	 þ d) ¼ VSVR

X
sin (d)

PR ¼ �VSVR

X
cos (90	 � d) ¼ VSVR

X
sin (d)

(3:107)

for small angles, sin(d)¼ d. Hence, the line flows become

Pik ¼ ViVk

Xik
dik,

dik ¼ di � dk:

(3:108)

Since all bus voltages of a power system are around 1 pu, let

Vi ¼ Vk ¼ 1 pu,

bik ¼ �1
Xik

:
(3:109)

Then Equation 3.108 becomes

Pik ¼ �bikdik ¼ di � dk
Xik

: (3:110)

Now, the bus power at any bus is the sum of the PFs in the lines connected to
that bus. Hence

Pi ¼
XN
k¼1

Pik ¼
XN
k¼1

�bikdik i ¼ 1, 2, . . . , N (3:111)

or in matrix form

P1

P2

..

.

PN

2
66664

3
77775 ¼ �

b11 b12 � � � b1N
b21 b22 � � � b2N
..
. ..

. ..
. ..

.

bN1 bN2 � � � bNN

2
66664

3
77775

d1

d2

..

.

dN

2
66664

3
77775: (3:112)
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which can be abbreviated as

[P] ¼ [b][d],

bik ¼ �1
Xik

, bii ¼
XN
k¼1

(�bik):
(3:113)

That is, the matrix

[d] ¼ [b]�1 [P]½ �: (3:114)

Until now, we have kept the system ground as the reference bus. However,
since we have adopted all shunt branches in simplifying things, we have lost
our reference. This means that the matrix [b] of Equation 3.112 obtained by
Equation 3.113 will be a singular matrix. Hence [b]�1 does not exist. To
overcome this difficulty, we select one of the buses as reference and assign
zero radian to its angle (as in the swing bus for ac PF). Then, all the calculated
angles will be referred to this bus, and the row and column corresponding to
this bus in [b] will be dropped to produce a nonsingular [b] matrix.

Note that since the system is linearized, the solution is direct and there is
no need for an iterative procedure.

3.6 Practical Applications of PF Studies

The way in which PF studies are used encompasses two system areas: system
planning and system operation. System planning has the objective of design-
ing a system capable of providing reliable bulk electric supply. The common
tasks of the system planner include transmission planning (the design, analy-
sis, and sizing of future transmission circuits), interchange studies, gener-
ation adequacy studies, and cost-to-benefit analyses of system additions.
Generation planning is also considered as part of system planning. System
operation aims at setting, adjusting, and operating the system to produce a
reliable and economical electric energy supply. Included in system operation
tasks are economic dispatch of the generating stations (i.e., calculating the
power levels at each generating unit so that the system is operated most
economically), contingency analysis (analysis of outages and other forced
operating conditions), and studies that ensure power pool coordination.

In most phases of each of these areas, load-flow studies are used to assess
system performance under given operating conditions. An important appli-
cation of PF studies involves transmission planning. Models of the future
system are prepared and, typically, peak load conditions are used to run
a study. The intention is to find the proper size components (conductors,
transformers, reactors, and shunt capacitors), and, in addition, transmission
facility sitingmaybe considered. In some cases, series capacitors, phase-shifters,
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and tap-changing under loads (TCULs) are studied where control of PF is
important. A second general area of system planning in which PF studies
are indispensable is interchange studies. Interties with neighbors are planned
to meet predicted needs of the system consistent with reliability requirements.
Load-flow studies identify line loads and bus voltages out of range, inappro-
priately large bus phase angles (and the potential for stability problems),
component loads (principally transformers), proximity toQ-limits at generation
buses, and other parameters that have the potential of creating operating
difficulties.While peak load studies are frequently performed, sometimes inter-
mediate loads and off-peak (minimum) load conditions are used. Off-peak
loads may result in high-voltage conditions that are not identified during
the peak load.

3.6.1 Case Study Discussion

System operation tasks that utilize PF studies retaining all bus voltage and
transmission component loads within range involve loss calculations, area
coordination, calculation of fixed-tap settings, and various types of contin-
gency checks. The latter checks the effects of line and component outages
(sometimes multiple contingencies are considered). Contingency studies are
usually done offline (i.e., in advance of operating the system under the
conditions considered). A typical line outage contingency study consists of
a base-case PF study (with all lines in service) followed by contingency cases
in which key lines are outaged. Key lines are identified in a variety of ways:
lines that are heavily loaded or have a small load margin (rating minus
operating load), lines with high-angular difference in terminal bus voltage
phases, extra high-voltage circuits, or lines that are known to the operators to
be essential to system integrity. The latter come from system operating
experience and are often the most reliable means of identifying key lines. In
some cases, approximate PF studies may be sufficient to identify problems
in contingency studies—several suitable approximate methods are presented
in Chapter 4. Contingency studies are particularly important to maintain
reliable service. If a line outage causes other circuits to become heavily
loaded, those circuits may trip out by the action of protective relays. These
additional outages can result in further outages in an uncontrolled way. The
term cascade tripping applies to this undesirable operating condition.

3.7 Illustrative Examples

Example 3.7.1

Find all the solutions to the following two nonlinear simultaneous equations

4x1 þ 3x22 ¼ 0

6x1x2 þ 2x2 ¼ 0:
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SOLUTION

To find all the solutions, we can use the first equation to define x1 as a function of
x2, x1 ¼ (�3)=4ð Þx22. By substituting in the second equation, we get

6
�3
4

x22

 �
x2 þ 2x2 ¼ 0:0 ) 2x2 1� 9x22


 � ¼ 0:0,

which can be factored as follows

2x2 (1� 3x2)(1þ 3x2)½ � ¼ 0:0,

which has three possible solutions, namely

x2 ¼ 0:0, x2 ¼ 1
3
, and x2 ¼ �1

3
:

The available solutions are

1. x2¼ 0.0, x1¼ 0.0

2. x2 ¼ 1
3
, x1 ¼ �3

4
1
9

 �
¼ �1

12

3. x2 ¼ �1
3

, x1 ¼ �3
4

1
9

 �
¼ �1

12

Then the solution points are

(0:0)0,
�1
12

,
1
3

 �0
, and

�1
12

,
�1
3

 �0
:

Example 3.7.2

The circuit elements in the 138 kV circuit in Figure 3.9 are in per unit on a 100
MVA base with the nominal 138 kV voltage as base. The (Pþ jQ) load is sched-
uled to be 170 MW and 50 MVAr.

1. Write the Y matrix for the two-bus system.

2. Assume that bus 1 is a reference bus and set up the G–S correction
equation for bus 2.

3. Use a flat start on bus 2. Carry out two or three iterations and show that
you are converging.

SOLUTION

1. The line impedance of this line is z12¼ 0.01þ j0.04 (pu). Then the line
admittance can be expressed as

y12 ¼ 1=z12 ¼ 1
(0:01þ j0:04)

¼ 5:88� j23:53 (pu):
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The bus admittance matrix components can be expressed as follows.

Y11 ¼ y12 þ y10 ¼ (5:88� j23:53)þ (j0:01) ¼ 5:88� j23:54

Y22 ¼ y12 þ y20 ¼ (5:88� j23:53)þ (j0:01) ¼ 5:88� j23:54

Y12 ¼ y21 þ�y12 ¼ �(5:88� j23:53):

Then the Y-matrix can be expressed as

Ybus ¼
5:88� j23:54 �5:88þ j23:53

�5:88þ j23:53 5:88� j23:54

� �
:

2. Taking bus 1 as reference, V1¼ 1.0ff0.0 (pu).
The G–S equation for bus 2 is

V (nþ1)
2 ¼ 1

Y22

P2 � jQ2

V*(n)2

� Y21V
(n)
1

" #
:

We have the load P2� JQ2¼ (1.7 – j0.5) (pu).

First iteration
Taking as an initial value V (0)

2 ¼ 1:0ff0:0 (pu),

V (1)
2 ¼ 1

Y22

P2 � jQ2

V*(0)2

� Y21V1

" #

V (1)
2 ¼ 1

(5:88� j23:54)
(1:7� j0:5)
1:0ff0:0 � (�5:88þ j23:53)(1:0ff0:0)

� �

¼ 1:039ff3:48	 (pu):

Bus 2 z12 = 0.01+ j0.04 puBus 1 

ycap = + j0.01 pu ycap = + j0.01 pu

FIGURE 3.9
One-line diagram for Example 3.7.2.
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Second iteration
Now

V (1)
2 ¼ 1:039ff3:48	 (pu)

V (2)
2 ¼ 1

Y22

P2 � jQ2

V*(1)2

� Y21V1

" #

V (2)
2 ¼ 1

(5:88� j23:54)
(1:7� j0:5)

(1:039)ff�3:48	
� (�5:88þ j23:53)(1:0ff0:0)

� �
¼ 1:04ff3:21	 (pu):

Third iteration
Now

V (2)
2 ¼ 1:04ff3:21	 (pu):

V (3)
2 ¼ 1

Y22

P2 � jQ2

V*(2)2

� Y21V1

" #

V (2)
2 ¼ 1

(5:88� j23:54)
(1:7� j0:5)
1:04ff�3:21	

� (�5:88þ j23:53)(1:0ff0:0)
� �

¼ 1:0402ff3:22	 (pu):

As a result, we can say V (1)
2 � V (2)

2 .
Then V2¼ 1.0402ff3.228 (pu).

Example 3.7.3

Consider the simple electric power system shown in Figure 3.10 and carry
out the following calculations. Write down the elements of the bus admittance
matrix Y.

~ ~

Slack bus
V1=1.00 pu

y12 = 2 − j4 pu

PV-Bus 
P=1.6 pu

y13 =3 − j6 pu

Load bus 
P3=−2.00 pu
Q3=1.00 pu

Bus 1 Bus 2

Bus 3 

|V2| = 1.1 pu

FIGURE 3.10
System for illustrative Example 3.7.3 (Section 3.7).
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1. Using the active power equation at bus 2. Calculate the phase angle u2.

2. Using the active and reactive power equations at bus 3. Calculate jV3j
and hence u3

3. Calculate the active real power at bus 1.

4. Find the total active power loss in the system.

SOLUTION

1. Calculation of the terms of the YBUS yields

Y11 ¼ 5� j10, Y22 ¼ 2� j4

¼ 11:18ff�63:43, ¼ 4:47ff�63:43

Y33 ¼ 3� j6, Y12 ¼ �2þ j4

¼ 6:71ff�63:43, ¼ 4:47ff�116:57

Y13 ¼ �3þ j6

¼ 6:71ff116:57:

At bus 2

P2 ¼ jV2j Y12V1 cos(u2 � u1 �C12)þ Y22V2 cos(u2 � u2 �C22)½
þ Y23V3 cos(u2 � u3 �C23)�

and thus

1:6 ¼ 1:1[(4:47)(1:0) cos(u2 � 116:57)þ (4:47)(1:1) cos (�63:43)]:

As a result

cos (u2 � 116:57) ¼ �0:1669

u2 � 116:57 ¼ �99:59535

u2 ¼ (216:16	) or (16:97465	):

Take u2¼ 16.974658.
For bus 3, we have

P2 ¼ jV3j jY31jjV1j cos (u3 � u1 �C31)þ jY33jjV3j cos (�C33)½ �:

By substituting, we get

�2 ¼ jV3j 6:71*1* cos (u3 � 116:57)þ 6:71V3 cos (63:43)½ �:

Thus

�2
6:71

¼ V2
3 cos 63:43þ V3 cos (u3 � 116:57):
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Also we have

Q3 ¼ jV3j jY31jjV1j sin (u3 � u1 �C31)þ jY33jjV3j sin (�C33)½ �
1 ¼ jV3j 6:71 sin (u3 � 116:57)þ 6:71V3 sin (63:43)½ �

1
6:71

¼ jV3j2 sin 63:43þ jV3j sin (u3 � 116:57):

Combining Equations (a) and (b),

2
6:71

þ jV3j2 cos (63:43)
� �2

þ 1
6:71

þ jV3j2 sin (63:43)
� �2

¼ jV3j2

or

jV3j4 þ 4
6:71

jV3j2 cos (63:43)þ 0:5 sin (63:43)½ � þ 5
(6:71)2

¼ jV3j2;

this gives

jV3j4 � jV3j2 þ 1
a
¼ 0

jV3j2 ¼ 1� ffiffiffiffiffiffiffiffi
5=3

p
2

:

Take the positive sign: jV3j2¼ 0.8727.
The solution for jV3j is jV3j ¼ 0.9342.
As a result�2=6.71¼ 0.8727 cos(63.43)þ 0.9342 cos(u3� 116.57). Thus

cos(u3� 116.57)¼�0.7369014307, or u3� 116.57¼�137.468. As a
result u3¼�20.898. We now obtain P1 as

P1 ¼ jV1j jY11jjV1j cos (�C11)þ jY12jjV2j cos (u1 � u2 �C12)½
þ jY13jjV3j cos (u1 � u3 �C13)�

P1 ¼ 0:9937:

3.8 Conclusion

The chapter discussed the PF problem as an important tool for the operation
of the existing power system as well as planning for expected expansion. It
started by classifying the different buses in an electric power system network
and defined the quantities associated with each of the specific types in
Section 3.2. Section 3.3 presented the general forms of the PFEs in an electric
power system. Section 3.4 gave insights on potential modeling considerations
in the generation subsystem, transmission subsystems, and load modeling.
The formulation was extended to handle transformer and phase-shifter
inclusion in the PF model; the formulation in both polar and rectangular
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coordinates was also presented in this section. The different iterative tech-
niques used to solve the PF problem including the G–S iterative technique
and the N–R method were presented in Section 3.5. Special forms of load-
flow solution methods such as fast-decoupled PF were presented at the end
of this section. Some practical applications of the power-flow studies and
some illustrative examples to the power-flow problem were presented in
Section 3.5. The formulation in both polar and rectangular coordinates was
also presented followed by some unsolved exercises.

3.9 Problem Set

PROBLEM 3.9.1

Given the following equations

f1(x) ¼ x1 � x22 þ x2 ¼ 0

f2(x) ¼ 2x22 � x1x2 � 4 ¼ 0:

Obtain their solutions using the Jacobian method?

PROBLEM 3.9.2

Consider the following nonlinear simultaneous equations

f1(x) ¼ x21 þ x2 ¼ 0

f2(x) ¼ x1 þ x2 ¼ 0:

1. Solve the equations graphically.

2. Solve f1 for x2 and f2 for x1, solve the equations by the Jacobian
method with x1¼ 0.5 as an initial guess.

3. Show how Part 2 converges graphically.

PROBLEM 3.9.3

A one-line diagram of a three-bus power system is given in Figure 3.11,
where the reactances are in per units on a 100 MVA base. Use G–S
iteration to obtain the PF solution within a tolerance of 0.01 pu,

V1 ¼ 1:0ff0 pu

V2 ¼ 1:0ff0 pu

P2 ¼ 0:6 pu

P3 ¼ �1:0 pu

Q3 ¼ �0:75 pu (lagging):
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PROBLEM 3.9.4

Do one N–R iteration of the power system of Problem 3.9.3?

PROBLEM 3.9.5

Using the solution to Problem 3.3, calculate the PF through lines 1–3 at
both ends?

PROBLEM 3.9.6

Consider a six-bus power system as shown in Figure 3.12. The line
impedances are in per units on a 100 MVA, 138 kV system base and the
generator at the slack or reference bus operates at rated voltage. Table 3.6
shows the system load for the six-bus power system.

1. Solve the PF problem for the given system using the G–S
approach. Calculate the total system losses in the transmission
network.

2. Consider the loss of line L5–6. Resolve the PF problem and the
transmission losses.

3. Compare the results of Part (1) and Part (2). Explain the effect of
the line outage on the voltage profile of the system.

PROBLEM 3.9.7

Given the network shown in Figure 3.13 (base 100MVA), do the following:

1. Calculate the phase angles for the set of power injections?

P1¼ 100 MW generation
P2¼ 120 MW load
P3¼ 150 MW generation
P4¼ 200 MW load.

Bus 2 

~

Bus 1 

~

Bus 3 

y23= j0.25

y12 = j0.20

y13= j0.40

FIGURE 3.11
One-line diagram for Problem 3.9.3.
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TABLE 3.6

Load Profile for the Six-Bus Power System

Load

Bus ID Real Power, Pi (MW) Reactive Power, Qi (MVAr)

1 0 0

2 85 60

3 15 8.0

4 60 37

5 10 �4.0

6 36 24

~

Bus 6 Bus 4 

y45 = j0.02

Bus 5

Bus 1 Bus 2 Bus 3y12= j0.009

y14 = j0.003

y23= j0.010

y26= 0.01 + j0.04

y56= 0.01+ j 0.03

~

V4 = 1.05 pu
P4 = 1.85 pu

FIGURE 3.12
Simplified six-bus power system.

~
Bus 1 Bus 2

r12= 0.01
x12= j0.03

~

Bus 3 

Bus 4

Bus 5

~

P4

P1

P5

P2

P3r25 = 0.09
x25 = j0.25

r45 = 0.03
x45 = j0.05

r35 = 0.03
x35 = j0.06

FIGURE 3.13
Four-bus network for Problem 3.9.7.
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2. Calculate P5 according to the decoupled load flow?

3. Calculate all PFs on the system using the phase angles found in
Part I?

4. Optional: Calculate the reference bus penalty factors for buses
through 4. Assume all bus voltage magnitudes are 1.0 pu?

PROBLEM 3.9.8

For the network shown in Figure 3.14 solve the PF problem using the N–R
method.
This part of the network is working on 138 kV.
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Bus 3 

Bus 2 Bus 1 z12 = 12 + j18 Ω

z23 = 3 + j12 Ω

z13 =2 + j12 Ω

PD1=16 MW
QD1 = 8 MVAr

PD3 = 12.5 MW
QD3 = 4.3 MVAr

V1=0.99 + j0.05 pu
Pg1= 12 MW

V2 = 1 + j0 pu~ ~

FIGURE 3.14
Three-bus network for Problem 3.9.8.
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4
Constrained Optimization and Applications

4.1 Introduction

Practical system problems are very often formulated with some constraints
imposed on their variables. Optimization of such problems must be carried
out within the limits of these constraints. The basic difference between the
constrained and the unconstrained problems is the selection of admissible
points that are eligible for optimization. The so-called admissible points are
those vectors that satisfy the constraints of the problem. An optimum of the
constrained problem is judged by the comparison of admissible points.
Constrained problems are assumed to have at least one admissible point.

Lagrange multipliers are known as an effective means of dealing with
constraints. Two theorems for functions are given. The first theorem in
each case gives a necessary condition and the second theorem gives a suffi-
cient condition for minimization of constrained problems. Again, we apply
the sufficiency theorems to test for maximum of f(y) by minimizing f(y).
Procedures for solving the constrained problems by using the theorems are
listed and also utilized in the solutions of the illustrative problems [1,2].

Before we continue further, I wish to introduce some necessary background
in analytic computation that will be useful in optimization work. First, it
includes matrix notation and some special properties that have significant
applications in operation research and power systems in particular. Basic foun-
dations inmatrix algebra and functional calculus are required by the reader and
the author has introduced standard background operations to test negative
and positive semidefinite conditions on Jacobian and Hessian matrices.

Now, consider the n-dimensional before given by y(t)¼ [y(t)1, y(t)2, . . . ,
y(t)n]

T where each element yi(t) is continuous in time and y is special scalar
when n¼ 1. In this chapter, we limit our attention to case when y is inde-
pendent of t. Then, n�m matrix M is now defined as M¼ [yj] where the
vector construct of the matrix is M¼ [yj j j¼ 1,m]¼ [yi,j]n�m.

By definition, if A is square and Hermitian such that its M¼ (MT)*¼My,
then M is positive definite if, for all nonzero n-dimensional vectors x, the
inner product is strictly positive. That is to say hMx,xi> 0. And,M is positive
semidefinite if, under the same conditions, hMx,xi � 0. (Reversing the signs
concludes a parallel definition for negative definite and negative semidefinite
conditions, respectively.)
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Alternatively, M is said to be positive semidefinite if all its eigenvalues are
positive and hMx,xi � xTMx> 0. This definition is particularly important in
characterizing the convex behaviors of many nonlinear systems, and in
particular, those with quadratic models.

Other computational considerations of matrices in vector notation used in
the text include the formulations of the following:

1. n� n Jacobian matrix or J(f(x))

The Jacobian matrix is the array of all first-order partial derivatives
of a vector-valued function such that:

J(x) ¼ r( f (x)) ¼ @fi
@xj

� �
n�n

, where i 2 {1,n} and i 2 {1,n}

2. Development of the Hessian H(x) matrix

Consider the matrix product given by

yTJ(f(x))y ¼
Xn
i¼1

Xn
j¼1

@2f
@xixj

yiyj

� �

(quadratic form of the matrix product)

The form is positive definite if yTJ(x)y> 0 for all real values of zi and zj.
The test for this condition can be found by evaluating a set of deter-
minants of J(y(x)). The Hessian is now defined at the determinant of
the Jacobianmatrix J and is the nth principal determinant of J given by

H(f(x)) ¼ jJ(f(x))j ¼ @2f
@xixj

� �����
����
n�n

, where i 2 {1,n} and i 2 {1,n}

(The corresponding principal subdeterminants are called sub-Hessians.)
The symmetric matrix A is said to be negative definite if its corre-

sponding form is negative definite A¼ yTJ(x)y< 0. In general,
the positive (or negative) definite tests on the symmetric Hessian
matrix are used in the criteria for local minima (or maxima) to be
discussed later in subsequent sections of the chapter.

4.2 Theorems on the Optimization of Constrained Functions [5,6]

The constrained problem is defined to optimize the scalar function f(y)
subject to constraints

fi(y) ¼ Ki, for i ¼ 1, 2, . . . , m, (4:1)
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where all fi(y) are real, scalar, and single-valued functions of y. Although
the problem is formulated with equality constraints, problems with
inequality constraints can be solved by varying the parameters Ki after
the optimization.

The Lagrange function for the problem is defined to be the scalar function

L(y) ¼ f ( y)þ lF(y), (4:2)

where

l ¼ [l1, l2, . . . , lm] (4:3)

and

F(y) ¼ [ f1(y), . . . , fm(y)]T: (4:4)

The components li of the row vector l are constant and are known as
the Lagrange multipliers. Note that the Lagrange function is a function of
y and l.

4.2.1 Continuity Assumption

All the functions involved in the following theorems are assumed to be
continuous at x which is an optimum under consideration. For simplicity,
the arguments of the partial derivatives of the Lagrange and constraint
functions evaluated at x are dropped. That is, Lx¼ Lx(x), Lxx¼ Lxx(x), and
Fx¼ Fx(x) are used in the statement without proof of the theorems.

4.2.2 Theorems

THEOREM 4.2.1

If x is an optimum of the constrained problem, then it is necessary that Lx¼ 0 for
some l.

Lx ¼ fx þ lFx ¼ 0: (4:5a)

The Lagrange multipliers designate the coefficients of linear combination.
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THEOREM 4.2.2

If x is a candidate solution as determined by the necessary conditions of Theorem
4.2.1, then the sufficiency conditions that must be satisfied are

T ¼ Lxx(x,l)þ bFTx (x)Fx(x) > 0 (4:5b)

for some positive semidefinite values of b (i.e., b � 0).
The significance of the theorem lies in the facts that (i) the

constrained problem can be extremized without considering the con-
straints and (ii) the nonnegative definite matrix FTxFx that is added to
Lxx in the second theorem enables one to test for sufficiency without
considering the constraints.

4.3 Procedure for Optimizing Constrained Problems
(Functions)

There are four steps involved in solving constrained problems by applying
the theorems:

Step 1: Formulation of the Lagrange function
The inequality constraint Ki1� fi(y)�Ki2 is assumed to be fi(y)¼Ki

with Ki1 � Ki � Ki2 considered as constant during the optimization. Form
F(y) ¼ [ f1(y), f2(y), . . . , fm(y)]

T and L¼ f(y)þ lF(y), where f(y) is to be optimized.

Step 2: Determination of optimum candidate(s)
Set Lx¼ 0 (Theorem 4.2.1), which means replace y by x and then differentiate
with respect to x. Here it is understood that Lx is continuous at x. There
are altogether nþm equations; n from Lx¼ 0 and m from the constraints
that can be obtained to solve for the optimum candidate x and Lagrange
multipliers li.

Step 3: Sufficiency test
Assume that all the functions involved in the following are continuous at x.
Then the candidate x obtained in step 2 is a minimum (Theorem 4.2.2) if the
square matrix

Lxx þ bFTxFx

is positive definite for b � 0. It is a maximum if the matrix is positive definite
after replacing Lxx by �Lxx (actually L by �L).
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Step 4: Further optimization
The function f(x) is now a function of Ki. Further optimization is to be sought
with respect to Ki in the interval Ki1 � Ki � Ki2 for all i. The optimum of Ki

may occur at the boundaries of the constraints.

4.4 Karush–Kuhn–Tucker Condition

Also known as Khun–Tucker or KKT conditions, they are developed to
providing unique tests of the necessary and sufficiency conditions of optim-
ality. It is well developed for nonlinear programming that involves the use of
the Lagrangian approach. A special treatment of the concepts to be described
shortly is also applicable to linear programming problems by taking advan-
tage of duality theorems [6–10].

Recall the generalized NLP

Min f(x)

subject to

gi(x)¼ 0 and hj(x)� 0,

where f(x) is the scalar function of the n-vector x to be minimized. And, for
the set of equality constraints, i 2 {1, p}; for the set of inequality constraints,
j 2 {1,m}. We now summarize the following conditions of KKT.

KKT conditions: If their should exist a point x* at a local minimum of f(x),
there exist constants li and mj where i2 {1,p} and j2 {1,m}, respectively,
such that

1. rf (x*)�Pp
i¼1 lirgi(x*)�

Pm
j¼1 mjrhj(x*) ¼ 0

2. gi(x*)¼ 0 for all i2 {1,p}

3. hj(x*) � 0 for all j2 {1,m}

4. mj � 0 for all j2 {1,m}

5. mjhj(x*)¼ 0 for all j2 {1,m}

This KKT conditions present a new Lagrange multiplier mj that corresponds
to the dual variables in linear programming with economic implications
based on the problem being solved. It should be noted that condition 1 is
the necessary condition for x* to be a candidate, conditions 2 and 3 are the
constraints qualifications, and conditions 4 and 5 are eliminated nonoptimal
solutions to guarantee feasibility, if they exist.
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4.5 Illustrative Problems

PROBLEM 4.5.1

Given a function f (y) ¼ y1 � y22, find an optimum subject to constraint
y1y2� 2.

Solution

1. f1(y)¼ y1y2¼K with 2 � K � 1 and L ¼ y1 � y22 þ ly1y2.

2. Lx¼ [1þ lx2, �2x2þ lx1]¼ 0 gives 1þ lx2¼ 0 and �2x2þ
lx1¼ 0.

Solution of these yields x1¼�2l�2, x2¼�l�1, and K1¼ 2l�3.

3. Lxx þ bFTxFx ¼
0 l

l �2

� �
þ b

x2
x1

� �
[x2 x1]

¼ bx22 bx1x2 þ l

bx1x2 þ l bx21 � 2

" #
:

The matrix has a negative determinant for any b � 0 and, hence,
it cannot be positive definite. Let us try for maximum by
replacing Lxx by �Lxx. That is

Lxx þ bFTxFx ¼
bx22 bx1x2 � l

bx1x2 � l bx21 þ 2

" #

¼ bl�2 2bl�3 � l

2bl�3 � l 4bl�4 þ 2

" #
:

It is positive definite for b> l4=6 and, therefore, the solution of
step 2 is a maximum.

4. Maximum function is

f (x) ¼ �2l�2 � l�2 ¼ �3l�2 ¼ �3
1
2
K

� �2=3

,

where 2 � K � 1. Further maximization yields K¼ 2 for which
f(x)¼�3, x1¼�2, and x2¼�1.

PROBLEM 4.5.2

Optimize f(y)¼ yTPyþCTy subject to linear constraints Ay¼ d where P is
a symmetric n-square and nonsingular matrix. The matrix A is of m� n
with full rank and C and d are n- and m-vectors.

Solution

1. Constraints are Ay¼ d and, hence

L ¼ yTPyþ CTyþ lAy:
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2. Lx¼ 2xTPþCTþ lA¼ 0. The solution of x and l is

x ¼ � 1
2
P�1(ATlT þ C),

where lT¼�(AP�1AT)�1 (AP�1Cþ 2d).

3. Lxx þ bFTxFx ¼ 2Pþ bATA. The solution of step 2 is a minimum
if 2PþbATA> 0 and is a maximum if 2PþbATA> 0 for some
b � 0.

4. f (x) ¼ 1
4 (lA� CT)P�1(ATlT þ C).

(a) Minimum norm of Ay¼ d with m � m. The problem is a
special case of P¼ 1 and C¼ 0. It follows from the result of
step 2 that

lT ¼ �2 AAT� ��1
d and x ¼ AT AAT� ��1

d:

The sufficiency for the minimum is assured by choosing
b¼ 0. The minimized norm is f(x)¼ xTx¼ dT (AAT)�1d.

(b) Least square approximation for Ax¼ d with mn. The prob-
lem is to minimize, without constraint,

f (y) ¼ eTe ¼ (Ax� d)T(Ax� d)

¼ xTATAx� 2dTAxþ dTd:

Let P¼ATA and C¼�2ATd; then the result of step 2 yields

x ¼ (ATA)�1ATd and eTe ¼ dT I � A(ATA)�1AT	 

d:

The norm is a minimum because A is of rank n and hence
ATA> 0. The sufficiency is assured again by choosing b¼ 0.

4.5.1 Nonpower Systems Application Examples

PROBLEM 4.5.3

Consider the function

f (x1, x2, x3) ¼ x1 þ 2x3 þ x2x3 � x21 � x22 � x23:

Solution

Applying the necessary condition rf(X0)¼ 0, this gives

@f
@x1

¼ 1� 2x1 ¼ 0:

@f
@x2

¼ x3 � 2x2 ¼ 0:

@f
@x3

¼ 2þ x2 � 2x3 ¼ 0:
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The solution of these simultaneous equations is given by

X0 ¼ 1
2
,
2
3
,
4
3

� �
:

Another way to check the sufficiency condition is to check the Hessian
matrix H for positive or negative definiteness. Thus

Hjx0 ¼

@2f
@x21

@2f
@x1@x2

@2f
@x1@x3

@2f
@x2@x1

@2f
@x22

@2f
@x2@x3

@2f
@x3@x1

@2f
@x3@x2

@2f
@x23

2
666666664

3
777777775
X0

¼
�2 0 0

0 �2 1

0 1 �2

2
64

3
75

:

The principal minor determinants HjX0
have the values �2, 4, and� 6,

respectively. Thus, HjX0
is negative definite and

X0 ¼ 1
2
,
2
3
,
4
3

� �

represents a maximum point.

4.6 Power Systems Application Examples

4.6.1 Optimal Operation of an All-Thermal System: Equal Incremental
Cost-Loading

A simple, yet extremely useful problem in optimum economic operation of
electric power systems is treated here. Consider the operation of m thermal
generating units on the same bus as shown in Figure 4.1 [4]. Assume that the
variation of the fuel cost of each generator (Fi) with the active-power output
(Pi) is given by a quadratic polynomial. The total fuel cost of the plant is the
sum of the individual unit cost converted to $=h:

F ¼
Xm
i¼1

ai þ biPi þ giP
2
i , (4:6)

where ai, bi, and gi are assumed available.
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We wish to determine generation levels such that F is minimized while
simultaneously satisfying an active-power balance equation. This utilizes the
principle of power-flow continuity. Here, the network is viewed as a medium
of active-power transfer from the generating nodes to the load node. Only
one equation is needed.

The first active-power balance equation model neglects transmission losses
and, hence, we can write

PD ¼
Xm
i¼1

(Pi) (4:7)

with PD being a given active-power demand for the system.
The demand PD is the sum of all demands at load nodes in the system. The

model is useful in the treatment of parallel generating units at the same plant
since in this case the negligible transmission losses assumption is valid.

We write the constraint equation (Equation 4.7)

PD �
Xm
i¼1

(Pi) ¼ 0: (4:8)

The technique is based on including Equation 4.8 in the original cost function
by use of a Lagrange multiplier, say l, which is unknown at the outset. Thus

L ¼ FT þ l PD �
Xm
i¼1

(Pi)

" #
, (4:9)

where

FT ¼
Xm
i¼1

Fi(Pi)½ �:

P1 P2

PD

Pm

1 2 m

FIGURE 4.1
Units on the same bus.
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Note that l is to be obtained such that Equation 4.8 is satisfied. The idea here
is to penalize any violation of the constraint by adding a term corresponding
to the resulting error. The Lagrange multiplier is, in effect, a conversion factor
that accounts for the dimensional incompatibilities of the cost function ($=h)
and constraints (MW). The resulting problem is unconstrained, and we have
increased the number of unknowns by one.

The optimality conditions are obtained by setting the partial derivatives of
L with respect to Pi to 0. Thus

@Fi
@Pi

� l ¼ 0: (4:10)

Note that each unit’s cost is independent of the generations of other units.
The expression obtained in Equation 4.10 leads to the conclusion that

l ¼ @F1
@P1

¼ @F2
@P2

¼ � � � : (4:11)

The implication of this result is that for optimality, individual units should
share the load such that their incremental costs are equal. We can see that
the l is simply the optimal value of incremental costs at the operating
point. Equation 4.10 is frequently referred to as the equal incremental cost-
loading principle.

Implementing the optimal solution is straightforward for the quadratic
cost case where we have

Fi(Pi) ¼ ai þ biPi þ giP
2
i :

Our optimality conditions from Equation 4.10 reduce to

bi þ 2giPi � l ¼ 0: (4:12)

The value of l is determined such that Equation 4.8 is satisfied. This turns out
to give

l ¼ 2PD þPm
i¼1 (bi=gi)Pm

i¼1 g
�1
i

: (4:13)

Finally, using Equation 4.12 the optimal generations are obtained as

Pi ¼ l� bi

2gi
: (4:14)
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4.6.2 Optimal Operation of an All-Thermal System, Including Losses

We are interested in minimizing the total cost given by Equation 4.6 while
satisfying the active-power balance equation including losses. Thus

PD ¼
Xm
i¼1

(Pi)� PL, (4:15)

where PL is the active-power loss considered as a function of the active-
power generation alone as outlined in the previous section. Following our
treatment for the loss-free case, we form the augmented cost function:

F̂ ¼ FT þ l PD þ PL �
Xm
i¼1

(Pi)

" #
: (4:16)

The optimality conditions are obtained using the same arguments as before
and are

@Fi
@Pi

þ l
@PL

@Pi
� 1

� �
¼ 0: (4:17)

Note that with negligible transmission losses, the above expression reduces
to Equation 4.19.

It is convenient to transform the obtained optimality expression into an
equivalent form. This is done by defining the factors Li:

Li ¼ 1� @PL

@Pi

� ��1

: (4:18)

We can write Equation 4.17 as

Li
@Fi
@Pi

¼ l (i ¼ 1, . . . , m): (4:19)

This is of the form of Equation 4.11 except for the introduction of the new
factors Li, which account for the modifications necessitated by including the
transmission loss. These are traditionally called the penalty factors to indicate
that plant costs (Fi) are penalized by the corresponding incremental trans-
mission losses (@PL=@Pi).

Examination of Equation 4.19 reveals that the optimal generations are
obtained when each plant is operated such that the penalized incremental
costs are equal.

Flowcharts for the two cases of economic dispatch are shown in Figure 4.2.
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Start

Read Data: Set of thermal units, {i:1, 2, ..., m}
Total demand, PD; Generation limits (Pi

min, Pi
max)

Cost curve coefficients (ai, bi, gi)
Incremental change in lambda, Δl
Iteration tolerance, e, and iteration count limit, N

Initialize counter: n = 1

Compute Pi = (l(o)−bi)(2gi)−1 for ∀i ∈{1, m}

Is n > N? Yes

Yes

Yes

B CA

Display: “solution non-
convergence”

Is Pi < Pi
min ?

Is Pi < Pi
max ?Set Pi = Pi

max

Set Pi = Pi
min

Increment counter:
n = n +1

A B

Compute PNet = Σ Pi − PD

Is PNet > 0?

Yes
l(n+1) = l(n) − Δλ

l(n+1) = l(n) + Δλ

Display solutions
for l, Pi, n, and e

End

Yes

Is |PNet |< e?

m

i =1

C

(a)

FIGURE 4.2
Economic dispatch flow chart. (a) Neglecting the contributions of transmission losses, and
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Start

Read date:
Set of thermal units, {i: 1, 2, ..., m}
Total demand, PD
Generation limits, Pi

min, Pi
max

B-Coefficients of the network, Bij
Incremental change in lambda, Δλ
Cost curve coeffeicients, ai, bi, gi
Iteration tolerance, e, and iteration count limit, N

Initialize counter: n = 1

l
m

j = 1, i ≠ j
1 − 2  Σ  (Bij Pj) − bi

2gi Bij − 2gi

Display: “solution non-
covergence”

Yes

FED

Set Pi = Pi
max

Set Pi = Pi
min Yes

Yes Is Pi > Pi
max?

Is Pi < Pi
min?

Is n < N ?Incement counter:
n = n + 1

Iteratively solve Pi =

D E

Compute PLoss = ΣΣPiBijPj

and PNet = ΣPi − PD − PLoss

Is PNet>0? Is |PNet| < e?

Yes Yes
Display solutions
for l, Pi, n and e

End
(b)

l(n+1)= l(n) − Δl

l(n+1)= l(n) + Δl

m

m
i = 1 j = 1

i = 1

m

F

FIGURE 4.2 (continued)
(b) accounting for the effects of transmission losses.
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PROBLEM 4.6.1

A certain power system consists of two generating plants and a load. The
transmission losses in the system can be approximated by the following
quadratic equation.

PLoss ¼ 0:606� 10�3P2
1 þ 0:496� 10�3P2

2:

The cost functions of the units are modeled such that

b 1 ¼ 10:63 g1 ¼ 3:46� 10�3

b2 ¼ 12:07 g2 ¼ 3:78� 10�3:

Given that the output of plant 2 is 445 MW while it is being operated
under optimal conditions, determine the

1. Incremental cost of operating the units, assuming the equal cost
sharing

2. Output of plant 1

3. Total power losses

4. Efficiency of the system

Solution

1. For economic dispatch (optimal power flow, see Figure 4.2) at
plant 2,

@Fi(Pi)
@Pi

¼ l 1� @PLoss

@Pi

� �����
i¼2

,

where

F2(P2) ¼ a2 þ b2P2 þ g2P
2
2,

b2 þ 2l2P2 ¼ l 1� @PLoss

@P2

� �

) l ¼ b2 þ 2l2P2

(1� (@PLoss=@P2))

¼ 12:07þ 2(3:78� 10�3)(445)
1� 2(0:496� 10�3)(445)

l ¼ 27:63 ($=MW h):

2. Similarly, for the optimal operation of plant 1:

b1 þ 2l1P1 ¼ l 1� @PLoss

@P1

� �
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b1 þ 2l1P1 ¼ l(1� 2b11P1)

) P1 ¼ l� b1

2(g1 þ lb11)

¼ 27:63� 10:63
2(0:00346þ (27:63)(0:606� 10�3))

¼ 421 MW:

3. Hence, the total power losses due to transmission are

PLOSS ¼ 0:606� 10�3 � (421)2 þ 0:496� 10�3 � (445)2

¼ 107þ 98:2

¼ 107þ 98:2

¼ 206 MW:

4. Efficiency of the system is given as

h ¼ Poutput

Pinput

¼ 1� PLOSSP
i Pi

� �

¼ 1� 206 MW
(421þ 445) MW

� �

¼ 0:763% or 76:3%:

4.7 Illustrative Examples

Example 4.7.1

Find the local and global minima of the function

f (x) ¼ f (x1,x2) ¼ x21 þ x22 � 2� 1� 4x2 þ 5jx1j, jx2j � 3:

SOLUTION

min F(x) ¼ x21 þ x22 � 2x1 � 4x2 þ 5

jx1j � 3 ! �3 � x1 � 3

s:t:

jx2j � 3 ! �3 � x2 � 3:
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We can change the constraint to be an equality constraint

x1 � k1, �3 � k1 � 3

x2 ¼ k2, �3 � k2 � 3:

1. From the Lagrange function.

L ¼ x21 þ x22 � 2x1 � 4x2 þ 5þ l1x1 þ l2x2:

2. Determine optimum candidates:

@L
@xi

¼ 0

@L
@x1

¼ 2x1 � 2þ l1 ¼ 0 ! x1 ¼ 1� 0:5l1

@L
@x2

¼ 2x2 � 4þ l2 ¼ 0 ! x2 ¼ 2� 0:5l2:

3. Sufficiency test.

Lxx þ bFTx Fx > 0 for some positive b,

2 0
0 2

� �
þ b

1
1

� �
[1 1] ¼ 2þ b b

b 2þ b

� �
¼ 4þ 4b > 0 for any b:

Then it is at a minimum.

4. Further optimization.

K1 ¼ K2 ¼ K, as�3 � K � 3

F(K) ¼ K2 � 2K � 4K þ 5 ¼ 2K2 � 2K þ 5:

For minimization FK¼ 4K� 2 ! K¼ 0.5.

FKK ¼ 2 (i:e:, it is minimum)

K ¼ 0:5 ¼ X1 ¼ X2, fmin ¼ 4:5

f (K) ¼ 4:5:

Example 4.7.2

Two thermal units at the same station have the following cost models.

F1 ¼ 793:22þ 7:74P1 þ 0:00107P2
1

F2 ¼ 1194:6þ 7:72P2 þ 0:00072P2
2

100 � P2 � 800 MW and 100 � P1 � 600 MW:

Find the optimal power generated P1 and P2 and the incremental cost of power
delivered for demands of 400, 600, and 1000 MW, respectively.
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SOLUTION

@F1
@P1

¼ 7:74þ 0:00214P1

@F2
@P2

¼ 7:72þ 0:00144P2:

For optimality

@F1
@P1

¼ @F2
@P2

7:74þ 0:00214P1 ¼ l ! P1 ¼ 467:29(l)� 3616:8

7:72þ 0:00144P2 ¼ l ! P2 ¼ 694:44(l)� 5361:1

PD ¼ P1 þ P2:

1. At PD¼ 400 MW, P1þ P2¼ 400.

400 ¼ 467:29l� 3626:8þ (694:44l� 5361:1)

9377:91 ¼ 1161:73l ! l ¼ 8:072

P1 ¼ 155:3 MW, P2 ¼ 244:7 MW;

both of them are within the desired limit:

2. At PD¼ 600 MW, P1þ P2¼ 600 MW.

600 ¼ 467:29(l)� 3616:8þ (694:44(l)� 5361:1)

then

l ¼ 8:245, P1 ¼ 235:78 MW, P2 ¼ 364:22 MW;

both of them are within the desired limit:

3. At PD¼ 1000 MW, P1þ P2¼ 1000 MW.

1000 ¼ 467:29(l)� 3616:8þ (6944(l)� 5361:1)

then

l ¼ 8:589, P1 ¼ 396:7 MW, P2 ¼ 603:33 MW;

both of them are in the desired limit:
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Example 4.7.3

The following fuel cost equations model a plant consisting of two thermal units.

F1 ¼ 0:00381P2
1 þ 9:2P1 þ 70:5 ($)

F2 ¼ 0:00455P2
2 þ 6:0P2 þ 82:7 ($):

1. For a load of 600 MW, determine the optimal power generated by each
unit and the equal incremental fuel cost l at which it operates.

2. For the same load as in Part 1, given that the generation is constrained as

80:0 � P1 � 250 MW

120 � P2 � 400 MW

at what values of l should the units be operated?

SOLUTION

1. From the given data,

l1 ¼ 0:00381, b1 ¼ 9:2, a1 ¼ 70:5

l2 ¼ 0:00455, b2 ¼ 6:0, a2 ¼ 82:7:

By the formula for the incremental fuel cost,

l ¼ 2PD þP
(bi=gi)P

(gi)
�1 ,

where

Xbi

li
¼ 9:2

0:00381
þ 6:0
0:00455

¼ 3:733� 104

X 1
li

¼ 1
0:00381

þ 1
0:00455

¼ 4:822� 102

; l ¼ 2(600)þ 3:733� 104

4:822� 102

¼ 10:23 $ MW h,

at which point, (@Fi=@Pi)¼ l, for all i, such that

2(0:00381)P1 þ 9:2 ¼ 10:23

) P1 ¼ 135 MW:

Similarly, 2(0.00455)P2þ 6.0¼ 10.23 ) P2¼ 465 MW.

Notably, PD¼ P1þ P2 (the power balance equation).
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2. For equal incremental fuel costing, there is a violation on the given
constraint. Therefore, since P2 is greater than P2max, let P2 assume its
upper bound 200 MW. Thus

P1 ¼ PD � P2 ¼ (600� 400)

¼ 200 MW,

which is within the desired limits.
The incremental cost for each unit is calculated from (@F1=@Pi)¼ li, for

all is

l1 ¼ 0:00762P1 þ 9:2 ¼ (0:00762� 200)þ 9:2 ¼ 10:72 $=MW h

and

l2 ¼ 0:00910P2 þ 6:0 ¼ (0:00910� 400)þ 6:0 ¼ 9:64 S=MW h:

Example 4.7.4

Consider a power system that is modeled by two generating plants such that their
cost function parameters are

b1 ¼ 5:93 g1 ¼ 4:306� 10�3

b2 ¼ 6:02 g2 ¼ 4:812� 10�3:

Given also that the network has the following B-coefficients,

B11 ¼ 3:95� 10�4

B22 ¼ 4:63� 10�4,

the system load is 700 MW and the constraints on the generation are

100 � Pgl � 500 MW

80 � Pgl � 500 MW:

1. Calculate the incremental cost and the optimal value for the plants’
output.

2. Neglecting the transmission losses, repeat Part 1 while considering the
following generation constraints.
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SOLUTION

1. Generally, the quadratic approximation of the cost-function modeling
the ith plant is

Fi(Pi) ¼ ai þ biPi þ giP
2
i ,

and the transmission losses can be expressed as

PLoss ¼
Xm
i¼1

Xm
j¼1

(PiBijPj),

where
m is the number of units
Bij is the loss coefficients

For economic dispatch of power from the units with equal cost sharing:

@Fi(Pi)
@Pi

¼ l 1� @PLoss
@Pi

� �
:

From the data given, we observe that

PLoss ¼ B11P2
1 þ B22P2

2 ; B12 ¼ 0:

Therefore, for plant 1:�b1þ 2g1P1¼ g(1� 2B11P1) and for plant 2:
b2þ 2g2P2¼ l(1� 2B22P2),

) b1 þ 2g1P1
b2 þ 2g2P2

¼ 1� 2B11P1
1� 2B22P2

:

Using P2¼ PD� P1, further manipulation of the loss equation with sub-

stitution of the constants gives

P2
1 þ 7:5897� 104P1 � 2:86767� 107 ¼ 0 ) P1 ¼ 376 MW

; P2 ¼ PD � P1 ¼ 700� 376 ¼ 324 MW:

Now, from the equation for plant 1

b1 þ 2g1P1 ¼ l(1� 2B11P1) ) l ¼ b1 þ 2g1P1
1� 2B11P1

¼ 5:93þ (2� 4:306� 10�3 � 3760)
1� (2� 3:95� 10�4 � 376)

¼ 9:16811
0:70296

¼ 13:042 $ MW h:

The incremental cost for the plants is 13.042 $ MW.
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2. Neglecting the transmission losses implies that (@PLoss=@Pi)¼ 0. Hence,
for optimal power flow (economic dispatch) at each plant

@FT
@Pi

¼ 0

bi þ 2giPi ¼ li, for _ i

; b1 þ 2g1P1 ¼ l2P2 ¼ l2, and P2 ¼ PD � P1:

Assuming that l1¼ l2¼ l, then

b1 þ 2g1P1 ¼ b2 þ 2g(PD � P1)

) l ¼ b2 � b1

2(g1 þ g2)
¼ 6:01� 5:93

2(4:306� 4:812)� 10�3

¼ 655 MW:

But P1max¼ 500 MW; therefore we must set P1 to 500 MW. It follows that
the incremental cost for each unit must then be recalculated.
Now, P2¼ PD� P1¼ 700� 500¼ 200 MW, a value within the desired

limits of P2. Therefore, l1¼b1þ 2g1Pl¼ 5.93þ (2)(4.306� 10�3)
(500)¼ 10.236 $ MW h and l2¼b2þ 2g2P2¼ 6.01þ (2)(4.812� 10�3)
(200)¼ 7.935 $ MW h.
This is an example of a much-simplified iterative process whereby

the constraints impose limitations on the desired values of li for each
unit.

4.8 Conclusion

This chapter handled practical system problems formulated as constrained
optimization problems. The definition of admissible points was presented
as those vectors that satisfy the constraints of the problems. It was shown
that constrained problems are assumed to have at least one admissible point.
The so-called Lagrange multipliers were used as an effective way of dealing
with constraints. In Section 4.8.2 theorems on the optimization of constrained
functions were presented and necessary and sufficient conditions were
defined. In Section 4.8.3 a procedure for optimizing constrained problems
was stated in the form of sequential steps. Section 4.8.4 presented some
solved problems for illustration and validation purposes. Finally, Section
4.8.5 presented power system application examples such as optimal oper-
ation of all thermal system incremental cost-loading.
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4.9 Problem Set

PROBLEM 4.9.1

Consider the following problem.

Maximize x21 � 4x1x2 þ x22

Subject to x1 þ x22 ¼ 1:

1. Using the Kuhn–Tucker (K–T) conditions, find an optimal solu-
tion to the problem.

2. Test for the second-order optimality condition.

Does the problem have a unique optimal solution?

PROBLEM 4.9.2

Consider the following problem:

Maximize 3x1 � x2 þ x22

Subject to x1 þ x22 þ x3 � 0

�x1 � 2x2 þ x23 ¼ 0:

1. Using the Lagrange multiplier technique, write the K–T optimal
conditions.

2. Test for the second-order optimality conditions.

3. Argue why the problem is unbounded.

PROBLEM 4.9.3

Find all local minimum and maximum points of the following functions
for the four indicated domains. Be sure to list each of the specified points
along with the corresponding functional value at the particular point.

Functions

1. F(x,y)¼ x4þ 6x2 y2þ y4� 2x2� 2y2.

2. F(x,y)¼ x3� 3x2þ 4xþ y2.

3. F(x,y)¼ x4þ y4.

Four indicated domains of the permissible constraints set for each of the
objective function.

1. {(x,y): x2þ y2 � 1}.

2. {(x,y): x2þ y2 � 2}.
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3. {(x,y): j x j � 1 and j y j � 1}.

4. {(x,y): j x j � 2 and j y j � 2}.

PROBLEM 4.9.4

Find the local and global maxima and minima of the function

f (x) ¼ f (x1, x2, x3) ¼ x21 þ 7x1 þ x1x2 þ x32 þ x2x23

jx1j, jx2j, jx3j � 4:

PROBLEM 4.9.5

Two electrical generators are interconnected to provide total power to
meet the load. Each generator’s cost is a function of the power output
(Figure 4.3). All power costs are expressed on a per unit basis. The total
power need is at least 60 units. Formulate a minimum cost design prob-
lem and solve it graphically. Verify K–T conditions at the solution points
and show gradients of cost and constraint functions on the graph.

PROBLEM 4.9.6

Repeat Example 4.7.3 for a transmission loss equation given by

PL ¼ 0:08P2:

All other data are unchanged.

Co
st 

F 2

F2(Pg2) = 0.34 + 0.51Pg2 + 0.48P2
g2F1(Pg1) = 1.21 − 1.00Pg1 + 1.00P2

g1

Power output
Pg2 ( p.u.. MW )

0 1 2 3 4

4

2

0

Co
st 

F 1

Power output
Pg1 ( p.u.. MW )

0 1 2 3 4

4

2

0

FIGURE 4.3
Power generator cost curves for Problem 4.9.5.
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5
Linear Programming and Applications

5.1 Introduction

While linear programming (LP) has been a very useful tool developed and
used by operation research, power systems, and industry, such as aerospace,
for power system, it is fully used in operation and planning of determining
resource allocation and value. In recent years, it is a major tool for pricing
measured resources [3,8]. It has been of major use in prediction and estima-
tion of data from measurements. The operation research environment and
economics have to rely on linear program as a tool for pricing and resources
allocation. Due to capability challenge of handling of data new advances to
improve computation speed have been introduced namely, interior point
method is the application we plan to introduce the concept of LP formulation
in matrix form and develop solution requirements based on graphical, sim-
plex (recommended), and interior point method. The application of the
methods is numerous in large-scale systems.

Additionally, integer programming (IP) to account for discrete decision
variables is introduced in this chapter. The sensitivity method that reduces
computational burden by accounting for small perturbation in right-hand
side variables will also be found useful to the reader. There are other different
techniques, such as calculation for steady-state-based Lagrange technique,
which are discussed.

Research papers that apply LP-based optimal power flow (OPF) for min-
imal losses, cost, etc. use LP to solve optimal operating points of voltage,
power as constraints in order to determine the minimized objective values
and determine the optimal objectives. The implementation of intermitted
resources from distributed generation (DG) is also studied in OPF based on
LP [14] provides examples of well-written research work done in the area
of LP applications.

The most general description of LP problem [6,7,10–12] is given as
the problem of allocating a number m of resources among 1, 2, . . . , n activities
in such away as tomaximize theworth from all the activities. The term ‘‘linear’’
refers to the fact that all the mathematical relationships among the decisions
(variables) to allocate resources to activities and the various restrictions applic-
able therein (constraints), as well as the criterion (objective function) are
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devoid of any nonlinearity. The objective function is some measure of the
overall performance of the activities (e.g., cost, profit, net worth, system effi-
ciency, etc.). Standard notation for LP is summarized in Table 5.1.

For activity j, cj (j¼ 1, . . . , n) is the increase in P (i.e., DP), that would result
from each unit of increase in xj (the level of activity j). For resource i, i¼ 1, . . . ,m,
bi is the total amount available for allocation to all the activities. The coeffi-
cient aij denotes the amount of resource i consumed by activity j. The set
of inputs (aij, bi, cj) constitutes the parameters of the LP model.

5.2 Mathematical Model and Nomenclature in LP

The conventional LP model reduces to the following equation:

Maximize P ¼ cTx (5:1)

Subject to

Ax � b (5:2)

xj � 0, 8j 2 {1,n}, (5:3)

where the following vectors are defined

Decision matrix: x ¼ [x1, x2, . . . , xn]T:

Cost coefficient array: cT ¼ [c1, c2, . . . , cn]:

Constant array: b ¼ [b1, b2, . . . , bm]T:

TABLE 5.1

Notations Commonly Used in LP

Resources

Activity

1 2 . . . n Total Resources

1 a11 a12 . . . a1n b1
2 a21 a22 . . . a2n b2
. . . . . . . .

. . . . . . . .

. . . . . . . .

M am1 am2 . . . amn bm
DP=unit of activity c1 c2 . . . cn —

Level of activity x1 x2 . . . xn —

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 138 20.11.2008 4:07pm Compositor Name: BMani

138 Electric Power System Applications of Optimization



System or state matrix:

A ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. . .
. ..

.

am1 am2 � � � amn

2
6664

3
7775:

The following are important terminologies used in LP:

Objective functions and constraints. The function P(x) being maximized is
called the objective or goal function subject to the restriction sets of
constraints given by Equations 5.2 and 5.3. Equation 5.2 represents a
restriction set that is often referred to as the functional constraints
and Equation 5.3 is termed as the nonnegativity constraints.

Feasible solution and region. Any specification of the variable xj is called a
solution. A feasible solution is one that satisfies all constraints. The
feasible region is the collection of all feasible solutions. If the problem
does not have any feasible solution, it is called an infeasible problem.

Optimal solution. An optimal solution corresponds to the minimum or
maximum value of the objective function. The problem is either one
of minimization or maximization depending on the nature of the
objective function under consideration, that is, cost and profit,
respectively.

Multiplicity in solution. There can be multiple optimal solutions in cases
where a number of combinations of the decision variables give the
same maximum (or minimum) value.

Unbounded solutions. There may also be unbounded solutions in that the
LP problem objective function could be infinitely low or high
depending on minimizing or maximizing cases, respectively.

5.2.1 Implicit Assumptions in LP

There are certain assumptions utilized in LP models that are intended to be
only idealized representations of real problems. These approximations sim-
plify the real-life problem to make it tractable. Adding too much detail and
precision can make the model too unwieldy for useful analysis. All that is
needed is that there be a reasonably high correlation between the prediction
of the model and what would actually happen in reality.

The four assumptions are as follows:

1. Proportionality. This relates to the assumption of constant-cost coeffi-
cients cj irrespective of the level of xj. Stated alternatively, there can
be correlation between the coefficients cj and xj. For example, the
incremental cost associated with additional units of activity may be

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 139 20.11.2008 4:08pm Compositor Name: BMani

Linear Programming and Applications 139



lower, which is referred to as ‘‘increasing marginal return’’ in the
theory of economics. The proportionality assumption is needed
essentially to avoid nonlinearity.

2. Additivity. Apart from the proportionality assumption, the additivity
assumptions are needed to avoid cross-product terms among deci-
sion variables. This assumption amounts to state that the total con-
tribution from all activities can be obtained by adding individual
contributions from respective activities.

3. Divisibility. Decision variables can take any fractional value between
specified limits. In other words, the variables cannot be restricted to
take some discrete values or integer values.

4. Certainty. All the parameters in the model are assumed to be known
constants with no uncertainty about the values that these parameters
may assume.

It is important in most cases to study and analyze the disparities due to these
assumptions by checking with more complex models. The more complex
alternative models are a result of relaxing the assumptions regarding non-
linear programming models due to relaxing assumption (1) and=or assump-
tion (2), IP models by relaxing assumption (3), and stochastic programming
models by ignoring assumption (4). More complex models are obtained by
dropping various combinations of assumptions (1)–(4).

5.3 LP Solution Techniques

Various approaches have been developed over the years to solve LP prob-
lems. The commonly encountered techniques that have gained wide atten-
tion from engineers, mathematicians, and economists are the graphical
approach, the simplex method, the revised simplex method, and the tableau
approach. In the text, we omit the treatment of the tableau approach as its
flexibility in the development of programs for more complex algorithms
outdoes its ability to solve large-scale problems [1–5].

5.3.1 Graphical Method

In the LP problem, the optimal solution (if it exists) lies at one of the corner
points of the polytope formed by the boundary conditions of the functional
and nonnegativity constraints of the problem. In the graphical method, each
corner-point solution, which is also a feasible solution, is checked using the
objective function. The solution that yields the greatest improvement to
the objective value is the optimal solution to the problem. The graphical
technique for solving LP problems is demonstrated by the following example.
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Consider the following two-variable LP problem.

Maximize P ¼ 3x1 þ 5x2

Subject to

x1 � 4

2x2 � 12

3x1 þ 2x2 � 18

xj � 0, 8je{1,2}:

A two-dimensional figure can be constructed corresponding to the two vari-
ables x1 and x2 (Figure 5.1). The nonnegativity constraints automatically imply
that the search is restricted to the positive side of the x1 and x2 axes. Next, it
should be observed that the feasible solution cannot lie to the right of the
line x1¼ 4, because of the restriction x1 � 4. In the same way, the restrictions
2x2� 12, and 3x1þ 2x2� 18 provide the other two cuts to generate the feasible
region in Figure 5.1 as indicated by the shaded area OABCD.

The vertices A, B, C, D, and the origin of the polytope are the corner-point
solutions to this problem and at least one of such points represents the optimal
solution set for x1 and x2. We must now select the point in this region
that maximizes the values of P¼ 3x1þ 5x2. Different lines corresponding to
different values of P are drawn to check the point beyond which there is no
point of the feasible region, which lies on the line P¼ 3x1þ 5x2. This is

1 2 3 

5

4

3

2

x1 axis

x2 axis

C(4,3)

B(2,6)

D(4,0)

A(0,6)

O(0,0)

P = 0

P = 15

P = 30

P = 36

Movement of
the objective

surface, P

Feasible
region

Infeasible
region

x1 = 4

2x2 = 12

3x1 + 2x2 =18

FIGURE 5.1
Graphical representation of the two-dimensional problem.
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achieved by drawing a line for P¼ 0 and then progressively increasing it to 15,
30, and so on. It is found that the optimal solution is

x1* ¼ 2

x2* ¼ 6

and the maximum value of P is

p* ¼ 36:

This is shown in Figure 5.1 as vertex B of the polytope.

5.3.2 Matrix Approach to LP

The matrix approach is quite effective for the computer-based solution of LP
problems. It generally first requires a matrix inversion. The simplex method
equipped with an artificially constructed identity matrix for initialization is
called the revised simplex method. The revised simplex method and a
flowchart for computer programming are discussed with illustrative prob-
lems. The IP problem is to be solved as an LP in conduction with Gomory cut,
which eliminates the nonintegral optimal solution step by step.

The purpose of LP is to solve the problem formulated in the following
standard form:

Maximize p ¼ cTx (5:4)

Subject to

Ax ¼ b (5:5)

and x � 0, (5:6)

where

bi > 0, for all i ¼ 1, 2, . . . , m:

xj � 0, for all j ¼ 1, 2, . . . , n:

We now define the following arrays in preparation for formulating the LP
problem in this chapter:

1. m-vectors

y ¼
y1
y2
..
.

ym

2
6664

3
7775, b ¼

b1
b2
..
.

bm

2
6664

3
7775, xB ¼

xB1
xB2
..
.

xBm

2
6664

3
7775:
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2. n-vectors

u ¼
u1
u2
..
.

un

2
6664

3
7775, x ¼

x1
x2
..
.

xn

2
6664

3
7775, c ¼ [c1, c2, . . . , cn]:

3. n�m vectors for the case when n>m,

Z ¼ [z1, z2, . . . , zn�m]:

4. Matrices

A ¼ [aij]m�n ¼
a11 a12 � � � a1n
a21 a22 � � � a2n
� � � � � � � � � � � �
am1 am2 � � � amn

2
664

3
775:

Now let B represent anm�mmatrix and �B represent anm� (n�m) matrix such
that A¼ [B, �B]. Matrix A is now said to be augmented into two components.

The state vector x is a feasible solution (or simply called a solution) if
it satisfies the constraint Equations 5.5 and 5.6. It is a nondegenerate
basic feasible solution (or simply called a basic solution) if it contains exactly
m positive components with all others equal to zero. It is a maximum feasible
solution (or simply called a maximum solution) if it is a solution and
also maximizes the objective function P.

In practical applications, a given problem may not appear the same as the
standard form. For example, the state variable x1 may be bounded, the
constraints may be inequalities, or the objective function may require mini-
mization. In most cases, the following rules can be useful in converting a
practical problem to the standard form:

Rule 1: Change of constraints on state variables
The bounded state variable of the following forms can be converted to the

inequality form (Equation 5.6):

1. If xi � di, then add a slack variable xs to make xiþ xs¼ di or replace xi
by di� xs where xs is nonnegative.

2. If xi � di, then add a slack variable xs to make xi� xs¼ di or replace xi
by xsþ di.

3. If �1< xi<1, then replace xi by xs� xsþ1.

4. If di � xi � hi, then the constraint is equivalent to 0 � xi� di � hi� di
and hence xi is to be replaced by xsþ di and xsþ xsþ1¼ hi� di is a new
constraint.
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Rule 2: Conversion from inequality to equality constraint
We use (Ax)i to denote the ith row of the vector (Ax) in the following:

1. If di� (Ax)i� hi, then two slack variables are needed to make (Ax)i�
xs¼ di and (Ax)iþ xsþ1¼ hi.

2. If (Ax)i¼ bi � 0, then multiply both sides by �1 when bi< 0, and
create a new constraint by adding it to another constraint when
bi¼ 0.

Rule 3: Modification of objective function

1. Minimization of P. Any solution for max(–P) is the same as that for
min(P), but min(P)¼ –max(–P).

2. Maximization of jPj. Find both max(P) and min(P) subject to the
same constraint and then select the larger of jmax(P)j or jmin(P)j.

5.3.3 Simplex Method

The geometric method cannot be extended to large-scale problems for which
the number of decision variables can run into several thousands. The simplex
method, developed by Dantzig in 1947 [13], and its variants have been widely
used to date and a number of commercial solvers have been developed based
on it. The first step in setting up the simplex method converts the inequality
constraints into equivalent equality constraints by adding slack variables.

Recall the following example:

Maximize P ¼ 3x1 þ 5x2

Subject to

2x2 � 12

3x1 þ 2x2 � 18

xj � 0, 8j 2 {1,2}:

This example illustrative problem can be converted into the following equiva-
lent form by adding three slack variables x3, x4, and x5. Thus, we obtain

Maximize P ¼ 3x1 þ 5x2

Subject to

x1 þ x3 ¼ 4

2x1 þ x4 ¼ 12

3x1 þ 2x2 þ x5 ¼ 18

xj � 0, 8j 2 {1,2}:

This is called the augmented form of the problem and the following defin-
itions apply to the newly formulated LP problem.
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An augmented solution is a solution for the original variables that has been
augmented by the corresponding values of the slack variables.

A basic solution is an augmented corner-point solution.

A basic feasible solution is an augmented corner-point feasible solution.

For example, augmenting the solution (3, 2) in the example yields the aug-
mented solution (3, 2, 1, 8, 5); and the corner-point solution (4, 6) is translated
as (4, 6, 0, 0, �6).

The main difference between a basic solution and a corner-point solution is
whether the values of the slack variables are included. Because the terms
basic solution and basic feasible solution are integral parts of LP techniques,
their algebraic properties require further clarification. It should be noted that
there are five variables and only three equations in the present problem. This
implies that there are two degrees of freedom in solving the system since any
two variables can be chosen to be set equal to any arbitrary value in order to
solve the three equations for the three remaining variables. The variables that
are currently set to zero by the simplex method are called nonbasic variables,
and the others are called basic variables. The resulting solution is a basic
solution. If all the basic variables are nonnegative, the solution is called a
basic feasible solution. Two basic feasible solutions are adjacent if all but one
of their nonbasic variables are the same.

The final modification needed to use the simplex method is to convert the
objective function itself in the form of a constraint to get

P� 3x1 � 5x2 ¼ 0:

Obviously, no slack variables are needed since it is already in the form of
equality. Also, the goal function P can be viewed as a permanent additional
basic variable.

The feasibility of achieving a solution for the LP problem as described by
Equations 5.4 through 5.6 relies on a set of optimality conditions. In solving the
problem, the optimality conditions are forced to be satisfied by means of the
simplexmethod, involving a systematic process of selecting a basis to increase
the objective function P until it can no longer be increased.We assume that the
problem is nondegenerate; that is, all solutions are basic. The following nota-
tions are used in the statement and the theorem in this chapter:

B m-square and nonsingular matrix formed by m columns of A

xB m-vector of which the components are the positive components
of a basic solution x corresponding to B; that is, xB¼B�1b

CB m-row vector formed by m components of C that correspond to xB;
that is, P¼Cx¼CBxB

�CB (n – m)-row vector makes C¼ (CB, �CB)

cBK kth component of �CB

ak kth column of the matrix �B

Z (n – m)-row vector defined by Z¼CBB
�1 �B

zk kth component of Z
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THEOREM 5.3.1

The objective function P can be increased if zk� cBk< 0 for some k, and the compon-
ents of xB are the positive components of a maximum solution if Z� �CB � 0.

The theorem gives a condition of optimality that suggests a systematic
approach to a maximum solution of the LP problem.

It is assumed in the simplex method that initially there exists a basis, which
yields a basic solution. In practical problems, such a basis is hard if not
impossible to find, especially for large m. To overcome this difficulty, an
identity matrix is created here for the initialization of the simplex method.
The simplex method requires that the basis matrix be inverted at each
iteration. We note that there is only a one column change between two
consecutive bases. This enables us to apply a lemma of matrix inversion to
obtain the inverse matrix for the new basis from that of the old one.

Consider the following example:

x1 þ x2 þ x3 þ x4 ¼ b1

x1 þ 2x2 þ x3 ¼ b2

2x1 � x2 � x3 ¼ b3:

Introduce artificial variables x5 and x6 such that

x1 þ x2 þ x3 þ x4 ¼ b1

x1 þ 2x2 þ x3 þ x5 ¼ b2

2x1 � x2 � x3 þ x6 ¼ b3:

Then, the matrix A of Equation 5.5 has the form

A ¼
1 1 1 1 0 0
1 2 1 0 1 0
1 �1 �1 0 0 1

2
4

3
5

and, hence, an identity matrix is created by the last three columns. The basic
solution corresponding to the basis of the identity matrix is, therefore, x4¼ b1,
x5¼ b2, and x6¼ b3. There are no more than m artificial variables because
some state or slack variables can be utilized as artificial variables, such as x4
in this example.

5.3.4 Lemma of Matrix Inversion

The equation

[P�1 þH1QH2]�1 ¼ P� PH1[H2PH1 þQ�1]1H2P (5:7)
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is true if the inverses exist. The lemma can be applied generally to the
n-square matrix P, m-square matrix Q, n�m matrix H1, and m� n matrix
H2. The integer m is practically less than n.

We make use of the identity to generate a recursive formula of matrix
inversion that is useful to LP. To this end, we assume that p¼B�1, Q¼ 1,
H1¼ ak� ar, and H2 ¼ JTr , where Jr is the column matrix with rth component
equal to one but all others equal to zero. Thus, the following result can be
obtained for nonsingular matrix B:

(a) 1þH2B�1H1 ¼ 1þ JTr B
�1(�ak � ar)

¼ 1þ JTr y� JTr B
�1ar

¼ 1þ yr � JTr Jr ¼ yr

where
B�1ak¼ y¼ [y1, y2, . . . , ym]

T

ar is the rth column of the B matrix

(b) B�1H1H2B�1 ¼ B�1(�ak � ar)JTr B
�1

¼ (y� Jr)JTr B
�1

¼ (y1, y2, . . . , yr�1, . . . , ym)T(br1, br2, . . . , brm):

Substitutions of (a) and (b) into the lemma give

(BþH1H2)
�1 ¼ B�1 � 1

yr
(y1, y2, . . . , yr�1, . . . , ym)T

(br1, br2, . . . , brm):

Let bij and bij0 be the general elements of the matrices B�1 and (BþH1H2)
�1,

respectively. Then, it follows from the above equations that

bij0 ¼ bij � yi
yr
brj; for i 6¼ r (5:8)

¼ brj
yr

; for i ¼ r (5:9)

As such, the matrix inversion for the new basis can be derived from that of
the old one according to Equations 5.8 and 5.9. Now, the simplex method can
be broken down into three stages: namely initialization, iterative procedure,
and optimality checking.

1. Initialization step: The simplex method can start at any corner-point feasible
solution; thus a convenient one such as (0, 0) is chosen for the original
variables. Therefore the slack variables become the basic variables and the
initial basic feasible solution is obtained at (0, 0, 4, 12, 18).
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2. Iterative procedure: The iterative procedure involves moving from one
corner-point solution to an adjacent basic feasible solution. This movement
involves converting one nonbasic variable into a basic variable and simul-
taneously converting a basic variable into a nonbasic one. The former is
referred to as the entering variable and the latter as the leaving variable.

The selection of the nonbasic variable to be converted into a basic variable
is based on improvement in the objective function P. This can be calculated
from the new representation of the objective function in the form of a
constraint. The nonbasic variable, which contributes to the largest increment
in the P value, is the entering variable. For the problem at hand, the two
nonbasic variables x1 and x2 add per-unit contribution to the objective
function as 3 and 5, respectively (the coefficients cj), and, hence, x2 is selected
as the entering variable.

The adjacent basic feasible solution is reached when the first of the basic
variables reaches a value of zero. Thus, once the entering variable is selected,
the leaving variable is not a matter of choice. It has to be the current basic
variable whose nonnegativity constraint imposes the smallest upper bound
on how much the entering basic variable can be increased. The three candi-
date leaving variables are x3, x4, and x5. Calculation of the upper bound is
illustrated in Table 5.2.

Since x1 remains a nonbasic variable, x1¼ 0 which implies x3 remains
nonnegative irrespective of the value of x2, x4¼ 0, when x2¼ 6, and x5¼ 0,
when x2¼ 9, indicate that the lowest upper bound on x2 is 6, and is deter-
mined when x4¼ 0. Thus, x4 is the current leaving variable.

3. Optimality test: To determine whether the current basic feasible solution is
optimal, the objective function can be rewritten further in terms of the
nonbasic variables:

P ¼ 30þ 3x1 � 5
2
x4:

Increasing the nonbasic variables from zero would result in moving toward
one of the two adjacent basic feasible solutions. Because x1 has a positive
coefficient increasing x1 would lead to an adjacent basic feasible solution that
is better than the current basic feasible solution; thus, the current solution is

TABLE 5.2

Calculation of Upper Bound

Basic Variable Equation Upper Bound for x

x3 x3¼ 4� x1 No limit

x4 x4¼ 12� 2x2 x2 � 12
2 ¼ 6 min

x5 x5¼ 18� 3x1� 2x2 x2 � 18
2 ¼ 9
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not optimal. Speaking generally, the current feasible solution is optimal if
and only if all of the nonbasic variables have nonpositive coefficients in the
current form of the objective function. The flowchart of the simplex method is
shown in Figure 5.2.

Formulate the LP problem as Max P = −Q s.t. Ax = b
(Convert all constraints to equality and obtain a basis B by adding

artificial/slack variables).

Start

Type 1

Print
P∗ and x∗

Print
“Error”

Stop

Identify

Increment counter and
evaluate z - c–B

Count_Max
reached?

Determine k

rth vector of B is to leave the
basis

Calculate  y = B-1a–k

Calculate  y = B-1 a–k

Determine

 xB ← xB - qy 

xBr ← q  

Matrix inversion lemma Matrix inversion lemma

q = = Min ;

B, B–, CB , C–B

CB , C–B

(z- c–B) >_ 0? Yes

Yes
No

Is
count = No. of

artificial variables?

Yes

Yes
No

Type 2Case
select

(with no replacements)
B, B–, CB, C–B

kth vector of B– enter basis 

Determine k

k th vector of B– enters basis 

Increment counter and
evaluate z - c–B

Identify CB , C–BEnter PHASE II. Set
up original objective

function: CB , C–B

Enter PHASE I. Input data:
A, m, n B, B–, CB , C–B

xBr
yi

xBr

bij  ← bij - br yi/yr
bij  ← brj /yr

i ≠ r
i = r

bij ← bij - br yi / yr

bij ← brj /yr

i ≠ r
i = r

xB ← xB - qy;  xBr ← q  

yi
yi > 0

i

rth vector of B is to leave the
basis

q = = Min ;
xBr
yi

xBr
yi

yi > 0
i

zk - c–Bk = Min(zj - c–Bj )j

zk - c–Bk = Min(zj - c–Bj)j

Update:

B, B–, CB, C–BModify: 
(with replacements)

Update:

Modify

Input data: A, m, n

FIGURE 5.2
Flowchart showing the three stages of the simplex method.
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5.3.5 Revised Simplex Method

The so-called revised simplex method consists of two phases:

Phase I
This first phase starts with an identity matrix for the basis (an artificial basis)
and the maximization of x0, where

x0 ¼ �(sum of all the artificial variables):

The coefficients of the objective function x0 are all equal to�1. If themaximized
x0 is less than zero, then there is at least one of the artificial variables that is
different from zero and, therefore, no feasible solution exists for the problem.
We enter phase II if all the artificial variables are eliminated or max(x0¼ 0).

Phase II
The aim of phase II is to maximize the goal function P of the problem with a
matrix inversion for the basis inherited from phase I. It should be noted that
the constraints of both phases are the same although the objective functions
are different. Both phase I and phase II can be implemented either by digital
computers or by hand calculations in accordance with the flowchart.

Illustrative example

Minimize Q ¼ 2x1 þ x2 þ x3

Subject to the inequality constraints given by

3x1 þ 5x2 þ 2x3 � 16

4x1 � 2x2 þ x3 � 3 and xi � 0, for all i 2 {1,2,3}

using the

1. Simplex method

2. Revised simplex method

1. Solution using the simplex method
We convert the minimization problem to a maximization one by changing

the sign such that

P ¼ �2x1 � x2 � x3:

Utilizing two slack variables x4 and x5 and two artificial variables x6 and x7
we obtain the following equations:

3x1 þ 5x2 þ 2x3 � x4 þ x6 ¼ 16

4x1 � 2x2 þ x3 � x5 þ x7 ¼ 3:
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In matrix notation

A ¼ [ �B : B ] ¼ 3 5 2 �1 0 ..
.

1 0

4 �2 1 0 �1 ..
.

0 1

2
4

3
5

x ¼ [x1, x2, x3, x4, x5, x6, x7]T

C ¼ �CB
..
.

CB

h i
¼ [�2 �1 �1 0 0 ..

.
0 0]

and

b ¼ [16, 3]T:

Notably, B¼B�1¼ I. Thus, xB¼B�1b¼ Ib¼ [16, 3]T.
First iteration

Z� CB ¼ CBB�1�B� �CB ¼ ��CB

¼ [2 1 1 0 0] ,

which is definitely positive.

P ¼ CBxB ¼ CBB�1 ¼ CBIb

¼ [0 0] I
16

3

� �
¼ 0

and

xB ¼ 16
3

� �
¼ x6

x7

� �

x1 ¼ x2 ¼ x3 ¼ 0

max P¼ 0 ) min Q¼ 0.

NOTE: This solution is infeasible as the second constraint 4x1� 2x2þ x3 � 3 is not
valid here as it is zero. The revised simplex method shows this result.

2. Solution using the revised simplex method

Phase I

max(x0) ¼ �(x6 þ x7)

CB ¼ [�1,�1]
�CB ¼ [0 0 0 0 0]

xB ¼ B�1b ¼ 16
3

� �
¼ x6

x7

� �
:

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 151 20.11.2008 4:08pm Compositor Name: BMani

Linear Programming and Applications 151



First iteration

Step 1

Z� �CB ¼ CBB�1�B� �CB

¼ [�1 �1]I 3 5 2 �1 0

4 �2 1 0 �1

� �
¼ [�7 �3 �3 1 1] :

The minimum of the previous row is �7; then the first vector of �B, x1 enters
the basis k¼ 1.

Step 2

Calculate

y ¼ B�1�ak ¼ I�a1 ¼ 3
4

� �

u ¼ xBr ¼ min
i

xBi
yi

; yi > 0
� �

¼ min
16
3
,
3
4

� �
¼ 3

4
and r ¼ 2:

Now, r¼ 2 implies that the second vector of B is to leave the basis.

Step 3

The new basic solution is

xB ¼ xBr ¼ u, i ¼ r
xBi � uy, i 6¼ r

�

xB ¼
x1 ¼ 3

4

x7 ¼ 3� 4(3=4)ð Þ ¼
3
4
0

� �
:

8<
:

Step 4

Now we calculate the inverse of the new basic

B�1 ¼ b0ij
j k

, for i ¼ r ¼ 2, b0ij ¼
brj
yr

b021 ¼
b21
y2
¼ 0 and b022 ¼

b22
y2
¼ 1

4

for i 6¼ r) i 6¼ 2 b0ij ¼ bij � yi
yr
brj
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b011 ¼ b11 � y1
y2

� �
b21 ¼ 1� 0 ¼ 1

b21 ¼ b21 � y1
y2

� �
b22 ¼ 0� 3

4

� �
(1) ¼ �3

4

[�B] ¼ 5 2 �1 0
�2 1 0 �1
� �

[�CB] ¼ [�1 �1 0 0]

�xb ¼ [x2 x3 x4 x5]

[B] ¼ 1 3
0 4

� �
) [B�1] ¼ 1

4
4 �3
0 1

� �

[CB] ¼ [0 �2]xb ¼ [xb x1] ¼ 3
4 0
� 	

:

Second iteration

Step 1

CBB�1 ¼ 1
4
[0 �2] 4 �3

0 1

� �

¼ 1
4
[0 �2]

Z� �CB ¼ CBB�1�B� �CB

¼ 1
2
[0 �1] 5 2 �1 0

�2 1 0 �1

� �
� �CB

¼ 1
2
[2 �1 0 1] � [�1 �1 0 0]

¼ 2 1
2 0 1

2

� 	
,

which is positive definite; then

maxP ¼ CBxB ¼ [0 �2]
3
4
0

� �
¼ 0

and all the artificial variables are not eliminated from the basis. Therefore we
cannot enter phase II of the calculations as the function has an infeasible
solution as shown in the simplex method.

5.4 Duality in LP

LP problems exhibit an important property known as duality. The original
problem is therefore referred to as the primal and there exists a relationship
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between the primal of the LP problem and its duality. Now, from Equations
5.1 and 5.2, the general LP problem in its primal form may be expressed as

Maximize P(x) ¼ cTx

Subject to the constraints:

Ax � b

and

xj � 0

8j 2 {1,n},

where
A is an m� n matrix
x is a column n-vector
cT is a row n-vector
b is a column m-vector

The LP model above may also be written as

Maximize P(x) ¼
Xn
j¼1

cTj xj (5:10)

Subject to the constraints:

Xm
i

Xn
j¼1

aijxj � bi

0
@

1
A (5:11)

and

xj � 0

8i 2 {1,m} and 8j 2 {1,n}:

Notably, the slack variables have not yet been introduced in the inequality
constraints.

By the definition of the dual of the primal LP problem expressed as
Equations 5.12 through 5.14, we obtain the following model:

Minimize Q(y) ¼ bDy (5:12)

Subject to the constraints:

ADy � cTD (5:13)

and

yj � 0 (5:14)

8j 2 {1,m},
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where
AD is an n�m matrix
y is a column m-vector
cD is a row m-vector
bD is a column n-vector

Similar to the model for the primal case, the dual LP model above may also
be written as

Minimize Q(y) ¼
Xm
i¼1

bDi yj (5:15)

Subject to the constraints:

Xn
j

Xm
i¼1

aijyj � cj

 !
(5:16)

yi � 0

8i 2 {1,m} and 8j 2 {1,n}:

The dual problem can now be solved using any of the previously discussed
solution techniques such as the revised simplex method. In addition, the
duality model exhibits special properties that can be summarized using the
following well-known duality theorems.

THEOREM 5.4.1

The dual of the dual linear programming model is the primal.

THEOREM 5.4.2

The value of the objective function P(x) for any feasible solution of the primal is
greater than or equal to the value of the objective function Q(y) for any feasible
solution of the dual.

THEOREM 5.4.3

The optimum value of the objective function P(x) of the primal, if it exists, is equal to
the optimum value of the objective function Q(y) of the dual.
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THEOREM 5.4.4

The primal has an unbounded optimum if and only if the dual has no feasible
solution. The converse is also true.

Finally, we make note of the fact that the duality principle, when applied
correctly, can reduce the computation needed to solve multidimensional
problems. This is attributed to the fact that the large number of constraints
are now modeled as the objective function and the old objective with smaller
dimension has become the new constraints. Also, the duality concept can be
applied to problems that are associated with the inverse of the Amatrix in the
primal model of the LP problem.

5.5 Khun–Tucker Conditions in LP

In this section, selected formulations for computing the Lagrange multipliers
in LP are summarized using the standard notations. Here, we investigate
Min=Max LP problems with inequality and equality constraints. In order to
determine the Lagrange multipliers associated with each case, the concepts of
duality, Khun–Tucker (K–T) conditions, and Extended K–T (EKT) conditions
are applied.

In general, the solution of the dual LP problem results in the computation
of the desired Lagrange vectors for any equality constraints that are present.
Primal LP with both equality constraints (A1x¼ b1) and inequality constraints
(A2x� b2) must be transformed into a purely equality using nonnegative
slack variables. This is because the dual of mixed equality and inequality
constraints does not exist.

A brief summary of common cases of LP and the corresponding duality
conditions now give rise to the appropriate use of complementary slackness
and are presented next. Complementary slackness is a term used to describe
the orthogonal nature of the dual and primal shadow prices or Lagrange
vectors in LP. Also, a simple example is used to demonstrate how Lagrange
multipliers for LP problems are determined.

5.5.1 Case 1: LP and KKT Conditions for Problems with Equality Constraints

Recall the formulation
Min cTx s.t.

Ax � b

x � 0,
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where
cT and b are n- and m-vectors, respectively
A is an m� n matrix

The Karush–Khun–Tucker (KKT) conditions requiring optimal solutions
[x*, l*, m*]T are

Ax � b, x � 0

ATlþ m ¼ c, l � 0, m � 0

lT(Ax� b) ¼ 0, mTx � 0,

Condition 1: Candidate point must be feasible (primal feasibility of x).

Condition 2: Dual feasibility of l and m must be met.

Condition 3: Complementary slackness conditions must be satisfied.

In these conditions for optimality in LP, l is the vector of Lagrange
multipliers associated with Ax� b and m is the vector of Lagrange multipliers
associated with x � 0.

Illustrative example
Compute the shadow prices or Lagrange multipliers for the problem given by

Min f (x) ¼ �2x1 � 4x2

subject to

x1 � 3x2 � �3
�2x1 � 2x2 � �5
x1, x2 � 0:

Step 1: Determine cT, A, and b that correspond to the standard LP formula-
tion Min cTx s.t. Ax � b with x � 0.

Therefore

cT ¼ [c1, c2]T ¼ [�2, �4]T

b ¼ [b1, b2]T ¼ [�3, �5]T

x ¼ [x1, x2]
T

A ¼ þ1 �3
�2 �2
� �

:

Step 2: Solve the LP problem using the simplex or revised simplex method.
Solution yields primal solution and objective values of

x* ¼ [x1*, x2*]T ¼ [1:12, 1:38]T and f * ¼ �7:75
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Step 3: Apply KKT

KKT #1: Primal feasibility was satisfied since

Ax* ¼ þ1 �3
�2 �2
� �

1:12
1:38

� �
ffi �3:03
�5:00
� �

¼ b:

KKT #2: Dual feasibility to compute l and m.

Recall ATlþ m ¼ c, l � 0, m � 0

) þ1 �3
�2 �2
� �

l1
l2

� �
þ m1

m2

� �
¼ �2
�4
� �

:

KKT #3: Complementary slackness conditions

lT(Ax� b) ¼ 0, mTx � 0,

But since x* 6¼ 0, then from mTx � 0, this implies that mT¼ 0.
Therefore

þ1 �3
�2 �2
� �

l1
l2

� �
þ 0

0

� �
¼ �2
�4
� �

l1
l2

� �
¼ þ1 �3
�2 �2
� ��1 �2

�4
� �

¼ 0:50
0:75

� �
:

Therefore, the desired shadow prices or Lagrange multipliers for this prob-
lem are l1¼ 0.50 and l2¼ 0.75.

5.5.2 Case 2: KKT Applied to the Dual LP Problem

This approach is computationally efficient as the Lagrange multipliers are the
direct solutions of the Dual LP problem. Furthermore, KKT allows us to
compute the optimal value of x without necessarily re-solving the primal
LP problem.

Now, by the duality transformation, we have

Primal LP

Min cTx s.t. Ax � b, x � 0

Dual LP

Max bTl s.t. ATl � c, l � 0.
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The KKT conditions requiring optimal solutions [x*, l*, m*]T for the Dual
problem are given as

Condition 1: Dual feasibility of l and m must be met.

ATl � c, l � 0:

Condition 2: Candidate point must be feasible (primal feasibility of x).

Axþ m ¼ b, l � 0, m � 0:

Condition 3: Complementary slackness conditions must be satisfied.

xT(ATl� c) ¼ 0, mTx ¼ 0:

Illustrative example
Recall the problem

Min f (x) ¼ �2x1 � 4x2

subject to

x1 � 3x2 � �3
�2x1 � 2x2 � �5
x1, x2 � 0:

Solution steps are as follows:

Step 1: Transform the problem to its dual form

Max fD(x) ¼ bTl ¼ [�3, �5] l1
l2

� �
subject to

ATl � c and l � 0 such that

þ1 �2
�3 �2
� �

l1
l2

� �
� �2
�4
� �

and l1
l2

� �
� 0

0

� �
:

Step 2: Solve the LP problem using the simplex or revised simplex method.
Solution yields candidate dual solution and objective values of

l* ¼ l1*, l2*½ �T¼ [0:50, 0:75]T and Max fD* ¼ �7:75:
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Step 3: Apply KKT

KKT #1: Dual feasibility is established since

ATl* ¼ þ1 �2
�3 �2
� �

0:50
1:25

� �
¼ �2:0
�4:0
� �

¼ c1
c2

� �

Therefore ATl* � c holds true:

KKT #2: Primal feasibility
Recall Axþm¼ b, m � 0

) þ1 �3
�2 �2
� �

x1
x2

� �
þ m1

m2

� �
¼ �3
�5
� �

:

KKT #3: Complementary slackness conditions

xT(ATl� c) ¼ 0, xTm ¼ 0,

But since ATl� c¼ 0, then xT and hence mT¼ 0.

Therefore þ1 �3
�2 �2
� �

x1
x2

� �
þ 0

0

� �
¼ �3
�5
� �

x1
x2

� �
¼ þ1 �3
�2 �2
� ��1 �3

�5
� �

¼ 1:125
1:375

� �
:

This is the optimal solution, x* and the minimal value function is

Min f (x) ¼ f * ¼ cTx* ¼ [�2, �4] 1:125
1:375

� �
¼ �7:75, which is Max fDual.

5.5.3 Case 3: KKT Applied to LP Problems with Equality Constraints

Primal LP
Min cTx s.t. Ax¼ b with x � 0. The primal KKT conditions requiring optimal
solutions x*, l*, and m* are

Condition 1: Candidate point must be feasible (primal feasibility of x).

Ax ¼ b, x � 0:

Condition 2: Dual feasibility of l and m must be met.

ATlþ m ¼ c, l is unrestricted, m � 0:

Condition 3: Complementary slackness conditions must be satisfied.

lT(Ax� b) ¼ 0, mTx � 0:
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Dual LP
Max bTl s.t. ATl� c with l is unrestricted. The dual KKT conditions requir-
ing optimal solutions x*, l*, and m* are

Condition 1: Dual feasibility of l and m must be met.

ATlþ m ¼ c, l is unrestricted, and m � 0:

Condition 2: Candidate point must be feasible (primal feasibility of x).

Ax ¼ b, x � 0:

Condition 3: Complementary Slackness conditions must be satisfied.

xT(ATl� cþ m) ¼ 0, mTx ¼ 0:

Primal LP
Min cTx s.t. Ax� b with x is unrestricted. The primal KKT conditions requir-
ing optimal solutions x*, l*, and m* are

Condition 1: Primal feasibility

Ax � b, x is unrestricted:

Condition 2: Dual feasibility

ATlþ m ¼ c, l � 0, m � 0:

Condition 3: Complementary Slackness

lT(Ax� b) ¼ 0, mTx � 0:

Dual LP
Max bTl s.t. ATl¼ c and l � 0. The dual KKT conditions requiring optimal
solutions x*, l*, and m* are

Condition 1: Dual feasibility

ATl ¼ c, l � 0:

Condition 2: Primal feasibility

Axþ m ¼ b, x is unrestricted and m � 0:

Condition 3: Complementary slackness

xT(ATl� c) ¼ 0, mTx ¼ 0:
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5.6 Mixed-Integer Programming

Integer and mixed-IP (MIP) problems are special classes of LP where all or
some of the decision variables are restricted to integer values. There are many
practical examples where the divisibility assumption in LP needs to
be dropped and some of the variables can take up only discrete values.
However, even greater importance can be attributed to problems where
the discrete values are restricted to zero and one only, that is, ‘‘yes’’
or ‘‘no’’ decisions or binary decision variables. In fact, in many instances,
MIP problems can be reformulated to have only binary decision variables
that are easier to handle. The occurrence of binary variables may be due to a
variety of decision requirements, the most common among which are the
following.

1. ON=OFF decisions: The most common type of binary decision falls
into this category for engineering optimization problems. This deci-
sion variable can also have alternative representation of GO=NO
GO, BUILD=NOT BUILD, OR SCHEDULE=NOT SCHEDULE, and
so on, depending on the specific application under consideration in
short, medium, and long-term planning contexts.

2. Logical either-or=and constraints: Binary variables can also indirectly
handle mutual inclusive or exclusive restrictions. For example, there
might be cases where a choice can be made between two constraints,
so that only one must hold. Also, there could be cases where process
B must be selected if process A has already been selected.

3. K out of N constraints must hold: Consider the case where the overall
model includes a set of N possible constraints such that only some K
of these constraints must hold (assuming K<N). Part of the opti-
mization task is to choose which combination of K constraints per-
mits the objective function to reach its best possible value. In fact,
this is nothing but a generalization of the either-or constraints, and
can handle a variety of problems.

4. Function with N-possible values: In many real-life problems, the func-
tions do not have smooth continuous properties, but can take up
only a few discrete values. For example, consider the following case

f (x1, . . . , xn) ¼ d1 or d2, . . . , dN : (5:17)

The equivalent IP formulation would be

f (x1, . . . , xn) ¼
XN
i¼1

diyi (5:18)
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XN
i¼1

yi ¼ 1 (5:19)

and Yi¼ binary (0 or 1) for i¼ 1, . . . , N.

5. Fixed-charge problem: In most problems, it is common to incur a fixed-
cost=set-up charge when undertaking a new activity. In a process-
engineering context, it might be related to the set-up cost for the
production facility to initiate a run. A typical power system example
is the start-up cost of a thermal-generating unit. This fixed charge is
often independent of the length or level of the activity and, hence,
cannot be approximated by allocating it to the (continuous) level of
activity variables.

Mathematically, the total cost comprising fixed and variable charges can be
expressed as

fj(xj) ¼ Kj þ Cjxj if xj > 0
0 if xj ¼ 0.

�
(5:20)

The MIP transformation would look like

Minimize Z ¼
Xn
j¼1

(Cjxj þ Kjyj), (5:21)

where

yj ¼ 1 if xj > 0
0 if xj ¼ 0.

�

Pure integer or MIP problems pose a great computational challenge. While
there exist highly efficient LP techniques to enumerate the basic LP problem
at each possible combination of the discrete variables (nodes), the problem
lies in the astronomically large number of combinations to be enumerated.
If there are N discrete variables, the total number of combinations becomes
2N! The simplest procedure one can think of for solving an integer or MIP
problem is to solve the LP relaxation of the problem (i.e., allowing the
discrete variables to take continuous value so that the MIP reduces to non-
linear programming) and then rounding the noninteger values to the closest
integer solution. There are, however, major pitfalls:

1. Resulting integer solution may not be feasible in the first place.

2. Even if the rounding leads to a feasible solution, it may, in fact, be far
from the optimal solution.

Algorithmic development for handling large-scale integer or MIP problems
continues to be an area of active research. There have been exciting
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algorithmic advances during the middle and late 1980s. The most popular
method to date has been the branch-and-bound technique and related ideas
to implicitly enumerate the feasible integer solutions.

5.6.1 Branch-and-Bound Technique for Binary Integer
Programming Problems

The basic philosophy in the branch-and-bound procedure is to divide the
overall problem into smaller and smaller subproblems and enumerate them in
a logical sequence. The division procedure is called branching and the sub-
sequent enumeration is done by bounding to check how good the best solution
in the subset can be, and then discarding the subset if its bound indicates
that it cannot possibly contain an optimal solution for the original problem.

The general structure of the MIP problem is

Maximize P(x) ¼
Xn
j¼1

cjxi: (5:22)

Subject to the constraints:

Xm
i¼1

Xn
i¼1

aijxj � bi

 !
(5:23)

and

xj � 0 (5:24)

8j 2 {1,n},

and xj is an integer 8i 2 {1,I}.
Assume for simplicity of notation that the first I variables are the integer

decision variables.
Before a formal description of the branch-and-bound procedure is given,

the basic procedures of branching, bounding, and fathoming are illustrated
using a simple numerical example.

Illustrative example
Consider the following IP problem:

Maximize P ¼ 9x1 þ 5x2 þ 6x3 þ 4x4

Subject to

6x1 þ 3x2 þ 5x3 þ 2x4 � 0

x3 þ x4 � 1

�x1 þ x3 � 0

�x2 þ x4 � 0

8xj 2 (0,1):
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This is a pure integer problem and except for its small size is typical of many
of the practical decision-making problems.

Branching
Branching involves developing subproblems by fixing the binary variables at
0 or 1. For example, branching on x1 for the example problem gives

Subproblem 1. (x1¼ 0)

Maximize P ¼ 5x2 þ 6x3 þ 4x4

Subject to

3x2 þ 5x3 þ 2x4 � 10

x3 þ x4 � 1

x3 � 0

�x2 þ x4 � 0:

Subproblem 2. (x1¼ 1)

Maximize P ¼ 9þ 5x2 þ 6x3 þ 4x4

Subject to

3x2 þ 5x3 þ 2x4 � 4

x3 þ x4 � 1

x3 � 1

�x2 þ x4 � 0:

The procedure may be repeated at each of the two subproblem nodes
by fixing additional variables such as x2, x3, and x4. Thus, a tree structure
can be formulated by adding branches at each iteration, which is referred to
as the solution tree. The variable used to do this branching at any iteration
by assigning values to the variable is called the branching variable.

