

Digital System Test and Testable Design

wwwwwwwwwwww

Zainalabedin Navabi

Digital System Test
and Testable Design

Using HDL Models and Architectures

Zainalabedin Navabi
Worcester Polytechnic Institute
Department of Electrical & Computer
Engineering
Worcester, MA
USA
navabi@ece.wpi.edu

ISBN 978-1-4419-7547-8 e-ISBN 978-1-4419-7548-5
DOI 10.1007/978-1-4419-7548-5
Springer New York Dordrecht Heidelberg London

 Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
 publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,
 electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to my wife, Irma, and sons
Aarash and Arvand.

wwwwwwwwwwww

vii

This is a book on test and testability of digital circuits in which test is spoken in the language of
design. In this book, the concepts of testing and testability are treated together with digital design
practices and methodologies. We show how testing digital circuits designing testable circuits can
take advantage of some of the well-established RT-level design and verification methodologies and
tools. The book uses Verilog models and testbenches for implementing and explaining fault simula-
tion and test generation algorithms. In the testability part, it describes various scan and BIST meth-
ods in Verilog and uses Verilog testbenches as virtual testers to examine and evaluate these
testability methods. In designing testable circuits, we use Verilog testbenches to evaluate, and thus
improve testability of a design.

The first part of the book develops Verilog test environments that can perform gate-level fault
simulation and test generation. This part uses Verilog PLI along with Verilog’s powerful testbench
development facilities for modeling hardware and programing test environments. The second part
of the book uses Verilog as a hardware design tool for describing DFT and BIST hardware. In this
part, Verilog is used as a hardware description language describing synthesizable testable hardware.
Throughout the book, Verilog simulation helps developing and evaluating test methods and test-
ability hardware constructs.

This book professes a new approach to teaching test. Use of Verilog and Verilog PLI for test
applications is what distinguishes this book from other test and testability books. As HDLs were
used in late 1970s for teaching computer architectures, today, HDLs can be used to illustrate test
methodologies and testability architectures that are otherwise illustrated informally by flow charts,
graphs, and block diagrams. Verilog eliminates ambiguities in test algorithms and BIST and DFT
hardware architectures, and it clearly describes the architecture of the testability hardware and its
test sessions. Describing on-chip test hardware in Verilog helps evaluating the related algorithms in
terms of hardware overhead and timing and thus feasibility of using them on SoC chips. Further
support for this approach comes in use of testbenches. Using PLI in developing testbenches and
virtual testers gives us a powerful programing tool interfaced with hardware described in Verilog.
This mixed hardware/software environment facilitates the description of complex test programs and
test strategies.

Preface

wwwwwwwwwwww

ix

When I first thought of using a hardware description language for test purposes, I started using
VHDL models for test purposes in my course on digital system testing at the University of Tehran.
After several years of teaching this course, we switched to Verilog and a set of library components
that facilitated this usage of Verilog was developed. The groups of students who developed the
software and helped me in the formation of the materials are important contributors to this work.
The student, who took the responsibility for the development of the software package was Nastaran
Nemati. She managed the development of the complete library by the time of her graduation in
2010. Her efforts contributed significantly to this work. I thank my students at Worcester Polytechnic
Institute in Massachusetts, USA, and the University of Tehran for sitting at my presentations or
watching them online and making useful suggestions.

When the actual development of the book started, my graduate student, Fatemeh (Negin)
Javaheri, became the key person with whom I discussed my ideas. She was always available for
consulting with me and her ideas helped significantly in shaping the structure of the book. She later
took responsibility for developing the material for the chapter on test compression. Negin continues
to work with me on my research, and she is looking forward to the next book that I want to write.
Another important contributor, also a graduate student at the University of Tehran, is Somayeh
Sadeghi Kohan. Somayeh developed the materials for the chapter on boundary scan, and in the final
stages of this work she was very helpful reviewing chapters and suggesting changes. The feedbacks
she provided and changes she suggested were most helpful. Nastaran Nemati helped developing the
HDL chapter, and Parisa Kabiri and Atie Lotfi also contributed to some of the chapters and helped
reviewing the materials.

As always, and as it is with all my books, Fatemeh Asgari, who has been my assistant for the
past 20 years, became responsible for managing the project. She managed the group of students who
did research, developed software, collected materials, and prepared the final manuscript with its text
and artwork. Fatemeh’s support and management of my writing and research projects have always
been key to the successful completion of these projects. I cannot thank her enough for the work she
has done for me throughout the years.

My work habits and time I spend away from my family working on my research and writing
projects have been particularly difficult for them. However, I have always had their support, under-
standing, and encouragement for all my projects. My wife, Irma, has always been a great help for
me providing an environment that I can spend hours and hours on my writing projects. I thank Irma,
and my sons Aarash and Arvand.

August 2010 Zainalabedin Navabi
 navabi@ece.wpi.edu

Acknowledgments

wwwwwwwwwwww

xi

Contents

 1 Basic of Test and Role of HDLs .. 1
1.1 Design and Test .. 1

1.1.1 RTL Design Process ... 1
1.1.2 Postmanufacturing Test .. 4

1.2 Test Concerns ... 8
1.2.1 Test Methods .. 9
1.2.2 Testability Methods .. 11
1.2.3 Testing Methods ... 13
1.2.4 Cost of Test ... 13

1.3 HDLs in Digital System Test .. 15
1.3.1 Hardware Modeling .. 15
1.3.2 Developing Test Methods ... 15
1.3.3 Virtual Testers ... 16
1.3.4 Testability Hardware Evaluation .. 16
1.3.5 Protocol Aware ATE ... 16

1.4 ATE Architecture and Instrumentation... 17
1.4.1 Digital Stimulus and Measure Instruments .. 17
1.4.2 DC Instrumentation .. 17
1.4.3 AC Instrumentation .. 17
1.4.4 RF Instrumentation ... 18
1.4.5 Ate .. 18

1.5 Summary .. 19
References .. 20

 2 Verilog HDL for Design and Test .. 21
2.1 Motivations of Using HDLs for Developing Test Methods 21
2.2 Using Verilog in Design ... 22

2.2.1 Using Verilog for Simulation ... 22
2.2.2 Using Verilog for Synthesis .. 23

2.3 Using Verilog in Test .. 24
2.3.1 Good Circuit Analysis .. 24
2.3.2 Fault List Compilation and Testability Analysis .. 24
2.3.3 Fault Simulation ... 25
2.3.4 Test Generation ... 26
2.3.5 Testability Hardware Design .. 26

xii Contents

2.4 Basic Structures of Verilog ... 27
2.4.1 Modules, Ports, Wires, and Variables ... 28
2.4.2 Levels of Abstraction ... 29
2.4.3 Logic Value System .. 29

2.5 Combinational Circuits .. 30
2.5.1 Transistor-Level Description .. 30
2.5.2 Gate-Level Description .. 31
2.5.3 Equation-Level Description .. 32
2.5.4 Procedural Level Description ... 32
2.5.5 Instantiating Other Modules ... 34

2.6 Sequential Circuits ... 36
2.6.1 Registers and Shift Registers .. 36
2.6.2 State Machine Coding .. 36

2.7 A Complete Example (Adding Machine) ... 42
2.7.1 Control/Data Partitioning ... 42
2.7.2 Adding Machine Specification ... 42
2.7.3 CPU Implementation .. 43

2.8 Testbench Techniques ... 48
2.8.1 Testbench Techniques ... 48
2.8.2 A Simple Combinational Testbench ... 49
2.8.3 A Simple Sequential Testbench .. 50
2.8.4 Limiting Data Sets .. 51
2.8.5 Synchronized Data and Response Handling .. 51
2.8.6 Random Time Intervals .. 52
2.8.7 Text IO .. 53
2.8.8 Simulation Code Coverage ... 54

2.9 PLI Basics .. 56
2.9.1 Access Routines ... 57
2.9.2 Steps for HDL/PLI Implementation ... 57
2.9.3 Fault Injection in the HDL/PLI Environment .. 59

2.10 Summary .. 62
References .. 62

 3 Fault and Defect Modeling .. 63
3.1 Fault Modeling ... 63

3.1.1 Fault Abstraction .. 64
3.1.2 Functional Faults .. 67
3.1.3 Structural Faults ... 68

3.2 Structural Gate Level Faults ... 71
3.2.1 Recognizing Faults ... 71
3.2.2 Stuck-Open Faults .. 72
3.2.3 Stuck-at-0 Faults ... 72
3.2.4 Stuck-at-1 Faults ... 73
3.2.5 Bridging Faults ... 73
3.2.6 State-Dependent Faults ... 75
3.2.7 Multiple Faults ... 75
3.2.8 Single Stuck-at Structural Faults .. 77
3.2.9 Detecting Single Stuck-at Faults .. 83

xiiiContents

3.3 Issues Related to Gate Level Faults .. 84
3.3.1 Detecting Bridging Faults .. 84
3.3.2 Undetectable Faults .. 85
3.3.3 Redundant Faults .. 85

3.4 Fault Collapsing ... 86
3.4.1 Indistinguishable Faults .. 86
3.4.2 Equivalent Single Stuck-at Faults... 86
3.4.3 Gate-Oriented Fault Collapsing .. 87
3.4.4 Line-Oriented Fault Collapsing .. 89
3.4.5 Problem with Reconvergent Fanouts .. 91
3.4.6 Dominance Fault Collapsing .. 92

3.5 Fault Collapsing in Verilog ... 95
3.5.1 Verilog Testbench for Fault Collapsing .. 95
3.5.2 PLI Implementation of Fault Collapsing .. 97

3.6 Summary .. 100
References .. 101

 4 Fault Simulation Applications and Methods ... 103
4.1 Fault Simulation ... 103

4.1.1 Gate-Level Fault Simulation .. 103
4.1.2 Fault Simulation Requirements .. 104
4.1.3 An HDL Environment .. 105
4.1.4 Sequential Circuit Fault Simulation ... 111
4.1.5 Fault Dropping ... 111
4.1.6 Related Terminologies .. 111

4.2 Fault Simulation Applications .. 112
4.2.1 Fault Coverage .. 113
4.2.2 Fault Simulation in Test Generation ... 114
4.2.3 Fault Dictionary Creation ... 117

4.3 Fault Simulation Technologies ... 122
4.3.1 Serial Fault Simulation ... 124
4.3.2 Parallel Fault Simulation .. 127
4.3.3 Concurrent Fault Simulation .. 131
4.3.4 Deductive Fault Simulation .. 133
4.3.5 Comparison of Deductive Fault Simulation ... 137
4.3.6 Critical Path Tracing Fault Simulation ... 137
4.3.7 Differential Fault Simulation .. 140

4.4 Summary .. 141
References .. 141

 5 Test Pattern Generation Methods and Algorithms ... 143
5.1 Test Generation Basics ... 143

5.1.1 Boolean Difference ... 143
5.1.2 Test Generation Process ... 145
5.1.3 Fault and Tests .. 146
5.1.4 Terminologies and Definitions ... 147

5.2 Controllability and Observability ... 147
5.2.1 Controllability .. 148
5.2.2 Observability .. 148

xiv Contents

5.2.3 Probability-Based Controllability and Observability 148
5.2.4 SCOAP Controllability and Observability ... 155
5.2.5 Distances Based .. 160

5.3 Random Test Generation .. 160
5.3.1 Limiting Number of Random Tests .. 160
5.3.2 Combinational Circuit RTG ... 163
5.3.3 Sequential Circuit RTG .. 171

5.4 Summary .. 174
References .. 174

 6 Deterministic Test Generation Algorithms .. 175
6.1 Deterministic Test Generation Methods ... 175

6.1.1 Two-Phase Test Generation .. 176
6.1.2 Fault-Oriented TG Basics ... 177
6.1.3 The D-Algorithm .. 182
6.1.4 PODEM (Path-Oriented Test Generation).. 191
6.1.5 Other Deterministic Fault-Oriented TG Methods .. 196
6.1.6 Fault-Independent Test Generation .. 197

6.2 Sequential Circuit Test Generation ... 198
6.3 Test Data Compaction .. 200

6.3.1 Forms of Test Compaction ... 201
6.3.2 Test Compatibility .. 201
6.3.3 Static Compaction .. 204
6.3.4 Dynamic Compaction ... 209

6.4 Summary .. 211
References .. 211

 7 Design for Test by Means of Scan ... 213
7.1 Making Circuits Testable .. 213

7.1.1 Tradeoffs ... 213
7.1.2 Testing Sequential Circuits ... 214
7.1.3 Testability of Combinational Circuits .. 215

7.2 Testability Insertion .. 215
7.2.1 Improving Observability .. 216
7.2.2 Improving Controllability ... 217
7.2.3 Sharing Observability Pins ... 218
7.2.4 Sharing Control Pins .. 219
7.2.5 Reducing Select Inputs ... 221
7.2.6 Simultaneous Control and Observation .. 222

7.3 Full Scan DFT Technique ... 225
7.3.1 Full Scan Insertion ... 226
7.3.2 Flip-Flop Structures .. 227
7.3.3 Full Scan Design and Test .. 234

7.4 Scan Architectures .. 244
7.4.1 Full Scan Design .. 245
7.4.2 Shadow Register DFT .. 245
7.4.3 Partial Scan Methods .. 248
7.4.4 Multiple Scan Design ... 251
7.4.5 Other Scan Designs .. 253

xvContents

7.5 RT Level Scan Design .. 253
7.5.1 RTL Design Full Scan .. 253
7.5.2 RTL Design Multiple Scan ... 254
7.5.3 Scan Designs for RTL .. 258

7.6 Summary .. 258
References .. 259

 8 Standard IEEE Test Access Methods ... 261
8.1 Boundary Scan Basics .. 261
8.2 Boundary Scan Architecture .. 262

8.2.1 Test Access Port ... 262
8.2.2 Boundary Scan Registers .. 263
8.2.3 TAP Controller ... 267
8.2.4 The Decoder Unit ... 271
8.2.5 Select and Other Units .. 271

8.3 Boundary Scan Test Instructions .. 271
8.3.1 Mandatory Instructions... 272

8.4 Board Level Scan Chain Structure ... 277
8.4.1 One Serial Scan Chain .. 278
8.4.2 Multiple-Scan Chain with One Control Test Port .. 278
8.4.3 Multiple-Scan Chains with One TDI, TDO but Multiple TMS 279
8.4.4 Multiple-Scan Chain, Multiple Access Port ... 279

8.5 RT Level Boundary Scan .. 281
8.5.1 Inserting Boundary Scan Test Hardware for CUT 281
8.5.2 Two Module Test Case ... 283
8.5.3 Virtual Boundary Scan Tester ... 285

8.6 Boundary Scan Description Language ... 290
8.7 Summary .. 292
References .. 294

 9 Logic Built-in Self-test ... 295
9.1 BIST Basics .. 295

9.1.1 Memory-based BIST .. 295
9.1.2 BIST Effectiveness ... 297
9.1.3 BIST Types ... 297
9.1.4 Designing a BIST ... 298

9.2 Test Pattern Generation .. 300
9.2.1 Engaging TPGs... 300
9.2.2 Exhaustive Counters ... 300
9.2.3 Ring Counters ... 301
9.2.4 Twisted Ring Counter ... 302
9.2.5 Linear Feedback Shift Register .. 303

9.3 Output Response Analysis ... 312
9.3.1 Engaging ORAs .. 312
9.3.2 One’s Counter ... 312
9.3.3 Transition Counter .. 314
9.3.4 Parity Checking .. 316
9.3.5 Serial LFSRs (SISR) .. 316
9.3.6 Parallel Signature Analysis .. 317

xvi Contents

 9.4 BIST Architectures ... 319
 9.4.1 BIST-related Terminologies ... 319
 9.4.2 A Centralized and Separate Board-level BIST

Architecture (CSBL) .. 320
 9.4.3 Built-in Evaluation and Self-test (BEST) ... 321
 9.4.4 Random Test Socket (RTS) .. 322
 9.4.5 LSSD On-chip Self Test ... 324
 9.4.6 Self-testing Using MISR and SRSG .. 325
 9.4.7 Concurrent BIST .. 326
 9.4.8 BILBO .. 328
 9.4.9 Enhancing Coverage ... 329

 9.5 RT Level BIST Design.. 329
 9.5.1 CUT Design, Simulation, and Synthesis .. 330
 9.5.2 RTS BIST Insertion .. 330
 9.5.3 Configuring the RTS BIST ... 326
 9.5.4 Incorporating Configurations in BIST .. 338
 9.5.5 Design of STUMPS .. 340
 9.5.6 RTS and STUMPS Results ... 343

 9.6 Summary ... 343
References .. 343

10 Test Compression ... 345
10.1 Test Data Compression ... 348
10.2 Compression Methods .. 347

10.2.1 Code-based Schemes .. 347
10.2.2 Scan-based Schemes... 357

10.3 Decompression Methods .. 362
10.3.1 Decompression Unit Architecture .. 363
10.3.2 Cyclical Scan Chain ... 365
10.3.3 Code-based Decompression ... 366
10.3.4 Scan-based Decompression .. 372

10.4 Summary ... 372
References .. 372

11 Memory Testing by Means of Memory BIST .. 375
11.1 Memory Testing .. 375
11.2 Memory Structure ... 376
11.3 Memory Fault Model .. 377

11.3.1 Stuck-At Faults ... 377
11.3.2 Transition Faults ... 378
11.3.3 Coupling Faults .. 378
11.3.4 Bridging and State CFs .. 378

11.4 Functional Test Procedures ... 378
11.4.1 March Test Algorithms ... 378
11.4.2 March C- Algorithm ... 379
11.4.3 MATS+ Algorithm ... 380
11.4.4 Other March Tests .. 380

xviiContents

11.5 MBIST Methods ... 381
11.5.1 Simple March MBIST .. 381
11.5.2 March C- MBIST ... 385
11.5.3 Disturb MBIST ... 387

11.6 Summary ... 391
References .. 391

Appendix A Using HDLs for Protocol Aware ATE .. 393

Appendix B Gate Components for PLI Test Applications .. 397

Appendix C Programming Language Interface Test Utilities .. 399

Appendix D IEEE Std. 1149.1 Boundary Scan Verilog Description 403

Appendix E Boundary Scan IEEE 1149.1 Virtual Tester .. 411

Appendix F Generating Netlist by Register Transfer Level Synthesis
(NetlistGen) ... 423

Index .. 427

wwwwwwwwwwww

xix

The main focus of the book is on digital systems test and design testability. The book uses Verilog
for design, test analysis, and testability of digital systems. In the first chapter, we discuss the basics
of test and testable design while discussing the aspects of test that hardware description languages
can be used for. This part discusses the entire digital system testing in terms of test methods, test-
ability methods, and testing methods, and it discusses the use of HDLs in each aspect. After the
introductory parts, we have included a chapter on the basics of Verilog and using this language for
design and test. The body of the book assumes this basic Verilog-based RT-level design knowledge
and builds test and simulation concepts upon that.

Starting in Chap. 3, the focus of the book turns to test issues, such as fault collapsing, fault simu-
lation, and test generation. This part that is regarded as covering “test methods” has four chapters
that start with the presentation of fault models, followed by fault simulation methods, and then two
chapters on test generation, discussing random HDL-based test generation and deterministic test.
For such applications, we use Verilog gate models and PLI-based testbenches that are capable of
injecting faults and performing fault simulation and test generation. In this part, Verilog testbenches
act as test programs for managing the structural model of a circuit for performing fault simulation,
calculating fault coverage, and test pattern generation.

The testability part of the book begins in Chap. 7. There are four chapters in this part (Chaps.
7–10) in which various testability methods, built-in self-test architectures, and test compression
methods are discussed. We use Verilog coding for describing the hardware of various testability
methods and BIST architectures. Verilog testbenches, in this part, act as virtual testers examining
testability and test hardware embedded in a design. Together, PLI-based fault simulation and test
generation Verilog environments of Chaps. 3–6, and Verilog coding of testability hardware provide
a complete environment for testability and BIST evaluation. Design and refinement of test hardware
can be achieved after such evaluations. This part also discusses IEEE standards for boundary scan
and core testing, and uses Verilog for describing these standards and using them in designs. The last
chapter is on memory testing with a focus on MBIST that we describe in Verilog.

Chapters

Basics of Test and Role of HDLs

Basics of test are covered in this chapter. We talk about the importance of digital system testing and
define various test terminologies. Economy of test is discussed and reducing test time by means of
better test methods, more testable designs, and more efficient testing is discussed. Relation between
design and test are discussed in this chapter.

Introduction

xx Introduction

Verilog HDL for Design and Test

This chapter talks about the Verilog hardware description language for the description of digital
systems and the corresponding testbenches. We discuss combinational and sequential circuit model-
ing and present several examples. Only the key language constructs that is needed for understanding
models and architectures in the rest of the book are presented here. This chapter shows the use of
Verilog for developing good design testbenches. Several templates for testbench development are
discussed. In doing so, the use of PLI and developing PLI functions are presented. The testbench
part is extended in the chapters that follow.

Fault and Defect Modeling

Transistor and gate-level faults are described first. Verilog simulations show the correspondence
between lower-level transistor faults and upper level gate faults. We discuss functional and struc-
tural faults and the distinction between them. Structural gate-level faults are discussed and the jus-
tification of this model is illustrated by the use of simulations. We elaborate on the stuck-at fault
model and show PLI functions for fault injection. After this, the chapter discusses fault equivalence
and several fault collapsing techniques. We develop Verilog and PLI functions and testbenches for
generating fault lists and fault collapsing. Several benchmark circuits are tested with these
testbenches.

Fault Simulation Applications and Methods

The chapter begins discussing the use of fault simulation and its applications in design and test. We
then discuss various fault simulation techniques, including serial, parallel, concurrent, deductive,
differential, and critical path tracing fault simulation. For several of these methods, we develop a
testbench that injects stuck-at faults and performs simulations. Verilog PLI-based testbenches for
partial implementation of other fault simulation techniques are also discussed. Fault dictionaries are
discussed and created using Verilog and PLI testbenches. Using these utilities, we also discuss and
implement test coverage, fault dropping, and other fault simulation-related concepts. The format of
fault lists is taken from the previous chapter in which Verilog and PLI testbenches generated such
lists. Several complete Verilog testbenches with PLI are developed and utilized in this chapter.

Test Pattern Generation Methods

This chapter begins with the presentation of various testability techniques, including probability
based, structural, and SCOPE parameter calculation. PLI functions in Verilog testbenches are devel-
oped for calculating controllability and observability parameters of internal nodes of gate-level
circuits. Detectability and its role in the determination of random tests are also discussed. After this
first part, we discuss various random test generation methods and take advantage of testability
 measures of the first part. This chapter uses Verilog testbenches for generating random tests and
evaluating them by Verilog-based fault simulation.

xxiIntroduction

Deterministic Test Generation

We started the presentation of test generation in Chap. 5 with presenting random test generation. This
chapter discusses deterministic test generation, which we consider Phase 2 of the test generation
process. We discuss algorithms like, the D-algorithm, PODEM, CPT, and some of the simplified and
derivatives of these algorithms. Verilog testbenches using Verilog PLI functions for deciding when
to stop random test generation and when to start deterministic TG are developed. Test compaction
can be regarded as the next phase of test generation. A part of this chapter is dedicated to this topic
and several test compaction methods and their Verilog implementations are discussed.

Design for Test by Means of Scan

In this and the chapters that follow, in addition to using Verilog for developing test environments,
Verilog is also used for describing actual hardware constructs. In this chapter on DFT, we show
synthesizable Verilog codes for the DFT architectures that we present. The chapter begins with the
presentation of several ad hoc design-for-test techniques. We then show full-scan and various par-
tial-scan architectures, and for the purpose of unambiguous description of such hardware structures,
their corresponding Verilog codes are shown. Test methods and testbenches that we developed in
the previous chapters of this book are utilized here for scan design evaluations and refinements. We
show how a testbench can be used for helping us configure a scan design and generate tests for it.
We also show how a Verilog PLI testbench can be used for the application and testing of a scan-
based design. This latter application of testbenches is what we refer to as a virtual tester.

Standard IEEE Test Access Methods

This chapter discusses IEEE 1149.1 test standards. Hardware structures corresponding to these
standards are discussed in Verilog. Virtual testers that operate board and core testing hardware are
described as Verilog testbenches. Through the use of Verilog, we are able to show the architecture
and utilization of these standards. Interfacing between various components of IEEE Std.1149.1 and
how the standard interacts with the circuit under test, on one side, and the test equipment, on the
other side, are clarified here by the use of Verilog hardware descriptions and testbenches.

Logic Built-in Self-test

This chapter starts with the methods of designing on-chip test data generation and output analysis.
We then incorporate these components in built-in self-test architectures for on-chip testing. In this
chapter, we show synthesizable Verilog codes for all BIST architectures that we present. We show
classical BIST architectures, such as RTS, BILBO, and BEST; furthermore, on-line BIST, concur-
rent BIST, and BISTs for special architectures are discussed. We use Verilog for unambiguous
description of such hardware structures. And, we use Verilog and PLI testbenches, which we devel-
oped for fault injection and fault simulation, for BIST evaluation and configuration. Determination
of BIST test sessions for a better fault coverage and the determination of the corresponding signa-
tures are done by the use of Verilog simulations.

xxii Introduction

Test Data Compression

This chapter discusses test compression techniques, their usage in design-for-test, and their corre-
sponding hardware implementations. We discuss Huffman, Run-length, Golomb, and other coding
techniques used in test compression. In addition, scan compression techniques and their correspond-
ing on-chip scan structures are discussed. Compression algorithms are discussed and hardware for
decompression hardware as it is placed on a chip is described in Verilog.

Memory Testing by Means of Memory BIST

This chapter begins with a presentation of memory structures and corresponding fault models.
Various March test techniques are described and an analysis justifying various test algorithms is
given. We then discuss several memory BIST architectures and show their corresponding Verilog
descriptions. Operating an MBIST is demonstrated by means of a Verilog testbench.

Appendixes

A. Using HDLs for Protocol Aware ATEs
B. Gate Components for PLI Test Applications
C. PLI Test Utilities
D. IEEE Std.1149.1 Boundary Scan Verilog Description
E. Boundary Scan IEEE Std.1149.1 Virtual Tester
F. Generating Netlist by RTL Synthesis (NetlistGen)

xxiii

The material for this book has been developed while teaching courses on test and testability at sev-
eral universities. We are making these materials available.

We have developed a set of Verilog PLI functions for test development that have been used in
several courses, and have reached an acceptable maturity. For test applications using original
RT-level designs, a software program for a netlist generation has been developed that uses Xilinx
ISE to synthesize and convert the output to a netlist that our PLI functions can use. Many of the
netlists of the examples used in this book have been generated by this software. Applications that
can be performed with the set of our PLI functions and netlist include fault collapsing, random test
generation, fault simulation, and testability measurements. Also, virtual testers discussed in this
book use the netlist and PLI functions for simulation.

Presentation materials for all the chapters are also available (PowerPoint slides). In addition,
when teaching this course, I have noticed that students sometimes need a review of Verilog or logic
design concepts. I have developed short videos that students can use to get ready for the material
presented in the book. Videos and manuals for the use of software are also available and can be
obtained from the author.

A list of materials that are available at the time of publication of this book is shown below. Other
materials and software programs are being developed. Interested readers and users can contact the
author for obtaining the updates.

PowerPoint presentation slides for the chapters (PowerPoint files).•	
The complete Verilog PLI Test package (Software).•	
Netlist generator from RTL descriptions (Software).•	
Design and testbench files used the book (Verilog).•	
Verilog tutorials (Video).•	
Logic design tutorials (Video).•	
Problem sets, exams, and projects (PDF files).•	

Author’s email: navabi@ece.wpi.edu; zain@navabi.com

Software and Course Materials

 safdsfdsf

1Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_1, © Springer Science+Business Media, LLC 2011

Chapter 1
Basics of Test and Role of HDLs

As the first chapter of a book on digital system test, this chapter tries to cover some of the basics. Also,
as the first chapter of a book that emphasizes the use of HDLs in test, we try to cover HDL-based
design flow and discuss how various test applications fit in this process, and we show various places
where HDLs can help the test process of digital systems. In this chapter we try to answer some of the
important questions about digital system testing. The primary questions that need to be answered are
what it is that we are testing in digital system test, and why we are testing it. The answer to these ques-
tions are: A manufactured chip or device, which will be elaborated in the sections that follows, and we
are testing the device for physical defects. Other questions that remain to be answered are regarding
the methods that we use for testing, ways of making a chip or a manufactured device more testable,
how HDLs can help the test process, and finally what constraints we have in digital system testing.

After this chapter, it will be easy to justify why we dedicate at least three chapters to test meth-
ods, three chapters to making circuits testable, and in all the chapters we continuously talk about
reducing test data volume and test time. Furthermore, the use of HDLs in the chapters of this book
is justified by the HDL discussions of this chapter.

The next section discusses HDL-based design and where testing fits in this process. The discussion
of test concerns and test methods and testability methods to address such concerns come next in four
subsections. Section 1.3 discusses the role that HDLs can have in the design and test process. The
roles described here are exercised thought this book in the later chapters. Section 1.4 of this chapter
discusses test equipment that plays a very important role in shaping test and testability techniques.

1.1 Design and Test

Producing a digital system begins with a designer specifying his or her design in a high-level design
language, and ends with manufacturing and shipping parts to the customer. This process involves
many simulations, synthesis, and test phases that are described here.

1.1.1 RTL Design Process

In a register transfer level (RTL) design process, the designer first writes his or her design specifica-
tion in an RT level language such as Verilog. As shown in Fig. 1.1, this description uses Verilog
high-level constructs such as an always statement. Using standard HDL (Hardware Description
Language) descriptions and testbenches in the same HDL, this description will be simulated and
tested for design errors [1, 13–15].

2 1 Basics of Test and Role of HDLs

1.1.1.1 RTL Simulation

The HDL model input of the RT level simulator of Fig. 1.1 is taken from the original problem
description, and consists of synthesizable module interconnections in a top level Verilog model. The
testbench shown is originally developed for checking the functionality of the design. The testing of
the design here is primarily functional that is extracted from the original specification of the circuit
being designed. Detailed timing checks and physical flaws are not addressed at this level of
simulation.

For analyzing the behavior of the design, the testbench can inject design errors to predict the
behavior of the design under unanticipated circumstances. Furthermore, the testbench can be made
to issue warnings when and if it detects that the design’s behavior contradicts the expected function-
ality. Verification and assertion-based verification methods are useful in analyzing the design and
checking its performance against the specifications. Various verification methods are either part of
an HDL simulator, or they are used as standalone programs.

After a satisfactory simulation, and when the designer is reasonably sure that his or her descrip-
tion of the design meets the design specifications, the next step, that is RT level synthesis, is
taken.

Fig. 1.1 Design and test

31.1 Design and Test

1.1.1.2 RT Level Synthesis

As shown in Fig. 1.1, RT level synthesis takes the behavioral description of a design (myDesign) as
input, and produces a netlist of the design. The netlist, shown here by postSynthesis module, speci-
fies interconnection of low-level basic logic components such as AND and OR gates and D-type
flip-flops. The exact set of gates used in this level of description depends on the target library, which
is the library of components provided by the chip manufacturers. The format for the netlist can be
specified to be the same HDL as the original design.

Before going to the next step, this netlist must be tested. The testing here is done by simulating
it with an HDL simulation tool. This simulation phase is referred to as postsynthesis simulation.
With this simulation we are checking for delay issues, races, clock speed, and errors caused by
misinterpretation of the RT level design by the synthesis tool [1, 14].

In general, the same testbench used for testing the RT level design can be used for testing the
postsynthesis netlist. The majority of test vectors developed for the former can be migrated for test-
ing the netlist. In some instances, new test vectors may be needed for checking corner cases where
timing issues become important. For making sure that the postsynthesis netlist conforms to the
presynthesis HDL description, a testbench in the same HDL can instantiate both descriptions and
simulate them simultaneously with the same test data. Looking at the right-hand side of Fig. 1.1, it
is important to note that, ideally, the same platform should be used for testing outcomes of various
design steps.

An alternative to simulation is the formal method of verification. Equivalence checkers are of
this category. An equivalence checker, without using any test data (thus, static), generates pre- and
postsynthesis models of the circuit and uses formal methods to prove that they are the same. After
completion of postsynthesis verification (by simulation, or formal, or a mixture of both), the next
step that takes the design one step closer to a final product is performing physical layout.

1.1.1.3 Physical Layout

As shown in Fig. 1.1 (left-hand side column), the verified postsynthesis netlist of the design is used
by a layout and placement tool for generating the design’s layout and routing of cells. As in the
previous stages, the output of this phase also needs to be tested and verified for correctness.

The simulation here verifies wire lengths, wire widths, and transistor sizes, and detects layout
and placement flaws that can be introduced from a netlist to its layout. After a successful completion
of simulation, the layout will be ready for manufacturing.

1.1.1.4 Chip Manufacturing

After obtaining a working (simulated and tested) layout, it is used for the final step of manufactur-
ing. As shown in Fig. 1.1, the manufactured chips must be individually tested and verified against
flaws before they are shipped to the customers. The testing phase for testing the actual, postmanu-
factured, chips is what is referred to as test or testing in digital system design industry [2]. Unlike
the other steps that testing is done on the model of the design (i.e., simulation), testing in the last
step is done on the physical part.

In this testing, which is the focus of this book, we are testing the circuit under test (CUT) against
manufacturing defects. The defects are broken wires, shorts, open resistive wires, transistor defects,
and other physical problems that affect the functionality of a manufactured part.

In the simulations shown in Fig. 1.1 (third column from the left) unsuccessful test results require
modifications in the design or changes in the synthesis or hardware generation process (first column

4

Inputs

Outputs

Fig. 1.2 Part to be tested

1 Basics of Test and Role of HDLs

from the left). For example, if postsynthesis simulation results do not conform to the original design
specification, the hardware generation phases above it, i.e., design phase and RT level synthesis,
must be modified and rerun. This is different if the last test (postmanufacturing test) fails. In most
cases, the device that has failed the test is discarded and testing continues. In very rare cases, when
all manufactured devices fail, the hard decision of going to the first design step is taken.

As opposed to the other three forms of testing in Fig. 1.1 that a software program (a simulator)
performs the testing of the model, in manufacturing test, a physical device, which is a hardware
component or a test equipment, performs the testing. However, the expected response and the test-
ing procedure are fully or partially based on the lessons learned from the testings that have been
performed in the earlier stages of design. Ideally, the same test platform used in the three boxes
above the postmanufacturing box in Fig. 1.1 should be translated to a test program that runs on a
test equipment for testing the finished part.

1.1.2 Postmanufacturing Test

The four boxes in Fig. 1.1 that designate testing and simulation have similar properties. However,
the box at the bottom that represents postmanufacturing test has certain characteristics that makes
it conceptually different than the other three, and thus needs special attention. In this section we
discuss characteristics of this testing that puts it apart from other forms of testing (simulation) that
we discussed.

In digital systems, testing is referred to the exercise of checking a part or a model to see if
it behaves differently than its specification. What distinguishes between various testings are
what is being tested, how is test data obtained, what it is being tested with, what procedure we
use for testing it, and what we do with the test results. These are some of the issues that will
be discussed next.

1.1.2.1 Device and Its Test Data

In digital system testing, device being tested can be a system, a board, a packaged chip, a chip, a
die on a wafer, a core on a die, or a section of a core. Regardless of what it is that is being tested, it
is treated as a closed box that can only be controlled and observed from the outside. Figure 1.2
shows what can be regarded as a chip or a core that is the part that is being tested.

5

Scaned
Data

DUT

Input

OutputTest
Response

Test
Vector

T
es

te
r

Fig. 1.3 Tester testing DUT

1.1 Design and Test

The key here is that once the part that is being tested is configured for a certain set of inputs and
outputs (actual or virtual), we have no more access to the inside of the part, neither to control, nor
to observe.

The device configured as such is referred to as device under test (DUT), circuit under test (CUT),
or other similar acronyms. An input that is applied to a DUT is referred to as test vector or test pat-
tern, the set of all inputs for testing a DUT is test set. Stored response refers to expected response
from a test set that is stored on a disk or memory prior to test taking place.

A test set is prepared ahead of time by the test-generation process. Test generation is done using
a model of DUT (upper three boxes in model column of Fig. 1.1). Functional test generation, where
test vectors are made to examine various functions of a DUT, uses the RT level or behavioral model
of the DUT (first box in model column in Fig. 1.1). Structural test generation, where test vectors are
made to examine interconnections within a DUT, uses the netlist model of the DUT (second box in
model column in Fig. 1.1).

The expected response for a test set that can be saved for stored response testing is prepared by
simulating a working model of DUT (first two boxes in model column in Fig. 1.1). The model from
which the expected response of a circuit is obtained is called good circuit model or golden model.

1.1.2.2 Testers

Now that we know the nature of device being tested, and data that is used for testing it, the next
topic in postmanufacturing test puzzle is the device or equipment that is used for testing our DUT.
Just as a simulation program on a computer is used for running simulations and testing a model, a
test program running on a special test computer can be used for testing a DUT. However, for testing
there are other options that we will discuss.

Whichever option we take, a tester is a device or equipment that applies test vectors to a DUT,
collects DUT’s responses, and makes comparisons with the expected data. Figure 1.3 shows a tester
testing a DUT. The tester only uses inputs and outputs of the DUT.

6

Fig. 1.4 Device testing other devices

1 Basics of Test and Role of HDLs

A DUT can be tested by a device especially made and designed for testing it. An example of this
type of tester is a test board on a system that takes responsibility for testing other system boards and
chips mounted on the boards.

Figure 1.4 shows an example of a tester board that communicates through a test bus with other
boards in the system for testing them. The test board consists of storage, memory, processors, and com-
munication busses. A device testing another device can also be a chip testing another chip on the same
board. Obviously in this case, test data and response that can be used to test the DUT are limited.

A DUT can test itself. Without requiring an external chip or device, it can be tested by a built-in
hardware that has been primarily designed for testing the rest of the hardware of the DUT. This kind
of testing is depicted in Fig. 1.5, and is called Built-in Self-test (BIST).

Back Plane

T
es

t B
us

System Board2

System Board1

System Board3

Test Board

Fig. 1.5 A DUT testing itself

71.1 Design and Test

Another implementation of Fig. 1.3 is using an automatic test equipment (ATE). An ATE is an
equipment that consists of processors, storage, and fixtures for mounting devices. ATEs are used for
die testing, wafer testing, or testing a packaged product. An ATE runs a test program that imple-
ments the specific procedure designed for testing the DUT.

Most ATEs have multisite testing capability that can test multiple devices in parallel. Also concur-
rent testing in an ATE reduces test time by testing various parts of a DUT concurrently. Figure 1.6
shows Teradyne UltraFLEX ATE (in the back) that is docked to a wafer prober that fetches wafers
from a stack of wafers for testing. Section 1.4 in this chapter discusses ATEs and their capabilities in
more detail.

1.1.2.3 Using Test Results

As discussed, the purpose of test is to find the manufacturing defects and assumes that the design
is sound. The manufacturing defects can either cause catastrophic failure or parametric failure. In
either case, the test results can impact the product itself, the design process, or the implementation
of the design.

Devices having catastrophic failures are always discarded. However, devices with parametric
failures that cannot meet the ideal performance specifications can be degraded according to the
specifications that they can meet, and sold as cheaper products. For example, a processor chip that
does not pass the original frequency test, but passes the 10% reduced frequency test can still be sold
at a lower price in a market that does not require the 100% performance. Test results can also be
used to identify functionalities whose failures do not necessarily make a device unusable. For
example, if the arithmetic accelerator of a processor fails, the processor can still be used by using

Fig. 1.6 UltraFLEX tester
docked to wafer prober (courtesy
of Teradyne)

8 1 Basics of Test and Role of HDLs

the software for arithmetic operations. In this case, the result of the test is used for the elimination
of certain functionality and modifying the specification of the device.

Test results may also impact the design and implementation process. For example, the cause of
catastrophic or parametric failures of an unusual number of devices may be due to problems in
layout and mask preparations. In such cases, diagnostic must be done to find the source of failure
and correct the implementation process accordingly. Failures in test can also be causes of modifica-
tions in design for a better reliability or performance.

1.1.2.4 Types of Tests

Depending on the device being tested, the equipment testing it, and the purpose of test, various types
of testing are performed. Below, some commonly used terminologies are discussed.

External Testing. A device is tested by an external device that can be a chip, a board, or a com-
puter or test equipment.

Internal Testing. The tester for a device is in the same packaging as the device. Often, in case of
BIST, the tester hardware is integrated with, and on the same chip as the device.

Online Testing. Testing is done while a device is performing its normal functions.
Offline Testing. Device being tested must cease its normal operation, and then be tested. Offline

testing can be done by internal or external test hardware.
Concurrent Testing (Online). In online testing, concurrent testing is when the normal data the

device is using in performing its normal functions are used for testing it.
Concurrent Testing (ATE). In ATE terminology, concurrent testing is when a tester is testing

various parts of a chip concurrently. For example, the analog, memory, and the logic parts tested at
the same time, while the device is on the tester head.

At-Speed Testing. Device being tested at its normal speed of operation [3]. This is also called AC
Testing.

DC Testing. Device is tested at much slower speed than its operation frequency. This allows all
the events to propagate before the outputs are sampled.

In-Circuit Testing. Device being tested is not removed from its mounting place for testing.
Guided Probe Testing. In a process of probing backwards from outputs towards inputs, testing is

done to find the source of an error that has appeared on the circuit’s outputs.
Diagnostic. Diagnostic is when testing is done to find the cause of failure.

There are many other terminologies used for various types of testing that can be told by the
context they are used in. As the above terminologies are not standard, they may be used in the litera-
ture for slightly different meanings than what we have presented.

1.2 Test Concerns

The main concern of testing a digital system or a device is to test it as thoroughly as possible, and
in as little time as possible. With the number of transistors doubling every 24 months (Moore’s law
1965), we already have chips with billions of transistors, and this number continues to grow. Testing
devices with this number of transistors quickly and thoroughly is a very challenging task and
requires proper strategies and systematic test approaches for generating test, making devices test-
able, and using testers. This section discusses test methods, testability methods, and testing methods
that try to reduce the complexity of electronic testing.

91.2 Test Concerns

1.2.1 Test Methods

Test methods are algorithms and methodologies that lead to generating tests that can quickly and
accurately identify defective parts. To understand why such a requirement that seems so basic pres-
ents such a big test challenge, consider the circuit in Fig. 1.7 that is being tested.

Suppose that the CUT shown here is a combinational circuit with 64 inputs, 64 outputs, and 12 ns
internal delay. Also let us say that we are testing this circuit with a tester running at 1 GHz clock
frequency, and it takes four clock cycles (4 ns) to fetch a new test vector and apply it to the circuit.
Also let us say that at this tester frequency, it takes four clock cycles to lookup the output and com-
pare it with the expected result.

Considering that we have 64 inputs, the round of testing described above must be repeated 264
times for all input combinations. Adding the test times with the circuit’s internal delay, and multi-
plying it by the number of input combinations results in the total test time for this circuit as
below:

64 9Test time : 2 (12 4 4) 10 s−× + + ×

According to this, the CUT in Fig. 1.7 can be completely tested in 11,698 years. The situation gets
worse if we are dealing with sequential circuits in which internal states of the circuit must be con-
sidered for exercising all circuit structures. Since this way of testing is not possible, we have to look
for test methods for simplifying this situation.

In digital system testing, a set of algorithms and methods help reduce the number of test vectors
by selecting them more wisely than just trying every combination. The following list of things to do
work in this direction:

Simplify faults that can occur. ·
Use a reduced number of faults. ·
Find mechanisms for evaluating test vectors. ·
Find parts of circuit that are harder to test. ·
Generate tests that target hard to test areas. ·
Evaluate test vectors and keep more efficient ones. ·
Compact test vectors. ·

Fig. 1.7 Circuit under test

10 1 Basics of Test and Role of HDLs

We try to achieve the above goals by developing test methods discussed in the following subsec-
tions. All the test methods are based on gate level circuit descriptions.

Before getting into the methods that are specifically devised for digital system testing, it must be
pointed out that a very important tool or method in design and test of digital systems is simulation,
and it is used extensively in test. As one of its applications that comes ahead of everything that is
discussed below is good circuit response calculation. Using a gate-level or an RT-level simulator,
the behavior of a circuit that has no defects is calculated. The response obtained as such will be used
by other test methods that are discussed below.

1.2.1.1 Fault Model

To simplify defects that we are trying to test for, we develop a fault model. The fault model that we
use is only a model to simplify analysis of a circuit for finding better test vectors and evaluating them.
Based on this model we define fault coverage as the percentage of faults that have been detected. For
a given test vector, fault coverage determines its efficiency in the number of faults it can detect.

1.2.1.2 Fault Reduction

To reduce our efforts for finding test vectors and analyzing a circuit for its faults, we try to reduce
the number of faults that we deal with by eliminating redundant ones, and, perhaps, ignoring some
that do not occur often. Reducing number of faults can be incorporated in our fault model, i.e., using
a simple model consisting of very few fault types. In addition, reducing can be done by eliminating
faults that have the same output effect; this process is referred to as fault collapsing.

1.2.1.3 Fault Simulation

A test vector or a test set is graded by the number of faults it detects. To find this number, a fault is
introduced in the circuit we are testing, and tests are applied to see what faults it detects. The circuit
in which a fault is introduced is called a faulty model, and simulating this circuit is referred to as
fault simulation. We use fault simulation to decide if a test vector is worth keeping. In addition, fault
simulation is used for analyzing test sets. Fault simulation is used for fault coverage calculations, it
is the most important test method, and it is computationally very complex.

1.2.1.4 Testability Measurement

In order to find best paths to take in order to reach a certain point in a circuit for testing it, we might need
controllability and observability of other circuit areas. Controllability is defined as the ease of controlling
a line in a circuit, and observability is the ease of observing the effect of its value on a primary output.
Test methods for controllability and observability, or in general for testability, analysis are used in the
test generation process. Testability measurement refers to calculation of these parameters.

1.2.1.5 Test Generation

Using a simplified fault model, having tools and methods for evaluating a test vector or a test set,
and being able to identify hard to reach areas of a circuit are some of what we use for generating an
efficient test set. There are various test generation methods and algorithms, ranging from pure

111.2 Test Concerns

random to deterministic. Repeated use of fault simulation in test generation and its np-complete
algorithms make this test method computationally complex.

1.2.1.6 Test Compaction

Another test method that comes into play after test generation has been done is test compaction. Test
compaction tries to reduce the number of test vectors without significantly affecting the fault cover-
age of a test set. A more compact test set tests a CUT quicker.

Chapters 3–6 of this book present various test methods. While the above methods help genera-
tion and evaluation of test, there are other methods that help making circuits more testable. We will
discuss these in the following subsection.

1.2.2 Testability Methods

Testability methods are hardware methods that are added to a CUT for making its testing easier,
faster, and more effective in terms of number of faults that are detected. In most cases, testability
methods involve hardware modifications or insertion of new hardware in the original CUT. For
making better choices, testability methods use algorithms and methods discussed in Sect. 1.2.1.

To get a better picture as to what a testability method can do for making testing easier, consider the
counter shown in Fig. 1.8. The circuit shown is a 64-bit counter with a clock and a reset input. Suppose
this circuit is operating at the clock rate of 1 GHz. To test this circuit, let us assume that we can clock
it to generate a new count, and it will take the equivalent of five clock cycles to read its output and
check it against its expected value. At this rate, the test time for the counter becomes:

64 9Test time : 2 (1 5) 10 s−× + ×

According to this, the CUT of Fig. 1.8 takes 3,509 years to test. Obviously, for testing this circuit,
a method or technique other than just applying clock inputs and reading circuit outputs is needed.
The methods for reducing test time by reducing the number of test vectors, as we did for the
example of Fig. 1.7, do not work here, because we are not applying any test vectors. The example
of Fig. 1.8 has no data input ports, and, thus, reducing test data inputs to reduce its test time is not
relevant. What is needed here is to make hardware modifications to the circuit to make it test better,
or test faster. Such methods are referred to as testability methods.

One such method is partitioning hardware into smaller segments each of which can more easily
be tested. Consider for example, breaking up the counter of Fig. 1.8 into four segments and gaining
independent access to each 16-bit segment by use of multiplexers, as shown in Fig. 1.9. This circuit
has a new input that is labeled NbarT (N for Normal, T for Test). When the circuit is to count in the
normal mode, the NbarT input is 0, and carry out from a lower order counter segment is used for

Clk

Rst

015163132474863

Fig. 1.8 A counter to be tested

12 1 Basics of Test and Role of HDLs

enabling its next immediate upper order counter. Considering the counter notation that 2Co (carry
out) is enabled by the En2 (enable) input, the structure shown behaves as a 64-bit counter when
NbarT is 0.

To test the counter, we set NbarT to 1 (test mode). With the multiplexers feeding the enable
inputs of the 16-bit counters, NbarT of 1 enables all counters at the same time. Therefore, to test the
circuit in this mode we only need to apply 216 clock pulses, and the test time becomes:

16 9Testable circuit test time : 2 (1 5) 10 s−× + ×

The test time for the revised testable circuit is only 0.4 ms. This simple modification has caused a
circuit that was otherwise impossible to test, testable in a reasonable time.

As with most other testability methods that are outlined below, the testability method we used
for the counter improved the controllability and observability of the CUT by adding hardware
to the circuit. Testability methods have hardware overhead that must be kept to a minimum.
In addition, testability methods may add delays that can slow down the normal operation of a
testable CUT.

1.2.2.1 Ad Hoc Testability

Some of what we can immediately think of in terms of making a circuit testable are things like add-
ing extra output pins to observe internal nodes of a CUT, or adding a jumper to make certain parts
of a CUT more controllable and/or observable. Partitioning, input/output pins, and multiplexing
inputs and outputs are considered as ad hoc testability methods [4].

1.2.2.2 Scan Insertion

In presenting test methods we will show that, although such methods work reasonably well for
combinational circuits and certain types of sequential circuits, they are not as effective in mak-
ing testing easier for all types of sequential circuits. A method of turning a sequential circuit
into a combinational circuit for making it accept combinational test methods is the use of scan.
Scan methods make the internal registers of a sequential circuit look like inputs and outputs,
and form a combinational model for the circuit. Scan methods are the most important testability
methods for today’s digital design and test methodology [5, 6].

1.2.2.3 Boundary Scan

Another testability method is to isolate a core on a chip and test it, independent of its surroundings.
This is achieved by bypassing everything else on a chip and scanning test data all the way to the
boundaries of the CUT. This testability method, that is referred to as boundary scan, was originally
used for board level testing, and has now been extended to chip and core level testing.

RC1
2Co

0

1

1En2
RC1

2Co

0

1

1En2
RC1

2Co

0

1

1En2
RC1

2Co

0

1

1En2

1 1 1 1

1

Clk

Rst
NbarT

Fig. 1.9 Partitioning into smaller counters

131.2 Test Concerns

1.2.2.4 Built-in Self-test

Another testability method for a CUT is to let it test itself. BIST is a testability method that involves
adding a semi-processing unit to a CUT, with the sole responsibility of testing various parts of the
CUT that it shares chip area with. BISTs save test time by not having to pull a component out of its
mounting for testing. Furthermore, BIST saves time by interlacing testing with normal operation of
a CUT. BIST and scan methods combine to test a complete SOC by each taking responsibility for
testing various parts of the SOC.

Starting in Chap. 7 of this book we get into testability methods. In today’s electronic design and
test, testability methods play a crucial role. Computer aided design (CAD) tools for digital design
have ways of automatically inserting testability hardware in a synthesized design.

1.2.3 Testing Methods

Another aspect of testing that can also improve and speed up the testing process is by using smarter
and faster testers (ATE). Unfortunately, the ATE industry has been regarded as a different industry
from electronic design for many years, and many of the technological advances such as use of HDLs
have not penetrated the ATE industry. However, in the last few years ATE industry is looking at
ways of incorporating the use of HDL in their ATEs for improving test speed. This will result in a
better understanding of test engineering issues by the designers; and at the same time, it makes test
engineers get more involved in the design process and early testing of designs. This subject is
treated in Appendix A of this book that discusses work done by Teradyne in this respect.

1.2.4 Cost of Test

Another important aspect of electronic testing is the issue of cost. Keeping cost to a level to make
production profitable, and still be able to deliver right parts for the right markets imposes a proper
test strategy. Test strategy is defined as incorporation of testing in the design development cycle so
that a device gets the right test, at the right time, and with the right level of completeness. This sec-
tion intends to discuss some of the cost-related issues in test.

1.2.4.1 Rule of 10

An important rule to consider in electronic testing is that the cost of testing increases by a factor
of 10 when going from one level to the next higher level [7]. This means that we should try to
detect faults as early as possible in the design process. Figure 1.10 shows a core on top of the cost

Core

Device

Printed Circuit Board

Sub System

Operational System
Fig. 1.10 Cost pyramid

14 1 Basics of Test and Role of HDLs

pyramid where the pyramid area it occupies represents its testing cost. When designing a core, it
is important to develop proper test strategy, apply proper test methods to the core, incorporate test-
ability in it, and test it as thoroughly as possible. Faults that go undetected in the core will cost 10
times as much if they are to be detected when incorporated in a device that consists of intercon-
nection of many cores.

A device is built by integration of already tested cores. When cores are put together on a chip,
their interconnections, their interfaces, and random logic on the chip must be thoroughly tested. Test
and testability methods discussed earlier in this section, in particular boundary scan and core testing
testability insertion schemes, are particularly important at the core integration level.

The cost as shown in Fig. 1.10 increases as we go down in the cost pyramid. The cost of detecting
a fault in an operational system is 10,000 times that of detecting it at the core level. The section
below covers some chip cost-related issues.

1.2.4.2 Chip Testing

In addition to the test and testability methods, issues related to the test equipment also play an
important role in the cost of testing a chip or a wafer.

In any manufacturing process, the end product is tested “just enough” so that a certain level of
performance is verified at the lowest possible cost. This cost/performance trade-off is different
depending on the end-use for the device. For low-end mobile phone components, where a failure in
the end use application – the “cheap” phone not working – is not terribly consequential, the cost/
quality trade-off is much different than it would be for a anti-lock braking system (ABS) for a car –
where a device failure in real life is a much more serious matter.

For integrated circuits, there are usually at least two test steps. The first is a test of the bare die
while it is still a part of the silicon wafer. Since most of the cost of an integrated circuit is actually
in the packaging, the idea is to identify bad devices so that they can be discarded before they are
packaged. The second step is to test the device after it has been packaged, mostly to make sure that
there are no bonding issues and to verify that the silicon was not damaged during the assembly
process. Most manufacturers try to perform enough wafer-level test to attain good device yields of
90% or more at the package level in order to minimize the cost of packages that need to be
discarded.

For very cost-sensitive devices, where designs and fabrication processes are well controlled
and silicon yield is high, the wafer test step can be omitted. For devices which use very small
geometry fabrication processes or are very mission critical, several testing steps may be added at
both wafer and package to test the full functionality of the device and to test at different
temperatures.

High-volume test is performed using ATE, along with equipment to transport either a wafer or a
device package to the ATE (Fig. 1.6). The capital cost for a combination of tester and material han-
dler (referred to as a test cell) can amount to well over a million US Dollars. The cost of test (COT)
added to the overall cost of producing the part is generally calculated as:

(/)+cost of equipment operating costs number of devices tested

Operating costs include items such as labor, and facilities cost such as electricity, cooling, and
depreciation. For high-volume, complex system on chip (SOC) devices such as mobile processors,
wireless transceivers, or power management devices, it is common that the test cell should produce
a tested device every 1–3 s (referred to as the throughput rate). If this rate is maintained over the
manufacturing life of an IC – usually consisting of millions of devices – then test costs can be con-
tained at levels which make it profitable to manufacture.

151.3 HDLs in Digital System Test

There are two methods used to increase throughput. The first is to absolutely minimize the time
required to test a single device. This relates to test methods and testability methods that we have
covered, and they are the main concerns of this book. On the other hand, the ATE also plays an
important role in minimizing the time required to test a device. The ATE generally implements very
specialized instrumentation, and data transport and processing mechanisms to minimize the time
overhead of the test process. The second method to increase throughput is to test multiple devices
in parallel on one piece of ATE. Typical SOC devices are tested with as few as two “sites”, up to as
many as 32 or 64 “sites”. DRAMs and Flash memories, which have very long test execution times,
often employ many hundreds of test sites in parallel and run on highly specialized test equipment.

1.3 HDLs in Digital System Test

Although hardware description languages have become an inevitable part of digital system design
process, they have not benefited the digital system testing. In spite of this, there are many areas that
hardware description language can influence and improve testing, some of which are described
below and extensively used in this book.

1.3.1 Hardware Modeling

Analyzing a circuit for test purposes requires a hardware model. Depending on the type of analysis,
different types of models may be required. Since HDLs can represent hardware at various levels of
abstraction, and HDL simulators can handle mixed level descriptions, using an HDL for represent-
ing a circuit for analyzing it for test will benefit the corresponding test methods.

An HDL application at the transistor level is to analyze an HDL model of a transistor level circuit
for propagation of transistor-level faults to the upper logic level. Going higher than the transistor
level, for generating good circuit response, an HDL model at the behavioral level can be simulated
to efficiently produce good circuit response vectors for test purposes. In simulations for studying
fault effects, gate level descriptions can be used.

For testability purpose, describing the CUT and its testability hardware in an HDL produces a
simulation model that can be analyzed for the effectiveness of the testability method. Where a BIST
technique is being analyzed, a model of CUT and its associated BIST are useful for configuring the
BIST hardware and measuring its effectiveness. There are other situations that HDL hardware mod-
els are used for issues related to test that will be seen in the chapters that follow.

1.3.2 Developing Test Methods

With the model of a CUT being available in an HDL, we can use procedural constructs and capabili-
ties of an HDL, and use it as a software programming language to process the CUT model and
perform tasks that are related to test. One such example is the use of an HDL for generating random
test vectors, applying them to the CUT, and sorting the test vectors according to their effectiveness
in terms of detecting faults.

Injecting faults in a circuit and applying tests to check if the test vectors detect the injected fault
is another example of such applications. In applications like these, we use HDL facilities for hard-
ware description and modeling to model the CUT, and we use software-like features of the HDL for

16 1 Basics of Test and Role of HDLs

writing programs for testing and implementation of test methods. The software-like parts go in HDL
testbenches and primarily use procedural language constructs. For creating an interface between
these two uses, we have developed HDL functions that can interact with an HDL model of a CUT
from an HDL’s procedural environment. In the Verilog HDL, these functions are implemented in
procedural language interface (PLI).

Text input and output facilities, and handling external files are capabilities in HDLs that make
them usable as a programming language.

1.3.3 Virtual Testers

A tester is an equipment that uses a device’s test interface to apply test vectors to it, and reads back
its response. A virtual tester does the exact same thing, except that it is a program and not an equip-
ment [8]. It is very important for a designer to be able to plan testing of his or her circuit before the
design is built. A virtual tester developed in an HDL acting on an HDL model of a circuit being
designed is an important tool that enables a design engineer to think about test issues early in the
design process. With this, test strategies can be developed as a design is being developed.

A virtual tester is an HDL testbench that mimics a tester, with the additional capability of being
able to manipulate the CUT for studying its testability or changing parameters for making it a more
testable circuit. To properly play its role as a tester, a virtual tester can be allowed only to interact
with the CUT through its test ports. We take advantage of HDL capabilities as virtual testers for
developing test strategies for scan-based designs in Chaps. 7 and 9.

1.3.4 Testability Hardware Evaluation

Another application of HDLs is in evaluating hardware that is to be added to a CUT for making it
testable, by another device, or by itself. The latter case is BIST, whose design and configuration can
greatly benefit by the use of HDLs. In the design of BISTs, a template BIST architecture is inserted
in the CUT, and its parameters are adjusted for better coverage of faults and lower test time. An
HDL testbech can take responsibility for instantiating a CUT and its associated preliminary BIST,
and simulating and adjusting BIST register lengths and configurations for a more efficient testing
of the CUT. In this book, we are using Verilog in Chap. 9 for BIST evaluation and configuration.

1.3.5 Protocol Aware ATE

A recent addition to ATE industry is the use of HDLs for programming a tester for testing a DUT.
Instead of using predefined bit patterns to test a CUT, specialized hardware (typically FPGA-based)
is embedded in the tester hardware to directly interpret HDL commands, construct data input pat-
terns on-the-fly, and adopt to variations in CUT output timing and data content. The concept and
implementation of Protocol Aware-based tester instrumentation is explained in more detail in
Appendix A.

The topics discussed above on use of HDLs in test are extensively used in chapters of this book.
For the start, Chap. 2 presents the Verilog HDL and discusses some of the ways it can contribute to
the digital system test methodology.

171.4 ATE Architecture and Instrumentation

1.4 ATE Architecture and Instrumentation1

As noted earlier, the goal of manufacturing test is to perform electrical fault testing as quickly as
possible on as many devices in parallel as is practical. ATE hardware typically contains instrumenta-
tion which, at a very high level, performs the same function as benchtop instrumentation that might
be found in an engineering lab. The types of instruments in the test can roughly be categorized into
four groups.

1.4.1 Digital Stimulus and Measure Instruments

Digital stimulus and measure instruments are instruments which source data patterns to the DUT
and then verify that the output data pattern is correct. Typically, these are architected around a large
pattern memory, up to 64Meg locations (or “vectors”) deep. The stimulus data are then “formatted”
by shaping the data bit with a rising or falling edge which occur as specific times relative to the start
of each bit cycle. Lastly, the data is driven to the device from a buffer that has programmable voltage
levels. Data produced by the device are conversely received by a voltage comparator with program-
mable thresholds and then latched (or “strobed”) at a specific point in time relative to the start of
the bit cycle and then compared in real time to expected data from the pattern memory. Digital
instrumentation is generally differentiated based on the maximum data rate that can be achieved, the
timing accuracy of the drive, and compare strobes and the cost of the hardware. General-purpose
digital instruments typically have 64–256 digital channels per instrument card and can have data
rates in excess of 1 GVector per second and timing accuracy of less than 100 ps. Low-cost
instrumentation used for scan testing or for cost-sensitive devices typically operates at rates of
100–200 MVectors per second with timing accuracy of approximately 1 ns. Specialized digital
instruments built for high-speed SERializer/DESserializer (SERDES) applications can operate at
rates in excess of 10 GVectors per second [9, 10].

1.4.2 DC Instrumentation

DC instrumentations are instruments which are used to either power the DUT or to perform DC
parametric testing of power management components such as embedded voltage regulators. All DC
options can source voltage and measure current, and some can also force current and measure volt-
age. These options are generally segmented based on power capability, accuracy, and cost. Very
high density DC cards can have hundreds of source/measure channels operating at power levels of
less than 1 W, while very high power channels used for testing of large processors can deliver much
higher power levels to the DUT. It is not uncommon for high-end server processors to draw many
hundreds of watts of power while performing scan test.

1.4.3 AC Instrumentation

AC instrumentation primarily consists of arbitrary waveform generators (AWGs) and waveform
digitizers used to test AC functionality such as audio and video performance, intermediate fre-
quency (IF) frequency testing of RF systems, or linearity testing of analog to digital converters

1This section has been provided by Ken Lanier of Teradyne.

18 1 Basics of Test and Role of HDLs

(ADCs) and digital to analog converters (DACs). This instrumentation is typically differentiated
based on waveform fidelity (noise and distortion levels) and frequency range. High-end audio con-
verters can required THD and SNR levels in the range of –120 dBc, while linearity testing of high-
resolution ADCs and DACs can require accuracy of several parts per million (ppm).

1.4.4 RF Instrumentation

RF instruments are fundamentally meant to perform continuous waveform (CW) testing of RF
components such as mixers, low-noise amplifiers (LNAs), and modulation/demodulation compo-
nents for devices such as mobile phone or local area network (LAN) transceivers [11, 12]. The
instruments typically have the ability to measure bidirectional signal power for scattering parameter
(S-parameter) measurement, and to perform very high-fidelity waveform modulation and demodu-
lation in order to measure the accuracy of data constellations and to perform end-to-end testing of
an RF transceiver using embedded digital data. RF instrumentation is typically segmented based on
frequency range (typically several gigahertz) and waveform fidelity.

1.4.5 ATE

What makes ATE unique from bench instrumentation is the density and pin count of the instrumen-
tation, and the speed at which it can setup and perform measurements.

Typical ATE systems will accommodate several thousand pins of digital and analog resources
inside a card cage referred to as the “Test Head” in order to perform multi-site testing. In addition,
the need to keep all of the instruments in close proximity to the DUT (within several inches – in
order to maximize signal fidelity) requires very careful power and thermal management. Most
large-scale ATEs incorporate integrated liquid cooling systems to allow a large number of high-
density channel cards to be placed within a space typically less than one-half to one square meter.
Instruments in a typically configured tester for SOC applications can dissipate between 10 and
40 KW in this space.

Whereas typical laboratory instruments are controlled through standard data busses such as
Ethernet, GPIB, or PCI, ATE systems use specialized (usually proprietary) data busses to minimize
system latency. ATE is measured on a parameter called “Device Limited Test Time.” That is, the
time the ATE itself adds to the test process above and beyond what was minimally required to test
the device. For example, if a scan pattern is to be executed at a rate of 10 MVectors per second for
100,000 Vectors, then the test time for that pattern should be 10 ms. If the tester takes 2 ms to setup
the test, start it, and log the results, then it has added 20% overhead. Furthermore, if that test is done
on two devices in parallel and 3 ms is added, then it has achieved a certain level of parallel test
efficiency (PTE) which must also be maximized.

ATE from different vendors is differentiated on measurement capability and device throughput.
The architecture of the tester must achieve certain goals:

 · Minimize hardware setup time: To achieve this, hardware setups such as voltage levels and tim-
ing are stored in local memory on each instrument. At the start of the test, the test controller
broadcasts one command to all instruments to recall and apply a specific setup on all pins in
parallel.

 · Optimize instrument handshaking: Often, instruments in a tester must communicate with each
other in real time. For example, a digital pattern may run for 1000 vectors to write to device

191.5 Summary

registers and then pause while a power supply current measurement is taken by a DC instrument.
Most ATEs provide a separate synchronization bus that allows the digital hardware to start the
measurement with zero overhead by allowing a synchronization command for the DC instrument
to be embedded in the appropriate step in the pattern.

 · Minimize data post processing time: In many cases, the tester will collect data from the DUT – from
an ADC, for example – that must be postprocessed to determine the quality of the part. A typical
example is to perform spectral analysis of digitized data with a fast Fourier transform (FFT) to
calculate noise and distortion. This processing cannot be done on the main tester controller because it
would slow down the operation of the entire machine. Some ATE architectures include entirely sepa-
rate computers with a dedicated data bus which will download data from an instrument and perform
the postprocessing math as a background process while the ATE is performing subsequent tests.

Figure 1.11 shows a typical ATE test system. The Test Head can be seen on the front of the
machine, suspended by a “manipulator” which allows the Head to be positioned at any angle in order
to be docked to the equipment that is handling the device packages or moving a wafer to different
die positions for testing. This is the same equipment that is shown in the background of Fig. 1.6.

The UltraFLEX test system features a hybrid air/liquid cooled test head with universal slots. The
system is available with a 24-slot standard capacity (-SC) test head and a 36-slot high-capacity
(-HC) test head. The UltraFLEX system offers digital speed and pin count needed for multi-site test
applications of SoC and SiP devices operating at greater than 200 MHz. The UltraFLEX system also
has a mainframe cabinet containing the power distribution unit, heat exchanger for liquid cooling,
air-cooling resources, clock reference, and an integrated manipulator. There is also cabinet space for
mounting additional third-party rack instrumentation.

1.5 Summary

This chapter discussed some of the very basic concepts of test. Perhaps the most important ques-
tion this chapter should have answered is why test is needed. We tried to do this by discussing a
design flow and showing that manufacturing is just another step in making a product, and just like
all the steps from design to final production its output needs to be tested. We showed manufacturing

Fig. 1.11 UltraFLEX ATE
(Courtesy of Teradyne)

20 1 Basics of Test and Role of HDLs

test as a step in HDL-based design and showed how much of the same tools used in the earlier
phases of design could be used in postmanufacturing test.

Another question this chapter should have answered is why we need methods for test and meth-
ods for making circuits testable. We tried to answer these questions by showing complexity of test
and the time it takes to test every component that is produced, and its impact on the cost of the final
product. In effect, test and testability methods are software and hardware solutions for reducing test
time and doing test of a final product more thoroughly.

This chapter also discussed the role of ATEs in test. Regardless of how testable our circuit is, and
how good our test sets are, the final testing by an ATE requires an efficient and fast ATE.
Furthermore, our test and testability methods cannot be devised and used independent of the equip-
ment that our product is tested on. Understanding capabilities of ATEs and what they can and cannot
do is important.

In addition to all the above, this chapter showed how hardware description languages can be used
in all aspects of digital system testing. Devising a test strategy, generating test, evaluating how much
testing we need, and deciding on the hardware for making our circuit testable are all test-related
tasks that HDLs are well suited to be useful for. This chapter tried to highlight the importance of
HDLs in test, and showed why it is important for a design engineer to understand test and a test
engineer to understand design flow. HDLs can be regarded as a link between design and test.

References

 1. Kurup P, Abbasi T (1995) Logic synthesis using synopsis. Kluwer, Boston
 2. Jha NK, Gupta SK (2003) Testing of digital systems. Cambridge University Press, Cambridge, UK
 3. Nadeau-Dostie B (ed) (2000) Design for at-speed test. In: Diagnosis and measurement. Kluwer, Boston
 4. Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing and testable design. IEEE Press,

Piscataway, NJ (revised printing)
 5. Willaims MJY, Angell JB (1973) Enhancing testability of large-scale integrated circuits via test points and addi-

tional logic. IEEE Trans Comput C-22(1):46–60
 6. Eichelberger EB, Lindbloom E, Waicukauski JA, Williams TW (1991) Structured logic testing. Prentice-Hall,

Englewood Cliffs, NJ
 7. Wang L-T, Wu C-W, Wen X (2006) VLSI test principles and architectures: design for testability. Morgan

Kaufmann, San Francisco
 8. Sehgal A, Iyengar V, Chakrabarty K (2004) SOC test planning using virtual test access architectures. IEEE

TransVLSI Syst 12 (12):1263–1276
 9. Mak TM, Tripp MJ (2005) Device testing, U.S. Patent No. 6,885,209, April 26
 10. Laquai B, Cai Y (2001) Testing gigabit multilane serdes interfaces with passive jitter injection filters. In:

Proceedings of IEEE International Test Conference, pp. 297–304, October (2001)
 11. Agilent Technologies (2005) Spectrum analyzer basics, AN 150 5952–0292, App. Note, 2005
 12. Agilent Technologies (2006) Fundamentals of RF and microwave noise figure measurement, AN 57–1 5952–

8255E, App. Note, 2006
 13. Navabi Z (2006) Verilog digital system design, Second Edition. McGraw Hill Company, N.Y, New York
 14. Navabi Z (2007) VHDL: Modular design and synthesis of cores and systems, Third Edition. McGraw Hill-

Professional, N.Y, New York
 15. Navabi Z (2006) Embedded core design with FPGAs. McGraw Hill-Professional, N.Y, New York

21Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_2, © Springer Science+Business Media, LLC 2011

Chapter 2
Verilog HDL for Design and Test

In Chapter 1, we discussed the basics of test and presented ways in which hardware description lan-
guages (HDLs) could be used to improve various aspects of digital system testing. The emphasis of
this chapter is on Verilog that is a popular HDL for design. The purpose is to give an introduction of
the language while elaborating on ways it can be used for improving methodologies related to digital
system testing. After, the basic concepts of HDL modeling, the main aspects of describing combina-
tional and sequential circuits using different levels of abstraction, and the semantics of simulation in
Verilog language are expressed. Then, we get into the testbench techniques and virtual tester develop-
ment, which are heavily utilized in the presentation of test techniques in the rest of this book. Finally,
a brief introduction to the procedural language interface (PLI) of Verilog and the basics of implement-
ing test programs in PLI is given. The examples we present in this chapter for illustrating Verilog
language and modeling features are used in the rest of this book as circuits that are to be tested. The
HDL codes for such examples are presented here. Verilog coding techniques for gate-level compo-
nents that we use for describing our netlists in the chapters that follow are also shown here.

2.1 Motivations of Using HDLs for Developing Test Methods

Generally speaking, tools and methodologies design and test engineers use are different, and there
has always been a gap between design and test tools and methods. This gap results in inconsisten-
cies in the process of design and test, such as designs that are hard to test or the time needed to
convert design to the format compatible for testing. On the other hand, we have seen in new design
methodologies that incorporating test in design must start from the beginning of the design process
[1, 2]. It is desirable to bring testing in the hands of designers, which certainly requires that testing
is applied at the level and with the language of the designers. This way, designers will be able to
combine design and test phases.

Using RT-level HDLs in test and DFT, helps advancing test methods to RTL, and at the same
time alleviates the need for the use of software languages and reformatting designs for the evalu-
ation and application of test techniques. Furthermore, actual test data can be applied to post-
manufacturing model of a component, while keeping other component models at the design level,
and still simulating in the same environment and keeping the same testbench. This also allows
reuse of design test data, and migration of testbenches from the design stage to post-manufacturing
test. In a mixed-level design, these advantages make it possible to test a single component
described at the gate level while leaving others in RTL or even at the system level.

On the other hand, when we try to develop test methods in an HDL environment, we are con-
fronted with the limitations of HDL simulation tools. Such limitations include the overhead that test
methods put on the simulation speed and the inability to describe complex data structures. PLI
provides a library of C language functions that can directly access data within an instantiated

22

Fig. 2.1 Simulation in Verilog

Testbench written in Verilog

Response analysis/display

Hardware
Description

Circuit Under Test in
Verilog

Verilog Simulator

T
es

t d
at

a
ge

ne
ra

tio
n

2 Verilog HDL for Design and Test

Verilog HDL data structure and overcomes the HDL limitations. With PLI, the advantages of doing
testable hardware design in an HDL and having a software environment for the manipulation and
evaluation of designs can be achieved at the same time. Therefore, not only the design core and its
testbench can be developed in a uniform programing environment, but also all the facilities of soft-
ware programing (such as complex data structures and utilization of functions) are available. PLI
provides the necessary accesses to the internal data structure of the compiled design, so test methods
can be performed in such a mixed environment more easily and without having to mingle with the
original design.

In this book, by means of the PLI interface, a mixed HDL/PLI test environment is proposed and
the implementations of several test applications are exercised. In the sections that follow, a brief
description of HDL coding and using testbench techniques combined with PLI utilities for developing
test methods are given.

2.2 Using Verilog in Design

For decades, HDLs have been used to model the hardware designs as an IEEE standard [3].
Using HDLs and their simulators, digital designers are capable of partitioning their designs into
components that work concurrently and are able to communicate with each other. HDL simula-
tors can simulate the design in the presence of the real hardware delays and can imitate concur-
rency by switching between design parts in small time slots called “delta” delays [4]. In the
following subsections, the basic features of Verilog HDL for simulation and synthesis are
described.

2.2.1 Using Verilog for Simulation

The basic structure of Verilog in which all hardware components and testbenches are described is
called a module. Language constructs, in accordance to Verilog syntax and semantics form the
inside of a module. These constructs are designed to facilitate the description of hardware compo-
nents for simulation, synthesis, and specification of testbenches to specify test data and monitor
circuit responses. A module that encloses a design’s description can be described to test the module
under design, in which case it is regarded as the testbench of the design. Figure 2.1 shows a simulation

23

Target Library

Hardware Description

Verified Circuit in
Verilog

Timing files and other hardware
details

Verilog Synthesis

A
 netlist of gates and flip-flops

Fig. 2.2 Synthesis of a Verilog design

2.2 Using Verilog in Design

model that consists of a design with a Verilog testbench. Verilog constructs (shown by dotted lines)
of the Verilog model being tested are responsible for the description of its hardware, while language
constructs used in a testbench are in charge of providing appropriate input data or applying data
stored in a text file to the module being tested, and analysis or display of its outputs. Simulation
output is generated in the form of a waveform for visual inspection or data files for record or for
machine readability.

2.2.2 Using Verilog for Synthesis

After a design passes basic the functional validations, it must be synthesized into a netlist of
components of a target library. The target library is the specification of the hardware that the
design is being synthesized to. Verilog constructs used in the Verilog description of a design
for its verification or those for timing checks and timing specifications are not synthesizable.
A Verilog design that is to be synthesized must use language constructs that have a clear hardware
correspondence.

Figure 2.2 shows a block diagram specifying the synthesis process. Circuit being synthesized
and specification of the target library are the inputs of a synthesis tool. The outputs of synthesis
are a netlist of components of the target library, and timing specification and other physical
details of the synthesized design. Often synthesis tools have an option to generate this netlist in
Verilog.

2.2.2.1 Postsynthesis Simulation

When the netlist is provided by the synthesis tool that uses Verilog for the description of the netlist
components (Fig. 2.3), the same testbench prepared for the pre-synthesis simulation can be used
with this gate-level description. This simulation, which is often regarded as post-synthesis simula-
tion, uses timing information generated by the synthesis tool and yields simulation results with
detailed timing.

Since the same testbench of the high-level design is applied to the gate-level description, the
resulted waveform or printed data must be the same. This can be seen when comparing Fig. 2.1
with Fig. 2.3, while the only difference is that the post-synthesis simulation includes timing
details.

24

Fig. 2.3 Postsynthesis simulation in Verilog

Testbench written in Verilog

Verilog Simulator
QQ

S
E

T

C
LR

S R
Netlist of gates and flip-flops

in Verilog

Timing files and other hardware details

T
es

t d
at

a
ge

ne
ra

tio
n

QQ
S

E
T

C
LR

S R

QQ
S

E
T

C
LR

S R

Response analysis/display

2 Verilog HDL for Design and Test

2.3 Using Verilog in Test

As mentioned, HDL capabilities can be utilized to enhance exercising existing test methods and to
develop new ones with little effort. The subsections that follow illustrate some possible usages of
Verilog in the test of digital systems.

2.3.1 Good Circuit Analysis

An important tool in testing is one that generates good circuit responses from a circuit’s golden model.
This response is to be to compared with responses from faulty circuits. By applying testbench data to
the golden model, it is possible to record the good behavior of the circuit for future use. The golden
signatures can also be generated this way. A signature is the result of an accumulative compression on
all the outputs of the golden model. Later, when checking if a circuit is faulty or not, the same input
data and the same signature collection algorithm must be applied to the design under test. By compar-
ing the obtained signature with the recorded golden signature, the presence or absence of faults in the
circuit can be verified. The precision of this fault detection depends on the compression algorithm that
is used to collect the signature and on the number of test data that is applied to make this signature.

Another application of HDL simulation for testing is signature generation for various test sets or
for different test procedures. Figure 2.4 depicts the good circuit analysis and its results.

2.3.2 Fault List Compilation and Testability Analysis

Fault list compilation is also one of the basic utilities that is needed to perform other test applications.
For this purpose, the design described at the gate level, which is normally resulted from synthesis of
a behavioral model of the design, can be used. Having fault models available for the gate models used
in the gate-level description of the design, possible faults for the entire design can be generated.
The capability of exploring the netlist of the circuit under test is very useful in fault compilation.
Using these capabilities, the fault list of the design under test can be generated and recorded in a text

25

Fig. 2.4 Good circuit analysis using Verilog

Testbench written in Verilog/PLI

Response analysis/display

High-Level
Hardware
Description

Circuit Under Test in
Verilog

Verilog Simulator
Good Behavior Report
Golden Signatures
Signature Generation

T
es

t d
at

a
ge

ne
ra

tio
n

Fig. 2.5 Fault list compilation and testability measurement using Verilog

Testbench written in Verilog/PLI

Verilog Simulator

Netlist of gates and flip-flops in Verilog

Fault List Generation
Fault Collapsing
Testability Analysis

QQ
S

E
T

C
LR

S R

QQ
S

E
T

C
LR

S R

QQ
S

E
T

C
LR

S R

2.3 Using Verilog in Test

file as the fault list (Fig. 2.5). In order to reduce test time, fault collapsing, which is also implementable
in the HDL environment, is performed.

Certain test applications, such as test generation or testability hardware insertion methods, need
measurements to estimate how testable their internal nodes are. Methods used for fault compilations
can also be used for applications such as this.

2.3.3 Fault Simulation

As mentioned, an HDL environment is able to generate a list of faults. This list can be used in
an HDL simulation environment for fault simulation of the circuit under test. To complement the
facilities that the HDL and its environment provide, we have developed Verilog PLI functions for
producing fault models of a CUT for the purpose of fault simulation. The PLI functions inject faults
in the good circuit model to create a faulty model of the CUT.

Assuming test data and the fault list and a mechanism for fault injection (FI) are available, fault
simulation can be implemented in an HDL testbench. This testbench needs to instantiate golden and

26

Fig. 2.6 Fault simulation using Verilog

Testbench written in Verilog

Test Control

Verilog Simulator

Netlist of gates and flip-flops
in Verilog

Fault List

Test Data

Fault Simulation Results
Fault Dictionary
Fault Coverage
Faulty Signature Generation

T
es

t d
at

a
ge

ne
ra

tio
n

2 Verilog HDL for Design and Test

faultable models of the circuit, and must be able to inject faults and remove them for creating vari-
ous faulty models (see Fig. 2.6).

An important application of fault simulation is the calculation of fault coverage, which is a mea-
sure of the number of faults detected versus those that are not. An HDL simulation tool, with a
proper testbench that instantiates a CUT, can calculate fault coverage for a test vector or a test set
of the CUT.

With fault simulation, it is possible to generate a faulty signature for every one of the CUT’s faults.
A database containing tests, faults and their faulty signatures is called a fault dictionary that is
another output that can be expected from an HDL simulation tool. When dealing with an actual faulty
CUT, by performing fault simulation, collecting its signature, and comparing the resulted signature
with the signatures saved in the fault dictionary, the CUT’s fault can be identified and located.

2.3.4 Test Generation

Another application of Verilog PLI for test applications is test generation. The same netlist that was
used for fault simulation is instantiated in the testbench of Fig. 2.7. This environment is able to
inject a fault, generate some kind of random or pseudo random test data, and check if the test vector
detects the injected fault. We can also find the number of undetected faults that a test vector detects.
The result can be a collection of test vectors that detect a good number of circuit faults. This
collection is a test set produced by HDL simulation of CUT.

2.3.5 Testability Hardware Design

Efficient design of hardware that makes a design testable is possible in an HDL environment. By means
of the testability measurements and other information provided by simulating a design, we can decide
on the type and the place of the testability hardware that we intend to insert into the original design. After
that, by applying test generation and fault simulation applications provided in this environment, a proper

27

Fig. 2.7 Test generation using Verilog

Testbench written in Verilog/PLI

Verilog Simulator

Netlist of gates and flip-flops in Verilog

Test Data Generation
Test Data Refinement
Test Data Evaluation

Test Control

Fault Injection in PLI

Fault List

Fig. 2.8 Testability hardware design using Verilog

Testbench written in Verilog/PLI

High-Level
Hardware

Description

Circuit Under Test in
Verilog Verilog Simulator Testability Hardware Evaluation BIST Configuration

Testability Hardware

T
es

t d
at

a
ge

ne
ra

tio
n

2.4 Basic Structures of Verilog

test set can be found for the new circuit, and the testbench can act as a virtual tester for the DFT-inserted
circuit. In this case, various testability factors of the new circuit, such as new testability measurements,
fault coverage, test time, and even power consumption estimation during test, can be obtained.

Along with this DFT evaluation, changing the configuration of the testability hardware is also
possible. For this purpose, the important parameters of the DFT, such as the place for inserting test
points, the length and the number of scan chains, and the number of clocks in the BIST circuit, can
be changed until the best possible configuration is obtained (Fig. 2.8).

2.4 Basic Structures of Verilog

As mentioned, all the design and test processes described in this book are implemented in Verilog.
The following subsections cover the basics of this language and the rules of describing designs in
various levels of abstraction. For more details on HDL modeling and testbenches, the reader is
encouraged to refer to [5, 6].

28

module module_iji (…)
…

endmodule

module module_ii (…)
…

endmodule

module module_ij (…)
…
module_iji MIIJ (…);
...

endmodule

module module_i (…)
…
module_ii MII (…);
module_ij MIJ (…);

endmodule

module_i

module_ii module_ij

module_iji

Fig. 2.9 Module outline and hierarchy

Fig. 2.10 Port, wire, and variable declaration

module acircuit (input a, b, input[7:0] av, bv, output w, output[7:0] wv);
 wire d, c;
 wire [7:0] dv;
 reg e;
 reg [7:0] ev;

 assign d = a & b;
 assign dv = av & bv;
 assign w [6:0] = av [7:1] & dv [7:1];
 assign cv[7] = d ^ bv[3];

 always @(av,bv,a,b) begin
 ev = {av[3:0],bv[7:4]}
 e = a | b;
 end

 assign wv = ev;

endmodule

2 Verilog HDL for Design and Test

In the examples in this chapter, Verilog keywords and reserved words are shown in bold. Verilog is
case sensitive. It allows letters, numbers, and special character “_” to be used for names. Names are
used for modules, parameters, ports, variables, wires, signals, and instance of gates and modules.

2.4.1 Modules, Ports, Wires, and Variables

The main structure used in Verilog for the description of hardware components and their testbenches is
a module. A module can describe a hardware component as simple as a transistor or a network of com-
plex digital systems. As shown in Fig. 2.9, modules begin with the module keyword and end with end-
module. A complete design may consist of several modules. A design file describing a design takes
the .v extension. For describing a system, it is usually best to include only one module in a design file.

A design may be described in a hierarchy of other modules. The top-level module is the complete
design and modules lower in the hierarchy are the design’s components. Module instantiation is the
construct used for bringing a lower level module into a higher level one. Figure 2.9 shows a hierarchy
of several nested modules.

The first part of a module description that begins with the module keyword and ends with a
semicolon is regarded as its header. As shown in Fig. 2.10, in addition to the module keyword, a

292.4 Basic Structures of Verilog

module header includes the module name and list of its ports. Port declarations specifying the mode
of a port (i.e. input, output, etc.), and its length can be included in the header or as separate declara-
tions in the body of the module. Module declarations appear after the module header. A port may
be input, output, or inout. The latter type is used for bidirectional input/output lines. The size of
a multibit port comes in a pair of numbers separated by a colon and bracketed by square brackets.
The number on the left of the colon is the index of the left most bit of the vector, and that on the
right is the index of the right most bit of the vector.

In addition to ports not declared in the module header, this part can include declaration of signals
used inside the module or temporary variables. Wires (that are called net in Verilog) are declared
by their types, wire, wand, or wor; and variables are declared as reg. Wires are used for intercon-
nections and have properties of actual signals in a hardware component. Variables are used for
behavioral descriptions and are similar to variables in software languages. Figure 2.10 shows several
wire and variable declarations.

Wires represent simple interconnection wires, busses, and simple gate or complex logical expres-
sion outputs. When wires are used on the left-hand side of assign statements, they represent outputs
of logical structures. Wires can be used in scalar or vector form. Multiple concurrent assignments
to a net are allowed and the value that the wire receives is the resolution of all concurrent assign-
ments to the net. Figure 2.10 includes several examples of wires used on the right and left hand
sides of assign statements.

In contrast to a net, a reg variable type does not represent an actual wire and is primarily used as
variables are used in a software language. In Verilog, we use a reg type variable for temporary
variables, intermediate values, and storage of data. A reg type variable can only be used in a proce-
dural body of Verilog. Multiple concurrent assignments to a reg should be avoided.

In the vector form, inputs, outputs, wires, and variables may be used as a complete vector, part of
a vector, or a bit of the vector. The latter two are referred to as part-select and bit-select. Examples of
part-select and bit-select on right and left hand sides of an assign statement are shown in Fig. 2.10.
The statement that assigns the ev reg, besides part-select indexing, illustrates concatenation of
av[3:0] and bv[7:4] and assigning the result to ev. This structure especially is useful to model swapping
and shifting operations.

2.4.2 Levels of Abstraction

Operation of a module can be described at the gate level, using Boolean expressions, at the behavioral
level, or a mixture of various levels of abstraction. Figure 2.11 shows three ways the same operation
can be described. Module simple_1a uses Verilog’s gate primitives, simple_1b uses concurrent
statements, and simple_1c uses a procedural statement. Module simple_1a describes instantiation
of three gate primitives of Verilog. In contrast, simple_1b uses Boolean expressions to describe the
same functions for the outputs of the circuit. The third description, simple_1c, uses a conditional
if statement inside a procedural statement to generate proper function on one output, and uses a
procedural Boolean function for forming the other circuit output.

2.4.3 Logic Value System

Verilog uses a 4-value logic value system. Values in this system are 0, 1, Z, and X. Value 0 is for logi-
cal 0 which in most cases represents a path to ground (Gnd). Value 1 is logical 1 and it represents a
path to supply (Vdd). Value Z is for float, and X is used for uninitialized, undefined, undriven,
unknown, and value conflicts. Values Z and X are used for wired-logic, busses, initialization values,
tristate structures, and switch-level logic.

30

module simple_1a (input i1, i2, i3, output w1,w2);
 wire c1;
nor g1(c1, i1, i2);
and g2 (w1, c1, i3);
xor g3(w2, i1, i2, i3);

endmodule

module simple_1b (input i1, i2, i3, output w1, w2);,
 assign w1 = i3 & ~ (i1 | i2);
 assign w2 = i1 ^ i2 ^ i3;
endmodule

module simple_1c (input i1, i2, i3, output w1, w2);
 reg w1, w2;
 always @ (i1, i2, i3) begin
 if (i1 | i2) w1 = 0; else w1 = i3;
 w2 = i1 ^ i2 ^ i3;
 end
endmodule

Fig. 2.11 Module definition alternatives

2 Verilog HDL for Design and Test

A gate input, or a variable or signal in an expression on the right-hand side of an assignment can
take any of the four logic values. Output of a two-valued primitive gate can only take 0, 1, and X
while output of a tristate gate or a transistor primitive can also take a Z value. A right-hand-side
expression can evaluate to any of the four logic values and can thus assign 0, 1, Z, or X to its left-
hand-side net or reg.

2.5 Combinational Circuits

A combinational circuit can be represented by its gate-level structure, its Boolean functionality, or
description of its behavior. At the gate level, interconnection of its gates are shown; at the func-
tional level, Boolean expressions representing its outputs are written; and at the behavioral level a
software-like procedural description represents its functionality. At the beginning of this section,
implementation of a NAND gate using primitive transistors of Verilog as a glance to transistor-
level design is illustrated. Afterward, the implementation of a 2-to-1 multiplexer is described in
various levels of abstraction to cover important concepts in combinational circuits. Examples for
combining various forms of descriptions and instantiation of existing components are also
shown.

2.5.1 Transistor-level Description

Verilog has primitives for unidirectional and bidirectional MOS and CMOS structures [7]. As an
example of instantiation of primitive transistors of Verilog, consider the two-input CMOS NAND
gate shown in Fig. 2.12.

The Verilog code of Fig. 2.13 describes this CMOS NAND gate. Logically, nMOS transistors in
a CMOS structure push 0 into the output of the gate. Therefore, in the Verilog code of the CMOS
NAND, input to output direction of nMOS transistors are from Gnd toward y. Likewise, nMOS

31

Fig. 2.13 CMOS NAND Verilog description

module cmos_nand (input a, b, output y);
 wire im1;
 supply1 vdd;
 supply0 gnd;

 pmos #(4, 5)
 g1 (y, vdd, a),
 g2 (y, vdd, b);
 nmos #(3, 4)
 g3 (im1, gnd, b),
 g4 (w, im1, a);
endmodule

y

a

b

g1 g2

g3

g4

im1

nand2_1d

Vdd

GND

Fig. 2.12 CMOS NAND gate

2.5 Combinational Circuits

transistors push a 1 value into y, and therefore, their inputs are considered the Vdd node and their
outputs are connected to the y node. The im1 signal is an intermediate net and is explicitly
declared.

2.5.2 Gate-level Description

We use the multiplexer circuit of Fig. 2.14 to illustrate how primitive gates are used in a design. The
description shown in Fig. 2.15 corresponds to this circuit. The module description has inputs and
outputs according to the schematic of Fig. 2.14.

The statement that begins in Line 6 and ends in Line 8 instantiates two and primitives. The
construct that follows the primitive name specifies 0-to-1 and 1-to-0 propagation delays for the
instantiated primitive (trlh

 = 2, trhl
 = 4). This part is optional and if eliminated, 0 values are

assumed trlh
 and trhl

 delays.
Line 7 shows inputs and outputs of one of the two instances of the and primitive. The output is

im1 and inputs are module input ports a and b. The port list on Line 7 must be followed by a comma
if other instances of the same primitive are to follow, otherwise a semicolon should be used, like the
end of Line 9. Line 8 specifies input and output ports of the other instance of the and primitive. Line
10 is for instantiation of the or primitive at the output of the majority gate. The output of this gate is

32

Fig. 2.15 Verilog code for the multiplexer circuit

module mux2to1 (a, b, s, y);
input a, b, s;
output y;

not #(1,1) (s_bar, s); //Line 05
and #(2,4) //Line 06

(im1, a, s_bar), //Line 07
(im2, b, s); //Line 08

or #(3,5) (y, im1, im2); //Line 09

endmodule

Fig. 2.14 2-to-1 multiplexer circuit

2 Verilog HDL for Design and Test

y that comes first in the port list, and is followed by inputs of the gate. In this example, intermediate
signals for interconnection of gates are im1, im2, and s_bar. Scalar interconnecting wires need not
be explicitly declared in Verilog. The two and instances could be written as two separate statements,
like instantiation of the or primitive. If we were to specify different delay values for the two instances
of the and primitive, we had to have two separate primitive instantiation statements.

2.5.3 Equation-level Description

At a higher level than gates and transistors, a combinational circuit may be described by the use of
Boolean, logical, and arithmetic expressions. For this purpose, the Verilog concurrent assign state-
ment is used. Table 2.1 shows Verilog operators that can be used with assign statements.

Figure 2.16 shows a 2-to-1 multiplexer using a conditional operator. The expression shown reads
as follows: if s is 1, then y is i1 else it becomes i0.

If there is more than one assign statement, because of the concurrency property of Verilog, the
order in which they appear in module is not important. These statements are sensitive to events on
their right-hand sides. When a change of value occurs on any of the right-hand-side net or variables,
the statement is evaluated and the resulting value is scheduled for the left-hand side net.

2.5.4 Procedural Level Description

At a higher level of abstraction than describing hardware with gates and expressions, Verilog
 provides constructs for procedural description of hardware. Unlike gate instantiations and assign

33

Table 2.1 Verilog operators

Bitwise operators & | ^ ~ ~^ ^~
Reduction operators & ~& | ~| ^ ~^ ^~
Arithmetic operators + – * / %
Logical operators && || !
Compare operators < > <= >= ++
Shift operators >> <<
Concatenation operators {} { {}}n

Conditional operators ?:

Fig. 2.16 A 2-to-1 Multiplexer using condition operator

module mux2_1 (input [3:0] i0, i1, input s, output [3:0]y);
assign y = s ? i1 : i0;

endmodule

2.5 Combinational Circuits

statements that correspond to concurrent substructures of a hardware component, procedural state-
ments describe the hardware by its behavior. Also, unlike concurrent statements that appear directly
in a module body, procedural statements must be enclosed in procedural blocks before they can be
put inside a module.

The main procedural block in Verilog is the always block. This is considered a concurrent statement
that runs concurrent with all other statements in a module. Within this statement, procedural statements
like if-else and case statements are used and are executed sequentially. If there are more than one
procedural statement inside a procedural block, they must be bracketed by begin and end keywords.

Unlike assignments in concurrent bodies that model driving logic for left-hand-side wires,
assignments in procedural blocks are assignments of values to variables that hold their assigned
values until a different value is assigned to them. A variable used on the left hand side of a proce-
dural assignment must be declared as reg.

An event control statement is considered a procedural statement, and is used inside an always
block. This statement begins with an at-sign, and in its simplest form, includes a list of variables in
the set of parenthesis that follow the at-sign, e.g., @ (v1, v2,…).

When the flow of the program execution within an always block reaches an event-control state-
ment, the execution halts (suspends) until an event occurs on one of the variables in the enclosed
list of variables. If an event-control statement appears at the beginning of an always block, the vari-
able list it contains is referred to as the sensitivity list of the always block. For combinational circuit
modeling, all variables that are read inside a procedural block must appear on its sensitivity list.

2.5.4.1 Multiplexer Example

As an example of a procedural block, consider the 2-to-1 multiplexer of Fig. 2.17. This example
uses an if-else construct to set y to i0 or i1 depending on the value of s. As in the previous examples,
all circuit variables that participate in the determination of value of y appear on the sensitivity list
of the always block. Also since y appears on the left-hand side of a procedural assignment, it is
declared as reg.

The if-else statement shown in Fig. 2.17 has a condition part that uses an equality operator.
If the condition is true (i.e., s is 0), the block of statements that follow it will be taken, otherwise
the block of statements after the else is taken. In both cases, the block of statements must be brack-
eted by begin and end keywords if there are more than one statement in a block.

34

Fig. 2.17 Procedural multiplexer

module mux2_1 (input i0, i1, output reg s, y);
always @(i0, i1, s) begin

if (s==1'b0)
 y = i0;

else
 y = i1;

end
endmodule

Fig. 2.18 Procedural ALU

module alu_4bit (input [3:0] a, b, input [1:0] f, output reg [3:0] y);
always @ (a or b or f) begin

case (f)
 2'b00 : y = a + b;
 2'b01 : y = a - b;
 2'b10 : y = a & b;
 2'b11 : y = a ^ b;

default: y = 4'b0000;
endcase

end
endmodule

2 Verilog HDL for Design and Test

2.5.4.2 Procedural ALU Example

The if-else statement, used in the previous example, is easy to use, descriptive, and expandable.
However, when many choices exist, a case statement which is more structured may be a better
choice. The ALU description of Fig. 2.18 uses a case statement to describe an ALU with add, sub-
tract, AND, and XOR functions. The case statement shown in the always block uses f to select one
of ALU functions in the case alternatives. The last alternative is the default alternative that is taken
when f does not match any of the alternatives that appear before it. This is necessary to make sure
that unspecified input values (here, those that contain X and/or Z) cause the assignment of the
default value to the output and do not leave it unspecified.

2.5.5 Instantiating Other Modules

We have shown how primitive gates can be instantiated in a module and wired with other parts of
the module. The same applies to instantiating a module within another. For regular structures,
Verilog provides repetition constructs for instantiating multiple copies of the same module, primi-
tive, or set of constructs. Examples in this section illustrate some of these capabilities.

2.5.5.1 ALU Example Using Adder

The ALU of Fig. 2.18 starts from scratch and implements every function it needs inside the module.
If we have a situation that we need to use a specific design from a given library, or we have a function
that is too complex to be repeated everywhere it is used, we can make it into a module and instantiate
it when we need to use it.

35

Fig. 2.19 ALU Verilog code using instantiating an adder

module ALU_Adder (input [7:0] a,b, input addsub, // Line 01
output gt, zero, co, output [7:0] r);

wire [7:0] b_bbar;
add_8bit ADD (a, b_bbar, addsub, r, co); // Line 04
assign b_bbar = addsub ? ~b : b; // Line 05
assign gt = (a>b);
assign zero = (r == 0);

endmodule

2.5 Combinational Circuits

Figure 2.19 shows another version of the above ALU circuit. In this new version, addition is
handled by instantiation of a predesigned adder (add_8bit). Instantiation of a component, such
as add_8bit in the above example, starts with the component name, an instance name (ADD),
and the port connection list. The latter part decides how local variables of a module are mapped
to the ports of the component being instantiated. The above example uses an ordered list, in
which a local variable, e.g., b_bbar, takes the same position as the port of the component it
is connecting to, e.g., b. Alternatively, a named port connection such as that shown below can
be used.

add_8bit ADD (.a(a),.b(b_bbar),.ci(addsub),.s(r),.co(co));

Using this format allows port connections to be made in any order. Each connection begins with
a dot, followed by the name of the port of the instantiated component, e.g. b, and followed by a set of
parenthesis enclosing the local variable that is connected to the instantiated component, e.g. b_bbar.
This format is less error-prone than the ordered connection.

2.5.5.2 Iterative Instantiation

Verilog uses the generate statement for describing regular structures that are composed of smaller
sub-components. An example is a large memory array or a systolic array multiplier. In such cases,
a cell unit of the array is described, and by means of several generate statements, it is repeated in
several directions to cover the entire array of the hardware.

Here, we show the description of a parametric n-bit AND gate using this construct. Obviously,
n-input gates can be easily obtained by using vector inputs and outputs for Verilog primitives.
However, the example shown in Fig. 2.20 besides illustrating the iterative generate statement of
Verilog, introduces the structure of components that are used in this book to describe gate-level
circuits for test applications. This description is chosen due to the PLI requirements for implement-
ing test applications that are discussed later.

The code of Fig. 2.20 uses the parameter construct to prepare parametric size and delays for this
AND gate. In the body of this module on Line 8, a variable for generating n instances of and primi-
tive is declared using the genvar declaration. The generate statement that begins on Line 10 loops
n times to generate an instance of the and gate in every iteration. Together, the and_0 instance and
the generate statement make enough and gates to AND together bits 0 to n-1 of input vector in.
This is done by use of the intermediate wire, mwire. Since the resulted and_n must represent a
bitwise function, mwire net is declared to accumulate bit-by-bit AND results. Line 9 shows the first
two bits of the in input vector ANDed using the and primitive, and the result is collected in bit 0 of
mwire. After that, each instanced and in the generate statement takes the next bit from in and ANDs
it with the calculated bit of mwire to generate the next bit of mwire. The resulted hardware for this
parametric and_n gate, is concatenation of 2-input and primitives that AND all bits of the in input
vector.

The complete component library for test applications of this book can be found in Appendix B.

36

Fig. 2.20 Using iterative instantiation for test primitive AND gate

module and_n
#(parameter n = 2, tphl = 1, tplh = 1)(out,in);

 input [n-1:0] in;
 output out;
 wire [n-2:0] mwire;

genvar i; //Line 08
and and_0 (mwire [0], in [0], in [1]); //Line 09

 generate //Line 10
for (i=1; i <= n-2; i=i+1) begin : AND_N //Line 11

and inst (mwire [i], mwire [i-1], in [i+1]); //Line 12
end

endgenerate

bufif1 #(tplh, tphl) inst(out, mwire [n-2], 1'b1); //Line 16

endmodule

2 Verilog HDL for Design and Test

2.6 Sequential Circuits

As with any digital circuit, a sequential circuit can be described in Verilog by the use of gates,
Boolean expressions, or behavioral constructs (e.g., the always statement). While gate-level
descriptions enable a more detailed description of timing and delays because of complexity of
clocking and register and flip-flop controls, these circuits are usually described by the use of proce-
dural always blocks. This section shows various ways sequential circuits are described in Verilog.

2.6.1 Registers and Shift Registers

Figure 2.21 shows an 8-bit register with set and reset inputs that are synchronized with the clock.
The set input puts all 1s in the register, and the reset input resets it to all 0s. The sensitivity list of
the procedural statement shown includes posedge of clk. This always statement only wakes up
when clk makes a 0 to 1 transition. When this statement does wake up, the value of d is put into q.
Obviously, this behavior implements a rising-edge register. Instead of posedge, the use of negedge
would implement a falling-edge register.

In order to provide procedural description for shift registers the concatenation construct can be
used as shown in Fig. 2.22. This partial code, that can be used in the body of an always statement
like that of Fig. 2.21, does a left-shift if shift_left is 1, and right shifts, otherwise.

2.6.2 State Machine Coding

Along with simple sequential circuits, such as registers, shift registers, and counters, Verilog con-
structs enable the designer to model finite state machines of any type. State machines can be mod-
eled as Moore or Mealy machines. In both cases, based on the current state of the sequential circuit
and its input, the next state is decided. The difference is in the determination of outputs. Unlike a
Moore machine that has outputs that are only determined by the current state of the machine, in a

37

Fig. 2.21 An 8-bit register

module register (input [7:0] d, input clk, set, reset, output reg [7:0] q);
always @ (posedge clk) begin

if (set)
 q <= 8'b1;

else if (reset)
 q <= 8'b0;

else
 q <= d;

end
endmodule

Fig. 2.22 Concatenation for a 8-bit shift register

if (shift_left)
q <= {q[6:0], s_in};

else
q <= {s_in, q[7:1]};

2.6 Sequential Circuits

Mealy machine, the outputs are declared regarding the state the machine is in as well as the inputs
of the circuit. This makes Mealy outputs not fully synchronized with the circuit clock.

This section shows coding for state machines and introduces the Huffman coding style. The
example we use is a Residue-5 divider. The coding styles used here apply to such controllers and
are used in later sections of this chapter to describe the controller of a simple adding machine.
It must be mentioned that the Residue-5 example presented here is one of the test cases for the
application of test methods in this book. Simpler and more detailed examples can be found in [6].

2.6.2.1 Residue-5 Divider

The Residue-5 divider is a circuit that performs the integral division modulo-5 on the sequences
coming on its input. For this purpose, the circuit divides the first received input by five and stores
the remainder. For the next data on the input port, the circuit adds the new value to the stored
remainder, divides the result by 5, and stores the new remainder. This circuit can be modeled using
a finite state machine. The remainder stored in this circuit shows its internal state and its output.
State diagram for the Residue-5 divider using 2-bit input x is depicted in Figs. 2.23 and 2.24. For
the sake of readability, Fig. 2.23 just includes arcs related to two states.

The machine has five states that are labeled, Zero, One, Two, Three, and Four; each of which
shows the resulted Residue-5 remainder. In the Moore state machine modeling, the output depends
just on the current state, so in Fig. 2.23 the output is defined for each state. In addition to the x input,
the machine has a reset input that forces the machine into its Zero state. The resetting of the machine
is synchronized with the circuit clock.

2.6.2.2 The Moore Implementation of Residue-5 in Verilog

The Verilog code of the Moore machine of Fig. 2.24 is shown in Fig. 2.25. After the declaration of
inputs and outputs of this module, parameter declaration declares five states of the machine as 3-bit
parameters. The square-brackets following the parameter keyword specify the size of parameters
being declared. Following parameter declarations in the code of Fig. 2.25, the 3-bit current reg type

38

Zero

000

One

001

Two

010
Three

011

Four

100

00

01

10

00

01

10

11

00

11

00

00

reset

Fig. 2.23 A part of
Residue-5 Moore state
machine

Zero

000

One

001

Two

010
Three

011

Four

100

01

10

11

00

0110

11

00

01

10

11

00

01

10

11

00

01

10

11

Fig. 2.24 Complete Residue-5
Moore state machine

2 Verilog HDL for Design and Test

variable is declared. This variable holds the current state of the state machine. The body of the code
of this circuit has an always block and an assign statement.

The assign statement shown in Fig. 2.25 puts the proper value on the output regarding the current
state. This statement is concurrent with the always block that is responsible for making the state
transitions. The always block used in the module of Fig. 2.25 describes state transitions of the state

39

Fig. 2.25 Moore machine Verilog code

module residue5(input clk, reset, input[1:0] x, output[2:0] out);
reg[2:0] current;
parameter Zero = 3'b000, One = 3'b001, Two = 3'b010,
 Three = 3'b011, Four = 3'b100;

always @(posedge clk) begin
 if(reset == 1)
 current <= Zero;
 else

case(current)
 Zero: case(x)
 2'b00: current <= Zero;
 2'b01: current <= One;
 2'b10: current <= Two;
 2'b11: current <= Three;

endcase
 One: case(x)
 2'b00: current <= One;
 2'b01: current <= Two;
 2'b10: current <= Three;
 2'b11: current <= Four;

endcase
 Two: case(x)
 2'b00: current <= Two;
 2'b01: current <= Three;
 2'b10: current <= Four;
 2'b11: current <= Zero;

endcase
 Three: case(x)
 2'b00: current <= Three;
 2'b01: current <= Four;
 2'b10: current <= Zero;
 2'b11: current <= One;

endcase
 Four: case(x)
 2'b00: current <= Four;
 2'b01: current <= Zero;
 2'b10: current <= One;
 2'b11: current <= Two;

endcase
default: current <= Zero;

endcase
end
assign out = current;

endmodule

2.6 Sequential Circuits

diagram of Fig. 2.24. The main task of this procedural block is to inspect input conditions (values
on reset and x) during the present state of the machine defined by current and set values into current
for the next state of the machine.

The flow into the always block begins with the positive edge of clk. Since all activities of this
machine are synchronized with the clock, only clk appears on the sensitivity list of the always
block. Upon entry into this block, the reset input is checked and if it is active, current is set to Zero
(Zero is a declared parameter and its value is 0). The value put into current in this pass through
the always block gets checked in the next pass with the next edge of the clock. Therefore, assign-
ments to current are regarded as the next-state assignment. When such an assignment is made, the
case statement skips the rest of the code of the always block, and this always block will next be
entered with the next positive edge of clk. Upon entry into the always block, if reset is not 1, pro-
gram flow reaches the case statement that checks the value of current against the five states of the
machine.

40

Two

Three

Four

00

Two: begin

if (x==2'b00)

current <= Two;

else if (x==2'b01)

current <= Three;

Zero

01

10

11

assign out = current;

else if (x==2'b10)

current <= Four;

else if (x==2'b11)

current <= Zero;

Fig. 2.26 Next values from
state two

Fig. 2.27 Huffman partitioning
of Residue-5 divider

2 Verilog HDL for Design and Test

Figure 2.26 shows the Verilog code of the Two state and its diagram from the state diagram of
Fig. 2.24. As shown, the case alternative that corresponds to the Two state specifies the next values
for that state. Determination of the next state is based on the value of x. If x is 1, the next state
becomes Three, and if x is 2, the next state becomes Four, and so on. As shown in the assign state-
ment in Fig. 2.25, the output bits of this circuit are taken directly from the current register.

This same machine can be described in Verilog in several different forms. A finite state machine
can also be described as a Mealy machine. As mentioned, in this case the output depends not only
on the current state, but also on the input of the circuit. In Mealy machines, the output becomes
available one cycle sooner than that of a Moore machine, causing fewer states than Moore.

2.6.2.3 Huffman Coding Style

The Huffman model for a digital system characterizes it as a combinational block with feedbacks
through an array of registers. Verilog coding of digital systems, according to the Huffman model,
uses an always statement for describing the register part and another concurrent statement for
describing the combinational part. This model of representing a digital component is very useful for
test purposes, as we see in the chapters that follow.

We describe the state machine of Fig. 2.24 to illustrate this style of coding. Figure 2.27
shows the combinational and register part partitioning that we use for describing this machine.

41

Fig. 2.28 Verilog Huffman coding style

case(p_state)
 Zero:…n_state = …
 One:… n_state = …
 Two:… n_state = …
 Three:… n_state = …
 Four:… n_state = …

default:…
endcase

end// Combinational part
 always@(posedge clk, posedge rst) begin
 if(rst)
 p_state = Zero;
 else
 p_state = n_state;

end// Register part

assign out = p_state;
endmodule

module residue5_huffman(input clk, rst, input[1:0] x, output[2:0] out);
reg[2:0] n_state, p_state;
parameter Zero = 3'b000, One = 3'b001, Two = 3'b010,

Three = 3'b011, Four = 3'b100;
always@(p_state, x) begin

n_state = Zero;

2.6 Sequential Circuits

The combinational block uses x and p_state as input and generates out and n_state. The register
block clocks n_state into p_state, and resets p_state when rst is active.

Figure 2.28 shows the Verilog code of Fig. 2.24 according to the partitioning of Fig. 2.27. As
shown, parameter declaration declares the states of the machine. Following this declaration, n_state
and p_state variables are declared as 3-bit regs that hold values corresponding to the five states of
the Moore Residue-5 divider. The combinational always block follows this reg declaration. Since
this is purely a combinational block, it is sensitive to all its inputs, namely, x and p_state.
Immediately following the block heading, n_state is set to its inactive or reset value. This is done
so that this variable is always reset with the clock to make sure it does not retain its old value. Note
that retaining old values implies latches, which is not what we want in our combinational block.

The body of the combinational always block of Fig. 2.28 contains a case statement that uses the
p_state input of the always block for its case expression. This expression is checked against the
states of the Moore machine. As in the other styles discussed before, this case statement has case
alternatives for all of the states. For brevity, the statements in the case alternatives are not shown.
These statements set the n_state variable using the same procedure as setting the current variable in
Fig. 2.25. In a block corresponding to a case alternative, based on input values, n_state is assigned
values. Unlike the other style where current is used both for the present and next states, here we use
two different variables, p_state and n_state.

The next procedural block shown in Fig. 2.28 handles the register part of the Huffman model
of Fig. 2.27. In this part, n_state is treated as the register input and p_state as its output. On the
positive edge of the clock, p_state is either set to the Zero state (000) or is loaded with contents of
n_state. Together, combinational and register blocks describe our state machine in a very modular
fashion.

As with the other style we presented, a separate assign statement (or any other concurrent statement)
is used for the assignment of values to the output. The advantage of this style of coding is in its modu-
larity and defined tasks of each block. State transitions are handled by the combinational block and
clocking is done by the register block. Changes in clocking, resetting, enabling, or presetting the machine
only affect the coding of the register block. In this code, the a synchronous resetting is applied.

42

Fig. 2.29 Control/data partitioning
for Adding Machine

2 Verilog HDL for Design and Test

2.7 A Complete Example (Adding Machine)

In this section, the complete RTL design of a simple CPU is described. Although this design has the
structure of a simple CPU, since its ALU actually just performs adding operation, we refer to it as
Adding Machine. In this part, almost all Verilog constructs explained in this chapter are exercised.
Furthermore, the basics of RTL design and datapath and controller partitioning are introduced. Later,
this Adding Machine is used as one of the test cases in this book for demonstrating test methods.

2.7.1 Control/Data Partitioning

The first step in an RT-level design is the partitioning of the design into a data part and a control
part. The data part consists of data components and the bussing structure of the design, and the
control part is usually a state machine generating control signals that control the flow of data in the
data part [8].

Figure 2.29 shows a general sketch of an RT-level design that is partitioned into its data and
control parts. As shown in this figure, a processor is divided into datapath and controller parts. The
datapath has storage elements (registers) to store intermediate data, handles transfer of data between
its storage components, and performs arithmetic or logical operations on data that it stores. The
datapath also has communication lines for transfer of data; these lines are referred to as busses.
Activities in the datapath include reading from and writing into data registers, bus communications,
and distributing control signals generated by the controller to the individual data components.

The controller commands the datapath to perform proper operation(s) according to the instruc-
tion it is executing. Control signals carry these commands from the controller to the datapath.
Control signals are generated by the controller state machine that, at all times, knows the status of
the task that is being executed and the sort of the information that is stored in datapath registers.
Controller is the thinking part of a design.

2.7.2 Adding Machine Specification

The design of Adding Machine begins with the specification of the design, including the number
of general purpose registers and the instruction format. The machine has two 8-bit external data
buses (input bus and output bus) and a 6-bit address bus. The address bus connects to the memory
in order to address locations that are being read from or written into. Data read from the memory

43

Table 2.2 Adding machine instruction set

Opcode Instruction Instruction class Description

00 add immd Arithmetic AC ¬ AC + immd
01 lda adr Data-transfer AC ¬ Mem [adr]
10 sta adr Data-transfer Mem [adr] ¬ AC
11 jmp adr Control-flow PC ¬ adr

2.7 A Complete Example (Adding Machine)

are instructions and instruction operands, and data written into the memory are instruction results
and temporary information. Adding Machine also communicates with its IO devices through its
external busses. The address bus addresses a specific device or a device register while the data bus
contains data that is to be written or read from the device.

Each instruction of Adding Machine is 8 bits wide, and occupies a memory word. The instruction
format of the machine has an explicit operand (immediate data or memory location the address of
which is specified in the instruction) and an implicit operand. Adding Machine has four instructions,
divided into three classes of arithmetic (add), data transfer (lda, sta), and control-flow instructions
(jmp).

Adding Machine instructions are described below. A tabular list and summary of this instruction
set is shown in Table 2.2.

 · add immd: adds the immd data with an 8-bit register named accumulator (AC) and stores the
result back in AC.

 · lda adr: reads the content of the memory location addressed by adr and writes it into AC.
 · sta adr: writes the content of AC into the memory location addressed by adr.
 · jmp adr: jump to the memory location addressed by adr.

2.7.3 CPU Implementation

In the following subsections, the Verilog implementation of the Adding Machine in register transfer
level of abstraction is described.

2.7.3.1 Datapath Design

As mentioned, Adding Machine has an 8-bit register called accumulator (AC). All data transfers and
arithmetic instructions use AC as an operand. In a real CPU, there may be multiple accumulators or
an array of registers that is referred to as a register file.

To store the instruction that is read from the memory, a register is used at the output of the
memory unit called instruction register (IR). The program counter (PC) is implemented as a
counter that is incremented for program sequencing. Using these registers, the implementation
of datapath is shown in Fig. 2.30. The input data bus connects to the input of IR in order to bring
the instruction read from the memory into this register. Similarly, this bus connects to AC to
bring data read from the memory into the AC register. The control signal for loading IR and AC
are ld_ir and ld_ac, respectively. PC has three control signals ld_pc, inc_pc, and clr_pc to load,
increment, and clear it, respectively. The right most 6 bits of IR connect to the input of PC
for the execution of the jmp instruction. When a bus has more than one source driving it, e.g.,
IR and PC driving adr_bus, a multiplexer and control signals from the controller select the
source.

44

PC_RegALU

AC IR

Controller

PC_Logic

ld_irld_ac

clk clk

pass_add
clk

inc_pc
clr_pc
Id_pc

0

8

8

8
6

2
8

op_code
8

21
2

1

8

6

data_bus_out

ad_bus

data_bus_in

6

ld_ac
...

Id_pc

Ir_on_adr
pc_on_adr

62

Fig. 2.30 Adding machine multicycle datapath

2 Verilog HDL for Design and Test

2.7.3.2 Controller Design

After the design of the datapath and figuring control signals and their role in activities in the data-
path, the design of the controller becomes a simple matter. The block diagram of this part is shown
in Fig. 2.31.

The controller of our Adding Machine has four states, Reset, Fetch, Decode, and Execute. As the
machine cycles through these states, various control signals are issued. In state Reset, for example,
the clr_pc control signal is issued. State Fetch issues pc_on_adr, rd_mem, ld_ir, and inc_pc to read
memory from the present PC location, route it to IR, load it into IR, and increment PC for the next
memory fetch. Depending on op_code bits, that are the controller inputs, the Execute state of the
controller issues control signals for the execution of lda, sta, add, and jmp instructions. The
Decode state is a simple wait state.

The next section discusses details of the controller signals and their role in execution of these
instructions. As before, our processor description has a datapath and a control component. The
controller is described using a state machine coding style. At the end, the description of our small
example is completed by wiring datapath and controller in a top-level Verilog module.

2.7.3.3 Datapath HDL Description

Datapath components of Adding Machine are described by always and assign statements according
to their functionalities described above. Afterward, these modules are instantiated into the datapath
module. Figure 2.32 shows the Verilog code of the datapath. Structure and signal names in this
description are according to those shown in Fig. 2.30.

2.7.3.4 Controller HDL Description

The controller code for our Adding Machine example is shown in Fig. 2.33. This code corresponds
to the right-hand side control block in Fig. 2.29 which is shown in more details in Fig. 2.31.

45

Fig. 2.31 Simple CPU Adding Machine multicycle controller

Fig. 2.32 Datapath HDL description

module DataPath (clk, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc,
clr_pc, pass_add, adr_bus, op_code, data_bus_in, data_bus_out);

input clk, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc, clr_pc,
 pass_add;
output [5:0] adr_bus;
output [1:0] op_code;
input [7:0] data_bus_in;
output [7:0] data_bus_out;

wire [7:0] ir_out;
wire [5:0] pc_out;
wire [7:0] a_side;

 IR ir(data_bus_in, ld_ir, clk, ir_out);
 PC pc(ir_out[5:0], ld_pc, inc_pc, clr_pc, clk, pc_out);
 AC ac(data_bus_in, ld_ac, clk, a_side);
 ALU alu(a_side, {2'b00,ir_out[5:0]}, pass_add, data_bus_out);

assign adr_bus = ir_on_adr ? ir_out[5:0] : pc_on_adr ? pc_out : 6'b0;
assign op_code = ir_out[7:6];

endmodule

2.7 A Complete Example (Adding Machine)

In addition to clk and reset, the controller has the op_code input that is driven by IR and comes to
the controller from the DataPath module (see Fig. 2.30).

The sequencing of control states is implemented by a Huffman style Verilog code. In this style,
an always block (registering) handles the assignment of values to present_state, and another always

46

Fig. 2.33 Controller HDL description

`define Reset 2'b00
`define Fetch 2'b01
`define Decode 2'b10
`define Execute 2'b11

module Controller (reset, clk, op_code, rd_mem, wr_mem, ir_on_adr,
 pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc, clr_pc,

pass_add);

input reset, clk;
input [1:0]op_code;
output rd_mem, wr_mem, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc;
output inc_pc, clr_pc, pass_add;
reg rd_mem, wr_mem, ir_on_adr, pc_on_adr, ld_ir, ld_ac;
reg ld_pc, inc_pc, clr_pc, pass_add;
reg [1:0] present_state, next_state;

always @(posedge clk)begin : registering
if (reset)

 present_state <= `Reset;
else

 present_state <= next_state;
end
always @(present_state) begin : combinational

 rd_mem=1'b0; wr_mem=1'b0; ir_on_adr=1'b0; pc_on_adr=1'b0;
 ld_ir=1'b0; ld_ac=1'b0;
 ld_pc=1'b0; inc_pc=1'b0; clr_pc=1'b0; pass_add=1'b0;

case(present_state)
 `Reset : begin
 next_state = `Fetch; clr_pc = 1'b1;

end
 `Fetch : begin
 next_state = Decode ; pc_on_adr=1'b1; rd_mem=1'b1;
 ld_ir=1'b1; inc_pc=1;

end
 Decode : begin
 next_state = `Execute;

end
 `Execute: begin
 next_state = `Fetch;

case(op_code)
 2'b00: begin // lda
 ir_on_adr=1'b1; rd_mem=1'b1; ld_ac=1'b1;

end
 2'b01: begin // sta
 ir_on_adr=1'b1; pass_add = 1'b0;
 wr_mem=1'b1;

end
 2'b10: ld_pc=1'b1; // jmp
 2'b11: begin // add
 pass_add=1'b1; ld_ac=1'b1;

end
endcase

end
endcase

end
endmodule

2 Verilog HDL for Design and Test

47

Fig. 2.34 Adding Machine top-level module

module CPU(reset,clk,adr_bus,rd_mem,wr_mem,data_bus_in,data_bus_out);
input reset;
input clk;
input [7:0]data_bus_in;
output [5:0]adr_bus;
output rd_mem;
output wr_mem;
output[7:0]data_bus_out;
wire ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc, clr_pc, pass_add;
wire [1:0] op_code;

Controller cu (reset, clk, op_code, rd_mem, wr_mem, ir_on_adr, pc_on_adr,
 ld_ir, ld_ac, ld_pc, inc_pc, clr_pc, pass_add);

DataPath dp (clk, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc,
 clr_pc, pass_add, adr_bus, op_code, data_bus_in, data_bus_out);

endmodule

2.7 A Complete Example (Adding Machine)

statement (combinational) uses this register output as the input of a combinational logic determining
next_state. This combinational block also sets values to control signals that are outputs of the
controller.

In the body of the combinational always block, a case statement checks present_state against the
states of the machine (Reset, Fetch, Decode, and Execute), and activates the proper control signals.

The Reset state activates clr_pc to clear PC and sets Fetch as the next state of the machine. In
the Fetch state, pc_on_adr, rd_mem, ld_ir, and inc_pc become active, and Decode is set to
become the next state of the machine. By activating pc_on_adr and rd_mem, the PC output goes
on the memory address and a read operation is issued. Assuming the memory responds in the
same clock, contents of memory at the PC address will be put on data_bus_in. This bus is
connected to the input of IR and issuance of ld_ir loads its contents into this register. The next
state of the controller is Decode that makes the new contents of IR available for the controller.
In the Execute state, a newly fetched instruction in IR decides on control signals to issue to execute
the instruction.

In the Execute state, op_code is used in a case expression to decide on control signals to issue
depending on the opcode of the fetched instruction. The case alternatives in this statement are four
op_code values of 00, 01, 10, and 11 that correspond to lda, sta, jmp, and add instructions.

For lda, ir_on_adr, rd_mem, and ld_ac are issued. These control signals cause the address from
IR to be placed on the adr_bus address bus, memory read to take place and data from memory to
be loaded into AC.

The controller executes the sta instruction by issuing pass_add, ir_on_adr, and wr_mem. As
shown in Fig. 2.33, these signals take contents of AC to the input bus of the memory (i.e., data_bus_
out), and wr_mem causes the writing into the memory to take place. Note that pass_add causes AC
to pass through ALU unchanged. The jmp instruction is executed by enabling PC load input, which
takes the jump address from IR (see Fig. 2.33).

The last instruction of this machine is add, for execution of which, pass_add and ld_ac are
issued. This instruction adds data in the upper 6 bits of IR with AC and loads the result into AC.

2.7.3.5 The Complete HDL Design

The top-level module for our Adding Machine example is shown in Fig. 2.34. In the CPU module
shown, DataPath and Controller modules are instantiated. Port connections of the Controller

48 2 Verilog HDL for Design and Test

include its output control signals, the op_code input from DataPath and the reset external input. Port
connections of DataPath consist of adr_bus and data_bus_in and data_bus_out external busses,
op_code output, and control signal inputs.

2.8 Testbench Techniques

The previous sections described Verilog for designing combinational and sequential circuits, as
well as complete systems. This section discusses about testbenches and their role in simulation.
However, the primary intention of this part is to show how testbench techniques could help us to
develop test environments and virtual testers for digital circuit testing. This section shows how
Verilog language constructs can be used for the application of data to a module under test, and
how module responses can be displayed and checked.

A Verilog testbench is a Verilog module that instantiates a module under test (MUT), applies data
to it and monitors its output. Because a testbench is in Verilog, it can go from one simulation envi-
ronment to another. A module and its corresponding testbench form a simulation model in which
MUT is tested regardless of what simulation environment is used.

Based on these considerations, testbenches could play a very important role in the development
of test applications in HDL environments. Therefore, a test designer must understand testbenches
and language constructs that are used for testing a design module. The basics of testbench tech-
niques in Verilog HDL are discussed in this section, and more complete testbenches to develop test
applications are illustrated in the next chapters.

2.8.1 Testbench Techniques

All that a testbench covers can be categorized in instantiating a module, applying generated or existing
data to the inputs of the MUT, delay management, and then collecting the responses of the circuit
and, if required, comparing them with the expected responses. Therefore, testbench techniques
can be categorized in order to answer the following questions: 1) How is the data generated or
provided, 2) How are the circuit responses getting reported, 3) What are data generation and
response collection sensitive, and 4) What language constructs are to be used to manage the termi-
nation of a testbench?

Answers to the above questions are discussed in the rest of this section, and for preparing for the
materials that follow Short answer for the above questions are given in the following.

1. The methods to provide data include deterministic – assigning a specific data to inputs, arithmetic –
for example, using a counter to provide new data, periodic – toggling the value of a signal in
certain periods, random – for example, using $random task function of Verilog, and Text IO –
reading data from a stored text file, e.g. using $fscanf or $fread.

2. To report the circuit responses, Verilog display utilities such, as $display or $monitor can
be used. These tasks, show the results in the simulator’s console. Another way is to use Text
IO to record the responses in text files for future references, e.g., using $fdisplay or
$fwrite.

3. It is important to decide on the conditions that test data are applied to a design under test, and
conditions for collection of its responses. Various choices for such conditions are: a) End of a
delay, which can abe based on different time slots, equal time slots, or random amount of
delay, and b) Change of a signal which is appropriate to make handshaking and synchroniza-
tion between the testbench and the design under test.

49

Fig. 2.35 alu_4bit module declaration

module alu_4bit (input [3:0] a, b, input [1:0] f, output reg [3:0] y);

//…

endmodule

Fig. 2.36 Testbench for alu_4bit

module test_alu_4bit;
reg [3:0] a=4'b1011, b=4'b0110;
reg [1:0] f=2'b00;
wire [3:0] y;

 alu_4bit MUT(a, b, f, y);

initial begin
 #20 b=4'b1011;
 #20 b=4'b1110;
 #20 b=4'b1110;
 #20 $finish;
end
always #23 f = f + 1;

endmodule

2.8 Testbench Techniques

4. While applying data and collecting responses, the duration of running a testbench must also be
specified. The methods to manage the end time of a testbench include $stop, $finish or managing
iterations using repeat or for construct.

Examples of the above items will be seen in the testbenches that are discussed in the following sec-
tions for testing combinational and sequential circuits.

2.8.2 A Simple Combinational Testbench

Developing a testbench for a combinational circuit is straightforward; however, selection of data and
how much testing should be done depends on the MUT and its functionality. Previously, a simple ALU
was described (Fig. 2.18) that we use here to test, and its header is repeated in Fig. 2.35 for reference.
The alu_4bit module is a four function ALU. Data inputs are a and b, and its function input is f.

A testbench for alu_4bit is shown in Fig. 2.36. Variables corresponding to inputs and outputs of
the MUT are declared in the testbench. Variables connecting to the inputs are declared as reg and
outputs as wire. Instantiation of alu_4bit, shown in the testbench, associates local regs and wires
with the ports of this module.

Variables that are associated with the inputs of alu_4bit have been given initial values when
declared. Application of data to the b input is done in an initial statement. For the first 60 ns and
every 20 ns, a new value is assigned to b, and after 20 ns the testbench finishes the simulation. This
last 20 ns wait, allows effects of the last input change to be shown in the simulation run results.

Application of data to the f input of alu_4bit is done in an always statement. Starting with the
initial value of 0, f is incremented by 1 every 23 ns. The $finish statement in the initial block is
reached at 80 ns. At this time, all active procedural blocks stop and simulation terminates. Simulation

50

Fig. 2.38 A testbench for the residue5 module

module test_residue5;
reg clk, rst;
reg [1:0] d_in;
wire [2:0] d_out;

 residue5 MUT (clk, rst, d_in, d_out);

 initial begin
 clk=1'b0
 end

initial begin
 #13 rst=1'b1;
 #19 d_in = 2’b01;
 #31 rst=0'b0;
 #330 $finish;
end

 always #37 d_in = d_in+1;
always #11 clk = ~clk;

endmodule

Fig. 2.37 Residue-5 sequential circuit

module residue5(input clk, reset, input[1:0] x, output[2:0] out);
reg[2:0] current;

//…
endmodule

2 Verilog HDL for Design and Test

control tasks are $stop and $finish. The first time the flow of a procedural block reaches such a task,
simulation stops or finishes. A stopped simulation can be resumed, but a finished one cannot. In this
example, the data generation for b is deterministic, and its data application condition is based on dif-
ferent time slots (we used 20 ns intervals). For the f input, data generation is arithmetic, and data
application is based on equal time slots (periodic 23 ns).

2.8.3 A Simple Sequential Testbench

Test of sequential circuits involves synchronization of clock with other data inputs. We use the
residue5 module as an example here. As shown in the header of this circuit, repeated in Fig. 2.37
for reference, it has a clock input, a reset, data input, and output.

Figure 2.38 shows a testbench for the Residue-5 circuit. As before, variables corresponding to
the ports of MUT are declared in the testbench. When the residue5 module is instantiated, these
variables are connected to its actual ports.

The initial block of this testbench generates a positive pulse on rst that begins at 13 ns and ends
at 63 ns. The timing is so chosen to cover at least one positive clock edge so that the synchronous
rst input can initialize the states of the Residue-5 circuit. The d_in data input begins with value X
and is initialized to 2’b01 while rst is 1.

In addition to the initial block, test_residue5 module includes two always blocks that generate
data on d_in and clk. Clock is given a periodic signal that toggles every 11 ns. The Residue-5 d_in
input is assigned a new value every 37 ns. In order to reduce the chance of changing several inputs
at the same time, we usually use prime numbers for the timing of sequential circuit inputs.

51

Fig. 2.39 Testbench using repeat to limit data sets

module test_residue5;
reg reset=1, clock=0;
reg [1:0] x;
wire [2:0] z;

 residue5 MUT (clock, reset, x, z);

initial #24 reset=1'b0;
initial repeat(13) #5 clock=~clock;
initial repeat(10) #7 x=$random;

endmodule

2.8 Testbench Techniques

Instead of initializing reg variables when they are declared, we have used an initial block for this
purpose. It is important to initialize variables, like the clk clock, for which their old values are used
for determining their new values. If not done so, clk would start with value X and complementing
it would never change its value. The always block shown generates a periodic signal with a period
of 22 ns to provide a free running clock.

The waveform generated on d_in may or may not be able to test the whole functionality of this
state machine. However, periods of clk and d_in, and the testbench duration can be changed to make
this happen.

2.8.4 Limiting Data Sets

Instead of setting a simulation time limit, a testbench can put a limit on the number of data put on
inputs of a MUT. This will also be able to stop simulation from running forever.

Figure 2.39 shows a testbench for our MUT that uses $random to generate random data on the
x input of the circuit. The repeat statements in the initial blocks shown cause clock to toggle 13
times every 5 ns, and x to receive a random data 10 times every 7 ns. Instead of a deterministic set
of data to guarantee a deterministic test state, random data are used here. This strategy makes it
easier to generate data, but due to unpredictable inputs, makes the analysis of circuit responses more
difficult. In large circuits, using random data is more useful, and is usually more appropriate to set
data inputs and not control signals. The testbench of Fig. 2.39 stops at 70 ns.

2.8.5 Synchronized Data and Response Handling

The previous examples of testbenches for MUT used independent timings for the clock and data.
Where several sets of data are to be applied, synchronization of data with the system clock becomes
difficult. Furthermore, changing the clock frequency would require changing the timing of all data
inputs of the module being tested.

The testbench of Fig. 2.40 uses an event control statement to synchronize data applied to x with
the clock that is generated in the testbench. The clock signal is generated in an initial statement
using the repeat construct. An always statement is used for generation of random data on x. This
loop waits for the positive edge of clock and 3 ns after the clock edge, and a new random data is
generated for x. The stable data after the positive edge of the clock will be used by residue5 on the

52

Fig. 2.40 Synchronizing data with clock

module test_residue5;
reg reset=1, clock=0;
reg [1:0] x;
wire [2:0] z;

 residue5 MUT (clock, reset, x, z);

initial #24 reset=0;
initial repeat(13) #5 clock=~clock;
always @(posedge clock) #3 x=$random;
initial forever @(posedge clock) #1 $displayb(z);

 always @(z) $display("Output changes at %t to %b", $time, z);
initial $monitor("New state is %d and occurs at %t", MUT.current, $time);

endmodule

2 Verilog HDL for Design and Test

next leading edge of the clock. This technique of data application guarantees that changing of data
and clock do not coincide.

In this testbench, 1 ns after the positive edge of the clock, that is when the circuit output is
 supposed to have its new stable value, the z output is displayed using the $display task. This method
is appropriate for behavioral simulation, but when dealing with synthesized circuit which includes
internal delays, calculating the exact time in which response is ready would not be easy and reliable.
A more convenient way to display new output values is to wait for an event on the output z, which
means that it has received a new value. This can be complemented by displaying the time of change
using the $time, task.

Using hierarchical naming, this testbench can be used for displaying internal variables and
signals of MUT. The initial statement containing $monitor is responsible for displaying MUT,
current, which is the current state of residue5 addressed by its hierarchical name. The initial
statement starts $monitor in the background. Display occurs when the task is started and when
an event occurs on one of the variables in the task arguments. The %b, %d, and %t format
specifications in this testbench cause the related signals to be reported as binary, decimal, and in
time unit, respectively.

2.8.6 Random Time Intervals

We have shown how $random can be used for generation of random data. The testbench we are
discussing in this section uses random delays for assigning values to x.

Figure 2.41 shows a testbench for the Residue-5 circuit that uses $random for its delay control.
As shown, the running initial statement applies appropriate initial values to inputs of the MUT. In
this procedural block, nonblocking assignments cause intra-assignment delay values to be regarded
as absolute timing values. Then, the testbench waits for 13 complete clock pulses before it finishes
the simulation. As shown, an always block concurrent with the running block continuously gener-
ates clock pulses of 5 ns duration.

Also concurrent with these blocks is another always block that generates random data on t, and
uses t to delay the assignment of random values to x. This block generates data on the x input for as
long as the $finish statement in the running block is not reached. Assume that it is desirable to
check if the state machine of residue5 ever meets state Three or not. The last always block in this
testbench waits on observing 2’b11 on the internal state of the Reside-5 circuit (the current reg),
and if it is found, it will be reported.

53

Fig. 2.41 Testbench using random time intervals

module test_residue5;
reg reset, clock;
reg [1:0] x;
wire [2:0] z;

 residue5 MUT (clock, reset, x, z);

initial begin :running
 clock = 1'b0; x = 1'b0;

 reset = 1'b1; reset = #7 1'b0;
repeat (13) begin

 @(posedge clock);
 @(negedge clock);

end
#5;
$finish;

end

always #5 clock=~clock;
always begin

 t = $random;
 #(t) x=$random;

end

 always begin
 wait (MUT.current == 2’b11);

$display(“state is 2’b11”);
 end
endmodule

2.8 Testbench Techniques

2.8.7 Text IO

Input and output from external files are discussed here. In VHDL, this is referred to as Text IO, and we
use the same terminology here. The input side of Text IO means that instead of generating test data, a
testbench can apply data to the MUT from a pre recorded text file. This is equivalent to a stored vector
testing that is done by an ATE. In this book, using this type of providing data is very common.

Figure 2.42 shows a testbench that uses Text IO to read data and expected output of the MUT.
Three file pointers dataFile, responseFile, and reportFile of type integer are declared and are
assigned in the first initial block to three physical text files “Res5.dat,” “Res5.rsp,” and “Res5.rpt,”
respectively. This assignment is performed by using the $fopen task function. The second argument
in these statements shows the mode of opening file, which could be “r” as read, “w” as write, and
“a” as append.

The next initial block is responsible for reading data and the expected output from the related
text files, managing the required delay and then collecting the responses of the MUT and comparing
them with the expected values. All of the mentioned processes continue until the end of one or more
of the input files is reached; this condition is checked with the $feof task function in the condition
part of the while statement.

The data reading from the input files can be done using $fscanf or $fread. In this case, $fscanf is
used. This task function has an integer return value which shows if the reading was successful or not.
Therefore, variable status of type integer should be declared and used here. After reading and apply-
ing data from dataFile to d_in, and reading the expected response from responseFile, the testbench
waits for the posedge of the clock to make sure that the input is affected, and the internal state of the
circuit has been changed. Then after a very short delay, the expected and the actual responses of MUT

54

Fig. 2.42 Testbench using text IO

module test_residue5;
reg rst, clk;
reg [1:0] d_in;
wire [2:0] d_out;
reg [2:0] expected_out;
integer dataFile, responseFile, reportFile, status;

 residue5 MUT (clk, rst, d_in, d_out);

initial begin
 clk = 0;
 rst = 1’b1; #7; rst = 1’b0;
 dataFile = $fopen("Res5.dat", "r");
 responseFile = $fopen("Res5.rsp", "r");
 reportFile = $fopen("Res5.rpt", "w");

end

always #5 clock=~clock;

initial begin
while((!$feof(dataFile) && (!$feof(responseFile))
begin

 status = $fscanf(dataFile, “%b\n”,d_in);
 status = $fscanf(responseFile, “%b\n”,expected_out);

@posedge(clk);
 #1; if(expected_out == d_out)

$display(“correct output = %d”, d_out);
else

 $fdisplay(reportFile, “wrong output.. d_out= %b\t
expected_out = %b\n”, d_out, expected_out);

end
 #1;
$finish;

end

endmodule

2 Verilog HDL for Design and Test

can be compared. Since the internal state of the circuit changes right at the posedge of the clock, this
1 ns delay guarantees that we are not looking at the previous state of the circuit. The correctness of
results is reported on the console of the simulator using $display or $monitor, and in case that they
are not equal, it can be reported in a text file using $fprintf, $fwrite, or $fdisplay. Concurrent with
the mentioned initial blocks, an always block generates a periodic clock with a 10 ns period.

2.8.8 Simulation Code Coverage

A good testbench that can verify the correctness of a design should guarantee that is able to exercise
most of the design under test and especially its critical parts. The percentage of the statements, blocks,
paths, etc., in a design that are covered using a testbench is the code coverage of that testbench.
Most of the simulation environments provide tools to estimate the code coverage for testbenches.
During the compilation part in an HDL simulator, the kind of required code coverage can be speci-
fied; then, the simulator calculates the specified type of code coverage for the instantiated design.
If the resulted code coverage is less than expected, it can be decided that the testbench is not a good
quality testbench. The parameters that most of the HDL simulators support for code coverage
include statement coverage, condition coverage, block coverage, and branch coverage.

55

Fig. 2.43 Behavioral code of a comparator

module Comparator (input a, b, output a_gtoreq_b, a_lt_b);

always @ (a, b) begin
if (a < b) begin

 a_gtoreq_b = 0;
 a_lt_b = 1;

end
else begin

 a_gtoreq_b = 1;
 a_lt_b = 0;
 end
 end
endmodule

Fig. 2.44 Types of code coverage for a comparator

always @ (a,b)

a_gtoreq_b = 1

a_lt_b = 0a_lt_b = 1

a_gtoreq_b = 0

If a<b

Block Coverage

Path Coverage

Condition Coverage

Statement Coverage

2.8 Testbench Techniques

Code coverage matrices measure how much of the design a testbench covers. On the other hand,
if we want to estimate how much of the possible design faults this testbench covers, we must apply
this testbench to the post-synthesis model of the design, and simulate it. Reports generated by this
simulation are called fault coverage. We may think, or hope, that high-level code coverage and low-
level fault coverage somehow correspond. Although this correspondence is very weak, but using
code coverage we can have a sense of how good a testbench would be for gate-level fault simulation.
The advantage of using high-level simulation is that it is much faster than the gate-level simulation.
Therefore, the fast behavioral testbench can be performed as an estimation of a good testbench; it
can get matured in this level of simulation at a lower cost and then get adjusted for covering more
faults.

As an example, Figs. 2.43 and 2.44 show the Verilog code of a Comparator and its block diagram
on which various code coverages are depicted.

56 2 Verilog HDL for Design and Test

In these figures, output a_gtoreq_b becomes 1 when the first input is greater than or equal to the
second input, and a_lt_b checks if a is less than b or not. Figure 2.44 shows the block diagram
related to this code, and various types of code coverages are specified with different line styles.

Condition coverage means how many of the edges of all the conditions in the code will be visited
with the related testbench. For example in Fig. 2.44, if the testbench is such that a is always less
than b, then the left-hand side branch of the condition is never covered.

In this block diagram, statements are identified using solid lines. Statement coverage specifies
how many of these statements can be examined by the testbench.

Two curved dotted lines on the sides of the block diagram show two paths in this code. Path
coverage shows how many paths in a design are covered using a certain testbench. For example, in
a case statement, the code branches out to many paths and they converge at the same place, and there
might be some paths from the divergence to the convergence point that have not been examined.

Finally, the dash-and-dot lines in Fig. 2.44 represent the blocks of the code in which their cover-
age can be calculated using the block coverage option of the simulator. To this point, we have
discussed the HDL techniques to develop testbenches useful for HDL design. However, as mentioned
at the beginning of this chapter, the main objective of using HDLs and testbenches in this book is
utilizing their facilities to implement existing test applications and developing new ones. As men-
tioned in Sect. 2.2, an HDL environment can provide utilities to develop fault simulation, test genera-
tion, DFT evaluation and configuration, and various other test applications. However, some facilities
are required for test purposes that Verilog HDL basic constructs do not provide. For example, Verilog
is not able to model a defective wire without making changes in the components of the original design
[9]. In addition, a number of test utilities such as fault compilation and testability measurements need
to explore the gate-level netlist of a design at a reasonable cost. In the standard Verilog language, this
cannot easily be done since it does not have mechanisms for creating software-like structures.
Fortunately, these drawbacks of HDL environment are compensated for by using the PLI of Verilog.
PLI also has other capabilities that facilitate integration of design and test [10]. The following section
briefly introduces PLI and its features and illustrates how it can be useful for providing a convenient
environment for test application development.

2.9 PLI Basics

Procedural language interface PLI provides a library of C language functions that can directly access
data within an instantiated Verilog HDL data structure [11] and provides mechanisms to invoke C or
C++ functions from a Verilog testbench. Therefore, not only the design core and its testbench can be
developed in a uniform programing environment, but also all the facilities of software programing
(such as complex data structures and utilization of functions) become available by the use of PLI.
A function invoked in Verilog code is called a system call. An example of a built-in system call is
$display, $stop, $random, which were introduced in the testbench section above. PLI allows the user
to create custom system calls, for tasks that the standard Verilog language does not support.

Verilog PLI has been in use since the mid-1980s. This standard comprises of three primary gen-
erations of the Verilog PLI: a) Task/function routines (tf), b) Access routines (acc), and c) VPI rou-
tines. The tf and acc libraries construct the PLI 1.0 standard, which is vast and old. The next set of
routines, which was introduced with the latest release of Verilog 2001 is called vpi routines. These
are small and down-to-point PLI routines that make the new version, PLI 2.0.

Test applications in this book are developed using Access (acc) routines. The acc routines are C
programing language functions that start with acc_. These routines provide direct access to a
Verilog HDL structural description. Using the acc routines, we can access and modify information,
such as delay and logic values on various objects in a Verilog HDL description. More information
about these routines can be found in the next subsection.

57

Fig. 2.45 The general view of running test programs in mixed HDL/PLI environment

2.9 PLI Basics

2.9.1 Access Routines

Access routines are C programing language routines that provide procedural access to information
within Verilog-HDL. Access routines perform one of two operations, read or write. Using read
operations, certain data and information can be obtained about particular objects in the circuit
directly from its internal data structure. The objects that access routines can perform read operations
for, included module instances, module ports, module paths, intermodule paths, top-level modules,
primitive instances, primitive terminals, nets, regs, parameters, specparams, timing checks,
named events, integer, and real and time variables. Write operations replace new data or information
for objects in the circuit by directly changing the related variables into the internal data structures.
Access routines can write to intermodule paths, module paths, primitive instances, timing checks,
register logic values, and sequential UDP logic values.

According to the operation performed by access routines, they are classified into six categories:
1) Fetch routines return a variety of information about different objects in the design hierarchy,
2) Handle routines return handles – the pointer to an object in the data structure, to a variety of
objects in the design hierarchy, 3) Modify routines alter the values of a variety of objects in the design
hierarchy, 4) Next routines when used inside a loop construct can find each object of a given type that
is related to a particular reference object in the design hierarchy; for example, ports of a module, the
instantiated modules within it – which are called its children, or the module which instantiated this
module – which is called its parent, 5) Utility routines perform a variety of operations, such as ini-
tializing and configuring the access routine environment, and 6) Vcl or Value Change Link (VCL)
allows a PLI application to monitor the value changes of selected objects. VCL can monitor value
changes for events, scalar and vector registers, scalar nets, bit-selects of expanded vector nets, and
unexpanded vector nets. On the other hand, VCL cannot extract information about the following
objects: bit-selects of unexpanded vector nets or registers, part-selects, and memories.

2.9.2 Steps for HDL/PLI Implementation

Figure 2.45 shows the general view of implementing and running test programs in a mixed HDL/
PLI environment. All test applications in this book are implemented based on this block diagram.

58

Fig. 2.46 t_tfcell struct for registering the PLI function with the HDL simulator

typedef struct t_tfcell
{
 PLI_INT16 type; /* USERTASK, USERFUNCTION, or USERREALFUNCTION */
 PLI_INT16 data; /* passed as data argument of callback function */
 p_tffn checktf; /* argument checking callback function */
 p_tffn sizetf; /* function return size callback function */
 p_tffn calltf; /* task or function call callback function */
 p_tffn misctf; /* miscellaneous reason callback function */
 char * tfname; /* name of system task or function */
}

Fig. 2.47 PLI coding and registration for a very simple function

#include “..\\HDLsimulatorInstallationPath\\include\\veriuser.h”
static PLI_INT32 Start()
{

io_printf(“Starting…\n”);
return 0;

}
static PLI_INT32 End()
{
 io_printf(“Ending…\n”);

return 0;
}

s_tfcell veriusertfs[] =
{
 {usertask, 0, 0, 0, Start, 0, “$printStart”},
 {usertask, 0, 0, 0, End, 0, “$printEnd”},
 {0} /*last entry must be 0 */
};

2 Verilog HDL for Design and Test

The main part of this block diagram is the PLI function; the PLI functions should be written and
compiled using a C compiler. A number of examples for writing PLI functions are given in the fol-
lowing. After completing the C code for the PLI function using the acc routines, the provided func-
tion must register its system tasks and functions with the HDL simulator. Registering each system
task and function must be performed by filling the entries of an array of s_tfcell structures shown
in Fig. 2.46. The resulted struct must take place at the end of the C code which implements the PLI
function.

To make these steps more clear, a simple PLI function (perhaps the simplest possible) is shown in
Fig. 2.47. This is just a simple PLI call for printing a message. The first line of this code includes the
veriuser.h header to be able to use the io_printf function. veriuser.h and acc_user.h are two header
files in the directory of the HDL simulator installation path, and should be included in the C code
of the PLI function to have access to the routines of these libraries.

The last part of this C code performs the registration of these PLI functions with the HDL simulator.
This code varies from one simulator to another, and we have shown this for Mentor Graphics’s
ModelSim simulator. As depicted in this code, there must be one entry for each declared function in
this code, and the last entry of the veriusertfs must always be zero. The first field in each entry
shows the type of the declared function, which for common uses we usually set it as usertesk. This
value means that the registered task does not return any value. The last field declares the name that
the PLI function will be invoked with in the HDL testbench (notice the $ character at the beginning
of these names). The fifth field is the name of the C function that describes the PLI function.

59

Fig. 2.48 PLI function call in HDL testbench

module verilog_test();

initial
 $printStart();
 // . . .
 // . . .
 $printEnd();
 $stop();
endmodule

2.9 PLI Basics

After providing this C code and compiling it with the C compiler, it must be built to generate a
Dynamic Linked Library (.dll1) file. When the C part is done, we get to the HDL simulator part.
The resulted .dll1 file must be placed in the working directory of the HDL simulator. For invoking
the prepared PLI function, the pseudo code in Fig. 2.48 can be used.

In order to simulate this testbench in the presence of the PLI.dll in ModelSim simulation environ-
ment, the following command must be performed in the simulator console.

vsim –c –pli dllFileName TestbenchName

In this line, vsim is the simulation command, -c is for the command mode, -pli means in the
presence of the .dll file the name of which appears next, and finally the name of the top-level module
or the testbench must be declared. In order to link more than one PLI .dll file to the HDL project,
the following command should be used.

vsim –c –pli dllFileName_1 –pli dllFileName_2 … –pli dllFileName_n TestbenchName

By running this command, the simulation of the testbench and designs added to the project is
done, and it can be run like any other normal HDL project. As a result of running this testbench, the
following lines will be printed on the simulator console.

Starting…
Ending…

In the next subsection, the implementation of fault injection and removal as more complex PLI
functions and also a very important part of test applications are discussed.

2.9.3 Fault Injection in the HDL/PLI Environment

The most important utilities for implementing most of test algorithms are fault injection (FI) and
fault removal (FR) functions. As mentioned, PLI provides mechanisms for reading and writing net
and reg values. Therefore, we can force and release values in the data structures corresponding to
nets, which give us the capabilities for FI and FR on and from circuit lines. In PLI, a handle is a
pointer to a specific object in the design hierarchy. handles give information about a unique instance
of a special object to acc routines. They contain useful information such as how and where we can
find data about the object. For reading and writing information about an object, most acc routines
require a handle argument. For each input argument of a PLI function, a variable of type handle
will be used.

The FI and FR processes are done simply by using the acc_set_value PLI routine that sets the
desired value on the target wire or removes the value from it. In order to implement PLI InjectFault
and RemoveFault, there are two structs named s_setval_value and s_setval_delay, for which several
fields must be set. However, the most important fields that need to be mentioned are the model field
in acc_setval_delay and the value field of acc_setval_value. Figure 2.49 depicts these two structs
for one of the input ports of an AND gate.

60

Fig. 2.50 Fault injection PLI code

static PLI_INT32 injectFault ()
{
 arg1 = acc_handle_by_name ((char*) acc_fetch_tfarg_str(1), null);

arg2 = acc_handle_tfarg(2);

//get value of arg2 into value_of_arg2
value_of_arg2.format = accScalarVal;
acc_fetch_value (arg2, “%%”, &value_of_arg2);

 //prepare a data
 value_for_arg1.format = accScalarVal;
 value_for_arg1.value.scalar = Value_for_arg3.value.scalar;

 //prepare delay mode
 delay_of_arg1.model = accForceFlag;
 delay_of_arg1.time.type = accSimTime;
 delay_of_arg1.time.low = 0;
 delay_of_arg1.time.high = 0;

 //Put it in arg1
acc_set_value (arg1, &value_for_arg1, &delay_for_arg1);

acc_close();
return 0;

}

Fig. 2.49 PLI structures for stuck-at fault injection and fault removal

2 Verilog HDL for Design and Test

In FI, the model field must be defined as accForceFlag. This means that the desired value will be
forced on the wire until it is removed by calling a PLI function for FR. During this time, the wire will
not take values assigned to it by the Verilog simulator. The C code for the PLI FI is shown in Fig. 2.50.

The removeFault function sets the s_setval_delay model field to accReleaseFlag. Once this is
done, values coming from HDL simulator will again appear on the wire. In other words, by put-
ting the desired fault value on a variable of type s_setvalue_value and setting the model field of
a variable of type s_setvalue_delay to accForceFlag or accReleaseFlag, FI and FR can be
achieved. Figure 2.51 shows that the faulty value of the selected wire is applied by the PLI
$InjectFault function. Only after calling $RemoveFault for that wire, it will accept the normal
values, propagated to it by the HDL testbench.

Figures 2.52 and 2.53, respectively illustrate the usage of inject and remove fault on the wires of
a full adder and the resulted waveform.

61

Fig. 2.52 Fault injection and removal for a full adder – testbench

module testbench();
reg a, b, cin;
wire sum_f, sum_g;
wire co_f, co_g;

 FA FA_ golden (a, b, cin, sum_g, co_g);
 FA FA_faultable (a, b, cin, sum_f, co_f);

 initial begin
 #20;

$InjectFault(“testbench.FA_faultable.s”, 1’b0);
repeat(10) begin

 #150;
 {a,b,cin} = $random();

end
$RemoveFault(“testbench.FA_faultable.s”);
repeat(10) begin

 #150;
 {a,b,cin} = $random();
 end
 $stop;
 end
endmodule

Fig. 2.51 Stuck-at fault injection and fault removal mechanism

Fig. 2.53 Fault injection and removal for a full adder – waveform

2.9 PLI Basics

62 2 Verilog HDL for Design and Test

In the testbench of Fig. 2.52 after 20 ns, the FA_ faultable.s which is the sum port in this instance
of the full adder, is stuck to 0 utilizing the PLI $InjectFault function and stays in this state for 1,500 ns.
The waveform shows that while FA_golden.s is obtaining the related output values during this
period, the result of adding is not reflected on the FA_faultable.s, and its value is always 0 until the
simulation time of 1,520 ns. At this time, the PLI $RemoveFault function, removes the injected
fault and from this moment to the end of simulation both faultable and golden instances of the full
adder obtain the same values on their sum port.

2.10 Summary

In this chapter, the basics of Verilog HDL design and testbench techniques and its PLI are discussed.
The overall guidelines to use this environment for design and test of digital circuits are shown and
developing test applications in this environment is expressed by implementing the FI and FR utili-
ties. All mentioned concepts of this chapter are used in the rest of this book to describe and enhance
test techniques.

References

 1. The International Technology Roadmap for Semiconductors (ITRS) website. (2007) [Online]. Available: http://
www.itrs.net/

 2. Ungar LY, Ambler T (2007) “Economics of Built-In Self-Test,” ITC
 3. IEEE Std 1364-2001, IEEE Standard Verilog Language Reference Manual, SH94921-TBR (print) SS94921-TBR

(electronic), ISBN 0-7381-2827-9 (print and electronic), 2001
 4. Stephen B, Zvonko V (2002) Fundamentals of digital Logic with Verilog design, McGraw-Hill; ISBN: 0-07-

283878-7
 5. Zainalabedin N (2006) Verilog digital system design: RT level synthesis, testbench, and verification, McGraw

Hill, ISBN: 0-07-144564-1
 6. Zainalabedin N (2007) Embedded core design with FPGAs, McGraw Hill, ISBN: 978-0071474818
 7. Neil H.E. Weste and David Harris, CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition),

Addison Wesley; 3rd edition (May 11, 2004), ISBN: 0321149017
 8. Patterson DA, Hennessy JL, Ashenden PJ, Larus JR, Sorin DJ Computer Organization and Design: The Hardware/

Software Interface, Third Edition, Morgan Kaufmann; 3 edition (August 2, 2004), ISBN: 1558606041
 9. Hesscot CJ, Ness DC, Lilja DJ (2005) “A methodology for stochastic fault simulation in vlsi processor architec-

tures,” MoBs
 10. Riahi PA, Navabi Z, Lombardi F (2005) “Simulating Faults of Combinational IP Core-based SOCs in a PLI

Environment,” DFT
 11. IEEE Std 1364–2001, IEEE Standard Procedural Language Interface Reference Manual, clause 20 through clause 25

63

A model of a physical object or model of a phenomenon is a representation of the object or
 phenomenon that is used for the specific purpose of analyzing the behavior of the object, studying
the phenomenon, or studying the effect of the object or phenomenon on its environment or sur
roundings. A computer simulation program uses a model. The information we obtain from running
a simulation program depends on the model that is used for simulation. For example, a model of a
circuit can be developed for predicting its temperature radiation, its logical behavior, or its behavior
of when the circuit becomes faulty.

Just as the binary logic value system, containing 0 and 1, is used as a simplified model for
 complex line values in digital systems, a simplified value system is needed to model faults on circuit
lines. Such a fault model should be simple and should be able to facilitate analysis of faulty behavior
of a digital system.

This chapter discusses fault models and issues that are related to fault analysis and simulation of
a circuit that is faulty. We try to set a solid background for the reader in understanding faults and
circuit fault models, as this background is crucial in understanding the materials in the rest of this
book. We discuss various fault models, ways of reducing faults for faster analysis, and simulation
issues for generating fault lists.

3.1 Fault Modeling

This chapter is on fault and defect modeling. Before we discuss various ways in which such model
ing can be done, we need to give a clear definition of various terms that are used in this regard.

As discussed in Chap. 1, a defect in an electronic system refers to a flaw in the actual hard
ware.

A fault, on the other hand, is a representation of a defect and is used in computer programs for
analyzing defects in electronic components.

An error is caused by a defect, and it happens when a defect in hardware causes a line or a gate output
to have a wrong value. In a computer simulation program, an error is defined as an observed fault.

A failure occurs when a defect causes a misbehavior in the functionality of a system that cannot
be reversed or recovered. In a computer simulation program, change in the intended functionality
of a system due to an existing fault is referred to as a failure.

In order to be able to predict the behavior of a defective system, or generate tests to find the
defective parts, or in general, for any type of computer analysis of defects, a good fault model is
needed. A good fault model is one that has a close correspondence with the actual defects, it is
easy to represent in a computer program, and it is as brief as possible for an optimized computer
processing time.

Chapter 3
Fault and Defect Modeling

Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/9781441975485_3, © Springer Science+Business Media, LLC 2011

64

Fig. 3.1 Abstraction levels

3 Fault and Defect Modeling

At the end of this section, we present our fault model that satisfies these requirements, and
Sect. 3.2 that follows this section presents the details of such a fault model. However, before we
narrow down our choices of faults to the model that we use, we need to explain various faults, their
applications, short comings, and the kind of hardware description that they apply to. Such catego
rization of fault is explained here.

3.1.1 Fault Abstraction

As defects occur in a circuit, their effects may be seen at various levels of abstraction [1–4]. For
example, a physical defect of a short between an nMOS transistor gate and its source may be seen
at the switch, gate, RT, or systemlevel. Figure 3.1 is a graphical representation of physical, switch,
gate, RT, and system abstraction levels.

At the physical level, mask misalignment in layout (Fig. 3.2) may cause a short between gate
of a transistor and its source [5]. As shown in Fig. 3.3, such a defect has different switch level
behaviors depending on how the transistor is used [6, 7]. In Fig. 3.3a, this defect translates to the T

2

switch always transistors staying open. Thus, this defect becomes a switch open fault in T
2
.

65

Fig. 3.2 Mask misalignment

DS

G

G

S

D

T1

T2

defect

a b
defect

Fig. 3.3 Switch level faults

3.1 Fault Modeling

On the other hand in Fig. 3.3b, the same defect translates to switch level fault of switch output
being open when it is supposed to be 0. In this scenario, the switch transmits a 1 on its source
 correctly to its drain.

The defect of Fig. 3.2 causes different gatelevel faults depending on the type of the gate, its
structure, and the conditions that the gate is used in. Gate input driving strengths, output load
capacitance, and other inputs and outputs use conditions affect how a switch fault translates to a gate
fault. Figure 3.4 shows a possible inverter gate fault caused by the defect of Fig. 3.2.

The same defect discussed above can cause various RTlevel faults depending on the
RTlevel component function and its logic structure. Some examples of RTlevel faults are an
adder producing the wrong result, a multiplexer selecting a wrong source, or a bus ORing sev
eral of its sources instead of selecting one. As an example of an RTlevel fault and how a gate
level fault translates to such a fault consider the circuit of Fig. 3.5.

Figure 3.5 shows a bit of a multiplexer selecting vector A or B depending on s being 0 or 1. This
multiplexer uses ANDOR CMOS gate structure, and let us assume that its CMOS inverter is the faulty
inverter of Fig. 3.4. If s is 0, according to Fig. 3.5, the inverter output (line i) is 1 and the A input of
the multiplexer is selected to go on the W output. If s changes from 0 to 1, the faulty inverter output
(line i) becomes Z, and since the AND gate that this inverter is driving is a CMOS gate, the open input
causes it to retain its old value of 1. Since s is 1, both i and j lines are 1. This input combination causes
w

k
 to become the OR result of a

k
 and b

k
. This means that when s changes from 0 to 1, instead of W

becoming B, it becomes A OR B. This is an RTlevel fault that is caused by the defect of Fig. 3.2.
The same defect that has resulted in switch level faults of Fig. 3.3, gatelevel fault of Fig. 3.4,

and RTlevel fault of Fig. 3.5 can result in various forms of systemlevel faults. As in other
abstraction levels, the exact form of the system fault depends on the type of the system and the
condition in which the faulty RTlevel component is used. A systemlevel fault in a CPU may be
execution of a wrong instruction, or in a NoC, a system fault may be a NoC switch directing data
to a wrong destination.

66

Fig. 3.4 Gate level faults

Fig. 3.5 A faulty multiplexer

Fig. 3.6 A systemlevel fault,
executing an instruction incor
rectly

3 Fault and Defect Modeling

Consider Fig. 3.6 as a partial datapath of a CPU. This datapath section includes an ALU, an accu
mulator, three busses, and a multiplexer that we assume is the defective multiplexer of Fig. 3.5. Let us
assume that instruction lda followed by add, as described below, are to be executed in this datapath.

:lda AC ABus←

: .add AC ABus AC← +

For lda, SelB becomes 0, the faulty multiplexer functions correctly, and data on ABus is correctly
loaded into AC, which becomes available on OutBus. Following this instruction, add is to execute,
a requirement of which is the ALU input AddAlu to become 1. In order to route the output of the

67

1

0

Router

A

B

D

Faulty
Multiplexer

Fig. 3.7 NoC switch with faulty
multiplexer

3.1 Fault Modeling

ALU into AC, SelB input of the multiplexer must also become 1. Because of the faulty multiplexer,
SelB of 1 causes ABus ORed with BBus to appear on the multiplexer output. This will cause the
accumulator to be loaded with

()|AC ABus AC ABus← +

instead of

.AC ABus AC← +

This example shows that the gatesource shortdefect of Fig. 3.2 can lead to an instruction fault at
the systemlevel in a CPU.

As another systemlevel fault consider the NoC switch of Fig. 3.7. The switch router shown here
selects source A or B for the switch destination D. When the router selects A, correct data from A will
appear on D. However, when port B is selected, the faulty multiplexer places data on port A ORed with
that of port B on the input of destination D. This is because of the faulty behavior of the multiplexer of
Fig. 3.5 and is contrary to the correct operation of the switch that should route data on B to port D.

Examples presented above show how a lowlevel defect appears as faults at various abstraction
levels. We can always deduce how a lowlevel defect appears at a higher level, but the opposite of
this is not necessarily true. For example, referring to Fig. 3.6, there may be many reasons why an
add instruction ORes one of the add operands with the result. Such a system fault cannot be
traced to a specific lower level fault, even to a fault at its most immediate lower abstraction level.

3.1.2 Functional Faults

A fault that affects functionality of a system is said to be a functional fault [5, 7]. A gatelevel func
tional fault causes a faulty gate to have a different truth table than the nonfaulty gate. For example,
a fault in a NAND gate may change its functionality to become like a NOR or an inverter. At the
systemlevel, a systemlevel functional fault causes the system to perform a function different than
what the system was originally designed for. For example, in a processor, a functional fault may
cause an add instruction to execute as subtraction, or fetching of data or instruction to be done from
a wrong location.

Faults discussed in Sect. 3.1.1 were all functional faults. For example, the inverter of Fig. 3.4 has
a different truth table than a good inverter, as shown in Fig. 3.8.

At a higher level of abstraction, consider the multiplexer of Fig. 3.5. Because a faulty inverter is
used in this circuit, the overall functionality of the multiplexer is faulty. Without looking at the
internal structure or circuitry of this circuit, we can just say that the multiplexer has a functional
fault. The good and faulty functions of the multiplexer are shown in Fig. 3.9.

68

Fig. 3.8 Good and faulty inverters

WS

0 A

1 B

WS

0 A

1 A|B

A

B

A

B

0

1

W W

S S

Good Multiplexer Faulty Multiplexer

1

0

Fig. 3.9 Good and faulty multiplexers

3 Fault and Defect Modeling

As another functional fault, at a higher level of abstraction than the above two faults, consider
the section of the datapath depicted in Fig. 3.6. As in the above cases, we only look at the datapath
section from the outside, and see that under certain conditions, the datapath functions incorrectly.
This again is regarded as a functional fault at the systemlevel.

Good and faulty partial Verilog codes of this datapath section are shown in Fig. 3.10. Notice that the
details of the datapath such as the multiplexer, ALU, and their interconnections are not described here,
and only its overall functionality as it relates to the inputs and outputs of this system is mentioned.

It is worth mentioning again that a functional fault of a component at a certain level of abstrac
tion (e.g., gatelevel) ignores lower level details of the component (e.g., transistorlevel), and only
considers the input–output behavior of the component. At an abstraction level, the exact cause of
the faulty behavior is irrelevant.

3.1.3 Structural Faults

In Sect. 3.1.1, we had a faulty transistor that was used in an inverter that made the inverter function
incorrectly. The inverter was used in a multiplexer that made it faulty, and the multiplexer was used
in a datapath that made the datapath function incorrectly. By a careful analysis of the source of the
fault, we were able to model the incorrect functionality of the faulty component.

A model of a functional fault can be a very accurate representation of the fault at that level.
However, the analysis involved for coming up with the model may be a very involved process. Take,
for example, the inverter with the faulty transistor (Fig. 3.4). Other faults in the nMOS transistor, or
faults in the pMOS transistor of this circuit may lead to many different truth tables, and for each
case, a detailed analysis of the circuit is needed.

Another problem with functional representation of a fault is that it does not consider intercon
nection faults outside of the faulty component. For example, in Fig. 3.6, the functional fault of the
multiplexer does not consider the bus between the multiplexer and the accumulator. For analyzing
this datapath and coming up with a fault model for the datapath, faults for every substructure of
the datapath and their interconnections must be considered. A similar statement can be said about
analysis of the multiplexer of Fig. 3.5. In this case, in order to come up with the faulty behavior of
multiplexer, every gate and every interconnection must be analyzed for their faulty behavior.

69

always @(posedge clk) begin
if (loadAC == 1) begin

. . .

. . .

. . .

. . .

if (selB == 0)
AC <= Abus;

else if ((selB == 1)&& (AddALU == 1))
AC <= AC + Abus;

end
end

assign outBus = AC;

always @(posedge clk) begin
if (loadAC == 1) begin

If (selB == 0)
AC <= Abus;

else if ((selB == 1)&& (AddALU == 1))
AC <= (AC + Abus) | Abus;

end
end

assign outBus = AC;

Good Behavior

Faulty Behavior

Fig. 3.10 Good and faulty behavior of the datapath section of Fig. 3.6

3.1 Fault Modeling

Complexity of analysis for extracting a faulty model for a component (e.g., the multiplexer) by
analyzing its subcomponents (e.g., inverter, AND, and OR gates) and their interconnections (e.g.,
line i in Fig. 3.5) can be simplified by only considering interconnection faults, and lumping faults
on the two ends of an interconnection and those of the interconnection itself into faults belonging
only to the interconnection.

This fault model is called structural fault model and assumes that components forming a hardware
module are fault free, and only the interconnection of the components may be faulty [5, 7, 8].

Referring to Fig. 3.4, gatelevel structural fault for this component means that the inverter is
good and lines a and w have the potential of having faults. If this inverter is used in a gatelevel
circuit, such as the multiplexer of Fig. 3.5 (a version of which is shown in Fig. 3.11), the inverter
fault can be structurally modeled at the gatelevel as line i being permanently stuckat1. This is
justified because, when s is 0, gate capacitance of G

2
 charges to 1. When s becomes 1, the faulty

inverter produces a Z on its output, which causes charge on line i to remain at 1.
In addition to modeling the faulty behavior of G

1
, line i stuckat1 also models certain faults of

the G
2
 NAND gate. Extending this concept to all gates of circuit of Fig. 3.11, all gate and intercon

nection faults can be structurally modeled by faults on various lines of this circuit.
Furthermore, extending a similar concept to higher abstraction levels, structural RTlevel faults

are defined as faults on busses interconnecting various RTlevel components. Figure 3.12 shows
candidates for RTlevel structure faults in the partial datapath of Fig. 3.6.

At a higher level, when several systems are wired together, systemlevel structural faults are
only considered on interconnections of such systems. For example, in a NoC consisting of
 several switches and processing elements, faulty switches, faulty processing elements, and
faulty interconnections are all modeled by structural faults on interconnections. Figure 3.13
uses three switches providing communication between six processing elements. In this circuit,
candidates for structural systemlevel faults are marked by boxed F’s. As in other abstraction
levels, we assume all nine PEs and switches are fault free.

70

i

j

s

a

b

w

G1

G2

 G3

G4

Fig. 3.11 Inverter fault becomes
fault on line i

Fig. 3.12 Candidates for
RTlevel structural faults

Fig. 3.13 NoC structural faults

3 Fault and Defect Modeling

71

Fig. 3.14 Structural gatelevel circuit

3.2 Structural Gate Level Faults

3.2 Structural Gate Level Faults

Section 3.1.3 defined structural fault model as a model that lumps faults of the components
between which an interconnection is used and faults of the interconnection itself, into faults
belonging to the interconnect. The focus of this section is on gatelevel structural faults. At
the gatelevel, an interconnection is a simple wire between two gates, called a line. In order
to comply with this definition with regard to inputs, outputs, and multibranch fanout systems,
we introduce three new components: inputs, outputs, and fanouts, in addition to the standard
gates of a gatelevel circuit.

Figure 3.14 shows the multiplexer of Fig. 3.11 with the addition of these new components, I
1
, I

2
,

I
3
, O

1
, and FO1. As shown, in this circuit, only a line connects two components together. l

1
 is

between I
1
 and FO1 and l

2
 is between FO1 and G

1
.

The rest of this section discusses structural faults as related to nine lines of this circuit.

3.2.1 Recognizing Faults

Although materials presented in this sub section apply to structural and functional faults as well, we
are presenting them here to be used in the proceeding subsections on structural gatelevel faults.
A structural fault within a component is recognized if it changes the functionality of the component.
For example, in the multiplexer of Fig. 3.14, if l

4
 is permanently stuckat1 (see discussion related

to Fig. 3.11), the Boolean function at output w becomes

Faulty .w a b s= +

Since this function is different than the good behavior of the circuit,

Good . .= +w a s b s

then, fault on l
4
 can be recognized.

Figure 3.15 shows Karnaugh maps of the faulty and good w outputs. Input combinations
where the two Karnaugh maps entries are different designate input combinations that recognize
the faulty circuit from the good one. In this example, abs = 101 produces a 1 for the faulty
circuit and 0 for the good circuit, and therefore recognizes l

4
 stuckat1. In the materials that

follow, we will only show the faulty Karnaugh maps, with shaded boxes for conflicts with the
good circuit.

72

00 01 11 10

0

1

ab
s

11

111

00 01 11 10

0

1

ab
s

11

11

wFaulty wG ood

abs=101 recognizes fault

Fig. 3.15 Faulty and good Karnaugh maps

3 Fault and Defect Modeling

The topic discussed here is called Boolean Difference, which will be dealt with in detail in the
chapter on test generation.

In Chap. 1, test set, test vector, and other related terms were formally defined. In this chapter, we
use the term “test” very frequently. To avoid ambiguities, we define test as follows: A set of values
at inputs of a faulty circuit that produces an output different than the good circuit output is called a
test for the fault of the faulty circuit.

3.2.2 Stuck-open Faults

A familiar stuckopen fault discussed in the previous sections is l
4
 stuckopen (Fig. 3.14). This

 structural fault accounts for defects on gates G
1
, G

2
 or line l

4
. The faulty behavior of multiplexer in

presence of this fault is different from the normal multiplexer output, and therefore, it is
detectable.

As another example, consider line l
3
 in Fig. 3.14 having a stuckopen fault. Note that l

3
 and l

2
 are

branches of a fanout whose stem is l
1
. Since structural faults on l

3
 account for defects on l

3
, FO1,

and G
3
, structural fault models of l

3
 do not necessarily mean a bad fanout stem (l

1
) or other fanout

branches (l
2
).

l
3
 broken open causes the G

3
 gate to retain its charge forever, causing it to act as an inverter for

inverting the b input. If this is the only fault in the circuit, the faulty multiplexer output becomes

3 Faultystuck-open : .l w a s b= +

Since this functionality is different from the normal functionality of the multiplexer, presence of a
fault in the circuit can be detected. Comparing the Karnaugh maps of this w

Faulty
 with a good multi

plexer (not shown here), we see that abs = 010 detects this fault.

3.2.3 Stuck-at-0 Faults

The structural stuck-at-0 fault models defects on a line or its interconnecting gates such that the line
value appears as though it is always 0 [9]. Figure 3.16 shows l

3
 of Fig. 3.14 stuckat0. The output

in this circuit shows that the faulty functionality of this circuit is different than that of the good
circuit behavior.

73

Fig. 3.17 Stuckat1 fault

Fig. 3.16 Stuckat0 fault

3.2 Structural Gate Level Faults

3.2.4 Stuck-at-1 Faults

The structural stuckat1 fault models structural and functional defects that cause a line to appear as
though it is pulled by a supply voltage and never changes [9]. In Fig. 3.17, the stuckat1 fault
models defects on the I

2
 input pin, G

2
 NAND gate, and line l

5
, which cause this line to look like it

is pulled to a supply voltage. Faulty output expression, faulty Karnaugh map, and tests that detect
this fault are also shown in this figure.

3.2.5 Bridging Faults

Defects on neighboring gates and lines may cause a bridging effect on two lines. Two types of bridg
ing faults are AND bridging and OR bridging [10]. In an AND-bridging, two bridged lines appear
as if they are forming an AND function which feeds all destinations of the bridged lines.

74

l7

l8
l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l3

G1

FO1

I2

I1

I3

a

b

Bridging Fault

l9

w

O1

G4

l7

I1

I3

l5

l6

I2

l1

G1

l3
l8

l2

l4

l2

Faulty Circuit Model

00 01 11 10

0

1

s

111 1

wFaulty = b+s

1 1

G2

G3

FO1

ab

ba

a

b

s

a

b

s

Fig. 3.18 ANDbridging fault

3 Fault and Defect Modeling

3.2.5.1 AND-bridging Faults

Figure 3.18a shows a bridging fault between l
7
 and l

3
, and Fig. 3.18b shows the ANDbridging fault

circuit model and the faulty output of the multiplexer. The bridging output, ba, feeds both gates that
the bridged lines used to feed. Based on this circuit, the faulty w becomes

Faultyw b s= +

and tests that detect this fault are

000 and 010abs = .

3.2.5.2 OR-bridging Faults

Depending on the logic behind and after a bridging fault, the fault may be modeled by an OR func
tion instead of an AND function. Figure 3.19 shows an OR-bridging fault corresponding to the
bridging fault of Fig. 3.18a. The faulty multiplexer output is also shown in this figure. The Karnaugh
map shown here indicates that this fault can be detected by abs = 010.

75

l8

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2
G1

FO1

I2

I1

I3

a

b

s

00 01 11 10

0

1

ab
s

11

11

1

wFaulty = bo+bo.b

= b+bo
= b+a.s

l7

l3

bo = a+s
bo

Fig. 3.19 ORbridging fault

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2
G1

FO1

I2

I1

I3

a

b

s

l3

l7

l8

Fig. 3.20 Modeling a statedependent fault

3.2 Structural Gate Level Faults

3.2.6 State-dependent Faults

Bridging faults between two lines affect the destination of both participating lines. In a different
situation, a fault on a line may depend on a certain value on another line. While the latter line value
affects that of the former, no faulty value appears on the latter line. This type of fault is referred to
as a state-dependent fault.

Figure 3.20 models a statedependent fault on line l
8
 that depends on the value of line l

7
. If l

7
 is

0, l
8
 has its normal value; however, when l

7
 becomes 1, l

8
 input of G

4
 stays at 1 regardless of the

output value of G
3
. Note that the only difference between the circuitry modeling this fault and that

of an ORbridging fault is that in the latter case, the output of the modeling OR gate replaces des
tinations of l

7
 and l

8
, while in the former case, only l

8
 is affected. The faulty output of this circuit

becomes Faulty .=w a s , which is detectable by abs = 011 or 111.
Another type of a statedependent fault is when the dependent line is affected by value 0 of the

affecting line. This case is modeled by an AND gate, the output of which is used to model the
faulty line.

3.2.7 Multiple Faults

Any of the faults discussed above and any number of such faults can happen in a circuit simultane
ously. A major problem with multiple faults is that the combination of all types and many faults of
each type become too many cases to deal with for finding the fault, generating test for the fault, or
simply analyzing the faulty circuit [11, 12].

76

l7

l8
l9

 wFaulty = s

O1

G4

G2

G3

l5

l6

l4

l1

l2

l3

G1

FO1

I2

I1

I3

a

b

s

Fig. 3.21 Two faults making each other undetectable

l8

l9
O1

G4

G2

G3

l5

l6

l1

l2
G1

FO1

I2

I1

I3

a

b

s
l7

l3

l7 = a

bo = l3+l7

= a+s

wFaulty = b.bo+bo

= b+bo

= b+a.s

bo

wFaulty

l4

Fig. 3.22 Multiple faults (stuckopen and ORbridging)

3 Fault and Defect Modeling

Multiple faults may distort the faulty effects of each other and prevent all such faults from being
detected. Take for example the stuckat0 and stuckat1 faults discussed in Sects. 3.2.3 and 3.2.4
(Figs. 3.16 and 3.17), respectively as shown in Fig. 3.21, simultaneous presence of these two
faults generates a faulty output that matches those of neither fault. This will make both faults
undetectable.

Another issue with multiple faults is that faults can mask each other, and presence of a certain
fault may never be known. For an example of this situation consider simultaneous presence
of stuckopen fault of Sect. 3.2.2 (output shown in Fig. 3.15), and the ORbridging fault of
Sect. 3.2.5.2 shown in Fig. 3.19. As shown in Fig. 3.22, the faulty output of this circuit is the same
as that of Fig. 3.19 with only the ORbridging fault. This means that l

3
–l

7
 ORbridging fault in the

multiplexer masks the l
4
 stuckopen fault. Thus, in presence of the former fault, the latter cannot

be detected.

77

a y y

a

b

g1 g2

g3

g4

bi

ai

iw

a

b

nw

Out NAND

Out NOT

im1

Fig. 3.23 Studying effects of transistor faults

3.2 Structural Gate Level Faults

3.2.8 Single Stuck-at Structural Faults

Our search for a manageable fault model has narrowed down our choices to structural gatelevel
fault models. Choices for the types of structural faults are still too many, and multiple faults make
the situation even harder to handle. Further simplifications are needed for a fault model that allows
handling of complex algorithms processing millions of gates.

The first step in the simplification ahead of us is to select stuckat fault model among other fault
types, and the second step is to assume single fault and disregard multiple faults. Justifications for
these simplifications are presented below.

3.2.8.1 Stuck-at Faults

Stuckat faults are stuckat0 and stuckat1 which we will refer to as SA0 and SA1. These faults
account for many transistorlevel faults and can model other fault types.

We use the CMOS NAND gate of Fig. 3.23 to show how various transistorlevel faults are trans
lated to stuckat faults at the gatelevel [6]. To provide proper interfacing, and study the effect of
faulty logic values on the surrounding circuits of this NAND gate, three CMOS inverters are used
in inputs and outputs of this circuit. We use Verilog modeling and a Verilog testbench for analyzing
transistor faults in the NAND gate.

Figure 3.24 shows the Verilog code of the CMOS NAND gate. This description uses tranif0 and
tranif1 Verilog bidirectional switches for the nMOS and pMOS transistors. Gate capacitances of a
and b inputs are modeled by the Verilog trireg construct with 50 time units representing the capaci
tance. For a more realistic representation of events in this circuit, 3 and 4 time unit delays are used
for nMOS and pMOS transistors, respectively.

Inverters in Fig. 3.23 are modeled similar to the NAND gate using bidirectional switches with
delay parameters. Figure 3.25 shows the corresponding Verilog code.

The Verilog code of circuit shown in Fig. 3.23 for study of faults in the NAND gate of Fig. 3.24
is shown in Fig. 3.26. This circuit uses an instance of the NAND gate of Fig. 3.24 and three
instances of the inverter of Fig. 3.25.

The GoldenCircuit module along with the FaultyCircuit module will be used in a testbench to
apply data to inputs and compare outputs. Verilog code of this testbench is shown in Fig. 3.27. This
testbench applies 11, 00, 01, 10, … to a and b inputs of circuit of Fig. 3.23 every 35 ns.

78

module CMOSnand (input a, b, output y)
supply0 Gnd;
supply1 Vdd;
trireg #(0, 0, 50) aa, bb;
assign aa = a, bb = b;
wire im1;
tranif0 #(4) g1 (y, Vdd, aa);
tranif0 #(4) g2 (y, Vdd, bb);
tranif1 #(3) g3 (y, im1, aa);
tranif1 #(3) g4 (im1, Gnd, bb);

endmodule

Fig. 3.24 CMOS NAND gate using bidirectional switches

module CMOSnot (input a, output y);
supply0 Gnd;
supply1 Vdd;
trireg #(0, 0, 50) aa;
assign aa = a;
tranif0 #(4) g1 (y, Vdd, aa);
tranif1 #(3) g4 (y, Gnd, aa);

endmodule

Fig. 3.25 Verilog code for interface inverters

module GoldenCircuit (input a, b, output nw, iw);
wire ai, bi;

 CMOSnot U1 (a, ai);
 CMOSnot U2 (b, bi);
 CMOSnot U3 (nw, iw);
 CMOSnand U4 (ai, bi, nw);
endmodule

Fig. 3.26 Test circuit Verilog code

module FaultAnalysis0 (); // FaultAnalysis1 // FaultAnalysis2
reg DataA=1, DataB=1;

 wire GoodOutNAND, FltyOutNAND;
wire GoodOutNOT, FltyOutNOT;

 GoldenCircuit CUA (DataA, DataB, GoodOutNAND, GoodOutNOT);
 FaultyCircuit CUT (DataA, DataB, FltyOutNAND, FltyOutNOT);

initial begin
repeat (15) #35 {DataA, DataB} = {DataA, DataB} + 1;

end
endmodule

Fig. 3.27 Testbench for good and faulty NAND gates

3 Fault and Defect Modeling

79

Fig. 3.28 Modeling open pMOS drain

3.2 Structural Gate Level Faults

The FaultyCircuit module instantiated in the testbench is similar to the GoldenCircuit of
Fig. 3.26 except that it instantiates CMOSnandF, which is the faulty version of CMOSnand. Several
faulty NAND modules (CMOSnandF) and their corresponding waveforms produced by this test
bench will be shown next.

Open pMOS drain. The first fault to consider is drain of one of the NAND pMOS gates is stuck
open. The transistor circuit, corresponding truth table, and the Verilog code that models this circuit
are shown in Fig. 3.28.

Simulation of this circuit along with the good NAND gate in the environment of Fig. 3.23, and
using the testbench of Fig. 3.27, generates the waveform shown in Fig. 3.29. The DataA and DataB
inputs are those of the input inverters in Fig. 3.23. The third and fourth waveforms are those of the
inputs of the good and faulty NAND gates. As for the outputs, X and Z values are interpreted as 1
or 0 by the logic that follows a gate output. Therefore, instead of directly looking at the NAND
outputs, we look at how they are interpreted by the inverters that follow them. Therefore, the signals
to compare the waveform shown are GoodOutNOT and FltyOutNOT.

The GoodOutNOT output is the AND result of a and b, which is different than FltyOutNOT. On
the other hand, except for a short delay, FltyOutNOT is logically the same as the a input. Considering
the AND function on this output, this value can only be justified if input b of the faulty NAND is
stuckat1. Therefore, the fault shown in Fig. 3.28 is modeled by b:SA1.

Grounded nMOS Gate. Another transistorlevel fault to consider is the case of upper nMOS gate
of the NAND being grounded. The circuit modeling this fault, its truth table, and the corresponding
Verilog code for simulation are shown in Fig. 3.30. The Verilog code shows aBroken that is set to
0 is used at the gate of g

3
.

Figure 3.31 shows the simulation run of this faulty NAND gate after going through the output
inverter. Since this output is always 0, the transistor fault of Fig. 3.30 can be interpreted either as
one of the NAND inputs being SA0, or its output being SA1, i.e., a:SA0, b:SA0, or w:SA1.

80

Fig. 3.29 Good and faulty outputs of open pMOS drain

Fig. 3.30 Modeling grounded nMOS gate

Fig. 3.31 Grounded nMOS gate fault simulation

3 Fault and Defect Modeling

81

module CMOSnandF (input a, b, output y);
supply0 Gnd;
supply1 Vdd;
trireg #(0, 0, 50) aa, bb;
assign aa = a, bb = b;
wire im1;
trireg #(0, 0, 50) bBroken;
assign bBroken = aa;
tranif0 #(4) g1 (y, Vdd, aa);
tranif0 #(4) g2 (y, Vdd, bBroken);
tranif1 #(3) g3 (y, im1, aa);
tranif1 #(3) g4 (im1, Gnd, bb);

endmodule

y

a

b

g1 g2

g3

g4

im 1

CMOS NAND

Vdd

GND

GND

Fig. 3.32 Modeling broken pMOS gate, bridged to another

Fig. 3.33 Wrong input driving pMOS Gate

3.2 Structural Gate Level Faults

Broken pMOS gate bridged. Another fault to study is the case that a pMOS gate is broken from
its own input and bridged to the other NAND input. This case is shown in Fig. 3.32. The Verilog
code shown here uses bBroken, that is connected to a, for the Gate input of g

2
 pMOS transistor.

Simulating the faulty circuit of Fig. 3.32, with the testbench of Fig. 3.27, reveals that the fault
shown can be modeled by b input of NAND gate stuckat1 (b:SA1). As shown in Fig. 3.33,
FltyOutNOT is the same as the a input with a slight delay.

Broken pMOS gate pulled. Another case that we analyzed was when the Gate input of g
2
 is pulled

to supply instead of being driven by the b input of the NAND circuitry. Simulation of this case
reveals that this situation can also be modeled by b:SA1.

The above examples show that most transistorlevel faults can be approximated by stuckat
faults. In addition, as we will discuss in Sect. 3.3, other fault types, e.g., bridging and state depen
dent, can also be detected by tests for stuckat faults. Furthermore, transient faults can be modeled
by temporary stuckat faults [13].

Because of this, the stuckat fault model is the most general and will be used for logic circuit
fault modeling.

82

b

a

w2

w1

Inv

PI

PO

FANOUT

NAND

Gate Ports Faults Total

3 2 2 12

2 1 2 4

2 1 2 4

1 3 2 6

1 3 2 6

16 sites 32 faults

Fig. 3.34 Stuckat faults in s gatelevel circuit

3 Fault and Defect Modeling

3.2.8.2 Single Fault

In spite of many simplifications so far, stuckat faults are still too many to enumerate, and require
intensive processing for finding tests or analyzing faulty circuits if all fault combinations are to be
considered. Consider the simple circuit we used for analyzing transistor faults and mapping them to
stuckat faults. The circuit is repeated in Fig. 3.34 with all possible stuckat faults shown. Solid dots
represent stuckat1 faults and hollow circles are for stuckat0.

As shown in this figure, an input and an output line are considered a site for fault. This circuit has
16 fault sites. With our stuckat fault model, each site has two faults, leading to a total of 32 faults.

For a circuit with g ninput gates, we have s fault sites as calculated below.

(1)s g n= × +

For analyzing a circuit with s sites, each site can either take one of the stuckat faults (SA0 or SA1)
or no fault at all. This means that there will be two cases per site. Using this simple fault model, we
will have a total of fault combinations as calculated below. Subtracting a 1 is for the good circuit.

Fault combinations 2 1s= −

With this, for our simple circuit of Fig. 3.34, there will be a total of 1216–1 = 65,535 fault combinations.
Even for a small circuit like this, this amount of calculation is impossible. To overcome this issue, we
make another compromise and consider our circuits with only one fault at a time. For our circuit with
g n-input gates, with two faults per site, the total number of single faults to consider is as below:

Single faults 2 s= ×

For our simple circuit of Fig. 3.34, the 65,535 fault combinations reduce to 32 single faults.
The singlestuckat fault model is a simple model, but in most cases, the analysis based on this

simple model generalizes to the more complex multiple fault model. If the purpose of the analysis
is to find the coverage of a given test set, coverage calculation based on the single fault model has
a good correspondence with that of multiple faults [14, 15]. In test generation, if a test is to be
selected based on its coverage of faults, coverage calculations will be done with single fault model,
and it is assumed to hold true for multiple faults as well [16].

In physical testing of circuits, we assume that circuits are tested frequent enough that faults are
detected and identified as they occur, before we run into multiple fault situations. Although this
assumption may be unrealistic for complete systems, it is a realistic situation for submodules of a
system tested independently.

83

l7=1/0

l8=1
l9=0/1

w

O1

G 4

G 2

G3

l5

l6

l4=0/1

l1=1

l2

l3

G1

FO1

I2

I1

I3

a=1

b=0

s=1

Fig. 3.35 Detecting stuckat faults

3.2 Structural Gate Level Faults

Another reason single faults are preferred over multiple faults is that multiple faults can mask
each other and prevent them from being detected or distinguished. This situation was discussed in
Sect. 3.2.7.

Considering the discussions in this section (3.2.8), although not perfect, and, in some cases, over
simplified, the single stuckat fault model remains the most used fault model for testing electronic
equipment today. Most algorithms and test methods are based on this fault model and are good
approximations for other fault types.

3.2.9 Detecting Single Stuck-at Faults

For detecting a fault, finding Boolean function of the faulty circuit and comparing it with the
good circuit function, as discussed in Sect. 3.2.1, applies to functional faults and structural
faults of any type. However, a simpler method exists for detecting single stuckat faults that we
explain here.

A stuckat fault to be detected must be activated and then propagated. To activate a fault, primary
input values must be adjusted such that the faulty line receives a value different than its faulty value.
Once a fault is activated, input values must be adjusted such that the fault effect can propagate to a
primary output. A fault effect on a line propagates to a primary output when toggling the value of
line also toggles the output [17].

As an example, consider the SA1 fault on l
4
 of Fig. 3.35. In order to activate this fault, a 0 must

reach this line (l
4
 = 0/1, 0: good value, 1: faulty value). This can be achieved by s = 1. Now that l

4
:

SA1 is activated, it must be propagated to the output. For this to happen, l
5
 must become 1, so that

faulty value of l
4
 propagates to the output of G

2
. Thus a = 1.

This makes l
7
 = 1/0. For l

7
 output of G

2
 to propagate to l

9
, and thus w, l

8
 must be 1; otherwise,

l
8
 = 0 forces l

9
 = 1 regardless of value of l

7
. Making l

8
 = 1 can be achieved by a 0 on b. This makes

l
9
 = 0/1, which shows that w becomes 0 if there is no fault in the circuit, and it becomes 1 in pres

ence of l
4
:SA1. The input combination abs = 101 detects l

4
:SA1.

The process discussed above is the basis of many test generation algorithms that will be presented
in chapter on test generation. We are only presenting this to help us present materials in the rest of
this chapter.

84

Fig. 3.36 Detecting bridging faults

3 Fault and Defect Modeling

3.3 Issues Related to Gate Level Faults

Certain definitions, methods, and terms that relate to functional and structural gatelevel faults are
discussed here. This material provides a background for Sect. 3.4 on reducing number of faults.

3.3.1 Detecting Bridging Faults

For justifying the use of the stuckat fault model, in an earlier section, we indicated that bridging
faults could be detected by stuckat faults. This section elaborates on this issue and presents several
illustrating examples. An ANDbridging fault between lines i and j can be detected by a test that
puts a 0 on i, a 1 on j, and detects a SA0 on j. Similarly, an ORbridging fault between lines i and j
can be detected by a test that puts a 1 on i, a 0 on j, and detects a SA1 on j. In both cases (AND and
OR bridging), the test should detect the stuckat fault on line that is receiving a faulty value due to
the bridging fault.

Figure 3.36 shows two faulty versions of our multiplexer example. One circuit has an AND
bridging between lines l

5
 and l

6
, and the other has an ORbridging between these two lines. Faulty

functions are shown, and gray boxes in the Karnaugh maps show conflicts with the good multi
plexer, which designate input combinations detecting faults.

As directed above, to detect the ANDbridging fault of Fig. 3.36a, we set l
5
 to 1, l

6
 to 0, and detect

stuckat0 on l
5
. A SA0 on l

5
 is activated by a = 1, propagated to l

7
 by s = 0, and propagated to w

by b = 0. Therefore, abs = 100 detects fault of Fig. 3.36a, which represents one of the gray boxes
in this figure. If we start with l

5
 equal to 0 and l

6
 equal to 1, a similar analysis finds the other test

for the abovementioned ANDbridging fault that is abs = 011.

85

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2

G1

FO1

I2

I1

I3

a

b

s

l3

l8

l7

Fig. 3.37 Undetectable ANDbridging fault

Fig. 3.38 Redundant fault, due to hazard removal

3.3 Issues Related to Gate Level Faults

In order to detect the ORbridging fault of Fig. 3.36b, we start with l
5
 = 1, l

6
 = 0, and detect SA1

on l
6
. This translates to abs = 100. Starting with l

5
 = 0 and l

6
 = 1, the test for the ORbridging faults

becomes abs = 101.

3.3.2 Undetectable Faults

A fault is undetectable if the circuit in presence of the fault produces the same output as the fault
free circuit. Figure 3.37 shows an ANDbridging fault between l

7
 and l

8
 that produces the same

output as the good multiplexer output and is therefore undetectable.

3.3.3 Redundant Faults

Redundancies in logic circuits happen for multioutput circuit minimization, reliability purposes, static
hazard removal, or are unintentional. In any case, circuit redundancies provide conditions that some
faults in the circuit go undetected. Such faults are referred to as redundant faults. See for example the
circuit in Fig. 3.38. Gate G

5
 removes the potential hazard shown in the Karnaugh map. A stuckat1

86 3 Fault and Defect Modeling

fault at the output of this gate causes no change in the circuit output, and therefore is undetectable. Not
all faults in the redundant parts of a circuit are necessarily undetectable. For example, a stuckat0 at the
output of G

5
 causes w to become permanently 1, which makes this fault a detectable one.

3.4 Fault Collapsing

Thus far, we have been able to reduce fault types, simplify our fault model, and accept certain
approximations in fault coverage and detection. These have been for the purpose of simplifying
algorithms dealing with faults, and reducing processing time of processes that deal with faults. This
section presents another step in this direction. Normally, we are to reduce our processing time by
reducing the number of faults that we deal with. We discuss indistinguishable faults, fault equiva
lence, and methods of removing unnecessary faults [18].

3.4.1 Indistinguishable Faults

When several faults produce the same faulty outputs, for every input, they are said to be indistin-
guishable. In this case, detecting that a fault has occurred is possible, but exactly which fault has
caused the faulty output is unknown, i.e., faults are detected but not located. Indistinguishable faults
have the same set of tests.

As an example, consider the stuckat1 fault of Fig. 3.17 and the bridging fault of Fig. 3.18. Since
these two very different faults produce the same faulty w, by looking at the output of the circuit, we
cannot distinguish the source of the fault. Therefore, these faults are functionally equivalent or
indistinguishable.

Following the procedure of Sect. 3.2.9 for generating test for the stuckat1 fault of Fig. 3.17
leads to abs = 0X0, which means that either abs = 010 or abs = 000 detects l

5
:SA1. This test pro

duces 1 on w for the faulty circuit and 0 for the faultfree circuit.
Following the procedure of Sect. 3.3.1 for finding tests for bridging faults, we obtain abs = 000

and 010 for detecting the ANDbridging fault of Fig. 3.18. Since all tests detecting l
5
:SA1 and l

7
–l

3
:

ANDbridging are the same, these faults are indistinguishable.
Another set of indistinguishable faults in the multiplexer circuit are the ORbridging fault

between l
5
 and l

6
 and the ORbridging fault between l

5
 and l

4
, as shown in Fig. 3.39. In both cases,

the faulty output of the multiplexers becomes a+b.
Equivalency of these faults is reconfirmed by finding tests that detect them. Using the procedure

for detecting bridging faults reveals that abs = 101 or 010 detects these faults. Once again, we are
showing that there is no test that can differentiate between these faults, and therefore they are
indistinguishable.