Bounding
For each of the subproblems, a bound can be obtained to determine how
good its best feasible solution can be. Consider first the relaxed LP formula-
tion for the overall problem, which yields the following solution:

(x1, x2, x3, x4) ¼ 5
6
, 1, 0, 1

� �

with P ¼ 16 1
2.

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 165 20.11.2008 4:08pm Compositor Name: BMani

Linear Programming and Applications 165



Therefore, P � 16.5 for all feasible solutions for the original problem. This
bound can be rounded off to 16, because all coefficients in the objective
function are integers; hence, all integer solutions must have an integer
value for P. The bound for whole problem is P � 16.

In the same way, the bounds for the two subproblems are obtained:

Subproblem 1. (x1, x2, x3, x4)¼ (0, 1, 0, 1)
with P¼ 9.

Subproblem 2. (x1, x2, x3, x4) ¼ 1, 4
5 , 0,

4
5


 �
with P¼ 16.2.

Therefore, the resulting bounds are

Subproblem 1. P � 9,
Subproblem 2. P � 16.

Fathoming
If a subproblem has a feasible solution, it should be stored as the first
incumbent (the best feasible solution found so far) for the whole problem
along with its value of P. This value is denoted P*, which is the current
incumbent for P.

A subproblem is said to be fathomed, that is, dismissed from further
consideration, if

Test 1. Its bound is less than or equal to P.

Test 2. Its LP relaxation has no feasible solutions.

Test 3. Optimal solution for its LP relaxation is an integer; if this solution is
better than the incumbent, it becomes the new incumbent, and the test is
reapplied to all unfathomed subproblems with the new larger P*.

Optimality Test
The iterative procedure is halted when there are no remaining subproblems.
At this stage, the current incumbent for P is the optimal solution. Otherwise,
we return to perform one more iteration. The solution tree of the current
example is provided in Figure 5.3.

The markings F(1), F(2), and F(3) on Figure 5.3 indicate that the node has
been fathomed by Tests 1, 2, and 3.

For the general branch-and-bound approach in MIP problems, some
deviations are necessary to improve the efficiency of the algorithm. These
include

1. Choice of branching variable: The variables, which have a noninteger
solution in the LP relaxation, are selected for branching.

2. Values assigned to the branching variable for creating subproblems: Create
just two new subproblems by specifying two ranges of values for the
variable.

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 166 20.11.2008 4:08pm Compositor Name: BMani

166 Electric Power System Applications of Optimization



3. Bounding step: The bound of P is the optimal value of P itself (without
rounding) in the LP relaxation.

4. Fathoming test: Only the integer decision variables need to be checked
for integer solution to decide the fathoming node.

The branch-and-bound procedure is summarized in the following import-
ant steps:

Step 1. Initialization: Set P*¼ �1. Apply the bounding step, fathoming step,
and optimality test described below to the whole problem. If not fathomed,
classify this problem as the one ‘‘remaining’’ subproblem for performing the
first full iteration below.

Step 2. Branching: Among the unfathomed subproblems, select the one that
was created most recently (breaking ties according to which has the larger
bound). Among the integer restricted variables that have a noninteger value
in the optimal solution for the LP relaxation of the subproblem, choose the
first one in the natural ordering of the variables to be the branching variable.
Let xj be this variable and xj* its value in this solution. Branch from the node
for the subproblem to create two new subproblems by adding the respective
constraints, xj � [xj*] and xj � [xj*]þ 1, where [xj*] ¼ greatest integer �xj*.

1

0

0

0

1

0

1

1

P∗ = 14 with
x = [1, 1, 0, 0] 

F(2)

F(2)

F(3)

F (1)
A11

16

16

16

9

13

16

x1 x2 x3

FIGURE 5.3
Solution tree diagram for the IP problem.

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 167 20.11.2008 4:08pm Compositor Name: BMani

Linear Programming and Applications 167



Step 3. Bounding: For each new subproblem, obtain its bound by applying the
simplex method to its LP relaxation and using the value of the P for the
resulting optimal solution.

Step 4. Fathoming and optimality test: For each new subproblem, apply the
three fathoming tests and discard those subproblems that are fathomed by
any of the tests.

These are the fundamental steps in the branch-and-bound technique that
is applicable to a wide range of MIP problems. For each subproblems that is
created, the LP algorithm can be applied in the constrained problem in its
pure linear form. We now turn our attention to sensitivity methods in LP.

5.7 Sensitivity Methods for Postoptimization in LP

In many applications, both nonpower and power system types, we
often encounter practical problems. In one instance, we seek the optimal
solution and in another, we wish to know what happens when one or
more variables are changed. In order to save computational effort, it is desir-
able not to resolve the problem if small perturbations are made to the vari-
ables. Sensitivity analysis is the study used to compute such solutions [7,9,10].

Now, recall the LP problem given by the following model as shown in
Equations 5.10 and 5.11:

Maximize P(x) ¼
Xn
j¼1

cTj xj (5:25)

Subject to the constraints:

Xm
i

Xn
j¼1

aijxj � bi

0
@

1
A (5:26)

and

xj � 0 (5:27)

8i 2 {1,m} and 8j 2 {1,n}:

Here, we observe that changes in the system can be attributed to the modi-
fications such as

1. Perturbation in the parameters, bi
2. Perturbation in the cost coefficients, cj
3. Perturbation in the coefficient, aij
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4. Injection of new constraints

5. Injection of new variables

We discuss the effect of each case as it applies to sensitivity analysis and
further expound on the first class in more detail in a subsequent section.

5.7.1 Case 1: Perturbation in the Parameters b1

Let the optimal basis solution for the problem in its primal form be

xB ¼ [x1, x2, . . . , xm]T, (5:28)

where

xb � 0:

Since the nonbasic variables are zero, then we can write

BxB ¼ b (5:29)

) xB ¼ B�1b, (5:30)

where B is an m-square and nonsingular matrix formed by m columns of A.
Let b change to bþDb, where Db¼ [Db1, Db2, . . . , Dbm]0, and everything else in
the problem remains the same. Then

xB þ DxB ¼ B�1(bþ Db), (5:31)

given the new values xBþDxB of the variables that were the original optimal
basic variables.

If B�1(bþDb) � 0, then the variables continue to be basic feasible. They
would also continue to be optimal if the relative cost coefficients given by
CBB

�1�B – �CB continued to be nonnegative; that is

Z� �CB ¼ CBB�1�B� �CB � 0: (5:32)

The optimum value of P(x) changes can be calculated with the new values of
the variables given by xBþDxB, or by using the following equation,

P(x) ¼ CBB�1(bþ Db): (5:33)

5.7.2 Case 2: Perturbation in the Cost Coefficients Cj

If Cj are changed to C0j, everything else in the problem remaining the same,
the relative cost coefficients are given by

C0BB
�1�B� �C0B: (5:34)
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These may not all be nonnegative. For some j, some of them are negative.
This would mean that the basic feasible solution that was optimal for Cj is not
optimal for C0j. So from this point onwards further iterations may be done
with new values C0j to obtain a new optimal solution.

If, however, C0j are such that Z� �C0B ¼ C0BB
�1�B� �C0B � 0, then the original

optimal basis still remains optimal, and the value of the optimal basic
variables also remains unchanged. The optimum value of P(x) is given by

P(x) ¼ C0BB
�1b: (5:35)

5.7.3 Case 3: Perturbation in the Coefficient aij

If the changes are in aik, where xk is the nonbasic variable of the optimal
solution, then we get:

C0BB
�1�B(ik) � �C0B, (5:36)

where �B(ik) means that the value of aik in �B is changed.
If C0BB

�1�B(ik) � �C0B � 0, then the original optimal basis still remains optimal.
If not, further iterations with the new values of C0B�1B

�B(ik) � �C0B and aik may
be done.

5.7.4 Case 4: Injection of New Constraints

Generally, if the original optimal solution satisfies the new constraints that
are added to the system, then that solution will still be an optimal solution.
However, if some of the injected constraints are violated by the original
optimal solution, then the problem must be solved taking into account the
new constraints to the system. The new initial point may constitute the old
basic variables of the original optimal solution along with one additional
basic variable that is associated with each added constraint.

5.7.5 Case 5: Injection of New Variables

Since the number of constraints remains the same, the number of basic
variables remains the same. Therefore, the original optimal solution along
with zero values of the new variables would result in a basic feasible solution
for the new problem. That solution would remain optimal if the newly
introduced cost coefficients corresponding to them are nonnegative.

5.7.6 Sensitivity Analysis Solution Technique for Changes in Parameters bi

We consider the well-known LP problem defined by

min (P ¼ cTx: s:t: Ax ¼ b; x � 0), (5:37)
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where
c and x are n-vectors
b is an m-vector

It is assumed that for a given b, the LP problem has been solved with an
optimal basis that yields an optimal solution which may be nondegenerate or
degenerate. Then the vector b is subject to change with an increment Db. The
postoptimization problem is to further optimize P with respect to Db under
the condition that the optimal basis remains unchanged.

Now let B and XB be the optimal basis and the associated optimal solution
of Equation 5.37. Then it is clear from Equation 5.37 that both P and XB

change as b does. We define the rate of change of P with respect to b as the
sensitivity denoted by

SPb ¼
@P
@b

(a row m-vector): (5:38)

Thus, the new objective function becomes

Pþ DP ¼ Pþ @P
@b

Db (5:39)

DP ¼ SPbDb: (5:40)

The new optimal solution is

x0B ¼ B�1(bþ Db) ¼ xB þHDb � 0, (5:41)

where H¼B�1¼ [hij].
In practical applications, only some components of b are subject to change

and the changes are usually bounded. If J is the index set that contains j for
which bj changes with increment Dbj, then

fj � Dbj � gj: (5:42)

In order to ensure that Dbj¼ 0 is feasible, we impose the condition

fj � 0 � gj, for j 2 J: (5:43)

The trivial condition does not affect the practicality of the postoptimization,
yet it guarantees a solution. It can be shown that the sensitivity SPb is the dual
solution of Equation 5.37. For this reason, we use the conventional notation

yT ¼ SPb, (5:44)

where y is the dual solution and a column vector.
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The problem is to minimize DP with respect to Db by keeping B
unchanged. That is,

Minimize DP ¼ yTDb ¼
X
j

yjDbj (5:45)

Subject to

xBi þ hijDbj � 0 (5:46)

and

fi � Dbj � gj (5:47)

where j 2 J and i¼ 1, 2, . . . , m.

5.7.6.1 Solution Methodology

We wish to utilize the solution of Equation 5.37 to find the sensitivity. Let CB

be associated with the optimal basis B and solution XB. That is,

P ¼ CT
BXB (5:48)

and

BXB ¼ b: (5:49)

A new vector is defined here to satisfy

BTy ¼ cB: (5:50)

Such an m-vector y is unique since B is nonsingular. In view of Equations 5.49
and 5.50, we know that both P and XB change if the vector b changes in order
to maintain the optimality. But B may or may not change due to the insensi-
tive nature of B to b. We consider here the case for which B remains
unchanged when b changes. Thus, the vector y of Equation 5.41 is constant
when b changes. It follows from Equations 5.48 through 5.50 that

SPb ¼
@ CT

BXB

 �
@b

¼ CT
B
@XB

@b
¼ yTB

@XB

@b

¼ yT
@(BXB)
@b

¼ yT
@b
@b
¼ yTI ¼ yT: (5:51)

This result shows that the sensitivity is indeed the y that satisfies Equation
5.50. Importantly, it is a constant and, hence, DP as given by Equation 5.40 is
exact without any approximation. Since y is also the dual solution of Equa-
tion 5.37 for the nondegenerate case, it can be obtained together with B.
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We do not impose the condition of nondegeneracy but only require an
optimal basis B which may yield a degenerate (XB � 0) or nondegenerate
(XB> 0) solution. In any case, y can be found from Equation 5.50 by B�1

which is also needed in the algorithm.
It is intended to solve the problem by changing one component of Db at a

time. By looking at the sign of yj, one may choose a feasible Dbj in such a
way that

yjDbj ¼ �jyiDbjj � 0, (5:52)

which is equal to zero only when Dbj¼ 0.
A process is employed to change Dbj step by step with the resetting of

necessary quantities. In the process, j 2 J advances from the first one to the
last and then back to the first, and so on, until all Dbj¼ 0 (steady state). Since
DP is decreasing from one step to another unless Dbj¼ 0, the steady state is
reachable if a solution exists.

The method can be implemented by using a series of logical decisions. For
Dbj with j 2 J, Equation 5.52 requires that hijDbj � –XBi where i¼ 1, 2, . . . , m
and hij is the ith row and jth column of the matrix H. The above inequality
can be fulfilled by

Lj � Dbj � Rj: (5:53)

The bounds are to be determined as follows:

Lj ¼ max[�XBi=hij; hij > 0]

¼ �1, if all hij � 0 (5:54)

Rj ¼ min[�XBi=hij; hij < 0]

¼ 1, if all hij � 0, (5:55)

where the maximization and minimization are taken over i¼ 1, 2, . . . , m.
(Note that Lj � 0 and Rj � 0 are always true as evidenced by XB � 0.) Chosen
according to Equation 5.53, Dbj is feasible for the constraint Equation 5.41. To
satisfy Equation 5.42 and make the smallest yibj< 0, one must select Dbj as
follows:

Dbj ¼ 0, if yj ¼ 0 (5:56)

¼ max[ fi, Lj], if yj > 0 (5:57)

¼ min[ gj, Rj], if yj < 0: (5:58)

Note that the maximal selection is always negative but the minimal one is
always positive.
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The steady state may be replaced by a simpler expression DP¼ 0. They are
equivalent because

DP ¼
X
j

yjDbj ¼ �
X
jyjDbjj ¼ 0, (5:59)

which implies that

yjDbj ¼ 0, for all j 2 J: (5:60)

This is true only when Dbj¼ 0 for all j 2 J due to the selection rule that Dbj¼ 0
when yj¼ 0.

5.7.6.2 Implementation Algorithm

The algorithm for sensitivity analysis with changes in the parameter bi can be
implemented by using the following steps:

Step 1. Obtain B, XB, C, and b from the LP problem, Equation 5.10.

Step 2. Calculate P ¼ CT
BCB, H¼B�1¼ [hij], and then y¼HTCB.

Step 3. Identify J and [ fj, gj] from Equation 5.13 of the problem.

Step 4. Set DP¼ 0.

Step 5. Do the following Steps 5.1 through 5.3. For j 2 J and i¼ 1, 2, . . . , m

5.1 If yj¼ 0, then set Dbj¼ 0.

5.2 If yj> 0, then set

Lj ¼ max [�XBi=hij; hij > 0]

¼ �1 if all hij � 0

Then set Dbj¼max[ fj,Lj].

5.3 If yj< 0, then set

Rj ¼ min [�XBi=hij; hij < 0]

¼ 1 if all hij � 0,

Then set Dbj¼min[gj,Rj].

Step 6. Update

DP ¼ DPþ yjDbj

bj ¼ bj þ Dbj

fj ¼ fj � Dbj

gj ¼ gj � Dbj:

Step 7. Update

XBi ¼ XBi þ hijDbj, for all i ¼ 1, 2, . . . , m:
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Step 8. Update

P ¼ Pþ DP:

Step 9. Go to step 10 if dP¼ 0; go back to step 4 otherwise.

Step 10. Stop with XB, b, and P as a solution for the postoptimization as
formulated.

Finally, it is easy to understand the update performed in steps 6 and 7
except for the intervals. The new intervals must be shifted by the amount of
Dbj to the left if Dbj> 0 and to the right if Dbj< 0. The update in steps 6 and 7
may be exempted if Dbj¼ 0.

Illustrative example

Minimize [P ¼ X1 þ X2 þ X3]

Subject to

X1 þ X3 þ X4 � X5 ¼ 3 ¼ b1

X2 � X3 þ X4 þ X6 ¼ 1 ¼ b2

and

8i, Xi � 0:

It is required to further minimize P for� 1 � Db1 � 1 and 0 � Db2 � 2 after a
minimized solution has been achieved for the problem. This is a problem of
postoptimization and can be solved as follows:

Solution

Step 1. From the primal problem

B ¼ 1 1
�1 1

� �
, XB ¼ X3

X4

� �
¼ 1

2

� �
, CB ¼ 1

0

� �
and b ¼ 3

1

� �
:

Step 2. P¼X3¼ 1.

H ¼ 1 1
�1 1

� ��1
¼ 1

2
1 �1
1 1

� �

y ¼ 1
2

1 1
�1 1

� �
1
0

� �
¼ 1

2
1
�1
� �

:

Step 3. J¼ {1,2}.

f1 ¼ �1, f2 ¼ 0

g1 ¼ 1, g2 ¼ 2:

Step 4. DP¼ 0.
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Step 5. With j¼ 1, then with

Step 5.2 with y1¼ 0.5, we get

L1 ¼ max � 1
0:5

,� 2
0:5

� �
¼ �2

Db1 ¼ max [�1, �2] ¼ �1

DP ¼ 0þ 1
2

� �
(�1) ¼ � 1

2

b1 ¼ 3þ (�1) ¼ 2

f1 ¼ �1� (�1) ¼ 0

g1 ¼ 1� (�1) ¼ 2

with Step 5.3,

XB1 ¼ 1þ 0:5(�1) ¼ 0:5

XB2 ¼ 2þ 0:5(�1) ¼ 1:5:

Step 6. With j¼ 2, then

y2 ¼ �0:5

R2 ¼ min
�0:5
�0:5
� �

and Db2 ¼ min[2, 1] ¼ 1:

Step 7. DP¼�0.5þ (�0.5) (1)¼�1

b2 ¼ 1þ 1 ¼ 2, g2 ¼ 2� 1 ¼ 1

f2 ¼ 0� 1 ¼ �1:

Step 8. XB1¼ 0.5þ (�0.5) (1)¼ 0

XB2 ¼ 1:5þ (0:5)(1) ¼ 2:

Step 9. P¼ 1þ (�1)¼ 0.

Step 10. DP¼�1 6¼ 0.
10.1 DP¼ 0.

10.2 j ¼ 1, y1 ¼ 1
2 : Db1 ¼ max [0, 0] ¼ 0, no update.

10.3 j ¼ 2, y2 ¼ � 1
2 : Db2 ¼ min [1, 0] ¼ 0, no update.

Therefore, DP¼ 0.
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Step 11. The optimal solution to the problem is

XB ¼ 0
2

� �
, b ¼ 2

2

� �
, and P ¼ 0:

Notably, if we change b2 first and then b1 or J¼ {2, 1}, the solution becomes

XB
0
3

� �
, b ¼ 3

3

� �
, and P ¼ 0:

In fact, the problem has an infinite number of solutions:

XB ¼ 0
b

� �
, b ¼ b

b

� �
, and P ¼ 0,

where 2 � b � 3.

5.7.6.3 Duality in Postoptimal Analysis

The dual of the primal LP problem given by Equations 5.12 through 15.14 can
be restated in the form:

max {D ¼ bTy s:t: ATy � C; y � 0}: (5:61)

Let the vectors in A and components in C be arranged as

A ¼ [B, N] (5:62)

and

C ¼ CB
CN

� �
: (5:63)

Then, it follows that

AX ¼ [B, N]
XB
0

� �
¼ BXB ¼ b (5:64)

and

P ¼ CTX ¼ CT
B, C

T
N

� 	 XB

0

� �
¼ CT

BXB: (5:65)

Introduce a new m-vector u such that

Bu ¼ ak(Ak), (5:66)

where ak is a vector in N.
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The vector y in Equation 5.62 is feasible for the dual problem if

NTy � CN: (5:67)

This is true because

ATy ¼ BTy
NTy

� �
� CB

CN

� �
¼ C: (5:68)

To show Equation 5.69, we assume the contrary to have

aTk y� CNk > 0: (5:69)

Multiply Equation 5.67 by a positive number u and then subtract it from
Equation 5.65:

B(XB � uu)þ uak ¼ b: (5:70)

We obtain from Equations 5.66 and 5.67 that

yTBu ¼ yTak ¼ CT
Bu ¼ aTk y

and hence

aTk y� CNK ¼ CT
Bu� CNK: (5:71)

Multiply Equation 5.71 by u and then subtract it from Equation 5.66:

P� u aTk y� CNK

 � ¼ CT

B(XB � uu)þ uCNk: (5:72)

Choose

u ¼ XBr

ur
¼ min

XBi

ui
: ui > 0

� �
(5:73)

which always exists since XB> 0 (nondegenerate). With u so chosen, Equa-
tion 5.71 demonstrates that a new feasible basis is formed by replacing ar in B
with ak in N. On the other hand, Equation 5.72 indicates that the new P is
decreased from the old value by

u aTk y� CNK

 �

> 0: (5:74)

This contradicts the fact that B is a minimal basis.
For any feasible X of Equation 5.10 and its dual y, we have

P ¼ CTX � (ATy)TX ¼ yTAX ¼ yTb ¼ D: (5:75)
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But, for X¼XB, it becomes

P ¼ CT
BXB ¼ (BTy)TXB ¼ yTBXB (5:76)

¼ yTb ¼ D: (5:77)

Therefore y is also a maximum of the dual problem.

5.8 Power Systems Applications

Consider a subtransmission system in which certain bus voltages of interest
form the vector jVj. Assume that the increase in bus voltage magnitude is
linearly proportional to injected reactive power at several buses, denoted by
the vector DQ. The dimensions of vectors jVj and DQ may not be the same
since the capacitor placement may occur at a different number of buses
compared to the buses at which jVj is supported. Then

jVj ¼ BDQ, (5:78)

where B involves elements from the inverse of the @Q=@jVj portion of the
Jacobian (under the assumptions of superposition and decoupled power
flow). To ensure high enough bus voltage,

jVj þ DjVj � jVminj, (5:79)

where jVminj is a vector of minimum bus voltage magnitudes and jVj is the
‘‘base case’’ (i.e., no capacitive compensation) bus voltage profile. The DjVj
term stems from capacitive compensation. As a result

jDVj ¼ BDQ � jVminj � jVj: (5:80)

Again the concept of a vector inequality in Equation 5.68 is said to hold when
each scalar row holds. Furthermore, it is desired to minimize cq,

cq ¼ ctDQ: (5:81)

ct is a row vector of 1s commensurate dimension with DQ. The cost function,
cq, is a scalar. The minimization of cq subject to Equation 5.68 is accomplished
by LP. In most LP formulations, the inequality constraints are written with
the solution vector appearing on the ‘‘smaller than’’ side (i.e., opposite to
inequality Equation 5.70), and the index that is extremized is maximized
rather than minimized. Both problems are avoided by working with DQ0,
rather than DQ, where

DQ0 ¼ K � DQ: (5:82)
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In this discussion, DQ entries are assumed to be positive for shunt capacitive
compensation.

It is possible also to introduce capacitor costs, which depend on the size of
the unit. This is done by allowing other than unity weighting in ct. Upper
limits may also be introduced, but these are usually not needed.

5.9 Illustrative Examples

Example 5.9.1

A subsystem has two generators. There are four key lines with limits given by

Pmax
L1 ¼ 12 MW, Pmax

L2 ¼ 12 MW

Pmax
L3 ¼ 18 MW, Pmax

L4 ¼ 18 MW:

The sensitivity relation between the key lines and the generators is given below:

PL1 ¼ 2PG1 þ 3PG2, PL2 ¼ 3PG1 þ 2PG2

PL3 ¼ 6PG1 þ PG2, PL4 ¼ PG1 þ 6PG2:

The system benefit function is F¼ PG1þ 2PG2. Find the maximum benefit value of
the system using LP.

SOLUTION

Pmax
L1 ¼ 12, Pmax

L2 ¼ 12

Pmax
L3 ¼ 18, Pmax

L4 ¼ 18

PL1 ¼ 2PG1 þ 3PG2 ! 2PG1 þ 3PG2 � 12

PL2 ¼ 3PG1 þ 2PG2 ! 3PG1 þ 2PG2 � 12

PL3 ¼ 6PG1 þ PG2 ! 6PG1 þ PG2 � 18

PL4 ¼ PG1 þ 6PG2 ! PG1 þ 6PG2 � 18

F ¼ PG1 þ 2PG2 ! maximize:

If we change the variables to be PG1! x1, PG2 ! x2 then the problem will be
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Maximize F ¼ x1 þ 2x2

Subject to

2x1 þ 3x2 � 12

3x1 þ 2x2 � 12

6x1 þ x2 � 18

x1 þ 6x2 � 18:

SOLUTION

Change the inequality constraints to be equality by adding a slack variable to each
inequality constraint. Now the problem will be

Maximize F ¼ x1 þ 2x2

Subject to

2x1 þ 3x2 þ x3 ¼ 12

3x1 þ 2x2 þ x4 ¼ 12

6x1 þ x2 þ x5 ¼ 18

x1 þ 6x2 þ x6 ¼ 18

C ¼ [1 2 j 0 0 0 0] ¼ �CB j CB
� 

A ¼
2 3 j 1 0 0 0
3 2 j 0 1 0 0
6 1 j 0 0 1 0
1 6 j 0 0 0 1

2
664

3
775 ¼ [�B j B]

x ¼ [x1 x2 j x3 x4 x5 x6]
T

xB ¼ [x3 x4 x5 x6]
T ¼ [12 12 18 18]T

Z � �CB ¼ CBB�1�B� �CB ¼ [0 0] � [1 2] ¼ [�1 �2] :

First iteration: k¼ 2 implies that the second vector of �B, x2 is to enter the basis

y ¼ B�1�a2 ¼ j

3
2
1
6

2
664
3
775

u ¼ min
xBi
yi

, yi > 0
� �

¼ min
12
3
,
12
2
,
18
1
,
18
6

� �
¼ 3,

r¼ 4, u¼ 3; therefore, the fourth vector X6 is to leave the basis. The new basis after
replacement X2 and X6 is

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 181 20.11.2008 4:08pm Compositor Name: BMani

Linear Programming and Applications 181



xB new ¼ [xB � uy, xBr ¼ u] ¼ {12� 3� 3, 12� 2� 3, 18� 3� 1, 3}T

¼ [6, 6, 15, 3]T:

New values

B ¼

x3 x4 x5 x2
1 0 0 3
0 1 0 2
0 0 1 1
0 0 0 6

2
66664

3
77775 �B ¼

x1 x6
2 0
3 0
6 0
1 1

2
66664

3
77775

CB ¼ [0 0 0 2]

xB ¼ [6, 6, 15, 3]T

�CB ¼ [1 0]:

Components of B�1, r¼ 4, yr¼ 6,

bij ¼ bij � yi
yr
b4j, i 6¼ 4

bij ¼ yi
y4

b4j, i ¼ 4

b11 ¼ b11 � y1
y4

b41 ¼ 1

b12 ¼ b12 � y1
y4

b42 ¼ 0

b13 ¼ b13 � y1
y4

b43 ¼ 0

b14 ¼ b14 � y1
y4

b44 ¼ � 3
6
(1) ¼ �0:5

b21 ¼ b21 � y2
y4

b41 ¼ 0

b22 ¼ b22 � y2
y4

b42 ¼ 1

b23 ¼ b23 � y2
y4

b43 ¼ 0

b24 ¼ b24 � y2
y4

b44 ¼ 0� 2
6
(1) ¼ � 1

3

b31 ¼ b31 � y3
y4

b41 ¼ 0

b32 ¼ b32 � y3
y4

b42 ¼ 0

b33 ¼ b33 � y3
y4

b43 ¼ 1� 1
6
(0) ¼ 1:0
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b34 ¼ b34 � y3
y4

b44 ¼ 0� 1
6
(1) ¼ � 1

6

b41 ¼ b41

y4
¼ 0, b42 ¼ 0, b43 ¼ 0, b44 ¼ 1

6
:

B�1 ¼

1 0:0 0:0 �0:5
0 1 0 � 1

3

0 0 1 � 1
6

0 0 0 1
6

2
6664

3
7775:

Second iteration

Z ¼ CBB�1�B ¼ [0 0 0 2]

1 0 0:0 �0:5
0 1 0 � 1

3

0 0 1 � 1
6

0 0 0 1
6

2
6664

3
7775

2 0

3 0

6 0

1 1

2
6664

3
7775

¼ 0 0 0
1
3

� � 2 0

3 0

6 0

11 1

2
6664

3
7775 ¼ 1

3
1
3

� �

Z � �CB ¼ 1
3

1
3

� �
� [1 0] ¼ � 2

3
1
3

� �
:

Then x1 is to enter the basis

y ¼ B�1�a ¼
1 0 0:0 �0:5
0 1 0 � 1

3

0 0 1 � 1
6

0 0 0 1
6

2
6664

3
7775

2
3
6
1

2
6664
3
7775 ¼

2
6
6
1
6

2
6664
3
7775

u ¼ min
xBi
yi

, yi > 0
� �

¼ min
6
2

6
6

15
6

18
� �

¼ 1,

r¼ 2, u¼ 1. Therefore, the second column (x4) is to leave the basis. x1 replaces x4,
yr¼ y2¼ 6.
The new basis is

xB new ¼ XB � uy, xB2 ¼ uf g ¼ 6� 2, 1, 15� 6, 3� 1
6

� �
¼ 4, 1, 9,

17
6

� �
:

B�1 components are

bij ¼ bij � yi
yr
brj, i 6¼ r, bij ¼ bij � yi

y2
b2j,

bij ¼
yrj
yr

, bij ¼
b2j

y2
,
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b11 ¼ b11 � y1
y2

b21 ¼ 1� 2
6
(0) ¼ 1

b12 ¼ b12 � y1
y2

b22 ¼ 0� 2
6
(1) ¼ � 1

3

b13 ¼ b13 � y1
y2

b23 ¼ 0

b14 ¼ b14 � y1
y2

b24 ¼ 3:0� 2
6
(2) ¼ 7

3

b21 ¼ b21

y2
¼ 0, b22 ¼ b22

y2
¼ 1

6
, b23 ¼ 0

b24 ¼ b24

y2
¼ 2

6
¼ 1

3

b31 ¼ b31 � y3
y2

b21 ¼ 0

b32 ¼ b32 � y3
y2

b22 ¼ 0� 6
6
(1) ¼ �1

b33 ¼ b33 � y3
y2

b23 ¼ 1� 6
6
(0) ¼ 1:0

b34 ¼ b34 � y3
y2

b24 ¼ 1� (1)2 ¼ �1

b41 ¼ b41 � y4
y2

b21 ¼ 0� 1=6
6

(0) ¼ 0

b42 ¼ b42 � y4
y2

b22 � 1=6
6

(1) ¼ � 1
36

b43 ¼ b43 � y4
y2

b23 ¼ 0, b44 ¼ b44 � y4
y2

b24 ¼ 6� 1
36

(2) ¼ 107
18

x3 x1 x5 x2

B�1 ¼

1 � 1
3 0 7

3

0 1
6 0 1

3

0 �1 1 �1
0 � 1

36 0 107
18

2
6664

3
7775x4 x6

B ¼
1 2 0 3
0 3 0 2
0 6 1 6
0 1 0 1

2
664

3
775 �B ¼

0 0
1 0
0 0
0 1

2
664

3
775

xb ¼ 4, 1, 9
17
6

� �T

CB ¼ [0 1 0 2]

�CB [0 0]:
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Third iteration

Z ¼ CB�B1�B ¼ [0 1 0 2]

1 � 1
3 0 7

3

0 1
6 0 1

3

0 �1 1 �1
0 � 1

36 0 107
18

2
6664

3
7775

0 0

1 0

0 0

0 1

2
6664

3
7775

¼ 0
2
28

0
110
9

� � 0 0

1 0

0 0

0 1

2
6664

3
7775 ¼ 1

9
110
9

� �

Z � �CB ¼ 1
9

110
9

� �
� [0 0] ¼ 1

9
110
9

� �
> 0,

which means that we reached the optimum point,

min P ¼ CBxB ¼ [0 1 0 2 ]

4
1
9

17=6

2
664

3
775 ¼ 20

3
,

x1 ¼ 1, x2 ¼ (17=6):

Then as a result, PG1¼ 1 and PG2¼ (17=6).

Example 5.9.2

(a) Use LP to minimize F¼ 4x1þ 5x2 subject to

x1 þ x2 � 6

x1 þ 3x2 � 15

2x1 þ x2 � 12:

(b) Determine the solution of if the RHS vector is changed to [10 21 16]T.

SOLUTION TO PART (a)
Changing inequality constraints to be equality by adding slack:

Min F ¼ 4x1 þ 5x2

s:t: x1 þ x2 þ x3 ¼ 6

x1 þ 3x2 þ x4 ¼ 15

2x1 þ x2 þ x5 ¼ 12

C ¼ [4 5 j 0 0 0 ] ¼ [�CB j CB]
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A ¼
1 1 j 1 0 0
1 3 j 0 1 0
2 1 j 0 0 1

2
4

3
5 ¼ [�B j B]

x ¼ [x1 x2 j x3 x4 x5] xB ¼ [x3 x4 x5]
T ¼ [6 15 12]T

Z � �CB ¼ CBB�1�B� �CB ¼ [� 4 �5]:

First iteration
Now k¼ 2 implies the second vector of �B and x2 enters bases

y ¼ B�1�a2 ¼
1
3
1

2
4
3
5

u ¼ min
xBi
yi

, yi > 0
� �

¼ min
6
1
,
15
3
,
12
1

� �
¼ [1 5 7]T:

New values

B ¼

x2 x1 x4
1 1 0

0 3 0

0 1 1

2
6664

3
7775 �B ¼

x1 x4
1 0

1 1

2 0

2
6664

3
7775

CB ¼ [0 5 0] �CB ¼ [4 0]

xB ¼ [1 5 7]T:

Components of B�1 were calculated from the matrix inversion lemma to get:

B�1 ¼
1 0 0
0 1 0
0 0 1

2
4

3
5:

Second iteration

Z ¼ CBB�1�B ¼ [0 5 0]
1 0 0
0 1 0
0 0 1

2
4

3
5 1 0

1 1
2 0

2
4

3
5 ¼ [5 5] :

Since Z� �CB¼ [1 5]> 0, we have reached optimum point at

x1
x2

� �
¼ 1

5

� �

and the corresponding objective value is

Min F ¼ CBxB ¼ [0 5 0]
1
5
7

2
4
3
5 ¼ 25:
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SOLUTION TO PART (b)

Using perturbation for b ¼
10
21
16

2
4

3
5

given B ¼
1 1 0
0 3 0
0 1 1

2
4

3
5, xB ¼ 1

5
7

2
4
3
5, CB ¼

0
5
0

2
4
3
5

P ¼ CT
BxB ¼ [0 5 0]

1
5
7

2
4
3
5 ¼ 25

H ¼ B�1 ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 (from Part (a))

y ¼ HTCB ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 0

5
0

2
4
3
5 ¼ 0

5
0

2
4
3
5

J ¼ {1, 2, 3}

Db ¼ b2 � b1 ¼
10
21
16

2
4

3
5� 1

5
7

2
4
3
5 ¼ 9

16
9

2
4

3
5

f1 � 9 � g1; f1 ¼ 5; g1 ¼ 10

f2 � 16 � g2; f2 ¼ 0; g2 ¼ 10;

f3 � 9 � g3; f3 ¼ 1; g3 ¼ 10

DP ¼ 0

with j¼ 1, then y1¼ 0, Db1¼ 0
with j¼ 2, then y2¼ 5, we get

L2 ¼ �xBi
hi2

, hi2 > 0
� �

¼ �5
1

� �
¼ �5

Db2 ¼ �5
DP ¼ DP þ yjDbj ¼ 0þ y2Db2 ¼ �25
b2 ¼ b2 þ Db2 ¼ 21þ (�5) ¼ 16

With fj ¼ fj � Dbj, f2 ¼ 0� (�5) ¼ 5

With gj ¼ gj � Dbj, f2 ¼ 0� (�5) ¼ 5

xB1 ¼ XB1 þ h12Db2 ¼ 1þ 0(�5) ¼ 1

xB2 ¼ xB2 þ h22Db2 ¼ 5þ 1(�5) ¼ 0

xB3 ¼ xB3 þ h32Db2 ¼ 7þ 0(�5) ¼ 7
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With j ¼ 3, y3 ¼ 0 therefore Db3 ¼ 0, then

updating P ¼ P þ DP ¼ 25þ (�25) ¼ 0:

Second iteration

xB ¼
1
0
7

2
4
3
5, b ¼

10
16
16

2
4

3
5,

f1 ¼ 5, g1 ¼ 10

f2 ¼ 5, g2 ¼ 21

f3 ¼ 1, g3 ¼ 10

P ¼ �CBxB ¼ [0 5 0]
1
0
7

2
4
3
5 ¼ 0

CB ¼
0
5
0

2
4
3
5

with j¼ 1, then y1¼ 0 therefore Db1¼ 0
with j¼ 2, then y2¼ 5, we get

L2 ¼ Max
�xBi
hi2

, hi2 > 0
� �

¼ Max
�0
1

� �
¼ 0

Therefore Db2 ¼ 0:

With j¼ 3, y3¼ 0 therefore Db3¼ 0. And since Db1¼Db2¼Db3¼ 0, no further
update is required.

Therefore DP¼ 0 and the optimal solution to the problem is xB ¼
1
0
7

2
4
3
5 and P¼ 0.

5.10 Conclusion

This chapter covered LP, one of the most famous optimization techniques for
linear objectives and linear constraints. In Section 5.1, the formulation of the
natural model associated with the basic assumptions was presented and a
graphical solution of the LP problem demonstrated. In Section 5.2 the sim-
plex algorithm was presented and supported with illustrative problems
together with a summary of the computational steps involved in the algo-
rithms. The matrix approach solution to the LP problem was presented in
Section 5.3 where the formulation of the problem and the revised simplex
algorithm were also presented. Duality in LP was presented in Section 5.4.
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For those cases where the variables take either integer or continuous values,
MIP was presented in Section 5.5 as a way of solving such problems. The
branch-and-bound technique for solving this problem was explained. In
Section 5.6, the sensitivity method for analysis of postoptimization of LP
was presented supported with a method of solution and detailed algorithms.
In Section 5.7, a power system application was presented where improve-
ment of a voltage profile using reactive power resources installed in the
system was shown. The construction of the method and the solution tech-
nique were explained.

5.11 Problem Set

PROBLEM 5.11.1

Given the objective function

f (x) ¼ x1 þ 2x2, x1, x2 � 0

subject to the constraints:

f1(x) ¼ 2x1 þ 3x2 � 12 � 0

f2(x) ¼ 3x1 þ 2x2 � 12 � 0

f3(x) ¼ 6x1 þ x2 � 18 � 0

f4(x) ¼ x1 þ 6x2 � 18 � 0,

find the point (x) by obtaining the candidate points by finding all possible
solutions to be the boundary equations implied by the constraints and
testing to satisfy the domain of feasibility.

PROBLEM 5.11.2

Given the objective function

f (x) ¼ 4:25x1 þ 4:00x2, x1, x2 � 0

subject to the constraints:

5:00x1 þ 3:00x2 � 15:00

3:50x1 þ 5:00x2 � 17:50

4:00x1 þ 3:50x2 � 14:00

find the point (x) that maximizes f. Determine (x) to two decimal places.
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PROBLEM 5.11.3

Solve the following LP.

Maximize z ¼ 4x1 þ 6x2 þ 2x3

Subject to

4x1 � 4x2 � 5

�x1 þ 6x2 � 5

�x1 � 3x2 þ 2x3 � 3:

x1, x2, and x3 are nonnegative integers.
Compare the rounded optimal solution and the integer optimal solution.

PROBLEM 5.11.4

Convert the following problem to standard form and solve.

Maximize x1 þ 4x2 þ x3

Subject to

2x1 � 2x2 þ x3 ¼ 4

x1 � x3 ¼ 1

x2 � 0, x3 � 3:

PROBLEM 5.11.5

Consider the problem:

Maximize z ¼ x1 þ x2

Subject to

2x1 þ 5x2 � 16

6x1 þ 5x2 � 30,

where x1 and x2 are nonnegative integers.
Find the optimal noninteger solution graphically. By using IP, show

graphically the successive parallel changes in the value that will lead to
the optimal integer solution.

PROBLEM 5.11.6

Consider a power system with two generators with cost functions
given by

Generator 1: F1(P1) ¼ 80þ 7:2P1 þ 0:00107P2
1 ($)

Generator 2: F2(P2) ¼ 119þ 7:2P2 þ 0:00072P2
2 ($):
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Where generators 1 and 2 are limited to producing 400 and 600 MW of
power, respectively. Given that the system load is 500 MW, then

1. Formulate the problem into LP form.

2. Calculate the optimal generation.

3. Determine the optimal generation cost.

PROBLEM 5.11.7

Consider the problem

Maximize z ¼ x1 þ x2

Subject to

2x1 þ 5x2 � 16

6x1 þ 5x2 � 30,

where x1 and x2 are nonnegative integers.

PROBLEM 5.11.8

Consider the following problem:

Maximize Z ¼ �5x1 þ 5x2 þ 13x3

Subject to

�x1 þ x2 þ 3x3 � 20

12x1 þ 4x2 þ 10x3 � 90

xi � 0, i ¼ 1, 2, 3:

Conduct sensitivity analysis by investigating each of the following changes
in the original model. Test the solution for feasibility and optimality.

1. Change in the right-hand constraint 1 to

b1 ¼ 30:

2. Change in the right-hand constraint to

b2 ¼ 70:

3. Change in the right-hand sides to

b1
b2

� �
¼ 10

100

� �
:
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4. Change in the coefficient of x3 in the objective function to

c3 ¼ 8:

5. Change in the coefficient of x1 to

c1
a11
a12

2
4

3
5 ¼ �2

0
5

2
4

3
5:

6. Change in the coefficient of x2 to

c2
a12
a22

2
4

3
5 ¼ 6

2
5

2
4
3
5:

7. Introduce a new variable x6 with coefficients

c6
a16
a26

2
4

3
5 ¼ 10

3
5

2
4

3
5:

8. Introduce a new constraint 2x1þ 3x2þ 5x3� 50 (denote the slack
variables by x6).

9. Change constraint 2 to 10x1þ 5x2þ 10x3� 100.

PROBLEM 5.11.9

Consider the following problem:

Maximize Z ¼ 2x1 þ 7x2 � 3x3

Subject to

x1 þ 3x2 þ 4x3 � 30

x1 þ 4x2 � x3 � 10

x1 � 0, i ¼ 1, 2, 3:

Reformulate the problem using x4 and x5 as slack variables. Conduct
sensitivity analysis by investigating each of the following changes in the
original model. Test the solution for feasibility and optimality.

1. Change in the right-hand sides to

b1
b2

� �
¼ 20

30

� �
:
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2. Change in the coefficient of x3 to

c3
a13
a23

2
4

3
5 ¼ �2

3
�2

2
4

3
5:

3. Change in the coefficient of x1 to

c1
a11
a21

2
4

3
5 ¼ 4

1
2

2
4
3
5:

4. Introduce a new variable x6 with coefficients

c6
a16
a26

2
4

3
5 ¼ 3

1
2

2
4
3
5:

5. Change in the objective function

Z ¼ x1 þ 5x2 � 2x3:

6. Introduce a new constraint

3x1 þ 2x2 þ 3x3 � 25:

7. Change constraint 2 to

x1 þ 2x2 þ 2x3 � 135:

PROBLEM 5.11.10

A manufacturer develops two kinds of products by using three machines
types. Each machine has a limited amount of time as shown below:

Production Time (h=Unit)

Machines List x1 x2 Total Time (h)

Type I 1 1 6

Type II 1 3 15

Type III 2 1

1. Solve the problem by using LP method with the objective to
minimize total production time.

2. Resolve if the total time is perturbed such that b ¼
7
16
12

2
4

3
5.
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PROBLEM 5.11.11

Maximize f (x) ¼ �2x1 � x2 � x3

Subject to 3x1þ 5x2þ 2x3 � 6

4x1 � 2x2 þ x3 � 3:

Do the LP solution by changing the right-hand side to 7
4

� �
.

PROBLEM 5.11.12

A problem is to maximize Z¼ x1þ x2 subject to the constraints given by
2x1þ 5x2 � 16 and 6x1þ 5x2 � 30 where xi � 0 for i¼ 1, 2.

1. Solve for the decision variables by using the simplex method.

2. If the right-hand side is changed by 10%, what will be the new
optimal value of the objective function, Z* using postoptimal
technique?

PROBLEM 5.11.13

Given the primal LP problem to maximize z¼ cTx subject to Ax¼ b with
x � 0, write the complete dual problem formulation. What is the relation-
ship between the values of the objective function in the primal and dual
problems?

PROBLEM 5.11.14

Solve the following problem by the revised simplex method:

Maximize f (x) ¼ 3x1 � x2 þ 1:5x3

Subject to

2x1 � x2 þ 2x3 � 2:2

x1 þ 4x3 � 4:5

x1, x2, x3 � 0:

PROBLEM 5.11.15

Apply the revised simplex method to

Maximize f (x) ¼ 4x1 þ 2x2 þ 4x3

Subject to

4x1 þ 3x2 þ 8x3 � 10

4x1 þ x2 þ 12x3 � 7

4x1 � x2 þ 3x3 � 6

x1, x2, x3 � 0:
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PROBLEM 5.11.16

Maximize 2x1 þ x2 þ 3x3 þ 4x4

s:t: x1 þ 3x2 � x3 þ 2x4 ¼ 6

�x1 þ 2x2 þ x3 þ x4 ¼ 4

x1, x2, x3, x4 � 0

x1 and x2 are integers.

PROBLEM 5.11.17

Maximize z ¼ 2x1 þ 3x2

Subject to

5x1 þ 7x2 � 35

4x1 þ 9x2 � 36

x1, x2 � 0 and integers.

PROBLEM 5.11.18

Maximize z ¼ 4x1 þ 6x2 þ 2x3

Subject to

4x1 � 4x2 � 5

�x1 þ 6x2 � 5

�x1 þ x2 þ x3 � 5

x1, x2, x3 � 0 and integers.

Compare the rounded optimal solution and the integer optimal solution.

PROBLEM 5.11.19

Develop and verify the graphical solution to the problem below and
determine the existence of an integer solution when the decision variables
are discrete:

Maximize z ¼ 2x1 þ x2

Subject to

10x1 þ 10x2 � 9

10x1 þ 5x2 � 1

x1, x2 � 0:
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PROBLEM 5.11.20

Consider the problem

Maximize z ¼ x1 þ x2

Subject to

2x1 þ 5x2 � 16

6x1 þ 5x2 � 30

x1, x2 � 0 and integers.
Find the optimal noninteger solution graphically. By using the branch-

and-bound algorithm, show graphically the successive parallel changes
in the objective value that will lead to the optimal integer solution.

References

1. Bialy, H., An elementary method for treating the case of degeneracy in linear
programming, Uternehmensforschung (Germany), 10(2), 116, 118–123.

2. Bitran, G. R. and Novaes, A. G., Linear programming with a fractional objective
function, Operations Research, 21(1), 22–29, Jan.–Feb. 1973.

3. Boulding, K. E. and Spivey, W. A., Linear Programming and the Theory of the Firm,
Macmillan, New York, 1960.

4. Glover, F., A new foundation for a simplified primal integral programming
algorithm, Operations Research, 16(4), 727–740, July–August 1968.

5. Harris, M. Y., A mutual primal–dual linear programming algorithm, Naval
Research Logistics Quarterly, 17(2), 199–206, June 1970.

6. Heady, E. O. and Candler, W., Linear Programming Methods, Iowa State College
Press, Ames, IA, 1958.

7. Hillier, F. S. and Lieberman, G. J., Introduction to Operations Research, 4th edn.,
Holden-Day, San Francisco, CA, 1986.

8. Lavallee, R. S., The application of linear programming to the problem of sched-
uling traffic signals, Operations Research, 3(4), 86–100, 1968.

9. Ravi, N. and Wendell, R. E., The tolerance approach to sensitivity analysis of
matrix coefficients in linear programming-I, Working Paper 562, Graduate School
of Business, University of Pittsburgh, October 1984.

10. Chieh, H. T., Applied Optimization Theory and Optimal Control, Feng Chia Univer-
sity, China, 1990.

11. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Reading, MA, 1984.

12. Hamdy, A., Taha, Operations Research: An Introduction, Prentice Hall, Englewood
Cliffs, NJ, 8th edn., April 2006.

13. Dantzig, G. B., Linear Programming and Extension, Princeton University Press, 1963.
14. Robert Vanderbei, Linear Programming: Foundations and Extensions, Springer,

2nd edn., May 2001.

Momoh/Electric Power System Applications of Optimization 65886_C005 Final Proof page 196 20.11.2008 4:08pm Compositor Name: BMani

196 Electric Power System Applications of Optimization



6
Interior Point Methods

6.1 Introduction

Many engineering problems, including the operation of power systems, are
concerned with the efficient use of limited resources to meet a specified
objective. If these problems can be modeled, they can be converted to an
optimization problem of a known objective function subject to given con-
straints. Most practical systems are nonlinear in nature; however, some
approximations are usually tolerable to certain classes of problems. Two
methods commonly used are linear and quadratic programming. The former
solves those problems where both the objective and constraints are linear in
the decision variables [3,4,25]. The quadratic optimization method assumes a
quadratic objective and linear constraints.

The well-known simplex method has been used to solve linear program-
ming (LP) problems. In general, it requires burdensome calculations, which
hamper the speed of convergence. In an attempt to improve the convergence
properties, recent work by Karmarkar [1,2,8,9] on variations of the interior
point (IP) method was proposed. The variants include protective, affine-
scaling, and path-following methods. Each of these methods solves the LP
problem by determining the optimal solution from within the feasible inter-
ior (FI) region of the solution space [1,2].

Projective methods are known to require O(nL) iterations. They rely on the
projective algorithm, which requires a good scheme. Several schemes have
been proposed in the literature. These methods are different from the simplex
method, which seeks the optimum solution from a corner point of the
solution space.

Affine-scaling methods have no known polynomial time complexity, and
can require an exponential number of iterations if they are started close to the
boundary of the feasible region. Also, it has been shown that these methods
can make it difficult to recover dual solutions and prove optimality when
there is degeneracy. However, these methods work well in practice. Very
recently, a polynomial time bound for a primal–dual affine method has been
obtained.

Path-following methods generally require O(n0.5L) iterations in the worst
case, and work by using Newton’s method to follow the central path of
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optimal solutions obtained by a family of problems defined by a logarithmic
barrier function. The most popularly used scheme so far is the barrier method
developed by Meggido [13], Kojima [23], and Montiero and Adler [24]. They
have shown that the algorithm requires O(n3L) overall time and no IP
algorithm has been shown to have a better worst-case complexity bound.
McShane et al. [12] have given a detailed implementation of the algorithm.
Their results have been recently adapted to power system problems.

Howard University research contract EPRI—RP2436 extends the results of
earlier works [14,16] by improving on the starting and terminating condi-
tions of the IP method for solving LP problems and the extension of the
algorithm for solving quadratic-type problems.

The optimal power flow (OPF) problem [5,6] has been recently reviewed
[7] as a process of determining the state of power systems that guarantee
affordability, reliability, security, and dependability. These abilities optimize
given objectives that satisfy a set of physical and operating constraints. In
general, these objectives are designated as transmission losses, fuel cost,
reactive sources allocation, and voltage feasibility. In general, OPF is a
large-scale non-LP problem with thousands of input variables and nonlinear
constraints. The problem can be formulated as

Minimize f (z)

Subject to

h(z) ¼ 0, with 1 � z � u:

f and h are continuously differentiate functions in Rn with values in R and Rm,
and l and u are vectors in Rn corresponding to lower and upper bounds in the
variables, respectively.

The current interest in IP algorithm [12-22] was spanned by searching
algorithm for LP which is based on two key ideas:

1. Steepest descent direction is reached more effectively in improving
iterate. This is at the center of the polytope forward by the linear
constraints than if it were at the boundary.

2. Transformation of the decision space can be found such that it places
the iterate at the center of the polytope without altering the problem.
Following the work of Karmarkar, several research works have
achieved the IP to many variants of IP involving the primal–dual
(Mehrotra method). The most popular variant of IP is equivalent to
the well-known logarithmic barrier methods which have been dis-
cussed in nonlinear programming (NLP). The main idea in all these
barrier methods is discussed in this chapter. IP point methods have
been proven successful for solving power system OPF problem. It is
easily applicable to OPF based on LP technique described in Chapter
5 and is used for quadratic programming and nonlinear-based
method derived from the banner method.
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6.2 Karmarkar’s Algorithm

The new projective-scaling algorithm for LP developed by Karmarkar has
caused quite a stir in the optimization community partly because the speed
advantage gained by this new method (for large problems) is reported to be
as much as 50:1 when compared to the simplex method [8]. This method has
a polynomial bound on worst-case running time that is better than ellipsoid
algorithms.

Karmarkar’s algorithm is significantly different from George Dantzig’s
simplex method [25] that solves an LP problem starting with one extreme
point along the boundary of the feasible region and skips to a better neigh-
boring extreme point along the boundary, finally stopping at an optimal
extreme point. Karmarkar’s IP rarely visits many extreme points before an
optimal point is found. The IP method stays in the interior of the polytope
and tries to position a current solution as the ‘‘center of the universe’’ in
finding a better direction for the next move. By properly choosing the step
lengths, an optimal solution is achieved after a number of iterations.
Although this IP approach requires more computational time in finding a
moving direction than the traditional simplex method, a better moving
direction is achieved resulting in fewer iterations. Therefore, the IP approach
has become a major rival of the simplex method and is attracting attention in
the optimization community.

Figure 6.1 illustrates how the two methods approach an optimal solution.
In this small problem, the projective-scaling algorithm requires approxi-
mately the same amount of iterations as the simplex method. However, for
a large problem, this method only requires a fraction of the number of
iterations that the simplex method would require.

IP method

x1

x2

x3

x4

x3
x2

x∗

Simplex method

FIGURE 6.1
Illustration of IP and simplex
methods.
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A major theoretical attraction of the projective-scaling method is its super-
ior worst-case running time (or worst-case complexity). Assume that the size
of a problem is defined as the number of bits N required to represent the
problem in a computer. If an algorithm’s running time on a computer is
never greater than some fixed power of N, no matter what problem is solved,
the algorithm is said to have polynomial worst-case running time. The new
projective-scaling method is such an algorithm.

Due to the results of [10,15], several variants of IPs have been proposed
such as the affine-scaling method which is discussed in this chapter. Affine-
scaling methods have no known polynomial time complexity, and can
require an exponential number of iterations if they are started close to the
boundary of the feasible region. It has also been shown that these methods
can make it difficult to recover dual solutions and prove optimality when
there is degeneracy. However, these methods do work well in practice. Very
recently, a polynomial time bound for a primal–dual affine method has been
obtained [11].

Path-following methods generally require O(n0.5L) iterations in the worst
case, and work by using Newton’s method to follow the ‘‘central path’’ of
optimal solutions obtained by a family of problems defined by a logarithmic
barrier function. Two parameters, the barrier parameter and an underesti-
mated optimal value of the objective function, are the linking parameters
between all methods. Barrier methods have been used to construct primal-
path-following algorithms, and the method of centers used as a basis for dual
algorithms. After scaling has been used to construct both primal and dual
algorithms, other variants of barrier methods have been used to construct
primal–dual path-following algorithms and an affine variant of the primal–
dual algorithms. In general, the above methods, whether projective affine
method of centers, or path following, are all simple variants of the algorithm
barrier methods applied to the primal, dual, or primal and dual problems
together [15].

As mentioned above, since Karmarkar’s discovery of the IP method [26,27]
and its reported speed advantage obtained over other traditionally used
methods, many variants of the IP method have evolved in an attempt to
solve the above posed problems. Of these the projective scaling, the dual and
primal affine methods, and the barrier function method are the most popular.

These variants of the IP method are presented and evaluated based on
their algorithms and the problems they solve.

6.3 Projective-Scaling Method

The projective-scaling algorithm has attracted a great deal of interest due to
Karmarkar’s ingenious proof that its running time is a polynomial function of
the problem size even in the worst case. Karmarkar showed that if n is the
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number of variables in LP Problems and L is the number of bits used to
represent numbers in the computer, the theoretical worst-case running time
is O(n3.5L2). That is, as the problem size increases, the running time tends
to be a constant multiple of n3.5L2, which is substantially better than the
ellipsoid algorithm’s worst-case running time of O(n6L2).

The problems solved by the projective algorithm are in the following form:

Minimize cTy

Subject to

Ay ¼ 0

eTy ¼ 1, y � 0,

where
A is an m by n matrix
e is a vector of n ones

The main algorithm for the projective method is presented below.

Algorithm for the Projective-Scaling Method

Step 1. Initialization.
k¼ 0, x0¼ c=n, and let L be a large positive integer.

Step 2. Optimality check.
IF cTxk is �2�LcTe=n, THEN stop with an optimal solution x*¼ xk.
Otherwise go to step 3.

Step 3. Iterate for a better solution.

Let XT¼Diag(xk)

Bk ¼ AXK

ek

n o
, e is a matrix.

dk ¼ �[I � BT
k (BkBT

k )
�1Bk]Xkc,

D is the direction of the real line.

ykþ1 ¼ c
nþ a

n
dk
kdkk

� �
, 0 � a � 1

xkþ1 ¼ (xk)ykþ1

eTxkð Þykþ1.

Set k¼ kþ 1. Go to step 2

where
xk is an interior feasible solution
xn is an n-dimensional diagonal matrix
Bk is the constrained matrix in Karmarkar’s standard form
dk is a feasible direction of the projective negative direction as defined

above
ykþ1 is a new interior feasible solution
L is chosen to be the problem size, where 2�L> e, e> 0
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This algorithm terminates in O(nL) iterations. A large value of a tends to
speed up the iteration.

6.4 Dual Affine Algorithm

Both the primal and dual interior methods of the variety initiated by
Karmarkar can be viewed as special cases of the logarithmic barrier method
applied to either the primal or the dual problem. The problems solved by the
dual and primal affine methods and their algorithms are presented below.
Consider the LP problem given by

Maximize Z ¼ cTx,

Subject to

Ax � b and x is unrestricted:

By introducing slack variables into the constraints, the inequality constraints
are converted such that we obtain a new formulation given by

Maximize Z ¼ cTx,

Subject to

Axþ s ¼ b

s � 0 and x is unrestricted:

Algorithm

Step 1. Initialization.
Set counter value k¼ 0 and the tolerance 2 (a small positive
number).
Obtain a starting solution (x0,s0) such that Ax0þ s0¼ b and s0> 0.
Set the acceleration constant a, where 0<a< 1.

Step 2. Obtaining the translation direction.
Computer dkx ¼ (ATW�2k A)�1c, where Wk¼diag(sk).
Compute the direction vector dks ¼ �Adkx.

Step 3. Check for unboundness.
IF dks ¼ 0, THEN (xk,sk) is the dual optimal. Go to step 9.
IF dks > 0, THEN the problem is unbounded. Go to step 10.
Otherwise, dks < 0. Go to step 4.

Step 4. Compute the primal estimate yk.
yk ¼ �W�2k dks .
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Step 5. Optimality test.
IF yk � 0 AND (bTyk �cTxk) � 2, THEN (xk,sk) is the dual optimal
solution and is the primal optimal solution. Go to step 9.Otherwise,
go to step 6.

Step 6. Compute the step length bk.

bk ¼ min
i

n
aski
�(dks )1

���
(dks )i<0

o
, where 0 < a < 1.

Step 7. Update the dual variables (xk,sk).
xkþ1 ¼ xk þ bkdkx
skþ1 ¼ sk þ bkdks .

Step 8. Increment the counter and check for termination.
IF k � kmax, THEN flag the user (maximum number of iteration is
reached). Go to step 10.
Otherwise, increment the counter
k¼ kþ 1 and go to step 2.

Step 9. Calculate the final objective value and display the results.
Optimal solution is x*¼ xk and the objective value is Z*¼ cTx*.
Display the final solution.

Step 10. Stop.

6.5 Primal Affine Algorithm

Consider the LP problem given by

Maximize Z ¼ cTx

Subject to

Ax ¼ b and x � 0 (x is unrestricted):

Algorithm

Step 1. Initialization.
Set the iteration limit, kmax, and initialize the counter value at k¼ 0.
Select tolerance 2 (a small positive number).
Set vector e¼ [1, 1, . . . , 1].
Obtain a starting solution x0 � 0 such that Ax2¼ b.
Set the acceleration constant, a where 0<a< 1.

Step 2. Compute the estimate vectors wk.
wk ¼ (AD2

kA
T)�1AD2

kc where Dk¼diag(xk).

Step 3. Compute the reduced cost coefficient vector.
rk¼ c�ATwk.
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Step 4. Optimality check.
IF rk¼ 0 AND eTDk r

k � 2 s, THEN
xk is the primal optimal. Go to step 10. Otherwise, continue.

Step 5. Compute translation direction dky.
dky ¼ �Dkrk

Step 6. Check for feasibility and constant objective.
IF dky > 0, THEN ‘‘the problem is unbounded.’’ Go to step 11.

IF dky ¼ 0, THEN ‘‘the primal optimal solution is xk.’’
Go to step 10. Otherwise, continue.

Step 7. Compute the step length bk.

bk ¼ min
i

n
a

�(dky)i

���
dkyð Þi<0

o
, where 0<a< 1.

Step 8. Update the Primal Variables xk.
xkþ1 ¼ xk þ bkDkdky.

Step 9. Increment the counter and check for termination.
IF k � kmax, THEN flag the user (maximum number of iterations is
reached). Go to step 11.
Otherwise, increment the counter
k¼ kþ 1 and go to step 2.

Step 10. Calculate the final objective value and display the results.
Optimal solution is x*¼ xk and the objective value is Z*¼ cTx*.
Print the solution.

Step 11. Stop.

6.6 Barrier Algorithm

Barrier-function methods treat inequality constraints by creating a barrier
function, which is a combination of the original objective function and a
weighted sum of functions with a positive singularity at the boundary. As
the weight assigned to the singularities approaches zero, the minimum of the
barrier-function approaches the minimum of the original constrained prob-
lem. Barrier-function methods require a strictly feasible starting point for
each minimization, and generate a sequence of strictly feasible iterates. The
barrier transformation for linear programs with upper and lower bounds on
the variables is given in the following form.

Minimize cTx

Subject to

Ax ¼ b, 1 � x � u,

where A is an m by n matrix with m � n.
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When applying the barrier-function method to the problem described
above, the subproblem to be solved takes the following form.

Minimize
x2Rn

F(x) � cTx� m
Xn
j¼1

ln xj

Subject to

Ax ¼ b,

where the scalar m (m> 0) is known as the barrier parameter and is specified
for each subproblem. The equality constraints cannot be treated by a barrier
transformation and, thus, are handled directly. The general algorithm is
given below.

Algorithm for the Barrier Method (In Brief)
At the start of each iteration, the quantities m, x, p, h are known, where m> 0,
x> 0, Ax¼ b, and h¼ c�ATp. A correction of p is calculated at each stage
since a good estimate is available from the previous iteration. The main steps
of the algorithm are as follows.

Step 1. Define D¼Diag(xj) and compute r¼Dh�me.
Note that r is a residual from the optimality condition for the barrier
subproblem, and hence jjrjj ¼ 0 if x¼ x*(m).

Step 2. Terminate if m and jjrjj are sufficiently small.

Step 3. If appropriate, reduce m and reset r.

Step 4. Solve the least squares problem
Minimize

dp
kr�DATdpk.

Step 5. Compute the updated vectors
p  pþ dp and h  h�ATdp.
Set r¼Dh�me (the updated scaled residual) and p¼�(1=m)Dr.

Step 6. Find aM, the maximum value of a such that xþap � 0.

Step 7. Determine the step length a 2 (0,am) at which the barrier function F
(xþap) is suitably less.

Step 8. Update x  xþap.

All iterates satisfy Ax¼ b and x> 0. The vectors p and h approximate the
dual variables p* and reduced cost h* of the original linear program.

6.7 Extended IP Method for LP Problems

The LP problem is formulated in the standard formula of the LP IP method
form as follows:
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Maximize P ¼ CTx (6:1)

Subject to

Ax ¼ b

bi > 0, i ¼ 1, . . . , m, xi > 0, i ¼ 1, . . . , m: (6:2)

The IP method involves a sequence that consists of a feasible IP (Ax¼ b, x> 0)
that makes the objective function increase until it reaches its limit. The limit
is an optimal solution of the problem. The IP method utilizes all the vectors in
A together with the points in the sequence to generate a maximum increase of
the objective function. In addition to programming simplicity, it is superior
to the simplex method in computation time and convergence for large
systems (large m> n).

The condition that b> 0 as imposed in the simplex method is waived here
and the matrix A is only required to be of full rank m< n. Also, by using an
appropriate conversion of inequality, two-sided constraints can be handled
by the proposed IP method.

Finally, to guarantee existence of the feasible IPs, a trivial condition has
been imposed in that the problem has no less than two feasible points
(Ax¼ b, x> 0), one of which is a bounded solution for the problem.

6.8 FI Sequence

For convenience, the LP problem can be written as follows:

Maximize aTx (6:3)

Subject to

Ax ¼ b,

Such that x � 0: (6:4)

Note CT is replaced by aT where a is a column vector to facilitate description
of the IP method. The considered FI sequence contains only feasible and IPs
of the problem; that is,

S ¼ {x1, x2, . . . , xk, xkþ1} (6:5)

with

Axk ¼ b (6:6)
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and

xk > 0, for all k > 0: (6:7)

For a known point xk, a diagonal matrix is formed by

D ¼ diag[xk1, x
k
2, . . . , x

k
n], (6:8)

where

xk ¼ [xk1, x
k
2, . . . , x

k
n]: (6:9)

The FI sequence is then generated recursively according to

xkþ1 ¼ xk þ bDdp, (6:10)

where
dp is an n-vector
b is a positive number

They are to be chosen in such a way that xkþ1 is a feasible IP wherever xk is.
As such, S contains all FI points of x.

The objective functions and constraints between two consecutive points
are related by

aTxkþ1 ¼ aTxk þ bdTdp (6:11)

and

Axkþ1 ¼ Axk þ bBdp, (6:12)

where

d ¼ Da (6:13)

and

B ¼ AD: (6:14)

D is determined by xk and it changes from point to point. Let d be orthogon-
ally decomposed into d¼ dpþ dq, where dp is the projection on the null space
of B and dq is in the BT-subspace (spanned by the vectors of BT). Then, it
follows that

Bdp ¼ 0, dq ¼ BTv, and dTpdq ¼ 0, (6:15)
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where v is an m-vector, the coordinates of dq. Solving v and then dq, we have

dq ¼ BT(BBT)�1Bd (6:16)

and

dp ¼ d� dq ¼ [I� BT(BBT)�1B]d ¼ Du, (6:17)

where

U ¼ a� ATw (6:18)

with

w ¼ (BBT)�1Bd: (6:19)

To generate the FI sequence S, the LP problem is divided into two cases:
trivial and ordinary. The former has the vector a confined in the AT space
while the latter does not. In the trivial case, there exists an m-vector v such
that a¼ATv and hence aTx¼ vTAx¼ yvTb¼ constant. Thus, all the feasible
solutions yield the same objective functions and, hence, there is no optimiza-
tion involved in the problem. Consequently, it remains only to generate S for
the ordinary case.

Starting with a known FI point x1, S is generated recursively according to
Equation 6.10 until reaching a point x at which dp¼ 0. S contains all the
points except x, which is referred to as the limit point of S. The problem is
assumed to have no less than two feasible points, and between them there
exists a bounded solution of the problem. Since feasible points form a convex
set, there are an infinite number of FI points existing within the problem.

For the ordinary case with a bounded solution, one may draw the follow-
ing conclusions: (1) S contains an infinite number of points and (2) S
always has a limit point. To show this, let us assume dp¼ 0 at a finite k;
then d¼ dpþ dq¼ dq reveals that

d ¼ Da ¼ BT(BBT)�1Bd ¼ DAT(BBT)�1Bd ¼ DATv

from which we have a¼ATv since D is nonsingular. This is a trivial case and,
hence, dp cannot be zero for finite k.

It follows from Equation 6.11 and dTq dp ¼ 0 that

aTxkþ1 ¼ aTxk þ bkdpk2: (6:20)

Summing both sides of Equation 6.20 from k¼ 1 to k¼N gives

aTxNþ1 ¼ aTx1 þ
XN
k¼1

bkdpk2: (6:21)
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To make Equation 6.21 bounded, it is necessary that dp¼ 0 as N!1.
Otherwise, the right side becomes positively unbounded and, hence, xNþ1

(feasible) yields an objective function, which contradicts the assumption of a
bounded solution.

Now, it remains to specify b to make xkþ1 an FI point if xk is one. We
choose for this purpose

0 < b <
1
�g 0 (6:22)

where g is the smallest component of dp. It is asserted that g< 0 for all points
in S. Indeed, if g � 0 then dp � 0 and xkþ1> 0 for any b> 0 according to
Equation 6.10. The objective function indicated by Equation 6.20 becomes
positively unbounded together with b since dp 6¼ 0 in S. This contradicts
the assumption of a bounded solution and, hence, g< 0 must be true.

If xk is an FI point, then the ith component of Equations 6.10 and 6.12
becomes xkþ1i ¼ xki þ bxki dpi

¼ xki (1þ bdpi
) � xki (1þ bg) > xki (1� 1) ¼ 0, for

all i¼ 1, 2, . . . , n and Axkþ1¼Axkþ 0¼ b. Since xkþ1 is also an FI point, all
the points of S are FI points if x1 is by induction. Figure 6.2 shows the IP
method algorithm.

6.8.1 Optimality Condition

The limit point of the FI sequence is an optimal solution of the LP problem.
This can be shown as follows.

First, we demonstrate that dp¼ 0 at the limit point implies u � 0. It follows
from Equation 6.17 and dp¼ 0 that dpi

¼ xiui¼ 0 for all i¼ 1, 2, . . . , m.
We need only consider the case ui> 0 and xi¼ 0. In such a case, there exists
an «> 0 and integer N such that uki > « for k � N where uki is the ith
component of Equation 6.18 evaluated at xk. The ith components of Equations
6.10 and 6.17 are

xkþ1 ¼ xki þ bix
k
i dpi

(6:23)

and

dpi
¼ xki u

k
i : (6:24)

Then, we obtain

xkþ1i

xki
¼ 1þ bix

k
i u

k
i : (6:25)
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Multiplying both sides of Equation 6.25 from k¼N to k¼K gives

xKþ1i

xNi
¼

Xk¼K
k¼N

1þ bix
k
i u

k
i

� �
>

Xk¼K
k¼N

1þ bix
k
i «

� �
> 1: (6:26)

Since xKþ1i > xNi > 0 for any K,

xi ¼ lim
x!1 xKþ1i > 0 (6:27)

Start

Problem formulation: Maximize cTx
Subject to Ax = b,  x >_ 0

Initialization: Find x satisfying Ax = b

x = D−1 x~ where D = diag

Calculate
Cp = PCC = DC,

p = I − AT(AAT)−1A
~~

A = AD~

~~~~

Any negative
values in Cp

Choose g = norm of largest negative value of Cp

Calculate Cpxnew

~

~~ += xold

xnew = Dxnew

Check
Δ(objective) <_ e

Reproject into the
feasible region

No Yes

No

Yes

Optimal solution found
P∗ = CTx new

Stop

a
g

FIGURE 6.2
Algorithm for the IP method.
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as K approaches infinity which violates the fact that xi¼ 0; therefore, ui � 0 or
U � 0 must be true.

Using u � 0 and dp¼ 0 at x, we obtain uTy � 0 and dTpe ¼ 0, where y is any
feasible solution and e is the n-vector with all components equal to one.
Substituting Equations 6.17 and 6.18 yields

uTy� dTpe ¼ uTy� uTDe ¼ uT(y� x)

¼ (aT � wTA)(y� x)

¼ aTy� aTx� wTbþ wTb

¼ aTy� aTx � 0, (6:28)

which indicates that x is a maximum solution.

6.9 Extended Quadratic Programming Using IP Method

Extended quadratic programming using the IP method (EQIP) considered
here is an extension of the LP version of the IP method developed during the
project. The objective function, a quadratic form, is defined by

P ¼ 1
2
xTQxþ aTx (6:29)

subject to

Ax ¼ b and x � 0, (6:30)

where Q is any square and symmetric matrix. LP is a special case of the
quadratic programming problem when Q¼ 0. The concept for solving
the quadratic programming problem is similar to that of LP problems. It is
again assumed that the problem has a bounded solution. With A being of full
rank m with m< n, there are at least two feasible solutions to the problem.
The same FI sequence generated below guarantees optimality within the
feasible region for quadratic optimization problems.

In order to maintain the solution of the problem of each iteration within
the interior feasible region, the algorithm requires the calculation of the
initial starting interior feasible point ~X0; that is, Ã~X0¼ ~b with ~x0j � 0.
The initial feasible point can be obtained by introducing the artificial variable
xS. the EQIP obtains the initial feasible point by using an auxiliary problem.
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Maximize [�xS] (6:31)

Subject to

~A~X þ (~b� ~Ae)xS ¼ ~b,
~xj � 0, j ¼ nþ 1, . . . , nþ 2m, xS � 0:

(6:32)

Clearly, any feasible solution of the original problem is a maximum solution
xS¼ 0 for the auxiliary problem and vice versa. Since the latter always has a
feasible point at

~X ¼ e and xS ¼ 1,

one may use this point as the initial starting point to solve the auxiliary
problem by the EQIP with ~Q¼ 0 to reach a maximum solution and thus
obtain a feasible initial point for the original problem. The key point is that
the direction vector dx at each iteration k can be approximately calculated but
maintain feasibility of

~Xk¼1,

for example

~A~Xkþ1 ¼ ~b

with

~xkþ1j � 0, jþ nþ 1, . . . , nþ 2m:

A feasible direction, along with the objective function increases, is found, and
then an approximate step length is determined to guarantee the new feasible
solution, which is strictly better than the previous one. The stopping criteria
are the relative changes in the objective function at iterations; that is

jPkþ1 � Pkjmax {1, jPkj} < «1, (6:33)

or the relative changes in interior feasible solutions in iterations; that is

j~Xkþ1 � ~Xkj < «, (6:34)

where Pkþ1 and Pk are defined as follows:

Pkþt ¼ 1
2
(~XKþ1)T ~Q~XKþ1 þ ~aT ~XKþ1, (6:35)

Pk ¼ 1
2
(~XK)T ~Q~XK þ ~aT ~XK: (6:36)
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The optimality condition is computed until the maximum is satisfied.

Pkþ1 ¼ Pk þ
dkp

��� ���4
�2T : (6:37)

Detailed EQIP Algorithm
A detailed step-by-step description of how the EQIP algorithm solves a
quadratic objective function subject to linear constraints is presented below:

Step 1. Identify the problem defined by maximizing:

P ¼ 1
2
xTQxþ aTx, subject to Ax ¼ b

With xi � 0, for i ¼ 1, 2, 3, . . . , n

Step 2. For all i and xnþ1 is an FI point of the auxiliary problem of
maximizing: xnþ1
Subject to Axþ (b�Ae)xnþ1¼ b

where e¼ [1, 1, . . . , 1]T, column vector, x
xnþ1

� 	
¼ e

1

� 	
is a feasible IP

because Axþ (b�Ae)xnþ1¼Aeþ b�Ae¼ b.
Evidently, x¼ e is a feasible IP for the diagonal problem
c¼ b�Ae¼ 0 since Ae¼ b.

Step 3. Construct an updated B¼AD for corrected x, which is modified in
such a way as to maximize:
(�xnþ1) in the auxiliary problem.
At the maximum,�xnþ1¼ 0 and hence
Axþ (b�Ae)xnþ1¼ b ) Axþ 0¼ b
Thus, x is a feasible IP of the original problem.

Step 4. MN solution for By¼ v is designed to obtain
y¼BT(BBT)Tv,
where BBT is nonsingular.
The reason to assume v¼ (xnþ1)C is to assure feasibility to be
explained in the next step.

Step 5. g ¼ Min[gi], inþ1 ¼ ik(1þ bz) for all i and xkþ1nþ1 ¼ xknþ1(1� b)
for the auxiliary problem, we have from: v ¼ (b� Ae)xknþ1

Axkþ1 þ (b� Ae)xkþ1nþ1 ¼ A(xk þ bDy)þ b1(b� Ae)xkþ1nþ1 þ 0 ¼ b

¼ Axk þ g þ b[By� v]

¼ Axk þ (b� Ae)xknþ1 þ 0 ¼ b

since By¼ v, thus xkþ1 is feasible if the objective function is
increased by
�xkþ1nþ1

 �� �xknþ1
 � ¼ bxknþ1 > 0, because b> 0 is to be chosen.
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5(a): gþ 1> 0: g¼Min [yi]>�1! 1þ yi> 0 and

xkþ1i ¼ xki (1þ yi) > 0,

since xki > 0

xkþ1nþ1 ¼ xknþ1(1þ b) ¼ xknþ1(1� 1) ¼ 0

Because we choose b ¼ 1 for such a case. Therefore, xkþ1 is a feasible
IP of the original problem because

Axkþ1 þ (b� Ae)xnþ1 ¼ Axkþ1 þ 0

5(b): g þ 1 � 0: b ¼ a
g > 1

1þ bj ¼ 1
a

�g
� 

yi > 1� 1 ¼ 0

1� b ¼ 1
a

�g
� 

> 1� a > 0

since 0<a< 1; g �� 1, therefore xkþ1 is an FI point of the auxiliary
problem if xk together with xknþ1 is one.

Step 6. We exit from the auxiliary problem and now enter the original
problem started with the FI point just obtained. For this purpose
we construct r, d¼Dg and B¼AD as required.

Step 7. Solve for DG from Bdg¼ v by using the minimum norm program
with v¼Bd.

Step 8. Replace zero and infinity, respectively, by
« and M for computer practice.
Assume M¼ 106 and 0.001 � « � 0.01
8(a): j dpii j � «! dpi¼ 0 for all i and hence the optimally conditions
are reached.
8(b): If a is not met, we will advance the FI point toward the limiting
point according to: xkþbDdp, where D ¼ diag xk1, x

k
2, . . . , xkn

� �
The scalar b must be chosen to ensure FI and also increase P. It will
be chosen between b1 and b2 in step 2, but b1 is fixed here as
follows.
8(b) (i): g < 0 : b1 ¼ ( a

�g ) with 0<a< 1 and
g ¼ min [dpi

] such as b1 makes 1þ b1dp1 � (1� a
b )a ¼ 1� a > 0

Hence
xkþ1i ¼ xki (1þ b1dp1) > 0: Thus, xkþ1i is a feasible IP is one
8(b) (ii): g � 0: xkþ1i is always interior for any b1 > 0
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We will choose b1¼M and leave b to be constrained by another b2

to consider in step 9.

Step 9. It has been shown that the objective function between two con-
secutive points are related by

Pk�1 ¼ Pk þ bkdpk2 þ 1
2
b2T

where T¼ (Qdp)TQ(Ddp), a scalar. As a function of b,

b ¼ b2 ¼
kdpk2
�T

If T< 0 and Pkþ1 increases monotonically with b for T � 0. Thus,
one should choose b¼M for the latter case and b2 for the former
case. The scalar b2 is fixed in this step for latter case.

Step 10. Problem does not have a finite maximum if b1¼M and b2¼M at
the same time.

Step 11. b is chosen to be smaller one between b1 and b2 in order to
guarantee that xkþ1 maximize Pkþ1 and yet preserve FI point status
with such b, we form the next point by

xkþ1i ¼ xki þ bxki dPi or xkþ1 ¼ xk[1þ bDdP]

in matrix form as used in step 8.

Step 12. If b¼b2 was chosen, then no adjustment is needed, but we adjust
the last point by choosing a¼ 1 if b¼b1 was chosen. Let us
consider xNþ1 in S, that yields: jdP(1)j � « for a. Then instead of
using fractional a, we use a¼ 1 to generate xN.

xNþ1 ¼ xN þ a

�gDdP ¼ xþ 1
a
Dx

Eliminating xN we have: x¼ xNþ1þ dDx
where d ¼ 1

a� 1 ¼ 0:030927835 for x 0.97 and Dx ¼ a
�gDdP

which was computed in step 11.

Step 13. Current x is a solution because the optimal condition is met.

Step 14. No bounded solution exist because if b1¼M and b2¼M may be
made infinity by some FI point (infinity).

Momoh/Electric Power System Applications of Optimization 65886_C006 Final Proof page 215 20.11.2008 11:39am Compositor Name: VAmoudavally

Interior Point Methods 215



6.10 Illustrative Examples

Example 6.10.1

Solve the constrained problem using the following:

Maximize z ¼ x1 þ 2x2

Subject to

x1 þ x2 þ x3 � 8

xj � 0:

1. IP method.

2. Graphical representation.

Based on the algorithm shown in Section 6.6 and following the flowchart in
Figure 6.2, we can say Z¼ x1þ 2x2¼C tx) C t¼ [1 2 0] as x¼ [x1, x2, x3]

t

Subject to

Ax ¼ b) A ¼ [1 1 1] :

We are going to take a¼ 0.7, «¼ 0.1.

First iteration
As an initial point, we start by x¼ [1, 1, 2]t. Substitute in the objective function,

Z ¼ C tx ¼ [1 2 0]
1
1
2

2
4

3
5 ¼ 3:0

D ¼ diag(x) ¼
1 0 0
0 1 0
0 0 2

2
4

3
5

~x ¼ D�1x ¼
1 0 0
0 1 0
0 0 2

2
4

3
5
�1 1

1
2

2
4

3
5 ¼ 1 0 0

0 1 0
0 0 0:5

2
4

3
5 1

1
2

2
4

3
5 ¼ 1

1
1

2
4

3
5

~A ¼ AD ¼ [1 1 1]
1 0 0
0 1 0
0 0 2

2
4

3
5 ¼ [1 1 2] :

The projection area p,

P ¼ I� ~At(~A~At)�1~A ¼
0:833 �0:1667 �0:333
�0:1667 0:833 �0:333
�0:333 �0:333 0:333

2
4

3
5
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~C ¼ DC ¼
1 0 0
0 1 0
0 0 2

2
4

3
5 1

2
0

2
4

3
5 ¼ 1

2
0

2
4

3
5

Cp ¼ P~C ¼
0:5
1:5
�1

2
4

3
5:

Then we can get the value of g¼ 1.

�xnew ¼ ~xold þ a

g

� 
Cp ¼

1:35
2:05
0:3

2
4

3
5

xnew ¼ D�xnew ¼
1:35
2:05
0:6

2
4

3
5

Znew ¼ C0xnew ¼ [1 2 0]
2:35
2:05
0:6

2
4

3
5 ¼ 5:45

D objective ¼ Znew � Zold ¼ 5:45� 3:0 ¼ 2:45 > «:

Then we go to the second iteration.

Second iteration

x ¼ [1:35, 2:05, 0:6]t

D ¼ diag(x) ¼
1:35 0 0
0 2:05 0
0 0 0:6

2
4

3
5

~x ¼ D�1x ¼
1:35 0 0

0 2:05 0

0 0 0:6

2
64

3
75
�1 1:35

2:05

0:6

2
64

3
75

¼
(1=1:35) 0 0

0 (1=2:05) 0

0 0 (1=0:6)

2
64

3
75

1:35

2:05

0:6

2
64

3
75 ¼

1

1

1

2
64

3
75

~A ¼ AD ¼ [1 1 1]
1:35 0 0
0 2:05 0
0 0 0:6

2
4

3
5 ¼ [1:35 2:05 0:6]:

The projection area p,

P ¼ I� �At(~A�At)�1�A ¼
0:7146 �0:4334 �0:1269
�0:4334 0:3418 �0:1926
�0:1269 �0:1926 0:9436

2
4

3
5
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�C ¼ DC ¼
1:35 0 0
0 2:05 0
0 0 0:6

2
4

3
5 1

2
0

2
4

3
5 ¼ 1:35

4:1
0

2
4

3
5

Cp ¼ P~C ¼
�0:8124
0:8163
�0:9611

2
4

3
5:

Then we get the value of g¼ 0.9611.

~xnew ¼ ~xold þ a

g

� 
Cp ¼

0:4083
0:5945
0:3

2
4

3
5

xnew ¼ D~xnew ¼
0:5512
3:2688
0:18

2
4

3
5

Znew ¼ Ctxnew [1 2 0]
0:5512
3:2688
0:18

2
4

3
5 ¼ 7:0888

D objective ¼ Znew � Zold ¼ 7:0888� 5:45 ¼ 1:6388 > «:

Then we go to the third iteration.

Third iteration

x ¼
0:5512

3:2688

0:18

2
664

3
775 g ¼ 0:5328

xnew ¼
0:1654

3:7383

0:0963

2
664

3
775 Z ¼ 7:6421

D objective ¼ Znew � Zold ¼ 7:6421� 7:0888 ¼ 0:5533 > «:

Then we go to the fourth iteration.

Fourth iteration

x ¼
0:1654

3:7383

0:0963

2
64

3
75 g ¼ 0:1923

xnew ¼
0:0661

3:905

0:0289

2
64

3
75 Z ¼ 7:9577
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D objective ¼ Znew � Zold ¼ 7:9577� 7:6421 ¼ 0:0816 < «:

Then we can stop here with a result

x1 ¼ 0:0661, x2 ¼ 3:9689, x3 ¼ 0:0112, and Z ¼ 7:9577:

Example 6.10.2

Consider the following problem

Maximize z ¼ 3x1 þ x2

Subject to

x1 þ x2 � 4

xj � 0:

Starting from the initial point (1,2) solve the problem using the IP algorithm.
Based on the algorithm shown in Section 6.6 and following the flowchart in

Figure 6.2, we can say Z¼ 3x1þ x2¼Ctx ) Ct¼ [3 1] as x¼ [x1, x2]
t

Subject to Ax¼b ) A¼ [1 1].
We are going to take a¼ 0.7, «¼ 0.01.

First iteration
As an initial point, we start with x¼ [1, 2]t. Substitute in the objective function

Z ¼ Ctx ¼ [3 1]
1
2

� 	
¼ 5:0

D ¼ diag(x) ¼ 1 0
0 2

� 	

�x ¼ D�1x ¼ 1 0
0 2

� 	�1 1
2

� 	
¼ 1 0

0 0:5

� 	
1
2

� 	
¼ 1

1

� 	

~A ¼ AD ¼ [1 1]
1 0
0 2

� 	
¼ [1 2] :

The projection area p

P ¼ I� ~At(~A~At)�1~A ¼ 0:8 �0:4
�0:4 0:2

� 	

~C ¼ DC ¼ 1 0
0 2

� 	
3
1

� 	
¼ 3

2

� 	

Cp ¼ P~C ¼ 1:6
�0:8

� 	
:

Then we get the value of g¼ 0.8.
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~xnew ¼ ~xold þ a

g

� 
Cp ¼ 2:4

0:3

� 	

xnew ¼ D~xnew ¼ 2:4
0:6

� 	

Znew ¼ Ctxnew ¼ [3 1]
2:4
0:6

� 	
¼ 7:8

D objective ¼ Znew � Zold ¼ 7:8� 5:0 ¼ 2:8 > «:

Then we go to the second iteration.

Second iteration

x ¼ [2:4, 0:6]t

D ¼ diag(x) ¼ 2:4 0
0 0:6

� 	

~x ¼ D�1x ¼ 2:4 0
0 0:6

� 	�1 2:4
0:6

� 	
¼ 1

1

� 	

~A ¼ AD ¼ [1 1]
2:4 0
0 0:6

� 	
¼ [2:4 0:6]:

The projection area P

P ¼ I� ~At(~A~At)�1~A ¼ 0:0588 �0:2353
�0:2353 0:9412

� 	

�C ¼ DC ¼ 7:2
0:6

� 	

Cp ¼ P~C ¼ 0:2824
�1:1294

� 	
:

Then we get the value of g¼ 1.1294.

~xnew ¼ ~xold þ a

g

� 
Cp ¼ 1:2471

0:0118

� 	

xnew ¼ D~xnew ¼ 2:9929
0:0071

� 	

Znew ¼ Ctxnew ¼ [3 1]
2:9929
0:0071

� 	
¼ 8:9859

D objective ¼ Znew � Zold ¼ 8:9859� 7:8 ¼ 1:1859 > «:

Then we go to the third iteration.
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Third iteration

x ¼ [2:9929, 0:0071]t

D ¼ diag(x) ¼ 2:9929 0
0 0:0071

� 	

~x ¼ D�1x ¼ 1
1

� 	

~A ¼ AD ¼ [2:9929 0:0071]:

The projection area P,

P ¼ I� ~At(~A~At)�1~A ¼ 0:0 �0:0024
�0:0024 1:0

� 	

~C ¼ DC ¼ 8:9788
0:0071

� 	

Cp ¼ P�C ¼ 0:00
�0:0142

� 	
:

Then we get the value of g¼ 0.0142.

~xnew ¼ ~xold þ a

g

� 
Cp ¼ 1:0017

0:2980

� 	

xnew ¼ D~xnew ¼ 2:9979
0:0021

� 	

Znew ¼ Ctxnew ¼ [3 1]
2:9979
0:0021

� 	
¼ 8:9958

D objective ¼ Znew � Zold ¼ 8:9958� 8:9859 ¼ 0:0099 < «:

Then, we stop up to the third iteration

x1 ¼ 2:9979, x2 ¼ 0:0021, and Z ¼ 8:9958:

Example 6.10.3

The following optimization problem demonstrates the primal affine-scaling
algorithm.

Minimize Z ¼ 2x1 þ x2 þ 4x3

Subject to

x1 þ x2 þ 2x3 ¼ 3

2x1 þ x2 þ 3x3 ¼ 5

xi � 0 (i ¼ 1, 2, 3):
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First iteration
Let

e ¼
1
1
1

2
4

3
5, x0 ¼

1:5
0:5
0:5

2
4

3
5,

D0 ¼ diag(x0) ¼
1:5 0:0 0:0
0:0 0:5 0:0
0:0 0:0 0:5

2
4

3
5:

Therefore, the dual estimate vector is

w0 ¼ (AD2
0A

T)�1AD2
0c ¼

0:8947
0:5789

� 	
,

and the reduced cost coefficient is

r0 ¼
�0:0526
�0:4737
0:4737

2
4

3
5:

For the optimality check, we calculate

eT ¼ D0r0 ¼ �0:0789 and d0
y ¼

0:0789
0:2368
�0:2368

2
4

3
5:

The optimality condition is not satisfied but the problem is not unbounded;
therefore

b0 ¼ 4:1807:

The update on the primal variable is

x1 ¼ x0 þ b0D0d0
y ¼

1:9951
0:9951
0:0049

2
4

3
5:

Second iteration

D1 ¼
1:9951 0:0000 0:0000
0:0000 0:9951 0:0000
0:0000 0:0000 0:0049

2
4

3
5

w1 ¼ 0
1:0

� 	
and r1 ¼

0
0
1

2
4

3
5:
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For the optimality checking, we compute

eTD1r1 ¼ 0:0049

d1
y ¼

0:0
0:0

�0:0049

2
4

3
5,

which implies that the problem is bounded.
Therefore, we compute b1¼ 202.0408 and update the primal variable to get

x2 ¼
2:0
1:0
0:0

2
4

3
5 ¼ x*,

which yields an optimal value of objective value Z*¼ 5.

Example 6.10.4

The following optimization problem demonstrates the dual affine-scaling
algorithm.

Maximize Z ¼ 15x1 þ 15x2

Subject to

1:5x1 þ 5x1 ¼ �3:0
�1:5x1 þ 1:5x2 þ 5x2 ¼ 1:5

1:5x3 þ s3 ¼ 0

1:5x4 þ s4 ¼ 0

si � 0 (i ¼ 1, 2, 3, 4):

First iteration

x0 ¼ �3
�3

� 	
, s0 ¼

1:5
1:5
4:5
4:5

2
6664

3
7775,

W0 ¼ diag(s0) ¼
1:5 0 0 0
0 1:5 0 0
0 0 4:5 0
0 0 0 4:5

2
6664

3
7775:
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Therefore, the direction of translation is

d0
x ¼ (AtW�2

0 A)�1c ¼ 23:5321
34:6789

� 	
,

d0
s ¼ �ATd0

x ¼
�35:2982
�16:7202
�35:2982
�52:0183

2
664

3
775,

y0 ¼
15:6881
7:4312
1:7431
2:5688

2
664

3
775:

For the optimality check, we calculate

bTy0 � cTX0 ¼ 46:2385:

The optimality condition is not satisfied but the problem is not unbounded;
therefore

b0 ¼ 0:0421:

The update on the primal variable is

x1 ¼ x0 þ b0d
0
x ¼

�2:01
�1:5411

� 	

s1 ¼
0:015
0:796
3:015
2:312

2
664

3
775:

Second iteration

d1
x (A

TW�2
1 A)�1c ¼ 0:0028

3:7838

� 	

d1
s ¼ �ATd1

x ¼
�0:0043
�5:6714
�0:0043
�5:6757

2
664

3
775

y1 ¼
18:9374
8:9378
0:0005
1:0622

2
664

3
775:
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For the optimality check, we calculate

bTy1 � cTX1 ¼ 0:3918:

The optimality condition is not satisfied but the problem is not unbounded; therefore

b0 ¼ 0:1391:

The update on the primal variable is

x2 ¼ x1 þ b1d
1
x ¼

�2:0096
�1:0149

� 	

s2 ¼
0:0144
0:0079
3:0144
1:5224

2
664

3
775:

The reader may carry out more iterations and verify that the optimal value is
assumed at X*¼ (�2, �1)T and s*¼ (0, 0, 3, 1.5)T.

Example 6.10.5

Using IP method, solve the following LP problem:

Maximize 3x1 þ 3x2 � x3
subject to 2x1 � 3x2 þ x3 ¼ 0

x1 þ x2 þ x3 ¼ 1

8j 2 {1,2,3}

SOLUTION

The problem is formulated in standard form as

Max z ¼ 3x1 þ 3x2 � x3 ¼ CTx

CT ¼ [3 3 �1] as x ¼ x1, x2, x3½ �T

subject to Ax ¼ b) A ¼ 2 �3 1
1 1 1

� 	

And using a¼ 0.7 and «¼ 0.1

As an initial point, we start by z ¼ CTx ¼ [3 3 �1]
1
1
2

2
4

3
5 ¼ 4:0, x ¼ [1, 1, 2]T

z ¼ CTx ¼ [3 3 �1]
1
1
2

2
4

3
5 ¼ 4:0, D ¼ Diag x ¼

1 0 0
0 1 0
0 0 2

2
4

3
5
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~x ¼ D�1x ¼
1 0 0
0 1 0
0 0 0:5

2
4

3
5 1

1
2

2
4

3
5 ¼ 1

1
1

2
4

3
5

~A ¼ AD ¼ 2 �3 1
1 1 1

� 	 1 0 0
0 1 0
0 0 2

2
4

3
5 ¼ 2 �3 2

1 1 2

� 	

The projection matrix is calculated as

P ¼ I� ~AT(~A~AT)�1~A

) P ¼
0:0025 �0:0045 0

0 �0:023 0
0 0 1

2
4

3
5

~c ¼ DC ¼
1 0 0
0 1 0
0 0 2

2
4

3
5 3

3
�1

2
4

3
5 ¼ �0:006

�0:069
�2

2
4

3
5

; g ¼ j�2j ¼ 2, a ¼ 0:7

; ~xnew ¼ ~xold þ a

g

� 
Cp ¼

0
1
0

2
4

3
5þ 0:7

2

�0:006
�0:069
�2

2
4

3
5 ¼ �0:0021

0:97585
�0:7

2
4

3
5

xnew ¼ D~xnew ¼
1 0 0
0 1 0
0 0 2

2
4

3
5 �0:0021

0:97585
�0:7

2
4

3
5 ¼ �0:0021

0:97585
�1:4

2
4

3
5

Profitnew ¼ CTxnew ¼ [3 3 �1]
�0:0021
0:97585

1:4

2
4

3
5 ¼ 4:32125

After the second iteration, the value of x was found to be x* ¼
�0:021
0:9758
�0:7

2
4

3
5 and the

profit P*¼ 3.621.

Example 6.10.6

Recall the linear model

Maximize f(x)¼ cTx

Subject to Ax¼ b

From the given problem, the following vectors and matrices are identified:

x ¼ [x1 x2 x3]
T, cT ¼ [2 5 7] , A ¼ [1 2 3] , and b ¼ 6:
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First iteration
Initialize: x(0)¼ [1 1 1]T such that Ax¼b
Choosing: a¼ 0.95, where 0<a< 1, «¼ 10�3

Now, the scaled gradient vector is ~c¼DC¼ [2 5 7]T

And from the problem, A¼ [1 2 3] such that Ã¼AD¼AI¼A
The projection matrix is calculated as

P ¼ I� ~AT(~A~AT)�1~A ¼
0:9286 �0:1429 �0:2143
�0:1429 0:7143 �0:4286
�0:2143 �0:4286 0:3571

2
4

3
5

The projection gradient is

Cp ¼ P~c ¼
0:9286 �0:1429 �0:2143
�0:1429 0:7143 �0:4286
�0:2143 �0:4286 0:3571

2
4

3
5 2

5
7

2
4

3
5 ¼ �0:3571

þ0:2857
�0:0714

2
4

3
5

Scalar value g¼ jMin Cpi
j ¼ j�0.3571j ¼ 0.3571 for Cpi

< 0
Updating the scaled solution vector yields:

~xnew ¼ ~xold þ aCp

g

~xnew ¼
1
1
1

2
4

3
5þ 0:95

0:3571

�0:3571
0:28570
�0:07140

2
4

3
5 ¼ 0:0500

1:7600
0:8100

2
4

3
5

Hence, the scaled solution vector is

xnew ¼ D~xold ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 0:0500

1:7600
0:8100

2
4

3
5 ¼ 0:0500

1:7600
0:8100

2
4

3
5

The value of the objective function at this stage is f(xnew)¼ 14.5700

After another iteration, the optimal solution was found to be x* ¼
0:0461
2:9162
0:0405

2
4

3
5

and f * � 14.9567.

6.11 Conclusions

Variants of IP algorithms were presented. These variants included work by
Karmarkar, projection, offline-scaling, and the primal-affine algorithm. These
methods were shown in Sections 6.2 through 6.5.

In Section 6.6, the barrier algorithm was presented, where a barrier-
function tests hit inequality constraint methods by creating a barrier function
which is a combination of the original objective function and a weighted sum

Momoh/Electric Power System Applications of Optimization 65886_C006 Final Proof page 227 20.11.2008 11:39am Compositor Name: VAmoudavally

Interior Point Methods 227



of functions with a positive singularity at the boundary. The formulation and
algorithm were presented in this section.

In Section 6.7, an extended IP for the LP problem was presented and a
discussion of the possible interior sequence was presented in Section 6.8
where the optimality conditions and start and termination of the recursive
process were explained. In Section 6.9, an extended quadratic programming
algorithm for solving quadratic optimization problems was presented.

6.12 Problem Set

PROBLEM 6.12.1

Solve the unconstrained problem:

Minimize z ¼ 1
3
x21 þ

1
2
x22 � x1x2 � 2x1,

1. Using the IP method

2. Any other method

PROBLEM 6.12.2

Solve the following problem using the quadratic IP method:

Minimize z ¼ 2x21 þ 3x22 þ 5x23 þ x1 þ 2x2 � 3x3

Subject to

x1 þ x2 ¼ 5

x1 þ x3 ¼ 10

xj � 0:

PROBLEM 6.12.3

Consider the following problem.

Maximize z ¼ 2x1 þ 5x2 þ 7x3

Subject to

x1 þ 2x2 þ 3x3 ¼ 6

xj � 0:

1. Graph the feasible region.

2. Find the gradient of the objective function and then find the
projected gradient onto the feasible region.
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3. Starting from initial trial solution (1, 1, 1) perform two iterations
of the IP algorithm.

4. Perform eight additional iterations.

PROBLEM 6.12.4

Consider the following problem.

Maximize z ¼ �x1 � x2

Subject to

x1 þ x2 � 8

x2 � 3

�x1 þ x2 � 2

xj � 0:

1. Solve this problem graphically.

2. Use the dual simplex method to solve this problem.

3. Trace graphically the path taken by the dual simplex method.

4. Solve this problem using the IP algorithm.

PROBLEM 6.12.5

Maximize 3x1 þ 3x2 � x3

s:t: 2x1 � 3x2 þ x3 ¼ 0

x1 þ x2 þ x3 ¼ 1

PROBLEM 6.12.6

Maximize 4x1 þ 3x2

s:t: 3x1 þ 10x2 � 8

4x1 þ 2x2 � 15

PROBLEM 6.12.7

Maximize 10x1 þ 4x2 þ 3x3

s:t: x1 � x3 � 0

x1 þ x2 � 2

�x1 þ x2 þ 3x3 � 4

x1, x2, x3 � 0
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PROBLEM 6.12.8

Maximize 2x1 þ 3x2 þ 4x3

Subject to

x1 þ x2 þ x3 � 5

x1 þ 2x2 ¼ 7

5x1 � 2x2 þ 3x3 � 9

x1, x2, x3 � 0

PROBLEM 6.12.9

Maximize z ¼ 3x1 þ 2x2

Subject to

x1 þ 2x2 þ x3 ¼ 6

2x1 þ x2 þ x4 ¼ 8

�x1 þ x2 þ x5 ¼ 1

x2 þ x6 ¼ 2

x1, x2, . . . , x6 � 0
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7
Nonlinear Programming

7.1 Introduction

While linear programming has found numerous practical applications, the
assumptions of proportionality, additivity, and other forms of nonlinearity are
common in many engineering applications. Most often the sources of non-
linearity are the physical process and the associated engineering principles
that are not amenable to linearization. Even though there are linearization
schemes, they are subject to large errors in representing the phenomenon.

Nonlinear programming (NLP) aims to solve optimization problems involv-
ing a nonlinear objective and constraint functions [1–4,10–13]. The constraints
may consist of equality and inequality forms. The inequalities may be specified
by two bounds: bounded below and bounded above. There is no generalized
approach to solve the NLP problem and a particular algorithm is usually
employed to solve the specified type of problem. In other words, it is different
from the simplex method which can be applied to any LP problem. However,
two methods, namely, sensitivity and barrier, are considered to be quite gener-
alized to be able to successfully solve the NLP. These methods are discussed in
detail in this chapter.

Theorems on necessary and sufficient conditions are given for extremizing
unconstrained functions and optimizing constrained functions. In conjunc-
tion with the necessary condition, the well-known Kuhn–Tucker (K–T) con-
ditions are treated. Finally, based on the K–T conditions, sensitivity and
barrier methods are developed for a general approach to solve the NLP
problems. The methods are designed for solving NLP involving large num-
bers of variables such as the power system.

7.2 Classification of NLP Problems

7.2.1 NLP Problems with Nonlinear Objective Function and Linear
Constraints

This is a relatively simple problem with nonlinearity limited only to
the objective function. The search space is similar to that of the linear
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programming problem and the solution methods are developed as exten-
sions to the simplex method.

7.2.2 Quadratic Programming

This is a special case of the former where the objective function is quadratic
(i.e., involving the square or cross-product of one or more variables). Many
algorithms have been developed with the additional assumption that the
objective function is convex, which is a direct extension of the simplex
method. Apart from being a very common form for many important prob-
lems, quadratic programming (QP) is also very important because many of
the problems in Section 7.3.1 are often solved as a series of QP or sequential
quadratic programming (SQP) problems.

Objective form:

f (x) ¼
X

cjxj þ 1
2

Xn
i¼1

Xn
j¼1

gijxixj:

Subject to X
aijxj � bi

xj � 0,

where
cj, aij and bi and aij are assumed to be known
aij¼ aji are symmetrical and hence¼ aij ¼ 1

2 [aij þ aji]

7.2.3 Convex Programming

Convex programming arises out of the assumptions of convexity of the object-
ive and constraint functions. Under these assumptions, it can encompass both
foregoing problems. The major point of emphasis is that the local optimal
point is necessarily for the global optimum under these assumptions.

7.2.4 Separable Programming

Separable programming is a special class of convex programming with the
additional assumption that all objective and constraint functions are separ-
able functions; that is, the function can be expressed as a sum of the functions
of the individual variables. For example, if f(x) is a separable function it can
be expressed as

f (x) ¼
Xn
j¼1

fj(xj),

where each, fj(xj) includes a term involving xj only.
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Subject to X
gij(xj) � 0:

These problems are called separable programming because the decisive
variable approximate separate one in each function gij in the constraints
and one in the each objective function.

7.3 Sensitivity Method for Solving NLP Variables

For simplicity, we hereafter use i � p to mean i¼ 1, 2, . . . , p, i> p to mean
i¼Pþ 1, pþ 2, . . . ,m, and all i to mean i¼ 1, 2, . . . ,m. Let y be an n-vector and
f(y) together with fi(y) be scalar functions for all i. Then, the NLP problem is
defined to

Minimize f (y)

Subject to

Ci � fi( y) � Di for all i, (7:1)

where

Ci ¼ Di for i � p but Ci < Di for i > p:

There are p equality constraints and m� p inequality constraints which are
bounded by Ci and Di for i> p. The number of p is less than or equal to n but
m may be greater than n. By Ci¼�1 and Di¼1, we mean that the inequal-
ity constraint is bounded above and below, respectively. Any constraint with
one bound is thus a special case of the inequality constraint.

The constraints are denoted by the equality form

fi( y) ¼ ki (7:2)

for all i where Ki¼Di, when i � p and Ci � Ki � Di, when i> p. In matrix
form, they are denoted collectively by

F( y) ¼ K, (7:3)

where
F(y)¼ [ fi(y), f2(y), . . . , fm(y)]

T

K¼ [K1, K2, . . . , Km]
T

TheLagrange function for thisproblemisdefinedasbeforeby the scalar function

L( y,l) ¼ f ( y)þ lF( y), (7:4)

where l¼ [l1, l2, . . . , lm].
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The Lagrange function is assumed to be continuous up to the first partial
derivatives at y¼ x which is a minimum as considered in the theorem.

Extended K–T conditions are considered here to cover constraints bounded
below and above. The conditions can be stated in theorem form as follows.

THEOREM 7.3.1

If x is a solution for the NLP problem, then it is necessary that Lx(x,l)¼ 0 and one of
the following conditions be satisfied for all i> p.

(a) li¼ 0 when Ci< fi(x)<Di.

(b) li � 0 when fi(x)¼Di.

(c) li � 0 when fi(x)¼Ci.

7.3.1 Procedure for Solving the NLP Problem

1. Use Lx(x,l)¼ 0 and the equality constraints to find x for cases a, b,
and c.

2. Find the smallest f(x) among the three possible x obtained in step 1.

3. Use T ¼ Lxx(x,l)þ bFTx (x)Fx(x) > 0 for some b � 0 to test sufficiency
for x determined in step 2.

The conditions as imposed in the theorem are called here the Extended
Kuhn–Tucker (EKT) conditions. They suggest that one can predict the
changes of f(x) due to variations of K if l is known. This fact is utilized in
the method to approach the EKT conditions. Note that there may exist
multiple sets of EKT conditions.

Transpose Equation 7.4 and then use the column vector z to denote lT and
U to denote LTx :

U(x,z) ¼ f Tx (x)þ FTx (x)z ¼ 0, (7:5)

where zi¼ li for all i. Since Equation 7.3 must be satisfied for y¼ x, we have

F(x) ¼ K, (7:6)

where Ki¼Ci¼Di for i � p but is uncertain for i> p. The method uses a
process that adjusts Ki in Ci � Ki � Di for i> p to decrease f(x) and keep
Equations 7.4 and 7.6 satisfied.

Consider some x, z, and K that satisfy Equations 7.5 and 7.6 at one step and
xþDx, zþDz, and KþDK at the next. Then, it follows that

U(xþ Dx, zþ Dz) ¼ f Tx (xþ Dx)þ FTx (xþ Dx)(zþ Dz) ¼ 0

and F(xþDx)¼KþDK.
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The first-order approximation of the above equations is

U(x,z)þUx(x,z)DxþUz(x,z)Dz ¼ 0 (7:7)

and

Fnew(x) ¼ Fold(x)þ Fx(x)Dx ¼ K þ DK: (7:8)

The partial derivatives of U(x, z) can be found from Equation 7.5 as

S ¼ Ux(x,z) ¼ fxx(x)þ
Xm
i¼l

lifixx(x) (7:9)

and

Uz(x,z) ¼ FTx (x),

where fxx and fixx are, respectively, the second derivatives of f(x) and fi(x) with
respect to x; all of them are assumed to exist.

For simplicity, the augments x and z are omitted here and Equations 7.7
and 7.8 are combined in a matrix form

Ay ¼ b, (7:10)

where

A ¼ S FTx
Fx 0

� �
, y ¼ Dx

Dz

� �
, b ¼ �U

DK

� �
:

Note that the condition U¼ 0 may not be true due to first-order approxima-
tion but F¼K is true since K is calculated from Equation 7.6. Inclusion of U in
the vector bwould force U to be zero at the next step if it were not zero at the
present one. Equation 7.10 shows that any two of the increments may be
determined if the third one is specified. However, the change of K not only
relates to the constraints but correlates with the objective function as evi-
denced by Equation 7.6. It is for this reason that DK is chosen to be the
independent variable. As mentioned earlier, the basic rule of adjusting DK is
to decrease f(x) without violating the constraints.

The matrix A of Equation 7.10 may not be inverted at each step of the
process; this is always the case for m> n. We are seeking here the least square
solution with minimum norm (LSMN) for Dx and Dz. The solution always
exists and is unique as long as A is not a null matrix. Moreover, it reduces
automatically to the exact solution if A is nonsingular.
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Expression for EKT Conditions (Sensitivity Method)
As it is, the EKT conditions are not suitable for application to a computer-
based solution. An alternative expression is sought here for practical appli-
cations.

Consider an m-vector J with component Ji (i¼ 1, 2, . . . , m) defined by

T ¼ min li, (Di � Ki)½ � (7:11)

and

Ji ¼ max T, (Ci � Ki)½ �, (7:12)

for all i¼ 1, 2, . . . , m. It can be concluded that a set of EKT conditions is
satisfied if and only if U¼ 0 and J¼ 0. This can be shown as follows:

1. Feasibility Ki>Di: Ji¼ 0 from Equation 7.12 requires that T¼ 0 which
cannot take place in Equation 7.11 since Di�Ki< 0.

Ki<Ci: Ji¼ 0 from Equation 7.12 cannot occur since Ci�Ki> 0.
Therefore, Ci � Ki � Di must hold when Ji¼ 0.

2. Optimality U¼ 0 is imposed in the sensitivity method. This fulfills the
first part of the EKT conditions: Lx¼ 0.

Ci<Ki<Di: Ji¼ 0 from Equation 7.12 requires that T¼ 0 and hence li¼ 0
must hold in Equation 7.11. Conversely, if li¼ 0, then T¼ 0 in Equation 7.11
and hence Ji¼ 0 results from Equation 7.12.

Ki¼Di: Ji¼ 0 from Equation 7.12 requires that T¼ 0 and hence li � 0 must
hold in Equation 7.11. Conversely, if li � 0, then T¼ 0 in Equation 7.11 and
hence Ji¼ 0 results from Equation 7.12.

Ki¼Ci: Ji¼ 0 from Equation 7.12 requires that T � 0 and hence li � 0 must
hold in Equation 7.11. Conversely, if li � 0, then T � 0 in Equation 7.11 and
hence Ji¼ 0 results from Equation 7.12.

It follows therefore that J¼ 0 and U¼ 0 are both necessary and sufficient to
reach a set of EKT conditions. These conditions are used as the criteria for
termination of the method. The process involved in the method may start
with any guessed values of x and l. However, different initial values may
lead to different sets of EKT conditions and even divergence.

Then to compute DK for the algorithm:

1. Adjustment of DK

Consider a change Dx about a known x. The second-order approximation
of the objective function can be written as

f (xþ Dx) ¼ f (x)þ fxDxþ 1
2
DxTfxxDx, (7:13)
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where the partial derivatives are evaluated at x. It is intended to reduce
Equation 7.13 by a proper adjustment of DK. To this end, we assume that
DK¼ qJ, where J is determined from Equations 7.11 and 7.12. The increments
Dx and Dz caused by DK satisfy Equation 7.10:

A
Dx
Dz

� �
¼ �U

qJ

� �
, (7:14)

which consists of

SDxþ FTxDx ¼ �U

and FxDx¼DK¼ qJ.
We define vectors u and y in such a way that Dx¼ qu and FTx (Dz� qy) ¼

(q� 1)U where the last equation is satisfied in the sense of LSMN [13]. Then,
by eliminating Dx and Dz, we obtain from Equation 7.14 that

A
u
y

� �
¼ �u

J

� �
: (7:15)

Substitution of Dx¼ qu into Equation 7.13 gives

f (xþ Dx) ¼ f (x)þ qfxuþ 1
2
q2N,

where

N ¼ uTfxxu: (7:16)

The minimum of f(xþDx) for positive q occurs at

q ¼ � fxu
N

(7:17)

if fxu< 0 and N> 0. We choose q as given by Equation 7.17 only when fxu< 0
and N> 0, and choose DK¼ J or q¼ 1 otherwise. For q not equal to one, DKi is
revised for all i, by

T ¼ min qJi, (Di � Ki)½ � (7:18)

DKi ¼ max T, (Ci � Ki)½ �: (7:19)

Using the DK, we solve Dx and Dz from Equation 7.10 and then update x
and z.
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7.4 Algorithm for Quadratic Optimization

Since it is of practical importance, particular attention is given to the NLP that
has the objective function and constraints described by quadratic forms [1,7].
This type of problem is referred to as quadratic optimization. The special case
where the constraints are of linear forms is known as QP. Derivation of the
sensitivity method is aimed at solving the NLP on the computer. An algorithm
is generated for this purpose according to the result obtained in the previous
section.

Quadratic optimization is involved in power systems [15] for maintaining
a desirable voltage profile, maximizing power flow, and minimizing gener-
ation cost. These quantities are controlled by complex power generation
which is usually bounded by two limits. The first two problems can be
formulated with an objective function in a quadratic form of voltage while
the last one is in a quadratic form of real power. Formulation of the first
problem is given in the last of the illustrative problems.

As usual, we consider only minimization since maximization can be
achieved by changing the sign of the objective function. Let the objective
and constraint functions be expressed, respectively, by

f (x) ¼ 1
2
xT Rxþ aTx

and

fi(x) ¼ 1
2
xTHixþ bTi x for all i: (7:20)

R together with H are n-square and symmetrical matrices, and x, a together
with b, are n-vectors. The quadratic functions are now characterized by
the matrices and vectors. As defined before, the constraints are bounded
by Ci � fi(x)� Di, for all i¼ 1, 2, . . . , m. Among these i, the first p are equalities
(Ci¼Di, for i � p).

The matrix A and n-vector U in Equation 7.10 can be found by using

FTx ¼ [H1xþ b1, H2xþ b2, . . . , Hmxþ bm],

S ¼ Rþ
Xm
i¼1

liHi, w ¼ aþ
Xm
i¼1

libi,

and U¼ Sxþw.
Given below is an algorithm to be implemented in a computer program.

1. Input Data

(a) n,m, p, and « (to replace zero, usually lies between 10�3 and 10�5).

(b) R, a, Hi, bi, Ci, and Di for all i¼ 1, 2, . . . , m.
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2. Initialization Set xi¼ 0 and zi¼ 0 (li¼ 0) for all i or use any other
preference.

3. Testing EKT Conditions

(a) Calculate Ki, Ui (the ith component of U) and then Ji from Equa-
tions 7.11 and 7.12 for all i.

(b) A set of EKT conditions is reached if jUij< « and jJij< « for all i.
Otherwise go to step 4.

4. Solving for u and v

(a) Solve u and y from Equation 7.15 by using LSMN [13].

(b) Calculate N by Equation 7.16 and then go to step 5 if N> 0 and
fxu< 0. Go to Part (c) otherwise.

(c) Update x by xþ u, and zþ y, and then go to step 3.

5. Determining DK

(a) Calculate q by Equation 7.17 and then find DKi from Equations
7.18 and 7.19 for all i.

(b) Solve Dx and Dz from Equation 7.10 by using LSMN.

(c) Update x by xþDx and z by zþDz, and then go to step 3.

In using the algorithm, one should discover several set of EKT conditions.
This can be done by varying the initial values. Sometimes, intuitive judgment
is helpful in deciding if the smallest one is the solution of the problem.

7.5 Illustrative Example (Barrier Method for Solving NLP)

As given by Equation 7.1 in the sensitivity method, the NLP is rewritten
here as

Minimize f (x)

Subject to g(x) ¼ 0

and C � h(x) � D

)
, (7:21)

where
x is an n-vector
f(x) is a scalar function

The constraints g(x) and h(x) are, respectively, p- and m-vector functions. The
bound vectors C and D are constant. All the functions are assumed to be
twice differentiable. It is important to mention that m may be greater than n
but p cannot. Any bound imposed on x may be considered as part of h(x).
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The problem is solved here by using K–T necessary conditions in conjunc-
tion with barrier penalty functions. Involved in the method is a recursive
process that solves a set of linear equations at each iteration. The equations
are reduced to the least in number. The barrier parameter is generalized to a
vector form in order to accommodate discriminatory penalty.

7.5.1 Algorithm for Recursive Process

Newton’s numerical method is used in the sequel to approach a solution (if
one exists) of the problem. To acquire the K–T conditions, we introduce first
nonnegative slack variables to convert the inequalities constraints. That is

h(x)þ s ¼ D

h(x)� r ¼ C

o
, (7:22)

where s and r are nonnegative m-vector functions.
The logarithmic barrier function has been used extensively to avoid deal-

ing with the harsh constraint of nonnegativeness on the slack variables; that
is, to append f(x) as

fb(x) ¼ f (x)�
Xm
j¼1

Uj ln sj �
Xm
j¼1

Vj ln rj: (7:23)

All the us and ys are specified nonnegative. They may change from one
iteration to another in the process. It is known that the optimization of fb(x)
and f(x) subject to the same constraints is the same as the us and ys approach
zero. As such, one may optimize fb(x) by ignoring the nonnegative constraint
on the slack variables.

For simplicity, the argument x is dropped from f(x), g(x), and h(x) to form
the Lagrange function

L ¼ fb þ yTgþ wT(hþ s)� zT(h� r), (7:24)

where y, w, and z are the Lagrange vectors associated with the constraints.
Note that they are required to be nonnegative by the K–T conditions for the
problem.

Differentiation of L with respect to x, s, and r, and then setting them equal
to zero yields the optimally conditions for the appended problem.

To facilitate the derivation, an operator r¼ @=@x (read as gradient) is used
to mean

rL ¼ @L
@x

� �T

¼ @L
@xj

� �T
(column n-vector),
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rg ¼ @g
@x

� �T

¼ @gi
@xj

� �T
(n� p matrix),

rh ¼ @h
@x

� �T

¼ @hi
@xj

� �T
(n�m matrix),

r2f ¼ @2f
@xi@xj

� �
, r2gk ¼ @2gk

@xi@xj

� �
and

r2hk ¼ @2hk
@xi@xj

� �
:

Enclosed by the brackets are the entry at the ith row and jth column.
T denotes the transpose and the last three n-square matrices are Hessian
matrices.

The K–T conditions can be obtained with respect to state and slack vari-
ables. For the state vector x, we have

rL ¼ rf þ (rg)yþ (rh)(w� z) ¼ 0: (7:25)

Let S, R, W, and Z be the diagonal matrices that contain the elements of the
vectors s, r, w, and z, respectively. Then the optimality conditions with
respect to s and r are

�S�1uþ w ¼ 0

and

�R�1y þ z ¼ 0:

That is,

Sw ¼ u

Rz ¼ y

o
: (7:26)

The increment equations of Equation 7.26 are

(Sþ DS)(wþ Dw) ¼ u

(Rþ DR)(zþ Dz) ¼ y

o
: (7:27)

The penalty vectors u and y may alter each iteration but remain constant
between iterations. By neglecting the terms DSDw and DRDz, we obtain from
Equation 7.27,

Dw ¼ S�1u� w� S�1DSw

Dz ¼ R�1y � z� R�1DRz

o
: (7:28)
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Using the fact that DSw¼WDs and DRz¼ZDr, one may express Equation
7.28 as

Dw ¼ S�1u� w� S�1WDs

Dz ¼ R�1y � z� R�1ZDr

o
: (7:29)

Increments of slack variables and state variables are linearly related if high
orders of Dx are neglected. It follows from Equation 7.22 that

rhTDxþ Ds ¼ D� h� s ¼ d1

rhTDx� Dr ¼ C� hþ r ¼ d2

o
: (7:30)

Thus, we can write the relation between the increments as

Ds ¼ d1 �rhTDx

Dr ¼ rhTDx� d2

o
: (7:31)

Substitutions of Equation 7.31 into 7.29 give

Dw ¼ S�1(u�Wd1)� wþ S�1WrhTDx

Dz ¼ R�1(y þ Zd2)� z� R�1ZrhTDx

o
: (7:32)

The increment Equation 7.25, after all the variables are augmented, can be
similarly determined. By neglecting the high orders of Dx and Dy, we have

(rL)aug ¼ rLþHDxþrgDyþrh(Dw� Dz), (7:33)

where

H ¼ r2f þ
Xp
k¼1

ykr2gk þ
Xm
k¼1

(wk � zk)r2hk: (7:34)

Substituting equals on Equation 7.32 into 7.33 and then setting Equation 7.33
equal to zero gives

(rL)aug ¼ ADxþrgDyþ b ¼ 0, (7:35)

where

A ¼ H þrh(S�1W þ R�1Z)rhT (7:36)
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and

b ¼ rLþrh(S�1(u�Wd1)� R�1(y þ Zd2)� (w� z)): (7:37)

The linearized equation of the equality constraint is

gþrgTDx ¼ 0: (7:38)

Combination of Equations 7.35 and 7.38 makes

A rg
rgT 0

� �
Dx
Dy

� �
¼ � g

g

� �
: (7:39)

Being symmetrical, the (nþ p)-square matrix on the left can be inverted by
fast means even for large nþ p. Computation time for Dx and Dy should not
cause any problem in the process. Other increments can be readily found
from Equations 7.31 and 7.29.

7.5.1.1 Analytical Forms

It is necessary to derive first the n-vector rf, n� p matrix rg, n�m
matrix rh, and n-square symmetrical matrices r2f, r2gk, and r2hk. Then
form the n-vector rL and n-square matrix H in terms of the Lagrange
multipliers according to Equations 7.25 and 7.34:

rL ¼ rf þ (rg)yþrh(w� z)

H ¼ r2f þ
Xp
k¼1

ykr2gk þ
Xm
k¼1

(wk � zk)r2hk:

A wide class of NLP problems is expressible in the form of quadratic opti-
mization. That is

f (x) ¼ 1
2
xTQxþ aTx,

gk(x) ¼ 1
2
xTGkxþ BT

k x, k ¼ 1, 2, . . . , p

hk(x) ¼ 1
2
xThkxþ JTk x, k ¼ 1, 2, . . . , m,

where
Q, Gk, and Hk are symmetrical
a, Bk, and Jk are n-vectors
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The vectors and matrices required by Equation 7.39 are

rf ¼ Qxþ a

rg ¼ [G1xþ B1, G2xþ B2, . . . , Gpxþ Bp]

rh ¼ [H1xþ J1, H2xþ J2, . . . , Hmxþ Jm]

r2f ¼ Q, r2gk ¼ Gk, and r2hk ¼ Hk and

H ¼ Qþ
Xp
k¼1

ykGk þ
Xm
k¼1

(wk � zk)Hk:

7.5.1.2 Penalty Vectors

Each component of u or y may be chosen differently to achieve the discrim-
inative penalty. However, one may choose the equipenalty scheme if there is
no preference. That is,

u ¼ y ¼ rmem,

where 0< r< 1 and em is the m-vector with all elements equal to one. The
penalty parameter m is required to approach zero as the process approaches
an optimum.

To meet such a requirement, we choose

m ¼ 1
2m

(wTsþ zTr) ¼ 1
2m

(wisi þ ziri): (7:40)

Note that m¼ 0 at an optimum according to the K–T condition.

Start of Process. Initial values play an important part in the recursive process.
Improper assumptions may cause divergence or convergence to a different
solution (if one exists). It is known that the recursive process always
converges to a solution if the initial values are close enough to it. If there is
no preference, one may consider the following scheme.

State Vector.

1. Assume x to be an estimated solution.

2. Make x satisfy rf¼ 0.

3. Set x¼ 0 if step 1 or 2 fails.

Slack Vectors.
Use s¼ r¼ 1=2(D�C)> 0.

Lagrange Vectors. Use w¼ z¼ [1þkrfk]em and y¼ 0, where krfk is the
l1-norm.

Penalty Parameter. 0.1 � r � 0.5 may be used. A large number can retard the
process and a small number can cause divergence.
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Replacement of Zero. Two small numbers 21 and 22 are to be used to replace
zero for computer implementation. They may be different and exist between
10�6 and 10�3.

7.5.2 Computer Implementation

Using relevant equations in the earlier derivations:

1. Initialization Assume

x, s, r, w, and z:

r, 21, and 22:

Using current initial conditions,

2. Computation

m ¼ (1=2m)(wTsþ zTr) and u ¼ y ¼ rmem: (7:40)

d1 ¼ D� h� s and d2 ¼ C� hþ r: (7:30)

rL ¼ rf þ (rg)yþ (rh)(w� z) ¼ 0: (7:25)

3. Computation

A ¼ H þrh(S�1W þ R�1Z)rhT: (7:36)

b ¼ rLþrh S�1(u�Wd1)� R�1(y þ Zd2)� (w� z)
� �

: (7:37)

4. Increments

Dx
Dy

� �
¼ �A�1 b

g

� �
(7:39)

Ds ¼ d1 �rhTDx

Dr ¼ rhTDx� d2

)
(7:31)

Dw ¼ S�1u� w� S�1DSw

Dz ¼ R�1y � z� R�1DRz

)
: (7:28)

5. Size of increment Determine two numbers according to

N1 ¼ min
Dsi
si

,
Dri
ri

, i ¼ 1, 2, . . . , m
� �

N2 ¼ min
Dwi

wi
,
Dzi
zi

, i ¼ 1, 2, . . . , m
� �
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Then, set
b1 ¼ 1 if N1 � �1

¼ (�1=N1) if N1 < �1

b2 ¼ 1 if N2 � �1

¼ (�1=N2) if N2 < �1

Dx ¼ b1Dx, Ds ¼ b1Ds, Dr ¼ b1Dr,

Dw ¼ b2Dw, Dz ¼ b2Dz, and Dy ¼ b2Dy:

6. Update

Dx ¼ b1Dx, Ds ¼ b1Ds, Dr ¼ b1Dr, and Dy ¼ b2Dy:

Note that all the slack variables and Lagrange multipliers are non-
negative due to the choice of b1 and b2.

7. Test for Termination

Compute

m ¼ 1
2m

(wTsþ zTr) (7:40)

rL ¼ rf þ (rg)yþ (rh)(w� z) ¼ 0: (7:25)

Go to step 9 if both m¼�21 and krLk � 22 (l1-norm) are satisfied.
Otherwise, go to step 8.

8. Adjustment Go back to step 2 if both N1 �� 0.995 and N2 � �0.995.
Otherwise, go back to step 2 after having adjusted all the variables as
follows.

x ¼ x� 0:005Dx, s ¼ s� 0:005Ds, r ¼ r� 0:005Dr,

w ¼ w� 0:005Dw, z ¼ z� 0:005Dz, and y ¼ y� 0:005Dy:

9. Stop with solution: (x, y, s, r, w, and z).

7.6 Illustrative Examples

Example 7.6.1

Minimize f ¼ (x1 � 2)2 þ 4

Subject to

x21 þ x22 � 1 � 0, x1, x2 � 0:

Obtain the solution using the K–T condition.
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SOLUTION

We can change the constraint to be two-sided as all the values of x1, x2 should be
greater than zero. The constraint will be in the form 0 � x21 þ x22 � 1.

1. Form the Lagrange function

L(x, l) ¼ (x1 � 2)2 þ 4þ l(x21 þ x22):

2. Search for the optimum candidates Lx¼ 0:

Lx1 ¼ 2(x1 � 2)þ 2lx1 ¼ 0

Lx2 ¼ 2lx2 ¼ 0:

Solving for the second equation for Lx2¼ 0, we have two possible solutions
(x1¼ 0, l¼ 0). But also using the K–T condition, which can be stated as
follows,

l ¼ 0 ) 0 < x21 þ x22 < 1
� �

l � 0 ) x21 þ x22
� � ¼ 1

l � 0 ) x21 þ x22
� � ¼ 0

a. At l¼ 0, solving for Lx1¼ 0 results in x1¼ 2, which means that the
main constraint, 0 � x21 þ x22 � 1 violates. Then there is no solution at
l¼ 0.

b. l � 0, x2¼ 0, based on the K–T condition
�
x22 þ x22

� ¼ 1, means that
x1¼�1,

f (�1,0) ¼ (�1� 2)2 þ 4 ¼ 13, l ¼ �3 (out of range)

f (1,0) ¼ (1� 2)2 þ 4 ¼ 5, l ¼ 1 (in range)

c. l � 0, x2¼ 0, based on the K–T condition
�
x21 þ x22

� ¼ 0, means that
x1¼ 0,

f (0,0) ¼ (0� 2)2 þ 4 ¼ 8:

Then fmin ¼ f (1,0) ¼ 5:

Example 7.6.2

Perform 1 iteration in solving the following problem:

Minimize F ¼ 0:25x21 þ x22

s:t: 1 � x1 � x2 � 7
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SOLUTION

L(x,l) ¼ f (x)þ lF(x) ¼ 0:25x21 þ x22 þ l(x1 � x2)

U(x,z) ¼ f Tx (x)þ zFTx (x) ¼ 0

fx ¼ x1 � x2 ) fxx ¼ [1,�1]

Fx ¼ [0:5x1 2x2]

S ¼ Ux(x,z) ¼ fxx þ
X3
i¼1

zifixx(x) ¼
lT(1� x2)þ 1 lT(x1 � 1)þ 1

lT(1� x2)� 1 lT(x1 � 1)� 1

" #

Uz(x,z) ¼ FTx (x) ¼
0:5x1
2x2

� �

Note Ay¼ b where A ¼
�
S FTx
Fx 0

�
, y ¼

�
Dx
Dz

�
, and b ¼

��u
Dk

�

Using initial solution as x¼ [1, 0], l¼�2, and k¼ 3, we get

S ¼ 2x2 � 1 3� 2x1
2x2 � 3 1� 2x1

� �
¼ �1 1

�3 �1

� �
, S�1 ¼

�1
4

� 1
4

3
4

� 1
4

2
64

3
75

Fx ¼ [0:5 0], U ¼ 0
�1

� �
:

If Ay¼b, then y¼A�1b

; y ¼ S�1 FTx
� ��1

F�1
x 0

" # �U

DK

" #
¼ S�1(�u)þ FTx

� ��1(Dk)

F�1
x (�u)þ 0

" #

S�1(�u) ¼ �0:25 �0:25

0:75 �0:25

� �
0

1

� �
¼ �0:25

�0:25

� �

FTx
� ��1

(Dk) ¼ 6
0

� �

(Fx)�1(�u) ¼ [2 0]
0
1

� �
¼ 0

y ¼ Dx

Dz

� �
¼ [5:25� 0:25]T

0

" #
, Dx ¼ 5:25

�0:25

� �
, Dz ¼ DlT ¼ 0

using Newton Method:
x1
x2

� �new
¼ x1

x2

� �old
þ Dx1

Dx2

� �

¼ 1

0

� �
þ 5:25

�0:25

� �
¼ 6:25

�0:25

� �
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lnew ¼ lold þ Dl ¼ �2þ 0 ¼ �2

using x1� x2 ) 6.25� (�0.25) = 6.25

fmin(6:25,� 0:25) ¼ 0:25(6:25)2 þ (�0:25)2 ¼ 9:828 after 1 iteration:

Example 7.6.3

Minimize f(x1,x2)¼ (x1� 1)2þ x2� 2

s:t: h(x1,x2) ¼ x2 � x1 � 1 ¼ 0

g(x1,x2) ¼ x1 � x2 � 2 � 0

SOLUTION

Formulate the Lagrangian as

L ¼ f (x1,x2)þ l1h(x1,x2)þ l2g(x1,x2)

¼ (x1 � 1)2 þ x2 � 2þ l1(x2 � x1 � 1)þ l2(x1 � x2 � 2)

Necessary condition

@L
@x1

¼ 2(x1 � 1)� l1 þ l2 ¼ 0 ) x1 ¼ l1 � l2
2

þ 1 (1)

@L
@x2

¼ 1þ l1 � l2 ¼ 0 ) l1 ¼ l2 � 1 (2)

From Equations 1 and 2, we get

; x1 ¼ l2 � 1� l2
2

þ 1 ¼ 0:5 (3)

Substitute Equation 3 into h(x1,x2), we obtain x2¼ 1.5. Hence (x1,x2)¼ (0.5, 1.5)
Sufficiency condition

@2L
@x21

¼ 2
@2L

@x2@x1
¼ 0

@L
@x1@x2

¼ 0
@2L
@x22

¼ 0

H ¼ 1 0
0 0

� �
is positive definite.

(x1,x2)¼ (0.5,1.5) is the minimum point. f(0.5,1.5)¼ (0.5� 1)2þ 1.5� 2¼�0.25
is minimum value of f(x1,x2).
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Example 7.6.4

Use the barrier algorithm to minimize the function: f(x)¼ x1x2
Subject to 1 � x1� x2 � 2.

SOLUTION

With the number of variables n¼ 2 and number of constraints m¼ 1,

h(x) ¼ x1 � x2, D ¼ 2, C ¼ 1:

Use the form:

f (x) ¼ 1
2
xTQxþ aTx ¼ x1x2:

Then

Q ¼ 0 1
1 0

� �
and a ¼ 0

Subject to 1 � x1 � x2 � 2, then h(x) ¼ x1 � x2

hk(x) ¼ 1
2
xTHkxþ JTkx, then k ¼ 1, H1 ¼ 0

J1 ¼ 1

�1

� �

H ¼ Q ¼ 0 1
1 0

� �

rf ¼ Qxþ a ¼ 0 1
1 0

� �
x1
x2

� �
þ 0

0

� �
¼ x2

x1

� �

rh ¼ H1xþ J1 ¼ 1
�1

� �
, r2f ¼ Q ¼ 0 1

1 0

� �

rL ¼ rf þ (w � z)rh ¼ x2
x1

� �
þ (w � z)

1
�1

� �
¼ x2 þw � z

x1 �w þ z

� �
:

First iteration

1. Initialization

s ¼ r ¼ 1
2
(D� C) ¼ 1

2
(2� 1) ¼ 0:5:

Set x1¼ x2¼ 0 to satisfy rf¼ 0,

w ¼ z ¼ 1þ krfk½ �em,
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where em is an m-vector with element 1

w ¼ z ¼ (1þ 0)1 ¼ 1

Take r¼ 0.5, «1¼ 10�2, and «2¼ 10�5.
2. Computation

(a) m ¼ 1
2m

(wTsþ zTr)þ 1
2
(0:5þ 0:5) ¼ 0:5

u ¼ y ¼ rmem ¼ 0:25:

(b) d1 ¼ D� h� s, h ¼ x1 � x2 ¼ 0� 0 ¼ 0 then

d1 ¼ 2� 0� 0:5 ¼ 1:5

d2 ¼ C � hþ r ¼ 1� 0þ 0:5 ¼ 1:5:

(c) rL ¼ x2 þw � z

x1 �w þ z

� �
¼ 0� 1þ 1

0þ 1� 1

� �
¼ 0

0

� �
:

3. Computation

(a) A ¼ Hþrh(s�1w þ r�1z)rhT

¼ 0 1

1 0

� �
þ (2þ 2)

1

�1

� �
[1 �1] ¼ 4 �3

�3 4

� �
:

(b) b ¼ rLþrh s�1(u�wd1)� r�1(y þ zd2)� (w � z)
� 	

b ¼ 0

0

� �
þ 1

�1

� �
2(0:25� 1� 1:5)� 2(0:25þ 1� 1:5)� 0f g

¼ �6

6

� �
:

4. Increments

rx
ry

� �
¼ �A�1 b

g

� �
,

Dx ¼ �A�1b ¼ � 4 �3
�3 4

� ��1 �6
6

� �
¼ 0:8571

1
�1

� �

Ds ¼ d1 �rhTDxrh ¼ 1:5� 0:8571[1 �1]
1
�1

� �
¼ �0:2143

Dr ¼ rhTDx� d2 ¼ 0:2143

Dw ¼ s�1(u�wDs)�w ¼ 0:1286

Dz ¼ r�1(v � zDr)� z ¼ �0:7286:
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5. Size of increment

N1 ¼ min
Ds
s
,
Dr
r


 �
¼ min

�0:2143
0:5

,
0:2143
0:5


 �
¼ �0:42856

N2 ¼ min
Dw
w

,
Dz
z


 �
¼ min

0:1286
1

,
�0:7286

1


 �
¼ �0:7286

N1 > �1 ) b1 ¼ 1

N2 > �1 ) b2 ¼ 1:

Then there is no change in the previous calculated increments.
6. Update

s ¼ sþ Ds ¼ 0:5� 0:2143 ¼ 0:2857

x ¼ xþ Dx ¼ 0:85714
�0:85714

� �

r ¼ r þ Dr ¼ 0:5þ 0:2143 ¼ 0:7143

w ¼ w þ Dw ¼ 1þ 0:1286 ¼ 1:1286

z ¼ zþ Dz ¼ 1� 0:7286 ¼ 0:2714:

7. Test of termination

m ¼ 1
2m

(wTsþ zTr) ¼ 1
2� 1

(1:1286� 0:2857þ 0:2714� 0:7143)

¼ 0:2582 > «1

rL ¼ x2 þw � z

x1 �w þ z

� �
¼ �0:85714þ 1:1286� 0:2714

0:85714� 1:1286þ 0:2714

� �

¼ �0:331� 10�15 1

�1

� �
krLk ¼ 4:7103� 10�16 > «2:

8. Adjustment

N1 ¼ �0:4286 > �0:995 and N2 ¼ �0:7286 > �0:995:

Then go to step 2.

Second iteration
Using current initial conditions,

2. Computation

(a) m ¼ 1
2m

(wTsþ zTr) ¼ 0:2582

u ¼ y ¼ rmem ¼ 0:1807:

(b) d1 ¼ D� h� s, h ¼ x1 � x2 ¼ 0:85714þ 0:85714 ¼ 1:71428:
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Then

d1 ¼ 1:0e� 04

d2 ¼ C � hþ r ¼ 1� 1:7142þ 0:7143 ¼ 1:0e� 04:

(c) rL ¼ x2 þw � z

x1 �w þ z

� �
¼ �0:85714þ 1:1286� 0:2714

0:85714� 1:1286þ 0:2714

� �

¼ �0:331� 10�15 1

�1

� �

3. Computation

(a) A ¼ Hþrh(s�1w þ r�1z)rhT

¼ 0 1

1 0

� �
þ 1:1286

0:2857
þ 0:2714
0:7143

� �
1

�1

� �
[1 �1]

¼ 4:3302 �3:3302

�3:3302 4:3302

� �
:

(b) b ¼ rLþrh s�1(u�wd1)� r�1(y þ zd2)� (w � z)
� 	

¼ �0:4780

0:4780

� �
:

4. Increments

rx
ry

� �
¼ �A�1 b

g

� �

Dx ¼ �A�1b ¼ � 4:3302 �3:3302

�3:3302 4:3302

" #�1 �0:478

0:478

" #
¼ 0:0624

1

�1

" #

Ds ¼ d1 �rhTDxrh ¼ �0:1247

Dr ¼ rhTDx� d2 ¼ 0:1247

Dw ¼ s�1(u�wDs)�w ¼ �0:0035

Dz ¼ r�1(y � zDr)� z ¼ �0:0658:

5. Size of increment

N1 ¼ min
Ds
s
,
Dr
r


 �
¼ min

�0:1247
0:2857

,
0:1247
0:7143


 �
¼ �0:4365

N2 ¼ min
Dw
w

,
Dz
z


 �
¼ min

�0:0035
1:1286

,
�0:0658
0:2714


 �
¼ �0:2424

N1 > �1 ) b1 ¼ 1

N2 > �1 ) b2 ¼ 1:

Then there is no change in the previous calculated increments.
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6. Update

s ¼ sþ Ds ¼ 0:2857� 0:1247þ 0:161

x ¼ xþ Dx ¼ 0:8571
�0:8571

� �
þ 0:0624

�0:0624

� �
¼ 0:9195

�0:9195

� �

r ¼ r þ Dr ¼ 0:7143þ 0:1247 ¼ 0:8390

w ¼ w þ Dw ¼ 1:1286� 0:0035 ¼ 1:1251

z ¼ zþ Dz ¼ 0:2714� 0:0658 ¼ 0:2056:

7. Test of termination

m ¼ 1
2m

(wTsþ zTr) ¼ 1
2� 1

(1:1251� 0:161þ 0:2056� 0:8390)

¼ 0:1768 > «1

rL ¼ x2 þw � z
x1 �w þ z

� �
¼ �0:9195þ 1:1251� 0:2056

0:9195� 1:1251þ 0:2056

� �
¼ 0

0

� �
< «2:

8. Adjustment

N1 ¼ �0:4365 > �0:995 and N2 ¼ �0:2424 > �0:995:

Then go to step 2.
Repeating the previous step, we get the solution that satisfies the

conditions «1¼ 10�2 and «2¼ 10�5 after 10 iterations. Table 7.1
tabulates the results of these iterations.
The solution is x1¼ 0.995 and x2¼�0.995.

TABLE 7.1

Results of All Iterations for Example 7.6.2

Iteration
Number x1 x2 r s w z m kDffk
1 0.8571 �0.8571 0.7143 0.2857 1.1286 0.2714 0.2585 4.71 E-16

2 0.9195 �0.91915 0.8390 0.1610 1.1251 0.2056 0.1768 0.0

3 0.9416 �0.9416 0.8833 0.1167 1.0782 0.1367 0.1233 1.57 E-16

4 0.9585 �0.9585 0.9170 0.0830 1.0510 0.0925 0.0860 4.79 E-15

5 0.9707 �0.9707 0.9414 0.0586 1.0339 0.0632 0.0601 0.0

6 0.9794 �0.9794 0.9587 0.0413 1.0228 0.0435 0.0420 4.71 E-16
7 0.9855 �0.9855 0.9710 0.0290 1.0156 0.0301 0.0293 1.57 E-16

8 0.9898 �0.9898 0.9796 0.0204 1.0107 0.0209 0.0205 1.57 E-16

9 0.9929 �0.9929 0.9857 0.0143 1.0074 0.0146 0.0144 3.14 E-16

10 0.995 �0.995 0.9900 0.0100 1.0051 0.0102 0.0100 1.884 E-15
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7.7 Conclusion

This chapter dealt with optimization techniques that fit most nonlinear engin-
eering applications. It presented several algorithms in NLP that are program-
mable by scientists and engineers using well developed numerical methods
such as in [14]. NLP aims at solving optimization problems involving non-
linear objective and constrained functions [3–9,16]. In Sections 7.1 and 7.2,
classification of NLP problems was presented. The classification included
quadratic, convex, and separable programming. The sensitivity method for
solving NLP variables was presented in Section 7.3. Also, a practical proced-
ure for solving the problem was demonstrated with an alternative expression
for the extended K–T condition to provide feasibility and optimality. In
Section 7.4 an algorithm for solving the quadratic optimization problem was
presented in the form of sequential steps. A technique based on the barrier
method for solving NLP problems was presented in Section 7.5, where the
recursive process was developed.

7.8 Problem Set

PROBLEM 7.8.1

Solve the following as a separate convex programming problem.

Minimize Z ¼ (x1 � 2)2 þ 4(x2 � 6)2

Subject to

6x1 þ 3(x2 þ 1)2 � 12

x1, x2 � 0 :

PROBLEM 7.8.2

Consider the problem

Maximize Z ¼ 6x1 þ 3x2 � 4x1x2 � 2x21 � 3x22
Subject to

x1 þ x2 � 1

2x1 þ 3x2 � 4

x1, x2 � 0:

Show that Z is strictly concave and then solve the problem using the QP
algorithm.
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PROBLEM 7.8.3

Consider the problem

Minimize Z ¼ x21 þ x22

Subject to

2x1 þ x2 � 2

�x1 þ 1 � 0:

1. Find the optimal solution to this problem.

2. Formulate a suitable function with initial penalty parameter m¼ 1.

3. Starting from the point (2, 6), solve the resulting problem by a
suitable unconstrained optimization technique.

4. Replace the penalty parameter m by 10. Starting from the point
obtained in 3, solve the resulting problem.

PROBLEM 7.8.4

Minimize f¼ (x1þ 1)(x2� 2) over the region 0 � x1 � 2, 0 � x2 � 1 by
writing the K–T conditions and obtaining the saddle point.

PROBLEM 7.8.5

Minimize Z ¼ 2x1 � x21 þ x2

Subject to

2x1 þ 3x2 � 6

x1 þ x2 � 4

x1, x2 � 0:

PROBLEM 7.8.6

Minimize Z ¼ (x1 � 6)2 þ (x2 � 8Þ2
Subject to

x21 � x22 � 0:

Using the auxiliary function (x1 � 6)2 þ (x2 � 8)2 þ mmax (x21 � x2,0), and
adopting the cyclic coordinate method, solve the above problem starting from
x1¼ (0, �4)t under the following strategies for modifying m.

1. Starting from x1, solve the penalty problem for m1¼ 0.1 resulting in
x2. Then start from x2, and solve the problem with m2¼ 100.

2. Starting from the unconstrained optimal point (6, 8), solve the penalty
problem for m2¼ 100. (This is the limiting case of Part 1 for m1¼ 0.)

3. Starting from x1, solve the penalty problem m1¼ 100.0.
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4. Which of the above strategies would you recommend, and why?
Also, in each of the above cases, derive an estimate for the Lagran-
gian multiplier associated with the single constraint.

PROBLEM 7.8.7

Maximize f (x) ¼ x21 � 2x22

Subject to

x1 � x2 ¼ 2

x2 � x21 � x2 þ 8:

PROBLEM 7.8.8

Maximize f (x) ¼ 3x1x2 � x21 � x22

Subject to

x1 � 0 and 0 � x2 � 1:

PROBLEM 7.8.9

Minimize x21 þ x22

s:t: x1 � x22 � 4 � 0

x1 � 10 � 0

PROBLEM 7.8.10

Use KT conditions to solve

Minimize f (x1,x2) ¼ (x1 � 1)2 þ x2 � 2

s:t: h(x1,x2) ¼ x2 � x1 � 1 ¼ 0

f (x1,x2) ¼ x1 � x2 � 2 � 0

PROBLEM 7.8.11

Apply the NLP sensitivity method to solve

Minimize f (x1,x2) ¼ 0:5x21 þ 2x22

s:t: 2 � 2x1 � 2x2 � 4

PROBLEM 7.8.12

Minimize f (x1,x2) ¼ x21 þ x1x2 þ 2x22 � 6x1 � 14x2

s:t: 3 � x2 þ x1 � 6

2 � �x1 þ 2x2 � 3
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PROBLEM 7.8.13

Minimize f (x1,x2) ¼ 0:25x21 þ x22

s:t: 1 � x1 � x2 � 2

PROBLEM 7.8.14

Consider the NLP problem:

Minimize x21 þ x22 þ 2x1x2 þ 2x1

s:t: 1 � x1 þ x2 � 2

Solve by

a. Sensitivity=Newtonian method

b. Quadratic interior point method

(Perform at least one iteration for each method)

PROBLEM 7.8.15

Apply K–T conditions to solve the NLP problem given in Problem 7.8.14.

PROBLEM 7.8.16

Maximize f (x) ¼ �(2x1 � 5)2 � (2x2 � 1)2

Subject to

x1 þ 2x2 � 2

x1, x2 � 0

PROBLEM 7.8.17

Consider the problem defined as Maximize f(x) Subject to h(x) � 0. If the
Lagrangian is formulated as L(x, l, s)¼ f(x)þ l[h(x)þ s2], how would this
change affect the K–T conditions?

PROBLEM 7.8.18

Consider the following generalized nonlinear problem:

Max(xÞ
Subject to

gi(x) � 0, i ¼ 1, 2, . . . , r

gi(x) � 0, i ¼ rþ 1, . . . , p

gi(x) � 0, i ¼ pþ 1, 2, . . . , m
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a. Convert the inequality constraints to equality and construct and
appropriate Lagrangian

L(x, l, s) ¼ f (x)�
Xr

i¼1

li gi(x)þ s2
� � Xp

i¼rþ1

li gi(x)� s2
� 

�
Xm
i¼pþ1

ligi(x)

b. Develop the K–T conditions to the following Lagrange func-
tion

PROBLEM 7.8.19

Determine extreme points for the functions give by

a. f (x) ¼ x31 þ 2x32 � 4x1x2
b. f (x) ¼ 2x21 þ 3x22 � x23 þ 4(x1 þ x3)þ 3x2x3

PROBLEM 7.8.20

a. Minimize (x1� 2)4þ (x1� 2x2)
2

s.t. x21 þ x2 ¼ 0
using the Barrier algorithm

b. Using the quadratic interior point (QUIP) method

Maximize P ¼ �2x1 � 6x2 þ x21 þ x22
s.t. x1þ 2x2 � 5
x1þ x2 � 3 for all positive x.

PROBLEM 7.8.21

Consider the quadratic problem stated as
Minimize 0.5� THxþ cTx: Ax¼ b
Where Am�n is of rank m and H is positive definite:

a. Show that the matrix
hH AT

A 0

i
is nonsingular.

b. Show that the linear equation of the KKT system of the QP yields a
unique solution

c. Assume that H is positive definite and hence nonsingular, derive
an explicit or closed form expression for the optimal solution to the
QP problem.
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PROBLEM 7.8.22

a. Determine whether or not the quadratic form

Q(x1,x2) ¼ 7x1 þ 3x2 � 4x1x2 � 2x21 � 3x22 is negative-definite:

b. Determine if the quadratic form

Q(x1,x2,x3) ¼ 2x21 þ 5x22 þ 3x23 þ 4x1x2 þ 6x2x3 is positive-definite:
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8
Dynamic Programming

8.1 Introduction

Dynamic programming (DP) is an optimization approach that transforms a
complex problem into a sequence of simpler problems [3–6,9,12–14]; its
essential characteristic is the multistage nature of the optimization proced-
ure. More so than the optimization techniques described previously, DP
provides a general framework for analyzing many problem types. Within
this framework a variety of optimization techniques can be employed to
solve particular aspects of a more general formulation. Usually creativity is
required before we can recognize that a particular problem can be cast
effectively as a dynamic program, and often subtle insights are necessary to
restructure the formulation so that it can be solved effectively.

The DP method was developed in the 1950s through the work of Richard
Bellman [1,2] who is still the doyen of research workers in this field. The
essential feature of the method is that a multivariable optimization problem
is decomposed into a series of stages, optimization being done at each stage
with respect to one variable only. Bellman [1] gave it the rather undescriptive
name of DP. A more significant name would be recursive optimization.

Both discrete and continuous problems can be amenable to this method
and deterministic as well as stochastic models can be handled by it. The
complexities increase tremendously with the number of constraints. A single-
constraint problem is relatively simple, but even more than two constraints
can be formidable.

The DP technique, when applicable, represents or decomposes a multi-
stage decision problem as a sequence of single-stage decision problems. Thus
an N-variable problem is represented as a sequence of N single-variable
problems that are solved successively. In most of the cases, these N subpro-
blems are easier to solve than the original problem. The decomposition to N
subproblems is done in such a manner that the optimal solution of the
original N-variable problem can be obtained from the optimal solutions of
the N one-dimensional problems. It is important to note that the particular
optimization technique used for the optimization of the N-single-variable
problems is irrelevant. It may range from a simple enumeration process to a
calculus or a nonlinear programming technique.
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Multistage decision problems can also be solved by the direct application of
classical optimization techniques. However, this requires the number of vari-
ables to be small, the functions involved to be continuous and continuously
differentiable, and the optimum points not to lie at the boundary points.

Furthermore, theproblemhas tobe relatively simple so that the setof resultant
equations can be solved either analytically or numerically. The nonlinear pro-
gramming techniques canbeused to solve slightlymore complicatedmultistage
decision problems. But their application requires the variables to be continuous
and for there to be prior knowledge about the region of the global minimum or
maximum. In all these cases, the introduction of stochastic variabilitymakes the
problem extremely complex and the problem unsolvable except by using some
sort of an approximation-like chance constrained optimization.

DP, on the other hand, can deal with discrete variables, and nonconvex,
noncontinuous, and nondifferentiable functions [4,7–11]. In general, it can
also take into account the stochastic variability by a simple modification of
the deterministic procedure. The DP technique suffers from a major draw-
back, known as the curse of dimensionality. However, in spite of this disad-
vantage, it is very suitable for the solution of a wide range of complex
problems in several areas of decision making.

Optimization overtime in a single or multiple decision process is generally
formulated as DP. It involves a large number of variables over different
stages. DP is a procedure designed to improve the computation efficiency
for solving a set of large-scale problems in time that can be decomposed into
smaller and have computationally simple problems. DP solves the optimiza-
tion in stages with each stage involving exactly one optimization variable.
The computations in each stage are linked by the focus called recursive
computation in a manner that is feasible in optimization solution. This will
be obtained for the entire problem. When the last stage reached this there is
an advantage for each stage being optimized. On the other hand, the advan-
tage loss is in the complexity of its solution for a large system, the so-called
curse of dimensionality. With this in mind DP, has limited applications and
there are many recent works to advance this technology for possible appli-
cations in power systems management. These include candidates such as
dynamic programming (ADP), artificial neural networks (ANN), and evolu-
tionary programming in the area of genetic algorithms (GA), which are
observed in later chapters.

8.2 Formulation of a Multistage Decision Process

8.2.1 Representation of a Multistage Decision Process

Any decision process is characterized by certain input parameters, X (or
data), certain decision variables (U), and certain output parameters (T)
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representing the outcome obtained as a result of making the decision. The
input parameters are called input stage variables, and the output parameters
are called output stage variables. Finally there is a return or objective func-
tion F, which measures the effectiveness of the decisions for any physical
system, represented as a single-stage decision process (shown in Figure 8.1).
The output of this single stage is shown in Equations 8.1 and 8.2.

xi ¼ ti(xiþ1,ui) 8 i 2 {1,n} (8:1)

Fi ¼ fi(xiþ1,ui) 8 i 2 {1,n}, (8:2)

where ui denotes the vector of decision variables at stage i. The objective of a
multistage decision process is to find u1, u2, . . . , un so as to optimize some
function of the individual stage returns, say, F(f1, f2, . . . , fn) and satisfy
Equations 8.1 and 8.2. The nature of the n-stage return function f determines
whether a given multistage problem can be solved as a decomposition
technique; it requires the separability and monotonicity of the objective
function.

In order to have separability of the objective function, we must be able
to represent the objective function as the composition of the individual
stage returns. This requirement is satisfied for additive objective functions:

F ¼
Xn
i¼1

fi(ui,xiþ1), (8:3)

where ui are real, and for multiplicative objective functions:

F ¼
Yn
i¼1

fi(xiþ1,ui): (8:4)

Output T

Decision u

Input x Stage
transformation

T = t(u,x)

Objective
F = f(u,x)

FIGURE 8.1
Single-stage decision problem.
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8.2.2 Types of Multistage Decision Problems

The serial multistage decision problems can be classified into the following
categories.

1. Initial value problem: If the value of the initial state variable xnþ1 is
prescribed, the problem is called an initial value problem (Figure 8.2).

2. Final value problem: If the value of the final state variable x1 is
prescribed, the problem can be transformed into an initial value
problem by reversing the directions of ui, i¼ 1, 2, nþ 1, which is
shown in Figure 8.3.

3. Boundary value problem: If the values of both the input and output
variables are specified, the problem is called a boundary value
problem.

8.3 Characteristics of DP

DP has the following characteristics:

1. Divisible into stages, policy decision is requested at each stage.

2. Each stage has a number of associated states.

3. Efficient policy decision transformation of the current state is needed
to associate the next stage.

2xn+1

un u1

xn
n

un−1

xn−1
n -1

x1
1

FIGURE 8.2
Multistage initial value problem.

x1

u1

x2

1

u2

x3

2
xn

un

xn+1

n

FIGURE 8.3
Multistage final value problem.
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4. Solution procedure is classified to find the optimum policy for the
overall problem.

5. Prescription of optimum policy for the remaining stages, for each
possible state.

6. Given the current stage, an optimal policy for the remaining stage is
independent of the policy adopted in the previous stage (principle of
optimality in DP).

7. By using the recursive relationship, the solution procedure moves
backward stage by stage, each time finding the optimum policy
for that stage until it finds the optimum policy starting at the
initial stage.

8.4 Concept of Suboptimization and the Principle
of Optimality

A DP problem can be stated as follows. Find the values of u1, u2, . . . , uN
which optimize F ¼ Pn

i¼1 fi(ui,xiþ1) and satisfy the design equations ui¼
ti(xi,uiþ1). DP makes use of the concept of suboptimization and Bellman’s
principle of optimality in solving the problem.

Bellman stated the following as part of his principle of optimality.

An optimal policy (or a set of decisions) has the property that whatever
the initial state and initial decisions are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision.

In developing a recurrence relationship, suppose that the desired objective
is to minimize the N-stage objective function f, which is given by the sum of
the individual stage-returns:

min F ¼ fn(xnþ1,un)þ fn�1(xn,un�1)þ � � � þ f1(x2,u1) (8:5)

and satisfying the design equations xi,¼ ti(xiþ 1,ui). Figure 8.4 shows how to
apply this to DP.

Now consider the first subproblem by starting at the final stage, i¼ 1. If the
input to this stage x2 is specified, then according to the principle of optim-
ality, u1 must be selected to optimize f1. Irrespective of what happens to other
stages, u1 must be selected such that f(u1,x2) is an optimum for the input x2.
If the optimum is denoted f1* we have

f1*(x2) ¼ opt
u1

f1(x2,u1)½ �: (8:6)
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This is called a one-stage policy since once the input stage s2 is specified,
the optimal values of f1, u1, and x2 are completely defined as shown in
Equation 8.6.

Next, consider the second subproblem by grouping the last two stages
together. If f2* denotes the optimum objective value of the second subproblem
for a specified value of the input x3, we have

f2*(x3) ¼ opt
u2�u1

f1(x2,u1)þ f2(x3,u2)½ �: (8:7)

The principle of optimality requires that u1 be selected so as to optimize f1 for
a given x2. Since x2 can be obtained once u2 and x3 are specified, Equation 8.7
can be written as

f2*(x3) ¼ opt
u2

f1*þ f2(x3,u2)b c: (8:8)

Thus f2* represents the optimal policy for the two-stage problem. Therefore,
rewriting Equation 8.8 yields

f2*(x3) ¼ opt
u2

f1*(t2(u2,x3)þ f2(x3,u2))b c: (8:9)

Original
problem

Principle of optimality
applied to the last

component

Entire system is optimal

Principle of optimality
applied to the last two stages

FIGURE 8.4
Illustration of the principle of optimality.
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In this form, it can be seen that for a specified input x3, the optimum is
determined solely by a suitable choice of the decision variable u2. Thus the
optimization problem stated in Equation 8.7, in which both u2 and u1 are to
be simultaneously varied to produce the optimum f2*, is reduced to each of
these subproblems involving only a single-decision variable, and optimiza-
tion is, in general, much simpler.

This idea can be generalized and the ith subproblem defined by

fi*(xiþ1) ¼ opt
ui ,ui�1,...,u1

f (ui,xiþ1)þ � � � þ f1(x2,u1)b c, (8:10)

which can be written as

fi*(xiþ1) ¼ opt
ui

fi�1(xi)þ fi(xiþ1,ui)½ �, (8:11)

where
fiþ1* denotes the optimal value of the objective function corresponding to

the last i� 1 stages
si is the input to the stage i� 1

By using the principle of optimality, this problem has been decomposed into i
separate problems, each involving only one decision variable.

8.5 Formulation of DP

DP is a transformation from a multiple vector decision process to a series of
single-vector decision processes. It converts a problem that contains many
vectors for decision processes but contains only one vector to decide at a
time. The single vector is usually reduced to contain the minimal number of
components for ease of optimization. DP not only reduces the complexity of
problems, but also provides a form that can be solved effectively and itera-
tively on digital computers.

Consider an optimization problem that consists of n decision (control)
vectors yk for k¼ 1, 2, . . . , n and a scalar objective function Pn(yn, yn,
yn�1, . . . , y1) defined as state n. The vectors yk have rk components, which
may change with the running index k. The decision vectors yk are constrained
in a set S, which is usually described by equations and decision vectors in S
for a given state vector yn.

Now, let Pk(yk, yk, yk�1, . . . , y1) be the objective function at stage k where
k¼ 1, 2, . . . , n, and let

pk(yk) ¼ optimize Pk(yk, yk, yk�1, . . . , y1)½ � ¼ Pk(yk, uk, uk�1, . . . , y1): (8:12)
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Equation 8.12 is the optimized objective function at stage k. The optimization
is carried out with respect to y1, y2, yk in S for a given yk. The optimal decision
or control vectors u, where i¼ 1, 2, . . . , k, are known vectors and hence the
optimized objective function is a function of yk only as indicated by the left
side of Equation 8.12. As such, the problem is equivalent to determining
Equation 8.12 for k¼ n. The state vectors yk have nk components, which may
change with k. By properly choosing the integer rk, we can always formulate
the objective function as follows:

Pk(yk, yk, yk�1, . . . , y1) ¼ fk(yk,yk) o Pk�1(yk�1, yk, yk�1, . . . , y1), (8:13)

for all k¼ 2, 3, 4, . . . , n with Pk(y1,y1)¼ f1(y1,y1) for k¼ 1.
The symbol ‘‘o’’ in Equation 8.13 is called an operator, which may be

addition, multiplication, or comparison, and it may alter from stage to
stage. The scalar function fk(yk,yk) is to be chosen in a manner such that it
constitutes a part of the objective function. The relation specifies the state
vector yk,

yk�1 ¼ Tk(yk,yk): (8:14)

Both fk and Tk denote a transformation or mapping that may be described in
different forms. There are some known types of constraints that can be
replaced by Equation 8.14. For example:

g1(y1)þ g2(y2)þ � � � þ gn(yn) � C (or �C) (8:15)

h1(y1)h2(y2), . . . , hn(yn) � C (or �C), (8:16)

where gs and hs are scalar functions of the decision vectors. From Equation
8.15, we choose the state Equation 8.14 to be

yk�1 ¼ yk � gk(yk) for all k ¼ 1, 2, . . . ,n:

Summation of this equation gives

g1(y1)þ g2(y2)þ � � � þ gn(yn) ¼ yk � gk(yk):

Hence, yn � C can be concluded if y0¼ 0 is assumed.
Similarly, from Equation 8.16, we select the state equation to be

yk�1 ¼ yk
hk(yk)

,

where
hk(yk) 6¼ 0
k¼ 1, 2, . . . , n
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Multiplication of these equations gives h1y1, h2y2, . . . , hnyn¼ yn=y0 � C and
hence yn � C follows if y0¼ 0 is chosen. Thus, we may choose DP to get Pn(yn)
and then make further optimization for yn � C (>C).

We call an optimization problem decomposable if it can be solved by
recursive optimization through N stages, at each stage optimization being
done over one decision variable. We first define monotonicity of a function,
which is used subsequently.

DEFINITION 8.5.1

The function f(x,y) is said to be a monotonic nondecreasing function of y for all
feasible values of x if y1< y2 ) f(x,y1) � f(x,y2) for every feasible value of x.

Conversely, the function is said to be monotonic nonincreasing if y1< y2 )
f(x,y1) � f(x,y2) for every feasible x.

THEOREM 8.5.1

In a serial two-stage minimization or maximization problem if

(a) Objective function f2 is a separable function of stage returns f1(X1,U1) and
f2(X2,U21), and

(b) f2 is a monotonic nondecreasing function of f1 f0 for every feasible value of
f2, then the problem is said to be decomposable.

Proof Putting N¼ 2 in the problem, the objective function f2(f2,f1) is separ-
able if f2¼ f2 o f1, f1¼ f1. Assuming that this condition holds true, then
suppose that f2 is a monotonic nondecreasing function of f1 for feasible
values of f2. We prove the theorem for the minimum case. For the maximum
case the proof is on identical lines.

Following the notation introduced before, we note that the following
expressions are equivalent.

F2(X2) ¼ min
U1,U2

f2(X2,U2,U1) (8:17a)

¼ min
U1,U2

f2 f2(X2,U2) o f1(X1,U1)½ � (8:17b)

¼ min
U1,U2

f2 f2(X2,U2) o f1(X1,U2,U1)½ �: (8:17c)

The last form is possible because of the transformation relation

X1 ¼ t2(X2,U2): (8:18)
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Also

F2(X2) ¼ min
U1

f1(X1,U1) ¼ min
U1

f1(X1,U2,U1): (8:19)

Let

F02(X2) ¼ min
U2

f2(X2,U2) o f1(X1)½ � (8:20)

¼ min
U2

f2(X2,U2) o min
U2

f1(X2,U2,U1)
� �

: (8:21)

Comparing Equations 8.17 and 8.21, we get F02(X2) � F2(X2).
Let

min
U2

f1(X2,U2,U1) ¼ f1(X2,U2,U0
1): (8:22)

Then

f1(X2,U2,U1) � f1(X2,U2,U0
1): (8:23)

Since f2 is a monotonic nondecreasing function of f1, the above inequality
implies

f2(X2,U2,U1) � f2(X2,U2,U0
1)

f2(X2,U2,U1) � min
U1

f2(X2,U2,U0
1):

(8:24)

Now from Equations 8.21 and 8.23, we observe that

F02(X2) ¼ min
U2

f2(X2,U2) o f1(X2,U2,U0
1)

� �
¼ min

U2

f2(X2,U2,U0
1)

� min
U2

min
U1

f2(X2,U2,U0
1) ¼ sF2(X2):

And from Equations 8.15 and 8.17, we get F2(X2) ¼ F02(X2) or

F2(X2) ¼ min
U2

f2 o F1(X1)½ �:

The following theorem is an extension of the above to an N-stage opti-
mization problem, treating stages N� 1 to 1 as a single stage. Theorem 8.5.2
is a direct consequence of Theorem 8.5.1 and needs no further proof.
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THEOREM 8.5.2

If the real-valued return function fN(fN, fN�1, . . . , f1) satisfies

(a) Condition of separability, that is

fN(fN , fN�1, . . . , f1) ¼ fN o fN�1,

where fN(fN, fN�1, . . . , f1) is real-valued, and

(b) f2 is a monotonic nondecreasing function of fN�1, for every fN: then fN is
decomposable: that is

min
UN,...,U1

fN(fN , . . . , f1) ¼ min
Ux

fN o min
UN1,...,U1

fN�1

� �
:

Theorems 8.5.1 and 8.5.2 indicate that monotonicity is a sufficient condition
for decomposability. The converse has not been proved. In fact the mono-
tonicity condition is not necessary.

Often, it is tedious in applications to judge an objective function. Operators
that belong to one of the following cases are monotonic and hence the
decomposition theorem is applicable.

Case (a): All the operators are additions
Inequality (Equation 8.23) because

Pk�1(yk�1) � Pk�1(yk�1, yk�1, yk�2, . . . , y1)

for maximization, and the inequality reverses for minimization by definition.
Note that abstractions can be converted to additions by absorbing the nega-
tive signs.

Case (b): All the operators are multiplications and fk(yk,yk) � 0 for all
k¼ 1, 2, . . . , n.

The reason is the same as in case (a).

Case (c): Combination of (a) and (b).
The reason is the same as case (a).

Case (d): All the operators are comparison.
In such a case, the maximization is defined as follows.

P(yk) ¼ max fk(ykyk), fk�1(yk�1,yk�1), . . . , f1(y1,y1)½ �,
and minimization is defined by replacing maximum by minimum. For maxi-
mization, we have max [ fk(yk,yk), pk�1(yk�1)]¼ fk. When the first is greater
than or equal to the second¼Pk�1(yk�1). Otherwise

max fk(yk,yk), pk�1(yk�1, yk�1, . . . , y1)½ � ¼ fk,
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when the first is greater than or equal to the second, pk�1(yk�1, yk�1, . . . , y1)
otherwise.

It follows from Pk�1(yk�1) � pk�1(yk�1, yk�1, . . . , y1) that Equation 8.23 holds
true. Similarly, Equation 8.23 can be shown valid for minimization.

The task of DP is to carry out the iterative process generated by the
decomposition theorem for a monotonic objective function. The advantage
of using DP is that only one decision vector is involved in each iteration. As a
rule of thumb, it is desirable to reduce the integer rk as small as possible
without violating. This requires more stages but fewer variables in each
iteration of the optimization.

8.6 Backward and Forward Recursion

Throughout we have used a recursion procedure inwhich xj is regarded as the
input and xj�1, as the output for the nth stage, the stage returns are expressed
as functions of the stage inputs, and recursive analysis proceeds from stage 1
to stage n. This procedure is called backward recursion because the stage
transformation function is of the type xj�1¼ tj(xj,uj). Backward recursion is
convenient when the problem involves optimization with respect to a given
input xn, because then the output x0 is very naturally left out of consideration.

If, however, the problem is to optimize the system with respect to a given
output x0, it would be convenient to reverse the direction, regard xj as a
function of xj�1 and uj, and put xj�1¼ tj(xj,uj), 1 � j � n and also express stage
returns as functions of stage outputs and then proceed from stage n to stage 1.
This procedure is called forward recursion.

In problems where both the input xN and the output x0 are given param-
eters, it is immaterial whether one proceeds in one direction or the other. Both
parameters are retained during analysis, and the optimal solution is a function
of both. In fact, for most multistage problems there is no essential difference
between these two procedures. In mathematical problems inputs and outputs
are fictitious concepts and are interchangeable. One can visualize and solve
the problem in any direction. It only involves a slight modification in notation.

However, DP is also applicable to nonserial multistage systems, which are
important in automatic control systems and in certain process technologies.
In such systems stages are not all connected in series but with branches and
loops. It is in the application of such systems that the difference between
forward and backward recursion procedures becomes not only significant
but also crucial. For this reason we proceed to write the recursion formulae
for the forward procedure explicitly.

Assume that the return function f1(xn, x0, un, . . . , uj) is a function of the
stage returns fj(xj, xj�iuj) in the form

f1 ¼ fn o fn�1 o � � � o f2 o fj,
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and further assume that the stage transformation function is given by

xj ¼ ij(xj�1xj):

Then, by defining

Fj(xj�1) ¼ min
uN,...,uf

(fn o fn�1, . . . , fj)

we postulate the forward recursion formulae as

Fj(xj�1) ¼ min
uf

fj(xj�1,uj) o fjþ1(xj)
� �

, 1 � j � n� 1

FN(xn�1) ¼ fn(xn�1,un):

With this notation the optimum value of f1 which we seek is denoted by
F1(x0) which is obtained recursively through stages j¼ n� 1, . . . , 2, 1.

8.6.1 Minimum Path Problem

Consider the following DP problem where we must find the shortest path
from vertex A to vertex B along arcs joining the various vertices lying
between A and B (Figure 8.5). The lengths of the paths are as shown.

The vertices are divided into five stages that we denote by subscript j. For
j¼ 0, there is only one vertex A; also for j¼ 4 the only vertex is B. For
j¼ 1, 2, 3, there are three vertices in each stage. Each move consists of moving
from stage j to stage jþ 1, that is, from any one vertex in stage j to any one
vertex in stage jþ 1.

We say that each move changes the state of the system that we denote xj,
and x0 is the state in which node A lies. Notably, x0 has only one value,
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FIGURE 8.5
Minimum path problem.
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say x0¼ 1. The state x2 has three possible values, say 1, 2, 3, corresponding to
three vertices in stage 2, and so on. We call the possible alternative paths
from one stage to the next decision variables, and denote by uj the decision
variable that takes us from the state xj�1 to state xj. The return or the gain
from the decision uj we denote by fj(uj), return obviously being the function of
the decision. In this problem we can identify uj with the length of the
corresponding arc, and so simplify matters by taking fj(uj)¼ uj.

We denote by Fj(xj) the minimum path from the state, from x0 any vertex in
state xj. Thus, F2(1) denotes the minimum path from A to vertex 1 of stage 2.
The problem is to determine the minimum path F4(x4), and the values of the
decision variables u1, u2, u3, and u4 which yield that path. Let us look at the
problem in the following way. The value of u4 can either be 2, 8, or 7. If u4¼ 2
) x3¼ 1; similarly u4¼ 8 ) x3¼ 2, and if u4¼ 7 ) x3¼ 3, the minimum path
from A to B is either through x3¼ 1, 2, or 3. With x3 as 1, 2, or 3, the respective
values of u4 are 2, 8, or 7. Thus

F4(x4) ¼ min
2þ F3(1)
8þ F3(2) ¼ min

u4
(u4 þ F3(x3)):

7þ F3(3)

8<
:

Similarly we can argue that

F3(1) ¼ min 8þ F2(1)
6þ F2(2)

�
,

or, in general

F3(2) ¼ min
7þ F2(1)
5þ F2(2)
3þ F3(3)

8<
: :

Hence

F3(3) ¼ min 4þ F2(2)
2þ F2(3)

�
:

Finally

F3(x3) ¼ min
u3

(u3 þ F2(x2)):

We have thus a general recursion formula

F2(x2) ¼ min
u2

u2 þ F1(x1)ð Þ

that enables us to determine F4(x4) recursively.
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As we later show, the number of enumerations gone through in this way
substantially reduces the total number of enumerations that will have to be
gone through if all possible paths are examined.

We now tabulate the information given in the problem and the enumera-
tive steps necessary to find F4(x4) with the help of the above recursion
formula. We also simultaneously introduce the standard terminology of DP.

Tables 8.1 through 8.4 imply that a function of the type xj�1¼ tj(xj,uj)
exists. It follows from the data of the problem and we call it the stage

TABLE 8.1

Stage 1 for Minimum Path Problem

u1 6 5 4

x1 1 2 3

TABLE 8.2

Stage 2 for Minimum Path Problemnu2

x2

x1

2 3 5 6 9

1 1 — 2 — —

2 — 1 — 2 3

3 — — — 2 3

TABLE 8.3

Stage 3 for Minimum Path Problemnu3

x3

x2

2 3 4 5 6 7 8

1 — — — — 2 — 1

2 — 3 — 2 — 1 —

3 3 — 2 — — — —

TABLE 8.4

Stage 4 for Minimum Path Problemnu4

x4

x3

2 7 8

1 1 3 2
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transformation function. xj�1 may not be defined for all combinations of xj, uj.
A dash in the tables indicates that the transformation for that pair of values
xj, uj is not defined and therefore that transformation is not feasible. In Tables
8.5 through 8.8 the recursive operations using the recursive formulae are
indicated.

The minimum path from A to B is thus found to be 17. Tracing the
minimum path and decisions backwards, the successive decisions are 6, 3,
6, and 2 and the states are x0¼ 1, x1¼ 1, x2¼ 2, x3¼ 3, and x4¼ 1.

TABLE 8.5

Step 1 for the Recursive Operations

J x1 u1 F1(x1)

1 6 6

1 2 5 5

3 4 4

TABLE 8.6

Step 2 for the Recursive Operationsnu2

x2

F1(x1) F1(x1)þu2

2 3 5 6 9 2 3 5 6 9 F2(x2)

1 6 — 5 — — 8 — 10 — — 8

2 — 6 — 5 4 — 9 — 11 13 9

3 — — — 5 4 — — — 11 13 11

TABLE 8.7

Step 3 for the Recursive Operationsnu3

x3

F2(x2) F2(x2)þu3

2 3 4 5 6 7 8 2 3 4 5 6 7 8 F3(x3)

1 — — — — 9 — 8 — — — — 15 — 16 15

2 — 11 — 9 — 8 — — 14 — 14 — 15 — 14

3 11 — 9 — — — — 13 — 13 — — — — 13

TABLE 8.8

Step 4 for the Recursive Operationsnu4

x4

F3(x3) F3(x3)þ u4

2 8 7 2 8 7 F4(x4)

1 15 14 13 17 22 20 17
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8.6.2 Single Additive Constraint and Additively Separable Return Problem

Consider the following problem as another illustration of the method of DP.
Find the value of uj that minimizes

z ¼
Xn
j¼1

fj(uj),

where 1 � j � n, subject to the constraints

Xn
j¼1

ajuj � b, aj, b 2 R, aj � 0, b

uj � 0:

The objective or return function z is a separable additive function of the n
variable uj. We look upon the problem as an n-stage problem, the suffix j
indicating the stage. We have to decide about the values of uj, and so the uj is
called decision variables. With each decision uj is associated a return function
fj(uj) which is the return at the jth stage.

Now we introduce the variables x0, x1, x2, . . . , xn defined as follows:

xn ¼ a1u1 þ a2u2 þ � � � þ anun � b

xn�1 ¼ a1u1 þ a2u2 þ � � � þ an�1un�1 ¼ xn � anun
xn�2 ¼ a1u1 þ a2u2 þ � � � þ aN�2un�2 ¼ xn�1 � an�1un�1

..

. ..
.

x1 ¼ a1u1 ¼ x2 � a2u2

9>>>>>>>=
>>>>>>>;
: (8:25)

These variables are called the state variables. We further notice that
xj�1¼ tj(xj,uj) for 1� j � n. That is, each state variable is a function of the
next state and decision variable. This is the stage transformation function.
Since xn is a function of all the decision variables we may denote by Fn(xn) the
minimum value of u for any feasible function of xn,

Fn(xn) ¼ min
u1,u2,...,un

[ f1(u1)þ f2(u2)þ � � � þ fn(un)], (8:26)

the minimization being over nonnegative values of uj subject to xn � b.
We select a particular value of un and holding un fixed, we minimize u over

the remaining variables. This minimum is given by

fn(un)þ min
u1,u2,...,un�1

f1(u1)þ f2(u2)þ � � � þ fn�1(un�1)½ � ¼ fn(un)þ Fn�1(xn�1):

(8:27)
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And the values of u1, u2, . . . , un�1 that would make
P�1

j¼1 fj(uj) minimum for a
fixed un thus depending upon xn�1 which in turn is a function of xn and un.
Also, the minimum u over all un for feasible xn would be

Fn(xn) ¼ min
un

fn(un)þ Fn�1(xn�1)½ �: (8:28)

If somehow Fn�1(xn�1) were known for all un, the above minimization would
involve a single variable un. Repeating the argument, we get the recursion
formula

Fj(xj) ¼ min
uj

fj(uj)þ fj�1(xj�1)
� �

, 2 � j � n

F1(x1) ¼ f1(u1),
(8:29)

which along with the relation xj�1¼ tj(xj,uj) defines a typical DP problem.
If we could make a start with F1(x1) and recursively go on to optimize to

get F2(x2), F3(x3), . . . , Fn(xn), each optimization being done over a single
variable, we would get Fn(xn) for each possible xn. Minimizing it over xn
we get the solution. The following numerical examples illustrate how this can
be done.

8.6.3 Single Multiplicative Constraint, Additively Separable
Return Problem

Consider the problem

min
Xn
j¼1

fj(uj)

subject to the constraints

Yn
j¼1

uj � k > 0, uj � 0:

We introduce the state variables xj defined as follows.

xn ¼ unun�1 ¼ � � � ¼ u2u1 � k,

xn�1 ¼ xn=un ¼ un�1 . . . u2u1,

. . .

x2 ¼ x3=u2 ¼ u2u1,

x1 ¼ x2=u2 ¼ u1

9>>>>>>=
>>>>>>;
: (8:30)
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These are the stage transformations of the type

xj�1 ¼ tj(xj,uj):

Denoting by Fn(xn) the minimum value of the objective function for any
feasible xn, we can get the recursion formula

Fj(xj) ¼ min
uj

fj(uj)þ fj�1(xj�1)
� �

, 2 � j � n

F1(x1) ¼ f1(u1)
(8:31)

which will lead to the solution.

Example 8.6.1 (see Tables 8.9 and 8.10)

Maximize u21 þ u22 þ u23

Subject to

u1u2u3 � 6

and

u1, u3, u3 are positive integers.

SOLUTION

The state variables are

x3 ¼ u1u2u3 � 6, x2 ¼ x3=u3 ¼ u1u2, x1 ¼ x2=u2 ¼ u1:

TABLE 8.9

Stage 1 for Example 8.6.1

uj 1 2 3 4 5 6

fj(uj) 1 4 9 16 25 36

TABLE 8.10

Stage 2 for Example 8.6.1

uj

xj 1 2 3 4 5 6

1 1 — — — — —

2 2 1 — — — —

3 3 — 1 — — —

4 4 2 — 1 — —

5 5 — — — 1 —

6 6 3 2 — — 1
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The solution is worked out as follows:
Stage return

fj(uj) ¼ u2j ; j ¼ 1, 2, 3:

Stage transformation

xj�1(uj), j ¼ 2, 3:

Recursion operation (see Tables 8.11 through 8.13)
The answer is 38 with u3¼ 1, u2¼ 1, u1¼ 6.

TABLE 8.11

Step 1 for the Recursive Operation

x1 1 2 3 4 5 6

F1(x1) 1 4 9 16 25 36

TABLE 8.12

Step 2 for the Recursive Operationnu2

x2

f2(u2) F1(x1)

1 2 3 4 5 6 1 2 3 4 5 6 F2(x2)

1 1 — — — — — 1 — — — — — 2

2 1 4 — — — — 4 1 — — — — 5

3 1 — 9 — — — 9 — 1 — — — 10

4 1 4 — 16 — — 16 4 — 1 — — 17

5 1 — — — 25 — 25 — — — 1 — 26

6 1 4 9 — — 36 36 9 4 — — 1 37

TABLE 8.13

Step 3 for the Recursive Operationsnu3

x3

f3(u3) F2(x2)

1 2 3 4 5 6 1 2 3 4 5 6 F3(x3)

1 1 — — — — — 2 — — — — — 3

2 1 4 — — — — 5 2 — — — — 6

3 1 — 9 — — — 10 — 2 — — — 11

4 1 4 — 16 — — 17 5 — 2 — — 18

5 1 — — — 25 — 26 — — — 2 — 27

6 1 4 9 — — 36 37 10 5 — — 2 38
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8.6.4 Single Additive Constraint, Multiplicatively Separable Turn Problem

Consider the problem:

Maximize
Yn
j¼1

fj(uj) (8:32)

Subject to

Xn
j¼1

ajuj ¼ k (8:33)

and

uj � 0, aj � 0:

Here, our state variables are

xn ¼
Xn
j¼1

ajuj ¼ k,

xj�1 ¼ xj � ajuj, 2 � j � n:

Putting

Fj(xj) ¼ max
u1,u2,...,uj

Yn
j¼1

fj(uj), 2 � j � n,

the general recursion formula is

Fj(xj) ¼ max
uj

Yn
j¼1

fj(uj)Fj�1(xj�1)
	 


, j� n, n� 1, . . . , 2

F1(x1) ¼ f1(u1):

(8:34)

8.7 Computational Procedure in DP

We now discuss the use of the recurrence relationships. DP begins by sub-
optimizing the fast component which means the determination of

f1*(x2) ¼ opt
u1

F1(u1,x2)½ �:
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The best value of the decision variable u1, denoted u1*, is that which makes
the objective function f1, denoted f1*, hit its maximum value. Both depend
on the condition of the input or feed that component 1 receives from
upstream. Figure 8.6 shows a summary of the suboptimization problem
of stage 1.

Next, we move up the serial system to include the fast two components. In
this two-stage suboptimization, we have to determine

f2*(x3) ¼ opt
u2,u1

F1(u1,x2)þ F2(u2,x3)½ �

since all the information about the first stage has already been calculated.
Then the result can be substituted to get the following equation for the
second stage

f2*(x3) ¼ opt
u2

f1*(x2)þ F2(u2,x3)b c,

assuming the sequence has been carried on to include (i� 1) at the end of the
components. Then the solution will be the solution of

fi*(xiþ1) ¼ opt
ui ,ui�1...::u1

[Fi þ Fi�1 þ � � � þ F1]:

However, all the information regarding the suboptimization of (i� 1) end
components is known and has been entered in the table corresponding to fi�1* .
Then we can obtain

f1*(xiþ1) ¼ opt
ui

Fi(ui,xiþ1)þ fi�1(xi)½ �;

thus the dimension of the ith stage has been reduced to one.

FIGURE 8.6
Suboptimization problem of component 1 for vari-
ous settings of input state variable x2.

x11

F = f1(u,x)

x2

u1
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8.8 Computational Economy in DP

DP for discrete problems is an enumerative procedure. A number of alterna-
tives are examined at each stage and some selected for further examination.
For large-scale problems, the number of alternatives is very large. Should we
examine all the possible alternatives? The question now is if there is any
saving in DP. And if so what is the order of the saving.

Consider a problem with n stages and let each decision variable uj have p
possible values and also each state variable uj have p feasible values and an
additive return function. In the direct exhaustive search, a feasible solution is
specified by an input value xn and the values of the decision variables uj
( j¼ 1, 2, . . . , n) and each component has p values. Then the total number of
feasible solutions is pnþ1. To get the objective from each feasible solution, we
have to add two at a time involving (n� 1) additions; it means (n� 1)pnþ1

additions. Finally to choose the optimum of these we have to make (pnþ1)
comparisons. The total number of steps is

N(DS) ¼ (n� 1)pnþ1 þ pnþ1 � 1 ¼ npnþ1 � 1: (8:35)

But for DP, for stages starting at the second one up to n, for every combin-
ation, p2 combinations per stage, we need only one addition. The total
number of additions is (n� 1)p2 additions. Also at each stage starting from
the first one, for each value of xj, p numbers have to be compared in (p� 1)
comparisons giving a total of [np(p� 1)]. To get the optimum value, p
numbers have to be compared. Then the total number of additions and
comparisons in DP are

N(DP) ¼ (n� 1)p2 þ np(p� 1)þ p� 1 ¼ (2n� 1)p2 � (n� 1)p� 1, (8:36)

which is much less than in the exhaustive search case.

8.9 Systems with More than One Constraint

DP can be applied to problems involving many constraints. In multicon-
straint problems, there has to be one state variable per constraint per stage.
Sometimes it is possible to take advantage of the problem structure to return
the number of state variables.
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Example 8.9.1

Maximize u21 þ u22 þ u23

Subject to

u1u2u3 � 6, u1 þ u2 þ u3 � 6

and u1, u2, u3 are positive integers:

SOLUTION

The two sets of state variables are

x3 ¼ u1u2u3 y3 ¼ u1 þ u2 þ u3
x2 ¼ x3=u3 ¼ u1u2 y2 ¼ y3 � u3 ¼ u1 þ u2
x1 ¼ x2=u2 ¼ u1 y1 ¼ y2 � u2 ¼ u1:

The feasible values of uj are 1, 2, 3, 4. For stage j¼ 1, the stage transformation
gives the following possible values of x1, y1.

u1 1 2 3 4,
x1 1 2 3 4,
y1 1 2 3 4:

For j¼ 2, 3, Table 8.14 gives the transformations

xj�1 ¼ tj�1(xj,uj), yj�1 ¼ t0j�1(yj,uj):

Because of the constraints we do not need to consider xj, yj> 6 (see Tables 8.15
through 8.17). Hence max F3(x3,y3)¼ 18 for (x3,y3)¼ (4,6). Tracing back, the
optimal decision variables are (1, 1, 4) or (1, 4, 1) or (4, 1, 1).

TABLE 8.14

Transformation for Example 8.9.1nuj

xiyj

xj�1, yj�1

1 2 3 4

1,1 1,0 —,— —,— —,—

2,2 2,1 1,0 —,— —,—

3,3 3,2 —,1 1,0 —,—

4,4 4,3 2,2 —,1 1,0

5,5 5,4 —,3 —,2 —,1

6,6 6,5 3,4 2,3 —,2
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TABLE 8.15

Stage 1 of Optimization of Example 8.9.1

u1 X1 Y1 F(x1,y1)

1 1 1 1

2 2 2 4

3 3 3 9

4 4 4 16

TABLE 8.16

Stage 2, F2(X2,Y2) ¼ min
U2

U2
2 þ F1(X1,Y1)

� �
u2 x2 y2 F1(x1,y1) u22 þ F1(x1,y1) x2 y2 F2(x2,y2)

1 1 1 2 1 2 2

2 2 4 5 2 3 5

1 3 3 9 10 3 4 10

4 4 16 17 4 5 17
1 1 1 5 2 3 —

2 2 2 4 8 4 4 8

3 3 9 13 6 5 13

3 1 1 1 10 3 4 —

2 2 4 13 6 5 —

4 1 1 1 17 4 5 —

TABLE 8.17

Stage 3, F3(x3,y3) ¼ max
U3

u23 þ F2(x2,y2)
� �

u3 x2 y2 F2(x2,y2) u23 þ F2(x2,y2)
	 


x3 y3 F3(x3,y3)

1 2 2 3 1 3 3

2 3 5 6 2 4 6

3 4 10 11 3 5 11

1 4 4 8 9 4 5 9

4 5 17 18 4 6 18
6 5 13 14 6 6 14

1 2 2 6 2 4 —

2 2 3 5 9 4 5 —

3 4 10 14 6 6 —

3 1 2 2 11 3 5 —

2 3 5 14 6 6 —

4 1 2 2 18 4 6 —
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8.10 Conversion of a Final Value Problem into an Initial
Value Problem

Before we discussed DP with reference to an initial value problem. But if the
problem is a final value problem as shown in Figure 8.7, it can be converted
into an equivalent initial value problem. If the state transformation was given
by Equation 8.1

xi ¼ ti(xiþ1,ui) i ¼ 1, 2, . . . , n:

Assuming the inverse relations exist, we can write

xiþ1 ¼ �ti(xi,ui) i ¼ 1, 2, . . . , n,

where the input state to stage i is expressed as a function of its output state
and its decision variable. Also if the objective function was originally
expressed as

Fi ¼ fi(xiþ1,ui) i ¼ 1, 2, . . . , n,

it can be used to express it in terms of the output stage and the decision
variable as

Fi ¼ fi �ti(xi,ui),xi½ � ¼ �fi(xiui), i ¼ 1, 2, . . . , n:

Then we can use the same original approach as before in this new problem.

2xn+1

un(a)

(b)

xn
n

un−1

xn−1
n -1

u1

x1
1

Starting
point

x1

u1

x2
1

u2

x3
2

xn

un

xn+1
n

Starting point

FIGURE 8.7
Conversion of (a) final value problem to (b) initial value problem.
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8.11 Illustrative Examples

Example 8.11.1

Maximize x21 þ x22 � x23

Subject to

x1 þ x2 þ x3 � 14

Put

u3 ¼ x1 þ x2 þ x3
u2 ¼ x1 þ x2 ¼ u3 � x3
u1 ¼ x1 ¼ u2 � x2

F3(u3) ¼ max
x3

�x23 þ F2(u2)
� �

F2(u2) ¼ max
x2

x22 þ F1(u1)
� �

F1(u1) ¼ x21
	 
 ¼ u2 � x2ð Þ2:

Substituting in F2(u2) ¼ maxx2 x22 þ (u2 � x2)2
� �

, by calculus, a function is a max-
imum if its partial differential equals zero. F2(u2) ¼ x22 þ (u2 � x2)2

	 

is maximum if

@F2(u2)
@x2

¼ 2x2 � 2(u2 � x2)½ � ¼ 0 or x2 ¼ 2u2:

Hence F2(u2) ¼ 5u22. Now

F3(u3) ¼ max
x3

�x23 þ F2(x2)
� �

¼ max
x3

�x23 þ 5u22
	 


¼ min
x3

�x23 þ 5(u3 � x3)2
	 


:

Again, by calculus, a function is maximum, if its partial differentiation equals zero.

F3(u3) ¼ �x23 þ 5(u3 � u3)2
	 


is maximum if

@F3(u3)
@x3

¼ �2x3 � 10(u3 � x3)½ � ¼ 0 or x3 ¼ 5
4
u3:
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Hence

F3(u3) ¼ �5
4

� �
u23, u3 � 14:

Obviously F3(x3) is the maximum for u3¼ 14 which means that the maximum
value of x21 þ x22 � x23

� �
is therefore (�245). Back substitution to calculate the

x1, x2, and x3 gives

x3 ¼ 5
4

� �
us ¼ 5

4

� �
(14) ¼ 17:5, u2 ¼ u3 � x3 ¼ 14� 17:5 ¼ �3:5