Another set of indistinguishable faults in this circuit are l
2
:SA1 and l

7
:SA1. These faults can be

detected by abs = 100 or 110, and in both cases, the faulty output expression becomes

Faulty . .w s b=

3.4.2 Equivalent Single Stuck-at Faults

Section 3.4.1 showed that faults of any type can be functionally equivalent. In order to detect if there
are equivalent faults in a circuit, faulty functions of all types of faults must be calculated and

87

Fig. 3.39 Two indistinguishable ORbridging faults

3.4 Fault Collapsing

 compared. Alternatively, tests can be generated for all faults, and faults with the same set of tests
are equivalent. Obviously, with the large number of faults in a circuit, either alternative involves a
prohibitively intensive computation. Even if we limit ourselves to stuckat faults, an exhaustive
search for all equivalent faults is a hard process.

Instead of looking for functional equivalency, if we limit ourselves to structural local fault
equivalence, the process will be significantly simplified. In structural local fault equivalence, only
faults on inputs and outputs of simple logic gates are checked for equivalency. Although this is not
exact, and there will still be equivalent stuckat faults that are not detected, the methods used for
this purpose are simple and can be applied to arbitrary large circuits [19].

3.4.3 Gate-oriented Fault Collapsing

The simplest gateoriented fault collapsing method involves a local processing of circuit gates from
circuit inputs toward the outputs. This is based on the fact that stuckat faults on ports of a logic gate
can be reduced independently, by a local gatebased process.

3.4.3.1 Gate Faults

For a single gate fault collapsing case, consider six stuckat faults on ports of a 2input AND gate.
These faults can be reduced to four without considering where the gate inputs and outputs are con
nected to.

This example is illustrated in Fig. 3.40. Originally, a SA0 (hollow circle) and a SA1 (solid dot)
are placed on AND gate inputs and output.

88

Stuck-at 0

Stuck-at 1

Stuck-at Pair

Fig. 3.40 AND gate local fault
collapsing

Fig. 3.41 Float and fixed fault in
primitive gates

3 Fault and Defect Modeling

The SA0 faults on the AND gate inputs have the same effect on the output of this gate, and thus
are equivalent. Furthermore, the SA0 fault on the output of this gate affects the logic that this output
is connected to no different than the input SA0 faults. Therefore, the output SA0 fault of this AND
gate is also indistinguishable from its input SA0 faults. This means that the three SA0 faults on the
ports of an AND gate form an equivalent class, the members of which cannot be distinguished from
one another. As such, we only need to select only one member of this equivalent class, which
reduces the AND gate faults to only four. Graphically (as shown in Fig. 3.40), we represent this case
by an ninput AND gate having n+1 SA1 fixed faults on its inputs and output, and a float SA0 fault
that can be placed on any of its ports.

Figure 3.41 shows extension of the AND gate fault collapsing rules to other basic gates. An
ninput NOR gate has n fixed SA0 faults on its inputs, a fixed SA1 fault on its output, and a
float fault that appears as SA1 if placed on an input, and becomes SA0 if placed on the output
of the gate.

3.4.3.2 Gate-oriented Fault Collapsing Procedure

Using gate fault properties discussed above, a simple fault collapsing procedure is presented here.
In this procedure, first a pair of faults is placed on every port of every component. Then, line faults
are reduced to only one of a kind. Line faults move forward next to gate that they drive. For gate
faults, gates closer to the input are treated first. Fixed gate faults are kept, and their float faults are
placed on their outputs. Output faults move forward close to the gates they are driving. In general,
in this procedure, like bubbles, faults move forward on a line as close as they can get to the output
of the circuit. Figure 3.42 shows these rules for lines, inverters, basic gates, and fanouts.

89

Reduce to : Reduce to :

Fig. 3.42 Rules for local gateoriented fault collapsing

3.4 Fault Collapsing

Figure 3.43 shows application of this procedure to the multiplexer circuit example of the previous
sections. Originally, all faults are placed on all ports, including inputs, output, and fanout. This will
put a pair of SA0, SA1 faults on each end of a circuit line. Line faults will be reduced first.

For example, four faults on the two ends of l
3
 become two and will be placed next to G

3
.

Repeating this for all circuit lines results in Fig. 3.43b. We then treat gate faults moving from the
input side of the circuit toward its output.

According to Fig. 3.42, the G
3
 NAND gate requires a SA1 on each of its inputs, and SA0 and

SA1 on its output. This means that the SA0 faults on l
3
 and l

6
 inputs of G

3
 are not needed and can

be removed. As for the output of G
3
, the required SA0 and SA1 faults are already placed on l

8
 at the

input of G
4
. Before going forward, the inverter that is at the same distance to circuit inputs as G

3

must be treated. Gate G
2
 SA0 and SA1 faults move to the output of this gate and become SA1 and

SA0. These faults move on l
4
 close to G

2
 and collapse into faults already at this location. We then

follow this procedure for G
2
, which leads to keeping a SA1 on its l

5
 input, a SA1 on its l

4
 input, and

SA0 and SA1 on its l
7
 output. As before, output faults move to the inputs of the next gate. The last

level in this circuit is that of G
4
. Considering that this is also a NAND, we remove SA0 faults at its

inputs and keep the SA0 and SA1 faults at its output. Figure 3.43c shows faults in the multiplexer
after collapsing.

3.4.4 Line-oriented Fault Collapsing

A simpler fault collapsing can be achieved when we view faults on lines instead of those on the gate
ports. This approach is based on the classic concepts and is only different from the previous material
in its view of placing faults. Instead of initially arranging all possible faults on the ports of gates and
then trying to collapse them, we only place those faults on circuit lines that cannot collapse any
further. The criterion used in placing a specific stuckat fault on a line is based on the gate driven
by the line. Table 3.1 shows faults to be placed on lines based on the gate the line is driving. As
before, fanout is treated as an actual component.

90

l7

l8

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2

l3

G1

FO1

I2

I1

I3

a

b

s

l7

l8

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2

l3

G1

FO1

I2

I1

I3

a

b

s

l7

l8

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2

l3

G1

FO1

I2

I1

I3

a

b

s

a

b

c

Fig. 3.43 Gateoriented fault collapsing

3 Fault and Defect Modeling

An example of this method is shown in Fig. 3.44. Faults shown on the circuit lines were
determined by entries of Table 3.1.

As we described, only the faults that cannot be collapsed are placed on the circuit. For example,
for G

4
 that is a NAND gate, we place stuckat faults on its inputs. Our algorithm does not decide on

faults at the output of a gate. SA0 faults are not placed on input lines of this gate, because these
faults are equivalent to SA fault at this gate’s output, and an output fault is decided by the type of
the gate driven by it. This process is repeated for all gates of the circuit, while deciding on faults of
input lines based on entries of Table 3.1. If we are to apply this method to a sequential circuit, all
input lines of a flipflop should be treated as pseudo primary outputs (such as data input and clock
signals) and flipflop outputs should be treated as pseudo primary inputs. Pseudo primary outputs
and inputs are treated the same as primary outputs and inputs as shown in Table 3.1.

91

l7

l8

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2

l3

G1

FO1

I2

I1

I3

a

b

s

(c)

Fig. 3.44 Lineoriented fault collapsing

Table 3.1 Lineoriented fault collapsing

Type of target gate
Put this (these) fault(s)
on the gate’s input line(s)

ADD, NAND SA1
OR, NOR SA0
INV, BUF None
FANOUT SA0, SA1
XOR SA0, SA1
Primary output SA0, SA1
Primary input None

3.4 Fault Collapsing

3.4.5 Problem with Reconvergent Fanouts

A fanout (divergence point) that reconverges at a gate somewhere in the circuit is called a
reconvergent fanout. Reconvergent fanouts present problems in most test applications and
require special treatment.

Both methods presented above have deficiencies when it comes to reconvergent fanouts. In
both methods, a fanout stem takes both SA0 and SA1 faults. This is whether the fanout stems
converge at a gate or not. However, if they do converge, there is a possibility that a fault at the
convergence point becomes equivalent to a fault at the divergence point (fanout stem). This can
be corrected by simulating a section of the circuit that has a reconvergent fanout for faults at
the divergence and convergence points. Simulation results will determine if certain faults are
to be removed.

As an example for this case, consider the circuit shown in Fig. 3.45. After performing line
oriented fault collapsing, faults placed on circuit lines are as shown in this figure. The SA0
fault at the fanout stem of this circuit produces a 1 on w. At the same time, we also have a
SA1 on w. Obviously, these faults are equivalent, and our fault collapsing methods did not
detect them. Simulating the area enclosed in the dottet line for faults on l

3
 and l

10
 finds the

equivalent faults.

92

l8

l9

l10

w

l4

l3
l1
l2

l5

l7
l6

a

b
c

d

Fig. 3.45 Reconvergent fanout fault problem

3 Fault and Defect Modeling

In spite of this shortcoming, fault collapsing methods are simple and efficient. The extra work
involved in finding all equivalent faults does not justify removal of just a few additional faults.

3.4.6 Dominance Fault Collapsing

Another type of fault collapsing that can further reduce the number of faults we deal with is called
dominance fault collapsing. Fault f1 is said to dominate fault f2 if all tests that detect f2 also detect
f1, but detecting f1 does not necessarily mean that f2 is also detected [20].

3.4.6.1 Dominance Principles

A simple example for fault dominance is shown in Fig. 3.46. In this figure, a fanout component
has a SA1 fault on its stem, s, and a SA1 on its branch a. A test for s:SA1 is to force a 0 into the
fanout stem. As a result of this test, if the faulty value propagates to circuit outputs through
both fanout branches (a and b), as shown in Fig. 3.46b, then both s:SA1 and a:SA1 have been
detected.

In this case, these faults look like they are equivalent. However, if as in Fig. 3.46c, the faulty
value of 1 propagates through the lower branch only and is somehow blocked in the upper branch
(branch a), then s:SA1 is detected and a:SA1 is not. Since tests for s:SA1 form a superset of
a:SA1, s:SA1 dominates a:SA1. We present this dominance case in a larger example. Figure 3.47
shows two identical circuits with one having a SA1 fault on its fanout stem and the other on its
branch.

We apply two tests to this circuit: T
1
 = 00X0 and T

2
 = 10X1. The good circuit outputs for these

tests become wy = 00 and wy = 10, respectively. When these tests are applied to the faulty circuit
with s:SA1 (Fig. 3.47b), circuit outputs become wy = 10 and wy = 11, respectively. Since for both
tests, wy values are different than the good wy values, both tests T

1
 and T

2
 detect s:SA1. Now we

apply these same tests to Fig. 3.47c with branch a:SA1. In this case, wy becomes 10 for T
1,
 and

since this response is different from the good circuit response, T
1
 detects a:SA1. However, when

T
2
 is applied to the circuit with a:SA1, the wy output becomes 10 which is the same as that of the

good circuit. This means that any test that detects a:SA1, i.e., T
1
, also detects s:SA1, but there

are tests that detect s:SA1, i.e., T
2
, and not a:SA1. Since tests for s:SA1 form a super set of those

for a:SA1, we say that s:SA1 dominates a:SA1. This dominance relation is shown in Fig. 3.48.
If we were to choose either T

1
 or T

2
, since T

1
 detects both faults, it is the preferred test. And since

this test can be found by considering only a:SA1, dominance fault collapsing removes s:SA1 and
only keeps a:SA1.

93

s s s

a

a

b

a a

bb

0 0

1

1 1

X

b c

Fig. 3.46 Dominance s:SA1 dominates a:SA1

i

j

l

01

00
xx

01

w

y

01

00

k

i

j

l

01

00
xx

01

w

y

11

01

k

i

j

l

01

00
xx

01

w

y

11

00

k

a

s a

s

s

a

a

b

c

Fig. 3.47 Fault dominance example

Fig. 3.48 Dominance relation

3.4 Fault Collapsing

94

Fig. 3.49 Dominance in AND and OR gates

Reduce to:
Reduce to:

Fig. 3.50 Dominance fault collapsing

3 Fault and Defect Modeling

A dominance relation also exists in an AND and an OR gate. As shown in Fig. 3.49a, in an
AND gate, ab = 10 detects b:SA1 and w:SA1, while ab = 00 detects only w:SA1. Therefore,
ab = 10 is the preferred test. In the OR gate shown in this figure, since b:SA0 dominates w:SA0,
in dominance fault collapsing, we only keep b:SA0 for which ab = 01 test is generated that
detects both faults.

The purpose of dominance fault collapsing is merely detecting a fault and not necessarily
locating it. In Fig. 3.47, T

1
 = 00X0 produces the same faulty response for either faults shown.

This response cannot be used to tell these faults apart.

3.4.6.2 Dominance in Fanout-free Circuits

As shown in the above AND and OR examples, input faults at logic gates dominate those of the
output. In other words, dominance fault collapsing removes dominated output faults and only keeps
gate input faults. Figure 3.50 shows dominance rules for basic gate structures.

A fanoutfree circuit can be regarded as a large logic gate with a given Boolean function.
Dominance rules for such a gate cannot be any different than those of basic gates, such as AND and
OR gates. Therefore, faults at the primary inputs of a fanoutfree circuit dominate all faults in the
circuit. An example in which all faults converge to the primary inputs is shown in Fig. 3.51.

95

Fig. 3.51 Dominance fault collapsing example

3.5 Fault Collapsing in Verilog

3.5 Fault Collapsing in Verilog

Perhaps one of the most basic steps in any test method, e.g., fault simulation and test generation, is
obtaining a fault list. We have shown methods for obtaining and reducing fault lists for such applica
tions. This section shows an automated way of doing this. We show how a Verilog testbench can be
developed to perform fault collapsing on the netlist it is testing and then show PLI implementation
of PLI task used for this purpose.

3.5.1 Verilog Testbench for Fault Collapsing

For applying test methods at the gatelevel to a circuitundertest, a netlist of the circuit is required.
The netlist follows a certain format which is known to the testbench and the PLI functions used by
the testbench.

Figure 3.52 shows a Verilog module that corresponds to the 2to1 multiplexer example that we
used in this chapter. Components used in this description correspond to those of Fig. 3.14, and line
names and labels used here are the same as the labels in Fig. 3.14.

Figure 3.53 shows a Verilog testbench for mux2to1 module of Fig. 3.52. This testbench instantiates
this circuit using DUT instance name. In an initial statement, PLI function $FaultCollapsing is
called with the name of the module for which a fault list is to be generated, and the output file that
will contain this list. Following this call, the testbench performs its normal functions of applying
tests and other tasks it may have.

At time 0, before any simulation begins, the $FaultCollapsing function is called and a collapsed
list of faults is generated. Figure 3.54 shows this fault list. Faults generated here for the multiplexer
match those obtained manually in Sect. 3.4.4 and shown in Fig. 3.44.

96

module mux2to1 (input a, b, s, output w);
wire l1, l2, l3, l4, l5, l6, l7, l8, l9;
pin I1 (s,l1);
pin I2 (a,l5);
pin I3 (b,l6);
pout O1 (l9,w);
fanout_n #(2,1,1) FO1 (l1,{l2,l3});
notg #(1,1) G1 (l4, l2);
nand_n #(2,1,1) G2 (l7, {l5, l4});
nand_n #(2,1,1) G3 (l8, {l6, l3});
nand_n #(2,1,1) G4 (l9, {l7, l8});

endmodule

Fig. 3.52 Multiplexer Verilog description

module TESTmux2to1 ();
reg ai=0, bi=0, si=0;
wire wo;
mux2to1 DUT (ai, bi, si, wo);

initial begin
$Faultcollapsing (TESTmux2to1.DUT, "Mux1Faults.flt");
repeat (15) #73 {ai, bi, si} = {ai, bi, si} + 1;

end
endmodule

Fig. 3.53 Verilog testbench performing fault collapsing

Fig. 3.54 Multiplexer collapsed
faults

3 Fault and Defect Modeling

For a testbench performing test generation or fault simulation, this fault list will be read by
the testbench, and appropriate functions will be performed for such applications. Other testbench
functions include fault injection, test data applications, and output response evaluations. PLI functions
for some of these tasks will be discussed in the later chapters.

97

module and_n
#(parameter n = 2, tphl = 1, tplh = 1)(out, in);
input [n-1:0] in;
output out;
wire [n-2:0] mwire;
genvar i;
and and_0 (mwire [0], in [0], in [1]);
generate

for (i = 1; i <= n-2; i = i+1) begin : AND_N
and inst (mwire [i], mwire [i-1], in [i+1]);

end
endgenerate

 bufif1 #(tplh, tphl) inst(out, mwire [n-2], 1'b1);
endmodule

Fig. 3.55 Test primitive AND gate

3.5 Fault Collapsing in Verilog

Gate models known to the $FaultCollapsing function and other PLI functions that we use in
testing follow a certain format as discussed in Chap. 2.

Figure 3.55 shows an AND gate to use as reference in the PLI function implementation that we
discuss next.

3.5.2 PLI Implementation of Fault Collapsing

The $FaultCollapsing function that has been implemented in PLI uses the lineoriented fault col
lapsing method discussed in Sect. 3.4.4.

The toplevel PLI C++ function is FaultCollapsing. This function is registered as $FaultCollapsing
that becomes available to Verilog testbench descriptions. The main function of fault collapsing
shown in Fig. 3.56 is to open the fault file passed to it, look for submodules in the designunder
test, and pass the module handler and faultFile pointer to the traceChildren function.

The traceChildren function shown in Fig. 3.57 takes a module handle of a toplevel module in
DUT and looks for its children. This is a recursive function, and when it reaches a child module that
is of a known primitive type, e.g., and_n of Fig. 3.55, it passes the primitive type, module handle,
and faultFile to the tracePorts function.

The tracePorts function is shown in Fig. 3.58. This function traces ports of the primitive module
that is passed to it, and looks for an input vector that contains bits corresponding to the primitive
inputs. Once such port is found, it passes the port handle, primitive type, and faultFile to
dumpPortBitFaults.

Recall that inputs of primitives, e.g., and_n, are grouped into an nbit vector called in. Function
dumpPortBitFaults, shown in Fig. 3.59, takes port handle of this vector as input, and it looks in this
vector for portbit handles that correspond to the individual primitive inputs. For every portbit_handle
of a primitive, depending on the type of the primitive (switch statement in Fig. 3.59), it executes
Table 3.2 and writes the corresponding faults and the hierarchical name of the primitive to the fault
file that is passed to this function.

The PLI C++ code that was presented here is typical of most PLI functions that we have devel
oped and used in our test applications in this book. Because of the hierarchies involved, this code
contains many of the techniques used in our other functions. PLI functions in other chapters will
not be explained at this level of detail.

int FaultCollapsing ()
{

handle mod_handle;
acc_initialize();
mod_handle = acc_handle_tfarg(1);
FILE* faultFile =fopen((char*)acc_fetch_tfarg_str(2),"w+");
traceChildren (mod_handle, faultFile);
fclose(faultFile);
fclose(logFile);
acc_close();

return 0;
}

Fig. 3.56 Toplevel PLI fault collapsing function

static void traceChildren (handle mod_handle, FILE* faultFile)
{

handle child;
int moduleType = -1;

moduleType = knownModuleType (acc_fetch_defname (mod_handle));

if(moduleType >= 0) // Trace ports of known primitives
{
tracePorts (mod_handle, moduleType, faultFile);

else

for (child = acc_next_child(mod_handle, 0);child;
 child = acc_next_child(mod_handle, child))
 {
 traceChildren (child, faultFile);
 }
}

}

Fig. 3.57 Tracing children of toplevel design modules

static void tracePorts (handle mod_handle, int moduleType,FILE* faultFile)

{
handle port_handle;
int tmpint;

 for (port_handle = acc_next_port(mod_handle, 0);
 port_handle; port_handle = acc_next_port(mod_handle,
 port_handle)
)
 {
 tmpint = acc_fetch_direction(port_handle);

if(tmpint == accInput)
 {
 dumpPortBitFaults (port_handle,moduleType,faultFile);
 }
 }
}

Fig. 3.58 Tracing primitive ports, looking for input port

99

Fig. 3.59 Dumping primitive hierarchy and its faults

{

void dumpPortBitFaults(handle port_handle, int moduleType, FILE*
faultFile)

int tmpint = 0;
handle portbit_handle;

for (portbit_handle = acc_next_bit(port_handle, 0);
 portbit_handle;portbit_handle=acc_next_bit(port_handle,
 portbit_handle))
 {

switch(moduleType)
 {
 //_NOT_G:
 //_AND_N
 case 1:

fprintf(faultFile,"%s s@1\n",
acc_fetch_fullname(portbit_handle));

 break;
 //_NAND_N

case 2:
 fprintf(faultFile,"%s s@1\n",
acc_fetch_fullname(portbit_handle));

 break;
 //_OR_N

case 3:
 fprintf(faultFile,"%s s@0\n",

acc_fetch_fullname(portbit_handle));
 break;
 //_NOR_N

case 4:
 fprintf(faultFile,"%s s@0\n",

acc_fetch_fullname(portbit_handle));
 break;
 //_XOR_N

case 5:
 fprintf(faultFile,"%s s@1\n",

acc_fetch_fullname(portbit_handle));
 fprintf(faultFile,"%s s@0\n",

acc_fetch_fullname(portbit_handle));
 break; //_XNOR_N

case 6:
fprintf(faultFile,"%s s@1\n",
acc_fetch_fullname(portbit_handle));
fprintf(faultFile,"%s s@0\n",
acc_fetch_fullname(portbit_handle));

3.5 Fault Collapsing in Verilog

100

break;;

case 7:
fprintf(faultFile,"%s s@1\n",
acc_fetch_fullname(portbit_handle));
fprintf(faultFile,"%s s@0\n",
acc_fetch_fullname(portbit_handle));
break;

 //_PO

case 8:
 fprintf(faultFile,"%s s@1\n",

acc_fetch_fullname(portbit_handle));
 fprintf(faultFile,"%s s@0\n",

acc_fetch_fullname(portbit_handle));
 break;

 //_DFF

case 9:

 if(partialCompare(acc_fetch_name(portbit_handle), "D", 1))
 {fprintf(faultFile,"%s s@1\n",

acc_fetch_fullname(portbit_handle));
 fprintf(faultFile,"%s s@0\n",

acc_fetch_fullname(portbit_handle));}
 break;
 //_TFF

case 10:

 if(partialCompare(acc_fetch_name(portbit_handle), "T", 1))
 {fprintf(faultFile,"%s s@1\n",

acc_fetch_fullname(portbit_handle));
fprintf(faultFile,"%s s@0\n",
acc_fetch_fullname(portbit_handle));}

 break;

 }
 }
 }

//_FANOUT_N

Fig. 3.59 (continued)

3 Fault and Defect Modeling

3.6 Summary

This chapter discussed faults. Perhaps the most important topic to understand in testing is that there
are defects and faults at various levels model these defects. The first part of the chapter discussed
faults from transistors to systems. Although most test programs and methods are based on gatelevel
faults, this discussion gives the reader a good understanding of higher level abstractions and
prepares him or her for research seeking higher level testing. After the discussion of abstraction

1013.6 Summary

levels, the chapter narrowed down fault models to the single stuckat fault model, as the most
practical fault model used in today’s electronic testing. Once this was established, several fault
collapsing and fault reduction methods that apply to the stuckat fault model were presented. The
last part of the chapter showed an automatic HDLbased implementation for a method for obtaining
a collapsed fault list.

References

 1. Timoc C, Buehler M, Griswold T, Pina C, Stott F, Hess L (1983) Logical models of physical failures, Proceedings
of IEEE international test conference, pp 546–553

 2. Hayes JP (1985) Fault modeling. IEEE Des Test Comput, pp 88–95
 3. Shen JP, Maly W, Ferguson FJ (1985) Inductive fault analysis of MOS integrated circuits. IEEE Des Test Comput

2(6):13–26
 4. Abraham JA, Fuchs WK (1986) Fault and error models for VLSI. Proc IEEE 74(5):639–654
 5. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory, and mixedsignal VLSI

circuits. Kluwer, Dordecht
 6. Wadsack RL (1978) Fault modeling and logic simulation of CMOS and MOS integrated circuits. Bell Syst Tech

J 57(5):
 7. Jha NK, Gupta S (2003) Testing of digital systems. Cambridge University Press, Cambridge
 8. Eldred RD (1959) Test routines based on symbolic logical statements. J ACM 6(1):33–36
 9. Galey JM, Norby RE, Roth JP (1961) Techniques for the diagnosis of switching circuit failures. In: Ledley RS

(ed) Proceedings of the second annual symposium on switching circuit theory and logical design (Detroit), AIEE,
pp 152–160, Oct

 10. Malaiya YK, Rajsuman R (1992) Bridging faults and IDDQ testing, Los Alamitos, California. IEEE Computer
Society Press, Silver Spring, MD

 11. Bossen DC, Hong SJ (1971) Causeeffect analysis for multiple fault detection in combinational networks. IEEE
Trans Comput C20:1252–1257

 12. Jha NK (1986) Detecting multiple faults in CMOS circuits. In: Proceedings of the international test conference,
pp 514–519

 13. Hayes JP, Polian I, Becker B (2006) A model for transient faults in logic circuits. Int’l Workshop on Design and
Test, Dubai, UAE, Nov. 2006

 14. Agarwal VK, Fung AFS (1981) Multiple fault testing of large circuits by single fault test sets. IEEE Trans
Comput C30(11):855–865

 15. Hughes JLA, McCluskey EJ (1986) Multiple stuckat fault coverage of single stuckat fault test sets. In
Proceedings of the international test conference, pp 368–374

 16. Jacob J, Biswas NN (1987) GTBD faults and lower bounds on multiple fault coverage of single fault test sets. In:
Proceedings of the international test conference, pp 849–855, Sept

 17. Roth JP (1966) Diagnosis of automata failures: a calculus and a method. IBM J Res Develop 10(4):278–291
 18. McCluskey EJ, Clegg FW (1971) Fault equivalence in combinational logic networks. IEEE Trans Comput 20(11):

1286–1293
 19. Schertz DR, Metze G (1972) A new representation for faults in combinational digital circuits. IEEE Trans

Comput C1(8):858–866
 20. Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing and testable design.IEEE Press,

Piscataway, NJ3.6 Summary

wwwwwwwwwwww

103

Simulating a faulty model of a circuit is called fault simulation. This process is used by test and
design engineers; it is the most used test method, and perhaps is one of the most computationally
intensive test applications. This chapter is on fault simulation, and Verilog codes and testbenches
are used throughout the chapter for illustrating concepts and showing how fault simulation is used
in practice.

In order to address the above-mentioned issues, in the first section, after the introduction of basic
concepts and terminologies, we show HDL environments for fault simulation. By this, we try to
make it easier for designers to understand fault simulation, and use this process for improving test
and testability of their designs during the design phase. We then discuss various applications of fault
simulation, and where possible, we show HDL environments for implementing them. In the third
section of this chapter, we focus our attention on various techniques for speeding up the fault simu-
lation process. Some of these techniques opt to HDL environments better than others, and for those,
we discuss related HDL implementations.

4.1 Fault Simulation

We use fault simulation for test data generation, test set evaluation, circuit testability evaluation,
providing information for testers, finding faults in a circuit, diagnostics, and many other applica-
tions. In all such applications, a faulty model of the circuit being analyzed is made, and it is simu-
lated for a test vector or a complete test set.

The level at which fault simulation is done depends on the level of the circuit being simulated
and the level at which faults are injected in the circuit. Most fault simulations deal with gate-level
circuits and stuck-at structural gate-level faults.

This section familiarizes the reader with the gate-level fault simulation process, presents related
definitions and terminologies, and shows a complete HDL setup for fault simulation. The HDL
codes show the complete process of performing fault simulation on several gate-level circuits using
single stuck-at fault models.

4.1.1 Gate-level Fault Simulation

The block diagram of Fig. 4.1 shows components involved in fault simulation. The Simulation
Environment is where everything happens.

Chapter 4
Fault Simulation Applications and Methods

Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_4, © Springer Science+Business Media, LLC 2011

104

Fig. 4.1 Fault simulation process

4 Fault Simulation Applications and Methods

In this environment, the good circuit model (Golden Model), and the Faultable Model are instan-
tiated and a setup for comparing and reporting their responses is provided. The golden model can
be a good netlist or a behavioral description of the circuit being simulated. The faultable model is
at the gate-level and it is in the netlist form. There are provisions in this netlist for making circuit
lines faulty, and thus creating various faulty models.

The inputs to the simulation environments are Test Data and Fault List. Faults from the fault
list input of the Simulation Environment are read and by the use of the Fault Injection process
injected into the Faultable Model to make various faulty models. Test Data (or test set) is read
by the Simulation Environment and applied to the golden and faulty circuit models. For single
stuck-at fault model, faults are injected one at a time. With each new fault injection, a new faulty
model is created. Each faulty model is compared with the golden model for test vectors in the
test set.

As mentioned, the Simulation Environment is also responsible for collecting simulation results
and reporting discrepancies and generating other required reports. The exact tasks performed here
determine the application for which fault simulation is being performed. One such application may
be identifying test vectors in the test set that can detect a certain number of faults. Applications such
as this are discussed in Sect. 4.2.

4.1.2 Fault Simulation Requirements

With the above discussions, information that a fault simulation environment requires are:

Circuit netlist with provisions to become faulty ·
Good circuit netlist or behavioral description ·
A file containing test data ·
A file containing fault list ·

A fault simulator produces:

Report files ·
Flags and messages ·

1054.1 Fault Simulation

Capabilities that a fault simulator requires for processing the above-mentioned information are as
given below.

4.1.2.1 Gate-level Simulation

Since the golden and faulty circuit models are usually available at the gate level, a fault simulation
environment should have gate-level simulation capability.

4.1.2.2 Behavioral Simulation

While the faulty model is being simulated at the gate-level for stuck-at gate-level faults, the golden
model is simulated for its functionality only. Therefore, a fault simulation environment with behav-
ioral simulation capability can save processing time by simulating the behavioral description of the
golden model instead of its gate-level netlist.

4.1.2.3 Reading Data Files

Capability to read text inputs is required in a fault simulation environment for reading test data and
list of faults from external data files. Since in many instances, test data and fault lists are generated
by different programs, capability to read different formats of data by the fault simulator may be
needed. This eliminates the need for extra format conversion programs.

4.1.2.4 Fault Injection Capability

What distinguishes a fault simulation program from a standard logic simulator is the capability of
fault injection in a fault simulator. To create a faulty model, a mechanism for injecting faults in the
netlist of circuit being simulated is needed. This capability can be internal to the fault simulator or
a function added to a standard logic simulator.

4.1.2.5 Writing Report Files

Producing output and report files noting various comparison results and simulation reports is the
direct result of a fault simulation run. A fault simulation environment must be capable of writing
external data files for creating such reports. As in the case of input files, having formatting capabili-
ties to produce reports readable by other test programs is an added advantage.

Fault simulation can be done by using a dedicated fault simulator. Alternatively, some fault simu-
lation techniques can be implemented within standard logic simulators. This may require extra
functions and procedures added to the logic simulator which is usually not as efficient as dedicated
fault simulation programs.

4.1.3 An HDL Environment

After a discussion of characteristics of a fault simulation environment, the last section
presented two choices of using a dedicated program, or adapting an existing logic simulation

106

Behavioral
 Golden
Model

Gate
Level

Faultable

Assign to Ports

$InjectFault
$RemoveFault

$display

$fdisplay

…

….

….

GUT: Instance

FUT : Instance

Read by $fscanf

Read by $fscanf

Verilog Testbench

O1.in[0] s@1

110
010

G2.in[0] s@0

Reports,
Coverage,

Etc.

Fig. 4.2 Verilog fault simulation

l7

l8

l9

w

O1

G4

G2

G3

l5

l6

l4

l1

l2

l3

G1

FO1

I2

I1

I3

a

b

s

Fig. 4.3 2-to-1 multiplexer

4 Fault Simulation Applications and Methods

environment to perform this task. In this section, we take the latter route. Namely, we use a
Verilog based simulation environment and provide utilities in Verilog to satisfy the require-
ments discussed in Sect. 4.1.2. The advantages of this choice are that we are using a tool that
designers are familiar with (a Verilog simulation tool), there are flexibilities for input and out-
put file format conversions, we can use behavioral as well as gate-level circuit descriptions, and
last but not least, we have a working environment that concepts of fault simulation can be
illustrated with. The issue of inefficiency of this option versus a dedicated program is dealt
with in Sect. 4.3.

Figure 4.2 shows the Verilog fault simulation environment that is discussed and used here. The
complete environment is a Verilog testbench that performs tasks discussed in Sect. 4.1.2.

We use the familiar 2-to-1 multiplexer to illustrate how data and description files are prepared,
and how these tasks are done in Verilog. For reference, Fig. 4.3 shows the above mentioned
multiplexer.

107

module mux2to1 (input a, b, s, output w);
wire l1, l2, l3, l4, l5, l6, l7, l8, l9;
pin I1 (s,l1);
pin I2 (a,l5);
pin I3 (b,l6);
pout O1 (l9,w);

fanout_n #(2,1,1) FO1 (l1,{l2,l3});
notg #(1,1) G1 (l4, l2);
nand_n #(2,1,1) G2 (l7, {l5, l4});
nand_n #(2,1,1) G3 (l8, {l6, l3});
nand_n #(2,1,1) G4 (l9, {l7, l8});

endmodule

Fig. 4.4 Multiplexer faultable netlist

module nand_n
#(parameter n = 2, tphl = 1, tplh = 1)
(out,in);
 input [n-1:0] in;
output out;
 wire [n-2:0] mwire;
genvar i;

and and_0 (mwire [0], in [0], in [1]);
generate

for (i=1; i <= n-2; i=i+1) begin : NAND_N
 and inst (mwire [i], mwire [i-1], in [i+1]);

end
endgenerate
not #(tplh, tphl) inst(out, mwire [n-2]);

endmodule

Fig. 4.5 NAND test primitive

4.1 Fault Simulation

4.1.3.1 Input Files and Information

As mentioned in Sect. 4.1.2, for the preparation of fault simulation, Faultable Model, Golden
Model, Test Data, and Fault List are needed. These are shown here for Verilog fault simulation.

Figure 4.4 shows the gate-level Verilog code of the multiplexer. The formatting is the same as
that of Chap. 3 for fault collapsing. The utilities for fault injection use this format to access gate
inputs where stuck-at faults are to be injected.

This netlist uses gates from our test primitive library (component_library.v), the components of
which are shown in Appendix B. These gate models perform the usual gate-level simulations, and
are known to various fault simulation functions handling circuit faults. An example of a NAND gate
is shown in Fig. 4.5. The input number of which is passed to it via its n parameter. Note that the first
parameter of all three NAND gates of Fig. 4.4 uses number 2 for the number of inputs. Verilog cod-
ing details of the components of this library were discussed in Chapter 2. Appendix F discusses a
translation software program (NetlistGen) that produces netlists such as that of Fig. 4.4 from
behavioral Verilog descriptions. NetlistGen appends to commercial synthesis programs for netlist
generation.

108

000
001
010
011
100
101
110
111

Fig. 4.7 Multiplexer test data

Tester.FUT.O1.in[0] s@1
Tester.FUT.O1.in[0] s@0
Tester.FUT.FO1.in s@1
Tester.FUT.FO1.in s@0
Tester.FUT.G2.in[1] s@1
Tester.FUT.G2.in[0] s@1
Tester.FUT.G3.in[1] s@1
Tester.FUT.G3.in[0] s@1
Tester.FUT.G4.in[1] s@1
Tester.FUT.G4.in[0] s@1Fig. 4.8 Multiplexer faults after

fault collapsing

module mux2to1B (input a, b, s, output w);
assign w = ~s ? a : b;

endmodule

Fig. 4.6 Behavioral description of the multiplexer

4 Fault Simulation Applications and Methods

The next item in the list of information needed for fault simulation is the golden model. We can,
of course, instantiate the same module as that used as the faultable model, and just do not inject
faults on its lines. Alternatively, for faster simulation, we can use a behavioral description of the
multiplexer. Figure 4.6 shows this description of the multiplexer.

Figure 4.7 shows test data we are using for fault simulating the multiplexer. The data shown here
consists of all combinations of data for the three multiplexer inputs. In an actual fault simulation,
where real circuits have a large number of inputs, test data is generated by a test generation process
or are obtained from a part manufacturer. Note that one of the applications of fault simulation is test
generation. This topic is addressed in Sect. 4.2 of this chapter.

The last item in the list of necessary information for fault simulation is the list of faults to create
faulty circuit models. This list can be generated by a fault collapsing program or manually. Our
Verilog fault simulation environment expects a Verilog hierarchical name starting from the top-level
test bench leading to the line where fault is to be injected. For example, stuck-at-0 fault on l

4
 input

of G
2
 of Fig. 4.3 should be described as:

Tester.FUT.G2.in[0] s@1

This assumes that our faultable module (Fig. 4.4) is instantiated in Tester using faultable-under-test
(FUT) instance name.

Instead of manually creating a fault list, or just listing every stuck-at fault of our circuit, we can
use the FaultCollapsing PLI function of Chap. 3. This function generates the fault list shown in
Fig. 4.8.

109

module Tester ();
reg ai=0, bi=0, si=0;
wire woG, woF;
mux2to1B GUT (ai, bi, si, woG);
mux2to1B FUT (ai, bi, si, woF);

initial begin
 #000;$InjectFault("TESTmux2to1.FUT.G2.in[1]", 1’b0);
 #450 $RemoveFault("TESTmux2to1.FUT.G2.in[1]";
 //repeat above for more faults
 #50

$stop;
end
always #50 {ai, bi, si} = $random;

 // compare woG and woF and make decisions
endmodule

Fig. 4.9 Fault injection and removal

4.1 Fault Simulation

4.1.3.2 Fault Injection

Before we show our testbench performing tasks of Sect. 4.1.2, we need to introduce two new PLI
functions for fault injection and fault removal.

PLI task $InjectFault (wireName, faultValue) forces its faultValue argument on wireName.
The wire-name argument is a Verilog hierarchical name. This name starts with the module name
within which $InjectFault is called, followed by instance names of module hierarchies leading
to the wire-name that the value is being forced on. Names in this hierarchical name are separated
by dots.

PLI function $RemoveFault (wireName) has a wireName argument. When called, the forced
value from the wire identified in its argument is removed, and the wire values are determined by
values reaching it through normal simulation. Figure 4.9 shows injecting a stuck-at-0 fault on input
1 of G

2
 of Fig. 4.3, and removing it after 450 ns. While fault injection and removal are taking place,

random test vectors are being applied to the instantiated multiplexer.

4.1.3.3 Performing Fault Simulation

Fault simulation processings listed in Sects. 4.1.2.1 through 4.1.2.5 are executed by the Verilog
testbench shown in Fig. 4.10a.

The first part of the testbench declares wires and variables for data application and test control.
We discuss these variables when discussing their use. The golden-under-test (GUT) and faultable-
under-test (FUT) modules are instantiated at the beginning of the testbench. GUT is the behavioral
module of Fig. 4.6 and FUT is that shown in Fig. 4.4. These instantiations have the same set of inputs
(ai, bi, si), and have different output signals (woG, woF) to be compared. If delays are to be considered
the netlist module, mux2to1, should be instantiated for the golden model instead of mux2to1B.

The initial block shown in Fig. 4.10a is responsible for reading tests and faults, injecting faults
in FUT and analyzing the outputs. Near the beginning of this statement, the Mux.flt file is opened
using Verilog $fopen system task. This is followed by a while loop that uses Verilog’s $fscanf
(formatted scan from a file) to read wireName and stuckAtVal from the fault list. wireName is a

110

module Tester ();
reg ai=0, bi=0, si=0;
wire woG, woF;
reg detected;
integer testFile, faultFile, status;
reg[2:0] testVector;
reg [8*60:1] wireName;
reg stuckAtVal;

 mux2to1B GUT (ai, bi, si, woG);
 mux2to1 FUT (ai, bi, si, woF);

initial begin
 faultFile = $fopen("Mux.flt", "r");

while(! $feof(faultFile))begin
 detected = 1'b0;
 status = $fscanf(faultFile,"%s@%b\n",wireName, stuckAtVal);

$InjectFault (wireName , stuckAtVal);
 testFile = $fopen("Mux.tst", "r");

while((!$feof(testFile))&(detected == 0)) begin
 #30;
 status = $fscanf(testFile,"%b\n",
 testVector);
 {a, b, si} = testVector;
 #60;

 if (woG != woF) begin ... end
end //while eof test
$RemoveFault(wireName);

 #30;
end//while eof faults
$stop;

 end// end of initial
endmodule

Fig. 4.10 (a) Testbench performing fault simulation. (b) Fault simulation report

Fault: Tester.FUT.I4.in[0] SA1 was detected by 000 at 90.
Fault: Tester.FUT.I4.in[0] SA0 was detected by 011 at 1110.
Fault: Tester.FUT.FO1.in SA1 was detected by 010 at 1770.
Fault: Tester.FUT.FO1.in SA0 was detected by 011 at 2610.
Fault: Tester.FUT.G2.in[1] SA1 was detected by 000 at 3090.
Fault: Tester.FUT.G2.in[0] SA1 was detected by 101 at 4290.
Fault: Tester.FUT.G3.in[1] SA1 was detected by 001 at 4680.
Fault: Tester.FUT.G3.in[0] SA1 was detected by 010 at 5520.
Fault: Tester.FUT.G4.in[1] SA1 was detected by 100 at 6450.
Fault: Tester.FUT.G4.in[0] SA1 was detected by 011 at 7110.

4 Fault Simulation Applications and Methods

string and stuckAtVal is an integer. The $InjectFault function, that comes after $fscanf injects the
stuckAtVal value into the FUT wire identified by the wireName hierarchical name.

Recall that the FUT instance name is used in the hierarchical names in the fault list sample of
Fig. 4.8. This fault injection causes the FUT instance to become a faulty model of the multiplexer.

Now that we have a faulty model, the test file is opened in a similar fashion to the fault list file, and
in a while loop, test data are read from it. This is the inner while loop in Fig. 4.10. As shown, each
test vector read from the test file is named as testVector. The 30 ns delay at the beginning of this while
loop is needed for its next iterations. After applying testVector to circuit inputs, a 60 ns delay allows
the propagation of values through the faulty and golden models. Following this, an if statement com-
pares golden and faulty outputs.

1114.1 Fault Simulation

Outputs woG and woF are different when a test has been applied that detects fault injected in
FUT. Making fault reports, counting the number of detected faults, saving tests that detect a fault,
and other functions that fault simulation is being done for go in this if block. In our example, we
are only reporting the detected fault, the input value, and the time that fault is detected. Sect. 4.2
elaborates on other functions that this environment can perform.

After the while loop applying all tests in Mux.tst file to a given faulty model, $RemoveFault
removes the fault, allows a settling time required by the PLI function, and goes into the next
iteration of injecting a new fault. Figure 4.10b shows report generated by $display task of this
testbench.

4.1.4 Sequential Circuit Fault Simulation

Sequential circuit fault simulation is different from combinational fault simulation because of the
internal states of the circuit and its clocking and resetting requirements.

A resetting is required with every fault that is injected in the circuit. This is due to the fact that
the internal flip-flops of the circuit may be holding values from the last fault and last set of inputs,
which are completely irrelevant to new fault being injected.

Furthermore, clocking the circuit after the application of a test vector, allows faults hidden in the
internal states of the circuit to appear on the circuit primary outputs. Take for example a fault the
effect of which reaches circuit flip-flop input, but not any of the circuit’s primary outputs. With
clocking the circuit, this fault gets another chance to come back into the logic of the circuit, and
possibly appears on the circuit primary outputs.

4.1.5 Fault Dropping

A term that is often used in relation with fault simulation is fault dropping. This term refers to drop-
ping a fault from further processing (or simulation), once the fault is found to be detected. Fault
dropping is done for reducing simulation time by skipping extra testings for the fault [1].

See for example the testbench of Fig. 4.10a. There are two loops in this figure, the outer loop is
related to fault and the inner one is for tests. Once detected becomes 1, the inner loop exits, and the
outer loop removes the detected fault and injects a new fault.

Implementations of fault dropping are different. In our example, since the inner loop was for test
vector application, by simply exiting the loop, we were able to implement fault dropping. Other
fault simulation applications may require applying test vectors to be done in the outer loop, and fault
injection in the inner loop. In such cases, detected faults must be marked as such, so when the next
test is applied the detected fault is dropped from being processed again.

In some fault simulation applications, we cannot do fault dropping. An example is fault diction-
ary generation that is discussed in the next section.

4.1.6 Related Terminologies

In the texts that follow, we use certain terminologies for explaining methods and procedures.
Although definitions may be clear from the context, to eliminate ambiguities, we give a formal defi-
nition of fault simulation terminologies here.

112

SA0
SA0a

b
1
1

a:SA0 propagates

SA0
1
0

a:SA0 is blocked

01

SA0
0
1

a:SA0 is not activated

0
a
b

a
b

Fig. 4.11 Fault propagation

4 Fault Simulation Applications and Methods

4.1.6.1 Fault Activation

A fault is activated if the line value reaching the fault is different from its faulty value. A 0 on a line
with SA1 fault activates it, and a 1 activates a SA0 fault [2, 3].

4.1.6.2 Fault Propagation

If a fault that has become active appears at an input of a gate and causes the output of the gate to
have a different value than its good value, the fault is said to have propagated to the gate output.
For example, two 1s at inputs a and b of a 2-input AND gate (Fig. 4.11) generate a good 1 at the
output of the gate. A SA0 fault on a causes the output of the gate to become 0, which is different
than the good value 1. In this case, the a:SA0 has propagated to the gate output. Whereas, if b is
0, the gate output will be 0 regardless of a being faulty or not, in this case a:SA0 is said to have
been blocked [2, 3].

4.1.6.3 Fault Detection

With the above terminology, a fault is detected by a given test, if the fault is activated, and it propa-
gates through all gates leading to at least one of circuit outputs.

4.1.6.4 Fault Blocking

As mentioned above, fault blocking occurs if good value at a gate input forces the gate output to a
fixed value, and the faulty input does not play a role in the determination of the gate output. For an
AND (OR) gate, a 0 (1) on an input blocks all faults on the other inputs.

For a given test vector, if a fault is blocked and does not propagate to any circuit output, the fault
is not detected by that test.

4.2 Fault Simulation Applications

There are many uses of fault simulation programs. A fault simulator can be a stand-alone program,
or a program used as a procedure as part of another program such as a test generation program.
Usually, fault simulators are run on netlists generated by a synthesis program for obtaining the
information for test and diagnosis of manufactured parts.

Perhaps the most well-known application of a fault simulator is the calculation of fault coverage.
However, this is not the only use, and applications such as test generation, test refinement, and

113

Given Test Set T, n test vectors, t1:n;
Given Fault List F, m faults, f1:m;f0 no fault;
For j in 1 to m loop —- every f in F
 Inject fj;
 For i in 1 to n loop —- every t in T
 While fj is not detected begin
 Simulate faulty circuit;
 Increment DF if fj is detected;
 End while;
 End for;
 Remove fj;
End for;
Record DF, detected fault in F;
Calculate %FC based on m and DF;

Fig. 4.12 Fault coverage calculation

4.2 Fault Simulation Applications

generation of fault dictionaries are just some of other uses of fault simulators. This section discusses
some of the important areas that fault simulation, as a stand-alone program, or part of a larger pro-
gram can be used in.

4.2.1 Fault Coverage

For a test set, fault coverage (or test coverage) is the ratio of detected faults over total faults in a
circuit [4]. Total faults are often those obtained after fault collapsing.

For test set T, FC = Detected faults/Total faults

For a given test set, fault simulation is used as a stand-alone program to calculate fault coverage to
measure how good the test set is. For a test set being developed, fault simulation is used to measure
the coverage of an existing test set, to stop generating more tests when enough coverage has been
obtained.

Another area of test generation where fault coverage is important is the evaluation of determin-
istic tests. Such tests are generally generated without regard to circuit and gate delays. Because of
this, due to actual gate delays, some tests may not detect faults that they have been targeted for. For
this reason, performing fault simulation of gate-level circuits with gate and wire delays gives a
realistic measure of faults covered by the generated tests.

4.2.1.1 Fault Coverage Procedure

Figure 4.12 shows the procedure for fault coverage calculation. We start with a given test set
and a fault list. We assume a good circuit model and a faultable model are instantiated and
being compared (GUT and FUT). Injecting faults of the fault list into FUT makes our faulty
circuits.

The procedure consists of two nested loops. The outer loop considers every fault in the fault list,
and the inner loop applies tests in the test set to the faulty circuit until one detects the fault. In the
inner loop, the outputs of the good circuit and faulty circuits are compared. The two outputs differ
when test t detects fault f. In that case, the number of detected faults is incremented, the rest of tests
are skipped, and the next fault is considered (this implements fault dropping).

114 4 Fault Simulation Applications and Methods

When completed, every fault has been examined for detection by the test set. The first test vector
of the test set that detects a fault causes the fault to be marked as detected, and the number of
detected faults to be incremented. When all faults are considered, fault-coverage is calculated by the
ratio of the detected faults, DF, over the original number of faults, NF.

4.2.1.2 HDL-based Fault Coverage

Figure 4.13 shows Verilog implementation of fault coverage calculation for the 2-to-1 multiplexer.
This is a Verilog testbench that instantiates good and faultable models, and with procedural code
within an initial block implements the procedure of Fig. 4.12.

We are to calculate the fault coverage of test given in “Mux.tst” file. Fault list for which coverage
is to be calculated is obtained by calling the PLI $FaultCollapsing function. As shown in the initial
block in Fig. 4.13, this function finds faults of FUT and dumps them into “Mux.flt.” This file is
closed when fault collapsing function is completed.

The two while loops are related to faults and tests are in the body of the initial block, in this
order. The outer loop reads a fault from the fault list, and injects it into FUT by using $InjectFault.
This repeats for all faults. The inner loop applies tests to inputs of good and faulty models until
either a fault is detected or end-of-file of test file is reached. In the former case, detectedFault is
incremented, and next fault is taken.

At the end of two nested loops, the $display task reports the fault coverage. In addition, a report
of faults that are detected and the time of their detection can be generated by display tasks in the if
block that checks faulty and good outputs.

Fault coverage calculation shown here takes advantage of fault dropping. This is implemented
by exiting the inner loop once a fault is detected.

4.2.1.3 Sequential Circuit Fault Coverage

Calculation of fault coverage for sequential circuits is only different from combination fault cover-
age in the application of reset after injection of each fault, and the application of clock after assign-
ing a test vector to the circuit inputs. This topic was discussed in Sect. 4.1.4.

In a testbench that we developed for fault coverage calculation of Residue-5 sequential circuit,
an always statement was used for generating clock pulses. After a fault was injected, the reset input
of the circuit was asserted and held high for several clocks, and then deasserted. In addition, after a
new test vector was placed on circuit inputs, the @(posedge clk) statement caused clocking of test
data effects into circuit flip-flops.

This topic is more elaborated when we discuss a testbench for sequential circuit fault dictionary
generation.

4.2.2 Fault Simulation in Test Generation

Another important use of fault simulation is in test generation. Test generation is the process of
obtaining test vectors for detecting circuit faults [4, 12]. This section gives a general outline of where
fault simulation can be useful in test generation. Where possible, some procedures are discussed,
however, detailed descriptions and examples for these applications are presented in the chapter on
test generation. Some areas that fault simulation can be useful in test generation are test refinement,
random test generation, and deterministic test.

115

module Tester ();
 reg ai=0, bi=0, si=0;

wire woG, woF;
 reg detected;

integer i;
integer testFile, faultFile, status;

 real faultCount, detectedFault;
reg[2:0] testVector;
reg [8*60:1] wireName;
reg stuckAtVal;

 mux2to1 GUT (ai, bi, si, woG);
 mux2to1 FUT (ai, bi, si, woF);

initial begin
 faultCount = 0;
 detectedFault = 0;

 faultFile = $fopen("Mux.flt", "w");
$FaultCollapsing(Tester.FUT, "Mux.flt");
$fclose(faultFile);

 faultFile = $fopen("Mux.flt", "r");

while(!$feof(faultFile))begin
 detected = 1'b0;
 status = $fscanf(faultFile,"%s
 s@%b\n",wireName, stuckAtVal);

$InjectFault (wireName , stuckAtVal);
 testFile = $fopen("Mux.tst", "r");

while((!$feof(testFile))&(detected == 0)) begin
 #30;
 status = $fscanf(testFile,"%b\n", testVector);
 //$display("testVec = %b\n", testVector);
 {ai, bi, si} = testVector;
 #60;

 if (woG != woF) begin
 detected = 1'b1;
 detectedFault = detectedFault + 1;

$display("Fault:%s SA%b detected by %b at %t.",
 wireName, stuckAtVal, {ai, bi, si}, $time);

end//if
end //while eof test
$RemoveFaulT(wireName);

 #30;
 faultCount = faultCount+ 1;

end//while eof faults

$display("coverage = %f\n", detectedFault/faultCount);
$stop;

 end// end of initial
endmodule

Fig. 4.13 Fault coverage calculation in Verilog

4.2 Fault Simulation Applications

4.2.2.1 Test Refinement

Test efficiency is the number of faults covered by a test vector. For a given test set, fault simulation
can be used to identify test vectors that are low in efficiency, or test vectors that detect faults already
covered by other test vectors. Based on efficiency and coverage, if it is found that there are tests that
do not have a significant contribution to the overall fault coverage, or have no contribution at all,
they can be removed from the test set. As such, a test set can be refined for the fewest number of
tests and the highest coverage.

116

Start with fault list F;
Repeat for as long as good t’s are being found
 Generate random test t;
 For j in 0 to m loop -- every remaining f in F;
 Inject fj;
 Simulate faulty circuit with t;
 Increment number of faults detected if detected;
 Remove fj;
 End for;
 Evaluate t by the number of faults it detects;
 Save t in T or discard;
 Decide to repeat finding another t or quit;
End repeat;

Fig. 4.14 Fault simulation for random tests

4 Fault Simulation Applications and Methods

4.2.2.2 Random Test Generation

Random test generation can be regarded as a complement or a replacement for costly automatic test
pattern generation algorithms. By means of fault simulation, a randomly generated input vector is
examined for detection of faults, and based on this, it is decided whether to keep the vector as a test
vector or to drop it. For this purpose, simulation of the new vector is checked for detection of
remaining undetected faults [5–9].

Figure 4.14 shows a general outline of the procedure for random test generation. As shown, test
t is randomly selected and its efficiency in detecting undetected faults is measured by a fault simula-
tion loop. In this loop, the remaining undetected faults are injected into the circuit-under-test, and a
counter is incremented if the random test vector, t, detects the injected fault f. At the end, the value
of this counter is used in deciding on keeping or discarding the test.

This procedure only highlights the use of fault simulation in random test generation. Issues such
as when to stop generating tests, or what an acceptable test efficiency is, are not discussed here.
Such factors, are related to test generation, and are discussed in the chapter on this topic.

4.2.2.3 Fault-oriented Test Generation

Fault-oriented test generation is a process that a certain circuit fault is selected, and a test is gener-
ated for it. This test generation scheme is a complex process, and requires many iterations though
the circuit for coming up with a test vector that detects the targeted fault. Once the test is found, it
is important to identify other faults that are detected by the same test vector. This eliminates the
need for repeating the test generation process for faults that are already detected.

Identifying faults detected by a test vector, in addition to the fault that was targeted, is done by
fault simulation. As such, a fault-oriented test generation program usually includes fault simulation,
as part of its process.

Figure 4.15 shows an outline of a test generation procedure. As shown, when test t is gener-
ated, it is applied to the circuit input, and faults that are not detected are injected in the circuit
one at a time. Faults in a faulty circuit that produce a different output than the good circuit out-
put are marked as detected. Such faults are removed from the list of faults for which test needs
to be made.

117

Start with fault list F;
For j in 0 to m loop -- every remaining f in F;

Generate test t for fj;
 Mark fj as detected;
 For j in 0 to m loop -- every remaining f in F;
 Inject fj;
 Simulate faulty circuit with t;
 If response is different, mark fj as detected;
 Remove fj;
 Report if fault is detected;
 Remove fault from F if detected ;
 End for;
End for;

Fig. 4.15 Fault simulation part of fault-oriented test generation

4.2 Fault Simulation Applications

4.2.3 Fault Dictionary Creation

This section shows how fault simulation can be used for creating a fault dictionary. We discuss what
a fault dictionary is, how it is created, and what it is used for. Fault dictionaries for combinational
and sequential circuits are discussed, and a Verilog testbench is developed for creating them.

4.2.3.1 Fault Dictionary

Fault dictionaries are data bases in which a correspondence is made between circuit faults and test
vectors that detect them. Fault dictionaries are used in hardware testing for fault diagnosis. When a
faulty response of a circuit is observed, the site of fault, with a close approximation, can be found
using the information included in the fault dictionary.

A fault dictionary database is generated by simulation for a given test set, and results are avail-
able in hardware testing. The same test set used in simulation is also used during hardware testing.
The database provides anticipated results for every fault for test vectors of the test set. Anticipated
results are put in the form of fault syndromes. A fault syndrome contains information about test
vectors that do and those that do not detect the fault [10].

In its simplest form, a fault dictionary for a combinational circuit is a two-dimensional table (see
Fig. 4.16), with its rows designating circuit faults and its columns representing test vectors. Check
marks in a row, corresponding to a fault, show test vectors that detect the fault. Contents of a row
with 1’s replacing check marks and 0’s elsewhere are regarded as fault syndromes.

Figure 4.16 shows collapsed list of faults of our 2-to-1 multiplexer, and test vectors that detect
these faults. A simple syndrome has been created for each fault. In selection of test vectors, we have
selected enough vectors to produce unique syndromes for each fault. Note in Fig. 4.16 that if v0 and
v1 are removed from the test set, we still have 100% fault coverage, but we will not have unique
syndromes, e.g., G2.in[0] s@1 and G3.in[1] s@1 will both have 0001 for syndrome. In this case,
if this syndrome is obtained during hardware testing and diagnosis, we will be uncertain as to which
fault has occurred in the circuit.

Having the same syndrome for multiple faults is called fault aliasing. Fault aliasing does not
cause loss of fault coverage but causes loss of diagnostic resolution. Since fault dictionaries are
mainly used for diagnostic purposes, selection of a good and brief syndrome, especially in sequen-
tial circuits, is an important topic.

118

V0
000

V1
001

V2
010

V3
011

V4
100

V5
101

Syndrom e

111001

001010

000101

101000

000001

010001

001000

000010

000100

000110

Tester.FUT.O1.in[0] s@1

Tester.FUT.O1.in[0] s@0

Tester.FUT.FO1.in s@1

Tester.FUT.FO1.in s@0

Tester.FUT.G2.in[1] s@1

Tester.FUT.G2.in[0] s@1

Tester.FUT.G3.in[1] s@1

Tester.FUT.G3.in[0] s@1

Tester.FUT.G4.in[1] s@1

Tester.FUT.G4.in[0] s@1

Fig. 4.16 Multiplexer fault dictionary

4 Fault Simulation Applications and Methods

4.2.3.2 Generating a Fault Dictionary

As mentioned, a fault dictionary is generated with the use of fault simulation using faulty and good
circuit models. The circuit for which a fault dictionary is to be generated is simulated for every fault
and every test vector in a given test set. Figure 4.17 shows a procedure for performing this.

Figure 4.18 shows a Verilog testbench performing fault simulation on mux2to1 using fault
list from “Mux.flt” and test vectors from “Mux.tst,” where the initial block shown here imple-
ments the procedure of Fig. 4.17. This code generates a fault dictionary similar to that shown
in Fig. 4.16.

As in the case of fault coverage calculation of Fig. 4.13, good and faultable circuit models
are instantiated and their outputs are compared. The circuit is simulated for every fault in “Mux.
flt” and every test in “Mux.tst.” As responses of good and faulty circuit models for a test vector
are compared (woG and woF), a 1 will be inserted in the fault syndrome position corresponding
to the test vector if responses are different, otherwise a 0 is placed in the syndrome. When
all tests are applied, after the end of the loop corresponding to the test vectors (the inner-
loop), circuit fault and its syndrome are written into the “Mux.dct” file. When completed,
the fault dictionary file, consisting of information in first and last columns of Fig. 4.16 is
generated.

The testbench discussed above is very similar to the testbench of Fig. 4.13 for fault coverage
calculation. However, important differences exist that need attention. In general, the generation of
fault dictionaries is different from coverage analysis in that for fault dictionaries simulation must be
done for each fault and each test vector, while coverage analysis skips test vectors after the first one
is found to detect a given fault. In other words, fault dropping is done in coverage analysis, but not
in fault dictionary generation. This is evident in the inner loops of Figs. 4.13 and 4.18 that corre-
spond to test vectors. In Fig. 4.13 detected becomes 1 when a test detects an injected fault. This
variable is used as part of the while loop to force exiting the loop when such happens. On the other
hand, the while loop in Fig. 4.18, continues for as long as there are test vectors in testFile. The
exhaustive looping of the nested while loops makes fault dictionary creation much slower than
applications, such as fault coverage calculation.

119

Given test T, n test vectors, t1:n ;
For i in 1 to n loop -- every t in T;
 Simulate good circuit;
 Collect good partial syndrome gs1:i;
End for;
Report good circuit syndrome gsT;
For j in 0 to m loop -- every f in F;
 Inject fj;
 For i in 1 to n loop -- every t in T;
 Simulate faulty circuit j;
 Collect partial syndrome fsj,1:i;
 End for;
 For fault fj report syndrome fsj,T;
 Remove fj;
End for;

Fig. 4.17 Fault dictionary generation procedure

4.2 Fault Simulation Applications

4.2.3.3 Sequential Circuit Fault Dictionary

Because of the required clocking and internal registers of a sequential circuit, generating a syn-
drome is more involved than in combinational circuits. Furthermore, as in fault coverage analysis,
we must reset the golden and faulty circuit models every time a new fault is injected.

In combinational circuits, a fault syndrome is generated just by concatenating 1’s and 0’s for
tests that do and do not detect the fault. This method has a domino-effect in sequential circuits
due to the possibility of propagation of the first fault effect into the states of such circuits. This
causes the bits of the syndrome corresponding to test vectors after the first vector that detects
the fault to become 1, resulting in very few unique syndromes, and increasing the chance of fault
aliasing.

A possible alternative solution would be to form the syndrome for a fault by concatenating all
faulty circuit output vectors for all tests in a test set. A syndrome made this way is very large and
not practical. A better alternative to cascading the faulty circuit responses is to compress them into
an acceptable size syndrome. The method of compression and its size can be decided experimen-
tally by fault simulation for a minimum fault aliasing.

A parameterized test response compression function for sequential circuits is shown in Fig. 4.19.
The poly and seed parameters, and the input and output lengths are decided based on the required
compression.

This compression module is used in a testbench for creating a fault dictionary for a sequential
circuit. This is called a multi-input signature register (MISR) that is used for parallel data compres-
sion and signature calculation. MISRs are discussed in later chapters when we discuss Built-in
Self-test (BIST).

For compressing a parallel output vector of a sequential circuit over several clocks, the output
vector is connected to some inputs of module of Fig. 4.19, and this module is clocked every time
the sequential circuit is clocked. When a fault is injected in the sequential circuit, the misr module
is reset along with the sequential circuit being tested. When an input test data is applied to the
sequential circuit, both MISR and the sequential circuit are clocked. The MISR collects and com-
presses output data as they are produced. When all tests have been applied, the output of the misr
module provides a syndrome for the injected fault.

Figure 4.20 shows sections of a testbench for our Residue-5 sequential circuit example. The
misr module is instantiated with a poly parameter passed to it. Three bits of the 8-bit input of misr

120

module misr #(parameter n = 8, poly = 187, seed = 0) (input clk,
rst, input [n-1:0] d_in, output reg [n-1:0] d_out);

always @(posedge clk)
if (rst)

d_out = seed;
 else

d_out = d_in ^({n{d_out[0]}} & poly)^ {1'b0, d_out[n-1:1]};
endmodule

Fig. 4.19 Module used for syndrome compression

module Tester ();
 parameter tstCount = 8;
 reg ai=0, bi=0, si=0;
 wire woG, woF;

 reg detected = 0;
 integer i;
 integer testFile, faultFile, dictionaryFile, status;
 reg[2:0] testVector;
 reg [8*60:1] wireName;
 reg [tstCount-1:0] syndrome;
 reg stuckAtVal;

mux2to1 GUT (ai, bi, si, woG);
mux2to1 FUT (ai, bi, si, woF);

 initial begin
 dictionaryFile = $fopen("Mux.dct", "w");
 faultFile = $fopen("Mux.flt", "r");

while(! $feof(faultFile)) begin
 i = 0;
 status = $fscanf(faultFile,"%s s@%b\n",wireName, stuckAtVal);
 $InjectFault (wireName , stuckAtVal);
 testFile = $fopen("Mux.tst", "r");
 detected = 1'b0;
 while((!$feof(testFile))) begin
 #30;
 status = $fscanf(testFile,"%b\n", testVector);
 {ai, bi, si} = testVector;
 #60;
 if (woG != woF) begin
 detected = 1'b1;
 syndrome[i] = 1;
 end else syndrome[i] = 0;
 i = i + 1;
 end //while eof test
 $RemoveFault(wireName);
 $fwrite(dictionaryFile, "%s, %b \n",wireName, syndrome);
 #30;
 end//while eof faults

$fclose(dictionaryFile);
 $stop;
 end// end of initial
endmodule

Fig. 4.18 Fault dictionary for a combinational circuit

4 Fault Simulation Applications and Methods

121

module Tester ();
 . . .

residue5_net GUT (global_reset, clk, reset, in, outG);
residue5_net FUT (global_reset, clk, reset, in, outF);

misr #(8,187,0) Signature_Generator (clk,reset,misr_in,misr_out);

 initial begin
 faultFile = $fopen ("Res5.flt", "r");
 dictionaryFile = $fopen("Res5.dct", "w");

 while(! $feof(testFile)) begin
status = $fscanf(testFile, "%b\n", testVector);
in = testVector;
misr_in = {2'b0, outG, 3'b0};
@(posedge clk); @(negedge clk);

end
 SigG = misr_out;

$fwrite (dictionaryFile, "Golden Signature: %b\n", SigG);
$fclose (testFile);

 f = 0;
while(! $feof(faultFile)) begin

 @(negedge clk); reset=1; @(negedge clk); reset=0;
 i = 0;
 status = $fscanf(faultFile,"%s s@%b\n",wireName,stuckAtVal);

$InjectFault (wireName, stuckAtVal);
 testFile = $fopen("Res5.tst", "r");

 while(!$feof(testFile)) begin
 status = $fscanf(testFile, "%b\n", testVector);
 in = testVector;
 misr_in = {2'b0, outF, 3'b0};
 @(posedge clk); @(negedge clk);

if (outG != outF) begin
 syndrome[i] = 1;
 detected = 1;
 DetectedFaults[f] = 1;
 end else syndrome[i] = 0;
 i = i + 1;

 end // while of test
 SigF = misr_out;

$RemoveFault(wireName);
$fwrite(dictionaryFile, "%s, %b \n", wireName, SigF);

 faultCount = faultCount + 1;
if (SigG != SigF)

 detectedFault = detectedFault + 1;
 f = f + 1;

 end // while of fault
// Generate reports
$display("F Coverage: %f/%f = %f", . . .
$stop;

end // initial
always #100 clk = ~clk;

endmodule

Fig. 4.20 Partial residue5 testbench, using MISR for syndrome calculation

4.2 Fault Simulation Applications

are connected to the outputs of the faulty instance of the residue5 module. The output of MISR,
that is an 8-bit vector, is the fault syndrome that is written into the fault dictionary along with the
fault id (wireName). As faulty Residue-5 outputs are produced, they are compressed by the misr
module, and after all test inputs are applied, the compressed MISR output becomes the fault
syndrome.

122

Fig. 4.21 Diagnosis using fault dictionary

4 Fault Simulation Applications and Methods

4.2.3.4 Using Fault Dictionaries

As mentioned, fault dictionaries are primarily used in hardware testing for fault diagnosis. An envi-
ronment for this purpose, that is, in a way the physical reproduction of the testbench within which
a fault dictionary was created, is shown in Fig. 4.21.

A faulty circuit is tested for all test vectors for which the fault dictionary was created. As circuit
responses are produced, they are accumulated and compressed in exactly the same fashion as syn-
dromes were created during fault simulation. At the end of a test run, the accumulation of circuit
responses is compared with all available syndromes in the fault dictionary. A match in this case,
gives a fairly good estimate of the fault and its location in the faulty circuit.

Problems with fault dictionaries include the size of the dictionary database, the complexity of
algorithms for syndrome lookup and fault aliasing. The large size of a fault dictionary database can
partially be overcome with data compression. A related issue is software algorithms for looking up
a syndrome in the compressed data. Such issues are more related to software programing in the
testers, and are not in the scope of this book. As for fault aliasing, more compression results in more
fault aliasing which can again be resolved with proper compressions.

Another problem that relates to hardware testing is the issue of multiple faults versus single stuck-at
faults. As discussed, fault dictionaries are created for single stuck-at faults while in reality multiple faults
or faults not directly representable by the stuck-at model can occur in real circuits. This causes the
inability of finding the response of a faulty circuit in the syndromes included in the fault dictionary.

Some of the issues discussed above and the aliasing problems that are due to complexity of circuits
being tested make fault dictionaries more applicable to printed circuit board (PCB) testing. PCBs
are less complex than integrated circuits and have fewer tests and faults. Because of the complexity
of integrated circuits, fault dictionary generation, and testing with fault dictionaries do not play an
important role in today’s microelectronic test technology. In spite of this, we covered this topic in
this chapter because it is still an interesting problem, and it is a good application for fault simulation.
Understanding this concept, the reader may be triggered thinking of other related ideas that are more
applicable to the newer technologies.

4.3 Fault Simulation Technologies

At this point in this chapter, we have discussed fault simulation, we have presented example fault
simulations for combinational and sequential circuits, and we have talked about ways in which fault
simulation can be used in electronic testing.

123

Fig. 4.22 Example circuit for fault simulation

4.3 Fault Simulation Technologies

An issue that we have not discussed so far is the complexity of fault simulation. The simula-
tion environments in Sects. 4.1 and 4.2 used a very simple simulation flow by injecting a fault
and applying all tests to each and every faulty model of the CUT. In real circuits with hundreds
of thousands of gates, this method of fault simulation is forbiddingly slow. As the number of
gates grows, the number of lines in the circuit grows that result in more faults. Also with the
number of gates, the number of test vectors required to test the circuit grows. Taking gates,
faults, and test vectors into account, complexity of fault simulation becomes k3 for a circuit with
k gates. More efficient fault simulation approaches than our two nested loops (Sect. 4.1)
approach are needed.

This section discusses several fault simulation techniques for performance improvements.
Although the complexity remains as k3, but various fault simulation techniques try to obtain better
performances by parallel propagation of test vectors, propagating faults instead of tests, simulating
only parts of the circuit, taking advantage of behavioral codes, and other optimization techniques.
These techniques are discussed here, and as they are presented, comparisons between different
techniques are given. In these presentations, we use the circuit shown in Fig. 4.22 as our test case.
Circuit diagram, Verilog netlist, collapsed list of faults, and test vectors with which we examine our
circuit are shown here.

We will show fault simulation for four test vectors (t
1
, t

2
, t

3
, t

4
), and four circuit faults (f

1
, f

2
,

f
3
, f

4
), as highlighted in Fig. 4.22. Good circuit simulation of this circuit is shown in Fig. 4.23. Test

vectors that are applied to the circuit are shown on the left of the circuit next to the inputs, starting
with the first test in the right most columns. These tests are the same as those shown in Fig. 4.22
(t

1
, t

2
, t

3
, t

4
). Line values shown correspond to test vectors in the same order, e.g., right most values

are for t
1
.

124

a

b

c

d

e

f

w

0101

1111

0000

0111

1010

1111

0110

1111

1111

0000

1010

1010

1010

1010

1010

1111

0

1

0

1

0

t4

0

1

1

0

0

1

t3

1

0

1

0

1

1

t2

1

1

1

0

0

1

t1

0

Fig. 4.23 Good circuit simulation of our test case

4 Fault Simulation Applications and Methods

4.3.1 Serial Fault Simulation

The simplest fault simulation method is serial fault simulation. In this simulation, the circuit being
simulated is faulted and a faulty model is obtained. This faulty model is simulated for all test vectors
and results are compared for the detection of the injected fault. This process repeats for every circuit
fault [2, 10].

Figure 4.24 shows an outline of this fault simulation method as described above. Fault simula-
tions in Sects. 4.1 and 4.2 were all of this kind, and we used this method because of its simplicity.

To illustrate the application of this procedure, we use it for performing the simulation presented
in Fig. 4.22. For simulating the first fault shown in this figure (f

1
), we start with the good circuit,

and inject f
1
 into it. The faulty circuit for f

1
 is shown in Fig. 4.25.

The same test vectors applied to the golden circuit of Fig. 4.23 are now applied to the faulty
circuit of Fig. 4.25. Different line values in these diagrams are indicated by gray boxes in the faulty
circuit of Fig. 4.25. If a gray box appears on the circuit output, it means that, the injected fault is
detected by the corresponding test vector. For example, the right most gray 1 on w, in this Figure,
means that test vector t

1
 (110100) detects f

1
.

In serial fault simulation, a fault is injected, test vectors are applied, and when the fault is
detected or tests are exhausted, a new fault is injected. With this new fault, the circuit is reset,
and the new faulty circuit is simulated and the same procedure is repeated. Figure 4.26 shows
serial fault simulation of f

2
, f

3
, and f

4
 faulty models for test vectors t

1
, t

2
, t

3
, and t

4
.

Simulations done on the golden model in Fig. 4.23, and faulty models in Figs. 4.26 and 4.27
overall perform 20 rounds of simulation of all gates of the circuit. Summary of these simulations
are shown in Fig. 4.27. A 1 in the table indicates fault on the row of the table is detected by test
vector on table column. I.e., there is a 1 where there is a gray box on w.

Perhaps the biggest advantage of serial fault simulation is its simplicity. Serial fault simulation
can be done by multiple simulation runs of a standard gate-level simulator, and no special simula-
tion engine is required. A simple implementation of serial fault simulation is to use a standard gate-
level simulator, and develop a software environment for handling its input models, test application,
and collection of outputs. A software program in this environment, responsible for fault injection,
takes the good circuit netlist, alters it with a fault, and feeds the circuit into the standard simulation

125

Given test T, n test vectors, t1:n;
Given fault list F, m faults, f1:m;, f0 no
fault;

For j in 0 to m Loop -- every f in F
 Inject fj;
 For i in 1 to n Loop – every t in T
 Simulate faulty circuit j;
 Compare results, record results, etc.
 End for;
 Remove fj;
End for;

Fig. 4.24 Serial fault simulation procedure

Fig. 4.25 Serial simulation for f
1

4.3 Fault Simulation Technologies

programs. Other programs in this environment can be developed to provide test application, user
interfaces, and output collection and report generation.

Serial fault simulation does not require complex data structures, and all input and output infor-
mation are at the bit-level, which makes handling of this data very easy. This fault simulation takes
advantage of fault dropping, i.e., once a fault is detected no more test vectors are applied to the same
faulty circuit.

On the other hand, some of the disadvantages of serial fault simulation include its large overhead
for preparing faulty circuits and test data for simulation. In addition, the simple data structure of the
simulation engine does not allow the use of parallelism, partial simulation of the circuit, or any other
optimization technique.

The HDL-based implementation of serial fault simulation in the earlier part of this chapter has
the advantage of automated faulty model creation. Furthermore, the Verilog testbench provides a
convenient environment for data application, fault handing, and output data processing. This imple-
mentation suffices for small circuits, and it has educational value.

126

Fig. 4.26 Continuing serial fault simulation of test case of Fig. 4.22

t1 t2 t3 t4

Golden

Faulty f1

Faulty f2

Faulty f3

Faulty f4

0

1

1

0

0

0

0

0

1

0

1

1

1

0

0

0

0

0

1

1

Fig. 4.27 Fault simulation results of Fig. 4.22 test case

4 Fault Simulation Applications and Methods

127

Given test T, n test vectors, t1:n;
Given fault list F, m faults, f1:m; f0 no fault;
Divide m faults in g groups of p faults

For jj in 1 to g Loop -- every group of p faults
 Inject f0; Inject f(jj-1)x p+1:jj x p faults
 For i in 1 to n Loop – every t in T
 Simulate p faulty circuits;
 Compare results, record results, etc.
 End for;
 Remove f(jj-1)x p+1:jj x p faults;
End for;

Fig. 4.28 Parallel fault simulation algorithms

4.3 Fault Simulation Technologies

4.3.2 Parallel Fault Simulation

A simple extension of serial fault simulation, where faults are handled one at a time, is to process
several faults in parallel. This, at least, distributes the overhead of preparing faulty circuits between
several faults [11, 12].

In the older simulation software technologies, this parallelism directly translated to packing data
corresponding to many faults into a computer word. For example, in a 32-bit machine, circuit line
data for 31 faults and one good circuit can be packed into a word. In this case, all logical operations
take place at the word level, and, in theory, improves simulation speed by a factor of 32.

The newer simulation engines that have to handle circuit descriptions at different abstraction
levels do not have such simple data structures that can directly translate parallel simulations to
machine word-length.

Nevertheless, parallel fault simulations can still improve simulation performance. This is partly
due to combining data values in data structures of simulator, and partly due to reducing fault
handling overhead by loading several faults simultaneously.

4.3.2.1 Parallel Fault Simulation Algorithm

Figure 4.28 shows an outline of the parallel fault simulation algorithm. Like serial fault simulation,
there are two nested loops related to faults and tests. The only difference is that the outer-loop reads
a group of faults instead of only one. Fault injection, removal, and propagating values happen for
all group members in parallel.

Applying this algorithm to the test case of Fig. 4.22 is shown in Fig. 4.29. Recall that we are
simulating the circuit for four faults and one golden model. As t

1
, t

2
, t

3
, and t

4
 are applied to the

circuit, these values travel through five virtual circuits (faulty f
1
, f

2
, f

3
, f

4
 and golden model) is parallel.

Values on lines of these circuits are packed into a word of the machine running the simulation, or
into a data structure of the simulation software. In any case, we are gaining performance by simul-
taneously handling five values.

4.3.2.2 Verilog Implementation

In Verilog implementation of parallel fault simulation, the testbench reads multiple faults and
multiple parallel circuits are activated. Since we cannot access the internal data structure of the

128

SA0: f4

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

0
0
0

0
0

1
1
1

1
1

0
0
0

0
0

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1f4

f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

f4
f3
f2

G
f1

0
0
0

0
1

1
1
1

1
1

0
0
0

0
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

0
0
1

0
0

0
0
1

0
0

0
0
1

0
0

0
0
1

0
0

0
0
0

0
1

1
0
1

1
1

0
0
0

0
1

1
0
1

1
1

0
0
1

0
1

1
0
1

1
1

0
0
1

0
1

1
0
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

0
0
0

0
0

0
1
1

1
1

0
1
1

1
1

0
1
1

1
1

0
1
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

1
1
1

1
1

0
0
1

0
0

0
0
1

0
0

0
0
1

0
0

0
0
1

0
0

0
1
1

1
1

1
1
1

1
1

1
1
1

1
1

0
1
1

1
1

0
0
1

0
1

1
0
1

1
1

0
0
1

0
1

0
0
1

1
1

0
0
0

0
0

1
1
1

1
1

0
0
0

0
0

1
1
1

1
1

0
0
0

0
0

1
1
1

1
1

1
1
1

1
1

0
0
0

0
0

SA1: f1

SA1: f2

SA0: f3

t4
1

1

0

0

1

t3

1

0

1

0

1

1

t2

1

1

1

0

0

1

t1

t4 t3 t2 t1

0

0
0
1

0
1

1
0
1

1
1

0
0
1

0
1

0
0
1

1
1

f

e

d

c

b

a

w

0

1

0

1

0

0

Fig. 4.29 Parallel fault simulation, test case of Fig. 4.22

4 Fault Simulation Applications and Methods

Verilog simulator, we count on the internal simulator optimizations to combine our multiple line
values and give a better performance than the serial fault simulation.

Implementing parallel fault simulation in Verilog requires changes in the fault simulation primi-
tives: for reading multiple faults instead of just a single fault, in the PLI functions for injecting and
removing faults, and in the testbench running the simulation. These issues are discussed by the use
of examples.

Gate Primitives. For parallel simulation of multiple gates, our gate primitives for fault simulation
(and_n, or_n, etc.) that we discussed in Sect. 4.1.3, have been modified as shown in Fig. 4.30. This
figure shows a parameterized AND gate with the same interfaces as gates discussed before. A new
parameter, nf, has been added here. This parameter is the number of faults, and expands the AND
gate into nf parallel gates. The input vector of the gate that is shown in Fig. 4.30 is a vector of n ́  nf
bits, where n is the number of inputs. This vector contains input values for nf gates each of which have
n inputs. The output of the gate primitives are nf bits in size.

Circuit Netlist. Partial netlist for parallel fault simulation of circuit of Fig. 4.29 is shown in Fig. 4.31.
The number of parallel simulations is passed to this netlist from its testbench, and this number is
passed to the nf parameters of all gates that are instantiated in the netlist.

Fault Injection. Parallel injection of nf faults in nf parallel circuits requires a different PLI func-
tion than the one used for one fault for serial fault simulation. As shown in Fig. 4.32 the new
$ParInjectFault function, takes the nf parameter, nf wire names, and nf corresponding fault values.
The $ParRemoveFault works in a similar fashion.

Parallel Testbench. Partial code of a testbench performing parallel fault simulation is shown
in Fig. 4.33. This testbench virtually instantiates nf parallel faultable models and simultaneously

129

module and_n
#(parameter n = 2, tphl = 1, tplh = 1, nf = 1)
(out,in);
input [(n*nf)-1:0] in;
output [nf-1:0]out;
reg [nf-1:0]val;
integer i;

always@(in) begin
 val = in[nf-1:0];

for(i=1; i<n; i=i+1) begin
 val=val & in[(nf*i)+:nf];

end
end
assign out=val;

endmodule

Fig. 4.30 nf parallel gates

module ParSimpleCKT #(parameter nf = 5)
(input a, b, c, d, e, f, output [nf-1:0] w);

wire [nf-1:0] l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13,l14,l15;
 pin #(nf) I1 (a, l1);
 . . .
 pout #(nf) O1 (l15, w);

 notg #(0, 0, nf) G1 (l7, l1);
 fanout_n #(2, 0, 0, nf) FO1 (l8, {l9, l10});
 and_n #(2, 0, 0, nf) G3 (l11, {l7, l2});
 . . .
 and_n #(2, 0, 0, nf) G7 (l15, {l14, l13});
endmodule

Fig. 4.31 Partial netlist for parallel fault simulation

module Tester #(parameter nf = 5);
. . .

. . .

. . .

reg [8*60:1] wireName [nf-1:0];
reg [nf-1:0] stuckAtVal;

ParMux2to1 #(nf) GUT (ai, bi, si, woG);
ParMux2to1 #(nf) FUT (ai, bi, si, woF);

initial begin

$ParInjectFault (nf,
wireName[0], wireName[1], wireName[2], wireName[3],
wireName[4],
stuckAtVal[0], stuckAtVal[1], stuckAtVal[2],stuckAtVal[3],
stuckAtVal[4]);

$ParRemoveFault(nf,
 wireName[0], wireName[1], wireName[2], wireName[3],
 wireName[4]);
 . . .

end// end of initial
endmodule

Fig. 4.32 Parallel fault injection and removal

4.3 Fault Simulation Technologies

130

module TestSimpleCKT ();
reg a, b, c, d, e, f;
wire w;
integer i;

 SimpleCKT inst (a, b, c, d, e, f, w);

initial begin
for(i=0;i<10;i=i+1) begin

#10;
a=$random+19;
b=$random+654;
c=$random-54;
d=$random*434;
e=$random+76;
f=$random*5546;
#20;

end
 $stop;
 end
endmodule

Fig. 4.33 Testbench for parallel fault simulation

4 Fault Simulation Applications and Methods

injects nf faults in these circuits. As test vectors are read, the same test vector is applied to
all nf faulty models. Finally, report generation of faulty responses is done for nf responses at
a time.

4.3.2.3 Comparing Parallel Fault Simulation

In theory, parallel fault simulation of nf faulty models is nf times faster than serial fault simulation.
Although this is the biggest advantage of this fault simulation method, in reality, this never happens.
This fault simulation method has relatively low fault injections overhead that help its performance
over serial fault simulation. As in serial fault simulation, processing of values is still at the bit-level,
which makes input data and response handling relatively easy.

A disadvantage of parallel fault simulation is the requirement of a special simulation engine
that can handle parallel simulation of bit values. Even with such an engine, we are still at a
disadvantage because fault dropping cannot be done, and all faults must be simulated for all test
vectors. Recall in serial fault simulation that as soon as a fault was detected, no more test vectors
were applied to the faulty circuit. However, in parallel fault simulation, since we have many
parallel faulty circuits, we have to continue with all tests to give a chance to all faults to be
detected.

Another important disadvantage of parallel fault simulation is its large data structure, requiring
large memory in the host machine.

Our Verilog based implementation of parallel fault simulation does not fit into the classical defi-
nition of this method. Obviously, we are still using the same simulation engine that we use for
standard simulations. In a way, we are making parallel simulations of multiple gates possible, by
having gate models that expand themselves into nf virtual parallel gates. Our Verilog implementa-
tion heavily depends on the simulator’s optimizations for performance improvement. Performance
gains we experienced were no more than 5X over serial fault simulation.

131

Given test T, n test vectors, t1:n;
Given fault list F, m faults, f1:m; f0 no fault;

Consider all faults for concurrent injection
For i in 1 to n Loop – every t in T
 Propagate ti;
 If due to fault fj a gate output is faulty
 Duplicate gate with faulty output
 End if;
End for;

Fig. 4.34 Concurrent fault simulation

4.3 Fault Simulation Technologies

4.3.3 Concurrent Fault Simulation

Parallel fault simulation requires multiple complete parallel circuits. For all test vectors, all such
circuits are simulated. This results in large memories and long simulation time for simulating every
line of every circuit.

Concurrent fault simulation is based on the observation that, not all faults propagate to all parts of
the circuit being simulated. Therefore, there is no need to repeat parts of the circuit that simulate the
same for all faults, and thus saving memory. Furthermore, repeating only gates for faults that propa-
gate to them, leaves us with fewer gates to simulate, and thus saving processing time [13, 14].

Concurrent fault simulation has the ability to consider all faults at the same time. This simulation
method is the most popular fault simulation in commercial tools.

4.3.3.1 Concurrent Fault Simulation Algorithm

Concurrent fault simulation expands only those parts of the circuit that have a different fault effect
than the rest of the circuit. In other words, all faults considered, only those gates to which faults
propagate are duplicated. Duplication of gates happens as many times as there are faults that have
propagated to the gate output. Each duplicated gate must be identified by the fault that has caused
the duplication.

In concurrent fault simulation, all faults are considered at the same time, and test vectors are
applied one at a time. Figure 4.34 shows a general outline of this fault simulation method.

The algorithm begins with a list of test vectors and a fault list. As shown, virtual injection of all
faults happens before individual test vectors are applied to the circuit.

A for loop in this algorithm handles the application of test vectors. As shown, for a given test
vector, only gates to which circuit fault propagate are duplicated.

We use our test case of Fig. 4.22 with four faults and four test vectors as an example for concur-
rent fault simulation. Figure 4.35 shows how circuit gates are duplicated when t

4
 = 010010 is

applied. Recall that all faults are considered at the same time.
When abcdef = 010010 reaches a gate with a designated fault, and if the output value of the gate

activates the fault (i.e., 1 for SA0, 0 for SA1), then the gate is duplicated. The duplication of gates
continues for as long as the fault propagates. If a fault propagates in part of a circuit, and then it is
blocked (by a 0 on another input of AND, or a 1 on another input of an OR gate), duplication of
gates ceases.

Gates in Fig. 4.35 show some of these cases. The good value of G
3
 AND gate is 1, but, since f

3

puts a SA0 fault on this output, a new gate with 0 output is created. This output becomes the input

132

SA1: f1

SA0: f4

SA0: f3

SA1: f2

G2

G1

G4

f

e

d

c

b

a

w

G5

G6

G3

G7

0

1

0

1

0

0

FO1

F3

F2

F4

F3

F3

F4 F3
F4

Fig. 4.35 Duplication of gates in concurrent fault

4 Fault Simulation Applications and Methods

of G
6
 OR gate, the other input of which is 0, enabling propagation effect of f

3
 to the output of the

OR gate. Therefore, a faulty version of G
6
 identified by F

3
 is also created. Propagation of this fault

continues to the circuit output causing the duplication of all gates on its path.
On the other hand, f

4
 at the output of FO1 propagates through G

5
 and G

7
, causing the duplication

of G
5
, and the triplication of G

7
, which has already been duplicated due to the propagation of f

3
.

The f
1
 fault in Fig. 4.35 is never activated, and no extra gates are created for it. On the other hand,

f
2
 is activated by a 0 on the c input, and propagates to the output of G

4
. This causes the duplication

of G
4
 for this fault. However, f

2
 at G

4
 is blocked by the upper input of G

6
 being 1, and no further

duplication occurs.

4.3.3.2 Implementing Concurrent Fault Simulation

Duplication of gates in concurrent fault simulation gives a good graphical view of this algorithm,
but the actual implementation may be different than just duplicating gates. The implementation of
this approach in standard software environments can be done by dynamic linked lists for gate
outputs.

Figure 4.36 shows the circuit of Fig. 4.35 for t
1
, t

2
, t

3
, and t

4
 tests. Instead of expanding gates

that have faulty outputs, using a linked list, we expand output values to which a fault propagates.
As Fig. 4.35 identifies duplicated gates by the fault id that causes their duplication. Similarly, in
Fig. 4.36, faulty output values are identified by fault ids that reach the gates. See for example,
for t

4
, the link list at the circuit output is expanded to include f

3
 and f

4
. This is consistent with the

expansion of gates in Fig. 4.35.
Linked lists shrink back to just the golden model values before a new test is to be applied. Our

linked list suggestion is just a possible implementation of concurrent fault simulation.

133

1111G

1010G

0
f1

10
f1

1G
1111G

0000G

0101G

0101G

1110G

1111G

1111G

0000G

1111G

0101G

0101G

0110G

SA1: f1

SA1: f2

SA0: f3

SA0: f4

f1f1 f3f3

f1f1 f3f3

f2f2f4

f4 f4
f4f4f4 f4

f2f2f2 f2

f2f2f2 f2

0

1

0

1

0

t4

0

1

1

0

0

1

t3

1

0

1

0

1

1

t

1

1

1

0

0

1

t1

0
f

e

d

c

b

a

w

f1f1 f3f3

f2f2

2

Fig. 4.36 Using linked list for faulty outputs

4.3 Fault Simulation Technologies

4.3.3.3 Comparing Concurrent Fault Simulation

The biggest advantage of concurrent fault simulation is smaller memory usage in comparison with
parallel fault simulation, due to duplicating gates only when a fault propagates to them. Furthermore,
we have fewer gates to propagate data and thus simulation takes less processing time. On the other
hand, in concurrent fault simulation we can insert all the faults simultaneously in the circuit and
provide a better situation for further implicit optimization in the simulation environment.

4.3.4 Deductive Fault Simulation

In serial, parallel, and concurrent fault simulations, faulty values propagate through lines of circuit
being simulated. Alternatively, in deductive fault simulation, list of activated faults propagate
through circuit lines [15]. We present the algorithm and an example of deductive fault simulation in
this section.

4.3.4.1 Deductive Fault Simulation Algorithm

Figure 4.37 shows an outline of the deductive fault simulation algorithm. As in other algorithms
discussed, we start with a test set and a fault list. A for loop in this algorithm applies test vectors
from the test set to the circuit inputs. As a result of a test vector being applied, good line values are
calculated. Then, all line faults are identified when line values are different than those of the good
values. The faults identified as such form fault lists that travel from their sites toward circuit outputs.
Fault lists collect other faults in their paths as they make this journey. Formation of fault lists is
governed by rules discussed below [16].

134

Given test T, n test vectors, t1:n;
Given fault list F, m faults, f1:m; f0 no fault;

For i in 1 to n Loop – every t in T
 Propagate ti;
 Propagate all faults in F in parallel;
 Consider gate propagation rules;
 Test ti detects faults that reach outputs;
End for;

Fig. 4.37 Deductive fault
simulation

A

A

A

B

A

B

W

W

W

W

A

A

A

B

A

B

W

W

W

W

0

0

1

1

0

0

1

0

1

0

1

1

0

1

1

0

0

1

0

1

A

B

A

B

W

W

0

0

1

1

0

1

{LW}={LA} U W:SA0 {LW}={LA} U W:SA1

{LW}={LA} U W:SA1 {LW}={LA} U W:SA0

{LW}={LA} U {LB} U W:SA0 {LW}=({LA} {LB}’) U W:SA1 {LW}=({LA} {LB}) U W:SA1

{LW}=({LA} {LB}’) U W:SA0{LW}={LA} U {LB} U W:SA1 {LW}=({LA} {LB}) U W:SA0

Fig. 4.38 Fault list propagation values

4 Fault Simulation Applications and Methods

4.3.4.2 Gate Fault List Propagation

Figure 4.38 shows fault list propagations for an inverter, fanout, AND, and OR gates. Propagation
of a fault list to the output of a gate depends on good values on gate’s inputs and output. Therefore,
Fig. 4.38 shows list propagations for all input output combinations. We discuss some of these rules
below.

Starting with the inverter, with a 0 input and a good 1 output, suppose that fault list {L
A
} reaches

the A input. This fault list that has been formed by the collection of faults prior to reaching A propa-
gates to the inverter output. In addition, if the inverter output has a SA0 fault, it is also identified
(because of value 1 on W), and appends to this fault list. Therefore, fault list at the output of an inverter
is that of the input, union with the fault that is stuck-at complement of the good output value.

Propagation of faults through fanout follows the same rules as that of the inverter. The third row
in Fig. 4.38 shows fault propagation rules for AND gates. An AND with 1s at the inputs and a good
1 at the output propagates fault lists at both inputs, and adds its output SA0 to the list. This is justi-
fied because if a fault list reaches input A, because we are dealing with single stuck-at faults, we are
sure that B remains 1. Therefore, the fault list on A propagates to W. The same is true for B.

135

l7

l11

l12

l1

l2

l3

l5

l8

l10

l9

l13

l15

l6

a

b

c

d

e

f

w

l4

l14

1

1

1

0

0

1
1

0

1

1

1
1

0

1

0
0

1

0

1

0

0

Fig. 4.39 Starting point for deductive fault list propagation

4.3 Fault Simulation Technologies

The next case of AND gate is when input A is 0 and B is 1. In this case, the fault list on A propa-
gates to the output for as long as B remains 1. However, if a fault in L

A
 also appears in L

B
 because

of the fault, B becomes 0 and does not allow that same fault in L
A
 to travel to the gate’s output.

Therefore, for an AND gate with A = 0 and B = 1, faults on A that do not appear on B propagate to
the output of the gate (i.e., intersection of L

A
 with complement of L

B
). Output SA1 is also added to

this list.
The last case for an AND gate is the case of two 0’s on its inputs. In this case, if a fault appears

on A, this fault only propagates to the gate’s output if input B is 1. Because of single stuck-at model,
the only way for B to become 1 is if the same fault also appears on B. Therefore, the intersection
of fault lists on A and B appears on W. The output SA1 is also added to this list.

Fault propagation rules for an OR gate are similar to those of an AND gate. These rules, based
on good circuit values, are shown in the last row of Fig. 4.38.

4.3.4.3 Deductive Fault Simulation Example

Based on the procedure shown in Fig. 4.37 and rules of Fig. 4.38, we show deductive fault simula-
tion for t

1
 = 010010 of the example of Fig. 4.22. This is done for all faults of this example circuit,

and not just those exercised for other fault simulation methods.
Figure 4.39 shows our example circuit, test vector t

1
, good line values for this test vector, and all

circuit faults that we are interested in. Circuit lines are labeled to identify their corresponding faults.
With the given good values, we show the propagation of fault lists, and those that reach the circuit
output are detected by t

1
.

In the left column in Fig. 4.40 the initial list of faults on circuit lines are shown. This list is the
list of faults we are interested to check for the detection by t

1
. As collection of faults and formation

of fault lists begin from the primary inputs, starting lists of activated faults on lines immediately
driven by the primary inputs are shown in Fig. 4.40b (on the right).

136

Propagating Faults:

Ll7 = Ll1 U L7:SA0
 = Ø

Ll11 = (Ll7 U Ll2) U Ll11:SA0
 = {Ll11:SA0}

Ll8 = (Ll5 Ll4’) U Ll8:SA0
 = ({L5:SA0} – {Ø}) U L8:SA0
 = {L5:SA0, L8:SA0}

Ll9 = Ll8 U L9:SA0
 = {L5:SA0, L8:SA0}

Ll10 = Ll8 U L10:SA0
 = {L5:SA0, L8:SA0, L10:SA0}

Ll12 = (Ll3 Ll9’) U L12:SA1
 = {L3:SA1}

Ll13 = (Ll10 Ll6’) U L13:SA0
 = ({L5:SA0, L8:SA0, L10:SA0} – {L6:SA0})
 = {L5:SA0, L8:SA0, L10:SA0}

Ll14 = (Ll11 Ll12’) U L14:SA0
 = ({L11:SA0} – {L3:SA1})
 = {L11:SA0}

Ll15 = (Ll13 U Ll14) U L15:SA0
 = {L5:SA0, L8:SA0, L10:SA0} U {L11:SA0}) U L15:SA0
 = {L5:SA0, L8:SA0, L10:SA0, L11:SA0, L15:SA0}

U

U

U

U

Fig. 4.41 Fault list
propagation

Initial Fault List:

{Ll2} = L2:SA1
{Ll3} = L3:SA1
{Ll4} = L4:SA0
{Ll5} = L5:SA0
{Ll6} = L6:SA0
{Ll7} = L7:SA1
{Ll8} = {L8:SA0, L8:SA1}
{Ll9} = L9:SA1
{Ll10}= L10:SA0
{Ll11}= L11:SA0
{Ll12}= L12:SA0
{Ll13}= L13:SA1
{Ll14}= L14:SA1
{Ll5}= {L15:SA0, L15:SA1}

Activated Faults:

{Ll1} = Ø
{Ll2} = Ø
{Ll3} = L3:SA1
{Ll4} = Ø
{Ll5} = L5:SA0
{Ll6} = Ø

a bFig. 4.40 (a) Initial line
faults, (b) Faults at primary
inputs

4 Fault Simulation Applications and Methods

The procedure is to start with primary input lists (those in Fig. 4.40b), process gates closet to the
inputs, and complete line fault lists as we move toward the output. A gate’s output fault list can only
be determined if all its inputs’ lists are complete. Figure 4.41 shows the propagation of fault lists in
the circuit of Fig. 4.39. In reading the following paragraph, note that uppercase L is used for List of
faults. This is subscripted by the line that the list belongs to. A lines is identified by a lowercase l,

1374.3 Fault Simulation Technologies

and the number that follows it is the line number. Line numbers are subscripted except when used
as list (L) subscripts. L

l7
 designates the fault List that propagates to line 7.

The fault list at the output of inverter on line l
7
 is calculated first. As shown in Fig. 4.38, the list

at the inverter output is the union of the list on its input and stuck-at complement of its output. As
shown in Fig. 4.40b, L

l1
 is empty. Also L

7
:SA0, that is the fault at the inverter output, is not in our

initial fault list (Fig. 4.40a). Therefore, L
l7
 is empty. Next, fault list on line l

11
 is calculated. Fault lists

at the inputs of the AND gate driving this line are already known (L
l7
 in Fig. 4.41, and L

l2
 in Fig.