x2 ¼ 2u2 ¼ �7, u1 ¼ u2 � x2 ¼ 3:5 ¼ x1:

Then the final result is fmax¼ (�245), x1¼ (3.5), x2¼ (�7), and x3¼ (17.5).

Example 8.11.2

The network shown in Figure 8.8 illustrates a transmission model with node (1)
representing the generation unit, and nodes (2)–(7) representing load centers. The
values associated with branches are power losses.

1. Derive an optimal policy of supplying the load at node (8) from the
generation node (1) with minimum losses.

2. Derive an optimal policy of supplying the load at node (8) from the
generation node (1) with minimum losses at node (1), but also supplying
a load at node (4).

SOLUTION

1. This is a minimization problem,

Fi(xj) ¼ min
uj

uj þ Fj�1(xj�1)
� �

,

A

41

52

B3

5

6

7

3

4

2

2

5

4

2

FIGURE 8.8
Transmission model for Example 8.11.2.
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where, uj is the connection from stage ( j� 1) to stage j, based on the fact
that F1(u1)¼ u1. Then, F1(2)¼ 3 and F1(3)¼ 5.

F2(x2) ¼ min
u2

u2 þ F1(x1)½ � ¼ min F2(4), F2(5)½ �
F2(4) ¼ min 10þ F1(2), 11þ F1(3)½ � ¼ min [10þ 3, 11þ 5] ¼ 13

F2(5) ¼ min 4þ f1(3), 12þ F1(2)½ � ¼ min [4þ 5, 12þ 3] ¼ 9:

Then, F2(x2)¼min[F2(4), F2(5)]¼min[13,9]¼ 9. In a similar way,

F3(x3) ¼ min
u3

u3 þ F2(x2)½ � ¼ min
u3

F3(6), F3(7)½ �:
F3(6) ¼ min 15þ F2(4), 10þ F2(5)½ � ¼ min [15þ 13, 10þ 9] ¼ 19

F3(7) ¼ min 9þ F2(4), 16þ F2(5)½ � ¼ min [9þ 13, 16þ 9] ¼ 22:

Then

F3(x3) ¼ min F3(6), F3(7)½ � ¼ min [19, 22] ¼ 19

F4(x4) ¼ min
u4

u4 þ F3(x3)½ � ¼ min 9þ F3(6), 8þ F3(7)½ �
¼ min (9þ 19), (8þ 23)½ � ¼ 29:

Then the minimum route is {node (1) – node (3) – node (4) – node (6) –
node (8)}, and the value of the losses is (28).

2. We must pass by the node (4). Then the system is divided into two
separate problems omitting node (5) as shown in Figure 8.9.

For the first part of the system:

F1(u1) ¼ u1:

10

12 9

1

62 4

5 73

8

3

5

4

10

11

15

16

8

9

FIGURE 8.9
Reduced transmission model.
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Then

F1(2) ¼ 3 and F1(3) ¼ 5

F2(4) ¼ min
u2

u2 þ F1(x1)½ � ¼ min 10þ F1(2), 11þ F1(3)½ �
¼ min [13,16] ¼ 13:

For the second part of the system:

F3(x3) ¼ min
u3

u3 þ F2(x2)½ � ¼ min
u3

F3(6), F3(7)½ �
¼ min (13þ 15), (13þ 9)½ � ¼ 22

F4(x4) ¼ min
u4

u4 þ F3(x3)½ � ¼ min 9þ F3(6), 8þ F3(7)½ �
¼ min (9þ 28), (8þ 22)½ � ¼ 30:

Then the minimum route is {node (1) – node (2) – node (4) – node (7) –
node (8)}, and the value of the losses is (30).

Example 8.11.3

Acomputer company has accepted a contract to supply 100 computers at the end of
the first month and 150 at the end of the secondmonth. The cost of manufacturing a
computer is given by $(70xþ 0.2x2) where x is the number of manufactured units in
that month. If the company manufactures more computers than needed in the first
month, there is an inventory carrying charge of $80 for each unit carried over to the
next month. Find the number of computers manufactured in each month to main-
tain the cost at aminimum level, assuming that the company has enough facilities to
manufacture up to 250 computers per month.

SOLUTION

The total cost is composed of the production cost and the inventory carrying costs.
The constrained optimization problem can be stated as follows:

Minimize : f (x1,x2) ¼ (70x1 þ 0:2x21)þ (70x2 þ 0:2x22)þ 80(x1 � 80)

Subject to

x1 � 100, x1 þ x2 ¼ 250

and x1, x2 are positive integers,

where x1, x2 denote the number of computers manufactured in the first and second
months, respectively. This problem can be considered as a two-stage decision
problem as shown in Figure 8.10.
Assuming the optimal solution of the first month equals x1* ¼ 100þ u2, the

objective of the first month will be

f1* ¼ 70(100þ u1)þ 0:2(100þ u1)2 ¼ 9000þ 110u1 þ 0:2u21:
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The cost incurred in the second month is given by

f2(x2,u1) ¼ 70x2 þ 0:23x22 þ 10u1:

The total cost will be

F(x1,x2,u1) ¼ 9000þ 110u1 þ 0:2u21 þ 70x2 þ 0:2x22 þ 10u1
¼ 9000þ 120u1 þ 0:2u21 þ 70x2 þ 0:2x22:

But the amount of inventory at the beginning of the second month plus the
production in the second month must be equal to the supply in the second
month. We have

x2 þ u1 ¼ 150 ) u1 ¼ 150� x2:

Substituting for u1 in the total cost function, we get

F ¼ 9000þ 120(150� x2)þ 0:2(150� x2)2 þ 70x2 þ 0:2x22
¼ 31,500� 110x2 þ 0:4x22,

since this last equation is a function only in x2. Then we can get the optimum value
by setting

@F
@x2

¼ 0:0 ) 110 ¼ 0:8x2 ) x2* ¼ 138:

Checking the second derivative,

@2F
@x22

¼ 0:8 > 0:

Then the second month’s production of 80 corresponds to the minimum cost. The
first month’s production and the inventory will be x1* ¼ 112, u1 ¼ 12 and the
minimum total cost equals ($23937.6).

9
1

62 4

73

8

3

5

10

11

15

8

9

FIGURE 8.10
Two-stage decision problem.
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Example 8.11.4

Max P ¼ (4d1 � d2
1)þ (4d2 � 2d2

2)þ (4d3 � 3d2
3)þ (4d4 � 4d2

4)

s:t: d1 þ d2 þ d3 þ d4 ¼ c

dk � 0, k ¼ 1, . . . , 4

Set u4 ¼ d1 þ d2 þ d3 þ d4

u3 ¼ d1 þ d2 þ d3 ¼ u4 � d4

u2 ¼ d1 þ d2 ¼ u3 � d3

u1 ¼ d1 ¼ u2 � d2

F4(u4) ¼ max
d4

4d4 � 4d2
4 þ F3(u3)

	 

F3(u3) ¼ max

d3
4d3 � 3d2

3 þ F2(u2)
	 


F2(u2) ¼ max
d2

4d2 � 2d2
2 þ F1(u1)

	 

F1(u1) ¼ 4d1 � d2

1

	 
 ¼ 4u2 � 4d2 � u22 þ 2u2d2 � d2
2

Substituting F2(u2) ¼ max
d2

�3d2
2 þ 4u2 � u22 þ 2u2d2

	 

For (@2F2(u2)=@ud2)jmax¼ 0¼�6d2þ 2u2, We obtain d2¼ (1=2)u2
Hence

F2(u2) ¼ �3
1
3
u2

� �2
þ 4u2 � u22 þ 2u2

1
3
u2

� �
¼ 4u2 � 2

3
u22

F3(u3) ¼ max
d3

4d3 � 3d2
3 þ 4u2 � 2

3
u22

� �
¼ max

d3

�3
2
3
d2
3 þ 4u3 � 2

3
u23 þ

4
3
u3d3

� �

For max(@2F3=@d3)¼ (22=3)d3þ (4=3)u3¼ 0, we obtain d3¼ (2=11)u3
Hence

F3(u3) ¼ � 11
3

2
11

u3

� �2
þ 4u3 � 2

3
u23 þ

4
3
u3

2
11

u3

� �
¼ 4u3 � 0:303u23

And

F4(u4) ¼ max
d4

4d4 � 4d2
4 þ 4u3 � 0:303u23

	 

¼ max

d4
�4:303d2

4 þ 4u4 � 0:303u24 þ 0:606u4d4
	 


For @2F4=@d4
� � ¼ �8:606d4 þ 0:606u4 ¼ 0, we obtain d4 ¼ 0:07u4

Hence F4(u4) ¼ �4:303(0:07u4)2 þ 4u4 � 0:303(u24 þ 6:06u4(0:07u4))

¼ 0:1002u24 þ 4u4
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Let u4¼ c, maximum value of P¼ 0.1002c2þ 4c, back substituting to calculate
d1, d2, d3, and d4 gives,

d4 ¼ 0:07c, u3 ¼ u4 � d4 ¼ 0:93c

d3 ¼ 2
11

u3 ¼ 0:169c, u2 ¼ u3 � d3 ¼ 0:761c ¼ 0:761c

d2 ¼ 1
3
u2 ¼ 0:254c, u1 ¼ u2 � d2 ¼ 0:507c

d1 ¼ u1 ¼ 0:507c

SOLUTION

Pmax ¼ 0:1002c2 þ 4c,

d1

d2

d3

d4

2
664

3
775 ¼

0:507c
0:254c
0:169c
0:07c

2
664

3
775 ¼ c

0:507
0:254
0:169
0:07

2
664

3
775:

Example 8.11.5

Solve Example 8.11.1 completely

Max x12 þ x22 � x23

s:t: x1 þ x2 þ x3 � 14

Put u3 ¼ x1 þ x2 þ x3

u2 ¼ x1 þ x2 ¼ u3 � x3

u1 ¼ x1 ¼ u2 � x2

F3(u3) ¼ max
x3

�x23 þ F2(u2)
	 


F2(u2) ¼ max
x2

x22 þ F1(u1)
	 


Let x1 ¼ u1 ¼ u2 � x2, F1(u1) ¼ x21 ¼ (u2 � x2)2

Substitute into F2(u2) we get

F2(u2) ¼ max
d2

x22 þ u22 � 2u2x2 þ x22
	 


At the maximum point (@2F2=@x
2)¼ 0, we obtain x2¼ 1=2u2

Hence

F2(u2) ¼ 1
2
u22
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Now

F3(u3) ¼ max
d3

�x23 þ
1
2
u22

� �

But

u2 ¼ u3 � x3, u2 ¼ u3 � x3, F3(u3) ¼ max
x3

1
2
x23 þ

1
2
u23 � u3x3

� �

For (@2F2=@x2)¼�x3 � u3¼ 0, we obtain x3¼�u3
Hence, F3(u3) ¼ u23
But u3¼ x1þ x2þ x3 � 14, thus u3max¼ 14
; F3(u3)max¼ 196¼max value of (x21 þ x22 � x23)

Back substituting to calculate x1, x2 and x3 gives

x3 ¼ �u3 ¼ �14

u2 ¼ u3 � x3 ¼ 28

x2 ¼ 1
2
u2 ¼ 14

u1 ¼ u2 � x2 ¼ 14

x1 ¼ u1 ¼ 14

SOLUTION

fmax¼ 196, x1¼ 14, x2¼ 14, and x3¼�14.

8.12 Conclusions

This chapter presented DP as an optimization approach able to transform a
complex problem into a sequential set of simpler problems. Both discrete and
continuous problems were considered. The formulation of a multistage deci-
sion process was explained step by step by discussing its representation as
well as the types of multistage decision problems. Characteristics of the DP
method were discussed in detail. The concept of suboptimization and the
principle of optimality were used as an initial stage in presenting the formu-
lation of DP as a consequence of the simple optimization problem. This
chapter also discussed the different forms of DP approaches used in continu-
ous and discrete optimization problems, in particular forward and backward
DP. The derivation of the recursive formulae used for both approaches was
presented. Computational procedures were shown through some illustrative
examples that also explained the computational economy in DP. All the
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discussion was devoted to optimization problems with only one constraint;
however, a discussion for systems with more than one constraint and the
conversion of a final value problem into an initial value problem was pre-
sented in the last two sections of the chapter, with an illustrative example
provided to support the argument. Finally, the chapter gave a set of unsolved
problems for training and understanding the DP approach.

8.13 Problem Set

PROBLEM 8.13.1

Consider a transportation problem with m sources and n destinations. Let
ai be the amount available at source i, i¼ 1, 2, . . . , m, and let bj be the
amount demanded at destination j, j¼ 1, 2, . . . , n. Assuming that the cost
of the transporting xij units from source i to destination j is hij(xij),
formulate the problem as a DP model.

PROBLEM 8.13.2

Solve the following linear programming problem as a DP model.

Maximize Z ¼ 4x1 þ 4x2

Subject to

2x1 þ 7x2 � 21

7x1 þ 2x2 � 21

xi � 0

and nonnegative for all is.

PROBLEM 8.13.3

Solve the following nonlinear programming problem as a DP model.

Maximize Z ¼ 7x21 þ 6x1 þ 5x22

Subject to

x1 þ 2x2 � 10

x1 � 3x2 � 9

x1 � 0

and nonnegative for all is.
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PROBLEM 8.13.4

Find the allocation for maximal profit when four resource units are
available as shown in Table 8.18, where the numbers denote dollars ($)
per resource unit.

PROBLEM 8.13.5

Maximize the hydroelectric power P(X), X¼ (x1,x2,x3)
T, produced by

building dams on three different river basins, where

P(X) ¼ f1(x1)þ f2(x2)þ f3(x3),

and fi(xi) is the power generated from the ith basin by investing resource
xi. The total budgetary provision is x1þ x2þ x3 � 3. The functions f1, f2,
and f3 are given in Table 8.19. An integer solution is required for this
problem.

PROBLEM 8.13.6

Use Table 8.20 regarding buying and selling only in a deregulated power
system with limited energy storage. A utility has a limited electrical
energy storage parity of 1000 MW h and must use this to the greatest
advantage. The price of the energy changes from month to month in the
year. Assume that the energy storage system must be inspected (cleaned)
once a year: it takes one month to complete and is scheduled for the first
of July each year.

TABLE 8.18

Data for Problem 8.13.4

Resource Unit Plant 1 Plant 2 Plant 3

1 5 7 8

2 9 10 11

3 12 12 14

4 14 13 16

TABLE 8.19

Data for Problem 8.13.5

xi 1 2 3 4

f1 0 2 4 6

f2 0 1 5 6

f3 0 3 5 6
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PROBLEM 8.13.7

The network shown in Figure 8.11 represents a DC transmission system.
In the network, the nodes represent substations. The values associated
with the branches are voltage drops (pu). Derive an optimal policy of
supplying a load at node (6) from the generation at node (1) with min-
imum voltage drop.

1

2 4

53

0.02

0.015
0.035

0.025

0.031

6

0.015

0.011 (P.U.)0.03

PROBLEM 8.13.8

(a) Define the dynamic program. Illustrate with all the notations
and blocks change for multistage problem.

(b) Showing all steps, use DP method to solve the following
problem.

TABLE 8.20

Data for Problem 8.13.6

Price

Months ($) MW h

January 18 20

February 18 19
March 18 16

April 15 17

May 14 16

June 15 16

July 17 16

August 17 17

September 17 18

October 17 19
November 17 19

December 18 19
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Maximize P ¼ 4d1 � d21
� �þ 4d2 � 2d22

� �þ 4d3 � 3d23
� �þ 4d4 � 4d24

� �
s:t: d1 þ d2 þ d3 þ d4 ¼ C

dk � 0, k ¼ 1, . . . , 4

PROBLEM 8.13.9

Use DP technique to find the maximum path through the following
network.

End1 4 7

6

5

3

2

Start
5

4

5
3

6

7

6

6

4

9

8

5

PROBLEM 8.13.10

Shortest-route problem: the network below has different routes from A to
B by passing through a number of other points. The lengths of the
individual routes are shown. Determine the minimum distance from
A to B using DP approach. (Find the optimal solution with clear defin-
ition of the stages, states, and return function.)

x1 x2

Stage 2 Stage 1

f2 = (70x1  + 0.2x2
1) + 80(x1 − 80) f1 = (70x2  + 0.2x2

2)

FIGURE 8.11
DC transmission system for Problem 8.13.7.
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PROBLEM 8.13.11

Solve the following problem by using DP technique

Minimize
X10
i¼1

y2i

Subject to

Y10
i¼1

yi ¼ 8, yi

PROBLEM 8.13.12

Solve the following linear programming problem using DP:

Maximize z ¼ 4x1 þ 10x2

Subject to

2x1 þ 7x2 � 18

7x1 þ 2x2 � 14

x1, x2 � 0
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9
Lagrangian Relaxation

9.1 Introduction

In the last decade, Lagrangian relaxation has grown from a successful but
largely theoretical concept to a tool that is the backbone of a number of large-
scale applications. Although there have been several surveys of Lagrangian
relaxation (e.g., Fisher [1] and Geofrion [2] and an excellent textbook treat-
ment by Muckstadt and Koenig [6]), more extensive use of Lagrangian
relaxation in practice has been inhibited by the lack of a ‘‘how to do it’’
exposition similar to the treatment usually extended to linear, dynamic, and
integer programming in operations research texts. This chapter is designed to
at least partially fill that void and should be of interest to both developers
and users of Lagrangian relaxation algorithms.

In many large-scale optimization problems for planning in production,
feasibility of the optimization problems present in linear programming (LP)
allows the determination of optimal solution by first decomposing a problem
into smaller subproblems and then solving the subproblems almost inde-
pendently. The procedure would allow the procedure of many large-scale
problems completely solvable is the decomposition. It exploits the sparsity
of many large-scale problems. Several practical applications in various
fields such as power systems, management sciences, and economics have
taken advantage of Lagrangian relaxation in solving complex scheduling
problems [3,6–9].

Many variants of Lagrange relaxation have been posed by researchers in
power systems operation for unit commitment (UC). The technique has been
developed to take advantage of iterative technique and eliminate certain
coupling constraints by adding them to the master problem thereby enabling
the independent and simultaneous solutions of many resulting subproblems.
Again, in the power system area it is a preferred solution method for mostly
the large set of constraints in a UC problem with hydrodispatch problem
where start-up, shutdown, and ramp rates are involved. Other approaches
such as resistive planning in optimal power flow (OPF) have shown some
promise where security constraints of OPF for subproblems are used. This
technique allows for speed which hardly offset constraints and easy procedure
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exists for relaxing constraints by adding them as part to objective function for
optimization.

Lagrangian relaxation is based upon the observation that many difficult
programming problems can be modeled as relatively easy problems
complicated by a set of side constraints. To exploit this observation, we create
a Lagrangian problem in which the complicating constraints are replaced
with a penalty term in the objective function involving the amount of viola-
tion of the constraints and their dual variables. The Lagrangian problem is
easy to solve and provides an upper bound (to a maximization problem) on
the optimal value of the original problem. It can thus be used in place of LP
relaxation to provide bounds in a branch-and-bound algorithm. The Lagran-
gian approach offers a number of important advantages over LP relaxations.

The Lagrangian relaxation concept is first formulated in general terms and
its use is then demonstrated extensively on a numerical example.

9.2 Concepts

Consider an integer programming problem of the following form:

Z ¼ max [cx]
Subject to
Ax � b
Dx � e
x � 0 and integral

9>>>>>=
>>>>>;
, (9:1)

where
x is the n� 1 vector and the elements of x are integers
b is the m� 1 vector
e is of order k� 1, and all other matrices have conformable dimension

We assume that the constraints of (9.1) have been partitioned into the two
sets Ax � b andDx � e so that (9.1) is relatively easy to solve if the constraint
set Ax � b is removed. To create the Lagrangian problem, we first define
an m vector of nonnegative multipliers u and add the nonnegative term
u(b�Ax) to the objective function of (9.1) to obtain Equation 9.2:

Maximize cxþ u[b�Ax]
Subject to
Ax � b
Dx � e
x � 0 and integral

9>>>>=
>>>>;
: (9:2)

It is clear that the optimal value of this problem for u fixed at a nonnegative
value is an upper bound on Z because we have merely added a nonnegative
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term to the ejective function. At this point, we create the Lagrangian problem
by removing the constraints Ax � b to obtain

ZD(u) ¼ Max[ex]þ u[b�Ax]

Subject to

Dx < e

x > 0:

Since removing the constraints Ax � b cannot decrease the optimal value,
ZD(u) is also an upper bound on Z. Moreover, by assumption the Lagrangian
problem is relatively easy to solve. There are three major questions in design-
ing a Lagrangian relaxation-based system, and some answers can (roughly
speaking) be given. Table 9.1 summarizes these issues.

A numerical example is used to illustrate considerations (a), (b), and (c) as
well as to compare Lagrangian relaxation to the use of LP to obtain bounds
for use in a branch-and-bound algorithm.

9.3 Subgradient Method for Setting the Dual Variables

The subgradient method is demonstrated by an illustrative example. Con-
sider the following problem.

Maximize Z ¼ 16x1 þ 10x2 þ 4x4 (a)

Subject to

8x1 þ 2x2 þ x3 þ 4x4 ¼ 10 (b)

x1 þ x2 � 1, (c)

x3 þ x4 � 1: (d)

TABLE 9.1

Several Issues Related to a Lagrangian Relaxation-Based System

Question Answer

(a) Which constraints should be relaxed? The relaxation should make the problem
significantly easier, but not too easy

(b) How to compute good multipliers u There is a choice between a general-purpose
procedure called the subgradient method and
smarter methods that may be better but which
are, however, highly problem specific

(c) How to deduce a good feasible solution
to the original problem given a solution
to the relaxed problem

The answer tends to be problem specific
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The numerical example is used to develop and demonstrate a method for
obtaining dual variable values that produce a tight bound. Ideally, u should
solve the following dual problem,

ZD ¼ MinZd(u) for u � 0:

Before presenting an algorithm for this problem, it is useful to develop some
insight by trying different values for the single duel variable u in the
example. We use

ZD(u) ¼ max (16� 8u)x1 þ (10� 2u)x2 þ (0� u)x3 þ (4� 4u)x4 þ 10u: (e)

Take u¼ 0
Here we have

ZD(u) ¼ max {16x1 þ 10x2 þ 0x3 þ 4x4}:

Note that x1 has a coefficient larger than that of x2, and x4 has a coefficient
larger than that of x3.

x1 ¼ 1 and x2 ¼ 0 satisfy x1 þ x2 � 1

x3 ¼ 0 and x4 ¼ 0 satisfy x3 þ x4 � 1:

By substitution we get:

ZD(0) ¼ 20:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 20:

We now test constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 12,

which is a violation. Therefore, this solution is not feasible.
It is useful to think of the single constraint (b) that we have dualized as a

resource constraint with the right-hand side representing the available supply
of some resource and the left-hand side the amount of the resource demanded
in a particular solution. We can then interpret the dual variable u as a price
charged for the resource. It turns out that if we can discover a price for which
the supply and demand for the resource are equal, then this value will also
give a tight upper bound. However, such a price might not exist.

With u¼ 0, we discover that the Lagrangian relaxation solution demand
for the resource exceeds the available supply by two units, suggesting that
we should use a larger value for u.
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Take u¼ 6
Here we now have

ZD(6) ¼ max {�32x1 � 2x2 � 6x3 � 20x4 þ 60}:

All coefficients are negative, and maximization takes place with all variables
set to 0.

x1 ¼ 0 and x2 ¼ 0 satisfy x1 þ x2 � 1

x3 ¼ 0 and x4 ¼ 0 satisfy x3 þ x4 � 1:

By substitution we get:

ZD(6) ¼ 60:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 0:

We now test constraint (b)

8x1 þ 2x2 þ x3 þ 4x4 ¼ 0:

This solution is feasible. For u¼ 6 we discover that we have overcorrected in
the sense that all variables are 0 in the Lagrangian solution and none of the
resource is used. We next try a sequence of dual values in the interval
between 0 and 6.

Take u¼ 3
Here we have:

ZD(3) ¼ max {�8x1 þ 4x2 � 3x3 � 8x4}þ 30:

The variables with negative coefficients are set to 0.

x1 ¼ 0 and x2 ¼ 1 satisfy x1 þ x2 � 1

x3 ¼ 0 and x4 ¼ 0 satisfy x3 þ x4 � 1:

By substitution we get:

ZD(3) ¼ 34:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 10:
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We now text constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 0:

This solution is feasible.

Take u¼ 2
Here we have

ZD(2) ¼ max {6x2 � 2x3 � 4x4}þ 20:

Thus:

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 14:

x1 ¼ 0 and x2 ¼ 1 satisfy x1 þ x2 � 1

x3 ¼ 0 and x4 ¼ 0 satisfy x3 þ x4 � 1:

By substitution we get:

ZD(2) ¼ 26:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 10:

We now test constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 2 � 10:

This solution is feasible.

Take u¼ 1
Here we have

ZD(1) ¼ max (16� 8*1)x1 þ (10� 2*1)x2 þ (0� 1)x3 þ (4� 4*1)x4 þ 10*1ð Þ:

Thus

ZD(1) ¼ max {8x1 þ 8x2 � x3 � 0x4}þ 10*1:

We definitely have x3¼ 0, since its coefficient is negative.

Take x1¼ 1

x1 ¼ 0 and x2 ¼ 1 satisfy x1 þ x2 � 1

x3 ¼ 0 and x4 ¼ 0 satisfy x3 þ x4 � 1:
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By substitution we get:

ZD(1) ¼ 18:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 16:

We now test constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 8 � 10:

This solution is feasible. We still have another option:

x3 ¼ 0 and x4 ¼ 1 satisfy x3 þ x4 � 1:

By substitution we get:

ZD(1) ¼ 18:

Also from (a):

Z� [16x1 þ 10x2 þ 4x4] ¼ 20:

We now test constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 12:

This solution is not feasible.

Take x1¼ 0

x1 ¼ 0 requires x2 ¼ 1 to satisfy x1 þ x2 � 1

x3 ¼ 0 requires x4 ¼ 0 to satisfy x3 þ x4 � 1:

By substitution we get:

ZD(1) ¼ 18:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 10:

We now test constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 2 � 10:
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This solution is feasible. There still exists another option:

x3 ¼ 0 and x4 ¼ 1 satisfy x3 þ x4 � 1:

By substitution we get:

ZD(1) ¼ 18:

Also from (a):

Z ¼ [16x1 þ 10x2 þ 4x4] ¼ 14:

We now test constraint (b):

8x1 þ 2x2 þ x3 þ 4x4 ¼ 6 � 10:

This solution is feasible.
In the case of u¼ 1, we see that there are four alternative optimal Lagran-

gian solutions. Table 9.2 gives a list of seven values for u, together with the
associated Lagrangian relaxation solution, the bound ZD(u), and Z for those
Lagrangian solutions that are feasible for u¼ 2. For the values tested, the
tightest bound of 18 was obtained with u¼ 1, but at the moment we lack any
means for confirming that it is optimal.

It is possible to demonstrate that 18 is the optimal value for ZD(u) by
observing that if we substitute any x into the objective function for the
Lagrangian problem, we obtain a linear function in u. We use:

ZD(u) ¼ max (16� 8u)x1 þ (10� 2u)x2 þ (0� u)x3 þ (4� 4u)x4 þ 10u:

TABLE 9.2

List of u Values with the Associated Lagrangian Relaxation Solution, the Bound
ZD(u), and Z for those Lagrangian Solutions

u x1 x2 x3 x4 ZD(u)
Value of Lagrangian

Solution Z (if Feasible)

0 1 0 0 1 20 —

6 0 0 0 0 60 0

3 0 1 0 0 34 10
2 0 1 0 0 26 10

1 1 0 0 0 18 16

— 1 0 0 1 18 —

— 0 1 0 0 18 10

— 0 1 0 1 18 14

1=2 1 0 0 1 19 —

3=4 1 0 0 1 18.5 —
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Take x1¼ x2¼ x3¼ x4¼ 0

ZD(u) ¼ max (16� 8u)0þ (10� 2u)0þ (0� u)0þ (4� 4u)0þ 10u

¼ 10u:

Take x1¼ 1, x2¼ x3¼ x4¼ 0

ZD(u) ¼ max (16� 8u)1þ (10� 2u)0þ (0� u)0þ (4� 4u)0þ 10u

¼ 16þ 2u:

Take x2¼ 1, x1¼ x3¼ x4¼ 0

ZD(u) ¼ max (16� 8u)0þ (10� 2u)1þ (0� u)0þ (4� 4u)0þ 10u

¼ 10þ 8u:

Take x2¼ x4¼ 1, x1¼ x3¼ 0

ZD(u) ¼ max (16� 8u)0þ (10� 2u)1þ (0� u)0þ (4� 4u)0þ 10u

¼ 14þ 4u:

Take x1¼ x4¼ 1, x2¼ x3¼ 0

ZD(u) ¼ max (16� 8u)1þ (10� 2u)0þ (0� u)0þ (4� 4u)1þ 10u

¼ 20� 2u:

Figure 9.1 exhibits this family of linear functions for all Lagrangian relaxation
solutions that are optimal for at least one value of u.

The fact that we must maximize the Lagrangian objective means that for
any particular value of u, ZD(u) is equal to the largest of these linear func-
tions. Thus, the ZD(u) function is given by the upper envelope of this family
of linear equations, shown as a darkened piecewise linear function in Figure
9.1. From this figure it is easy to see that u¼ 1 minimizes ZD(u).

Figure 9.2 also provides motivation for a general algorithm for finding u.
As shown, the ZD(u) function is convex and differentiate except at
points where the Lagrangian problem has multiple optimal solutions. At
differentiable points, the derivative of ZD(u) with respect to u is given
by 8x1þ 2x2þ x3þ 4x4� 10, where x is an optimal solution to (LRu).

These facts also hold in general with the gradient of the ZD(u) function at
differentiable points given by (Ax�b). These observations suggest that it
might be fruitful to apply a gradient method to the minimization of ZD(u)
with some adaptation at the points where ZD(u) is nondifferentiable. This has
been properly achieved in a procedure called the subgradient method. At
points where ZD(u) is nondifferentiable, the subgradient method selects arbi-
trarily from the set of alternative optimal Lagrangian solutions and uses the
vector (Ax�b) for the solution as though it were the gradient of ZD(u).
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The result is a procedure that determines a sequence of values for u by
beginning at an initial point u0 and applying the formula

ukþ1 ¼ max 0, uk � tk(b� Axk)
� �

:

54321 6

x1 = x4 = 1
x2 = x3 = 0
ZD(u) = 20 - 2u

x2 = 1
x1 = x3 = x4 = 0
ZD(u) = 10 + 8u

x1 = 1
x2 = x3 = x4 = 0
ZD(u) = 16 + 2u

Z D
(u

)

u

x1 = x2 = x3 = x4 = 0
ZD(u) = 10u

2

10

6
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30

20
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14
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x1 = x3 = 0
x2 = x4 = 1
ZD(u) = 10 + 8u

FIGURE 9.1
Family of linear equations for Lagrangian relaxation solution.

FIGURE 9.2
Composite behavior of ZD(u) featuring its
convex nature and its nondifferentiability
property. 54321 6
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In this formula, tk is a scalar stepsize and xk is an optimal solution to (LRk
d),

the Lagrangian problem with dual variables set to uk. The nondifferentiabil-
ity also requires some variation in the way the stepsize is normally set in a
gradient method.

9.4 Setting tk
To gain insight into a sensible procedure for setting tk, we discuss the results
of the subgradient method applied to the example with three different rules
for tk. For example, we have

ukþ1 ¼ max 0, uk � tk 10� 8x(k)1 � 2x(k)2 � 4x(k)4

� �n o
(9:3)

9.4.1 Case 1: Subgradient Method with tk¼ 1 for All k

In this first case, tk is fixed at 1 on all iterations. As a result the formula is

ukþ1 ¼ max 0, uk � 10� 8x(k)1 � 2x(k)2 � 4x(k)4

� �n o
:

We start with

u0 ¼ 0:

Recall the table entry for u¼ 0.

u x1 x2 x3 x4

0 1 0 0 1

u1 ¼ max 0, 0� (10� 8� 1� 2� 0� 4� 1)f g
¼ max 0, �(�2)f g

u1 ¼ 2:

Recall the table entry for u¼ 2.

u x1 x2 x3 x4

2 0 1 0 0

u2 ¼ max 0, 2� (10� 8� 0� 2� 1� 4� 0)f g
¼ max {0, �6}

u2 ¼ 0:
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We now use values for u¼ 0 as before,

u3 ¼ 0� (�2) ¼ 2,

and use values for u¼ 2 as before,

u4 ¼ max [0, 2� 8] ¼ 0:

We see that the subgradient method oscillates between the values u¼ 0 and
u¼ 2.

9.4.2 Case 2: Subgradient Method with tk¼ 1, 0.5, 0.25, . . .

In this second case, tk converges to 0 with each successive value equal to half
the value of the previous iteration.

tk ¼ 1
2

� �k
:

Therefore,

ukþ1 ¼ max 0, uk � 1
2

� 	k
10� 8x(k)1 � 2x(k)2 � 4x(k)4

� �( )
:

We start once again with

u0 ¼ 0:

Here we have t0¼ 1, and we get the same result as in the preceding case.

u1 ¼ 0� (�2) ¼ 2:

With u¼ 2, we get

u x1 x2 x3 x4

2 0 1 0 0

u2 ¼ max 0, u12 � [1=2]1(10� 8� 0� 2� 1� 4� 0)
� �

¼ max 0, 2� 0:5(10� 2)f g
¼ max {0, 2� 4}

u2 ¼ 0:
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Proceeding similarly, we get

u3 ¼ 0� 1
4

� �
(�2) ¼ 1

2

u4 ¼ 1
2
� 1

8

� �
(�2) ¼ 3

4

u5 ¼ 3
4
� 1

16

� �
(�2) ¼ 7

8

u6 ¼ 7
8
� 1

32

� �
(�2) ¼ 15

16
:

In this case, the subgradient method behaves nicely and converges to the
optimal value of u.

9.4.3 Case 3: Subgradient Method with tk¼ 1, 1=3, 1=9, . . .

In this final case, tk also converges to 0, but more quickly. Each successive
value is equal to one-third the value of the previous iteration,

tk ¼ 1
3

� �k
:

Therefore,

ukþ1 ¼ max 0, uk � 1
3

� 	k
10� 8x(k)1 � 2x(k)2 � 4x(k)4

� �( )
:

We start once again with

u0 ¼ 0

u1 ¼ 0� (�2) ¼ 2

u2 ¼ max 0, 2� 1
3

� �
(8)

� �
¼ 0

u3 ¼ 0� 1
9

� �
(�2)� 2

9

u4 ¼ 2
9
� 1

27

� �
(�2) ¼ 0:296

u5 ¼ 0:296� 1
81

� �
(�2) ¼ 0:321

u6 ¼ 0:321� 1
243

� �
(�2) ¼ 0:329

u7 ¼ 0:329� 1
729

� �
(�2) ¼ 0:332:
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In this case, the subgradient method converges to u¼ 1=3, showing that if the
stepsize converges to 0 too quickly, then the subgradient method will con-
verge to a point other than the optimal solution.

From these examples, we suspect that the stepsize in the subgradient
method should converge to 0 but not too quickly. These observations have
been confirmed in a result (see Held et al. [5]) that states that if as k ! 1,

tk ! 0 and
Xk
i¼1

ti ! 1

then ZD(u
k) converges to its optimal value ZD. Note that Case 3 actually

violates the second condition since
Pk

i¼1 ti ! 2, thus showing that these
conditions are sufficient but not necessary.

A formula for tk that has proven effective in practice is

tk ¼
lk ZD(uk)� Z*

 �

Pm
i¼1 bi �

Pn
j¼1 aijx

k
j

h i2 : (9:4)

In this formula, Z* is the objective value of the best-known feasible solution
to (p) and lk is a scalar chosen between 0 and 2. Frequently the sequence lk is
determined by starting with lk¼ 2 and reducing lk by a factor of 2 whenever
ZD(u

k) has failed to decrease in a specified number of iterations.
Justification for this formula, as well as many other interesting results on

the subgradient method, is given in Held et al. [5]. The feasible value Z*
initially can be set to 0 and then updated using the solutions that are obtained
on those iterations in which the Lagrangian problem solution turns out to be
feasible in the original problem. Unless we obtain a uk for which ZD(u

k)¼Z*,
there is no way of proving optimality in the subgradient method. To resolve
this difficulty, the method is usually terminated upon reaching a specified
iteration limit.

Other procedures that have been used for setting multipliers are called
multiplier-adjustment methods. Multiplier-adjustment methods are heur-
istics for the dual problem that are developed for a specific application
and exploit some special structures of the dual problem in that approach.
The first highly successful example of a multiplier-adjustment method was
Erlenkotter’s [X] algorithm for the uncapacitated location problem.

By developing a multiplier-adjustment method specifically tailored for
some problem class, one is usually able to improve on the subgradient
method. However, because the subgradient method is easy to program and
has performed robustly in a wide variety of applications, it is usually at least
the initial choice for setting the multipliers in Lagrangian relaxation.

Returning to our example, we have obtained through the application of
Lagrangian relaxation and the subgradient method a feasible solution with a
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value of 16 and an upper bound on the optimal value of 18. At this point,
we could stop and be content with a feasible solution proven to be within
about 12% of optimality, or we could complete the solution of the example
to optimality using branch-and-bound, with bounds provided by our
Lagrangian relaxation. In the next section, we show how such an approach
compares with more traditional LP-based branch-and-bound algorithms.

9.5 Comparison with LP-Based Bounds

In this section, we compare Lagrangian relaxation with the upper bound
obtained by relaxing the integrality requirement on x and solving the result-
ing linear program. Let ZLP denote the optimal value of (p) with integrality
on x relaxed. We start by comparing ZLP for the example with the best upper
bound of 18 obtained previously with Lagrangian relaxation. To facilitate
this comparison, we first write out the standard LP dual of the example. Let
u, v1, and v2 denote dual variables on constraints 9.5 through 9.8 and wj a
dual variable on the constraint xj � 1.

Then, the LP dual form is

Min 10uþ y1 þ y2 þ w1 þ w2 þ w3 þ w4 (9:5)

8uþ y1 þ w1 � 16 (9:6)

2uþ y1 þ w2 � 10 (9:7)

uþ y2 þ w3 � 0 (9:8)

4uþ y2 þ w4 � 4 (9:9)

u, y1, y2, w1, . . . , w4 � 0: (9:10)

The optimal solution to the primal LP is x1¼ 1, x2¼ 0, x3¼ 0, x4¼ 1=2, and the
optimal solution to the dual LP is u¼ 1, v1¼ 8, v2¼w1¼ � � �¼w4¼ 0. In order
to verify that each of these solutions is optimal, we simply substitute them in
the primal and dual and observe that each is feasible and gives the same
objective value 18.

This exercise has demonstrated two interesting facts: ZLP¼ 18, the same
upper bound we obtained with Lagrangian relaxation; and the LP dual
variable value of u¼ 1 on constraint 9.7 is exactly the value that gave the
minimum upper bound of 18 on the Lagrangian problem. These observations
are part of a pattern that holds generally and is nicely summarized in a result
from Geoffrion [2] which states that ZD � ZLP for any Lagrangian relaxation.
This fact is established by the following sequence of relations between
optimization problems.
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ZD ¼ Min Max(cxþ u(b�Ax))f g
u � 0

Dx � e

x � 0 and integral,

by LP duality

Max cx

Ax � b

Dx � e

x � 0:

Besides showing that ZD � ZLP the preceding logic indicates when ZD¼ZLP

and when ZD<ZLP. The inequality in the sequence of relations connecting
ZD and ZLP is between the Lagrangian problem and the Lagrangian problem
with integrality relaxed. Hence, we can have ZD<ZLP only if this inequality
holds strictly or, conversely, ZD¼ZLP only if the Lagrangian problem is
unaffected by removing the integrality requirement on x. In the Lagrangian
problem for the original example, the optimal values of the variables will be
an integer whether we require it or not. This implies that we must have
ZD¼ZLP, something that we have already observed numerically.

This result also shows that we can improve the upper bound by using a
Lagrangian relaxation in which the variables are not naturally integral.

9.6 Improved Relaxation

An alternative relaxation for the example is given below.

ZD(y1,y2) ¼ Max(16� y1)x1 þ (10� y1)x2 þ (0� y2)x3 þ (4� y2)x4 þ y1 þ y2

(9:10)

Subject to

8x1 þ 2x2 þ x3 þ 4x4 � 10 (9:11)

0 < xj < 1, j ¼ 1, . . . , 4 (9:12)

xj integer, j ¼ 1, . . . , 4: (9:13)

In this relaxation, we have dualized constraints, Equations 9.12 and 9.13, and
obtained a relaxation that is a knapsack problem. Although this problem is
known to be difficult in the worst case, it can be solved practically using a
variety of efficient knapsack algorithms such as dynamic programming.
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Because the continuous and integer solutions to the knapsack problem can
differ, the analytic result obtained in the previous section tells us that this
relaxation may provide bounds that are better than LP.

This is confirmed empirically in Table 9.3, which shows the application of
the subgradient method to this relaxation. We begin with both dual variables
equal to 0 and in four iterations, we converge to a dual solution in which the
upper bound of 16 is equal to the objective value of the feasible solution
obtained when we solve the Lagrangian problem. Hence, Lagrangian relax-
ation has completely solved the original problem. In this example, we have
set the stepsize using the formula given previously with lk¼ 1.

This example illustrates that with careful choice of which constraints to
dualize, Lagrangian relaxation can provide results that are significantly
superior to LP-based branch-and-bound. The choice of constraints is to
some extent an art much like the formulation itself. Typically, one will
construct several alternative relaxations and evaluate them, both empirically
and analytically, using the result on the quality of bounds presented in the
previous section. The alternative relaxations can be constructed in one of the
two ways: begin with an integer programming formulation and select differ-
ent constraints to dualize, or alternatively, begin with some easy to solve
model such as the knapsack or shortest route problem which is close to, but
not exactly the same as, the problem one wishes to solve. Then try to add a
set of side constraints to represent those aspects of the problem of interest
that are missing in the simpler model. A Lagrangian relaxation can be
obtained by dualizing the side constraints that have been added.

9.7 Summary of Concepts

Up to this point, the concept of Lagrangian relaxation has been developed
piecemeal on an example. We can now formulate and present a generic
Lagrangian relaxation algorithm. Figure 9.3 shows a generic Lagrangian

TABLE 9.3

Subgradient Method Applied to Improved Relaxation

v1 v2 lk x1 x2 x3 x4 ZD(v1,v2)

Feasible with Z¼ 4

0 0 1 1 1 0 0 26

13 0 1 0 0 0 1 17

Feasible with Z¼ 16

0 0 1 1 1 0 0 26

11 0 1 1 0 0 0 16
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relaxation algorithm consisting of several major steps. The first step is the
standard branch-and-bound process in which a tree of solution alternatives is
constructed with certain variables fixed to specified values at each node of
the tree. These specified values are passed from block A to block B together
with Z*, the objective value of the currently best-known feasible solution, and
starting multipliers u0.

In blocks B and C, we iterate between adjusting the multipliers with the
subgradient, updating the formula to obtain a new multiplier value uk, and
solving the Lagrangian problem to obtain a new Lagrangian solution xk.
The process continues until we either reach an iteration limit or discover an
upper bound for this node that is less than or equal to the current best-
known feasible value Z*. At this point, we pass back to block A the best
upper bound we have discovered together with any feasible solution that

A Construction of branch-
and-bound tree

B
Adjustment of

multipliers

· If k = 0 go to block C

· If ZD(uk) <_ Z∗ or iteration
limit reached, return to 
block A

· Otherwise set
uk+1 + max {0, uk - tk (b-Axk)}
k = k + 1

C Solution of Lagrangian 
problem

Solve LR(uk)
Update Z∗ if the Lagrangian

solution xk is feasible in primal
problem 

xk uk

Upper bound and
possibly feasible

solution

Node of the trees
Z∗ is the best-knowvn feasible value
u0 is the initial multiplier value
k = 0

FIGURE 9.3
Generic Lagrangian relaxation algorithm.
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may have been obtained as a result of solving the Lagrangian problem. In
Fisher’s experience, it is rare in practice that the Lagrangian solution will be
feasible in the original problem (p). However, it is not uncommon that the
Lagrangian solution will be nearly feasible and can be made feasible with
some minor modifications. A systematic procedure for doing this can be
applied in block C and constitutes what might be called a ‘‘Lagrangian
heuristic.’’ Lagrangian heuristics have been vital to the computational
success of many applications, such as those described in Fisher [1], and
may well prove to be as important as the use of Lagrangians to obtain
upper bounds.

It is not uncommon in large-scale applications to terminate the process
depicted in block B before the branch-and-bound tree has been explored
sufficiently to prove optimality. In this case, the Lagrangian algorithm is
really a heuristic with some nice properties, such as an upper bound on the
amount by which the heuristic solution deviates from optimality.

9.8 Past Applications

A brief description of several instances in which Lagrangian relaxation has
been used in practice should give the flavor of the kinds of problems for
which Lagrangian relaxation has been successful.

Bell et al. describe the successful application of the algorithm to Air
Products and Chemicals, which has resulted in a reduction of distribution
cost of about $2 million per year.

Fisher [1] discusses the application, in the Clinical Systems Division of Du
Pont, of an algorithm for vehicle routing that is based on a Lagrangian
relaxation algorithm for the generalized assignment problem.

Graves and Lamar [4] treat the problem of designing an assembly by
choosing from available technology a group of resources to perform certain
operations. The choices cover people, single-purpose machines, narrow-
purpose pickplace robots, and general-purpose robots. Their work has been
applied in a number of industries, including the design of robot assembly
systems for the production of automobile alternators. Graves [3] has also
discussed the use of Lagrangian relaxation to address production planning
problems from an hierarchical perspective.

Mulvey [9] is concerned with condensing a large database by selecting a
subset of representative elements. He has developed a Lagrangian relax-
ation-based clustering algorithm that determines a representative subset for
which the loss in information is minimized in a well-defined sense. He has
used this algorithm to reduce the 1977 U.S. Statistics of Income File for
Individuals maintained by the Office of Tax Analysis from 155,212 records
to 74,762 records.
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The application described in Shepardson and Marsten [7] involves the
scheduling of personnel who must work two duty periods, a morning shift
and an afternoon shift. Their algorithm determines optimal schedules for
each worker so as to minimize cost and satisfy staffing requirements.
Helsinki City Transport has applied this algorithm to bus crew scheduling.

Van Roy and Gelders discuss the use of Lagrangian relaxation for a
particular problem arising in distribution.

In each of the applications described above, development of the Lagran-
gian relaxation algorithm required a level of involvement on the part of
skilled analysts that is similar to that required in the use of dynamic pro-
gramming. Just as some insight into a problem is required before dynamic
programming can be applied fruitfully, it is generally nontrivial to discover a
Lagrangian relaxation that is computationally effective. Moreover, once this
has been done, the various steps in the algorithm must be programmed more
or less from scratch. Often this process can be made easier by the availability
of an ‘‘off the shelf’’ algorithm for the Lagrangian problem if it is a well-
known model, such as a network flow, shortest route, minimum spanning
tree, or knapsack problem.

Despite the level of effort required in implementing Lagrangian relaxation,
the concept is growing, in popularity because the ability it affords to exploit
special problem structure often is the only hope for coping with large real
problems.

For the future, it remains to be seen whether Lagrangian relaxation will
continue to exist as a technique that requires a significant ad hoc develop-
ment effort or whether the essential building blocks of Lagrangian relaxation
will find their way into user-friendly mathematical programming codes such
as LINDO or IFPS OPTIMUM.

9.9 Summary

9.9.1 Overview

The branch-and-bound technique for solving integer programming problems
is a powerful solution technique despite the computational requirements
involved.

Most computer codes based on the branch-and-bound technique differ
from standard known procedures in the details of selecting the branching
variable at a node and the sequence in which the subproblems are examined.

These rules are based on heuristics developed through the basic disadvan-
tage of the branch-and-bound algorithm, which is the necessity of solving a
complete linear program at each node. In large problems, this could be very
time consuming, particularly when the only information needed at the node
may be its optimum objective value. This point is clarified by realizing that
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once a good bound is obtained, many nodes can be discarded as their
optimum objective values are then known.

The preceding point led to the development of a procedure whereby it may
be unnecessary to solve all the subproblems of the branch-and-bound tree.
The idea is to estimate an upper bound and assume a maximization problem
on the optimum objective valued at each node. Should this upper bound
become smaller than the objective associated with the best available integer
solutions, the node is discarded.

9.9.2 Algorithm of Solution Using Lagrangian Relaxation Approach

Consider an integer programming problem of the following form:

Z ¼ max cTx

Subject to

Ax � b

Dx � e

x � 0 and integer,

where x is an n*1, elements of x are integers, b is an m*1, c is a k*1, and all
other matrices have comformable dimensions. The algorithm is summarized
as follows:

Step 1. We assume that the constraints of the problems have been
partitioned into two sets Ax � b and Dx � e so that the problem is
relatively easy to solve if the constraint set Ax � b is removed.

Step 2. To create the Lagrangian problem we first define an m vector of
nonegative multipliers U and add the nonnegative term U(b�Ax) to
the objective function to form ZD(U).

ZD(U) ¼ max cTxþU(b�Ax)

Subject to

Dx � e

x � 0 and integral:

It is clear that the optimal value of this problem for U fixed at a
nonnegative value is an upper bound on Z because we have merely
added a nonnegative form to the objective function.

Step 3. The new objective ZD(U) is nondifferentiable at points of the
Lagrangian problem solution. This led to the use of the subgradient
method for minimization of ZD(U) with some adaptation at the
points where ZD(U) is nondifferentiable.
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Assuming we begin at a multiple value U0, then

Ukþ1 ¼ max 0, Uk � tk(b�Axk)
� �

,

tk is a stepsize, and xk is an optimal solution to LR yk.
The stepsize, tk, should converge to 0 but not too quickly; that is,

k ! 1, tk ! 0,
Xk
i¼1

ti ! 1:

ZD(U
k) converges to its optimal value.

A formula for tk is given by

tk ¼ lk[ZD(Uk)� Z*]Pn
i¼1 bi �

Pm
j¼1 aijX

k
j

h i2 : (9:14)

Z* is the objective value of the best-known feasible solution and lk is
a scalar chosen between 0 and 2, and reducing lk by a factor of 2
whenever ZD(U

k) has failed to decrease in a specified number of
iterations.

The feasible value Z* initially can be set to (0) and then updated
using the solutions obtained on those iterations in which the LR
solution must be feasible in the original problem.

Step 4. Continue the procedure in step 3 until we either reach an
iteration limit or discover an upper bound for this node that is less
than or equal to the best-known feasible value Z*.

9.9.3 Power System Application: Scheduling in Power
Generation Systems

9.9.3.1 Model

A simplified version of the power scheduling problem is formulated as a
mixed integer programming problem having a special structure that facili-
tates rapid computation.

First, reserve and demand constraints are included in the basic model.
Then other constraints are included in the formulation without affecting the
basic structure of the problem.

The integer variables in the model indicate whether a specified generating
unit is operating during a period.

xit¼ 1 ! generating unit i is operating in period t

xit¼ 0 ! generating unit i is off

i¼ 1, . . . , I, t¼ 1, 2, . . . , T.

Momoh/Electric Power System Applications of Optimization 65886_C009 Final Proof page 324 20.11.2008 11:41am Compositor Name: VAmoudavally

324 Electric Power System Applications of Optimization



The continuous variable yikt represents the proportion of the available cap-
acity Mik that is actually used at period t: k¼ 1, . . . , ki.

ki ! number of linear segments of the production cost curve

ykit ! 0 only if xit¼ 1; hence this constraint is introduced: 0 � yik � xit.

The total energy output from generator i at time t is given by

mixitþ
Xki
k¼i

Mikyikt, (9:15)

where
mi is the minimum unit capacity
Mi is the maximum unit capacity

wi ¼ 1 if the unit is started up at time t

0 otherwise

�

zit ¼ 1 if the unit is shut down in period t

0 otherwise

�

ci is the start-up cost of generator i
gi is the operating cost of unit i at its minimum capacity for 1 h
ht is the number of hours in period t

The objective function to be minimized for the basic T-period scheduling
model is

XI
i¼1

XT
t¼1

ciwi þ dizit þ higixit þ
Xki
k¼1

Mikhtgikyikt

( )( )
: (9:16)

Let Dt represent the demand level at time t. Then, the demand constraint is
given by

mixit þ
Xki
k¼1

Mikyikt � Dt: (9:17)

Let the reserve Rt be the minimum quantity at time t. Then, the reserve
constraint is given by

XI
i¼1

Mixit � Rt: (9:18)
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By imposing only the constraints

wit � xit � xi,t�1, wit � 0

zit � xi,t�1 � xit, zit � 0

xit ¼ 0 or 1:

then the objective function to be minimized wit, zit must equal either 0 or 1.
The mixed integer model for the basic power scheduling problem is

Minimize
XI
i¼1

XT
t¼1

ciwit þ dizit þ htgixit þ
Xki
k¼1

Mikhigikyikt

( )( )
: (9:19)

Subject to

Xki
i

k ¼ 1 mixit þ
Xki
k¼1

Mikyikt � Dt (9:20)

XI
i¼1

Mixit � Rt (9:21)

0 < yikt � xit (9:22)

wit � xit � xi,t�1 (9:23)

zit � xi,t�1 � xit (9:24)

wit � 0 (9:25)

zit � 0 (9:26)

0 � xit � 1 (9:27)

xit integer:

9.9.3.2 Relaxation and Decomposition of the Model

Lagrangian relaxation is used to decompose the problem into I single gener-
ator subproblems. The advantage of decomposing by generator is that the
constraints and costs that depend on the state of the generator from period to
period can easily be considered in the subproblems.

The solution of the relaxed problem provides a lower bound on the
optimal solution of the original problem. The Lagrangian relaxation model is

XI
i¼1

XT
t¼1

ciwit þ diZit þ htgixit þ
Xki
k¼1

Mikhitgikyikt

( )( )

þ
XT
t¼1

yt Dt �
XI
i¼1

mixit �
XI
i¼1

Xki
k¼1

mikyikt

 !
þ
XT
t¼1

ut kt �
XI
i¼1

mixit

 !
(9:28)
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Cset

0 � yikt � xit
wit � xit � xi,t�1
zit � xi,t�1 � xit
wit � 0
zit � 0
0 � xit � 1
xit integers

8>>>>>>>><
>>>>>>>>:

, (9:29)

where yt and ut are nonnegative real numbers (Lagrange multipliers).
The Lagrangian relaxation problem decomposes into I single generator

subproblems of the form:

Minimize
XT
t¼1

(
ciwit þ dizit þ (htgi � ytMi � ytmi)xit

þ
Xki
k¼1

Mik(htgik � yt)yikt

)
(9:30)

Subject to

Cset of constraints:

Figure 9.4 shows a graph that could be used for the solution of the
subproblems in the basic model.

The upper state in each period represents the ON state and the lower state
represents the OFF state for the generator. The transition arcs on the graph
represent feasible decisions and the arc lengths are the costs associated with
the decision. If the generator is OFF in period t� 1 then xi,t�1¼ 0, and if it is
ON in period t, xit¼ 1.

Consequently, wit � 1, zit � 0, 0 � yikt � 1 to minimize the cost. Given the
values of xi,t�1 and xit we set wit¼ 1, zit¼ 0, yikt¼ 0 if gikht� yt � 0 and yikt¼ 1
if gikHt� yt< 0. The lengths of other arcs can be determined in a similar way.

A path through the graph specifies an operating schedule for the generator
and the problem of finding the minimum cost schedule becomes a shortest
path problem on a cyclic state graph.

ON

Pd0 Pd1 Pd2 Pd3 Pd4

FIGURE 9.4
Basic model state graph.
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By expanding the state graph, it is also possible to represent certain aspects
of the real problem that were omitted from the basic model. The state graph
of the model is shown in Figure 9.5.

The state model in Figure 9.5 can accommodate many extensions such as

1. Time-dependent start-up cost

2. Minimum up and down constraints

3. Generator availability restriction

The time-dependent start-up costs are added to the model by varying the
costs on the transition arcs that lead from a downstate to an upstate.
The minimum up- and downtimes are enforced by eliminating some of the
transition arcs in the state graph.

For example, if a generator must be OFF for at least three time periods, the
transition arcs from the downstate 1 tend down two states to the up-states in
the figure. Two would be eliminated.

9.9.3.3 Solution Technique

The backbone of the technique is a branch-and-bound procedure that builds
an enumeration tree for the 0–1 variable xij. Each node in the tree is charac-
terized by a set of xit variables with fixed values. For the basic model the
problem represented by a node in the enumeration tree has the form of the
basic problem with the appropriate set of the xit variables fixed. The Lagran-
gian relaxation of the problem at each node is solved to obtain a lower bound
on the optimal solution for the problem at the node. To obtain the solution at
a node a simple shortest path algorithm is used at the node to solve each of
the I single generator subproblems using dynamic programming.

Up

Down 1

Down 2

Down 3

FIGURE 9.5
Graph with time-dependent start-up.
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9.10 Illustrative Examples

Example 9.1

Consider the multidimensional problem

Maximize z ¼ 10x1 þ 5x2 þ 8x3 þ 7x4

Subject to

6x1 þ 5x2 þ 4x3 þ 6x4 � 40

3x1 þ x2 � 15

x1 þ x2 � 10

x3 þ 2x4 � 10

xj � 0:

1. Develop the of the Lagrange relaxation formulation for this problem.

2. Formulate the maximization of the subproblem for k¼ 0.

SOLUTION

Step 1. In matrix notation, the problem is

Maximize Z ¼ cx

Subject to

Ax � b

Dx � e,

where x¼ [x1, x2, x3, x4]
t and c¼ [10, 5, 8, 7]t, with

6 5 4 6

3 1 0 0

1 1 0 0

0 0 1 2

2
66664

3
77775

x1
x2
x3
x4

2
66664

3
77775 �

40

15

10

10

2
66664

3
77775:

By partitioning this set of constraints, we obtain

Ax � b

Dx � e,
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where

A ¼ [6 5 4 6], b ¼ [40]

D ¼
3 1 0 0

1 1 0 0

0 0 1 2

2
64

3
75, and c ¼

15

10

10

2
64

3
75:

Step 2. Lagrange is defined as

ZD(u) ¼ Max(cx)þ u(b� Ax)

; ZD(u) ¼ 10x1 þ 5x2 þ 8x3 þ 7x4 þ u(40� 6x1 � 5x2 � 4x3 � 6x4)

Subject to

Dx � e,

which is

3x1 þ x2 � 15

x1 þ x2 � 10

x3 þ 2x4 � 10:

Step 3. Assume Uk¼ 1 for k¼ 0. Then

Maximize

ZD(uk) ¼ 10x1 þ 5x2 þ 8x3 þ 7x4 þ 40� 6x1 � 5x2 � 4x3 þ 6x4
¼ 4x1 þ 4x3 þ x4 þ 40,

such that Dx � e.

9.11 Conclusions

This chapter discusses a Lagrangian problem in which the complicated con-
straints were replaced with a penalty term in the objective function involving
the amount of violation constraints and their dual variables. The Lagrangian
relaxation concept and setting method were first discussed in Sections 9.2
through 9.4. A comparison with an LP-based bound was presented in Section
9.5, followed by an improved relaxation concept. Practical applications, such
as for power systems, were presented in Sections 9.7 to 9.9.

The Lagrange relaxation technique has been presented in this chapter.
Simplex method relaxes or eliminates complex constraints by adding them
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to the master problem thereby enabling the independent solution to many
subproblems.

The procedure for solving nonlinear programming optimization problems
is shown in this chapter. The coupling constraints are handling them as
additional constraints. It stems from Dantzig–Wolf description method
for solving large linear problems. The algorithm involves the determination
of l value and controls the control and assorted state variables to be opti-
mized. Application of Lagrangian relaxation (LR) to large-scale problems is
generally applicable to security constrained economic dispatch OPF problem.
Schemes to carry out implementation of Lagrange relaxation in UC is for
scheduling for real-time application are identified in [10].

Start

Input data: * generator data, load curve
constraints, cost of feasible solution Fcost

Form state graphs that
describe generators

Initialize Lagrange multipliers and
set the iteration counter

Solve Lagrangian relaxation by solving the
shortest path problem for each generator
let Lagrval = value of Lagrange solution

Lagrval
>_

Fcost

Lagrange
solution is

feasible

Do not explore
this path

YesNo

FIGURE 9.6
Algorithm for Lagrangian method.
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9.12 Problem Set

PROBLEM 9.1

Maximize z ¼ 4x1 þ x2 þ 6x3

Subject to

3x1 þ 2x2 þ 4x3 � 17

x1 � 2

x3 � 2

x1 � 1

x2 � 1

x3 � 1:

PROBLEM 9.2

Maximize z ¼ 3x1 þ 5x2

Subject to

3x1 þ 2x2 � 18

x1 � 4

xj � 0:

PROBLEM 9.3

Apply the principle to the following problem.

Maximize z ¼ 6x1 þ 7x2 þ 3x3 þ 5x4 þ x5 þ x6

Subject to

x1 þ x2 þ x3 þ x4 þ x5 þ x6 � 50

x1 þ x2 � 10

x2 � 8

5x3 þ x4 � 12

x5 þ x6 � 5

x5 þ 5x6 � 50

xj � 0:
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PROBLEM 9.4

Solve the following problem using the LR algorithm.

Maximize z ¼ 10x1 þ 2x2 þ 4x3 þ x4

Subject to

x1 þ 4x2 � x3 � 8

2x1 þ x2 þ x3 � 2

3x1 þ x4 þ x5 � 4

x1 þ 2x4 þ x5 � 10

xj � 0:

PROBLEM 9.5

Solve the following problem using the LR algorithm.

Maximize P ¼ 4x1 þ 5x2 þ 5x3 þ 4x4

Subject to

2x1 þ 2x2 þ 3x3 þ 4x4 � 7

x1 � x2 þ x3 � x4 � 0

xi 2 {0,1}

PROBLEM 9.6

Apply the LR algorithm to

Maximize f ¼ 0:3x21 þ 10
 �

u1 þ 0:4x22 þ 14
 �

u2
Subject to

� x1u1 � x2u2 þ 9:5 ¼ 0

0 � x1 � 0

0 � x2 � 12

ui 2 {0,1}
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10
Decomposition Method

10.1 Introduction

In large-scale systems, a special class of linear programming (LP) problems is
posed as multidimensional problems and is represented by the decompos-
ition principle, a streamlined version of the LP simplex method. The decom-
position principle has special characteristic features in that its formulation
exploits certain matrices with distinct structures. These matrices, represent-
ing the formulated problems, are generally divided into two parts, namely,
one with the easy constraints and the other with the complicated constraints.
The partitioning is done such that the desired diagonal submatrices and
identity matrices are obtained in the reformulation of the problem.

Now, in the decomposition principle [1,2,5,9], the method enables large-
scale problems to be solved by exploiting these special structures. Therefore,
we note that the decomposition method [4,6,7,8] can be used for any matrix
A in the formulation:

Minimize

Z ¼ cTx

Subject to

Ax ¼ b:

However, the method becomes more vivid when the matrix A has a certain
structure, as explained in the following section.

10.2 Formulation of the Decomposition Problem

Consider the LP problem

Minimize Z ¼ cTx

Subject to
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Ax ¼ b

xi � 0 for 8i 2 [I,N],

where
Z is the scalar objective function
cT is the coefficient vector of objective function
A is the coefficient matrix of the equality constraints
b is the vector of the inequality constraints
x is the vector of unknown or decision variables

If matrix A has the special property form of a multidivisional problem, then
by applying a revised simplex method, we start with

A ¼

A1 A2 � � � AN

ANþ1 0 � � � 0
0 ANþ2 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � A2N

2
6666664

3
7777775
‘‘complicated00 constraints ‘‘easy00 constraints

It should be noted that some ANþ1 blocks are empty arrays. Vector b is also
partitioned accordingly into Nþ 1 vectors such that

b ¼ [b0,b1, . . . ,bN]
T:

Similarly, vector c is also partitioned into N row vectors to obtain

c ¼ [c0, c1, . . . , cN]T:

Similarly, we have

x ¼ [x0, x1, . . . , xN]T:

Therefore, the problem takes the form:

Minimize Z ¼
XN
j¼1

cjxj

Subject to

XN
j¼1

Ljxj ¼ b0

Ajxj ¼ bj

xj � 0 8j 2 {1,N},

and the submatrices ANþj correspond to Lj.
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Notably, each of the constraints Ajxj¼ bj defines the boundary of a convex
polytope Sj thereby greatly reducing the computational effort. The set of
points {Xj} such that xj � 0 and ANþjxj< bj constitutes a convex set with a
finite number of extrema points. These points represent the corner-point
feasible solution for the subproblem with these constraints. Then any solu-
tion xj to the easy subproblem j that satisfies the constraints Ajxj¼ bj, where
xj> 0, can also be written as

xj ¼
X
i2Sj

lijxij,

where xij is assumed to be known and
P

i2Sj lijxij ¼ 1, with lij � 0,
8j 2 {1,N} ^ i 2 {1, Sj}. It is further assumed that the polytope so formed by
the subset of constraints Ajxj¼ bj contains Sj vertices and is bounded. This is
not the case for any xj that is not a feasible solution of the subproblem.

Suppose xij is known, then let

Lij ffi Ljxij and Cij ffi Cjxij,

such that the problem can be reformulated with fewer constraints as

Minimize Z ¼
XN
j¼1

XSj
i¼1

Cijlij

Subject to

XN
j¼1

XSj
i¼1

lijlij ¼ b0

with

XSj
i¼1

lij ¼ 1

lij � 0 8j 2 {1,N} and 8i 2 {1, Sj}:

This formulation is a transformation from the partitioned problem to a
revised problem that has reduced the number of rows from m0 þ

PN
j¼1 mj to

m0 þN rows. However, it has greatly increased the number of variables from

XN
j¼1

nj to
XN
j¼1

Sj:

Fortunately, we do not have to consider all the xij variables if the revised
simplex method is to be used.
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10.3 Algorithm of the Decomposition Technique

This section introduces a typical decomposition algorithm. The solution steps
are as follows:

Step 1. Reformulate the LP problem into N LP subproblems and let A0

represent the matrix of constraints and c0 represent the vector of
objective coefficients.

Step 2. Initialization. Assume x¼ 0 is a feasible solution to the original
problem. Set j¼ 1 and xjk* ¼ 0, where j 2 {1,N} and determine the
basis matrix B and the vector of the basic variable coefficients cB in
the objective function.

Step 3. Compute the vector c�1
B A0 � c0 and set rij to the minimum value

(use the revised simplex method).

Step 4. Compute the vector (zjk – cjk) for all k¼ 1, 2, . . . , nj that corres-
ponds to rij using;

(zjk � cjk) ¼ cB(B�1)1,m0
Ajxjk*þ cB(B�1)1,m0þj � cjxjk*

¼ cB(B�1)1,m0
Aj � cj

� �
xjk*þ cB(B�1)1,m0þj,

where
m0 is the number of elements of b0
xjk* is the corner-point feasible solution for the set of constraints
given by xj � 0 and ANþjxj � bj

(B�1)1,m0
is the matrix of the first m0 columns of B�1

(B�1)1,m0
þ j is the matrix of the ith column of B�1

Step 5. Use an LP approach to solve for the optimal Wj in the new
problem that is given by

Minimize Wj ¼ cB(B�1)1,m0
Aj � cj

� �
xj þ cB(B�1)1,m0þj

Subject to

xj � 0 and ANþjxj � bj:

Step 6. Obtain Wj*, the optimal objective value of Wj, which is
Wj¼Min(zjk � cjk) for all values of k. The corresponding optimal
solution is xjk* ¼ xj.

Step 7. Determine the coefficient of the elements of xs that are nonbasic
variables as elements of cB(B

�1)1,m0
.
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Step 8. Optimality test. IF all coefficients of cB(B
�1)1,m0

are nonnegative,
THEN the current solution is optimal. Go to step 10.

Otherwise find the minimum of the coefficients of cB(B
�1)1,m0

and
select the corresponding entering basic variable.

IF the minimum of the coefficients of cB(B
�1)1,m0

¼ rjk, THEN identify
the value of xjk* and the original constraints of pjk.

Step 9. Repeat step 3 for all j 2 {1,N}.

Step 10. Apply the revised simplex method and obtain the final optimal
solution.

Step 11. Print=display final solution and end.

Notably, under the assumption that x¼ 0 is a feasible solution to the original
problem, the initialization step utilizes the corresponding solution as the
initial point or as the initial basic feasible solution. That is, we select xs as
the initial set of basic variables along with one variable rjk for each of the
subproblems j, where j 2 {1,N} such that xjk* ¼ 0. Finally, successive iterations
are performed until the optimal solution is found and the best value of rjk is
used to replace the value of xj for the optimal solution to conform with that of
the original problem.

10.4 Illustrative Example of the Decomposition Technique

Consider the problem

Maximize Z ¼ 4xi þ 6x2 þ 8x3 þ 5x4

Subject to

x1 þ3x2 þ2x3 þ4x4 � 20
2x1 þ3x2 þ6x3 þ4x4 � 25
x1 þx2 � 5
x1 þ2x2 � 8

4x3 þ3x2 � 12

and

xj � 0, j 2 (1, 2, . . . , 4):

Solution
In the reformulated problem, the partitioned A matrix that reflects the easy
and complicated constraints is
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A ¼

1 3 ..
.

2 4

2 3 ..
.

6 4

� � � � � � ..
. � � � � � �

1 1 ..
.

0 0

1 2 ..
.

0 0

� � � � � � ..
. � � � � � �

0 0 ..
.

4 3

2
66666666666664

3
77777777777775
:

Therefore, N¼ 2 and

A1 ¼ 1 3
2 3

� �
, A2 ¼ 2 4

6 4

� �
,

A3 ¼ 1 1
1 2

� �
, A4 ¼ [4 3]:

In addition,

c1 ¼ [4 6], c2 ¼ [8 5],

X1 ¼ x1
x2

� �
, X2 ¼ x3

x4

� �
, b0 ¼ 20

25

� �
, b1 ¼ 5

8

� �
, b2 ¼ [12]:

To prepare for demonstrating the solution to this problem, we first examine
its two subproblems individually and then the reformulation of the overall
problem.

Subproblem 1

Maximize Z1 ¼ [4 6]
x1
x2

� �

Subject to

1 1
1 2

� �
x1
x2

� �
� 5

8

� �
and x1

x2

� �
� 0

0

� �
:

It can be seen that this subproblem has four extreme points (n1¼ 4). One of
these is the origin, considered the ‘‘first’’ of these extreme points, so

X11* ¼ 0
0

� �
, X12* ¼ [50], X13* ¼ 2

3

� �
, X*14 ¼

0
4

� �
,

where r11, r12, r13, and r14 are the respective weights on these points.
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Subproblem 2

Maximize Z2 ¼ [8 5]
x3
x4

� �

Subject to

[4 3]
x3
x4

� �
� [12] and

x3
x4

� �
� 0

0

� �
:

Its set of feasible solutions is

X21* ¼ 0
0

� �
, X22* ¼ 3

0

� �
, X23* ¼ 0

4

� �
,

where r21, r22, and r23 are the respective weights on these points.
By performing the cjxjx* vector multiplications and the Ajxjk* matrix multi-

plications, the following reformulated version of the overall problem can be
obtained.

Maximize Z ¼ 20r12 þ 26r13 þ 24r14 þ 24r22 þ 20r23

Subject to

5r12 þ 11r13 þ 12r14 þ 6r22 þ 16r23 þ xs1 ¼ 20

10r12 þ 13r13 þ 12r14 þ 18r22 þ 16r23 þ xs2 ¼ 25

r11 þ r12 þ r13 þ r14 ¼ 1

r21 þ r22 þ r23 ¼ 1

and

r1k � 0 for k ¼ 1, 2, 3, 4

r2k � 0 for k ¼ 1, 2, 3

xsi � 0 for i ¼ 1, 2:

However, we should emphasize that the complete reformulation normally is
not constructed explicitly; rather, just parts of it are generated as needed
during the progress of the revised simplex method.

To begin solving this problem the initialization step selects xs1, xs2, r11, and
r12 to be the initial basic variables, so that

XB ¼
xs1
xs2
r11
r21

2
664

3
775:
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Therefore, since A1x11* ¼ 0, A2x21* ¼ 0, c1x11* ¼ 0, and c2x21* ¼ 0, then

B ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ¼ B�1, XB ¼ b0 ¼

20
25
1
1

2
664

3
775, cB ¼ [0 0 0 0],

for the initial basic solution.
To begin testing for optimality, let j¼ 1, and solve the LP problem.

Minimize W1 ¼ (0� c1)x1 þ 0 ¼ �4x1 � 6x2

Subject to

A3x1 � b1 and x1 � 0:

The optimal solution of this problem is

x1 ¼ 2
3

� �
¼ x13* ,

such that W1* ¼ �26. Next, let j¼ 2 and solve the LP problem.

Minimize W2 ¼ (0� c2)x2 þ 0 ¼ �8x3 � 5x4

Subject to

A4x2 � b2 and x2 � 0:

The solution of this problem is

x2 ¼ 3
0

� �
¼ x22*

such that W2* ¼ �24. Finally, since none of the slack variables are nonbasic,
no more coefficients need to be calculated. It can now be concluded that
because both W1* < 0 and W2* < 0, the current basic solution is not optimal.
Furthermore, since W1* is the smaller of these, r13 is the new entering basic
variable.

For the revised simplex method to now determine the leaving basic vari-
able, it is first necessary to calculate the column of A0 giving the original
coefficients of r13. This column is

A0
k ¼

A1x13*
1
0

2
4

3
5 ¼

11
13
1
0

2
664

3
775:
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Proceed in the usual way to calculate the current coefficient of r13 and the
right-hand side column,

B�1A0
k ¼

11
13
1
0

2
664

3
775, B�1b0 ¼

20
25
1
1

2
664

3
775:

By considering only the strictly positive coefficients, the minimum ratio of
the right-hand side to the coefficient is the (1=1) in the third row, so that r¼ 3;
that is, r11 is the new leaving basic variable. Thus, the new values of XB and
cB are

XB ¼
xs1
xs2
r13
r21

2
664

3
775, cB ¼ [0 0 26 0]:

By using a matrix inversion technique to find the value of B�1, we obtain
such that

B�1
new ¼

1 0 �11 0
0 1 �13 0
0 0 1 0
0 0 0 1

2
664

3
775:

The current basic feasible solution is now tested for using the optimality
conditions of the revised simplex method. In this case, W1¼ (0� c1)x1þ 26¼
�4x1� 6x2þ 26 and the minimum feasible solution of this problem is

x1 ¼ 2
3

� �
¼ x13* :

This yields W1* ¼ 0:0. Similarly, W2¼ (0� c2)x2þ 0¼�8x3� 5x4 such that the
minimum solution of this problem is

x2 ¼ 3
0

� �
¼ x22* :

This yields W2* ¼ �24:
Finally, since none of the slack variables are nonbasic, no more coefficients

need to be calculated. It can now be concluded that because bothW2* < 0, the
current basic solution is not optimal, and r22 is the new basic variable.
Proceeding with the revised simplex method.
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A0
k ¼

A2x22*

0

1

2
64

3
75 ¼

6

18

0

1

2
6664

3
7775:

This implies that

B�1A0
k ¼

6

18

0

1

2
6664

3
7775, B�1b0 ¼

9

12

1

1

2
6664

3
7775:

Therefore, the minimum positive ratio is (12=18) in the second row, so that
r¼ 2; that is, xs2 is the new leaving basic variable.
The new inverse of the B matrix is now:

B�1
new ¼

1 �1
3

� � �20
3

� �
0

0 1
18

� � �13
18

� �
0

0 0 1 0

0 �1
18

� �
13
18

� �
1

2
6664

3
7775:

XB ¼
xs1
r22
r13
r21

2
6664

3
7775, cB ¼ [0 24 26 26 0]:

Now test whether the new basic feasible solution is optimal.

W1 ¼ [0 24 26 0]

1 �1
3

� �
0 1

18

� �
0 0

0 �1
18

� �

2
66664

3
77775

1 3

2 3

" #
� [4 6]

0
BBBB@

1
CCCCA

x1
x2

" #
þ [0 24 26 0]

�20
3

� �
�13
18

� �
1
13
18

� �

2
66664

3
77775

¼ 0
4
3

� �� �
1 3

2 3

" #
� [4 6]

 !
x1
x2

" #
þ 26

3

¼�4
3
x1� 2x2þ 26

3
:

Therefore, the feasible solution is

X1 ¼ 2
3

� �
¼ x13* , with W1* ¼ 2

3

� �
:
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Similarly,

W2 ¼ 0
3
4

� �� �
2 4

6 4

� �
� [8� 5]

� �
x3
x4

� �
þ 0:0

¼ 1
3
x4,

and the minimum solution now is

X2 ¼ 0
0

� �
¼ X21*

and the corresponding objective value is W2* ¼ 0:0. Finally, W1* � 0:0 and
W2* � 0, which means that the feasible solution is optimal. To identify this
solution, set

XB ¼

xs1
r22

r13

r21

2
6664

3
7775 ¼ B�1b0 ¼

1 �1
3

� � �20
3

� �
0

0 1
18

� � �13
18

� �
0

0 0 1 0

0 �1
18

� �
13
18

� �
1

2
6664

3
7775

20

25

1

1

2
6664

3
7775 ¼

5
2
3

1
1
3

2
6664
3
7775

; X1 ¼ x1
x2

� �
¼
X4
k¼1

r1kx1k* ¼ x12* ¼ 2
3

� �
:

and

X2 ¼ x3
x4

� �
¼
X3
k¼1

r2kx2k* ¼ 1
3

0
0

� �
þ 2
3

2
3

� �
¼ 2

0

� �
:

Thus, an optimal decision variable for the problem is x1¼ 2, x3¼ 3, x3¼ 2,
and x4¼ 0. The corresponding value of the objective function is Z¼ 42.

10.5 Conclusions

This chapter discussed the decomposition method for a special class of LP
multidimensional problems. This optimization method is applicable to a
wide lass of problems such as in Refs. [3–5] with a special LP structures.
Formulation of the decomposition problem was shown in Section 10.2. The
algorithm of the decomposition technique and an illustration example of the
decomposition method were given in Sections 10.3 and 10.4.
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10.6 Problem Set

PROBLEM 10.1

Maximize z ¼ 4x1 þ x2 þ 6x3

Subject to

3x1 þ 2x2 þ 4x3 � 17

x1 � 2

x3 � 2

x1 � 1

x2 � 1

x3 � 1:

PROBLEM 10.2

Consider the multidivisional problem

Maximize z ¼ 10x1 þ 5x2 þ 8x3 þ 7x4

Subject to

6x1 þ 5x2 þ 4x3 þ 6x4 � 40

3x1 þ x2 � 15

x1 þ x2 � 10

x3 þ 2x4 � 10

xj � 0:

Use the decomposition principle to solve this problem.

PROBLEM 10.3

Maximize z ¼ 3x1 þ 5x2

Subject to

3x1 þ 2x2 � 18

x1 � 4

xj � 0:
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PROBLEM 10.4

Apply the decomposition principle to the following problem.

Maximize z ¼ 6x1 þ 7x2 þ 3x3 þ 5x4 þ x5 þ x6

Subject to

x1 þ x2 þ x3 þ x4 þ x5 þ x6 � 50

x1 þ x2 � 10

x3 � 8

5x3 þ x4 � 12

x5 þ x6 � 5

x5 þ 5x6 � 50

xj � 0:

PROBLEM 10.5

Indicate the necessary changes in the decomposition algorithm in order to
apply it to minimization problems. Then solve the problem:

Maximize z ¼ 5x1 þ 3x2 þ 8x3 � 5x4

Subject to

x1 þ x2 þ x3 þ x4 � 25

5x1 þ x2 � 20

5x1 � x3 � 5

x3 þ x4 ¼ 20

xj � 0:

PROBLEM 10.6

Solve the following problem using the decomposition algorithm.

Maximize z ¼ 10x1 þ 2x2 þ 4x3 þ x4

Subject to

x1 þ 4x2 � x3 � 8

2x1 þ x2 þ x3 � 2

3x1 þ x4 þ x5 � 4

x1 þ 2x4 � x5 � 10

xj � 0:
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PROBLEM 10.7

Solve the following problem by the decomposition algorithm:

Maximize P ¼ 3x1 þ 4x2 þ x3 þ 2x4

Subject to

x1 þ x2 þ x3 þ x4 � 38

5x1 þ x2 � 12

x3 þ x4 � 6

x3 þ 5x4 � 45

x1, x2, x3, x4 � 0

PROBLEM 10.8

Solve the following problem by the decomposition algorithm:

Maximize z ¼ x1 þ 3x2 þ 5x3 þ 2x4

Subject to

2x1 þ x2 � 9

5x1 þ 3x2 þ 4x3 � 10

x1 þ 4x2 � 8

x3 � 5x4 � 4

x3 þ x4 � 10

x1, x2, x3, x4 � 0
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11
State Estimation

11.1 Historical Perspective of State Estimation

Online state estimation is concerned with computing solutions of the basic
load-flow problem every few minutes using online data telemetered period-
ically to the energy control center (ECC). As shown in Figure 11.1, this is one
at present for the internal bulk transmission system of the utility concerned.
Data exchanges with other neighboring utilities for the purpose of develop-
ing an external network equivalent model will be made easier if every utility
is an online state estimator. An external equivalent representation will be
necessary to perform online contingency analysis. Without an external
equivalent model the uses of online state estimation will be limited to the
monitoring of voltage levels, phase angles, line flows, and network topology.
Another benefit is to use state estimator outputs short-term load forecasting.

In the basic load-flow problem the input=demand variables describe
steady-state behavior of the system. In actual online systems one may meas-
ure these inputs and demands directly. The demands are injection quantities
each of which is the sum of several power flow solutions. In principle, one
can measure any meaningful set of system quantities that use those meas-
urements as inputs to a system of equations whose solution yields values of
state variables (bus voltage magnitudes and angles).

Of significance, in any online process, it is the fact that measurements will
always have errors associated with them. Thus by measuring more quantities
than the necessary minimum number, one can use the statistical theory of
state estimation to filter out some of the error in the measurements. Hope-
fully, the solutions obtained will be more accurate than the measurements
themselves. Although the increased accuracy of solutions is desirable, what is
more significant is the ability to filter out the so-called bad data or highly
erroneous measurements. Bad data will occur because of infrequent malfunc-
tions in measuring instruments, possible communication errors, and other
factors. Only when there are redundant measurements can one hope to
develop a rational and automatic self-checking algorithm to insure the reli-
ability of online load-flow solutions.

Because it addresses itself to the statistics of errors in measurements,
online state estimation is by necessity a stochastic approach to the problem.
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The obtained solutions are stochastic in nature with probabilistic character-
istics. The importance of this stochastic approach lies not only in addressing
issues of measurement errors but also in addressing other factors of uncer-
tainty like those arising from modeling inaccuracies. Such inaccuracies result
from errors in the values of line and transformer admittances due to initial
approximations in obtaining admittance values, weather effects, and others.
These are usually small but significant errors especially when their effects are
compared to those produced by measurement errors. Large modeling errors
occur, sometimes, because of incorrect topology determination by the online
system. The major topics associated with online state estimation are

. Weighted least squares estimation (WLSE)

. Model error correction by means of parameter estimation

. Detection and identification of bad data

. Selection and location of measuring instruments

Vertically integrated utilities provide bundled services to customers aim-
ing at high reliability with the lowest cost. In the traditional environment,
utilities perform both power network and marketing functions. Although
energy management systems (EMS) technology has been used to a certain
extent, utilities were not pressed to utilize tools that demanded accurate real-
time network models such as optimal power flows and available transfer
capability determination. This is bound to change in the emerging competi-
tive environment.

External network and
systems

Internal network

Internal power
plants and loads

A G C
E D

Security assessment
and enhancement

State estimator

FIGURE 11.1
Simplified block diagram illustrating the role of online state estimation in an energy control center.
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11.1.1 Conventional State Estimation

In conventional state estimation, network real-time modeling is decomposed
into (1) the processing of logical data (the statuses of switching devices) and
(2) the processing of analog data (e.g., power flow, power injection,
and voltage magnitude measurements). During topology processing, the
status of breakers=switches is processed using a bus section=switching-
device network model. During observability analysis and state estimation,
the network topology and parameters are considered as given, and analog
data are processed using the bus i branch network model. In the conventional
approach, logical data are checked by the topology processor and the analog
data are checked by the state estimator.

11.1.2 Generalized State Estimation

In generalized state estimation there is no clear-cut distinction between the
processing of logical and analog data since network topology processing may
include local, substation level, state estimation, whereas when state estima-
tion is performed for the whole network, parts of it can be modeled at the
physical level (bus section=switching-device model). The term generalized is
used to emphasize the fact that not only states, but also parts of the network
topology, or even parameters, are estimated.

The explicit modeling of switches facilitates bad data analysis when top-
ology errors are involved (incorrect status of switching devices). In this case,
state estimation is performed on a model in which parts of the network can
be represented at the physical level. This allows the inclusion of measure-
ments made on zero impedance branches and switching devices. The con-
ventional states of bus voltages and angles are augmented with new state
variables. Observability analysis is extended to voltages at bus sections and
flows in switching devices, and if their values can be computed from the
available measurements they are considered to be observable.

For a zero impedance branch, or a closed switch, the following constraints,
or pseudomeasurements, are included in state estimation:

Vk � Vm ¼ 0 and ukm ¼ uk � um ¼ 0:

In this case, Pkm and Qkm are used as additional state variables. These
variables are independent of the complex nodal voltages Vke

juk and Vme
jum,

since Ohm’s law (in complex form) cannot be used to compute the branch
current as a function of these voltages.

For open switches, the same additional state variables are included in
state estimation. In the case of open switches the pseudomeasurements are
as follows:

Pkm ¼ 0 and Qkm ¼ 0:
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No pseudomeasurements are added in the case of switches with unknown
status. (There are situations in which the wrong status of a switching device
can affect state estimation convergence. In these cases it may be preferable to
treat such status as unknown and proceed with state estimation, which
hopefully will include the estimation of the correct status.)

The ideas above can be extended to branches with unknown impedances.
(The same comment regarding the impact of unknown status on state esti-
mation convergence applies to branches with impedances with large errors.)
Consider where the branch impedance zkm is unknown, whereas for simpli-
city all branches incident to k andm are assumed to have known impedances.
As with zero impedance branches and with closed=open breakers, Ohm’s
law cannot be used to relate the state variables Vke

juk and Vme
jum, associated

with the terminal nodes k and m, with the branch complex power flows
Pkmþ jQkm and Pmkþ jQmk. These power flows can be used as additional
states, although they are not independent, since they are linked by the
constraint Ikmþ Imk¼ 0, which can be expressed by the two following pseu-
domeasurements:

PkmVm þ (Pmk cos ukm �Qmk sin ukm)Vk ¼ 0

QkmVm þ (Pmk sin ukm þQmk cos ukm)Vk ¼ 0:
(11:1)

A power injection measurement at node k can be expressed as the summation
of the flow state variables PkmþQkm and the flows in all other branches
incident to k. Since only the flows in regular branches are functions of the
nodal state variables, the unknown impedance will not form part of
the measurement model. A similar analysis holds for power injection meas-
urement at nodal and power flow measurements made in the unknown
impedance branch. Once the network state is estimated, the value of the
unknown parameter can be computed from the estimates.

More complex network elements such as a transmission line p equivalent
model require the consideration of additional constraints (pseudomeasure-
ments) in addition to the inclusion of flow state variables. Consider, for
example, the equivalent p model, where the series branch impedance is to
be estimated. In this case, power flows P0

km, Q
0
km, P

0
mk, and Q0

mk are considered
to be additional states. The terminal power flows Pkm, Qkm, Pmk, and Qmk are
then expressed in terms of the new state variables rather than as a function of
the terminal bus voltages; as a consequence, the series branch impedance will
not appear in the measurement model, and this can be written as

Pkm ¼ Pkk þ P0
km and Qkm ¼ Qkk þQ0

km (11:2)

Pmk ¼ Pmm þ P0
mk and Qmk ¼ Qmm þQ0

mk: (11:3)

Notice that in Equations 11.2 and 11.3, the power flows Pkk, Qkk, Pmm, and
Qmm, are written in terms of the shunt parameters as usual. The bus injection
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measurements at buses k and m are expressed in terms of the terminal power
flows as described earlier.

These added states are not entirely independent, so it is necessary to
include the following relationship in the model:

P0
kmVm þ P0

mk cos ukm �Q0
mk sin ukm

� �
Vk ¼ 0

Q0
kmVm þ P0

mk sin ukm þQ0
mk cos ukm

� �
Vk ¼ 0:

(11:4)

Now consider the situation where a p equivalent model in which the shunt
elements are made dormant. The state variables and measurement model are
the same as those in the previous model. The constraints linking the state
variables in the case of a balanced p model is yshkk ¼ yshmm.

Expressing the shunt admittances in terms of the corresponding active and
reactive power flows yields the two following pseudomeasurements:

PkkV2
m � PmmV2

k ¼ 0

QkkV2
m �QmmV2

k ¼ 0:
(11:5)

11.2 Simple Mathematical Background

11.2.1 Definition of Static State Estimation

In a typical static state estimation application many quantities of interest are
measured and telemetered periodically every few seconds to the ECC. Such
quantities include measurements of items such as

. Real and reactive line power flows

. Bus voltage magnitudes at generation and load busses

. Real and reactive generation at generation busses

. Real and reactive bus loads at load busses

. Transformer tap settings

In addition, on–off status quantities like breaker status are also telemetered to
establish the exact network configuration. We assume that the given meas-
urements are more than needed, i.e., there is a subset of measurements that
will provide a load-flow solution. Each measured quantity can be expressed
as follows:

zi ¼ zti þ vi, (11:6)
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where
zi is the measured value
vi is the measurement error
zti is the true (but unknown) value of the measured quantity

The error vi is obviously not known. What is known is a statistical measure
associated with vi. This measure can be adequately estimated from the
calibration curves of the measuring instrument involved. The measure is
given in terms of standard deviation error. Statistically, we can say that

E(vi) ¼ 0 and E v2i
� � ¼ s2

i : (11:7)

This means that the error vi, on the average, is zero, and that its standard
deviation is si. In actual applications si may depend on the actual magnitude
of the quantity measured, i.e., si¼si (zi). We assume that si is a constant for a
given meter. A final statistical assumption is that of independence of errors
coming from two different instruments, i.e.,

E(vivj) ¼ 0, i 6¼ j: (11:8)

In principle, the true but unknown value zti is related to the true but
unknown state vector x and the network admittance parameter vector p by
the relation:

zti ¼ hi(x,p), (11:9)

where
x is the vector of all complex bus voltages
p is the vector of given series and shunt admittances

For example, we can write

Tij ¼ Tt
ij þ vTij

Tt
ij ¼V2

i (gij þ gsij)�ViVj(gij cos (di � dj)þ bij sin (di � dj))

Uij ¼U2
ij þ vUij

Ut
ij ¼�V2

i (bij þ bsij)�ViVj(gij sin (di � dj)� bij cos (di � dj))

9>>>>>=
>>>>>;
: (11:10---11:13)

In general, we write

z ¼ h(x,p)þ v, (11:14)
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where

z ¼
z1

..

.

zm

2
664

3
775 ¼ vector of measured values

h(x) ¼
h1(x)

..

.

hm(x)

2
664

3
775

(11:15)

x ¼
x1

..

.

xn

2
664

3
775 ¼

d2

..

.

dnb

Vd1

..

.

Vnb

2
66666666664

3
77777777775

E(v) ¼ 0

E(vvT) ¼ R ¼ covariance of v: (11:16)

R is a diagonal matrix of all measurement variances, i.e.,

R ¼
s2
1 0 � � � 0
0 s2

2 � � � 0
..
. ..

. . .
.

0
0 0 � � � s2

m

2
6664

3
7775: (11:17)

It is necessary to have m � n in such a way that a subset of n measurements
can yield a solution of all state variables. This is known as the observability
criterion. Normally m is 2–3 times the value of n allowing for a considerable
amount of redundancy in the measurement information.

11.3 State Estimation Techniques

11.3.1 Method

Over the last few decades, many state estimation methods have been pro-
posed and some of them were successfully applied to electric power industry
[1]. In the classical normal method for state estimation called the normal
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equations (NE), a slow convergence or even nonconvergence can occur when
dealing with large coefficient matrices. When the following factors are pre-
sent, using the NE method may result in ill conditioning:

. Disparity in weighting factors

. Large number of injection measurements

. Connection of short and long transmission lines

Other methods called the orthogonal transformation method and the
hybrid method directly perform the QR decomposition of the Jacobian mat-
rix. The QR decomposition, also known as the QR factorization of a matrix,
is a decomposition of the matrix into an orthogonal and triangular matrix.
It is a method often used to solve the least squares problem. As a result, these
are more stable and preferable to the NE method. There exist, however, some
disadvantages. Namely, with regard to the orthogonal transformation
method, Q needs to be stored which would require costly memory to store
the nonspare and high dimension matrix. With the hybrid method is com-
paratively less stable than the orthogonal transformation method.

Some authors have used interior point methods for weighted least absolute
value (WLAV) state estimation [2], while there are other methods such as
auto tuning of measurement weights [3]. We will discuss the method and
formulation of the least square state estimation [4].

11.3.1.1 Least Squares Estimation (LSE)

In least square calculations, we are trying to minimize the sum of measure-
ments residuals

J(x) ¼
XNm

i¼1

(Zi � fi(x))2

s2 , (11:18)

where
fi is the function that is used to calculate the value using measurements
by the ith measurement

s2 is the variance for the residual
J(x) is the measurement residual
Nm is the number of independent measurements
Zmeas
i is the ith measured quantity

Assuming a given vector x of n random variables x1, x2, . . . , xn, and another
vector y are related by Equation 11.19

y ¼ Hxþ r, (11:19)
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where
H is the known matrix of dimension m�n
r is the zero mean random variable of same dimension as y
x is the variable to be estimated
y is the variable whose numerical values are available

In this least squares method, we have to obtain the best possible value of
the vector x from the given values of the vector y. We start by taking the
expectation of Equation 11.19. We then obtain

�y ¼ H�x, (11:20)

where �x and �y are the expected values of x and y, respectively. As we develop
this method, we need to assume that x̂ represents the desired estimate of x so
that ĉ is given by

ŷ ¼ Hx̂: (11:21)

The error can then be given by

~y ¼ y� ŷ: (11:22)

The estimate x̂ is the LSE if it is calculated by minimizing the estimation
index J using

J ¼ ~yT�y: (11:23)

We then obtain the following expression using Equations 11.21 and 11.22

J ¼ yTy� yTHx̂� x̂THTyþ x̂THTHx̂:

We are then faced with a minimization problem to be solved such that

Min J ¼ f(x̂) (11:24)

s:t: grad
x̂

J ¼ 0:

Solution to Equation 11.24 leads to

HTHx̂�HTy ¼ 0: (11:25)

Equation 11.25 is called the NE and can be solved explicitly for the LSE of
vector x̂ as follows,

x̂ ¼ (HTH)�1HTy: (11:26)
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Example 11.3.1

Assume H ¼
1 1
0 1
1 0

2
4

3
5, estimate two random variables x1 and x2 by using the data

for a three-dimensional vector y.
The matrix HTH is given by

HTH ¼ 2 1
1 2

� �
and its inverse (HTH)�1 ¼ 2=3 �1=3

�1=3 2=3

� �
:

The vector HTy can now be formed and along with the inverse of HTH, the
estimate of x can be obtained using

x̂ ¼ (2=3)y1 � (1=3)(y2 � y3)
�(1=3)y1 þ (2=3)y2 þ (1=3)y3

� �
:

11.3.1.2 Weighted Least Square Estimation

The weighted least squares state estimator [4] is to find the best state vector x,
which minimizes the performance index of m measurements. We first obtain
the ordinary least square estimate equation, listed in Equation 11.26 by
minimizing the index function that puts equal weight to the errors of esti-
mation of all the components of vector y. The estimation index is defined by

J ¼ ~y0W~y, (11:27)

where W is the real symmetric weighting matrix of dimension m�m.
The method of LSE is extended to the weighted form of and the NE is

derived in the following form

HTWHx̂�HTWy ¼ 0: (11:28)

The desired weighted least square (WLS) estimate is then found using

x̂ ¼ (HTWH)�1HTWy: (11:29)

Equation 11.29 can then be rewritten as

x̂ ¼ ky, (11:30)

where

k ¼ (HTWH)�1HTW: (11:31)
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The following relationship is then obtained.

x̂ ¼ KHxþ kr

¼ (HTWH)�1(HTWH)xþ kr

or

x̂ ¼ xþ kr (11:32)

and

E{x̂} ¼ E{x}: (11:33)

Note that in Equation 11.33, called an unbiased estimate when satisfied, the
error r is statistically independent of the columns in H and that the vector r
has a zero mean. Hence the estimation error can be inferred to be zero on
average. We can then write

~x ¼ kr (11:34)

and the covariance of the estimation error is given as

Px ¼ KRKT, (11:35)

where R is the covariance of the error vector v.
Since the covariance Px is a measure of the accuracy of the estimation, a

smaller trace of this matrix would result in a more suitable estimate. To select
the best choice of the weighting matrix, we need to set W¼R�1. We can now
solve for the optimum value of the error covariance matrix using

Px ¼ (HTR�1H)�1: (11:36)

Also, K depends on H given by the relationship.

K ¼ (HTWH)�1HTW (11:37)

where

W ¼ R�1 (11:38)

Example 11.3.2

Assume that we want to obtain the WLSE of the variable x from Example 11.3.1, by
choosing the following weighting matrix,

W ¼
0:2

1
0:2

2
4

3
5:
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The matrix

HTWH ¼ 0:4 0:2
0:2 1:2

� �

and the matrix

HTW ¼ 0:2 0 0:2
0:2 1 0

� �
:

TheWLEs estimate of the vector x is obtained using Equation 11.29.We therefore get

x̂ ¼ (5=11)y1 �(5=11)y2 (6=11)y3
(1=11)y1 (10=11)y2 �(1=11)y3

� �
:

Comparing the result of Example 11.3.1, we can clearly notice the effect of
introducing the weighting on the estimate. Note that in the matrix H, the data
for y2, is given more weight and hence considered more valuable and in turn
makes the components of x more dependant on y2.
The matrix k can also be found using Equation 11.31.

K ¼ (5=11) �(5=11) (6=11)
(1=11) (10=11) �(1=11)

� �
:

Assuming that the covariance of the measurement error R¼ I, then using Equa-
tion 11.36 we can obtain Px such that

Px ¼ (1=121)
86 �51
�51 102

� �
:

The choice of W previously yields unacceptably large estimation error variances.
We therefore choose the weighting matrix to be equal to the identity matrix,W¼ I.
The matrix K can now be solved as

K ¼ 1=3 �1=3 2=3
1=3 2=3 �1=3

� �
:

Now the error covariance can be given by

Px ¼ (1=9)
6 �3
�3 3

� �
:

As expected, the error variances are now much smaller.

11.4 Applications to Power Network

11.4.1 State Estimation in Power Systems

The main goal of the power systems state estimator is to find a robust
estimate for the unknown complex voltage at every bus in the modeled
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network [5]. Since inexact measurements—such as those from a SCADA
system—are used to calculate the complex voltages, the estimate will also
be inexact. This introduces the problem of how to devise the best estimate for
the voltages given the available measurements. Of the many criteria used to
develop a robust state estimator, the following three are regarded as the most
common [6]:

1. Maximum likelihood: Maximizes the probability that the estimated
state variable is near the true value.

2. Weighted least squares (WLS): Minimizes the sum of the squared
weighted residuals between the estimated and the actual measure-
ments.

3. Minimum variance: Minimizes the expected value of the sum of the
squared residuals between components of the estimated state vari-
able and the true state variable.

The state estimation problem in power systems is derived from the rela-
tionship of the available system measurements to the system unknowns [7],
given as

zi ¼ hi(x)þ hi i ¼ 1, . . . , q, (11:39)

where
zi is the available system measurement (q such measurements)
x is the system variable (voltage magnitudes jVij, and phases ui)
hi is the measurement error typically modeled as a random variables

with a zero mean Gaussian distribution
hi(x) is the nonlinear algebraic function relating the system variables to

the system measurements, for various measurements

Random samples of the system measurements are taken and the objective
is to find the best estimate of the system variables based on these random
samples. These estimates are referred to as static estimates since the system is
at equilibrium, and the methods discussed are referred to as static state
estimators. Various applications of dynamic state estimators in power sys-
tems exist and focus on either applying Kalman filtering techniques [8,9] to a
measurement model similar to Equation 11.39 or applying observers to track
the dynamics of a power system [10–13]. In the observer-based methods, the
model of the system includes the dynamic states of the system associated
with the performance of the system generators, which is neglected in Refs.
[8,9]. In particular, for the approach in Ref. [13], the observer-based state
estimator is constructed using a DAE model of the power system.

There are multiple classes of estimators for static estimation, and each
estimator is based on a unique cost function which is minimized in obtaining
the system variables. A sample of commonly used objective functions (C(x))
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is provided in Table 11.1. For each of these methods there are multiple
approaches used to improve the solution accuracy=efficiency of the problem.
Detailed information about the various state estimation solvers in power sys-
tems can be found in Refs. [6,14], and a summary of commonly used methods
and their properties is given in Ref. [15]. Of particular interest is the commonly
adopted WLS estimator, which is described in the following section.

11.4.1.1 WLSs Estimator

Because of redundant measurements, the solution x̂ of x is obtained by
minimizing the WLSs performance index J given by

J ¼ [z� h(x,p)]TR�1[z� h(x,p)] (11:40)

with respect to x. The vector p is assumed to be known exactly. Hence, we
can drop p from Equation 11.40. The concise state estimation problem state-
ment becomes

Given z ¼ h(x)þ v: (11:41)

Such that E(v)¼ 0, E(wT)¼R. Compute the best estimate x̂ of x which
minimizes.

J ¼ [z� h(x)]TR�1[z� h(x)] (11:42)

with respect to x
At the minimum of J we should expect that

@J
@x

����
x̂
¼ 0, (11:43)

where x̂ is the state vector at the minimum of J and is referred to as the
best estimate of x. Given the above definition of J, we assert that the zero

TABLE 11.1

Sample Object Functions and Estimators for Solving the State
Estimation Problem

WLSs C(x) ¼ 1
2

P
i

(zi � hi(x))2

s2
i

s2
i : Variance of error

Nonquadratic
estimators

C(x) ¼ P
€i

r
zi � hi(x)

si
r: Function that

varies with residual

WLAV C(x) ¼ P
€i

jzi � hi(x)j
si

Least median of squares C(x) ¼ median{ zi � hi(x)ð Þ2}
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gradient condition just stated will yield the following n-dimensional vector
equation

0 ¼ HT(x̂)R�1(z� h(x̂)): (11:44)

The necessary conditions for solution are a set of nonlinear algebraic
equations requiring an iterative solution method. As in the Newton–Raphson
method one would linearize the system equations around a nominal value of
the state vector x. Let x̂0 be such a nominal solution, we write

0 ¼ HT(x̂)R�1[z� h(x̂)]

¼ [HT(x̂0)þ DHT(x̂)]R�1[z� h(x̂0)�H(x̂0)(x̂� x̂0)]

þ higher-order terms

� HT(x̂0)R�1(z� h(x̂0))�HT(x̂0)R�1H(x̂0)(x̂� x̂0): (11:45)

In the linearization the term HR�1(z�h(x)) was not included. This is since in
the vicinity of the actual solution, the (z�h(x)) vector is small. Hence the
entire term is close to being a higher-order term. The above derivation is
called a quasilinearization.

In the iterative scheme the next guess x̂�1 is defined as the solution of

0 ¼ HT(x̂0)R�1(z� h(x̂0))�HT(x̂0)R�1H(x̂0)(x̂� x̂0) (11:46)

hence we write

x̂1 ¼ x̂0 þ (HT
0R

�1H0)�1HT
0R

�1(z� h(x̂0)), (11:47)

and in general we obtain

x̂kþ1 ¼ x̂k þ (HT
kR

�1Hk)
�1HT

kR
�1(z� h(x̂k)), (11:48)

where k¼ 0, 1, . . . , and

Hk ¼ H(x̂k): (11:49)

Sparse matrix techniques are directly applicable to the basic WLS algo-
rithm derived here. Some general comments are given as follows:

1. Since the matrix HTR�1H (known as the information matrix) is
symmetrical, one can store only the upper triangle of that matrix.
For a symmetrical matrix one can easily show that the upper and
lower triangular factors are related by the relation
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Lji ¼ UijLii, j > I (11:50)

Therefore only the lower triangular or the upper triangular factors
plus the diagonal of the lower triangular factors need to be stored.

2. In computing the vector HTR�1(z� h(x)), we use

HTR�1(z� h(x)) ¼
Xm
i¼1

@hi
@x

� �
(z� hi(x))

s2
i

: (11:51)

Since hi(x) depends on only a few components of the x vector, the
vector @hi=@x is highly sparse. In this identity one computes the
contribution of each measurement to the overall expression separate
and adds it to previous contributions.

3. We evaluate the information matrix by means of the identity:

HTR�1H ¼
Xm
i¼1

@hi
@x

� �
@hi
@x

� �T 1
s2
i
: (11:52)

The contribution of each measurement to the information matrix
is computed separately and added to previous contributions.
We need to be careful when using compact storage arrays for off-
diagonal terms.

4. Sparsity of the information matrix degrades because of injection
measurements. In load-flow analysis, the number of off-diagonal
terms in the Jacobian due to an injection measurement at a bus
with b neighbors is 2b. However, in the information matrix this
number is b(2b� 1). The sparsity of the load-flow and state estima-
tion cases are identical when the state estimator is based on line flow
and bus voltage measurements only.

5. Basic WLS algorithm is fast in terms of convergence. Normally
3–4 iterations are sufficient as in the Newton–Raphson load-
flow case.

11.4.2 Statistical Properties of State Estimator Outputs

The expected value of the optimal estimate vector x̂ can be shown to be
given by

E(x̂) ¼ x: (11:53)

Moreover, the covariance matrix of x̂ is given by

cov(x̂) ¼ [HTR�1H]�1: (11:54)
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We are also interested in the expected values of the index (J=m) correspond-
ing to the fit of estimates of measured quantities to the measurements
themselves. This can be shown to be given by

E( J=m) ¼ m� n
n

: (11:55)

For m� n (no redundancy) E( J=m)¼ 0 and the estimates fit the measure-
ments perfectly. For m ! 1 (infinite redundancy), E( J=m) ! 1 and the
estimates approach the true value. In addition, the index Jt=m corresponds
to the fit of the estimates to the true values of the noisy measurements. This
can be shown to be given by

E( Jt=m) ¼ n=m: (11:56)

For m¼ n, we get E( Jt=m)¼ 1, and for m ! 1, E( Jt=m) m ! 0
In general the index J is chi-square distributed with m� n degrees of

freedom.

11.4.2.1 Decoupled WLS and DC Models

In transmission systems, the sensitivity of real power to changes in bus
voltage magnitudes and the sensitivity of reactive power to changes in
bus phase angle changes are low. This characteristic leads to the decoupled
measurement model where the measurement vector is partitioned as

z ¼ zreal
zreactive

� �
¼ hP(x)

hQ(x)

� �
þ eP

eQ

� �
x ¼ [ui,Vi] (11:57)

for the case of real (P) and reactive (Q) measurements in the system (either
line flows or injections). The corresponding measurement Jacobian and gain
matrices become

J ¼ JPu 0
0 JQV

� �
G ¼ GPu 0

0 GQV

� �
(11:58)

leading to the system estimates being obtained by

Du ¼ G�1
Pu J

T
Pu R

�1
real(zreal � hP(x))

DV ¼ G�1
QV JTQV R�1

reactive(zreactive � hQ(x)):
(11:59)

In addition, if all bus voltages are assumed known and set to 1 pu and all
branch resistances are neglected, the DC measurement model is obtained,
where the system estimates are obtained using
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u ¼ G�1
Pu J

T
Pu R

�1
real z

�1
real, (11:60)

which represents the first u iterations of the decoupled model in Equa-
tion 11.60.

11.4.2.2 Including Equality Constraints

Typically, the measurement vector z will be composed of both metered
measurements and pseudomeasurements, which are known values, such as
zero injections. These measurements are added to enhance the accuracy and
sensitivity of the system estimates; however, they can cause ill-conditioned
measurement Jacobians. One approach is to remove these measure-
ments from the measurement vector, and instead, solve the state estima-
tion problem by minimizing the cost function C(x), subject to the added
constraints:

~c(x) ¼ 0, (11:61)

where c(x) is obtained from the pseudomeasurements and Equation 11.61
represents these measurements in the form of solution constraints. More
about the specific properties of this approach can be found in Refs. [6,14].

On–off status quantities, like breaker status, are also telemetered in order
to establish the exact network configuration. At the moment, we shall assume
that the given measurements are more than needed, i.e., there is a subset of
measurements that will provide a load-flow solution.

A careful selection of five of those measurements will be sufficient
for solving the problem. For example, we can choose the following five
quantities:

V1, T12, U12, T23, U23,

where Tij and Uij are the respective real and reactive power flows on line i� j.
An unsatisfactory selection of measurement quantities may consist of

V1, T12, U12, T21, U21:

This is so because from these measurements no information is obtainable on
the voltage and angle of bus 3. Each measurement quantity, e.g., Tij, can be
expressed as follows:

zi ¼ zti þ vi, (11:62)

where
zi is the measured value
vi is the measurement error
zti is the true (but unknown) value of the measured quantity
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The error vi is obviously not known. What is known is a statistical measure
associated with vi. This measure can be adequately estimated from the
calibration current (analog-to-digital) conversion. The measure is given in
terms of standard deviation of error. Statistically, we can say that

E[vi] ¼ 0

E[v2i ] ¼ s2
i

: (11:63)

This means that the error vi is zero, on the average, and that its standard
deviation is si. In actual applications si may depend on the actual magnitude
of the quantity measured, i.e., si¼si(zi). For example, the measurement error
when the meter registers 1000 MWmay be larger than the error when it reads
100 MW. For the moment we shall assume that si is a constant for the given
meter. A final statistical assumption is that of independence of errors coming
from two different instruments, i.e.,

E[vivj] ¼ 0, i 6¼ j: (11:64)

In principle, the true but unknown value zti is related to the true but
unknown state vector x, and the network admittance parameter vector p in
the relation:

Tij ¼ Tt
ij þ vTij

Tt
ij ¼ V2

i (gij þ gsij)� ViVj(gij cos (di � dj)þ bij sin (di � dj)) (11:65)

Uij ¼ Ut
ij þ vUij

Ut
ij ¼ �V2

i (bij þ bsij)� ViVj(gij sin (di � dj)� bij cos (di � dj)): (11:66)

In general we can write

z ¼ h(x,p)þ v, (11:67)

where

z ¼
z1
..
.

zm

2
64

3
75 ¼ Vector of measured valued:

h(x) ¼
h1(x)
..
.

hm(x)

2
64

3
75 (11:68)
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x ¼
x1

..

.

xn

2
664

3
775 ¼

d1

..

.

dnb

V1

..

.

Vnb

2
66666666664

3
77777777775

(11:69)

E[v] ¼ 0

¼ covariance of v:

E[vvT] ¼ R

(11:70)

R is a diagonal matrix of all measurement variances, i.e.,

R ¼

s2
1 0 � � � 0

0 s2
2 � � � 0

..

. ..
. . .

.
0

0 0 � � � s2
m

2
66664

3
77775: (11:71)

It is necessary to have m � n in such a way that a subset of n measurements
can yield a solution of all state variables. This is known as the observability
criterion. Normally m is 2–3 times the value of n allowing for a considerable
amount of redundancy in the measurement information.

Because of the presence of redundant measurements, the solution x̂ of x is
obtained by minimizing the WLSs performance index J given by

J ¼ [z� h(x,p)]TR�1[z� h(x,p)] (11:72)

with respect to x. At this stage the vector p is assumed to be known exactly.
Hence we can drop p from the above expressions for the sake of simplicity
until we discuss the problem of parameter uncertainty. The concise state
estimation problem statement becomes:

Given z ¼ h(x)þ v (11:73)

such that E(v)¼ 0, E(vvT)¼R. Compute the best estimate x̂ of x which
minimizes

J ¼ [z� h(x,p)]TR�1[z� h(x,p)] (11:74)

with respect to x.
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11.4.2.3 Necessary Solution Conditions

As stated, the state estimation problem consists of an unconstrained mini-
mization of J given in Equation 11.74 with respect to x. At the minimum J we
should expect that

@J
@x

����x̂ ¼ 0, (11:75)

where x̂ is the state vector at the minimum of J and is referred to as the
best estimate of x. Given the above definition of J, one concludes that the zero
gradient condition just stated will yield the following n-dimensional vector
equation:

0 ¼ HT(x̂)R�1(z� h(x̂)): (11:76)

11.4.3 Model Parameter Identification—Sources of Inaccuracy

Calculated values of transmission line and transformer admittances normally
contain various inaccuracies. In the transmission line case errors will arise as
a result of factors such as

. Mathematical approximations used in calculations, e.g., truncation
of Taylor series expansion.

. Simplified modeling assumptions, e.g., flat earth, completely
transposed lines, no mutual effects relative to lines in same right-of-
way, etc.

. Occasional gross human errors due to manual data handling at the
initial input phase.

. Whether effects which modify conductor temperatures, causing dif-
ferent levels of sagging. This in turn can modify both line resistances
and inductances.

Studies have concluded that errors of the order of 5% of normal values are
quite possible. Obviously, in cases of human input data errors, the resulting
parameter errors can be much larger.

11.4.4 State Estimation in Deregulated Environment

Vertically integrated utilities provide bundled services to customers aiming
at high reliability with the lowest cost. In the traditional environment utilities
perform both power network and marketing functions. Although EMS tech-
nology has been used to a certain extent, utilities were not pressed to utilize
tools that demanded accurate real-time network models such as optimal
power flows and available transfer capability determination [1]. This is
bound to change in the emerging competitive environment.
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In the new environment, the pattern of power flows in the network is less
predictable than it is in the vertically integrated systems, in view of the new
possibilities associated with open access and the operation of the transmis-
sion network under energy market rules. Although reliability remains a
central issue, the need for the real-time network models becomes more
important than before due to new energy market-related functions which
will have to be added to new and existing EMS. These models are based on
the results yielded by state estimation and are used in network applications
such as optimal power flow, available transfer capability, voltage, and tran-
sient stability. The new role of state estimation and other advanced analytical
functions in competitive energy markets was discussed by Singh et al. [2].
Hence, the implementation of real-time network analysis functions is crucial
for the proper independent system operation (ISO). Based on these network
models, operators will be able to justify technical and economical decisions,
such as congestion management and the procurement for adequate ancillary
services, and to uncover potential operational problems related to voltage
and transient stability [1].

Reviews of the state of the art in state estimation algorithms were
presented in Refs. [4–6]. Comparative studies of numerically robust estim-
ators for power networks can be found in Ref. [7]. A review of the state of
the art in bad data analysis was provided in Ref. [8]. A comprehensive
bibliography on state estimation up to 1989 can be found in Ref. [9].
Generalized state estimation, which includes the estimation of states, param-
eters, and topology, is discussed in Refs. [10,11]. A review of external system
modeling was presented in Ref. [12], and more recently, the state of the art
on this subject was reviewed by the IEEE Task Force on External Network
Modeling [13].

11.4.4.1 Network Real-Time Modeling

Network real-time models are built from a combination of snapshots of real-
time measurements and static network data. Real-time measurements consist
of analog measurements and statuses of switching devices, whereas static
network data correspond to the parameters and basic substation configur-
ations. The real-time model is a mathematical representation of the current
conditions in a power network extracted at intervals from state estimation
results. Ideally, state estimation should run at the scanning rate (say, at every
two seconds). Due to computational limitations, however, most practical
estimators run every few minutes or when a major change occurs.

11.4.4.2 Impact of the Changing Marketplace

The recent creation of ISO, with the need to control the grid, has increased the
size of the networks that have to be modeled by state estimation. This trend
compounds with two other phenomena: the spatial expansion stemming
from the merger of several companies and the growing requirements for
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representing the network at lower voltage levels. As a result, supervised
networks with tens of thousands of buses are becoming more and more
common. The difficulties are not limited to network sizes, however.

Perhaps the most important issue in the new competitive environment is
the way poorly estimated network models will affect the determination of
prices of electricity. Metering quality and redundancy levels can vary signifi-
cantly in a large network, measurement redundancy being more deficient at
lower voltage levels. High redundancy levels will be necessary for adequate
model building, and even more so for topology estimation, i.e., when parts of
the network are represented at the physical level. It is envisaged that the
range of measurement redundancy should evolve from today’s 1.7–2.2 to
2.5–3.0. In addition to this improvement in the redundancy levels, the loca-
tion of new meter should also take into consideration the need for estimating
topology (statuses of switching devices).

Time skew among the measurements is normally present in most existing
EMS systems, but its effect on state estimation is hardly noticeable in smaller
networks. With larger networks, however, large pockets of data, sometimes
involving an entire company’s network, can be skewed by significant
amounts from the rest of the data. This can affect both state estimation
convergence and bad data processing: part of the skewed data will appear
in the boundary nodes as multiple bad data (they contain errors that are
conforming). Even though the dynamics of the system could be taken
into consideration to correct the effect of time skew without much additional
effort (e.g., using time-tagged measurements), when the protection system is
activated or when the system is ramping up or down at a rapid pace in
the area affected by the time skew, it is unlikely to exist a satisfactory solution
to this problem in view of the scan rates that are currently used by the
industry (1–2 s).

11.5 Illustrative Examples

Example 11.5.1

Establish the necessary minimality conditions associated with the set equations:

1:1 ¼ z1 ¼ x1x2 þ v1

2:0 ¼ z2 ¼ x1 þ x22 þ v2

1:9 ¼ z3 þ x21 þ x2 þ v3

9>=
>;: (11:77---11:79)

with

E v2i
	 
 ¼ 0:01, i ¼ 1, 2, 3: (11:80)
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SOLUTION

The Jacobian matrix is given by

H(x) ¼

@h1
@x1

@h1
@x2

@h2
@x1

@h2
@x2

@h3
@x1

@h3
@x2

2
66664

3
77775: (11:81)

For h1 ¼ x1x2, h2 ¼ x1 þ x22, h3 ¼ x21 þ x2, one obtains

H(x) ¼
x2 x1
1 2x2
2x1 1

2
4

3
5: (11:82)

The error covariance matrix R is given by

0

0

� �
¼ HT(x̂)R�1 z� h(x̂)½ �

¼ x̂2 1 2x̂1
x̂1 2x̂2 1

� � 100 0 0

0 100 0

0 0 100

2
64

3
75

1:1� x̂1x̂2
2:0� x̂1 � x̂22
1:9� x̂21 � x̂2

2
64

3
75

¼ 100
x̂2(1:1� x̂1x̂2)þ 2� x̂1 � x̂22

� �þ 2x̂1 1:9� x̂21 � x̂2
� �

x̂1(1:1� x̂1x̂2)þ 2x̂2 2� x̂1 � x̂22
� �þ 1:9� x̂21 � x̂2

� �
" #

: (11:83)

Since the necessary conditions are a set of nonlinear algebraic equations, an
iterative solution would be most logical. Using the Newton–Raphson method,
the system equations can be linearized around a normal value of the state vector x.
Let x̂0 be such a nominal solution. As a result we can write

0 ¼ HT(x̂)R�1[z� h(x̂)] (11:84)

¼ [HT(x̂0)þ DHT(x̂)]R�1[z� h(x̂0)�H(x̂0)(x̂� x̂0)]þHigher-order terms:

� HT(x̂0)R�1(z� h(x̂0))�HT(x̂0)R�1H(x̂0)(x̂� x̂0) (11:85)

Note that in the above linearization, the term DHR�1(z� h(x)) was not included.
That is because around the actual solution, the vector (z� h(x)) is small. Therefore
the whole term is close to being a high-order term. The derivation is hence called a
quasilinearization.
In the iterative scheme the next guess x̂1 is defined as the solution of

0 ¼ HT(x̂0)R�1(z� h(x̂0))�HT(x̂0)R�1H(x̂0)(x̂� x̂0) (11:86)

hence we can write

x̂1 ¼ x̂0 þ HT
0R

�1H0
� ��1

HT
0R

�1(z� h(x̂0)) (11:87)
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and in general we obtain

x̂kþ1 ¼ x̂k þ HT
kR

�1Hk
� ��1

HT
kR

�1(z� h(x̂k)), (11:88)

where

k ¼ 0, 1, . . . and Hk ¼ H(x̂k) (11:89)

Example 11.5.2

Given the linear set of algebraic equations:

z ¼ Hxþ v, (11:90)

where H is n�m matrix, find the best estimate x̂ is the WLSs sense.

SOLUTION

Since h(x)¼Hx, the Jacobian matrix simply is H. The minimality condition is
given by

0 ¼ HTR�1(z�Hx̂)

¼ HTR�1z�HTR�1Hx: (11:91)

Hence we obtain

x̂ ¼ (HTR�1H)�1HTR�1z: (11:92)

11.6 Conclusion

Online state estimation in an ECC processes incoming raw data and gener-
ates a statistically reliable solution of the load-flow problem. It uses
measurement system redundancy to detect and identify the so-called bad
data. The redundancy also helps in smoothing out normal measure errors to
produce accurate estimates of bus voltages and angles, as well as line flows
and unmeasured loads.

It is demonstrated that network modeling errors can degrade the quality of
state estimator outputs. A parameter estimator, which is an extension of the
state estimator, can be used to provide better estimates of transmission line
and transformer admittances. The state=parameter estimator combination
may be used in conjunction with a robust bad data detection scheme to
identify both, bad measurements and network configuration errors.
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Once tools of state=parameter estimation and bad data identification have
been developed, one can simulate the effectiveness of various measurement
system configurations. The objective here involves studying trading among
the goals of: increased reliability in bad data detection; improved ability to
detect and correct model errors; improved accuracy of voltage and power
flow estimates; and reduced measurement system cost.

State estimation is a key function in determining real-time models
for interconnected networks as seen from EMS. In this environment, a real-
time model is extracted at intervals from snapshots of real-time measure-
ments. It is generally agreed that the emerging energy markets will demand
network models more accurate and reliable than ever. This can only be
achieved with state estimators that can reliably deal with both state, topology
(status), and parameter estimation.

11.7 Problem Set

PROBLEM 11.7.1

For the following set of equations:

z1 ¼ 2:2 ¼ x1 þ x2 þ v1 (11:93)

z2 ¼ 2:9 ¼ x1 þ 2x2 þ v2 (11:94)

z3 ¼ 4:9 ¼ 4x1 þ 2x2 þ v3 (11:95)

z4 ¼ 7:2 ¼ 3x1 þ 6x2 þ v4 (11:96)

assume that E[vi]¼ 0, i¼ 1, . . . , 4, and

E[vvT] ¼
0:01 0 0 0
0 0:01 0 0
0 0 0:01 0
0 0 0 0:01

2
664

3
775 (11:97)

a. Find the best estimates x̂1 and x̂2.

b. What is the covariance matrix of

x̂ ¼ x̂1
x̂2

� �
(11:98)

Denote that by P. Prove your results.

c. Suppose that a new measurement:

z5 ¼ 7:0 ¼ x1 þ 6x2 þ v5 (11:99)
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is made, with E[v5]¼ 0 and var[v5]¼ 0.04. Show that the best
estimate of the state using this extra measurement can be
expressed as a function of the old estimate of the state obtained
in part (a) the covariance P obtained in part (b), z5, the vector
1
6

� �
, and var[v5]¼ 0.04. Evaluate the new state estimate. (Hint:

y may employ the matrix inversion lemma).

PROBLEM 11.7.2

Given that

Z ¼ Hxþ v (11:100)

such that the cov[v]¼R. Let P be the covariance matrix of x̂. For the new
scalar measurement:

z0 ¼ hTxþ v0, (11:101)

where Eb(v0)2c ¼ r2 show that the best estimate of the state vector includ-
ing the new measurement is given by

x̂0 ¼ x̂þ Ph
r2 þ hTPh

[z0 � hTx̂] (11:102)

PROBLEM 11.7.3

For the three-bus system shown in Figure 11.2 the following measure-
ments from a snapshot are obtained:

z1 ¼ V1 ¼ 1:01

z2 ¼ V2 ¼ 1:0

z3 ¼ V3 ¼ 1:0

z4 ¼ T12 ¼ 1:0

z5 ¼ T13 ¼ 1:97

− j15

− j15− j15

3

21

FIGURE 11.2
Network for Problem 11.7.3.
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z6 ¼ P1 ¼ 2:59

z7 ¼ T21 ¼ �0:95

z8 ¼ T23 ¼ 1:0

z9 ¼ P2 ¼ 0:5

z10 ¼ T31 ¼ �1:5

z11 ¼ T32 ¼ �1:05

z12 ¼ P3 ¼ �3:0,

where
Pi is the real power injection at bus i
Tij is the real flow from bus i to bus j

It is known that in the absence of bad data the variance of any measure-
ment in the above set is s2

i ¼ 10�4.

a. Identify the bad measurement by means of preestimation
analysis.

b. With the bad measurement eliminated compute the first iter-
ation of the WLSs estimate using the initial guess of 1 pu voltage
magnitudes and zero phase angles.

PROBLEM 11.7.4

The measurement vector z is related to the state vector x by

Z ¼ Hxþ v, (11:103)

where dim[z]¼m, dim [x]¼ n<m, Rank[H]¼ n, E[v]¼ 0, cov[v]¼R.

d. Let x̂ be the best estimate of the state vector in the weighted
squares sense. Determine the covariance matrix of the vector

ŷ ¼ Fx̂, (11:104)

where F is an r� n constant matrix. Call this covariancematrixQ.

b. Let F¼H, i.e.,

ŷ ¼ Hx̂: (11:105)

Determine the trace of the matrix QR�1.

PROBLEM 11.7.5

For the set of measurements and associated equations:

z1 ¼ 3:4 ¼ x1 þ 2x2 þ v1
z2 ¼ �2 ¼ x1 � 2x2 þ v2
z3 ¼ 0 ¼ �x1 þ 2x2 þ v3

(11:106)
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assume that the error covariance matrix is given by

R ¼ 10�2
1 0 0
0 3 0
0 0 1

2
4

3
5: (11:107)

a. Determine the best estimate

x̂ ¼ x̂1
x̂2

� �
: (11:108)

b. What is the covariance matrix of x̂?

c. Assume now that measurement z3 is exact, i.e., s3¼ 0. It implies
that

R ¼ 10�2
1 0 0
0 3 0
0 0 0

2
4

3
5: (11:109)

Can you determine x̂ with this information? How?

PROBLEM 11.7.6

For the sample system shown in Figure 11.3, assume that the three meters
have the following characteristics shown in Table 11.2.
Calculate the best estimate for the phase angles d1 and d2 given the

following measurements in Table 11.3.

j0.3

j0.24

30 MW

150 MW

j0.6 5 MW
35 MW

115 MW

1

3

2

FIGURE 11.3
Figure for Problem 11.7.6.
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12
Optimal Power Flow

12.1 Introduction

The idea of optimal power flow (OPF) was introduced in the early 1960s as
an extension of conventional economic dispatch to determine the optimal
settings for control variables while respecting various constraints. The term is
used as a generic name for a large series of related network optimization
problems [4,6,8,12,14].

The development of OPF in the last two decades has tracked progress
closely in numerical optimization techniques and advances in computer
technology. Current commercial OPF programs are able to solve very large
and complex power systems optimization problems in a relatively short
time. Many different solution approaches have been proposed to solve OPF
problems.

ForOPF studies, the power systemnetwork is typicallymodeled at themain
transmission level, including generating units. The model may also include
other auxiliary generating units and representation of internal or external
parts of the system are used in deciding the optimum state of the system.

In a conventional power flow, the values of the control variables are
prespecified. In an OPF, the values of some or all of the control variables
need to be found so as to optimize (minimize or maximize) a predefined
objective. The OPF calculation has many applications in power systems, real-
time control, operational planning, and planning [2,21,28,30,34,35]. OPF is
available in most of today’s energy management systems (EMSs).

OPF continues to gain importance due to the increase in power system size
and complex interconnections [4,8,18]. For example, OPF must supply
deregulation transactions or provide information on what reinforcement is
required. The trade-offs between reinforcements and control options are
decided by carrying out OPF studies. It is clarified when a control option
maximizes utilization of an existing asset (e.g., generation or transmission),
or when a control option is a cheaper alternative to installing new facilities.
Issues of priority of transmission access and VAr pricing or auxiliary costing
to afford fair price and purchases can be done by OPF [10,14,24].
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The general OPF problem is posed as minimizing the general objective
function F(x,u) while satisfying the constraints g(x,u)¼ 0 and h(x,u) � 0,
where g(x,u) represents nonlinear equality constraints (power flow equa-
tions) and h(x,u) is nonlinear inequality constraints on the vectors x and u.
The vector x contains the dependent variables including bus voltage magni-
tudes and phase angles and the MVAr output of generators designed for bus
voltage control. The vector x also includes fixed parameters such as reference
bus angles; noncontrolled generator MW, MVAr, and outputs; noncontrolled
load on fixed voltage; line parameters; and so on. The vector u consists of
control variables involving:

Active and reactive power generation

Phase-shifter angles

Net interchange

Load MW and MVAr (load shedding)

DC transmission line flows

Control voltage settings

LTC transformer tap settings

Line switching

Table 12.1 shows a selection of objectives and constraints commonly found in
OPF formulation. The time constants of the control process are relatively
long, allowing the OPF implementation to achieve optimality adequately.
The quality of the solution depends on the accuracy of the model studied. It is
also important that the proper problem definition with clearly stated object-
ives be given at the onset. No two-power system companies have the same
type of devices and operating requirements. The model form presented here
allows OPF development to easily customize its solution to different cases
under study [16,22,25–27,31,32].

To account for optimal dispatch of units, minimum loss, minimum voltage
deviation, and security of the power system, the termOPF has been conceived.
It is based on a concept largely based on static optimization method for
minimizing a scalar optimization function (e.g., cost). It was first introduced
in the 1960s by Tinney and Dommel [6]. It employs first-order gradient
algorithm for minimization objective function subject to equality and inequal-
ity constraints. The solution methods were computationally intensive and did
not gain attention compared to tradition power flow. The next generationOPF
has been greater as power systems operation or planning need to know the
limit, the cost of power, incentive for adding units, and building transmission
systems serving a particular load entity. The OPF remains a major tool for

1. Scheduling power system control

2. Unit commitment, pricing of electricity market

3. Reliability or congestion regardless of its use
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It is based on standard requirements or specifications. Objectives must be
modeled and its practicality with possible solutions. The constraints also
have to be of appropriate design to satisfy upper and lower bounds and
value to have a feasible solution. The constraints are equality and inequality.
The constraints, when fixed an upper or a lower limit, are referred to as
binding or active constraints. Second, when the constraints are scheduled
within the limits they are called inactive.

Finding the active inequality constraints is the most difficult part of solving
the OPF problems. No direct methods exist for solving OPF without using
intermediate optimization method to identify current active sets. The chal-
lenges of OPF are many and they include:

TABLE 12.1

Some Objectives and Constraints Commonly Found in OPF

Objectives Constraints

Active power objectives Limits on control variables
. Economic dispatch (minimum cost
losses, MW generation or transmission
losses)

. Generator output in MW

. Transformer taps limits

. Shunt capacitor range
. Environmental dispatch
. Maximum power transfer

Operating limits on line and transformer
flows

Reactive power objectives . MVA, Amps, MW, and MVAr
. MW and MVAr loss minimization . MW and MVAr interchanges

General goals
. Minimum deviation from a target
schedule

. MW and MVAr reserve margins
(fixed=dynamic)

. Voltage, angle (magnitude, difference)
. Minimum control shifts to alleviate
violations

. Least absolute shift approximation of
control shift

Control parameters
. Use of engineering rules to offer more
controls for handling violation

. Control effectiveness (more control with
sufficient effects)

. Limit priorities engineering preferable
operating limit enforcement
(cost benefit)

. Control rates change and trajectories

. Voltage stability

Local and nonoptimized controls
. Generator voltage, generator real power,
transformer output voltage, MVAr, and
shunt=SVC controls

Equipment ganging and sharing
. Tap changing
. Generator MVAr sharing
. Control ordering
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1. Methodology. Some OPF solutions can be static. They are typically
based on optimization methods such as linear programming (LP)
and nonlinear programming (NLP) discussed earlier.

2. Issues of speed and accuracy have been proved to be important
appropriate solution method. It depends on the model to achieve
the accuracy and speed.

3. Knowledge of OPF usage setup time requires training.

4. Data required for OPF implementation problems converge error in
data and inadequate models.

5. Inclusion of cost-benefit analysis approaches that factor in the impact
of both technical and nontechnical operation constraints [17].

12.2 OPF—Fuel Cost Minimization

Fuel cost minimization is primarily an operational planning problem. It is
also a useful tool in planning functions. This is usually referred to as eco-
nomic dispatch, the aim of which is to obtain the active power generation of
the units committed for operation, such that the total fuel cost is minimized
while satisfying operational feasibility constraints [19,24].

12.2.1 Modeling Issues

Fuel cost minimization requires knowledge of the fuel cost curves for each of
the generating units. An accurate representation of the cost curves may
require a piecewise polynomial form, or can be approximated in several
ways, with common ones being:

1. Piecewise linear

2. Quadratic

3. Cubic

4. Piecewise quadratic

A linear approximation is not commonly used while the piecewise linear
form is used in many production-grade LP applications. A quadratic
approximation is used in most NLP applications. Control variables are
usually the independent variables in an OPF, including:

1. Active power generation

2. Generator bus voltages

3. Transformer tap ratios
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4. Phase-shifter angles

5. Values of switchable shunt capacitors and inductors

The use of all of the above as control variables should give the best (least
expensive) solution. For a regular OPF, the usual constraints are

1. Network power balance equations at each node

2. Bounds on all variables

3. Line-flow constraints

4. Others such as transformer tap ratios of parallel transformers

However, this may not be the most desired solution depending on certain
other factors such as additional constraints. The following assumptions are
made in modeling the objectives and constraints:

1. Fuel cost curves are smooth and quadratic in nature.

2. Only active power generations are controlled for cost minimization.
Transformer tap ratios, generation voltages, shunt capacitors, and
inductor positions are held at their nominal set values throughout
the optimization.

3. Current flows are controlled approximately using voltage and phase
angle restriction across the lines.

4. Contingency constraints are neglected.

12.2.2 Mathematical Description of the Objective Functions
and Constraints for Cost Minimization

The objective function is given by the following fuel cost model:

F(Pg) ¼
XNg

i¼1

ai þ biPgi þ giP
2
gi

� �
, (12:1)

subject to equality constraints representing the active and reactive electric
network balance,

Pi � Pgi þ Pdi ¼ 0, i ¼ 1, . . . , Nb, (12:2)

Qi � Qgi
i2gen=synch

þQdi ¼ 0, i ¼ 1, . . . , Nb, (12:3)

where

Pi ¼ Vi

XNb

j¼1

VjYij cos (ui � uj � cij), i ¼ 1, . . . , Nb, (12:4)
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Qi ¼ Vi

XNb

j¼1

VjYij sin (ui � uj � cij), i ¼ 1, . . . , Nb, (12:5)

together with the inequality constraints,

Vimin � Vi � Vimax, i ¼ 1, . . . , Nb, (12:6)

Pgi min � Pgi � Pgi max, i ¼ 1, . . . , Ng, (12:7)

Qgi min � Qgi � Ggi max, i ¼ 1, . . . , Ngq , (12:8)

�kVi Ilmax � Vi � Vj � kVIlmax, l ¼ 1, . . . , Nl, (12:9)

i, j defined by l,

�kui Ilmax � ui � uj � kui Ilmax, l ¼ 1, . . . , Nl, (12:10)

i, j defined by l.
The controls are the active generator power outputs.

F(Pg) is the total fuel cost, as a function of Pg

Pgi
is the active power generation at unit i

ai, bi, and gi are the fuel cost parameters of unit i

Ng is the number of dispatchable generation units

Ngq
is the number of PV buses, including generators and synchronous

condensers

Nb is the total number of buses

Nl is the total number of lines

Vi and Vj are the voltage magnitude at buses i and j

ui and uj are the phase angles at buses i and j

Pi is the net active power injections at node i

Qi is the net reactive power injection at node i

Yij is the magnitude of the complex admittance matrix element at the ith
row and jth column

cij is the phase angle of the complex admittance matrix element at
position i, j

Ilmax is the maximum allowable current flow in branch l

Vimin and Vimax are the lower and upper bound on the voltage magni-
tude at bus i

kyi and kui are the conversion factors to convert the maximum allowable
current flow to an appropriate maximum allowable voltage and
phase angle difference across the ends of the line l

Qgimin
and Qgimax

are the lower and upper bounds on the reactive gener-
ation at bus i
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12.3 OPF—Active Power Loss Minimization

Active power loss minimization (referred to as loss minimization) is usually
required when cost minimization is the main goal with control variables being
active generator power outputs.When all control variables are utilized in a cost
minimization (such as is reasonable when contingency constraints are
included), a subsequent loss minimizationwill not yield further improvements.
When cost minimization is performed using only the active power generations
as control variables, a subsequent loss minimization computation using a
different set of control variables can be useful in obtaining a better voltage
profile and lower current flow along the lines. This will involve less risk of
low-voltage insecurities during contingencies as well as a lower risk of current
flow constraint violations during contingencies. The primary application of
loss minimization is in operations, similar to cost minimization. In planning,
loss minimization can be a useful tool in conjunction with a planning objective,
providing more secure optimal solutions for planning purposes. This is espe-
cially useful in studies that neglect contingency constraints.

Loss minimization can be graphically represented as shown in Figure 12.1,
which demonstrates that the process attempts to minimize the square of the
distance between two voltage vectors connected across a transmission line.
We see in the figure that in loss minimization, both magnitude and phase
angle of voltage vectors across each line are minimized.

There are two basic approaches to loss minimization, namely, the slack bus
approach and the summation of losses on individual lines. The slack
bus approach is by far the least complicated approach, where the slack bus
generation is minimized. The objective function is linear in this case and can
be handled by any LP or NLP method. The disadvantage of this approach is
that it can only minimize the total active power loss of the system. It is
sometimes desirable to minimize the losses in a specific area only, and the
above approach may not be applicable to this type of situation.

Im
ag

in
ar

y a
xi

s

Real axis

qj
qi

Vi

0

Vj

DV

Power loss = f ( )2ΔV
(Min voltage deviation, ΔV

Þ Min power loss) 

FIGURE 12.1
Graphical representation of loss
minimization.
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The second approach does not have the disadvantage mentioned earlier,
but is more involved computationally. The objective function turns out to be
more complicated when expressing voltages in polar form. When using
the rectangular form, the objective function is simplified to a quadratic
form. The polar form can be used in NLP methods. A quadratic form is
preferred and the rectangular form of voltage representation is utilized. Due
to the need for optimizing certain geographic areas, the summation approach
is implemented.

12.3.1 Modeling Issues for Loss Minimization

In loss minimization, the usual control variables are

1. Generator bus voltage magnitudes

2. Transformer tap ratios

3. Switchable shunt capacitors and inductors

4. Phase-shifter angles

Out of these, a great deal of control can be achieved by using generator bus
voltages and transformer tap ratios as control variables. Phase-shifter angles
are normally used to alleviate line overloads. Since loss minimization indir-
ectly takes care of line flows via the objective, line overloads are expected to
be at a minimum. Active power generations are usually not employed as
control variables in order to minimize changes to the economic dispatch
solution for an integrated implementation.

In the formulation of loss minimization, generator voltages and trans-
former tap ratios are used as control variables. Transformer tap ratios are
treated as continuous variables during the optimization, after which they are
adjusted to the nearest physical tap position and reiterated holding the taps
at the adjusted values. This approximation is justified based on the small step
size usually found in transformers.

The constraints for loss minimization, as well as for other objectives
described, are similar to those discussed earlier for cost minimization. The
following assumptions are made in the formulation of the loss objective:

1. Loss minimization is done following a cost minimization, and thus
the active power generations excluding the slack bus generation are
held at their optimal values.

2. Generator bus voltages and transformer tap ratios are used as con-
trol variables. Shunt reactances and phase-shifter angles where avail-
able are held at nominal values.

3. Transformer tap ratios are treated as continuous variables during the
optimization, after which they are adjusted to the nearest physical
tap position and reiterated.
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4. Current flows are controlled approximately, using restrictions on
the real and imaginary components of the complex voltage across
the lines.

5. Contingency constraints are neglected.

12.3.2 Mathematical Description of the Objective Functions
and Constraints for Loss Minimization

The objective functions to be minimized are given by the sum of line losses

PL ¼
XNl

k¼1

Plk : (12:11)

Individual line losses Plk can be expressed in terms of voltages and phase
angles as

Plk ¼ gk V2
i þ V2

j � 2ViVj cos (ui � uj)
j k

, k ¼ 1, . . . , Nl: (12:12)

This expression involves transcendental functions. Transforming the above
to equivalent rectangular form, we have

Plk ¼ gk e2i þ f 2i þ e2j þ f 2j
� �

� 2(eiej þ fi fj)
j k

, k ¼ 1, . . . , Nl, (12:13)

which simplifies to

Plk ¼ gk (ei � ej)2 þ ( fi � fj)2
� �

, k ¼ 1, . . . , N: (12:14)

The objective function can now be written as

plk ¼
XN
k¼1

gk (ej � ej)
2 þ ( fi � fj)

2� �
: (12:15)

This is a quadratic form and is suitable for implementation using the quad-
ratic interior point method, where

PL is the total active power loss

Plk is the active power loss in branch k

gk is the series conductance of line k

ei and fi are the real and imaginary components of the complex voltage
at node i

ej and fj are same as ei, fi for node j
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Gij and Bij are the real and imaginary components of the complex
admittance matrix elements

tkp1 and tkp2 are the transformer tap ratios for transformers in parallel

Npi
is the number of such transformers in the ith set of parallel trans-

formers

ti,min and ti,max are the lower and upper bounds on the transformer tap
ratio at the ith transformer

kel and kfl are the equivalent of kvl and kul in rectangular form

Keimin
and Kfimin

are the conversion factors, to convert the lower voltage
bound to an equivalent rectangular form

Keimax
and Kfimax

are the conversion factors, to convert the upper voltage
bound to an equivalent rectangular form

~gli is the shunt conductance of line l on side i (i.e., half total)

gli is the series conductance of line (connected to node i)

tm is the transformer tap ratio of mth transformer
~bli and bli are the equivalent susceptance of ~gli and gli
~bi is the shunt reactance at node i

li is the lines connected to node i

Nli is the total number of li
gm and bm are the series conductance and susceptance of transformer m

Nt is the total number of transformers

The constraints are equivalent to those specified in Section 12.2 for cost
minimization, with voltage and phase angle expressed in rectangular form.

The equality constraints are given by

Pi � Pgi
i2gen

þ Pdi ¼ 0, i� 1, . . . , Nb, (12:16)

Qi � Qgi
i2gen=synch

þQdi ¼ 0, i ¼ 1, . . . , Nb, (12:17)

where

Pi ¼ ei
XNb

j¼1

(Gijej � Bij fj)i

2
4

3
5þ fi

XNb

j¼1

(Gij fj � Bijej)

2
4

3
5, i ¼ 1, . . . , Nb, (12:18)

Qi ¼ f
Xn
j¼1

(Gijej � Bij fj)

2
4

3
5� ei

Xn
j¼1

(Gij fj � Bijej)

2
4

3
5, (12:19)
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and also,

tkp1 � tkp2 ¼ 0, k ¼ 1, . . . , Npi, kp2 ¼ 1, . . . , Npi, kp1 6¼ kp2, (12:20)

i 2 sets of parallel transformers, for parallel transformers. The inequality
constraints are given by

Vimin � Vi � Vimax, i ¼ 1, . . . , Nb, (12:21)

Pgimin
� Pgi � Pgimax

, i =2 slackbus, (12:22)

Qgimin
� Qgi � Qgimax

, i ¼ 1, . . . , Ngh , (12:23)

timin � ti � timax, i ¼ 1, . . . , Nt, (12:24)

�kei Ilmax � ei � ej � kel Ilmax, l ¼ 1, . . . , Nl, (12:25)

i, j defined by l.

�kf1 Ilmax � fi � fj � kft Itmax, l ¼ 1, . . . , Nl, (12:26)

i, j defined by l.
Note that Equation 12.21 is not linear in the rectangular formulation. It

may be linearized or an approximate linear form may be used as

KeiminVimin � ei � keimaxVimax, i ¼ 1, . . . , Nb, (12:27)

KfiminVimin � fi � kfimaxVimax, i ¼ 1, . . . , Nb: (12:28)

For the exact form V is given by

V2
i ¼ e2i þ f 2i , i ¼ 1, . . . , Nb: (12:29)

The transformer tap ratio t controls the optimization via the admittance
matrix. The relationship is as follows:

Gii ¼
X
ii2Nli

~gli
li2all lines

þ gli
t2m

ilm2t=f with tapsidei

þ gli
ij2lines ort=f with tapside 6¼i

0
B@

1
CA, i¼ 1, . . . , Nb: (12:30)

12.4 OPF—VAr Planning

The application of VAr planning as the name implies is in power system
planning. It is aimed at minimizing the installation cost of additional reactive
support necessary to maintain the system in a secure manner. The planning
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priority is to minimize cost and also to minimize future operations costs. This
is necessary since cost of equipment and apparatus can be prohibitive in
achieving an overall cost-effective planning scenario.

VAr planning involves identification of accurate VAr sites and measurable
quantities of reactive sources to achieve system security. The analysis
involves modeling to account for the discrete nature of the reactive power.
This must generally be done using curve fitting or planning experience
before it can simulate an optimum decision process.

The results obtained from VAr planning allow indirect sites, sizing, and
costing of components. The extensive calculations, required for the siting and
sizing elements, are normally done using OPF concepts. The traditional
computations necessary for this purpose involve mathematical programming
techniques—LP and NLP.

In the VAr planning process, we conduct voltage optimization which,
being similar to loss minimization, is handled in much the same way. Loss
minimization can be classified as a vector form of voltage optimization.
In voltage optimization, the aim is to maintain the system voltage magni-
tudes as close as possible to a nominal voltage, such as one per unit. This is
pictorially represented in Figure 12.2.

At the optimal solution, the voltage vectors stay within a narrow band
close to nominal voltage values as shown by the shaded area in the figure.
Hence, we see that the endpoints of two voltage vectors are brought closer to
one another in a radial sense only, as opposed to loss minimization, where
the endpoints are brought closer together in a vectorial sense. The application
is mainly for operations with potential for use in planning when combined
with a suitable planning objective. We present here a model, its formulation,
and the associated algorithms for VAr planning.

Im
 ax

is

Re axis

w

V max

V min optimized

V optimized

10

V

V nominal

V min

FIGURE 12.2
Description of voltage optimization.

Momoh/Electric Power System Applications of Optimization 65886_C012 Final Proof page 394 20.11.2008 11:45am Compositor Name: VAmoudavally

394 Electric Power System Applications of Optimization



12.4.1 Modeling Issues for VAr Planning Type I Problem

VAr installation costs are usually modeled as linear functions. The inductive
and capacitive components of the VArs may be combined and modeled as
one piecewise linear function as shown in Figure 12.3. With minimum and
maximum values given, the existing VAr at a given site can be

1. All capacitive

2. All inductive

3. Both inductive and capacitive

4. None

The capacitive and inductive VArs can also be modeled as separate variables
as shown in Figure 12.4. This is useful for developing models for capacitive
and inductive charges needed in the VAr optimization process.

The modeling of capacitive and inductive VArs as separate variables is
useful when including contingency constraints in the formulation. For

VAr
Min.

installed
Min.

existing
Max.

existing
Max.

installed 

Capacitive Inductive 

Cost

FIGURE 12.3
Cost curve for VAr support.

Capacitive 
(VArs) 

Inductive
(VArs) 

Max.
existing

Max.
existing

Cost of inductive VArs 

Max.
existing

(a) (b)

Max.
existing

Cost of capacitive VArs 

FIGURE 12.4
Model of discrete representations of capacitive and inductive variables. (a) Cost curve for
capacitive VAr and (b) cost curve for inductive VAr.
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example, a contingency involving a loss of load may require inductive
compensation at a site while a certain line causing low-voltage situations
may require capacitive compensation at the same site. This is not facilitated
in the representation of Figure 12.3.

Combining planning and optimal objectives in VAr planning results in the
two-objective optimization problem. The units of the planning objective may
be in dollars. The units of the operations objective (such as fuel cost) may
be in dollars per hour. Hence, if the objective is not scaled with respect to the
other, the result will be meaningless. Some existing practical approaches are

1. Convert the planning costs to a comparable operations cost using life
cycle costing. This is commonly used by the industry.

2. Convert the operations cost to a long-term cost comparable to the life
of the installed equipment.

Voltage optimization can be performed by minimizing the sum of absolute
voltage deviations fromanominal voltage, or byminimizing the sumof squares
of the voltage deviations from a nominal voltage. The former is a piecewise
linear objective, while the latter is a quadratic form, ideally suited for imple-
mentation using a quadratic OPF method such as the quadratic interior point.

12.4.2 Mathematical Description of the Objective and Constraints
for Type I Problem for VAr Planning

The objective function and constraints for voltage optimization are described
in mathematical form following a brief description of the notation not
already discussed.

1. Mathematical notation

F(v)¼Objective function to be minimized

Vi,nom¼Nominal voltage (could be one per unit)

2. Mathematical description (voltage optimization)

F(v) ¼
XNb

i¼1

(Vi � Vi,nom)
2: (12:31)

The objective function to be minimized is given by subject to the equality
constraints given by Equations 12.31 and 12.32, repeated below with slight
modifications.

Pi � Pgi
i2gen

þ Pdi ¼ 0, i� 1, . . . , Nb, (12:32)

Qi � Qgi
i2gen=synch

þQdi ¼ 0, i� 1, . . . , Nb, (12:33)
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where

Pi ¼ Vi

XNb

j¼1

Vj Gij cos (ui � uj)þ Bij sin (ui � uj)
� �

, (12:34)

Qi ¼ Vi

XNb

j¼1

Vj[Gij sin (ui � uj)þ Bij cos (ui � uj)], (12:35)

and also,

tkp1 � tkp2 ¼ 0, kp1 ¼ 1, . . . , Npi, kp2 ¼ 1, . . . , Npi, kp1 6¼ kp2, (12:36)

i 2 sets of parallel t=f,

Vimin � Vi � Vimax, i ¼ 1, . . . , Nb, (12:37)

Pgimin
� Pgi � Pgimax

, i =2 slackbuses, (12:38)

Qgimin
� Qgi,k � Qgimax

, i ¼ 1, . . . , Nq, (12:39)

timin � ti � timax, i ¼ 1, . . . , Nt, (12:40)

�kv1I1max � Vi � Vj � kv1Ilmax, l ¼ 1, . . . , Nl, i, j 2 l, (12:41)

�kuII1max � ui � uj � kulIlmax, l ¼ 1, . . . , Nl, i, j 2 l: (12:42)

12.4.3 Type II Problem for VAr Planning

12.4.3.1 Control Variables

In designing the VAr=OPF problem, we start with the definition of the control
variables. The control variables to be used depend on the objective specified.

For objective (1), the control variables are

1. Generator bus voltages

2. Transformer tap ratios

3. Shunt capacitors (existing and additional)

4. Shunt inductors (existing and additional)

For objective (2), the control variables are

1. Active power generations

2. Generator bus voltages

3. Transformer tap ratios
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4. Shunt capacitors (existing and additional)

5. Shunt inductors (existing and additional)

For objective (2), generator bus voltages and transformer tap ratios will be
controlled only when contingency constraints are employed.

12.4.3.2 Constraints

The constraints for VAr planning usually include contingency constraints,
since security during contingencies is a primary objective in VAr planning.
In some applications, contingencies are considered on a case-by-case basis.
The advantage of this approach is the reduction of the problem to several
smaller subproblems. The disadvantage is the increased problem size, espe-
cially for large systems, as the total amount of VAr support deemed neces-
sary by the common set contained in the individual solutions will not
necessarily be the optimal VAr support required. In order to guarantee a
true optimal solution, it is necessary to consider the contingency cases jointly
and solve them as one composite problem.

12.4.3.3 Assumptions

A major concern in VAr planning is the nature of the variables being
optimized. The shunt inductances and capacitances come in discrete form
and the inclusion of integer variables in the optimization require special
mixed-integer programming techniques that do not perform well in non-
linear power system applications. An approximation commonly adopted
is to assume the variables as continuous during the optimization and
clamp them to the nearest physical value at the optimal point. The solution
may require reiteration with clamped quantities for a more accurate
solution.

An alternative method is to move the variable closer to a physically
available value during optimization using penalty functions. The penalty
parameter is controlled during optimization in such a way as to avoid forcing
the variable to a physical value far from the optimal point assuming con-
tinuity. The disadvantage of this method is that the penalty function changes
the function’s convexity and convergence can occur at a local rather than a
global minimum. The first approximation is used in this study. It is assumed
that the voltage at generator buses and transformer tap ratios do not change
during a contingency.

12.4.4 Mathematical Description of the Objective and Constraints
for Type II Problem for VAr Planning

The objective function and constraints for VAr planning are described in
mathematical form, following a brief description of notation not already
described.
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12.4.4.1 Mathematical Notation

F(q) VAr objective function to be minimized

qtotalc(i,k) total capacitive VAr required at bus i during contingency k

qtotalr(i,k) total inductive VAr required at bus i during contingency k

qexistingci existing capacitive VAr sites

qexistingri existing inductive VAr sites

Nc number of capacitive VAr sites

Nr number of inductive VAr sites

Nk number of contingency cases

Sci unit cost of capacitive VAr ($)

Sri unit cost of inductive VAr ($)

Qgi,k
reactive power generation at bus i during contingency k

Vi,k voltage at PQ buses during contingency k

Qi,k phase angle at all but the slack bus during contingency k

qci,k value of optimal qci,k averaged over all k

12.4.4.2 Mathematical Description of VAr Planning

The objective function to be minimized for VAr planning can be mathemat-
ically expressed as

F(q)¼
XNc

i¼1

Sci max
all k

qtotalc(i,k)�qexistingci

n o� 	
þ
XNr

i¼l

Sri max
all k

qtotalr(i,k)�qexistingri

n o� 	
, (12:43)

where a negative value for the expressions inside braces is treated as zero.
This formulation, although providing a true mathematical description of the
problem (based on the assumptions), has the disadvantage of including
discrete variables in the optimization, even when qc and qr are assumed
continuous. An alternate solution is to use the average over all k instead of
the maximum as

F(q) ¼ t
Nk

XNk

k¼1

qtotalc(i,k) � qexistingri

n o" #
þ
XNr

i¼l

Sri
XNk

k¼l

qtotalr(i,k) � qexistingri

n o" #
: (12:44)

The scalar quantity 1=Nk can be removed from the objective. The disadvan-
tage of this method is shown in Figure 12.5, where we see that the average
VAr requirement over all k is kept low, but the maximum is very much
larger. The amount of VAr to be installed at bus i is determined by the
maximum. Another possible alternative is to minimize the squared average
deviations over all values of k. This will minimize large individual deviations
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from the average. An objection might arise here that the objective is no longer
cost, but cost squared. The answer to this is that, unless Equation 12.43 is
minimized as specified, any other alternative is an approximation, and any
approximation that gives the least expensive solution should be the choice
for implementation. The objective function for the latter is given by

F(q) ¼
XNc

i¼1

S2ci
XNk

k¼1

qtotalc(i,k) � qexistingci

n o2
þ
XNr

i¼1

S2ri
XNk

k¼1

qtotalr(i,k) � qexistingri

n o2
: (12:45)

Equation 12.44 is linear while Equation 12.45 is quadratic.

Pi,k � Pgi
i2gen

þ Pdi ¼ 0, i ¼ 1, . . . , Nb, k ¼ 0, . . . , Nk: (12:46)

The equality constraints are given by

Qi,k � Qgi
i2gen=synch

þQdi þ qi,k
i2VAr

¼ 0, i ¼ 1, . . . , Nb, k ¼ 0, . . . , Nk, (12:47)

Pi,k ¼ Vi,k

XNb

j¼1

Vj,k Gi,k cos (ui,k � uj,k)þ Bij sin (ui,k � uj,k)
� �

, (12:48)

Qi,k ¼ Vi,k

XNb

j¼1

Vj,k Gi,j sin (ui,k � uj,k)þ Bij cos (ui,k � uj,k)
� �

, (12:49)

where (Note that k¼ 0 specifies the intact system. In cases where k is not
specified, k¼ 0 is assumed.)

tkp1 � tkp2 ¼ 0, kp1 ¼ 1, . . . , Npi, kp2 ¼ 1, . . . , Npi, (12:50)

i =2 sets of parallel t=f, with the inclusion of parallel transformers.
The inequality constraints are given by

Vimin � Vi � Vimax,

Vimin � Vi, 0 � Vimax, i ¼ 1, . . . , Nb, i 2 pv buses,

FIGURE 12.5
Optimal solution for site 1.
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Vimin c � Vi,k � Vimax c, i ¼ 1, . . . , Nb, i 2 PQ buses,

Pgimin
� Pgi � Pgimax

, i 2 PQ buses, k ¼ 1, . . . , Nk,

Qgimin
� Qgi,k � Qgimax

, i 2 pv buses, k ¼ 1, . . . , Nk,

timin � ti � timax, i ¼ 1, . . . , Nk,

�kv1Ilmax � Vi,k � Vj,k � kv1Ilmax, I ¼ 1, . . . , Nl, i, j 2 l, k ¼ 1, . . . , Nk,

�kuIIlmax � ui,k � uj,k � ku1Ilmax:

Note that generator bus voltages, transformer tap ratios, and active power
generations are unchanged during contingencies. The transformer tap ratios
control the optimization via the admittance matrix as before. We also have

0 � qci,k � qcimax, i ¼ 1, . . . , Nc, k ¼ 1, . . . , Nk: (12:51)

0 � qri,k � qri,k, max, i ¼ 1, . . . , Nr, k ¼ 1, . . . , Nk, (12:52)

A minimum VAr installation is desired to avoid installation of very small
quantities at sites. This can be achieved by clamping the optimal VAr to zero
or to the minimum VAr (whichever is closer), in the event that the optimal
VAr is lower than the minimum allowed. After clamping, the solution may
require reiteration for a more accurate solution by using

qci, min � qci,k � qci, max, (12:53)

qri,min � qri,k � qri,max: (12:54)

The control variables used in VAr planning additionally include

Vi, i ¼ 1, . . . , Ngq ,

Pgi, i ¼ 1, . . . , Ng:

The second objective function is given as

F(q,Pg) ¼ F*(q)þ
XNg

i¼1

ai þ biPgi þ giP
2
gi

� �
, (12:55)

where F*(q) is a modification of F(q) described earlier. The modifications
consist of changes to Sci and Sri to convert the planning cost to an equivalent
operations cost. Assuming that money is borrowed at interest r, and the life
of the equipment is n years, we can write:

Sci ($=VAr) ¼ Sci
(1þ r)nci

nci � 365� 24
($=VAr)=h, (12:56)
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Sri ($=VAr) ¼ Sri
(1þ r)nri

nri � 365� 24
($=VAr)=h, (12:57)

Pgimin
� Pgi � Pgimax

, i 2 gen: (12:58)

12.5 OPF—Adding Environmental Constraints

The Clean Air Act Amendments (CAAAs) of 1990 require the power industry
to reduce its SO2 emissions level by 10 million tons per year from the 1980
level, and its NOx levels by about 2 million tons per year. The SO2 provisions
of the Act are to be implemented in phases: Phase I, which began in 1995,
required 262 generating units from 110 power plants to limit their SO2

emissions to 2.5 lb=MBtu, and Phase II, beginning in 2000, requires all units
to emit under 1.2 lb=MBtu. To prevent utilities from shifting emissions from
Phase I to Phase II units, an underutilization (or burn) provision mandates a
minimum generation level at the Phase I units. If this provision is not met,
the utility concerned has to either surrender allowances proportionally,
or designate one or more Phase II units as compensating units subject to
the same restrictions as Phase I units. Energy conservation measures and
unexpected demand reductions are taken into account for the underutiliza-
tion constraint [7,13,20].

12.5.1 Modeling Issues for Environmental Constraint

There are various ways to model environmental constraints. The model
adopted here assumes that both SO2 and NOx emissions can be expressed
as separable quadratic functions of the real power output of the individual
generating units. More specifically, the same heat-rate functions are used for
calculating the fuel and each of the emission types.

For configuration I, the SO2 emission constraints can be expressed as

Si(Ui) � ESmax, (12:59)

where

S ¼
X
j2F

ajHj(Pj) (12:60)

and

ESmax is the SO2 upper limit for the power system being analyzed

F is the set of all committed Phase I units, for the ith configuration

aj¼Appropriate conversion coefficient for the jth unit
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Hj(Pj) is the heat rate for unit j, expressed as a quadratic form ajP2
j

þ bjPj þ cj
Pj is the real power output of unit j for the ith configuration

The NOx can be similarly expressed as

Ni(Ui) � ENmax, (12:61)

where

N ¼
X
j2F

bj Hj(Pj): (12:62)

The underutilization (burn) constraints are of the form:

N ¼
X
j2F

GjHj(Pj) � Bmin, (12:63)

where Bmin is the required minimum generation at the Phase I units.
An important feature of the Act is a provision that allows utilities to trade

and bank emission allowances (granted to all Phase I units) with the provi-
sion that the national upper limit of 10 million tons be met. An annual
auction is held to promote trading of allowances. One way to model allow-
ance trading is to add an extra penalty term to the objective function reflect-
ing the current market price of allowances, and relaxing the maximum
number of allowances that can be purchased.

Since the emission constraints are all specific to a given configuration, they
can be written in the generic form:

Ei(Zi) � 0: (12:64)

12.6 Commonly Used Optimization Technique in Linear
Programming (LP)

The following requirements need to be met by any contemplated solution
techniques for the OPF problem [12,14,18,21].

Reliability. The performance of OPF calculations must be reliable for
application in real time. They must converge to realistic answers and
if not, then adequate justifications must be provided. The more
operationally stressed the power system is, the more mathematically
difficult the OPF problem is to solve. The acceptance of the OPF
industry is based on its reliable performance at all times. Failing to
do so, OPF will not gain acceptance.
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Speed. The OPF calculations involve computation of nonlinear objective
functions and nonlinear constraints with tens of thousands of vari-
ables. This therefore requires solution methods that converge fast.

Flexibility. The OPF solution methods simulate real-life power system
operation and control situations, and new requirements are continu-
ally being defined for calculations. Therefore, robust and flexible
OPF algorithms must accommodate and adapt to a wide range of
objectives and constraint models.

Maintainability. Due to new knowledge of system models, and per-
ceived priorities of objectives and constraints, an OPF algorithm
must include a rule-based scheme and easy to maintain features for
real-time application.

12.6.1 LP

The LP-based algorithm solves OPF problems as a succession of linear
approximations:

Minimize F(x0 þ Dxu0 þ Du) (12:65)

Subject to

g0(x0 þ Dxu0 þ Du) ¼ 0 (12:66a)

h0(x0 þ Dxu0 þ Du) � 0, (12:66b)

where
x0, u0 are the initial values of x and u
Dx, Du are the shift about this initial point
g0, h0 are the linear approximations to the original are the nonlinear
constraints

The basic steps required in the LP-based OPF algorithm are as follows:

Step 1. Solve the power flow problem for nominal operating conditions.

Step 2. Linearize the OPF problem (express it in terms of changes about
the current exact system operating point) by

1. Treating the limits of the monitored constraints as changes with
respect to the values of these quantities, accurately calculated
from the power flow.

2. Treating the incremental control variables Du as changes about
the current control variable values (affected by shifting the cost
curves).
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Step 3. Linearize the incremental network model by

1. Constructing and factoring the network admittance matrix (unless
it has not changed since last time performed).

2. Expressing the incremental limits obtained in Step 2.2 in terms of
the incremental control variables Du.

Step 4. Solve the linearly constrained OPF problem by a special dual,
piecewise linear relaxation LP algorithm computing the incremental
control variables.

Step 5. Update the control variables u¼ uþDu and solve the exact
nonlinear power flow problem.

Step 6. If the changes in the control variables in Step 4 are below user-
defined tolerances, the solution has not been reached. If not, go to
Step 4 and continue the cycle.

Notably, Step 4 is considered the key step since it determines the computa-
tional efficiency of the algorithm. The algorithm solves the network and test
operating limits in sparse form while performing minimization in the non-
sparse part. For Steps 1 and 5, solving the exact nonlinear power flow
problem g(x,u)¼ 0 is required to provide an accurate operating x0. This offers
either a starting point for the optimization process or a new operating point
following the rescheduling of control variables. The power flow solution may
be performed using either the Newton–Raphson (N–R) power flow or the
fast decoupled power flow (FDPF) technique.

As shown in Equation 12.65, the optimization problem that is solved at
each iteration is a linear approximation of the actual optimization problem.
Steps 2 and 3 in the LP-based OPF algorithm correspond to forming the
linear network model and expressing it in terms of changes about the oper-
ating point.

Linearized network constraints models may be derived using either a
Jacobian-based coupled formulation given by

DP
DQ

� 	
¼ J

Dd
DV

� 	
or DuPQ ¼ JDx, (12:67)

or a decoupled formulation based on the modified FDPF equations
expressed by

B0Dd ¼ DP, (12:68)

B00DV ¼ DQ: (12:69)

The latter is used in most applications of LP-based OPF. The linear coupled
and decoupled network models are considered separately.
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12.6.1.1 Definition of LP Problem Structure

Let m represent the number of constraints and n represent the number of
decision variables. If m> n, the problem is under-solved. If m¼ n, the linear-
ized problem has a unique solution and cannot be optimized. For the case
when n>m, values may arbitrarily be chosen for n�m of the variables, while
values for the remaining variables are then uniquely defined.

The m variables are termed the basis variables. The remaining n�m
variables are termed nonbasis variables. During the course of the solution,
variables are exchanged between the basis and nonbasis sets. At any given
time, however, exactly m variables must reside in the basis for a problem
with m equality constraints. The objective is to choose values for n�m
nonbasis variables that minimize Dz. The values for the remaining m vari-
ables are determined by the solution.

The LP algorithm changes only a simple variable in the nonbasis set at a
time, and this variable is given the subscript i. The remaining n�m� 1
nonbasis variables, denoted by j, remain constant. Hence, Dz equations can
now be reformulated in terms of the basis set of variables b and a given
nonbasis variable i:

Dz ¼ CbDxb þ CiDxi, (12:70)

BDxb þ piDxi ¼ 0, (12:71)

Dxj ¼ 0, (12:72)

where the subscript ‘‘b’’ represents the subset of variables termed the basis
variables. The variables in this subset change during the solution procedure.
A variable in xb may be from xc or xs. The number of variables in xb is equal
to the number of constraints.

Cb is the subset of incremental costs associated with xb
xi is the single nonbasis variable chosen to enter the basis

pi is the column of matrix A associated with xi that enters the basis

Ci is the incremental cost associated with xi

Similar to the vector x, ci can include elements from both cc and cs. Therefore

{xc, xs} ¼ {xb, xj, xi},

{cc, cs} ¼ {xb, xj, xi}:

Initially, xb¼ xs.

12.6.1.2 LP Iteration

The LP solution procedure is iterative (see Figure 12.6). Each iteration
involves selecting a variable to enter the basis in exchange for a variable
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leaving the basis. The variable basis is the one that achieves the greatest
reduction in Dz per unit of movement. The variable leaving the basis is the
one that first reaches a limit or breakpoint. The basis matrix is then updated
to reflect the exchange in variables along with any changes in sensitivities.

12.6.1.3 Selection of Variable to Enter Basis

To select a variable i to enter the basis, it is necessary to derive an equivalent
cost and sensitivity that represent not only the movement of i itself, but also
the simultaneous movement of all the basis variables.

Stop

Start

Compute π from
Equation 12.77

Compute C from
Equation 12.76

Are all Cs
positive?

Select the most negative
value of C

Select a basis variable to leave
the basis in exchange for the

one entering the basis by
computing p

Update the basis matrix

Yes

No

FIGURE 12.6
Algorithmic steps for implementing the LP algorithm.
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From Equation 12.71,

Dxb ¼ �B�1pi � Dxb ¼ �piDxi, (12:73)

pi ¼ B�1pi (12:74a)

or

Bpi ¼ pi: (12:74b)

Substituting Equation 12.74b into Equation 12.70 gives the equivalent cost
sensitivity ci, with respect to variable i:

Dz ¼ (ci � cbB�1)Dxi ¼ (ci � p0pi)Dxi ¼ ciDXi, (12:75)

ci ¼ cj � p0pi, (12:76)

p ¼ (B� 1)0cb (12:77a)

or

B0p ¼ cb: (12:77b)

where
pi is the negative of the vector of sensitivities between xi and xb
ci is the composite incremental cost associated with xi and xb
p is the vector of sensitivities between the constraint limits and the
objective function

12.6.2 LP Applications in OPF

Example 12.1

The LP-based OPF problem formulation requires the objective function to be
expressed as a set of separable, convex, and continuous cost curves:

F ¼
X

ct(ut):

In the LP formulation, the active power and the reactive power problems are
solved separately. In the active power problems the only controls are active
power controls, and correspondingly in the reactive power problems the only
controls are reactive power controls.
The most common OPF objective function is the active power production cost.

The cost curve of a generator is obtained from the corresponding incremental heat
rate (IHR) curve. For each segment of the piecewise linear IHR curve, the corre-
sponding quadratic cost curve coefficients are found. This gives a piecewise
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quadratic cost curve for the unit. A piecewise linear cost curve is obtained by
evaluating the piecewise quadratic cost curve at various MW values and creating
linear segments between these points. This piecewise linear cost curve is what the
optimization process uses during processing. The cost curve for interchange with
an external company represents the actual cost of exchanging power with that
company. It is obtained from the transaction data by arranging the available blocks
of power according to increasing cost.
No direct economic cost is associated with phase-shifters or load shedding.

Thus, artificial cost curves have to be assigned to these controls. The cost curves
may be thought of as penalty functions; that is, there is a cost penalty to be paid for
moving these controls away from their initial value. The basic shape of the cost
curve for a phase-shifter has been represented by

ci(ui) ¼ ki ui � u0i

 �2

, (12:78)

where
ui is the variable (the phase-shifter angle)
u0i is the initial value of the control variable
ki is the cost curve weighting factor

Example 12.2

The active power minimum control-shift minimization objective aims to limit the
rescheduling of active power controls to the minimum amount necessary to
relieve all constraint violations. If the initial power flow solution does not involve
constraint violations, then no rescheduling is required. This problem is similar in
many ways to the cost optimization problem. The control variables that may be
used and the constraints that are observed are identical to those in the cost
optimization problem. The difference is in the cost representing the generator
MW outputs and the interchange control variables. These cost curves are now
defined as piecewise linear approximations to the quadratic penalty terms. None
of the control variables have an actual economic cost. They are all artificial costs.
The minimum number of active controls minimization objective uses a linear

V-shaped curve for each control, with zero value of cost at the target initial control
value. In practice, the most sensitive controls are moved one at a time within their
full available control range in order to eliminate constraint violations. The result is
a minimum number of the controls being rescheduled.

Example 12.3

The minimum control shift and minimum number of control objectives can be
used for reactive power optimization. The cost curves for the reactive power
minimum-shift minimization objective are obtained from penalty functions.
The minimum number of reactive controls minimization objective is the same as
for the active power counterpart except that the V-shaped cost curves are used as
the reactive power controls.
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Example 12.4

In the active power loss minimization problem, the active power generation
profile is held fixed and the reactive power profile is varied in order to achieve
the minimum loss solution. In addition, phase-shifters can be used to change the
MW flow pattern in such a way as to reduce losses. The objective function can be
written as

F ¼
X

RI2: (12:79)

This objective function is nonseparable. Since the LP program requires a linearized
formulation, the approach then is to minimize the changes in system power losses.
The change in system power lossesDPL is related to the control variable changes by

DPL ¼ @PL
@f

� T
Dfþ @PL

@Vc

� T
DVc þ @PL

@t

� T
Dt þ @PL

@b

� T
Db: (12:80)

The sensitivities in this equation are obtained from a loss penalty factor calculation,
using a transpose solution with the Jacobian matrix factors of the coupled model.
In this coupled formulation all control variables are represented explicitly and

the corresponding rows and columns are prebordered to the Jacobian matrix. This
linear approximation is valid over a small region, which is established by imposing
limits on the changes in control variables from their current values. This separable
linearized objective is subject to the usual linearized network constraints.
The linearized region must be sufficiently small relative to the local curvature of

the nonlinear transmission loss hypersurface in order to achieve appreciable loss
reduction. However, if the region is too small, the solution will require an exces-
sive number of iterations. To cope with this problem a heuristic approach for
contracting or expanding the linearized region can be invoked. Another difficulty
is that the number of binding constraints may be significantly larger than for any
other previously mentioned OPF problem, resulting in prolonging the solution
time. Although not best suited for loss minimization, a well-tuned LP algorithm
can successfully solve the problem in a reasonable time.

12.6.3 Interior Point

Since we discussed interior point methods in detail earlier, we restrict our-
selves here to some observations pertinent to the preceding discussion of
other general NLP methods.

The current interest in interior point algorithmswas sparked by Karmarkar’s
projective scaling algorithm for LP, which is based on two key ideas:

Steepest descent direction is much more effective in improving
the iterate Xk if the iterate is at the center of the polytope formed
by the linear constraints rather than if it were closer to the boundary.

Transformation of the decision space can be found that places the
iterate at the center of the polytope without altering the problem.
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Under certain conditions, one can show that the projective scaling algorithm
is equivalent to logarithmic barrier methods, which have a long history in LP
and NLP. This led to the development of Mehrotra’s primal-dual predictor–
corrector method, an effective interior point approach. The main ideas in all
these barrier methods are

Convert functional inequalities to equalities and bound constraints
using slack variables.

Replace bound constraints by adding them as additional terms in the
objective function using logarithmic barriers.

Use Lagrange multipliers to add the equalities to the objective and
thus transform the problem into an unconstrained optimization
problem.

Use Newton’s method to solve the first-order conditions for the sta-
tionary points of the unconstrained problem.

Interior point methods can be applied to OPFs [15,33] by using a successive
LP technique, and employing an interior point method for solving the linear
programs. The other way is to directly apply interior point methods to the
NLP formulation using the relation to barrier methods as outlined above.

12.6.3.1 OPF Formulation (Method II)

Objective function (loss minimization)

Minimize PL

Subject to

PGi � Pdi � Pi(V,u,T) ¼ 0, i ¼ 1, 2, . . . , Nbus, i 6¼ slack

QGi �Qdi þ qci � qri � Ti(V,u,T) ¼ 0, i 2 generator

Pslack ¼ Fi(V,u,T) ¼ 0, i ¼ slack

Qdi � qci þ qri þ Ti(V,u,T) ¼ 0, i ¼ 1, 2, . . . , Nbus, i 6¼ generator

�I2Lmax
�

V2
i þ V2

j � 2ViVj cos (ui � uj)

Z2
L

.
� I2Lmax

QGimin � QGi � QGlmax

Vimin � Vdi � Vimax

Timin � Ti � Timax

VGimin � VGi � VGimax :
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For this type of OPF (min loss), control variable

u ¼
VG
T
PL

2
4

3
5

and dependent variable

x ¼
VD

QG
u

2
4

3
5:

Write the OPF problem into the following mathematical programming
problem.

Min F ¼ 1
2
UTGU þ RTxþ C

Subject to

h(u,x) ¼ 0

g(u,x) � 0

xmin � x � xmax

umin � u � umax:

Solve the OPF problem using quadratic programming (QP) and=or the
quadratic interior point method (see Figure 12.7).

Thus it is necessary to linearize the nonlinear constraints around the base
load flow solution for small disturbances. The dependent variable of load
flow X can also be eliminated using the implicit functions of the control
variable u.

First linearize the equality constraint h(u,x),

Dx ¼ �h�T
x hTuDuþ h

 �

, (a)

and linearize the nonequality constraint g(u,x),

gTuDuþ gTxDxþ g � 0: (b)

Combine (a) and (b),

gTu � gTx h
�T
x hTu


 �
Duþ g� h�T

x h

 � � 0:

Thus, the quadratic form of the OPF problem is

F ¼ 1
2
DUTGDU þ RTDU þ C
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Subject to

gTu � gTx h
�T
x hTu


 �
Duþ g� h�T

x h

 � � 0

Dumin � Du � Dumax

Dxmin � �h�T
x hTuDu � Dxmax

Dxmin ¼ xmin � xbase þ h�T
x h

Dxmax ¼ xmax � xbase þ h�T
x h

Dumin ¼ umin � ubase

Dumax ¼ umax � ubase:

Input power system data, including power flow and OPF

Run initial power flow to obtain the base case solution

Select the objective function of OPF, e.g., economic
dispatch

Determine the control variable U and the dependent
variable X

Select the OPF constraints and linearize them about the
base case power flow solution

Establish quadratic programming OPF model

Obtain the QP parameters: A, R, G, b, and c

Set  =

Compute step size: a = - ) ) (DU)DUDU /RUUk DG TT+

Start

ABC

Compute lk = A-1(GT A-1b + R)

Compute  ) ARU k(GT
∂U
∂L

∂U
∂LDU

+ −

−

l=

( (

FIGURE 12.7
OPF implementation flowchart by quadratic interior point method.

(continued)
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The quadratic form of the OPF can be expressed as follows:

Minimize F ¼ 1
2
UTGU þ RTU þ C

Subject to

bmin � AU � bmax

or

Minimize F ¼ 1
2
�UT �G �U þ �RT �U þ �C

�A �U ¼ �b

�R ¼ [R,0]T, �U ¼ [U,S1,S2] , �b ¼ [bmin,bmax]

�A ¼ A �I 0
A 0 I

� 	
, �G ¼

G 0 0
0 0 0
0 0 0

2
4

3
5�C ¼ C,

where I is an identity matrix.

Update on U: UUU KK+1 + aD=

Run power flow and check the constraints 

Print/display optimal power flow solution 

Is 
Dobj < ε2? 

Is  DU < ε1?  

Violations?

Stop

A B C 

Yes 

No 

Yes 

No 

No 

Yes 

FIGURE 12.7 (continued)
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Solve the OPF problem

Minimize F ¼ 1
2
�UT �G �U þ �RT �U þ �C

Subject to

�A �U ¼ �b

using the interior point method and starting at initial feasible pointU0 at k¼ 0.

Step 1. Dk ¼ diagb �Uk
1, . . . , �U

k
nc.

Step 2. Bk ¼ �ADk.

Step 3. dpk ¼ {(Bk)T(Bk(Bk)T)�1Bk � 1}Dk(�G�uk þ �R).

Step 4.

ba ¼
�1
r
, r > 0

106, r � 0

(
,

where r ¼ min{dpkj , j 2 (s1,s2)}.

Step 5.

b2 ¼ (dpk)T(dpk)=T, T > 0
106, T � 0

�
,

where T¼ (Dkdpk)T �G(Dkdpk).

Step 6.

Ukþ1 ¼ Uk þ bDkdpk,

where b¼min{b1,b2}.
Set k:¼ kþ 1, and go to Step 2. End when dp< «.

12.7 Commonly Used Optimization Techniques in Nonlinear
Programming

12.7.1 NLP

Consider an objective function f(X); the negative gradient of f(X), �rf(X), is a
direction vector that points toward decreasing values of f(X). This direction is
a descent direction for f(X). Disregard the constraints for the moment. That is,
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assume that the problem is unconstrained. Then, the optimal solution can be
obtained using the following algorithm:

Step 1. Assume an initial guess X0.

Step 2. Find a descent direction Dk.

Step 3. Find a step length ak to be taken.

Step 4. Set Xkþ1¼XkþakDk.

Step 5. If kXkþ1�Xkk � «, stop. Xkþ1 is declared to be the solution
where « is a tolerance parameter.

Step 6. Increment k. Go to Step 2.

12.7.1.1 Finding the Descent Direction

There are several ways to obtain Dk with the simplest being to set Dk equal to
�rf(Xk). This is the steepest descent direction. A more efficient approach is
the Newton method which obtains Dk by solving the following system of
equations:

r2f (Xk)Dk ¼ �rf (Xk), (12:81)

where r2f (Xk)Dk is the Hessian matrix evaluated at Xk. In Newton’s
approach, there are two alternatives to evaluate expressions for the Hessian.
One is to approximate it using the finite difference method. Another involves
using automatic differentiation software.

The exact computation of the Hessian can be time-consuming or difficult.
Also, the Hessian may not be positive-definite as required by Newton’s
method. Quasi-Newton methods build up an approximation [9] to the Hes-
sian at a given point Xk using the gradient information from previous
iterations. Dk is obtained by solving:

BkDk ¼ �rf (Xk), (12:82)

where Bk is the approximate Hessian for the point Xk.

12.7.1.2 Finding the Step Length

The step length ak is required to be positive and such that f(Xkþ 1)< F(Xk).
The value of ak can be obtained by solving the following one-dimensional
optimization problem.

Min
a

f (Xk þ aDk): (12:83)
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The problem is typically solved by a fast procedure (such as quadratic or
cubic interpolation) which is very approximate, since a precise solution is
not needed.

The above discussion has used a type of minimization technique called the
line-search method. A less common technique referred to as the trust-region
approach calculates the next iterate using Xkþ 1¼Xkþ sk, where sk is chosen
so as to obtain sufficient decrease in f(X). Trust-region methods are useful
when the Hessian is indefinite.

12.7.1.3 Treatment of the Constraints

Nowwe consider how the equality and inequality constraints can be satisfied
while minimizing the objective. The Lagrangian function plays a central role
in constrained optimization.

L(X,l) ¼ f (X)�
Xa
i¼1

ligi þ
Xb
j¼1

ljþahi, (12:84)

where
l2<aþ b is the vector of Lagrange multipliers
gi and hi are the elements of the constraint vectors

The Lagrangian multipliers measure the sensitivity of the objective function
to the corresponding constraints. Estimating the proper value of these multi-
pliers is an important issue in constrained optimization.

Another important (and in many ways, an alternative) function is the
augmented Lagrangian function. Before discussing this function, it is useful
to consider an equivalent formulation of the optimization problem.
Each functional inequality can be replaced by an equality and a bound
constraint. As a simple example of how this can be done, consider an
inequality h1(z1) � 0. This can be written as h1(z1)þ z2¼ 0, and z2 � 0,
where z2 is referred to as a slack variable. Thus, a number of new slack
variables are introduced corresponding to the number of functional inequal-
ities resulting in the following formulation.

Minimize
x

f (X) (12:85)

Subject to

C(X) ¼ 0 (12:86)

Xmin � X � Xmax, (12:87)

where
C: <mþ nþ b ! <aþ b is the vector function of equalities
X 2 <mþ nþ b is the vector of decision variables obtained by augmenting

the original vector with the slack variables
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The augmented Lagrangian function can now be defined as

LA(X,l, r) ¼ f (X)� lTC(X)þ 1
2
(X)TC(X), (12:88)

where r is some positive penalty constant.
Choosing a proper value for the penalty parameter r becomes an import-

ant issue. If r is too large, the efficiency of the solution approach will be
impaired. A large r is also likely to lead to ill-conditioning of the Hessian of
the augmented Lagrangian function and, consequently, cause difficulties for
methods that rely on such a Hessian or a suitable approximation. If r is too
small, the solution approach may not be able to converge to a solution that
satisfies Equation 12.86. Depending on the solution approach to be discussed,
either the original formulation or the formulation given in Equations 12.85
through 12.87 is used.

A concept that is used in many approaches is that of active or binding
constraints. An inequality constraint is said to be active or binding if it is
strictly satisfied. Consider the inequality constraints. We can define a set such
that Ha(X)¼ 0 is the active subset of the set of inequalities. Note that the
composition of this subset varies with the iterate Xk. Thus Ha(Z

k) is the subset
of active inequalities corresponding to Xk. By definition, all equality con-
straints are always active. So, the overall set of active constraints A(Xk) is the
union of the sets G(Xk) and Ha(X

k).

12.7.2 Sequential Quadratic Programming (SQP)

This algorithm is an extension of the quasi-Newton method for constrained
optimization. The method solves the original problem by repeatedly solving
a QP approximation. A QP problem is a special case of an NLP problem
wherein the objective function is quadratic and the constraints are linear.
Both the quadratic approximation of the objective and the linear approxima-
tion of the constraints are based on Taylor series expansion of the nonlinear
functions around the current iterate Xk.

The objective function f(X) is replaced by a quadratic approximation; thus:

qk(D) ¼ rf (Xk)Dþ 1
2
DTr2

zzL(X
k,lk)D: (12:89)

The step Dk is calculated by solving the following QP subproblem.

Minimize
D

qk(D) (12:90)

Subject to

G(Xk)þ J(Xk)D ¼ 0 (12:91)

H(Xk)þ I(Xk)D � 0, (12:92)
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where J and I are the Jacobian matrices corresponding to the constraint
vectors G and H, respectively.

The Hessian of the Lagrangian r2
zzL(X

k,lk) that appears in the
objective function, Equation 12.90, is computed using a quasi-Newton
approximation. Once Dk is computed by solving Equations 12.90 through
12.92, X is updated using

Xkþ1 ¼ Xk þ akDk, (12:93)

where ak is the step length.
Finding ak is more complicated in the constrained case. This is because ak

must be chosen tominimize constraint violations in addition tominimizing the
objective in the chosen directionDk. These two criteria are often conflicting and
thus amerit function is employed to reflect the relative importance of these two
aims. There are several ways to choose a merit function with one choice being:

P1(X,y) ¼ f (X)þ
Xa
j¼1

yijgij þ
Xb
j¼1

yaþj max [hj,0], (12:94)

where
y 2 <aþ b is the vector of positive penalty parameters
gi and hi are elements of the constraint vectorsG(X) andH(X), respectively

For the merit function P1(X) as defined in Equation 12.94, the choice of y is
defined by the following criterion,

yi � jlij, i ¼ 1, 2, . . . , a, aþ 1, . . . , b,

where the li are Lagrange multipliers from the solution of the QP subpro-
blem of Equations 12.90 through 12.92 that defines Dk. Furthermore, the step
length ak is chosen so as to approximately minimize the function given by

P1(Xk þ aDk, y):

A different merit function that can be used is known as the augmented
Lagrangian merit function:

LA(X,l, y) ¼ f (X)�
Xa
i¼1

lkgi þ 1
2

Xb
j¼1

yig2i þ
Xb
j¼a

Fj�a X, yj, l2j
� �

, (12:95)

where

fj�a(X, yj,lj) ¼
1
yj

max 0, (lj þ yjhj�a)2

 �� l2j

h i
,

and gi and hi are elements of the constraint functions G(X) and H(X), respect-
ively, y is the vector of positive penalty parameters, and l0i are Lagrange
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multipliers from the solution of the QP subproblem given by Equations 12.90
through 12.92 that defines Dk.

If Equation 12.90 is used as the merit function, the step length ak is chosen
to approximately minimize

LA Xk þ aDk, lk þ a lkþ1 � lk

 �

, y

 �

,

where
Dk is the solution of the QP subproblem given by Equations 12.90
through 12.92

lkþ1 is the associated Lagrange multiplier

12.7.3 Augmented Lagrangian Methods

These methods are based on successive minimization of the augmented
Lagrangian function in Equation 12.88 corresponding to the NLP formula-
tion. Therefore these methods solve the following subproblem successively.

Minimize
z

LA(X, lk, rk) (12:96)

Subject to

Xmin � X � Xmax, (12:97)

where
LA is the augmented Lagrangian function
lk is the vector of the Lagrangian multipliers that is updated every
iteration

rk is the positive penalty parameter that is updated heuristically

By solving Equations 12.96 and 12.97, we get Xkþ1. Then lkþ1 is
obtained using

lkþ1 ¼ lk þ rCCXk: (12:98)

This method is relatively unexplored for the OPF problem.

12.7.4 Generalized Reduced Gradients

The general reduced gradients (GRG) class uses the equality constraints to
eliminate a subset of decision variables to obtain a simpler problem. We
partition the decision vector X into two vectors XB and XN, XB is the vector
of basic variables that we want to eliminate using the equality constraints. XN

is the vector of the remaining variables, called nonbasic variables. Then,

XB ¼ W(XN), (12:99)
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where W(�) is chosen such that

C(W(XN),XN) ¼ 0: (12:100)

The mapping W(�) as in Equation 12.99 is usually defined by the implicit
relation in Equation 12.100. Updates of XN are obtained by solving Equation
12.100 using an appropriate procedure such as Newton’s method. For
example, a Newton update of XB is of the form:

Xkþ1
B ¼ Xk

b �
@

@XB
C(XB,ZN)�1

� ����
Xk

B,X
k
N

C Xk
B,X

k
N


 �
: (12:101)

The problem can be formulated as the reduced problem:

Minimize
Zn

f (W(XN), XN) (12:102a)

Subject to

Xmin
N � XN � Xmax

N : (12:102b)

The vector XN can in turn be partitioned into two sets: XF and XS. The fixed
variables XF are held at either their lower or upper bounds during the current
iteration. The superbasic variables XS are free to move within their bounds.
Thus, the reduced problem given by Equation 12.102a and b is solved
through successive minimization of the following subproblem.

Minimize
Xs

f (W(XS,XF), XSXF) (12:103a)

Subject to

Xmin
S � XS � Xmax

S (12:103b)

XF � Xmin
F


 �
Xmax

F � XF

 � ¼ 0: (12:103c)

Since the constraints in Equation 12.103b and c are simple bound constraints,
the subproblem can be solved by using the negative gradient of the
objective function in Equation 12.103 as the descent direction. This gradient,
�rXS

f(W(XS,XF), XSXF), is referred to as the reduced gradient since it
involves only a subset of the original decision variables. If a superbasic
variable violates one of its bounds, it is converted into a fixed variable held
at that bound. Note that to solve Equation 12.103a through c, some GRG
methods use the reduced Hessian objective function to obtain a search
direction. Instead of computing the reduced Hessian directly, quasi-Newton
schemes are employed in the space of the superbasic variables.

Each solution of Equation 12.103a through c is called a minor iteration. At
the end of each minor iteration, the basic variable vector XB is updated using
Equation 12.101. At this point, a check is made to see whether certain
elements can be moved from the fixed variable set XF into the superbasic
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set XS. The composition of all three vectors XB, XF, and XS is usually altered
at the end of each minor iteration. In other words, the decision vector X is
repartitioned between the minor iterations.

The GRG scheme was applied to the OPF problem with the main motiv-
ation being the existence of the concept of state and control variables,
with the load flow equations providing a natural basis for the elimination
of the state variables. The availability of good load flow packages provides
the needed sensitivity information for obtaining a reduced problem in the
space of the control variables with the load flow equations and the associated
state variables eliminated.

12.7.4.1 OPF Formulation Using QP Reduced Gradient Method

The objective function is cost minimization.

Minimize F(PG) ¼
X
i

aiP2
Gi þ biPGi þ gi


 �
Subject to

PGi � Pdi � Fi(V,u,T) ¼ 0, i ¼ 1, 2, . . . , Nbus, i 6¼ slack

QGi �Qdi þ qci � qri � Ti(V,u,T) ¼ 0, i 2 generator

Pslack ¼ Fi(V,u,T) ¼ 0, i ¼ slack

Qdi � qci þ qri þ Ti(V,u,T) ¼ 0, i ¼ 1, 2, . . . , Nbus, i 6¼ generator

�I2Lmax
� V2

i þ V2
j � 2ViVj cos (ui � uj)

ih .
Z2
L � I2Lmax

PGimin � PGi � PGimax

QGimin � QGi � QGimax

Vimin � Vi � Vimax

Timin � Ti � Timax

VGimin � VGi � VGimax :

For this type of OPF (min cost), control variable

u ¼
VG
T
PG

2
4

3
5,

and dependent variable

x ¼
VD

QG
u

2
4

3
5:
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Writing the OPF problem into mathematical programming problems,
we have

Minimize F ¼ 1
2
UTGU þ RTxþ C

Subject to

h(u,x) ¼ 0

g(u,x) � 0

xmin � x � xmax

umin � u � umax:

Solve the OPF problem using QP (see Figure 12.8).
It isnecessary to linearize thenonlinear constraints around thebase load flow

solution for small disturbances. Thedependent variable of load flowX can also
be eliminated using the implicit function of the control variableU.

First, linearize the equality constraint h(u,x),

Dx ¼ �h�T
x hTxDU þ h

 �

: (a)

Now, linearize the inequality constraint g(u,x),

gTuDU þ gTxDxþ g � 0: (b)

Combining (a) and (b), we get

gTu � gTx h
�T
x hTu


 �
DU þ (g� h�T

x h) � 0:

PD3 = 4.0 + j2.5

PD2 = 4.0 + j2.5
L

G
1 2V

Bus 3

2 − j10

~ G~

1.5 − j202 − j15

Pg1

Pg2

Bus 1 Bus 2

FIGURE 12.8
OPF implementation flowchart by QP method.
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Thus, the quadratic form of the OPF problem is

Minimize F ¼ 1
2
DUTGDU þ RTDU þ C

Subject to

gTu � gTx h
�T
x hTu


 �
Duþ (g� h�T

x h) � 0

Dumin � Du � Dumax

Dxmin � �h�T
x hTuDu � DXmax

Dxmin ¼ xmin � xbase þ h�T
x h

Dxmax ¼ xmax � xbase þ h�T
x h

Dumin ¼ umin � ubase

Dumax ¼ umax � ubase:

The quadratic form of OPF can be expressed as follows:

Minimize F ¼ 1
2
UTGU þ RTU þ C

Subject to

bmin � AU � bmax

or

Minimize F ¼ 1
2
�UTGU þ �RT �U þ �C

AU ¼ �b

�R ¼ [R,0]T, �U ¼ [U,S1,S2], �b ¼ [bmin,bmax]

�A ¼ A �I 0
A 0 I

� 	
, �G ¼

G 0 0
0 0 0
0 0 0

2
4

3
5, �C ¼ C,

where I is an identity matrix.
Solve the OPF Problem

Minimize F ¼ 1
2
�UTGU þ �RT �U þ �C

Subject to

AU ¼ �b:
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Use QP with the reduced gradient method, and assume initial values of U0

at k¼ 0.

Step 1. Compute lk¼A�1 (�GTA�1 �bþ �R).

Step 2. Compute @L=@U¼ (�GT �Uk
�R)�Al.

Step 3. Let D �U¼�(@L=@U).

Step 4. If j D �U j< «, stop; obtain optimal solution. Otherwise go to next
step.

Step 5. Compute optimal step size a, a ¼ �(GUkD �U þ �RTD �U)=
(D �U)T(D �U).

Step 6. Update �UKþ 1¼ �UKþaD �U.

Step 7. Set K¼Kþ 1 and go to Step 2.

12.7.5 Projected Augmented Lagrangian

The projected augmented Lagrangian method successively solves subpro-
blems of the form:

Minimize
x

L�A(X,X
k, lk, r) (12:104a)

Subject to

Ck(X,Xk) ¼ 0 (12:104b)

Xmin � X � Xmax, (12:104c)

where

L�A(X,X
k,lk, r) ¼ f (Xk)� lk

T
(C� Ck)þ 1

2
r(C� Ck)T(C� Ck)

Ck(X,Xk) ¼ C(Xk)þ J(Xk)[X � Xk],

where
Xk is the solution obtained from the kth iteration
J(Xk) is the Jacobian matrix of C(X) evaluated at Xk

lk is the vector of Lagrange multipliers corresponding to Xk

r is the penalty parameter, adjusted heuristically

The procedure used to solve each subproblem of Equation 12.104a through c
is similar to the GRG scheme. The variables are partitioned into basic,
superbasic, and nonbasic variables. The nonbasic variables are held at one
of their bounds. The basic variables are eliminated using the linearized
constraints, Equation 12.104b, and the reduced problem is solved to obtain
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a new value for the superbasic variables. If a superbasic variable reaches one
of its bounds, it is converted to a nonbasic variable.

The gradient of the augmented Lagrangian is thus projected into the space
of the active constraints. The active constraints can be written in the form:

B S N
I

� 	 Xb
XS
XN

2
4

3
5 ¼ b

bN

� 	
,

where

A ¼ B S N
I

� 	

is the active constraint matrix. Consider the operator

W ¼
�B�1S

I
0

2
4

3
5,

which has the property that AW¼ 0. That is, this operator W affects a
transformation into the null space of the active constraints. Let �rL�A be
the negative gradient of the objective function in Equation 12.104a. Then the
vector �WTrL�A is the negative reduced gradient of the objective function,
and points in the direction that lowers the objective without violating the
active constraints. Letr2L�A be the Hessian of the objective function. Then the
matrix WT(r2L�A) is the reduced Hessian. If the reduced Hessian is positive-
definitive and if the reduced gradient is nonzero, then a feasible descent
direction Dk can be obtained using

WT r2L�A

 �

WDk
S ¼ �WTrL�A

�
and Dk ¼ WDk

S:

A popular implementation uses a quasi-Newton approach to finding the
search direction Dk

S by replacing the Hessian with a positive-definitive
approximation. Given Dk

S a new estimate of X can be obtained, where ak is
obtained, using a line-search such that it lowers the value of the objective in
Equation 12.104a.

12.7.6 Discussion on Nonlinear OPF Algorithms

The GRG method was one of the first to be used in OPF packages. Its main
attraction is its ability to use standard load flow methods to eliminate the
power flow equalities and obtain a reduced problem that is easier to solve.
The SQP method is better able to handle nonlinear objectives and constraints
present in the OPF. However, SQP is currently not competitive for large-scale
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systems. The same is true of the projected augmented Lagrangian approach,
which does not seem to have a future for OPF applications. The interior point
method is presently the most favored method for OPFs, because of the
robustness of the underlying approach.

12.7.6.1 Decomposition Strategies

We present some decomposition strategies that can be instrumental in saving
extended OPF formulations such as security-constrained OPF [11,23]. All
decomposition strategies aim to solve NH subproblems independently.
First, we discuss adding security constraints to the OPF formulation.

12.7.6.2 Adding Security Constraints

The traditional notion of security has relied almost exclusively on preventive
control. That is, the requirement has been that the current operating point be
feasible in the event of the occurrence of a given subset of the set of all
possible contingencies. In other words, the base-case control variables are
adjusted to satisfy postcontingency constraints that are added to the original
formulation:

Minimize
U0,Zj

f (Z0) (12:105a)

Subject to

Gi(U0,Z) ¼ 0, i ¼ 0, 1, 2, . . . , N (12:105b)

Hi(U0,Zi) � 0, i ¼ 0, 1, 2, . . . , N, (12:105c)

where
i¼ 0 is the base-case
i> 0 is the ith postcontingency configuration
N is the total number of contingencies considered (i.e., those selected by

a security assessment procedure)
Ui 2 <m is the vector of control variables for configuration i
Zi 2 <n is the vector of state variables for configuration i
Xi 2 <mþn¼ [Ui Xi]

T is the decision vector for the ith configuration
f: <mþ n ! <1 is the base-case objective function representing operating