4.40b). Good line values of this gate are also calculated already (Fig. 4.39). Using this information,
propagation rule is determined from Fig. 4.38 (first AND gate from left in this figure). Following
this procedure for all circuit gates, the list that reaches line l

15
 (Line 15) is calculated as shown in

Fig. 4.41. This list indicates that t
1
 = 010010 detects l

5
:SA0, l

8
:SA0, l

10
:SA0, l

11
:SA0, and l

15
:SA0.

4.3.5 Comparison of Deductive Fault Simulation

The least we can say about the deductive fault simulation is that it is an interesting algorithm. It has
fewer computations than parallel and serial fault simulations, and can take advantage of optimized
list processing engines. Some of the disadvantages of this method are large lists to propagate,
requiring a special simulation engine, and a complex data structure.

In addition to the above software and implementation issues, a disadvantage of this method that
is particular to fault simulation is the inability of performing fault dropping. Since all faults are
processed simultaneously, none can be treated separate from others.

4.3.6 Critical Path Tracing Fault Simulation

A fault simulation with a different approach than those discussed in the previous sections is critical
path tracing (CPT). The methods discussed so far were fault-oriented, which means that faults are
injected and tests are applied to check for their detection. In CPT, for a given test vector, the circuit
is traced from outputs to inputs, and faults that can be detected are identified [17–20].

4.3.6.1 Basic CPT Implementation

We present definitions regarding critical paths before discussing the implementation of CPT fault
simulation.

Critical Lines. With a set of logic values at a gate’s input and output, an input line is critical if
the output is critical and toggling the input toggles the output value. Figure 4.42a shows several
critical and noncritical gate inputs. Lines driving primary outputs are always critical.

Critical Path. Critical path is a continuous sequence of critical lines starting from a line in a
circuit leading to a primary output, from a critical path.

Critical Path Faults. Stuck-at faults along a critical path, with fault values that are comple-
ment of those of the critical lines of the path, can be detected by the test vector causing the
critical path.

Figure 4.42b shows an outline of the CPT fault generation algorithm. Note here that no faults are
injected, and detected faults are deduced from critical paths of the circuit.

138

Fig. 4.42 (a) Critical values. (b) CPT algorithm

0
0

1
1

0

1

1
0

0
1

0

1

1
1

0
0

1

0

not critical
a

critical not critical

not critical

not critical

not critical

not critical

critical
critical critical

critical critical

critical critical
critical

critical

critical critical

Given test T, n test vectors, t1:n;
Given fault list F, m faults, f1:m; f0 no fault;

For i in 1 to n Loop – every t in T
 Propagate ti;
 Find all critical paths;
 Lists faults detected by ti;
End for;

b

4 Fault Simulation Applications and Methods

4.3.6.2 Reconvergent Fanouts in CPT

Finding critical paths is simple, and the toggling rule mentioned above determines critical lines for
basic logic gates. The problem with CPT implementation is when we reach a reconvergent fanout.
In this case, a critical branch or a noncritical branch does not determine the criticality of stem.

Take, for example, partial circuits shown in Fig. 4.43. We show critical lines by bold line seg-
ments. In Fig. 4.43a, branches of the fanout element are both critical, and the stem is also critical.
We can tell that the fanout stem is critical because toggling s line value toggles the reconvergent
point, w. In Fig. 4.43b, the upper branch of fanout is critical, but its stem is not. This can again be
verified by toggling value of s and observing that w does not change. In Fig. 4.43c, none of the
branches of the reconvergent fanout are critical, but its stem is. Verify this by changing s from 0 to
1 and seeing that w also changes from 0 to 1.

In the above examples, since the effect of a fanout stem reaches a gate at the reconvergent point from
several paths, considering each path independently does not decisively determine criticality of the fanout
stem. The simplest solution, in this case, is to isolate the reconvergent part of the circuit, and apply the
toggling rule from divergence point to the convergence point, e.g., line s to line w in our examples.

4.3.6.3 CPT Example

We use the example of Fig. 4.22 to find faults detected by test vector t
1
. Recall that this test vector

was also used in the deductive fault simulation in Fig. 4.39.

139

Fig. 4.43 Reconvergent fanouts in CPT

Fig. 4.44 CPT fault simulation example

4.3 Fault Simulation Technologies

We use Fig. 4.44 for illustrating CPT fault simulation. As shown here, t
1
 = 010010 is applied to

the circuit inputs, and the circuit is simulated determining all circuit line values. We start with the
line driving the w output (line l

15
) that according to definition is a critical line. Since lines l

13
 and

l
14

 are 1, and toggling their values toggles line l
15

 output value (see Fig. 4.42a), both l
13

 and l
14

 are
critical lines.

We continue with l
14

 going backward, and postpone l
13

 for now. Since l
14

 is critical (according to
Fig. 4.42a), with good line values as shown in Fig. 4.44, line l

11
 is critical. Going backward from

l
11

, the AND gate case is the third AND gate in Fig. 4.42a, therefore, both l
7
 and l

2
 are critical.

Because of l
7
, l

1
 is also critical.

Now that we have reached the primary inputs and there are no more lines to analyze, we go back
to the AND gate, the l

13
 input of which we postponed. Going back from l

13
, l

10
 is critical. Line l

10
 is

a fanout branch, and we cannot decide if its stem is critical by just considering l
10

. As we suggested
before, to determine if l

8
 is a critical line, we change its value from 1 to 0, and we see that l

15
 also

changes from 1 to 0, therefore l
8
 is a critical line. Because of this, lines l

5
 is also critical. Considering

complete paths, path formed by lines l
5
– l

8
– l

15
 is a critical path.

Now that all critical paths in the example of Fig. 4.44 are known, for t
1
, generating a list of faults

detected by t
1
 is a simple matter. Detected stuck-at faults are those on critical paths with the stuck-at

value being the complement of the line value. According to this, detected faults are those shown
below:

{l
5
:SA0, l

8
:SA0, l

10
:SA0, l

11
:SA0, l

15
:SA0} {l

13
:SA0, l

2
:SA0, l

1
:SA1, l

7
:SA0, l

14
:SA0}

140 4 Fault Simulation Applications and Methods

All faults shown above are reported by CPT fault simulation as being detected by t
1
. We have

separated the list into those that we are interested in (from list used in deductive, Fig. 4.40a), and
those that CPT reports anyway.

Because CPT is not fault-oriented, it does not discriminate between faults that we are interested
in, and those that we are not. This method does not even consider fault equivalence into account.
See, for example, that the list above includes l

11
:SA0 and l

2
:SA0 that are equivalent.

4.3.6.4 Comparing CPT

Fault simulation based on CPT is simple, has fewer computations than most methods we discussed,
and requires a simple data structure for its implementation.

Some of the disadvantages of this method include the issue with reconvergent fanout. When we
reach such a structure, the simple problem of tracing gates from output to input of a circuit turns
into finding cones of convergence and performing simulation. This problem becomes more critical
with nested reconvergent fanouts. Some works on approximations and solutions of this problem
have been presented in the literature [18, 19].

The biggest price we are paying for the simple implementation of CPT fault simulation is that
this method only works for combinational circuits. Other disadvantages are the requirement for a
special simulation engine, and not considering collapsed fault lists.

4.3.7 Differential Fault Simulation

Another fault simulation algorithm that deserves some attention is the differential fault simulation
[21]. Recall from serial fault simulation that a fault is injected, and its detection is checked by the
application of all test vectors. When simulating large logic circuits, a changing bit from one test
vector to another creates many events in its path from circuit inputs to the outputs. This has to repeat
for every test vector and every fault of the circuit being analyzed.

On the other hand, if we keep a test vector at the circuit inputs and just inject and remove faults,
far fewer events occur in the circuit. Two reasons for this are:

1. The process of removing a single stuck-at fault and injecting another only creates two events at
the site of the faults. Whereas, the difference between bit values of two consecutive test vectors
is usually much greater.

2. Faults affect somewhere in the circuit between inputs and outputs, and closer they are to the out-
puts, cause fewer events. Whereas, events caused by changing circuit inputs have to travel a
longer distance to reach the outputs.

Based on the above, a simple implementation of differential fault simulation is to change the
order of fault injection and test application loops. Figure 4.45 shows an outline of this simulation
method. As shown and as compared with serial fault simulation algorithm of Fig. 4.24, only the loop
orders have changed. The outer loop applies a test vector, and by the inner loop injecting and remov-
ing faults, the test vector is checked for the detection of all circuit faults. Detected faults are marked,
and the outer loop applies the next test vector.

Unlike in serial fault simulation that fault dropping is done implicitly, in the differential fault
simulation fault dropping is done by explicitly making detected fault as such.

141

Given test T, n test vectors, t1:n;
Given fault list F, m faults, f1:m;, f0 no fault;

For i in 1 to n Loop – every t in T
 For j in 0 to m Loop -- every f in F
 Inject fj;
 Simulate only those parts affected;
 Compare results, record results, etc.
 Remove fj;
 End for;
End for;

Fig. 4.45 Differential fault simulation

4.4 Summary

4.4 Summary

Fault simulation is used in every aspect of digital system testing. The designers use it to evaluate
their design, and the test engineers use it to generate test vectors. Designers and test engineers use
it to help them with design testability and insertion of design for test (DFT) or Built-in Self-test
hardware. IP core designers and core integrators also use it for the evaluation of test vectors and test
integration.

Because of this wide use of fault simulation and because of its complexity, many algorithms have
been developed for the implementation of fault simulation. Like any other book on digital system
testing, this chapter discussed the applications of fault simulation and presented the various algo-
rithms for it. However, a difference in the way we presented fault simulation was the incorporation
of hardware description languages. On the one side, since HDLs and HDL-based tools are inte-
grated parts of most today’s design environments, an HDL-oriented fault simulation helps designers
incorporate this important process in their design cycle. On the other side, HDLs helped the presen-
tation of fault simulation techniques and applications in a concise and unambiguous fashion. Such
is helpful in bringing HDLs into the arena of test engineers.

References

 1. Jha NK, Gupta S (2003) Testing of digital systems. Cambridge University Press, Cambridge
 2. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory, and mixed-signal VLSI

circuits, Kluwer, Dordrecht
 3. Roth JP (1966) Diagnosis of automata failures: a calculus and a method. IBM J Res Dev 10(4):278–291
 4. Agrawal VD, Agrawal P (1972) An automatic test generation system for illiac IV logic boards. IEEE Trans

Comput C-21(9):1015–1017
 5. Agrawal P, Agrawal VD (1975) Probabilistic analysis of random test generation method for irredundant combi-

national logic networks. IEEE Trans Comput C-24(7):691–695
 6. Agrawal P, Agrawal VD (1976) On monte carlo testing of logic tree networks. IEEE Trans Comput

C-25(6):664–667
 7. Agrawal VD (1978) When to Use Random Testing. IEEE Trans Comput C-27(11):1054–1055
 8. Parker KP, McCluskey EJ (1975) Probabilistic treatment of general combinational networks. IEEE Trans Comput

C-24(6):668–670
 9. Eichelberger EB, Lindbloom E (1983) Random-pattern coverage enhancement and diagnosis for LSSD logic

self-test. IBM J Res Dev 27(3):265–272

142 4 Fault Simulation Applications and Methods

 10. Miczo A (2003) Digital logic testing and simulation, 2nd edn. Wiley Interscience, New York
 11. Seshu S (1965) On an improved diagnosis program. IEEE Trans Electron Comput EC-14(1):76–79
 12. Seshu S, Freeman DN (1962) The diagnosis of asynchronous sequential switching systems. IRE Trans Electron

Comput EC-11
 13. Ulrich EG, Agrawal VD, Arabian JH (1994) Concurrent and comparative discrete event simulation. Kluwer,

Boston, MA
 14. Ulrich EG, Baker T (1974) Concurrent simulation of nearly identical digital networks. Computer 7:39–44
 15. Armstrong DB (1972) A deductive method for simulating faults in logic circuits, IEEE Trans Comput

C-21(5):464–471
 16. Menon PR, Chappell SG (1978) Deductive fault simulation with functional blocks. IEEE Trans Comput

C-27(8):689–695
 17. Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing and testable design. IEEE Press,

Piscataway, NJ Revised printing
 18. Abramovici M, Menon PR, Miller DT (1984) Critical path tracing: an alternative to fault simulation. IEEE Des

Test Comput 1(1):83–93
 19. Menon PR, Levendel YH, Abramovici M (1988) Critical path tracing in sequential circuits. In: Proceeding of the

international conference on computer-aided design pp. 162–165
 20. Menon PR, Levendel YH, Abramovici M (1991) SCRIPT: a critical path tracing algorithm for synchronous

sequential circuits. IEEE Trans Comput-Aided Des 10(6):738–747
 21. Cheng W-T, Yu M-L (1990) Differential fault simulation for sequential circuits. J Electron Test Theory Appl

1(1):7–13

143Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_5, © Springer Science+Business Media, LLC 2011

Test vectors are generated for post manufacturing test of a digital system. Because of the complexity
of digital systems, the size of necessary tests, and test quality factors, automatic methods are used
for generation of test patterns. This process is referred to as automatic test pattern generation
(ATPG). For a circuit under test (CUT), test pattern generation must be due to the testing of the
circuit as thoroughly as possible, and in the shortest possible time.

ATPG is done by the utilization of programs, methods, and algorithms; all of which use some
forms of circuit and fault models. Often, ATPG refers to test generation from a netlist model of CUT
using the stuck-at fault model.

This chapter discusses the basics of ATPG methods and shows how test generation programs fit
in the overall test cycle. We focus on random test generation (RTG) methods for combinational and
sequential circuits. In the sections that follow, we discuss the basics of test generation, testability
measures, RTG methods, and test methods that incorporate random and deterministic methods.

5.1 Test Generation Basics

In this section, basic methods of test generation using several small examples are presented. The
purpose is to familiarize the reader with the basics of test generation procedures, the terminology,
categorization of ATPG algorithms, and the role of various utilities facilitating test generation.

5.1 1 Boolean Difference

Test vectors are generated to detect faults. A test vector is an input vector that creates different
outputs for faulty and good circuits. Test generation is finding such input vectors. Functionally, we
can find such inputs by finding the Boolean difference of a good circuit model and its faulty model,
and then finding input vectors that satisfy this difference [1, 2, 3].

For Boolean difference, we start with good circuit model, and modify it according to the fault
that we are seeking the test for. The XOR of the good circuit and faulty circuit is the equation
for the Boolean difference. Test(s) for the given fault are the input vectors that make the Boolean
difference 1.

As an example, consider the circuit in Fig. 5.1. This is the multiplexer circuit we used in the
previous chapters, with an extra input and an extra output. Fault for which the Boolean difference
is to be calculated is shown in this figure.

Chapter 5
Test Pattern Generation Methods and Algorithms

.

144 5 Test Pattern Generation Methods and Algorithms

The circuit shown here has two outputs as described below. The g subscript for y and w mean
that they are “good” circuit’s outputs.

.=gy a s

. .= + +gw a s b s c

The fault we are considering in this example is l
8
:SA0. Forcing l

8
 to 0, the faulty outputs become:

8
.=fy a s

8
.= +fw a s c

Boolean difference for the two outputs become:

8 8
BD(,)

(.) (.)

0

= ⊕

= ⊕
=

g f g fy y y y

a s a s

8 8
BD(,)

(. .) (.)

(.) (.)()

. .

= ⊕

= + + ⊕ +

=
=

g f g fw w w w

a s b s c a s c

a s b s c

b s c

Tests that detect fault shown in Fig. 5.1 are all input combinations that make Boolean differences
of any of the outputs 1. Obviously, no such combination exists for the y output. On the other hand,
the following is true for the w output:

8
BD(,) . .=g fw w b s c

Expression . .b s c become 1 for b = 1, s = 1, and c = 0. Therefore, tests that detect fault shown
in Fig. 5.1 are:

0110=absc

and

1110=absc

Fig. 5.1 Example circuit for Boolean difference

1455.1 Test Generation Basics

Defects of all types can be processed similarly, as long as they can be modeled by Boolean func-
tions. Faults that make Boolean differences of all outputs equal to 0 are undetectable.

The Boolean difference calculation can be regarded as the ultimate solution for generating tests
for given circuit faults. This method is exact, covers all fault types, and is complete in that it finds
all tests for fault being considered. However, this problem cannot be solved in nonpolynomial time
complexity.

Another solution for test generation that has the same problem as the Boolean difference is to
apply all possible input combinations to the faulty circuit model and search for those that produce
a different output than the good circuit. This has to be repeated for every fault. This solution for the
test generation problem is an exhaustive search one, and like the Boolean difference, is not practical
for large circuits.

Test generation techniques and algorithms that we discuss in this chapter try solving this problem
using heuristics to limit the search space. The rest of this section covers some basics for these algo-
rithms and definitions.

5.1.2 Test Generation Process

We present test generation techniques that try to simplify exhaustive solutions discussed above. For
this, we use the same example we used above. A deterministic and a random method is presented
to optimize the search of test vectors.

5.1.2.1 Deterministic Search

For generating a test for l
8
:SA0, we started at the site of the fault line l

8
. Suppose this fault exists in

an actual circuit and we are trying to make it show itself at a primary output. For this purpose, first
we have to use values of the inputs at the circuit to drive a value into l

8
 that is different than the

faulty value. Since the fault we are trying to detect is a stuck-at-0 fault, we have to drive a 1 into
this line. This requires s and b to be 1. Next, we need to provide input conditions to propagate the
effect of this fault to one of the circuit outputs. For this purpose, l

11
 and l

12
 must both be 0 to propa-

gate the effect of l
8
:SA0 to l

9
 and then to w. Line l

11
 is already 0 since requiring s = 1 causes l

4
 and

thus l
11

 to become 0. The other condition for propagating l
8
:SA0 is l

12
 = 0. This can be accomplished

by c = 0. This analysis results in generation of test asbc = X110 for l
8
:SA0. The value of a is X,

which means that either 0 or 1 is acceptable.

5.1.2.2 Random Search

An alternative to the deterministic search discussed above, is to use random test vectors and check
for faults they can detect. Such a solution can result in the detection of a good number of faults with
very few random tests.

5.1.2.3 Methods and Algorithms

In the above discussions, we casually discussed the ways of reaching test vectors for detecting
faults, faster than exhaustive or complete solutions. These casual methods are the basis of more
formal algorithms that are used for test generation.

146 5 Test Pattern Generation Methods and Algorithms

Other factors than just detecting faults that must be considered in test generation include the
reduction of test vectors, reducing test time for testing the physical device, and the detection of
multiple faults by the same test vectors. We deal these issues and the problem of fault detection in
the test generation solutions that we present in this chapter.

5.1.3 Fault and Tests

As mentioned above, there are several ways that test vectors can be generated for a circuit. Some
search for a test using circuit topology, some use a functional model of the circuit, and some use a
mix of both. This section categorizes various ways that tests can be generated.

5.1.3.1 Fault-oriented Test Generation

Considering a fault in a circuit, and then looking for a test that can detect the fault is fault-oriented
test generation. This method of test generation is most appropriate when there are few faults remain-
ing in the circuit to be detected.

5.1.3.2 Fault Independent Test Generation

In fault independent test generation, tests are generated independent of faults. In one case, a test is
generated and then evaluated for faults it can detect, and in another scenario, tracing a circuit results
in applying test vectors and faults that they can detect. In either case, specific faults cannot be
targeted. Using fault independent test generation is most appropriate when there are still many faults
left in the circuit to be detected. In this case, a random test or a deterministic test has a good chance
of detecting a good number of faults.

5.1.3.3 Random Test Generation

RTG selects test vectors in random [4–8]. This is most efficient at the beginning of a test generation
session when there are many undetected faults in the circuit.

Often RTG programs are complemented with evaluation procedures for a better selection of test
vectors. Some RTG programs target specific areas of a CUT that has faults that are hard to detect.
Decisions about the number of random tests that can be useful in detecting faults, and expected the
number of faults to detect can be made based on how many hard-to-detect faults are in the circuit,
and how hard it is to detect them. Section 5.2 discusses controllability and observability that will be
helpful in making some of these decisions.

5.1.3.4 Unspecified Inputs

In fault-oriented test generation, certain inputs do not play a role in detecting a fault and their values
can be either 0 or 1. This was the case in generating a test for l

8
:SA0 in Fig. 5.1. We use ‘X’ for

indicating values for such inputs. X’s are also possible in some RTG programs that use a subset of
the inputs to target specific areas of a circuit.

1475.2 Controllability and Observability

Because X input values can take either a 0 or a 1 value, they are useful in merging several test
vectors into one and thus reducing the number of test vectors and saving circuit test time. This issue
is addressed in the last section of Chap. 6 on test compaction.

5.1.4 Terminologies and Definitions

In the presentations that follow, we use terminologies that are brief and concise, and help under-
standing of the materials. Unambiguous definition of such terms is important that is described in
this section.

Circuit Under Test. As before, CUT, MUT, GUT, and FUT are used for Circuit, Model, Good
circuit, and Faultable circuit that are being tested. We continue using these labels for models for
which test is being generated.

Stuck-at Models. Unless otherwise specified, methods and algorithms in this chapter apply to the
single stuck-at fault model.

Control Value. A 0 input of an AND gate makes the output 0 regardless of values of all other
AND inputs. This value is called control value. For an OR gate, a 1 is its control value. Figure 5.2
shows control values for four basic gates. A control value on an input of a gate blocks propagation
of faults from other inputs.

Inversion Value. Inversion value of a gate is 0 if no inversion is done, and it is 1 otherwise. For
an AND gate the inversion value is 0, while the inversion value of a NAND is 1. Inversion in a path
is 0 if there are even number of inversions, and is 1 if there are odd number of gates with 1 inversion
values. A control value on an input of a gate generates the same value on the output if the gate has
inversion 0, and the complement of the control value if the inversion is 1. For example, the control
value on an input of a NOR gate (1) generates the complement of this value (0) on its output.

Test Efficiency. Efficiency of a test vector is measured with the number of faults it detects. The
required number of faults to detect for a test vector to be regarded as efficient depends on many
factors. Some of these factors are which test generation method we are using, the remaining unde-
tected faults, difficulty of detecting remaining faults, and where we are in the test generation
process, i.e., just starting or near the end.

5.2 Controllability and Observability

In the fault-oriented test generation process, circuit input values must be adjusted to enable the
detection of faults. Often in this process, we face situations that we have to select between several
inputs and/or internal nodes of a circuit. There are also places where decisions have to be made in
fault-independent test generation. The base of most of these decisions is how hard or easy it is to
put control values on some internal lines from circuit input, or observe internal line values on circuit
outputs. These are controllability and observability issues that we discuss in this section [9, 10].

Fig. 5.2 Basic gate control values

148 5 Test Pattern Generation Methods and Algorithms

5.2.1 Controllability

Controlability is defined as a measure of difficulty of setting a circuit line to a certain value. Primary
circuit inputs are the most controllable. Consider, for example, circuit shown in Fig. 5.3. For finding
a test for l

7
:SA1, we first need to have a 0 on this line. This being the AND gate control value,

requires either input of the gate to be 0. We choose input a since it is more directly controled and
achieves the designated l

7
 value.

5.2.2 Observability

Observability is defined as a measure of difficulty of observing the value change of a line on a
primary output. Primary circuit outputs are the most observable.

Figure 5.3 shows that the effect of l
7
:SA1 can most easily be seen from the path shown to output

y of the circuit.
Controllability and observability examples presented above were very simple and could be

decided by inspection. However, for larger circuits and for lines and gates deep inside a circuit,
calculation of controllability and observability are not as simple and more systematic methods
are needed.

5.2.3 Probability-based Controllability and Observability

A measure of controllability for a line in a circuit is: given a random test vector at the primary inputs
of the circuit, how probable it is for the line value to become 1[11]. We refer to this probability
measure as P1(line). Similarly, we have P0(l). Probability of a primary input receiving a 1 when a
random data is applied to the circuit is 0.5, thus P1(pi) = P0(pi) = 0.5.

A measure of observability for a line in a circuit is: given a random test vector at the primary
inputs of the circuit, how probable it is for the effect of the line value to propagate to a primary
output[11]. A line value propagates to an output if toggling the line value toggles the output.

Fig. 5.3 Controllability and observability

1495.2 Controllability and Observability

We refer to this probability as PB(line). B is used here for observability instead of O, so it does
not get confused with 0 (zero). Probability of a primary output being observed is always 1; thus
PB(po) = 1.

Table 5.1 shows definitions for probability-based controllability and observability parameters.
Equations 5.1 and 5.2 show these parameters. Figure 5.4 Shows probability-based controllability
and observability parameters for five basic logic gates [12, 13]. We are assuming independent
probabilities, thus no reconvergent fanouts. Also, these are for two-input gates and can easily be
extended to gates with higher input counts.

As shown here, for the output of a two-input AND gate to become 1, both inputs must be 1, thus
multiplying the two probabilities. Similarly, probability of a 0 on an OR gate output is calculated
by multiplying 0 probabilities of its inputs. Observation values of the inputs of a gate depend on that
of its output. In order to be able to observe value on input a of an AND gate on its output, its b input
must be 1 and its output must be observable. Therefore, PB(a) is calculated by multiplying the prob-
ability of b being 1 and observability value of w.

Probability-based controllability and observability values for AND, NAND, OR, and NOR gates
can be calculated using Eq. 5.1 and Eq. 5.2. These equations use c for control value, and i for
inversion value. The expressions immediately following “p” becomes 1 or 0 depending on i and
c values. E.g., for i = 0 and c = 1 in Eq. 5.1, the left-hand side of this equation becomes P0.

Fig. 5.4 Probability
para meters for basic gates

Table 5.1 Probability-based controllability and observability parameters

Controllability

ObservabilityWith 1 With 0

P1(e) P0(e) PB(e)

P1(pi) = 0.5 P0(pi) = 0.5 PB(po) = 1

150 5 Test Pattern Generation Methods and Algorithms

 () () ()Pi c w Pc a Pc b⊕ = × (5.1)

 () () ()PB a Pc b PB w= × (5.2)

In addition to the basic gates, controllability and observability rules for fanout elements deserve
some attention. As shown in Fig. 5.5, P1 and P0 parameters from a fanout stem transfer to the fanout
branches unchanged. As for the observability, because the stem can become observable through any
of its branches, assuming independent paths, the stem takes the higher probability of the two paths,
thus max(PB(a), PB(b)).

Using the basic relations mentioned above, controllability and observability values for a combi-
national logic circuit can be calculated.

5.2.3.1 Circuits without Reconvergent Fanout

Figure 5.6a shows a fanout-free circuit for whose lines probability-based controllability and observ-
ability values are to be calculated. The numbers in curly brackets are: {P1, PB}.

Initially, P1 values for lines connected to the primary input are determined and placed in
curly brackets. Primary input P1 values for a random test vector are 0.5. Then, based on the rules
of Fig. 5.4, P1 parameters for the inverter, AND, and OR gates are calculated. This calculation
begins with primary inputs; moves toward the primary outputs, and gates closer to the primary
inputs are processed first. When calculating P1 values for a gate, P1 values for all its inputs must
be known.

As an example, consider the OR gate. P1 parameters for the inputs of this gate are 0.25 and 0.5.
This makes P0 input parameters 0.75 and 0.5, respectively, which results in 0.375 for the P0 of the
output, i.e., P1 = 0.625. These are shown in Fig. 5.6b.

Calculation of PB values starts with circuit primary output, and move toward the primary
inputs, primary output probabilities are 1. For an OR gate, PB of an input is calculated by P0 of
other inputs and PB of the output, according to Eq. 5.2. The value 0.75 for PB on the lower input
of the OR gate is calculated by PB of 1 on its output and P0 of 0.75 on its upper input. Calculation
of PB values for the inputs of the AND gate are done in a similar fashion. Figure 5.6c shows P1
and PB values of all lines of our example circuit.

Calculation of P1 and PB values for circuits with fanout and without reconvergent fanouts
is done in the same way. In this case, in addition to rules of Fig. 5.4, those of Fig. 5.5 also
apply.

Fig. 5.5 Probability for inde pendent fanout paths

P1(a) = P1(s)

P1(b) = P1(s)

P0(a) = P0(s)

P0(b) = P0(s)

PB(s) = max(PB(a),PB(b))

s
a

b

1515.2 Controllability and Observability

5.2.3.2 Reconvergent Fanouts

Calculation of P1 and PB values for lines of a circuit with one more reconvergent fanouts becomes
more difficult than that mentioned above. In such a case, at the divergence point (fanout), control-
lability figures from fanout stems propagate to branches as shown in Fig. 5.7. However, at the
convergence point, the probabilities coming into the inputs of the gate are not independent, and rules
of Fig. 5.4 or Eq. 5.1 are no longer valid.

For reconvergent fanouts (see Fig. 5.7), the circuit must be split at the fanouts and controllability
parameters for two circuits, one with stem at 1 and another with stem at 0 must be calculated.
Controllability values at the convergent point are calculated by conditional probabilities.

The example we consider for this case is shown in Fig. 5.8. Figure 5.8a shows all P1 and PB
figures that can be calculated independent of reconvergence at G

7
. The missing parameters in this

figure are the P1 parameter of the output of G
7
 and PB values that are related to this controllability.

The output of G
7
 is line l

21
 that is not shown here for legibility of the diagram.

Figure 5.8b shows controllability parameters that are based on controllability of the fanout stem
(output of G

2
) assuming value 0. Note that G

2
 drives this fanout that converges at G

7
. Likewise,

Fig. 5.8c assumes that same line has a 1 value and shows the corresponding controllability values
in the rest of the circuit. Based on conditional probabilities, P1 for the output of G

7
 is calculated in

Fig. 5.8d and shown on the corresponding line. Note that this is the controllability that was missing

Fig. 5.6 P1 and PB for a
fanout-free circuit

152 5 Test Pattern Generation Methods and Algorithms

from Fig. 5.8a. As shown, P1(l
21

) is 0.5: Had we not considered the conditional probabilities, and
calculated P1(l

21
) from Fig. 5.8a, 0.464 would result, which we leave for the reader to verify.

5.2.3.3 Detection Probability

We define detection probability as follows. Given a random test vector at the primary inputs of a
circuit, the difficulty of detecting a fault in the circuit is called detection probability (DP). An obvious
(though incorrect, but a good estimate for our purpose) value for DP is obtained by multiplying
controllability and observability probabilities [12, 14, 15]. This is justified by the fact that if a line
can be controlled with the complement of a fault value, and the line is observed, then the fault is
detectable. Thus,

(:)

() ()l SA P l l−= ×vDP v PB (5.3)

In Eq. 5.3, for a SAv on line l, controllability value of line l is multiplied by observability of line
l. In Fig. 5.8d, DP for l

11
:SA0 (lower input of G

4
) is calculated by multiplying 0.75 by 0.33, which

is 0.24. This means that if we randomly select a test vector and apply it to the inputs of the circuit,
the chance of l

11
:SA0 being detected by that test vector is 0.24.

Fig. 5.7 P1 for reconvergent fanout

Logic

Logic

a
b

c

d

e

w

Logic

Logic

a = 1
1

1

d

e

P1(w)

a = 1

Logic

Logic

0

0

d

e

P1(w)

a = 0

P1(w) = P1(a)×P1(w) + P0(a)× P1(w)

a = 1 a = 0

a = 0

1535.2 Controllability and Observability

Inaccuracy of this method of calculating detection probabilities is that the probabilities that we
are multiplying are not necessarily independent. However, for our purposes, where other inaccura-
cies in RTG are more significant, this is an acceptable estimate.

Fig. 5.8 Controllability and observability figure for reconvergent fanouts

154 5 Test Pattern Generation Methods and Algorithms

5.2.3.4 Verilog Testbench

A PLI function referred to as combinational probability is developed to calculate probability based
on controllability and observability values for combination circuits. This function starts with circuit
levels closer to the primary inputs and calculates controllability values as it traces circuit lines
toward the outputs of the circuit. Observability values are calculated in the opposite direction. This
function ignores probability dependencies for reconvergent fanouts and calculates controllability
values at reconvergent outputs by just considering input probabilities. The netlist format used by
$CombinationalProbability is the same as that explained in Chap. 2 and used in Chaps. 3 and 4.
Recall that this netlist format is explained in Appendix B, and can automatically be generated from
behavioral descriptions using the translation program discussed in Appendix F.

Figure 5.9 shows a circuit for which the above PLI function is used to calculate probabilities.
Figures 5.10 and 5.11 show Verilog testbench and the resulting probability values, respectively.
In Fig. 5.11, lines are identified by the gate outputs.

Fig. 5.9 Circuit diagram for probability based on controllability and observability

Fig. 5.10 Testbench producing probability-based values

module SimpleCKTPROBABILITY();
reg a, b, c, d, e, f;
wire w;

 SimpleCKT INST (a, b, c, d, e, f, w);

initial begin
 $CombinationalProbability (SimpleCKTPROBABILITY.INST, "CP.txt");
 end
endmodule

1555.2 Controllability and Observability

5.2.4 SCOAP Controllability and Observability

In deterministic or random test generation, controllability and observability measures are used for
simplifying the related algorithms. However, complexity in calculation of these parameters defeats
the main purpose for which they are used. The fanout problem, and the method of calculating prob-
ability based on controllability and observability parameters for circuits with reconvergent fanouts
is too complex for the methods to be useful for test generation.

Sandia Controllability/Observability Analysis Program (SCOAP) [16] is a testability measure,
the complexity of which grows only linearly with the size of the circuit. SCOAP is based on the
topology of the circuit, is a static analysis, and does have some inaccuracies due to reconvergent
fanouts. Nevertheless, it is easy to calculate and provide a good estimate for test generation pro-
grams, as well as design for test techniques.

SCOAP defines a set of parameters for combinational and sequential controllability and observ-
ability measures. The combinational parameters have to do with the number of lines that need to be
set for controlling and observing a line. The sequential parameters are related to the number of
clocks it takes for controlling and observing a line.

In SCOAP parameters, lower values mean more controllable and observable, and lines that are
more difficult to control and observe have higher SCOAP parameter values.

5.2.4.1 SCOAP Combinational Parameters

SCOAP defines a set of parameters for combinational controllability and observability, and another
set for sequential. The combinational parameters are:

1. CC0(l): Combinational 0-controllability of line l. Relates to the number of lines from the primary
inputs that have to be traced to put a 0 on line l.

2. CC1(l): Combinational 1-controllability of line l. Relates to the number of lines from the primary
inputs that have to be traced to put a 1 on line l.

Fig. 5.11 Probability of controllability and observability

156 5 Test Pattern Generation Methods and Algorithms

3. CB(l): Combinational observability of line l. Relates to the number of lines that have to be traced
to observe value of line l on a primary output.

Primary input combinational controllability values are 1 (most controllable) and primary output
combinational observability values are 0 (most observable).

Figure 5.12 shows combinational SCOAP parameters for basic logic gates. For the inverter,
controllability of the output is 1 added to its input. This means that as more lines are traced to reach
a certain line, it becomes more difficult to control the line (higher CC numbers). For an AND gate,
you can put a 0, i.e., CC0(w), on its output by putting a 0 on either of its inputs. So, we are using
the minimum 0-controllability values of the inputs, and add a 1 to it for 0 controllability of w.

Again, for an AND gate, since the output becomes 1 if both inputs are 1, the difficulty of control-
ling w with a 1 is the sum of difficulties of all inputs becoming 1, plus a 1 to consider the number
of lines traced. This justifies the equation for CC1(w) shown in Fig. 5.12. Controllability figure for
other gate structures shown in this figure are calculated similar to the AND gate.

As shown in Fig. 5.12, observability of an AND gate input CB(a) is the sum of the gate’s output
observability CB(w) and 1-controllability of all other inputs, plus a 1 for the number of lines traced.
This is justified by the fact that an AND gate input is only observed on its output if all other inputs
assume noncontrol (1) values.

SCOAP combinational controllability and observability parameters for AND, NAND, OR, and
NOR gates can be calculated using Eq. 5.4 and Eq. 5.5. These equations use c for control value, and
i for inversion value.

 CC () () min(CC (),CC ()) () (CC () CC ()) 1⊕ = ⊕ × + ⊕ × + +i c c c c cw i c a b i c a b (5.4)

 CB() CB() CC () 1= + +ca w b (5.5)

Fig. 5.12 Combinational SCOAP parameters

1575.2 Controllability and Observability

In addition to the basic gates, SCOAP parameters for fanouts and XOR gates are shown in
Fig. 5.13. As shown, controllability of fanout branches is the same as that of the stem. A fanout
stem can be observed through any of its branches, thus its observability is the minimum of all its
branches. Figure 5.13 also shows SCOAP parameters for an XOR gate. The Boolean equation of an
XOR justifies calculation of its output controllability and input observabilities.

5.2.4.2 SCOAP Combinational Examples

Figure 5.14a shows a simple circuit for which SCOAP parameters are to be calculated. The numbers
in curly brackets are {(CC0,CC1),CB}. Initially, CC0 and CC1 values for lines connected to primary
inputs are determined and put in a set of parenthesis in curly brackets. As discussed before, primary
input CC0 and CC1 values are 1, i.e., most controllable. After the determination of controllability
values for the primary inputs, SCOAP calculations for the rest of the circuit for logic levels closer
to the primary inputs are performed. Therefore, CC0 and CC1 values for l

3
 are calculated. G

2
 is

processed next, since controllability parameters for all its inputs are now known. This procedure
continues forward until primary circuit outputs are reached. Controllability values are calculated
based on expressions in Fig. 5.12 or Eq. 5.4.

Fig. 5.13 Fanout and XOR SCOAP parameters

Fig. 5.14 SCOAP parameter
calculations

158 5 Test Pattern Generation Methods and Algorithms

Calculation of CB values begins with the primary outputs and moves toward the primary inputs.
Equation 5.5 is used for this purpose. CB for the primary outputs is 0. For the OR gate of Fig. 5.14,
the lower input value (l

5
) is observable if w is observable (i.e., CB(w) = 0), and the upper input is 0

(i.e., CC0 = 2). Therefore, CB for l
5
 is calculated by adding 0 and 2 and adding a 1 to the result.

5.2.4.3 Verilog Testbench for SCOAP Parameter Calculations

A Verilog PLI function has been developed that generates combinational SCOAP parameters of netlists
that use the format discussed in Chap. 2, and used in fault simulation applications in Chaps. 3 and 4.
We use this PLI function for generating SCOAP parameters for the circuit of Fig. 5.9.

For generation of SCOAP parameters, the module, including the Verilog netlist for the circuit of
Fig. 5.9, is instantiated in a testbench, and $CombinationalScoap is called. Figure 5.15 shows this
testbench. Figure 5.16 shows contents of file Mux.scoap.

5.2.4.4 SCOAP Sequential Parameters

In addition to the combinational parameters, there are also sequential SCOAP parameters for
circuits with flip-flops. These parameters represent the difficulty in time, in terms of the number of
clocks, for controlling and observing a circuit line.

Fig. 5.15 PLI generating SCOAP parameters

module SimpleCKTSCOAP();
reg a, b, s;
wire w;

initial begin
$CombinationalScoap(SimpleCKTSCOAP.INST, "Mux.scoap");

 end
 mux2to1 INST (a, b, s, w);
endmodule

Fig. 5.16 SCOAP parameters generated by PLI function

1595.2 Controllability and Observability

The sequential parameters are:

1. SC0(l): Sequential 0-controllability of line l. Relates to the number of clocks it takes logic values
at primary inputs to put a 0 on line l.

2. SC1(l): Sequential 1-controllability of line l. Relates to the number of clocks it takes logic values
at primary inputs to put a 1 on line l.

3. SB(l): Sequential observability of line l. Relates to the number of clocks it takes to propagate
value of line l on a primary output.

Primary input sequential controllability values are 0, and primary output sequential observability
values are 0.

A simplified set of rules for calculating SCOAP parameters in sequential circuits across a flip-
flop are shown in Fig. 5.17. These rules assume flip-flops with a clock and no other set or resetting
mechanism, and no clock gating. These are simplification of rules in [17] which give a comprehen-
sive treatment to this topic.

In addition to flip-flop rules, sequential SCOAP parameters are also considered across basic
gates. For this, rules are the same as those of Fig. 5.12, without the addition of 1. For example,
sequential 0-controllability of an AND gate output becomes:

SC0() min(SC0(),SC0())=w a b

We present a simple example here to illustrate how combinational and sequential SCOAP param-
eters are calculated in a circuit with flip-flops. The more complex case of circuits with feedback will
not be treated here. Figure 5.18 shows an example with combination (in curly brackets), and sequen-
tial (in square brackets [(SC0, SC1), SB]), SCOAP parameters. The process begins with setting

Fig. 5.18 SCOAP parameters in a sequential circuit

Fig. 5.17 Simplified SCOAP for sequential circuits

1D Q q

CC1(q) = CC1(d)+2
CC0(q) = CC0(d)+2
SC1(q) = SC1(d)+1
SC0(q) = SC0(d)+1
CB(d) = CB(q)+2
SB(d) = SB(q)+1

C1

d

c

160 5 Test Pattern Generation Methods and Algorithms

primary input controllability and primary output observability values. We move forward with con-
trollability values from circuit inputs to outputs and observability values calculated while traveling
circuit lines in the opposite direction.

Combinational controllability values for the AND gate (those in{}) in this figure are calculated
as before according to Fig. 5.12. Sequential controllability values (those in) are calculated similarly,
except for the addition of 1. Combinational and sequential parameters across the flip-flops are
calculated according to rules shown in Fig. 5.17.

Figure 5.18 also shows observability values for going from w to the AND gate output (across
flip-flop, going from its output to input). Rules of Fig. 5.17 are used for this purpose. Then, we turn
our attention to the AND gate inputs. For calculating combinational observability values of these
inputs, the AND gate inputs rules of Fig. 5.12 are used, while for the sequential observability, the
same rules without consideration of +1 are used.

5.2.5 Distances Based

A very simple but efficient rule for finding how controllable or how observable circuit lines are is
to consider their distances (or logic levels) from primary inputs (for controllability) or primary
outputs (for observability).

Consider for example, l
7
:SA1 in circuit of Fig. 5.1. Observing this fault on y is easier since there

are fewer logic gates between the site of fault l
7
 and y than between l

7
 and w. For controllability, consider

l
8
:SA1. This requires a 0 on l

8
. Because of the AND gate b is closest to l

8
 than the other inputs, it is

easier to set b to 0 than trying to achieve this by setting s. Note that there is only one gate between
b and l

8
, while considering the fanout as a structure, the distance between s and l

8
 becomes 2.

5.3 Random Test Generation

Section 5.1 discussed the exhaustive search for test vectors that detect circuit faults. On the other
hand, we also talked about RTG as a way of reducing the number of tests. For reducing the number
of tests, various RTG techniques try to set an upper bound, set criteria of selection, or direct forma-
tion of test vectors, in the search for a good test set. With a relatively low effort, an RTG is able to
detect 60–80% of the faults. The remaining faults are usually detected by fault-oriented test genera-
tion methods. The questions that are important to answer are when to stop producing random test
vectors, or whether to accept a randomly selected test vector, and when to switch to more determin-
istic methods.

Instead of selecting all possible test vectors, or exhaustively trying every test and looking for
good ones, there are several ways of reducing the number of tests by the application of some random
techniques. Two such methods are discussed in detail here. Other possibilities are mentioned in an
outline form.

5.3.1 Limiting Number of Random Tests

For a circuit with n inputs, there are 2n possible input combinations. For large circuits, the selection
of every input combination as a test vector is not possible. A method of selecting fewer than 2n tests
based on circuit fault properties is presented here.

1615.3 Random Test Generation

The number of random tests to use in a test set for testing a circuit with N inputs can be based
on how confident we want to be that the test set detects the fault that is least likely to be detected.
We define C as the level of confidence, and Df-

hard
 as the probability that the hardest fault in the

circuit (least likely) is detected with one random test.
We use the following definitions to calculate the required number of tests based on Df-

hard

and C [18].

N: Required number of tests
C: Confidence level
Df-

hard, 1
: The same as Df-

hard
. This is the probability of detecting the hardest fault with one random

test. This parameter is the probability that after the application of only one random test the hardest
to detect fault is detected.

Df-
hard

, N: This parameter is the probability that after the application of N random tests at least
one test detects the hardest to detect fault.

The probability that the hardest to detect fault is not detected by a randomly selected test vector
is: 1- Df-

hard, 1
. Thus, the probability that N tests do not detect this fault is: (1- Df-

hard,1
)N. Based on

this, the probability that at least one of these N tests detect this fault is 1 minus this figure. By the
above definitions, this is the same as Df-

hard
, N. Therefore, Eq. 5.6 results.

 hard, hard,1
1 (1)- -= − − N

f N fD D (5.6)

We want to apply enough test vectors such that after the application of all tests (N), the probability
of detecting the hardest to detect fault by at least one of these tests (Df-

hard
, N) is greater than C level

of confidence. Thus, Eq. 5.7 results.

hard,1

1 (1)-− − ≥N
fD C (5.7)

To solve this equation for N, we move the part with N exponent to the right hand side, and get
the ln, of both sides of the resulting expression. Equation 5.8 results.

hard,1

(1) (1)-ln ln− ≥ − fC N D (5.8)

The smallest value of N for the level of confidence, C, results as follows:

hard,1

(1) / (1)-ln ln= − − fN C D (5.9)

For small values of Df-
hard,1

, which is always the case, Eq. 5.10 holds. Take for example 0.01 for
the Df-

hard,1
. The right hand side of Eq. 5.10 becomes – 0.01005.

For small Df
-hard

:

hard,1 hard,1

(1)- -ln − = −f fD D (5.10)

Using Eq. 5.10 in Eq. 5.9, the smallest value of N results, as shown in Eq. 5.11. We use Df-
hard

instead of Df-

hard,1
 in this equation and discussions that follow.

hard

(1) / -ln= − − fN C D (5.11)

Equation 5.11 sets the minimum number of tests needed (N) for a fault with Df-
hard

 probability of
detection to be detected, with C level of confidence. For example, to be 98% sure (C = 0.98) that a
fault with 0.01 probability of detection (Df

-hard
 = 0.01) is detected, we need at least 400 random test

vectors (N = 400).

162 5 Test Pattern Generation Methods and Algorithms

5.3.1.1 Estimating Hardest Detection

For a circuit with n inputs, applying all input combinations will detect the hardest to detect fault.
So, a conservative estimate for Df

-hard
 is as shown in (5.12).

hard

(1 / 2)- ≥ n
fD (5.12)

Since all input combinations are considered, if a fault is detectable, we are sure that it will be
detected with at least one of the test vectors. Thus, a fault cannot be harder to detect than the
right-hand side of Eq. 5.12. In most cases, this estimate results in far more test vectors than needed.

For a circuit with several outputs, some faults can propagate to more than one output, and have a
better probability of detection. Furthermore, not all primary inputs may be needed to propagate certain
faults to circuit outputs. To obtain an estimate for the hardest to detect probability, such circuits may
be partitioned into fanin cones, and Df-

hard
 can be estimated based on the number of inputs of the core

with most number of inputs. This is because, for a fault in a cone to be detected, it is only necessary
to apply test vectors to the inputs of the cone, and observe its effect on the output of the cone.

Consider for example, the circuit shown in Fig. 5.19. Based on the number of inputs, and according
to Eq. 5.12, the probability of the hardest to detect fault is estimated as 1/28. For a confidence level of
0.98, according to Eq. 5.11, the required number of tests to detect the hardest fault becomes 1,001 tests.
Obviously, is too conservative and is even higher than trying to detect circuit faults exhaustively.

On the other hand, we can partition the circuit of Fig. 5.19 into three fanin cones, each of which
feeding one of circuit primary outputs. Calculation of Df-

hard
 based on this partitioning results in a

more realistic estimation for this parameter. As shown in this diagram, there are two cones with four
inputs, and one with three. The worst case situation for a fault to be detected is if it is in one of the
cones with four inputs. Therefore, the probability to detect the hardest fault is Df-

hard
 = 1/16. For a

confidence level of 98%, the number of random tests for testing the circuit of Fig. 5.19 is N = 63.
Although, this may still be a conservative figure for this simple circuit, it is 16X reduction from the
case that considered all circuit inputs.

5.3.1.2 Detection Probability

Detection probability (DP) figures obtained by considering line controllability and observability figures
and discussed in Sect. 5.2 may be used for finding random number of tests to satisfy a certain constraint.

Fig. 5.19 Fanin cones for hard to detect faults

a

b

h

g

f

e

d

c

v

w

y

P
rim

ary O
utputs (P

O
)P

rim
ar

y
In

pu
ts

 (
P

I)

1635.3 Random Test Generation

For example, we can search all circuit lines, find the lowest value of DP, and use it in Eq. 5.11 to
get an estimate for N.

Although, DP as discussed in Sect. 5.2.3.3 is not accurate, and multiplying controllability by
observability is just a rough estimate, using it in heuristics does not cause a serious problem.
Furthermore, calculating controllability values without considering reconvergent fanouts, still pro-
duces DP figures that can safely be used for estimating the required number of random tests.
Potentially, SCOAP parameters can also be used for estimating the number of random tests.

5.3.2 Combinational Circuit RTG

A test set generated by random selection of test vectors is evaluated by fault simulation. Instead of
selecting a certain number of tests and evaluating the complete test set at the end, an RTG process
can evaluate test vectors before selecting them. Although this form of test generation may not fit
into the definition of pure random, but since tests that are to be evaluated are picked in random, we
refer to this method as RTG.

RTG methods vary in the way that a random test is selected or discarded. The selection criterion
is based on the improvement in fault coverage that each test vector offers. This coverage is usually
measured by the number of undetected faults that a new random test detects. The selection criterion
considers that fault coverage grows exponentially with the number of test vectors. As shown in
Fig. 5.20, in the early stages of RTG process, new random tests detect a good number of faults,
and coverage increases rapidly. As the number of selected tests increases, new random tests detect
fewer undetected faults.

We present several categories of RTG algorithms that are different in mechanisms they use to
follow this exponential curve, and the method they use for exiting the RTG process. Usually, after
an RTG algorithm exits, fault-oriented TG programs (that we discuss in Chap. 6) come into action
to detect the remaining faults.

5.3.2.1 Fixed Expected Coverage per Test

A simple RTG algorithm that relies on the exponential coverage growth only for exiting the test
generation process uses a Fixed Expected Coverage per test (FECpt) vector. This algorithm shown
in Fig. 5.21, obtains a random test and performs fault simulation for all undetected faults. As faults
are detected by a test vector, they are counted and dropped from the original fault list. The fault
count (fCount) is a measure of coverage improvement by the random test. This figure is compared

Fig. 5.20 Exponential growth of detected faults

164 5 Test Pattern Generation Methods and Algorithms

with a fixed expectation fault count (efCount), and if it meets this expected number of detected
faults, it is kept as a test in the test set, otherwise it is discarded.

There are several ways of exiting this algorithm. One way is to set a low desired fault coverage
that is checked at the beginning of Fig. 5.21. Other mechanisms not shown here include one for
counting the number of consecutive random tests that do not satisfy (they are unsuccessful) the fixed
expectation coverage. If this number exceeds a certain limit, the RTG process exits.

Figure 5.22 shows a circuit for which this RTG method is used in a Verilog testbench. This is the
same circuit we used in our fault simulation methods in Chap. 4 and in Verilog-based controllability
and observability calculations, earlier in this chapter. After fault collapsing, there are 16 faults in
this circuit.

Figure 5.23 shows the outline of a testbench implementing the FECpt RTG algorithm. The upper
part of the code shows parameter declarations, variable, and instantiation of good and faultable
circuit models. The parameters are the number of faults, expected fault count (efCount), and unsuc-
cessful test limit (utLimit). The efCount parameter is defined in the algorithm of Fig. 5.21. utLimit

Fig. 5.22 RTG example circuit

Fig. 5.21 Fixed Expected
Coverage per test Algorithm:FECPT;

Copy F into F’;
Use a fixed efCount;
While desired coverage has not reached
 Obtain a random test, t;
 Reset fCount;
 For every f in F’;
 Inject f;
 Apply t;
 Simulate faulty circuit ;
 Remove f;
 If f is detected
 Increment fCount ;
 Drop f from F ;
 Increment coverage ;
 End if;
 End for;
 If fCount >= efCount
 Keep t;
 End if;
End while;

1655.3 Random Test Generation

not shown in Fig. 5.21, is the maximum number of consecutive random tests that do not satisfy
efCount. This parameter provides an exit condition for the RTG algorithm.

Another exit condition for the algorithm is the desiredCoverage parameter. The while loop in
Fig. 5.23 checks both of these conditions.

Declarations in Fig. 5.23 are self-explanatory. Strings CT and AT used with some of the variable
names are for Current-Test and All-Tests, respectively.

In the outer while loop shown in this figure, a random test is generated, and using another while
loop inside it, the test vector is checked for detecting all circuit faults (Fig. 5.24). The number of
faults that the current test (CT) detects are calculated in this inner while loop. Following this loop,
an if statement checks if the detected faults satisfy efCount. This part is shown in Fig. 5.25, which
is elaborated in the following sections.

Figure 5.24 shows the while loop that finds faults detected by random test testVector (obtained
randomly in Fig. 5.23). We keep track of detected faults by their fault index (faultIndex) that

Fig. 5.23 Fixed expected coverage outline

module Tester();//CRTG_SimpleCKT_Fixed

parameter numOfFaults = 16;
parameter efCount = 2;
parameter utLimit = 200;
parameter desiredCoverage = 99;
reg a, b, c, d, e, f;
wire woG, woF;
reg [8*50:1] wireName;
reg stuckAtVal;
reg [5:0] testVector;
reg [1:numOfFaults] detectedListCT, detectedListAT;

integer uTests, detectedFaultsCT, faultIndex;
integer faultFile, testFile, status;

integer coverage, detectedFaultsAT;
SimpleCKT GUT (a, b, c, d, e, f, woG);
SimpleCKT FUT (a, b, c, d, e, f, woF);

initial begin

 uTests=0; coverage = 0;
 faultIndex = 1; detectedListAT = 0; detectedFaultsAT = 0;

testFile = $fopen("CRTG_SimpleCKT_Fixed.tst", "w");
 #10;

while(coverage < desiredCoverage && uTests < utLimit) begin
detectedFaultsCT = 0; detectedListCT = 0;

 testVector = $random($time);
 uTests = uTests + 1;
 faultIndex = 1;
 #10;

while(!$feof(faultFile)) begin // Fault loop

end //end of while(!$feof(faultFile))

if(detectedFaultsCT >= efCount) begin
. . .

. . .

end

#10;
 end //end of while of Coverage

 $display("Number of Random Vectors Generated: %d", uTests);
$display("Coverage : %d", coverage);

end //end of initial
endmodule

166 5 Test Pattern Generation Methods and Algorithms

 corresponds to the line number where a fault is located in the fault list file. The detectedListAT array
keeps track of faults detected so far by all tests that have been selected. On the other hand,
 detectedListCT records faults detected by the current test.

The if statement immediately in the body of the inner while loop of Fig. 5.24 checks the detect-
edListAT location of the fault that is being handled to see if it has previously been detected. A fault
is only injected if it has not been detected by any of the random tests that have been selected thus
far. This if statement implements fault dropping. In its body, the fault being handled is injected, and
it is checked for being detected by testVector. If detection occurs, (i.e., woG is different than woF)
detectedFaultCT is incremented, and detectedListCT location corresponding to the fault is marked.

This while loop repeats for all faults for the same random test vector. The if statement that fol-
lows this loop comes after the $fclose statement in Fig. 5.24, and is shown in Fig. 5.25. This state-
ment decides whether this random test is kept or discarded. As shown in Fig. 5.25, if the number of
detected faults by the CT is satisfactory, detected faults lists by the CT will be transferred to detect-
edListAT, which is for all tests. Following that, the new coverage is calculated and selection of
testVector is reported in the testFile.

The calculated coverage is one way that the FECpt algorithm uses for exiting. Running this
algorithm on the circuit of Fig. 5.21 results in trying 200 random tests, selecting five tests and get-
ting 87% fault coverage. A modified version of this testbench without fault dropping results in
trying 102 random tests, selecting tests with 100% fault coverage.

Fig. 5.24 Finding faults detects by a random test, implementing FECpt

module Tester();//CRTG_SimpleCKT_Fixed
. . .

. . .

. . .

initial begin

while(coverage < desiredCoverage && uTests < utLimit) begin

faultFile = $fopen("SimpleCKT_Fixed.flt", "r");

while(!$feof(faultFile)) begin //Fault loop
status = $fscanf(faultFile,

"%s s@%b\n", wireName, stuckAtVal);

if(detectedListAT[faultIndex]==0)begin //fault dropping

$InjectFault(wireName, stuckAtVal);
 {a, b, c, d, e, f} = testVector;

 #60;
 if(woG != woF) begin

detectedFaultsCT = detectedFaultsCT + 1;
 detectedListCT[faultIndex] = 1'b1;
 end //end of if

$RemoveFault(wireName);
#20;

 end //if !detected

 faultIndex = faultIndex + 1;
 end //end of while(!$feof(faultFile))

 $fclose(faultFile);
 . . . //details in Fig.5.25

end //end of while of Coverage
$display("Number of Random Vectors Generated: %d", uTests);
$display("Coverage : %d", coverage);

end //end of initial
endmodule

1675.3 Random Test Generation

5.3.2.2 Adjustable Expected Coverage per Test

In a different RTG algorithm, instead of using a fixed efCount, this parameter is adjusted as more
faults are detected. This method tries to adjust the expected number of faults that are detected with
the exponential growth of fault coverage (Fig. 5.20).

Figure 5.26 shows the Adjustable Expected Coverage per test (AECpt) algorithm. Basically, this
is the same as FECpt algorithm of Fig. 5.21 except the last part (the if part) that modifies efCount
according to the obtained fault coverage at that point in the TG process.

module Tester();//CRTG_SimpleCKT_Fixed
. . .

. . .

initial begin

while(coverage < desiredCoverage && uTests < utLimit) begin

if(detectedFaultsCT >= efCount) begin
for(faultIndex=1;faultIndex<=numOfFaults;

faultIndex=faultIndex+1)
if((detectedListCT[faultIndex] == 1'b1)) begin

 detectedListAT[faultIndex] = 1'b1;
 detectedFaultsAT = detectedFaultsAT + 1;
 end
 coverage = 100 * detectedFaultsAT / numOfFaults;
 $fdisplay(testFile, "%b", testVector);
 end

end //end of while of Coverage
$display("Number of Random Vectors Generated: %d", uTests);
$display("Coverage : %d", coverage);

end //end of initial
endmodule

Fig. 5.25 Deciding on keeping or discarding a test

Fig. 5.26 Adjustable
expected coverage

168 5 Test Pattern Generation Methods and Algorithms

Figure 5.27 shows the outline of a Verilog testbench implementing this algorithm. Parameter
names and declarations in Fig. 5.27 are similar to those of the FECpt testbench of Fig. 5.23. Two
differences are initialExpFCount and newDiscovered. The former is used for expected count that
gets adjusted, and the latter counts faults that are detected for the first time. This variable is needed
because we are not doing fault dropping in this implementation.

The while loop in Fig. 5.27 has the same exit condition as that of Fig. 5.23. Inside this loop, there
is a loop for finding faults that are detected by the current random tests, and two if statements.

Fig. 5.27 Adjustable expected coverage outline

module Tester();//CRTG_SimpleCKT_Ajdustable
parameter numOfFaults = 16;
parameter initialExpFCount = 2;
parameter utLimit = 200;
parameter desiredCoverage = 99;
reg a, b, c, d, e, f;
wire woG, woF;
reg [8*50:1] wireName;
reg stuckAtVal;
reg [5:0] testVector;
reg [1:numOfFaults] detectedListCT, detectedListAT;
integer faultFile, testFile, status;
integer uTests, detectedFaultsCT, expFCountCT, faultIndex;
integer tmp, newDiscovered, coverage, detectedFaultsAT;
SimpleCKT GUT (a, b, c, d, e, f, woG);
SimpleCKT FUT (a, b, c, d, e, f, woF);

initial begin

uTests = 0; coverage = 0;
faultIndex = 1; detectedListAT = 0;
expFCountCT = initialExpFCount;
testFile = $fopen("CRTG_SimpleCKT_Adjustable.tst", "w");
#10;

while(coverage < desiredCoverage && uTests < utLimit) begin
 detectedFaultsCT = 0; detectedListCT = 0; detectedFaultsAT =0;
 testVector = $random($time);
 uTests = uTests + 1;
 faultIndex = 1;
 #10;
 NewDiscovered = 0;

 while(!$feof(faultFile)) begin // Fault Injection loop

 end//end of while(!feof(faultFile))

if(detectedFaultsCT < expFCountCT)
. . .

 if(detectedFaultsCT>=expFCountCT && (NewDiscovered>0)) begin

 end
 #10;
 end //end of while of Coverage

 $display("Number of Random Vectors Generated: %d", uTests);
$display("Coverage : %d", coverage);

end //end of initial
endmodule

. . .

. . .

1695.3 Random Test Generation

Figure 5.28 shows the fault injection while loop. Differences between this and Fig. 5.26 exist,
due to the fact that we are not doing fault dropping here. Namely, detectedListAT is not checked,
and the fault is injected unconditionally. Instead, newDiscovered is incremented when a fault is
detected for the first time. This variable is later used in deciding on keeping or discarding the
random test.

Figure 5.29 shows the rest of the Verilog testbench implementing AECpt algorithm. This part
comes after the $fclose statement that is after the fault while loop in Fig. 5.28. The first if statement
reduces the efCount if the number of detected faults by the CT (detectedFaultsCT) is less than the
expected value. If detectedFaultsCT is larger than the expected value, the new expected value is
raised by a factor influenced by detectedFaultsCT. More elaborate methods of adjusting our
expectation are implementable in this testbench.

The testbenches for FECpt and AECpt presented the implementation of these algorithms
in Verilog. Parameters used and conditions for various decision making provide flexibilities
for other implementations. These should be adjusted according to the circuit for which tests are
being generated.

Fig. 5.28 Finding faults detecting by a random test, implementing AECpt

module Tester();//CRTG_SimpleCKT_Adjustable

initial begin
. . .
testFile = $fopen("CRTG_SimpleCKT_Adjustable.tst", "w");

while(coverage < desiredCoverage && uTests < utLimit) begin
detectedFaultsCT=0; detectedListCT=0;
detectedFaultsAT=0;

 testVector = $random($time);
 uTests = uTests + 1;
 faultIndex = 1;
 #10;
 newDiscovered = 0;

faultFile = $fopen("SimpleCKT_Adjustable.flt", "r");
while(!$feof(faultFile))begin// Fault Injection loop

status=$fscanf(faultFile,"%s s@%b\n",wireName,stuckAtVal);
$InjectFault(wireName, stuckAtVal);
{a, b, c, d, e, f} = testVector;

 #60;
if(woG != woF) begin

 detectedFaultsCT = detectedFaultsCT + 1;
 detectedListCT[faultIndex] = 1'b1;
 if(detectedListAT[faultIndex] == 0)
 newDiscovered = newDiscovered + 1;

 end //end of if
$RemoveFault(wireName);

 #20;
 faultIndex = faultIndex + 1;

end //end of while(!$feof(faultFile))
$fclose(faultFile);

 . . . //details in Fig.5.21
end //end of while of Coverage
 $display("Number of Random Vectors Generated: %d", uTests);
$display("Coverage : %d", coverage);

end //end of initial
endmodule

170 5 Test Pattern Generation Methods and Algorithms

5.3.2.3 Precalculated Expected Coverage per Test

Instead of adjusting expected coverage per test, a coverage expectation graph can be calculated
before the actual test generation begins. The expectation graph tries to predict the actual exponential
growth of fault coverage (Fig. 5.20). Several Verilog implementations of this method are available
in the software that accompanies this book. The testbenches have been tested for standard ISCAS
benchmarks. They are too lengthy to be included in the text.

Based on the methods discussed above, other algorithm can be devised. For example, in addition
to adjusting coverage per test, the overall designed fault coverage can also be modified as tests are
being generated.

Fig. 5.29 Adjusting expectation, keeping or discarding a test

module Tester(); //CRTG_SimpleCKT_Adjustable
. . .
initial begin

uTests = 0; coverage = 0;
faultIndex = 1; detectedListAT = 0;
expFCountCT = initialExpFCount;
while(coverage < desiredCoverage && uTests < utLimit) begin

detectedFaultsCT = 0; detectedListCT = 0; detectedFaultsAT = 0;
faultFile = $fopen("SimpleCKT_Adjustable.flt", "r");
uTests = uTests + 1;
faultIndex = 1;
#10;
newDiscovered = 0;

while(!$feof(faultFile))begin
. . .

. . .
end//end of while(!$feof(faultFile))

detectedFaultsAT = 0;
if(detectedFaultsCT < expFCountCT)
 tmp = expFCountCT / 2;

expFCountCT = tmp;

 if(detectedFaultsCT >= expFCountCT && (NewDiscovered > 0))
 begin
 detectedFaultsAT = 0;

 for(faultIndex=1; faultIndex<=numOfFaults;
 faultIndex=faultIndex+1)
 if((detectedListAT[faultIndex]==1) ||
 (detectedListCT[faultIndex]==1))
 begin
 detectedListAT[faultIndex] = 1'b1;
 detectedFaultsAT = detectedFaultsAT + 1;
 end

 coverage = 100 * detectedFaultsAT / numOfFaults;
$fdisplay(testFile, "%b", testVector);

end
#10;

end //end of while of Coverage
$display("Number of Random Vectors Generated: %d", uTests);
$display("Coverage : %d", coverage);

end //end of initial
endmodule

else tmp = (detectedFaultsCT + expFCountCT) / 2;

1715.3 Random Test Generation

5.3.3 Sequential Circuit RTG

As fault simulation discussed in Chap. 4, sequential circuit test generation is also influenced by
register structures. As we discussed in Chap. 4, after the application of a new test vector, fault
effects in sequential circuits may take several clocks to propagate to circuit primary outputs.
Because of this, we propose an RTG method for sequential circuits, in which both test vectors and
the number of clocks are selected in random. As in fault simulation, resetting a sequential circuit is
necessary between faults.

A testbench for sequential circuit test generation is presented here. We use this testbench for
generating tests for the Residue-5 circuit that we used for fault simulation in Chap. 4. This circuit
has two primary inputs, three primary outputs, and three flip-flops. There are 108 stuck-at faults in
the circuit. The block diagram of this circuit is shown in Fig. 5.30.

Figure 5.31 shows parts of the Verilog testbench for generating tests for this circuit. This test-
bench implements the same algorithm (FECpt) as that of Fig. 5.23. Minor differences between the
two testbenches are due to the fact that the latter is for a sequential circuit and handles clocking and
resetting.

For brevity, sections of the code in Fig. 5.31, that are the same as the testbench of Fig. 5.23 are
not shown. Parameter declarations, including the number of faults in the circuit, expected count,
desired coverage, and the limit of the number of unsuccessful tests are shown near the top of this
testbench. Next, the code shows the instantiation of the golden and faultable residue5 Verilog codes.
Near the end of this testbench, an always statement produces a free running clock, by complement-
ing clk every 25 time units.

The first while loop shown in Fig. 5.31 provides exit conditions for the algorithm. Immediately
following this statement, a random vector is produced, part of which is given to clockCount and the
rest to testVector. These two segments are used for testing faulty models of Residue-5 in the while
loop, the body of which is blanked in this figure.

Figure 5.32 shows the body of the inner while loop of the testbench. As shown, after a fault is
read, the circuit is reset by asserting the reset signal, waiting for a clock pulse, and then deasserting
the reset. Waiting for a clock pulse is done by flow control statement @(posedge clk) immediately
followed by @(negedge clk). After injecting the fault (by $InjectFault), the test vector portion of
the random data (testVector) is assigned to the circuit inputs (in). The clock count portion is used in
a repeat statement that waits for clockCount clock pulses, effectively clocking the Residue-5 circuit
many times. The next statement in this testbench checks the faulty and good circuit outputs to see
if the injected fault has been detected. The rest of this testbench is no different than that of Fig. 5.23.

Fig. 5.30 Residue-5 block diagram

in[1:0] out[2:0]

Q

Q

Q

clk

Residue5
108 SA
Faults

172 5 Test Pattern Generation Methods and Algorithms

When a fault is detected, the random test data, and the number of clocks that the test data has been
applied are recorded. Figure 5.33 shows test generated for the Residue-5 circuit. The testbench
generates a total of 139 vectors, of which only seven are selected. Total test time (adding clock
counts in Fig. 5.33) is 45 clock cycles. The seven test vectors applied over 45 clock cycles yield a
fault coverage of 82.4%.

In this section, we presented several RTG algorithms and showed implementations of two such
algorithms. Adaptation of algorithms to sequential circuits and example of implementation
were also shown. The algorithms we presented were fairly simplified to show templates for more
sophisticated RTG algorithms. Nevertheless, we showed parameters and procedures in these
algorithms that could use more complexity and more intelligence for a faster test generation process
and a better fault coverage.

The algorithms identified exit conditions, and random test vector effectiveness as factors that
characterize such RTG procedures. One of the two algorithms that we presented used a fixed value
for test effectiveness, and the other adjusted it as tests were being selected. We did not elaborate on
algorithms that precalculate expected values for test effectiveness. For such calculations use of
SCOAP parameters, and other topological information from a CUT may be useful.

Fig. 5.31 Testbench generation tests for a sequential circuit

module Tester ();
parameter numOfFaults = 108.0;
parameter efCountCT = 2;
parameter desiredCoverage = 99;
parameter utLimit = 140;

. . .

. . .

. . .

. . .

. . .

residue5_net GUT(global_reset, clk, reset,in, woG);
residue5_net FUT(global_reset, clk, reset,in, woF);

initial begin

testFile = $fopen("Res5.tst", "w");

 while((coverage < desiredCoverage) && (uTests < utLimit))begin
 {clockCount, testVector} = $random();

$display("TV=%b, CC=%d, uTest=%d",
 testVector, clockCount, uTests);
 uTests = uTests + 1;

while(! $feof(faultFile)) begin

 end //end of while (! $feof(faultFile))

 if(detectedFaultCT >= efCountCT) begin

 end

 coverage = 100 * (detectedFaultAT/numOfFaults);

$display("fault coverage = %f\n", coverage);

 end //while coverage $fclose (DetectionFile);

$stop;
end //end of initial

always #25 clk = ~clk;
endmodule

1735.3 Random Test Generation

Fig. 5.32 Fault injection, input application, and clocking

module Tester ();
. . .

. . .

initial begin

testFile = $fopen("Res5.tst", "w");
while((coverage < desiredCoverage) && (uTests < utLimit))begin

faultFile = $fopen("Res5.flt", "r");

 while(! $feof(faultFile)) begin
status=$fscanf(faultFile,"%s s@%b\n",wireName,stuckAtVal);

 faultIndex = faultIndex + 1;

if(detectedListAT[faultIndex] == 0) begin
 reset = 1; global_reset = 1;
 @(posedge clk) @(negedge clk);
 reset = 0; global_reset = 0;
 $InjectFault (wireName, stuckAtVal);
 in = testVector;

 repeat(clockCount) @(posedge clk) @(negedge clk);

 if (woG != woF) begin
 detectedFaultCT = detectedFaultCT + 1;
 detectedListCT[faultIndex] = 1;

$display("Fault:%s SA%b detected by %b by %d pulse
 at %t.",wireName,stuckAtVal,in,clockCount,$time);
 end //if

 $RemoveFault(wireName);
 end //if !detected
 end //end of while (! $feof(faultFile))

 $fclose(faultFile);
if(detectedFaultCT >= expFCountCT)begin

 . . .
end

 coverage = 100 * (detectedFaultAT/numOfFaults);
 $display("fault coverage = %f\n", coverage);

end //while coverage
 $fclose (DetectionFile);
 $stop;
end //end of initial
always #25 clk = ~clk;

endmodule

Fig. 5.33 Test data for Residue-5

00 ,
01 ,

1001
0010

9(decimal)
2

11 ,
01 ,

1000 8
0011 3

01 , 1001 9
10 ,
10 ,

0100 4
1010 10

Test Clock Count

174 5 Test Pattern Generation Methods and Algorithms

Test generation methods in Sect. 5.3.1 are regarded as fault independent random test generation
while Sects. 5.3.2 and 5.3.3 presented random fault-oriented test generation methods.

5.4 Summary

This chapter showed where test generation fits in electronic test cycle. We started with controll ability
and observability methods that are needed for many test generation methods and programs. We then
discussed complete procedures and programs for generation of test. For the specific test generation
engines, we focused on RTG and showed several methods for sequential and combinational test
generators. Incorporating these engines in Verilog testbenches provides a practical set of tools and
environments for test generation and test evaluation.

As discussed, there is a limit as to amount of fault coverage we can get with random test
generation. The next chapter discusses deterministic algorithms for test generation that together
with random methods presented here, provide complete test generation solutions.

References

 1. Sellers FF, Hsiao MY, Bearnson LW (1968) Analyzing errors with the Boolean difference. IEEE Trans Comput
C-17(7):676–683.

 2. Akers SB (1959) On a theory of Boolean functions. J. SIAM 7.
 3. Sellers FF Jr., Hsiao M-Y, Bearnson LW (1968) Error detecting logic for digital computers. New York: McGraw-

Hill.
 4. Agrawal P, Agrawal VD (1975) Probabilistic analysis of random test generation method for Irredundant

Combinational Logic Networks. IEEE Trans Comput C-24(7):691–695.
 5. Agrawal P, Agrawal VD (1976) On Monte Carlo testing of logic tree networks. IEEE Trans Comput

C-25(6):664–667.
 6. Agrawal VD (1978) When to use random testing. IEEE Trans Comput C-27(11):1054–1055.
 7. Parker KP, McCluskey EJ (1975) Probabilistic treatment of general combinational networks. IEEE Trans Comput

C-24(6):668–670.
 8. Eichelberger EB, Lindbloom E (1983) Random-pattern coverage enhancement and diagnosis for LSSD logic

self-test. IBM J Res Dev 27(3):265–272.
 9. Goldstein LH (1979) Controllability/observability analysis of digital circuits. IEEE Trans Circuits Syst CAS-

26(9):685–693.
 10. Rutman RA (1972) Fault-detection test generation for sequential logic by Heuristic Tree Search. Technical

Report TP-72-11-4, U. of Southern California, Dept. of EESystems, Los Angeles, California.
 11. Agrawal VD, Mercer MR (1982) Testability measures – what do they tell us? in Proceedings of the International

Test Conference. 391–396 Nov. 1982
 12. Savir J (1983) Good controllability and good observability do not guarantee good testability. IEEE Trans Comput,

C-32:1198–1200.
 13. Jain SK, Agrawal VD (1985) Statistical fault analysis. IEEE Design Test Comput 2(1):38–44.
 14. Brglez F (1984) On testability analysis of combinational networks. in Proceedings of the International Symposium

on Circuits and Systems, 221–225 May 1984
 15. Grason J (1979) TMEAS – A testability measurement. Program. Proceedings 16th Design Automation

Conference 156–161 June, 1979
 16. Goldstein LH, Thigpen EL (1980) SCOAP: Sandia controllability/observability analysis program, in proceedings

of the 17th Design Automation Conference, 190–196 June 1980
 17. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory, and mixed-signal VLSI

circuits, Kluwer Academic Publishers
 18. Wang L-T, Wu C-W, Wen X VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann,

July 2006.

175Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_6, © Springer Science+Business Media, LLC 2011

The previous chapter provided an understanding of test generation and showed where and how test
generation is used in digital system testing.

The random test generation that was discussed gave us some tools and methods to work with.
Perhaps an important benefit of random test methods of the previous chapter was their implementa-
tions in Verilog testbenches, which enabled us to have HDL environments for design and test.
However, random testing alone often comes short of providing a necessary fault coverage and must
be complemented with deterministic methods.

This chapter discusses test generation algorithms that are used for deterministic test generation.
We show how such methods complement random test generation in a complete system. In presenta-
tion of these algorithms, test methods discussed in the previous three chapters such as fault collaps-
ing, fault simulation, and testability evaluation will be used.

In presentation of the algorithms, we try to show the basics and avoid getting into implementation
details. The algorithms are at the gate level and require intensive C/C++ programming for their
implementations. On the other hand, there are already many implementations of test generation algo-
rithms as stand-alone programs or as parts of complete test suites. Our presentation here tries to
motivate the reader to look beyond the gate level and C/C++ programming, and look for ways test
generation can be done at higher levels, and perhaps be incorporated in hardware description
languages.

In the sections that follow, we discuss deterministic test generation algorithms for combinational
and sequential circuits. The last section discusses algorithms for compaction of test data that is a
post test generation process for reducing the number of test vectors.

6.1 Deterministic Test Generation Methods

The previous section discussed random test generation, where no analysis of the circuit takes place
for generation of an initial test vector. This section discusses deterministic test generation, in which
test vectors are resulted from some analysis performed on the CUT. As with RTG, deterministic test
generation may be fault-oriented or fault-independent.

In a deterministic fault-oriented test generation procedure, a specific fault in the circuit is targeted,
and a test vector is generated to detect that fault. Usually, this method of test generation is accom-
panied by fault simulation. Once a test is found to detect a given fault, fault simulation is performed
to find other faults this test vector can detect. This is done, because generating deterministic fault-
oriented test vectors require an involved process, and before repeating this for another fault in the
circuit, all faults that can be taken care of by an already computed test vector are marked as
detected.

Chapter 6
Deterministic Test Generation Algorithms

176

Copy F into F’;
While desired coverage has not reached
 While more faults are being detected
 Perform random test generation;
 End while;
End while;
For every f in F’ (remaining faults)
 Insert f;
 Perform deterministic test generation, t;
 Mark f as detected, drop from F’;
 Add t to T;
 For every g in F’ (remaining faults)
 Inject g;
 Apply t;
 Simulate faulty circuit;

 Remove g;
 If g is detected by t
 Mark g as detected, drop from F’;

End if;
 End for;
End for;

Fig. 6.1 Two-phase random, deterministic test generation

6 Deterministic Test Generation Algorithms

Fault-oriented test generation deals with single stuck-at fault model, i.e., it generates tests
assuming there is only one fault in the circuit, and that is of stuck-at-value type. Although this
assumption and model may appear as too limiting, a test set that detects a good percentage of
single stuck-at faults also results in a good coverage of multiple faults of stuck-at and other fault
types.

Most deterministic test generation methods are fault-oriented, and the subsections that follow
discuss various algorithms and methods for this purpose. Before getting into specific algorithms, the
section that follows illustrates the use of deterministic fault-oriented test generation in a complete
test generation environments.

6.1.1 Two-phase Test Generation

Because of the high cost of deterministic fault-oriented test generations and the number of faults
that have to be dealt with, such test generation methods are usually used along with and as compli-
mentary to random and functional test generation. Random test generation methods usually yield
60–80% fault coverage and can be generated much faster than deterministic methods. We regard
random or functional as the first phase of test generation, and deterministic as the second phase of
a complete test generation scheme.

Figure 6.1 shows a two-phase test generation procedure that involves random and deterministic
methods.

As shown in this figure, the TG process begins with random test generation. This phase con-
tinues until the random test generation procedure exits, either because an acceptable coverage has
been reached or because too many random vectors with unacceptable coverage have been tried.
The algorithms discussed in Sect. 5.3 of Chap. 5, Figs. 5.24 and 5.28 are the type of algorithms
we use in this first phase of TG. After exiting the RTG phase, Fig. 6.1 shows a for loop for fault-
oriented deterministic test generation. In this loop, faults have not been detected by the RTG

177

Fig. 6.2 A simple case of test generation

6.1 Deterministic Test Generation Methods

while loop are targeted. Referring back to the exponential growth of detected faults, discussed in
the previous chapter (Fig. 5.20), the second phase targets the last 20–40% faults that have not
been detected yet.

After injection of a fault and finding test t for detecting that specific fault, a fault simulation loop
(inner for loop in Fig. 6.1) check t to see which undetected faults, in addition to the fault that was
originally targeted, it detects. This fault simulation phase causes fewer deterministic fault-oriented
test generation passes.

6.1.2 Fault-oriented TG Basics

By use of several test cases and a small circuit, we present basics of test generation procedures and
introduce terms and definitions that will be used in formal TG algorithms. Test generation tries to
set values on circuit lines that can be controlled by a tester (primary inputs), and propagate fault to
lines that can be observed by the tester (primary outputs), such that value at the primary output of
the good circuit and faulty circuit are different.

6.1.2.1 Basic TG Procedure

Test generation for a fault like the SA0 fault in Fig. 6.2 begins with setting all inputs to X and propagat-
ing this value through all circuit lines to reach the primary outputs. The value X is unknown or do not
care. In a test vector, X means that the corresponding input position can take either a 0 or a 1 value.

Test generation for l
7
:SA0 begins with trying to force a 1 on this line to make the fault show itself.

This is achieved by a 1 on the inverter output, and thus a 0 on a primary input. Therefore, the starting
32 value of X on a changes to 0. Next, we try to propagate the fault effect to the circuit primary
output. For now, we use the 1/0 notation for good/faulty line values, which means l

7
 is 1/0. Effect

of fault on line l
7
 can only get closer to the circuit’s primary output if it passes through G

3
 which

requires l
2
 to become 1. In this case, the good/faulty value on l

11
 becomes 1/0. To have a 1 on l

2
,

input b must become 1.

178

Table 6.1 D Notation

Composite Definition D notation

0/0 Good 0, Faulty 0 0
1/1 Good 1, Faulty 1 1
1/0 Good 1, Faulty 0 D
0/1
X

Good 0, Faulty 1
Don’t care

D
 X

6 Deterministic Test Generation Algorithms

In order to propagate fault effect that is now on l
11

 closer to the circuit’s primary output, we have
to have a 0 on l

12
. This makes l

14
 take 1/0 value and in order to achieve l

12
 of 0, either l

3
 or l

9
 must

be 0. We choose l
3
 and make this line 0, by just setting input c to 0.

We need to take one more step to make the fault effect get to the circuit’s w output and that is to
set l

13
 to 1 to propagate value on l

14
, that is now 1/0, to l

15
 which is the circuit’s primary output. As

for l
13

, this line can be set to 1 by setting either l
10

 or l
6
 to 1. Since it is easier to set l

6
 to 1, we take

this route, which requires input f to become 1. At this point, we have input values that cause the
effect of l

7
 :SA0 to appear on circuit primary output. Thus, test is made, abcdef = 010XX1. For this

input value, good circuit output is 1 and the circuit having the l
7
:SA0 fault generates a 0 output,

thus 1/0.
The X values in the test vector (inputs d and e) can be set to 0 or 1 and have no effect on detection

of the fault.
In this example, in each step, we pushed the fault effect one gate closer to the circuit primary

output and tried to adjust input values to let this propagation happen. Alternatively, we could
find a complete path to the output and make input requirements to satisfy this propagation. In
either case, generation of a test vector involves propagation of a fault effect to line in the circuit
that can be observed, and adjustment of values of lines in the circuit that let this propagation
happen. Several observations can be made by reviewing steps that we took for generating a test in
the above example. Definitions and notations are presented as we take a more formal look at what
we did above.

Discrepancy values (D). In order to show that a fault effect was propagated, we use 1/0 values
to designate good and faulty values. A more formal representation is D for discrepancy, which
replaces the composite 1/0 value. Similarly, D represents 0/1 which is a good 0 value and faulty 1.
The D-notation used in test generation is shown in Table 6.1.

Fault detection. A fault is detected when a D or D reaches to a circuit output.
D Algebra. Since detection of faults is known by D or D reaching to a primary output, it is

important to be able to calculate how D values propagate through individual logic gates. For this
purpose, D Algebra is used for logic manipulation of D values. Figure 6.3 shows D Algebra for
the basic AND operation. As shown here, to obtain the result of a logical operation whose oper-
ands are of the D type (Table 6.1), the operands are turned into their composite form, and the
logical operation is performed on bit-by-bit basis, i.e., good values with good values, and faulty
ones are operated together. The resulting composite values are then turned into D values accord-
ing to Table 6.1.

Figure 6.4 shows D Algebra for basic logical operations. Propagation of D values in a logic
circuit is done according to tables shown in this figure.

Fault activation. Initially, in a test generation procedure, a D or D value is formed at the site of
fault. This value is formed by adjusting input values to put a value opposite to the faulty value of
faulty line. When this happens, fault is said to be activated. In the example of Fig. 6.2, l

7
:SA0 was

activated by output of G
1
 becoming 1 and forming value D on l

7
.

179

Fig. 6.3 AND function D
Algebra

Fig. 6.4 D Algebra for basic logical functions

6.1 Deterministic Test Generation Methods

Fault propagation. Fault propagation occurs when a D or D value advances toward circuit
primary outputs. In our example, circuit propagation of D from line l

7
 to l

11
 or propagation of D from

l
11

 to l
14

 is regarded as fault propagation.
Sensitized line. A line in a circuit to which a fault has propagated is called a sensitized line. Line

l
11

 is a sensitized line.
Sensitized path. A path between site of fault and lines in the circuit that contain a continuous

sequence of sensitized lines is a sensitized path. A fault is detected if there is a sensitized path

180

Fig. 6.5 Single sensitized path

6 Deterministic Test Generation Algorithms

between site of fault and a primary output. Lines l
7
, l

11
, l

14
, and l

15
 form a sensitized path between

site of l
7
:SA0 and w primary output.

Justification. The process of adjusting circuit input values to activate a fault or to facilitate propa-
gation of a fault toward an output is called input justification. In Fig. 6.2, activating l

7
:SA0 requires

a to become 0. Therefore, the good value 1 on l
7
 is justified by a 0 on a. Also propagation of D on

l
11

 to l
14

 requires l
12

 to become 0. This requirement is justified by a 0 on c.
Implication. In justification, a primary input is set to justify a required value on a circuit line. In

circuits with fanout, setting the primary input may affect other parts of the circuit that were originally
not intended. The process of propagating a primary input value to all parts of the circuit that it
affects is called implication.

Making choices. In test generation process, often there are several choices for achieving the same
goal. Usually, we select the easiest choice and only go back to other choices if our initial selection
fails. In the example of Fig. 6.2, there were several places that we had to make a choice between
several possibly good solutions. Take, for example, propagation of D from l

11
 to l

14
 that required l

12

to be 0. This goal could be achieved by setting l
3
 or l

9
 to 0. We chose l

3
 since it was closer to a

primary input and could be set more easily. On the other hand, selecting l
9
 to be 0, would be justified

by d = e = 0. Through implication, this input combination would put a 0 on l
10

, which would limit
our choices for propagating D from l

14
 to l

15
.

Back tracking. Where choices exist, we make a selection based on what seems to be the best for
propagation of values. However, through implication, a choice, which may seem the best at first,
may block propagation of fault values elsewhere in the circuit. In such cases, we return to places
where choices exist, reset all circuit values to their values before the first choice was made, and
make a different choice. This process is referred to as back tracking.

6.1.2.2 A More Formal Approach to TG

With the above definitions, we are now ready to look at another test generation example and apply
the definitions to it. Consider test generation for l

8
:SA0 in circuit of Fig. 6.5. This fault is represented

by the D value and is activated by a 1 on d. An equally easy choice of setting e to 1 would also
activate this fault. To detect this fault, we select the sensitized path shown, along which all gate

181

Fig. 6.6 Circuit with reconvergent fanout, trying single sensitized path

6.1 Deterministic Test Generation Methods

outputs leading to w are D. This path sensitization requires justification of 1, 0, and 1 on lines l
3
, l

11
,

and l
13

, respectively. Setting primary input c to 1 justifies a 1 on l
3
. Setting a to 1 justifies a 0 on l

11
,

and finally, setting f to 1 justifies a 1 on l
13

.
After propagations and justifications, a single sensitized path from site of l

8
:SA0 to w primary

output is created. Input values abcdef = 1X11X1 justify necessary line values for propagation of
fault. Thus, a test is found for l

8
:SA0.

6.1.2.3 Multiple Sensitized Paths

Example in Fig. 6.5 used a single sensitized path to propagate a D value to the circuit primary
output. We show another example here and apply the same test generation procedure to it.

Figure 6.6 shows a simple circuit with a and b inputs and w output. The circuit has three recon-
vergent fanouts. The following paragraph discusses the procedure we use for generating a test for
l
6
:SA1.

Activation of l
6
:SA1 is done by a 0 on l

6
, causing value D on this line. This value is justified by

l
3
 = 1 which results in a = 1. Implication of a = 1 goes forward and sets l

5
 to 1.

Now that fault activation is done, we try to find a sensitized path from l
6
 to w. Actually, D already

appears on l
8
 and l

9
 because of the fanout, and going forward from l

8
 or l

9
, we choose the upper path

shown by an arrow in Fig. 6.6. Along this path, D and D values are shown. Propagation of D to the
output of G

2
 is achieved by l

5
 = 1, which is already implied by a = 1. The last step in propagation

is the propagation of D from the output of G
2
 to the output of G

5
, which requires a 0 on l

12
 input of

this gate. Trying to justify this requirement, we have to set both inputs of G
4
 to 0. We start with the

upper input (l
10

). For justifying a 0 on l
10

, a 1 is required on l
9
. Unfortunately, this line already has

a D value, and l
10

 cannot be 0. This means that the requirement of l
12

 having a 0 cannot be satisfied,
and we cannot find a test for l

6
:SA1.

From the above analysis, it appears that there is no test to detect l
6
:SA1. On the other hand, had we

propagated D from site of fault (l
6
) in two directions through two sensitized paths, the above conflict

would not have happened. Figure 6.7 depicts this alternative solution for generating test for l
6
:SA1.

Generating test for l
6
:SA1 starts with fault activation by justifying a good 0 on l

6
. This requires

a = 1 that propagates to circuit lines as shown. The next step after fault activation is D value propa-
gation, for which we select both paths shown in this figure. These paths require l

5
 = 1 and l

7
 = 0 for

D to propagate in two directions. These requirements are to be realized during the justification
phase. However, the first requirement (l

5
 = 1) is already justified by the implication that occurred

when we set a to 1. The other requirement (l
7
 = 0) can be satisfied by setting b to 0. Implication of

0 on b causes no conflict and is thus accepted. On the output side, the two D values are NORed

182

Fig. 6.7 XOR with reconvergent fanout, trying multiple paths

6 Deterministic Test Generation Algorithms

together and create a D on w. Thus, test vector ab = 10 activates and propagates l
6
:SA1, and it is

considered the test vector for this fault.
The above example illustrated that due to reconvergent fanouts, certain faults require multiple

sensitized paths to be detected, and some test generation algorithms handle such situations. The
D-Algorithm presented next is one such algorithm.

6.1.3 The D-Algorithm

A formal mechanism putting together procedures and definitions discussed above is the D-Algorithm.
The D-Algorithm [1, 2] is a tabular, procedural method for generating tests for combinational
circuits.

The D-Algorithm incorporates propagation, justification, and implication and uses a table of
circuit line values for representation of results of these processes. This algorithm implements multiple
sensitized paths, where needed to reach an answer. Cubical representation of logic functions are
used for representing them. To represent line values, the D-Algorithm uses test cube. Initially, all
values in a test cube are X. Starting with an all-X test cube, the D-Algorithm injects a fault by
introducing a D into the test cube. A series of justifications and propagations in the circuit progres-
sively change Xs in the test cube to 1, 0, D, and D . When completed, the test cube contains circuit
input values for detection of the fault, all circuit line values, and circuit primary output values.

This algorithm works with the concept of cubical representations for logical structures and
processes cubes representing logical functions and error representations from various lists. Basic
logic primitives are handled in D-Algorithm, but any logical function that can be represented in cubical
form can be used as a basic structure in the D-Algorithm. Cubes and corresponding lists are
discussed below.

6.1.3.1 Primitive Cubes

A logical structure represented in cubical form can be used as a primitive in the D-Algorithm.
Representing a function in cubical form is similar to expressing the function in terms of its impli-
cants and prime implicants from the basic logic theory.

We use circuit of Fig. 6.8 as a primitive that will be described in cubical form. The Karnaugh
map and the cubical representation of this function are also shown and will be used for describing
cubes for this function.

183

Fig. 6.8 A D-Algorithm primitive

a
0
0
1
0
0
1
1
1

b
0
1
0
0
1
0
1
1

c
0
0
0
1
1
1
0
1

w
0
0
0
1
1
1
1
1

P0

P1

Fig. 6.9 AND–OR logic
0-point and 1-point vertexes

Fig. 6.10 Extracting prime cubes

6.1 Deterministic Test Generation Methods

An input combination and its corresponding output is called a vertex in cubical notation. Since
a = 0, b = 1, and c = 1 are input combinations for which w is 1, the pattern 0111 is a vertex of logic
structure shown in Fig. 6.8. Input combinations for which a primitive output is 1 are called 1-point
vertexes, and those for which the output is 0 are called 0-point vertexes. Figure 6.9 shows 0- and
1-point vertexes of primitive of Fig. 6.8.

A vertex is also called a 0-cube, a term that we only use in this discussion. We will not use this
term later to avoid confusion with 0-point and 1-point cubes. A 0-cube has all variables of a function.
Two 0-cubes combine to form a 1-cube. In general, two n-cubes combine to form an (n + 1)-cube.
An n-cube that cannot be combined with another cube to form an upper level cube is a prime cube
(see formation of 1-cubes and 2-cubes in Fig. 6.8). Prime cubes of a logical function are its prime
implicants. In Fig. 6.8, XX11 and 11X1 are prime cubes of the primitive structure shown. Extracting
primitive cubes for the logic structure of Fig. 6.8 by use of Karnough maps is shown in Fig. 6.10.

Prime cubes for which the output of the primitive is 1 are called 1-point prime cubes, and those
for which the output is 0 are called 0-point prime cubes. 0-point prime cubes are like prime impli-
cants for the complement of a logic function.

184

w

a

b

c

a
0
X
X
1

b
X
0
X
1

c
0
0
1
X

w
0
0
1
1

P0

P1

Fig. 6.11 Prime cubes for AND–OR logic

Fig. 6.12 Primitive AND and OR cubes

6 Deterministic Test Generation Algorithms

Figure 6.11 shows the logic structure of Fig. 6.8 and its prime cubes. Figure 6.12 shows prime
cubes for AND and OR primitives. Since prime cubes are the only types of cubes that we use for
given logic primitives, we use the term cube to refer to them. For primitive logic structures, we use
terms 0-point primitive cubes and 1-point primitive cubes.

An important use for primitive cubes in test generation is justifying gate output values with
proper input values for the primitive.

Justification. For a given primitive gate or logic structure, primitive cubes are used to find input
combinations that justify given output values. For example, in Fig. 6.12, 0-point primitive cubes of
an AND gate indicate all input choices for which a 0 can be justified [1] on the gate’s output.

6.1.3.2 Propagation D-Cubes

A propagation D-cube for a logic primitive indicates how D or D values on a given input propagate
to the primitive’s output. Propagation D cubes can be formed by intersection of 0-point and 1-point
cubes. Figure 6.13 shows the AND–OR primitive, for which primitive cubes were shown in
Fig. 6.11. In Fig. 6.13, we are showing how intersection of primitive cubes is used to form propagation
cubes.

Starting with a 0-point primitive cube (e.g., P
0
:0X00) and intersecting it with a 1-point primitive

cube (e.g., P
1
:XX11) forms a propagation cube with D output. Similarly, starting with a 1-point

primitive cube (e.g., P
1
:11X1) and intersecting it with a 0-point primitive cube (e.g., P

0
:X000) forms

a propagate cube with D output. Figure 6.13 shows the rest of the propagation cubes that are formed
by intersecting P

0
, P

1
 and P

1
, P

0
 members.

Propagation cubes shown in this figure have only the D or D on their inputs. Propagation cubes with
multiple D or D on the input side can be formed by intersecting 0-point and 1-point vertexes. In the
algorithms that follow, most of the time, propagation cubes with only one input D or D are used.

Following the same procedure for AND and OR logic gates, propagation cubes for these gates
can be obtained. Figure 6.14 shows the corresponding tables.

185

w

a

b

c

a
0
X
X
1

b
X
0
X
1

w
0
0
1
1

P0

P1

c
0
0
1
X

a
0

X
1
0
D
X
1

b
X
1
0

X
1
0
D

w

D
D
D
D

PD

PD

c

0

0
D
0
D
0

D

D

D

D

D
D
D
D

Fig. 6.13 Forming propaga-
tion D-cubes

Fig. 6.14 Basic gates primitive and propagation cubes

6.1 Deterministic Test Generation Methods

Figure 6.15 shows the complete list of propagation D-cubes for an AND primitive, including
those with multiple D or D values on their input. These cubes are obtained from AND vertexes,
as shown. An important use of propagation cubes in test is for propagating faults to circuit
outputs.

Propagation. In test generation algorithms, D values at primitive gate inputs indicate that the
fault effect (error) has reached the gate. Propagation D-cubes tell how a D value on a gate input
propagates to output (D or D), and which values other gate inputs must have to allow the propaga-
tion (1 or 0). Propagation D-cubes with multiple D or D values (e.g., Fig. 6.15) are used in multi-
path sensitization test generation methods.

186

0 0 0

0 1 0

1 1 1

P0

a b w

1 0 0

1

P0

P1

P1

a b w

1

D

D D D

D

D D

D

D D D

D D

D

1

1

Fig. 6.15 Obtaining multiple
D propagation cubes for
AND

6 Deterministic Test Generation Algorithms

6.1.3.3 J-Frontier

The J-frontier is a list of gates in a circuit whose outputs are known (0 or 1), but not justified by
their inputs. Input values for a primitive gate in the J-frontier are determined by primitive cubes of
the primitive. The J-frontier is used during the justification phase of test generation algorithms.

Different choices for a 0- or 1-point primitive cube (see for example two choices for P
0
 and two

for P
1
 in Fig. 6.13) provide options in setting inputs of the primitive to justify the required output.

Furthermore, an X value in a primitive cube provides more flexibility in setting inputs for the same
output value.

As an example consider the AND–OR primitive of Fig. 6.11 as part of a circuit for which test is
being generated. As shown in Fig. 6.16, suppose that it is required to have a 1 on the output of this
primitive; perhaps to activate a fault on the output or propagate fault effects elsewhere in the circuit.
Also suppose that the c input of this primitive has already been decided to have a 0 value. Considering
primitive cubes of Fig. 6.11, these conditions narrow down our choice of a primitive cube to only
11X1. This means that inputs a and b must be set to 1. These conditions set output values for other
primitives (e.g., box labeled Primitive Driving a in Fig. 6.16) to be justified by their inputs.

In the justification phase, where choices between several primitive cubes, or their input values
exist, one is selected randomly or based on some heuristics. The others are saved in a stack to come
back to, should the selected combination create conflicts in later justifications and propagations.

6.1.3.4 D-Frontier

The D-frontier [1] consists of a list of gates in a circuit with at least a D or D on one of the inputs
that has not propagated to the gate’s output. Propagation of input D value is determined by propagation
D-cubes. D-frontier is used in test generation during the propagation phase.

For a primitive gate, different propagation cubes that propagate the same input, or X values in a
cube, provide alternative solutions for the same propagation. For example, for the AND–OR primitive
of Fig. 6.13, two propagation D-cubes exist for propagating D on the c input to the primitive output.
Since each of these DP values has an X, there will be a total of four choices for propagating D from
c to w. One of these choices is selected, and it is marked. If a failure happens later in the test generation
process, a different input combination will be selected.

As a propagation example, consider propagating a D from the output of the AND–OR primitive of
Fig. 6.16 through the c input of a similar gate to its output. The new diagram is shown in Fig. 6.17.