costs
Gi: <mþ n ! <a is the vector function representing the load flow con-

straints for the ith configuration
Hi: <mþ n !<b is the vector function representing operating constraints

for the ith configuration

The formulation shown in Equation 12.105a through c is very conservative
in that it allows no room for postcontingency corrective actions. It places
much more emphasis on maximizing security than on minimizing operating
cost. In today’s competitive environment, such a formulation is not
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easily justifiable, given that there is a small but nonzero correction time
(about 15–30 min) available for implementing postcontingency changes to
the control variables. Hence, it is preferable to use a corrective control
formulation as follows:

Minimize
X0,Xi

f (X0) (12:106a)

Subject to

Gi(Xi) ¼ 0, i ¼ 0, 1, 2, . . . , N (12:106b)

Hi(Xi) � 0, i ¼ 0, 1, 2, . . . , N (12:106c)

fi(Ui �U0) � Qi, i ¼ 0, 1, 2, . . . , N, (12:106d)

where
fi(�) is the distance metric (say Euclidean norm)
Qi is the vector of upper bounds reflecting ramp-rate limits

The last set of constraints, Equation 12.106d, called the coupling constraints,
reflects the fact that the rate of change in the control variables of the base-case
(like the real power output of generators) is constrained by upper bounds
(which are, typically, system specific). Note that without the coupling con-
straints, the constraints, Equation 12.106b and c, are separable into Nþ 1
disjoint configuration-specific sets, which indicates the decomposability of
the above formulation into Nþ 1 subproblems.

The decomposition strategies are based on the corrective control scheme of
Equation 12.106a through c, and differ mainly in the manner in which they
handle the coupling constraints of Equation 12.106d that impede independ-
ent solutions of the subproblems: decomposition strategies are indispensable
in handling security and environmental constraints.

12.8 Illustrative Examples

Illustrative Example 12.1

A loss minimization problem for the given three-bus power system is shown in
Figure 12.9.
The generator voltages’ magnitude and cost functions are given as

V0
1 ¼ 1:0 pu,

V0
2 ¼ 1:0 pu,

F(PG1 ) ¼ 4PG1 þ 0:05P2
G1
, 0 � PG1 � 4:0 pu,

F2(PG2 ) ¼ 3PG2 þ 0:07P2
G2
, 0 � PGi � 3:0 pu,
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and the loss formulation is given by

PL ¼ 0:06� 0:30PG1 þ 0:004P2
G1

þ 0:006P2
G2
:

Step 1. Express the loss minimization problem

Objective:

Minimize PL ¼ 0:06� 0:30PG1 þ 0:004P2
G1

þ 0:006P2
G2

Subject to

PG1 þ PG2 þ 0:06� 0:30PG1 þ 0:004P2
G1

þ 0:006P2
G2

¼ 6:0 pu

0 � PG1 � 4:0 pu

0 � PG2 � 3:0 pu:

Step 2. Convert the loss minimization problem into a general mathematical
expression. Let

vector x ¼ x1,x2½ �T
¼ PG1 ,PG2½ � :

V3

L3

L1

G2G1

1
2V1

V2

3

L2

Transmission line: 300 km, 200 kV Line
R = 35 ohms,

wL
w C

= 150 ohms
= 5.0 � 10-4 mhos

R + jXL

-jXC-jXC

~ ~

FIGURE 12.9
Single-line diagram for Illustrative Example 12.1.
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Then, the problem is restated as

Minimize f (x) ¼ 0:06� 0:30x1 þ 0:004x21 þ 0:006x22
Subject to

x1 þ x2 þ 0:06� 0:30x1 þ 0:004x21 þ 0:006x22 ¼ 6:0

0 � x1 � 4:0

0 � x2 � 3:0:

Step 3. Solve this mathematical problem using quadratic interior point method.

Case 1
VAr planning problem. Assume that bus 2 is a PQ bus for the given three-
bus network shown in Figure 12.8. Let there exist a low voltage in the power
system such that jV2j ¼ 0.090 pu and jV3j ¼ 0.88 pu. Assume shunt compen-
sators are to be installed at buses 2 and 3 such that the voltage at each bus is
raised to 0.95 pu. And it is given that the sensitivities DV2 and DV3 with respect
to Dq3 are

DV2 ¼ 0:02Dq2 þ 0:010Dq3,

DV3 ¼ 0:07Dq2 þ 0:045Dq3:

Step 1. Express the VAr planning problem

Minimize Q ¼ (Dq2 þ Dq3)

Subject to

DV2 ¼ 0:02Dq2 þ 0:010Dq3 � 0:95� 0:90

DV3 ¼ 0:07Dq2 þ 0:045Dq3 � 0:95� 0:88:

Step 2. Convert the VAr planning problem into a general mathematical
expression. Let

vector x ¼ x1,x2½ �T
¼ [q2,q3]

:

Then the problem is restated as

Minimize f (x) ¼ x1 þ x2
Subject to

0:02x1 þ 0:010x2 � 0:05

0:07x1 þ 0:045x2 � 0:07

x1 � 0 and x2 � 0:

Step 3. Solve this mathematical problem using an LP method.
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Case 2
Voltage optimization using quadratic interior point method. The objective
function to be minimized is

F(V ) ¼
XNb

i¼1

Vi � Vnom
i


 �2
Subject to

Pi � Pgi þ Pdi ¼ 0, 8i 2 {1,Nb}

Qi �Qgi þQdi ¼ 0, 8i 2 {1,Nb}

where, from the standard power flow equations expressed in rectangular form,

Pi ¼ Vi

XNb

i¼1

Vj[Gij cos (ui � uj)þ Bij sin (ui � uj)],

Qi ¼ Vi

XNb

i¼1

Vj[Gij sin (ui � uj)þ Bij cos (ui � uj)] and Vmin
i � Vi � Vmax

i :

Thus, using the three-bus test system, the optimization problem becomes:

Minimize F(V ) ¼ V1 � V0
1


 �2þ V2 � V0
2


 �2þ V3 � V0
3


 �2
Subject to

P1 ¼ PG1 , Q1 ¼ Qg1

P2 ¼ Pg2 � 2:0, Q2 ¼ Qg2 � 1:0

P3 ¼ 0� 4:0, Q3 ¼ 0� 2:5:

Note that Pg1 and Pg2 are obtained from the minimal cost calculation, and the
data Qg1 and Qg2 are specified. Therefore, Qg1¼ 1.2 pu and Qg2¼ 2.7 pu.

Illustrative Example 12.2

A power system is shown in Figure 12.10. All three transmission lines are assumed
identical and can be electrically described by p representation. System data are
shown in Table 12.2.

1

5

~ ~

~

2

4

3
~

~

FIGURE 12.10
Power system diagram for Illustrative
Example 12.2.
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The generator cost functions are

f1 ¼ 0:015P2
1 þ 2:0P1,

f2 ¼ 0:010P2
2 þ 3:0P2:

Find the optimum generation schedule (real power).

SOLUTION

Given

f1 ¼ 0:015P2
1 þ 2:0P1,

f2 ¼ 0:0010P2
2 þ 3:0P2,

The total system load is

PD ¼ PD1 þ PD2 þ PD3

¼ 140þ 50þ 140 MW ¼ 330 MW:

Calculating the optimal generation schedule and forming the Lagrangian, we
obtain

L(P1,P2, l) ¼ f1 þ f2 þ l PD �
XNG

i¼1

Pi

 !
,

; L ¼ 0:015P2
1 þ 2:0P1 þ 0:01P2

2 þ 3P2 þ l(330� P1 � P2):

The transmission losses are neglected.
By applying the optimality condition,

@L
@P1

¼ 0,
@L
@P2

¼ 0,
@L
@l

¼ 0,

@L
@P1

¼ 0:03P1 þ 2� l ¼ 0,

@L
@P2

¼ 0:02P2 þ 3� l ¼ 0,

TABLE 12.2

System Data for Figure 12.10

Bus
Real

P, PG, MW
Reactive

Q, QG, MVAr Load, PD Load, QD

Voltage
(kV)

1 Optimal Unspecified 140 45 220

2 Optimal Unspecified 50 25 220

3 0 Unspecified 140 50 220

Momoh/Electric Power System Applications of Optimization 65886_C012 Final Proof page 432 20.11.2008 11:45am Compositor Name: VAmoudavally

432 Electric Power System Applications of Optimization



@L
@l

¼ 330� P1 þ P2 ¼ 0:

Hence, we obtain

l ¼ 0:03P1 þ 2 ¼ 0:02P2 þ 3

; 0:03P1 � 0:02P2 � 1 ¼ 0:

But

P2 ¼ 330� P1

; 0:03P1 � 0:02(330� P1)� 1 ¼ 0

0:03P1 � 6:6þ 0:02P1 � 1 ¼ 0

0:05P1 � 7:6 ¼ 0

P1 ¼ 152 MW:

Hence, P2¼ 330� 152¼ 178 MW.

Illustrative Example 12.3

A five-bus system is shown in Table 12.3. With P in MW, the cost functions in
dollars per hour are as follows:

F1 ¼ 0:0060P2
g1 þ 2:0Pg1 þ 140,

F2 ¼ 0:0075P2
g2 þ 1:5Pg2 þ 120,

F3 ¼ 0:0070P2
g3 þ 1:8Pg3 þ 80:

Assuming that the voltage limits at all buses vary between 0.95 and 1.05 pu, and
all generators are rated at 200 MW (see Table 12.4), then use the OPF program to
obtain:

TABLE 12.3

Five-Bus System Impedance and Line Charging Data

Bus Code
Line

Impedance (pu)
1=2 Line Charging
Susceptance (pu)

Line
Limits (MW)From Bus i To Bus j

1 2 0.02þ j0.06 j0.030 30

1 3 0.08þ j0.24 j0.025 40

2 3 0.06þ j0.18 j0.020 50

2 4 0.06þ j0.18 j0.020 80

2 5 0.04þ j0.12 j0.015 40

3 4 0.01þ j0.03 j0.010 180
4 5 0.08þ j0.24 j0.025 120
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1. Absolute minimum cost of this system and the real and reactive gener-
ation schedule

2. Loss minimum of this system, the reactive power of generation, and the
optimal voltage profile

SOLUTION

From the OPF program, we obtain:

1. Absolute minimum cost¼ 2.7403

Pg1¼ 97.48 MW, Pg2¼ 40.00 MW, and Pg3¼ 30.00 MW

Qg1¼ –17.86 MVAr, Qg2¼�0.260 MVAr, and Qg3¼ 33.94 MVAr

2. Loss minimum¼ 0.024763, jV4j ¼ 1.04535 pu, jV5j ¼ 1.02052 pu,
Qg1¼�18.87 MVAr, and Qg2¼ 1.38 MVAr

12.9 Conclusions

In this chapter, we discussed general LP and NLP approaches to the OPF
problem [1,3,5,29]. We also presented an extended formulation of the prob-
lem to accommodate constraints pertaining to system security aspects. We
discussed decomposition strategies that can be used to solve the extended
OPF problem.

The OPF problem is in general nonconvex. This implies that multiple
minima may exist that can differ substantially. Very little work has been
done toward exploring this particular aspect of the problem. Furthermore,
we have only considered a smooth formulation with continuous controls.
However, many effective control actions are in fact discrete. Examples
include capacitor switching (for voltage violations) and line switching
(for line overload violations). Also, the generator cost curves are in reality

TABLE 12.4

Initial Generation Schedule

Bus i

Bus Voltage, Vi¼ jVij, Vffui Power Generation Load Level

Magnitude
(pu) Angle (8)

Pgi

(MW)
Qgi

(MVAr)
Pload

(MW)
Qload

(MVAr)

1 1.060 0.0 98.4 — 0 0

2 1.056 �2.27 40.0 23.2 20 10
3 1.044 �3.69 30.0 30.0 45 15

4 1.041 �4.16 0.0 10.0 40 5

5 1.030 �5.35 0.0 0.0 60 10
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fairly discontinuous although they are often modeled as smooth polynomials.
Handling these discontinuities and nonconvexities is a challenge for existing
OPF methods.

12.10 Problem Set

PROBLEM 12.1

Two generators supply the total load 800 MW; the generator cost func-
tions and limits are given as follows:

f1(PG1 ) ¼ 850þ 50PG1 þ 0:01P2
G1
,

50 � PG1 � 300 MW,

f2(PG2 ) ¼ 2450þ 48PG2 þ 0:003P2
G2
,

50 � PG1 � 650 MW:

Find the optimum schedule using NLP:

1. Neglecting generation limits

2. Considering generation limits

PROBLEM 12.2

A power system with two plants has the transmission loss equation:

PL ¼ 0:3� 10�3P2
1 þ 0:5� 10�3P2

2:

The fuel-cost functions are

f1 ¼ 8:5P1 þ 0:00045P2
1,

f1 ¼ 8:2P2 þ 0:0012P2
2,

and system load is 600 MW. Use the N–R method to find the optimal
generation schedule.

PROBLEM 12.3

A power system with two plants has a power demand of 1000 MW. The
loss equation is given by

PL ¼ 4:5� 10�3P1 þ 2:0� 10�3P2:
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The fuel cost functions are

f1 ¼ :00214P1 þ 7:74, 100 � P1 � 600 MW,

f2 ¼ :00144P2 þ 7:72, 100 � P2 � 600 MW:

Use LP to solve the optimal schedule:

1. Neglecting generation limits

2. Considering generation limits

PROBLEM 12.4

A subtransmission system has three buses which undergo low voltage;
that is, V1¼ 0.91, V2¼ 0.89, and V3¼ 0.90. It is necessary to install shunt
capacitors at buses 2 and 8, so that these three buses’ voltage can be raised
to 0.95 pu. The sensitivities DV1, DV2, and DV3, with respect to Dq2 and
Dq8, are given as

DV1 ¼ 0:01Dq2 þ 0:03Dq8,

DV2 ¼ 0:07Dq2 þ 0:045Dq8,

DV3 ¼ 0:02Dq2 þ 0:01Dq8:

Find the optimal VAr planning for this subsystem.

PROBLEM 12.5

Consider the following quadratic equation for the voltage deviation
optimization problem.

Minimize f (V) ¼ V1 � V0
1


 �2þ V2 � V0
2


 �2
Subject to

V1 þ 2V2 � 4

V1 þ V2 � 2

V1, V2 � 0:

If V0
1 ¼ V0

2 ¼ 1:0 pu, solve the QP problem.

PROBLEM 12.6

A system has three plants. The system loss equation is given by

PL ¼ B11P2
1 þ B22P2

2 þ B33P2
3,

(B11, B22, B33)
T ¼ (1:6� 10�4, 1:2� 10�4, 2:2� 10�4)T:

The system load is 300 MW. Loss minimization is selected as the objective
function. Solve this optimal problem using any NLP technique.
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PROBLEM 12.7

With P in MW, the cost equations, in dollars per hour, of a large power
system are as seen in Figure 12.11.
The five generator data are as follows:

F1 ¼ 0:0015P2
1 þ 1:80P1 þ 40,

F2 ¼ 0:0030P2
2 þ 1:70P2 þ 60,

F3 ¼ 0:0012P2
3 þ 2:10P3 þ 100,

F4 ¼ 0:0080P2
4 þ 2:00P4 þ 25,

F5 ¼ 0:0010P2
5 þ 1:80P5 þ 120:

The total system real power load is 730 MW. Obtain the absolute min-
imum cost of this system using the NLP method.
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13
Pricing

13.1 Introduction

This chapter summarizes introductory aspects of price theory concepts com-
monly used in describing economic theory of markets. The ideas and formu-
lations presented are generalized for modeling transactions in the
equilibrium states of elastic and nonelastic market models. Special attention
was given to marginal pricing and spot pricing methods commonly used in
bilateral trading and settlement of transactions among market players.

Noteworthy, several economic foundations of microeconomics and price
theory have been extended to many real-time applications including power
system valuation strategies. In recent years, the advent of several deregulated
markets following the unbundling of power system companies and ancillary
services have led to a renewed effort by engineers and economists to
improved power delivery efficiency with market-driven incentives. This
has led to key areas of research and technology development such as

. Development of pricing mechanisms for issues such as settling
power transactions, managing energy resources, and providing
incentives or penalties in congestion management.

. Increased wheeling of power and centralized monitoring and control
of power markets that is done by the transmission system operators
or independent system operators.

. Development of standard market designs (SMDs) that incorporate
power pricing mechanisms for managing generation, transmission,
and distribution entities.

Specifically, the foundation concepts of marginal price have been used to
improve market efficiency for the electric power system in areas such as

. Economic dispatch of generation that places a price cap on the
lease expensive generator source subject to the system and network
constraints.

. Optimal locations of generation markets in competitive environment
and energy pricing of generation sales taking into consideration of
the load and generation sites.
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. Clearing prices that determines the feasibility of power delivery
based on the generation bids and the load schedules for optimal
power system supply–demand side management.

Economic theory indicates that when commodity prices are equal to mar-
ginal costs, the resulting levels of production and consumption will be most
efficient, and that marginal prices are induced through competition. It
involves bilateral trading where two parties (buyer and seller) agree on
trading arrangements and transaction prices via negotiations. Common
types include (1) customized long-term contracts, (2) over-the-counter
(OTC), and (3) electronic trading exchanges.

13.2 Marginal Pricing

Marginal cost pricing is the principle that the market will, over time, cause
goods to be sold at theirmarginal cost of production.Whether goods are in fact
sold at their marginal cost will depend on competition and other factors, as
well as the time frame considered. In themost general criticism of the theory of
marginal cost pricing, economists note that monopoly power may allow a
producer to maintain prices above the marginal cost; more specifically, if a
good has low elasticity of demand (consumers are insensitive to changes in
price) and supply of the product is limited (or can be limited), prices may be
considerably higher than marginal cost. Since this description applies to most
products with established brands, marginal pricing may be relatively rare; an
example would be in markets for commodities [3,10,14,15,24].

In economics and finance, marginal cost is defined as the change in total
cost that arises when the quantity produced changes by one unit or
increment. Mathematically, the marginal cost, MC function, is expressed
as the derivative of the total cost, TC function, with respect to quantity, q.
Figure 13.1 shows a typical marginal cost curve (there is an analogous
property of supply: the supply curve is the inverse function of marginal cost).

FIGURE 13.1
Typical marginal cost curve.
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The marginal cost is given by

MC ¼ @

@q
¼ @(FCþ f (q))

@q
¼ @( f (q))

@q
, (13:1)

where the total cost function is expressed as TC¼ FCþ f(q) with f(q) as the
total production cost function and FC is the total fixed costs.

Generally, the marginal cost at each level of production includes any
additional costs required to produce the next unit. At each level of produc-
tion and time period being considered, marginal costs include all costs which
vary with the level of production, and other costs are considered fixed costs.
Also, it is a general principle that a producer should always produce (and
sell) the last unit if the marginal cost is less than the market price. As the
market price will be dictated by supply and demand, it leads to the conclu-
sion that marginal cost equals marginal revenue (MR). This general principle
of marginal cost and marginal cost pricing is important in economic defin-
itions of efficiency.

Furthermore, for a piecewise linear market model, the average cost (AC) is
therefore given as AC¼ [FCþ f(q)]q�1. This result has important implica-
tions, since it indicates that the producer who has already incurred the
fixed costs should choose to produce (sell) even if the market price is less
than AC. This is because the MR (the income received from selling the
marginal unit) is greater than or equal to marginal cost [14].

Also, economists aptly named goods whose demand does not increase
with income inferior goods give that individuals generally substitute to
better quality and more expensive goods as their incomes rise relative to
their rate of expenditures. Goods are typically normal (or superior), or
inferior. When demand for a good increase with income levels, the good is
termed normal and the converse applies to define inferior goods. Another
factor that influences demand is the price of related goods. Such goods are
examples of complements.

13.3 Marginal Costing

There are generally two types:

. Short-run marginal costs take into account capital equipment and
overhead of the producer, any change in its production involving
only changes in the inputs of labor, materials, and energy.

. On the other hand, long-run marginal costs allow all inputs, includ-
ing capital items (plant, equipment, and buildings) to vary. A long-
run cost function describes the cost of production as a function of
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output assuming that all inputs are obtained at current prices, that
current technology is employed, and everything is being built new
from scratch.

Other definitions of costs include fixed costs that do not vary with output;
variable cost or operating costs vary directly with the level of output; social
costs of production incurred by society; and average total, fixed, and variable
costs are the total, fixed, and variable costs divided by the quantity of output.

Marginal decision-making therefore considers the incremental cost of a
good with respect to an additional unit of its demand where the next unit of
the good is the marginal unit. The practical usefulness of this concept is in
making rational choice to maximize a goal function or benefit among com-
peting alternatives. Computation of marginal benefits and cost, a natural
extension of cost-benefit analysis with sensitivity studies, provides us with
valuable conclusions. For instance, one could continue to increase an activity
level in a viable way provided that the marginal benefit is greater than
the marginal cost, and stops when an equilibrium between the two margin-
alized quantities is reached. Further insights into marginalism, a significant
development in economics beyond the 1870s, helped define the concepts of
marginal thinking commonly used today.

13.4 Marginal Revenue

MR is the additional revenue generated by an additional unit of production
and is described as the change in revenue to the number of units sold. In
exact terms, it is equal to the change in total revenue over the change in
quantity for unit increment in the quantity and is given by

MR ¼ @TR
@q
¼ @p

@q
� qþ @q

@q
� p � pþ q

@p
@q

: (13:2)

Market conditions:

. For a company facing perfectly competitive markets, price does not
change with quantity sold (@p=@q)¼ 0 and the MR is equal to price
(MR¼ p).

. For a monopoly, the price received will decline with quantity sold
such that (@p=@q)< 0 and this implies that the MR is less than price,
i.e., MR< p. This means that the profit-maximizing quantity, for
which MR is equal to marginal cost, will be lower for a monopoly
than for a competitive firm, while the profit-maximizing price will be
higher.
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. When MR is positive, (@p=@q)> 0 then the price elasticity of de-
mand is said to be elastic, and when it is negative, (@p=@q)< 0, the
price elasticity of demand is said to be inelastic. When MR¼ 0,
the price elasticity of demand (@p=@q)¼�1.

13.5 Pricing Policies for Regulated Systems and Markets

In the deregulated electric power industry as we know it today, electricity is
essentially a commodity where goods and services are bought and sold by
quantity and indistinguishable in quality or characteristics from one batch
to another. And, regulation of the power industry is expected to benefit
from price stability in which case both buyers and sellers know the price of
power in advance and can depend on prices to be stable. This is because
prices are not expected to vary quickly or unpredictably. However, as the
competitive power market increase, so will the prices fluctuations that are
functions of the market conditions that could also be influenced by a
number of stochastic disturbances. This price volatility, and unpredictability
of price ahead of time, makes planning energy resources more of a chal-
lenge for users.

Several well-established system operators are now being implemented to
provide transparent trading mechanisms in trading floors for day-ahead and
spot pricing of electricity. These trading environments include spot transac-
tions, forward contracts, a future market, and price hedging. There are some
salient points to note about some of these frameworks for transacting elec-
tricity sales.

Spot transactions are mainly conducted by telephone or computer network
between two parties. It is an OTC market as opposed to an exchange. Spot
markets do not necessarily have trading floors. A key advantage of the OTC
market is that the terms of a contract do not have to have the specifications
required by an exchange, but this approach usually lack transparency.

Additionally, forward and future markets were developed to reduce the
risk of high price volatility that is often generated by spot trading. In future
markets (accelerated since the mid-1980s), hedging against the risk of price
fluctuations is achieved. A future contract is an agreement between two
parties to buy or sell an asset at a certain future time for a certain price. On
the other hand, a spot contract is an agreement to buy or sell an asset within a
day or hour.

Pricing policies for real-time pricing are either fixed or variable. For fixed
price policies, a market situation is analyzed for profit and an appropriate
price is fixed amount until the situation changes, at which point they go
through the process again. On the other hand, variable pricing is character-
ized by negotiations. Variants of variable pricing include price shading,
auctions, and, due to advances in technology, real-time pricing mechanisms.
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A special variant of real-time pricing is online auctions. All market partici-
pants can view the price changes soon after they occur. Traditional auctions
are inefficient because they require bidders to be physically present. By
solving this problem, online auctions reduce the transaction costs for bidders,
increase the number of bidders, and increase the average bid price. In
addition to these examples of variable pricing in the short term, there are
also long-term pricing practices that could be used as variable pricing.

Under many deregulated marketplace structures, particularly those that in
a nondiscriminant auction, all bidders are paid the market clearing price.
Otherwise, they are paid only what they bid. A nondiscriminant auction
method has been selected for many pools and power exchanges because
overall, it provides lower and more stable costs.

13.6 Pricing Methods

One of the challenges ahead is the development of rules that allow the shared
use of transmission system by utilities and third-party generation. Besides
ensuring the technical quality of the transmission service (voltage control,
static and dynamic security constraints, etc.), these rules should satisfy other
criteria, including no cross-subsidies, transparency of cost allocation proced-
ure, ease of regulation, ensure an adequate remunerationof present and future,
transmission investments, economic signals for dimensioning, and continuity
of the charge. Somemethods have been proposed andmay be classified as one
of the following paradigms: embedded cost, incremental cost, and composite
embedded–incremental cost. Belonging to the set of incremental methods, the
short-term marginal cost has been the most popular due to its economic basis,
that is, it can provide the economic signals for operation and dimension. Some
limitations have been observed in its application to power transmission sys-
tems such as: not recovering all the transmission costs, the charges obtained
may be highly volatile, and charges for the transmission system are based on
generation costs rather than its own cost, the transmission system is usually not
in the optimal condition, and so forth. On the other hand, the embedded cost
methods provide, in general, an adequate remuneration of transmission sys-
tems and are easy to implement. These methods have been criticized due to
their economic grounds. Several researchers have sought methods to hybrid-
ized costing methods that best captures the system performance and more
accurately reflect the economic implication of marginal pricing and sensitivity
of the utility or objective functions relative to changes in resources [6,18,19].

In these methods all system costs (existing transmission system, operation,
and expansion) are allocated among the system users in proportion to their
extent of use of the transmission resources. Some load-flow based methods
are summarized briefly.
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13.6.1 Megawatt-Mile (MWM) Method

The MWM method first calculates the flow on each circuit caused by the
generation=load pattern of each agent based on a power flow model. Costs
are then allocated in proportion to the ratio of power flow and circuit
capacity:

R(u) ¼
X
all k

Ck
fk(u)j j
f k

,

where
R(u) is the allocated cost to agent u
Ck is the cost of circuit k
fk(u) is the k-circuit flow caused by agent u
f k is the k-circuit capacity

Total cost ¼
X
all k

Ck:

This method has been criticized as having no obvious grounding on
economic theory. Its simplifying assumptions can help optimal transmission
planning from a static analysis. As the total circuit power flows are usually
smaller than the circuit capacities, this allocation rule does not recover all
embedded costs. This means that the MWM scheme is only charging for a
base-case network, but not for the transmission reserve.

13.6.2 Modulus Method (MM) or Usage Method

A simple way to ensure recovery of all embedded costs in the MWM method
while retaining its advantages is to replace the circuit capacities by the sum of
absolute power flows caused by all agents:

R(u) ¼
X
all k

Ck
fk(u)j jP

all s
fk(s)j j :

For the transmission expansion interpretation, this MM assumes that all
agents have to pay for the actual capacity use and for the additional reserve.
This reserve may be due to the need of system meeting reliability, stability
and security criteria, or due to system readjustments (i.e., due to planning
errors caused by inherent uncertainties). However, there are no incentives to
the agent that alleviates the circuit load, improving the system performance,
and=or postponing transmission investments.
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13.6.3 Zero Counterflow Method (ZCM)

Here, there is no charge for the agent whose power flow is in the opposite
direction of the net flow. Only the agents that use the circuit in the same
direction of the net flow pay in proportion to their flow.

R(u) ¼
P
all k

Ck
fk(u)j jP

all s¼Vkþ fk(s)
, for fk(u) > 0,

0, for fk(u) � 0

8><
>:

where Vkþ is the set of participants with positive flows on circuit k.
This method assumes that the net flow reduction is beneficial, even if there

is already an excess installed capacity. Moreover, for a light loaded circuit,
there is a discontinuity on the charges when the net flow changes the
direction.

13.6.4 Dominant Flow Method (DFM)

This method is a hybrid of the previous two methods to overcome their
inherent drawbacks. The scheme is to divide the circuit cost allocation R(u)
into two components, R1(u) and R2(u):

a. R1(u) is related to the circuit capacity that is actually being used,
called base capacity. This capacity fraction corresponds to the circuit
net flow and the associated cost is borne only by those participants
with a positive flow w.r.t. the net flow. The allocation criterion of this
portion is found by changing the k-circuit total cost Ck to CBk (cost of
base capacity) where:

CBk ¼ Ck � fk
f k
:

b. R2(u) is related to the difference f k� fk, called additional capacity.
This capacity corresponds to the circuit reserve and as all partici-
pants take advantage of the reliability and security associated the
corresponding fraction of total cost is borne by all participants,
according to the Ck to CAk (cost of additional capacity).

The total allocation R(u) is then given by the sum R1(u)þR2(u). The MWM
has a constant average charge irrespective of what is happening with
the circuit and no incentive to the counter flow agent is provided. Also, it
fails to collect the exact embedded cost. In the MM the average charge
decreases as the transaction amount increases. This seems corrected from
the agent viewpoint but it does not make sense when transmission system
expansion and operation are considered. The ZCM gives an incentive to
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agent A (charge equal zero) when its flow is against to the net flow. When the
net flow changes the direction the agent A bares the total cost. One can note
the discontinuity when x is equal to the circuit capacity. This can lead to a
great variation of the charge for a slight variation of x. In the DFM the agent
A has incentive only when x is close to zero, i.e., when agent A actually
alleviates the circuit load. When x approximates to I and becomes close to the
agent B flow, the incentive decreases.

13.6.5 Alternative Pricing Methods

Pricing methods termed rolled-in methods (not based on load flow analysis)
include Postage Stamp and Contract Path [23,25]. They ignore actual system
operation and are likely to send incorrect economic signals to transmission
customers.

Some of the alternative pricing methods also include:

1. Embedded costs. This has all transmission costs rolled in. Allocation
of costs is done by coincident peak demand. It is based on the
original cost less depreciation: it can lead to increased costs for
exiting customers; it does not provide incentive for new lines; it
does not account for reduction in other savings; and it provides
incentive to build generation at wrong locations.

2. Short-runmarginal cost. This includes the cost of incremental losses. It
also includes incremental O &M and administrative costs. It includes
other fuel costs for reduction in cost-saving transfers andmay include
congestion costs. It provides no incentive for the wheeling utility.

3. Long-run marginal cost. This includes carrying charges for facilities
expansion. It includes same types of cost as short-run marginal cost.
It gives less weight to near-term costs and provides little or not
incentive for the wheeling utility. It is difficult to determine.

4. Value based on market-based pricing. In the U.S. under FERC,
this was examined in the western systems power pool (WSPP)
experiment—bids and offers. It may include open bidding for trans-
mission rights.

13.7 Economic Basis of Shadow Prices in Linear
Programming (LP)

The shadow price dictates the equilibrium between the changes in objective
value per unit increase in the resource. These price indices are therefore
functions of the constraints and not the decision variables.
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WORKING DEFINITION

Shadow price of a resource refers to the change in the objective value of the
optimal solution of a constrained optimization problem obtained by relaxing
the constraint by one unit. More explicitly, it is the value of the Lagrange
multiplier at the optimal solution, which means that it represents a small
change in the objective value that results from small perturbations in the
constraint.

This is consistent with the principle that at the optimal solution, the gradient
of the objective function is a linear combination of the constraint function
gradients with the weights equivalent to Lagrange multipliers. Each con-
straint in an optimization problem has a shadow price or dual variable.

In the case of LP problems, the primal solution dictates what actions
should be taken in order to achieve the desired goal while the optimal dual
variables provides worth or value to an additional unit of a resource. The
dual solution of an LP problem is therefore termed shadow price (and its
meaning is identical to that of Lagrange multipliers in the nonlinear pro-
gramming [NLP] case). The primal LP takes the form Max cTx ¼Pn

j¼1 cjxj s.t.
Ax ¼Pn

j¼1 aijxj � bi, xj � 0 where i 2 1,mf g and j 2 1,nf g for n resources (or
dual constraints) and m products (or dual variables). The dual form is
therefore Min bTl ¼Pm

i¼1 bili s.t. A
Tl ¼Pm

i¼1 aijli � cj and li � 0. Note aij is
the amount of resource i required to make a unit of product j and cj is the
monetary value per unit of product j.

THEOREM Conditions for LP Convergence:

If the primal LP problem has at least one nondegenerate basic and optimal
solution, then there is a positive epsilon, « with the property dj � « in
the neighborhood of the optimal solution for all i 2 {1,m}, then the
problem MaxZ ¼Pn

j¼1 cjxj s.t.
Pn

j¼1 aijxj � bi þ di and xj � 0 has optimal
value Z*þPm

i¼1 li*di where li* is the set of optimal solutions for dual problem
(shadow prices).

Here, li* give the maximum amount or willingness to pay above a marginal
clearing price or trading price for each extra unit of resource i. Its relationship
to the objective function and the constraint is readily established. From
the dual LP, recall that B is the optimal basis for the primal problem
and CB is the final basic cost vector, then Z* ¼ CBB�1b ¼ l*b. That is
@Z* ¼ l*T(@b)) l* ¼ [@Z*=@b]T. Alternatively, let x* ¼ [xB*, 0]T ¼ [B�1b, 0]T

where x* is a nondegenerate optimal basic feasible solution to the standard
form of the LP problem. Assuming that xB* > 0, then b  bþDb does not
cause the optimal basis B to change. Hence, in the optimal basic feasible
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solution, x̂B* ¼ B�1(bþ Db). The corresponding change in the objective is
DZ* ¼ CT

BB
�1Db ¼ l*TDb. Therefore, the change in the optimal value is

given by l*T ¼ (DZ*=Db) and, as Db tend to zero in the limit, we obtain the
same result: l* ¼ [@Z*=@b]T. This solution is the vector of simpler multipliers
for the primal problem or optimal dual variables.

13.7.1 Special Case of LP Problems with Two-Sided Bounded Variables

The formation of Karush-Kuhn Tucker (KKT) application will be most useful
for solving locational marginal price (LMP) multipliers of a DC optimal
power flow (OPF). The primal problem takes the form:

Max cTx s:t: Ax � b with xmin � x � xmax:

This can be written as

Max cTx subject to Ax � b, þx � xmax, � x � �xmin:

In matrix notation, we have

Max cT
x
0
0

2
4
3
5 s:t:

A
þI
�I

2
4

3
5x � b

þxmax

�xmin

2
4

3
5:

The dual problem is therefore:

Min [b xmax xmin]y � bTyþ xmaxyþ xminy

s:t: [A þ I � I]y ¼ c, y � 0:

This takes the form Min cTnewy s.t. AT
newy � c with y � 0. KKT conditions can

now be applied as before.

13.7.2 Further Interpretation of Dual Shadow Prices Variables

The dual solutions, referred to as shadow prices, indicate the value of
relaxing primal constraints by unit change and therefore represent a price
tag or marginal cost for the specified additional unit the resource.

Notably, when a resource constraint is binding (the upper boundary or
ceiling of the constraints is reached), no excess capacity exists, and the
resource shadow price is positive. However, if the resource constraint is not
binding (i.e., the constraint parameter is within its operating limits), excess
capacity exists, and the resource shadow price is zero.
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13.8 LMP

LMPs are the costs of supplying the next increment of load or demand as a
specific node in the network taking into account the generation transactions
(bids), load transactions (demands), network losses, transmission security
constraints, and other operational constraints. In general, LMPs are obtained
from an OPF formulated as a security constrained least-cost dispatch prob-
lem. The nodal prices differ from location to location due to the presence of
network real power losses as well as congestion across critical interfaces. In
cases where congestion plays a significant part in the marginal prices, the
differences in LMPs will be used to settle congestion charges [2,23,25,27].

13.8.1 Components of LMP

The components of LMPs are due to energy, network losses, and congestion.
From the formulation of the security-constrained OPF (SCOPF) problem, the
marginal loss factor is given by

Li ¼ @PLoss

@Pi
¼ lim

DPi)0

DPLoss

DPi

� �
: (13:3)

Solution to the unconstrained OPF (economic dispatch without losses) yields
the system shadow price reference, lref. This problem can be linearized and
solved using LP, or the exact solution can be obtained using a Newtonian
optimization technique.

The marginal cost of losses in a power network is

llossi ¼ @PLoss

@Pi

� �
@C
@Pgi

� �T
, (13:4)

where
Pgi is the generation power
Pi is the injected power at the ith bus
PLoss is the total system loss

Furthermore, themarginal cost of enforcing the binding constraints is given by

l
congestion
i ¼ �

XNC

j¼1
mjbji or

l
congestion
i � �

XNC

j¼1

@C
@hmax

j

 !
DPj

DPi

� �( )�����
DPref DPref�1MW

,

(13:5)

Momoh/Electric Power System Applications of Optimization 65886_C013 Final Proof page 452 20.11.2008 11:46am Compositor Name: VAmoudavally

452 Electric Power System Applications of Optimization



where
mj is the shadow price of the binding constraints
bji is the sensitivity of power flow constraints j relative to power

injection at bus i
Pj is the power flow on the jth constraint
DPi is the change in real power injection at bus i
DPref is the change in real power at the reference bus
C is the cost function in the SCOPF

The slack bus is the reference node used when computing this sensitivity
factor. bji is also a shift factor or sensitivity of the real load at bus i on
constraint j. Finally, compute the value of the LMP at each node i in the
network by summing the energy, congestion, and loss components. Mathe-
matically, LMP, li that represents the sum of nodal price at the reference or
slack bus, the marginal cost accounting for transmission loss distribution,
and the marginal cost of transmission congestion relative to the power
injections at each node is given by

li ¼ lref þ llossi þ l
congestion
i ¼ lref � Lilref �

XNC

j¼1
mjbji

0
@

1
A: (13:6)

Further analyses will include computing settlements of congestion costs,
transmission spot pricing, average LMPs, payments=dividends to ISO, and
payments by load sets. Approach to compute the components of LMP is
as follows.

Computing the reference shadow price (lenergy)
This is obtained by solving the unconstrained economic dispatch problem
using the Lagrangian method.

L(Pg,l) ¼ CT(Pg)� l
X
i2NG

Pgi �
X
i2ND

PDk

 !
: (13:7)

By applying KKT condition

@L
@Pgi

¼ 0 and
@L
@l
¼ 0: (13:8)

Solution to these equations yields the energy component of LMP.
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Computing the marginal cost of losses (lLoss)
Using loss penalty factors, this is given by

lLossi ¼ �Lilref

¼ @PLoss

@Pgi

� �
lref ¼ @PLoss

@Pgi

� �
@CT

@Pgi

� �����
T

losses¼0
, (13:9)

where B-coefficients are used to compute

PLoss ¼
X BiiPgi

Vij j2 cos2 ui
, for AC system (13:10)

PLoss ffi
X

BiiPgi, for DC system: (13:11)

Computing the marginal cost of congestion (lcongestion)
By definition, this is the cost associated with enforcing an active constraint.
A constraint is said to be active if its limit is reached or exceeded.

l
congestion
i ¼ �

XNC

j¼1
mjbji (13:12)

with

mj ¼
@CT

@hmax
j

(13:13)

bji ¼
DP
*

j

DPi

 !�����
DPref DPref�1MW

, (13:14)

where
mj is the shadow price of the binding constraint
hmax
j is the ceiling of the constraint at the upper limit

DPi is the change in injection at bus i on the line Lij of the active constraint
DP
*

j is the change in power flow on constraint j; DP
*

j ¼ DPj ¼ Pold
ij � Pnew

ij
If hmin

j < hj < hmax
j , then mj ¼ 0. Otherwise, mj 6¼ 0 relative to the jth

security or congestion constraint

The sensitivity term bji is the incremental power flow on the jth constraint
when an additional unit of power (1MW) is injected at the ith bus and the
equivalent amount removed from the reference bus. Therefore, bji is com-
puted as the sensitivity of the power flow constraint w.r.t. the injection at the
ith bus subject to a reduction of power at the slack bus. Therefore, for the set
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of NC binding constraints under congestion conditions, the marginal cost of
congestion is determined from

l
congestion
i ¼ �

XNC

j¼1

@CT

@hmax
j

 !
DP
*

j

DPi

 !�����
DPref DPref�1MW

: (13:15)

13.8.2 LMP in Energy Markets

13.8.2.1 Formulation for NLP Approximations

The determination of LMP or spot prices is obtained from OPF solutions. The
general formulation can be summarized minimizing a welfare cost function
subject to power balance, network, network security, and power market
constraints. This typical formulation can be written as [1]

Minimize CT
SPS � CT

DPD (13:16)

Subject to

f (x, u, PS, PD) ¼ 0 (power balance) (13:17)

Qmin
G � QG � Qmax

G (gen Q-limits) (13:18)

Vmin � V � Vmax (bus voltage limits) (13:19)

Pij(x)
�� �� � Pmax

ij (thermal limits) (13:20)

lc � lco (stability loading at critical points) (13:21)

0 � PS � Pmax
S (supply bids) (13:22)

0 � PD � Pmax
D (demand bids): (13:23)

This formulation is solved using LP or NLP techniques that are based in
specialized techniques in classical optimization. These include interior
point (IP) technology, Lagrangian or Newtonian approach, and Barrier
penalty functions [2]. In the more general case, following this formulation
above, we form the Lagrangian given in the generalized form:

L(x,u,l) ¼ f (x,u)þ
X
i2p

lTi gi(x,u)
� �þX

j2m
lTj hj(x,u)� hmax

j (x,u)
��� ���	 


where li and lj are Lagrange multipliers of the equality and inequality
constraints in a typical OPF. Here, the Kuhn–Tucker (K–T) necessary optim-
ality conditions, Lx¼ 0 and Ll¼ 0, hold true. This approach, applied to the
formulation above, gives rise to
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@L
@PSi

¼ CSi � lSi þ mPmax
Si (13:24)

@L
@DSi

¼ �CDi � lDi þ mPmax
Di

, (13:25)

where parameter m is now a Barrier penalty function [1] and the aggre-
gate LMPs for all ith nodes in the system is LMPi ¼ li for 8i 2 Nbuses.
These values represent the shadow price or marginal costs for each market
participant located at the ith node in the power system. The computation
of this LMPi requires deterministic economic data, such as bid and cost
schedules and load forecasts, and the conventional data used in a typical
SCOPF.

By using the criteria for LMP in a more generalized form, this gives rise to
lambda computation that can be decomposed into the components of energy,
congestion, and losses. This summation represents the nodal price at the
reference or slack bus, the marginal cost that accounts for the distribution
of transmission losses, and the marginal cost of transmission congestion
relative to the power injections. As shown in the previous chapters, LMP is
given as

li ¼ lref þ llossi þ l
congestion
i ¼ lref � Lilref �

XNC

j¼1
mjbji

0
@

1
A: (13:26)

Li ¼ @PLoss=@Pi, (13:27)

where
mj is the shadow price of the binding constraint j in the binding set
j 2 NC

bji is the shift factor or sensitivity of the real load at bus i on constraint j
Li is the loss factor
Pi is the generator injection at the ith node

13.8.2.2 Formulation for LP-Based OPF

In the energy market, the market players (producers, consumers, and bilat-
eral trade agents) submit their bids for energy production or consumption to
the ISO, who is responsible for scheduling the system resources for each hour
of the following day (day-ahead market). A SCOPF problem using linearized
DC power flow equations [4] is formulated for ISOs to maximize the sum of
the net consumer and producer surplus subject to transmission capacity and
security constraints.
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max
Xd
i¼1

Ei(Di)�
Xg
i¼1

Ci(Pi) (13:28)

Subject to

B � u ¼ P�D (13:29)

uref ¼ 0 (13:30)

1
xij

ui � uj
� �����

���� � Fmax
ij for all lines ij (13:31)

Pmin
i � Pi � Pmax

i for all units i (13:32)

0 � Di � Dmax
i for all demands i (13:33)

1
xij

(ui � uj)þ LODFij,mn
1
xmn

(um � un)
����

���� � Fmax,c
ij

for all monitored lines ij and contingent lines mn, (13:34)

where
Equation 13.29 represents the system DC power flow
Equation 13.30 defines the slack bus voltage phase angle since det(B)¼ 0

(the slack bus is not omitted in Equation 13.29)
Equation 13.31 represents the transmission line power flow limits
Equation 13.32 represents the unit active power output limits
Equation 13.33 represents the bus active power demand limits
Equation 13.34 is the short-term emergency rating of line ij relative to

the normal rating, Fmax,c
ij

LODFs are the line outage distribution factors

This problem is an LP optimization problem, which is solved for the
unknown vectors P, D, and u.

13.8.3 Computational Steps for LMP Using DC OPF

In this formulation, a single-area network with one slack bus is assumed.
A DC OPF formulation based on sensitivity analysis of the constraints is
summarized here. The optimization problem can be stated as

Min cTPP� cTDPD
� � ¼XNG

i¼1

XND

k¼1
cTPiPi � cTDkPDk
� �

(production� cost welfare function)

Subject to
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1. Equality constraint of power balance (PD�Pg¼ 0)

�AU AB½ 	 P
Pflow

� �
þ AL½ 	 PD½ 	 ¼ 0,

where AU, AB, and AL are the bus-unit, bus-branch incidence, and
bus-load incidence matrices.

2. Inequality constraint of line flow thermal limits (Pmin
ij � Pij � Pmax

ij )

þ Pij � Po
ij

	 
h i
¼ þ

XN
k¼1

Scoeffj�j,k Pk � Po
k

� �n o" #
� þPmax

ij

h i

� Pij � Po
ij

	 
h i
¼ �

XN
k¼1

Scoeffj�j,k Pk � Po
k

� �n o" #
� �Pmin

ij

h i
,

where sensitivity coefficient matrix is obtained from the Kron reduc-
tion of admittance bus matrix for the system with bus 1 as the system
reference such that

Scoeff ¼ Diag(Y)
� �

AT
B

� � 0 0
0 Yr

Bus

� ��1� �
:

3. Generation limits of energy bid limits

Pmin � P � Pmax:

4. Demand limits or bid limits for the loads

Pmin
D � PD � Pmax

D :

The presence of distributed generators (DG) is incorporated in the load
model, which assumes a negative injection to reduce the generating needs
of utility-owned sources, increase the energy reserves, and reduce local area
congestion and voltage problems.

The steps to compute the LMPs at each bus in the network are summarized
in the following steps:

Step 1. Obtain network, generators, and load data and operating con-
straints, including those of any DG sources; obtain the load and
generation profiles and demand curves, market data (supply and
demand bids and limits), and time horizon of study.

Step 2. Initialize study time and other iteration control.
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Step 3. Establish the power flow feasibility by solving the DC power
flow equation summarized by Pij ¼ xij

� ��1
ui � uj
� �

or [P] ¼ [Ybus][u]
such that [u] ¼ [Ybus]

�1[P]. Or, in matrix notation:

Pflow½ 	 ¼ Diag(Ybus)
� �

AT
B

� �
u½ 	 where Ydiag ¼D diag xij

� ��1
:

Step 4. Develop the DC OPF formulation according to the objective and
constraints given above and derive AU, AB, and AL which are the
bus-unit, bus-branch incidence, and bus-load incidence matrices
derived from the current network topology.

Step 5. Set up equality constraints,ABPflows � AUPþ ALPD ¼ 0 such that

�AU AB½ 	 P
Pflows

� �
þ AL½ 	 PD½ 	 ¼ 0

or if the demand is unknown. For known demand,

�AU 0
0 AB

� �
P

Pflows

� �
¼ �[AL][PD]

and the associated Lagrange vector is lenergy lflows
� �T

:

Step 6. Compute the sensitivity coefficient matrix from the Kron reduc-
tion of admittance bus matrix for the system with bus 1 as the system
reference.

Step 7. Set up real power flow constraints for the network using:

þ Pij � Po
ij

	 
h i
¼ þ

XN
k¼1

Scoeffj�j,k Pk � Po
k

� �n o" #
� þPmax

ij

h i

� Pij � Po
ij

	 
h i
¼ �

XN
k¼1

Scoeffj�j,k Pk � Po
k

� �n o" #
� �Pmin

ij

h i
:

Step 8. Set up overall inequality constraints for line flows,
Pij
�� �� � Pmax

ij , and power injections at the nodes, 0 � Pi � Pmax
i .

Summarize as

Pmin

Pmin
flow

Pmin
D

2
64

3
75 � P

Pflow

PD

2
4

3
5 � Pmax

Pmax
flow

Pmax
D

2
4

3
5
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or

Pmin

Pmin
flow

� �
� P

Pflow

� �
� Pmax

Pmax
flow

� �
(for unknown load demands only):

Step 9. Decompose the inequality constraints for the purposes of the
dual LP formulation:

P
Pflow
PD

2
4

3
5 � Pmax

Pmax
flow

Pmax
D

2
4

3
5 and

�P
�Pflow
�PD

2
4

3
5 � �Pmin

�Pmin
flow

�Pmin
D

2
4

3
5

P
Pflow

� �
� Pmax

Pmax
flow

� �
and �P

�Pflow

� �
� �Pmin

�Pmin
flow

� �

(for known load demands only):

Step 10. Recast the matrices for the objective function and constraints
into the primal LP formulation, as given below and cast in state
variable form:

Min
x2Rn

cTx subject to Ax ¼ b, xmin � x � xmax:

Step 11. Develop the LP dual problem formulation from the step above
to the form:

Max
l2Rm

bT xmax xmin� �
l subject to AT I �I� �

l � c, l � 0,

where l ¼ liji 2 1,mf g½ 	T is the vector of dual variables.

Step 12. Use a linear programming (LP) technique to compute
l ¼ liji 2 1,mf g½ 	T. From the solution extract the LMPs in this parti-
tioned vector. Here,

lT ¼ lLMPi
..
.
lgen max

..

.
lgen min

..

.
lflows max

..

.
lflows min

� �T
:

Step 13. Compute fmin
Primal � fmax

Dual.

Step 14. Transpose the algebraic solution to power system quantities.

Step 15. For other time stages, update input data and repeat from step
4. Otherwise, continue.

Step 16. Save and=or display all results: power flows and LMP of
energy and congestion at all buses. Compute net settlement based
on transactions and marginal energy prices between supply and
demand nodded.

End.
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13.8.4 Transmission Congestion Charges (TCCs)

The nodal prices (LMPs) are the Lagrange multipliers of the nodal power
balance constraints [2,7,13,27]. Each unit is paid for every MW of produc-
tion the nodal price of the bus that it is connected to. And each consumer
pays for every MW of consumption the nodal price of the bus he=she is
connected to. In case of congestion, the nodal prices differentiate from one
another and the ISO collects a sum corresponding to TCCs. If a market
player X performs a fixed power transaction of Pkm MW from bus k to bus m
during an H-hour period, then he should pay congestion TCCs to the ISO
equal to

TCCx ¼
XH
h¼1

LMPh
m � LMPh

k

� �
Pkm

� �
:

If during a particular hour h, LMPh
m � LMPh

k , then the transaction performed
by player X helps relieve congestion on the network and the ISO pays the
player X for his=her valuable contribution during that hour.

Mathematical considerations used for electricity spot pricing involve:

1. System operator bases the dispatch on the bids of the market parti-
cipants (i.e., on ex ante prices).

2. Presumption: observed power system dispatch is the optimal dis-
patch based on the bids.

3. A formal, but simplified, dispatch formulation is formed and then
linearized around the observed solution.

4. Dual mathematical programming techniques are used to calculate
prices which are consistent with both the dispatch and the bids.

5. These ex post prices provide incentives for long-term decision
making.

6. A fundamental change in approach. Rather than determining the
optimal operation, the model calculates prices to provide signals for
decision makers to make long-run decisions.

The system representation is formulated as the primary problem with LP.
The objective is to minimize generation fuel costs such that the constraints of
energy balance, voltage magnitude at each node, and line flow at each
transmission line are satisfied. The NLP problem is linearized around the
dispatch in the form max cTx s.t. Ax ¼ b. The dual problem can be built from
the primal problem as min bTy s.t. ATy ¼ c. Also, the complementary slack-
ness conditions make the dual objective function redundant where
(Ax� b)Ty ¼ 0 and (ATy� c)Tx ¼ 0. The dual constraints now define the
prices of the primal constraints.
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Key points to note:

1. Active and reactive power prices at the swing bus are the shadow
prices of the energy conservation constraints. If there are no con-
straints on the transmission of power, there is only one marginal bus,
which drives the prices at other buses.

2. Losses relative to the swing bus determine the prices at other buses.

3. If a transmission line is congested, there exists an additional
marginal bus. This will have an impact on the price of the transmis-
sion line, which is the price difference between the two marginal
buses.

4. Additional constraints such as contingency requirements or thermal
power flow limits in SCOPF or contingency-constrained OPF
(CCOPF) can be added to the primal problem.

The mechanism for the determination of electricity spot prices provides good
incentives for market competition and coordination. Such prices can be
found based on duality theory by solving a mathematical program.

13.9 Alternative OPF Formulation for Pricing
using Duality in LP

OPF formulation is used for pricing with the assumption for short-term
problems. Although the dispatch adjustment is continuous, the dispatch is
treated as constant over a short period, say half an hour, for pricing
purposes. The available generator capacities determined by the unit com-
mitment problem are dispatched to determine the optimal operating level of
each generator (and potentially load) and the transmission line power
flows, while satisfying a range of system constraints. The swing bus is
denoted by the index s, or when included in a set by the suffix S. We use
PX to denote the set of all buses other than the swing bus, and PXS to be the
set of all buses. Thus, for example, although individual buses are indicated
by subscripts, PPXS represents the vector of active power net injections for
all buses in the system.

The OPF objective function has the form:

Min Cost PPXS
G ,QPXS

G

� �
: (13:35)

This equation states that the aim of the dispatcher is to minimize the total
cost of generating active power PPXS and reactive power QPXS, at each
bus where Cost PPXS

G ,QPXS
G

� �
describes the total fuel cost of generation.
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This objective is assumed to be convex, but may be nondifferentiable at some
points. In reality, these functions may be nonconvex, though separable with
respect to each generator’s output. In practice, however, a piecewise quad-
ratic approximation is generally used, with smoothed transition across the
nondifferentiable points.

In minimizing the objective function, it is necessary to ensure that active
and reactive power are conserved, which is a fundamental physical con-
straint.

X
i2PXS

PGi � PDið Þ � LP PPX
G � PPX

D , QPX
G �QPX

D

� � ¼ 0 (13:36)

X
i2PXS

QGi �QDið Þ � LQ PPX
G � PPX

D , QPX
G �QPX

D

� � ¼ 0: (13:37)

The feasible range of the dispatch variables includes:

Vmin
n � Vn � Vmax

n 8n 2 PX (13:38)

Smin
k � Sk � Smax

k 8k 2 K (13:39)

Pmin
Gi � PGi � Pmax

Gi 8i 2 PXS (13:40)

Qmin
Gi � QGi � Qmax

Gi 8i 2 PXS (13:41)

PDi ¼ Pset
Di 8i 2 PXS (13:42)

QDi ¼ Qset
Di 8i 2 PXS, (13:43)

where Equation 13.39 is the power flow limits on transmission lines. The
demands are set externally to the dispatch problem by Equations 13.42 and
13.43. For an optimal observed setting of these values, the shadow prices on
these bounds should equal the prices determined by a welfare maximizing
objective when demand is not fixed.

13.9.1 Linearization of the OPF

Equations 13.36 through 13.43 describe a simple representation of an OPF
problem. The linearization of this primal formulation about an observed
dispatch results in prices which correspond to the actual dispatch, rather
than towhatwas expectedprior to the dispatch. The linearization is performed
using a standard first-order Taylor’s expansion of the nonlinear terms as

f (x) 
 f (x*)þ @f
@x

(x� x*): (13:44)

Here x* denotes the observed value of a variable x. We assume x* to be
optimal. Due to the possibility of discontinuous first derivatives of the
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objective function, we must distinguish between increasing active or reactive
power generation beyond their observed values, or reducing them below
their observed values. Thus, we define:

PGi ¼ P*Gi þ PþGi � P�Gi: (13:45)

QGi ¼ Q*
Gi þQþGi �Q�Gi: (13:46)

PþGi, P
�
Gi, Q

þ
Gi, Q

�
Gi � 0: (13:47)

Here PþGi, an increase in active power generation, has a marginal fuel cost of
cþPi, which exceeds c�Pi, the marginal reduction in fuel cost associated with P�Gi,
a decrease in active power generation. Analogous definitions, though in
terms of reactive power generation, apply for cþQi, c

�
Qi, Q

þ
Gi, and Q�Gi.

Using Equations 13.45 through 13.47, the canonical form of the linearized
OPF is that described by Equations 13.48 through 13.60. The shadow price
associated with each constraint is given on the right.

Min
X
i2PXS

cþPiP
þ
Gi � c�PiP

�
Gi

� �þ X
i2PXS

cþQiQ
þ
Gi � c�QiQ

�
Gi

	 

: (13:48)

Subject to

�
X
i2PX

@Ps

@Pi
PþGi � P�Gi � PDi
� ��X

i2PX

@Ps

@Qi
QþGi �Q�Gi �QDi
� �

þ PþGs � P�Gs � PDs
� � ¼ A*1 : lP (13:49)

�
X
i2PX

@Qs

@Pi
PþGi � P�Gi � PDi
� ��X

i2PX

@Qs

@Qi
QþGi �Q�Gi �QDi
� �

þ QþGs �Q�Gs �QDs
� � ¼ A*2 : lQ (13:50)

�Vn � �Vmax
n : vþVn

8n 2 PX (13:51)

Vn � Vmin
n : v�Vn

8n 2 PX (13:52)

�Sk � �Smax
k : vþSk 8k 2 K (13:53)

Sk � Smin
k : v�Sk 8k 2 K (13:54)

�PþGi � �Pmax
Gi
þ P*Gi : v

þ
Pi
8i 2 PXS (13:55)

�P�Gi � Pmin
Gi
� P*Gi : v

�
Pi
8i 2 PXS (13:56)

�QþGi � �Qmax
Gi
þQ*

Gi : v
þ
Qn
8i 2 PXS (13:57)

�Q�Gi � Qmin
Gi
�Q*

Gi : v
�
Qi
8i 2 PXS (13:58)
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PDi ¼ P*Di : bPi
8i 2 PXS (13:59)

QDi ¼ Q*
Di : bQi

8i 2 PXS: (13:60)

In each of Equations 13.55 through 13.58, one of the ‘‘change in generation’’
terms of Equations 13.45 and 13.46 is a slack variable, and has been dropped
from the equation. Constants in the objective function have been ignored
while those in the constraints Equations 13.49 and 13.50 have been moved to
the right-hand side. Functional forms for the constants in the constraints are
given as

A*1 ¼ P*s �
X
i2PX

@Ps

@Pi
P*Di �

X
i2PX

@Ps

@Qi
Q*

Di (13:61)

A*2 ¼ Q*
s �

X
i2PX

@Qs

@Pi
P*Di �

X
i2PX

@Qs

@Qi
Q*

Di: (13:62)

13.9.2 LP Dual Construct

The dual mathematical programming problem corresponding to the linear-
ized OPF can be formed in the usual manner, producing Equations 13.63
through 13.71. The primal variables corresponding to each dual constraint
are shown on the right.

Min lPA*1 þ lQA*2 þ
X
n2PX

�vþVn
Vmax

n þ v�Vn
Vmin

n

	 


þ
X
k2K

�vþSkSmax
k þ v�SkS

min
k

	 

þ
X
i2PXS

bPi
P*Di þ

X
i2PXS

bQi
Q*

Di

þ
X
i2PXS

vþPi
�Pmax

Gi
þ P*Gi

	 

þ v�Pi

Pmin
Gi
� P*Gi

	 
	 


þ
X
i2PXS

vþQi
�Qmax

Gi
þQ*

Gi

	 

þ v�Qi

Qmin
Gi
�Q*

Gi

	 
	 

: (13:63)

Subject to

Pricing relationships for the OPF demand settings:

lP
@Ps

@Pi
þ lQ

@Qs

@Pi
þ bPi

¼ 0 :PDi 8i 2 PXS (13:64)

lP
@Ps

@Qi
þ lQ

@Qs

@Qi
þ bQi

¼ 0 :QDi 8i 2 PXS (13:65)
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Floor and ceiling constraints set by generator costs:

�lP @Ps

@Pi
� lQ

@Qs

@Pi
� vþPi

� cþPi
:PþGi 8i 2 PXS (13:66)

lP
@Ps

@Pi
þ lQ

@Qs

@Pi
� v�Pi

� �cþPi
:P�Gi 8i 2 PXS (13:67)

�lP @Ps

@Qi
� lQ

@Qs

@Qi
� vþQi

� cþQi
:Q�Gi 8i 2 PXS (13:68)

lP
@Ps

@Qi
þ lQ

@Qs

@Qi
� v�Qi

� �cþQi
:Q�Gi 8i 2 PXS: (13:69)

Pricing relationships for the OPF transmission line constraints:

�vþSk þ v�Sk ¼ 0 :Sk 8k 2 K: (13:70)

Pricing relationships for the OPF voltage constraints:

�vþVn
þ v�Vn

¼ 0 :Vn 8n 2 PX: (13:71)

The simplified form of the dual is depicted as following assuming only active
power is traded on a spot basis.

Min
X
i2PXS

bPi
P*Gi � P*Di

	 

: (13:72)

The constraints of Equations 13.64 and 13.65 can be reexpressed as

bPi
¼ �bPs

@Ps

@Pi
� bQs

@Qs

@Pi
8i 2 PX (13:73)

bQi
¼ �bPs

@Ps

@Qi
� bQs

@Qs

@Qi
8i 2 PX: (13:74)

Note that the terms in Equations 13.73 and 13.74 involve data readily
available once the dispatch is known. Here (@Ps=@Pi), (@Qs=@P),
(@Ps=@Qi), and (@Qs=@Qi) describe the marginal generation and losses attrib-
uted to changes in the power flows. To evaluate these derivatives, we must
apply a Jacobian coordinate transformation as the fundamental electrical
equations only allow us to determine derivatives with respect to voltage
magnitude and phase angle. In practice, this transformation amounts to
solving a set of sparse linear equations, a problem which is straightforward
to set up and solve.

Substituting the active power prices for all the nonswing buses from
Equation 13.64 into Equations 13.66 and 13.67, and the reactive power prices
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for all the same buses from Equation 13.65 into Equations 13.68 and 13.69,
produces Equations 13.75 and 13.76.

c�Pi
� v�Pi

D E
� bPi � cþPi

þ vþPi

D E
8i 2 PXS (13:75)

c�Qi
� v�Qi

D E
� bQi � cþQi

þ vþQi

D E
8i 2 PXS (13:76)

vþPi
, v�Pi

, vþQi
, v�Qi

� 0: (13:77)

zh i denotes that z only appears in the dual formulation if the primal con-
straint to which it corresponds is binding.
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14
Unit Commitment

14.1 Introduction

Unit commitment is an operation scheduling function, which is sometimes
called predispatch. In the overall hierarchy of generation resources manage-
ment, the unit commitment function fits between the economic dispatch
and the maintenance and production scheduling. In terms of timescales
involved, unit commitment scheduling covers the scope of hourly power
system operation decisions with a 1 day to 1 week horizon [1,2,4].

Unit commitment schedules the on-and-off times of the generating units,
and calculates the minimum cost hourly generation schedule while ensuring
that start-up and shutdown rates, minimum up and minimum down times
are considered. The function sometimes includes deciding the practicality of
interregional power exchanges, and meeting daily or weekly quotas for
consumption of fixed-batch energies, such as nuclear, restricted natural gas
contracts, and other fuels that may be in short supply [1,2,4].

The unit commitment decisions are coupled or iteratively solved in
conjunction with coordinating the use of hydro including pumped storage
capabilities and ensuring system reliability using probabilistic measures. The
function may also include labor constraints due to crew policy and costs,
which is the normal times that a full operating crew will be available without
committing overtime costs. A foremost consideration is to adequately adopt
environmental controls, such as fuel switching.

Systems with hydrostorage capability either with pumped hydrostations
or with reservoirs on rivers usually require 1 week horizon times. On the
other hand, a system with no ‘‘memory’’ devices and few dynamic compon-
ents can use much shorter horizon times.

Most unit commitment programs operate discretely in time, at 1 h inter-
vals. Systems with short horizon times can successfully deal with time
increments as small as a few minutes. There is sometimes no clear distinction
between the minute-by-minute dispatch techniques and some of the unit
commitment programs with small-time increments.

Unit commitment has grown in importance recently, not only to promote
system economy but also for the following reasons:
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1. Start-up, shutdown, and the dynamic considerations in restarting the
modern generating facilities are much more complex and costlier
than they were for smaller, older units.

2. Growth in system size to the point where even small percentage
gains have become economically very important.

3. Increase in variation between the peak and off-peak power
demands.

4. System planning requires automated computerized schedulers to
simulate the effect of unit selection methods on the choice of new
generation.

5. Scheduling problem has grown out of the effective reach of
the ‘‘earlier’’ techniques because of the large variety in efficiencies
and types of power sources. The generation resource mix includes
fossil-fueled units, peaking units, such as combustion turbines,
stored and run-of-river hydro, pumped storage hydro, nuclear
units, purchases and sales over tie-lines, and partial entitlements
to units.

The application of computer-based unit commitment programs in electric
utilities has been slow due to the following reasons:

1. Unit commitment programs are not readily transferred between
systems. The problem is so large and complex that only the most
important features can be included, and these vary a great deal
among systems, thus requiring tailor-made applications.

2. There are political problems, constraints, and peculiarities of systems
that are not easily amenable to mathematical solutions and may be
very hard to model in the first place.

3. Operating situation changes so quickly and there are so much
objective and subjective information about the system that the
input requirements of sophisticated, computerized schedulers are
discouraging.

4. As in other computer application areas, developing fully workable
systems has been difficult, as has been the building of operator’s
confidence.

The unit commitment schedule is obtained considering many factors
including

. Unit operating constraints and costs

. Generation and reserve constraints

. Plant start-up constraints

. Network constraints
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The optimal operation and planning of power systems involve consideration
of economy operation, system security, and start-up or downtime issues. The
optimal scheduling units of operation with constraints to meet a given target
or goal are generally referred to as the dynamic programming. This has been
discussed as a general terminology under optimal power flow (OPF) which
deals with security and reliability with technical and nontechnical con-
straints. The schedule of different resource intended or forced find units are
done based on company standards. Research to include units with transmis-
sion controls is done above.

Several methods [16–32] have been proposed in unit commitment problem
based on Lagrange relaxation method:

1. Table lookup approximation

2. Dynamic programming

3. Evolutionary programming

Genetic algorithms (GAs) are also being used in several applications of unit
commitment. We will present details of GA in Chapter 15 that will involve its
problem formulation, assumptions, algorithm, and test cases.

14.2 Formulation of Unit Commitment

14.2.1 Reserve Constraints

There are various classifications for reserve and these include units on
spinning reserve and units on cold reserve under the conditions of banked
boiler or cold start. The first constraint that must be met is that the net
generation must be greater than or equal to the sum of total system demand
and required system reserve. That is

XN
i¼1

Pgi (t) � (Net demandþ reserve): (14:1)

In case the units should maintain a given amount of reserve, its upper
bounds must be modified accordingly. Therefore, we have

Pmax
gi

¼ Pcapacity
gi

� Preserve
gi

(14:2)

Demandþ losses �
XN
i¼1

Pgi �
XN
i¼1

Preserve
gi

(14:3)

Ccold ¼ CO(1� eat)þ CL, (14:4)
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where
Ccold is the cost to start an off-line boiler
a is the unit’s thermal time constant
t is the time (s)
CL is the labor cost up to the units
CO is the cost to start-up a cold boiler

Cbanked ¼ CBtþ CL, (14:5)

where
CB is the cost to start-up a banked boiler
t is the time (s)

14.2.2 Modeling in Unit Commitment

Nomenclature

F Total operation cost on the power system

Ei(t) Energy output of the ith unit at hour t
Fi(Ei(t)) Fuel cost of the ith unit at hour t when the generated

power is equivalent to Ei(t)

N Total number of units in the power system

T Total time under which unit commitment is performed

Pgi
(t) Power output of the ith unit at hour t

~Pgi
(t) Constrained generating capability of the ith unit at hour t

Pmax
gi

Maximum power output of the ith unit
Pmin
gi

Minimum power output of the ith unit

Si(t) Start-up cost of the ith unit at hour t

fi(t) Ramping cost of the ith unit at hour t

PD(t) Net system power demand at hour t

PR(t) Net system spinning-reserve hour t

l(t) Lagrangian multiplier for the system power balance
constraint at hour t

m(t) Lagrangian multiplier for the system spinning-reserve
constraint at hour t

ui(t) Commitment state of the ith unit at hour t

F ¼
XT
t¼1

XN
i¼1

ui(t)Fi Ei(t)ð Þ þ Si(t)þ fi(t)½ �: (14:6)

The constraint model for the unit commitment optimization problem is as
follows:

1. System energy balance

XN
i¼1

1
2

ui(t)Pgi (t)þ ui(t� 1)Pgi (t� 1)
� � ¼ PD(t) for t 2 {1,T}: (14:7)
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2. System spinning-reserve requirements

XN
i¼1

ui(t)~Pgi (t) � PD(t)þ PR(t) for t 2 {1,T}: (14:8)

3. Unit generation limits

Pmax
gi

� Pgi (t) � ~Pgi (t) for t 2 {1,T} and i 2 {1,N}: (14:9)

4. Energy and power exchange

Ei(t) ¼ 1
2

Pgi (t)þ Pgi (t� 1)
� �

for t 2 {1,N}: (14:10)

14.2.3 Lagrangian Function for Unit Commitment

The Lagrangian function for unit commitment is expressed as

L Pgi (t), ui(t), l(t), m(t)
� �
¼
XT
t¼1

XN
i¼1

Fi Ei(t)ð Þui(t)þ Si(t)þ fi(t)½ �

�
XT
t¼1

l(t)
XN
i¼1

1
2

ui(t)Pgi (t)þ ui(t� 1)Pgi (t� 1)
� �� PD(t)

( )

�
XT
t¼1

m(t)
XN
i¼1

ui(t)~Pgi (t)� PD(t)� PR(t)

( )
(14:11)

Min L Pgi (t), ui(t), ~l(t), ~m(t)
� �

¼
XT
t¼1

XN
i¼1

Fi Ei(t)ð Þui(t)þ Si(t)þ fi(t)� ~l0(0)Pgi (0)
� �

�
XT
t¼1

XN
i¼1

~l0(t)ui(t)Pgi (t)þ ~ui(t)~Pgi (t)ui(t)
� �

�
XT
t¼1

~l0(t)PD(t)þ ~m(t) PD(t)þ PR(t)f g� �
, (14:12)

where

~l0(0) ¼ 0:5~l(1) (14:13)

~l0(1) ¼ 0:5 ~l(1)þ ~l(2)
� �

(14:14)
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~l0(T � 1) ¼ 0:5 ~l(T � 1)þ ~l(T)
� �

(14:15)

~l0(T) ¼ 0:5~l(T): (14:16)

Here we note that ~l0(0)Pgi
(0), for i 2 {1,N} are given by the initial conditions

and thus can be ignored in searching for the optimal unit commitment
scheme.

Min L Pgi (t), ui(t), ~l(t), ~m(t)
� �

¼
XT
t¼1

Fi Ei(t)ð Þui(t)� ~l0(t)Pgi (t)� ~m0(t)Pgi (t)
� �

ui(t)

�
XT
t¼1

Si(t)þ fi(t)½ �: (14:17)

14.3 Optimization Methods

14.3.1 Priority List Unit Commitment Schemes

Economic scheduling techniques used until 1958 required that each unit
operate at the same incremental operating cost. The unit commitment strat-
egy was to drop a unit entirely from the system whenever the incremental
cost calculation left it operating at below 10%–25% of its rated maximum
capacity. The reasoning is that below some point the fixed operating costs
make the unit too expensive to operate.

The other earlier techniques have been derived mainly from a method
introduced by Baldwin et al. (1960), where for the first time the start-up
costs and the minimum downtime requirements were considered. These
methods are commonly called priority list or merit-order procedures, and
they are in common use up to now.

The unit commitment techniques developed in the 1950s extended the
previous incremental cost techniques to include minimum downtime and
start-up costs. They built on strict priority-of-shutdown rules for different
seasons, that is, for different daily load shapes. In a number of simulations,
with the load decreasing, the least efficient unit among those that were on
was tested for possible shutdown as follows:

1. Is it possible to restart this unit by the time the load reached its
present level again?

2. Does the restart cost exceed the potential operating savings?

These priority lists were developed well ahead of time, and in actual oper-
ation the units were dropped from the system if they were
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1. Next in line on the priority list.

2. There was not less than a predetermined critical interval before
system loads would rise again to the same level (not necessarily
the minimum downtime).

A number of refinements have been made on this original priority list
method. One improvement was the addition of checks of the system spinning
reserve at each trial scheduling (Kerr et al., 1966). Pseudoincremental costs
were also introduced and iteratively adjusted to encourage the consumption
of the appropriate quotas of fixed-batch energy supplies.

In the priority list unit commitment programs developed later, including
those currently in use, the actual priority lists are, in effect, developed espe-
cially for the situation-at-hand in an iterative procedure that is generally
deeply imbedded in complex heuristic algorithms. Additional features incorp-
orated in these different heuristic techniques are energy interchange model-
ing, different start-up and shutdown orderings, unit response rates, minimum
up and down times, transmission penalty factors, local area ‘‘must run’’
considerations, as well as others. These features are not particularly difficult
tomodel, but the demanding task is to take all the custom-selected features for
a particular system and construct a manageable scheduling program.

Although the concept of the priority list [8,12] was introduced only as a
cursory first attempt at scheduling, it has remained one of the primary
methods for using an approximation to reduce the dimensionality and com-
plexity of the most sophisticated schedulingmechanisms. This method appears
many times in the dynamic techniques and in the actual industrial applications.

14.3.2 Priority Criteria

The core of the priority list-based unit commitment scheduling program
mechanism for ordering the units of the system according to a certain
economic criterion so that the least expensive units is placed at the top of
the list, and the proceeding to the more expensive ones. A number of variants
have been used in the literature.

14.3.2.1 Type I: Fuel Cost-Based Lists

Static priority lists are obtained based on the average fuel cost of each unit
operating at a certain fixed fraction of their maximum output. Thus the
criterion is

Mi ¼ FiHi

Pgi

����
xPmax

gi

, (14:18)

where
Mi is the priority index for the ith unit based on its average fuel cost
Hi is the heat rate curve of the ith unit (MBtu=h)
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Fi is the fuel cost of the ith unit ($=MBtu)
Pmax
gi

is the maximum power of the ith unit (MW)
x is the fixed fraction of the maximum output of the ith unit

In many instances, the full load values are used. The full load average cost is
simply the net heat rate at full load times the fuel cost per Btu. An alternative
static ranking procedure called the ‘‘equal Lambda list’’ is based on assum-
ing that units are operating at the same incremental cost and finding the cost
of fuel per unit output of the unit

Mi ¼ FiHi

Pgi

���� @Fi
@Pgi

¼l

, (14:19)

14.3.2.2 Type II: Incremental Fuel Cost-Based List

In Pang and Chen (1976), the criterion for placing individual units at various
priority levels is the average incremental fuel cost

Mi ¼ Fi
@Hi

@Pgi

 !����
avg

: (14:20)

This is generally equivalent to using a one constant step unit incremental fuel
cost, or unit full load fuel cost.

14.3.2.3 Type III: Incremental Fuel Cost with Start-Up Cost-Based List

In this case, the incremental fuel cost at the unit’s point of maximum effi-
ciency plus the ratio of the unit start-up cost to the expected energy produced
by the unit producing maximum efficiency output for the minimum expected
run time of the unit before cycling in hours is used as the priority order
criterion

Mi ¼ Fi
@Hi

@Pgi

 !����
hmax

þ Si
Tmin
i Pgi

 !����
hmax

, (14:21)

where
Hi is the heat rate curve of the ith unit (MBtu=h)
Fi is the fuel cost of the ith unit ($=MBtu)
Si is the start-up fuel cost of the ith unit
Tmin
i is the minimum expected runtime of the ith unit before cycling (h)

Fi @Hi @Pgi

	 �� ��
hmax

is the incremental fuel cost of the ith unit at maximum
efficiency

Si Tmin
i Pgi

� �	 �� ��
hmax

is the start-up cost component of the ith unit

The output power is computed at the maximum efficiency, hmax.
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14.3.2.4 Type IV: Dynamic Priority Lists

In this approach, the ordering is based on economic dispatch results rather
than the raw cost data. To obtain a dynamic priority list, one begins with load
level equal to a preselected percentage of the total capacity of units to be
ranked and obtains an economic dispatch solution including losses. Based on
the optimum generation level for each unit, a measure of a unit’s fuel cost is
obtained as

Index of fuel cost ¼ Li
Fi(Pgi )
Pgi

" #
, (14:22)

where Li is the loss penalty factor of the ith unit. The highest cost unit is
determined along with the optimal cost. The highest cost unit is removed and
is placed in the ranking as the most expensive. The system load is reduced
by the capacity of the unit removed and a second dispatch is calculated, and
the highest cost unit for this load is removed, and included in the list as the
second most expensive. The process is continued until the system load is at a
level approximating base load. The remaining units are ranked using a static
priority list [14,15].

14.3.3 Simple Merit-Order Scheme

Most priority list-based unit commitment schemes embody the following
logic:

1. During each hour where the load is decreasing, determine whether
shutting down the next unit on the priority list will result in suffi-
cient generation to meet the load plus spinning-reserve require-
ments. If not, the unit commitment is not changed for the hour
considered.

2. If the answer to (1) is yes, determine the number of hours, h before
the unit will be needed again when the load increases to its present
level. Determine whether h is greater than the minimum shutdown
time for the unit. If not, the unit commitment is not changed for the
hour considered.

3. If the answer to (2) is yes. Calculate the following:

3.1 Sum of hourly production costs for the next h hours with the
candidate unit up.

3.2 Sum of hourly production costs for the next h hours with the
candidate unit down plus the start-up cost for either cooling the
unit or banking it.

4. Notably, if costs in 3.2 are less than those of 3.1, then the unit is
shutdown, otherwise, the unit is kept on.
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14.4 Illustrative Example

14.4.1 Lagrangian Relaxation Approach to Unit Commitment

The Lagrangian relaxation methodology has been demonstrated to have the
capacity to handle systems consisting of hundreds of generating units effect-
ively. The approach is claimed to be more efficient than other methods in
solving large-scale problems and can handle various constraints more easily.
The Lagrangian relaxation approaches acknowledge that the unit commit-
ment problem consists of three ingredients.

1. Cost function, which is the sum of terms each of which, involves a
single unit. The unit commitment problem seeks to minimize:

F ¼
XT
t¼1

XN
i¼1

Fi Pi(t), Si(t), ui(t)ð Þ, (14:23)

where the individual terms are given by

Fi Pi(t), Si(t), ui(t)ð Þ ¼ Ci Pgi (T)
� �þ ui(t) 1� ui(t� 1)½ �Si xi(t)ð Þ: (14:24)

2. Set of coupling constraints (the generation and reserve requirements)
involving all the units, one for each hour in the optimization period.XN

i¼1

Ri,n Pi(t), ui(t)ð Þ � PR,n(t) (14:25)

for all t 2 {1,T} and requirements n.

The first requirement is the power balance constraint:

XNth

t¼1

Ri,n Pi(t), ui(t)ð Þ, (14:26)

where D(t) is the generation requirement at time t. As a result, in
Equation 14.8, with n¼ l, we have

Ri,1 Pgi(t), ui(t)
� � ¼ ui(t)Pgi (t) (14:27)

PR,2(t) ¼ PD(t): (14:28)

The second requirement is the spinning-reserve requirement
written as

XN
i¼1

Pmax
gi

ui(t) � PD(t)þ PR(t): (14:29)

Momoh/Electric Power System Applications of Optimization 65886_C014 Final Proof page 478 20.11.2008 11:49am Compositor Name: VAmoudavally

478 Electric Power System Applications of Optimization



In Equation 14.12, PR(t) is the MW spinning-reserve requirement
during hour t. Therefore in Equation 14.8 for n¼ 2, we have

Ri,2 Pgi (t), ui(t)
� � ¼ ui(t)Pmax

gi
(14:30)

PR,2(t) ¼ PD(t)þ PR(t): (14:31)

3. Set of constraints involving a single unit:

Li(Pgi ,ui,t) � 0 for all i 2 {1,N}, (14:32)

where

Pgi (t) 2 {Pgi (k)jk ¼ 1, 2, . . . , T}

ui(t) 2 {ui(k)jk ¼ 1, 2, . . . , T}:

The constraints of Equation 14.15 involve minimum up and down times, as
well as unit loading constraints. In the nonlinear programming language, the
problem posed is referred to as the primal problem.

The Lagrangian relaxation approach is based on Everett’s work that
showed that an approximate solution to the primal problem can be obtained
by joining the coupling constraints to the cost function using the Lagrange
multipliers ln to form the Lagrangian function.

L(Pgi ,ui,t) ¼
XT
t¼1

XN
i¼1

Li Pgi (t), ui(t)
� �� �

�
XT
t¼1

XN
i¼1

ln(t)Ri,n Pgi (t), ui(t)
� �� �

: (14:33)

The multipliers associated with the nth requirement for time t is denoted by
ln(t). In expanded form the Lagrangian function is

L(Pgi ,ui,t) ¼
XT
t¼1

XN
i¼1

Ci Pgi (t)ui(t)
� �þ ui(t) 1� ui(t� 1)½ �Si xi(t)ð Þ� �

þ
XT
t¼1

l1(t) PD(t)�
XN
i¼1

Pgi (t)

" #( )

þ
XT
t¼1

l2(t) PD(t)þ PR(t)�
XN
i¼1

ui(t)Pmax
gi

" #( )
, (14:34)

where
l1 is the Lagrangian multiplier without spinning-reserve constraints
l2 is the Lagrangian multiplier with spinning-reserve constraints
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The resulting relaxed problem is to minimize the Lagrangian function, sub-
ject to l1(t) � 0 and l2(t) � 0. In addition, Pgi

(t), ui(t), and xi(t) should satisfy
Equation 14.15, which is given by

L(l1,l2,t) ¼ Min
XT
t¼1

XN
i¼1

Ci Pgi (t)ui(t)
� �þ ui(t) 1� ui(t� 1)½ �Si xi(t)ð Þ� �

þ
XT
t¼1

l1(t) PD(t)�
XN
i¼1

Pgi (t)

" #( )

þ
XT
t¼1

l2(t) PD(t)þ PR(t)�
XN
i¼1

ui(t)Pmax
gi

" #( )
: (14:35)

The dual problem is

Maximize Ldual ~l(t)1, ~l1(t)
� �

: (14:36)

The formulation involves maximization of a minimum where the solution of
the dual problem is an iterative process. For a fixed ~l1 and ~l2, Maximize
Ldual(~l(t)1, ~l1(t)) is determined by minimizing the right-hand side of Equa-
tion 14.15. The global procedure is represented by the update of the multi-
pliers, and its objective is to maximize Ldual(~l(t)1, ~l1(t)). Subsequent to
finding the dual optimal a search for a feasible suboptimal solution is
conducted. The flowchart of the Lagrangian relaxation method is shown
in Figure 14.1.

Determining Ldual(~l(t)1, ~l1(t)) is much simpler than the solution of the
primal problem because of the following reasons:

1. Cost function can bewritten as a sumof terms each involving only one
unit.

2. Coupling constraints between the units have already been relaxed.

3. Since each of the constraints involves one unit, the operation of each
unit can be considered independently.

14.4.2 Single Unit Relaxed Problem

The minimization of the right-hand side of Equation 14.13 can be separated
into subproblems, each of which deals with one generating unit only. Based
on Equation 14.16, the single unit relaxed problem is stated as

Minimize L Pgi (t), ui(t)
� � ¼XT

t¼1

Fi Pgi (t), ui(t)
� ��XK

n¼1

ln(t)Ri,n Pgi (t), ui(t)
� �� �( )

:

(14:37)
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Alternatively, based on Equation 14.14, the problem is restated as

Minimize L Pgi (t), ui(t)
� � ¼XT

t¼1



Ci Pgi (t)ui(t)
� �þ ui(t) 1� ui(t� 1)½ �Si xi(t)ð Þ

þ l1(t)Pgi (t)þ l2(t)Pmax
gi

(t)
�

(14:38)

Start

Read data

Initialize l1 and l2

Update l1 and l2

i = 1

Solve thermal
subproblem i = i + 1

Are all thermal
subproblems solved?

Does the dual function
converge to the optimal?

Are the reserve
constraints satisfied?

Perform preliminary dispatch

Are the power balance
constraints satisfied?

Adjust l1 

i = 1

Solve the
thermal subproblem

Are all thermal
subproblems solved?

Solve final economic
dispatch and improve

the schedule

Print results

Stop

Adjust

i = i + 1

Yes

No

Yes

Yes

No

No

No

Yes
Yes

No

l2

FIGURE 14.1
Flowchart of the Lagrangian relaxation algorithm for unit commitment.
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subject to the constraints of Equations 14.10, written as

Pmin
gi

� Pgi (t) � Pmax
gi

if ui(t) ¼ 0 (14:39)

Pgi (t) ¼ 0 if � xdown
i � xi(t) � �1 (14:40)

and the minimum up and down time constraints

ui(t) ¼ 1 if 1 � xi(t) � xupi (14:41)

ui(t) ¼ 0 if � xdown
i � xi(t) � �1, (14:42)

where
xi(t) is the cumulative uptime if xi(t)> 0 and the cumulative downtime
xi(t)> 0

xupi , xdown
i is the minimum up and down times of the ith unit, respect-

ively

Furthermore, xi(t) can be related to ui(t) by the following difference equations
in Table 14.1.

TABLE 14.1

Difference Equations That Relate xi(t) to ui(t)

Value of xi(t) Condition

xi(t)þ 1 xi(t) � 1 and ui(t)¼ 1

1 xi(t) ��1 and ui(t)¼ 1

xi(t)� 1 xi(t) ��1 and ui(t)¼ 0

�1 xi(t) � 1 and ui(t)¼ 0

This problem can be solved easily by dynamic programming or any other
method. The state variables are just xi(t). The number of required up states is
xupi and the number of required down states is

Max xdown
i , xcooli

� �
, (14:43)

where xcooli is the time required for a unit to cool down completely so
that the start-up cost is independent of downtime for downtimes greater
than xcooli .

The operating limits and the minimum running and shutdown time
constraints are treated implicitly by this method.

The dual problem is then decoupled into small subproblems, which are
solved separately with the remaining constraints. Meanwhile, the dual func-
tion is maximized with respect to the Lagrangian multipliers, usually by a
series of iterations based on the subgradient method.
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14.4.3 Lagrangian Relaxation Procedure

Implementing the Lagrangian relaxation method involves the following
key steps:

1. Finding the multipliers ln(t) to obtain the solution to the relaxed
problem near the optimum.

2. Estimating how close to the optimum is the solution obtained

3. Obtaining the actual solution to the relaxed problem

To start, Everett [7] shows that if the relaxed problem is solved with any sets
of multipliers ln(t) and the resulting value of the right-hand side of Equation
14.8 is Rn*(t). That is

XN
i¼1

Ri,n Pgi
*(t), ui*(t)

� � ¼ Rn*(t), (14:44)

where Pgi
*(t), ui*(t) is the optimal solution.

This implies that Pgi
*(t) and ui*(t) yields the optimum solution of the original

problem with PR,n(t) replaced by Rn*(t).
The optimization requirement is met if ln(t) can be found such that the

resulting Rn*(t) are equal to PR,n(t). Unfortunately, this cannot always be done.
As a result there will be a difference between the cost obtained by solving the
relaxed problem or dual and the optimum cost for the original problem. This
difference is referred to as the duality gap, and can be explained graphically
as shown in Figure 14.2. The lower curve is a plot of Ldual ~l1,~l2

� �
, which has

been defined by Equation 14.15 as

Primal solution Primal optimum defect

Dual optimum defect

Primal optimal
unknown

Dual optimal
 unknown

Dual solution

d3

d2

d1

D

B

A

Objective

Multipliers

Dual objective

FIGURE 14.2
Duality gap of a relaxed problem.
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Ldual ~l1,~l2
� � ¼ Min

XT
t¼1

XN
i¼1

Ci Pgi (t)ui(t)
� �þ ui(t) 1� ui(t� 1)½ �Si xi(t)ð Þ� �

þ
XT
t¼1

l1(t) PD(t)�
XN
i¼1

Pgi (t)

" #( )

þ
XT
t¼1

l2(t) PD(t)þ PR(t)�
XN
i¼1

ui(t)Pmax
gi

" #( )
: (14:45)

The minimization is with respect to Pi and ui, and the plot corresponds
to various values of the multipliers ~l1 and ~l2. The following points are
identified in the graph:

. Point A is a known solution to the dual optimum (through the
iterations).

. Point B is the unknown optimal solution to the dual problem.

The difference d1, between the value of Ldual(~l1, ~l2) at Point A and the dual
optimum at Point B, is a defect that can be improved upon by optimizing
the dual problem. The upper curve corresponds to the objective of the
primal problem defined by Equation 14.6 as

F ¼
XT
t¼1

XN
i¼1

Fi Pgi (t), ui(t)
� �

: (14:46)

The points identified on the curve are

. Point C is the unknown optimal solution to the primal problem, and
corresponds to the minimum cost for a feasible solution.

. Point D corresponds to the value of primal cost corresponding to the
dual solution of Point A.

The difference d3, between C andD, is a defect that can be improved by further
optimizing the dual or primal problems. The difference d2, between the
unknown optimum value of the primal problem (Point C) and the unknown
optimum value of the dual problem (Point B), is the duality gap.

Duality theory shows that for nonconvex problems there will typically be
a duality gap. Since the commitment decision variables xi(t) are discrete, the
unit commitment problem is nonconvex. The duality gap, however, has been
shown to go to zero as the problem size gets bigger [2].

Duality theory also generates guidelines on how to update the multipliers
ln(t) so that the solution to the relaxed problem is near the optimum
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solution. Let Ldual(ln(t)) be the value of the Lagrangian at the solution to the
relaxed problem, then good values of the multipliers ln(t) can be obtained
by maximizing Ldual(ln(t)) for all positive ln(t).

A number of approaches have been used to maximize the dual function
Ldual(ln(t)). The first, and most popular, involves using the subgradient
method. This is a generalization of the gradient or steepest descent method,
for nondifferentiable functions. In general, the Lagrange function Ldual
(ln(t)) is nondifferentiable. The subgradient of Ldual(ln(t)) with respect to
one of the multipliers ln(t) is given as

@Jdual ln(t)ð Þ
@ln(t)

¼ PR,n(t)�
XN
i¼1

Ri,n Pgi
*(t), ui*(t)

� �
, (14:47)

where Pgi
*(t) and ui*(t) are the solution to the relaxed problem with multipliers

ln(t). That is, the derivative of the Lagrangian corresponding to a change in
ln(t) is equal to the difference between the requirement and the value of the
left-hand side of the constraint evaluated at the solution of the relaxed
problem. The subgradient method to update ln(t) is

lkþ1
n (t) ¼ Max O, lkn(t)þ tk PR,n(t)�

XN
i¼1

Ri,n Pgi
*(t), ui*(t)

� �( )" #
, (14:48)

where
lkn(t) is the kth update of ln(t)
tk is a scalar step length

A number of forms of tk could be used as long as tk as k ! 1 and

X1
k¼1

tk ! 1: (14:49)

Many authors have used the following form tk¼ 1=cþ dk where c and d are
constants. Different constants would be given for the different requirements
as long as the conditions on tk are met. Fisher [3] recommends the following
form:

tk ¼ mk
n Ldual lkn

� �� L*
� �

PR,n(t)�
PN

i¼1 Ri,n(Pgi
*(t), ui*(t))

� 2 (14:50)

Lauer et al. [13] use a different approach to minimizing the dual functions
that uses second derivative information.
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Different authors use variations of the above Lagrangian methods to
ensure that the generation and reserve requirements are met and that the
algorithms converge to near optimal solutions. These variations include
replacing the spinning and supplemental reserve requirements by constraints
that just involve the units’ upper limits, and using modifications to the
subgradient formulas.

14.4.4 Searching for a Feasible Solution

The problem considered is very sensitive to changes of multipliers. Therefore
it is important to start the search for a feasible solution at a point that is fairly
close to the dual optimal.

The decoupled subproblems of the dual problem interact through the two
Lagrangian multipliers. These multipliers are interpreted as the prices per
unit power generation and spinning reserve, respectively, that the system is
willing to pay to preserve the power balance and fulfill the spinning-reserve
requirement during each hour. Increasing l1(t) and l2(t) may lead to the
commitment of more generating units and an increase in the total generation
and spinning-reserve contribution during hour t. The reverse effect is
obtained by decreasing the two multipliers.

The feasible search is based on the above relationship between the unit
commitment and the Lagrangian multipliers. The values of ~l1 and ~l2 are
adjusted repeatedly, based on the amount of violation of the relaxed con-
straints (the power balance and the spinning-reserve constraints). Therefore
the subproblems are solved after each adjustment and the iterations continue
until a feasible suboptimal solution is located.

The commitment schedule is very sensitive to the variation of the
multipliers. For example, if a system contains several units whose cost
characteristics are nearly identical, a minor modification of the Lagrangian
multipliers during a particular hour may turn all of these units on or off
provided that the original values of the multipliers during that hour are close
to the incremental costs of generations and spinning-reserve contributions of
these units. Thus the modification of the multipliers should be determined in
an appropriate manner; otherwise, the number of committed units during
some periods may be more than required. Note that the commitment of a
generating unit depends on the values of the multipliers and its commitment
states during preceding hours due to the minimum running and shutdown
time constraints. This dependence complicates determining the appropriate
values of the multipliers.

A simple algorithm is presented in Ref. [5] to find a feasible solution with
an additional set of restrictions designed to limit unnecessary commitment of
the generating units. An economic dispatch algorithm is then applied to this
commitment schedule to find the exact power generation of each generating
unit and improve the generating schedule. The flowchart of the searching
algorithm, which is implemented to find the feasible solution, is shown in
Figure 14.3.
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Considering the MW spinning-reserve constraints, the inequality of
Equation 14.12 does not provide any upper-bound restrictions. Common-
sense for an economic schedule requires that there should not be too much
excess MW reserve. As a result, in the searching algorithms, the following
constraints are included implicitly to test the validity of the commitment
schedule.

XN
i¼1

ui(t)Pmax
gi

� PD(t)þ PR(t)þ PE(t): (14:51)

i = 1

(From the dual solution)

of the dual optimal
where l�

1 and l�
2 are values

l01 = l �
1, l02 = l �

2

l t
k+1 = l t

2
k
; k = k +1

l t
k+2 = l t

1
k
  + ∂l t

1
k

l t
2
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 =  l

t
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k
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FIGURE 14.3
Flowchart to find feasible solution.
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Selecting PE(t) is guided by the following considerations:

1. Upper bounds limit the solution space to be close to the dual optimal
point. It may, however, lead to miss the optimal solution. Further-
more, the value of PE(t) may affect the convergence rate. Thus an
appropriate choice of PE(t) is necessary. Unfortunately, there is no
rigorous basis for selecting PE(t). In the algorithm of Ref. [5], a
heuristic procedure is introduced.

2. Criterion that the excess in MW reserve should be reduced to a min-
imum is not implemented in Ref. [5]. This criterion indicates that the
shutdown of any committed unit will violate the reserve constraints.

The weak points of this criterion are

1. Minimum reserve margin does not always correspond to the best
dispatch.

2. Computation time for the search process will be increased signifi-
cantly since the feasible region is tightly restricted.

3. It is possible that none of the solutions can satisfy these tight
bounds and the minimum running=shutdown time constraints
simultaneously.

The procedure for assigning the values to E(t) suggested in Ref. [5] is as
follows:

Step 1: For every hour t, PE(t) is first set to the sum of the maximum powers of
the two most inefficient committed units. This value is selected because the
commitment states of these two units are usually subject to the modification
of the multipliers during the searching process. It is not a constant and
depends on units, which have been committed according to the schedule
being examined. In the search process, this bound actually discards those
schedules, which allows more than two units to be shutdown during hour t
without violating the spinning-reserve constraints.

Step 2: If a feasible solution cannot be found within a reasonable number
of iterations, this may be due to the bounds during some hours being
too tight. Thus no schedule can satisfy the minimum running=shutdown
time and the bounds simultaneously. As a result, for those hours during
which no combination of committed units have been found to satisfy Equa-
tions 14.12 and 14.32, the values of PE(t) are increased during these hours
successively until a feasible solution is found.

Step 3: The procedure proposed in Ref. [5] is claimed to usually give a
satisfactory feasible solution before proceeding to the final refinement
of the schedule. Even though it cannot guarantee the true optimal solution,
the extent of suboptimality of the solution can be estimated. Since the dual
optimal solution is a lower bound of the original commitment problem, the
relative difference between the cost of the suboptimal schedule and this
bound may determine the quality of the solution.
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14.5 Updating ln(t) in the Unit Commitment Problem

There exist many techniques for updating ‘‘lambda’’ in the searching algo-
rithms of the unit commitment problem. Table 14.2 summarizes two key
contributors to this topic and the merits and drawbacks to the proposed
method.

TABLE 14.2

Comparison of Selected Techniques for Updating ln(t) in Solving the UC Problem

Technique Merits Limitations

Case A: Tong and
Shahidepour [20]

Overcome the approach of heuristic
methods

Linear interpolation has no state
memory

Lagrangian relaxation approach is
applied to determine a feasible
suboptimal schedule

May require additional
computations of initial increments
for lambda (hence slow
convergence)Linear interpolation for lambda

adjustments can be enhanced with
via a bisection method

Discrete controls may cause
oscillatory behavior around the
feasible points

Case B: Merlin and
Sandrin [15]

Overcome the approach of heuristic
methods

Direction scaling for improved
convergence does not consider
relaxation of discretized
generation levels and the ramp
rate constraints

Improved or modified subgradient
method for lambda iteration

Improved convergence via
adjustment of tolerance relative to
the smallest unit

14.5.1 Case A: Updating ln(t)

In the updating process of the searching algorithm, values of @l1,k(t) and
@l2,k(t) should be determined. These two values are set to zero if the power
balance constraint and the reserve constraint are satisfied, respectively,