According to Fig. 6.13, we can choose 0XDD or X0DD. In either case, D propagates to the
output, and either a or b inputs must be set to 0. Satisfying a = 0 is again a justification problem for
the gate that drives this line.

187

Primitive
Driving a

...

0

a

b 1

c

Fig. 6.16 Justification using primitive cubes

Primitive
Driving a

a
b

a
b

c

D

D

c
0

0

X

Inputs
Should
Justify 0

Fig. 6.17 Propagation using propagation D-cubes

6.1 Deterministic Test Generation Methods

6.1.3.5 D-Algorithm Procedure

The D-Algorithm consists of a sequence of propagations and justifications on primitives taken from
D-frontier and J-frontier for generation of test for an injected fault. Figure 6.18 shows pseudo code
for this algorithm.

The first while loop shown starts with a D at the site of the fault and propagates it to the output.
Other propagations follow. When a propagation is successful, the D-frontier and J-frontier are
updated. The D-frontier is updated with gates that have a D or D on their inputs, and the J-frontier
is updated with gates whose output values are 0 or 1.

In the process of propagation, if a propagation fails, other propagation schemes (through other
gate’s fanouts) will be tried. If all schemes fail, the gate is removed from the D-frontier and back-
tracking to a previous step where a choice existed happens. If backtracking is not possible or there
are no more gates in the D-frontier, the propagation phase reports a failure and exits.

The second while in Fig. 6.18 is the justification loop. This loop starts with several gates in the
J-frontier. While the J-frontier is not empty, a gate is removed from it and justifying its output is
tried with one of several available schemes (primitive cubes). If justification is successful, the
J-frontier is updated. This continues until all gates from the J-frontier have been removed.

If a failure happens trying a gate justification scheme, a different scheme is tried (a different
primitive cube). If none of a gate’s justification schemes are successful, the algorithm backtracks
one step to a previous gate. If backtracking reaches a node that has already been tried, the algorithm
exits with a failure.

For exercising the procedure of Fig. 6.18, we use the same example circuit that used several
times in Chap. 5. Figure 6.19 shows a circuit diagram and a fault for which a test is being generated.
The diagram shows propagation paths with arrows going forward and justification paths with arrows
going in the opposite direction.

Figure 6.20 shows a table that we use for showing steps taken in the D-Algorithm for generating
test for l

8
:SA0. We will show gates added and removed from the D- and J-frontiers, and test cubes

as the algorithm progresses. On the left column, numbers show steps taken that we will refer to for

188

Fig. 6.18 D-Algorithm

6 Deterministic Test Generation Algorithms

describing the procedure. These numbers are also shown on the arrows in Fig. 6.19 to indicate steps
in the algorithm that cause the corresponding justifications and propagations.

Step 0: Step 0 starts with all Xs in the test cube. We use lower case Xs for initial values in the table
that there are by default, and bold uppercase Xs for those that are put in the test cube by exercis-
ing steps in the algorithm.

Step 1: l
8
: SA0 is activated by a 1 on l

8
, causing l

8
 to become D. This value is justified by l

4
 = 1 and

l
5
 = X. These values are justified by d input taking value 1, and e input becoming X. We mark

this step as one that a choice exits, since l
8
 of 1 can also be justified by l

4
 = X and l

5
 = 1. The

value D on l
8
 causes FO1 for which a D input is known to be placed in the D-frontier.

Step 2: FO1 is removed from the D-frontier and its D input is propagated to its outputs. This causes
l
9
 and l

10
 to become D. Note here that we are treating the fanouts structure as a primitive. Because

of the simple relation between the input and outputs of this structure, we did not discuss it when

189

Fig. 6.19 D-Algorithm example

Fig. 6.20 Steps taken in D-Algorithm

6.1 Deterministic Test Generation Methods

discussing several other primitives. After l
9
 and l

10
 receive their D values, G

4
 and G

5
 whose inputs

have at least a D, and their outputs are X, will be placed in the D-frontier.
Step 3: Of the two gates in the D-frontier (G

4
 and G

5
), we select G

4
 and use propagation D-cube

for the AND gate to propagate D on its input to its output. For this purpose, we use a P
D
 for AND

from Fig. 6.14. This propagation cube sets l
3
 to 1 and l

12
 to D. The D on l

12
 puts G

6
 that now has

a D on one of its inputs in the D-frontier.
Step 4: Of the two gates in the D-frontier (G

5
 and G

6
), we select G

5
 and find its appropriate propa-

gation D-cube. As shown in Fig. 6.14, the P
D
 for this gate that we need is D0D, which sets l

6
 to 0

and l
13

 to D. Since l
6
 is directly driven by a primary input, setting f to 0 justifies l

6
 value of 0. Since

l
13

 received a D in this step, and is an input of G
7
, this gate will be placed in the D-frontier.

Step 5: In this step, gate G
6
 from the D-frontier is removed and based on P

D
 from Fig. 6.14 (OR gate,

last row) l
11

 and l
14

 become 0 and D, respectively. With the latter assignment (l
11

 equal to 0), the
output of G

3
 is now 0 and is not justified by its inputs. This qualifies G

3
 to go in our J-frontier.

Step 6: Since at this point, we still do not have a D or D on the circuit output, we continue with remov-
ing gates from the D-frontier and propagate D values. In step 6, G

7
 is removed from the D-frontier,

and using propagation D-cube, DDD, from Fig. 6.15, its input values are propagated to its output. This
propagation causes l

15
 to receive value D. Line l

15
 drives w and this step puts a D on w.

 Note that a D has propagated to the primary circuit output, propagation is complete, and justification
phase begins.

190

Fig. 6.21 Simplified D-Algorithm example

6 Deterministic Test Generation Algorithms

Step 7: The J-frontier in Step 7 contains G
3
. In this step, G

3
 is removed from the J-frontier and for

justifying a 0 on its output, the 0X0 primitive cube for AND from Fig. 6.14 is selected. Since
another primitive cube also justifies the same output requirement, this step is marked as a pos-
sible step to return to, should a conflict happen later in the execution of the algorithm. Line l

7

receiving a 0 causes G
1
 whose output is l

7
 to be placed in the J-frontier.

Step 8: In this step, we remove the last remaining gate from the J-frontier and set its input to justify the
0 on the output. This sets l

1
 to 1, and consequently a to 1, as shown in the last row of Fig. 6.20.

With the above step, a D has propagated to the output, and the J-frontier is empty, indicating that
all propagation requirements are satisfied. For l

8
:SA0 test, abcdef = 1X11X0 is made.

Although we followed what looked like a pseudo code and discussed in detail each step of a test
generation process, it is important to note that our presentation gave an overview of how the
D-Algorithm works. In a specific implementation of this algorithm, many details that we have not
discussed will have to be figured out. The use of specific data structures imposes the use of proce-
dures that gives very different flavors to various implementations of this algorithm.

6.1.3.6 Simplified D-Algorithm

A simplification of D-Algorithm that requires a much simpler data structure and perhaps less pro-
gramming effort is discussed in this section. The price paid for this simplification is the inability to
consider multiple sensitized paths.

In the simplified D-Algorithm, alternative paths from site of fault to a primary output are identi-
fied, and one is selected in random for it to be sensitized. Gate input values along the path for
sensitization of the selected path are determined, and the values are justified one at a time. If a
justification fails, or input values justifying a required gate input value cause blocking of the
selected path, then the path is rejected and another path is selected. This process continues until a
sensitized path from site of fault to a primary output is justified by circuit primary inputs.

In Fig. 6.21, we are to generate a test for l
8
:SA1. To activate this fault, l

8
 must become 0, requiring

d and e inputs to become 0. Starting from l
8
, we have two paths to w. The lower path passes through

G
5
 and G

7
, requiring l

6
 and l

14
 to be 0 and 1, respectively. Justifying them is done similar to the

D-Algorithm. The resulting test for l
8
:SA1 is 01X000 for a, b, c, d, e, f inputs. Following the same

procedure, test for l
8
:SA0 becomes 01X1X0.

191

Fig. 6.22 Trying line combinations vs. input combinations

6.1 Deterministic Test Generation Methods

6.1.4 PODEM (Path-oriented Test Generation)

For finding a test vector, the D-Algorithm searches the internal lines of a circuit and sets proper values
for fault propagation and justification. For test generation, however, we are looking for a primary input
combination, and not a combination of values of the internal lines. In most logic circuits, there are far
fewer primary inputs than internal lines, and limiting our search to the primary input combinations
should find a test vector much faster than using circuit line values as our search space.

In addition to a larger search space, assigning values to circuit lines causes a problem with
circuits that have XOR gates. A D or D on an XOR input propagates to the output (as D or D),
regardless of the value on its other input. The D-Algorithm does not keep this option open and sets
a value on the XOR input that may have to be reversed. An example circuit illustrating the above-
mentioned problems with D-Algorithm is shown in Fig. 6.22.

The discussion that follows refers to values in gray square boxes in Fig. 6.22. Test for l
8
:SA0 in

Fig. 6.22 begins with l
1
 = l

4
 = 1 for generating a D on l

8
. This combination sets a = b = 1 and through

implication sets l
5
 to 1 also. With a D on l

8
, two propagation D-cubes, D1 D and D0D, are possible

for the G
3
 XOR. We choose the latter that sets l

9
 = 0 and l

10
 = D. Then for G

4
, D0D is selected that

puts a D on w that completes the propagation phase. In the justification phase, a 0 for l
9
 and a 0 for

l
7
 must be justified. For justifying a 0 on l

9
, and given that l

5
 is already set to 1, we have to use the

primitive cube 110 that sets l
6
 to 1. l

6
 value of 1 is justified by l

3
, and thus c being set to 1. Implication

of this value sets l
7
 to 1 which conflicts with the earlier requirement of this line being set to 0 for

the OR gate propagation D-cube.
To resolve this issue, the D-Algorithm returns to the last place, a choice existed, which is selection

of a propagation D-cube for G
3
. This time, we select D1 that sets l

9
 to 1. This value will be justified

by c = 0, and D propagates to w.
In the above example, if we had limited ourselves to selecting input values for propagations and

justifications related to l
8
:SA0, we would start with a = b = 1 that activates the fault (see white

squares). Then, we only had input c to set a value, for which we only had a choice of 1 or 0. Had
we selected c = 1, we would have got a 1 on w that does not detect the fault. We would then reverse
this decision and select c = 0, which would propagate D on l

8
 as a D on w. Thus, test abc = 110 is

found that detects l
8
:SA0.

6.1.4.1 Basic PODEM

Consider a circuit with a fault to be detected that some of the circuit primary inputs have been set
to activate the fault. PODEM [3] begins with setting the remaining inputs to X and propagating the
Xs to all circuit lines and primary outputs.

192

BasicPODEM();
While PI Branch-and-bound value possible
 Get a new PI value;
 Imply new PI value;
 If error at a PO
 SUCCESS; Exit;
 Else
 IF error exists and X-path exists
 Keep PI value and effects;
 Else
 Reverse PI assignment;
 End if;
 End if;
End while;

Fig. 6.23 Basic PODEM
pseudo code

Fig. 6.24 Circuit initialized for PODEM

6 Deterministic Test Generation Algorithms

With the above initial setting, we should have:

(A) An activated fault (a D in the circuit) and
(B) At least a path of all Xs from the site of fault (the location of D) to a primary output.

PODEM selects an input randomly, sets a 0 or 1 to it, and propagates the value into the circuit,
after which conditions A and B are checked. Three things can happen:

•	 Both conditions still hold. In this case, the input and its value are recorded, and another input is
selected.

•	 One or both conditions is (are) violated. Then the input value is reversed and a different value is
tried. In this case, if no more values remain to be tried (both 0 and 1 have been tried), a different
input of the circuit will be selected.

•	 A D or D propagates to a primary output. In this case, the selected inputs and their assigned
values form an input combination that detects the fault.

Figure 6.23 shows pseudo code for the basic PODEM as described above. Figure 6.24 shows an
activated fault and a circuit initialized for application of PODEM. We will show steps necessary to
reach a test for l

8
:SA1 in this circuit.

The diagram of Fig. 6.25 shows input selection decision three and value assignments as PODEM
steps are taken for generating a test vector for l

8
:SA1 in Fig. 6.24. Bold numbers on the left of the

diagram are the step numbers that are referenced below.

193

d

c

f

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15

x x x x x x x x x x x x x x x

x x x 0 x x x x x x x x x x

x x x x x x x x x x

x x 0 0 x x x x x x

0 x 0 0 x 1 x x x x

0 0 0 0 x 1 0 x

0 0 0 0 x 1 0 x x

0 0 1 0 0 1 0

0

0

0:

1:

2:

3:

4:

5:

D

D D D

D D D

D D D

D D D

D D D D D

0 0

0

0

0

1

0

0

0 1

0 0

e

a

b

0

0

0

0

1

D D D

DD

DD

Fig. 6.25 PODEM decisions and steps for fault in Fig. 6.24

6.1 Deterministic Test Generation Methods

Step 0: Initially, inputs d and e are set to 0 to activate l
8
:SA1. These values generate D on l

8
, and

several X-paths from l
8
 to the circuit primary output exist. Propagation of D causes l

9
 and l

10
 to

become D as well.
Step 1: In the next step, after activation of fault, input a is selected and set to 0. This assignment

causes lines l
1
 and l

7
 to become 0 and 1, respectively, and has no effect on the activated fault and

the existing X-paths. Therefore, this assignment is accepted.
Step 2: In the next step, we select b = 0 and propagate this value in the circuit. This assignment

causes lines l
2
 and l

11
 to become 0 and again has no effect on the activated fault and the existing

X-paths.
Step 3: Having both conditions still satisfied, we accept input value assignments we have made thus

far, and go on to the next input, c. Setting c to 0, causes l
3
, l

12
, l

14
, and l

15
 to assume 0 values. This

causes elimination of X-paths from either l
9
 or l

10
 to w, which means that we cannot accept c = 0.

Step 4: This step reverses assignment made in Step 3, and assigns c = 1. This changes l
3
 to 1, and

propagates D to l
12

 and l
14

 which is one step closer to w. We still have X-paths, and we still have
our fault active. Therefore, this assignment is accepted.

Step 5: The next step shown in Fig. 6.25 sets input f to 0. This assignment changes l
13

 and l
15

 from
X to D. Since l

15
 is the output w and we have a D on w, the selected combination of inputs is a

test for l
8
:SA1.

6.1.4.2 A Smarter PODEM

The previous discussion showed a complete example of PODEM in which input sections were done
on an arbitrary basis. A more efficient way of test generation would be to select inputs that are more
likely to achieve propagation of D or D toward the output. In addition, the algorithm of Fig. 6.23
made no decision for which X-path to use, and allowed input values to propagate D or D to the
primary outputs in any way possible. A smarter alternative would be to select an X-path that has a
smaller chance of being blocked by the implication process.

194

MoreInteligentPODEM();

Set D or D’ to site of fault;
Justify;
Add to D-Frontier;

Loop
 If D-Frontier is not empty
 Select gate g closest to the output;
 Remove g from D-frontier;
 If X-path for g exists
 Set objective to move fault closer to PO;
 Backtrace to PI;
 Get a new PI value to satisfy objective;
 Imply new PI value;
 If error at a PO
 SUCCESS; Exit;
 End if;
 End if;
 End if;
End Loop;
FAILURE;

Fig. 6.26 A more intelligent PODEM

Fig. 6.27 Backtrace procedure

6 Deterministic Test Generation Algorithms

Figure 6.26 shows a pseudo code for a version of PODEM that makes more intelligent choices for
selection of inputs and X-paths. Issues that distinguish this algorithm from that of Fig. 6.23 are:

The algorithm selects an X-path based on distance to output, or observability (SCOAP).•	
An •	 objective is set to move fault closer to output [1]. An objective is setting a line value to 0 or 1.

•	 Backtraces from objective to primary inputs [1].

The algorithm shown in this figure uses the D-frontier that has the same definition as that in the
D-Algorithm. For propagation of D or D values, a gate from the D-frontier is selected. By the defi-
nition of the D-frontier, such a gate has an X output and is likely to be on an X-path. An objective
is set that enables propagation through the selected X-path. This objective is used to backtrace to a
primary input to find the inputs that are likely to satisfy the objective.

The backtrace procedure is shown in Fig. 6.27. An objective is set by setting a line to 0 or 1. The
line is then recursively backtraced toward the circuit’s inputs. In many PODEM implementations,
SCOAP parameters are used for estimating line controllability and observability.

195

Fig. 6.29 PODEM example, making better choices

Fig. 6.28 Backtarce heuristics

6.1 Deterministic Test Generation Methods

For a line value, the gate that drives it will be considered (see Fig. 6.28). If the required gate input
value to make the output value happen is a control value, then the gate input that is easiest to control
is selected.

If the required input value to set the output is a non-controlling value (1 for AND and 0 for OR),
then the gate input that is least controllable is selected for further backtracing. The rational is that
since in this case, all inputs must be set, we select the hardest to set, so that if a failure is going to
happen, it happens sooner, so we select a different X-path.

We use circuit of Fig. 6.29 to show how procedures of Figs. 6.26 and 6.27 are used for a
PODEM-based test generation. The fault we are trying to detect is l

8
:SA0. In the following, we refer

to Fig. 6.30 in which a decision diagram and corresponding line values of circuit of Fig. 6.29 are
shown.

Fault l
8
:SA0 requires a 1 on l

8
 to be activated. This is achieved by setting d = 1, as shown in step

0 of Fig. 6.30. Going forward from l
8
, from the site of fault, there are two X-paths: one through gates

G
4
, G

6
, and G

7
 and the other through gates G

5
 and G

7
. We use the latter X-path since it is shorter,

and perhaps easier to reach circuit’s primary output. Without having to go through elaborate com-
putations, by observation we can tell that observability of l

13
 is better than that of l

12
, which again

supports our decision of taking the X-path through G
5
.

The D value on l
8
 reaches l

10
 which is the fanout branch. To make D reach l

13
, the two inputs of

G
5
 must be set to 0. This is the case of Fig. 6.28b, which says that the hardest goal to achieve must

be set as the objective. Thus, a 0 on l
19

 is set as our objective. As shown in Fig. 6.30, setting f to 0

196

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15

x x x 0 x x x x x x

0:

1:

2:

3:

4:

5:

1 x

d

e

a

b

f

0

0

0

0

0

1

1

1 D D

l16 l17 l18 l19

0x x x

x x x 1 x x x D D x x x x x1 x x x x

1 1 x 0 x x D x xxx 1 D D0 00 0 x

0 1 x 0 x 0 D x xx1 1 D D0 00 0 x

1 1 x 0 x 1 D D1 1 D D0 00 01 xx

x x x x x x x x x x x x x x x x x x x

x x 1 x 0 x x D x xx 1 D Dx 00 0 x

Fig. 6.30 PODEM input selections

6 Deterministic Test Generation Algorithms

(Step 1) satisfies this objective. We now have to set the other input (l
17

) of G
5
 OR gate to 0 (an easier

objective that l
19

). Setting e to 0, as shown in Fig. 6.30 (Step 2), achieves this.
At this point, we have a D on l

13
 input of G

7
, and there is an X-path from this gate to the circuit

primary output. Our objective is now set as l
14

 receiving a 1. We can either try to satisfy this objec-
tive now by setting values to inputs a, b, and c or narrow down our choice of inputs by backtracing
one step further toward the circuit inputs. We take the latter option and set our objective to l

11
 receiv-

ing a 1. Note that since the G
6
 OR gate requires a controlling value to set its output to 1, we take

the easier route of trying to achieve this by l
11

 set to 1, instead of l
12

.
Figure 6.30 shows that for achieving the l

11
 = 1 objective, a is set to 0 (Step 3), then b = 0 violates

the objective (Step 4), and we backtrack and choose b = 1 (Step 5). Input combination
abcdefg = 01X100X detects l

8
:SA0.

6.1.5 Other Deterministic Fault-oriented TG Methods

For about two decades, the D-Algorithm was regarded as the main algorithm for test generation, and
most other methods were variations of this algorithm, or just different implementations. In the early
1980s, PODEM started a new line in test generation. Although PODEM uses many features and
definitions of the D-Algorithm, it is conceptually different, because of assignment of values to the
circuit primary inputs and the primary input search tree. Most of today’s gate level test generation
methods are based on D-Algorithm, PODEM, or a combination of both.

6.1.5.1 Fan

FAN (fanout-oriented test generation algorithm) [4–6] is based on PODEM. This algorithm opti-
mizes the search for an input combination by adding several heuristics to PODEM.

In FAN, backtracing stops at the cone output of a fanout-free section of a CUT. This is justified,
because inputs of such a cone do not affect other parts of the circuit and cannot, in any way, cause
violation of an objective through other paths. This feature is similar to the way we handled our
backtracing in the example of Fig. 6.29. After step 2, we decided to set our objective to l

11
 = 1. l

11

is the output of a fanout-free section, whose inputs are a and b. Steps 3 and 4 in our example only
set values to inputs of this section of the circuit.

197

CPTG();

Select a PO, set it to 0;

 Recursively find critical paths, leading to inputs;
 Input values for CP constitute a test;
 Faults along the CP are detected;

Repeat for PO value of 1;

Fig. 6.31 Critical path tracing TG

6.1 Deterministic Test Generation Methods

Another feature of FAN is the use of multiple backtraces. For a gate that requires non-control values
on its inputs, all such inputs will be backtraced simultaneously. Unique sensitized path is another
optimizing feature in FAN. When the D-frontier contains only one gate, FAN finds a sensitized path
from this gate to the circuit primary output. This eliminates unnecessary assignment of input values
that would have to be reversed when they are found to block the only way that is to a circuit output.

6.1.5.2 Socrates

As FAN took off from PODEM and added optimizations to it, SOCRATES [7–9] started with FAN
and added improvements to features of FAN that we discussed. Perhaps the most important feature
of SOCRATES is its support for high-level RT level components like adders and multiplexers. Using
RT level components as primitives eases backtracing and propagation of D values by taking bigger
steps in the circuit.

6.1.6 Fault-independent Test Generation

Fault-oriented test generation algorithms, such as the D-Algorithm, PODEM, and all their varia-
tions, start at the site of fault and work forward and backward in the circuit to find a test. Fault-
independent test generation programs, on the other hand, decide on a test vector and then decide
what faults it detects.

A deterministic fault-independent test generation method is critical path tracing (CPT) [10–13].
This method is based on critical paths discussed in Sect. 4.3.5 (Chap. 4) for fault simulation. The
CPT method starts at a primary output and finds critical paths that are justified by the inputs. The
input vector forming the critical path is the test vector for all faults along the path. Figure 6.31
shows a simplified pseudo code for CPT test generation.

Starting with the output of a circuit, CPT sets a value on a line that is in the critical path, and
based on this value finds critical paths leading to circuit primary inputs. Each critical line can take
either a 0 or a 1, and selection of either can make different critical paths. When a choice of values
for a line exists, a value is selected, and the line is marked. When a critical path reaches circuit
primary inputs, faults along the path are marked as detected by vector at input. Then, the algorithm
returns to the last place when a choice of 0 or 1 has not been tried.

Since by definition of critical paths, an output is on a critical path, CPT test generation starts with
a 0 or 1 on an output. The recursive process mentioned above is executed until it reaches back to the
output. At this time, the output is assigned the other logic value (1 or 0) and the process continues.

We use circuit of Fig. 6.32 to execute one pass of the above recursive procedure. In this pass, by
selecting appropriate line values, we can find critical paths that cover more of the circuit lines; thus,

198

Fig. 6.32 CPT example

6 Deterministic Test Generation Algorithms

the generated test covers more number of circuit faults. Line values and critical paths that are
generated are shown in this figure. The following paragraphs explain how values are assigned.

We start by assigning a 1 to circuit output. This makes l
12

 our first critical line. A 1 on l
11

 and a
1 on l

10
 justify l

12
 = 1, and make both lines l

11
 and l

10
 critical. Taking the upper path (l

11
 backward),

l
8
 and l

9
 justify l

11
 = 1, and make l

9
 a critical line. The 1 on l

9
 is justified by l

3
 = l

4
 = 1 making these

lines also critical, as marked in Fig. 6.32. This assignment makes inputs c and d equal to 1.
Backing up to G

5
, for justifying a 1 on l

11
, l

8
 must be 0, that is justified by b = 0 and a = X. This

assignment does not create any new critical lines and just provides proper conditions for l
9
 being

critical.
Now we return to G

6
, where we previously took the upper path through l

11
. The lower input of G

6
,

line l
10

, is also critical. This critical value is justified by e = 0 and f = 1, making l
6
 also critical.

The above pass sets inputs a, b, c, d, e, and f to X, 0, 1, 1, 0, and 1 respectively. This input com-
bination detects the following faults:

l
3
:SA0, l

4
:SA0, l

9
:SA0, l

11
:SA0, l

6
:SA0, l

10
:SA0, and l

12
:SA0.

For detection of other faults, we return to places when choices existed for critical paths. The most
recent place is the assignment of l

5
 = 1 and l

6
 = 0, instead of the earlier 0 and 1 values. This choice

detects a new fault, l
5
:SA0. When this is taken care of, we return to G

5
, where a similar situation

exists. When all choices have been tried, we go back to the w output and try w = 0.
CPT test generation is simple, fast, and requires a very simple data structure. The problem with

this method is inability to handle fanout stems properly. As discussed in Sect. 4.3.5, determining if
a fanout stem is critical requires simulation. This forward simulation pass requires a different data
structure than that used for output to input path tracing and is a time-consuming process. CPT TG
is most useful when dealing with fanout-free circuits.

6.2 Sequential Circuit Test Generation

Other than random techniques, all other algorithms we discussed in this chapter apply to combinational
circuits. In spite of all the research done on this subject, deterministic fault-oriented test generation for
sequential circuits still is in the research stages, and there are no good practical solutions. Practically,
sequential circuits are turned into combinational circuits with design for test techniques, and combina-
tional test generation methods are applied to them. These techniques will be discussed in Chap. 7.

199

Fig. 6.34 Mealy 1011 detector

Q

Q

clk

Combinational
Part

Combinational
Part

PI PO

State
Inputs

State
Outputs

Huffman Model A Combinatial Slice

Fig. 6.33 Time frame expansion (each slice)

6.2 Sequential Circuit Test Generation

This section discusses a sequential circuit test generation technique that expands the sequential
circuit under test into several time frames and applies the D-Algorithm to this circuit. This tech-
nique is typical of most sequential circuit TG techniques. Such methods have a limited use in
practice.

As shown in Fig. 6.33, the time frame expansion sequential circuit TG method [14] unrolls a
sequential circuit by removing its flip-flops, and repeating its combination part several times. The
flip-flop outputs become the state inputs of the combinational part and the flip-flop inputs are the
combinational part state outputs. When several of the combinational parts are repeated, the state
outputs of one become the state inputs of the next.

For test generation, a given fault is injected in one of the combinational slices, and propagation
into the next slices and justification through the previous slices are done just like the D-Algorithm.
Propagation continues until a D or a D appears at a primary output, and justification continues until
state inputs of the flip-flops are all Xs. We illustrate this method by use of a simple example.

The example circuit is a Mealy machine that detects a sequence of 1011 on its a input. The circuit
implementation of this example is shown in Fig. 6.34. The SA0 fault to be detected is shown in this
figure.

The time frame expansion of this circuit is shown in Fig. 6.35. Initially, three time frames are
constructed, that are numbered -1, 0, and +1; more frames will be added if required by propagation
(+) or justification (–). All line values except the site of fault are initially set to X.

200

Fig. 6.35 Time frame expansion

6 Deterministic Test Generation Algorithms

Site of fault is set to its faulty value in all time frames. Fault is activated in circuit of time frame 0,
and it is propagated forward to time frames ³ 0 until it reaches to a primary output. Then, line values
are justified in circuits of time frames £ 0, until we reach a time frame that justifies its state outputs
without requiring to set its state inputs, i.e., leave them at X. At this time, test is found.

The SA0 in time frame 0 is activated by requiring a to be 1, and V
1
 and V

0
 to be 1 and 0, respec-

tively. This activation puts a value D on the site of fault. Value D is propagated to V
1
 of time frame

0 by setting the upper input of the OR gate to 0. This is easily achieved by the value of a being 1.
To propagate D to w in time frame +1, a in that time frame has to be 1, and V

0
 must also be 1.

We force a to 1 in this time frame, and V
0
 in this time frame receives a 1 from a in the previous time

frame. This way, propagation of a D value to w has been achieved.
The conditions set above require V

1
, V

0
 outputs of time frame –1 to be 1, and 0, respectively. V

0

of 0 is achieved by a in this time frame receiving a 0, and V
1
 of 1 is achieved by a 1 on its upper

input. Since a is 0, and the AND gate driving the upper input of the OR gate uses the inverted a as
input, the only requirement for the OR gate input being 1 is to have V

0
 of the previous time frame

(-2) to be 1. This value is easily achieved by setting a to 1 in time frame –2. Note that we have not
set any requirements on the V

1
 output of time frame –2, and its value remains as X.

We have been able to satisfy V
1
 and V

0
 outputs of time frame –2 without having to set V

1
 and V

0

inputs of this time frame, i.e., these inputs are X. When we reach this point, we have found a test
for the fault in question.

To detect the SA0 fault shown in Fig. 6.34, we start in the reset state, and in four consecutive clocks,
we apply 1011 to the a input (time frames -2, -1, 0, and +1 take values 1, 0, 1, and 1, respectively). In
the fourth cycle, the faulty circuit output will be 0, where the good circuit output would have been a 1.

Sequential test generation presented in this section was only to show some of what is being done,
and perhaps to trigger some research ideas in the mind of the reader.

Random, functional, or test by design for test techniques are more common approaches to
sequential circuit testing.

6.3 Test Data Compaction

The main purpose of all test generation methods, combinational or sequential, is obtaining fewer
tests for the best coverage. The result is finding more faults in a manufactured part in a shorter time.
A process that can help reducing the number of test vectors, while keeping the same coverage, is
test data compaction.

Test data compaction can be part of a test generation program, or it can be a stand-alone program
working as a post-test generation phase. The latter is called static, while the former is referred to as

2016.3 Test Data Compaction

dynamic test compaction [14, 15]. Test compaction can be applied to sequential or combinational
circuit test vectors [14, 15, 16, 17, 18, 19]. Finally, test compaction can be for testing a single CUT
or for concurrent testing of multiple CUTs. This section, discusses various applications and algo-
rithms for test compaction.

6.3.1 Forms of Test Compaction

Dynamic test compaction becomes part of a test generation program [14, 15, 20]. In a deterministic
test generation program, as tests are generated, a separate phase of the test generation compares test
vectors and removes some test vectors or merges them. This requires changes made to the test gen-
eration program and often requires performing fault simulation for evaluation of merge or removal
results [18]. Similarly, in random test generation, compaction becomes part of the test generation
program.

In a static test compaction, mergence or removal of test vectors happens after all test vectors have
been generated. As such, static compaction methods do not alter ATPG programs and are often less
expensive to develop and apply.

Test compaction can be applied to combinational or sequential circuits. Combinational test com-
paction methods are easier to implement than those for sequential circuits. Furthermore, most sequen-
tial compaction methods require intensive fault simulations, which make them less desirable.

For a single CUT, test compaction looks for adjacent equal or compatible test vectors in the same
test set. Merging or removing test vectors happens on such test vectors. Test compaction can also
be applied between several test sets that are generated for different CUTs. Test compaction across
two or more test sets looks for equal or compatible test vectors across different test sets. Merging
and/or removing test vectors happen on different sets.

6.3.2 Test Compatibility

Compatibility is defined for two test vectors or two test sets. If two test vectors or test sets are com-
patible, one can be used in place of the other without loss of fault coverage.

6.3.2.1 Test Vector Compatibility

Test vectors consist of 1s, 0s, and Xs. In two test vectors, like values in the same bit positions
are compatible. In addition, a 1 or a 0 in the same bit position as an X are also compatible.
Compatible bits can be merged. Figure 6.36 defines the merge operator; dashes show incom-
patibility. Two test vectors, all bits of which are compatible, are called compatible test vectors
and can be merged. Figure 6.37 shows several examples of compatible and incompatible test
vectors.

A test set whose adjacent elements (test vectors) are compatible can be reduced in terms of its
number of test vectors. This reduction compacts test sets generated for a CUT into a smaller test set.
Figure. 6.38 shows a test set being compacted. In this figure, adjacent compatible test vectors are
merged using the merge operator. In the first step, vectors 2 and 3 are merged into one vector. In
Step 2, the merged 2 and 3 vector is further merged with vector 4.

202

0 1 X

0

1

X

0

0

1

1

0

1

X

Fig. 6.36 Merge operator

1 1 0 X 1 1 X X

1 0 0 X X X 1 1

0 X X X 1 1 0 1

1 1 1 0 1 0 0 0

1 1 0 1 X 1 0 1

1 0 0 X X X X 1

0 X X X 0 1 0 X

1 1 1 0 1 0 0 0

: compatible

: incompatible

: compatible

: compatible

Fig. 6.37 Compatible test vectors

1 1 0 X 1 1 X X

1 0 X 1 0 1 1 0

1 X X 1 0 1 1 X

1 X 1 X X 1 1 0

1 0 0 1 0 X 1 0

0 0 1 1 0 1 1 0

1 1 X 1 1 1 0 X

1 1 0 X 1 1 X X

1 1 X 1 1 1 0 X

1 0 X 1 0 1 1 0

1 X X 1 0 1 1 X

1 X 1 X X 1 1 0

1 0 0 1 0 X 1 0

0 0 1 1 0 1 1 X

1 1 0 1 1 1 0 X

1 0 1 1 0 1 1 0

1 0 0 1 0 X 1 0

0 0 1 1 0 1 1 0

Reordering Compaction

1:

2:

3:

4:

5:

6:

7:

1:

7:

2:

3:

4:

5:

6:

1,7:

2,3,4:

5:

6:

Fig. 6.39 Reordering before compaction

1:

2:

3:

4:

5:

6:

7:

1

1

1

1

1

0

1

1

0

X

X

0

0

1

0

X

X

1

0

1

X

X

X

1

1

1

1

1

1 1 X X

0 1 1 0

0 1 1 X

X 1 1 0

0 X 1 0

0 1 1 0

1 1 0 X

1:

2,3:

4:

5:

6:

7:

1

1

1

1

0

1

1

0

X

0

0

1

0

X

1

0

1

X

X

X

1

1

1

1

1 1 X X

0 1 1 0

X 1 1 0

0 X 1 0

0 1 1 0

1 1 0 X

1:

2,3,4:

5:

6:

7:

1

1

1

0

1

1

0

0

0

1

0

1

0

1

X

X

1

1

1

1

1 1 X X

0 1 1 0

0 X 1 0

0 1 1 0

1 1 0 X

Step1 Step2

Fig. 6.38 Compaction by adjacent compatibility

6 Deterministic Test Generation Algorithms

6.3.2.2 Test Vector Reordering

Combinational circuit tests can be reordered without any loss of coverage. Whereas in a sequential
circuit, because of the internal states of the circuit, reordering test vectors changes the fault cover-
age. Where reordering does not affect fault coverage, i.e., tests for combinational circuits, further
compaction can be achieved by placing compatible tests adjacent to each other. Figure 6.39 shows
the effect of reordering before compaction.

Since test vectors 1 and 7 are compatible, they have been placed next to each other. The new
adjacent vectors merge into one vector. Compaction after reordering results in one less test vector
in the final test set (compare Fig. 6.38 and 6.39).

203

Merged Test1 and
Test2

CUT1

CUT2

Fig. 6.40 Concurrent testing

Fig. 6.41 Test subsets for
possible merging

6.3 Test Data Compaction

6.3.2.3 Test Set Compatibility

Test sets that are generated for different CUTs can also be merged [21]. This results in a compac-
tion that reduces test time when the CUTs are concurrently tested. Figure 6.40 shows a scenario in
which two CUTs are concurrently tested. If the test set for one CUT is a subset of another, test time
for testing both is the same as the larger of the test times when testing the CUTs individually.

Test set compatibility can also be applied to different subsets of the same test set, for reducing
the overall number of test vectors. In this case, merging of test vectors occurs in groups of multiple
test vectors. Figure 6.41 shows a test set that has two subsets that can be considered for merging.

There are several ways in which two test sets (or two subsets of the same test set) can be merged.
Below describes several possibilities of compatibility and thus merging.

Contiguous compatibility. Test sets Test1 and Test2 can be merged if starting in a certain position
in one test set (Test1), all test vectors in the other test set (Test2) are compatible with the first test
set. As shown in two examples in Fig. 6.42, after merging, the new test set includes all test vectors
of both test sets with their original ordering. The two headed arrows in Fig. 6.42 show compatible
vectors.

204

Fig. 6.42 Examples of test set contiguous compacting

Fig. 6.43 Merging with stretching

6 Deterministic Test Generation Algorithms

Hatched areas in Fig. 6.42 show Test1, and gray areas show Test2. Merged vectors are both
hatched and shaded in gray. Figure 6.42a shows contiguous compatibility where all vectors of Test2
are compatible with a contiguous section of Test1. The resulting test set is as large as Test1.
Figure 6.42b shows contiguous compatibility of the section at the end of Test1 with a section start-
ing at the beginning of Test2. The resulting merged test set is the size of the two test sets added
together, less the compatible section.

Disjoint compatibility. Another form of compatibility is compatibility of vectors in disjoint con-
tiguous parts of test sets. As shown in Fig. 6.43, test vectors with disjoint compatible sections can
be combined by stretching and merging compatible sections. As shown, Test2 is partitioned into two
sections, and each section is independently merged with its compatible section in Test1.

6.3.3 Static Compaction

Static compaction methods apply after test generation. Because these methods are implemented as
stand-alone programs and are independent of the ATPG programs, they are easily incorporated in a
test generation environment.

2056.3 Test Data Compaction

6.3.3.1 Static Combinational Compaction

Several techniques are available for combinational circuit test compaction. An actual implementa-
tion of a test compaction program for combinational circuits may consist of a combination and/or
modification of several techniques mentioned below.

Redundant vector elimination. The process of deterministic test generation can result in redun-
dant test vectors detecting different faults. Reducing a test set by eliminating redundant test vectors
does change the fault coverage. Implementation of this method does not require use of a fault simu-
lation program [19].

Test vector merging. Compatible vectors in a test set can be merged without loss of fault cover-
age. Rules discussed in Sect. 6.3.2.1 and merge operation of Fig. 6.36 apply to this method of
compaction. Furthermore, reordering test vectors discussed in Sect. 6.3.2.2 can create more adjacent
compatible vectors that can be merged.

Test subset merging. A test set for a combinational circuit can be subdivided into several sections,
and test set compatibility rules of Sect. 6.3.2.3 can be applied among these sections. This static
method can be implemented as a stand-alone program in software programming languages. As in
the previous method, fault coverage is not affected by test subset merging, and no fault simulation
is required in this method.

Multi-CUT test set merging. Test subset merging described above can be applied among indepen-
dently generated test sets for several CUTs. The procedure for merging is the same as merging subsets,
but the way a merged test set is applied to multiple CUTs is different than having a single CUT. The
exact details of applying a merged test set to multiple CUTs depend on many factors including the
DFT method and input/output access mechanism for CUTs. If test set for a CUT is a subset of another,
outputs corresponding to test vectors that are not related to the subset CUT must be ignored.

Test vector modification. The process of test generation (random or deterministic) creates tests
that have a relatively small number of conflicts (according to merge operation of Fig. 6.36) in the
same bit positions. Such vectors are referred to as close-compatible. Close-compatible test vectors
may be merged by changing conflicting bits é[19]. A method of test compaction is to find close-
compatible test vectors, flip conflicting bits, and examine them for possible merging. The examina-
tion is done by performing fault simulation to check if the merged test vector still detects faults
detected by all close-compatible vectors that have been merged. If so, merging is done; otherwise,
test vectors are returned to their original form. This method of static combinational compaction
requires the use of fault simulation, which can add a significant overhead to the test generation
process.

Reverse order fault simulation. Whether we are doing random test generation, using determinis-
tic methods, or a combination of both, it is generally true that easier faults are detected first, and the
harder faults are left for test vectors that appear last in the list of test vectors [14]. Test vectors that
detect harder faults are also likely to detect easier faults. However, since in our test generation pro-
cesses, we perform fault dropping, tests vectors generated for harder-to-detect faults, which come
at the end of a test set, do not get the opportunity to show how many faults they detect.

Reverse order fault simulation [14, 19] is a way of addressing this problem. By performing fault
simulation on test vectors from the bottom of a test set, these vectors get a chance to show what faults
of the original fault list they detect. By performing fault dropping, as we get near the beginning of a test
set, we may be able to eliminate test vectors that are no longer efficiently detecting undetected faults.

A more elaborate method of selecting good test vectors is to examine all test vectors for faults that
they detect, and select only those that detect faults not detected by other tests. Realizing what faults from
an original fault list a test vector detects requires fault simulation for each test vector without faults drop-
ping. This requires a significant processing time, and this elaborate test vector selection is rarely used.

206 6 Deterministic Test Generation Algorithms

6.3.3.2 Static Sequential Compaction

Test compaction in sequential circuits is more complex than in combinational circuits because of
state dependency of a sequential CUT. Test reordering, merging, or elimination must always be
accompanied with fault simulation, since the test vector independent of a CUT’s state cannot deter-
mine the resulting coverage after compaction. In spite of this complexity, it is worth mentioning
several methods that help reducing sequential circuit test vectors.

Sequence reordering. A simple method of test compaction for sequential circuits is to reorder test
vectors [17]. This may help reducing the number of test vectors since test vectors at the end of a test set
tend to detect harder faults. With first applying tests that detect harder faults, tests near the beginning of
a test set may no longer be needed. Test reordering must always be accompanied with fault simulation.

Note that the reason test reordering can help compaction is similar to the way reverse fault simu-
lation can help combinational test compaction. However, the former is always less effective due to
dependence of test vector ordering on the internal state of a CUT.

Vector omission. Vector omission is a procedure that results in omission of test vectors, the pres-
ence of which in the test set does not improve fault coverage. The starting point for this procedure
is a test set in a given order, each applied to the CUT in a clock cycle [17].

The procedure of vector omission examines every test vector for omission. It potentially elimi-
nates a test vector from the set and finds the fault coverage for the new test set with the original test
vector ordering. Measuring fault coverage is done by fault simulation for every fault of the circuit.
If the new fault coverage is better than when omission was not done, the omission materializes.
Otherwise, the next candidate for omission is considered. This procedure involves many fault simu-
lation passes and is computationally intensive, but has relatively good results.

The procedure shown in Fig. 6.44 reduces the number of test vectors applied to a faulty circuit
by only applying tests up to the test vector that detects the given fault. This reduced number of test
vectors speeds up the fault coverage analysis that is needed after a test vector is marked for potential
elimination. For this purpose, test vectors are identified by sequential numbers representing their
locations in the original test set. Then, a list of faults and test vectors that detect them is generated.
Simulating a faulty circuit for checking if its fault is detected is only done with test vectors that
appear in the test set before the test that detects the faults.

The first nested loops in Fig. 6.44 goes through all circuit faults and forms the detectedBy array.
This array, which is indexed by circuit faults, contains the test vector sequence number that detects
the fault. The second set of nested loops in this figure contains a loop that marks every test for
elimination, one that injects every circuit fault, and one that examines the fault for detection.

As discussed, the two outer loops are straight forward, i.e., every test vector is examined for
elimination from the test set, and every fault, is checked for detection by this reduced test set. The
inner-most loop examines test vectors of the test set that has a potentially eliminated test for detec-
tion of the injected fault. This loop takes advantage of the detectedBy array and only examines test
vectors that come before the vector that originally detected the injected fault.

If by examining only this subset of test vectors, the injected fault is still detected, it means that
elimination of test vector in the outer loop has no effect on detecting this fault. If a fault was unde-
tected by the original test set, examining whether it is covered by the test set with eliminated vectors
applies to the entire test vectors, and not just a subset. Therefore, it is possible that the reduced test
set with some vectors eliminated gets a better coverage than the original one.

As an example implementation for this procedure, we have developed a Verilog testbench for
compacting test data obtained by random test generation for the Residue-5 circuit of Chap. 5. This
testbench illustrates some details, like those associated with clock timing and loop conditions, that
were not evident in the abstract pseudo code of Fig. 6.44.

Figure 6.45 shows the outline of the testbench for Residue-5. As before, a good circuit and a
faultable model are instantiated in the Tester() module. The outputs woG and woF will be compared

207

For every fault i
 Inject fault;
 For every test j

 Apply tj, check for detection
 If tj detects fi, then
 detectedBy[i] = j;
 Else clock CUT, try next test

 End for
 Remove fault
End for

Te
st

 V
ec

to
r

Fa
ul

t
Lo

op

For every test m
 Mark m for elimination
 For every fault i
 Reset circuit;
 Inject fault i;
 For test j from 1 to detectedBy[i]
 Exclude elimination candidate m;
 Apply tj, check for detection
 Calculate coverage;
 End for
 End for
 Compare with old coverage;
 Decide to keep or eliminate test m;
End for

Te
stFa
ul

t

El
im

in
at

io
n

Fig. 6.44 Vector elimination procedure

6.3 Test Data Compaction

during fault simulations that follow. As shown near the end of code in Fig. 6.45, clk signal is applied
to good and faulty circuits. Applying data to the circuits is synchronized with this clock.

Creating faulty models, evaluating test vectors, and the elimination of test vectors happen in the
initial block that is shown in this code. In this block, circuit is reset, fault and test files are read into
local arrays (wireName and testArray), and after execution of the procedure of Fig. 6.44, reduced
test vectors are written, and reports are generated.

The dual nested loop in Fig. 6.45 implements the upper part of the procedure of Fig. 6.44, and
the triple nested loop implements test vector elimination that appears in the lower part of Fig. 6.44.
The details of these sections are shown in Figs. 6.46 and 6.47, respectively.

The main task of the nested loops in Fig. 6.46 is generating the detectedBy array. This array is
indexed by fault numbers and contains the test number that detects the fault. For generating this, the
outer loop iterates for every circuit fault, and after resetting the circuit, it injects fault i in the circuit.
Prior to fault injection, reset is asserted and held high until posedge of clk is detected.

After fault injection, the inner loop iterates for test vectors in the test set until the injected fault
is detected. In the loop, a test is applied, and outputs of the good and faulty circuits are compared.
If they are different, fault is detected and test vector loop exits. If the outputs are the same, the
injected fault is not detected by the current test. In which case, the circuit is clocked @(posedge
clk), and the next test vector is tried.

When fault i is detected, detectedBy[i] is set to the test vector id, j. If fault is not detected and
the end of test file is reached, the detectedBy entry for that fault receives a -1 value. At the end of
this section of code, fault coverage for the original test set is also calculated.

Figure 6.47 shows the implementation of the lower part of the procedure in Fig. 6.44 for the
Residue-5 circuit. The outer loop puts a 1 in the omitted vector in the location of the test vector that
is a candidate for omission. The second loop injects every circuit fault from the wireName array

208

module Tester();
. . .
residue5_net GUT(global_reset, clk, reset,in, woG);
residue5_net FUT(global_reset, clk, reset,in, woF);
. . .
initial begin

 global_reset = 0; //initialization

 faultFile = $fopen("res5.flt","r");
 testFile = $fopen("res5.tst","r");
 // read data into: wirename[] and testArray[];

 numDetectedFaults = 0;
for (i = 0; i < numFaults; i = i + 1) begin

. . .
for (j = 0; ((j < numTests)&&(!faultDetected));j = j + 1) begin

 . . .
end

end

 coverage = $itor(numDetectedFaults)*100/$itor(numFaults);
 . . .

for (m = 0; m < numTests; m = m + 1) begin
 . . .

for (i = 0; i < numFaults; i = i + 1) begin
 . . .

while ((j < numTests) && (n <= detectedBy[i]) . . .) begin
 . . .

end
 end

 . . .
end

 resultFile = $fopen("selectedTests.tst","w");
 // write from testArray[];

 //display results
 $display("Old Coverage: %f", oldCoverage);
 $display("New Coverage: %f", coverage);

 $fclose(faultFile); $fclose(testFile); $fclose(resultFile);
end

 always #100 clk = ~clk;

endmodule

Fig. 6.45 Residue-5 test compaction testbench

6 Deterministic Test Generation Algorithms

using the $InjectFault PLI function. As before, complete resetting is performed prior to fault injec-
tion. The while loop in Fig. 6.47 that we refer to as the Test loop checks to see if the injected fault
is still detected without considering tests marked by “1” in the omitted array (note the if statement
in this loop).

The condition of the while loop is the key point here. Note here that while all tests from 0 to
numTests are considered, the condition “n ≤ detectedBy[i]” stops the continuation of this while
loop beyond the test vector that detected the injected fault in the original test set.

While faults are checked for detection, the Test loop in Fig. 6.47 calculates the fault coverage,
while test vector m is eliminated. After exiting from the Fault loop, this new fault coverage is

209

#10;

module Tester();
. . .
initial begin

. . .
numDetectedFaults = 0;

for (i = 0; i < numFaults; i = i + 1) begin
//initialization
faultDetected = 1'b0;

reset = 1; @(posedge clk); reset = 0; //circuit reseting

$InjectFault (wireName[i], stuckAtVal[i]);

for (j = 0;((j < numTests)&&(!faultDetected));j = j + 1) begin

 indata = testArray[j];

if(woG != woF) begin
 detectedBy[i] = j; // fault i is detected by test j
 faultDetected = 1;
 numDetectedFaults = numDetectedFaults + 1;

end else @(posedge clk); // prepare for next test
 end

if(!faultDetected) detectedBy[i] = -1; //undetected fault

$RemoveFault(wireName[i]);
end

 end
 . . .
endmodule

F
au

lt

T
es

t

Fig. 6.46 Creating list of faults and tests that detect them

6.3 Test Data Compaction

compared with the previously calculated fault coverage, and if it is not less than that, the test vector
that had become a candidate for omission is omitted.

We started this example with 108 faults, 81 two-bit test vectors and 89.81% fault coverage. In a
Verilog simulation environment, the testbench described in Fig. 6.45 was able to reduce the test set to
only 36 test vectors, with the same coverage. Figure 6.48 shows the report generated by our testbench.

6.3.4 Dynamic Compaction

Dynamic compaction methods engage in the test generation program [22]. Because of the overhead
on the ATPG programs, they are less often used than stand-alone static compaction methods.

A simple dynamic test compaction method for combinational circuits is redundant vector elimi-
nation [20]. In this method, as tests are generated, they are checked against existing ones and elimi-
nated if they have already been added to the test set.

210

module Tester();
. . .
initial begin

. . .
for (m = 0; m < numTests; m = m + 1) begin

omitted[m] = 1'b1; // candidate for omission

numDetectedFaults = 0;
for (i = 0; i < numFaults; i = i + 1) begin

//initialization
faultDetected = 1'b0;
reset = 1 @(posedge clk); reset = 0; //circuit reseting

$InjectFault (wireName[i], stuckAtVal[i]);

j=0; n=0;
while((j<numTests)&&(!faultDetected)&&((n <= detectedBy[i])

 || (detectedBy[i] == -1))) begin
if(omitted[j] != 1'b1) begin

indata = testArray[j];
 #10;

if(woG != woF) begin
 faultDetected = 1'b1;
 numDetectedFaults = numDetectedFaults + 1;

end else @(posedge clk);
 n = n + 1;

end
 j = j + 1;

end
 $RemoveFault(wireName[i]);

end
 //calculating coverage
 newCoverage = $itor(numDetectedFaults)*100/$itor(numFaults);

if(newCoverage >= coverage) begin
coverage = newCoverage;
$display("New Coverage: %f", coverage);

end else omitted[m] = 1'b0;
end

end
. . .

endmodule

O
m

is
si

on

F
au

lt

T
es

t

Fig. 6.47 Omission and reevaluating

6 Deterministic Test Generation Algorithms

For sequential circuit test generation, the dynamic compaction method [19] removes test vectors
with low efficiency between similar states of the circuit. This method uses random test generation
for generating test vectors for a sequential circuit. As a random test is generated, its coverage in the
sequence is calculated and the circuit state that this test puts the circuit in is recorded. At a later
time, when another random test puts the state of the machine in the same state, faults covered
between the two times the same state was observed are counted. If the number of detected faults is
lower than a threshold, all test vectors between the repeated states are ignored and the faults are
returned to the non-detected fault list.

This method requires extensive use of fault simulation and a large database for retaining circuit
states. Nevertheless, it is a technique that serves well as an example for dynamic sequential test
compaction.

211

The system time (Hour:Minute:Second:MilliSecond) is: 14:57:57:465
number_of_faults: 108
number_of_tests: 81
Original Coverage: 89.814815
New Coverage: 89.814815
New Coverage: 89.814815
number_of_faults: 108
number_of_tests: 36
Best Coverage: 89.814815
Old Coverage: 89.814815
end...
The system time (Hour:Minute:Second:MilliSecond) is: 14:58:07:385

Fig. 6.48 Compaction results of Residue-5 circuit

References

6.4 Summary

This chapter presented deterministic test generation algorithms and test compaction. Chapter 5
focused on random test generation and developed complete programs for random test generation.
Although the use of deterministic test generation programs were mentioned, no specific details were
given. The first part of this chapter, on the other hand, mentioned the use of two-phase test genera-
tion programs and placed the deterministic test generation as the second phase of such a program.

Section 6.2 then focused on algorithms for deterministic test generation. We presented base
algorithms, based on which many of the existing deterministic TPG programs are developed.

Section 6.3 presented test compaction. Perhaps this can be regarded as the third phase of an
ATPG program. We discussed combinational and sequential methods. The most practical and most
efficient test compaction programs are the static ones made for combinational circuits.

References

 1. Roth JP (1966) Diagnosis of automata failures: a calculus and a method. IBM J Res Dev 10(4):278–291
 2. Roth JP, Bouricius WG, Schneider PR (1967) Programmed algorithms to compute tests to detect and distin-

guish between failures in logic circuits. IEEE Trans Electron Comput EC-16(5):567–580
 3. Goel P (1981) An implicit enumeration algorithm to generate tests for combinational logic circuits. IEEE Trans

Comput C-30(3):215–222
 4. Fujiwara H (1985) FAN: A Fanout-oriented test pattern generation algorithm. In: Proceedings of the interna-

tional symposium on circuits and systems, pp 671–674, July 1985
 5. Fujiwara H, Shimono T (1983) On the acceleration of test generation algorithms. In: Proceedings of the inter-

national fault-tolerant computing symposium, pp 98–105, June 1983
 6. Fujiwara H, Shimono T (1983) On the acceleration of test generation algorithms. IEEE Trans Comput

C-32(12):1137–1144
 7. Schulz MH, Auth E (1988) Advanced automatic test pattern generation and redundancy identification tech-

niques. In: Proceedings of the international fault-tolerant computing symposium, pp 30–35, June 1988
 8. Schulz MH, Auth E (1989) Improved deterministic test pattern generation with applications to redundancy

identification. IEEE Trans Comput-Aided Des 8(7):811–816
 9. Schulz MH,Trischler E, Serfert TM (1988) SOCRATES: A highly efficient automatic test pattern generation

system. IEEE Trans Comput-Aid Des CAD-7(1):126–137
 10. Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing and testable design. IEEE Press,

Piscataway, NJ. Revised printing
 11. Abramovici M, Menon PR, Miller DT (1984) Critical path tracing: an alternative to fault simulation. IEEE Des

Test Comput 1(1):83–93

212 6 Deterministic Test Generation Algorithms

 12. Menon PR,Levendel YH, Abramovici M (1988) Critical path tracing in sequential circuits. In: Proceedings of
the international conference on computer-aided design, pp 162–165, Nov. 1988

 13. Menon PR,Levendel YH, Abramovici M (1991) SCRIPT: A critical path tracing algorithm for synchronous
sequential circuits. IEEE Trans Comput-Aided Des 10(6):738–747

 14. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory, and mixed-signal VLSI
circuits. Kluwer, Dordecht

 15. Miczo A (2003) Digital logic testing and simulation, 2nd Ed. Wiley, New York
 16. Jha N, Gupta S (2003) Testing of digital systems. Cambridge University Press, Cambridge
 17. Pomeranz I, Reddy SM (1996) On static compaction of test sequences for synchronous sequential circuits.

Proceedings of third design automation conference, pp 215–220
 18. Nsiao MS, Rudnick EM, Patel JH (1997) Fast algorithms for static compaction of sequential circuit test vector.

Proceedings of 15th IEEE VLSI test symposium, pp. 188–195
 19. Hamzaoglu I, Patel JH (2000) Test set compaction algorithm for combinational circuits. IEEE Trans Comput

Aided Des Integr Circuits Syst 19(8):957–963
 20. Rudnick EM, Patl JH (1996) Simulation based techniques for dynamic test sequence compaction. IEEE/ACM

international conference on computer aided design, pp 67–73
 21. Niermann TM,Roy RK,Patel JH, Abraham JA (1992) Test compaction for sequential circuits. IEEE Trans

Comput Aided Des Integr Circuits Syst 11(2):260–267
 22. Goel P, Rosales BC (1979) Test generation and dynamic compaction of tests. Proceedings of test conference,

pp 189–192

213Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_7, © Springer Science+Business Media, LLC 2011

Most test generation schemes look at a CUT as a black box, the only available nodes of which for
testers to control are its primary inputs, and to observe one are its primary outputs. This limited
controllability and observability of circuits under test (CUT) means complex test generation
algorithms for combinational circuits, and near-impossible test generation for the sequential circuits.

To overcome this difficulty in testing, digital circuits must become more testable by incorpora-
tion of design for test (DFT) techniques. For this purpose, designers must get involved in the test
process by incorporating testability hardware in their designs and evaluating their designs for test-
ability. DFT techniques offer ways of making internal structure of a design more controllable and
easier to observe. Because such tasks are handled by designers, hardware description languages play
an important role in facilitating insertion and evaluation of hardware structures that are put in a
circuit for making it more testable.

This chapter discusses DFT techniques. We begin by covering some of the basics, followed by a
section on options we have for hardware structures that make a circuit more testable. This section
leads to some of the established scan insertion techniques. The section that follows this highlights
the use of HDLs in modeling DFT techniques, evaluating them, and verifying their operation.

7.1 Making Circuits Testable

A circuit is testable if tests can be generated for it efficiently, it can be tested with a high fault
coverage, and the time it takes to test the manufactured part is reasonable. Testability is a combina-
tion of controllability and observability. A circuit becomes more testable by making it more con-
trollable and more observable [1, 2].

7.1.1 Tradeoffs

Improvements in controllability and observability are almost always done by inserting additional
hardware in a design. This means that DFT techniques that make circuits more testable always
introduce additional hardware that results in more pins, more delays, more power consumption, and
obviously a hardware overhead.

What we are getting instead is a better coverage and reduced test time, and in some cases, DFT
techniques gain access to the internal structures of a circuit that would otherwise be impossible to test.

Reducing the time it takes to test a manufactured part is the most important concern of DFT
techniques. This goal is achieved by introducing extra test hardware in the CUT. Reducing this hardware,
its power consumption during test, the delay it introduces in the design, and the extra pins that are needed
to take test to the manufactured part are the parameters a design engineer must optimize.

Chapter 7
Design for Test by Means of Scan

214

Fig. 7.1 Huffman model for test

7 Design for Test by Means of Scan

7.1.2 Testing Sequential Circuits

Perhaps one of the most important contributions of DFT is making sequential circuits testable. The
previous chapter showed how complex it is to generate a complete test for a sequential circuit. It
also showed that even if tests are generated, application of test requires many clock cycles to move
a circuit into states that activate faults.

DFT techniques alter a sequential circuit model in such a way that combinational test techniques
can be used for it. With this alteration, test generation schemes, random or deterministic, can be used
to generate test for the altered circuit. DFT techniques define ways in which tests generated for a
combinational model of a sequential circuit can be applied to the actual sequential circuit [3].

7.1.2.1 Sequential Circuit Huffman Model

Huffman model, as discussed in Chap. 2, is a useful model for sequential circuit testing. As shown
in Fig. 7.1, a sequential circuit is modeled by a combinational circuit having feedback through delay
elements. In synchronous sequential circuits, the delay elements are clocked flip-flops, and each
feedback is a state variable of the circuit.

Circuit primary inputs and primary outputs only apply to the combinational part. Synchronous
or asynchronous set, reset, and other control inputs only apply to the feedback flip-flops. This model
completely separates a CUT’s registers from its combinational part. The combinational part consists
of all circuit buses, logic units, arithmetic functions, and discreet logic parts. The feedback registers
consist of control flip-flops, data registers, and small register files, including register signals such
as set, reset, enable, and parallel load.

Although memory parts of a system can also fit in this model, for test purposes, this is not recom-
mended. Memories must be separated from logic parts of a system, and memory buses (data and
address) must be treated as inputs and outputs of the above sequential circuit model.

7.1.2.2 Unfolding Sequential Model

As discussed above, the usefulness of the above model is separation of registers (sequential part)
and combinational part of a digital system. For test purposes, this separation enables application of
test methodologies to the combinational part of the circuit, and treating registers separately.

Since the majority of a circuit’s logic gates are contained in the combinational part, testing this
part, while considering register part inputs and outputs, covers the majority of a circuit’s faults.

215

Fig. 7.2 Unfolded circuit model

7.2 Testabability Insertion

Also, since flip-flops are treated as primitive building blocks in most technologies, testing a circuit
for internal flip-flop faults is a secondary issue in most logic test systems.

A circuit model that separates combinational and register parts of a digital system and puts the
focus of testing on the combinational part is obtained by unfolding the circuit model of Fig. 7.1. As
shown in Fig. 7.2, by unfolding a sequential circuit, its registers are separated and ignored. Register
outputs become pseudo inputs for the unfolded circuit, and register inputs become pseudo outputs
of this circuit.

For test purposes, only the upper block in Fig. 7.2 is considered. Fault collapsing, test generation,
and evaluation of test vectors are all done on this circuit model. Note that faults on pseudo inputs
and pseudo outputs (PPI, PPO) of the unfolded model are the same as those of the feedback register
outputs and inputs, and testing the unfolded model already includes testing the register ports.

Testing register clock, set, reset, etc. are not dealt with when considering the unfolded model and
must be treated separately. Test results obtained from the unfolded model are used by test equipment
for testing the actual circuit. A Verilog testbench that models this test equipment or test environment
of the actual circuit is called a virtual tester. Section 7.4 elaborates on this topic.

7.1.3 Testability of Combinational Circuits

Combinational circuits can also benefit from DFT techniques. With an additional hardware inserted
into a combinational circuit, it can be made to give a better coverage, reduce the number of test
vectors required to test it, or achieve both at the same time. DFT techniques alter a combinational
circuit for better controllability and observability. The model of the altered circuit is used for test
generation.

7.2 Testability Insertion

By simply adding a jumper, or an extra input or output pin, we have taken steps in making our
circuit more testable. This obviously adds additional hardware to our circuit, and the use of such
testability provisions must carefully be planed. Limit on the number of extra input/output pins for
testing, gained test time, ease of testing, and issues such as timing and power consumption must be
considered when choosing DFT techniques.

This section discusses various choices that we have for hardware structures for making a circuit
more testable [4]. In general, this section shows how a “test point” can be added to a circuit and how

216

clk

a w

1D

1D

C1

C1

V1
V0

Out V1

Out V0

0 or 1
Insertion

0 or 1
Insertion

SA0

0 Insertion1 Insertion

Fig. 7.3 Basic testability techniques (observability, controllability)

7 Design for Test by Means of Scan

the associated hardware with test points can be minimized and/or shared with other test points. We
start with a simple hardware for forcing a 0 or a 1 on a line, and progressively get into multiplexer
and register structures for reducing our hardware overhead.

7.2.1 Improving Observability

Improving observability always helps testability of a circuit. Adding output pins improves observ-
ability, and enables fault effects that would otherwise not propagate to a primary output have a
chance to show themselves through newly added output pins. The end result is fewer test vectors to
test for faults of a CUT, thus less test application time for the final manufactured chip.

Line observability values are measured by SCOAP or are probability based. Lines with observ-
ability values below a certain threshold (higher SCOAP parameter values) can be considered as
candidates for becoming extra output pins.

Improving testability by means of observability can also be achieved by making state flip-flop
outputs observable by pulling them out as primary outputs. Figure 7.3 shows the Mealy machine
implementation of the previous chapter in which flip-flop outputs are pulled as primary outputs.
Starting in state 10, while a = 1, the SA0 fault shown can be detected in one clock cycle on the new
Out V

1
 output. Provisions for forcing this circuit into a certain state (e.g., state 10) are made in Fig.

7.3. Such techniques include 0 or 1 insertion and will be discussed in the next sub section.
In an RT-level design, control signals going out from circuit’s controller and controlling flow of

data through buses and logic units, as well as logic and ALU control inputs are appropriate places
where extra output pins can be added.

Other candidates for observing via new circuit outputs are bus and multiplexer select inputs,
multiplexer and decoder enable inputs, tri-state controls, register load input, count up and count
down signals, shift-register mode control inputs, and feedback lines.

217

Insert 0

Logic
A

Insert 1

Logic
A

Insert 0

Logic
A

Insert 1

0

1

td

0 Inserting

a b

c d

1 Inserting

0 and 1 Inserting Normal and Test Data

Logic
B

Logic
B

Logic
B

Logic
A

Logic
B

NbarT

Fig. 7.4 Adding controllability

7.2 Testability Insertion

7.2.2 Improving Controllability

Controllability parameters identify hard to reach places in a combinational circuit. As a first step in
adding controllability to a combinational circuit, low controllability lines should be considered. In
addition, by directly controlling fanout stems and branches from a circuit’s inputs, problems in test
generation contributed by reconvergent fanouts can be resolved.

In sequential circuits, flip-flop inputs are good candidates for being directly controlled by circuit
inputs. In addition, controlling flip-flop reset and other control inputs help driving a sequential
circuit into a given state.

In RT-level designs, direct control of control signals coming from a circuit’s controller to its data-
path enables testing of individual data operations independently. For example, being able to exter-
nally control the load accumulator control signal of a datapath enables testing the loading of the
accumulator register and the bus structures that drive it.

Other places where external control can contribute to testability of a circuit include multiplexer
and bus control inputs, tri-state control inputs, arithmetic and logic unit select inputs, and counter
and shift-register mode control signals.

Unlike observability that can easily be achieved by adding the line to be observed to our primary
outputs, there are several ways controllability can be achieved. Figure 7.4 shows several such meth-
ods. Shown here are several hardware structures that intercept a line that would normally go
between two logic parts. The hardware inserted in the line between Logic A and Logic B uses
primary inputs to control value going to Logic B.

Figure 7.4a shows 0-insertion logic. The line labeled Insert 0 is the controlling line that can be
directly driven by a primary input. The circuit is in its normal mode of operation when Insert 0 is 0.
To drive a 0 into the input of Logic B, Insert 0 must be set to 1. Figure 7.4b shows a 1-insertion logic

218

Fig. 7.5 Put circuit into any desired state

7 Design for Test by Means of Scan

that works like the 0-insertion, except that asserting Insert 1 puts a 1 at the input of Logic B. For
being able to control input of Logic B with either a 0 or a 1, logic shown in Fig. 7.4c should be used.
In combinational circuit testing, 0-insertion and 1-insertion structures are useful in places with low
0- and 1-controllability, respectively.

Figure 7.4d shows a more general case of driving a line in a circuit with a given test data (td).
With use of a multiplexer, signal NbarT puts the circuit in normal (when 0) or test (when 1) mode.
In the test mode, instead of data from Logic A, td that can be driven by a primary input acts as an
input to Logic B.

If hardware structures shown here are independent and do not share pins with other test struc-
tures, 0- and 1-insertions require one primary input pin, while the other two structures shown in
Fig. 7.4 require two pins. In all cases shown, in addition to the gates used and the required input
pins, timing delays are also added between the two logic parts. The multiplexer (Fig. 7.4d) has the
largest delay and is the most general case.

Figure 7.3 that we used for demonstrating improvement in observability also shows controlla-
bility hardware added to the flip-flop inputs. Recall from the discussion in Sect. 7.2.1 that making
flip-flop outputs observable makes testing for the fault shown possible by starting in state V

1
V

0
 = 10,

and clocking the circuit once while a is 1. To force this state into the flip-flops, 1-insertion and
0-insertion structures should be used at the inputs of flip-flop 1 and flip-flop 0, respectively.

Testing circuit of Fig. 7.3 becomes easier by use of multiplexers at its flip-flop inputs. Figure 7.5
shows multiplexers at flip-flop inputs sharing the NbarT test control input. To force a given state
into the circuit, NbarT should be driven with a 1 and the desired state value should be placed on Td

1

and Td
0
 test data inputs.

7.2.3 Sharing Observability Pins

Section 7.2.1 discussed the use of observability points and showed an example where state flip-flops
of a finite state machine were placed on external pins. To reduce the cost of external pins, a multi-
plexer can be used. As shown in Fig. 7.6, an n-to-1 multiplexer can be used to multiplex n test
points into one output pin. This scheme requires 2log n input pins for multiplex select inputs.

Multiplexing observation points in a circuit prevents simultaneous observation of multiple observation
points, thus increases test time. In addition, the multiplexer adds extra hardware and delay overhead.

219

n Points
To

Observe

logn
2

Fig. 7.6 Multiplexing
observability points

S1 S0

y0

y3

y2

y1

En or Data

Decoder / Demultiplexer

n Points
To

Control

S2

S1

S0

Fig. 7.7 Demultiplexer/decoder, reduce pins for control

7.2 Testability Insertion

The hardware shown can be repeated if multiple activation of several observation points are
required. For observing parallel buses, same bit positions of several buses to simultaneous can be
grouped, and the hardware shown in Fig. 7.6 can be used for each group. In this case, the select
inputs can still be shared, but the actual output data pin must be repeated for each group.

7.2.4 Sharing Control Pins

To reduce pins required for controlling n internal lines of a circuit, a 1-to-n demultiplexer is used.
The demultiplexer has several select inputs that select the output that the data input drives.

A demultiplexer is a decoder with an enable input. Figure 7.7 shows a demultiplexer symbol and
logic structure for a 1-to-4 demultiplexer, which is no different than a 2-to-4 decoder.

Figure 7.8 shows a 2-to-4 decoder used for controlling four 1-insertion lines. The decoder
enable input is used as NbarT input. When this input is 0, none of the decoder outputs is 1, and

220

Fig. 7.8 Sharing 1-insertion hardware

Fig. 7.9 Sharing test data insertion hardware

7 Design for Test by Means of Scan

circuit works in normal mode. For test mode, NbarT becomes 1, and according to value of S1, S0,
one of the 1-insertion points becomes active. With this hardware, for controlling n lines of a CUT,

2log 1n + pins are needed.
For multiple test data insertions (Fig. 7.4d), a demultiplexer helps reducing input pin require-

ments. Figure 7.9 shows a 1-to-4 demultiplexer providing test data for four multiplexers for test data
insertions. With this hardware, for controlling n lines of a CUT, 2log 2n + pins are required.

As shown in Fig. 7.9, when NbarT is 0, the multiplexers between logic parts (shaded areas)
connect the left logic to the right logic, and the test hardware is transparent. In the test mode
(NbarT = 1), S1 and S0 select TestData for driving the input of one of the left-hand side logic blocks.

Demultiplexing control points prevents simultaneous assignment of values to the control points
that share pins. Therefore, simultaneous assignment of test data to bits of parallel buses is not

221

Fig. 7.10 Simultaneous control of bits of buses

Fig. 7.11 Selection input
counter

possible unless the above hardware is repeated for each bus bit that needs to be controlled. In this
case, select inputs (e.g., S1, S0) and NbarT can still be shared by controllability hardware for dif-
ferent bus bits. Figure 7.10 shows extension of Fig. 7.9 for parallel buses. This figure shows
TestData0 through TestDatan providing test data for four n-bit buses, A, B, C, and D. Select inputs
S1 and S0 select which bus the test data will go to.

7.2.5 Reducing Select Inputs

Although multiplexing observation points of Fig. 7.6 and demultiplexing control points of Fig. 7.7
significantly reduce test pin counts, for a large number of test points, we still face the problem of
having many pins for multiplexer or demultiplexer select inputs. For the price of still longer test
time, we can resolve this problem by adding a counter to the CUT. The counter clock and count
inputs will be driven by external pins and the counter output selects point to be controlled or
observed. For controlling or observing a line, the counter counts up, and when it reaches the number
of the test point, other test signals will be issued. Figure 7.11 shows a counter used for selection
inputs of a control point demultiplexer.

7.2 Testability Insertion

222

Fig. 7.12 Shift-register for simultaneous control

7 Design for Test by Means of Scan

To select a test point, the counter counts up to the location of the test point on the multiplexer or
demultiplexer. At the test application time, TestData drives the test point selected by the counter.
The price we are paying for the reduction in the number of test pins is longer test time.

7.2.6 Simultaneous Control and Observation

DFT techniques discussed above were effective in reducing the number of test pins. On the other
hand, none of these techniques allowed simultaneous activation of control or observe points, unless
separate test pins were used and hardware structures were repeated (e.g., Fig. 7.10).

7.2.6.1 Simultaneous Control of Test Points

To allow simultaneous control for several test points and still keeping the number of pins low, a
shift-register can be used to take test data serially, and apply all the bits in parallel in the test mode.
Figure 7.12 shows a shift-register used for taking serial test data to be applied simultaneously to
several logic blocks. Shift-register in this scheme replaces the demultiplexer of Fig. 7.9.

In the normal mode of operation, NbarT is 0 and the multiplexers take the normal data from left
logic blocks to the right ones. While the circuit is operating in this mode, test data can be shifted
into the shift-register with the TestClock without affecting the CUT’s normal operation. When test

223

Fig. 7.13 Using a shift-register for simultaneous collection of line values

7.2 Testability Insertion

data are completely shifted in, the CUT is put in the test mode (i.e., NbarT = 1), which allows the
test data from the shift-register to be used for input of logic blocks that are being tested (right-
hatched blocks in Fig. 7.12).

Because test data shifting takes several clock cycles, we overlap the normal operation of CUT
with shifting test data into the shift-register. In this case, when data are being shifted, NbarT must
be 0, so that changing test data at the shift-register output does not interfere with the normal data.
In general, serial shifting of test data is a time-consuming process, but, as we will see later in this
chapter, it is the only way testing can be done. One way to improve this is by use of a faster clock
for the test clock. Since shift-register is the only recipient of the test clock, circuit delays do not
apply, and this clock can be much faster than the normal CUT’s clock.

7.2.6.2 Simultaneous Observation of Test Points

The concept of shift-registers mentioned above can also be used for simultaneously observing
several lines in a CUT. Figure 7.13 shows a shift-register used for simultaneous collection of
values from several test points and shifting them out serially. The device or ATE that is reading
the output must perform serial to parallel conversion for having data from all test points at the
same time.

In the test mode, when the response of CUT is ready and available at the shift-register input, the
load input of the shift-register is enabled and the shift-register is clocked. This operation loads
CUT’s line values, or lines to be observed, into the shift-register. Following this operation, the shift-
register load input is deasserted, which puts the shift-register in the serial mode. After application
of n clocks in this mode, the line values being observed have been shifted out, and the shift-register
is ready for the next parallel load of the test output data.

7.2.6.3 Isolated Serial Scan

The two concepts of using a shift-register for controlling test points and one for observing them can
be combined and the same shift-register can be used for both purposes. This testability method is
referred to as Isolated Serial Scan and is illustrated in Fig. 7.14.

For the normal mode of operation, the NbarT input of CUT in Fig. 7.14 is 0. This causes no
interference from the test logic except perhaps the delays from the multiplexers. While in this

224

Fig. 7.14 Isolated Serial Scan

7 Design for Test by Means of Scan

mode, the shift-register is put in the serial mode and new test data are shifted in, while collected
data from last testing to be observed (from YO3, YO2, YO1, and YO0) are being shifted out. The
input test data bits that are synchronized with the test clock are placed on the shift-register inputs.
At the end of shifting, the CUT is put in the test mode by asserting NbarT. This applies the test
data in the shift-registers (through the multiplexers) to the inputs of the part of CUT being tested.
While this is happening, and the part of CUT is propagating this test data, the shift-register mode
is changed to parallel loading. Enough time is given for test data to propagate and shown its affect
on YO internal output lines. At this time, the shift-register is clocked just once to collect the output.
This is followed by the serial mode that shifts in a new test data while shifting out the data that
were just collected.

Figure 7.15 shows the Verilog code of the shift-register used in Fig. 7.14. Together, the shift-
register and the pseudo code of Fig. 7.16 manage to implement the operation discussed in the above
paragraph.

The shift-register shown in Fig. 7.15 performs right shifting when its TestMode input is 1 and
does the parallel load operation when TestMode is 2. TestMode = 0 does nothing, and 3 resets the
shift-register. The serial output of the shift-register is the same as bit 0 of its parallel output.

Figure 7.16 shows pseudo code for the equipment that connects to the pins of the CUT in
Fig. 7.14, and using the DFT hardware that has been placed in the CUT, tests this circuit.
Since this code plays the role of an ATE or a device that is testing the CUT, we refer to it as
a virtual tester. The code shown works hand-in-hand with the shift-register and other test
hardware in CUT.

For testing, NbarT is set to 0 and input test data are shifted in while TestMode = 1 (shift mode).
At the end of shifting, TestMode is set to 2 (parallel load), and output test data are captured. This
while loop repeats for as long as CUT is being tested. Each time a new test data are shifted in.

225

module shiftreg # (parameter size = 4) (input [size-1:0] parin, input
TestClock, SerialTestDataIn,
TestClock, input [1:0] TestMode,
output TestDataOut,
output reg [size-1:0] parout);

always @ (posedge TestClock) begin
case (TestMode)

 0: parout <= parout;
 1: parout <= {SerialTestDataIn, parout[size-1:1]};
 2: parout <= parin;
 3: parout <= 0;
 endcase
 end

assign SerialTestDataOut = parout[0];
endmodule

Fig. 7.15 Isolated Serial Scan shift-register

Virtual Tester:Isolated Serial Scan
While (testing) begin
 = 0;
 For (i=1; i<= numbTestPoints; i++) begin
 = 0; TestMode = 1
 Place serial test data on SerialTestDataIn;
 Clock shift-register (TestClock)

 = 1; TestMode =2;
Clock shift-register (TestClock)
End
End Isolated Serial Scan

/T

N

/T

N

/T

N
Collect TestDataOut;

End for

Fig. 7.16 Isolated Serial Scan virtual tester

Of all the hardware structures we discussed above, Isolated Serial Scan was the most complete
and most complex to operate. This structure provides a background for standard scan architectures
that are discussed next.

7.3 Full Scan DFT Technique

With the background provided in Sect. 7.2, we are now ready to discuss standard practices in DFT.
The most common DFT technique is full scan that we discuss here [5]. This technique can be
explained as one that is very similar in concept to the isolated scan of the previous section.

The isolated scan has an overhead of a shift-register that has to be inserted in the circuit under test.
Inclusion of this register still does not solve the problem of test generation for sequential circuits, and we
still have to treat the CUT as a sequential circuit with a few extra test points for adding controllability
and observability. Full scan takes care of the hardware overhead and sequentiality of CUT by
incorporating the required shift-register in the CUT’s state flip-flops. As we will see, this reduces the
hardware overhead, and at the same time CUT becomes virtually a combinational circuit.

7.3 Full Scan DFT Technique

226

Fig. 7.17 Scan insertion

module FBRegister #(parameter size = 4)(input [size-1:0] ns, input

always @ (posedge Clock) begin
if (Reset == 1'b0) begin
 if (NbarT == 1'b0) ps <= ns;
else ps <= {STDI, ps[size-1:1] }; //shift mode

end
else

ps <= 0;
end
assign STDO = ps[0];

endmodule

STDI, Clock, NbarT, Reset, output STDO,
output reg [size-1:0] ps);

Fig. 7.18 Testable Huffman model feedback register

7 Design for Test by Means of Scan

7.3.1 Full Scan Insertion

For scan insertion, we start with the Huffman model of a sequential circuit as shown in Fig. 7.1. As
discussed in Sect. 7.1, unfolding a sequential circuit (Fig. 7.2) and applying our testing to the
combinational part of a circuit covers all logic and register interconnection faults. Full scan testing
takes the Huffman model of Fig. 7.1, and by inserting a shift-register in its register structures, makes
a virtual model of the unfolded circuit of Fig. 7.2.

7.3.1.1 Scan Register

Figure 7.17 shows scan insertion in the sequential circuit model of Fig. 7.1. The register part of the
Huffman model now includes a shift mode that serially loads STDI (Serial Test Data In) into the
shift-register. In the normal mode, the register in Fig. 7.17 performs parallel loading.

Figure 7.18 shows Verilog code for the register of Fig. 7.17. The general operation of this register
is similar to the one used for isolated scan, the Verilog code of which was shown in Fig. 7.15. Only
the signals for control of serial and parallel modes are different.

2277.3 Full Scan DFT Technique

The feedback shift-register in Fig. 7.18 works in normal mode by loading ns (next state) into ps
(present state) when NbarT is 0. In test mode (NbarT = 1), the register becomes a shift-register with
STDI serial input and STDO serial output.

Here, we have used a simple signaling for the control of the shift-register, in which NbarT
is used for both normal mode (when 0) and shift mode (when 1). The exact signaling depends on
the type of the flip-flops used and their data selection mechanisms. These issues will be dis-
cussed in Sect. 7.3.2.

7.3.1.2 Test Procedure

The test procedure for the testable Huffman model of Fig. 7.17 only involves testing the combina-
tional part, and the modified register is used as a mechanism for providing controllability of ps and
observabilty of ns. The test architecture shown makes ps inputs the pseudo primary inputs and ns
the pseudo primary outputs of the combinational part.

In the normal mode (NbarT = 0), the register loads ns into ps. In the test mode, NbarT becomes
1 and test data that is to be applied to ps input of the combinational logic is shifted into the register.
When all data bits are shifted, the first part of test data becomes ready at the circuit’s ps input, which
is its PPI in test mode. At this time, the second part of the test data will be applied to the circuit’s
primary inputs through external pins. The combinational circuit in Huffman model takes the two-
part test data (PI and PPI) and propagates it to its outputs. The primary outputs of the circuit will
be available on circuit pins immediately. This is collected and stored.

We then put the circuit in the normal mode of operation by setting NbarT to 0, and clocking the
circuit only once. This causes the ns part of the output of the combinational circuit, which is its PPO,
to get clocked into the register (in parallel). This PPO will now be shifted out, so that together with
the circuit’s PO forms the complete output of the combinational part. While this shifting is happen-
ing, we will also shift in a new test data into the shift-register for the next round of testing.

Timing and implementation of this testing process depends on the type of flip-flops and the cor-
responding selection logic structures that we use. The next section discusses this.

7.3.2 Flip-flop Structures

The Verilog code of Fig. 7.18 assumes a simple flip-flop structure and a multiplexer for selection
of normal and shift modes. In addition to this structure, there are other structures that are more
efficient in terms of timing and gate structures, which we will discuss here.

7.3.2.1 Latches and Flip-flop

A static clocked latch is formed by a cross-coupled gate structure and gates for implementing a
clocking mechanism. Figure 7.19 shows an SR-latch, its equivalent NAND structure, and a corre-
sponding symbol.

The cross-coupled structures provide the memory, and the other two gates handle the clocking.
The symbol shown indicates dependency of S and R on the clock. Latches are transparent, meaning
that when clock is active, S and R inputs directly affect the Q output. Unless complemented by other
logic structures or other latches, transparent latches cannot be used in feedback paths in sequential
circuits (e.g., Fig. 7.1).

A D-type latch and its corresponding symbol are shown in Fig. 7.20. This is also a transparent
latch, and the D input drives the Q output while C is 1.

228

Fig. 7.19 Basic latch

Fig. 7.20 D-latch

C

C

D Q

C

D

C

C
Q

Fig. 7.21 CMOS latches

D 1D

Q

C1

1D

Q

C1

Q

1D

Q

C1

Q

D

C

Fig. 7.22 D-type flip-flop

7 Design for Test by Means of Scan

In CMOS, dynamic or pseudo static latches can be built with fewer gates and transistors.
Figure 7.21 shows dynamic and pseudo static latches. Test flip-flop architectures that we present
here and in the following discussions, that are based on the static latches, also apply to dynamic and
pseudo static latches with minor changes.

A flip-flop is built by using two latches with complementary clocks. Flip-flops are not trans-
parent and can be used in sequential circuit feedback paths. Instead of using the complement of the
flip-flop clocks (as shown in Fig. 7.22), CMOS uses two nonoverlapping clock phases. Figure 7.22
shows a D-type flip-flop and its symbol. The output of the flip-flop receives the input D after the

229

Fig. 7.23 Multiplexed scan element

7.3 Full Scan DFT Technique

falling edge of the clock. Although the symbol shown is for triggering on the clock edge, rather than
after the clock edge, this symbol is often used for both flip-flop timings. The flip-flop structure
shown here is often referred to as a master-slave flip-flop, where the left latch is referred to as
master and the right one as slave.

7.3.2.2 Multiplexed Test Data

The flip-flop of Fig. 7.23 provides a close correspondence with the Verilog description of
Fig. 7.18. This flip-flop can be used as a scan element for the feedback register in Fig. 7.17.
Figure 7.23 also shows gate-level details of the multiplexer with enable input that we use for
flip-flop reset.

The flip-flop shown here has a multiplexer that uses NbarT to select between DataIn (when 0)
and SerialIn (when 1). The multiplexer active low enable input provides a synchronous active high
reset input. Figure 7.24 shows how three such flip-flops are used as a scan register for the testable
model of Fig. 7.17. As before, the hatched areas in this diagram represent the combinational part of
the circuit, here that of Huffman model.

In normal mode of operation, when NbarT is 0, ns[2:0] loads into ps[2:0] on the falling edge of
Clock. In the test mode when NbarT is 1, serial data bits on STDI clock into the feedback register
in three consecutive clocks, after which time they become available on ps[2:0]. The right-most bit
is the serial output (STDO).

The Verilog code for the flip-flop structure of Fig. 7.23, including the multiplexer, is shown in
Fig. 7.25. For modeling multi-bit feedback registers, we can use a Verilog code similar to the scan
code in Fig. 7.18, or we can individually cascade flip-flops of Fig. 7.25 to form the right size
register. For a behavioral description of a scan-inserted circuit, Verilog code of Fig. 7.18 may be
more appropriate, while in a netlist where low-level detailed simulations may be needed, forming
the feedback register by cascading individual flip-flops may be more useful.

The flip-flop discussed here is simple, but has the problem of multiplexer delay that adds to the
logic delay. In fact, this structure increases the worst-case delay of the circuit for which scan is
inserted. This reduces the speed of the normal system clock, and thus, a slower overall operation.

7.3.2.3 Dual Clocking

As shown in Fig. 7.17, with each normal mode clock, the ps output of the feedback register, that is
the input of the combinational circuit, must travel through the entire combinational part to affect
this part’s ns output [6]. This involves a delay, only after which the register can be clocked again.

230

Fig. 7.24 Scan register with multiplexed flip-flops

module MuxedFF (input NbarT, Reset, DataIn, SerialIn, Clock, output reg OutFF);
always @ (negedge Clock) begin

if (Reset) OutFF <= 1'b0;
else OutFF <= ~NbarT ? DataIn : SerialIn;

 end
endmodule

Fig. 7.25 Multiplexed scan element Verilog code

7 Design for Test by Means of Scan

This delay is the worst-case delay of the CUT, and its normal clock speed has to be slow enough to
allow the complete propagation of ps into ns through the combinational part.

On the other hand, such a delay does not necessarily apply when running the circuit in the test
mode. In this mode, we are only shifting serial data into the shift-register, and the only logic is that
between flip-flop bits (see Fig. 7.24). Therefore, the test mode clocking can be faster than the
normal data clocking. In large circuits with many serial bits to shift-in, using a faster clock for the
test time gains a good saving in time.

231

1D

Q

C1

OutFF
DataIn

DataClock

SerialIn
TestClock

Fig. 7.26 Scan flip-flop with dual clocking

module DualClockFF (input DataIn, DataClock, SerialIn, TestClock, output reg OutFF);
 wire Clock;

assign Clock = DataClock | TestClock;
always @ (negedge Clock) begin

if (DataClock) OutFF <= DataIn;
else if (TestClock) OutFF <= SerialIn;

 end
endmodule

Fig. 7.27 Dual clock scan flip-flop Verilog code

7.3 Full Scan DFT Technique

The flip-flop of Fig. 7.26 uses dual clocks: one for normal and one for the test mode. The OR
gate at the flip-flop clock input causes it to be clocked with either DataClock or TestClock. The
AND–OR logic at the flip-flop input selects DataIn when DataClock is 1 and selects SerialIn when
TestClock is 1. While either clock is 1, the proper data appear at the flip-flop D-input, and after the
clock becomes 0, the data at D are clocked into the flip-flop.

Figure 7.27 shows the Verilog code of the scan flip-flop with the dual clocking system. In this code,
an internal clock signal (Clock) is made by ORing the two flip-flop clocks. In the always statement,
that is sensitive to this clock, the data and test clocks are used for conditioning what gets clocked into
the flip-flop. Because we have used this procedure and not the exact gate-level equivalent of circuit of
Fig. 7.27, our Verilog model does not represent the timing details of the actual circuit.

The problem with this clocking scheme is the hazard that may occur in the logic at the flip-flop
D-input. In addition, the problem of introducing the logic gates at the inputs of the circuit flip-flops
and increasing the worst-case delay of the circuit still remains.

7.3.2.4 Two-port Flip-flops

To reduce the flip-flop D-input logic delay, the clocking scheme of Fig. 7.28 can be used. The figure
shows gate-level details of the flip-flop complementary clock latches. The logic of the right-hand
side latch (slave) remains the same as that of Fig. 7.19, and the other latch (master), combines its
clocking logic with its required selection logic. To make explanation of the logical operation of the
flip-flop in Fig. 7.28 easier, we use the AND–NOR logic of Fig. 7.19 instead of its NAND equiva-
lent shown in the same figure.

In a timing diagram, Fig. 7.29 shows the operation of the two-port flip-flop of Fig. 7.28. For
loading DataIn into the flip-flop, ClockA and ClockB are asserted alternatively, while ClockC
remains at 0. For loading SerialIn, ClockC and ClockB are applied in alternative orders, and in this
case ClockA is inactive.

232

Fig. 7.29 Two-port flip-flop timing

Fig. 7.28 Two-port three-clock flip-flop

7 Design for Test by Means of Scan

When ClockA is asserted, while ClockB is 0, data on DataIn is latched into the master latch and
appears on M. When ClockB is asserted, data on M is latched into the flip-flop output. The situation
is similar, when ClockA is inactive and ClockB toggles.

Figure 7.30 shows a symbol for the structure of Fig. 7.28 that is based on two latches. The master
latch is a two-port latch and the slave is a standard D-latch such as that of Fig. 7.20.

Figure 7.31 shows the register part of Fig. 7.17 implemented with the flip-flop of Fig. 7.30.
Although shift and normal mode signals are different than the multiplexed flip-flop design of
Fig. 7.24, the overall operation remains the same. For normal operation, ClockA and ClockB are

233

Fig. 7.30 Two-port flip-flop
symbol

Fig. 7.31 LSSD Design

7.3 Full Scan DFT Technique

used, and in test mode, ClockC and ClockB become complementary clocks. The design shown here
is called LSSD (Level Sensitive Scan Design) and was first used by IBM in 1977. Scan path for
shifting serial test data into feedback registers is highlighted in this figure.

Figure 7.32 shows Verilog code of the flip-flop discussed above. Signal names apply to those
shown in Fig. 7.30. This code is based on description of two latches. The master latch uses two
clocks, and slave uses ClockB. The output is changed when ClockB becomes 1.

234

module DualPortFF (input DataIn, SerialIn, ClockA, ClockB, ClockC, output reg OutFF);
reg M;
always @ (DataIn, SerialIn, ClockA, ClockC) begin

if (ClockA) M <= DataIn;
else if (ClockC) M <= SerialIn;

end
 always @ (M, ClockB)

 if (ClockB) OutFF <= M;
endmodule

Fig. 7.32 Dual port flip-flop Verilog code

7 Design for Test by Means of Scan

The two-port 3-clock flip-flop of Fig. 7.28 or Fig. 7.30 avoids the multiplexer delay of the
previously mentioned flip-flops. The clocking mechanism allows different clock speeds for normal
and test modes. This structure has the overhead of having to handle three clock signals.

7.3.3 Full Scan Design and Test

So far in Sect. 7.3, we have talked about scan hardware, scan operation, and testing a circuit that
has become testable with this full scan DFT technique. This section shows the complete flow of
DFT from a problem specification to generating test and developing a test program.

We show how test methods of the previous chapters fit together with the full scan DFT tech-
niques. Some of the topics discussed earlier in this section such as the full scan test procedure will
be elaborated on, and the timing details will be explained in Verilog procedures.

The example that is used is the Residue-5 circuit that was first presented in Chap. 2. This is a
sequential circuit, for the testing of which DFT techniques are essential. Figure 7.33 shows the
behavioral description of this design. In the discussion that follows, this design will be taken
through the following steps:

Design and validation and design•	
Synthesis and netlist generation•	
Unfolding•	
Combinational test generation•	
Scan insertion•	
Developing a virtual tester•	
Test set verification•	

7.3.3.1 Design and Design Validation

As mentioned, our example design is the Residue-5 circuit discussed in this and several other
chapters in this book. This hardware is described in Verilog (Fig. 7.33). The coding style is
according to the Huffman model of Fig. 7.1. The register part specifies an asynchronous resetting
mechanism, which means that the reset signal does not participate in the combinational part of the
circuit. Keeping reset and other flip-flop control signals away from the combinational part is good
for postmanufacturing testing.

The design described in an HDL must be validated. For this purpose, a testbench for functional testing
of the design must be developed. This topic has been covered in Chap. 2 and will not be repeated
here.

Although we have not taken advantage of this opportunity, the combined design and test environ-
ment that we are presenting here allows a testbench for design validation to be used as a template

235

module residue5(input clk, reset, input[1:0] in, output[2:0] out);
reg[2:0] nState, pState;
parameter zero = 3'b000, one = 3'b001, two = 3'b010, three = 3'b011,

four = 3'b100;

always@(posedge clk, posedge reset)
if(reset) pState = zero;
else pState = nState;

always@(pState, in) begin

case(pState)
zero:

case(in)
2'b00: nState = zero;
2'b01: nState = one;
2'b10: nState = two;
2'b11: nState = three;

endcase

case(in)
2'b00: nState = one;
2'b01: nState = two;
2'b10: nState = three;
2'b11: nState = four;

endcase

. . .

four:
case(in)

2'b00: nState = four;
2'b01: nState = zero;
2'b10: nState = one;
2'b11: nState = two;

endcase
endcase

end//always
assign out = pState;

endmodule

one:

Fig. 7.33 residue5 partial Verilog code

7.3 Full Scan DFT Technique

for a testbench or a test program for postmanufacturing testing. Starting with a testbench for design
validation, and gradually improving it for postsynthesis and eventually for manufacturing test is
referred to as “testbench migration”. In testbench migration, a testbench begins with just functional
test data for verifying the presynthesis design of a circuit and gradually changes to include test data
generated by ATPG programs.

7.3.3.2 Synthesis and Netlist Generation

The next step after design validation is synthesis. Using an FPGA-based synthesis program and a
netlist converter, we have successfully synthesized the Verilog code of Fig. 7.33. The result is shown

236

module residue5_net(clk, reset, in, out);
input clk;
input reset;
input [1:0]in;
output [2:0]out;
wire
wire_1,
wire_2,
. . .

. . .

. . .

. . .

. . .

in_0_0,
in_0_1,

out_0_0,
out_0_1,

pin #(2) pin_0 ({in[0], in[1]}, {in_0, in_1});
pout #(3) pout_0 ({out_0_7, out_1_7, out_2_5}, {out[0], out[1],

 out[2]});
fanout_n #(8, 0, 0) FANOUT_3 (in_0, {in_0_0, in_0_1, in_0_2, in_0_3,

 in_0_4, in_0_5, in_0_6, in_0_7});
fanout_n #(7, 0, 0) FANOUT_4 (in_1, {in_1_0, in_1_1, in_1_2, in_1_3,

 in_1_4, in_1_5, in_1_6});

notg #(0, 0) NOT_1 (WIRE_3, in_1_0);
notg #(0, 0) NOT_2 (WIRE_4, out_2_0);

and_n #(3, 0, 0) AND_14 (wire_25, {wire_6_5, wire_3_4, out_2_4});
or_n #(4, 0, 0) OR_2 (wire_21, {wire_25, wire_24, wire_23, wire_22});
dff INS_1 (out_0, wire_1, clk, reset, 1'b0, 1'b1, NbarT, Si, 1'b0);
dff INS_2 (out_1,wire_13, clk, reset, 1'b0, 1'b1, NbarT, Si, 1'b0);
dff INS_3 (out_2,wire_21, clk, reset, 1'b0, 1'b1, NbarT, Si, 1'b0);

endmodule

Fig. 7.34 Postsynthesis residue5 netlist

7 Design for Test by Means of Scan

in Fig. 7.34. This netlist uses primitives that are compatible with our utility PLI functions for fault
collapsing, fault simulation, and test generation. This netlist, the components of which are shown in
Appendix B, is automatically generated from the circuit’s behavioral description discussed in
Appendix F.

As expected, the netlist includes a logical block consisting of basic gates with a feedback through
three flip-flops.

This is compatible with the Huffman model of Fig. 7.1. An example for logic feedback through
the flip-flops can be seen by tracing wire wire_13 that goes to the D input of INS_2 flip-flop.

Before going to the next step of design, it is necessary to perform postsynthesis simulation of
this netlist and make sure it is a correct translation of the behavioral model of Fig. 7.33.

7.3.3.3 Unfolding

Once we have verified that our synthesis has been performed correctly, we start the test generation
process. The circuit in Fig. 7.34 is a sequential circuit, and test generation methods and programs
for sequential circuits are not very efficient in terms of fault coverage. For this reason, we convert
our CUT to a combinational circuit by unfolding it, as presented in Fig. 7.2.

Figure 7.35 shows the residue5 netlist after being unfolded. As discussed, unfolding means
removing flip-flops and making their outputs and inputs pseudo primary inputs and pseudo primary

237

module res5_Unfold (/*PI,PPI*/{in,out_2, out_1, out_0},
 /*PO,PPO*/{out,HM_1, HM_13, HM_21});
input [1:0]in;
input out_0, out_1, out_2; //ppIn
output [2:0]out;
output HM_1, HM_13, HM_21; //ppOut
wire
wire_2,
. . .
in_0_0,
in_0_1,
. . .
out_0_0,
out_0_1,
. . .
wire_3_2,
wire_3_3,
. . .
PPI0,
PPI1,
PPI2,
PPO1,
PPO13,
PPO21;

pin #(2) pin_0 ({in[0], in[1]}, {in_0, in_1});
pin #(3) pin_1 ({out_0, out_1, out_2}, {PPI0, PPI1, PPI2});//Pseudo PI
pout #(3) pout_0 ({out_0_7, out_1_7, out_2_5}, {out[0], out[1],

out[2]});
pout #(3) pout_1 ({PPO1, PPO13, PPO21}, {wire_1, wire_13, wire_21});
fanout_n #(8, 0, 0) FANOUT_3 (in_0, {in_0_0, in_0_1, in_0_2, in_0_3,
 in_0_4, in_0_5, in_0_6, in_0_7});
. . .
notg #(0, 0) NOT_1 (wire_3, in_1_0);
notg #(0, 0) NOT_2 (wire_4, out_2_0);
. . .
and_n #(3, 0, 0) AND_14 (wire_25, {wire_6_5, wire_3_4, out_2_4});
or_n #(4, 0, 0) OR_2 (PPO21, {wire_25, wire_24, wire_23, wire_22});

//dff INS_1 (out_0, wire_1, clk, reset, 1'b0, 1'b1, NbarT, Si,1'b0);
//dff INS_2 (out_1, wire_13, clk, reset, 1'b0, 1'b1, NbarT, Si,1'b0);
//dff INS_3 (out_2, wire_21, clk, reset, 1'b0, 1'b1, NbarT, Si,1'b0);

endmodule

Fig. 7.35 Unfolded residu5 netlist

7.3 Full Scan DFT Technique

outputs. Figure 7.35 shows that out_0, out_1, and out_2 that used to be flip-flop outputs are now
mapped to PPI0, PPI1, and PPI2 that are circuit’s pseudo primary input. Similarly, former flip-flop
inputs wire_1, wire_13, and wire_21 are now mapped to PPO1, PPO13, and PPO21 pseudo pri-
mary outputs. The new signal mentioned above also appears on circuit port list as inputs and
outputs.

7.3.3.4 Combinational TPG

The netlist in Fig. 7.35 represents a combinational circuit and uses our standard primitives. Chapter
5 showed several random TG methods and Verilog testbenches for implementing them. We have

238 7 Design for Test by Means of Scan

used the AECpt algorithm of Sect. 5.3.2.2 for test generation for this module. The Verilog testbench
for this purpose is similar to the code shown in Fig. 5.27 and is not repeated here. The testbench we
used generates the collapsed fault list before test generation.

The results from the test generation Verilog program are as follows.

Number of faults: 104•	
Number of test vectors: 26•	
Bits per test vector: 5 (2 PI, 3 PPI)•	
Fault coverage: 100%•	

Recall from Chap. 5 that a testbench was developed for sequential test generation of the Residue-5
circuit (Fig. 5.30). That testbench generated 7 test vectors applied over 45 clock cycles (effectively,
45 tests), and resulted in only 82.4% fault coverage. The unfolding of this circuit enabled us to
achieve a 100% coverage.

7.3.3.5 Scan Insertion

To facilitate application of tests generated by the procedure discussed above to the actual CUT, a
scan for accessing state flip-flop inputs and outputs is inserted in the CUT. With the insertion of this
scan, the block diagram of the netlist of residue5 that was originally modeled as in Fig. 7.1 becomes
as that shown in Fig. 7.36. The netlist corresponding to this figure will be shown next.

For this purpose, the postsynthesis netlist of Fig. 7.34 is modified to include the necessary scan
flip-flops and signals. The synthesis tool that generated the original netlist used flip-flop types that
already included serial shift facilities that were not used in this netlist. Figure 7.37 shows this flip-
flop with NbarT, serial input (Si), and standard control signals. This description corresponds to the
flip-flop notation used in Fig. 7.36 for the feedback flip-flop. Note: The block diagram notation for
the flip-flops in Fig. 7.36 shows two flip-flop D inputs marked by 1,2D and 1,3D. The notation
specifies that both D inputs are controlled by the clock signal number 1. The upper input requires
mode 2 to be active and the lower input needs mode 3. Modes 2 and 3 are determined by a 1 or a 0
on the lower-left input of the flip-flop. We will use this notation in flip-flops of this chapter.

The netlist shown in Fig. 7.38 takes advantage of shift features of the flip-flop of Fig. 7.37. This
netlist has additional scan control inputs NbarT and Si.

The NbarT input connects to NbarT inputs (shift control) of the state flip-flops (INS_1, INS_2,
and INS_3, shown in the last part of code of Fig. 7.38). The Si input connects to flip-flop 0 (INS_1),
the output of which goes to the input of the next, eventually forming a chain of three scan flip-flops.
Signal out_2 that is the output of the last flip-flop drives the So serial output signal.

7.3.3.6 Developing a Virtual Tester

Figure 7.38 represents a testable circuit. This netlist implements the original desired functionality
of the design, as well as our inserted test hardware. Once manufactured, it has to be tested with a
test plan that depends on the test architecture that we have developed, i.e., full scan. The test
program running on an ATE implements this test plan.

In this section, we use a Verilog testbench to imitate an ATE. The test program running on the
ATE that is written in C/C++ or other high-level software languages will be written here in Verilog
procedural code. As previously discussed, we refer to this Verilog testbench as a virtual tester.

The block diagram of the virtual tester testing the full scan version of the Residue-5 circuit is
shown in Fig. 7.39. The main task of the virtual tester is to read predetermined test data from an
external file, apply it to the CUT, get the output of the CUT, and compare the response with the

239

module dff #(parameter tphl = 0, tplh = 0) (Q, D, C, CLR, PRE, CE,
 NbarT, Si, global_reset);

input D, C, CLR, PRE, CE, NbarT, Si, global_reset;
output reg Q;
reg val;

always @(posedge C or posedge PRE or posedge CLR) begin
if(CLR || global_reset)

 val = 1'b0;
 else if(PRE)
 val = 1'b1;
 else if(NbarT)

val = Si;
 else if(CE)

val = D;
end

always@(posedge val) #tplh Q = val;
always@(negedge val) #tphl Q = val;

endmodule

Fig. 7.37 Flip-flop with scan facilities

Fig. 7.36 residue5 with scan chain

7.3 Full Scan DFT Technique

240

module res5_ScanInserted(clk, reset, in, out, NbarT, Si, So);
input clk;
input reset;
input [1:0]in;
input NbarT, Si;
output So;
output [2:0]out;
wire
wire_1,
wire_2,
. . .
in_0_0,
in_0_1,
. . .
out_0_0,
out_0_1,
. . .
pin #(2) pin_0 ({in[0], in[1]}, {in_0, in_1});
pout #(3) pout_0 ({out_0_7, out_1_7, out_2_5}, {out[0], out[1],

out[2]});
fanout_n #(8, 0, 0) FANOUT_3 (in_0, {in_0_0, in_0_1, in_0_2, in_0_3,

in_0_4, in_0_5, in_0_6, in_0_7});
. . .
notg #(0, 0) NOT_1 (wire_3, in_1_0);
notg #(0, 0) NOT_2 (wire_4, out_2_0);
xor_n #(2, 0, 0) XOR_2 (wire_13, {out_1_3, wire_14});
. . .
and_n #(3, 0, 0) AND_14 (wire_25, {wire_6_5, wire_3_4, out_2_4});
. . .
and_n #(3, 0, 0) AND_14 (wire_25, {wire_6_5, wire_3_4, out_2_4});
or_n #(4, 0, 0) OR_2 (wire_21, {wire_25, wire_24, wire_23, wire_22});

dff INS_1 (out_0, wire_1, clk, reset, 1'b0, 1'b1, NbarT, Si, 1'b0);
dff INS_2 (out_1, wire_13, clk, reset, 1'b0, 1'b1, NbarT, out_0, 1'b0);
dff INS_3 (out_2, wire_21, clk, reset, 1'b0, 1'b1, NbarT, out_1, 1'b0);

assign So = out_2;

endmodule

Fig. 7.38 Scan-inserted circuit under test

Fig. 7.39 Virtual tester for residue5

7 Design for Test by Means of Scan

241

module Tester;

parameter nff = 3;
parameter in_size = 2;
parameter out_size = 3;
parameter st_size = 3;
parameter stIndex = 8; /*in_size + out_size + in_size*/
parameter line_size = st_size * 2 + in_size + out_size;
reg [numOfPIs+ numOfPOs + 2 * numOfDffs - 1 : 0] line;
. . .

res5_ScanInserted FUT(clk, reset, PI, PO, NbarT, si, so);

always #10 clk = ~clk;

initial begin

$FaultCollapsing(Tester.FUT, "Res5.flt");

 while(!$feof(faultFile)) begin
 . . .

while((!$feof(testFile))&&(!detected)) begin
 . . .

 end//test
 . . .

end//fault

$fclose(faultFile);
$display("number of faults = %f",numOfFaults);
$display("number of detected faults = %f", numOfDetected);
$display("Coverage = %f", numOfDetected * 100.0 / numOfFaults);

$stop;
end//initial

endmodule

Fig. 7.40 Virtual tester for full scan Residue-5

7.3 Full Scan DFT Technique

expected response from the external file. Since we are developing a virtual tester, and our CUT is
really not a faulty circuit, our virtual tester also has the responsibility of injecting fictitious faults in
the circuit to see if the test set that is provided detects them. We take this process one step further,
and inject all circuit faults obtained by fault collapsing in the postsynthesis netlist of Fig. 7.34.

As shown in Fig. 7.39, the parallel data read from the external test file have two parts: one is
directly applied to in[1:0] input of CUT and the other is serialized and applied through Si. The
timing of these data is such that when all serial bits have been shifted in the scan chain, the parallel
data must be applied to in[1:0].

As shown, the output also has two parts. The first part becomes available on out[2:0] immedi-
ately after all inputs (i.e., parallel and serial) have been applied. Then, the state outputs (pseudo
outputs) become available after the flip-flops have been clocked and then shifted out through So.

The Verilog testbench in Fig. 7.40 implements the test environment shown in the block diagram
of Fig. 7.39. This testbench reads external data files and through control of clocking of the flip-flops
and timing of inputs and outputs applies this test data to the inputs of our CUT, and collects the
corresponding outputs. It then compares output data with expected outputs available in the test data
file. The paragraphs that follow discuss the manner in which clock data and test inputs of the scan-
inserted Residue-5 are controlled that leads to testing this circuit with input/output data that are
obtained from the unfolded combinational model of Residue-5.

242

module Tester;
. . .

. . .
initial begin

 while(!$feof(faultFile)) begin

testFile = $feof("Res5.tst","r");
status = $fscanf(faultFile,"%s s@%b\n",wireName, stuckAtVal);

$InjectFault (wireName, stuckAtVal);

global_reset = 1'b1; reset = 1'b1; #1;
global_reset = 1'b0; reset = 1'b0;

PI = 0;
cur_expected_st = 0;
detected = 1'b0;

 while((!$feof(testFile))&&(!detected)) begin
. . .

 end//test

if(detected == 0) $display("NOT DETECTED = %s s@%b", wireName,
 stuckAtVal);

 $RemoveFault(wireName);
 numOfFaults = numOfFaults + 1;
 $fclose(testFile);

 end//fault
 . . .
 end//initial

endmodule

Fig. 7.41 Fault injection in Residue-5

7 Design for Test by Means of Scan

The testbench in Fig. 7.40 is a generic tester module, at the top of which parameters specifying the
number of circuit inputs, outputs, and flip-flops are specified. Other necessary declarations follow the
parameter specifications. Variable line is declared such that a line from test data file can be read into
this variable. Instantiation of the scan-inserted CUT and generation of a periodic clock are also shown
here.

The procedural code of the tester starts with the initial statement and, immediately following this
statement, performs fault collapsing and opens the fault file for subsequent reading. We then have
two while loops for fault injection and test data application. Display tasks reporting test results
appear at the end of the initial block.

Figure 7.41 shows the fault injection (the outer while loop). In an actual test program for testing
a manufactured part, this loop does not exist. In postmanufacturing test, we are testing for existing
faults and not intentionally injecting faults. After every fault injection, the loop in Fig. 7.41 resets
the CUT and prepares it for testing. Testing is done in the inner while loop shown here.

Figure 7.42 shows the details of the inner loop of the procedural code of Fig. 7.40. This while
loop is responsible for reading a line of test data from testFile, applying the input part of it to the
circuit, and checking circuit’s response with the output part of the line of test data.

A line read from testFile has an input part and an output part. Arrangement of inputs and outputs
in line is shown in Fig. 7.43. The input part has a part that applies directly to the circuit’s primary

243

module Tester;
. . .

. . .

. . .

initial begin

while(!$feof(faultFile)) begin

while((!$feof(testFile))&&(!detected))begin
status = $fscanf(testFile,"%b\n",line);

 pre_expected_st = cur_expected_st;

expected_PO = line[out_size - 1:0];
cur_expected_st = line[st_size + out_size -1 :out_size];
PI = line[st_size+out_size+in_size-1:st_size+out_size];

@(posedge clk);

 NbarT = 1'b1;
 index = stIndex;

 repeat(nff) begin
 si = line[index];
 saved_st[index - stIndex] = so;
 @(posedge clk);
 index = index + 1;
 end

 SampledPO = PO;
 NbarT = 1'b0;
 #5;

 if({pre_expected_st, expected_PO} != {saved_st, SampledPO})
begin

 numOfDetected = numOfDetected + 1;
 detected = 1;

end

end
 . . .

end
 . . .

end//initial

endmodule

F
au

lt

T
es

t

Fig. 7.42 Test application and response collection

Fig. 7.43 Arrangement of stimulus and response in line

7.3 Full Scan DFT Technique

244 7 Design for Test by Means of Scan

inputs and another part that must be shifted into scan flip-flops (Pseudo PI). Similarly, the output
part itself has two parts: one part becomes available immediately when proper inputs (PI) and scan
data are shifted into the flip-flops (PO) and a second part that will be shifted out when serial data
belonging to the next test vector are being shifted in (Pseudo PO). Understanding this timing is
crucial in collecting the right outputs and comparing relevant responses.

The Test loop in Fig. 7.42 reads stimuli and response data, applies it to the CUT, compares the outputs,
and reports if a test detects the injected fault. Data that contain stimuli and response have the format
shown in Fig. 7.43. Variable names storing various parts of line data are indicated in this figure.

As shown in Fig. 7.42, before cur_expected_st (current expected state) is overwritten with new
data from line, it is saved in pre_expected_st (previous expected state). The pre_expected_st is saved
because the actual state flip-flop contents of the previous test will not become available until current
serial data are shifted into the state flip-flops, and that shifted-out data is what needs to be compared
with pre_expected_st.

The PI part of the current data read from line is immediately applied to the scan-inserted
Residue-5. (See PI in port connections of res5_ScanInserted in Fig. 7.40.)

The repeat loop in Fig. 7.42 takes the pseudo PI part of line and shifts it into the circuit’s state
flip-flops. Meanwhile, flip-flop outputs are serially shifted out and saved in saved_st. During the
shift operation, the circuit is in test mode (NbarT = 1), and each shift is accompanied with the posi-
tive edge of clock. Shifting repeats nff (number of flip-flops) times.

After shifting completes, with PI at the circuit’s primary inputs, and pseudo PI part of line in the
state flip-flops, the circuit produces the output that corresponds to the input data of line that was just
read. This PO is saved in SampledPO.

In the last part of the loop in Fig. 7.42, the collected pseudo output and the primary output of
the circuit are concatenated and compared with the expected state and the expected primary
output.

7.3.3.7 Test Set Verification

The test set for Residue-5 circuit was developed using its unfolded model with no registers, and
using combinational test generation methods. We obtained a 100% coverage from this test set. The
above procedure, in which this same test set is applied to the actual sequential model of Residue-5,
verifies the test set obtained from the combinational model.

7.4 Scan Architectures

This chapter started with ad hoc methods for making designs testable, and gradual improvement of
such methods led to the DFT technique that we referred to as full scan. Actually, full scan is part
of a larger category of DFT techniques that are generally referred to as scan architectures [5].
This section presents alternatives to a full scan design. We start with repeating the full scan, to set
the ground for comparing it with other methods.

As we have said in many instances before in this book, any sequential digital system can be
modeled by a combinational circuit with a feedback through a vector of clock-controlled flip-flops.
The functional relation between the flip-flops may form one or several clusters of flip-flops that
become our feedback registers. In this model, no line is drawn between control and data registers,
i.e., feedback registers consist of data and control flip-flops. We use the general diagram of Fig. 7.44
for describing various scan architectures.

245

Fig. 7.44 Huffman model with multiple vector inputs, outputs, and states

7.4 Scan Architectures

7.4.1 Full Scan Design

In the full scan DFT techniques, feedback registers are given the additional capability of acting as
shift-registers in the test mode. Full scan chains all the registers together and provides a serial-in
and a serial-out ports. This method enables serial access for controlling all flip-flop outputs (cir-
cuit’s present state) and observing all flip-flop inputs (circuit’s next state). Full scan refers to the
fact that all circuit flip-flops are included in the scan chain. Figure 7.45 shows addition of full scan
to the model of Fig. 7.44. The problem with full scan is the long chain of flip-flops that test data
have to be shifted into that reflects on the test time [7].

7.4.2 Shadow Register DFT

An alternative design to full scan design is the use of shadow registers. This technique duplicates
the feedback registers. It uses one set for normal operation of the circuit and another set for test
purposes. This method reduces the test time by overlapping the time of test data preparation and
response collection with the normal operation of the circuit [6].

7.4.2.1 Shadow Architecture

Figure 7.46 shows the addition of a shadow register to the model of Fig. 7.44. The new set of
registers receives next-state outputs from the combinational part of the circuit and produces outputs
that are multiplexed on the present state inputs of the combinational part.

246

Fig. 7.45 Full scan DFT technique

7 Design for Test by Means of Scan

7.4.2.2 Shadow Test Procedure

In the normal mode (NbarT = 0), the circuit has its normal inputs, and normal feedback
registers provide data for the present state of the circuit. While in this mode, the shadow reg-
isters are put in their serial shift mode. Therefore, simultaneous with the normal operation of
the circuit, the test data on Si are shifted into the shadow registers with Tclk test clock. When
all test data have been shifted in, NbarT is asserted, which puts the circuit in the test mode and
disables shifting serial data into the shadow register. In this mode, the normal circuit clock (clk)
is disabled and (see the AND gate on clock) test states (TS1 and TS2) will drive the circuit’s
state inputs (ps1 and ps2).

In the test mode, the ps1 and ps2 inputs of the combinational part are driven by test data. We will
also drive PI1 and PI2 with their corresponding test data. This will set all inputs of the combi-
national part of the CUT to previously prepared test data. With test inputs provided to all combina-
tional block inputs, the response becomes available on PO1, PO2, ns1, and ns2. The primary
output part of the response (PO1 and PO2) can be read at this time, but ns1 and ns2 must be
clocked into the shadow register and shifted out in order to be observed. Clocking the circuit while
NbarT is 1 loads ns1 and ns2 into the shadow registers (see 2, 3 control inputs of the shadow
registers, mode 2 allows serial shift , and mode 3 takes the normal flip-flop input).

247

Fig. 7.46 Shadow register

7.4 Scan Architectures

248 7 Design for Test by Means of Scan

To collect the ns1 and ns2 part of the test response, the circuit is put in the normal mode by
setting NbarT to 0. This puts the shadow registers in the shift mode. In this mode, clk is enabled and
the circuit goes back to normal mode of operation, new test data inputs start being shifted from Si,
and the part of test response on ns1 and ns2 start being shifted out through So.

7.4.2.3 Shadow Versus Full Scan

The biggest advantage of shadow registers is the capability of online testing, and its disadvantage
is doubling the number of feedback flip-flops.

Timing wise, having a separate clock for test (Tclk) enables faster shifting of test data into the
shadow registers. On the other hand, the multiplexers in the feedback path cause a delay in this path
which is considered another disadvantage of this technique. This delay slows down the normal clock
speed and affects system performance.

For test generation, combinational methods can be used with the unfolded version of the CUT.
This is because insertion of shadow registers makes all combinational part inputs and outputs
accessible.

7.4.3 Partial Scan Methods

The problem of test time in full scan designs can be alleviated by scan chains that include only part
of the feedback registers. As compared with full scan, selecting some of the feedback registers is
referred to as partial scan. The method of selecting registers that are put in the scan varies from one
partial scan method to another, but in general, selection must be done such that combinational test
generation methods can still be used for test data generation [8].

In an RT-level design with a controller and a datapath, partial scan methods generally apply to
the datapath. In a datapath, paths through buses and logic leading to registers are searched, looking
for registers whose exclusion from a scan chain (inclusion in the CUT test model) would still allow
combinational test generation methods to be used for test generation. Below we will discuss one
such scenario.

7.4.3.1 A Partial Scan Architecture

Figure 7.47 repeats the circuit model of Fig. 7.44. For presenting our example partial scan method,
we assume the combinational part of the circuit we are to add DFT hardware consists of two com-
binational blocks as shown in the hatched boxes of Fig. 7.47. The circuit primary inputs split and
go to both blocks, A and B, and the outputs of the blocks are merged to form the circuit’s primary
outputs. One feedback register is driven by block A and the other by block B. The output of the latter
register goes to input of block B and that of the former goes to block A. As shown in the diagram,
the feedbacks are crossed, i.e., A through register to B and B through register to A. It is this property
that makes partial scan possible in this circuit.

In order to test all the logic in the circuit of Fig. 7.47, it is only necessary to put feedback register
R2 in a scan path. This scan is shown by a heavy dotted line in Fig. 7.47. Applicability of this
method to datapath of an RT-level design becomes more clear by turning the diagram of Fig. 7.47
into that of Fig. 7.48.

249

Fig. 7.47 Partial scan, starting with Huffman model

Fig. 7.48 Partial scan datapath

7.4 Scan Architectures

Combinational blocks A and B can be a mixture of logic units and buses in a datapath.
Although it may be difficult to map an entire datapath into an architecture like that of Fig. 7.48,
it is not hard to find sections of a large datapath that fit this model. In addition, with minor modi-
fications to a datapath, this and other sub-architectures that qualify for various partial scan
designs can be formed.

In the above discussion, we selected a register to be removed from full scan and found that this
removal would still qualify the resulting circuit model for combinational test generation. In a
large RT-level design, there may be many such choices, some of which may conflict with one

250

Fig. 7.49 Partial scan
combinational model

Fig. 7.50 Test vector arrangement

7 Design for Test by Means of Scan

another. Selection of a set of registers to remove from a full scan design is an np-complete problem
that has been discussed and dealt with in the literature [10].

7.4.3.2 Partial Scan Test Procedure

In general, testing a design with partial scan is more involved than one with full scan. A partial
scan design requires a sequence of shiftings and register parallel loading to get test data to and out
of all logic parts. In spite of this more complex handling of test data, a good partial scan design
still uses combinational test generation methods. Testing the design of Fig. 7.47 or Fig. 7.48 is
discussed here.

Test generation for the combinational part of circuit of Fig. 7.47 is done by a circuit model
that removes R1, and then unfolds the circuit by treating input and output of R2 as pseudo pri-
mary output and pseudo primary input, respectively. This combinational model is shown in
Fig. 7.49.

As shown, R1 is removed and its ns1 input is connected to ps1 output. Register R2 unfolds and
its input becomes PPO1 and its output becomes PPI1 (pseudo output and input). Since this model
does not have any feedback loops, it is treated as a combinational circuit, and combinational test
generation methods are used for generating test for it. Test vectors generated for this circuit have
the form shown in Fig. 7.50. Values for PI1, PI2, and PPI1 inputs are followed by output values
PO1, PO2, and PPO1.

What follows discusses application of tests (format of Fig. 7.50) to our partial scan design
(Fig. 7.47 or Fig. 7.48), and collection of outputs. Although Figs. 7.47 and 7.48 are equivalent, the
discussion below is easier to follow when considering Fig. 7.48.

2517.4 Scan Architectures

In the normal mode of operation, NbarT is 0 and circuit is performing its normal operation. With
each clock, ps1 receives ns1 (register R1), and ps2 receives ns2 (register R2). In the test mode, R1
is disabled and R2 is put in the shift mode. When all data bits belonging to PPI1 segment of a test
vector have been shifted into R2 (which means that ps2 in Fig. 7.48 has proper test data), the PI1
segment is applied to the PI1 input of the circuit. At this time, PO1 test response is collected and
ns2 is generated as well.

We then disable R2 and enable R1 parallel loading. This is happening while combinational block
A (Fig. 7.48) has proper PI1 and ps2 test inputs. Clocking the circuit at this time will load ns1 in
R1, and thus applies it to block B via ps1.

The other part of input of block B is PI2 that is read from the test vector and applied to this input.
Now, block B has all its test data applied to its inputs. The PO2 output from block B is read and
collected.

Of the three parts of the test vector response, we have two parts ready (PO1 and PO2). We now
put the circuit back in the test mode, and while new test data shift in R2, test response of B in R2’s
ns2 input will serially be collected. After the shifting, the three parts of the output (PO1, PO2, and
PPO1) are ready to be compared with the expected response.

The procedure discussed above is summarized as shown below. This procedure is for the test
mode and begins by setting NbarT to 1.

While •	 NbarT is 1, clock R2, shift PPI1 test data into R2, disable R1; also of previous test serially
collect PPO1.
Apply •	 PI1 test data to PI1 input, collect response from PO1.
Set •	 NbarT to 0, enable R1, clock once.
Apply •	 PI2 test data to PI2 input, collect response from PO2.
Keeping •	 NbarT at 0, clock once.
Return to step 1.•	

7.4.3.3 Partial Scan Versus Full Scan

Obviously, partial scan reduces test time by having fewer bits to shift in. On the other hand, partial
scan has a more complex test procedure as discussed above. The main problem with partial scan is
that there is no unique partial scan method, and not all circuits can necessarily take advantage of a
partial scan method. For finding proper registers to scan, a topological processing of the circuit is
necessary. Configuring a circuit for partial scan must be paralleled with extracting a test procedure
that works with the scan design.

A partial scan method such as the one described here fits well with pipeline architectures. In this
case, the test procedure becomes dependent on depth of the pipeline.

7.4.4 Multiple Scan Design

The problem of long scan chain can be moderated by using multiple independent or parallel scan
chains. In multiple independent scan chains, each scan register has its shift, load, and clock control,
whereas in multiple parallel scan chains, all scan registers are controlled by the same set of signals.
If registers to be scanned can be put into groups of equal number of cells, then they can be regarded
as parallel scan registers with the same set of control signals. However, if the number of flip-flops
in the scan chains in a design are not the same, then they need independent shift and clock enable
control signals [9].

252

Fig. 7.51 Multiple parallel scan chains

7 Design for Test by Means of Scan

7.4.4.1 Multiple Scan Architecture

Figure 7.51 shows the familiar model that we have been using for demonstrating our scan design.
In this figure, R1 and R2 are put into two separate scan chains with Si1 and Si2 inputs and So1
and So2 outputs. We assume here that registers R1 and R2 have the same length. Therefore, the
scan chains have become two parallel registers with the same clock and NbarT control inputs.

7.4.4.2 Multiple Scan Test Procedure

Test generation for a multiple scan design is based on the unfolded model and is no different than test
generation for a full scan design. The difference is in application of test vectors through serial test inputs.

Input test data for the circuit of Fig. 7.51 consist of that for PI1, PI2, PPI1, and PPI2, and test
responses are for PO1, PO2, PPO1, and PPO2. For testing this circuit that has two scan chains for
PPI1 and PPI2, individual test data bits from the corresponding test data segments are read and are
applied simultaneously to Si1 and Si2. When NbarT is 1, R1 and R2 are in the shift mode and shift
test data into the registers. While shifting-in is taking place, previous results are collected from So1
and So2. When shifting is complete, NbarT is set to 0, parallel test data for PI1 and PI2 are applied
to the CUT, and PO1 and PO2 are read.

2537.5 RT Level Scan Design

7.4.4.3 Compared with Full Scan

Multiple scan significantly reduces test time, with no overhead on test generation procedure. The
overhead is on extra test pins, and in case of independent scans, on test clock and normal mode controls.

7.4.5 Other Scan Designs

Depending on the architecture of circuit under test, test data length, test procedure, and other such
factors, many variations of scan are possible.

A variation of serial scan is random access scan. In this case, the feedback flip-flops in Fig. 7.44
are put in a memory array. In normal mode of operation, the flip-flops work in parallel mode, and
in test mode, individual flip-flops are addressed, read out through scan output, and set to their test
values through the scan input. Addressing scan flip-flops in test mode is done by row and column
addresses that can be shifted-in, counted to, or a mixture of both.

This method offers fast access to the scan flip-flops, but has a large hardware overhead for imple-
mentation of the memory array. Addressing scan flip-flops and extra pins for this purpose are cause
of extra hardware and possibly test time reduction.

Often datapath and control parts of a circuit require different DFT methods. For separating con-
trol and data parts of a circuit, the isolated scan method can be used. We can then use full scan for
the control part, and perhaps partial scan for the data part. Such arrangements are architecture
dependent, and too many to enumerate. Hardware designers must be aware of the possibilities and
decide on the DFT method to use based on the circumstances. Often, there is no single best
solution.

7.5 RT Level Scan Design

The previous section discussed various scan designs for the general sequential circuit model of
Fig. 7.44 (Huffman model). In this section, we show how these methods apply to an actual RT-level
design with a datapath and a controller.

A complete RT level design can either be partitioned into its datapath and controller, and each
part be treated for scan separately, or all the registers and control flip-flops can be lumped together
and treated according to the Huffman model of Fig. 7.44. In the example that we present in this
section, we take the latter approach and treat all flip-flops similarly. The example that we use is the
Adding Machine first presented in Chap. 2.

7.5.1 RTL Design Full Scan

As shown in Fig. 2.30, the Adding Machine has two 8-bit registers for AC and IR, and it has a 6-bit
register for the program counter. With the addition of two control flip-flops, this design has a total
of 24 flip-flops. Scan insertion in this design is done as shown in Fig. 7.52. The serial input is the
left-most bit of AC, and serial output is taken from the least significant control bit.

Although we are showing an RT-level view of the circuit, the actual scan is inserted in the netlist
of this circuit. The netlist is obtained by synthesizing the behavioral description of the Adding
Machine. The scan is inserted in this netlist manually.

254

Fig. 7.52 Full scan Adding Machine

7 Design for Test by Means of Scan

With the scan inserted as shown, data_bus_in becomes the circuit’s primary input, and
data_bus_out and ad_bus together form the primary output. The testable circuit has 24 pseudo
primary input and 24 pseudo primary output that are register outputs and inputs, respectively.

For testing this circuit, an unfolded model of the circuit was created, as was done for the
Residue-5 example of Sect. 7.3. This combinational netlist was used for test generation by HOPE
for 976 faults. HOPE generated 64 tests and obtained coverage of 80.53%. Each test vector has 32
bits on the input side and 38 bits on the output side. From the generated 32 bits, 8 bits are used for
data_bus_in and the remaining 24 bits are used for the scan path. The outputs are 8, 6, and 24 for
data_bus_out, ad_bus, and the scan path, respectively.

The testable model of the Adding Machine was obtained by putting together the circuit flip-
flops in one chain. Figure 7.53 shows the virtual tester for this full scan testing of the testable
netlist of this circuit. Other than the circuit under test being different and the number of shifts in
the scan flip-flops, this tester is no different from that of the Residue-5 circuit discussed in Sect.
7.3. Figure 7.53 only shows the loop that is responsible for applying test vectors to the scan-
inserted netlist.

The testbench shown reads 64 test vectors from testFile and applies them to the full scan circuit
for every 976 circuit faults. Eight bits of every test vector are applied in parallel and the other 24
are shifted-in serially by the repeat loop of Fig. 7.53. This loop also shifts out 24 output bits. The
if statement shown in Fig. 7.53 compares concatenation of the serially collected output and 14
parallel outputs with the 38 bits of the expected outputs from testFile.

7.5.2 RTL Design Multiple Scan

This section shows implementation of a multiple scan design in the Adding Machine of Chap. 2. As
in the previous discussion on full scan, although the circuit diagram looks different than the
Huffman model of Fig. 7.44, the circuit is still structured as such, and the multiple scan method of
Sect. 7.4 can be applied to this circuit.

255

module Tester;

 CPU_ScanInserted FUT(clk, PI, PO, NbarT, Si, So);
 always #200 clk = ~clk;

 initial begin

 while(!$feof(faultFile)) begin
. . .

. . .

while((!$feof(testFile))&&(!detected))begin
status = $fscanf(testFile,"%b\n",line);

pre_expected_st = cur_expected_st;

expected_PO = line[out_size - 1:0];
cur_expected_st = line[st_size + out_size -1 :out_size];
PI = line[st_size+out_size+in_size-1:st_size+out_size];

NbarT = 1'b1;
#delay;

index = stIndex;
repeat(24) begin

si = line[index];
 @(posedge clk);
 saved_st[index - stIndex] = so;
 index = index + 1;

end

 NbarT = 1'b0;
 @(posedge clk);
 SampledPO = PO;

if({pre_expected_st, expected_PO} != {saved_st, SampledPO})
begin

 numOfDetected = numOfDetected + 1;
 detected = 1;

end
 #5;

end//test
 . . .

end//fault
 . . .
 end//initial

endmodule

Fig. 7.53 Full scan Adding Machine virtual tester

7.5 RT Level Scan Design

We use three equal scan chains: one covers AC, second covers IR, and the third covers all of PC
plus two control flip-flops. Since the size of the scan chains is the same, we can use multiple parallel
scan chains that simplifies scan controls. Figure 7.54 shows the three scan chains in the RTL
diagram of the Adding Machine.

256

module CPU_M_ScanInserted(clk, {reset, data_bus_in}, {adr_bus,rd_mem,
wr_mem,data_bus_out}, NbarT, ir_Si, ac_Si,
pc_Si, ir_So, ac_So, cntrl_So);

. . .

. . .

. . .

. . .

 dff INS_1 (wire_6,wire_96,clk,1'b0,1'b0,ir_en,NbarT,ir_Si, 1'b0);
 dff INS_2 (wire_2,wire_98,clk,1'b0,1'b0,ir_en,NbarT,wire_6, 1'b0);

 dff INS_8 (wire_26,wire_173,clk,1'b0,1'b0,ir_en,NbarT,wire_54, 1'b0);
 //
 dff INS_9 (wire_130,wire_180,clk,1'b0,1'b0,ac_en,NbarT,ac_Si, 1'b0);
 dff INS_10(wire_135,wire_186,clk,1'b0,1'b0,ac_en,NbarT,wire_130, 1'b0);

 dff INS_16(wire_52,wire_208,clk,1'b0,1'b0,ac_en,NbarT,wire_50, 1'b0);
 //
 dff INS_17 (wire_65,wire_211,clk,1'b0,1'b0,pc_en,NbarT,pc_Si, 1'b0);
 dff INS_18(wire_71,wire_216,clk,1'b0,1'b0,pc_en,NbarT,wire_65, 1'b0);

 dff INS_24 (wire_4,wire_249,clk,1'b0,1'b0,pc_en,NbarT,wire_18, 1'b0);

assign ir_So = wire_26;
assign ac_So = wire_52;
 assign cntrl_So = wire_4;

endmodule

Fig. 7.55 Inserting three scan chains

Fig. 7.54 Multiple parallel scans for Adding Machine

7 Design for Test by Means of Scan

The scan chains are manually inserted in the netlist that is the result of synthesizing the Verilog
code of the Adding Machine. Insertion of scan makes changes in the ports of the netlist and arrange-
ment of its flip-flops. Figure 7.55 shows partial code of the modified netlist.

As shown, NbarT and three serial inputs (ir_Si, ac_Si, and pc_Si) are added to the inputs, and
three serial scan outputs (ir_So, ac_So, and cntrl_So) are added to the output ports of the
scan-inserted netlist. The three bracketed sections in Fig. 7.55 show the three scan chains. All

257

module Tester;
. . .

. . .

. . .

CPU_M_ScanInserted FUT(clk, PI, PO, NbarT, ir_Si, ac_Si, pc_Si, ir_So,
ac_So, cntrl_So);

always #200 clk = ~clk;

initial begin

while(!$feof(faultFile)) begin

while((!$feof(testFile))&&(!detected)) begin
 status = $fscanf(testFile,"%b\n",line);
 pre_expected_st = cur_expected_st;
 expected_PO = line[out_size - 1:0];
 cur_expected_st = line[st_size + out_size -1 :out_size];
 PI = line[st_size+out_size+in_size-1:st_size+out_size];
 NbarT = 1'b1;
 #delay;

 index = stIndex;
repeat(8) begin

 ir_Si = line[index];
 ac_Si = line[index+8];
 pc_Si = line[index+16];
 @(posedge clk);
 saved_st[index - stIndex] = ir_So;
 saved_st[index+8 - stIndex] = ac_So;
 saved_st[index+16 - stIndex] = cntrl_So;
 index = index + 1;

end

 NbarT = 1'b0;
 @(posedge clk);
 SampledPO = PO;

if({pre_expected_st, expected_PO} != {saved_st, SampledPO})
 begin
 numOfDetected = numOfDetected + 1;
 detected = 1;

end
 #5;

 end//test
 . . .

end//fault
 . . .

end//initial
endmodule

Fig. 7.56 Test program for multiple parallel scans

7.5 RT Level Scan Design

flip-flops use NbarT as input. The first chain begins with ir_Si and ends with wire_26 (INS_1 to
INS_8) that becomes the ir_So output (see assign statements near the end of the code).

The serial input of the second scan is ac_Si, and its serial output is wire_52 (INS_9 to INS_16)
that becomes ac_So. Finally, the third scan chain begins with pc_Si and ends with cntrl_So (INS_17
to INS_24).

For developing a test program for this scan design, we have to consider that our design has three
equal-length scan chains using the same clock, and the same normal/test mode (NbarT) control input.
A virtual tester imitating the behavior of an ATE and its test program for testing our design is shown
in Fig. 7.56. This figure only shows instantiation of the three-scan-chain circuit and the procedure

258 7 Design for Test by Means of Scan

for application of test data. Other parts of the testbench that are basically the same as code
discussed in Sect. 7.3 are not shown here. As shown, instantiation of the netlist, the partial code of
which is shown in Fig. 7.55, includes NbarT as well as serial inputs and outputs of the three scan
chains.

The test procedure is enclosed in the initial block shown in Fig. 7.56. All but the repeat loop of
this procedure is the same as that of Fig. 7.53. The repeat loop here takes every 8 bits of line that
has the input vector and assigns them to ir_Si, ac_Si, and pc_Si. This happens while NbarT for all
three chains is 1 (shift mode). After the three assignments, the registers are clocked (simultane-
ously), after which outputs from ir_So, ac_So, and cntrl_So are collected in saved_st. These output
values are positioned in the saved_st vector, 8 bits apart to allow output bits of the same chain to be
adjacent to each other.

7.5.3 Scan Designs for RTL

It is easy to plan various scan designs for an RT level design by considering its RTL view. Once
planning is done, an estimate for the test time can be obtained. The implementation of the planned
scan design is done on the synthesized output of the RT-level HDL code. Developing a test program
is made easier when thinking of the circuit in terms of its Huffman model after scan insertion.

Other possibilities for scan design for our RTL example of this section are partial scan, and
multiple independent scans. Alternatively, if we partition the circuit into its datapath and a controller,
separate scan design can be implemented for each part. Splitting a circuit into several parts can be
implemented by isolated scan.

When planning different scan strategies, the number of test vectors, length of each test vector,
and fault coverage are the main parameters to consider.

7.6 Summary

This chapter discussed DFT techniques. We started with some ad hoc methods that evolved into
isolated scan. All such methods apply to combinational as well as sequential circuits. The scan
design, that we started discussing in Sect. 7.3, was primarily focusing on sequential circuits, and its
main purpose was to turn a sequential circuit into a combinational circuit, such that combinational
TG methods could be used for generating tests.

Other scan designs that we discussed basically followed the same rule. In partial scan methods,
the introduction of pseudo inputs and pseudo outputs does not completely turn a sequential model
into a combinational one, and registers still exist in the obtained model. In spite of this, the obtained
model can still be used for combinational test generation. The deviation from a pure combinational
model affects the test procedure where extra clock pulses compensate for registers that are left in
the model.

To show application of scan methods to RT-level designs and demonstrate the applicability of such
schemes, the last section used a small RT-level design and a Verilog testbench to test its inserted scan.
Larger designs can be partitioned into several subcomponents, where each subcomponent may require
a different form of scan. Separating a design into its subcomponents can be done by a shift-register for
scanning in and scanning out signal values in the interface of the subcomponents.

259References

References

 1. Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing and testable design. IEEE Press,
Piscataway, NJ, revised printing.

 2. Wilkins BR (1986) Testing digital circuits, an introduction. Van Nostrand Reinhold, Berkshire, UK.
 3. Eichelberger EB, Lindbloom E, Waicukauski JA, Williams TW (1991) Structured logic testing. Prentice-Hall,

Englewood Cliffs, NJ.
 4. Agrawal VD, Mercer MR (1982) Testability measures – What do they tell us? In: Proceedings of the International

Test Conference, Nov 1982, pp 391–396.
 5. Willaims MJY, Angell JB (1973) Enhancing testability of large-scale integrated circuits via test points and

additional logic. IEEE Trans Comput C-22(1):46–60.
 6. Miczo A (2003) Digital logic testing and simulation, 2nd edn. Wiley, Hoboken, NJ.
 7. Cheng K-T, Lin C-J (1995) Timing-driven test point insertion for full-scan and partial-scan bist. In: Proceedings

of the International Test Conference, Oct 1995, pp 506–514.
 8. Cheng K-T, Agrawal VD (1990) A partial scan method for sequential circuits with feedback. IEEE Trans

Comput 39(4):544–548.
 9. Narayanan S, Gupta R, Breuer MA (1993) Optimal configuring of multiple scan chains. IEEE Trans Comput

42(9):1121–1131.
 10. Jha NK, Gupta S (2003) Testing of digital systems, Cambridge University Press, Cambridge, UK.

wwwwwwwwwwww

261

A different DFT method than the scan of the previous chapter is boundary scan that primarily targets
the boundary of a CUT, instead of the scan whose focus is on the inside of chip or a core. Boundary
scan that has become an IEEE standard (IEEE std.1149.1) does not interfere in the design of a core,
and its main purpose is to isolate the core being tested from other devices on a board or chip. This
chapter discusses architecture, application, and operation of this IEEE standard. We use BS-1149.1
to refer to this standard.

Section 8.2 discusses the architecture and hardware of BS-1149.1. We use Verilog code to cover
the details of the major parts of the architecture. BS-1149.1 uses instructions for testing a chip’s
internal and external connections and isolating it from its surroundings. Section 8.3 covers the
related instructions and roles they play in testing a core or a chip. We wrap up our presentation of
the 1149.1 standard by a complete example in Sect. 8.5. Another standard related to 1149.1 is the
boundary scan description language (BSDL) that will be discussed in Sect. 8.6. This chapter also
presents several arrangements for using multiple boundary scan chains on a chip or a board.

8.1 Boundary Scan Basics

Due to complexity of digital components, and multilayer printed circuit boards, in-circuit testing by
bed-of-nails probing technique for isolating components is no longer an easy solution. Furthermore,
testing complex components and multicore chips is not possible by off-chip test methods. It is thus
required to be able to access various components and/or cores and be able to isolate them from each
other, without a significant increase in the cost of test [1].

In 1985, joint test action group (JTAG) that consisted of designers, manufactures, and test engineers
was formed. This group established a set of specifications for shifting serial test data into a board, for
testing it. Later in 1990, these specifications become the IEEE std.1149.1. This standard set a unique
set of rules to follow for test engineers, ATE developers, and test program developers [1].

With the guidelines and constraints that this standard provided, a flexible, but yet standard set of
design rules for designing test access mechanism at the board level was created. The standard was
usable in all digital designs, and eased the development of ATE hardware and software by setting a
standard.

The IEEE std.1149.1 is also known as boundary scan, since it mainly consists of a scan register
on the ports of a component for testing its interconnects and core logic. Boundary scan standard
eliminates the need for probing a component’s pins with a physical probe. The method improves
controllability and observability within a PCB or a chip. Figure 8.1 shows how this test standard is
incorporated into a chip along with the chip’s core logic.

Chapter 8
Standard IEEE Test Access Methods

Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_8, © Springer Science+Business Media, LLC 2011

262 8 Standard IEEE Test Access Methods

Boundary scan uses a chain of scan flip-flops to shift test data into the inputs of a core logic being
tested, and uses the same mechanism to move test response out. The scan flip-flops isolate a core
from its neighboring cores, and testing of each core is done independently.

The boundary scan standard works in two modes of noninvasive and pin-permission. In the non-
invasive mode, independent from board or chip core logic, the test hardware (BS-1149.1) commu-
nicates with the outside world for bringing in test data, or transmitting response out of the system.
This is done while the rest of the system performs its normal functions [1].

In the pin-permission mode, the BS-1149.1 hardware takes over input and output pins of a core
logic for testing its interconnects. In this mode, the core logic is disconnected from its environments
and is only operated by test logic. After completion of a pin-permission mode operation, it is impor-
tant for the test hardware to be put back in the noninvasive mode to avoid bus conflicts while the
system performs its normal functions.

8.2 Boundary Scan Architecture

Figure 8.1 shows an overall view of how boundary scan is incorporated on a chip. As shown, test
hardware that consists of controllers, registers, and decoders sits on a chip along with the chip’s core
logic. The boundary scan test hardware also has a scan register that wraps around the core logic to
control its communication with the outside world. The core logic and BS-1149.1 hardware form a
single testable package like a chip on a board or a core on a chip.

Figure 8.2 shows the main details of the boundary scan hardware. Decoder, register cells, a state
machine, ports, and other hardware details are shown in this figure. In this section, hardware struc-
tures shown in this figure along with their Verilog codes will be discussed.

8.2.1 Test Access Port

As shown in Fig. 8.2, BS-1149.1 adds several pins to the normal inputs and outputs of a core for
test data and test control. There are a total of four or five (one is optional) such signals. These pins
are for test purposes only, and cannot be used by the core logic for its normal functionalities.

TMS, TCLK, and TRST are control pins. TMS (Test Mode Select) is used for putting the test
protocol in a given state for data or for instruction. TCLK (Test Clock) is the main test clock input
that runs all the corresponding test hardware. TRST (Test Reset) is an optional pin and, if used,
resets the test hardware into its noninvasive mode [2].

Fig. 8.1 General structure of
BS-1149.1

2638.2 Boundary Scan Architecture

There are also two data pins, TDI and TDO. TDI (Test Data In) is for shifting serial test data and
instruction into the chip, and thus, into the BS-1149.1 registers. TDO (Test Data Out) is the serial
output of this standard test protocol [2].

It is important to note that pins that are not used should be left floating high. This prevents inter-
ference of such pins in the normal functionality of core and test logic.

8.2.2 BS-1149.1 Registers

Several registers form the main hardware of the BS-1149.1 standard. These are basically shift reg-
isters with special hardware to comply with the standard’s various modes of operation. The registers
are categorized into instruction and data registers [2].

Fig. 8.2 Details of boundary scan standard

264 8 Standard IEEE Test Access Methods

8.2.2.1 Instruction Register

The boundary scan standard has instructions with certain bit patterns that will be discussed in Sect.
8.3. The instructions define the operation of the standard in test mode. An instruction register of at
least 2 bits holds the instructions and is a mandatory part of this standard.

As with all the operations of the boundary scan standard, the instructions are shifted in serially.
In addition, there are instances that a new instruction being shifted must be isolated from the existing
instruction in the register. Because of such requirements, the standard full-feature instruction register
cell consists of two flip-flops, one for shift or capture and another for update.

Figure 8.3 shows the structure of an instruction register cell. The shift (or capture) flip-flop takes
serial instruction bits from its Sin (or TDI) input, i.e., shift, or it takes parallel data from Din inputs,
i.e., capture. When ShiftIR is 1, serial instruction bits from the previous cell’s Sout or TDI are shifted
into this flip-flop. This flip-flop is clocked by the ClockIR signal that is generated by the standard’s
controller. After completion of shift or capture, the rising edge of UpdateIR causes data available on
the outputs of the first flip-flops to be loaded into the instruction register. In Fig. 8.3, instruction
register outputs are designated by Dout. The two flip-flops shown in this figure have active low
asynchronous reset that causes the resetting of the flip-flops when RstBar becomes 0.

Figure 8.4 shows code of an instruction register cell. As shown, two clocked always statements describe
this register cell. The use of both flip-flops is not mandatory, and simple structures can also be used.

Fig. 8.3 Instruction register cell structure

module InstructionRegister1bit (Din, Sin, ShiftIR, UpdateIR,
ClockIR, RstBar, Sout, Dout);

 input Din, Sin, ShiftIR, UpdateIR;
 input ClockIR, RstBar;
 output Sout;
 output reg Dout;
 wire D_DF1;
 reg Q_DF1;
 assign D_DF1 = ShiftIR ? Sin: Din;
 always @(posedge ClockIR, negedge RstBar)

always @(posedge UpdateIR, negedge RstBar)
 if(!RstBar) Q_DF1 <= 0; else Q_DF1 <= D_DF1;

 if(!RstBar) Dout <= 0; else Dout <= Q_DF1;
 assign Sout = Q_DF1;
endmodule

Fig. 8.4 Instruction register Verilog code

2658.2 Boundary Scan Architecture

8.2.2.2 Data Registers

The instruction that is loaded in the instruction register causes one of the data registers to go
between TDI and TDO serial input and serial output. Any register that can logically be placed in the
TDI, TDO serial path is referred to as a data register. A data register may have only a single cell, or
as many as the core logic’s input–output pins. Data register cell structure is similar to that of the
instruction register. However, based on the specific data register and applications, other cell type
may also be used. Description of various BS-1149.1 data registers follows.

Bypass register. The bypass register is a mandatory boundary scan data register, and it is used to
bypass a core from scan chain so that serially shifted data can reach the target core quicker. The
bypass register is a single-bit register and its cell structure only uses the shift or capture flip-flop as shown
in Fig. 8.5. The bypass register can be loaded with a 0 through its Din input. BS-1149.1 uses this feature
for chain integrity. In the bypass mode (ShiftBY = 1), TDI is clocked into the bypass register on the rising
edge of ClockBY. Figure 8.6 shows the Verilog code of this register. This is a subset of the Verilog
code of Fig. 8.4.

Device identification register. Device identification register (DIR) is an optional register in the
1149.1 standard. If used, this is a 32-bit register that contains an identification code for the core
logic that it is a part of. The structure of this register is similar to that of the instruction register
shown in Fig. 8.3. Core logic id that is stored in this register can be shifted out serially that becomes
available for chain integrity testing.

Boundary scan register. The boundary scan register that is considered as a data register in
BS-1149.1 is the most important of all the registers of this standard. The boundary scan register
is placed on the boundary of the core logic that is being tested. The register cells go between external
pins (interconnects) and ports of the core logic. This mechanism improves controllability and
observability of core logic’s inputs and outputs.

Fig. 8.5 Bypass register cell structure

module ByPassRegister (Din, Sin, ShiftBY, ClockBY, RstBar, TDO);
 input Din, Sin;
 input ShiftBY, ClockBY, RstBar;
 output reg TDO;
 wire D_DF;
 assign D_DF = ShiftBY ? Sin: Din;
 always @(posedge ClockBY, negedge RstBar)
 if(!RstBar) TDO <= 0; else TDO <= D_DF;
endmodule

Fig. 8.6 Bypass register Verilog description

266 8 Standard IEEE Test Access Methods

Figure 8.7 shows a typical boundary scan register cell. Signals Din and Dout go between the
interconnect and the core logic. If this cell is used on a core logic’s input, Din connects to the inter-
connect and Dout to the port of the core logic. For an output port, this arrangement is reversed.
Signals Sin and Sout are used for shifting serial data that enter the register on the TDI port and exit
the register on the TDO port of the standard.

Like the instruction register cell, the boundary scan register cell has a shift or capture flip-flop
and an update one. The update flip-flop holds the contents of the boundary scan register. Two multi-
plexers in this structure are for proper routing of data in various modes of operation of this cell.

In the normal mode of operation, the ModeControl of the output multiplexer is 0, and Din connects
to the Dout. In this mode, ShiftBR, ClockBR, and UpdateBR have no effect on Dout, i.e., Dout receives
data directly from Din. This mode allows the noninvasive operation, where serial test data can be shifted
in, and clocked into the update flip-flops, without interfering in the normal operation of the core logic.
Another noninvasive operation is capturing data on Din in the capture flop-flops and then shifting it out.
In the pin-permission test mode, the select input of the multiplexer on the output side of the register cell
(ModeControl) becomes 1, which causes the update flip-flops to be connected to Dout cell outputs.

As mentioned, if used as an input cell, Dout connects to the input of the core logic, and if used as an
output cell, Dout will be connected to the interconnect. If the core logic has a bidirectional pin, then we
use three boundary scan cells. One for the input side, with its Dout connected to the core’s input, one on
the output side with Dout connected to the interconnect, and the third cell for driving the bidirectional
tristate buffer. This arrangement is shown in Fig. 8.8. Verilog code corresponding to a boundary scan cell
is shown in Fig. 8.9.

User-defined registers. Users are able to add their custom user-defined registers. The only restriction
is that, when used for test purposes, such registers must logically be placed between TDI and TDO
ports for shift path consistency.

Fig. 8.7 Boundary scan register cell

Fig. 8.8 Using a BS cell in bidirectional ports

2678.2 Boundary Scan Architecture

8.2.3 TAP Controller

All boundary scan operations are controlled by a simple controller that has sixteen states. The con-
troller uses TCLK for the clock, TMS for its input, and, if used, TRST for resetting it. The controller
is called the test access port (TAP) controller, and by issuing its control signals it controls the opera-
tion of the instruction and various data registers. Figure 8.10 shows the BS-1149.1 TAP controller.
Going from one state to another is controlled by TCLK synchronized 1 and 0 values on TMS. The
controller states are arranged in two columns, where the left column states are for controlling the
data registers, and the right column states for the instruction register.

The TAP controller has two starting states, seven data register control states, and seven instruc-
tion register control states. Holding TMS high for five or more clocks always returns control to the
reset state. This feature prevents performing unwanted operations for unexpected glitches on TMS.
Figure 8.11 shows the synthesizable Verilog code of the TAP controller. State names and signals are
according to the diagram of Fig. 8.10. States of the controller will be discussed below [2].

Test_Logic_Reset state. As shown in Fig. 8.10, the first state of the controller is the reset state.
This state is entered either by issuing TRST (not shown) or by TMS being one for five consecutive
clocks. While in this state, a RstBar reset signal is issued to all the boundary scan components to
reset them to their initial states. This signal loads a null pattern in the instruction register to prevent
the test logic from interfering in the normal operation of core logic.

Run_Test_Idle state. The next state of the TAP controller that is entered if TMS is 0 is Run_Test_Idle.
As for as the operation of BS-1149.1 is concerned, this state is an idle state. However, contents of
instruction and data registers remain the same as what they were in the previous state. In this state
the core logic can perform its own self-test operations. When TMS becomes 1, the boundary scan
exits this idle mode and enters the next state.

Select_DR_Scan state. The Select_DR_Scan state of the TAP controller is a temporary state in
which the controller either continues with data register operations or gets ready for performing
operations related to the instruction registers.

Select_IR_Scan state. As with the Select_DR_Scan, the Select_IR_Scan is also a temporary state
in which either the reset state or the instruction register states are decided.

module BSRegister1bit(Din, Sin, ShiftBR, UpdateBR, ClockBR,
 RstBar, ModeControl,Sout, Dou t);
 input Din, Sin, ShiftBR, UpdateBR;
 input ClockBR, RstBar, ModeControl;
 output Sout, Dout;
 wire D_DF1;
 reg
 assign D_DF1 = ShiftBR ? Sin: Din;
 always @(posedge ClockBR, negedge RstBar)

 always @(posedge UpdateBR, negedge RstBar)
 if (!RstBar) Q_DF1 <= 0; else Q_DF1 <= D_DF1;

 if(!RstBar) Q_DF2 <= 0; else Q_DF2 <= Q_DF1;
 assign Dout = ModeControl ? Q_DF2: Din;
 assign Sout = Q_DF1;
endmodule

 Q_DF1, Q_DF2;

Fig. 8.9 BS cell Verilog code

268 8 Standard IEEE Test Access Methods

Capture_IR (Capture_DR) states. In the Capture_IR state, the instruction register ClockIR is
issued that causes it to perform a parallel load (see Fig. 8.3). This will load “01” in the least sig-
nificant bits of the instruction register, and if the instruction register is longer than 2 bits, the rest
of the bits will receive a predefined value that is treated as a null instruction.

In the Capture_DR state and other data register-related control states, a specific data register that
is selected by the instruction register is targeted. Capture_DR state issues ClockDR of the selected
data register, i.e., boundary scan, identification register, bypass, etc.

For the boundary scan data register, Capture_DR state causes it to capture data on Din. For an
input cell, this means data from the interconnects are loaded into the capture flip-flops, and for an
output cell, capture state captures the output from the core logic in this flip-flop.

The next state after Capture_IR (Capture_DR) is Shift_IR (Shift_DR) that is entered if TMS is 0.
If shifting is not required, the TAP controller moves toward exiting the data register branch of the
control states.

Shift_IR (Shift_DR) states. In the Shift_IR the instruction register is placed between TDI and
TDO. While in this state, rising edges of ClockIR cause captured data to be shifted out on Sout and
new serial data moved from Sin. In this state a new instruction bit pattern that appears on TDI will
be shifted in the capture flip-flops. After completion of shifting the proper bit pattern, the instruc-
tion is loaded when TAP controller goes into the Update_IR state.

Select_DR_Scan

Capture_DR

Shift_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

Select_IR_Scan

Capture_IR

Shift_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

Test_Logic_Reset

Run_Test_Idle

1

0
1 1

1

0

1

0
0

1

1

0

0

1

1

0 0

1

0

0

1

0

1

1

0

0

0

Data Register Column Instruction Register Column

1

0

1

0

1

Fig. 8.10 TAP controller

2698.2 Boundary Scan Architecture

Fig. 8.11 TAP controller Verilog code

module TAPController (TMS, TCLK, RstBar, sel, Enable, ShiftIR,
 ClockIR, UpdateIR, ShiftDR, ClockDR,
 UpdateDR);

. . .
 always @(posedge TCLK) begin

case (TAP_STATE)
Test_Logic_Reset :

if (TMS == 1'b0) TAP_STATE = Run_Test_Idle;
else if(TMS == 1'b1) TAP_STATE = Test_Logic_Reset;

Run_Test_Idle:
if (TMS == 1'b1) TAP_STATE = Select_DR_Scan;
else if (TMS == 1'b0) TAP_STATE = Run_Test_Idle;

Select_DR_Scan :
if (TMS == 1'b0) TAP_STATE = Capture_DR;
else if (TMS == 1'b1) TAP_STATE = Select_IR_Scan;

Capture_DR:
if (TMS == 1'b0) TAP_STATE = Shift_DR;
else if (TMS == 1'b1)TAP_STATE = Exit1_DR;

Shift_DR:
if (TMS == 1'b1) TAP_STATE = Exit1_DR;
else if (TMS == 1'b0) TAP_STATE = Shift_DR;

Exit1_DR:
if (TMS == 1'b0) TAP_STATE = Pause_DR;
else if (TMS == 1'b1) TAP_STATE = Update_DR;

Pause_DR:
if (TMS == 1'b1) TAP_STATE = Exit2_DR;
else if (TMS == 1'b0) TAP_STATE = Pause_DR;

Exit2_DR:
if (TMS == 1'b1) TAP_STATE = Update_DR;
else if (TMS == 1'b0) TAP_STATE = Shift_DR;

Update_DR:
if (TMS == 1'b0) TAP_STATE = Run_Test_Idle;
else if (TMS == 1'b1) TAP_STATE = Select_DR_Scan;

Select_IR_Scan:
if (TMS == 1'b0) TAP_STATE = Capture_IR;
else if (TMS == 1'b1)TAP_STATE = Test_Logic_Reset;

Capture_IR:
if (TMS == 1'b0) TAP_STATE = Shift_IR;
else if (TMS == 1'b1) TAP_STATE = Exit1_IR;

Shift_IR:
if (TMS == 1'b1) TAP_STATE = Exit1_IR;
else if (TMS == 1'b0) TAP_STATE = Shift_IR;

Exit1_IR:
if (TMS == 1'b0) TAP_STATE = Pause_IR;
else if (TMS == 1'b1) TAP_STATE = Update_IR;

Pause_IR:
if (TMS == 1'b1) TAP_STATE = Exit2_IR;
else if (TMS == 1'b0) TAP_STATE = Pause_IR;

Exit2_IR:

if (TMS == 1'b1) TAP_STATE = Update_IR;
else if (TMS == 1'b0) TAP_STATE = Shift_IR;

 Update_IR:
 if (TMS == 1'b0) TAP_STATE = Run_Test_Idle;
 else if (TMS == 1'b1) TAP_STATE = Select_DR_Scan;

endcase
 end // end always

270 8 Standard IEEE Test Access Methods

The Shift_DR state is similar to the Shift_IR expect that in the former case serial data are shifted
in the selected data register (see Fig. 8.7). In this case ShiftDR signal is set to 1, and shifting occurs
on the rising edge of ClockDR.

If the selected data register is the boundary scan register, there are potentially many data bits
that are to be shifted. If the external tester has limited buffer memory, there may be a delay in
catching up with the speed of serial shifting. For this purpose, BS-1149.1 allows a pause while
the external tester fetches more data for its buffer memory. This is achieved by setting TMS
so that the controller goes into the Pause_DR state via Exit1_DR and return to Shift_DR via
Exit2_DR.

While in Pause_DR, for the necessary amount of time that the external tester needs to fetch
its next block of test data, TMS remains 0, which keeps the controller in the pause state. There
is no need for this feature of BS-1149.1 to be used for smaller data registers such as bypass and
identification register and definitely not necessary for the instruction register where instruction
registers are never larger than several bits wide.

Fig. 8.11 (continued)

 always @(negedge TCLK) begin
RstBar = 1'b1;
Enable = 1'b0;
ShiftIR = 1'b0;
ShiftDR = 1'b0;
ClockIR = 1'b1;
UpdateIR = 1'b0;
ClockDR = 1'b1;
UpdateDR = 1'b0;

case (TAP_STATE)
 Test_Logic_Reset:
 RstBar = 1'b0;
 Shift_IR: begin
 Enable = 1'b1;
 ShiftIR = 1'b1;
 ClockIR = 1'b0;
 end
 Shift_DR: begin
 Enable = 1'b1;
 ShiftDR = 1'b1;
 ClockDR = 1'b0;
 end
 Capture_IR:
 ClockIR = 1'b0;
 Update_IR:
 UpdateIR = 1'b1;
 Capture_DR:
 ClockDR = 1'b0;
 Update_DR:
 UpdateDR = 1'b1;
 endcase

end // end always
. . .
endmodule

2718.3 Boundary Scan Test Instructions

Exit1_IR (Exit1_DR) states. As mentioned above, the Exit1 states are either used for transition
into the pause states or for preparing for existing. In either case, no control signals are issued by the
TAP controller while it is in Exit1_IR or Exit1_DR states.

Pause_IR (Pause_DR) states. As mentioned above, pause states allow time for an external data
to fetch data from its mass storage devices. No control signals are issued in either of the two pause
states. Generally, instructions are short and do not require such a pause state. Therefore, Pause_IR
and Exit2_IR may be eliminated from the instruction branch of the TAP controller.

Exit2_IR (Exit2_DR) states. Exit2 states of the TAP controller are auxiliary states that are used
for returning to shifting or completing register loading and eventual exiting.

Update_IR (Update_DR) states. After an instruction is shifted in the instruction register’s cap-
ture flip-flops, or a complete test vector is shifted in the boundary scan register’s capture flip-flops,
the TAP controller moves in the corresponding update state.

In the Update_IR state UpdateIR signal is issued (see Fig. 8.3), and on its rising edge, the bit
pattern in the shift register chain loads into the instruction register as the current instruction. Once
this is done, signals corresponding to this new instruction are activated, and a specific data regis-
ter will be selected. The decoder unit of BS-1149.1 standard uses the instruction register and TAP
controller signals to issue appropriate selection and clocking signals to the data registers.

The Update_DR state loads test data bits that have been shifted in the shift register chain of a
data register into its update flip-flops. For a boundary scan register that is used as an input cell, this
event is what is needed to make test data available for the inputs of the core logic. For an output
cell, the data that have been loaded into the update flip-flops can now become available on the
interconnects.

8.2.4 The Decoder Unit

The decoder unit is a combinational circuit that takes the existing instruction in the instruction register
and signals from the TAP controller as inputs and issues signals to the appropriate data register.

8.2.5 Select and O ther Units

Figure 8.2 shows two multiplexers, a flip-flop, and a tristate buffer in the architecture of boundary
scan, all of which lead to the TDO output. The multiplexer shown near the data registers has its
select inputs driven by the Decoder Unit, and selects the data register output specified by the current
instruction. Another multiplexer whose select input is driven by the TAP controller selects a data
register output or the instruction register output to go on the TDO of the BS-1149.1.

The flip-flop on the serial output before TDO is for synchronizing serial transmission of data
with the test clock. Finally, the tristate buffer shown in this figure puts TDO in the float state when
not in use.

8.3 Boundary Scan Test Instructions

Another important part of BS-1149.1 contributing to its functionality and test performance are its
instructions. Boundary scan instructions are categorized into three groups. The first group is the
mandatory instructions that must be implemented in any BS-1149.1 compliant test circuitry.

272 8 Standard IEEE Test Access Methods

The second group is the optional instructions that are defined in the standard, but designers have
a choice of not using them. The third group of instructions is user-defined that are there for
extensibility and flexibility of the standard. What follows discusses operation of the mandatory
instructions [3].

8.3.1 Mandatory Instructions

Mandatory instructions have been referred to as the mandatory module in the more recent BS-1149.1
documentations. These instructions are Bypass, Sample, Preload, Extest, and Intest, and the details
and examples of which will be shown below.

8.3.1.1 Bypass Instruction

The Bypass instruction is used for shortening the scan path and bypassing those units that do not
participate in a certain round of test. The data register of a component that is being bypassed
becomes a single cell that is the bypass register. As far as the bypassed component is concerned, it
only takes one clock cycle to pass through it and reach the next core. Figure 8.12 shows that reducing
the length of scan chain is achieved by putting the left-hand side hardware unit in the bypass mode.
This reduction causes the test data to get to the component shown on the right-hand side of this
figure. Note: In the boundary scan cells shown in this figure C stands for Capture flip-flop and U
for Update.

Putting a boundary scan compliant chip or core in the bypass mode can be done while it is per-
forming its normal functions. For this purpose, the TAP controller of the chip first goes into its
instruction side of the states and shifts and updates the chip’s instruction register with the code for
Bypass. It then moves into the data side of the states, and in Capture_DR loads a 0 into the Bypass
register cell. Following this state, it moves into the Shift_DR state (see Fig. 8.12) and remains there
for as long as it is being bypassed.

Figure 8.12 also shows the chip that is not being bypassed. As shown, the boundary scan register
of the chip on the right is selected and the serial data are shifted into this data register. The shifting
here also occurs in the Shift_DR state of its TAP controller.

8.3.1.2 Sample Instruction

The mandatory BS-1149.1 sample instruction works in the noninvasive mode and takes a snap-shot
of the input interconnect values and outputs of core logic. After the sampling, the data will be
shifted out through TDO. Figure 8.13 shows the boundary scan cells while the sample instruction is
being performed and when the sampled data are being shifted out.

This instruction begins with its corresponding code loaded into the instruction register in Update_
IR state of the TAP controller. This will cause the boundary scan register to be selected and logically
placed between TDI and TDO. The TAP controller then moves to its left branch into the data register
states. In the Capture_DR state, while the core logic is performing its normal functions, its inputs
from the interconnect and outputs from the core are captured in the capture flip-flops of the scan cells
(left-hand side diagram of Fig. 8.13). This takes place because in the Capture_DR state, while the
Sample is in the instruction register, the BS-1149.1 decoder logic sets ShiftBR = 0 and issues
ClockBR. (Note that BR is for Boundary Register-related signals from the decoder logic).

2738.3 Boundary Scan Test Instructions

After capturing has been done, the TAP controller moves into the Shift_DR state (right-hand side
part of Fig. 8.13), in which ShiftBR is set to 1, while in this state, the sampled values will be shifted
out through TDO.

8.3.1.3 Preload Instruction

Another BS-1149.1 mandatory, noninvasive instruction is the Preload instruction. Once again, the
execution of this instruction begins by first entering the instruction branch of the TAP controller and
loading the corresponding instruction bit pattern in the Update_IR state of the controller. The
Preload instruction initializes the scan cells.

Figure 8.14 shows the operation of the Preload instruction. After this instruction is loaded in the
instruction register, the TAP controller moves into the Shift_DR state to perform the first phase of
the instruction, while in this state, SelectBR and ShiftBR are set to 1, causing the Boundary register
to be selected and put in the shift mode. This is shown on the right-hand side diagram of Fig. 8.14.
After the completion of shifting the necessary test data, the TAP controller is put into the Update_
DR state to perform the second phase of this instruction. As shown in the right-hand side diagram

Fig. 8.12 Bypass instruction execution

Fig. 8.13 Sample instruction execution

Fig. 8.14 Preload instruction execution

2758.3 Boundary Scan Test Instructions

of Fig. 8.14, in the Update_DR state of the controller, UpdateBR clocks the update flip-flops of the
boundary scan register. Data accumulated in the update flip-flops can be used in the other test
instructions.

Note that there is no conflict between operations of Sample and Preload instructions as far as the
flip-flop signaling is concerned. Therefore it is permissible to use the same opcode for both
instructions.

8.3.1.4 Extest Instructions

An important instruction in the 1149.1 boundary scan standard is Extest. This instruction tests
interconnections between two chips. The instruction operates in pin-permission mode, which means
that it takes over the interconnects, and the chips whose interconnections are being tested cannot
operate in their normal mode of operation.

The first time this instruction is being executed it must follow the complete execution of Preload.
As discussed, Preload loads test data into update flip-flops of the boundary scan cells. Following
Preload, as soon as Extest is loaded into the Instruction register, the preloaded test data become
available on the output pins. After completion of the first round of Extest testing, new test data will
be shifted as test response from the previous round of testing is being shifted out. The discussion
that follows assumes that the first round of testing has already taken place.

As shown in Fig. 8.15, when the Extest instruction is active, interconnections between outputs of
a core logic and inputs of another are being tested. For this purpose, after test data have been shifted
into the capture flip-flops of the source core logic, its TAP controller goes into Update_DR state to
load the test data into the update flip-flops (see the left-hand side diagram of Fig. 8.15). In this state,
with ModeControl set to 1, the test data will be driving the outputs, and through the interconnec-
tions, the inputs of the next chip.

The chip receiving the test data is shown on the right-hand side diagram of Fig. 8.16. As shown,
in the Capture_DR state of TAP controller of this chip, data from the pins are clocked into the cap-
ture flip-flops of the boundary scan cells. At the end of this operation, test data from the left chip
outputs are now clocked into the right chip’s scan cells.

In the next phase of Extest, TAP controller of source and destination chips are put in Shift_DR
state. This phase is shown in Fig. 8.17. The output cells of the left chip are receiving new test data,
while the input cells of the right chip are shifting out the test response. Completion of this phase
prepares the output cells of the left chip for the next round of testing, for which the procedure shown
in Fig. 8.15 starts again.

8.3.1.5 Intest Instruction

The procedure for Intest is similar to Extest for shifting in test data and shifting out response. While
Extest is performed on two interconnecting chips, Intest applies test data to inputs of a chip and reads
out the test response from the output of the same chip. Intest examines the functionality of the core
logic, and is performed in pin-permission mode, which takes control inputs and outputs of core
logic.

As with Extest, the Preload instruction precedes Intest. This provides test data in the update flip-
flops (see the right-hand side diagram of Fig. 8.14) of the scan cells that are on the inputs of the
core logic. These test data are used in the first round of testing. As soon as the Intest instruction is
loaded into the instruction register in the Update_IR state, the contents of update flip-flops of the
input cells will drive the inputs of core logic.

276 8 Standard IEEE Test Access Methods

After the first round of testing, the test data inputs will be provided serially, while the test
response from the previous round is shifted out. As shown on the right-hand side diagram of Fig.
8.18, data shifted in the capture flip-flops will be applied to the inputs of the core logic in the
Update_DR state. For this purpose, boundary register is selected, ModeControl is issued, and
UpdateBR of the corresponding flip-flops is activated.

The left-hand side diagram of Fig. 8.18 shows the output scan flip-flops during the execution of
the Intest instruction. When the TAP controller reaches the Capture_DR state, the output scan reg-
ister cells parallel load the outputs of core logic in their capture flip-flops.

After the completion of a round of test, the captured response must be shifted out and new test
data shifted in. This is done when the TAP controller enters its Shift_DR state. Shift process in Intest
is similar to that of Fig. 8.17 for Extest, except that all the inputs and output cells being shifted
belong to the same chip.

Fig. 8.15 Output cells updating test data in Extest

2778.4 Board Level Scan Chain Structure

8.4 Board Level Scan Chain Structure

The previous sections showed how a scan chain can be placed around a core logic and control its
inputs and outputs for test purposes. We also discussed how TDI and TDO shift test data in and out
of a scan chain, and how TMS makes the TAP controller on an IC to perform various test applica-
tions. Most of our discussion in a previous were centered around one or at most two (in case of
Extest) ICs or core logics.

At the board or chip level, where there are many ICs or cores, various arrangements of scan
registers can play an important role in saving test hardware and test time. This section shows some
of these arrangements.

Fig. 8.16 Input cells capturing test data in Extest

278 8 Standard IEEE Test Access Methods

8.4.1 One Serial Scan Chain

The “one serial scan chain” arrangement puts all modules on a board or chip in the same scan chain
using the same TAPs. The serial data on the single TDI go through all the modules, and the serial
data are shifted out on the only TDO that is available. Figure 8.19 shows this arrangement.

Since this structure uses only one TAP controller, all the boundary scan chains will be in one
state. However, different instructions can be loaded, and boundary scan of each module can run its
own instruction. The one serial scan chain arrangement has a low hardware overhead. However,
because test data for a module have to travel through the entire scan, test time for this arrangement
is relatively high.

8.4.2 Multiple-scan Chain with One Control Test Port

A scan architecture that has several scan chains (two in the example that follows) that are controlled
by the same TAP controller is shown in Fig. 8.20. This architecture is referred to as “multiple-scan

Fig. 8.17 Shifting new test data and captured response

2798.4 Board Level Scan Chain Structure

chain with one control test port”. Here, since there is only one controller, like the one serial scan
chain architecture, the different modules have to be tested at the same time and, as before, they can
be using different instructions.

The advantage of multiple-scan chain with one control test port over the single-scan chain is that
the test data can more quickly to get to the modules being tested. For every additional scan chain,
a new set of TDI and TDO will be added to the test hardware.

8.4.3 Multiple-scan Chains with One TDI, TDO but Multiple TMS

Another arrangement for board or chip level scan architecture is to use multiple-scan chains with
one TDI and TDO, but with multiple TMS. This arrangement that is shown in Fig. 8.21 partitions
the scan chain into several chains with the same TDI and TDO, but different TMS inputs.

Although, this arrangement does not allow various scan chains to work at the same time, the test
data can travel faster in the scan chain that is active. The advantage of this arrangement over that of
Fig. 8.20 is that each additional chain here adds one new TMS, whereas in Fig. 8.20, each additional
chain requires a TDI and a TDO.

8.4.4 Multiple-scan Chain, Multiple Access Port

Figure 8.22 shows groups of modules on a chip or board put into independent structures. The archi-
tecture is shown is referred to as “Multiple-scan chain, multiple access port”. This arrangement is fast,
but has a large pin and hardware overhead.

Fig. 8.18 Intest input and output cells

280 8 Standard IEEE Test Access Methods

T
C

LK
T

M
S

T
R

S
T

TDI

TDO

Fig. 8.19 One serial scan chain

T
C

LK
T

M
S

T
R

S
T

TDI 1

TDI 2

TDO 1

TDO 2

Fig. 8.20 Multiple-scan chain with one control test port

TDO
TDI

TCLK

TMS 1

TMS 2

Fig. 8.21 Multiple-scan chains with one TDI and TDO but multiple TMS

2818.5 RT Level Boundary Scan

8.5 RT Level Boundary Scan

As we did in Chap. 7, we will apply the DFT technique of this chapter to an RT level design to illus-
trate the applications of this DFT technique. The design we use is the Adding Machine of Chap. 2.

The purpose of this presentation is two fold. On one side, we are showing how an RT level
designer uses various BS-1149.1 components to make his or her design testable. By use of Verilog
code, we will show how these components are sized and configured to fit the boundary of our
example circuit. The other purpose of this illustration is to show the operation of an ATE for testing
a BS-1149.1 compliant circuit. This section illustrates this by use of a Verilog virtual tester
operating as an ATE that controls an on-chip TAP controller and tests the circuit with boundary scan.

For demonstration purposes, we also attach another unit to our Adding Machine to be able to
perform instructions like Extest that involve multiple modules. This fictitious module connects to
the outputs of the Adding Machine, like an IO device would.

8.5.1 Inserting Boundary Scan Test Hardware for CUT

The first step in the design of boundary scan is the insertion of the necessary BS-1149.1 components
in the hardware of CUT. Figure. 8.23 shows the CUT (Adding Machine) and its associated test
hardware. The components shown will be discussed here.

For boundary scan test of our Adding Machine, we implement five mandatory instructions and size
the boundary scan registers to cover input and output ports of our CUT. Other than sizing the instruc-
tion register, configuring the decoder, and sizing the boundary scan registers, all the other BS-1149.1
components shown in Fig. 8.23 are as defined in the standard that we discussed in Sect. 8.2.

8.5.1.1 Instruction Register

Figure 8.24 shows Verilog parameters defining five mandatory instruction codes for our design.
These parameters are defined in the boundary scan decoder. According to this, the instruction reg-
ister must be three bits wide.

T
C

LK
 1

T
M

S
 1

T
R

S
T

 1

TDI 1

TDI 2

T
C

LK
 2

T
M

S
 2

T
R

S
T

 2

TDO 1

TDO 2

Fig. 8.22 Multiple-scan chain multiple test access port

282 8 Standard IEEE Test Access Methods

8.5.1.2 Decoder Unit

The decoder unit uses the instruction register outputs along with control signals from the TAP control-
ler (see Fig. 8.23) to issue register control and select inputs. The Verilog code for the decoder unit has
parts for the specific instruction that we support in our boundary scan implementation. Figure 8.25
shows a portion of the decoder code that handles control signals related to the Bypass instruction.

Fig. 8.23 Inserting boundary scan in our Adding Machine

parameter [2:0]bypass_instruction = 3'b111;
parameter [2:0]intest_instruction = 3'b011;
parameter [2:0]sample_instruction = 3'b010;
parameter [2:0]preload_instruction = 3'b001;
parameter [2:0]extest_instruction = 3'b000;

Fig. 8.24 Instruction bit patterns

2838.5 RT Level Boundary Scan

8.5.1.3 Boundary Scan Register

The Adding Machine example has an 8-bit input bus, a reset input that resets its controller, and, of
course, a clock (clk) input. On the input side, our boundary scan register will include nine scan cells
for 8-bit data_bus_in input, and one for reset. The clk input will not be scanned.

On the output side, our CUT has a 6-bit address bus (adr_bus), an 8-bit data-bus-out, and two memory
control outputs (rd_mem and wr_mem). We use sixteen boundary scan output cells for these outputs. Our
boundary scan register is parameterized for its size. The input register is instantiated by use of #(9), and
the output register uses another instance of the same component with #(16) for its size parameter.

8.5.1.4 Testable Design

Figure 8.26 shows the Verilog code that corresponds to the block diagram of Fig. 8.23. BS-1149.1
components and the netlist of our Adding Machine (CPU_net CUT (…), in the bottom half of the
figure) are instantiated here.

The first line in this code generates TCKbar that is used in the TDO output flip-flop. Following
this statement, the instruction register using #(3) for its size parameter is instantiated. The TAP
controller is instantiated next, and is followed by the Decoder unit. As shown, the decoder uses
generic TAP controller signals (e.g., ShiftDR and ClockDR), and using the instruction register out-
put (i.e., Instruction) as input, it generates specific register control signals, such as DRInShiftBR,
and DRInClockBR for the input side Boundary register. Signals that are generated from ShiftDR and
ClockDR for the 16-bit wide output boundary scan register are DROutShiftBR and
DROutClockBR.

The next instantiations after Decoder in Fig. 8.26 are the boundary scan input and output registers
that are configured for the required number of cells. This is followed by the instance of our Adding
Machine, i.e., CPU_net CUT. The last part of Fig. 8.26 shows instantiations for the Bypass register
followed by the multiplexers, flip-flop, and the tristate gate that drive the TDO serial output.

8.5.2 Two Module Test Case

The complete module described above is our boundary scan Adding Machine (BS_Adding_Machine).
To complete our test case, we take this and a nonfunctional module (BS_Fictitious_module)
and form a model that may represent the chip we are designing that has 1149.1 boundary scan
incorporated in it. The nonfunctional module we are using has a boundary scan input register that

. . .
case (Instruction)
 . . .

 bypass_instruction: begin
if (ShiftDR == 1'b1) DataSelect = Sel_BY;
else DataSelect = Sel_IR;
ClockBY = (~ClockDR & TCLK);
ShiftBY = ShiftBY;
IRClockIR = (~ClockIR & TCLK);
IRShiftIR = ShiftIR;
IRUpdateIR = (UpdateIR & TCLK);

end

Fig. 8.25 Bypass section of Decoder unit

284 8 Standard IEEE Test Access Methods

is connected to the outputs of the Adding Machine, four test ports, and a 1-bit output. This module
can be regarded as an interface unit that our processor uses.

Figure 8.27 shows the complete schematic of our design. The design consists of two components,
each of which has its own TAP controller. The scan chain of the complete design is formed by putting
the scan chains of the two components in series. The architecture formed here is the one serial scan

module BS_Adding_Machine #(parameter in =9, parameter out =16)
 (TDI, TMS, TCLK, Ckin, Pin, TDO,
 Pout);
 . . .
 assign TCKbar = ~TCLK ;

BS_IR #(3) IR (.DIN(3'b000),.SIN(TDI),.ShiftIR(SHI),
 .ClockIR(CKI),.UpdateIR(UPI),.RstBar(RstBar),
 .SOUT(TDOI),.DOUT(Instruction));

TAPController TC (.TMS(TMS),.TCLK(TCLK),.RstBar(RstBar),
 .sel(sel),.Enable(enable),.ShiftIR(ShiftIR),
 .ClockIR(ClockIR),.UpdateIR(UpdateIR),
 .ShiftDR(ShiftDR),.ClockDR(ClockDR),
 .UpdateDR(UpdateDR));

Decoder DCD (.Instruction(Instruction),.TCLK(TCLK),
 .ShiftIR(ShiftIR),.UpdateIR(UpdateIR),
 .ClockIR(ClockIR),.ShiftDR(ShiftDR),
 .UpdateDR(UpdateDR),.ClockDR(ClockDR),
 .DRInShiftBR(SHDI),.DRInUpdateBR(UPDI),
 .DRInClockBR(CKDI),.DRInTMS(TMSDI),
 .DROutShiftBR(SHDO),.DROutUpdateBR(UPDO),
 .DROutClockBR(CKDO),.DROutTMS(TMSDO),
 .IRShiftIR(SHI),.IRUpdateIR(UPI),
 .IRClockIR(CKI),.ShiftBY(SHB),
 .ClockBY(CKB),.Select_DR(Select_DR));

BS_BSR #(in) BRi (.DIN(Pin),.SIN(TDI),.UpdateBR(UPDI),
 .ClockBR(CKDI),.ShiftBR(SHDI),
 .ModeControl(TMSDI),.RstBar(RstBar),
 .SOUT(in2out),.DOUT(Cpu_in));

BS_BSR #(out)Bro (.DIN(Cpu_out),.SIN(in2out),.UpdateBR(UPDO),
 .ClockBR(CKDO),.ShiftBR(SHDO),
 .ModeControl(TMSDO),.RstBar(RstBar),
 .SOUT(TDOD),.DOUT(Pout));

CPU_net CUT (.reset(Cpu_in[0]),.data_bus_in(Cpu_in[1:8]),
 .clk(Ckin),.adr_bus(Cpu_out[0:5]),
 .rd_mem(Cpu_out[6]),.wr_mem(Cpu_out[7]),
 .data_bus_out(Cpu_out[8:15]));

 BS_BYR BPR (.DIN(1'b0),.SIN(TDI),.ShiftBY(SHB),.ClockBY(CKB),
 .RstBar(RstBar),.SOUT(TDOB));

 MUX4_1 MX1 (.i1(1'b0),.i2(TDOI),.i3(TDOD),.i4(TDOB),
 .sel(Select_DR),.out(TDODRG));

 MUX2_1 MX2 (.i1(TDODRG),.i2(TDOI),.sel(sel),.out(TDOinit));

 D_FF TDOF (.D(TDOinit),.CLK(TCKbar),.RstBar(rstBar),.Q(TDOr));

tristate TSO (.in(TDOr),.enable(enable),.out(TDO));
endmodule

Fig. 8.26 Adding boundary scan to Adding Machine

2858.5 RT Level Boundary Scan

chain configuration discussed in Sect. 8.4.1. Figure 8.28 shows the Verilog code of this serial scan
chain arrangement.

The diagram of Fig. 8.27 represents a complete board or IC with BS-1149.1 boundary scan. The
design is only complete when the procedure for testing it by an ATE is also developed. The next
section shows a Verilog testbench that imitates an ATE for testing this circuit.

8.5.3 Virtual Boundary Scan Tester

A virtual tester, as we discussed in Chap. 7, imitates an actual ATE. Because of the complexity of
BS-1149.1 signaling, it is important for a planned test procedure to be verified together with the
implemented test architecture.

The virtual tester that we discuss in this section is a Verilog testbench that instantiates the circuit of
Fig. 8.27 (Verilog code of Fig. 8.27 is system module shown in Fig. 8.28) applies predetermined test

Fig. 8.27 Boundary scan testable design, consisting of two components

286 8 Standard IEEE Test Access Methods

vectors to it, and compares the test response with the expected outputs. Input test vectors and expected
output responses are available from external text files. The block diagram of the test module is shown
in Fig. 8.29. On the right is the CUT, and the virtual tester is shown in the left-hand side.

This virtual tester performs Intest and Extest instructions on the CUT. For Extest, the intercon-
nection of the two modules that CUT consists of is tested. In the sections that follow, various parts
of this Verilog code are discussed. We will only show the details of Intest. The complete Verilog
boundary scan virtual tester is shown in Appendix E.

As shown on the left-hand side of Fig. 8.29, the testbench has two modules. One module handles
TAP instructions and control signals (BS_Driver), and the other handles test data and responses that
are available in the external files. The first module is (IO_Driver) the boundary scan driver module.
This module controls and reads the TAP of the CUT, and when an input test vector is to be shifted
via TDI, it issues ready to the IO driver module. The IO driver module takes data from its external
file and makes it available for the first module to shift in. Serial response that appears on TDO will
also be collected by the IO driver module.

8.5.3.1 Boundary Scan Driver Module

The boundary scan driver module handles TMS, TDI, and TDO for Intest and Extest that are imple-
mented here. Resetting the TAP controller, loading instructions, initializing the scan paths, and
providing data that comes to it from IO driver module on TDI are some of the tasks of this module
that will be discussed below.

Intesting procedural block. All tasks corresponding to the Intest instruction are enclosed in an
always block that begins with always@ (intesting) (see Fig. 8.29, left). The Intest instruction here
only applies to the Adding Machine component of our CUT. The steps below start with resetting
the machine, and in ten steps complete this instruction.

Step 1: Resetting. To guarantee that the TAP controller of the Adding Machine (upper block in
CUT in Fig. 8.29) starts in Test_Logic_Reset state, TMS will be kept high for five consecutive
clock pulses. Figure 8.30 shows a loop in the Intest always block that performs this operation.

Step 2: First Data Set. Before the actual Intest instruction is performed, the scan chain must be
initialized with the first test vector. For this, the Adding Machine (core 1) for which the test data
are to be loaded must be put in the Preload mode, and the other module in the design (fictitious

module system #(parameter in = 9, parameter out = 1)
 (TDI, TMS, TCLK, Ckin, Pin, TDO, Pout);

 input TDI, TMS, Ckin, TCLK;
 input [0:8] Pin;
 output TDO;
 output Pout;
 wire TDO1;
 wire [0:15] P1;
 BS_Adding_Machine #(9, 16)
 M1(.TDI(TDI),.TMS(TMS),.TCLK(TCLK),.Pin(Pin),
 .Ckin(Ckin), .TDO(TDO1),.Pout(P1));
 BS_Fictitious_Module #(16, 1)
 M2(.TDI(TDO1),.TMS(TMS),.TCLK(TCLK),
 .Pin(P1),.TDO(TDO),.Pout(Pout));
endmodule

Fig. 8.28 Serial scan chain of our test case

2878.5 RT Level Boundary Scan

module, core 2) must be bypassed. The for loop, shown in Fig. 8.31, shifts the codes for Preload
and Bypass (two 3-bit patterns) into the instruction registers of the two cores of Fig. 8.29. After
the completion of shifting the instructions, a proper sequence is generated on TMS to move the
TAP controller to the Capture_DR state. At the same time, ready is issued to communicate with
the IO driver module to inform it to provide serial data. The serial data provided as such will be
placed on TDI while TMS is 0 and the controller is in the Shift_DR state. Figure 8.32 shows
placement of indexed bits of in_signali on TDI after the falling edge of TCLK. Note that all the
register operations in BS-1149.1 hardware are done on the rising edge of the clock. So the test-
bench here provides proper data ahead of the active clock edge.

Step 3: Loading Intest and Bypass. Now that the first test vector is in the boundary scan register,
Intest and Bypass instructions must be loaded in cores 1 and 2, for performing Intest on core 1
for the rest of input test vectors. For this purpose, using TMS, core 1 is put into Shift_IR state and
a procedure similar to that shown in Fig. 8.31 is repeated.

Step 4: Let Core Respond to Test. Now that test data are available at the ports of core 1, we have
to let it to react to the test data and generate its corresponding response. BS-1149.1 uses

Fig. 8.29 Virtual tester testing a two-component CUT

. . .
for (i =0; i < 5; i = i+1) begin
 @(negedge TCLK)
 TMS = 1'b1;
end // 5 clock with TMS = 1 resets the state machine!
. . .

Fig. 8.30 Resetting TAP controller

288 8 Standard IEEE Test Access Methods

Run_Test_Idle state for this purpose. With issuing proper values on TMS, the TAP controller
of core 1 will go in the Run_Test_Idle state, while the normal clock of this unit is running and
it is functioning in normal mode. After waiting for a sufficient time, we will go to the state that
collects the response. Fig. 8.33 shows the enabling of the system clock while TAP controller
is in the idle state.

Step 5: Capture Response. After the Adding Machine has been given enough time to prepare its
test response, we set TMS to 1 then to 0 (shown in Fig. 8.34) in two consecutive clocks to go
from Run_Test_Idle state to Capture_DR (see state diagram in Fig. 8.10). Simultaneously we
issue ready to tell the IO driver module that we are ready for the next input data. Figure 8.34
shows that TMS is set to 0 with the third falling edge of TCLK. This will move the TAP controller
to state Shift_DR in which new test data will start shifting in.

Step 6: Next Data Shift-In and Previous Response Shift-Out. While TMS is 0, we remain in the
Shift_DR state. Clocking the BS-1149.1 hardware of the Adding Machine as many times as there
are output boundary scan cells (outputlength) will shift out the captured response. This is shown
in the first for loop of Fig. 8.35. While this is happening TDO will be stored into out_signal
indexed vector. Note in the Fig. 8.27 that the output cells of the Adding Machine are closer to TDO
than its input cells, so the outputs will be shifted out first. The next inputlength clocks, while still
in the Shift_DR state, will take input bits from the indexed in_signali into TDI and in the input scan

. . .
instruction = {bypass_instruction, intest_instruction};
for (i = 0; i < 2*instruction_length-1; i = i+1) begin
 @(negedge TCLK) begin

TDI = instruction[i];
TMS = 1'b0;

 end
end // stay in Shift_IR, shift n-1 first bits of instruction
. . .

Fig. 8.31 Preload and Bypass for core 1 and core 2

. . .
@(negedge TCLK) begin
 TMS = 1'b0;
 ready = 1'b1;
end
@(posedge TCLK) begin
 in_signali = inputDatai;
 ready = 1'b0;
end // go to Shift_DR;
for (i = 0; i < inputLength-1; i = i+1) begin
 @(negedge TCLK) begin
 TDI = in_signali[i];
 TMS = 1'b0;
 end
end //stay in Shift_DR, shift the inputLength-1 first bits ;
@(negedge TCLK) begin
 TDI = in_signali[inputLength-1];
 TMS = 1'b1;
end // go to Exit1_DR and shift last bit
. . .

Fig. 8.32 Shifting the first test vector for Intest

2898.5 RT Level Boundary Scan

. . .
@(negedge TCLK)
 TMS = 1'b0; // go to Run_Test_Idle
@(negedge TCLK) begin
 TMS = 1'b0;
 clkenable = 1'b1;
end
for (i =0; i < numberOfClk; i = i+1) begin
 @(negedge TCLK)
 TMS = 1'b0;
end // stay in Run_Test_Idle for numberOfClk clock cycle
clkenable = 1'b0;
. . .

Fig. 8.33 Applying numOfClk to Adding Machine in Run_Test_Idle

. . .
@(negedge TCLK) Begin
 ready = 1'b1;
 TMS = 1'b1;
end // go to Select_DR
@(negedge TCLK) begin
 in_signali = inputDatai;
 ready = 1'b0;
 TMS = 1'b0;
end // go to Capture_DR
@(negedge TCLK)
 TMS = 1'b0; // go to Shift_DR
. . .

Fig. 8.34 Capturing response and starting shift In–Out

. . .
for (i =0; i < outputLength; i=i+1) begin
 @(negedge TCLK) begin
 TDI = 1'b0;
 TMS = 1'b0;
 out_signal[i] = TDOF;
 end
end // stay in Shift_DR
for (i =0; i < inputLength-1; i=i+1) begin
 @(negedge TCLK) begin
 TDI = in_signali[i];
 TMS = 1'b ;
 end
end // stay in Shift_DR
@(negedge TCLK) begin
 TDI = in_signali[inputLength-1];
 TMS = 1'b1;
 out_signal[outputLength+1] = TDOF;
end // go to Exit1_DR
. . .

Fig. 8.35 Previous response shift-Out new data shift-In

290 8 Standard IEEE Test Access Methods

cells. This is shown in the second for loop in Fig. 8.35. With the next clock (last part of Fig. 8.35)
TMS is set to 1 to prepare for exiting (see Fig. 8.10).

Step 7: Response Ready & Check for Last Test. The next step is to go to Update_DR state by setting
TMS = 1 and issuing outReady to the IO driver module for collecting the shifted out response. After
receiving the outready signal, the IO driver module issues lastData if data that were shifted in
were the last test data. In this case, the Verilog code of the virtual tester performing Intest goes
to Step 8, otherwise Step 4 is taken to continue the test.

Step 8: Let Core Respond to Last Test. This step is similar to Step 4, and after it is completed it
goes to Step 9.

Step 9: Last Response Shift-Out. The response due to the last test of Step 8 will be shifted out in
this step. This is similar to Step 6, expect that only first for loop is performed.

Step 10: Last Response and Reset. The last step issues outready, sets TMS to go to the Test_Logic_
Reset state, and issues endIn to the IO driver module to announce completion of Intest.

Extesting Procedural Block. Tasks performed for Extest are enclosed in an always block that
begins with always@ (extesting). These tasks are taken in several steps similar to those of the
Intesting block, and are shown in Appendix E.

8.5.3.2 IO Driver Module

The IO driver module part of the boundary scan virtual tester is responsible for reading test data,
and controlling the test operations. There is a memory initialization part and a sequencer that we
described below.

Memory Initialization. The memory initialization part of the IO driver module reads CPUin.txt file
into TESTin[] array, and CPUout.txt in TESTout[]. Test data for Intest will be read from TESTin[], and
for Extest from TESTout[]. Appendix E has the complete virtual tester code that also includes this part.

Sequencer. The sequencer part of the IO driver module implements the state diagram shown in
Fig. 8.36. When start becomes 1, Intesting is issued, and the machine goes in the intesting state. In
this state every time ready is seen, the next test data is placed on inputDatai bus. When the last data
is put on inputDatai, lastData is issued. Also in the intesting state, when readyOut become 1, the
data that has become available on outputData will be written in an output file. This continues until
endIn value of 1 is seen, in which case the intesting exits and extesting become active. A similar
signaling happens in the extesting state. Figure 8.37 shows the Verilog code of this part.

8.6 Boundary Scan Description Language

The boundary scan description language (BSDL) was established as part of the IEEE boundary scan
standard for specifying the arrangement of BS-1149.1 hardware in a chip. BSDL provides a stan-
dard means of communication between designers, test engineers, tool developers, and silicon ven-
dors. This standard is useful for developing test programs [3].

BSDL is not a hardware description language and does not have the ability of describing function-
ality of a component. BSDL specifies how boundary scan registers are used on the boundary of a chip,
the features of BS-1149.1 that they support, and the boundary scan instructions that are implemented.
BSDL defines a set of VHDL attributes for describing the boundary scan arrangement of a chip.

To illustrate the features and capabilities of BSDL, we will use it to describe design of the bound-
ary scan that we did for our Adding Machine of the previous section. The complete code is shown
in Fig. 8.38, and the discussion that follows references this code by line numbers.

Fig. 8.36 IO driver module sequencer

always @ (start, ready, readyOut, endIn, endOut) begin
 if (start == 1'b1) begin
 intesting = 1'b1;
 i = 0;
 lastData = 1'b0;
 end
 else if (ready == 1'b1 & intesting == 1'b1) begin
 inputDatai = TESTin[i];
 i = i+1;
 if(i == memLength1)
 lastData = 1'b1;
 end
 else if (ready == 1'b1 & extesting == 1'b1) begin
 inputDatao = TESTout[i];

 i = i+1;
 if(i == memLength2)
 lastData = 1'b1;
 end
 else if (readyOut == 1'b1 & intesting == 1'b1)
 $fwrite(f3,"%b\n",outputData);
 else if (readyOut == 1'b1 & extesting == 1'bs1)
 $fwrite(f4,"%b\n",outputData);
 else if (endIn == 1'b1)begin
 intesting = 1'b0;
 #1;
 extesting = 1'b1;
 i =0;
 lastData = 1'b0;
 end
 else if (endOut == 1'b1)begin
 extesting = 1'b0;
 finish = 1'b1;
 i = 0;
 lastData = 1'b0;
 end
end // always

Fig. 8.37 Verilog part of the virtual tester for operation of Intest and Extest

292 8 Standard IEEE Test Access Methods

BSDL describes boundary scan of a chip or a core by a VHDL entity declaration (Line 1–Line
70). VHDL generic parameters, ports, constants, and attributes are used to describe the boundary
scan. Line 1 defines the name of our boundary scan design, BSD_CPU_net.

Line 2 shows the definition of PHYSICAL_PIN_MAP generic parameter. Value “D1” is given to
this parameter, which defines the specific pin arrangement for our circuit. Following the generic
parameter, ports of the chip are defined as shown in the code starting in Line 3.

Line 13 shows the VHDL BSDL package in which the corresponding definitions and attributes
are defined. Line 14 specifies the specific 1149.1 standard that is used in the design of the boundary
standard of our chip. Since there are differences between the standards that have been established
through the years, the specific one used must be defined.

Starting in Line 16, we are specifying several pin arrangements for our package. We are specify-
ing D1 and D2 arrangements, where each arrangement specifies how package IO ports are mapped
to the ports of the device. This part ends with Line 27 of Fig. 8.38.