during hour t. However, if either of these two constraints is violated during
hour t, the following two methods are applied to determine the unknowns:

1. Linear interpolation

Define

Gk(t) ¼
XN
i¼1

Pgi (t)

 !����
~l1¼~l1,k ; ~l2¼~l2,k

(14:52)

then

@l1,k(t) ¼ PD(t)� Gk(t)
Gk(t)� Gk�1(t)

l1,k(t)� l1,k�1(t)ð Þ: (14:53)
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Define

Hk(t) ¼
XN
i¼1

ui(t)

 !����
~l1¼~l1,k ; ~l2¼~l2,k

(14:54)

then

@l2,k(t) ¼ PD(t)þ PR(t)�Hk(t)
Hk(t)�Hk�1(t)

l2,k(t)� l2,k�1(t)ð Þ: (14:55)

2. Bisection method

@l1,k(t) ¼ PD(t)� Gmin(t)
Gmax(t)� Gmin(t)

lmax
1 (t)� lmin

1 (t)
� �� �

,

� l1,k(t)� lmin
1 (t)

� �
(14:56)

where

Gmax(t) ¼
XN
i¼1

Pgi (t)

 !����
l1(t)¼lmax

1 (t)
(14:57)

with

PD < Gmax(t) (14:58)

and

Gmin(t) ¼
XN
i¼1

Pgi (t)

 !����
l1(t)¼lmin

1 (t)
(14:59)

with

Gmin(t) > PD: (14:60)

The bounds are adjusted after the calculation of the total generation using the
updated multipliers using the following rules:

IF Gkþ 1(t)>PD(t), THEN

lmax
1 (t), Gmax(t)

� �
be replaced by l1,kþ1(t), Gkþ1(t)ð Þ;
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OTHERWISE

lmin
1 (t), Gmin(t)

� �
be replaced by l1,kþ1(t), Gkþ1(t)ð Þ;

The determination of @l2,k(t) is based on a similar approach.
These methods do not work satisfactorily if they are implemented inde-

pendently. The first method usually branches back and forth around a feasible
solution because the relationship between the generation and themultipliers is
stepwise. The second method is difficult to apply since the generation during
each hour is not merely determined by its corresponding multipliers. The
generation during a particular hour (t) is a function of all the multipliers,
though the multipliers of that specific hour (@l1(t) and @l2(t)) may present
the dominant effect. In Ref. [5], these two methods are used together. The
linear interpolation provides the first few guesses, then the bisectionmethod is
applied. Sometimes the linear interpolation may be recalled if it is found that
the feasible solution at a particular hour does not fall within the bounds, based
on the change of multipliers during other time intervals. Using this approach,
a feasible solution will be obtained within a reasonable computation time.

14.5.2 Case B: Updating ln(t)

Updating the multipliers using Equation 14.24 caused slow convergence [15].
The method adopts the following strategy assuming that the current solution
on the kth iteration is ~Pk

i (t), and uki (t):
Calculating the updates for l1(t):

Two variations are considered:

1. If the reserve constraints are not met

XN
i¼1

uki (t)~P
k
i (t) ¼ ~Pk

D(t) 6¼ PD(t) (14:61)

with

l(kþ1)
n (t) ¼ Max O, l(k)n (t)þ tk PD(t)� P(k)

D (t)
� � 

, (14:62)

where

l(k)n (t) is the kth update of ln(t)
tk is the scalar step length defined by tk ¼ 1=(cþ dk)ð Þ with con-

stants c and d

2. If the reserve constraint is met. This means that units designated as
online have been loaded to their maximum capacity in an ascending
order of incremental cost (priority order). In this case the incremental
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cost of the last loaded unit is denoted by bk(t), and is used in the
following updating formula:

li,kþ1(t) ¼ li,k(t)þ (1� ax)bk(t), (14:63)

where ar is a relaxation constant taken as 0.6.

Calculating the updates for l1(t) updating l2(t):
Using Equation 14.32, we obtain

XN
i¼1

ui(t)Pmax
gi

� PD(t)þ PR(t)þ P(k)
E (t): (14:64)

Initially, one set P(0)
E (t) ¼ 0, subsequent selection of P(k)

E (t) is done as follows:

1. If the reserve constraints are met within the tolerance of P(k)
E (t)

PD(t)þ PR(t) �
XN
i¼1

ui(t)Pmax
gi

� PD(t)þ PR(t)þ P(k)
E (t): (14:65)

The multiplier and tolerance are left unchanged.

l2,kþ1(t) ¼ l2,k(t): (14:66)

2. If the reserve constraint is not met within the tolerance of P(k)
E (t).

The modification to the multiplier given by Equation 14.62 as

l(kþ1)
n (t) ¼ Max

"
O, lkn(t)þ tk PD(t)� Pk

D(t)
� �

�
XN
i¼1

Pmax
gi

u(k)i (t)þ P(k)
E (t)

� #
, (14:67)

where tk is a scalar step length, with

tk ¼ 1
c0 þ d0k

, (14:68)

where c0 and d0 are the constants.

The updating of the tolerance term is done under two consider-
ations:

1: If
XN
i¼1

u(k)i (t)Pmax
gi

� PD(t)þ PR(t)þ P(k)
E (t): (14:69)

Momoh/Electric Power System Applications of Optimization 65886_C014 Final Proof page 492 20.11.2008 11:49am Compositor Name: VAmoudavally

492 Electric Power System Applications of Optimization



The tolerance is left unchanged and P(kþ1)
E (t) ¼ P(k)

E (t).

2: If
XN
i¼1

u(k)i (t)Pmax
gi

< PD(t)þ PR(t)þ P(k)
E (t): (14:70)

The tolerance is increased and P(kþ1)
E (t) ¼ P(k)

E (t)þ «, where « is a
constant whose value is equal to the maximum power of the smallest
unit of the system.

14.6 Unit Commitment of Thermal Units Using
Dynamic Programming

For small and medium size systems dynamic programming was proposed
as a solution technique. Dynamic programming has many advantages;
the chief advantage being a reduction in the dimensionality of the problems.
Suppose we have four units on a system and any combination of them could
serve the single load. These would be a maximum number (24�1¼ 15) of
combinations to test.

However, if a strict priority is imposed, there are only four combinations to
try as follows:

Priority 1
Unit

Priority 1 unitþpriority 2 unit

Priority 1 unitþpriority 2 unitþpriority 3 unit

Priority 1 unitþpriority 2 unitþpriority 3 unitþpriority 4 unit

The imposition of a priority list arranged in the order of the full-load average
cost rate would result in a critical dispatch and commitment only if

1. No load costs are zero.

2. Unit input–output characteristics are linear between zero and full load.

3. There are no other restrictions.

4. Start-up costs are a fixed amount.

Assumptions
The main assumptions for applying dynamic programming to unit commit-
ment problem are

1. A state consists of an array of units with specified units operating
and the rest off-line.

2. There are no costs for shifting down a unit.
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3. There is a strict priority order, and in each interval a specified
minimum amount of capacity must be operating.

4. Start-up cost of a unit is independent of the time it has been off line.

14.6.1 Dynamic Programming Approaches to Unit Commitment Problem

14.6.1.1 Backward Dynamic Programming Approach

The first dynamic programming approach uses a backward (in time)
approach in which the solution starts at the last interval and approaches
back to the initial points [17].

There are lmax intervals in the period to be considered. The dynamic
programming equations for the computations of the minimum total fuel
cost during a time (or load) period l are given by the recursive equation:

F(L,K) ¼ Min
{F}

Cmin(l,K)þ S(l, K :F, K þ 1)þ Fmin(F, K þ 1)
� �

, (14:71)

where
Fmin(l,k) is the minimum total fuel cost from state k in interval l to the
last interval lmax

Cmin(l,k) is the minimum generation cost in supplying the load interval l
given state k

S(l, k :F, kþ 1) is the incremental start-up cost going from state k in the
lth interval to state F in the (lþ 1)th interval

{F} is the set feasible states in the interval (kþ 1)

The production cost C(l,k) is obtained by economically dispatching the
units on line in state k. A path is a schedule starting from a state in an interval
l to a final interval lmax. An optimal path is one for which the total fuel cost is
minimum.

14.6.1.2 Forward Dynamic Programming Approach

The backward dynamic programming does not cover many practical situ-
ations. For example if the start-up cost of a unit is a function of the time it has
been off line then forward dynamic programming approach is more suitable
since the previous history of the unit can be computed at each stage.

There are other practical reasons for going forward. The initial conditions
are easily specified and the computations can go forward in time as long as
required and as long as computer storage is available.

The solution to the forward dynamic programming is done through the
recursive equation given by Pang et al. [5], and was improved by Synder and
Power [7]. The recursive formula to compute the minimum cost during
interval l with combination k is given by

F(L,K) ¼ Min
{L}

Cmin(l,K)þ S(l� 1, L :F, l, K)þ Fmin(l� 1, K)
� �

, (14:72)
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where
Fmin (l,k) is the minimum total fuel cost to arrive at state (l,k)
Cmin (l,k) is the minimum production cost for state (l,k)
S(l� 1, k : l, k) is the transition cost from state (l�1, 1) to state (l,k)
(l,k) is the kth combination in interval l

For the forward dynamic programming approach a strategy is defined as the
transition, or path, from one state at given hour to a state at the next hour.

Now let X be the number of states to search each period.
N be the number of strategies, or path, to save at each step.
Figure 14.4 clarifies this definition and Figure 14.5 shows the application of

the recursive formula for forward dynamic programming approach.

1

5

2

3

4
Ns = 3
X = 5

Interval
(l + 1)

Interval
(l − 1)

Interval
(l)

NNs

FIGURE 14.4
States and strategies (Ns¼ 3 and X¼ 5).

F(l, k)

F(l -1, k)

S(l-1, k : l, k)

k : set of combination to be searched at stage (l - 1)

Interval
(l + 1)

Interval
(l - 1)

Interval
(l)

FIGURE 14.5
Application of forward dynamic programming technique.
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The forward dynamic programming approach can be summarized in the
following steps:

Step 1: Start with the first interval l¼ 1, enumerate all feasible combinations
that satisfy

a. Expected load

b. Specified amount of spinning reserve usually 25% of the load at that
time interval

In this regard, the economic dispatch problem will be performed to calculate
the value of Cmin(l,k) for each feasible kth combination at stage l.

Step 2: For stage (lþ 1), enumerate all the feasible combinations and perform
the economic dispatch solution for the new load level at stage (lþ 1) to
calculate Cmin (lþ 1,k).

Step 3: Check if the transition of state k at stage l to state j at stage
(lþ 1) satisfies minimum up and down constraints if a unit to be started up
or shutdown. Notably, if the unit satisfies the minimum downtime constraint
then calculate the S(l,k) as its start-up cost.

It should be noted that if more than one unit is to be started then
S(l,k) ¼Pn

i¼1 Si(t), where n is the number of units to be started up.

Step 4: The total cost for making transition from state j at stage l to state
j at stage (lþ 1) is given by

F(l,k) ¼ Cmin(l,k)þ S(l� 1, k :F, k)þ Fmin(l,k): (14:73)

Step 5: Calculate all the F(l,k) due to all feasible transition from stage (l� 1).

Step 6: Find the minimum Fcos t* (K,J) and save it, also save the path that leads
to this optimal one.

Step 7: Proceed in time to the next stage and repeat steps 2–6.

Step 8: When you reach the last stage calculate the minimum total cost
and trace back to find the optimal solution.

The flowchart is shown in Figure 14.6.
Figures 14.7 shows a case using forward dynamic programming for three

combinations at each stage, for three time intervals.

14.6.2 Case Study

For this case study, two cases will be considered. The first is a priority list
schedule; the second is the same case with complete enumeration. Both cases
ignore hot-start costs and minimum up and down times.
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In order to make the required computations more efficient, a simplified
model of the unit characteristics is used. Four units are to be committed
to serve an 8 h pattern for the expected loads. Tables 14.3 through 14.5
show the characteristics, load pattern, and initial status for the case study.

Start

l = 1|start with 1st interval

Perform economic dispatch for all possible
combination at interval K

K = K + 1

(

{L}

K − 1, L)}Fcos t+

{ ((K, I)(K, I) K − 1, L : K, I)Scos tPcos tMin

Min

Fcos t +=

{ ((K, I)(l, k) K − 1, L : K,  I)}Scos tPcos tFcos t +=

Save N lowest cost
strategies

K = M
last

hour

Trace optimal schedule

Stop

Yes

No

FIGURE 14.6
Flowchart for forward dynamic programming.

Momoh/Electric Power System Applications of Optimization 65886_C014 Final Proof page 497 20.11.2008 11:49am Compositor Name: VAmoudavally

Unit Commitment 497



TABLE 14.3

Unit Characteristics, Load Pattern, and Initial Status

Loading Costs
Unit Limits

Incremental Full Load
Pmax
gi

Pmin
gi Heat Rate No Loada Average

Minimum Time (h)

Unit (MW) (MW) (Btu=kW h) ($=h) ($=MW h) Up Down

1 80 25 10,440 213.00 23.54 4 2

2 250 60 9,000 585.62 20.34 5 3

3 300 75 8,730 684.74 19.74 5 4

4 60 20 11,900 252.00 28.00 1 1
a A unit is not allowed to operate at zero output; that is, if a unit is online, it must be loaded

between its minimum and maximum. If it is off-line, it must have zero output and its
operating cost will be 0 $=h. Fuel costs are 2 $=MBtu.

TABLE 14.4

Unit Characteristics, Load Pattern, and Initial Status

Initial Conditions
(�, Off-line; þ, Online)

Start-Up Costs

Unit Hot Cold Cold Start

1 �5 150 350 4

2 8 170 400 5
3 8 500 1100 5

4 �6 0 0.02 0

1

3

2

1

3

2

1

3

2

l = 1 l = 2 l = 3

Optimal
commitment

cost

S1
∗

F1
∗

F3
∗

F2
∗

F2
∗

S2
∗ S3

∗ S2
∗

Trace
back

Trace
back

FIGURE 14.7
Flowchart of the forward dynamic programming problem.
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TABLE 14.5

Load Pattern

Hour (h) Load (MW)

1 450

2 530

3 600

4 540

5 400
6 280

7 290

8 500

Case 1
In case the units are scheduled according to a strict priority order. That
is, units are committed in order until the load is satisfied. The total cost
for the interval is the sum of the eight dispatch costs plus the transi-
tional costs for starting any units. A maximum of 24 dispatches must be
considered as shown in Table 14.6.

TABLE 14.6

Capacity Ordering of the Units

State
Unit Combination:

1 2 3 4 Units
Maximum

Capacity (MW)

15 1 1 1 1 690

14 1 1 1 0 630

13 0 1 1 1 610

12 0 1 1 0 550

11 1 0 1 1 440

10 1 1 0 1 390

9 1 0 1 0 380

8 0 0 1 1 360
7 1 1 0 0 330

6 0 1 0 1 310

5 0 0 1 0 300

4 0 1 0 0 250

3 1 0 0 1 140

2 1 0 0 0 80

1 0 0 0 1 60

0 0 0 0 0 0
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For case 1 the only states examined at each hour consists of capacity ordering
of the units as shown in Table 14.7

TABLE 14.7

Capacity Ordering of the Units for States 5, 12, 14, 15

State
Unit Combination

1 2 3 4 Units
Maximum Capacity

(MW)

5 0 0 1 0 300

12 0 1 1 0 550

14 1 1 1 0 630

15 1 1 1 1 690

Note that this is the priority order, that is

State 5 ¼Unit 3
State 12¼Unit 3þunit 2, state 14¼unit 3þunit 2þunit 1
State 15¼Unit 3þunit 2þunit 1þunit 4

For the first 4 h, only the last three states are of interest. The sample
calculations illustrate the technique. All possible commitments start from
state 12 since this was given as the initial condition. For hour one the
minimum cost is state 12 and so on. The results for the priority-ordered
case are as follow in Table 14.8:

TABLE 14.8

Capacity Ordering of the Units for States 1–4

Hour
State with Minimum

Total Cost
Pointer for

Previous Hour

1 12 (9,208) 12

2 12 (19,857) 12
3 14 (32,472) 12

4 12 (43,300) 14

Note that state 13 is not reachable in this strict priority ordering.

F(l, k) ¼ Min
{L}

Cmin(l,k)þ S(l� 1, k : l, k)þ Fmin(l� 1, k)
� �

: (14:74)

The allowable states are

{0010, 0110, 1110, 1111}¼ {5, 12, 14, 15}
in hour 0{l}¼ {12} initial condition
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l¼ 1: First hour

k
15 F(1,15) ¼ P(1,15)þ S(0,12; 1,15)

¼ 9861 þ 350 ¼ 10211
14 F(1,14) ¼ 9493 þ 350 ¼ 9843
12 F(1,12) ¼ 9208 þ 0 ¼ 9208

l¼ 2: Second hour
The feasible states are F¼ {12, 14, 15}.

Therefore, Nk¼ 3. Suppose two strategies are saved at each stage, then
Ns is 2.

{1, Ns}¼ {12, 14}
k
15 F(2,15) ¼ P(2,15)þ S(1, k; 2, 15)þ F(1,k)f g

¼ 11301 þmin
350þ 9,208

0þ 9,843


 �
¼ 20860:

Also, the process is repeated until the fourth hour where the final cost at l¼ 4
will be the minimum commitment cost. The complete schedule is obtained by
retracing the steps over the specified time period 4 h.

14.7 Illustrative Problems

PROBLEM 14.7.1

A system has four units, the system data are given in Table 14.9. Solve
unit commitment using

a. Priority order method

b. Dynamic programming

c. Lagrange relaxation method

TABLE 14.9

System Data for Four (4) Units Dispatch

Unit
Maximum

(MW)
Minimum
(MW)

Incremental
Heat Rate
(Btu=kW h)

No-Load
Cost ($=h)

Full-Load
Average Cost
($=MW h)

Minimum
Times (h)

Up Down

1 80 25 10,440 213.00 23.54 4 2

2 250 60 9,000 585.62 20.34 5 3

3 300 75 8,730 684.74 19.74 5 4

4 60 20 11,900 252.00 28.00 1 1

(continued)
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TABLE 14.9 (continued)

Initial Conditions Start-Up Costs

Units Hours Off-Line (�) or Online (þ) Hot ($) Cold ($) Cold Start (h)

1 �5 150 350 4

2 8 170 400 5

3 8 500 1,100 5

4 �6 0 0.02 0

Load Pattern

Hour Load (MW)

1–6 450
7–12 530

13–18 600

19–24 540

PROBLEM 14.7.2

Given the unit data in Tables 14.10 to 14.13, use forward dynamic pro-
gramming to find the optimum unit commitment schedules covering the
8 h period.

TABLE 14.10

Unit Limits and Heat Rates for the UC Problem

Unit
Maximum

(MW)
Minimum
(MW)

Incremental
Heat Rate
(Btu=kW h)

No-Load
Energy Input
(M Btu=h)

Start-Up
Energy
(M Btu)

1 500 70 9,950 300 800

2 250 40 10,200 210 380

3 150 30 11,000 120 110

4 150 30 11,000 120 110

Note: Load data (all time periods¼ 2 h).

TABLE 14.11

Hourly Load Curve Data

Time Period Load (MW)

1 600

2 800

3 700

4 950
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TABLE 14.12

Start-Up and Shutdown Rules

Units
Minimum
Uptime (h)

Minimum
Downtime (h)

1 2 2

2 2 2

3 2 4
4 2 4

Note: Fuel cost¼ 1.00 $=MBtu.

TABLE 14.13

Unit Combinations and Operating Costs for Different Road Levels

Operating Cost

Combination
Unit
1

Unit
2

Unit
3

Unit
4

Load
600 MW

Load
700 MW

Load
800 MW

Load
950 MW

A 1 1 0 0 6,505 7,525 X X

B 1 1 1 0 6,649 7,669 8,705 X

C 1 1 1 1 6,793 7,813 8,833 10,475

Note: 1, up; 0, down.

14.8 Conclusions

This chapter presented unit commitment as an operation scheduling function
formanagement of generation resources for a short-time horizon of 1 day or at
most 1 week. Different unit commitment operational constraints were fully
addressed and discussed. Different approaches for solving the unit commit-
ment problemwere presented starting from the oldest and the most primitive
method, priority list method. An illustrative example is presented. A practical
approach that is suitable for large-scale power system employs Lagrangian
relaxation technique is fully discussed. Different major procedures in problem
formulation, search for a feasible solution through the minimization of the
duality gap, updating the multiplier, and formation of single unit relaxed
problem are shown. Also, several algorithms that employ the same approach
were discussed. An approach that is suitable for small and medium power
system employing dynamic programming is also discussed. The different
assumptions for applying dynamic programming to unit commitment were
fully discussed. A comparison between forward and backward dynamic
programming approaches was made. The computational procedures
involved in applying both approaches to unit commitment were shown.
The forward dynamic approach was utilized in solving the problem.
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An illustrative example is presented showing the different computational
procedures in solving the unit commitment problem for a sample power
system.

14.9 Problems

PROBLEM 14.9.1

A system has four units, the system data are given in Table 14.14. Solve
unit commitment using

a. Priority order method

b. Dynamic programming

c. Lagrange relaxation method

d. Genetic algorithm

TABLE 14.14

Unit Limits, Heat Rates, Operating Conditions, and Hourly Loading

Unit
Maximum

(MW)
Minimum
(MW)

Incremental
Heat Rate

(Btu=MW h)
No-Load
Cost ($=h)

Full-Load
Average Cost
($=MW h)

Minimum
Times (h)

Up Down

1 100 25 9,800 200 30 5 1

2 200 50 8,000 600 25 5 3

3 250 60 8,500 550 20 6 4

4 80 30 10,000 250 24 3 2

Initial Conditions Start-Up Costs

Units Hours Off-Line (�) or Online (þ) Hot ($) Cold ($) Cold Start (h)

1 �5 200 400 4

2 8 220 450 5

3 8 350 800 5

4 �6 0 0.0 0

Load Pattern

Hour Load (MW)

1 500

2 550

3 600
4 560

5 450

6 300

7 350

8 500
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PROBLEM 14.9.2

Table 14.15 presents the unit characteristics and load pattern for a five-
unit-four time period problem. Each time period is 2 h long as shown in
the load pattern data and operating conditions shown in Table 14.16. The
input–output characteristics are approximated by a straight line frommin
to max generation so that the incremental heat rate is constant. Unit no-
load and start-up cost are given in terms of heat energy requirements.

TABLE 14.15

Unit Characteristic Data for the UC Problem

Unit
Maximum

(MW)

Net
Full-Load
Heat Rate
(Btu=kW h)

Incremental
Heat Rate
(Btu=kW h)

Minimum
(MW)

No-Load
Cost ($=h)

Start-Up
Cost

($=MBtu)

Minimum
Times (h)
Up=Down

1 200 11,000 9,900 50 220 8

2 60 11,433 10,100 15 80 30 8

3 50 12,000 10,800 15 60 25 4

4 40 12,900 11,900 5 40 20 4

5 25 13,500 12,140 5 34 24 4

TABLE 14.16

Load Pattern and Operating Conditions

Load Pattern

Hours MW Load Conditions

Initially (prior to hour 1) only unit is on and has been on for 4 h
1–2 250 Ignore losses, spinning reserve, etc.

3–4 320 The only requirement is that the generation should be able to supply
the load5–6 110

7–8 75 Fuel cost for all units may be taken as 1.40 R=MBtu

a. Develop the priority list for these units and solve for the optimum
unit commitment. Use a strict priority list with a search range of
three (X¼ 3) and save no more than three strategies (N¼ 3). Ignore
min up=min down times for units.

b. Solve the same commitment problemusing the strict priority list with
X¼ 3 and N¼ as in (a), but obey min up=min down times rules.

c. (Optional) Find the optimum unit commitment without use of strict
priority list (i.e., all 32 units on=off combinations are valid). Restrict
search range to decrease your effort. Obey the min up=min down
times rules.

PROBLEM 14.9.3

Given the unit data in the Tables 14.17 to 14.20 use forward dynamic
programming to find the optimum unit commitment schedules covering
the 8 h period.
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The following tables give the characteristic of all combinations you
need as well as the operating cost for each at the loads in the load data.
The symbol * indicates that a combination cannot supply the load. The
starting conditions are (a) at the beginning of the first period units 1 and 2
are up and (b) units 3 and 4 are down and have been down for 8 h.

TABLE 14.17

Unit Characteristic Data for the UC Problem

Limits of the Unit

Unit
Pmax
gi

(MW)
Pmin
gi

(MW)
Incremental Heat
Rate Btu=kW h

No Load Energy
(MBtu=h)

Start-Up Energy
(MBtu=h)

1 500 70 9,950 300 800

2 250 40 10,200 210 380
3 150 30 11,000 120 110

4 150 30 11,000 120 110

Note: Load data (all time periods¼ 2 h).

TABLE 14.18

Hourly Load Curve Data

Time, t Load, PD(t) (MW)

1 600

1 800
3 700

4 950

TABLE 14.19

Start-Up and Shutdown Rules

Unit
Minimum

Uptime (HR)
Minimum

Downtime (HR)

1 2 2

2 2 2

3 2 4

4 2 4

Note: Fuel cost¼ 1.00 $=MBtu.

TABLE 14.20

Unit Switching Sequences for Different Load Combinations

Units (1-on, 0-off) Load, PD (MW)

Combinations 1 2 3 4 600 700 800 950

A 1 1 0 0 6505 7,525 * *

B 1 1 1 0 6649 7,669 8,705 *

C 1 1 1 1 6793 7,813 8,833 10,475
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15
Genetic Algorithms

15.1 Introduction

In many engineering disciplines a large spectrum of optimization problems
has grown in size and complexity. In some instances, the solution to complex
multidimensional problems by using classical optimization techniques is
sometimes difficult or expensive. This realization has led to an increased
interest in a special class of searching algorithm, namely, evolutionary algo-
rithms (EAs) [1,3]. In general, these are referred to as stochastic optimization
techniques and their foundations lie in the evolutionary patterns observed in
living things.

In this area of operational research, there exist several primary branches:

1. Genetic algorithms (GAs)

2. Evolutionary programming (EP)

3. Evolutionary strategies (ES)

To date the GA is the most widely known technology. This optimization
technique has been applied to many complex problems in the fields of
industrial and operational engineering. In power systems, well-known appli-
cations include unit commitment, economic dispatch, load forecasting, reli-
ability studies, and various resource allocation problems.

15.1.1 General Structure of GAs

The typical structure of GAs was described by Goldberg [4]. Essentially,
GAs are referred to as stochastic search techniques that are based on the
Darwinian thinking of natural selection and natural genetics. In general, GAs
start with an initial set of random solutions that lie in the feasible solution
space. This random cluster of solution points is called a population. Each
solution in the population represents a possible solution to the optimization
problem and is therefore called a chromosome. The chromosome is a string of
symbols based on the uniqueness of two-state machines; they are commonly
binary bit strings.
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15.2 Definition and Concepts Used in Genetic Computation

GAs have their foundation both in natural biological genetics and in modern
computer science (Table 15.1). As such, nomenclature use in this is inherently
a mix of both natural and artificial intelligence.

To understand the roots of GAs, we briefly look at the biological analogy.
In biological organisms, a chromosome carries a unique set of information
that encodes the data on how the organism is constructed. A collection
or complete set of chromosomes is called a phenotype. Also, within each
chromosome are various individual structures called genes, which are
specific coded features of the organism. With this basic understanding, the
following terminologies and concepts are summarized.

15.2.1 Evolutionary Algorithms

EAs represent a broad class of computer-based problem-solving systems.
Their key feature is the evolutionary mechanisms that are at the root
of formulation and implementation. Of course, EAs by themselves repre-
sent a special class of new intelligent system (IS) used in many global
optimization algorithms. Figure 15.1 shows the various categories of IS
and the position of the GA as one of the more commonly known EP
techniques [5–8].

Overall, EAs share the common structure of evolution of individuals in a
competitive environment by the processes of selection, mutation, and repro-
duction. These processes are functions of the simulated performance of
each individual as defined by the environment. In EAs, a unique population
of structures is maintained based on the search operators. Search operations
use probabilistic rules of selection in the evolution process while ensuring
that the integrity or fitness of new generation is continuously improved
at each stage of the optimization process. Therefore, the reproduction mech-
anism is primarily focused on the fitness of the individuals in the popula-
tion, while exploiting the available information. Furthermore, these robust

TABLE 15.1

Terminology in Genetic Algorithms

GA Terms Corresponding Optimization Description

Chromosome Solution set
Gene Part of solution

Alleles Value of gene

Phenotype Decoded solution

Genotype Encoded solution

Locus Position of gene

Momoh/Electric Power System Applications of Optimization 65886_C015 Final Proof page 510 14.11.2008 6:10pm Compositor Name: BMani

510 Electric Power System Applications of Optimization



and powerful adaptive optimization search mechanisms use recombination
and mutations to perturb individuals (parents and offspring), yielding new
generations to be evaluated.

Over the past few decades, global optimization algorithms that imitate
natural evolutionary principles have proved their importance in many appli-
cations. These applications include annealing processes, evolutionary com-
putations (EC), artificial neural networks (ANN), and expert systems (ES)
(Figure 15.1).

15.2.2 Genetic Programming

Genetic programming is a useful extension of the genetic model of learning
or adaptation into the space of programs. In this special type of program-
ming, the objects that constitute the population are not fixed-length character
strings that typically encode feasible solutions to the optimization problem.
Rather, the objects that constitute the population are programs that yield
candidate solutions to the optimization when executed. In genetic program-
ming, these are expressed as sparse trees rather than lines of code. For
example, a simple program to perform the operation X *Y� (AþB) *C
would be represented as shown in Figure 15.2.

The programs in the population are composed of elements from the
function and terminal sets. In genetic programming, the crossover operation
is implemented by taking random selections of the subtree in the individuals.
The selection is done according to the fitness of the individuals, and the
exchange is done by the crossover operator. Notably, in general genetic
programming, mutation is not used as a genetic operator. Genetic program-
ming applications are used by physicists, biologists, engineers, economists,
and mathematicians.

ANN IS

Fuzzy logic

Simulated
annealing 

ES Evolutionary
programming

EC GAs ES

FIGURE 15.1
Common classifications of IS.
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15.3 GA Approach

GAs are general-purpose search techniques based on principles inspired by
the genetic evolutionary mechanism observed in the populations of natural
systems and living organisms. Typically, there are several stages in the
optimization process:

Stage 1. Creating an initial population

Stage 2. Evaluating the fitness function

Stage 3. Creating new populations

15.3.1 GA Operators

Various operators are used to perform the tasks of the stages in a GA: the
production or elitism operator, crossover operator, and the mutation oper-
ator. The production operator is responsible for generating copies of any
individual that satisfy the goal function. That is, they either pass the fitness
test of the goal function or otherwise are eliminated from the solution space.

The crossover operator is used for recombination of individuals within the
generation. The operator selects two individuals within the current gener-
ation and performs swapping at a random or fixed site in the individual
string (Figure 15.3). The objective of the crossover process is to synthesize bits
of knowledge from the parent chromosomes that will exhibit improved
performance in the offspring. The certainty of producing better performing
offspring via the crossover process is one important advantage of GAs.

Finally, the mutation operator is used as an exploratory mechanism that
aids the requirements of finding a global extrema to the optimization prob-
lem. Basically it is used to randomly explore the solution space by flipping

FIGURE 15.2
Simple structure demonstrating the operation
X *Y� (AþB) *C.

*

+

-

*

C

A

B

X

Y
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bits of selected chromosomes or candidates from the population. There is an
obvious trade-off in the probability assigned to the mutation operator. If the
frequency were high, the GA would result in a completely random search
with a high loss of data integrity. On the other hand, too low an activation
probability assigned to this operator may result in an incomplete scan of the
solution space.

15.3.2 Major Advantages

GAs have received considerable attention regarding their potential as a novel
optimization technique. There are several major advantages when applying
GAs to optimization problems.

1. GAs do not have many mathematical requirements for optimization
problems. Due to their evolutionary nature, GAs will search for
solutions without regard to the specific inner workings of the prob-
lem. They can handle any kind of objective function and any kind of
constraint (i.e., linear or nonlinear) defined on discrete, continuous,
or mixed search spaces.

2. Ergodicity of evolution operators makes GAs very effective at per-
forming global search (in probability). The traditional approaches
perform local search by a convergent stepwise procedure, which
compares the values of nearby points and moves to the relative
optimal points. Global optima can be found only if the problem
possesses certain convexity properties that essentially guarantee
that any local optima is a global optima.

3. GAs provide us with a great flexibility to hybridize with domain-
dependent heuristics to make an efficient implementation for a spe-
cific problem.

Crossover site 

Before crossover After crossover 

FIGURE 15.3
Crossover operation on a pair of strings.
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15.3.3 Advantages of GAs Over Traditional Methods

The main advantages that GAs present in comparison with conventional
methods are as follows:

1. Since GAs perform a search in a population of points and are based
on probabilistic transition rules, they are less likely to converge to
local minima (or maxima).

2. GAs do not require well-behaved objective functions, hence easily
tolerate discontinuities.

3. GAs are well adapted to distributed or parallel implementations.

4. GAs code parameters in a bit string and not in the values of param-
eters. The meaning of the bits is completely transparent for the GA.

5. GAs search from a population of points and not from a single point.

6. GAs use transition probabilistic rules (represented by the selection,
crossover, and mutation operators) instead of deterministic rules.

Nevertheless, the power of conventional methods is recognized. The GA
should only be used when it is impossible (or very difficult) to obtain efficient
solutions by these traditional approaches.

15.4 Theory of GAs

15.4.1 Continuous and Discrete Variables

Real values can be approximated to the necessary degree by using a fixed-
point binary representation. However, when the relative precision of the
parameters is more important than the absolute precision, the logarithm of
the parameters should be used instead.

Discrete decision variables can be handled directly through binary (or n-ary)
encoding. When functions can be expected to be locally monotone, the use
of Gray coding is known to better exploit that monotony.

15.4.2 Constraints

Most optimization problems are constrained in someway. GAs can handle
constraints in two ways, the most efficient of which is by embedding these in
the coding of the chromosomes. When this is not possible, the performance of
invalid individuals should be calculated according to a penalty function,
which ensures that these individuals are, indeed, poor performers. Appro-
priate penalty functions for a particular problem are not necessarily easy
to design, since they may considerably affect the efficiency of the genetic
search.
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15.4.3 Multiobjective Decision Problems

Optimization problems very seldom require the optimization of a single
objective function. Instead, there are often competing objectives, which should
be optimized simultaneously. In opposition to single-objective optimization
problems, the solution for a multiobjective optimization problem is not a
single solution but a set of nondominated solutions. The task of finding this
set of solutions is not always an easy one. GAs have the potential to become a
powerful method for multiobjective optimization, keeping a population of
solutions, and being able to search for nondominated solutions in parallel.

15.4.4 Other GA Variants

ThesimpleGAhasbeen improved in severalways.Different selectionmethods
have been proposed [4] that reduce the stochastic errors associated with roul-
ette wheel selection. Ranking has been introduced as an alternative to propor-
tional fitness assignment, and has been shown to help avoidance of premature
convergence and to speed up the search when the population approaches
convergence. Other recombination operators have been proposed, such as
the multiple point and reduced-surrogate crossover. The mutation operator
has remained more or less unaltered, but the use of real-coded chromosomes
requires alternative mutation operators, such as intermediate crossover. Also,
several models of parallel GAs have been proposed, improving the perform-
ance and allowing the implementation of concepts such as that of genetic
isolation. Thismethodworkswell with bit string representation. The perform-
ance of GAs depends on the performance of the crossover operator used.

The crossover rate pc is defined as the ratio of the number of offspring
produced in each generation to the population size (denoted pop size).
A higher crossover rate allows exploration of more of the solution space
and reduces the chances of settling for a false optimum; but if this rate is too
high, a lot of computational time will be wasted.

Mutation is a background operator that produces spontaneous random
changes in various chromosomes. A simple way to achieve mutation would
be to change one or more genes. In the GA, mutation serves the crucial role of
either

1. Replacing the genes lost from the population during the selection
process so that they can be tried in a new context, or

2. Providing the genes that were not present in the initial population

The mutation rate pm is defined as the percentage of the total number of genes
in the population and it controls the rate at which new genes are introduced
into the population for trial. If it is too low, many genes that would have been
useful are never tried. But if it is too high, there will be many random
populations, the offspring will start losing their resemblance to the parents,
and the algorithm will lose the ability to learn from the history of the search.
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GAs differ from conventional optimization and search procedures in sev-
eral fundamental ways. Goldberg has summarized these as follows:

1. GAs work with a coding of solution sets, not the solutions them-
selves.

2. GAs search from a population of solutions, not a single solution.

3. GAs use payoff information (fitness function), not derivatives or
other auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

15.4.5 Coding

Each chromosome represents a potential solution for the problem and must
be expressed in binary form in the integer interval I¼ [0,21]. We could simply
code X in binary base, using four bits (such as 1001 or 0101). If we have a set
of binary variables, a bit will represent each variable. For a multivariable
problem, each variable has to be coded in the chromosome.

15.4.6 Fitness

Each solution must be evaluated by a fitness function to produce a specific
value. This objective function is used to model and characterize the problem
to be solved. In many instances, the fitness function can be simulated as the
objective function used in classical optimization problems. In such cases,
these optimization problems may be unconstrained or constrained. For the
latter case, a Lagrangian or penalty approach can be used in formulating a
suitable fitness function.

Notably, the fitness function does not necessarily have to be in closed
mathematical form. It can also be expressed in quantitative form and, in
power systems applications, with fuzzy models.

15.4.7 Selection

The selection operator creates new populations or generations by selecting
individuals from the old population. The selection is probabilistic but biased
toward the best as special deterministic rules are used. In the new gener-
ations created by the selection operator, there will be more copies of the best
individuals and fewer copies of the worst. Two common techniques for
implementing the selection operator are the stochastic tournament and roul-
ette wheel approaches [4].

1. Stochastic tournament: This implementation is suited to distributed
implementations and is very simple: every time we want to select an
individual for reproduction, we choose two, at random, and the best
wins with some fixed reliability, typically 0.8. This scheme can be

Momoh/Electric Power System Applications of Optimization 65886_C015 Final Proof page 516 14.11.2008 6:10pm Compositor Name: BMani

516 Electric Power System Applications of Optimization



enhanced by using more individuals in the competition or even
considering evolving winning probability.

2. Roulette wheel: In this process, the individuals of each generation are
selected for survival into the next generation according to a prob-
ability value proportional to the ratio of individual fitness over total
population fitness; this means that on average the next generation
will receive copies of an individual in proportion to the importance
of its fitness value.

15.4.8 Crossover

The recombination in the canonical GA is called single-point crossover.
Individuals are paired at random with a high probability that crossover
will take place. In the affirmative case, a crossover point is selected at random
and, say, the rightmost segments of each individual are exchanged to pro-
duce two offspring.

Crossover in the canonical GA mutation consists of simply flipping each
individual bit with a very low probability (a typical value would be
Pm¼ 0.001). This background operator is used to ensure that the probability
of searching a particular subspace of the problem space is never zero, thereby
tending to inhibit the possibility of ending the search at a local, rather than a
global, optimum.

15.4.9 Parameters

Like other optimization methods, GAs have certain parameters such as

1. Population size

2. Genetic operations probabilities

3. Number of individuals involved in the selection procedure, and so on

These parameters must be selected with maximum care, for the performance
of the GA depends largely on the values used. Normally, the use of a
relatively low population number, high crossover, and low-mutation prob-
abilities are recommended. Goldberg [4] analyzes the effect of these param-
eters in the algorithms.

15.5 Schemata Theorem

GAs work based on the concept and theory of schema. A schema is a
similarity template describing a subset of strings with similarities at certain
string positions. If, without loss of generality, we consider only chromosomes
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represented with binary genes in {0,1}, a schema could be H¼ *001*1,
where the character is * is a ‘‘wild card,’’ meaning that the value of 0 or 1
at such a position is undefined. The strings A¼ 100101 and B¼ 000111 both
include the schema H because the string alleles match the schema positions
2, 3, 4, and 6.

For binary strings or chromosomes of length L (number of bits or alleles),
the number of schemata is 3L. But the schemata have distinct relevance; a
schema 0***** is more vague than 011*1* in representing similarities between
chromosomes; and a schema 1****0 spans a larger portion of the string than
the schema 1**0**.

A schema Hmay be characterized by its order o(H), which is the number of
its fixed positions and by its defining length d(H), which is the distance
between its first and its last fixed position. For the schema G¼ 1**0**, we
have o(G)¼ 2 and d(G)¼ 3.

We now reason about the effect of reproduction on the expected number
of different schemata in a population. Suppose that at a given time step t
(a given generation) there are m examples of a particular schema H in a
population P(t); we have m¼m(H,t). Reproduction generates a copy of string
Ai with probability Pi ¼ fi=

P
fi (assuming a sampling process known as

roulette).
After the process of retaining from the population A(t), a nonoverlapping

population of size nwith replacement, there is an expectation of having in the
population A(tþ 1), at time tþ 1, a number m(H,tþ 1) of representatives of
the schema H given by

m(H,tþ 1) ¼ m(H,t)
f (H)P

fi
, (15:1)

where f(H) is the average fitness of the chromosomes including the schema at
H at time t. If we introduce the average fitness of the entire population as

fav ¼ 1
n

X
fi,

we can write

m(H,tþ 1) ¼ m(H,t)
f (H)
fav

: (15:2)

This means that a particular schema replicates in the population proportion-
ally to the ratio of the average fitness of the schema by the average fitness
of the population. So, schemata that have associated an average fitness above
the population average will have more copies in the following generation,
while those with average fitness below the population average will have a
smaller number of copies. Suppose now that a given schema remains with
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average fitness above the population average by an amount Cfav with c
constant; we could then rewrite Equation 15.2 as Equation 15.3,

m(H,tþ 1) ¼ m(H,t)
fav þ Cfav

fav
¼ (1þ C)m(H,t): (15:3)

Assuming a stationary value of c, we obtain

m(H,t) ¼ m(H,0)(1þ C)t: (15:4)

The effect is clear: an exponential replication in a population of above-
average schemata.

A schema may be disrupted by crossover, if the crossover point falls within
the defining length spanned by the schemata (we reason with single-point
crossover to keep it simple). The survival probability of a schema under a
crossover operation performed with probability Pc is

Ps � 1� Pc
d(H)
L� 1

: (15:5)

Combining reproduction and crossover, we can write the following estima-
tion as shown in Equation 15.6,

m(H,tþ 1) � m(H,t)
f (H)
fav

1� Pc
d(H)
L� 1

� �
: (15:6)

We see now that the survival of a schema under reproduction and crossover
depends on whether it is above or below the population average and
whether it has a short or long definition length. To add the effect of admitted
mutation, randomly affecting a single position with probability Pm we
must notice that a schema survives if each of its o(H) fixed positions remains
unaffected bymutation. Therefore, the probability of the survivingmutation is
(1�Pm)

o(H), which can be approximated by Equation 15.7,

1� o(H)Pm for Pm << 1: (15:7)

We can conclude that in a process with reproduction, crossover, and muta-
tion we can expect that a particular schema will have a number of copies in
generation tþ 1 given approximately by Equation 15.8,

m(H,tþ 1) � m(H,t)
f (H)
fav

1� Pc
d(H)
L� 1

� o(H)Pm

� �
: (15:8)

This constitutes the schemata theorem, which is at the root of the building
block hypothesis—that highly fit, short (low-order) schemata form partial
solutions to a problem, and that a GA will combine these building blocks
leading to better performance and the optimum of the problem.
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15.6 General Algorithm of GAs

During successive iterations, called generations, the chromosomes are evalu-
ated, using some measures of fitness. To create the next generation, new
chromosomes, called offspring, are formed by either

1. Merging two chromosomes from the current generation using a
crossover operator, or

2. Modifying a chromosome using a mutation operator

A new generation is formed by

1. Selecting, according to the fitness values, some of the parents and
offspring.

2. Rejecting others to keep the population size constant. Fitter chromo-
somes have higher probabilities of being selected.

After several generations, the algorithms converge to the best chromosome,
which, it is hoped, represent the optimum or suboptimal solution to the
problem.

Now, let P(t) and C(t) be parents and offspring in the current generation t.
Then the general structure of GAs is described in the following procedure:

Begin
T � 0:
initialize P(t);
evaluate P(t);
while (not termination condition) do

recombine P(t) to yield C(t);
evaluate C(t);
select P(t) to yield C(t)
t  tþ 1;

end
end

Usually, initialization is assumed to be random. Recombination typically
involves crossover and mutation to yield offspring. In fact, there are only
two kinds of operations in GAs: (1) genetic operations—crossover and muta-
tion and (2) evolution operation—selection. The genetic operations mimic the
process of heredity to create new offspring at each generation. The evolution
operation mimics the process of Darwinian evolution to create populations
from generation to generation. This description differs from the paradigm
given by Holland [9] where selection is made to obtain parents for recom-
bination.
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Crossover is the main genetic operator. It operates on two chromosomes at
a time and generates offspring by combining both chromosomes’ features.
A simple way to achieve crossover would be to choose a random cutpoint
and generate the offspring by combining the segment of the other parent to
the right cutpoint.

15.7 Application of GAs

Some of the most successful applications of GAs are listed below.

15.7.1 Control System Engineering

In this field, the problems that are presented to engineers are of high com-
plexity and almost always multiobjective. GAs are powerful tools, especially
when used with other existing tools.

15.7.2 Timetabling

A very common manifestation of this kind of problem is the timetabling of
exams or classes in universities, and the like. In the exam timetabling case,
the fitness function for a genome representing a timetable involves comput-
ing degrees of punishment for various problems with the timetable, such as
clashes, instances of students having to take consecutive exams, and also
instances of students having three or more exams in one day. The modular
nature of the fitness function has the key to the main potential strength of
using GAs for this sort of thing as opposed to the conventional methods of
search and constraint programming. The power of the GA approach is the
ease with which it can handle arbitrary kinds of constraints and objectives.
Very few other timetabling methods, for example, deal with such objectives
at all, which shows how difficult it is (without GAs) to graft the capacity
to handle arbitrary objectives onto the basic requirement. The proper way to
weight=handle different objectives in the fitness function relation to the
general GA dynamics remains, however, an important research problem.

15.7.3 Job-Shop Scheduling

The job-shop scheduling problem is a very difficult one, which so far seems
best addressed by sophisticated brand-and-bound search techniques. How-
ever, we will see increasingly better results on using GAs on fairly large
benchmarks. A crucial aspect of such work (as with any GA application) is
the method used to encode schedules. Concerning the point of using GAs
at all on half job-shop scheduling problems, the same analysis applies here
as suggested above for timetabling. The GA approach enables relatively
arbitrary constraints and objectives to be incorporated painlessly into a single
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optimization method. It is unlikely that GAs will outperform specialized
knowledge-based systems and conventional operations research-based
approaches to such problems in terms of raw solution quality, however.
GAs offer much greater simplicity and flexibility. So, for example, they
may be the best method for quick high-quality solutions, rather than finding
the best possible solution at any cost.

Similar to job scheduling is the open-shop scheduling problem (OSSP)
which shows reliable achievement of results within less than 0.23% of opti-
mal on moderately large OSSPs. A simpler version of the job-shop problem is
the flow-shop sequencing problem. In contrast to job-shop scheduling, some
maintenance scheduling problems consider which activities to schedule
within a planned maintenance period, rather than seeking to minimize the
total time taken by the activities. The constraints on which parts may be
taken out of service for maintenance at a particular time may be very
complex, particularly as they will in general interact.

15.7.4 Management Sciences

GAs have been successfully used in market forecasting with well-known
systems such as the prediction and state estimation applications.

15.7.5 Game Playing

GAs can be used to evolve behaviors for playing games. Work in evolution-
ary game theory typically encompasses the evolution of a population of
players who meet randomly to play a game, which they each must adopt
one of a limited number of moves. Suppose it is just two moves, X and Y. The
players receive a reward analogous to Darwinian fitness, depending on
which combination of moves occurs and which move they adopted. In
more complicated models there may be several players and several moves.

The players iterate such a game a series of times and then move to a new
partner. At the end of all such moves, the players will have a cumulative
payoff, their fitness. The real key to using GAs is to come up with an
encoding to represent player’s strategies, one that is amenable to crossover
and to mutation. Possibilities include supposing at each iteration that a
player adopts X with some probability (and Y with one minus such).
A player can thus be represented as a real number or a bit-string by inter-
preting the decimal value of the bit-string as the inverse of the probability.

15.8 Application to Power Systems

Here we present a few simplified versions of models applied to power
systems, with the purpose of helping readers understand more clearly the
potential behind the GA principles (Table 15.2) [12–21].
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15.8.1 GAs in the Unit Commitment Problem

Generally, the unit commitment problem (UCP) is one that involves
the determination of the optimal set of generating units within the next
1–7 days. The UCP is to minimize operation costs, transition costs, and
no-load costs. The operational cost is mainly fuel cost while transitional
costs include start-up and shutdown costs of the units. Idle, banking, or
standby cost constitute the no-load costs. Genetic-based unit commitment
implementation consists of initialization, cost calculations, elitism, reproduc-
tion, crossover, standard mutation, economic dispatch calculations, and
intelligent mutation of the unit commitment schedules. An explanation of
each part of the genetic-based unit commitment algorithm implementation
follows.

The initialization is explained for one member of the population (one unit
commitment schedule). The number of population members used in this
research was 50. A member of the population consists of a matrix with
dimension equal to the number of generators by the number of scheduling
periods. This matrix represents the on=off status of the generating units. The
first initialization step consists of finding the 10 cheapest economic dis-
patches for each hour that meet system demand and a 10% spinning reserve.
A member of the population is then created by randomly choosing 1 of the 10
cheapest economic dispatches for each hour.

TABLE 15.2

Genetic Applications in Electric Power Systems

Area Fields

Expansion or structural planning Generation-transmission

Transmission=distribution

VAr planning, capacitor placement

Operation planning Unit commit, generator scheduling

Load dispatch
React, power, dispatch, volt, control

Maintenance scheduling

Security assessment

Generation=transmission and
distribution operation

Loss minimization switching

Alarm processing, fault diagnosis

Service restoration

Load management

Load forecasting
State estimation

Facts

Analysis Power flow

Harmonics
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15.8.1.1 UCP Statement

In the UCP under consideration, one is interested in a solution that minim-
izes the total operating cost of the generating units during the scheduling
time horizon while several constraints are satisfied.

15.8.1.1.1 Objective Function

The overall objective function of the UCP of N generating units during the
scheduling time horizon T (e.g., 24 h) is

F ¼
XT
t¼1

XN
i¼1

ui(t) � Fi(Ei(t))þ Si(t)þ fi(t)½ �,

where
ui(t) is the status of unit I at hour (on¼ 1, off¼ 0)
Si(t) is the start-up=shutdown status of unit i at hour t
Ei(t) is the energy output from unit i at time t
Si(t) is the start-up cost of the ith unit at hour t
fi(t) is the ramping cost of the ith unit at hour t

The production cost Fi(t) of a committed unit i is conventionally taken in a
quadratic form:

Fi(t) ¼ aiE2
i (t)þ biEi(t)þ gi,

where ai, bi, and gi are the cost function parameters of unit i. The start-up
cost Si(t) is a function of the downtime of the unit.

15.8.1.1.2 Constraints

The constraints that have been taken into consideration in this work may be
classified into two main groups.

15.8.1.1.2.1 System Constraints

1. Load demand constraints

XN
i¼1

Pgi(t) � net demand,

where net demand is the system peak demand at hour t.

2. Spinning reserve: The spinning reserve is the total amount of gener-
ation capacity available from all units synchronized (spinning) on
the system minus the present load demand:

XN
i¼1

Pgi(t) � (net demandþ spinning reserve):
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15.8.1.1.2.2 Unit Constraints The constraints on the generating units are as
follows:

1. Generation limits: In case the units should maintain a given amount of
reserve, its upper bounds must be modified accordingly. Therefore,
we have

Pmax
gi
� Pgi � Pmin

gi
,

where Pmax
gi

and Pmin
gi

are the minimum and maximum generation
limits (MW) of unit i, respectively.

2. Minimum up=down times:

Toffi � Tdowni

Toni � Tupi

for units where

Tupi
and Tdowni

are the unit i minimum up=down times

Toffi and Toni
are the time periods during which unit i is continuously

on=off

. Unit initial status

. Crew constraints

. Unit availability (e.g., must run, unavailable, or fixed output [MW])

. Unit derating

15.8.1.2 GA Implementation in the GTS Algorithm

The details of the GA components implementation are described and sum-
marized as follows:

1. Solution coding: The solution in the UCP is represented by a binary
matrix (U) of dimension T�N (Figure 15.4a). The proposed method
for coding is a mix between binary and decimal numbers. Each
column vector in the solution matrix (which represents the operation
schedule of one unit) of length T is converted to its equivalent
decimal number. The solution matrix is then converted into one
row vector (chromosome) of N decimal numbers (U1, U2, . . . , UN),
each representing the schedule of one unit (Figure 15.4b). Typically
the numbers U1, U2, . . . , UN are integers ranging between 0 and
2N � 1. Accordingly, a population of size NPOP is stored in a matrix
NPOP�N (Figure 15.4c).
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2. Fitness function: Unlike the previous solutions of the UCP using GAs
the fitness function is taken as the reciprocal of the total operating
cost, since we are generating always feasible solutions. The fitness
function is then scaled to prevent premature convergence. Linear
scaling is used which requires a linear relationship between the
original fitness function and the scaled one.

3. Crossover: To speed up the calculations, the crossover operation is
done between two chromosomes in their decimal form. Two parents
are selected according to the roulette wheel rule. Two positions in the
two chromosomes are selected at random. The decimal numbers are
exchanged between the two parents to produce two children. The
two children are then coded into their binary equivalents and
checked for constraint violation (load demand and reserve con-
straints). If the constraints are not satisfied a repair mechanism is
applied to restore feasibility to the produced children.

4. Mutation: The mutation operation is done by randomly selecting any
chromosome with a prespecified probability. The selected chromo-
some is then coded into its binary equivalent. A unit number and a

H Units

R 1 2 3 4 . . . N

1 1 1 0 0 . . . 1

2 1 1 0 0 . . . 1

3 1 0 1 0 . . . 0

. . . . . . . . .

T 0 1 0 1 . . . 0
(a)

(b)

(c)

U1 U2 U3 U4
. . . UN

U1 U2 U3 U4 UN

U1 U2 U3 U4 UN

U1 U2 U3 U4 UN
. . .

. . .

. . . . . . . .

. . .

FIGURE 15.4
(a) Binary solution matrixU, (b) equivalent decimal vector (one chromosome), and (c) population
of size NPOP chromosomes.
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time period are randomly selected. Then the proposed rules are
applied to reverse the status of this unit keeping the feasibility of
the unit constraints related to its minimum up and down times. A
checked for the changed time periods, and correction if necessary, for
the reserve constraints is then made.

5. Generating feasible trial solutions: We have proposed some rules
to generate randomly a feasible trial solution as a neighbor to an
existing feasible solution. These rules were designed to achieve the
minimum up=down constraints satisfaction, which are the most
difficult constraints in the UCP, while the reserve constraints are
checked and corrected, if necessary, using a repair mechanism.
The main idea of these rules could be summarized in two points:
the difference between minimum up and down times of a unit is
subtracted from the on or off hours of that unit; and the unit status
is reversed randomly at certain hours ranging between 0 and this
difference.

6. Repair mechanism: Due to applying the crossover and mutation oper-
ations, the reserve constraints might be violated. A repair mechan-
ism to restore the feasibility of these constraints is applied and
described as follows:

a. Pick at random one of the off units at one of the violated hours.

b. Apply the rules in Section 15.5 to switch the selected unit from
off to on, keeping the feasibility if there are downtime constraints.
Check for the reserve constraints at this hour, If satisfied go to
another hour. Otherwise, repeat the process at the same hour for
another unit.

This procedure has proven faster than algorithms that use penalty functions.

15.8.1.3 Proposed Algorithm

In solving the UCP, two types of variables need to be determined: Ui(t),
which are 0–1 (binary) variables, and the units’ output energy variables Ei(t),
which are continuous variables. The first is a combinatorial optimization.
The nonlinear optimization economic dispatch program (EDP) is simultan-
eously solved via a quadratic programming routine.

The flowchart of the GA for the UCP is given in Figure 15.5. The major
steps of the algorithm are summarized as follows:

1. Create an initial population by randomly generating a set of feasible
solutions (chromosomes).

2. Evaluate each chromosome by solving EDP.

3. Determine the fitness function of each chromosome in the popu-
lation.
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4. Apply GA operators to generate new populations as follows:

a. Copy the best solution from the current to the new population.

b. Use the TS algorithm to generate new members in the new popu-
lation (typically 1%–10%) of the population size as neighbors to
randomly selected solutions in the current population.

c. Apply the crossover operator to complete the members of the new
population.

d. Apply the mutation operator to the new population.

5. Apply the SA algorithm to test the members of the new population.

Initialization

Generation <
maximum
generation

Calculate cost of UC schedule

Elitism
reproduction

crossover

Standard mutation (call ED
for the hour that mutation

has occurred)

Turn generator off mutation
(call ED)

Intelligent mutation I (call ED
for hour mutation occurred)

Generation = generation + 1

Intelligent mutation II (call
ED for hour mutation

occurred)

Done

FIGURE 15.5
Flowchart of the GA for unit commitment.
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15.8.1.3.1 Stopping Criteria

There are several possible stopping conditions for the search. In our imple-
mentation, we stop the search if one of the following two conditions is
satisfied in the given order.

1. Number of iterations performed since the best solution last changed is
greater than a prespecified maximum number of iterations.

2. Maximum allowable number of iterations (generations) is reached.

The calculation of cost of the UC schedule consists of the following:

1. If a unit breaks the minimum up-time constraint, the unit is charged
as if it were on standby for those hours. A temporary matrix is then
created from the original UC schedule, except the standby hours are
set to 1 instead of 0.

2. If a unit breaks the minimum downtime constraint in the tempor-
arymatrix created in Step 1, the unit is charged as if it were on standby
for the additional number of hours needed to satisfy the constraint.
The temporary matrix then has those hours set to X instead of 0.

3. Using the temporary matrix created from Steps 1 and 2, the startup,
shutdown, and banking costs are calculated for each unit.

4. Fuel cost for each UC schedule is calculated by summing the ED cost
for each hour.

Elitism ensures that the best individuals are never lost in moving from one
generation to the next. The elitism subroutine combines the two populations
and determines the best results from both populations in order of decreasing
fitness value. It then saves distinctmembers that have the highest fitness into the
next generation. The amount is determined by the difference in the generator
on=off matrices. Reproduction is the mechanism by which the most highly fit
members in a population are selected to pass on information to the next
population of members. The fitness of each member is determined by taking
the inverse of the cost of each member’s UC schedule and then ordering the
population members by increasing cost. Then each member is assigned fitness
according to its rank. The members kept for reproduction are determined by
roulette wheel selection. This type of reproduction is called rank-based fitness.
Crossover is the primary genetic operator that promotes the exploration of new
regions in the search space. Crossover is a structured, yet randomized, mech-
anism of exchanging information between strings. Crossover begins by select-
ing at random two members previously placed in the mating pool during
reproduction. A crossover point is then selected at random and information
from one member, up to the crossover point, is exchanged with the other
member, thus creating two new members for the next generation.

The unit commitment procedure searches for global optimal solutions
considering the following costs and constraints:
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. Unit shutdown and start-up costs

. Operation costs (usually fuel costs)

. Ramping costs

. Load satisfaction

. Ramping constraints

. Spinning reserve criteria

. Maximum wind penetration

. Minimum unit downtimes

. Minimum start-up times (as function of downtime)

15.8.1.3.2 Coding

Usually in a period of 48 h, one generator will only change state a few
times. Therefore, one would only need a few bits to denote the change of
state, instead of 48 bits (one for each hour, if the time step is 1 h). Moreover,
during long periods, the same set of generators may be on or off. They can
be represented in block. We have therefore divided the scheduling period
into a number of blocks, where we admit that the composition of generators
on and off is constant (requiring only a number of bits equal to the number
of generators). We have also added to each block a number c of bits defining
an advance or delay for each one. There is also one extra bit per block
allowing a block to be disabled, so that the number of active blocks is
variable and adapts to the solution. The number of bits to press a solution
is therefore given by b(nþ cþ 1) and the number b of blocks needed depends
on the regularity of the load curve. For instance, in a problem with 25
generators and an hourly scheduling for 48 h (a long-term UCP), the direct
encoding of every hour would require a chromosome with 1200 bits,
while the same problem divided into 10 blocks (with 2 bits for advance
or delay) would require chromosomes of 280 bits in length only. Presently,
the number of blocks and the relative size of each block are decisions
made by the operator at the modeling stage of the problem (not done
automatically).

15.8.1.3.3 Selection and Deterministic Crowding

Selection is directed under the deterministic crowding approach [10], which
randomly pairs all population elements in each generation. Each pair of
parents will undergo mutation and crossover, and yield two children. The
members of each set of two parents and two children are then classified and
paired according to a similarity measure such as the Hamming distance
between chromosomes (the number of differences in the bits). Finally, com-
petition is established in each pair and the two fittest elements will enter the
next generation. The deterministic crowding approach can successfully per-
form niching and preserve the diversity in the GA.
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15.8.1.3.4 Neighborhood Digging

At certain generations, a process called neighborhood digging is launched. It
tries to displace the start-up and shutdown times of generators in order to
improve solutions, selected with a given probability.

The general neighborhood digging tests are

1. Enabling=disabling some blocks

2. Shutting down or starting up generators within some blocks

3. Anticipating=postponing the start of a new block

4. Avoiding unnecessary shutdowns=start-ups of generators

A set of rules has been derived to guide the neighborhood digging process,
for instance, for postponement and anticipation of start-up and shutdown of
generators, in order to improve the computational efficiency of the process.
The decision to adopt changes in the solutions may come either from feasi-
bility verification or from fitness calculation. If better solutions are found,
their chromosome coding is added to the genetic pool.

The neighborhood digging procedure has been extensively tested, namely,
against a simple GA (where the neighborhood search is disabled) and its
superior performance has been confirmed.

15.8.1.3.5 Chromosome Repair

Chromosome repair is applied to infeasible solutions, in an attempt to bring
them to feasibility. It consists of a series of very simple and heuristic tests, so
that the process remains computationally efficient. If a feasible solution is
built, it replaces the original infeasible one in the genetic pool.

15.8.1.3.6 Crossover

The module adopts two-point crossover. In this UCP, with the type of
chromosome coding adopted, it proves to lead to superior algorithm per-
formance. Besides costs, the fitness function also includes penalty values for
not having all constraints satisfied. The highest penalty is assigned to sched-
ules that do not meet the load. Other penalties apply to schedules that do not
respect minimum downtimes or start-up delays. A third set of penalties is
included for schedules that do not satisfy a spinning reserve criterion, taken
as a fuzzy constraint.

The application allows the user to select two spinning reserve criteria—
either a percentage of the load or a probabilistic risk value. The best fitness is
therefore assigned to solutions with the lowest value of cost plus penalties.

15.8.2 Load Shedding: A Model with GA

Under-frequency load shedding is used to alleviate load-generation imbal-
ance following a sudden loss of generation or interconnection. A large
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frequency reduction happens when generators are not able to supply the
connected system load or when generator governors are not fast enough to
respond to such disturbances. In these latter situations, although the system
may remain stable, very large frequency deviations may cause the actuation
of frequency protection relays (such as the ones installed in thermal power
station auxiliaries) leading the system to collapse. To avoid this situation,
utilities usually have shedding schemes that disconnect selected loads
throughout the entire power system; besides protecting against frequency
collapse, this technique is also used to prevent deep drops in system fre-
quency. However, sometimes the amount of the disconnected load is far
more than necessary, which may also lead to large over-frequency oscilla-
tions. Load shedding is accomplished by using frequency-sensitive relays
that detect the onset of decay in the system frequency. Both frequency and
rate-of-change of frequency are measured. Load shedding is usually imple-
mented in stages with each stage triggered at a different frequency level or
(df=dt) setting. This staging is performed to prioritize the shedding of the
loads, where the least important loads are to be shed first.

Usually, this priority policy is associated with the social impact of the
disconnection action, without any other concern related to the load behavior
during the emergency conditions. Specifically, frequency-dependent loads
present better dynamic characteristics during the power imbalance phenom-
enon and may be kept connected. The following paragraphs describe a
new approach based on GA that aims at determining, for a given loss
of generation, the minimum amount of load to be disconnected and the
step-actuation factor used for that purpose (minimum frequency relay setting
level and df=dt operation). This calculation also takes into consideration
the dynamic characteristics of loads (namely, frequency dependence) and
their location on the network. The minimization of the load curtailment is
subjected to a set of constraints, such as

1. Priority loads should be kept in operation

2. Minimum system frequency deviation

3. Maximum residual system frequency value

4. Maximum system frequency excursion

An optimal load shedding scheme of this type can then be formally consid-
ered as a large, nonlinear, discrete optimization problem subject to multiple
constraints. To implement the load shedding strategies, some assumptions
must be introduced for the modeling of load buses. In the example and
results below, without loss of generality, it has been assumed that there are
four feeders in each load bus. These feeders are sharing the busload such
that, in each feeder, the combination of load types is different.

Load shedding is triggered in the example by two actuation types:
frequency level and frequency rate of change. In this work, 49, 48.5, and 48
Hz are, respectively, the first, second, and third levels of frequency settings
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for load shedding. Simultaneously, the setting of the frequency change rate is
fixed at 0.5 Hz=s. This means that whenever system frequency reaches one of
the three levels of the frequency setting or if the system frequency declines
more than 0.5 Hz=s, a scheduled amount of load will be disconnected. Time
delays in the actuation of the frequency relays have also been considered.

15.8.2.1 Coding

The choice of how to encode solutions in a chromosome is of primary
importance to the success of the GA approach. In this work, each bit corres-
ponds to one of the feeders of the system (possible location for a disconnect-
ing device operated by a relay). The chromosome is divided into three parts,
each part representing a shedding stage. Obviously, those feeders that are
assigned to one stage would not be available in others. Thus, each load bus
must be coded using 12 bits of the chromosome. This coding example also
shows that some bits may become irrelevant—the meaning of the chromo-
some depends entirely on the fitness function, that is, on the interpretation of
the user.

15.8.2.2 Fitness

A fitness function (fit) defined as follows is used to assess the quality of each
shedding solution coded in an individual chromosome:

fit ¼ 100 1� j fmnj þm
A

� �
1� j fmxj

B

� �
1� j finj

C

� �
D � Plos � Pshed

E � Plos

� �
,

where A, B, C, D, and E are weight parameters dependent on the system
under analysis and on the importance attributed to each frequency deviation,
and m¼ 1 is an offset value. For each individual (solution), Plos is the amount
of generation lost and Pshed is the amount of load to be shed. The values fmin,
fmax, and ffinal are, respectively, the minimum, maximum, and final frequency
deviation values obtained from a step-by-step numerical solution of the
differential equation that characterizes the system dynamic behavior. To
speed up the procedure several conditions were included during the fitness
assessment: solutions were discarded as soon as they were found infeasible
and other filtering procedures were included to avoid the need for evaluating
the full dynamic behavior of the system.

15.8.2.3 Initial Population

If Is and Os in each chromosome are chosen with equal probability, then
approximately half the feeders will be set ready for shedding. In other words,
half the loads would be ready to be shed regardless of the amount of
generation lost. This type of approach for choosing the initial population
makes the optimization process faster and more efficient.
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15.8.2.4 Genetic Operators

The work described in Ferreira et al. [11] uses the canonical GA using a fixed-
size, nonoverlapping population scheme with each new generation created
by the selection operator and altered by single-point crossover and mutation,
according to fixed operator probabilities.

15.9 Illustrative Examples

Example 15.9.1

Solve the following linear programming problem using the GA.

Maximize Z ¼ �3x1 þ 5x2

Subject to the constraints:

x1 þ 2x2 � 2:0

0 � x1 � 3:0

0 � x1 � 3:0:

SOLUTION

Using an appropriate GA shell, the optimal value of the objective is Z*¼ 15 with
x�1 ¼ 0 and x�2 ¼ 3:

Example 15.9.2

Use the GA to minimize the following nonlinear problem.

Minimize Z ¼ sin xþ sin
10x
3
þ ln�0:84xþ 3

Subject to the boundary conditions:

2:26 � x � 11:86:

SOLUTION

The global optimal solution was found to be x*¼ 10.91397 with Z*¼ 5.74288,
which is a global minima.

Example 15.9.3

Use the GA to minimize the following nonlinear problem.

Minimize Z ¼
X4
j¼1

[aj þ bjx(j)þ cjx2(j)]
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Subject to the boundary conditions:

�10:0 � xj � 10:0 8xj 2 {1,4}

and the coefficients of the polynomial are

a1 ¼ 2:9391848E� 0; b1 ¼ 5:6514290E� 1; c1 ¼ 1:3223214E� 2;

a2 ¼ 2:6497593E� 0; b2 ¼ �4:0084286E� 2; c2 ¼ 1:0892857E� 3;

a3 ¼ 2:9166987E� 0; b3 ¼ �1:7450143E� 1; c3 ¼ 6:6666964E� 2;

a4 ¼ 2:8071963E� 0; b4 ¼ �2:7918714E� 2; b4 ¼ 4:7189286E� 3:

SOLUTION

For this GA calculation, the following parameters were used:

Maximum number of chromosomes (bits per individual)¼ 75
Maximum number of generations to run by the GA¼ 50
Maximum number of individuals (maximum population size)¼ 500
Population size of a GA run¼ 500
Mutation probability¼ 0.05
Crossover probability (uniform in this case)¼ 0.5.

After 25060 iterations, the GA results yield:

x�1 ¼ �10:000000000000000 x�2 ¼ 10:000000000000000

x�3 ¼ 2:273911598073273 x�4 ¼ 2:959407945041670:

This yields an objective value of Z*(x1, x2, x3, x4)¼ 1.649608831366383, which is
a global solution to the constrained optimization problem.

15.10 Conclusions

This chapter discussed one of the EAs, the GA, and its applications in the
power system. The definition and concepts used in GAs were presented in
Section 15.2. The GA approach and theorywere discussed in Sections 15.3 and
15.4, followed by the schemata theorem. In Section 15.6, the general procedure
of a GAwas discussed. The general approach of GAswas discussed in Section
15.7. Section 15.8 introduced applications of GAs to power systems.

We have considered several various algorithms and heuristic approaches
for optimization of large systems. The leading method in evolution pro-
gramming is the genetic algorithm (GA) for unit commitment. It has been
widely applied to other Power System problems such as voltage VAr and
state estimation (SE) problems.
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15.11 Problem Set

PROBLEM 15.11.1

Minimize f (x) ¼ (x1 � 1)2 þ (x2 � 1)2

Subject to

g1(x) ¼ x1 þ 2x2 � 10

x1, x2 � 10:

Solve by classical optimization and GAs.

PROBLEM 15.11.2

Minimize f (x) ¼ x21 þ x22 � 2x1 � 2x2

Subject to

g1(x) ¼ x1 þ x2 � 4 ¼ 0

g2(x) ¼ x1 � x2 � 2 ¼ 0

x1, x2 � 0:

Solve by classical optimization and GAs.

PROBLEM 15.11.3

Using GAs, solve the following multiobjective nonlinear problem.

Maximize f (x) ¼ f1(x)þ f2(x)þ f3(x)

Subject to

x1 þ x2 � 5

x1 þ x2 � x3 ¼ 0

x1 > 0, x2 � 0, x3 > 0,

where

f1(x1) ¼ 20x1 � 2x21

fx(x2) ¼ 16x2 � x22

f3(x3) ¼ �x23:
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PROBLEM 15.11.4

Two generators supply the total load of 85 MW. The generator cost
functions of the generators are given as follows:

f1(PG1 ) ¼ 120þ 10PG1 þ 0:02P2
G1

10 � PG1 � 160 MW

f2(PG2 ) ¼ 160þ 12PG2 þ 0:015P2
G2

30 � PG1 � 100 MW:

Use GA to obtain the optimum fuel cost.
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16
Functional Optimization, Optimal Control,
and Adaptive Dynamic Programming

16.1 System Performance Evaluation and Optimization
of Functionals

Classical control and optimization allow for use of state objectives and con-
straints with the use of mathematical optimization methods to solve for
optimum acceptable or sufficient parameters.When dynamic or finite systems
are presented, then the criterions for optimumare different for the systemwith
multiple inputs and multiple outputs. These systems are usually found in
control theory as well as in dynamic optimization. The objective of optimal
control, dynamic control of the system is based on selecting appropriate
methods for minimizing or maximizing some performance criteria [14,15].

In this chapter, we will review the fundamental approach for optimizing
functional optimization, followed by systems that require the use of optimal
control approaches. Then, we will recast the problem in DP problem fol-
lowed by the use of approximate dynamic programming (ADP) to improve
the challenge of dynamic programming (DP) optimization. The drawback
curse of computational burden is overcome by using the new concepts of
predictivity and dynamics or stochastic nature of system performance.

Finally, new trends in optimization being used in aerospace and intelligent
control are being exploited in power systems. And introduction of its use in
power system stability, unit commitment (UC), and optimal dispatch pro-
blems is introduced.

16.1.1 Extremization of Functionals

Consider the classical control problem formulated in a state variable form.
We shall adopt the state variables of the process as x1(t), x2(t), . . . , xn(t) with
control variables as u1(t), u2(t), . . . ,un (t).

The first-order differential equation is given by

_x(t) ¼ g x(t), u(t), tð Þ: (16:1)
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Here, x(t) ¼ x1(t), x2(t), . . . , xn(t)½ �T is denoted as the state vector and
u(t) ¼ u1(t), u2(t), . . . ,un(t)½ �T as the control vector.

The state vector equation can be written as

_x(t) ¼ g x(t), u(t), tð Þ: (16:2)

The time listing defined for time ranges between t0 and tf for which
the state ranges and the control spread (spacial) the trajectory between
t0 and tf. For every control function at time t, the state x has a value at
t1 ! x(t1).

DEFINITION 16.1

A state trajectory which satisfies the state variable constraints during the
entire time interval [t0, tf] is called an admissible trajectory. The set of admis-
sible state trajectory will be denoted by X and x 2 X.

DEFINITION 16.2

Similarly, a control limiting which satisfies the control constraints during
the entire time interval t0, tf½ � is called admissible control. The set of
admissible control by U and the notation u 2 U means the control listing
is admissible.

16.1.2 Performance Measure

The functional performance measure as a system to be evaluated qualita-
tively is as follows:

f (y) ¼
ðT
t0

g(y, _y, t)dt, (16:3)

where T is free to change but y(T) and y(t0) are fixed.
In the optimal control measure is represented as

J ¼ h(x(tf), tf)þ
ðtf
t0

g(x(tf), u(t), t)dt, (16:4)

where
t0 and tf are the initial and final time, respectively
h and g are scalar functions
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Stated in optimal control: Find the admissible control u* which causes the
system _x(t) ¼ g x(t), u(t), tð Þ to follow an admissible trajectory x* that minim-
izes the performance measure

J ¼ h(x(tf), tf)þ
ðtf
t0

g(x(tf ), u(t), t)dt, (16:5)

where
u* is the optimal control
x* is the optimal trajectory

We develop two theorems to solve problems of functional optimization.
Assume continuity requirement at y(t)¼ x(t) and g(y, _y, t) is continuous up to
the first derivative, a theorem about a can be stated as follows:

THEOREM 16.1

If x with T¼ b is an extrenum of the functional, then it is necessary that

gx � d
dt g _x ¼ 0 (Euler–Lagrange equation for some l and with a � t � b.

g(b)� g _x(b) _x(b)¼ 0

If T is fixed, the last equation is disregarded.

THEOREM 16.2

Any solution of Theorem 16.1 is a minimum if there exist P1 and P2, b � 0, and
b> a to satisfy the following conditions:

1. A(b) � 0 and B(b) � 0

2. hTA(b)h¼ 0, _hTB(b) _h¼ 0 and P1hþP2
_h¼ 0 imply that h¼ 0 almost

everywhere

3. gt(b)� gx(b) _x(b) � 0 with _x(b) 6¼ 0

If T is fixed, the last equation is disregarded.

16.1.3 Theorems of Optimization of Constrained Functionals

There are two kinds of constraints to be considered in the optimization of
functionals. They are

1. fi(y, _y, t)¼ 0 i 2 (1,m)

2.
Ð T
ta
fi(y, _y, t)dt ¼ K i 2 (1,p),
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where all the functions are real, scalar, and single valued. The constants Ki

remains unchanged during the process of optimization until the convergence
criteria are met. It is required to handle the cases of inequality constraints.

Min f (y) ¼
ðT
ta

g(y, _y, t)dt: (16:6)

Subject to

fi(y, _y, t) ¼ 0 i 2 (1,m) (16:7)

ðT
t0

fi(y, _y, t)dt ¼ K i 2 (1, p) (16:8)

Kmin � K � Kmax: (16:9)

The terminal states y(a) and y(T) are fixed but the upper limit is free to
change.

Now, by defining vector form of the functionals, we obtain the following
representations.

F(y, _y, t) ¼ f1(y), f2(y), . . . , fm(y)½ �T (16:10)

and

G(y, _y, t) ¼ g1(y, _y, t), g2(y, _y, t), . . . , gp(y, _y, t)
� �T

: (16:11)

Such that, in matrix form:

F(y, _y, t) ¼ 0 (16:12)

ðt¼T

t¼a

G(y, _y, t)dt ¼ K, (16:13)

where

K ¼ K1,K2, . . . ,Kp
� �T

: (16:14)

The Lagrange for the problem is

L(y, _y, t) ¼ g(y, _y, t)þ l(t)F(y, _y, t)þ lG(y, _y, t), (16:15)
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where

l(t) ¼ l1(t), l2(t), . . . ,lm(t)½ �T (16:16)

l ¼ l1,l2, . . . ,lp
� �T

: (16:17)

Note l(t) and l are the Lagrange vectors of m and p rows, respectively.
The former is a function of time and the latter is constant with respect to
time. The argument t in l(t) should not be distinguished from the nontime-
varying l.

To write theorem of optimizing the functional with constraints, the
following notations are given:

1. Uxx ¼ Lxx þ bFTxFx (16:18)

2. U _x _x ¼ L _x _x þ bFT_xF _x (16:19)

3. U _x _x ¼ L _x _x þ bFTxF _x (16:20)

4. A(b) ¼ Uxx � PT
1P1 (16:21)

5. B(b) ¼ U _x _x � PT
2P2, (16:22)

where b is nonnegative number and P1 and P2 are conformal matrices which
are generally functions of time.

The L- and F-functions without argument denote the value of the trajectory
x(t) which is to be determined. The specific values are given as function value
at L(b), Lx(b), and L _x(b) at time t¼ b.

THEOREM 16.3

If x with T¼ b is an optimum of the constrained functional, then it is necessary that

1. Lx¼ (dL _x=dt)¼ 0 for some l and l(t) in a � t� b

2. L(b)¼ L _x(b) _x(b)

If T is fixed, the last equation is disregarded.

THEOREM 16.4

Any solution of Theorem 16.3 is a minimum if there exist P1 and P2, b � 0, and
b> a to satisfy the following conditions:
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1. A(b) � 0 and B(b) � 0

2. hTA(b)h¼ 0, _hTB(b) _h¼ 0 and P1hþP2
_h¼ 0 imply that h¼ 0 almost

everywhere

3. Lt(b)� Lx(b) _x(b) � 0 with _x(b) 6¼ 0

If T is fixed, the last equation is disregarded.

16.1.4 Summary of Procedure for Optimizing Constrained Functionals

There are four steps as in the formulation presented in Chapter 4 with static
optimization of functions. Constrained functional optimization problems by
applying the foregoing theorems give rise to the following steps:

1. Formulation of the Lagrange functions. This is given as

F(y, _y, t) ¼ f1(y), f2(y), . . . , fm(y)½ �T (16:23)

and

G(y, _y, t) ¼ g1(y, _y, t), g2(y, _y, t), . . . , gp(y, _y, t)
� �T, (16:24)

where fi(y, _y, t)¼ 0 is the differentiable constraints of the F-function.
The function of the form gi(y, _y, t) is the integrand of the G-Function
(integral constraints) such that

Ki1 �
ðT
ta

gi(y, _y,t)dt � Ki2 (16:25)

The integral is considered to be a constantKiwithKi1�Ki�Ki2 during
the optimization process. The Lagrange function is then defined as

L(y, _y, t) ¼ g(y, _y, t)þ l(t)F(y, _y, t)þ lG(y, _y, t), (16:26)

where

f (y) ¼
ðT
ta

gi(y, _y, t)dt: (16:27)

2. Determination of optimum candidates(s) by applying Theorems 16.1
and 16.2
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3. Sufficiency test by applying Theorems 16.3 and 16.4

4. Further optimization: Similar to the case for functions, we now have
the case where f(y) is a function of K. In this process, further optimiza-
tion is to be sought with respect to Ki in the interval Ki1 � Ki � Ki2

for all i. The optimum of Ki may occur at the boundaries of the
constraints.

16.2 Solving the Optimal Control Problem

Optimal control problems are defined in terms of performance measures [10].
We begin here with the formulation given as follows from the generalized
optimal control problem

_x(t) ¼ a x(t), u(t), tð Þ,

where u*2U is the optimal control to the spatial trajectory of x(t) where x* 2X
that minimizes a performance function given by

J ¼ h x(tf), tfð Þ þ
ðtf
t0

g x(tf), u(t), tð Þdt: (16:28)

Given tf is free, the control vector is admissible over the time interval, and the
function g x(tf), u(t), tð Þ is differentiable and continuous over the same trajec-
tory time span.

This performance index (PI) is selected and modified for different class of
problems as follows.

Minimum-time problems
To transfer a system from an arbitrary initial state x(t0)¼ x0 to a specified
target set S in minimum time. The performance measure to be minimized is

J ¼ tf � t0 (16:29)

¼
ðtf
t0

dt: (16:30)

Examples of minimum-time control problems include interception of attack-
ing aircraft and missiles, optimization of spacecraft docking machines, oper-
ational modes of radar or gun systems.
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Terminal control problems
The challenge problem is to minimize the final state of a system from the
desired value r(tf). Candidate performance measure is

J ¼
Xn
i¼1

xi(tf)� ri(tf)½ �2: (16:31)

Since both positive and negative deviations are equality undesirable, the
error is squared to enforce this condition in its scale form. Alternatively,
absolute measures or l1-norms could be used to yield:

J ¼
Xn
i¼1

kxi(tf)� ri(tf)k: (16:32)

For general purposes, a quadratic form has been shown easier to handle and
is presented in matrix form as

J ¼ x(tf)� r(tf)½ �T x(tf)� r(tf)½ �: (16:33)

The term kxi(tf)� ri(tf)k is called the norm of the vector [xi(tf)� ri(tf)].
For the general matrix notation, we introduce a real symmetric n� n

weighting matrix H that is positive semidefinite or nonnegative definite by
definition. This allows greater generality, such that

J ¼ x(tf)� r(tf)½ �TH x(tf)� r(tf)½ � (16:34)

or

J ¼ kx(tf)� r(tf)k2H: (16:35)

Minimum-control-effort problems
The challenge here is to transfer a system from an arbitrary initial state
x(t0)¼ x0 to a specified target set S, with a minimum expenditure of control
effort. The minimum control effort has many forms. These include:

a. J ¼
ðtf
t0

u(t)dt (16:36)

(for single control variable system)
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b. If there are several controls, and the rate of expenditure of control
effort of the ith control is cij ui j for i 2 (1,m), then minimizing

J ¼
ðtf
t0

Xm
i¼i

bijui(t)½ �dt (16:37)

would minimize the control effort expanded. All coefficients are
nonnegative weighting factors.

c. Minimum energy dissipated where the goal is to minimize the
performance measure given by

J ¼
ðtf
t0

u2(t)dt (16:38)

or, for several control inputs the general form of performance, the
corresponding performance measure is

J ¼
ðtf
t0

[uT(t)Ru(t)]dt (16:39)

¼
ðtf
t0

ku(t)k2R dt, (16:40)

where R(t) is a real symmetric positive definite weighting matrix
(i.e., zhRz> 0 for 8z 6¼ 0). The R-elements may be time-dependent
during the control-effort expenditure interval [t0, tf].

The choice of the performance measure depends on the expression that
minimizes the system error or maximizes the system performance.

We redefine Equation 16.39 as part of optimal control derived from satis-
factory requirements for

1. Admissible trajectory, x 2 S

2. Admissible control, u 2 U

And admissible control is said to be optimal if it generates and admissible
trajectory and also optimizes the PI. That is

Opt
v2P

I(ya, v, a) ¼ I(ya, v, a),
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where u¼ u(t) if an optimal control. The trajectory x¼ x(t) generates an
admissible control u¼ u(t) within the closed interval a � t � T is called an
optimal trajectory. Note that x intersects S at xb¼ x(b).

The f-function
Let y¼ y(t) in the interval a � t � T be a point in the admissible trajectory,
then the scalar function is defined in the interval by

f(y, t) ¼ Opt
v2P

I(ya, v, a) ¼ Opt
v2P

ðT
t

g[y(t), v(t), t]dt þ K[tT,T]

8<
:

9=
;

The f-function plays an important role in the statement and proof of the
optimum principle.

The costate vector and Hamiltonian
A row n-vector l¼ l(t) known as the costate vector is defined by the
derivative

l(t) ¼ fy(y, t)jy¼x ¼ fx(x, t),

where x¼ x(t) is a point on the optimal trajectory. A scalar function h¼h(t) is
defined as

h(t) ¼ fy(y, t)jy¼x ¼ fx(x, t):

Here, both l and h are functions of time.
The Hamiltonian is defined by

H(y, v,fy, t) ¼ g(y, v,fy, t)þ fy(y, v, t),

which is a scalar function determinable in the interval a � t � Twhenever the
control is given. It should be noted that the vectors x, u, l, and h without
the argument are the values at time t. Sometimes they are specified with
argument t for emphasis.

16.2.1 Continuous Optimum Principle

Optimization involving constraints of differential forms is particularly
important in modern design of control systems. Calculus of variation is one
of the techniques that can be used to solve some of the optimal problems. But,
it cannot handle problems such as optimal control that involves piecewise-
continuous control variable or dynamic equation that are not differentiable
with respect to the control variables.
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In 1958, L.S. Pontryagin formulated and proved a maximum principle
which relaxes the conditions on both control variables and dynamic
equations required by the variational method. Since then, different versions
of the maximum principle have been developed for practical uses. Consid-
ered in this chapter is a generalized optimum (minimum or maximum)
principle that can be used to solve a wide class of optimal problems. The
well-known Euler–Lagrange equation can be obtained as a special ease of the
optimum principle.

16.2.2 Formulation of the Problem

We now summarize the problem formulation and the discussion on the
costate vector and the Hamiltonian as follows:

1. System or dynamic equations

The dynamic system under consideration is described by the ordin-
ary differential equation

_y(t) ¼ f y(t), v(t), tð Þ, (16:41)

where y¼ y(t) is a column n-vector function of t and v¼ v(t) is a
column r-vector function of t. They are referred to as the state and
control vectors. The f-function is assumed to be differentiable with y
and t but only continuous with v.

2. Performance index (PI)

The optimality of a solution for the problem is measured by the
scalar function

I(ya,v,T) ¼
ðT
t0

g (y(t), v,T)½ �dt þ K(yT,T), (16:42)

where a is fixed, T is free, ya¼ y(a) and yT¼ y(T). The control vector (r)
is admissible and denoted by v(t)2P for all a� t�T. The g-function is
assumed to be differentiable with y and t but only continuous with v.
The K-function is assumed differentiable with both yT and T.

3. Terminal condition

The terminal state yT is restricted to be a point in amanifold Sdescribed
by the parametric equations yT¼ h(s,T) where s is a column q-vector.
The h-function is assumed to be differentiable with both s and T. The
composite function K(yT,T)¼K[h(s,T),T]¼K(s,T) is also differentiable
with both s and T. A point is a special case of the manifold when q¼ 0.
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4. Admissible control

Let P denote all the piecewise continuous functions of t in a subset of
Rr which is the r-space. Then, a control is called admissible if v(t) 2 P.
The value of v(t) at a jump point (if any) is defined here to be the limit
from the right. This definition requires that v(t) be specified at a jump
point t¼ d by the intervals: t< d and t � d. Such a specification
assures the existence of v(t) for all a � t � T.

5. Admissible trajectory

Any solution of (6-1) with an admissible control started with ya and
terminated in S is called an admissible trajectory.

6. Optimal control

An admissible control is said to be optimal if it generates an admissible
trajectory and also optimizes (minimizes or maximizes) the PI. That is

Opt
v2P

I(ya, v,T) ¼ I(ya,u, a), (16:43)

where u is an optimal control. The trajectory x¼ x(t) generated by the
optimal control u¼ u(t) for a � t � b according to (6-1) is called an
optimal trajectory. Note that x intersects S at Xb¼ x(b).

7. f-Function

Let y¼ y(t) in the interval a � t � T be a point on an admissible
trajectory, then the function (scalar) is defined in the interval by
a � t � T

f(y, t)¼Opt
v2P

I(ya,v,T)¼Opt
v2P

ðT
t

g (y(t),v(t),t)½ �dtþK(yT,T)

8<
:

9=
;: (16:44)

The f-function plays an important role in the statement and proof of
the optimum principle. It has the following properties: (1) it exists
because y is on an admissible trajectory at t, (2) it is a point function
depending on y and t only since the control v(t) has been chosen,
and (3) it is differentiable from the right at y due to the assumption v
(t)¼ v(tþ).

8. Costate vector and Hamiltonian

A row n-vector l¼ l(t) known as the costate vector is defined by the
derivative

l ¼ fy(y,t)jy¼x ¼ fx(x,t), (16:45)

where x¼ x(t) is a point on an optimal trajectory. A scalar function
h¼h(t) is defined by

h ¼ ft(y,t)jy¼x ¼ ft(x,t): (16:46)
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Both l and h are functions of x and t. The Hamiltonian is defined by

H(y,v,fy,t) ¼ g(y,v,t)þ fy(y,t)f (y,v,t), (16:47)

which is a scalar function determinable in the interval a a � t � T
whenever the control is given. It should be noted that the vectors x, v,
u, l, and hwithout argument are the values at t. Sometimes, they are
specified with argument t for emphasis.

16.2.3 Theorems for the Pontryagin Maximum Principle (PMP)

The continuous optimum principle is aimed at solving the problem formu-
lated in Section 16.2.1. It specifies a set of necessary conditions that can be
utilized to determine the optimal control and trajectory. The principle may
be regarded as a generalization of the well-known Pontryagin maximum
principle (PMP). It can be stated as the following form of theorem.

THEOREM 16.5

If u is an optimal control and x is the associated optimal trajectory which
intersects S at T¼ b, then there exist a row vector l and h and a scalar in
a � t � T such that

(a) Opt
v2P

H(x, v, l, t)þ h ¼ H(x,u,l, t)þ h ¼ 0 (16:48)

(b) _lþ lfx(x, u, t)þ gx(x,u, t) ¼ 0 (16:49)

(c) _hþ lft(x,u, t)þ gt(x, u, t) ¼ 0 (16:50)

(d) l(b)hs(s, b) ¼ Ks(s, b) (16:51)

(e) l(b)hb(s, b)þ h(b) ¼ Kb(s, b) (16:52)

Condition (a) implies that x, l, and h are kept constant during the optimiza-
tion with respect to v.

The optimal control is sought by optimizing the Hamiltonian at each t in
the interval a � t � b and hence the equality of condition (a) holds for each t
in the interval.

In conditions (d) and (e), hs(s, b) and Kb(s, b) denote the partial differenti-
ations of the functions with respect to b.
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16.2.4 Sufficiency Test and Some Special Cases for the Optimum Principle

Consider y to be the trajectory generated by an admissible control v from