The next part that starts on Line 28 defines TAP ports. This allows using different names for
TAPs. The TAP statement’s attribute specifies the clock frequency (1 GHz, here), and the state in
which it can be stopped. Line 32 shows that we are not using test reset in our boundary scan of the
Adding Machine.

Starting in Line 33, the length of the instruction register, instruction opcodes, and the default
instruction opcode in Capture_IR state are specified. This specification ends in Line 41.

The last part that starts on Line 42 specifies what cell type each pin of the package is connected
to. This part begins with specifying the length of the boundary scan register that is 25, and continues
with the specification of each of the boundary scan pins. Pin specifications are concatenation of
strings that are enclosed in double quotes. Each string of which specifies four values for each port.
The values are for NUM, CELL, PORT, and FUNCTION fields. There is also an extra field (SAFE)
that is used as a safe default pin value. The NUM field is the location of the specified port in the
scan chain. Field CELL specifies the cell type which is one of the standard cells of the standard. Cell
BC_1 is a defined cell in the boundary scan standard. The last field is FUNCTION that tells the type
of port, i.e., input, output, or bidirectional inout.

This concludes the presentation of BSDL. Another standard language that also considers hierar-
chical scan structures is HSDL, which will not be discussed here. Our purpose of presenting BSDL
was merely to give an overall view of what is necessary for making chips ready for boundary scan.

8.7 Summary

This chapter treated the standard subject of boundary scan and discussed the IEEE standard like any
other book on testing would do. What made this chapter different than just presenting a certain
standard protocol was the use of Verilog for developing a virtual tester that interacted with the
boundary scan hardware. The virtual tester demonstrated how an ATE would interact with a chip
with a boundary scan. At the same time, in order to be able to perform the simulations in Verilog,
we also showed hardware structures of BS-1149.1 in Verilog. Doing this we were able to discuss
some of the details of hardware of this standard that would otherwise not be noticed.

The first part of the chapter discussed the IEEE Std.1149.1 standard, and Verilog was used for
describing hardware components of this standard. Use of Verilog enabled us to unambiguously and
clearly show the hardware structures and their interactions. By use of this language we were able to
show the interaction between TAP controller and 1149.1 instructions. That is, were able to clearly
show what responsibilities each part takes for control of the scan registers. In the second part, where
a virtual tester was developed, interactions between the 1149.1 hardware, CUT hardware, and ATE
were clarified.

2938.7 Summary

Fig. 8.38 BSDL code for boundary scan of Adding Machine

Line 1: entity BSD_CPU_netis
-- generic parameter
Line 2: generic (PHYSICAL_PIN_MAP : string := "D1");
--logical port description
Line 3: port(
Line 4: reset : in bit;
Line 5: data_bus_in : in bit_vector(0 to 7);
Line 6: clk : in bit;
Line 7: adr_bus : out bit_vector (0 to 5);
Line 8: rd_mem : out bit;
Line 9: wr_mem : out bit;
Line 10: data_bus_out : out bit;
Line 11: TDO : out bit;
Line 12: TMS, TDI, TCLK : in bit);
--standard use statement
Line 13: use STD_1149_1_1994.all;
--component conformance statement
Line 14: attribute COMPONENT_CONFORMANCE of BSD_CPU_net is
Line 15: "STD_1149_1_1990";
-- device package pin mapping
Line 16: attribute PIN_MAP of BSD_CPU_net : entity is
Line 17: PHYSICAL_PIN_MAP;
--
Line 18: constant D1 : PIN_MAP_STRING :=
Line 19: "reset: 2, data_bus_in: (3,4,5,6,7,8,9,10)," &
Line 20: "clk: 11, adr_bus: (12,13,14,15,16,17),rd_mem: 18," &
Line 21: "wr_mem: 19, data_bus_out:(20,21,22,23,24,25,26,27)," &
Line 22: "TDO: 31, TMS: 28, TDI: 30, TCLK: 29 ";
--
Line 23: constant D2 : PIN_MAP_STRING :=
Line 24: "reset: 2, data_bus_in: (7,8,9,10,11,12,13,14)," &
Line 25: "clk: 3, adr_bus: (15,16,17, 18,19,20), rd_mem: 21," &
Line 26: "wr_mem: 22, data_bus_out: (23,24,25,26,27,28,29,30)," &
Line 27: "TDO: 31, TMS: 5, TDI: 4, TCLK: 6";
-- TAP port identification
Line 28: attribute TAP_SCAN_IN of TDI : signal is true;
Line 29: attribute TAP_SCAN_MODE of TMS : signal is true;
Line 30: attribute TAP_SCAN_OUT of TDO : signal is true;
Line 31: attribute TAP_SCAN_CLOCK of TCLK : signal (1.0e9,BOTH);
Line 32: -- attribute TAP_SCAN_RESET of TRST : signal is true;
--instruction register description
Line 33: attribute INSTRUCTION_LENGTH of BSD_CPU_net : entity
 is 3;
Line 34: attribute INSTRUCTION_OPCODE of BSD_CPU_net : entity is
Line 35: "BYPASS (100, 101, 110,111)," &
Line 36: "INTEST (011)," &
Line 37: "SAMPLE (010)," &
Line 38: "PREALOAD (001)," &
Line 39: "EXTEST (000)";

Line 40: attribute INSTRUCTION_CAPTURE of BSD_CPU_net : entity
Line 41: is "001";

294 8 Standard IEEE Test Access Methods

References

1. Bushnell ML, Agrawal VD (2000) Essintioals of electronic testing for digital, memory & mixed-signal VLSI
circuits. Kluwer, Boston

2. IEEE Standard Test Access Port and Boundary Scan Architecture (1990) IEEE standard Board, 345 East 74th St.
New York

3. Parker KP (2000) The boundary-scan handbook, 2nd edn. Kluwer, Boston

Fig. 8.38 (continued)

-- boundary scan register description
Line 42: attribute BOUNDARY_LENGTH of BSD_CPU_net : entity is 25;
Line 43: attribute BOUNDARY_REGISTER of BSD_CPU_net : entity is
Line 44: --NUM CELL PORT FUNCTION SAFE
Line 45: " 0 (BC_1, reset, input, x)," &
Line 46: " 1 (BC_1, data_bus_in(0), input, x)," &
Line 47: " 2 (BC_1, data_bus_in(1), input, x)," &
Line 48: " 3 (BC_1, data_bus_in(2), input, x)," &
Line 49: " 4 (BC_1, data_bus_in(3), input, x)," &
Line 50: " 5 (BC_1, data_bus_in(4), input, x)," &
Line 51: " 6 (BC_1, data_bus_in(5), input, x)," &
Line 52: " 7 (BC_1, data_bus_in(6), input, x)," &
Line 53: " 8 (BC_1, data_bus_in(7), input, x)," &
Line 54: " 9 (BC_1, adr_bus(0), output2, x)," &
Line 55: " 10 (BC_1, adr_bus(1), output2, x)," &
Line 56: " 11 (BC_1, adr_bus(2), output2, x)," &
Line 57: " 12 (BC_1, adr_bus(3), output2, x)," &
Line 58: " 13 (BC_1, adr_bus(4), output2, x)," &
Line 59: " 14 (BC_1, adr_bus(5), output2, x)," &
Line 60: " 15 (BC_1, rd_mem, output2, x)," &
Line 61: " 16 (BC_1, wr_mem, output2, x)," &
Line 62: " 17 (BC_1, data_bus_out(0), output2, x)," &
Line 63: " 18 (BC_1, data_bus_out(1), output2, x)," &
Line 64: " 19 (BC_1, data_bus_out(2), output2, x)," &
Line 65: " 20 (BC_1, data_bus_out(3), output2, x)," &
Line 66: " 21 (BC_1, data_bus_out(4), output2, x)," &
Line 67: " 22 (BC_1, data_bus_out(5), output2, x)," &
Line 68: " 23 (BC_1, data_bus_out(6), output2, x)," &
Line 69: " 24 (BC_1, data_bus_out(7), output2, x)";
Line 70: end BSD_CPU_net;

295Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_9, © Springer Science+Business Media, LLC 2011

The last two chapters represented two DFT methods. Scan testing in Chap. 7 focused on testing
inside a core (or the logic part), while boundary scan testing focused on interfaces between cores.
This chapter presents still another DFT method, and as in Chap. 7, the focus is testing inside of a
core. Unlike Chaps. 7 and 8, where our test methods heavily depended on ATEs, the DFT method
presented here tries to eliminate or, at least, reduce the need for an ATE. This is done by adding
testability hardware to the CUT, in a way that the added hardware tests parts or all of the CUT.

The DFT method that is our focus here is called BIST or built-in self-test. BIST is a hardware
structure that produces test data, applies it to the circuit under test, collects the output response, and
verifies that the output is correct [1–4]. The operation of a BIST inside a CUT is controlled by a
BIST controller. BIST is a complete datapath/controller system inside a CUT such that when it
engages, it tests the CUT. Effectiveness of BIST is measured by its fault coverage.

We take an approach similar to that of scan design for presenting the BIST DFT technique.
Section 9.1 discusses the basics. We then discuss basics leading to BIST architectures, where several
common architectures are discussed. In the last section, we use an RT level example and show how
several built-in test hardware architectures can be incorporated in this complete RTL example.

9.1 BIST Basics

This section gives a general introduction to BIST, defines the main flow, terminologies, and BIST
variations [5, 6].

9.1.1 Memory-based BIST

The first thing that comes to mind when we talk about an on-chip hardware that tests another hard-
ware is to implement a small on-chip ATE with an input memory, output memory, and a
controller.

As shown in Fig. 9.1, a memory-based BIST takes test data from its input memory, applies it to
the CUT, reads the output, and compares it with its expected response data. The BIST controller
basically does what a test program would do in a DFT method such as scan. Namely, the BIST
controller decides when and what data to be applied to CUT, controls CUT’s clocking, and decides
when to read the expected response. As in a DFT method such as scan, we try to minimize the test

Chapter 9
Logic Built-in Self-test

296 9 Logic Built-in Self-test

time and maximize the fault coverage. For this purpose, again like scan, we have different BIST
architectures with varying effectiveness and test time.

Unlike the scan DFT method in which a test program (or in our HDL environments, a virtual
tester) is responsible for performing the test, coming up with test data, performing the test, and
analyzing the output, in BIST, the BIST architectures must provide all the necessary data and
control circuitry. It is this important difference that requires special hardware structures for BIST
handling.

9.1.1.1 Providing Test Data

Instead of the memory shown in Fig. 9.1 for the test data input, a special hardware that can produce
test data must be used. In the scan method of the previous two chapters, test data resided in large
storage spaces in the ATE. This virtually unlimited space could contain large test data sets generated
by random and/or deterministic test generation methods. The only limitation in the size of test data
for such DFT methods is the time it takes to send test data to the CUT.

BIST architectures, on the contrary, do not enjoy this luxury, and on chip memory that can be
allocated for test purposes is very limited or nonexistent. This means that storing large test data on
a chip is not an option for built-in testing. Instead of having a set of test data in a memory, BIST
architectures generate their own. The drawback here is that we have a limited control on the data
that are generated on-chip, and the coverage we could get from deterministic test vectors cannot be
obtained.

Instead of a block of memory for test data, BIST architectures use various forms of test pattern
generators (TPGs). A TPG is a hardware structure that generates exhaustive or pseudo-random test
data. Since TPGs cannot easily be made to generate test data resulted from deterministic test genera-
tion, BIST test vectors are not as efficient in fault coverage as externally provided data.

Fig. 9.1 A basic BIST

2979.1 BIST Basics

9.1.1.2 Test Response Analysis

Instead of the memory as shown in Fig. 9.1 for response memory, a special hardware for checking
CUTs response is needed. In the scan methods, test response vectors are shifted out and collected
by the ATE testing the CUT. These data are compared with data in the ATE’s storage memory.
Unfortunately, the limited CUT’s chip area does not allow the use of on-chip memories to the extent
that is needed for test purpose. This problem is resolved by storing a signature, or a compressed
version, of all the test responses. This way, instead of checking individual test vector responses, the
BIST architecture just checks the signature obtained from test responses against the golden signa-
ture in BIST hardware.

Although using a signature eliminates the need for large on-chip memories, a new problem called
aliasing is introduced. Aliasing is referred to the situation of having the same signature for different
test response data sets. This problem can let faults go undetected or make faults that are distinguish-
able not recognized as such. The problem of aliasing can partially be dealt with by using larger or
multiple signatures, and handling of which is done by the BIST hardware.

The hardware generating a signature of collected test responses is referred to as output response
analyzer (ORA). An ORA is an on-chip BIST hardware, various forms of which will be discussed
in a section of this chapter.

9.1.2 BIST Effectiveness

Effectiveness of a BIST is measured in terms of the stuck-at fault coverage. Although BIST archi-
tectures can detect structural, functional, and logical faults, the stuck-at coverage is just a measure
of its effectiveness for all fault types it is designed to detect.

BIST effectiveness depends on its architecture, the design of its TPG and ORA, and the BIST
controller. Planning an architecture, TPG, and ORA are done by simulation prior to completing the
design of a BIST. Fine tuning of BIST is done by repeated use of fault simulation.

9.1.3 BIST Types

Just like a scan architecture incorporated in a circuit, a BIST architecture that resides on a chip along
with CUT engages and starts testing the CUT’s core logic when it is put in the test mode [3].
Various forms of engagements define the BIST types.

9.1.3.1 Offline BIST

The kind of BIST that requires the normal operation of CUT to be halted for the BIST to engage in
is called an offline BIST. External system pins control the operation of BIST, and the BIST reports
CUT’s error conditions using external pins. Since an offline BIST has an exclusive control on test
data and the hardware of a CUT, the time it takes for testing the CUT is relatively short.

9.1.3.2 Online BIST

In contrast to offline BIST, an online BIST always operates inside a CUT. Some online BISTs use
the same data a CUT uses while performing its normal operation. Other online BIST structures use

298 9 Logic Built-in Self-test

free time slots when certain parts of a CUT are idle to test those parts of the circuit. In general, an
online BIST has to find the right time and/or the right data to engage in and test a CUT. Because of
this sneak-in type of work, it takes a relatively long time for an online BIST to test an entire CUT.

9.1.3.3 Hybrid BIST

Other than the fact that a BIST controller resides on the same chip as the CUT during its normal
operation, conceptually, there are very few differences between BIST and scan designs. Because of
this, some of the limitations of BISTs on test data generation and output response analysis can be
overcome by getting external help by means of scans. This would mean that the on-chip BIST and
the off-chip ATE would share the tasks of data generation, response analysis, and handling a CUT’s
test program, and thus a hybrid BIST.

On the one hand, a hybrid BIST requires a simpler and less expensive ATE than a scan design.
On the other hand, the fault coverage of a hybrid BIST is improved by the use of scan.

9.1.3.4 Concurrent BIST

A concurrent BIST does not produce new test data for testing a CUT and uses the same data that
CUT uses for its normal operation.

9.1.4 Designing a BIST

Design of a BIST involves its architecture, TPG, ORA, and test procedure. Once these details are
known, hardware implementation of the architecture, TPG, and ORA follow. The designed BIST
test procedure is implemented by the BIST controller. Fault simulation plays a major role in final-
izing the design of BISTs [1, 2].

9.1.4.1 Architecture Design

Architecture of a BIST defines where in the CUT test data generators are applied, and where
response data are collected from. As in scan testing, the architecture is designed for minimizing test
time and maximizing coverage. Decisions made for the design of BIST architecture are about the
number of TPGs and ORAs, their types, how they are placed relative to the CUT, and other details
of test application and response collection. Furthermore, integration of BIST with scan and bound-
ary scan are parameters that define a BIST architecture.

Usually, there are several templates for architectures, one of which is selected for a specific CUT.
The architecture of CUT, its scan design, its boundary scan, and desired test time are some of the
issues based on which a preliminary BIST architecture is configured. Some typical BIST architec-
tures will be discussed in Sect. 9.4 of this chapter.

9.1.4.2 Designing TPGs

After a general outline of a BIST architecture is known, and the number, types, and position
of TPGs in the CUT are known, lengths and sequence of data generated by the TPGs must be

2999.1 BIST Basics

worked out. For this preliminary decisions for the type of data that need to be generated are
made, and the rest are decided by fault simulation and evaluation of fault coverage the TPGs
can yield.

Selection of additional test points and adding new TPGs or extending the existing ones to cover
the new test points is not an unlikely situation. Although most of these decisions start with given
templates and are finalized by the use of fault simulation by trial and error, there have been works
done on using intelligent methods for configuring TPGs.

Section 9.2 discusses types and parameters related to TPGs. Several common TPGs will be
discussed.

9.1.4.3 Designing ORAs

Design of ORAs is very similar to that of TPGs, and fault simulation is used for configuring them.
As TPGs, fault simulation is used in a trial and error process to configure ORAs for better coverage
of faults.

In designing a BIST, new ORAs are added, or existing ones are extended to give more
observability to a CUT and to reduce ORA aliasing. Some research works have been done on
making intelligent decisions for ORA design and configuration. The topic of ORAs is dis-
cussed in Sect. 9.3.

9.1.4.4 BIST Procedure

In scan and boundary scan designs, an ATE runs a test program to execute the test procedure
designed for the specific design of scan or boundary scan. In BIST, the same is done by the BIST
controller.

After the BIST design is complete for a CUT, TPGs, ORAs, the way TPGs are clocked, the
number of clocks the circuit under test receives, the time or times at which ORAs are collected, and
finally the signature(s) the ORAs must produce for a good CUT will be known. All these can be
verified and adjusted by use of fault simulation.

The design of a BIST is completed by designing a BIST controller that implements the test
procedure BIST is executing. Figure 9.2 shows a block diagram of a BIST controller with signals
controlling events that cause the testing of the CUT. Output signals shown here describe some of
the functionalities performed by a BIST controller.

A BIST controller has a state machine that sequences through various phases of CUT testing. In
addition, one of several counters of a BIST counts the number of times test data is applied to a CUT,
and perhaps one keeps a count of when response has to be collected. Functions controlled by the
BIST controller that relate to test data generation include initializing the TPGs, clocking them,
selecting their outputs to apply to CUT, and reconfiguring them for different test data production.
Functions related to ORAs include initializations, reconfigurations, stopping and starting them, and
reading their values. Finally, functions related to CUT control include clocking the CUT certain
number of times for preparation of data.

As shown in Fig. 9.2, BIST hardware also includes a part that we refer to as BIST compare. This
part contains the good circuit responses that have been obtained during simulation. Comparators in
this part compare expected ORA responses with those that are built-in in this part. This part is
controlled by the BIST controller, which tells it when to perform the required comparisons. The
BIST compare unit reports its compare results to the controller.

300 9 Logic Built-in Self-test

9.2 Test Pattern Generation

A major part of any BIST hardware is its test pattern generation scheme. This is the part that
contributes to providing access to various parts of a CUT and the overall fault coverage. In certain
situations, TPGs are based on functionality of a part of a CUT, other times they may be providing
random test data for a sequential or combinational part. For example, testing an ALU requires the
test pattern at the function-select inputs to be based on the functionality of the part, whereas testing
a given ALU function may require random or pseudo random test patterns.

Testing memories, logic units, state machines, bus control logic parts, and various parts of a
system may require different types of TPGs. Since data generation for a BIST must be done on-chip,
we are limited by the amount of hardware that can be allocated to this part of a BIST. This section
discusses TPGs, their hardware, implementation, and their applications.

9.2.1 Engaging TPGs

In the normal mode of operation, a TPG is idle and its outputs are not used. In the test mode, the
TPG connected to the part being tested is engaged and drives the CUT input. Figure 9.3 shows two
ways of engaging a TPG. Figure 9.3a shows a multiplexer allowing normal data or TPG output to
drive the inputs of a CUT, and Fig. 9.3b shows a TPG with a transparent mode that allows normal
data to pass through it when not in the test mode.

9.2.2 Exhaustive Counters

An n-bit binary counter provides 2n consecutive test vectors. The Verilog code of an n-bit up/down
counter is shown in Fig. 9.4. The counter is cascadable and has carry-in (cin) and carry-out (cout)
input and output for this purpose. The counter has parallel load inputs for starting it at any stage or
for reducing its count sequence.

Using counters for exhaustive testing of logic units with a large number of inputs is very ineffi-
cient in terms of the number of test vectors. However, by partitioning combinational circuits into
cones with inputs, all of which drive a given output, the number of inputs of each partition will be

Fig. 9.2 BIST controller

3019.2 Test Pattern Generation

limited. In such a situation, exhaustive testing becomes more practical if applied to each logic cone
independently.

Counters are also useful for exhaustively selecting all functions of an ALU, each of which to be
tested by data coming from other TPGs having more limited test vectors. Figure 9.5 shows a 5-bit
counter connected to the function inputs of a 16-bit ALU. The counter selects every one of the 32
functions of the ALU, while for each function, other TPGs provide test data for ALU data inputs.

9.2.3 Ring Counters

An n-bit ring counter has n states, and each state has only one bit set at 1 and the rest at 0. Starting
with a 1 in a bit position, the next count sequence of a ring counter moves the 1 by one bit position.
This continues until the 1 reaches the last counter bit, at which point it rotates back to the opposite
end. For obvious reasons, a ring counter is also called a one-hot or a walking-1 circuit.

A ring counter can be implemented by a shift-register that is initialized with a 1 in one bit
position. This implementation is shown in Fig. 9.6. Alternatively, a log

2
n binary counter driving a

decoder can implement the same functionality.

TPG

NbarT

CUT
Normal Data 0

1

CUT

TPG

Trans
Normal Data

NbarT

ba

Fig. 9.3 Engaging a TPG (a) multiplexed, (b) transparent mode

Fig. 9.4 Up/down counter Verilog code

module counter #(parameter length = 8)(input [length-1:0] d_in,
output cout, input clk,
ld, u_d, en, cin, output
reg [length-1:0] q);

 always @ (posedge clk) begin
 if (en) begin

if (ld) q <= d_in;
else if (cin) begin

if (u_d) q <= q + 1;
else q <= q - 1;

 end
 end

 end
assign cout = &{q, cin};

endmodule

302 9 Logic Built-in Self-test

A ring counter is useful for activating one-hot bus select inputs. Other scenarios such a counter
can be useful for include memory testing and testing data path control inputs.

9.2.4 Twisted Ring Counter

A twisted ring counter is also called a marching-1 circuit. Unlike the ring counter in which a 1 walks
from one end of the counter to the other end, in a twisted ring counter, 1s start marching from one
end to the other end of the counter. A twisted ring counter is also called a Johnson counter. An n-bit
twisted ring counter has 2n states. Figure 9.7 shows the count sequence of a 4-bit twisted ring
counter.

As shown in Fig. 9.8, a twisted ring counter can be implemented by placing an inverter in the
feedback of the shift-register implementation of a ring counter. A marching-1 circuit is particularly
useful for memory testing.

Inserting an XOR gate at the input of the left-most shift-register flip-flop makes a configu-
rable ring counter that can either work as a regular ring counter or a twisted one, i.e., walk-
ing-1 or marching-1. Figure 9.9 shows such a counter with asynchronous resetting mechanism
(init) and a twisted mode select input. When this input is 1, the circuit works as a twisted ring
counter.

ALU

Counter(TPG)

Data Input TPG

01234

N
or

m
al

 C
on

tr
ol

In
pu

ts

Multiplexers

Fig. 9.5 Counter testing every ALU function

1D Q

C1

1D Q

C1

1D Q

C1

1D Q

C1

clk

01 0 0

Fig. 9.6 Ring counter

3039.2 Test Pattern Generation

9.2.5 Linear Feedback Shift Register

The binary counter that we discussed earlier has 2n states for n flip-flops, but has the problem that
the rate of change of an upper-order bit is twice as slow as its most immediate lower-order bit.
This problem becomes worse when comparing bits that are distanced farther. The problem caused
by this situation is that the CUT inputs that are connected to the upper counter bits are not exer-
cised as much as those connected to the lower order bits. Furthermore, capacitive or bridging
effects of pins connected to upper order bits may go undetected, because of slow relative change
of such pins.

On the contrary, the ring counters we discussed earlier did not have this problem. For an n-bit
ring counter, the rate of change of each bit is the clock frequency divided by n.

However, important problems with the ring counters are the limited number of distinct outputs
and uniformity of the data they produce.

A linear feedback shift register (LFSR) can solve some of the problems we face with the counters
discussed above. When an n-bit binary counter produces 2n unique input vectors, an LFSR can be
made to generate up to 2 1−n unique pseudo-random test vectors [5].

1

1

1

1

0

0

0

0

0 0 0

1 0 0

1

1

1

0

0

0

1

1

1

1

0

0

0

1

1

1

1

0

Q3 Q2 Q1 Q0

Fig. 9.7 Twisted ring counter sequence

1D Q

C1

1D Q

C1

1D Q

C1 C1

1D Q

clk

1 0 01

Fig. 9.8 Twisted ring counter

Fig. 9.9 Configurable ring counter

304 9 Logic Built-in Self-test

An LFSR consists of a series of flip-flops wired as a shift-register with feedbacks through XOR
gates. The XOR gates are modulo-2 adders, and the flip-flops are considered as delay elements [7].

9.2.5.1 LFSR Characteristic Equation

Data produced by an LFSR are based on what is referred to as its characteristic equation, which is
defined by the way its feedback is formed. For example, consider the single feedback circuit of Fig. 9.6.
We number these flip-flops from left to right as 1 to n. The data at the output of flip-flop n at time
t
n
 was also here n clock cycles back at time t

0
.

We represent the time component coefficient of each data by x, thus nx becomes the coefficient
of data at time n, and 0x becomes the coefficient of data n clock cycles back. Therefore, the char-
acteristic polynomial that defines the data produced by this register becomes:

 0(.) 1= + = +n nP x x x x (9.1)

Based on the above discussion, the polynomial for the LFSR shown in Fig. 9.10 is:

 2 3() 1 .P x x x= + + (9.2)

As shown in this figure, in addition to the feedback from the right-most flip-flop (number 3) to
the left-most flip-flop, there is also a feedback that adds the output of flip-flop 2 to data coming into
flip-flop 3. Considering that the XOR behaves as a modulo-2 adder, data at the output of flip-flop
3 become the superposition of all data arriving at this point through various feedback paths. This
explains the addition of 2x in E.q. 9.2, when compared with E.q. 9.1.

9.2.5.2 Standard LFSR

Figure 9.11 shows an LFSR type that is referred to as a standard or external-XOR LFSR. This cir-
cuit has feedbacks from flip-flop stages back to the left-most flip-flop. Because the XOR gates are
outside of the shift-register, this structure is also referred to as external-XOR LFSR [8, 9].

The structure in this figure has XOR gates (modulo-2 adders) in the feedback path and
switches that turn feedback contributions on or off. An XOR gate with a switch input in the off
(0) position is effectively removed from the feedback path. Equation 9.3 is the general form of

Fig. 9.10 LFSR with third degree polynomial

3059.2 Test Pattern Generation

the polynomial for this LFSR. The h parameters represent the switch positions, where h
n
 and h

0

are always 1.

(1) (2)

(1) (2) ..() .. 1n n n
n nP x x h x h x− −

− −= + + + + (9.3)

Figure 9.12 shows an LFSR of this type and its corresponding polynomial. Starting with any non-zero
initial value, this LFSR cycles through all 3-bit combinations. An example is shown in this figure.

9.2.5.3 Period of LFSR

Polynomials can be divided and multiplied in modulo-2 system. If polynomial of an LFSR divides
the polynomial, 1Tx + (remainder is 0), and T is the smallest positive number for which this is true,
then T is the period of the polynomial. Figure 9.13 shows dividing 7 1x + by 3 2 1x x+ + , which is
the polynomial of LFSR of Fig. 9.12. Since this division has no remainder, the period of this LFSR
is 7. This can be verified by the sequences shown in Fig. 9.12 (the 100 pattern repeats after 7 clock
cycles).

Figure 9.14 shows another LFSR with a different polynomial. The sequences this LFSR cycles
through are also shown. The smallest positive integer, T, with which 1Tx + can be formed such
that it can be divided by the polynomial of Fig. 9.14 is 4. Thus the period of this LFSR is 4, which
is also verified by the sequences shown. In an n-stage LFSR, 2 1nT = − , then the LFSR with this

Fig. 9.11 Standard LFSR

Fig. 9.12 A third degree standard LFSR

306 9 Logic Built-in Self-test

period produces all possible n-bit combinations except 0. This kind of LFSR is called maximum-
length LFSR. A maximum-length LFSR has a good randomness in terms of frequency of 1s and 0s
for each bit, and for this reason is a good source of test data for data inputs of combinational circuits.
The characteristic polynomial of a maximum-length LFSR is called a primitive polynomial. Table
9.1 lists primitive polynomials of degree 1 to n. For a given shift-register length, more than one
maximum-length polynomial may exist. This table just lists one.

x3+x2+1

x4+x3+x2+1

x6+x4+1

x6+x5+x3

x5+x4+x3+1

x5+x4+x2

0

x7+1

x7+x6+x4

x3+x2+1

x3+x2+1

Fig. 9.13 Polynomial division for period check

Fig. 9.14 Third degree polynomial with T = 4

3079.2 Test Pattern Generation

9.2.5.4 Modular LFSR

Another LFSR type that uses XOR gates internal to its register is called a modular or internal-XOR
LFSR. The modular LFSR is also referred to as a type-2 LFSR. The standard LFSR is type-1. Figure 9.15
shows a generic form of a modular LFSR [9].

Equation 9.3 is rewritten as in E.q. 9.4 to order the terms according to Fig. 9.15. The h param-
eters express the position of the switches.

1 (1)

1 (1)..() 1 . .n n
nP x h x h x x−

−= + + + +

(9.4)

A switch that is put in the off position (0) effectively removes the XOR that it is an input of. A
4-stage type-2 LFSR is shown in Fig. 9.16. According to Table 9.1, this is not a maximum-length
LFSR and since the polynomial of this LFSR (4 2 1x x x+ + +) divides 7 1x + , the period of this
LFSR is 7. As shown in Fig. 9.16, the sequence 0011 repeats after seven clock cycles.

As a maximum-length modular LFSR, consider the circuit shown in Fig. 9.17. The polynomial
for this circuit is 3 2 1x x+ + , which divides 7 1x + , thus its period is 7.

Table 9.1 Primitive polynomials

Bits Feedback polynomial Period

n 2n-1
2 x2+x+1 3
3 x3+x2+1 7
4 x4+x3+1 15
5 x5+x2+1 31
6 x6+x5+1 63
7 x7+x6+1 127
8 x8+x6+x5+x4+1 255
9 x9+x5+1 511
10 x10+x7+1 1,023
11 x11+x9+1 2,047
12 x12+x11+x10+x4+1 4,095
13 x13+x12+x11+x8+1 8,191
14 x14+x13+x12+x2+1 16,383
15 x15+x14+1 32,767
16 x16+x14+x13+x11+1 65,535
17 x17+x14+1 131,071
18 x18+x11+1 262,143
19 x19+x18+x17+x14+1 524,287

1D Q

C1

1D Q

C1

1D Q

C1

clk

x1x0 xn-1 xn

Fig. 9.15 Modular LFSR

308 9 Logic Built-in Self-test

9.2.5.5 LFSR with Serial Input

The sequence of test data an LFSR produces as a TPG can further be influenced by injecting serial
input into it. Among various applications, this feature is also useful for using an LFSR as a signature
generator, altering test data sequences, and in hybrid BISTs for injecting external data. Figure 9.18
shows addition of a serial input to the LFSR of Fig. 9.17.

Figure 9.18 also shows test sequences that this LFSR generates as serial data are shifted in. Initially,
the LFSR contains all 0s, and the serial input is 1. After the first clock cycle, register contents become
100. In nine consecutive clocks, serial data bits 110011101 (left bit, first) are applied to the serial input
of the LFSR. As clocks are applied, the sequence 000100101 (from left to right) appears on the serial
output of the LFSR. After nine clock cycles, the LFSR contains 001, as shown.

Serial data output and register contents after application of serial data inputs can be calculated
by modulo-2 division of input polynomial by the LFSR polynomial. The input polynomial is formed
by using the first data bit value for the coefficient of the highest order term (x), and the last bit
value for the lowest order term (0x). Thus, the serial input data polynomial is:

Fig. 9.16 A nonmaximum-length LFSR type2

1D Q

C1

1D Q

C1

1D Q

C1

clk

Fig. 9.17 3-Stage maximum-length LFSR

3099.2 Test Pattern Generation

8 7 4 3 2() 1.G x x x x x x= + + + + +

As shown in Fig. 9.18 dividing this polynomial by P(x), the LFSR polynomial results in a polynomial
for the quotient and another for the remainder, as shown below:

5 2() 1,Q x x x= + + 2 .()R x x=

Like the input sequence polynomial G(x), the quotient Q(x) defines bit values in given time units.
Setting the reference time at t

0
 after completion of clocking the 9-bit input sequence, the above Q(x)

indicates that the serial output is 1 at t
-5
, t

-2
, and t

0
.

The order of the remainder polynomial is the same as that of the LFSR, i.e., highest order term
is on the right. R(x) defines the contents of the LFSR register after application of serial data. In Fig.
9.18, 001 for R(x) corresponds to the LFSR flip-flops from left to right.

9.2.5.6 Configurable LFSR

LFSRs can be configured for their polynomials and their initial values (LFSR seed). Such configu-
rations are useful for changing test data generation schemes during BIST operation, for hybrid
BISTs, or for when LFSRs are used for ORAs. The latter topic will be discussed in Sect. 9.3.
Nevertheless, configuration schemes that apply to TPGs as well as ORAs are discussed here.

Fig. 9.18 LFSR with serial input

310 9 Logic Built-in Self-test

Configuring an LFSR polynomial can be achieved by a vector of AND gates in the feedback
paths on XOR inputs. LFSR seed can be loaded into it asynchronously by use of asynchronous flip-
flop set and clear inputs, or synchronously, by loading parallel data into the register. Figure 9.19
shows a 4-stage LFSR that can be configured for its polynomial and its seed. As shown, the seed
register defines seed, and poly the polynomial. Depending on the values (1 or 0) in the poly register,
feedbacks to the XOR inputs are turned on or off, which determines the LFSR polynomial.
Initializing the LFSR with a seed takes place when the init input becomes 1. Here, we have flip-
flops with asynchronous active high S (set) and R (reset) inputs. If a seed bit value is 1, with init = 1
the sc input becomes 10 causing the flip-flop to set to 1, and if a seed bit value is 0, sc becomes 01
causing it to reset to 0. When init is 0, both S and R inputs are inactive (0). Values for poly and seed
can be externally provided, or serially shifted into a CUT via scan registers. Figure 9.19 shows the
latter.

Figure 9.20 shows a parameterized configurable LFSR Verilog code. The code shown corre-
sponds to the part in the middle of Fig. 9.19. As shown, the LFSR parallel output is provided on
Q n-bit vector. The AND and XOR logic gates feeding the LFSR flip-flops in Fig. 9.19 are imple-
mented by the expression on the right-hand side of the assignment to Q inside the for loop.

Fig. 9.19 A configurable LFSR

3119.2 Test Pattern Generation

9.2.5.7 Weighted LFSR

Randomness of LFSRs makes probability of each bit being 1 or 0, 50%. Although this is a desirable
situation for most fault detections, there are hard-to-detects faults that may require a higher probability
of occurrence of certain logic values on the circuit inputs. For such cases, we can add a combinational
logic to the output of an LFSR to add a weight to change a given logic value [5, 10]. Figure 9.21 shows
a maximum-length 4-stage LFSR with an AND vector that produces parallel outputs with 0.25 for the
probability of occurrence of 1. For 0.75 probability, a vector of OR gates should be used.

Nonuniform weights can be obtained by the design of combinational circuits specifically made to
produce different probabilities for each test vector bit. Furthermore, a programmable register struc-
ture such as that for a configurable LFSR can be used for programming the weights of test data.

In the above sections, we discussed various forms of LFSRs. These hardware structures are used
for parallel or serial test data generation. An LFSR can be used in its entirety, or just certain bits can
be used to feed a CUT’s inputs. With additional hardware, LFSRs can be made configurable in
output weights and/or sequences they generate.

Fig. 9.20 Configurable LFSR Verilog code

module LFSR #(parameter n = 8) (input clk, init, en,
input [n-1:0] seed,
input [n-1:0] poly,
output reg [n-1:0] Q);

integer i;
always @(posedge clk, posedge init) begin

 if (init == 1'b1) Q <= seed;
 else if (en == 1'b1) begin
 Q[n-1] <= Q[0];

for (i=0; i<n-1 ; i=i+1) begin
 Q[i] <= (Q[0] & poly[i]) ^ Q[i+1];

end //for
 end

 end
endmodule

1D Q

C1

1D Q

C1

1D Q

C1

1D Q

C1

Fig. 9.21 Weighted LFSR

312 9 Logic Built-in Self-test

9.3 Output Response Analysis

On the one hand, TPGs described in Sect. 9.2 generate test data for on-chip BIST. ORAs, on the
other hand, compress responses from a CUT and make them available for the BIST to analyze. We
have to have an ORA for the BIST to just check a short signature of all the responses, instead of
checking every response of the CUT for the test data that is applied to it.

As with TPGs, ORAs must be brief in use of hardware to fit on the same chip as the rest of the
BIST hardware, and of course, the CUT itself. ORAs must be efficient in compressing data so that
different sets of test response vectors compress to different values, i.e., have low aliasing. In this sec-
tion, we discuss various hardware structures for compressing a CUT’s response to input test data.

9.3.1 Engaging ORAs

As part of BIST architecture, an ORA attaches to a CUT’s output and collects and compresses
output data as they appear on the output. Alternatively, a CUT’s output may pass through a ORA,
and the ORA compressed response becomes available on a different set of outputs from the ORA.
Figure 9.22 shows two ways ORAs can be used with CUTs.

The CUT’s response vectors that an ORA selects for compression, the timing of such a selection,
and the duration of time within which an ORA collects a CUT’s outputs are controlled by the BIST
controller. Normally an ORA is a clocked circuit that uses the same clock as the CUT it is attached
to. Clock enabling and counting the number of clocks before reading the ORA output are tasks that
are handled by signals coming from the BIST controller.

9.3.2 One’s Counter

A simple compression technique is to count the number of 1s on a serial output over a given time
interval. This is decided by the BIST procedure and implemented by the BIST controller. Figure 9.23
shows a One’s counter that collects a signature from stream of bits coming from the serial output of
a CUT [11].

As shown here, the BIST controller controls the time interval in which the number of 1s on the
CUT’s serial output are to be counted. This is done by the controller issuing the enable input of the

CUT

ORA

Normal Output

Signature or
Compressed

Output

CUT
O
R
A

Normal Output

Signature or
Compressed

Output

a b

Fig. 9.22 Engaging ORAs

3139.3 Output Response Analysis

counter. At the end of this time interval, the output of the One’s counter is read by the BIST compare
circuitry, and is compared with its predetermined correct count. The BIST compare reports the
compare results to the BIST controller. In case of the One’s counter circuit, the ORA’s signature is
simply the number of 1s. The signature may be more complex for other ORAs discussed in the fol-
lowing subsections.

Note in this block diagram that the CUT, BIST controller, and the ORA use the same clock sig-
nal. This means that every serial output bit that is synchronized with the clock is participating in
formation of the signature.

Figure 9.24 shows Verilog code for an n-bit One’s counter. Note here that the enable input and
the input on which 1’s are being counted act the same. The counter has a reset input (rst) that is also
controlled by the BIST controller at the start of a BIST session.

One’s counters, and other serial data ORAs, can also be used for vector outputs of CUTs. A
simple extension of the signature collection of Fig. 9.23 to a CUT’s vector output is to use multiple
One’s counters. Figure 9.25 shows the use of i + 1 One’s counters for creating a signature for the
data that appears on CUT’s vector output, Outbus[i:0].

Fig. 9.23 Using One’s counter ORA on a serial output

module onescounter #(parameter n = 1)
(input clk, rst, en, ones,
output reg [n - 1:0] cnt);

always @(posedge clk, posedge rst) begin
if (rst) cnt <= 0;
else if (en) begin

 if (ones) cnt <= cnt + 1;
 end

end
endmodule

Fig. 9.24 One’s counter Verilog code

314 9 Logic Built-in Self-test

As shown in this figure, there is a One’s counter for every line of the vector of the CUT shown in
the figure. The number of 1s counted on each line is collected in the line’s corresponding counter.
The outputs of all counters form the signature that is given to the BIST hardware for checking with
the correct signature. As before, controlling when the countings begin and when they end is done by
the BIST controller and is decided during simulation by the procedure we select for built-in testing.

Another technique for collecting a signature from a multi-bit bus by this serial ORA is to multi-
plex vector lines and select a different bus line with each clock. Figure 9.26 shows this mechanism.
For collecting a signature from Outbus[i:0], a modulo-(2log (1)+i) counter that is controlled by the
BIST controller is used. This counter selects the bus line to be sampled. The counter output goes to
the select input of an multiplexer that selects one of its i + 1 data inputs. With every count of the
select-counter, a line of Outbus is selected to feed the One’s counting input of the One’s counter.
When the total number of collected samples reaches the predetermined count, the BIST controller
reads its compare output and determines whether an error has occurred.

This method of collecting a signature from a multi-bit bus reduces the size of the signature, but
increases the possibility of aliasing.

9.3.3 Transition Counter

Another serial ORA is the transition counter. This ORA connects to a serial output of a CUT and
counts the number of transitions that occur on the output. Figure 9.27 shows the circuitry needed to
make a transition counter from a standard counter that has two enable inputs [12].

The flip-flop in this figure holds the old value of the serial input coming from the CUT.
Determined by the XOR gate, if the old value and the new value of serial CUT data are different,
i.e., a transition has occurred, then the counter is enabled and counting occurs. As before, the other
enable input of the counter (en1) is controlled by the BIST controller. Figure 9.28 shows Verilog
code for an n-bit transition counter.

CUT

BIST Controller

[0] [1] [i]

En

En

En

clk
Count Enable

Normal
Output(Outbus)

One’s
Counters

BIST
Compare

Equal
in

pu
ts

 a
nd

/o
r

T
P

G
s

Fig. 9.25 Signature by use of One’s counters

Fig. 9.26 Multiplexing bus lines for serial ORA

Fig. 9.27 Transition counter

module TransitionCounter #(parameter n = 8)
(input clk, rst, en, tin,
output reg [n - 1:0] cnt);

reg q;
wire en2;
always @(posedge clk, posedge rst) begin

if (rst) cnt <= 0;
else if (en) begin

if (en2) cnt <= cnt + 1;
end

end
always @(posedge clk) q <= tin;
assign en2 = tin ^ q;

endmodule

Fig. 9.28 Transition counter Verilog code

316 9 Logic Built-in Self-test

For a serial output from a CUT, the transition counter can be used in the same way One’s counter
is used, as shown in Fig. 9.23. For a bus output of a CUT, the structure shown in Fig. 9.25, where
every line of the bus gets its own counter, also works for the transition counter. The multiplexing
solution for CUT bus outputs (Fig. 9.26) does not work for transition counting unless provisions for
keeping a line at the counter input for more than a clock are made.

9.3.4 Parity Checking

A simple signature generation is calculating the parity on an output line in a given time interval.
Figure 9.29 shows a register structure that calculates parity for individual lines of an n-bit CUT
output vector. The signature becomes available on the register output [13].

9.3.5 Serial LFSRs (SISR)

A method of generating a signature from a CUT’s single-bit output is to shift the serial output into
an LFSR with serial input [14]. The structure used for this purpose and the relation between input,
data, serial output data, and contents of the register are the same as those discussed in Sect. 9.2.5.5
and shown in Fig. 9.18.

When used as an ORA for collecting a signature from a serial data input, this structure is referred
to as serial input signature register (SISR). Verilog code for a configurable SISR is shown in Fig. 9.30.
Except for inclusion of sin (serial input) as an input, and XORing it with Q[0] to assign to the register
left most bit (i.e., Q[n – [1]] < = Q[0]^sin), this description is no different than that shown in Fig. 9.20.
Recall that description of Fig. 9.20 corresponds to the middle part of Fig. 9.19.

The signature of serial data coming in this SISR via sin will be contained in the register paral-
lel outputs. This signature can be calculated by dividing the polynomial corresponding to the
input sequence by the LFSR polynomial. The register output will go to the BIST compare com-
ponent, where it will be compared with the predetermined expected signature for the CUT’s
golden model.

Fig. 9.29 Parity generation

3179.3 Output Response Analysis

SISRs can be used as serial ORAs in any of the three configurations discussed in Sect. 9.3.2. In
certain BIST architectures, serial output from a SISR right most bit is used as pseudo-random serial test
data for other parts of a CUT. In such cases, the SISR is used both as an ORA and a TPG. When used
for serial test data generation, this structure is referred to as shift-register sequence generator (SRSG).

9.3.6 Parallel Signature Analysis

ORA structures discussed so far in this section were all based on single serial inputs. Of course, we
have shown how these structures can be used for collecting signatures from multi-bit busses by
repeating them the required number of times. Another ORA that is inherently parallel and is a better
fit for calculating signatures from bus outputs of CUTs is a multiple input signature register (MISR).
As with other ORAs, MISRs are also considered as data compressors.

Structure of an MISR is basically the same as an LFSR except for the addition of XOR gates at the
inputs of register flip-flops for bringing in parallel data [15, 16]. Figure 9.31 shows an n-stage MISR.
Parallel data inputs to be compressed (P[n-1:0]) are inputs of the XOR gates at the flip-flop inputs.

Switches at the XOR inputs determine whether the feedback exists or not, i.e., removes the cor-
responding polynomial term if set to 0. Therefore, the XOR gates are always there, some have three
inputs for feedback, and others are just 2-input gates when feedback is off. For control by the BIST
controller, the MISR shown has an enable input that tells it when to participate the incoming parallel
data in the formation of the signature.

Fig. 9.30 Configurable SISR

module LFSR #(parameter n = 8)
(input clk, init, en, sin, input [n - 1:0]poly,
seed, output reg [n - 1:0] Q;

integer i;
always @(posedge clk, posedge init) begin

if (init == 1'b1) Q <= seed;
else if (en == 1'b1) begin

 Q[n - 1] <= Q[0] ^ sin;
for (i = 0; i < n - 1; i = i + 1) begin

 Q[i] <= (Q[0] & poly[i]) ^ Q[i + 1];
end //for

 end
 end
endmodule

Fig. 9.31 An n-bit MISR

318 9 Logic Built-in Self-test

Figure 9.32 shows Verilog code that corresponds to this structure. As shown, 1s and 0s in poly
vector input determine the MISR polynomial, and 1s and 0s in seed form the initial value (seed) of
the register.

Figure 9.33 shows a 3-stage MISR that is based on the LFSR of Fig. 9.18. The Verilog code of Fig.
9.32 turns into this MISR by using n = 3, poly = 011, and a seed for the initial value. The actual poly is
1011, where the left-most bit is always a 1 (coefficient of x0). The signature appears at the Q outputs.

Figure 9.34 shows using a MISR for signature analysis of a CUT output. As with other ORAs,
the BIST controller controls the MISR enable input to define the time interval in which CUT
outputs are taken and affect the signature. At the start of a BIST session, the controller issues rst to
initialize the MISR with a seed. For avoiding aliasing, a BIST session may consist of several rounds
of test data application and signature analysis. At the beginning of each round, the MISR receives
a new seed and/or a new poly. The number of clocks for each round are counted by the BIST con-
troller and the corresponding signature is collected. When the BIST session terminates all collected
signatures must match the predetermined expected signatures. Alternatively, a larger signature can
be used to save test time, but obviously required more hardware for the MISR and BIST compare.

Fig. 9.32 Generic MISR Verilog code

module MISR #(parameter n = 8)
(input clk, rst, en, input [n - 1:0] poly, seed, P,
output reg [n - 1:0] Q);

integer i;
always @(posedge clk, posedge rst) begin

if (rst == 1'b1)
 Q <= seed;

else if (en == 1'b1) begin
 Q[n - 1] <= (Q [0] & poly [n - 1]) ^ P[n - 1];

for (i = 0; i < n - 1; i = i + 1) begin
 Q[i] <= (Q[0] & poly[i]) ^ P[i] ^ Q [i + 1];

end//for
end

end
endmodule

Fig. 9.33 A 3-state MISR

3199.4 BIST Architectures

9.4 BIST Architectures

As discussed thus far in this chapter, a BIST in a CUT consists of TPGs, ORAs, comparators, and
a BIST controller that controls operation and timing of these units. BIST architectures define vari-
ous arrangements of such units within a CUT. Because BISTs cannot use deterministic test data,
and have to rely on pseudo-random tests, fault coverage not obtainable by TPGs is compensated for
by architectures gaining observability and controllability of a CUT. This section presents templates
for BIST architectures. It is important to note that details of a BIST heavily depend on the CUT’s
architecture, and the templates presented here must be configured for the specific CUTs.

9.4.1 BIST-related Terminologies

Some of the terminologies related to BIST are presented in this section. We first define various TPG
and ORA types and then terminologies related to BIST test sessions.

9.4.1.1 TPGs and ORAs

Various TPGs and ORAs were discussed in Sects. 9.2 and 9.3. Those based on LFSRs are particu-
larly important in BIST architectures. Some of the ways LFSRs are used are as follows:

LFSR. Linear feedback shift register, used for test pattern generation. The term LFSR is often
used as a general term to refer to all LFSR based TPGs and ORAs.

MISR. Multiple input signature register, used for output response analysis.
SISR. Serial input signature register, a signature register with a single serial input. Used as an ORA.
SISA. Serial input signature analyzer, basically the same as SISR.
PRPG. Pseudo random pattern generator, an LFSR-based TPG with parallel outputs.
SRSG. Pseudo random sequence generator, an LFSR-based TPG with only one serial output.

A parallel SRSG is equivalent to PRPG.

Fig. 9.34 Using an MISR at a CUT output

320 9 Logic Built-in Self-test

BILBO. Built-in logic observer, an LFSR structure configurable to act as a PRPG, an MISR, and
a standard register.

9.4.1.2 Test Cycles, Round, and Sessions

We have referred to the sequence of events that a BIST hardware goes through as the BIST proce-
dure. From the time that a BIST kicks in and starts running the BIST procedure until the time that
the BIST completes its operation is a BIST session. A BIST session is subdivided into several
rounds of test, and a round is further divided into several test cycles.

Test cycle. A test cycle is the time in which a complete test vector is applied to a CUT, and its
test response has been stored. A test cycle may involve shifting serial test data, parallel loading the
test data, or a combination of both. The largest contributor to the number of clock cycles in a test
cycle is the number of flip-flops in the longest scan chain of the circuit under test. For a CUT with
10000 flip-flops in its, scan chain, there will be 10,000 clock cycles in a test cycle. For a combina-
tional circuit with parallel inputs and parallel outputs, test cycle is one clock cycle.

Test round. A round of test consists of a number of test cycles between collections of ORA sig-
natures. At the start of a test round, TPGs and ORAs are initialized and possibly configured for
certain polynomials. After application of a certain number of test vectors, ORA signatures is col-
lected or saved, and another round of test may begin. The number of test cycles in a round of test is
the same as the number of test vectors applied in that round. A ball-park number for the number of
test vectors for a large CUT consists of multiple cores is about one million. This translates to one
million test cycles per round of test.

Test session. A signature is obtained at the end of a test round. For reducing aliasing, a test ses-
sion may involve more than just one round of test. In a test session with r rounds of test, the BIST
controller collects all r signatures and then compares them with the expected signatures. In effect,
having multiple rounds of test in a test session increases the length of the signature. Between two
rounds of test, TPGs and MISRs can be reseeded and/or programmed for new polynomials. A typical
test session includes only one test round. The number of test rounds in a session is in the signal digit
range.

For 10,000 clock cycles per test cycle, 1,000,000 test cycles per test rounds, and three test rounds
for a BIST session, the total test time is 5 min. BIST architectures try to reduce this.

9.4.2 A Centralized and Separate Board-level BIST Architecture (CSBL)

CSBL is a simple BIST Architecture that encloses a CUT, but does not affect its internal
hardware [3].

9.4.2.1 CSBL Hardware

Figure 9.35 shows CSBL architecture for a CUT that is represented by its Huffman model. As
shown, a PRPG is used for TPG, the output of which is multiplexed to be used as the CUT’s input
in test mode (NbarT = 1). The m bits of output of the CUT are sampled by a multiplexer to be used
as the serial input of a SISR. The output sampling process is the same structure we discussed in
Sect. 9.3.2 for collecting a signature from multi-bit output busses.

3219.4 BIST Architectures

9.4.2.2 CSBL Test Process

CSBL test process begins with the external RunBIST signal telling the BIST to take over the opera-
tion of the CUT. The BIST controller issues NbarT and runs its session for a specified number of
clocks. During this time, the PRPG and SISR are enabled, and with each clock a new random num-
ber is generated by PRPG and applied to the CUT’s input. At the same time, a bit of the m outputs
of CUT is sampled and clocked into the SISR. After the BIST session is completed, the BIST-
Compare compares the SISR parallel output with the expected signature and issues its error signal
if a discrepancy is found.

9.4.2.3 CSBL Features

As shown in Fig. 9.35, this method does not involve CUT’s internal registers. Therefore, it is not
suited for general finite-state controllers and circuits with a lot of feedbacks. This BIST architecture
is most useful for pipeline circuits with a limited feedback.

9.4.3 Built-in Evaluation and Self-test (BEST)

The built-in evaluation and self-test (BEST) BIST architecture can be considered as the chip version
of CSBL that was primarily used for board level testing [17]. BEST hardware can be separated
from that of the CUT it is used for, or it can be integrated in it. In the former case, TPGs and ORAs
used by BIST are separate entities that are only used in testing. The other alternative is for TPG and
ORA to combine with internal hardware of CUT.

Fig. 9.35 CSBL BIST architecture

322 9 Logic Built-in Self-test

Figure 9.36 shows a BEST BIST architecture of the separate type. Other than the MISR used for
ORA, this architecture is no different than CSBL discussed earlier. Testing procedure for this archi-
tecture is the same as that discussed for CSBL. The only difference is clocking MISR instead of
SISR.

Controllability and observability of a CUT with BEST and CSBL BIST architectures is limited
to the CUT’s primary inputs and primary outputs. Because of this, good fault coverage can only be
expected if long BIST sessions are run. In which case, we still need to run extensive fault simulations
to determine the duration of the BIST session, as well as PRPG and MISR polynomials. If needed
for a better fault coverage, multiple rounds of testing with MISR reseeding can be used. As
previously discussed, MISR reseeding reduces the chance of signature aliasing for long test
sessions.

9.4.4 Random Test Socket (RTS)

The random test socket (RTS) BIST architecture alleviates the low controllability and observability
of CUT in CSBL and BEST architectures. RTS shifts pseudo random test patterns in the feedback
registers of the circuit being tested.

9.4.4.1 RTS Hardware

The application of this BIST method to a CUT can be explained by considering the CUT’s Huffman
model. As shown in Fig. 9.37, like the BEST architecture, RTS uses a PRPG and a MISR at CUT’s
primary inputs and primary outputs. In addition to this, RTS has a SRSG that generates pseudo
random scan inputs, and a SISA that generates a signature from scanned outputs from the internal
CUT’s feedback registers.

Fig. 9.36 Separate BEST BIST architecture

3239.4 BIST Architectures

9.4.4.2 RTS Test Process

The test process of RTS BIST is basically the same as scan testing, with the exception that test data
generation and response collection are done internally instead of being external scanned-in and
scanned-out.

After RunBIST is issued, the BIST controller puts the feedback registers in shift mode, and
applies the shift clock simultaneous with applying clock to SRSG. While the SRSG is generating
serial pseudo random test data, these data are shifted in the CUT’s feedback register. After clock-
ing as many times as the number of feedback flip-flops, these flip-flops come out of the shift mode,
and the BIST controller puts them in parallel mode. Note that while in the shift mode, the SISA
collects data shifted out from the previous test application. When shifting ends, the SISA clock is
also disabled.

While the feedback registers are in parallel mode, the BIST controller asserts NbarT to apply
PRPG output to the CUT’s primary inputs. In this mode, PRPG and MISR clocks are also enabled.
With the application of the CUT’s clock, circuit’s primary outputs are clocked into the MISR, and
its pseudo primary outputs (state outputs) are clocked into its feedback registers. Clocking PRPG
generates a new input vector for the next round of test, while clocking MISR collects the output of
the current test. Pseudo outputs of the CUT collected in the feedback registers will be accumulated
in SISR when the next scan data are shifted.

At the end of each round of test, the BIST controller is responsible for comparing SISA and
MISR outputs with the expected signatures.

9.4.4.3 RTS Features and Improvements

RTS BIST controller uses a counter and a state machine for keeping track of the number of shifting,
and for controlling register clocking. Although the shift process makes the controller somewhat

Fig. 9.37 RTS (random test socket) BIST architecture

324 9 Logic Built-in Self-test

complex, the ability to control and observe feedback register contents significantly improves the
fault coverage obtained by this BIST architecture.

Note that RTS effectively turns the CUT into a combinational circuit, which makes the testing of
it more effective. However, the lack of ability to bring in deterministic test data means that more
pseudo random test vectors must be applied. The fact that we already have a scan in place enables
us to add more test points if needed. Determination of extra test points, TPG and ORA length and
polynomials, and ORA seeds are done by extensive fault simulations.

9.4.5 LSSD On-chip Self Test

The LSSD on-chip self test (LOCST) BIST architectures integrates with existing CUT’s boundary
scan. This architecture is basically the same as RTS with the exception that test data for the primary
inputs are applied through the boundary scan registers, and CUT’s test responses from primary
outputs are collected from the output boundary scan registers [3, 18].

9.4.5.1 LOCST Architecture

Figure 9.38 shows LOCST BIST method applied to the Huffman model of a circuit under test. As
shown, the LOCST BIST architecture puts primary input and output boundary scan registers in
series with the feedback register scan chain. This forms a single chain for feeding in test data and
collecting test response. A SRSG with a serial output connects to the beginning of the chain at the
primary input side and provides test data for the CUT’s primary inputs and pseudo primary inputs.
The SISR that connects to the end of the scan chain collects test response from circuit’s primary and
pseudo primary outputs.

Fig. 9.38 LOCST BIST architecture

3259.4 BIST Architectures

9.4.5.2 LOCST Test Process

A LOCST BIST test session begins when the external RunBIST signal is issued. At this time, for
every test cycle, the controller puts the boundary scan and feedback registers in shift mode and
clocks them as many times as there are flip-flops (total boundary-scan and feedback). Simultaneous
with this, the SRSG is clocked to produce serial test data for the scan for the current test, and SISR
is clocked to absorb serial response from the scan, from the previous test cycle. When clocking
complete feedback registers, output boundary scan registers are put in parallel mode and are clocked
once. This captures the test response to be shifted out when shifting in the next test.

The BIST controller repeats the above test cycle for as many times as it has been programmed
to do so for the given test session. Recall that determination of the number of test cycles in a test
session is done by extensive fault simulation for obtaining a desired fault coverage.

9.4.5.3 LOCST Features

As with the RTS architecture, LOCST treats the CUT as a combinational circuit that gives it a better
controllability and observability.

LOCST takes advantage of the existing boundary scan cells, but this increases test time since
serial data have to be clocked in for the primary inputs. Inclusion of multiple rounds of testing in a
given BIST session is possible by reconfiguring and/or reseeding the LFSRs.

9.4.6 Self-testing Using MISR and SRSG

The most widely used BIST in industry today is self-testing using MISR and PRPG (SRSG) (STUMPS)
[19]. This BIST architecture solves the problem of long internal scan chain of a CUT (as in RTS and
LOCST) by splitting the internal scan into several individually accessible scan chains. Preferably, the
scan chains should be of equal or close lengths, but there is no penalty if this is not done.

9.4.6.1 STUMPS Structure

Figure 9.39 shows a generic form for the application of STUMPS BIST method to the Huffman
model of our CUT. As shown three separate scan chains are used here. The serial input of each scan
chain is driven by a bit of the parallel output of a PRPG. This result in pseudo-random serial test
data shifted into the scan chain. The serial outputs of the internal CUT scan chains drive the bits of
the parallel input of an MISR.

The block diagram shown in Fig. 9.39 only deals with pseudo inputs and pseudo outputs, and it
does not specify how primary input test data are applied and how primary output test response values
are read. STUMPS leaves these issues to be decided by the individual implementations.

One possible implementation is to include boundary scan cells as we did with LOCST BIST
architecture. However, the boundary scan here is to be used by an ATE to scan in test data into
primary input cells and scan out contents of primary output cells. Extending this option one step
further, the ATE can also provide LFSR configuration data and seeds for the STUMPS PRPG and
MISR. This configuration, shown in Fig. 9.40, is an example of a hybrid BIST.

Another complete BIST implementation based on STUMPS is to use the mechanism we used for
RTS for providing primary input test data and collecting a signature of primary output test responses.
In this configuration, a PRPG provides input test data, and a separate MISR collects the outputs. At
the end of a round of testing, both MISRs (that of STUMPS and that of outputs) will be checked by
the BIST compare hardware.

326 9 Logic Built-in Self-test

9.4.6.2 STUMPS Test Process

Depending on implementation, STUMPS test process is similar to RTS or LOCST. The only differ-
ence is in the number of clocks that is needed in each test cycle to shift pseudo random serial data
into the CUT’s internal registers. Obviously, fewer clock cycles are needed because several registers
are receiving test data in parallel.

9.4.6.3 STUMPS Features

In board level testing, various STUMPS scan registers correspond to internal scan of individual
chips. At the chip level, STUMPS registers are segments of the chip’s scan register. This implemen-
tation is similar to multiple scan configuration discussed in Chap. 7. The biggest advantage of
STUMPS is that it uses significantly less clock cycles per test cycle.

9.4.7 Concurrent BIST

All architectures discussed earlier apply to sequential or combinational circuits and are off-line.
An architecture that is somewhat different than the above architectures is CBIST (concurrent BIST).
This architecture only applies to combinational circuits and performs its testing while the CUT is
also performing its normal functions.

Fig. 9.39 The generic form of STUMPS

3279.4 BIST Architectures

9.4.7.1 CBIST Structure and Operation

Figure 9.41 shows a BIST system that incorporates a CBIST for online testing. This BIST operates
in online and offline modes. When in the online mode, NbarT that is issued by the BIST controller
is 0. In this case, the CUT receives its normal input from its primary inputs. A comparator compares
the incoming inputs with the contents of a PRPG, and when a match is found the PRPG, a match
counter, and the output MISR are clocked. The counter keeps track of the number of clocks in the
test session and reports it to the BIST controller. The MISR collects the output signature only when
an input match is found.

While system is running, at the end of a BIST session that is determined by the match counter,
the BIST controller reads the result of BIST Compare that compares the MISR output with the
expected signature after the given count. The BIST controller reports a failure if for the set of test
data that PRPG has generated, the MISR signature does not match the expected one.

This BIST also runs in offline mode. In this case, the BIST controller asserts NbarT, which
enables the PRPG, match counter, and the MISR with every clock. While this happens, NbarT
causes the PRPG output to feed the CUT and ignores the primary inputs.

Fig. 9.40 Hybrid BIST based on STUMPS

328 9 Logic Built-in Self-test

In the online mode, we might have to wait a long time for the normal data to match the PRPG
the required number of times. This may cause a failure to go undetected for a long time. This
problem is remedied by allowing the BIST to also function in the offline mode when needed to get
a quicker test result. The biggest drawback of this method is that it only applies to combinational
circuits. It is, of course, possible to use feedback register outputs and inputs of a sequential circuit
as pseudo inputs and outputs in order to apply CBIST to the combinational part of a CUT.
However, the large number of bits of primary inputs added to the pseudo primary inputs makes
normal input combinations harder to match the PRPG output, which makes the online test process
to take a long time.

9.4.8 BILBO

A BIST architecture that only defines the structure of scan registers is built-in logic block observer
(BILBO). BILBO combines an LFSR TPG, a MISR ORA, and a scan register (shift-register) with
the internal register of CUT [20, 21].

9.4.8.1 BILBO Architecture

Figure 9.42 shows BILBO architecture for the internal register of a CUT. This structure replaces the
feedback register in the Huffman model of Fig. 9.1. The register has an n-bit P[n-1:0] parallel input
and Q[n-1:0] parallel output. In the standard Huffman model, these signals becomes next-state and
present-state signals, respectively. In addition, the structure shown in Fig. 9.42 has a serial input and
a serial output (Si and So).

Fig. 9.41 BIST based on CBIST

3299.5 RT Level BIST Design

Two mode control inputs for the BILBO register are B
2
 and B

1
. When B

2
B

1
 = 00, the register turns

into a shift-register and shifts the complement of data coming in via Si. B
2
B

1
 = 01 is the MISR mode,

where the P parallel input will be compressed into the existing contents of the register. B
2
B

1
 = 10

resets the BILBO flip-flops. Finally, B
2
B

1
 = 11 puts the register in normal parallel mode.

9.4.8.2 BILBO Test Process

A test cycle in BILBO begins with B
2
B

1
 = 00, which shifts test data into the register, and at the same

time shifts out the register contents captured in the previous test cycle. After this, B
2
B

1
 is set to 01, which

causes the output response that has been made available on the P inputs of the register to be compressed
by the MISR function of BILBO. To exit the test mode, B

2
 is set to 1. BILBO can be regarded more as

a combination of full scan and BIST. Since BILBO is only concerned with the internal registers, a
complete BIST based on BILBO requires a mechanism for applying test vectors to the CUT’s primary
inputs and collecting its primary outputs. In this respect BILBO is similar to STUMPS, and similar
solutions to those discussed in Sect. 9.4.6 can be used for primary inputs and primary outputs.

9.4.9 Enhancing Coverage

The architectures discussed earlier are just some of the many possibilities that we have for making a
CUT self testable. In an actual design, combination of techniques discussed here is used for better fault
coverage and shorter test time. It is also important to note that different parts of a digital system may
require different BIST architectures, and there may not be a single solution, even for the same design.

Some of the ways BIST architectures can be enhanced include insertion of test points, reseeding,
running multiple rounds of test, and using configurable LFSRs. All such enhancements must be
verified by extensive fault simulations before finalizing the design of a BIST.

9.5 RT Level BIST Design

Recall in Chap. 7 that we used a simple processor to demonstrate full scan and multiple scan methods.
We inserted the scans and developed a virtual tester that showed how an ATE would handle the
testing of an scan-inserted design. We used full scan and multiple scan designs.

Fig. 9.42 BILBO register structure

330 9 Logic Built-in Self-test

We will do the same thing in this section except that we will insert BIST versions of full scan
(i.e., RTS) and multiple scan (i.e., STUMPS) in our simple processor design to demonstrate the
details of two chosen BIST architectures, how they attach to an RTL design, and the process of
design and configuration of BIST registers, and parameters [22].

Our CUT is described in Verilog. We will insert BIST circuitry in the design and describe this
hardware in Verilog. We will then develop a Verilog testbench to perform fault simulations, based
on which we decide on BIST parameters such as LFSR lengths and polynomials. The steps that we
will take to complete our BIST design are as follows:

1. Design, simulate, and synthesize the circuit
2. Insert BIST in postsynthesis netlist

Form scan chain(s) in design•	
Insert behavioral configurable TPGs and ORAs•	
Design and describe BIST controller•	
Form CUT in netlist format and behavioral BIST hardware•	

3. Configure the BIST
Come up with several sets of polynomials for the LFSRs (configurations and number of test •	
cycles)
Develop a testbench to calculate good signatures for each configuration•	
Develop a testbench to evaluate each configuration based on fault coverage•	
Choose the right configuration•	

4. Incorporate the selected configuration in the hardware of LFSRs and BIST controller

We will exercise the above steps for RTS and STUMPS BIST designs for our adding machine. We
start with RTS for which all the above steps will be shown in detail.

9.5.1 CUT Design, Simulation, and Synthesis

As mentioned, the first step in any DFT method is to complete the design of the circuit to be tested
in an HDL. The next step is to synthesize it and generate a netlist to be used for evaluation of the
DFT method.

Our design is the Adding Machine that was first discussed in Chap. 2. This circuit has been
synthesized to our standard netlist format, and portions of the netlist have been shown in the previ-
ous chapters, including Chap. 7, where we inserted several scans in it. Figure 9.43 shows the block
diagram of the Adding Machine, based on which its RT level Verilog code has been developed.

9.5.2 RTS BIST Insertion

As shown in Fig. 9.37, RTS BIST architecture adds a PRPG to the primary input of the circuit being
tested, an MISR to its primary output, and a SRSG and a SISA to the beginning and end of the chain
made of its internal state flip-flops. Figure 9.44 shows implementation of this BIST architecture in
the circuit of Fig. 9.43.

9.5.2.1 Scan Insertion in netlist

The scan for our design is shown by a heavy dotted line in Fig. 9.44. The scan serial input (Si) is
the left-most bit of AC, and its output (So) is the least significant bit of control flip-flops. This step

3319.5 RT Level BIST Design

Fig. 9.43 CUT for BIST insertion

Fig. 9.44 Adding Machine with RTS

332 9 Logic Built-in Self-test

of the BIST design is done manually, by modifying the netlist of our CUT that was obtained by
synthesizing the behavioral design. We used the procedure and tools discussed in Appendix E to
generate the netlist from RTL description of Adding Machine.

Figure 9.45 shows a portion of the modified netlist of our CUT. Data input for application of test
data is data_bus_in, and test response is obtained from the concatenation of adr_bus, rd_mem,
wr_mem, and data_bus_out, which forms an 18-bit output vector. In addition to clock and resetting
signals, other ports of this module are NbarT, Si, and So. As shown in the partial netlist, NbarT
connects to every one of the 24 flip-flops of this circuit (AC, PC, IR, and control flip-flops). The
chaining of these flip-flops between Si and So is also shown in this netlist.

9.5.2.2 Adding BIST Hardware

The netlist discussed above is ready to be BISTed. For this purpose, hardware blocks shown in Fig. 9.44
are attached to our CUT’s netlist. The portion of Verilog code in which TPGs, ORAs, and the BIST
controller are instantiated and connected to the CUT’s netlist is shown in Fig. 9.46. Size and polynomial
configurable LFSRs discussed earlier in this chapter are used for PRPG, MISR, SRSG, and SISA.

The PRPG at the input of our CUT is a 16-bit register and connects to the 8-bit data_bus_in input
of the CUT’s netlist. The MISR instantiated in this code has 24 bits, only 18 of which are driven by
the CUT’s outputs. Recall that concatenation of CUT’s primary outputs to be used for signature
analysis by MISR forms this 18-bit vector. The SRSG shown in this figure connects to the Si input
of CUT, and SISA’s input is driven by So from the CUT.

The RTS_controller drives clock enable inputs of the registers mentioned earlier. The controller
takes the number of shifts and the number of test cycles as input.

The use of parameterized and configurable LFSRs and the parameterized controller enable the
test engineer to adjust these components for obtaining a good fault coverage.

module AddingCPU_ScanInserted(clk, reset, data_bus_in,
{adr_bus, rd_mem, wr_mem,
data_bus_out}, NbarT, Si, So);

 . . .
 and_n #(3, 0, 0) AND_95 (wire_191, {wire_142_15, wire_5_22,
 wire_135_4});
 xor_n #(2, 0, 0) XOR_19 (wire_187, {wire_191, wire_190});
 notg #(0, 0) NOT_38 (wire_193, wire_8_0);
 and_n #(3, 0, 0) AND_96 (wire_194, {data_bus_in_0_2,
 rd_mem_10,wire_8_1});
 and_n #(2, 0, 0) AND_97 (wire_195, {wire_10_8, wire_193_0});
 . . .
 dff INS_1 (wire_6, wire_96, clk, 1'b0, 1'b0, 1'b1, NbarT, Si,
 1’b0);
 dff INS_2 (wire_2, wire_98, clk, 1'b0, 1'b0, 1'b1, NbarT,
 wire_6, 1’b0);
 . . .
 dff INS_24 (wire_4, wire_249, clk, 1'b0, 1'b0, 1'b1, NbarT,
 wire_18, 1’b0);

 assign So = wire_4;
endmodule

Fig. 9.45 Scan insertion for RTS

3339.5 RT Level BIST Design

9.5.2.3 Design of the BIST Controller

The BIST controller, the outline of which is shown in Fig. 9.47, has a sequencer and two counters.
The sequencer performs a complete test session after the rstIn is set to 0. The test session here has
one round of testing that includes numOfTstCycl (number of test cycles). In each test cycle, the
number of bits specified by the ShiftSize parameter are shifted in and out of the internal CUT’s flip-
flops. The first counter shown in Fig. 9.47 keeps track of the number of shifts, and the second
counter counts the test cycles.

The sequencer steps through the test procedures and relies on the two counters for knowing when
to enable the LFSRs (PRPG, MISR, SRSG, SISA) and when to stop testing. The sequencer issues
PRPG_En, SRSG_En, SISA_En, and MISR_En to control the LFSRs. When a test session is
complete it issues the done signal.

Figure 9.48 shows the details of sequencing of the sequencer through its six states. Note that the
register part of the sequencer was included in Fig. 9.47, and the code in Fig. 9.48 is for the combi-
national part of the sequencer.

In the Reset state, the BIST controller is working in normal mode. After rstIn is deasserted, the
next state GenData is taken. In this state, clock enable input of PRPG is enabled for it to generate
a new pseudo random data for the CUT’s parallel output. The shift counter is reset here for the
counting to begin in the next state.

In the ShiftData state, the shift counter (the middle bracket in Fig. 9.47) is enabled to keep track
of the number of shifts being done. Meanwhile, SRSG_En and SISA_En are issued. The former
generates a pseudo-random serial data for Si of the CUT’s internal scan, and the latter collects the
scan output (So) and puts it in SISA signature. Setting NbarT to 1 causes the internal flip-flops to
work in the shift mode.

module AddingCPU_RTSArchitecture ();
 . . .

parameter PRPG_Size = 16;
parameter SRSG_Size = 16;
parameter MISR_Size = 24;
parameter SISA_Size = 16;

 AddingCPU_ScanInserted AddingCPU (clk, 1'b0, PRPG_Out[7:0],
 PO, NbarT, Si, So);
 LFSR #(PRPG_Size) PRPG (clk, internalRst, PRPG_En, PRPG_Poly,
 PRPG_Seed, PRPG_Out);
 MISR #(MISR_Size) MISR_1 (clk, internalRst, MISR_En,
 MISR_Poly, MISR_Seed,
 {8'b00000000, PO}, MISR_Out);
 SRSG #(SRSG_Size) SRSG_1 (clk, internalRst, SRSG_En,
 SRSG_Poly, SRSG_Seed, Si);
 SISA #(SISA_Size) SISA_1 (clk, internalRst, SISA_En,
 SISA_Poly, SISA_Seed, So,
 SISA_Out);
 RTS_Controller #(Shift_Cnt, numOfTstCycl) RTS_Controller_1
 (clk, masterRst, NbarT, internalRst, PRPG_En,
 SRSG_En, SISA_En, MISR_En, done);
 . . .
endmodule

Fig. 9.46 Instantiating BIST components

334 9 Logic Built-in Self-test

After the proper number of shifts, ShiftSize will be reached, and the sequencer’s next state
becomes NormalMode. In this state, the CUT is put in the normal mode, which causes its internal
flip-flops to work in parallel mode. Therefore, when clock arrives, the internal state of the CUT will
be captured in the scan register flip-flops. These data will be shifted out during the next test cycle
when we are back in the ShiftData state.

After the NormalMode, the sequencer enters the GenSignature state. In this state, the MISR
that is connected to the 18 output lines is enabled, which causes it to collect the data on these
lines into its signature. In this state, a check is made to see if proper number of test cycles have
been completed. This is done by checking the output of TestVectorCount counter (the third
bracket in Fig. 9.47).

If proper number of test vectors have been applied (number of test cycles), a round of test is
complete. Since our BIST session here has only one round, completion of this round means the
completion of the test session, which causes the sequence to go in the Exit state. In this state, done
is issued for one clock duration. The logic outside of BIST controller compares signatures, when
the done signal is issued.

Fig. 9.47 BIST controller processes

module RTS_Controller #(parameter ShiftSize = 1,
 numOfTstCycl = 50)
 (clk, rstIn, NbarT, rstOut, PRPG_En,
 SG_En, SISA_En, MISR_En, done);
 input clk, rstIn;
 output reg NbarT, rstOut, PRPG_En;
 output reg SRSG_En, SISA_En, MISR_En;
 output reg done;
 reg [2:0] present_state, next_state;
 reg [5:0]shtCount; //vector size should be log2 of ShiftSize
 reg shtCount_Rst, shtCount_En;
 reg [15:0]testVectorCount; //Its size should be log2 of

//numOfTstCycl
 reg testCount_Rst, testCount_En;
 . . .
 //Sequencer
 always @(posedge clk, posedge rstIn)
 if(rstIn) present_state <= Reset;
 else present_state <= next_state;
 always @(present_state or shtCount) begin :Combinatorial
 . . .
 end
 //Counting number of bits shifted into scan chai n
 always @(posedge clk) begin
 if(shtCount_Rst) shtCount <= 0;
 else if(shtCount_En)
 shtCount <= shtCount + 1;
 end
 //Counting number of applied test vectors
 always @(posedge clk) begin
 if(testCount_Rst) testVectorCount <= 0;
 else if(testCount_En)

 testVectorCount <= testVectorCount + 1;
 end
endmodule

3359.5 RT Level BIST Design

9.5.2.4 BISTed CUT Model

Verilog descriptions for the CUT netlist, and behavioral and configurable descriptions for all com-
ponents instantiated in Fig. 9.46, are now available. The next step is examining these components
and properly configuring them.

module RTS_Controller #(parameter ShiftSize = 1,
numOfTstCycl = 50)

(clk, rstIn, NbarT, rstOut, PRPG_En,
 SRSG_En, SISA_En, MISR_En, done);

 . . .
always @(present_state or shtCount) begin : Combinatorial

NbarT = 1'b0; rstOut = 1'b0; MISR_En = 1'b0;
PRPG_En = 1'b0; SRSG_En = 1'b0; done = 1'b0;
SISA_En = 1'b0; shtCount_Rst = 1'b0; shtCount_En = 1'b0;
testCount_Rst = 1'b0; testCount_En = 1'b0;
case (present_state)

`Reset : begin
 next_state = `GenData;
 rstOut = 1'b1;
 NbarT = 1'b1;
 testCount_Rst = 1'b1;
 end
 `GenData : begin
 next_state = `ShiftData;
 PRPG_En = 1'b1;
 shtCount_Rst = 1'b1;
 end
 `ShiftData : begin
 next_state = (shtCount < ShiftSize - 1) ?
 `ShiftData : `NormalMode;
 shtCount_En = 1'b1;
 SRSG_En = 1'b1;
 SISA_En = 1'b1;
 NbarT = 1'b1;
 end
 `NormalMode : begin
 next_state = `GenSignature;
 NbarT = 1'b0;
 end
 `GenSignature : begin
 next_state = (testVectorCount < numOfTstCycl - 1) ?
 `GenData : `Exit;
 testCount_En = 1'b1;
 MISR_En = 1'b1;
 end
 `Exit : begin
 next_state = `Exit;
 done = 1'b1;
 end
 default : next_state = `Reset;
 endcase
 end
 . . .
endmodule

Fig. 9.48 Sequencing BIST control states

336 9 Logic Built-in Self-test

9.5.3 Configuring the RTS BIST

Configuring the RTS BIST of Fig. 9.46 is done by a Verilog testbench that involves extensive fault
simulations for obtaining a good fault coverage for the least amount of test time. Polynomials,
seeds, final signatures, and the number of test cycles for reaching these signatures will be decided
after this configurations phase.

The testbench instantiates the CUT and its BIST circuitry, provides clocking for these compo-
nents, and in a procedural initial statement performs the tasks of BIST evaluation and configuration.
The outline of this testbench is shown in Fig. 9.49.

More details of the initial statement of Fig. 9.49 are shown in Fig. 9.50. As shown here, LFSR
seeds are assigned values. These seeds clock into the LFSRs before a BIST session begins. There
are two while loops in the procedural part of the configuration testbench. The first while loop
calculates good signatures for several given configurations, and the second loop performs fault
simulation to select the best of the given configurations.

9.5.3.1 Acceptable Configurations

We define our BIST configuration as a set of values for polynomials of the four LFSRs of our BIST.
For other BIST parameters such as the seeds and number of test cycles, fixed numbers are used in
our testbench.

Rather than automating the step of generating several configurations to choose from, we have
manually generated them. For this purpose, we have generated a text file, each line of which has
four bit patterns that correspond to the polynomials for PRPG, SRSG, MISR, and SISA,
respectively.

module AddingCPU_RTSArchitecture ();
parameter PRPG_Size = 16;
parameter SRSG_Size = 16;
parameter MISR_Size = 24;
parameter SISA_Size = 16;
parameter Shift_Cnt = 1; //Scan_Size = 24
parameter numOfTstCycl = 100;
parameter numOfConfig = 1;
. . .

. . .

AddingCPU_ScanInserted AddingCPU (. . .);
LFSR #(PRPG_Size) PRPG(. . .);
MISR #(MISR_Size) MISR_1(. . .);
SRSG #(SRSG_Size) SRSG_1(. . .);
SISA #(SISA_Size) SISA_1(. . .);
RTS_Controller #(Shift_Cnt, numOfTstCycl)

RTS_Controller_1(. . .);

 always #5 clk = !clk;

 initial begin

 end
endmodule

Fig. 9.49 BIST configuration testbench

3379.5 RT Level BIST Design

9.5.3.2 Good Signatures

The next task after developing a set of acceptable configurations is to generate good circuit signa-
tures for each configuration. The part of the procedural statement in our configuration testbench that
performs this task (first bracket of Fig. 9.50) is shown in Fig. 9.51.

The Verilog code shown here reads a configuration set from the Configuration.txt file, extracts
four binary vectors from it, and assigns them to the LFSR polynomial inputs. It then issues the BIST
masterRst (master reset), and waits for the BIST controller to complete by issuing its done output.
When done is issued, the while loop in Fig. 9.51 writes signatures from MISR and SISA in a signature
file. Generating good circuit signatures continues for every available configuration set in the con-
figuration text file.

9.5.3.3 Evaluating Configurations by Simulation

The rest of the code of the initial statement, the outline of which we showed in Fig. 9.50, is shown
in Fig. 9.52. This part that corresponds to the second bracket in Fig. 9.50 is responsible for evaluat-
ing every proposed configuration of the polynomials by performing fault simulation. At the start of
this part of the testbench, $FaultCollapsing is called to generate list of faults for the AddingCPU
instances of our CUT.

The outer while loop in Fig. 9.52 loops for every available configuration in the configuration file
(file with logical name cfgFile). For every configuration, good circuit signatures for MISR and SISA
are read from the signature file, and the polynomials of the configurations are assigned to their cor-
responding LFSRs.

module AddingCPU_RTSArchitecture ();
 . . .

initial begin
 . . .

 PRPG_Seed = 12;
SRSG_Seed = 5;
MISR_Seed = 13;
SISA_Seed = 24;
//Generate Dictionary of Good Signatures
//for Various Configurations
while (!$feof(cfgFile)) begin

 . . .
 end
 // Fault Simulation

$FaultCollapsing (AddingCPU, "AddingCPU.flt");
while (!$feof(cfgFile)) begin

while(!$feof(faultFile)) begin

end // "while(!$feof(faultFile))"
end // "while (!$feof(cfgFile)) "
$stop;

end
endmodule

. . .

. . .

Fig. 9.50 Main task in the procedural statement of configuration testbench

338 9 Logic Built-in Self-test

The inner while loop in Fig. 9.52 is responsible for performing fault simulation for every fault
generated by the $FaultCollapsing PLI function. As shown in this loop, after injecting a fault in
the netlist of CUT, the BIST controller is reset and started by turning masterRST on and off. We
then wait for the BIST controller to issue its done signal. When this happens, MISR and SISA sig-
nature outputs for the injected fault become available on the outputs of these registers.

As shown in the inner loop of Fig. 9.52, MISR_Out and SISA_Out are compared with good sig-
natures read from the good signature file that was prepared by the code of Fig. 9.51. A mismatch in
either signature indicates that the injected fault has been detected. In this case, the number of
detected faults for the given BIST configuration is incremented to be used for calculation of fault
coverage when all faults have been simulated.

After all faults in the fault list are considered, the inner loop exits, and fault coverage, configura-
tion polynomials, and other BIST parameters are reported. The test designer chooses the right
configuration of parameters of the LFSRs based on test time and desired coverage.

9.5.4 Incorporating Configurations in BIST

The results of the above evaluations are polynomials for the LFSRs, seeds, the number of test
cycles, and good MISR and SISA signatures. For completing the design of the BIST, these param-
eters must be incorporated into various components of the BIST hardware.

module AddingCPU_RTSArchitecture ();
 . . .

initial begin
 sigFile = $fopen ("Signature.txt", "w");

. . .
// Generate Dictionary of Good Signatures
// for Various Configurations
cfgFile = $fopen ("Configuration.txt", "r");
i = 0;
while (!$feof(cfgFile)) begin

i = i + 1;
//Apply Configurations

 status = $fscanf(cfgFile, "%b %b %b %b\n", PRPG_Poly,
 SRSG_Poly, MISR_Poly, SISA_Poly);
 masterRst = 1'b1; #1 masterRst = 1'b0;

 //Wait for good signature
@(posedge done);
$fwrite(sigFile, "%b %b\n", MISR_Out, SISA_Out);

 end
 $fclose(sigFile);
 #1;
 // End Dictionary of Good Signatures

 // Fault Simulation for every configuration
 . . .

$stop;
 end
endmodule

Fig. 9.51 Calculating good signatures

3399.5 RT Level BIST Design

LFSR polynomials and seeds are directly incorporated in the corresponding LFSRs. The poly-
nomials determine feedback XOR structures, while LFSR seeds determine their reset states. Extra
LFSR hardware is needed if a BIST session is determined to have multiple rounds that use different
polynomials and/or seeds.

Once the number of test cycles has been decided, this number will be hardwired in the counter
in the BIST controller that is used for keeping track of this parameter. Another counter and extra
circuitry may be required if a BIST session requires multiple rounds of testing.

module AddingCPU_RTSArchitecture ();
 . . .
 initial begin
 . . .
 //starting "Fault Simulation"
 $FaultCollapsing(AddingCPU, "AddingCPU.flt");
 i = 0;
 while (!$feof(cfgFile)) begin
 i = i + 1;
 //extract golden signature
 status = $fscanf(sigFile, "%b %b\n",

Golden_MISR_Out, Golden_SISA_Out);
 //Apply Configurations
 status = $fscanf(cfgFile, "%b %b %b %b \n",
 PRPG_Poly, SRSG_Poly, MI SR_Poly,
 SISA_Poly);
 #1;
 faultFile = $fopen ("AddingCPU.flt", "r");
 numOfFaults = 0; numOfDetected = 0;

 while(!$feof(faultFile)) begin
 status = $fscanf(faultFile,"%s s@%b\n",wireName,
 stuckAtVal);
 numOfFaults = numOfFaults + 1;
 $InjectFault(wireName, stuckAtVal);
 masterRst = 1'b1; #1 masterRst = 1'b0;

@(posedge done); //Wait for signature
 //compare
 if({MISR_Out, SISA_Out}!=
 {Golden_MISR_Out, Golden_SISA_Out})
 numOfDetected = numOfDetected + 1;
 $RemoveFault(wireName);

 end // "while(!$feof(faultFile))"

 coverage = numOfDetected * 100.0 / numOf Faults;
 $fwrite(resultFile, "%b %b %b %b %d %d %f\n",
 PRPG_Poly, SRSG_Poly, MISR_Poly, SISA_Poly,
 numOfTstCycl, numOfTstCycl * Shift_Cnt,
 coverage);
 end //"while (!$feof(cfgFile)) "
 $stop;

end
endmodule

Fig. 9.52 Fault simulation for every configuration

340 9 Logic Built-in Self-test

Finally good circuit signatures must also be incorporated in a BIST circuitry. The BIST compare
component, which we used in describing our BIST block diagrams, will be made to compare the
signatures obtained from various ORAs with bit pattern that are hardwired into them. This part of
the BIST requires a simple combinational logic circuit.

9.5.5 Design of STUMPS

The next RTL BIST design we consider here is inclusion of STUMPS in the Adding Machine
example. Figure 9.53 shows TPGs and ORAs used for our STUMPS implementation. This imple-
mentation splits the internal registers of our design into three segments of equal lengths. A 12-bit
PRPG (PRPG2) is used for feeding the serial inputs of the three scan registers. The three serial scan
outputs are captured in MISR2 that is also a 12-bit register. Using a larger register for output signa-
tures reduces the possibility of aliasing.

Another PRPG (PRPG1) is used for the circuit’s primary inputs, and the primary outputs are
compressed by MISR1 signature register. For test purposes, PRPG1 applies data to the CPU data

Fig. 9.53 STUMPS BIST for adding machine

3419.5 RT Level BIST Design

bus, PRPG2 applies serial data to internal registers, MISR1 collects parallel output, and PRPG2
collects serial data appearing on three scan chains.

9.5.5.1 Inserting Scan Registers

Figure 9.54 shows partial netlist of the Adding Machine after synthesis (generated by NetGen
explained in Appendix E). The ports of this module have three serial inputs and three serial outputs
for the scan chains. The flip-flops shown here indicate that flip-flops INS_1 to INS_8 form one
chain, INS_1 to INS_16 the second chain, and INS_17 to INS_24 form the third scan chain. The third
scan chain includes six bits of the PC and two control flip-flops.

module AddingCPU_MultiScanInserted(clk, reset, data_bus_in,
{adr_bus, rd_mem, wr_mem,
data_bus_out}, NbarT, ir_Si,
ac_Si, pc_Si, ir_So, ac_So,
cntrl_So);

 . . .
 and_n #(3, 0, 0) AND_95 (wire_191, {wire_142_15, wire_5_22,
 wire_135_4});
 xor_n #(2, 0, 0) XOR_19 (wire_187, {wire_191, wi re_190});
 notg #(0, 0) NOT_38 (wire_193, wire_8_0);
 and_n #(3, 0, 0) AND_96(wire_194, {data_bus_in_0 _2,
 rd_mem_10, wire_8_1});
 and_n #(2, 0, 0) AND_97 (wire_195, {wire_10_8, w ire_193_0});
 . . .
 . . .
 dff INS_1(wire_6, wire_96, clk, 1'b0, 1'b0, 1'b1 , NbarT,
 ir_Si, 1’b0);
 . . .
 dff INS_8(wire_26, wire_173, clk, 1'b0, 1'b0, 1' b1, NbarT,
 wire_54, 1’b0);
 dff INS_9(wire_130, wire_180, clk, 1'b0, 1'b0, 1 'b1, NbarT,
 ac_Si, 1’b0);
 . . .
 dff INS_16(wire_52, wire_208, clk, 1'b0, 1'b0, 1 'b1, NbarT,
 wire_50, 1’b0);

 dff INS_17(wire_65, wire_211, clk, 1'b0, 1'b0, 1 'b1, NbarT,
 pc_Si, 1’b0);
 . . .
 dff INS_24(wire_4, wire_249, clk, 1'b0, 1'b0, 1' b1, NbarT,
 wire_18, 1’b0);

 assign ir_So = wire_26;
 assign ac_So = wire_52;
 assign cntrl_So = wire_4;
endmodule

Fig. 9.54 Insertion of three scan chains for STUMPS

342 9 Logic Built-in Self-test

9.5.5.2 Adding BIST Components

Figure 9.55 shows instantiation of the Adding Machine along with BIST related LFSRs and the
BIST controller. This partial code corresponds to the BISTed CUT shown in Fig. 9.44. Because this
Verilog description is for evaluation of the BIST, the multiplexer that would be required at the
data_bus_in primary input for the actual hardware is not included here.

One thing to note here is the distribution of PRPG2 output bits 8, 4, and 0 to the three scan
chains. This is quite arbitrary, and is done for more randomness in data shifted into the registers.
The rest of this Verilog code (including LFSR and controller descriptions) follows closely what was
done for RTS in Fig. 9.46. The difference in STUMPS controller is that it requires fewer clocks for
shifting data into the scan registers.

9.5.5.3 STUMPS Configuration

The testbench for evaluation of STUMPS BIST parameters is almost identical to that of RST dis-
cussed in Sect. 9.5.3.

module AddingCPU_STUMPSArchitecture ();
parameter PRPG1_Size = 16;
parameter PRPG2_Size = 12;
parameter MISR1_Size = 16;
parameter MISR2_Size = 12;

 AddingCPU_MultiScanInserted AddingCPU
 (clk, 1'b0, PRPG1_Out[7:0], PO, NbarT, ir_Si ,
 ac_Si, pc_Si, ir_So, ac_So, cntrl_So);
 LFSR #(PRPG1_Size) PRPG_1
 (clk, internalRst, PRPG1_En, PRPG1_Poly, PRPG1_Seed,
 PRPG1_Out);
 LFSR #(PRPG2_Size) PRPG_2
 (clk, internalRst, PRPG2_En, PRPG2_Poly, PRPG2_Seed,
 PRPG2_Out);
 MISR #(MISR1_Size) MISR_1
 (clk, internalRst, MISR1_En, MISR1_Poly, MISR1_Seed,
 PO, MISR1_Out);
 MISR #(MISR2_Size) MISR_2
 (clk, internalRst, MISR2_En, MISR2_Poly, MISR2_Seed,
 {3'b0, cntrl_So, 3'b0, ac_So, 3'b0, ir_So}, MISR2_Out);

assign {pc_Si,ac_Si,ir_Si} =
 {PRPG2_Out[8],PRPG2_Out[4],PRPG2_Out[0]};

 STUMPS_Controller
 #(Shift_Cnt, numOfRounds)
 STUMPS_Controller_1(clk, masterRst, NbarT, InternalRst,
 PRPG1_En, PRPG2_En, MISR1_En,
 MISR2_En, done);
 . . .
endmodule

Fig. 9.55 Adding STUMPS BIST components

343References

9.5.6 RTS and STUMPS Results

The results we obtained by inserting RTS and STUMPS in the Adding Machine example was that
for basically the same amount of hardware, STUMPS BIST sessions are almost three times as fast.
Coverage we obtained for RTS was about 71%, and for STUMPS it was 74% for the same test
time.

9.6 Summary

In this chapter, we covered BIST from an RTL designer’s point of view. In the first parts of the chapter,
various forms of TPGs and ORAs are discussed, and how they are realized in an RT level HDL environ-
ment are shown. Section 9.4 covered various BIST architectures. In this part, we used the generic
sequential circuit model so that application of BIST architectures to various other digital designs could
be easily understood. On the one hand, our discussion of BIST procedures in this section did not get
into clock level details, and it mainly stood at the task level, e.g., loading test data, shifting serial
response, etc. On the other hand, Sect. 9.5 where exact RT level descriptions of the CUT, BIST controller,
and TPGs and ORAs were discussed, the clock level details of all BIST tasks become clear.

Actually Sect. 9.5 puts together all the materials discussed in the earlier sections of this chapter. There
is a twofold benefit in presentation of HDL models and discussing test procedures in an RT level language.
One side of this is in clarification of component bindings and timings of the events for the purpose of
education, and the other benefit is that this presentation brings test concepts one step closer to home for
the RTL designers using HDLs in their designs. The evaluation testbenches and BIST controllers dis-
cussed here are typical of what is needed in real designs and can be used as templates in such cases.

References

 1. Agrawal VD, Kime CR, Saluja KK (1993) A tutorial on built-in self-test, part 1: principles. IEEE Des Test
Comput 10(1):73–82

 2. Agrawal VD, Kime CR, Saluja KK (1993) A tutorial on built-in self-test, part 2: applications. IEEE Des Test
Comput 10(2):69–77

 3. Abramovici M, Breuer MA, Friedman AD (1994) Digital systems testing and testable design. IEEE Press,
Piscataway, NJ (revised printing)

 4. McCluskey EJ (1986) Logic design principles: with emphasis on testable semiconductor circuits. Prentice Hall,
Englewood Cliffs, NJ

 5. Rajski J, Tyszer J (1998) Arithmetic built-in self-test for embedded systems. Prentice-Hall, Upper Saddle River, NJ
 6. Agrawal VD, Dauer R, Jain SK, Kalvonjian HA, Lee CF, McGregor KB, Pashan MA, Stroud CE, Suen L-C

(1987) BIST at your fingertips handbook. AT&T, June 1987
 7. Bardell PH, McAnney WH, Savir J (1987) Built-in test for VLSI: pseudorandom techniques. Wiley, New York
 8. C Dufaza, Cambon G (1991) LFSR-based deterministic and pseudo-random test pattern generator structures. In:

Proceedings of the European test conference, pp 27–34, Apr. 1991
 9. Golomb SW (1982) Shift register sequences. Aegean Park Press, Laguna Hills, CA
10. Waicukauski JA, Lindbloom E, Eichelberger EB, Forlenza OP (1989) WRP: A method for generating weighted

random test patterns. IBM J Res Dev 33(2):149–161
11. Savir J, McAnney WH (1985) On the masking probability with ones count and transition count. In: Proceedings

international conference on computer-aided design, pp 111–113, November 1985
12. Hayes JP (1976) Transition count testing of combinational logic circuits. IEEE Trans Comput 25(6):613–620
13. Das SR, Sudarma M, Assaf MH, Petriu EM, Jone W-B, Chakrabarty K, Sahinoglu M (2003) Parity bit signature

in response data compaction and built-in self-testing of VLSI circuits with nonexhaustive test sets. IEEE Trans
Instrum Meas 52(5):1363–1380

14. Peterson WW, Weldon EJ Jr (1972) Error-correcting codes. MIT Press, Cambridge, MA

344 9 Logic Built-in Self-test

15. Hassan SZ, McCluskey EJ (1984) Increased fault coverage through multiple signatures, in Digest of Papers.
Fault-Tolerant Computing Symposium, pp 354–359, June 1984

16. Williams TW, Daehn W, Gruetzner M, Starke CW (1987) Aliasing errors in signature analysis registers. IEEE
Des Test Comput 4(4):39–45

17. Perkins CC, Sangani S, Stopper H, Valitski W (1980) Design for in-situ chip testing with a compact tester. In:
Proceedings of international test conference, pp 29–41, November 1980

18. Eichelberger EB, Lindbloom E (1983) Random-pattern coverage enhancement and diagnosis for LSSD logic
self-test. IBM J Res Dev 27(3):265–272, March 1983

19. Bardell PH, McAnney WH (1982) Self-testing of multiple logic modules. In: Proceedings of international test
conference, pp 200–204, November 1982

20. K¨onemann B, Mucha J, Zwiehoff G (1979) Built-in logic block observation techniques. Proceedings of interna-
tional test conference, pp 37–41, October 1979

21. K¨onemann B, Mucha J, Zwiehoff G (1980) Built-in test for complex digital circuits. IEEE J Solid-State Circuits
15(3):315–318

22. Roy S, Guner G, Cheng K-T (2000) Efficient test mode selection and insertion for RTL-BIST. In: Proceedings
of international test conference, pp 263–272, October 2000

345Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_10, © Springer Science+Business Media, LLC 2011

Test application time is one of the main sources of complexity in testing IP cores. Test data volume
is also a major problem encountered in the testing of SOCs. High volume of test data is not only
exceeding the memory and I/O channel capacity of ATE, but it is also leading to high testing time
that impacts the cost of test [1]. Test cost depends on test data volume, the maximum scan chain
length, and the required time for transferring test data from ATE to CUT. This amount of time
depends on ATE channel capacity and test data bandwidth. Test data bandwidth is the rate at which
test vectors can be scanned in and test response scanned out [2]. For a specified ATE channel capac-
ity and bandwidth, reducing test time is possible by test data compression, changing the scan chain
structure, and using logic BIST. Changing the structure of internal scan chains is not possible for an
existing IP core. Logic BIST requires redesigning IP cores, the extensive cost associated with which
may not be justified. So, the only option that remains for reducing test time is to reduce test data by
compression [1].