(ya, a) to (yT,T) where yT is the state that y intersects S at t¼T.

Recall the f-function

f(y, t) ¼ Opt
v2P

I(ya, v,T) ¼ Opt
v2P

ðT
t

g (y(t), v(t), t)½ �dt þ K(yT,T)

8<
:

9=
;: (16:53)

It follows that

f(y, t) ¼ Opt
v(t)2P

I(y, v,T): (16:54)

For t � t � T. At t¼T, the f-function reduces to

f(yT,T) ¼ K(yT,T) (16:55)

For convenience, we will use fy and ft to denote the partial derivatives of the
f-function with respect to y and t, respectively. In terms of the derivatives, a
test of sufficiency for the solution obtained from the optimum principle can
be stated as follows.

Sufficiency test: The control u obtained from the optimum principle is a
global minimum if H(y, v,fy, t)þft � 0 for all a � t � T. (In the same breath,
reversal of the inequality ensures a global maximum if H(y, v,fy, t)þft � 0).

To verify the test, we write condition (a) of the principle as

H(x,u,l, t)þ h ¼ g(x,u, t)þ lf (x, u, t)þ h (16:56)

¼ g(x,u, t)þ l _xþ h (16:57)

¼ g(x,u, t)þ _f(x, t)þ h (16:58)

¼ 0 (16:59)

for all a � t � b. Integration of both sides from a to b along the optimal
trajectory gives

ðb
a

g(x,u, t)dtþ
ðb
a

df(x, t) ¼ 0: (16:60)
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Since the integrand of the second integral is a total differential, we obtain
from the above equation

ðb
a

g(x,u, t)dtþ f(xb, b)� f(xa, a) ¼ I(xa,u, a)� f(xa, a) ¼ 0: (16:61)

On the other hand, the test criterion reveals that

H(y, v,fy, t)þ ft ¼ g(y, v, t)þ fy _yþ fy (16:62)

¼ g(y, v, t)þ _f(y, t) � 0 (16:63)

for all a � t � T. Integration of both sides from a to T along y gives:

ðT
a

g(y, v, t)dtþ
ðT
a

df(x, t) � 0: (16:64)

Carrying out the second integral, we have

ðb
a

g(y, v, t)dtþ f(xT,T)� f(xa, a) ¼ I(ya, v, a)� f(ya, a) � 0: (16:65)

By the assumption of fixed initial state, we have xa¼ ya, and hence f(xa, a)¼
f(ya, a). It follows from Equations 16.61 and 16.65 and the above equation that

I(xa,u, a) ¼ f(xa, a) ¼ f(ya, a) � I(ya, v, a): (16:66)

This concludes that u is a minimal control and x is the associated minimal
trajectory. (Maximal control of u can be similarly verified when the inequality
sign of the criterion is reversed.)

Note, in order to apply the sufficiency test, one has to find the scalar
function f(y, t) and then fy and ft. Suggested in Equation 16.61 is the fact
that f(y, t)¼ I(y, u, t). In other words, one can determine f(y, t) from I(xa,u, a)
by taking xa and a as parameters and then replace xa and a by y and t,
respectively. Nonnumerical value restrictions on xa or a in order to apply
the test introduces complications.

In general, we conclude that from the Hamiltonian, we apply the necessary
conditions of optimality. Then, for optimization, determine the controls that
satisfy the sufficiency conditions.
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16.2.5 Use of the Optimum Principle for Special Control Problems

1. Terminal state problems

a. T is fixed.

When T¼ b is fixed, f(x, t) is only a function of x at t¼T. There-
fore, h(b) cannot be defined by ft(xb, t). In such a case, condition
(e) of the continuous principle theorem must be disregarded and
leave h(b) to be determined by the known t¼T.

b. S is a point (q¼ 0).

When xb is fixed, f(x, t) is not a function of x at t¼ b and hence l(b)
cannot be defined by fx(xb, b). In such a case, condition (c) must be
disregarded and leave l(b) to be determined by the known xb.

2. Unconstrained Euler–Lagrange equation

Consider the special case in which _y(t)¼ f(y, v, t)¼ v. Then, it follows
from the optimum principle that

a. g x, _x, tð Þ þ luþ h ¼ 0

where u is unconstrained and hence
dg
du

þ l ¼ 0 or g _x þ l ¼ 0 (16:67)

b. _lþ g _x ¼ 0 or g _x þ d
dt

�gx½ � ¼ g _x þ d
dt

�gx½ � ¼ 0 (16:68)

3. Autonomous systems

Consider the special case in which the functions f, g, and h are not
explicit functions of t, and also K is not an explicit function of T.
Condition (c) of the optimum principle shows that _l¼ 0 or h¼ c¼ 0
for all a� t� b since condition (d) requires that h(b)¼ 0. This
concludes that conditions (c) and (e) are to be deleted and h¼ 0 for
free T but h¼ c for fixed T.

4. Linear and time-invariant systems

A wide class of optimization problems in modern controls is of the
linear and time-invariant form. The constraint equations and also the
PI are linear and time-invariant. That is

_y(t) ¼ Ayþ Bv and I ¼
ðb
0

CyþDvþ eð Þdtþ K(yb), (16:69)

whereA is n-square,B is nxr,C is Ixn,D is Ixr, e is a scalar constant, and
K is a scalar function. The manifold is the same as described before.
Application of the optimum principle yields the following result:

a. lAþ Cð Þxþ lBþDð Þuuþ e ¼ 0 are all 0 � t � b: (16:70)

The optimal u does not exist unless it is constrained.
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b. _lþ lAþ C ¼ 0 (16:71)

c. l(b)hs(s) ¼ Ks(s) where b is free: (16:72)

The solutions of l from (b) and x(t) from the constraint can be expressed by

l(t) ¼ l(0)e�At �
ðt
0

Ce�A(t�t) dt (16:73)

x(t) ¼ eAtx(0)þ
ðt
0

eA(t�t)Bu(t) dt: (16:74)

Now, define a matrix function E(t) in such a way that E(t) ¼ Ð t
0 e

At dt or
dE(t)¼ eAtdt. Then, in terms of E(t), the above vectors can be written as

l(t) ¼ l(0) ¼ CE(t)½ �e�At (16:75)

e�Atx(t) ¼ x(0)�
ðt
0

dE(�t)Bu(t)dt: (16:76)

Let us consider the bang–bang control as generated by bounded ui for all i.
Integration by parts reveals that

ðt
0

dE(t�)Bu(t) dt ¼ E(�t)Bu(t)�
ðt
0

E(�t)Bdu(t): (16:77)

Then, by multiplying eAt we obtain

x(t) ¼ eAt x(0)� E(�t)Bu(t)þM(t)½ �, (16:78)

where

M(t) ¼
ðt
0

E(�t)B du(t) ¼
X

E(�ts)B u(tþs )� u(t�s )
� �

: (16:79)

The summation includes all the jumps that are caused by the switching time
ts, which is less than t. The tedious part of solving the problem is the
evaluation of eAt and E(t). Similarity transformation can be employed but it
requires eigenvalues and eigenvectors. Series expansion can be used to
evaluate them on computer but t must be specified numerically.
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16.2.6 Regulator Problem and Riccati Equation

As a wide class of control problem, it is required to find an optimal control
that keeps a state vector close to a prescribed trajectory. The control effort is
to be reduced as much as possible and the state vector constrained by a set of
linear differential equations.

In term of the optimum principle, we can formulate the problem as to
minimize a PI with

g(y, v, t) ¼ 0:5 q(t)� z(t)½ �TD(t) q(t)� z(t)½ � þ 0:5vTQ(t)v(t) (16:80)

and

K(yT,T) ¼ 0:5 q(t)� d½ �TG q(t)� d½ �: (16:81)

Subject to

f (y, v, t) ¼ A(t)y(t)þ B(t)v(t)þ w(t): (16:82)

and

q(t) ¼ C(t)y(t):

The terminal T is assumed to be fixed but y(T) is free or S is the whole space.
The matrices that involve in the above equations are

1. v(t) is an unconstrained control vector and y(t) is the associated
state vector, q(t) is an output vector, z(t) is a reference vector, and d is
a constant vector. They have respectively r, n,m,m, andm components.

2. G is symmetric, positive semidefinite, and constant.

3. D(t) is symmetric, positive semidefinite, and function of t.

4. Q(t) is symmetric, positive-definite, and function of t.

5. C(t) is mxn and function of t.

Some special cases of the problem are given names as below:

The linear servomechanism problem: d¼ z(T).
The tracking problem: w(t)¼ 0 and d¼ z(T).
The output regulator problem: w(t)¼ 0, z(r)¼ 0, and d¼ 0.
The state regulator problem: w(t)¼ 0, z(t)¼ 0, d¼ 0, and C(t)¼ In.

To solve the problem by using the optimum principle, we will omit the
argument unless there is an ambiguity. The principle gives the following
conditions:
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(a) Hmin ¼ 0:5 Cx� z½ �TD(t) Cx� z½ � þ 0:5uTQu
þ l(Axþ Buþ w)þ h, (16:83)

where u¼�Q�1BTlT. This holds true because H is a quadratic
function of u and Q is positive semidefinite.

(b) _lþ lAþ (Cx� z)TDC ¼ 0 (16:84)

(c) l ¼ (Cx� d)TGC at t ¼ T: (16:85)

The problem is extremely hard, if not impossible, to solve because the
boundary condition of x is given at t¼ a but that of l is given at t¼T. It is
for this reason that the problem is to be solved indirectly for an n-square
matrix function F(t) and an n-vector h(t) related by

lT ¼ Fxþ h (16:86)

We have dropped the argument of time here for simplicity. By differentiating
this equation with respect to time and then substituting _x yield

_lT ¼ _Fxþ F _xþ _h (16:87)

¼ ( _Fþ FA� FBQ�1BTF)xþ ( _h ¼ FBQ�1BThþ Fw): (16:88)

On the other hand, we have from condition (b) that

_lT þ (ATFþ CTDC)xþ ATh� CTDz ¼ 0: (16:89)

Cancellation=elimination of _l gives

( _Fþ FA� FBQ�1BTFþ ATFþ CTDC)xþ (ATFþ CTDC)x (16:90)

þ _hþ (AT � FBQ�1BT)hþ Fw� CTDz ¼ 0: (16:91)

The functions F and h will be determined in such a way that

_Fþ FA� FBQ�1BTFþ ATFþ CTDC ¼ 0 (16:92)

and

_hþ (AT � FBQ�1BT)hþ Fw� CTDz ¼ 0: (16:93)

The boundary conditions of F and h satisfy at t¼T

F ¼ CTGC (16:94)

and

h ¼ �CTGD: (16:95)
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Equation 16.92 is known as the Riccati equation which is nonlinear but can be
solved by numerical methods. After F(t) and h(t) have been solved from
Equations 16.92 and 16.93 subject to the specified boundary conditions, the
state vector is to be solved from the following equation:

_x ¼ Axþ Buþ w ¼ Ax� BQ�1BTlT þ w (16:96)

¼ Ax� BQ�1BT(Fxþ h)þ w (16:97)

¼ (A� BQ�1BTF)xþ (w� BQ�1BTh) (16:98)

subject to the given initial condition x(a).
It is not hard to verify that F and h are thus solved will make x and l satisfy

all the conditions (a), (b), and (d) as obtained from the optimum principle
earlier. The optimal control is then determined by

u ¼ �Q�1BTlT ¼ �Q�1BT(Fxþ h): (16:99)

which may be constructed by F, h, and x in practical applications.
The matrix FT as being solved from Equation 16.92 is a symmetrical matrix.

It can be shown by transposing Riccati’s equation to have

_FT þ FTAT � FTBQ�1BTFT þ FTAþ CTDC ¼ 0: (16:100)

The solution of FT from this equation is the same as that from Riccati. This
holds true as they are subject to the same terminal conditions that
F¼ FT¼CTGC at t¼T.

Furthermore, the Riccati equation can be converted to linear differential
equation but the computational burden of the solution increases as the
number of variables is doubled. Such linear differential system of equation
can be solved analytically in principle but the state transition matrix is often
times difficult to determine for many practical applications and especially
when the system dimension is large. The Riccati equations, however, become
more useful when solving time-invariant systems where the A, B, C,D, and Q
matrices are constants with respect to time.

16.3 Selected Methods of Determining the Control Functions
for Convergence of Optimum Principle

Two methods that are commonly used to minimize the control function
that minimizes the performance measure in Sections 16.1 and 16.2 are not
discussed. We have discussed Pontryagin’s principle and the PMP. The
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principles give rise to necessary conditional statement that must hold on an
optimal trajectory. We will now begin our discussion by introducing the DP
method.

16.3.1 Dynamic Programming Method

Consider the classical time-dependent example given by

_x(t) ¼ a x(t), u(t), tð ), (16:101)

where we seek to find u*(t)¼ f(x(t), t) from the admissible vector space u 2 U
in the within the limits of the time interval with maximum value tf.

The function f is the optimal control law with feedback or optimal policy
which provides information on how to generate u(t) at time t for the corre-
sponding state value x(t).

16.3.2 Principle of Optimality Is Used to Find u*(t)
(Richard Bellman’s Method)

From Chapter 15, we define Bellman’s optimality principle as: An optimal
policy has the property that whatsoever the initial state and the initial
decisions are, the remaining decisions must constitute and optimal policy
with regard to the state resulting from the first decision.

Dynamic programming is a computational technique which extends the
decision-making concept to sequence of decisions which together define an
optimal policy and trajectory.

In a generalized form of dynamic systems represented as

_x(t) ¼ Ax(t)þ Bu(t): (16:102)

The performance measure or cost to be minimized is

J x(t), u(t), l, tð Þ ¼ x2(t)þ l

ðtf
t0

u2(t)dt, (16:103)

where tf is the specified final time and l is the weighting factor to permit
adjustment or the relative importance of the two terms in J. And, x(t) and u(t)
are squared vectors since the sign values of these quantities are of importance.

The performance measure reflects the desire to derive the final state of x(t)
as close to zero as possible without excessive and=or expensive control effort.

For generality in DP, we write

C02 x(0), u(0)ð Þ ¼ J01 x(0), u(0)ð Þ þ J* x(1)ð Þ: (16:104)
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The cost or the optimal trajectory is given by

J02* x(0)ð Þ ¼ Min
u(0)

J01 x(0), u(0)ð Þ þ J12* x(1)ð Þ
h i

: (16:105)

C02 x(0), u(0)ð Þ is the minimum cost of operation over the last two stated for
one quantized value of x(0) given a particular trial quantized value of u(0).

J01 x(0), u(0)ð Þ is the cost of operation in the interval k¼ 0 to k¼ 1 for
specified quantized values of x(0) and u(0).

J12* x(1)ð Þ is the cost of the optimal last-stage trajectory, which is a function
of the state x(1).

J02* x(0)ð Þ is the minimum cost of operation over the last two pages for one
quantized value of x(0) given a particular trial quantized value of u(0).

The law that minimizes

J ¼ h x(tf)ð Þ þ
ðtf
t0

g x(t), u(t), tð Þdt, (16:106)

where

u 2 U and 0 � t0 � t � tf: (16:107)

The principle of optimality in discrete form converges to

JN�K,N
* x(N � K)ð Þ ¼ Min

u(N�K)

n
gD x(N � K),u(N � K)ð Þ

þ JN�Kþ1,N
* aD(x(N � K),u(N�K))ð Þ

o
: (16:108)

This is the desired recursive equation of DP problems. The derivation of the
recurrence equation has also revealed another important concept of the
imbedding principle. That is, the optimum policy and the minimum cost
possible for a K-stage process are contained in the results for an N-stage
process, provided N � K.

Now,DP using discrete form is ideally for digital programming. An alternate
method for solving the DP is by nonlinear partial differential equation defined
from the Hamilton–Jacobi–Bellman (H–J–B) equation, which is presented in
this chapter. Again, we are trying to define the control problem in the form

_x(t) ¼ a x(t),u(t), tð Þ: (16:109)

This is to be controlled to minimize its performance measure given by the
Hamilton–Jacobi index denoted by

J ¼ h x(tf), tfð Þ þ
ðtf
t0

g x(t),u(t), tð Þdt: (16:110)

Momoh/Electric Power System Applications of Optimization 65886_C016 Final Proof page 560 20.11.2008 4:14pm Compositor Name: BMani

560 Electric Power System Applications of Optimization



The h- and g-functions are specified; t0 and tf are fixed; and t is the dummy
variable of integration.

Now let us use the imbedding principle to include this problem in a more
general sense by considering the performance measure given by

J x(t), t, u(t)
t0�t�tf

� �
¼ h x(tf), tfð Þ þ

ðtf
t0

g x(t),u(t), tð Þdt, (16:111)

where t � tf, and x(t) can be any admissible state value. u*(t) will be the
optimal control listing in specified interval with t0 � t � tf of the trajectory.

Let us now attempt to determine the controls that minimize Equation
16.111 for all admissible x(t), and for all t � tf. The minimum cost-to-go
function is therefore

J* x(t), tð Þ ¼ Min
u(t)

t0�t�tf

ðtf
t0

g x(t),u(t), tð Þdt þ h x(tf), tfð Þ
8<
:

9=
;: (16:112)

Subdivision of the interval yields

J* x(t), tð Þ ¼ Min
u(t)

t0�t�tf

ðtþDt

t0

gdt þ
ðtf

tþDt

gdt þ h x(tf), tfð Þ
)
:

8<
: (16:113)

The principle of optimality now requires

J* x(t), tð Þ ¼ Min
u(t)

t0�t�tþDt

ðtþDt

t0

gdt þ J* x(tþ Dt), tþ Dtð Þ
8<
:

9=
;, (16:114)

where J* x(tþ Dt), tþ Dtð Þ is the minimum cost of the process for the time
interval tþD t� t� tf with the initial state x(tþDt). Equation 16.114 yields
the trace toward the final optimum for u*(t).

By assuming existence of continuity and existence of the second partial
derivatives of J* x(tþ Dt), tþ Dtð Þ that are bounded, the Taylor series expan-
sion of J* in the neighborhood of x(t), tð Þ gives

J* x(t), tð Þ ¼ Min
u(t)

t0�t�tþDt

ðtþDt

t0

gdt þ J* (x), tð Þ þ @

@t
J* (x), tð Þ

� �
Dt

8<
:

þ @

@t
J* (x), tð Þ

� �T
(x(tþ Dt), tþ Dt)½ �

þO2(Dt) higher order terms

)
: (16:115)
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Note that O2(Dt) denotes the terms containing Dt½ �2 and higher orders of Dt
that are present in the approximation of the integral and its associated Taylor
series truncation. For small perturbations in Dt, we develop

J* x(t), tð Þ ¼Min
u(t)

fg(x(t),u(t), t)Dtþ J* (x), tð Þ

þ Jt* (x), tð ÞDtþ Jx*T x(t), tð Þ a(x(t),u(t), t½ �Dt
þO2(Dt) terms: (16:116)

By eliminating the J* terms that are independent on u(t) in the optimization
process, and taking the derivative with respect to time in the limit as Dt ! 0,
we obtain

0 ¼ Min
u(t)

g x(t), u(t), tð Þ þ Jx*T x(t), tð Þ a x(t), u(t), tð Þ½ �� 	
: (16:117)

To set the boundary value for the Equation 16.117, we set t¼ tf. Also, from
Equation 16.112, we deduce that

J* x(tf), tfð Þ ¼ h x(tf), tfð Þ: (16:118)

We now define the Hamiltonian H as

H x(t),u(t), Jx*(t)ð Þ¼D g x(t),u(t), tð Þ þ Jx*T x(t), tð Þ a x(t),u(t), tð Þ½ � (16:119)

and

H x(t),u*(x(t), Jx* , t), Jx* , tð Þ ¼ Min
u(t)

H x(t),u(t)Jx* , tð Þ: (16:120)

Here, the minimizing control is a function of x(t), Jx*, and t. These definitions
converge to the Hamilton–Jacobi equation, which is stated as

0 ¼ Jx*(x(t), t)þH x(t),u*(x(t), Jx* , t), Jx* , tð Þ (16:121)

This Hamilton–Jacobi equation is similar to the Bellman’s recurrence equa-
tion shown earlier. As such, it is formally referred to as the H–J–B equation.

16.3.3 Relationship between Dynamic Programming and the Minimum
Principle

Given the control problem in the form

_x(t) ¼ a x(t),u(t), tð Þ, (16:122)
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we have found the performance measure denoted by

J ¼ h x(tf), tfð Þ þ
ðtf
t0

g x(t),u(t), tð Þdt, (16:123)

which when minimized provides us information on the optimum control and
state vectors, u*(t) and x*(t) from their respective admissible spaces. In other
words, the goal of finding u* 2U is to force the system to behave in an ideal or
almost ideal manner such that the performance measure is minimized.

In DP, we show that the H–J–B equation derivation resulted in

0 ¼ Jx* x(t), tð Þ þMin
u(t)

H x(t),u(t), Jx* , tð Þ: (16:124)

That is

0 ¼ Jx* x(t), tð Þ þMin
u(t)

g x(t),u(t), tð Þ þ Jx*T x(t), tð Þ a x(t),u(t), tð Þ½ �� 	
: (16:125)

Also, Equation 16.125 must satisfy the trajectory of J*(x(t), t) with Taylor
series assumptions and approximation on Jx* and Jt*.

If x*(t), tð Þ is a particular point in the state-time space, the H–J–B corre-
sponding to this point satisfying the relationship is

g x*(t),u*(t), tð Þ þ Jx*T x*(t), tð Þ a x*(t),u*(t), tð Þ½ �
¼ Min

u(t)
g x*(t),u(t), tð Þ þ Jx*T x*(t), tð Þ a x*(t),u(t), tð Þ½ �� 	

(16:126)

for all t0 � t � tf, this gives the point x*(t), tð Þ such that

0 ¼ Jx*T x*(t), tð Þ þ g x*(t),u*(t), tð Þ þ Jx*T x*(t), tð Þ a x*(t),u*(t), tð Þ½ �: (16:127)

For this first-order equation, given that if tf is fixed and x(tf) is free, the
boundary conditions that holds true is

J* x*(tf), tfð Þ ¼ h x*(tf), tfð Þ: (16:128)

Also, in the Pontryagin minimum principle applied to the optimal control
problem stated by Equation 16.122, we find that

@

@t
x*(t)ð Þ ¼ _x*(t) ¼ @

@p
H x*(t),u*(t),p*(t), tð Þ (16:129)

@

@t
p*(t) ¼ _p*(t) ¼ � @

@p
H x*(t),u*(t),p*(t), tð Þ (16:130)

H x*(t),u*(t),p*(t), tð Þ � H x*(t),u(t),p*(t), tð Þ (16:131)
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for the set of admissible controls, i.e., 8u*2U and for t0 � t � tf, are the
necessary optimality conditions for u* to be an optimal control and x* to be
the corresponding optimal trajectory. The resulting boundary conditions for
the first-order state-costate differential equations of the Pontryagin minimum
principle are therefore

x*(t0) ¼ x0 (16:132)

and

p*(tf) ¼ @

@x
h x*(tf), tfð Þ: (16:133)

By applying the definition of the Hamiltonian, we get

H x(t),u(t),p(t), (t)ð Þ¼D g x(t),u(t), tð Þ þ pT(t) a x(t),u(t), tð Þ½ �: (16:134)

By applying the Pontryagin minimum principle of Equations 16.129 and
16.130, we get

_x(t) ¼ a(x*(t),u*(t), t) (16:135)

_p*(t) ¼ � @

@x

�
a(x*(t),u*(t), tÞ

�T
p*(t)� @

@x
g(x*(t),u*(t), t)ð Þ

� �
: (16:136)

Also, Equation 16.131 implies that

H(x*(t),u*(t), t) ¼ Min
u(t)

H(x*(t),u(t),p*(t), t) (16:137)

or

g x*(t),u*(t),p*(t), tð Þ þ p*T(t) a x*(t),u*(t), tð Þ½ �
¼ Min

u(t)
g x*(t),u(t), tð Þ þ p*T(t) a x*(t),u(t), tð Þ½ �� 	

: (16:138)

Comparing Equations 16.136 and 16.138, we note that both equations are
identical and in fact,

Jx*(x*(t), t) ¼ x*(t): (16:139)

Furthermore, this conclusion is consistent with the fact that the equations of
the Pontryagin minimum principle can be derived from the H–J–B’s func-
tional equations. The derivation is left to the reader.
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Additionally, it is worthy to note that, since Jt*(x(t), t) does not depend on u
(t), Equation 16.126 can be written as

0 ¼ Min
u(t)

Jt*(x*(t), t)þ g(x*(t),u(t), t)þ Jx*T(x*(t), t) a(x*(t),u(t), t)½ �� 	
: (16:140)

Overall, given the values of the optimal state x*(t), the control u*(t) minimizes
the RHS of Equation 16.140, and the minimum value is zero.

16.3.4 Section Summary

In summary, we have considered a typical nonlinear system that is charac-
terized by a minimizing cost function. The solution requires numerical
approach to solve its performance measures, several of which have been
described in this chapter. The application of both functional optimization
and the H–J–B equation requires setting up the necessary conditions for
optimality and the boundary conditions [14].

The Euler–Lagrange equation has also been applied and has applications
for off-line computations in iterative or recursive computations.

In optimal control, at the onset of starting the trajectory that seeks to filter
admissible points that do not improve the performance measure, the best
control is approximated. Successive iteration improves the solution until the
search is exhausted.

Notably, the class of problem that has been addressed so far has depend-
ency on time. Least-square estimation or minimization of the PI is possible
provided that there are no stochastic behavior or predictivity requirements
within the system. For real-time applications and practical systems, this need
is important. The next sections of this chapter extend on the principles of DP
and optimal control to include adaptive dynamic critics (ADC). Here, the
optimization method has the goal to minimize the expected value of the cost
function with respect to the control vectors, state variables, system perform-
ance, and the penalties in the presence of probabilistic disturbances and
uncertainties.

The foundation of ADC is in the H–J–B equation, which forms a basis for
real-time approximate optimal control in dynamic environments [1–4].

16.4 Adaptive Critics Design (ACD) and ADP

16.4.1 Background to Complex Intelligent Networks

ADCare neural network (NN) designs capable of optimization over time under
conditions of noise and uncertainties. This family of adaptive critics lends itself
to other exiting NNs-based techniques for control and optimization [8,9,11].
This NN adapt to the various functions of complex, nonlinear systems.
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As family of ACDs was proposed by Werbos as a new optimized
technique combining the concepts of reinforcement learning and approxi-
mate DP [12,13].

For a series of control actions in time sequences requiring an optimal control
law, the entire method determines the adaptive control law adequately based
on performancemeasures that adapts to the system state in time. The adaptive
critic method delivers the optimal control laws for a system by successively
adapting two artificial neural networks (ANNs). These are

1. Action NN that dispenses the control signals.

2. Critic NN that learns the desired PI for some functions associated
with the PI. It gives or provides refinement of the action network.

Both networks have no knowledge of the optimization trajectory but has
the ability to learn and tune the control decisions toward the known
desired goal functions of the overall system. Also, these two NNs approxi-
mate H–J–B’s equation associated with optimal control theory.

In distinguishing the features among ADP and optimal control, optimal
policies, laws, and value functions are designed and modeled as preceptor
structures (NN computations) whose steps are improved over time by solv-
ing recursive relationships of DP where the final time, system dynamics, and
trajectory leading to ADP converge to the optimal values [9].

The adaptation process starts with a nonoptimal, arbitrarily chosen value
of the control set in time by the action network. Whereas the critic network
guides the action network toward the optimal solution, at each successive
adaptation, it is desired that neither of the networks needs to know or has
any information of an optimal trajectory. Rather, only the desired costs need
to be known.

Furthermore, these integrated networks determine the optimal control
policy for the entire range of initial conditions without external training (as
discussed in the chapter and sections on DP). We claim that DP provides a
search which tracks backward from the initial step to the final step relating
the suboptimal paths. This curse of dimensionality hurts DP because of the
excessive computation of burden.

In contrast, in supervised learning, an ANN training algorithm uses a
desired output which is compared to the actual output and determines the
error term to be used to allow the network, typically back propagation (BP)
algorithms, to learn. This error term is determined by using it sensitivity with
respect to various parameter changes or input to the network. The use of BP
algorithms is linked to reinforcement learning via the critic network to attain
desirable attributes.

The use of the critic network removed the task of learning from the action
network by simplifying a new criteria call the ‘‘cost-to-go’’ or ‘‘strategic
utility’’ function. This corresponds to the function J of Bellman’s equations
in DP. The critic network therefore allows us to develop one-to-one relation-
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ship with DP. Hence, we will also review this mapping with the essential
characteristic of DP, namely:

1. Epochs.

2. States that may be finite states or partially observed states as in
partially observable Markov decision processes (POMDP) with con-
tinuous state variables [2,4] or nondeterministic state variables.

3. Actions may have probabilistic rules associated with them.

4. Rewards may have probabilistic roles as well.

5. Disturbances may be nondeterministic.

With the following definition of nomenclature x(t) where x(t)2X state valued
variables that are often times probabilistic at the discretized time instance t,
comparable to s modeled in a Markov decision process frequently used in
reinforcement learning.

The control action is given by u(t), comparable to a in a Markov decision
process environment; and r(t) is the binary reinforcement signal provided by
the external environment.

The reward-to-go with discount factor g is now given as

R(t) ¼ r(tþ 1)þ gr(tþ 2)þ g2r(tþ 3)þ � � � ¼
X1
k¼1

gk�1r(tþ k): (16:141)

This is the reward-to-go, cost-to-go, or value function. In reinforcement
leaning, R(t) or an approximation of R(t) is usually represented as V(t),
Q0(t), or J(t). In this chapter, we shall adopt that J(t) is the approximate
value of R(t), a natural extension of optimal control notations.

16.4.2 From DP to Adaptive or ‘‘Approximate’’ Dynamic
Programming (ADP)

ADP is a computational intelligence technique that incorporates time
dependency of deterministic or stochastic data and under conditions of
noise and uncertainty for future optimal control decision-making. Also called
‘‘reinforcement learning,’’ ‘‘adaptive critics,’’ ‘‘neural-dynamic program-
ming,’’ and ‘‘approximate DP’’. ADP considers the optimization over time
by using learning approximation to handle problems that severally challenge
conventional methods due to their very large scale and lack of sufficient prior
knowledge. ADP overcomes the ‘‘curse’’ of dimensionality in DP. Tradition-
ally, there is only one exact and efficient way to solve problems in optimiza-
tion over time, in general case where noise and nonlinearity are present: DP.

ADP determines optimal control laws for a system by successively adapt-
ing two NNs: one is action network (which dispenses the control signals) and
the other is critic network (which learns the desired PI for some function
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associated with the PI). ADP is designed to maximize the expected value of
the sum of future utility over all future time periods:

Maximize
X1
k¼0

(1þ r)�kU(tþ k): (16:142)

Figure 16.1 shows the general associations of the critic network, action
network, and the plant under control. Here, x(t) is the system state, u(t) is
the action, J(t) is the secondary or strategic utility function.

In DP, the user supplies both a utility function—the function to be maxi-
mized—and a stochastic model of the external plant or environment.
However, the ADP design attempts to approximate DP in the general
case. The cost of running true DP is proportional to the number of possible
states in the plant or environment; that number, in turn, grows exponentially
with the number of variables in the environment. Therefore, approximate
methods are needed even with many small-scale problems. ADP is defined
more precisely as designs that include a critic network—a network whose
output is an approximation of the J-function, or to its derivatives, or
to something very closely related to these two, the action network in an
adaptive critic system is adapted so as to maximize J in the near-term future.
To maximize future utility subject to constraints, you can simply train the
action network to obey those constraints when maximizing J; the validity of
DP itself is not affected by such constrains.

DP is used to solve for another function, J, which serves as a secondary or
strategic utility function. The key theorem is that any strategy of action that
maximizes J in the short term will also maximize the sum of U over all future
times. J is a function of R(t), where R(t) is complete state description of the
plant to be controlled at time t and u(t) are the vector of actions. DP converts

Critic network 

Dynamic model
of system

Action network 

x(t)

J(t)

Derivatives calculated by
back-propagation

u(t)

FIGURE 16.1
Action and critic networks in ADP.
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a problem in optimization over time into a ‘‘simple’’ problem in maximizing
J just one step ahead in time.

J(R(t)) ¼ Max
u(t)

(U(R(t), u(t)))þ hJ(R(tþ 1))i
1þ r

�U0, (16:143)

where r and U0 are constants that are needed only in infinite-time-horizon
problems (and then only sometimes), and where the angle brackets refer to
expectation value.

Adaptive critic designs may be defined as design that attempts to approxi-
mate DP in the general case. The cost of running true DP is proportional to
the number of possible states in the plant or environment; that number, in
turn, grows exponentially with the number of variables in the environment.
Therefore, approximate methods are needed even with many small-scale
problems. Adaptive critic designs are defined more precisely as designs
that include a critic network—a network whose output is an approximation
of the J-function, or to its derivatives, or to something very closely related to
these two, the action network in an adaptive critic system is adapted so as to
maximize J in the near-term future.

To maximize future utility subject to constraints, you can simply train the
action network to obey those constraints when maximizing J; the validity of
DP itself is not affected by such constraints.

16.4.3 Critic Network Variants

Different types of critic networks were developed over the years. The pri-
mary work of Werbos provides the variants of the family of critics, which
leads to the approximation of the J-function. They are briefly explained here
with their respective design architectures and these critic designs are based
on foundations of DP.

There are three ADP families—heuristic dynamic programming (HDP),
dual heuristic programming (DHP), and globalized dual heuristic program-
ming (GDHP). Each kind of DP method has its own advantages and disad-
vantages described in [9,12].

Briefly, the variants include:

1. HDP, which adapts a critic network whose output is an approxima-
tion of J(R(t)).

2. DHP, which adapts a critic network whose outputs represent the
derivatives of J(R(t)).

3. GDHP, which adapts a critic network whose output is an approxi-
mation of J(R(t)), but adapts it so as to minimize errors in the implied
derivatives of J. GDHP tries to combine the best of HDP and DHP.
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In general, DHP is advantageous over HDP as it builds derivative terms over
time directly and reduces the probability of error introduced by BP. How-
ever, DHP is more difficult to implement than HDP because of the additional
computations needed to solve the derivatives of J-function and its complexity
increases as the size of the problem grows bigger. The third method, GDHP,
combines HDP and DHP. It is more accurate but involves increased com-
plexity than both HDP and DHP.

Also, HDP intends to break down, through very slow learning, as the size
of a problem grows larger. However, DHP is more difficult to implement.
The three methods listed above all yield action-independent critics, there are
also ways to adapt a critic network that inputs R(t) and u(t) to produce
action-dependent heuristic dynamic programming (ADHDP) and action-
dependent dual heuristic programming (ADDHP).

DHP
DHP is based on differentiating the Bellman equation. Before performing the
differentiation, we have to decide how to handle u(t). One way is simply to
define the function u(R(t)) as that function of Rwhich, for every R, maximizes
the right-hand side of the Bellman equation. With that definition (for the case
r¼ 0), the Bellman equation becomes:

J(R(t)) ¼ U(R(t), u(t))þ hJ(R(tþ 1))i �U0, (16:144)

where we must also consider how R(tþ 1) depends on R(t) and u(R(t)).
Differentiating, and applying the chain rule, we get

li(R(t))¼ @J(R(t))
@Ri(t)

¼ @

@Ri(t)
U(R(t),u(R(t)))þ @J(R(tþ 1))

@Ri(t)


 �

¼ @J(R(t),u(t))
@Ri(t)

þ
X
j

@U(R,u)
@uj

� @ujR(t)
@Ri(t)

þ
X
j

@J(R(tþ 1))
@Ri(tþ 1)

� @Rj(tþ 1)
@Ri(t)


 �

þ
X
j,k

@J(R(tþ 1)
@Rj(tþ 1)

� @Rj(tþ 1)
@uk(t)

� @uk(t)
@Rj(t)


 �
(16:145)

For DHP, the RHS of the function is evaluated by including the full model of
the plant dynamics. It used models for both critic and controller training, for
example, (@Xj(tþ 1)=@Xi(t)) and (@Xj(tþ 1)=@Ui(t)).

HDP
HDP is a procedure for adapting a network or function, J(R(t), W), which
attempts to approximate the function, J(R(t)). From the ADP network using
HDP, a variation of the J-function is given by

J(R(t)) ¼ Max
u(t)

(U(R(t), u(t)))þ hJ(R(tþ 1))i
1þ r

�U0(R(t0), u(t0)): (16:146)

Momoh/Electric Power System Applications of Optimization 65886_C016 Final Proof page 570 20.11.2008 4:14pm Compositor Name: BMani

570 Electric Power System Applications of Optimization



For simplicity, we will assume problems such that we can assume U0¼ 0.
HDP is a procedure for adapting a network or function.

Furthermore,

@J(R(t))
@Ri(t)

¼ @

@Ri(t)
U(R(t), u(R(t)))þ @J(R(tþ 1))

@Ri(t)


 �
: (16:147)

Here, the derivative of optimize J-functions with respect to input R is
obtained via BP through the critic network and this gives rise to the compu-
tation of value functions. This critic estimates J(R(t)) based directly on the
plant states X(t). Since these data are available directly from the plant, critic
training does not need a plant model for its calculations.

GDHP
In GDHP, this critic approximates both the J-function and its derivatives. The
state variables are input and the output are both J(t) and Jx(t). The GDHP
therefore models both critic and controller training.

ADHDP or ‘‘Q-learning’’
The critic training is the same as for HDP. This is however easier since the
control variables are input to the critic network. The derivatives of the
J-function with respect to the control are terms @X(t)=@U(t) obtained directly
from BP through the critic network. The ADHP critic does not use the plant
models in the training process.

Furthermore, if we defined a new quantity:

J0(R(t), u(t)) ¼ U(R(t), u(t))þ hJ(R(tþ 1))i
1þ r

: (16:148)

By substituting Equations 6.143 and 6.147, we may derive a recurrence
rule for J0

J0(R(t), u(t)) ¼ U(R(t), u(t))þMax
u(tþ1)

hJ0(R(tþ 1), u(tþ 1))i
1þ r

: (16:149)

ADHDP adapts a critic network, J0(R(t), u(t),W), which attempts to approxi-
mate J0 as defined in Equation 6.148.

ADDHP
The ADDHP uses both states and control variables as inputs and output of
the gradient of the J-function with respect to the state and control variables.

That is

@J(t)
@Xi(t)

and
@Xj(t)
@Ui(t)

:
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It uses a plant model for critic training but not for controller training. The
method uses DHP critic training process, but gets its derivative model from
the controller training (obtained directly from the critic output).

ADGDHP
This critic has used both states and control variables as inputs, and they
output both the values of the J-function and its gradient with respect to the
state and control variables. As with the GDHP, critic training utilizes both the
HDP and DHP recursions, and controller training as in ADDHP. Therefore,
ADGDHP features a model from critic training but not for controller training.

Table 16.1 shows the summary of the critic=controller training needs of the
six adaptive critics and Table 16.2 shows a summary of the different features
of the three main variants of ACD discussed.

TABLE 16.1

Summary of Critic and Controller Training for ACDs

Model Needed for Training

ACD Variants or Structures Critic Controller

HDP �
ADHDP

DHP � �
ADDHP �
GHDP � �
ADGHDP �

TABLE 16.2

Summary of the Salient Features of ADP Variants

ADP
Method J-Function Advantage Disadvantage

HDP Critic network whose output is an
approximation of J-function:

J(R(t)) ¼ Max
u(t)

{U(R(t), u(t))}

þ hJ(R(tþ 1))i
1þ r

Easy to formulate The size of a
problem grows
bigger

DHP Adapts a critic network whose outputs
represent the derivatives of J-function:

J(R(t)) ¼ U(R(t), u(t))

þ hJ(R(tþ 1))i �U0

Since DHP builds
derivative terms
over time directly,
it reduces the
probability of error
introduced by BP

More difficult to
implement
because of
derivatives of J

ADHDP J0(R(t), u(t)) ¼ U(R(t), u(t))

þMax
u(tþ1)

hJ0(R(tþ 1), u(tþ 1))i
1þ r

Combine HDP and
DHP, and add new
input to the system

Difficult to form
the model
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16.5 Architecture of ACDs

Implementation of ADP for online purposes is of best value to the indus-
try [12]. The goal of direct ADP or neural dynamic programming is to
optimize a given performance measure by learning to choose appropriate
control actions through interactions with the environment. Learning is per-
formed without an explicit model of the system or plant under control.
Instead, information relating to the system is captured directly by both the
action and critic networks through learning.

Figure 16.2 shows the typical representation of direct neural dynamic
programming. The solid lines denote system information flow, while the
dashed lines represent error back-propagation paths to reduce the squared
Bellman error.

The structure includes two networks, action and critic, as building blocks.
The critic network is trained toward optimizing a total reward-to-go object-
ive, namely to balance the Bellman equation. The action network is trained
such that the critic output approaches an ultimate objective of success, R*(t).
A fractional convergence sequence as a sufficiency condition is generally
required of the learning structure such that the ultimate performance of R
can be derived.

Also, during the learning process, the action network is constrained by the
critic to generate controls that optimize the future reward-to-go instead of only
temporarily optimal solutions. In contrast to usual supervised NN learning
applications, there are no readily available training sets of input–output pairs
used for approximating the overall objective function R(t) in terms of a least
squares fit. Instead, both the control action U and the critic output J are
updated according to an error function that changes from one time step to
the next. In the online learning control implementation, the controller is naïve
when it starts to control. This is because, initially, both the action and critic
networks possess random weights=parameters. Once a system state is
observed, an action will be subsequently produced based on the parameters
in the action network. A better control under the specific system state should

Action
network

Critic
network

–

–

–

+
+

a

+
R*

System

X(t)
X(t) J(t)

J(t – 1)

r(t)

u(t)

FIGURE 16.2
A typical representation of direct neural dynamic programming.
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result in a reduced Bellman’s error. This set of system operations will be
reinforced through memory or association between states and control output
in the action network. Otherwise, the control will be adjusted through tuning
the weights in the action network to minimize the Bellman error.

16.5.1 Critic Networks

The overall goal is to minimize Bellman’s error by adaptation of weights.
The critic network is used to provide an output, which is an approximation of
R(t), the total future rewards-to-go or ‘‘cost-to-go.’’

The cost (or reward) function R(t) at time t is given by

R(t) ¼ r(tþ 1)þ gr(tþ 2)þ g2r(tþ 3)þ � � � (16:150)

¼
X1
k¼1

gkþ1r(tþ k), (16:151)

where g is the discount factor.
The reward-to-go is

R(t) ’ J(t) ¼ V(t) or Q(t): (16:152)

So, from the prediction of errors from Bellman’s error we get:

eC(t) ¼ gJ(t)� J(t� 1)� r(t)½ � ¼ r(t)þ gJ(t)½ � � J(t� 1) (16:153)

and hence the objective function to minimize the critic network using a
minimum square error function is given by

Min EC(t) ¼ 1
2
e2C(t) ¼

1
2
eTCReC: (16:154)

Learning in critic requires selection of weights that are updated recursively.
The standard formulation to obtain wC(t) involves

wC(tþ 1) ¼ wC(t)þ DwC(t) (16:155)

and

DwC(t) ¼ lCeC � @eC(t)
@wC(t)

� �
, (16:156)

where lC is the learning rate of the critic network and

@EC(t)
@wC(t)

¼ @EC(t)
@J(t)

� @J(t)
@wC(t)

: (16:157)

The algorithm for the critics network is given below.
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16.5.2 Action Networks

The principle in adapting the action network is to propagate error between
the ultimate performance objective denoted by R* or its approximate
J-function from the critic network. Since rs is the successful reinforcement
signal to obtain R* using rs(1�a)�1 in ADP, an action network of linear or
nonlinear systems, x(t) is used as input to create controls u(t).

The weight update in the action network (epochs) can be formulated using
a minimum error calculation that is updated via successive training of the
associated weighting coefficients.

The error of the action network is computed from the approximate
J-function and the output of the critic network as

eA(t) ¼ J(t)� R*(t): (16:158)

The goal of the action network is to optimize the a minimum square error
function given by

Min EA(t) ¼ 1
2
e2A(t) ¼

1
2
eTCReC: (16:159)

By training via dynamic action weights, the action network may be reported
by the function u(t)¼ f(x,wA) at the minimum error performance where we
introduce training weights wA(t) for the action network. The weights are
updated weights by

wA(tþ 1) ¼ wA(t)þ DwA(t), (16:160)

where

DwA(t) ¼ lAeA � @eA(t)
@wA(t)

� �
(16:161)

with

@EA(t)
@wA(t)

¼ @EA(t)
@J(t)

� @J(t)
@wA(t)

: (16:162)

Here, lA is the nonzero learning rate of the action network that is decreased
over time to very small values.

Application: A selected algorithm for using HDP
We now summarize the procedure for estimating lambda using ADP concept
of the DHP method.
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Step 1: Obtain training=target data for the system and pretrain the action and
the critic networks. Obtain R(t), u(t), and R(tþ 1).

Step 2: Compute the error action and the critic networks

eA(t) ¼ u(t)� hu(t)i 16:163(a)

eC(t) ¼ J(t)� gJ(tþ 1)�U(t): 16:163(b)

Step 3: After the error is minimized, obtain action network output u(t) as a
function of R(t) and R(tþ 1) and compute u(tþ 1) using R(tþ 1).

Step 4: Input u(t), R(t), u(tþ 1), R(tþ 1) to the critic network and solve for
J(tþ 1).

Step 5: Compute the utility function given by

J(R(t))¼U(R(t), u(t))þhJ(R(tþ 1))i=(1þ r)�U0.

Step 6: Use the critic network to compute the derivatives of the J-function
given by

J(R(t)) ¼ Max
u(t)

(U(R(t), u(t)))þ h J(R(tþ 1))i
1þ r

: (16:164)

Step 7: Backpropagate and update the weights of the critic and action
network.

Update the weights of the critic and action networks, check the errors, and
terminate the algorithm as optimal results are found.

16.5.3 ACDs Comparative Studies

The distinguishing characteristics of each of the following main ACD are
described below.

HDP used a parametric structure call ‘‘Actor’’ to approximate the control
law. It predicts the trajectory toward an approximate value function. Not-
ably, the critic serves the role of reevaluation of the utility function and
provides the actor with a performance measure.

In DHP, the actor also approximates the control law. The critic mechanism
approximates the derivatives of the value function with respect to the input
training set. It is known to be faster than HDP in computational steps.

GHDP combines the advantages of both HDP and DHP characteristics.
The critic approximates both the value of the J-function and its derivatives.

The action-dependent versions of the approaches again referred to as
approximate value function that depends explicitly on the controls.
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16.5.4 Summary

An ADC construct of parametric structures, namely (i) the critic that approxi-
mates the value or cost-to-go-function, (ii) the actor that approximates the
control law and (iii) the function to be approximated are chosen.

An algorithm that updates them at every cycle or successive iteration can
be obtained from the policy improvement over time and the value determin-
ation operation so that we produce two sequences of functions that converge
to the optimal solution.

Utility functions and state variables: Users of ADC are concerned with two
main issues:

1. Deciding what to include in the X(t) state vector that represents the
input to the critic and to the controller. (Hint: Use your engineering
intuition and whatever rigorous knowledge is available to satisfy
yourself that the controller and the critic have sufficient data to
assume that at every point in the corresponding state space, there
will exist a unique action for the controller to take).

2. Clarifying the utility function is defined as U(t)¼kX(t)�X*(t)k.
Different relative weights are used to decide which component of
X(t) is included in the definition of U(t) to accomplish the targets.
For instance, a design objective that monitors the utility function
may be to reduce the distance to zero or to reduce the velocity
error to zero. The weighting factors are tuned to arrive optimally at
such goals without compromising the system performance by too
aggressively adjusting the participation of Xi(t) in U(t). The defin-
ition of U(t) generates some interesting linkages between ADP and
the HJB theory.

16.6 Typical Architectures of Variants or ADP
(Critics Illustrations)

HDP critic adaptation
HDP is a procedure for adapting a network or function, J(R(t), W). We have
utilized an approximate function, J(R(t)), which is a small perturbation of the
Bellman equation,

J(R(t)) ¼ Max
u(t)

(U(R(t), u(t))þ hJ(R(tþ 1))i
1þ r

: (16:165)
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This is the case where model-based ANN is used with supervised learning. It
is simply model-dependent design where the cost-to-go J-function after Dx̂(t)
has been estimated with three times delays (TDL) as

J(R(t)) ¼
X1
k¼0

g kU(R(tþ k)), (16:166a)

where g is the discount factor for finite horizon problem in the domain
0< g< 1.

U(t) is the utility function or local cost (to be discussed later) and x(t) is the
input vector to the critic network. The inputs to the two critic networks are
outputs from the model NNs, which are model based with appropriate
time-delay values. The critic network is trained forward in time for real-
time analysis=operation relevant to optimization over time for practical
applications.

Figure 16.3 shows the HDP critic NN design for adaptation and learning. As
before,U is the utility function of the local cost and R(t) is an input vector to the
critic network. The critic network NN is trained forward in time (multitime
steps ahead), which is an important asset for real-time operation. In this archi-
tecture, critic networks have the same inputs but delayed differently. This
allows us to compute their corresponding outputs J(t) and Ĵ(tþ 1). The second
critic estimates the Ĵ(t)-function or cost-to-go function at time tþ 1 by using a
model NN to get inputs one step ahead of the time sequence. Thus, this further
allows for the computation of Ĵ(tþ 1), the output of the critic NN at time t.

Critic
neural network

Target=
g J(Δ x(t +1)) + U(Δ x(t))

Critic
neural network

Error

Σ

Target
signal

U(Δx(t))J(Δ x(t +1))Δx(t +1)

Δx(t)

Δx(t)

Δx(t – 1)

Δx(t – 1)

Δx(t – 2)
+

–
J(Δx (t))

ˆˆ

ˆ

ˆ

ˆ

ˆ

ˆ  

ˆ

ˆ ˆ

 ˆ

FIGURE 16.3
HDP critic NN adaptation and learning.
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The critic network is then used to minimize the error over time by the
following performance error measure

k E1(t) k¼ 1
2

X
t

E2
C1(t), (16:166b)

where

EC1(t) ¼ J Dx̂(t)ð Þ � gĴ(x̂(tþ 1))�U Dx(t)ð Þ, (16:167)

where Dx(t) is the change in x(t), a vector of the observables of the plant of
any available states present.

For critic adaptation, J Dx̂(tþ 1)ð Þ gives the trajectory and gĴ(x̂(tþ 1))
�U Dx(t)ð Þ assures the target or desired value Ĵ Dx̂(t)ð Þ is achieved.

For the action network, the goal is to optimize the a minimum square error
function given by

kE2(t)k ¼ 1
2

X
t

E2
A1(t), (16:168)

where

EA1(t) ¼ @J(t)
@A(t)

(16:169)

and

@J(t)
@A(t)

¼ @J(t)
@Dx̂(t)

� @Dx̂(t)
@A(t)

: (16:170)

The weight change in the action network DwA1(t) can therefore be written as

DwA1(t) / @E2(t)
@wA(t)

: (16:171)

This can be further expanded to get:

DwA1(t) ¼ �aEA1(t)
@EA1(t)
@wA1(t)

(16:172)

DwA1(t) ¼ �a
@J(t)
@A(t)

@

@wA1

@J(t)
@A(t)

� �
: (16:173)

Here, the learning rate alpha is positive and is required to decrease over time
to very small values.
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DHP critic NN adaptation
Figure 16.4 shows the overall HDP critic NN design for adaptation and
learning.

In the DHP scheme, application of the chain rule for derivatives yields

@J[DY(tþ 1)]
@DYi(t)

¼
Xn
i¼1

li(tþ 1)
@Yi(tþ 1)
@DYi(t)

þ
Xm
k¼1

Xn
i¼1

li(tþ 1)
@DYi(tþ 1)

@Ak(t)
@Ak(t)
@DYi(t)

,

(16:174)

where

li(tþ 1) ¼ @J[DY(tþ 1)]=@DYi(tþ 1): (16:175)

Also n and m are the numbers of outputs of the model and the action
NNs, respectively. The n components of the vector E(t) are subsequently
determined by

E(t) ¼ @J[DY(t)]
@DYi(t)

� g
@J[DY(tþ 1)]

@DYi(t)
� @U(t)
@DYi(t)

�
Xm
k¼1

@U(t)
@Ak(t)

@Ak(t)
@DYi(t)

: (16:176)

DHP action NN adaptation
Figure 16.5 shows the HDP action NN design for adaptation and learning. It
is used to propagate l(tþ 1) back through the model network to the action
network.
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+

=
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=
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ˆ
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FIGURE 16.4
DHP critic NN adaptation.
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The goal of the adaptation process can be expressed as

@U Dx(t)ð Þ
@A(t)

þ g
@J(Dx̂(t))
@A(t)

¼ 0: (16:177)

The error signal for the action network adaptation is given by

EA2(t) ¼ @U Dx(t)ð Þ
@A(t)

þ g
@ Ĵ(Dx̂(t))
@A(t)

: (16:178)

Also, the incremental changes for updating the weights are computed while
applying BP using

DwA2 ¼ �a
@U Dx(t)ð Þ

@A(t)
þ g

@ Ĵ(Dx̂(t))
@A(t)

" #T
@A(t)
@WA2

: (16:179)

Again, the alpha learning is positive and decreasing and wA2 are the weights
associated with the DHP action NN.

16.7 Applications of DSOPF to Power Systems Problems

In this section of the chapter, we show two solved examples of applications
of new optimization techniques to power systems research work listed in
Table 16.3 [3,5,6,7]. Two cases of ADP applications are now considered.
These are (i) unit commitment and (ii) optimal network reconfiguration.
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l (t +1)
∂A(t)

S

=

∂A(t)
∂U(t)

∂J(t +1)

∂J(t +1)
∂Dx(t +1)ˆ

Dx(t – 1)ˆ
Dx(t)ˆ

Dx(t +1)ˆ

EA2(t)Dx(t)

FIGURE 16.5
DHP action NN adaptation.
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Case 1: ADP for solving the power system unit commitment (UC) problem
The objective function of the UC problem can be formulated as the sum of
costs of all the units over time, and presented mathematically as [5,7]:

F ¼
XT
t¼1

XN
i¼1

ui(t)Fi(Ei(t))þ Si(t)½ �: (16:180)

The constraint models for the UC optimization problem are as follows.
System energy balance

0:5
XN
i¼1

ui(t)Pgi (t)þ ui(t� 1)Pgi (t� 1)
� � ¼ PD(t): (16:181)

Energy and power exchange

Ei(t) ¼ 0:5 Pgi (t)þ Pgi (t� 1)
� �

: (16:182)

System spinning reserve requirements

XN
i¼1

ui(t)Pgi (t) � PD(t)þ PR(t): (16:183)

Unit generation limits

Pmin
gi � Pgi (t) � Pmax

gi (16:184)

TABLE 16.3

Optimization Methods for Selected Power System Problems

Selected
Power
System
Challenges

Optimization Methods

DA
Optimal
Control

Risk
Assessment IS DP ADP AHP

Game
Theory

Classical
Methods
(LP, NLP,
IP, etc.)

Reliability n n n n

Fault analysis=3R’s n n n

Unit commitment n n n n n n n

DSOPF n n n n

Control coordination n n n n n n

Stability and DSA n n n n

State estimation n n n

3R’s, reconfiguration, restoration, and remedial control; DA, decision analysis; IS, intelligent
systems; DP, dynamic programming; ADP, adaptive dynamic programming; AHP, analytical
hierarchical processes; LP, linear programming; NLP, nonlinear programming; IP, interior point;
DSOPF, dynamic stochastic optimal power flow; DSA, dynamic security assessment.

Momoh/Electric Power System Applications of Optimization 65886_C016 Final Proof page 582 20.11.2008 4:15pm Compositor Name: BMani

582 Electric Power System Applications of Optimization



with t 2 {1,T} and i 2 {1,N} in all cases where

F is the total operation cost on the power system

Ei(t) is the energy output of the ith unit at hour t

Fi(Ei(t)) is the fuel cost of the ith unit at hour t

ui(t) is the ratio of generation output and capability

N is the total number of units in the power system

T is the total time under which UC is performed

Pgi(t) is the power output of the ith unit at hour t

Pgi
max is the maximum power output of the ith unit

Pgi
min is the minimum power output of the ith unit

Si(t) is the start-up cost of the ith unit at hour t

In the reserve constraints, there are various classifications for reserve and
these include units on spinning reserve and units on cold reserve under the
conditions of banked boiler or cold start.

Lagrange relaxation is being used regularly to solve UC problems. It is
much more beneficial for utilities with a large number of units since the
degree of suboptimality goes to zero as the number of units increases. It has
also the advantage of being easily modified to model characteristics of
specific utilities. It is relatively easy to add unit constraints. The main disad-
vantage of Lagrangian relaxation is its inherent suboptimality.

L(l,m, n) ¼
XT
t¼1

XN
i¼1

[Ci(Pgi (t))þ Si(xi(t))]

þ l(t) Pd(t)þ PR(t)�
X

Pgi

� 
þ m(t) Pmax

gi � Pgi

� 
, (16:185)

where l(t) and m(t) are the multipliers associated with the requirement
for time t.

Solution approach using ADP variant for the UC problem
ADP is able to optimize the system over time under conditions of noise and
uncertainty. If optimal operation samples are used to train the networks of
the ADP, the NN can learn how to commit or adapt the generators and
follow the operators’ patterns. When load is changed, it can change the
operation according to the load changing. Figure 16.6 shows the schematic
diagram for implementations of HDP.

The input of the action network is the states of generators and the action is
how to adjust the output of generators. The output J presents the cost-to-go
function and the task is to minimize the J-function.

In this diagram, the input is the state variable of the network, and it
is the cost of generation vector. It can be presented as X¼ [C(Pgi)]. And
the output is control variables of units, and it is the adjustment of unit
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generation, presented as: u¼ [DPg]. The utility function is local cost, so it is a
cost function about unit generation within any time interval. It can be pre-
sented as U¼ f(P,t).

After transposing the power system variables using the guidelines above,
the schema of implementation of HDP include the following computations.

The error of the critic network is

eC(t) ¼ gJ(t)� J(tþ 1)�U(t) (16:186)

and the updating weight using:

wC(tþ 1) ¼ wC(t)þ DwC(t) (16:187)

and

DwC(t) ¼ heC � @eC(t)
@wC(t)

� �
, (16:188)

where

@EC

@w(1)
Cij

¼ @EC

@eC
� @eC
@yCk

� @hCk
@h0Ck

�
@h0Cj
@w(1)

Cij

(16:189)

¼ geC � 1
2

1� h2Cj
� � �

� w(2)
Cj xi (16:190)

Action
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Critic
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X(t +1)
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J(t)

J(t +1)

U(t)

u(t)

u(t +1)

FIGURE 16.6
The scheme of implementation of HDP.
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@EC

@w(2)
Cjk

¼ @EC

@eC
� @eC
@yCk

� @yCk
@w(2)

Cjk

¼ geCyCk (16:191)

I is the number of elements in R vector

J is the number of hidden layer node

K is the number of output layer node

M is the number of elements in u (action) vector

h0C is the hidden layer input nodes

hC is the hidden layer output nodes

y0C is the output layer input nodes

yC is the output layer output nodes

w(1)
C is the weights between input and hidden layers

w(2)
C is the weights between hidden and output layers

x is the input layer nodes

The error of the action network is computed as

eA(t) ¼ J(t)�U(t) (16:192)

and the updating weight is

wA(tþ 1) ¼ wA(t)þ DwA(t) (16:193)

and

DwA(t) ¼ heA � @eA(t)
@wA(t)

� �
, (16:194)

where

@EA

@w(2)
Ajk

¼ @EA

@eA
� @eA
@Jk

� @Jk
@yAk

� @yAk
@y0Ak

� @y
0
Ak

@w(2)
Ajk

(16:195)

¼ geAhAj � 1
2

1� h2Aj
� � �

�
XJ

j¼1

w(2)
Cj

1
2

1� h2Cj
� 

w(1)
Cij

2
4

3
5 (16:196)

@EA

@w(1)
Aij

¼ @EA

@eA
� @eA
@Jk

� @Jk
@yAk

� @yAk
@y0Ak

� @y
0
Ak

@w(1)
Aij

(16:197)
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¼ geAw
(2)
Ajkxi �

1
2

1� h2Aj
� � �

� 1
2

1� y2Ak
� �� �

�
XJ

j¼1

w(2)
Cj

1
2

1� h2Cj
� 

w(1)
Cij

2
4

3
5: (16:198)

The structure of the NN in HDP is shown in Figure 16.7.
Also, the corresponding calculation steps are as follows:

Step 1: Use the sample data to pretrain the action network. The error is the
difference between the output and the real value.

Step 2: Use the sample data to train the critic network with the pretrained
and unchanged action network. Use Equations 16.171 through 16.176 to update
the weights. Then begin to apply the mature ADP network in the real work.

Step 3: Input the current state data X(t) to the action network.

Step 4: Get the output u(t) of the action network. Input u(t) to the system
function to get the state of next time X(tþ 1).

Step 5: Use the state of next time X(tþ 1) to get the action of next time
u(tþ 1).

Step 6: Input the action and state of different time u(t), X(t) and u(tþ 1),
X(tþ 1) to different critic network, respectively, and J-function for different
time J(t), J(tþ 1) are obtained.

Step 7: Backpropagate and update the weights of the critic and action
network using Equations 16.171 through 16.183. Then time t¼ tþ 1. Go
to step 3.

Control action
u(t)

R(t)

R(t)

J(t)

System
function

Action network Critic network

Weight wa Weight wc

FIGURE 16.7
The structure of the NN in HDP.
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Results of ADP computation for the UC problem
Figure 16.8 shows the load duration curve used for this small 5-bus
test system. There are three generators in the system and the network
parameters and cost function for this simple parameter in this example is
given in Ref. [5].

Figure 16.9 shows the control action impact on the J-function of output vs.
expected J-function [J]. The closeness of the line graphs indicates that the
ADP method generates correct results.

After training, the HDP can give the generation plan, which is very close to
the optimal plan. The HDP method can deal with the dynamic process of UC,
and easily to get a global optimal solution, which is difficult for classical
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FIGURE 16.8
Load curve of a 3-generator, 6-node system.
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FIGURE 16.9
Comparison of expected [J] vs. actual J.
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optimization methods. Figure 16.10 shows that generation schedule of three
generators system.

In Figure 16.11, X1, X2, and X3 present the output of the three generators
respectively, and [X1], [X2], and [X3] present the expected (or say, optimal)
output of the three generators, respectively.

UC problem is a large-scale, mixed-integer, and dynamic optimization
problem. The ADP method is employed for solving the UC problem over
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FIGURE 16.10
Generation schedule for the UC problem solved using ADP.
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FIGURE 16.11
Small-scale power system for reconfiguration problem.
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time and obtains the global optimization solution with the constraints in load
dynamics and topology changes.

Case 2: ADP for optimal network reconfiguration
Distribution networks are generally configured radially for effective and
noncomplicated protection schemes. Under normal operation conditions,
distribution feeders may be reconfigured to satisfy objectives of minimum
distribution line losses, optimum voltage profile and relieve the overloads in
the network. Power system reconfiguration problem has the objectives:

. Minimum distribution line losses

. Optimum voltage profile

. Relieve the overloads in the network

The minimum distribution line loss optimization problem of the reconfig-
ured distribution systems is formulated as follows:

Minimize
P

zbibj j (16:199)

s:t: [A] i ¼ I (16:200)

where
zb is the impedance of the branch
Ib is the complex current flow in the branch b
i is the m-vector of complex branch currents

A is the n�m network incidence matrix, whose entries are

¼ þ1 if branch b starts from the node p

¼ �1 if the branch b starts from the node b

¼ 0 if the branch is not connected to the node p

m is the total number of the branches
n is the total number of network nodes
I is the n-vector of complex nodal injection currents

The illustrative example problem is solved by using integer interior point
method presented in Ref. [5], here the ADP method for the 5-bus system
shown below in Figure 16.11 is utilized.

It involves the development of a framework of ADP which involves (a)
action network, (b) critic network, and (c) the plant model, as shown in
Figure 16.12 for network distribution reconfiguration.

The algorithm to solve this problem using ADP is presented in Figure
16.13.

In order to solve the optimal distribution reconfiguration problem by using
the ADP algorithm, we need to model and specify each part of the system
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structure shown in Figure 16.13. There are four major parts in the system
structure: action vectors, state vectors, immediate rewards, and the plant.
The system is tested with a 5-bus and a 32-bus system. We discuss the
different parts of the ADP implementation structure as follows.

Rewards (utility function) � Optimal reconfiguration involves selection of the
best set of branches to be opened, one from each loop, such that the
resulting radial distribution systems has the desired performance. Amongst
the several performance criteria considered for optimal network reconfigur-
ation, the one selected is the minimization of real power losses. Application
of the ADP to optimal reconfiguration of radial distribution systems is
linked to the choice of an immediate reward U, such that the iterative
value of J is minimized, while the minimization of total power losses is
satisfied over the whole planning period. Thus, we compute the immediate
reward as

U ¼ �Total losses (16:201)

Action vectors � If each control variable Ai is discretized in dui
levels (e.g.,

branches to be opened one at each loop of radial distribution systems), the
total number of action vectors affecting the load flow is

A ¼
Ym
i¼1

dui (16:202)

Here, m expresses the total number of control variables (e.g., total number of
branches to be switched out).

The control variables comprise the sets of branches to be opened, one from
each loop. From the network above, we can easily deduce from the simple
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FIGURE 16.12
ADP structure for the network reconfiguration problem.
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Start
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The number of input, hidden, and output nodes of
action and critic neural network
The original state vector R
The original weights of critic and action neural
network by random value

Calculate action vector A via
action neural network based on R

Calculate J via critic neural network based on R
and new action vector A

Calculate state vector R from distribution power flow
based on action vector u

Calculate new action vector u via
action neural network based on R

Calculate new J via critic neural network based on R
and new action vector A

Calculate reward U from distribution power flow

Update weights in critic neural
network

Update weights in action neural network

Stop

Summarize output results

Calculate new action vector u via
action neural network based on R

Convergence
criteria met?

Yes

No

Calculate critic neural network error
errorc = a J - Jpre + U

Calculate action neural network error
errorA = J - U0

 Jpre = J

FIGURE 16.13
Flowchart for ADP-based optimal reconfiguration strategy.
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system the entire set of action vectors that can maintain the radial structure of
the network. The combinations are

A1: {open switches 2, 3 close all other switches}
A2: {open switches 6, 3 close all other switches}
A3: {open switches 2, 5 close all other switches}
A4: {open switches 6, 5 close all other switches}
A5: {open switches 2, 4 close all other switches}
A6: {open switches 3, 4 close all other switches}
A7: {open switches 6, 4 close all other switches}
A8: {open switches 5, 4 close all other switches}
A9: {open switches 2, 7 close all other switches}
A10: {open switches 3, 7 close all other switches}
A11: {open switches 6, 7 close all other switches}
A12: {open switches 5, 7 close all other switches}

Results of ADP computation for the network reconfiguration problem
The purpose of the algorithm presented is to find the optimal switches
status combination, for the 5-bus case. The program was used to deter-
mine the optimal solution, which is action vector 15. In Figure 16.14, the
minimization of the losses as action vectors is shown for the optimal switching
sequence.
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FIGURE 16.14
Action vector performance during system training.
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After the initialization, the action network generates the first action vector
by random number, the action vector then inputs into the critic vector with
state variables. With the output of critic network J and immediate cost U, the
new error for action and critic network could be obtained. The weights in
those two networks then can be updated based on BP rules. After sufficient
iterations, the system will output the result. In our case, it is the optimal
action vector, which is the best switches status combination with the min-
imum losses.

Optimal training of the weights of ADP action vectors was obtained and
used to minimize the losses in the reconfigured network. We recommend
extending this study to large-scale aerospace power system while addressing
the multiobjective challenges of restoration, reconfiguration, and remedial
control.
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Index

A

Action-dependent dual heuristic
programming, 570–572

Action-dependent heuristic dynamic
programming, 570–572

Active power, definition of, 19
Active power generations, 401

cost minimization, 389
Adaptation process, goal of, 581
Adaptive critics design

architecture of
action network, 575–576
critic networks, 574
direct neural dynamic

programming, 573
characteristics of, 576
complex intelligent networks,

565–567
definition of, 569
neural network (NN) designs, 565
stochastic model, 568
users of, 577

Adaptive dynamic critics (ADC), 565
ADDHP, see Action-dependent dual

heuristic programming
ADHDP, see Action-dependent heuristic

dynamic programming
ADP, see Approximate dynamic

programming
Affine-scaling methods, 197, 200
AGC, see Automatic generation control
Analog-to-digital conversion, 369
ANNs, see Artificial neural

networks
Apparent power

equivalent definition of, 20
formula for, 19
sinusoidal waveforms, 18
three-phase systems, 26

Approximate dynamic
programming, 539

action and critic networks in, 568
action vector performance during

system training, 592

architectures of
DHP action NN adaptation,

580–581
DHP critic NN adaptation, 580
error minimization, 579
HDP critic adaptation, 577–578
HDP critic NN adaptation

and learning, 578
computational intelligence

technique, 567
critic network variants, 569–572
from DP, 567–569
dual heuristic programming

(DHP), 569
globalized dual heuristic

programming (GDHP), 569
heuristic dynamic programming

(HDP), 569
network reconfiguration problem,

computation for, 590, 592
and optimal control, features of, 566
optimal distribution reconfiguration

problem, 589
optimal reconfiguration strategy,

flowchart for, 591
types of

dual heuristic programming,
569–570

globalized dual heuristic
programming (GDHP),
569, 571

heuristic dynamic programming,
569–571

UC problem solving, generation
schedule for, 588

variants, features of, 572
Armature heating, 31
Artificial neural networks, 264,

511, 566
Augmented Lagrangian function,

417, 420
Automatic control systems, 274
Automatic differentiation

software, 416
Automatic generation control
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in multigenerator environment
active power, 34–35
behavior of PDi, 35
DPi, 36–37
swing equation, 35
synchronizing power

coefficients, 37
of two generating units

prime mover response, 39–40
steady-state change frequency, 38

Auxiliary function, 258
Available transfer capability

calculation, 53–54
definition and formulation, 52–53

Average power
entering any network, 19
formula for, 18

B

Back propagation (BP) algorithms, 566
Backward dynamic programming

approach, 494
Bang–bang control, 555
Barrier algorithm, 204–205, 252
Barrier-function methods, 204

algorithm for, 205
Barrier transformation, for linear

programs, 204
Bellman equation, 570
Bellman’s error, 574
Bellman’s optimality principle, 559
Binary decision variables, 162–163
Binary integer programming problems,

branch-and-bound technique
for, 164

bounding, 165–166
branching, 165
fathoming and optimality test, 166–167

Branch-and-bound algorithm, 304
Branch-and-bound technique, 164

bounding, 165–166
branching, 165

Busbars, interconnected by circuit
breakers, 40

Bus power, 66

C

Capacity benefit margin (CBM), 53
Circuit load, 447

Clean Air Act Amendments
(CAAAs), 402

important feature of, 403
Complex power, see Apparent power
Congestion costs, computing settlements

of, 453
Constrained functionals

optimization problems, 544
optimization, theorems of, 541–544

Constrained optimization
Lagrangian function, 417
quasi-Newton method, 418

Constrained problems, 118–119
nonpower systems application,

119–120
optimum for, 113
power systems application,

all-thermal system
incremental cost-loading, 120–122
transmission losses, 123–125

procedure for optimizing, 117–118
theorems on optimization of

continuity assumption, 115
Lagrange function for, 115
scalar function optimization

and, 114
theorems, 115–116

Contingency-constrained OPF
(CCOPF), 462

Contingency studies, 103
Conventional state estimation, 353
Cost-benefit analysis, 444
Covariance matrix, 379
Current balanced equation, 65
Cyclic coordinate method, 258

D

Dantzig–Wolf description method, 331
Darwinian fitness, 522
DC transmission system, 299
Decision variables

additivity and divisibility, 140
binary, 162–163
discrete, 137
integer, 167

Decision vector, 274
Decomposition algorithm, 338
Decomposition theorem, for monotonic

objective function, 274
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Direct neural dynamic programming,
typical representation of, 573

Discrete decision variables, binary
encoding, 514

Dispatch variables, 463
Distribution system, 2
DP, see Dynamic programming
DSOPF, applications of

action network, error of, 585
approximate dynamic programming

optimal network
reconfiguration, 589

UC problem solving, 588
corresponding calculation steps, 586
heuristic dynamic programming

implementation scheme, 584
NN structure of, 586

J-function, control action
impact on, 587

Lagrange relaxation, 583
load duration curve, 587
to power systems problems, 581
selected power system problems, 582
small-scale power system, 588

Dual affine algorithm, 202–203, 223
Dual constraints

key points, 462
primal constraints, prices of, 461

Duality gap
lower curve, 483–484
of relaxed problem, 483

Duality theory
multipliers l(t), 484, 485
nonconvex problems, 484

Dual LP problem
KKT conditions for, 159
solving, 155

Dual problem, Lagrangian
multipliers, 486

Dual variables, subgradient method
for setting, 305–313

Dynamic programming, 263
characteristics of, 266–267
computational economy in, 285
computational procedure in,

283–284
computational technique, 559
for converting final value problem

into initial value problem, 288
formulation of, 269

optimization, 539
for problems involving many

constraints, 285–287
Dynamic state estimators, 363

E

EAs, see Evolutionary algorithms
ECC, see Energy control centers
Economic dispatch program (EDP),

nonlinear optimization, 527
Economic theory

commodity prices, 441
of markets, 441
piecewise linear market model, 443

Eigenvalues, 555
Eigenvectors, 555
Electric circuit, sinusoidal steady-state

behavior of, 18
Electricity spot pricing, mathematical

considerations used for, 461
Electric power systems

applications, 179–180
basic elements of, 2
characteristics of, 1
classification of, 17
constrained problems,

all-thermal system
incremental cost-loading,

120–122
transmission losses, 123–125

control of
general objectives of, 5, 7, 14
involving array of devices, 7
short-circuit fault, 6
system failures, 7

equality and inequality constraints,
14–15

function of, 6
genetic applications in, 523
load behavior assessment of, 3–4
market efficiency, 441
modeling considerations,

generation subsystem
(see Generator bus model)

network elements of
components of, 4
modeling of, 4

online operation of, 10
optimization problems
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controllable parameters of
interests in analyzing, 12–13

specialized programming
techniques for, 16

time horizon of, 12
optimization techniques applicable to

LP and NLP based methods, 15
OPF tool, 13–14

properly designed and operated,
fundamental requirements
of, 6–8

security assessment of
emergency operating state, 10–11
normal steady-state operating

conditions, 9
occurrence of sudden

disturbance, 8
restorative operating states, 11

sinusoidal steady-state behavior
of, 18

subsystems and associated controls, 3
system behavior, 17
three-phase systems

(see Three-phase systems)
Electric utilities, security analysis, 9
Embedded costs, in MWM method, 447
EMSs, see Energy management systems
Energy control centers, 6, 351
Energy management systems, 352, 383
Environmental constraint, modeling

issues for, 402–403
Euler–Lagrange equation, 541
Evolutionary algorithms, 509
Evolutionary programming, 264
Excitation control, function of, 7
Expert systems (ES), 511
Extended Kuhn–Tucker (EKT)

conditions, 236
expression for, 238–239
testing of, 241

Extended quadratic programming
using the IP method
(EQIP), 211–213

F

Fast decoupled power flow (FDPF)
technique, 405

decoupling and final algorithm
for, 100

Jacobian matrix elements, 97
approximations for calculating,

99–100
off-diagonal elements of,

98–99
Feasible interior (FI) region, 197
Feasible solution, searching algorithm,

486, 487
First-order approximation, 237
FI sequence, 206–209

optimality condition, 209–211
Fixed-charge problem, 163
Fixed tap-setting transformer

in elements of YBUS matrix, 44
equivalent p�circuit of, 43
transformer ratio, 42

Flow state variables, 354
Forward dynamic programming

approach, 496
application of, 495
recursive equation, 494
states and strategies, 495
steps of, 496

Function f(x,y)
definition of, 271
discrete values, 162

Fuzzy constraint, 531

G

GAs, see Genetic algorithms
General reduced gradients, 420
Generating units, AGC of

prime mover response, 39–40
steady-state change frequency, 38

Generation bus, 64
with generation, load,

and outgoing lines, 66
Generation planning, 102
Generator bus model

P–V model, 69
slack bus, 70
swing machine, 71
upper field current limit,

69–70
Generator bus voltages, 401
Generator costs, floor and ceiling

constraints, 466
Generator field controller limits,

PF studies of, 70
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Generators
block diagram, 37
complex volt–ampere rating, 69–70
significant outputs of, 4–5

Genetic algorithms, 264
advantages of, 513
application of

control system engineering, 521
game playing, 522
job-shop scheduling, 521–522
market forecasting, 522
timetabling, 521

conventional methods, advantages
of, 514

crossover operation, 513
electric power systems, 521

chromosome repair, 531
coding, 530
crossover, 531
deterministic crowding approach,

selection, 530
GTS algorithm, implementation in,

525–527
neighborhood digging, 531
nonlinear optimization EDP, 527
steps of, 527–528
stopping criteria, 529–530
unit commitment problem

(UCP), 522–525
intelligent system (IS), classifications

of, 511
kinds of operations, 520
load shedding

coding, 533
fitness function, 533
generation, loss of, 531–532
genetic operators, 534
load curtailment, minimization

of, 532
optimization process, initial

population, 533
operators, 512–513
roulette wheel approaches, 516
schemata theorem

binary strings, 518
reproduction and crossover, 519
strings, subset of, 517

terminology in, 510
theory of

coding, 516

constraints, 514
continuous and discrete

variables, 514
crossover, 517
fitness function, 516
multiobjective decision

problems, 515
mutation, crucial role, 515
parameters, 517
selection operator, 516–517
stochastic errors, 515

UCP, flowchart of, 527, 528
Genetic computation

concepts of
evolutionary algorithms (EAs),

510–511
genetic programming, 511–512

definition of, 510
Genetic programming, simple structure

demonstrating operation, 512
Global optimization algorithms, 511
Governing system model

hydraulic turbine, 32–33
steam turbine, 33

Graphical method, LP problem solution
corner-point solution, 140
two-variable LP problem, 141–142

GRG, see General reduced gradients
G–S iterative technique

applied to PFEs
acceleration factor selection, 77
generator bus, 75–77
load buses, 74
slack buses, 75

flow chart for, 79–80
G–S algorithm, 73–74
line flow and line losses, 77–78

H

Hamiltonian, 548
definition of, 564

Hamilton–Jacobi–Bellman (H–J–B)
equation, 560

Hessian matrices, 243
computation of, 416

Heuristic dynamic programming
(HDP), 569

expected [J] vs. actual J, comparison
of, 587
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High-speed relays, 8
Hydraulic turbine model, in power

system dynamic analysis, 31–32
Hydrogen-cooled generator, reactive

capability curves of, 30
Hydrostorage capability, 469

I

Independent system operation
(ISO), 372

Integer problems (IP)
binary decision variables, 162–163
branch-and-bound technique for, 164

bounding, 165–166
branching, 165
fathoming and optimality test,

166–167
formulation, 162
solution tree diagram for, 167

Integer programming (IP), applications
of, 137

Interior point (IP) method
algorithms for, 210, 219
optimal power flow

formulation, 411–412
implementation flowchart,

413–414
problem solving, 415
quadratic form of, 414

variations of, 197

J

Jacobian-based coupled formulation, 405
Jacobian coordinate transformation, 466
Jacobian matrix, 419

decomposition of, 358
elements of, 97

definition of, 98
off-diagonal elements of, 98–99

K

Kalman filtering techniques, 363
Karmarkar’s algorithm, 199–200
Karush–Kuhn–Tucker application, 451
Karush–Kuhn–Tucker (KKT)

condition, 117
Kuhn–Tucker (K–T) conditions, 233

L

Lagrange functions, 235
formulation of, 544

Lagrange multipliers, 248
for constrained optimization

problems, 113, 116
Lagrange vectors, 242, 246
Lagrangian function, constrained

optimization, 417
Lagrangian relaxation, 303, 310

algorithm of solution using,
323–324

comparison with LP-based bounds,
317–318

concept of, 319
key steps of, 483–486
past applications of, 321–322

Large-scale systems, 335
Least square solution with minimum

norm (LSMN), 237
Linear function, 310
Linearized (DC) PF method, 100–102
Linearized network constraints

models, 405
Linear programming (LP) method, 197

applications of, 137, 233
assumptions in

additivity, divisibility,
and certainty, 140

proportionality, 139–140
extended IP method for, 205–206
notations commonly used in, 138
problems (see LP problem)
terminologies used in, 139

Line outage contingency study, 103
LMP, see Locational marginal price
Load behavior, assessment of power

systems, 3–4
Load bus, 64
Load circuit

average power in, 19
schematic representation of, 18

Load-flow bus specifications, 65
Load models

available transfer capability (see
Available transfer capability)

static
active power and reactive-power

component, 50
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frequency dependence of load
characteristics, 51

parameters of, 51
Load shedding, 384

actuation types, 532
Locational marginal price, 451

components of, 452–455
in energy markets

LP-based OPF, formulation
for, 456–457

NLP approximations, formulation
for, 455–456

supplying, costs of, 452
transmission congestion charges,

461–462
using DC OPF, computational steps

for, 457–460
Logarithmic barrier function, 198
Long-run marginal cost, 449
LP, see Linear programming (LP)

method
LP-based algorithm

basic steps, 404–405
definition of, 406
FDPF technique, 405
implementation, algorithmic steps

for, 407
iteration, variable selection,

406–407
linearized network constraints

models, 405
logarithmic barrier methods, 411
projective scaling algorithm, 410
solves OPF problems, 404
variable to enter basis, selection

of, 407–408
LP-based optimal power flow

algorithms, 137
basic steps of, 404–405

LP iteration, 406–407
LP model, 138
LP optimization methods, 15
LP problem

approaches to solve
graphical method,

140–142
matrix method, 142–144
revised simplex method,

150–153
simplex method, 144–149

duality and primal of, 153
constraints, 154–155
theorems, 155–156

general description of, 137
KKT conditions and

for dual LP problems, 158–160
for problems with equality

constraints, 156–158, 160–161
objective function, 139
sensitivity analysis for change in

coefficient aij, 170
cost coefficients cj, 169–170
duality in, 177–179
injection of new constraints

and new variables, 170
parameters, bi, 169

M

Marginal cost pricing
definitions of, 444
supply curve, 442
types of, 443–444

Marginal revenue (MR), market
conditions, 444–445

Markov decision process, 567
Mathematical optimization methods, 539
Matrix algebra, 216
Matrix approach, to LP problem

preparation for formulating problem,
142–143

standard form, 142
rules for converting practical

problem to, 143–144
Matrix inversion, 142

lemma of, 146–147
technique, 343

Mehrotra method, 198
Minimum-control-effort problems, 546
Mixed-integer problems (MIP)

binary decision variables, 162–163
formulation, 163
procedure to solve

branch-and-bound technique, 164,
166–167

LP relaxation, 163
Monotonic nondecreasing function,

271, 272
Monotonic objective function,

decomposition theorem for, 274
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Multigenerator environment, AGC in
active power, 34–35
behavior of PDi, 35
DPi, 36–37
swing equation, 35
synchronizing power coefficients, 37

Multistage decision process
representation of, 264–266
types of, 266

MW spinning-reserve constraints, 487
criterion, weak points of, 488
PE(t) selection, 488

N

Network real-time models, 372
Network topology, 353
Neural dynamic programming, 573
Newton–Raphson method, 365, 374
Newton’s numerical method,

applications of, 242
Nodal power balance constraints,

Lagrange multipliers of, 461
Nonlinear algebraic equations, 374
Nonlinear inequality constraints, 384
Nonlinear programming (NLP),

198, 233
barrier method for solving, 241–242
classification of

convex programming, 234
with nonlinear objective function

and linear constraints, 233–234
quadratic programming, 234
separable programming, 234–235

optimization methods, 15
procedure for solving, 236–237
sensitivity method for solving

variables of, 235–236
theorem associated with, 236

Nonserial multistage systems, 274
Normal equations (NE), 357–358
North American Power System

Interconnection Committee
(NAPSIC), 9

NPOP chromosomes, binary solution
matrix, 526

N–R method
applied to PFEs

in polar form, 91–97
in rectangular form, 84–87

flow chart for, 81–82
in n-dimensional case, error vector,

83–84
in scalar case

error estimation, 78, 80, 87–89
estimation of larger root of

quadratic equation, 81–83, 89
N-stage optimization problem, 272

O

Objective functions and constraints,
mathematical techniques
for analysis of, 13

Online contingency analysis, 351
ON=OFF decisions, 162
Open-shop scheduling problem, 522
OPF, see Optimal power flow
OPF formulation

linearization of, 463–465
pricing using duality in LP

dispatch adjustment, 462
LP dual construct, 465–467
objective function, 462–463
swing bus, 462

Optimal control problem, solving
continuous optimum principle,

548–549
formulation of, 549–551
minimum-control-effort problems,

546–548
minimum-time problems, 545
optimum principle, use of, 554–555
Pontryagin Maximum Principle

(PMP), 551
regulator problem, 556–557
Riccati equation, 558
sufficiency test, for optimum

principle, 552–553
terminal control problems, 546

Optimality, principle of, 267–269
Optimal power flow, 13, 198, 303, 451

active power loss minimization
basic approaches of, 389
cost minimization, 389
equality constraints, 392
graphical representation of, 389
inequality constraints, 393
modeling issues for, 390–391
objective functions, 391
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adding environmental constraints,
402–403

challenges of, 386
control variables, 384
demand settings, pricing

relationships for, 465
development of, 383
fuel cost minimization

cost minimization, constraints
for, 387–388

modeling issues, 386–387
objective function, 387

implementation flowchart,
by QP method, 423

interior point methods
primal-dual predictor–corrector

method, 411
projective scaling algorithm

for LP, 410
intermediate optimization

method, 385
linear programming

applications in, 408–410
problem solving techniques,

404–405
objectives and constraints, 385
static optimization method, 384
tool for, 384
VAr planning

algorithms for, 394
application of, 393
combining planning and optimal

objectives in, 396
cost curve for, 395
cost-effective planning, 394
equality constraints, 396–397
modeling issues for, 395
objective function, mathematical

description of, 396, 398–402
voltage constraints, pricing

relationships for, 466
Optimization techniques, non-linear

programming
augmented Lagrangian methods, 420
general reduced gradients (GRG),

420–422
nonlinear programming, 415

constraints, treatment of, 417–418
descent direction, finding, 416
step length, finding, 416–417

OPF algorithms, discussion on
adding security constraints,

427–428
decomposition strategies, 427
GRG method, 426

OPF formulation using QP reduced
gradient method, 422–425

projected augmented Lagrangian
method, 425–426

sequential quadratic programming
(SQP), 418–420

single-line diagram for, 429
Optimum principle, convergence of

control functions, determination
methods of

dynamic programming and
minimum principle, 562–565

dynamic programming
method, 559

Euler–Lagrange equation, 565
Pontryagin’s principle, 558
Richard Bellman’s method,

559–562
OSSP, see Open-shop scheduling

problem
OTC market, 445

P

Partial differentiation, 289
Penalty parameter, 246–247
Penalty vectors, 246–247
Perturbation in parameters, bi, 169

sensitivity analysis solution
technique for

algorithm for, 174–175
LP problem, 170–174

PF control
by transformer regulation

RT changes, 68–69
Ybus matrix, 67–68

PF equations (PFEs)
general form of, 66
techniques for obtaining solution

of, 72
G–S iterative technique

(see G–S iterative technique)
N–R method (see N–R method)

PF studies, see Power flow studies
Phase-shifter angles, 384
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Phase-shifter bus, procedure for
handling, 49

Phase-shifters
equivalent circuit of, 49
generalized model of, 48
tap and phase-shift limits, 40

Phase-shifting transformer
applications of, 45
diagonal element, 47
model, 46
phase-shifter admittance, 48
power-flow analysis, 49–50
turn ratio, 46

PMP, see Pontryagin maximum
principle

Polynomial model, 51
Polynomial time complexity, 200
Pontryagin maximum principle, 551
Pontryagin minimum principle,

563, 564
Pontryagin’s principle, 558
Postoptimal analysis in LP

duality in, 179–180
sensitivity methods for, 168

change in coefficient aij, 170
change in cost coefficients cj,

169–170
change in parameters, bi (see

Perturbation in parameters, bi)
injection of new constraints

and new variables, 170
Power delivery efficiency, research and

technology development, 441
Power generation systems, scheduling

in, 324–328
Power factor (PF), definition of, 19
Power flow limits, on transmission

lines, 463
Power flow studies

of buses, 64–65
fast-decoupled (see Fast decoupled

power flow (FDPF) technique)
generator field controller limits, 70
importance of, 63
in power system operations, 64
practical applications of

line outage contingency
study, 103

load-flow studies, 102, 103
system planning, 102–103

transformer model
rectangular and polar

formulation, 72
Ybus matrix and nodal current, 71

Power generation, active
and reactive, 384

Power systems; see also Electric power
systems

diagram, 431
management, 264
network, 383
valuation strategies, price theory

for, 441
Power transmission systems, 446
P–Q bus, see Load bus
Price volatility, forward and future

markets, 445
Pricing methods

load-flow based methods
alternative pricing

methods, 449
dominant flow method (DFM),

448–449
megawatt-mile (MWM)

method, 447
modulus method (MM), 447
zero counterflow method

(ZCM), 448
methods of, 446
power transmission systems,

shared use of, 446
Pricing policies

deregulated marketplace
structures, 446

for real-time pricing, 445–446
for regulated systems and markets,

445–446
Primal affine algorithm, 203, 221
Primal–dual affine method, 197
Primal–dual path-following

algorithms, 200
Primary distribution voltage, 2
Prime mover response, 39
Projected augmented Lagrangian

method, 425
Projection matrix, calculation

of, 227
Projective-scaling algorithm,

200–202
P–V bus, see Generation bus
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Q

Quadratic interior point (QUIP) method,
261, 412

Quadratic optimization
algorithm for, 240–241
problem, 257

Quadratic programming (QP), problem
solving using, 234

R

Reactive capability limits, of hydrogen-
cooled generator, 30

Real-time network models, 371
Recursive process

algorithm for, 242–245
backward and forward, 274–275

minimum path problem, 275–278
single additive constraint and

additively separable return
problem, 279–280

single additive constraint,
multiplicatively separable
turn problem, 283

single multiplicative constraint,
additively separable return
problem, 280–281

Reduced transmission model, 291
Reference bus, see Slack bus
Revised simplex method

LP problem solution using, 151–153
phases of, 150

Riccati equation, 558

S

Second-order approximation, 238
Security assessment, 10
Security-constrained OPF (SCOPF)

problem, 452
Security monitoring, 10
Sequential quadratic programming

(SQP), 234
Series branch impedance, 354
Shadow price, economic basis of

in linear programming (LP)
constraints, functions of, 449
convergence, conditions

for, 450–451

dual shadow prices variables,
interpretation of, 451

problems with two-sided bounded
variables, 451

working definition, 450
Short-circuit fault, on transmission line, 6
Simplex method, LP problem

augmented solution, 145
inequality constraints, 144
optimality conditions, 145
stages of

flowchart showing, 149
initialization, 147
iterative procedure and optimality

test, 148
theorem, 146

Single-phase circuits, power flow in, 20
Single unit relaxed problem, 480–482
Sinusoidal waveforms, cosine

representation of, 18
Slack bus, 64

reference node, 453
Slack vectors, 246
Small-scale power system, for

reconfiguration problem, 588
Spot transactions, telephone or computer

network, 445
Stage transformation function, 279
Standard market designs (SMDs),

development of, 441
State estimation

conventional, 353
definition of, 355–357
in deregulated environment, 371–372
generalized, 353–355
historical perspective of, 351–352
in power systems, 362–364
statistical properties of, 366–367
techniques of, 357–358

least squares estimation (LSE),
358–360

weighted least square estimation,
360–362

State vector, 246
Static system response, 39
Stator, per unit system for, 27
Steam turbines, governing model for, 33
Stochastic optimization techniques

evolutionary algorithms, branches of
evolutionary algorithms, 510–511
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GAs, structure of, 509
genetic programming, 511–512

Stochastic tournament, 516–517
Suboptimization, concept of, 267–269
Subtransmission system, 2
Swing bus, see Slack bus
Synchronous generators

circuit diagram of, 69
kVA rating, 30

Synchronous machine
equivalent circuit of, 30
modeling of

machine equation, 29
machine terminal voltage

phasor, 29
rotor circuit base quantities, 28–29
stator voltage equations and flux

linkage equations, 28
per unit system in, 27

System failures, causes of, 7
System generation control, primary

purpose of, 7
System performance evaluation

functional optimization
constrained functionals,

steps of, 544–545
extremization of, 539–540
performance measure, 540–541

System planning, 102–103

T

Tap-changing
under load transformer, 45
transformers, tap and phase-shift

limits, 40
Taylor series expansion, nonlinear

functions, 418
Taylor’s expansion, of nonlinear

terms, 463
TCUL transformer, see Tap-changing,

under load transformer
Terminal control problems, 546
Three-phase systems

D-connection three-phase source
line and phase voltages, 23
phase and line currents, 24

power relationships
complex power, 26
total power in load, 25–26

vs. single-phase operation, 20
Y-connected systems

effective values of phase voltages,
22–23

line voltages, 23
phase and magnitude relations

between phase and line voltage
of, 21–22

Tie line bias control strategy, 38–39
tk, procedure for setting

subgradient method with tk ¼ 1, 0.5,
0.25 . . . , 314–315

subgradient method with tk ¼ 1 for
All k, 313–314

Total transfer capability, 52–53
Transformer

with fixed-tap setting (see Fixed
tap-setting transformer)

model, PF studies of
rectangular and polar

formulation, 72
Ybus matrix and nodal

current, 71
phase-shifting (see Phase-shifting

transformer)
regulation and PF control

RT changes, 68–69
Ybus matrix, 67–68

TCUL (see Tap-changing, under load
transformer)

Transformer-magnetizing branch, 40
Transformer tap ratios, 401
Transmission controls, 7
Transmission expansion

interpretation, 447
Transmission line, p-representation

of, 77
Transmission network, classification

of, 1
Transmission network subsystem

busbars, 40
long-line model, 41

Transmission providers, challenge
in transmission charges, 52

Transmission reliability margin
(TRM), 53

Transmission service, technical quality
of, 446

Transmission system, 1
Transparent trading mechanisms, 445
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TTC, see Total transfer capability
Turbine generator, reactive-power

capability curves for, 30
Turboalternator, exciter and, 5
Two-stage decision problem, 293

U

UCP, see Unit commitment problem
UC Problem Solving, 489
UCP statement

objective function, 524
system constraints, 524
unit constraints, 525

Unconstrained Euler–Lagrange
equation, 554

Under-frequency load shedding, 531
Unit characteristics, load pattern and

initial status of, 498–499
Unit commitment

applications of, 471
capacity ordering of, 499, 500
definition of, 11
dispatch costs, 499
feasible solution search, 486–488
formulation of

Lagrangian function
for, 473–474

modeling in, 472–473
reserve constraints, 471–472

importance grown, reasons, 469–470
Lagrangian relaxation

algorithm, flowchart of, 481
approach, 478–480

load pattern, 499
minimum commitment cost, 501
power systems operation for, 303
problem, 523
thermal units using dynamic

programming, 493–501
transitional costs, 499

Unit commitment problem
Lagrange relaxation method, 471
updating ‘‘lambda’’, techniques for

bisection method, 490–491
linear interpolation, 489–490
multipliers, 491
reserve constraints, 491–493

Unit commitment programs, 469
electric utilities, 470

Unit commitment schedules, 469
factors of, 470

Unit commitment techniques,
optimization methods

merit-order scheme, 477
operating costs, 474
priority criteria

dynamic priority lists, 477
fuel cost-based lists, 475–476
incremental fuel cost-based list, 476
incremental fuel cost with start-up

cost-based list, 476
logic of, 477

programs development, priority
list, 475

strict priority-of-shutdown rules, 474
Unit commitment, thermal units

dynamic programming
assumptions, 493–494
backward approach, 494
flowchart for, 497
forward approach, 494–496
ignore hot-start costs, 496
problem, flowchart of, 498

V

VAr=OPF problem
assumptions of, 398
constraints for, 398
control variables, 397–398
objective and constraints

for type I, 396–397
requirements solution

reliability, 403
speed, flexibility

and maintainability, 404
using quadratic programming

(QP), 412
solution techniques for, 403–404

LP-based algorithm, 404–408
VAr planning

control variables, 401
disadvantage of, 399, 400
mathematical description

of, 399–402
VAr support, cost curve for, 395
Vector multiplications, 341
Voltage-controlled bus,

see Generation bus
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Voltage drop, 299
Voltage optimization

description of, 394
objective function and constraints

for, 396–397

W

Water hammer effect, 32
Weighted least absolute value

(WLAV), 358

Weighted least squares estimation
(WLSE), 352

Western systems power pool
(WSPP), 449

Worst-case complexity, 198, 200

Z

Zero counterflow method
(ZCM), 448
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