This chapter begins with a general discussion of compression and how it relates to an ATE and
the circuit it is testing. The section that follows this general discussion presents various compression
techniques and the corresponding algorithms. Code-based and scan-based techniques are presented
here. We then focus our attention on decompression hardware for on-chip decompression.

10.1 Test Data Compression

Unlike compaction methods that reduce the number of test vectors, compression methods do not
alter the number of test vectors. Instead, they reduce the number of bits per test vector. Unlike
compaction, compression requires decompression. Figure 10.1 shows three different ways of
applying test vectors from an ATE to a circuit under test (CUT). In its simplest form, test data can
be applied to the CUT without any compression or compaction. This is shown in Fig. 10.1 by the
dashed path designated by circled number 1. Another alternative is the test data that is compacted
can also be applied to the CUT directly as shown by the dotted line designated by circled number
2. The dashed-dotted lines (number 3) show the third alternative depicted in Fig. 10.1. This is the
path that test data should travel if it is stored in a compressed format. In this case, the compressed
test data should be decompressed using on-chip decompression hardware before it is applied to
the CUT.

As shown in Fig. 10.1, decompression hardware consists of some synchronization logics and a
decoder. Cyclical scan chains, shift registers, and counters are some of the components used in the
design of the decoder logic. The on-chip decompression hardware shown here has a synchronization
logic, Synchronizer 1, that serially receives test data bits from the ATE at the ATE’s speed. The data
are saved in the synchronization logic buffer and are made available to the decoder when the
decoder requests them.

Chapter 10
Test Compression

346 10 Test Compression

From the incoming data, the decoder forms decoded words of size L
sym

 (symbol length). Based
on the compression method, the L

sym
 bits wide decompressed data are either completely generated

after a fixed number of tester clock cycles, or generated in an uneven distributed fashion over several
tester clock periods. Decoding for Dictionary-based and Huffman methods is of the former type,

Fig. 10.1 Test application alternatives

34710.2 Compression Methods

and decoding of the Run-length is an example of the latter type. In either case, the application of
decoded data to the CUT uses the system clock. The synchronization logic on the output side of the
decoder, Synchronizer 2, of Fig. 10.1 synchronizes the decoded data with the system clock. Details
of decoder and synchronization logic are discussed in Sect. 10.3.1.

Compressing test data is either an actual compression in which test data vectors are reduced to
fewer bits, or it is virtual in which case the same test data is used multiple times, which makes it
look like it has been compressed. In this chapter, several compression methods are described first,
that is then followed by the decompression hardware of each of the methods.

10.2 Compression Methods

Test data compression methods explained in this section are categorized as code-based and scan-
based schemes. Code-based schemes [1, 3–8] are performed after the test generation process using
a software program. The input of the compressor is a set of randomly or deterministically generated
test patterns and its output is compressed test data, compressed data decompressed by on-chip
decompression hardware and shifted into the internal scan or boundary scan chain of a CUT. Scan-
based schemes are based on broadcasting a value into multiple scan chains or applying the same set
of test data to multiple CUTs [8–16]. In some cases, a simple encoder is needed to analyze the
generated test pattern and encode it in order to make it ready to be applied to multiple-input scan
chains. In such cases, a simple decompression hardware is also required to decode the data and
apply it to the CUT scan chains. Generally, in scan-based compression methods reducing data is
done by sharing the same data multiple times, therefore compression and decompression are not as
solidly defined as in code-based methods. In the rest of this section, various code-based and scan-
based compression methods are discussed.

10.2.1 Code-based Schemes

Code-based schemes are used to compress test cubes or test vectors. Test cubes are the test vectors
with several don’t care bits that are generated by deterministic ATPG tools. Although, don’t care
bits are usually filled by ATPG tools randomly, some ATPG tools may leave some of them unspeci-
fied. In compressing test cubes, these don’t care bits should be filled with binary values. They can
be filled in a way that a better compression is achieved. As an example, in Run-length coding,
unspecified bits are filled by 0 to get larger length of 0s.

To encode a data in code-based schemes, it is partitioned into blocks called symbols. Each sym-
bol is then converted to a codeword using a compression algorithm. Several considerations are taken
into account for partitioning a data into symbols. Considerations are based on the way of applying
the data to the CUT, the number of scan chains of a CUT and the length of each scan chain. Figures
10.2 and 10.3 show two ways of partitioning test data into symbols. In each figure, the box on the
left represents test patterns, and box(es) on the right is (are) the scan chain(s).

The first method is used when the CUT has a single scan chain with mk scan elements. The
symbols are taken from consecutive bits of the test vectors. Figure 10.2 shows an example of this
case for a scan chain of size mk. Partitioning the test vector to obtain symbols is illustrated above
the test pattern. The dashed arrows show the corresponding data of each scan element after the mkth
clock cycle.

348 10 Test Compression

Figure 10.3 shows the case of having a CUT with m scan chains, where the length of each scan
chain is k, and m bits of data are shifted into the scan chains in parallel. After k clock cycles, data
reaches the end of the chains, and the serial outputs of the chains become available. In this case,
partitioning test data to create symbols that are to be encoded differs from the case of having a CUT
with a single scan chain. Here, the symbols are taken from every kth bit of the test vector. There are
such k m-bit symbols. Each m-bit symbol is encoded (compressed), sent to the decompression unit,
decoded and then applied to m scan chains in parallel.

Fig. 10.2 Corresponding value of a scan chain after mk clock cycles

Fig. 10.3 Corresponding value of m scan chains after k clock cycles

34910.2 Compression Methods

Code-based schemes can be classified into four groups, depending on whether the symbols
and codewords have fixed or variable size [17]. Based on this assumption, four types of encod-
ing exist that are summarized in Table 10.1. An example method of each category is also named
in this table.

Code-based schemes can be lossy or lossless. In lossy methods, in each encoding/decoding pro-
cess, several bits are destroyed or lost. So, the original data is not reconstructed after decoding the
codewords. Therefore, compressing test data in this way may decrease the fault coverage. In a loss-
less compression, encoding test vectors are done such that the original data can be uniquely recon-
structed from the codewords. Since in lossless methods the fault coverage does not change, these
methods are more often used for compressing test data.

In the rest of this section, test data compression algorithms that are shown in Table 10.1 are explained.
All of these methods are lossless. Decoders for these methods are discussed in the next section.

10.2.1.1 Huffman Codes

Huffman [18] coding is a lossless compression method. It compresses data by replacing each fixed
length symbol by the corresponding variable length codeword [6]. The idea is to make the code-
words that occur most frequently to have a smaller number of bits, and those that occur least fre-
quently to have a larger number of bits. Huffman uses a table of occurrence frequency of each
symbol to build up an optimal representation of each symbol as a binary string. As mentioned ear-
lier, compression is accomplished by giving frequent patterns short codewords and infrequent pat-
terns long codewords. It is proven that Huffman code provides the shortest average codeword length
among all uniquely decodable variable length codes. A Huffman code is obtained by constructing a
Huffman tree. The path from the root to each leaf gives the codeword for the binary string corre-
sponding to the leaf.

Procedure. The procedure for constructing the Huffman tree of a given test set with a given
occurrence frequency of each symbol is described here.

1. Sort the symbols in a descending order of their frequencies.
2. Consider each nodes as a leaf node of a tree.
3. While there is more than one node, merge two with the smallest frequency to form a node whose

frequency is the sum of the frequency of the merged nodes.
4. Assign a 0 (or a 1) to the left branch of all nodes and the other logic value to the other branch.

The following example shows how Huffman code is used to compress a set of test data.

Example 1: Huffman encoding. Figure 10.4a shows a stream of a test pattern in which all unspe-
cified bits are filled randomly. This pattern is divided into 4-bit symbols. The corresponding pattern
of each symbol and its occurrence frequency are depicted in Fig. 10.4b.

Figure 10.5a shows the Huffman tree of this pattern. Figure 10.5b shows the corresponding
codeword of each symbol.

Table 10.1 Four categories of code-based compression methods

Symbol length (L
sym

) Codeword length (L
cw

) Example

Fix Fix Dictionary code
Fix Variable Huffman code [1, 6, 18]
Variable Fix Run_length code [8]
Variable Variable Golombs code [3]

350 10 Test Compression

The compression ratio is defined as follow:

 size of the pattern before compression
compression ratio

size of the pattern after compression
=

So the compression ratio of the Huffman code can be calculated as:

Sym bol

a

Pattern Frequency

S0

S1

S2

S3

S4

S5

S6

0 0 1 0

0 1 0 0

0 1 1 0

0 1 0 1

0 0 0 1

1 0 0 0

1 0 1 0

10

9

7

3

1

1

1

0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0

0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1

0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0

0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0

b

Fig. 10.4 (a) Stream of a test pattern (b) Symbols and corresponding occurrence frequency

1 1

2

1

13

32a

b

3 3

6

10

7

19

9

0

0

0

0

0

0

1

1

1

1

1

1

S2

S1

S3

S5 S6 S4

S0

Symbol

S0
S1
S2
S3
S4
S5
S6

11
10
00
011
0101
01000
01001

Huffman Code

Fig. 10.5 (a) Huffman tree of test pattern (b) Symbols and corresponding codewords

35110.2 Compression Methods

=

×
=

×∑
sym

cw1

compression ratio

i

n

ii

n L

L Freq

In the above equation, n is the number of symbols and codewords. Note that in the Huffman coding
symbol length is fixed.

cwi
L is the length of the codeword corresponding to the i th symbol, and

finally Freq
i
 is the occurrence frequency of the ith symbol. According to this definition, the compres-

sion ratio of the Huffman code discussed in Example 1 is calculated as:

32 4
compression ratio 1.71

10 2 9 2 7 2 3 3 1 4 1 5 1 5

×= =
× + × + × + × + × + × + ×

As shown in Fig. 10.5a, Huffman code is prefix-free. It means that there is no codeword which
is the prefix of another codeword. This simplifies the decoding process because the decoder can
recognize the end of each codeword uniquely without any lookahead. However, a Huffman decoder
is complex and the number of states increases exponentially with the number of bits of a symbol.
So, some variations of Huffman coding that have simpler decoders than the original Huffman are
introduced. Although these coding schemes are not as efficient as Huffman, their decoders have
fewer states, and hence simpler to build on-chip. Selective Huffman is a variation of Huffman that
is explained here.

Selective Huffman. Selective Huffman [6] coding scheme is a variation of Huffman coding, in
which only the more frequent symbols are encoded. In this method, an extra bit is added as the first
bit of each codeword, indicating whether the data is encoded. If the first bit of the codeword is 0, it
means that the symbol is not encoded and transmitted as is. On the other hand, if the first bit of the
codeword is 1, it indicates that the symbol is encoded. As the number of codewords that should be
encoded is fewer than Huffman, it is obvious that the decoder of this method has fewer states than
Huffman.

Example 2: Selective Huffman encoding. Assume that the pattern that is shown in Fig. 10.4a is
to be encoded using Selective Huffman coding scheme. As shown in Fig. 10.4b, S

0
, S

1
, and S

2
 are

the most frequent symbols. Therefore, only these symbols are encoded and other symbols are sent
with a 0 as their starting bit indicating that they are not encoded. The Huffman tree of this method
is shown in Fig. 10.6.

10.2.1.2 Dictionary-based Codes

Dictionary-based [5] methods are lossless compression methods that operate by searching for
matches between the text to be compressed and a set of strings in a dictionary. In this method,

79

16

10

26

1

1

0

0

S2
S1

S0

Fig. 10.6 Huffman tree based on Selective Huffman coding

352 10 Test Compression

strings of the symbols are selected to establish a dictionary. The basic idea is taking advantage
of the number of commonly occurring sequences. For encoding, a symbol is replaced by its index
to the dictionary. The dictionary may be either static or dynamic [7]. A static dictionary does not
change during the coding process. In other words, the dictionary containing a set of predefined
strings is built before starting the coding process. In methods using dynamic dictionaries, the
dictionary has some strings at the beginning, and its contents change during the coding process,
based on the data that has been already encoded. LZ77 is an example of this kind.

An English dictionary is a simple example of a static dictionary. A word in the input text
is encoded as an index to the dictionary if it appears in the dictionary. Otherwise, it is encoded
as the size of the word followed by the word itself. In order to distinguish between the index
and the raw word, a flag bit needs to be added to each codeword. If the flag bit is 0, it indicates
that the word does not exist in the dictionary. In this case, the codeword is composed of the
flag bit, the size of the word, and the word itself. If the flag bit is 1, it implies that the code-
word exists in the dictionary and the following bits indicate the index of the codeword in the
dictionary.

Dictionary-based methods can be used for compressing test data. One of the variations of
Dictionary-based codes is encoding fixed length symbols to fixed length codewords [7]. This
method uses a static dictionary with index rows and L

sym
 columns, which should be selected appro-

priately. In this method, each symbol in the test pattern is encoded as an index to the dictionary if
it appears in the dictionary. Otherwise, it is not encoded. A flag bit is added to each codeword indi-
cating whether or not it is encoded. If the flag bit is 0, it indicates that the symbol does not exist in
the dictionary, and the following L

sym
 bits specify the symbol. If the flag bit is 1, it implies that the

symbol exists in the dictionary and the following L
index

 bits indicate the index of the codeword in the
dictionary. Therefore, the codeword length is fixed and is as shown below. Figure 10.7 shows a
dictionary and how a symbol is coded by that.

sym
cw

index

1 if flag 0

1 if flag 1

L
L

L

+ =
= + =

As shown, S
0
 is in the ith row of the dictionary. So, it is encoded with flag value 1 followed by L

index

bits representing i, which is the position of S
0
 in the dictionary. To encode a symbol, S

1
, that does

not exist in the dictionary, it is encoded as a 1-bit 0 for the flag, followed by the L
sym

-bit original data, S
1
.

Fig. 10.7 Dictionary and coding scheme

35310.2 Compression Methods

Procedure. The procedure of encoding a given test set with using fixed to fixed Dictionary-based
method is described here:

1. Construct the dictionary.
2. Partition the test set into symbols in an appropriate way for encoding.
3. Search each symbol in the dictionary.

(a) If it is compatible with an entry of the dictionary, encode it as a 1 followed by corresponding
L

index
-bit index of that symbol in the dictionary.

(b) If it is not compatible with an entry of the dictionary, encode it as a 0 followed by the L
sym

-bit symbol.

As shown in the above procedure, the first step is constructing a dictionary, and for this purpose, the
size of the dictionary should be specified. Actually, a dictionary is a memory having index number of
words, the length of which is L

sym
-bit. Each word of the dictionary is shifted into the scan chain(s) of

the CUT after being decoded.
In the rest of this section, encoding test data using a Dictionary-based method is explained with

the use of two examples. In the first example, it is assumed that the CUT has a single scan chain,
and in the second example the CUT has multiple scan chains. The manner in which the test pattern
is partitioned, constructing the dictionary, and encoding test data are presented in each case. As we
show in the two following examples, the number of scan chains that should be loaded at the same
time affects the word length of the dictionary and how the test pattern is partitioned into symbols.

Example 3: Dictionary-based method for CUT with single scan chain. Let T
D
 be the given test

set consisting of six 12-bit test cubes, as shown in Fig. 10.8a.
Suppose that the CUT that uses these test cubes has a single scan chain. Therefore, 1-bit test data

should be shifted into the scan chain in each system clock cycle. The test pattern can be partitioned into

Fig. 10.8 (a) Test cubes T
D
. (b) Constructed dictionary (c) Corresponding codeword of each symbol

1

a

x

x

0

x

0

0

x

1

1

1

0

1

1

1

1

0

x

x

0

0

1

x

x

1

1

1

1

1

x

x

x

x

x

1

0

1

1

0

1

x

x

0

0

0

1

1

1

0

x

1

1

1

1

x 0 0

0 0 0

0 1 1

0 0 1

1 1 1

0 1 1

0

1

2

1

1

1

1

b

1 1

1

1

1 1 1

1

1 1

1

1 1

1 1

0

0

0

0

0

0

0

0 0

0

0

0 0

0

0

0 0

Lsym

in
de

x

1

x

x

0

x

0

0

x

1

1

1

0

1

1

1

1

0

x

x

0

0

1

x

x

1

1

1

1

1

x

x

x

x

x

1

0

1

1

0

1

x

x

0

0

0

1

1

1

0

x

1

1

1

1

x 0 0

0 0 0

0 1 1

0 0 1

1 1 1

0 1 1

0 0 0 1 0 1 0 0 1 1 1 1 1

1 10

1 0 0

1

1

1

0 0

0 1

1 0

Symbol

c

Codeword

354 10 Test Compression

fixed size symbols as in Fig. 10.2. The simplest way of encoding is to consider each test cube as a
symbol. In the encoding process, each test cube is searched in the dictionary. If it is found, it is
encoded as a 1 followed by the index of its position in the dictionary. Otherwise, it is encoded as a
0 followed by the test cube whose unspecified bits are filled by 0 in this example. As the first step,
a dictionary should be constructed. In this case, we have a dictionary with index number of rows and
L

sym
 columns, as shown in Fig. 10.8b, i.e., three 12-bit words. Figure 10.8c shows the corresponding

codeword of each symbol.
The total number of bits to shift into the scan is as there are bits in all codewords, i.e., (1 + 2) ×

5 + (1 + 12), which is 28. To further reduce test application time, multiple scans can be used. This
is shown in Fig. 10.3 and is illustrated in the following example.

Example 4: Dictionary-based method for CUT with multiple scan chains. Let the CUT have three
scan chains, and let T

D
 of Fig. 10.8a be used as the test data. In this case, each bit of an entry of the

dictionary is to be applied to a separate scan chain. Therefore, the size of each word of the dictionary
should be 3. Figure 10.9a shows the dictionary that contains two 3-bit entries. The test pattern is
partitioned into 3-bit symbols the way it is shown in Fig. 10.3. This means that, each test vector is
divided into four 3-bit subvectors. The symbols are taken from every fourth bit of the test vector as
is shown in Fig. 10.9b. So, each test vector is divided into four 3-bit symbols. The symbols and their
corresponding codewords are shown in Fig. 10.9c.

Fig. 10.9 (a) Dictionary (b) Partitioning test set (c) Symbols and their codewords

35510.2 Compression Methods

10.2.1.3 Run-length Codes

The conventional Run-length [3, 8] code is a variable to fixed coding scheme. Runs of data are
sequences in which the same data value is repeated. In this method, a test pattern is partitioned into
variable length symbols that consist of runs of consecutive 0s or 1s. Each symbol is encoded as the
length of runs of consecutive 0s or 1s. Here, the runs of consecutive 0s are considered. Run-length
coding is efficient for data with long sequences of equal symbols. Because of the correlation of
consecutive test vectors, encoding the difference vector set is more efficient. If T

D
 = {t

1
, t

2
, …, t

n
}

is the test set we are starting with, the difference vector set, T
diff

, is defined as: T
diff

 = {t
i
, t

1
 ⊕

⊕
t
2
,

…, t
n-1

 ⊕ t
n
}. Run-length code encodes variable-length symbols to fixed-length codewords. Suppose

that the length of the codeword is L
cw

. Each codeword represents the length of runs of consecutive
0s. Therefore, the maximum number of consecutive 0s can be cw2 1−L . This way, test data will be
partitioned into symbols containing cw2 1−L runs of 0s or less than cw2 1−L runs of 0s followed by
a 1. The procedure of Run-length coding is discussed here.

Procedure. To start encoding T
D
 or T

diff
, a fully specified set with runs of 0s followed by a single

1 should be generated. The procedure is described here:

1. All don’t care bits of T
diff

 are mapped to 0 to obtain a fully specified test set before compression.
2. Select the codeword size, L

cw
 which specifies the maximum size of runs of 0s in each symbol.

Once L
cw

 is determined, the data should be partitioned. To do so, we start from the beginning of
the sequence and add each bit to the symbol until we reach a 1, or the number of consecutive 0s
exceeds cw2 1−L . Then, each symbol is encoded as the length of runs of 0s. The following example
illustrates this.

Example 5: Run-length coding. This example shows how to encode a test data using Run-length
code. Figure 10.10a shows the stream of a difference test set, and Fig. 10.10b shows its encoding.

Here, we are assuming the codeword length is 3, which gives a maximum of seven 0s in a run.
Starting from the left, a partition is marked when a 1 is reached, and the number of 0s before that
are recorded.

10.2.1.4 Golomb Codes

Golomb codes [3] map variable-length runs of 0s in difference vectors to variable length code-
words. Using Golomb code, each codeword has two parts: a group prefix and a tail. To encode data,
each set of data should be partitioned into groups of size m. The runs of 0s in T

diff
 are mapped to

group of size m. The number of such groups is determined by the length of the longest runs of 0s
in T

diff
. The set of run lengths { , 1, , 1}+ … + −km km km m forms group G

k
. If m is chosen to be a

power of 2 (2t), t-bit sequence, tail, uniquely identifies each member within the group.

 00 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1

011 101 000 100 100 111 010 111 010

L=3 L=5 L=0 L=4 L=4 L=7 L=2 L=7 L=2

a

b 001

L=1

000

L=0

S0 S7S6S5 S10S4S3S2S1 S9S8

Fig. 10.10 (a) The stream of difference test set (b) The corresponding encoded stream

356 10 Test Compression

Procedure. As in Run-length coding, a fully specified test set with long runs of 0s followed by
a single 1 should be used as the starting point. The procedure is described here:

1. All don’t care bits of T
diff

 are mapped to 0 to obtain a fully specified test set before compression.
2. Select parameter m for the group size.
3. Partition data in a way that each symbol contains runs of 0s followed by a 1.
4. Using the number of 0s in a symbol and parameter m, determine the group number (k) of the

symbol. Group number k becomes: (number of 0s) modulo-m.
5. For a symbol that belongs to group G

k
, the corresponding codeword has a group prefix in the form

of (k) ones, followed by a zero, and tail which identifies the position of the symbol in the group
(between 0 and m).

Figure 10.11 shows the encoding of variable runs of 0s based on Golomb coding for m = 4.
Example 6 shows how to encode a test set using Golomb coding.

Example 6: Golomb coding. Figure 10.12a shows the stream of a difference test set, and Fig.
10.12b shows the encoded test set.

In this example, the group size is equal to 4, so the tail of each codeword is 2-bit. Data is parti-
tioned with a stream of 0s ending with a 1, as shown in Fig. 10.12a, which also shows the number
of runs of 0s in each group. Then, each symbol is encoded based on the runs of 0s according to
Fig. 10.11. S

0
 has 3 runs of 0s which makes it part of group G

0
. So, it has 1-bit prefix which is 0, and

Fig. 10.11 Golomb encoding with m = 4

 0 00 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1

011 1001 000 1000 1000 1011 010 11000 010

L=3 L=5 L=0 L=4 L=4 L=7 L=2 L=8 L=2

a

b

S0 S7S6S5S4S3S2S1 S8

Fig. 10.12 (a) Stream of difference test set (b) Corresponding encoded stream

35710.2 Compression Methods

2-bit tail that is 11 indicating its position within group G
0
. S

1
 has 5 runs of 0, which makes it part

of group G
1
 with a prefix of 10, and its tail is 01 that is its position in group G

1
. The remaining

symbols are encoded similarly.

10.2.2 Scan-based Schemes

Chapter 7 discussed scan design for gaining controllability and observability into a CUT. As we
showed in that chapter, test application time of a scan system is proportional to the length of the
scan chain. Although multiple scan chains reduce test application time by concurrently shifting data
into several scan chains, they introduce the overhead of extra input and output ports for each parallel
scan. In this section, scan-based compression methods are discussed. Generally, in these methods
reducing data is done by sharing the same data multiple times, therefore compression and decom-
pression are not as solidly defined as in code-based methods.

10.2.2.1 Broadcast Scan

A scan-based compression method is the broadcast scan [11, 17, 19] that uses one tester channel to
load multiple independent scan chains. When test data is generated by an ATPG, some bits are
unspecified. These don’t care bits can be valued in a way to detect a fault of another CUT, and thus
use the test vector for testing more than one CUT. As scan chains of CUTs are independent, using
a test vector to test multiple CUTs does not change the fault coverage of each CUT.

The main idea in this scan-based compression method is to share test sets among multiple CUTs
and broadcast the same test set to all CUTs [13]. Normally, the majority of test vectors of a test set
are those that are randomly generated, and the remaining test vectors for detecting the last 20% to
40% faults are generated by deterministic methods. If we are to merge test sets of several CUTs,
random test can be shared and we need not recreate them for each CUT independently. On the other
hand, deterministic tests, that are made for each CUT independently, have many don’t care values
that can be adjusted to detect undetected faults of multiple CUTs. Those test vectors that cannot be
shared and cannot be adjusted to benefit other CUTs become part of the test set for all CUTs.
Alternatively, such vectors are just dropped from the common test set, which cause some faults to
go undetected.

Virtual Circuit. The sharing discussed above can be accomplished by generating tests for a virtual
circuit [13] that is formed by tying together the inputs of all CUTs that are to share test sets. The
virtual circuit is for test generation purposes only, and does not physically exist.

With several CUTs having different number of inputs, there are many configurations for tying
their inputs together, and the way inputs are connected affects the number of generated test patterns.
In the virtual circuit [13] shown in Fig. 10.13, inputs of the CUTs are tied together according to their

1 2 3 Nk N2 N1 N21 2 3 Nk 1 2 3 Nk
CUT1 CUT2 CUTK

Fig. 10.13 Virtual circuit

358 10 Test Compression

ordering in the CUT. Those CUTs that have fewer inputs than some, just do not use the shared
inputs.

The scan chain configuration of this connection method is shown in Fig. 10.14 [13]. Since all
circuits receive the same test set, we can use a single line to broadcast test patterns to all circuits.
The configuration of the scan chain depends on the way the virtual circuit is formed.

As shown in Fig. 10.14, in this configuration all CUTs receive the same test patterns through the
scan input. Unless we use as many serial outputs as there are CUTs that are receiving data in parallel,
this compression method requires a MISR for collecting circuit responses.

10.2.2.2 Illinois Scan

Using broadcast scan for multiple scan chains that drive the same circuit may result in a reduced
fault coverage because same scan cells always hold identical values [9]. The next scan compres-
sion technique is called Illinois scan, which is actually a parallel serial full scan (PSFS) [9]. As in
the broadcast scan, this method has a parallel mode that reduces the test application time by divid-
ing the scan chain into multiple partitions and shifting-in the same vector to each scan chain
through a single scan-in input [9, 12, 15]. The outputs of the scan chains are observed through a
MISR.

The drawback of the broadcast method is that the test vector overlap forced by this method can
cause shifting-in tests that can benefit only one CUT and are useless for the others. Considering
each CUT might need its own special tests that others cannot use, leads to many unnecessary shared
test vectors. Avoiding this, results in many faults in the CUTs that will be left undetected. In order
to solve this problem, Illinois scan technique preserves the single scan chain structure with its serial
mode. This is implemented by extra multiplexers and a simple control logic [9]. As a result Illinois
scan operates in two modes of broadcast and serial. Figure 10.15 shows the architecture of Illinois
scan and its two modes of operation [9].

In Illinois scan architecture, like full scan, NbarT input controls the operation. When NbarT =
0, it operates in normal full scan mode, and when NbarT = 1, core operates in test mode. The
operation of Illinois scan in test mode is controlled by Control FF, shown in Fig. 10.15a. In
both modes, test responses are collected by MISR. In the serial mode, the output of the circuit is
the serial output of the scan chain, while in the broadcast mode, the serial output is the output of
the MISR.

CUT1 CUT2 CUTK

MISR

 N1 N2 Nk

Si

So

Scan Chain 1 Scan Chain 2 Scan Chain k

Fig. 10.14 Scan chain configuration of a virtual circuit

35910.2 Compression Methods

10.2.2.3 Multiple-input Broadcast Scan

As discussed in the above subsections, in broadcast scan and broadcast mode of Illinois scan, a
tester channel is used to drive all scan chains (see Figs. 10.14 and 10.15). The idea of Illinois scan
is to share the same scan-in pin among multiple scan chains in broadcast mode. For a test pattern,
if any scan chain requires a logic value different from the logic values on the other scan chains in
the same cycle, that test pattern must be serially scanned in. The Illinois scan architecture can be
optimized by using multiple-input broadcast scan [12, 13, 20] that uses more than one channel. If
two scan chains must be independently controlled to detect a fault, they can be assigned to different
channels. Furthermore, using multiple channels enables us to use shorter scan chains that cause
better fault coverage by placing fewer constraints on the ATPG. Figure 10.16 shows Multiple-input
broadcast scan architecture.

The architecture shown in Fig. 10.16 shows two channels each with three scan chains. Shaded
patterns used in the scan cells indicate same bit values that are shifted in the scan cells. An example
of using this architecture was shown in Sect. 10.2.1.2. In Example 4, this method is used in conjunc-
tion with Dictionary-based method to further reduce the test time.

MISR

Si

So

mn-bit

C1

1D Q

Scan Chain 1

0

1

Scan Chain 2 Scan Chain n

0

1

0

1

0

1

0

1

MISR

clk

Si

So
m-bit m-bit m-bit

a

Scan Chain Si So

Scan Chain 1 Scan Chain 2 Scan Chain n

Control FF

NbarT

b

c

Fig. 10.15 (a) Illinois scan architecture (b) Serial mode (c) Broadcast mode

360 10 Test Compression

10.2.2.4 Other Methods

Other scan-based methods for reducing test application time are discussed here briefly.

Reconfigurable broadcast scan. As discussed in Sect. 10.2.2.2, Illinois scan uses serial mode to
detect faults that cannot be detected in broadcast mode. Since operating in serial mode is time con-
suming, this architecture can be changed to multiple-input broadcast scan as discussed earlier. To
reduce the number of channels in multiple-input, reconfigurable broadcast scan [8, 13, 20] can be
used. The idea is to provide the capacity to reconfigure the set of scan chains that each channel
drives. There are two reconfiguration methods: static and dynamic.

In the static reconfiguration, reconfiguration can only be done when a new pattern is to be
applied. For this method, the target fault set is divided into several subsets and each subset is to be
tested by a single configuration. After testing one subset of faults, the configuration can be changed
to test another subset [20].

In dynamic reconfiguration, the configuration can be changed while scanning in a pattern. This
provides more reconfiguration flexibility. The disadvantage of dynamic reconfiguration is that it
needs more control information for reconfiguration at the right time because reconfiguration occurs
on a per-shift basis [20].

A reconfiguration method uses multiplexers before scan chains for selectively shifting the appro-
priate data into each scan chain [13, 20]. This method can be used to reconfigure scan chains stati-
cally or dynamically by changing the selector signals of the multiplexers per-test or per-shift,
respectively. Figure 10.17a shows an overview of this architecture for four 4-bit scan chains. There
are two serial inputs, Si

1
 and Si

2
. Figures 10.17b and 10.17c show static reconfiguration of this archi-

tecture in which the selector signal of the multiplexers can only be changed after shifting a test pat-
tern into the scan chain completely [20]. Figure 10.17d shows a dynamic reconfiguration of this
architecture [20]. In this case, the selector signals of multiplexers get four different values during
shifting a test pattern into the scan chains. In the architecture of Fig. 10.17, multiplexers give the
scan chains the choice of using either one of scan inputs. Multiple chains can use the same input
causing them to receive the same data.

In static configuration, there are only as many configurations as there are independent serial
inputs. This is shown for our example in Fig. 10.17b, c, where same pattern shadings indicate same
data being shifted.

There is more flexibility in dynamic reconfiguration because reconfiguration is possible
per-shift. In Fig. 10.17d, the value of the select signal of the multiplexer can be changed per-shift.

Fig. 10.16 Multiple-input broadcast scan architecture

36110.2 Compression Methods

Therefore, in four clock cycles, it can be configured four different ways. In the first clock cycle, in
which select = 1, Si

1
 is shifted into scan chains 1 and 3, and Si

2
 is shifted into scan chains 2 and 4.

In the second clock cycle, as select = 1 again, Si
1
 is shifted into scan chains 1 and 3, and Si

2
 are

shifted into scan chains 2 and 4. In the third clock cycle, as select = 0, Si
1
 is shifted into scan chains

1 and 2, and Si
2
 are shifted into scan chains 3 and 4. In the forth clock cycle, as select = 0 again, Si

1

is shifted into scan chains 1 and 2, and Si
2
 is shifted into scan chains 3 and 4. In the figure, scan

cells that receive their inputs from the same source use the same shading patterns.

LFSR-based methods. LFSR-based compression method [16] is based on LFSR reseeding. An
LFSR seed configures it for generating its specific pattern. The idea here is to compute a set of seeds
that lead to the generation of a given deterministic test cube after being expanded by the LFSR.

Fig. 10.17 (a) Reconfigurable broadcast scan architecture. (b) Static reconfiguration: select = 0 (c) Static recon-
figuration: select = 1. (d) Dynamic reconfiguration: select = 0011(during four shift-in operations)

0

1

0

1

0

1

0

1

Si1

Si2

select

MISR
So

Scan Chain 1

a

Scan Chain 2

Scan Chain 3

Scan Chain 4

362 10 Test Compression

Since the seeds are much smaller than the test vectors, the amount of test data can be reduced
significantly. In this method test vectors are encoded as LFSR seeds by solving a system of linear
equations [17].

LFSR is linear system, as it only contains wires, XOR gates and flip-flops. Therefore it can
generate test vector T, if and only if there exist a solution to the system of linear equation AX = T,
where A is the characteristic matrix for the LFSR, and X is a bit from the tester that is shifted in
[17]. Encoding a test cube using LFSR needs to solve a system of linear equations that consists of
one equation for each specified bit. LFSR reseeding can be static or dynamic.

In static reseeding, a seed is computed for each test cube. This seed is loaded into LFSR, and
after running it produces the test vector in the scan chains. One drawback of using static reseeding
is that the tester is idle while the LFSR is shifting its data in the scan cells. In dynamic reseeding,
bits from tester are shifted into the LFSR as it loads the scan chains. The advantage of dynamic
reseeding is that it allows continuous operation in which the tester is always shifting in data as fast
as it can and is never idle.

In LFSR-based methods, seeds are stored in the tester memory instead of test vectors. Seeds are
loaded into the LFSR through tester channels, and test vectors are generated by LFSR. As is
shown in Fig. 10.18, a combinational XOR logic is used to expand the LFSR outputs to fill n scan
chains [17]

10.3 Decompression Methods

To decompress the data that has been compressed by a code-based compression technique, and is
received from the tester channel, on-chip decompression hardware is required (see Fig. 10.1). The
received data should be decompressed before being shifted into the scan chain(s). In such cases,
explicit decoder and decompression hardware are required. On the other hand, in most scan-based

Fig. 10.17 (continued)

36310.3 Decompression Methods

compression techniques, the use of the same data by multiple chains makes it look like data has been
compressed. For such methods, that we refer to as virtual compression methods, no specific decom-
pression hardware is required.

In testing on-chip cores, test vectors of each core should be applied to scan inputs and its internal
scan chain, and test responses should be observed on core output and shifted out from internal scan
chain. If the data received is compressed by a code-based technique, hardware structures to decom-
press test data are needed before applying data to the CUT. Generally, decompression hardware
consists of decoder and synchronization logics.

This section discusses decompression hardware architectures. In addition, cyclical scan chain
(CSC) [21] that is used for generating the original test set from the set of difference vectors is dis-
cussed. Decompression hardware for Selective Huffman is described in detail, including its decoder
and synchronization logic. For other code-based compressing methods, the architecture of decoder
is discussed. For the sake of completeness, we also mention scan-based decompression methods.

10.3.1 Decompression Hardware Architecture

In this section, the overall structure of an on-chip decompression hardware is discussed and an
example is presented. Figure 10.19 shows the architecture of decompression hardware in which the
single internal scan chain of the CUT is used for applying test data. This general structure applies
to most code-based techniques.

In every tester clock cycle, TesterClk, decompression unit receives 1-bit serial data through the
tester channel. Since it may take the decoder (shown as Decoder in Fig. 10.19) more than one clock
cycle to decode a bit and be ready for the new data, a synchronization logic (shown as Synchronizer 1
in Fig. 10.19) is needed. Decoder informs Synchronizer 1 that it is ready to receive a new bit of data
by asserting its Ready signal.

After collecting enough number of bits, the decoder generates the original data whose size is that
of the symbol of the compressed data, i.e., L

sym
. Based on the compression method, the L

sym
-bit

original data is either completely generated after a fixed number of tester clock cycles and put on
ParOut output of Decoder, or it is generated in an uneven distributed fashion over several tester
clock periods bit-by-bit and put on SerOut output signal. In either case, the decoded data should be
applied to the CUT scan chain using the system clock (SystemClk).

Since tester and system clocks are usually different, the decoded data should be synchronized
with the system clock. The synchronization logic (Synchronizer 2) on the output side of the decoder
of Fig. 10.19 is responsible for this task. With this arrangement, we are avoiding the tester being
idle while shifting the decoded data into the CUT scan chain.

Scan Chain 1

Scan Chain 2

Scan Chain m

L
F
S
R

Combinational
XOR

Network
b channels
from tester

So1

So2

Som

Fig. 10.18 Compressing using LFSR reseeding

364 10 Test Compression

When Decoder is ready to send data for the scan chains, it informs and loads data into
Synchronizer 2 using Valid, Flag, and either of the load signals (ParLoad or SerLoad). Data for the
synchronizer becomes available on SerOut or ParOut, depending on the compression technique
used. The compression technique also influences the architecture of Synchronizer 2. What follows
discusses synchronizing the generated data that is generated by the decoder. We look at two cases
of synchronizer’s input data becoming available after a fixed number of tester clocks, and data sent
to the synchronizer serially over several clock periods. In both cases, the architecture of Synchronizer
2 that is considered is for a fixed decoded data size.

In the first case, we assume that the decoder generates b-bit original data after a fixed number of
tester clock cycles. The application of the decoded data to the CUT scan chain should be done with
the system clock. Figure 10.20 shows the corresponding hardware. This hardware has a parallel to
serial converter (P2S in Fig. 10.20), and control hardware for control of P2S clocking and shifting.
The data input of this hardware is ParOut, which is the b-bit output of the decoder that is loaded
into P2S when ParLoad is asserted. After loading the decoded data in to P2S, it is shifted into the
CUT scan chain in the next b system clock cycles. Since the clock of the system is faster than the
tester clock, a data block is shifted into the CUT scan chain before decoding a new codeword. This
sets a minimum for the size of the codeword.

For the case that the decoded data is generated bit-by-bit, an additional shift register is needed to
collect serial data before it is serialized again with the system clock. Figure 10.21 shows the

Fig. 10.19 Block diagram of decompression hardware

Fig. 10.20 Architecture of Synchronizer 2:
Synchronizing parallel data

36510.3 Decompression Methods

Synchonizer 2 hardware for this case. As shown, the parallel input of P2S is coming from the shift
register instead of the decoder, as was done in the previous case.

10.3.2 Cyclical Scan Chain

In some compression methods such as Run-length and Golomb coding, a set of difference vectors
is used in compression instead of the individual test vectors. As discussed earlier in this chapter, this
technique achieves more compression because of long runs of 0s in the difference vectors. To con-
vert the difference vectors, and obtain the original data, a CSC [21] is used. A CSC consists of
several flip-flops and an XOR gate. A CSC should be the same size as the internal scan chain of the
CUT, and its contents should not be overwritten when the system clock is applied to the CUT.
Figure 10.22 shows the architecture of a CSC [21].

An m-bit vector shifting out from an m-bit CSC register over the next m clock cycles is the bit-
by-bit XOR of the existing data in the register before the m clock cycles begin. The CSC register
must be initialized to all 0s before serial difference data begin to come in.

CSC can be configured using the chip boundary scan, or using a scan chain in a different system
clock domain [21]. In either case, its size must be the same as that of the scan chain it is preparing data
for, and its contents should not be altered during its operation. Figure 10.23 shows configuring bound-
ary scan of Core 1 as CSC of CUT. If the length of the boundary scan chain used for CSC of a CUT
is larger than the size of the CUT internal scan chain, the boundary scan chain can be broken up at the
right position, and a feedback from the appropriate scan element is used for the CSC XOR input.

Fig. 10.22 Architecture of a CSC

Fig. 10.21 Architecture of Synchronizer 2: Synchronizing serial data

366 10 Test Compression

Using internal scan of a core for CSC of another core is also possible [21]. This is illustrated in
Fig. 10.24. If the length of the internal register of a core used for CSC of a CUT is larger than the
size of the CUT internal scan chain, the same can be done as was done for the boundary scan chain,
above. However, if the length of the internal scan chain of core used (Core 1) is less than the length
of CUT internal scan chain (which is the case in Fig. 10.24), several flip-flops are placed before the
input of the internal scan chain of Core 1 to form a CSC with the same length as the CUT internal
scan chain. To make sure that the contents of the register used for CSC in this case is not altered,
the CSC should be in a different clock domain than the CUT.

10.3.3 Code-based Decompression

Decompression architecture for decompressing data that is encoded using code-based schemes is
generally similar to the architecture shown in Fig. 10.19. In this section, the decoder hardware is
discussed for each of the code-based methods discussed in Sect. 10.2.1. For Huffman coding
scheme, the architecture of Synchronizer 2 is also briefly discussed.

10.3.3.1 Huffman

While Huffman code gives the optimum compression for a test set divided into a particular set of
fixed length symbols, it generally requires a very large decoder [6]. A Huffman code with L

sym
-bit

block size requires a finite state machine (FSM) with up to
sym2L

states. Therefore, the number of
states grows exponentially as the block size increases. To reduce this complexity, several variations
of Huffman code are used. One such variation is Selective Huffman coding that we discussed in
Sect. 10.2.1.1, which only encodes the most frequent symbols. In this method, if n codewords are
to be decoded, the FSM requires at most n + L

sym
 states for decoding data. Several extra states are

also needed for controlling the synchronization logic.

Fig. 10.24 Using internal scan chain of Core 1 to build the CSC of the CUT

Fig. 10.23 Configuring boundary scan of Core 1 as CSC of CUT

36710.3 Decompression Methods

In a Selective Huffman codeword, if the first bit is 0, it indicates that the following L
sym

 bits
specify the symbol; otherwise, the following bits specify the encoded symbol. Because of this two-
mode operation, the part of the hardware that is responsible for producing serial data for the scan
register (Synchronizer 2) has to be able to take either serial data or parallel data from the decoder.
Therefore, this part of the hardware becomes an overlay of the two hardware structures discussed
for the synchronizer shown in Figs. 10.20 and 10.21. Figure 10.25 shows the block diagram of
Selective Huffman decoder and its synchronizer.

Using the tester clock, the decoder receives 1-bit data, d_in after asserting Ready signal, and it
controls the operation of Synchronizer 2 by setting SerLoad, ParLoad, Valid, and Flag output signals
appropriately. Flag is 1 if a symbol is decoded and parallel data are prepared, and it is 0, otherwise.
After decoding the encoded data, ParLoad becomes 1, and ParOut is loaded into P2S and shifted into
the CUT internal scan chain with the system clock. If no decoding is being done, Flag becomes 0,
SerLoad output is asserted, and each bit of data is shifted into the shift register of Synchronizer 2.

The shift register clock is controlled by the Valid signal coming from Decoder. After receiving
a complete symbol, ParLoad becomes 1, the shift register output is loaded into P2S, and the counter
is reset. Decoding the data and the operation of the synchronizer are controlled by the FSM.

Finite state machine. An FSM is used for decoding codewords generated by Selective Huffman
coding, and for the control of the synchronizer. This FSM uses the tester clock.

If the first bit of the codeword is 1, it indicates that the subsequent bits form a prefix-free variable
length code. In this case, in each tester clock cycle, one bit of the codeword is considered, and the
FSM goes to the corresponding state. After decoding the codeword, Valid and ParLoad output signals
become 1, and L

sym
-bit data block is loaded into P2S. When the decoder loads the data block into

P2S, and for the next L
sym

 cycles the data block is shifted into the CUT scan chain.
If the first bit of the codeword is 0, the original data should be shifted into the CUT scan chain

without being decoded. Therefore, in each tester clock cycle a 1-bit data is put on SerOut signal,
and Valid signal is set to 1, which enables the clock of the synchronizer shift register. At the same
time, the decoder also asserts SerLoad, causing SerOut to be shifted into the shift register of the
synchronizer. After the completion of loading the original data into the shift register, FSM sets
ParLoad to 1, to load the content of the shift register to P2S and reset the counter.

To illustrate the FSM, consider Example 2 presented earlier in this chapter. The Huffman tree of
the example is shown in Fig. 10.26 for reference. As shown in the figure and explained in the
example, only the most frequent symbols are encoded. According to Fig. 10.4b symbols 0010 (S

0
),

0100 (S
1
), and 0110 (S

2
) are the most frequent symbols. Therefore, these symbols are encoded, and

others are transmitted as usual, serially.

Fig. 10.25 Block diagram of Selective Huffman decoder and synchronization logic

368 10 Test Compression

Figure 10.27 shows the state diagram for decoding codewords and controlling the synchronizer.
The input and output signals of the FSM are in the form of d_in/Ready, ParLoad, SerLoad, Flag,
Valid, ParOut, SerOut. The input d_in is the serial data from the tester channel that is synchronized
with Synchronizer 1 (Fig. 10.19).

The FSM shown in Fig. 10.27 is constructed according to the Huffman tree of Fig. 10.26. State
St

0
 is the initial state. States St

1
 to St

4
 are entered if the first bit that appears on d_in is 0, and they

shift out the original data when no decoding is needed. State St
6
 is entered if the first bit that appears

on d_in is 1 that indicates a symbol is coming on the rest of bits of d_in. States St
6
 and St

7
 decode

the rest of the bits on d_in using the Selective Huffman tree that is explained below. State St
5
 is used

for synchronization with the output synchronizer. Signals issued to the synchronizer are shown on
the right-hand side of the slash (/) on the edges coming out of the states.

Since there are three symbols, two bits are needed to decode them. St
6
 is entered to start this

decoding. If the first data bit received in this state is a 0, then we are decoding S
0
 that is the left leaf

in the tree of Fig. 10.26. In this case, St
6
 produces S

0
 and control returns to St

0
. On the other hand,

if the first bit received in St
6
 is a 1, then S

1
 or S

2
 are being decoded (two right leafs in Fig. 10.26),

and to distinguish between these two, control goes to state St
7
. In this state, depending on d_in value

of 0 or 1, S
1
, or S

2
 is decoded. This FSM can be realized with three flip-flops.

10.3.3.2 Dictionary-based

Figure 10.28 shows the architecture of the decoder of a Dictionary-based method. This decoder
feeds the Parallel Synchronizer logic (Fig. 10.20) which will then generate synchronized data for
the CUT scan chain.

9 7

16
0 1

S1 S2

26

10

S0

0 1

Fig. 10.26 Selective Huffman tree of the three most frequent symbols

St1 St2 St3 St4

St6

St0

1/1- - - - - -

0/11-11S 0 -

1/1- -
- -

- -

St7

0/1-101-0

0/11-11S
1 -1/11-11S

2 -

0/1- - - -
- -

1/1-101-1

-/01000- -

St5

0/1-101-0 0/1-101-0 0/1-101-0

1/1-101-1 1/1-101-1 1/1-101-1

Fig. 10.27 FSM for decoding the Selective Huffman code of Example 2

36910.3 Decompression Methods

The decoder receives serial data from the tester channel. The first bit of the codeword is stored
as Flag. Value 1 for this flag indicates that what follows is a dictionary word. In this case, the fol-
lowing L

index
 bits specify the position of the symbol in the dictionary. For the collection of the index,

the FSM enables SerLoad to shift the next L
index

 bits. Using this index, the L
sysm

-bit symbol is con-
structed using a combinational logic or memory lookup at the indexed address.

If the first bit of the codeword is 0, the word does not exist in the dictionary, and the following
L

sym
 bits are the actual data. In this case, the incoming data is shifted into the shift register through

SerOut output in L
sym

 tester clock cycles.
When the original data has been decoded and it is ready, Valid and ParLoad are issued. This

causes ParOut to be loaded into P2S of the synchronizer (see Fig. 10.20), which makes it go into
the scan register with the system clock.

Whether we are shifting data or index, the sym

2
Llog -bit counter of Fig. 10.28 is used for keeping

track of the number of bits shifted. When index bits are shifted, IndexFlag is asserted, whereas
shifting symbol causes DataFlag to be issued. The operations of the counter and the shift register
are controlled by the FSM that is operation next.

Finite State Machine. The FSM shown in Fig. 10.29 is used for controlling operations of the
counter and the shift register. The input and output signals of the FSM are arranged as: d_in,
IndexFlag, DataFlag/Ready, Reset, Inc, SerLoad, ParLoad, SerOut, Valid, Flag.

The FSM receives new bit of data when it is ready (Ready = 1) and goes to St
1
 to start receiving

data from the tester channel. As shown in Fig. 10.29, in this state, the counter is set to 0 by putting a
1 on Reset (second output signal on the right hand side of the slash (/)). In this state, the decoder
receives its first bit of the codeword. Depending on receiving a 1 or a 0, the FSM goes in state St

2
 or

St
3
, respectively. The former state issues signals for collecting an index; and in the latter state the actual

data is collected. Collection of data continues until the counters issue IndexFlag or DataFlag.

Fig. 10.28 Dictionary-based decoder

370 10 Test Compression

10.3.3.3 Run-length

Figure 10.30 shows the block diagram of the Run-length decoder. Since the original data is gener-
ated by the Run-length decoder as a series of bits, Serial Synchronizer shown in Fig. 10.21 can be
used to synchronize the generated data with the clock of the system. The synchronization logic is
not discussed here, and signals related to it are not shown in this figure.

St1

St3St2

1
- -

 /1
1

- -
 -

- -
 1 0 - - /11- - - - - 0

1–1/11001–11

01- /11001-10

0-0/10110000
0-1/11001-10

 00- /10110001
11- /11001-11

St0

- - - /11 - - - - - -

 10- /10110101 1-0/10110100

Fig. 10.29 State transition diagram of Dictionary-based FSM

Fig. 10.30 Run-length decoder

37110.3 Decompression Methods

As discussed in Sect. 10.2.1.3, the size of codeword is fixed and is equal to L
cw

. Therefore, each
symbol is at most cw2 1−L

bits, and consists of runs of 0s followed by a 1, or runs of 0s equal to
cw2 1−L .
Since a codeword specifies the number of consecutive 0s in a symbol, for decoding it, we need

a counter of size L
cw

 bits, as shown in Fig. 10.30. Since codeword bits are received serially, a shift
register is used to collect the codewords before assigning them to the counter. We also need a coun-
ter of size cw

2
Llog bits for keeping track of the number of shifts. The FSM shown here resets this

counter when it receives the first bit of data, and the counter counts up until it reaches L
cw

 – 1. At
this time, EndCw is asserted and the FSM loads contents of the shift register into the L

cw
-bit counter

by asserting Load. This counter counts down until it reaches 0, and the decoder puts a 0 on Diff_out
output signal while counting is being done. The L

cw
-bit counter asserts EndZero output signal when

it reaches 0. If all bits of codeword are not 1, it means that the symbol includes runs of 0s, followed
by a 1, which will be generated on Diff_out. Otherwise, the symbol contains only 0s. After generat-
ing each bit of data, Valid is asserted (see lower part of Fig. 10.30), the clock of CSC is enabled,
and Diff_out signal is shifted into CSC to obtain the actual data from the difference.

10.3.3.4 Golomb

Figure 10.31 shows the block diagram of Golomb decoder. The Serial Synchronizer shown in
Fig. 10.21 can be used to synchronize the generated data with the clock of the system. The synchro-
nization logic is not discussed here, and hence the required signals for synchronization are not
shown in this figure.

As shown in Fig. 10.31, a 2
mlog -bit counter is required to decode the codeword. A codeword

to be decoded has a prefix and a tail. The data bits generated by the FSM are the bits of differ-
ence vectors that are shifted into the CSC of Fig. 10.31 to obtain the original test data. The
Ready signal in Fig. 10.31 is used to get another bit of data when the decoder is ready. This
signal is needed because the length of a codeword in Golomb compression technique is variable,
and synchronization is required between the tester and the decoder. An FSM controls the operation
of the counter.

Fig. 10.31 Golomb decoder

372 10 Test Compression

10.3.4 Scan-Based Decompression

As mentioned, scan-based compressions compress data by sharing the same set of data among sev-
eral scan chains. Decompression methods for these techniques are just the on-chip distribution logic
structures that distribute test data to the scan chains that are the recipients of the shared data.
Decompression hardware for the broadcast scan, Illinois scan, multiple-input broadcast scan, and
reconfigurable broadcast scan are those shown in Figs. 10.14–10.17, respectively.

10.4 Summary

Reducing test time has been our biggest concern in all the chapters we have discussed so far. We
directly or indirectly try to reduce test time. This chapter targeted this subject very directly, and by
trying to reduce test data entering a chip. The first part of the chapter discussed compression tech-
niques. We focused on compression techniques for which a decompression could easily and effi-
ciently be made in hardware. Several methods of code-based compression techniques that perform
well for test data were discussed. We then discussed scan-based compression techniques that can
only be regarded as compression when dealing with test data and data for internal or boundary scan
of a chip.

After a thorough discussion of these two compression techniques, we focused our attention on
their corresponding decompressions. For the code-based decompressions, we showed hardware
architectures for on-chip decoding. We discussed architectures for several code-based techniques
and concluded that hardware realization of the techniques we presented were generally brief and did
not create a large overhead on the chip area. For the scan-based, we showed that the decompression
hardware, per se, was not really necessary. For the scan-based decompressions, data coming into the
chip are decompressed as they arrive, and in most cases a few gates are all that is needed for decom-
pressions. For the scan-based techniques, the burden is on the test generation that considers the scan
structures. This chapter serves well as the last chapter for a series of chapters that all try to reduce
test time one way or another.

References

 1. Chandra A, Chakrabarty K (2003) Test data compression and test resource partitioning for system-on-a-chip
using frequency-directed run-length (FDR) codes. Proc IEEE Trans Comput 52:(8):1076–1088

 2. Karimi F, Meleis W, Navabi Z, and Lombardi F (2002) Data compression for System-on-Chip testing using ATE.
In Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 166, 2002

 3. Chandra A, Chakrabarty K (2001) System-on-a-chip test-data compression and decompression architectures
based on Golomb codes. Proc IEEE Trans Comput-Aided Des 20(3):355–368

 4. Jas A, Ghosh-Dastidar J, and Touba N A (1999) Scan vector compression/decompression using statistical coding.
In Proceedings of 17th IEEE VLSI Test Symposium, 114, 1999

 5. Basu K, Mishra P (2008) A Novel Test-Data Compression Technique using Application-Aware Bitmask and
Dictionary Selection Methods. In Proceedings of 18th ACM Great Lakes symposium on VLSI (GLSVLSI’08),
83–88, 2008

 6. Jas A, Ghosh-Dastidar J, Ng M, and Touba N A (2003) An efficient test vector compression scheme using selec-
tive Huffman coding. In Proceedings of IEEE Transaction on Computer-Aided Design 22(67):97–806

 7. Li L, Chakarbarty K, and Touba N A (2003) Test data compression using dictionaries with selective entries and
fixed-length indices. In Proc ACM Trans Des Automation Electron Syst 8(4):470–490

 8. Chandra A, Chakrabarty K (2001) Test resource partitioning for SOCs. In Proceedings of International Test
Conference 18(5):80–91

373References

 9. Hamzaoglu I, Patel JH (1999) Reducing test application time for full scan embedded cores. In Proceedings of
International Symposium on Fault-Tolerant Computing, 260–267, 1999

 10. Reddy SM, Miyase K, Kajihara S, and Pomeranz I (2002) On test data volume reduction for multiple scan chain
designs. In Proceedings of IEEE VLSI Test Symposium pp. 103–108

 11. Lee KJ, Chen JJ, and Huang CH (1998) Using a single input to support multiple scan chains. In Proceedings of
International Conference on Computer-Aided Design, 74–78, 1998

 12. Shah MA, Patel JH (2004) Enhancement of the Illinois scan architecture for use with multiple scan inputs. In
Proceedings of Annual Symposium on VLSI, 167–172, 2004

 13. Samaranayake S, Gizdarski E, Sitchinava N, Neuveux F, Kapur R, and Williams TW (2003) A reconfigurable
shared scan-in architecture. In Proceedings of IEEE VLSI Test Symosium, 9–14, 2003

 14. Tang H, Reddy SM, and Pomeranz I (2003) On reducing test data volume and test application time for multiple
scan chain designs. In Proceedings of International Test Conference, 1079–1088, 2003

 15. Chandra A, Yan H, and Kapur R (2007) Multimode Illinois scan architecture for test application time and test
data volume reduction. In Proceedings of IEEE VLSI Test Symposium, 84–92, 2007

 16. Krishna CV, Jas A, and Touba NA (2002) Reducing test data volume using LFSR reseeding with seed compres-
sion. In Proceedings of IEEE International Test conference, 321–330, 2002

 17. Wang LT, Wu CW, and Wen X (2006) VLSI Test Principles and Architectures: Design for Testability, Morgan
Kaufmann, July 2006

 18. Huffman DA (1952) A method for the construction of minimum redundancy codes. Proc IRE 40(9):1098–1101
 19. Lee KJ, Chen JJ, and Huang CH (1999) Broadcasting test patterns to multiple circuits. in Proceedings of IEEE

Transaction on Computer-Aided Design 18(12):1793–1802
 20. Sitchinava N, Samaranayake S, Kapur R, Gizdarski E, Neuveux F, and Williams TW (2004) Changing the scan

enable during shift. In Proceedings of IEEE VLSI Test Symposium, 73–78, 2004
 21. Jas A, Touba NA (1998) Test vector compression via cyclical scan chains and its application to testing core-based

designs. In Proceedings of IEEE International Test Conference, 458–464, 1998

wwwwwwwwwwww

375Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5_11, © Springer Science+Business Media, LLC 2011

This chapter is on memory testing, and our focus is on memory BIST (MBIST) structures. In
today’s technology, there is hardly any chip that does not contain some form of a memory. In addi-
tion, there is hardly any system that does not contain several dedicated memory chips. In the small
scale, memories come as register files as part of digital system, and in the large scale, memories
come as chips with memory cells that are reaching 1G cells in the next few years. Furthermore,
memories come in many forms of volatile, nonvolatile, static, and dynamic, each of which has its
own subcategories and structures. Regardless of the size, type, and hardware structures, memory
cannot be tested in the same way as logic testing and it requires its own test methods.

The next section in this chapter discusses some of the peculiarities of memories and explains why
memory testing is different than logic testing. The section after that discusses memory structures illus-
trating the hardware that is to be tested. Memory fault model, which is primarily a functional model, is
discussed next. We then discuss some of the most commonly used memory testing techniques. This
discussion brings us to the main topic that is treated in this chapter that is built-in self-test structures for
memories.

11.1 Memory Testing

Memory categories include volatile and nonvolatile. Volatile memories are RAMs (random
access memories), which can be static or dynamic (SRAM and DRAM). Static RAMs retain
their stored value while being powered, whereas dynamic RAMs require refreshing. Nonvolatile
memories are ROM (read only memory), PROM (programmable ROM), EPROM (erasable
PROM), UVPROM (UV erasable PROM), EEPROM (electrically erasable PROM), and flash
memories.

Memories are used as part of a system, they come as memory cores, they are used as part of
programmable devices, or they come as standalone memory chips. Regardless of the type, size,
and structure, they form sequential logic of many storage cells. In the earlier parts of this book,
we showed how sequential circuits are turned into combinational ones to take advantage of
combinational test methods. Unfortunately, because of hardware overhead, same cannot be done
for memories. On the contrary, treating memories as sequential circuits with the number of cells
reaching 109 in the next few years and wanting to test a circuit with 21G states is an absolute
impossibility.

In spite of all these difficulties, memory testing must be done and is unavoidable. Since every
system uses memory in one form or the other, system functionality heavily depends on its memory.

Chapter 11
Memory Testing by Means of Memory BIST

376 11 Memory Testing by Means of Memory BIST

This issue has become more critical in the recent years, especially due to the fact that more than
80% of the chip area in an SOC is occupied by various forms of memories.

11.2 Memory Structure

As mentioned earlier, memories come in many forms and sizes, and we cannot treat each separately.
However, their common structures for reading and or writing addressed locations make their testing
follow the same basic rules. This section discusses this structure focusing more on SRAMs than on
other memory types.

Figure 11.1 shows the basic structure of a memory array that consists of n × m cells arranged in
an n by m array. The hardware of the memory consists of the array of cells, decoders for decoding
row and column addresses, read and write logic, and a logic block for handling input and output to
and from the memory array. The exact arrangement of memory cells in the array depends on the
space limitations on a chip, and not on memory word length and address space.

Other than the IO Logic block and the memory cells, hardware structures for the rest of a
memory consist of basic logic structures like what we have been dealing with in all the preceeding
chapters. The IO Logic block consists of analog sense amplifiers and some logic for selection of
data coming from the memory array, or writing data into the array. The hardware for the individual
cells very much depends on the type of memory. Figure 11.2 shows an SRAM and a DRAM cell.

Although all, but the IO Logic and the cells, can be tested by conventional test techniques
presented in the earlier parts of this book, such is not done. Partly, this is because doing so would
leave us with parts that are analog in nature (i.e., IO Logic and array of cells), and testing them
would require analog techniques that are far more complex than our digital testing techniques.
However, looking at the memory block as a whole, we can expect that with proper testing tech-
niques and a proper fault model, faults in the surrounding logic as well as the array itself can be
detected.

Column Address

Column
Decoder

R
ow

 A
dd

re
ss

R
ow

D

ec
od

er

IO Logic
Read Write

Logic

Data Register

Memory Cell

Fig. 11.1 Memory structure

37711.3 Memory Fault Model

11.3 Memory Fault Model

As mentioned earlier, a memory block consists of analog and digital parts. What makes
memory testing simpler than having to test an array of n × m analog cells is the surrounding
logic that digitizes our interface with the memory. Nevertheless, the majority of the hardware
we are testing has properties that are not easily mapped to our logic stuck-at fault (SA)
model.

Furthermore, a structural fault model for the memories, and trying to test for such faults, one by
one, (as we did in logic testing) would require large resources because of the number of cells and
possible structural faults that each cell may have.

The solution for memory testing is using a functional fault model instead of a structural one, and
considering faults related to the surrounding logic and the memory array all at the same time.

Memory testing involves testing of the array for write and read operations, and thus is consid-
ered functional. Although this functional test primarily targets the array itself, it is expected that
faults in the surrounding logic will also be detected by the same tests. Consider for example, a
word line (WL) of an SRAM cell (Fig. 11.2) is stuck-at 0 due to faults in the Row Decoder logic
(Fig. 11.1). Writing a value (say 0) into a cell addressed by this word line, and then trying to
read it will result in reading back the previous value, and not the new value, 0. First, this is a
functional test of the memory cell because we are testing it for the storage function that it is
supposed to perform. In addition, failure of this test could be detecting IO logic functional fault
in sensing or driving BL and BL lines coming from the cell. Memory fault models are described
below.

11.3.1 Stuck-at Faults

The stuck-at memory functional fault is the collection of circumstances that make it look like the
targeted cell has a 1 or a 0 that is permanently stored in it. To test for such a fault, 0 should be
written and then read back. Then the same thing for 1. If in both cases, the same value is read back,
then the cell stored value is said to be stuck-at that value.

Fig. 11.2 Memory cells

378 11 Memory Testing by Means of Memory BIST

11.3.2 Transition Faults

If a cell can change to v from n , but not the other way around, then it looks like the cell’s stored value
cannot make a n to v transition. Transition faults (TF) are either 1-transition or 0-transition faults.

11.3.3 Coupling Faults

Because of adjacency of the cells, and because many cells share word lines (WL) and bit lines (BL),
writing into one can cause the same value written into another cell.

Since the organization of the memory array is not known from the outside of the memory, we
cannot tell which cells share bit lines and which share word lines, therefore coupling faults (CFs)
can exist between any two cells in the memory.

To test for a CF, write 0s in all cells, then write a 1 in one cell. Read all other cells back to see if any,
except the one that a 1 has been written into has a value of 1. Repeat this process for the opposite value.

Other CF types are inversion, idempotent, and k-cell coupling. The inversion coupling is when
writing into a cell inverts the value of another. The idempotent coupling is when a specific transition
(0 to 1 or 1 to 0) changes the coupled cell to a particular value (0 or 1). Lastly, k-cell coupling is
when CFs occur between more than two cells, and k in this case is the number of participating cells.

11.3.4 Bridging and State CFs

Bridging faults (BFs) are caused by two or more bit lines (BL) that are shorted together. Depending
on the logic behind the short, the resulting value of the short behaves as AND or OR logic of the
two cells. Some BFs are detected by stuck-at faults. State coupling faults are similar to BFs, except
that the resulting short only affects one cell, keeping the value of the other cell intact.

There are several other fault models that do not occur as often. Several books on testing have a
through presentation of these materials [8].

11.4 Functional Test Procedures

The last section explained some possible functional effects memory cells can have on each other.
From this explanation it can easily be understood that to completely and exhaustively test a memory
array, every cell must be read and written into with 0 and 1, while reading all other cells to see how
they are affected. Obviously, exhaustively executing this procedure can lead to long test times.
Although there are memory test procedures that do variations of this exhaustive test, there are others
that try to reduce time complexity of testing to O(N), where N is the total number of memory bits,
by making certain approximations.

11.4.1 March Test Algorithms

This section discusses March tests that are of O(N) complexity. March tests are named so, because
starting with the first memory location a 1 (or a 0) is written while locations previous to that keep

37911.4 Functional Test Procedures

their written 1 (or 0) values. So it appears like 1s (or 0s) are marching in from location 0 to the last
location in the memory.

For the start, we explain the March C-testing that is at memory test algorithm of the general
memory March testing category [5]. March C begins with 0s in every memory location (all N 1-bit
locations). We then start reading from location 0 in ascending order and check if 0s are actually
there. Every location that is checked it is then written with a 1. So 1s march in ascending order. This
checking and writing 1s continues until we read the last bit of the memory. At this time all memory
bits contain 1s. The process now reverses. We read 1s in descending order and switch each read
location to 0. In the reverse process, 0s march in from location N - 1 in descending order. The same
test is then repeated starting with all 1s in N locations.

The process for most March tests can be explained by paragraphs like the above for March C.
However, for ease of explanation, a notation has been devised by Van de Goor [5] a subset of which
is shown in Fig. 11.3. This notation unambiguously specifies the testing procedure, and the number
of reads and writes are easily seen that determine the order of a test procedure.

11.4.2 March C- Algorithm

As an example of using the notations of Fig. 11.3 consider March C- memory test algorithm as
described below:

:{ (0); (0, 1); (1, 0); (0, 1); (1, 0); (0)}March C w r w r w r w r w r− ⇑ ⇑ ⇓ ⇓

Steps listed below are the interpretation of this test. The list below or the above expression show
that March C- uses 10 read/write operations, and it therefore of 10N order.

R

r0

r1

W

w0

w1

Memory Read operation

Read a 0 from the memory

Read a 1 from the memory

Memory Write Operation

Write a 0 to the memory

Write a 1 to the memory

Increasing memory address ordering

Decreasing memory address ordering

There is no difference between different addressing orders.Fig. 11.3 A subset of March
test notations

380 11 Memory Testing by Means of Memory BIST

Steps in March C-Test:

1. Write 0s to all cells in any order ((0) w).
2. Read from the lowest address (expected read value is 0), write a 1 at this address, and

repeat until the highest address is reached ((0, 1)⇑ r w).
3. Read from the lowest address (expected read value is 1), write a 0 at this address and

repeat until the highest address is reached ((1, 0)⇑ r w).
4. Read from the highest address (expected read value is 0), write a 1 at this address, and repeat

until the lowest address is reached ((0, 1)⇓ r w).
5. Read from the highest address (expected read value is 1), write a 0 at this address, and repeat until

the lowest address is reached ((1, 0)⇓ r w).
6. Read from all cells in any order (expected read value is 0) ((0) r).

11.4.3 MATS+ Algorithm

As another example of a memory testing algorithm consider MATS+. This algorithm is less
complex than March C– and detects fewer faults. With the notation described above, MATS+ can
be represented as follows:

MATS+ :{ (0); (0, 1); (1, 0)}⇑ ⇓ w r w r w

Steps in MATS+:

1. Write 0s to all cells in any order ((0) w).
2. Read from the lowest address (expected read value is 0), write a 1 at this address, and repeat until

the highest address is reached ((0, 1)⇑ r w).
3. Read from the highest address (expected read value is 1), write a 0 at this address, and repeat until

the lowest address is reached ((1, 0)⇓ r w).

11.4.4 Other March Tests

Using the notation of Fig. 11.3, other March tests are described in Fig. 11.4. These algorithms are
different in the fault types (those discussed in Sect. 11.3) that they detect. MBIST being the focus of

Algorithm

MATS

MATS+

MATS++

MARCH X

MARCH C-

MARCH A

MARCH Y

MARCH B

(r1, w0); (r0)}

(r1, w0, r0)}

(r1, w0)}

{ (w0):

{ (w0): (r1, w0, r0); (r0)}

{ (w0):

{ (w0): (r1, w0); (r0, w1); (r1, w0); (r0)}

{ (w0):

{ (w0):

{ (w0):

{ (w0):

(r0, w1, r1, w0, r0, w1); (r1, w0, w1); (r1, w0, w1, w0); (r0, w1, w0)}

(r0, w1, r1);

(r0, w1, w0, w1); (r1, w0, w1); (r1, w0, w1, w0); (r0, w1, w0)}

(r0, w1);

(r0, w1);

(r0, w1);

(r0, w1);

(r0, w1); (r1)}

Descrption Ref.

[1,2]

[3,4]

[5]

[5]

[6]

[7]

[5]

[7]

Fig. 11.4 March test algorithms

38111.5 MBIST Methods

this chapter, we leave comparison of these algorithms for the interested reader to several good books
and articles on the topic. Figure 11.5 shows order of complexity of the algorithms in Fig. 11.4.

11.5 MBIST Methods

There are several reasons for doing memory testing by a dedicated hardware component that is
incorporated into the memory structure. First, memory test patterns are very regular and can easily
be created by simple counters and shift registers. Second, memory testing involves several iterations
of writing and reading data to and from memory that can easily be kept track of with counters
counting in sequential order.

Finally, because memories play an important role in reliability of systems they are used in, they
should be tested regularly without having to remove them from the system. This section presents
several MBIST architectures that implement algorithms described in the previous section or varia-
tions of them.

11.5.1 Simple March MBIST

As our first example, we implement Simple March memory test algorithm using a MBIST. The
architecture, controller, and corresponding Verilog codes will be discussed here.

11.5.1.1 Simple March MBIST Architecture

Figure 11.6 shows the MBIST architecture. The memory to be tested is shown in gray, and solid line
blocks show the test circuitry. Test data that are to be applied are generated by this MBIST circuitry and
applied to the memory. As data are being read from the memory, they are compared with the reproduction
of the same data that was written into specific memory locations. After writing and reading all locations,
we expect all data read from the memory to be the same as those that were written into it.

Counter. Input data, address, and switching between reading and writing the memory are
provided by a counter. The least significant bits of the counter provide addressing for all locations
of the memory. The counter bit to the left of the address group of bits toggles between write and
read operations. The three most significant bits of the counter are decoded to generate eight test
vectors for testing memory words.

Figure 11.7 shows the Verilog code of this counter. The counter carry-out (cout) becomes “1”
when the count reaches its maximum.

Algorithm Complexity

MATS

MATS+

MATS++

MARCH X

MARCH C−
MARCH A

MARCH Y

MARCH B

4n

5n

6n

6n

10n

15n

8n

17n

Fig. 11.5 March test algo-
rithm complexities

382 11 Memory Testing by Means of Memory BIST

Fig. 11.6 Memory BIST for simple March algorithm

module counter
#(parameter length = 10) (d_in, clk, ld, u_d, cen, q, cout);

input [length-1:0] d_in;
input clk, ld, u_d, cen;
output [length-1:0] q;
output cout;

reg [length:0] cnt_reg;

always @(posedge clk) begin
if (cen) begin

if (ld)
cnt_reg <= {1'b0, d_in};

else if (u_d)

else
cnt_reg <= cnt_reg + 1;

cnt_reg <= cnt_reg - 1;
end

end

assign q = cnt_reg[length-1:0];
assign cout = cnt_reg[length];

endmodule

Fig. 11.7 Simple March MBIST counter

38311.5 MBIST Methods

Decoder. The test data decoder uses a 3-bit input vector to lookup memory test patterns shown
in Fig. 11.8. The Verilog code of the decoder is shown in Fig. 11.9.

Multiplexers. The multiplexers of the BIST architecture of Fig. 11.6 select between normal
memory inputs and BIST provided inputs. When NbarT is “0,” the memory is working in the normal
mode and when this input becomes “1” it operates in test mode.

Comparator. Initially, the same test pattern is written into all memory locations, and then these data
are read out from all locations. As data are being written and read, the decoder input and thus test
patterns remain unchanged. A comparator checks memory data with decoder output. When memory
is being tested and data are being read, the comparator should have same data on both its inputs.

11.5.1.2 Test Session

A test session begins when the counter is all 0s and ends when the counter reaches all 1s. Starting
with all 0s, test pattern 0 is written in location 0. As the counter is incremented, this same pattern
is written into all memory locations. When all memory locations are written into, the counter incre-
ments, causing the least significant part of it (address bits) to roll over to all 0s, and the rwbar bit
becomes 1. When this happens, the same data will start being read from all memory locations.
When this is done, the rwbar bit becomes 0, address starts back at 0, and the next test pattern starts
being written into all locations. This process continues for all eight test patterns. When done, all
test patterns have been written into and read from all memory locations. While this is happening,
the comparator checks for a mismatch and issues an error if it finds one.

module decoder (input [2:0] in, output [7:0] out);
wire [7:0] out_temp;

assign out_temp = (in[1:0] == 2'b 11) ? 8'b 01010101 :
(in[1:0] == 2'b 10) ? 8'b 00110011 :
(in[1:0] == 2'b 01) ? 8'b 00001111 :
(in[1:0] == 2'b 00) ? 8'b 00000000 :
8'b zzzzzzzz;

assign out = (in[2] == 1'b 0) ? out_temp : ~ out_temp;
endmodule

Fig. 11.9 Simple March BIST MBIST decoder

Test Pattern Input Decoder Output

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

00000000

00001111

00110011

01010101

11111111

11110000

11001100

10101010

Fig. 11.8 Simple March
BIST decoder: test pattern
generation

384 11 Memory Testing by Means of Memory BIST

11.5.1.3 Simple March BIST Controller

The BIST controller starts the counter when it receives the start signal and waits for the carry-out
(cout) of the counter. The Verilog code of this controller is shown in Fig. 11.10.

11.5.1.4 Simple March BIST Structure

The Verilog code of Fig. 11.11 shows the complete BIST structure including the RAM that is being
tested. Components instantiated in this description are according to the diagram of Fig. 11.6.
In addition to the components instantiated, this code has an always statement that issues the fail
flag if the comparator finds a mismatch.

11.5.1.5 BIST Tester

The memory and its BIST are tested in the BIST_tester testbench. This testbench is shown in
Fig. 11.12. The testbench initially loads external file data into the memory at time 5 ns when
operate becomes 1. Then at some arbitrary times, data are written into and read from the mem-
ory. The BIST test session begins when start becomes 1 at time 50 ns. Testing continues until
all RAM locations have been tested. While the memory is being tested, external read and write
operations are ignored.

module BIST_controller (input start, rst, clk, cout, output NbarT,ld);

reg current = reset;

parameter reset = 1'b 0, test = 1'b 1;

always @ (posedge clk) begin
if (rst)

 current <= reset;
else

case(current)
 reset: if (start)

else

 test: if (cout)

else

default:

current <= test;

current <= reset;

current <= reset;

current <= test;

current <= reset;
endcase

end

assign NbarT = (current == test) ? 1'b 1 : 1'b 0;
assign ld = (current == reset) ? 1'b 1 : 1'b 0;

endmodule

Fig. 11.10 Simple March MBIST controller

38511.5 MBIST Methods

11.5.2 March C- MBIST

March C- algorithm was discussed in Sect. 11.4. With minor changes to the architecture shown in
Fig. 11.6, architecture for the implementation of March C- algorithm is obtained and is shown in
Fig. 11.13. Notice the extra logic for the control of the memory rwbar in this architecture. The
counter in simple March is replaced by a counter-sequencer that handles the ten phases of March
C- test. Here, we are handling a memory that has a word-length of eight bits and we are testing the
memory in 1-bit vertical slices. This word-level implementation is not an exact implementation of
March C- test.

module BIST #(parameter size = 6, length =8)
(start,rst,clk,csin,rwbarin,opr,address,
 datain,dataout,fail);

input start, rst, clk, csin, rwbarin, opr;
input [size-1: 0] address;
input [length-1: 0] datain;
output [length-1: 0] dataout;
output fail;
reg fail;
reg [9:0] zero;

wire cout, ld, NbarT, cs, rwbar, gt, eq, lt;
wire [9:0] q;
wire [7:0] data_t;
 wire [length-1:0] ramin, ramout, bit_array;

 wire [size-1:0] ramaddr;
 reg [length-1:0] ram_testvalue;
 reg conv_enable;
 integer i, index, power, mult;

integer faulty_adr, faulty_bit ;
 initial zero = 10'b 0000000000;

BIST_controller CNTRL (start, rst, clk, cout, NbarT, ld);
counter CNT (zero, clk, ld, 1'b1, 1'b1, q, cout);
decoder DEC (q[9:7], data_t);
multiplexer #(8) MUX_D (datain, data_t, NbarT, ramin);
multiplexer #(6) MUX_A (address, q[5:0], NbarT, ramaddr);

assign rwbar = (~NbarT) ? rwbarin : q[6];
assign cs = (~NbarT) ? csin : 1'b 1;

 RAM MEM (ramaddr, ramin, cs, rwbar, opr, ramout);
 comparator CMP (data_t, ramout, gt, eq, lt);

always @ (posedge clk) begin
if (NbarT && rwbar && opr)

if (~eq) begin
 fail <= 1'b1;

end else begin
 fail <= 1'b0;

end
end

assign dataout = ramout;
endmodule

Fig. 11.11 Simple March BIST structure

386 11 Memory Testing by Means of Memory BIST

11.5.2.1 March C- BIST Counter-sequencer

Address, direction of address generation (from highest to lowest or visa versa), test data, and
switching between reading and writing the memory are handled a 13-bit counter. The six least sig-
nificant bits of the counter-sequencer provide addressing for all locations of the memory. The next
four bits to the left of the address group of bits specify the ten consecutive read/write operations of
March C-. Also these four bits along with the three most significant bits of the counter-sequencer
are decoded to generate the appropriate test vectors for testing the memory words.

According to March C- algorithm, in Steps 1 and 6, the address increments (or decrements) and,
for the specific address, only read or write operation will take place. In all other steps, both read and
write operations must be done before going to the next address. To implement this, when the
counter-sequencer is in Steps 1 or 6, it behaves normally and increments or decrements by 1 with
every clock cycle. In all other steps, the address of memory (the six least significant bits (cnt_
reg[5:0]) do not change for two consecutive cycles, but cnt_reg[9:6] increments and then decre-
ments by 1. The Verilog code of this counter is shown in Fig. 11.14.

11.5.2.2 Decoder

The test data decoder uses a 7-bit input vector to generate memory test patterns and the value that
is to be compared with the value read from the memory. For every bit of each memory word, all six

module BIST_tester ();
reg [7:0] ramin;
reg [5:0] addr;
reg cs, rwbar, start;
reg rst, clk;
reg operate;
wire [7:0] ramout;
wire fail;

initial begin
cs = 0;
rwbar = 1;
start = 0;
rst = 0;
operate = 0;
clk = 0;

end

 BIST UUT (start,rst,clk,cs,rwbar,operate,addr,ramin,ramout,fail);

always #5 clk = ~clk;

initial begin
#5 operate = 1'b1;
#5 ramin = 8'b11110001;
#5 cs = 1'b1;
#5 addr = 6'b101100;
#10 ramin = 8'b00101100;
#10 addr = 6'b101110;
#10 start = 1'b1;
#140 rwbar = 1'b1;
#147 cs = 1'b0;
#463 operate =1'b0;

end
endmodule

Fig. 11.12 Simple March memory BIST testbench

38711.5 MBIST Methods

steps of March C- algorithm (that contains ten operations) are exercised. So using the three most
significant input bits, the bit within the word that the above ten operations must be performed on is
specified. The decoder specifies which test value must be written into the memory word. The
Verilog code of the decoder is shown in Fig. 11.15.

The remaining parts of the March C- MBIST hardware remain the same as those discussed for
the Simple March tester.

11.5.3 Disturb MBIST

Disturb testing is for studying the robustness of the data storage of the flash or DRAM cells when
the state of a neighboring cell is changing. In disturb testing, a checkerboard pattern is written into
the entire array in the “disturb write state.” After the data have had time to settle, it is read back in
the “disturb read state.” This is a quick check for gross data retention faults. For a memory size of
N bits, the complexity of disturb test algorithm is O(N).

An MBIST for this method has the same basic architecture as that of Fig. 11.6, with a difference
in the way test data are generated. In Fig. 11.6, the decoder uses a 3-bit input vector to look up the
appropriate memory test pattern, while in this method, a walking-0 circuit is used to generate
the new test pattern. In disturb testing MBIST, an initial value will be written to all memory cells,
and after a delay, when data are being read from the memory, it is compared with the written data.

Fig. 11.13 Memory BIST for March C- algorithm

388 11 Memory Testing by Means of Memory BIST

module counter #(parameter length = 13) // counter-sequencer module
 (d_in, clk, ld, u_d, cen, q, cout);

 input [length-1:0] d_in;
 input clk, ld, u_d, cen;
 output [length-1:0] q;
 output cout;
 reg [length:0] cnt_reg;
 reg [5:0] adr = 6'b 111111;

 always @(posedge clk) begin
 if (cen)begin
 if (ld)

cnt_reg <= {1'b0, d_in};
 else if (cnt_reg[9:6] > 4'b0000 && cnt_reg[9:6] < 4'b1001)

begin
 if (cnt_reg[5:0] < 6'b 111111)

begin
 if (cnt_reg[9:6]==4'b0001 || cnt_reg[9:6]==4'b0011 ||
 cnt_reg[9:6]==4'b0101 || cnt_reg[9:6]==4'b0111)

cnt_reg[9:6] <= cnt_reg[9:6] + 1;
 else if (cnt_reg[9:6]==4'b0010||cnt_reg[9:6]==4'b0100 ||
 cnt_reg[9:6]==4'b0110||cnt_reg[9:6]==4'b1000)

 begin
cnt_reg[9:6] <= cnt_reg[9:6] - 1;

 if (u_d)
cnt_reg <= cnt_reg + 1;

 else begin
adr <= adr - 1;

 cnt_reg <= cnt_reg + 1;
 end
 end
 end
 else if (cnt_reg[5:0] == 6'b 111111) begin
 if (cnt_reg[9:6]==4'b0001 || cnt_reg[9:6]==4'b0011 ||
 cnt_reg[9:6]==4'b0101 || cnt_reg[9:6]==4'b0111)
 cnt_reg[9:6] <= cnt_reg[9:6] + 1;
 else if (cnt_reg[9:6]==4'b0010||cnt_reg[9:6]==4'b0100||
 cnt_reg[9:6]==4'b0110||cnt_reg[9:6]==4'b1000)

begin
 if (u_d)

 cnt_reg <= cnt_reg + 1;
 else begin

adr <= adr - 1;
 cnt_reg <= cnt_reg + 1;
 end
 end
 end
 end else if (u_d) begin

cnt_reg <= cnt_reg + 1;
 end else begin

adr <= adr - 1;
 cnt_reg <= cnt_reg + 1;
 end
 if (cnt_reg[9:6] == 4'b 1010) begin

cnt_reg[9:6] <= 4'b 0000;
 cnt_reg[length:10] <= cnt_reg[length:10] + 1;

 assign q = u_d ? cnt_reg[length-1:0] : {cnt_reg[length-1:6], adr};
 assign cout = cnt_reg[length];

endmodule

end
end

end

Fig. 11.14 March C- MBIST counter-sequencer

38911.5 MBIST Methods

Next, the initial data are rotated to the left to form the new test pattern. This process continues until
the initial value is rotated by the number of bits in each memory word (m). This results in checking
both transitions 0 to 1 and 1 to 0 for each memory cell. After writing and reading all locations, we
expect all data read from the memory to be the same as the values they were initialized to.

11.5.3.1 Disturb BIST Walking-0

The walker test pattern generator uses a 3-bit input vector to determine the number of left rotations
that must be applied to the initial test value. The memory test patterns are shown in Fig. 11.16. The
Verilog code of the walker test generator is shown in Fig. 11.17.

11.5.3.2 Disturb BIST Structure

The Verilog code of Fig. 11.18 is a partial code of disturb test MBIST that includes the memory
being tested. Components instantiated in this description are according to the diagram of Fig. 11.6,

module decoder (in, cen, out, lastValue);
 input [6:0] in;
 input cen;
 output reg [7:0] out;
 output reg [7:0] lastValue;
 reg [7:0] tempShift, zero;
 integer shiftAmount, i;

 initial begin
tempShift = 8'b 10000000;

 zero = 8'b 00000000;
 shiftAmount = 0;
 end

 always @(in) begin
 if (cen) begin

shiftAmount = 0;
 for (i=6; i>3; i=i-1)
 if (in[i] == 1'b1)

shiftAmount = shiftAmount*2 + 1;
 else
 shiftAmount = shiftAmount*2;
 if (in[3:0]==4'b0000||in[3:0]==4'b0100||in[3:0]==4'b1000)

begin
out = 8'b 00000000;

 if (in[3:0] == 4'b 0000)
 lastValue = 8'b 00000000;
 else

lastValue = tempShift >> shiftAmount;
 end else if (in[3:0]==4'b0010||in[3:0]==4'b 0110)

begin
 out = tempShift >> shiftAmount;

lastValue = 8'b 00000000;
 end
 end
 else out = 8'b zzzzzzzz;
 end

endmodule

Fig. 11.15 March C- MBIST decoder

390 11 Memory Testing by Means of Memory BIST

Test Pattern Input Walker Output
0 000 01111111
1 001 11111110
2 010 11111101
3 011 11111011
4 100 11110111
5 101 11101111
6 110 11011111
7 111 10111111

Fig. 11.16 Walking-0; test
pattern generation

module walk (input [7:0] in, input [2:0] iteration, output [7:0] out);
assign out = (iteration == 3’b 000) ? in :

(iteration == 3'b 001) ? {in[6:0], in[7]} :
(iteration == 3'b 010) ? {in[5:0], in[7:6]} :
(iteration == 3'b 011) ? {in[4:0], in[7:5]} :
(iteration == 3'b 100) ? {in[3:0], in[7:4]} :
(iteration == 3'b 101) ? {in[2:0], in[7:3]} :
(iteration == 3'b 110) ? {in[1:0], in[7:2]} :
(iteration == 3'b 111) ? {in[0], in[7:1]} :
8'b zzzzzzzz;

endmodule

Fig. 11.17 Memory BIST pattern generator walking-0

module BIST #(parameter size = 6, length =8)
(start,rst,clk,csin,rwbarin,opr,address,datain,dataout,fail);
. . .

BIST_controller CNTRL (start, rst, clk, cout, NbarT, ld);
counter CNT (zero, clk, ld, 1'b1, 1'b1, q, cout);

assign rwbar = (~NbarT) ? rwbarin : q[6];
assign cs = (~NbarT) ? csin : 1'b 1;

walk WALK (ram_testvalue, q[9:7], data_t);
multiplexer #(8) MUX_D (datain, data_t, NbarT, ramin);
multiplexer #(6) MUX_A (address, q[5:0], NbarT, ramaddr);

RAM MEM (ramaddr, ramin, cs, rwbar, opr, ramout);
comparator CMP (data_t, ramout, gt, eq, lt);

always @ (posedge clk) begin
if (NbarT && rwbar && opr)

if (~eq) begin
 fail <= 1'b1;
 faulty_adr <= ramaddr;

end else begin
 fail <= 1'b0;

end
end

// calculate faulty bit number to report
. . .

. . .

assign dataout = ramout;
endmodule

Fig. 11.18 Disturb memory BIST structure

391References

with this difference that a decoder is substituted with a walking-0 circuit. In this code, the first
always block is used to issue the fail flag if the comparator finds a mismatch. It also specifies the
faulty address the faulty bit. The code of this MBIST is a synthesizable Verilog whose hardware
correspondence can easily be understood by inspection.

11.6 Summary

In this chapter, we covered memory testing while emphasizing on MBIST hardware structures. For
test algorithms, we only presented the basic algorithms and avoided the theories that have led to the
development of such algorithms. In presenting MBIST hardware structures, we showed that other
than a few minor differences in the way MBIST counter and decoder work, most MBISTs follow
the same template for their hardware structures. The architecture we presented applies to large
memory chips, as well as short on-chip register files.

References

1. Knaizuk[AU3] J Jr, Hartmann CRP (1977) An optimal algorithm for testing stuck-at faults in Random Access
Memories. IEEE Trans Comput C-26(11):1141–1144

2. Nair R (1979) Comments on an optimal algorithm for testing stuck-at faults in Random-Access Memories. IEEE
Trans Comput C-28(3):258–261

3. Abadir MS, Reghbati JK (1983) Functional testing of Semiconductor Random Access Memories. ACM Comput
Surv 15(3):175–198

4. Winegarden S, Pannell D (1981) Paragons for memory test. In: Proceedings of the International Test Conference,
Oct. 1981, pp. 44–48

5. van de Goor AJ (1991) Testing semiconductor memories: theory and practice. Wiley, Chichester, UK.
6. Marinescu M (1982) Simple and efficient algorithms for functional RAM Testing. In: Proceedings of the

International Test Conference, Nov. 1982, pp. 236–239
7. Suk DS, Reddy SM (1981) A March test for functional faults in Semiconductor Random-Access Memories. IEEE

Trans Comput C-30(12):982–985
8. Bushnell ML, Agrawal VD (2000) Essentials of electronic testing for digital, memory & mixed-signal VLSI cir-

cuits. Kluwer, Norwell, MA.

wwwwwwwwwwww

393

Appendix A
Using HDLs for Protocol Aware ATE1

This Appendix describes the issues involved in transitioning from a design simulation environment
to a physical test environment, especially in the case of complex (multicore) SOC devices. The
article also discusses the advantages of using HDL code directly for programming of the tester
hardware, as opposed to the traditional, bit-level language used in the past. In this case, the ability
to be able to directly interpret and execute the HDL commands on the tester hardware is referred to
as having “Protocol Aware” (PA) [1] capability. As the name suggests, this implies that the tester
hardware has the ability, via reconfigurable firmware, to understand and execute high-level com-
mands on physical hardware in the DUT’s native “Protocol” language. “Protocol Aware” is a larger
umbrella that not only allows the tests to be constructed in an HDL format, but is also able to trans-
late that into physical bits on test hardware.

A.1 Motivation

Modern semiconductor devices often behave in a nondeterministic manner not only in their end
application but during test execution on ATE as well. This is the result of design methodologies that
allow the assembly of the device from a library of IP blocks. These IP blocks often support specific
industry standard protocols such as JTAG, DDR memory buses, PCI Express, etc. While the opera-
tion of any individual block may be predictable, the relationship between the timing of protocols is
often not. Today’s SOC ATE does not deal well with ambiguity. Any deviation from expected device
behavior will cause that device to fail the ATE test, both during engineering development or produc-
tion. Functionally testing devices that exhibit nondeterministic behavior is extremely difficult on
current generation ATE.

A.2 Protocol Aware ATE

To deal with DUT nondeterministic behaviors, as part of the next round of UltraFLEX digital instru-
ments Teradyne is developing a new ATE architecture – Protocol Aware ATE (PA). This project will
require new software, hardware, and firmware. The intelligence required to handle protocols is
contained in a FPGA on the ATE Pin Electronics instrument that can be reprogrammed based on
the particular protocols required by any individual device program.

1 This text is taken from a paper by Eric Larson, Teradyne 2008 with his permission. The original paper can be down-
loaded from the publisher’s site for this book, or by contacting Teradyne for this and other related materials.

Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5, © Springer Science+Business Media, LLC 2011

394 Using HDLs for Protocol Aware ATE1

The list of potential protocols to support is endless and clearly they cannot be supported at once.
Some are so low in volume that it may not be worth the effort. Others may be too complex to imple-
ment in a practical manner. The hardware and software implementation of PA must be flexible
enough to provide a solution for many different protocols. Some of these protocols have similar
characteristics and can be thought of as a Protocol Family. Below is a partial list of popular proto-
cols and potential groupings.

Low speed serial and parallel:

JTAG•	
MDIO•	
SRAM•	
Flash•	

DRAM:

DDR, DDR2, DDR3•	
LPDDR, LPDDR2•	
GDDR3, GDDR4, GDDR5•	

High speed serial:

PCI Express•	
SATA•	
DigRF•	
Serial RapidIO•	

A.3 Protocol Aware ATE Implementation

While Protocol Aware ATE requires a new architecture and cannot be simply dropped into to exist-
ing instruments it does offer the potential to increase the quality and reduce the cost of test for
complex SOC devices.

A possible architecture for the implementation of a PA ATE involves the addition of a FPGA to
standard ATE Digital Instruments. The purpose of the FPGA is to emulate the operation of selected
DUT protocols. This requires that the ATE software and hardware support reprogramming of the
FPGA to act properly depending on the protocol required. Some protocols, JTAG for example, are
slow speed and serial in nature and require only a few connections to the device. Others such as DDR2
and DDR3 are much higher in speed and parallel in nature, requiring dozens of ATE channels to work
closely together to interpret and respond to command and data information from the DUT. This
“Protocol Engine” architecture allows handshaking between the DUT and the ATE instrument with
the ATE interpreting instructions from the selected Protocol and responding accordingly. Response
time will naturally be determined by the latency between the DUT launching information to the ATE,
the ATE instrument interpreting the information and sending the response to the DUT. Keeping this
latency as short as possible is a key design parameter for any Protocol Aware instrument (Fig. A.1).

In addition to emulating the desired Protocol, the instrument must also support classic Digital ATE
test functionality such as Scan, DFT, functional test, and characterization. The user must be able to
select between “normal” and Protocol Aware operation during both engineering and production test.

One key requirement is the ability to read and write internal DUT registers in a simple and
straightforward manner, similar to the high level language used in simulation and bench instru-
ments. A properly implemented Protocol Aware solution will allow the user to enter a read or write
command along with the associated address and payload data and have the DUT immediately
respond.

395A.5 Conclusions

This can be achieved by use of present HDLs. With this, recreating sets of transactions from
simulation or bench instrument on ATE will no longer require translation to the low level language
of ATE patterns. Instead of appearing as a pseudo-random group of 1s and 0s the DUT interaction
will be at a high level of abstraction, like Verilog and VHDL.

A.4 Limitations

Limitations come with every project and Protocol Aware ATE is no exception. The most obvious
issue is the huge and growing number of protocols. It is clear that not all protocols are created equal,
either in ease of implementation or popularity. Initial solutions will cover a set of popular protocols
with an expanded list available over time.

The speed of ATE PA engines is limited by a couple of bus characteristics and ATE attributes. If
the bus requires I/O handshaking the round-trip delay of the pin electronics along with processing
time in the FPGA may limit speed to that of low speed protocols. Buses that do not require hand-
shaking can generally be supported up to much higher speeds, limited by the fundamental operating
frequency of the FPGA.

A.5 Conclusions

Protocol Aware ATE is a new architecture and all indications are that as a concept it is very appeal-
ing to a broad set of ATE users, both existing and potential. Implemented properly PA ATE can
provide immediate payback by improving test development time and reducing customer time-to-
market. In the long run additional benefits around better fault coverage will also become apparent.

This concept signals a fundamental shift in SOC ATE architecture. Future digital instruments
will be designed to be Protocol Aware. While starting with digital, PA capability applies to analog
and mixed signal instruments as well.

References

1. Molavi S, Evans A, Clancy R (2008) Protocol Aware test methodologies using today’s ATE. Proceedings of 17th
IEEE Asian test symposium, Sapporo, Japan, November 2008

2. Evans C (2007) The New ATE:Protocol Aware, Proceedings of 2007 IEEE International Test Conference, Santa
Clara, CA, October 2007

DSSC
Logic

Patgen
T

T
Timing

Pin Electronics

PE
Host

Computer DUT

DSSC
Logic

Patgen
T

T
Timing

Pin Electronics

PE
Host

Computer

Protocol Aware
Channels

FPGA Based

DUT

Select between normal PE
operation and Protocol Engine

Fig. A.1 Protocol Aware digital instrument architecture

wwwwwwwwwwww

397

A set of PLI functions has been developed for gate level fault simulation and other test applications.
These test applications are based on gate level descriptions of a circuit being processed. The headers
of the gates used for this purpose are shown here. The PLI functions work only if these gates are
used in the netlist.

//Buffer:
module bufg #(parameter tphl = 1, tplh = 1)
(out,in);

input in;
output out;

//Not:
module notg #(parameter tphl = 1, tplh = 1)
(out,in);

input in;
output out;

//And:
module and_n #(parameter n = 2, tphl = 1, tplh = 1)
(out,in);

input [n-1:0] in;
output out;

//Or:
module or_n #(parameter n = 2, tphl = 1, tplh = 1)
(out,in);

input [n-1:0] in;
output out;

//Nand:
module nand_n #(parameter n = 2, tphl = 1, tplh = 1)
(out,in);

input [n-1:0] in;
output out;

Appendix B
Gate Components for PLI Test Applications

398 Gate Components for PLI Test Applications

//Nor:
module nor_n #(parameter n = 2, tphl = 1, tplh = 1)
(out,in);

input [n-1:0] in;
output out;

//Xor:
module xor_n #(parameter n = 2, tphl = 1, tplh = 1)
(out,in);

input [n-1:0] in;
output out;

//Xnor:
module xnor_n #(parameter n = 2, tphl = 1, tplh = 1)
(out,in);

input [n-1:0] in;
output out;

//Fan_Out:
module fanout_n #(parameter n = 2,tphl = 3, tplh = 5)
(in, out);

input in;
output [n-1:0] out;

//Primary Input:
module pin #(parameter n = 1)
(in, out);

input [n-1:0] in;
output [n-1:0] out;

//Primary Output:
module pout #(parameter n = 1)
(in, out);

input [n-1:0] in;
output [n-1:0] out;

//D Flip Flop:
module dff #(parameter tphl = 0, tplh = 0)
(Q, D, C, CLR, PRE, CE, NbarT, Si, global_reset);
input D, C, CLR, PRE, CE, NbarT, Si, global_reset;
output reg Q;

399

A set of utilities for performing test application in Verilog testbenches have been developed1. Using
these utilities, we are able to use a Verilog testbench as a programming platform, a virtual test, or
for evaluating testability of our DFT methods. In the testbench, the Verilog model of our circuit is
instantiated and the utilities discussed below facilitate access to the circuit’s internal lines and gates
for performing various test applications. The utilities are developed in Verilog programming lan-
guage interface (PLI), and can be invoked as tasks in Verilog testbenches.

C.1 Stuck-at Fault Injection

This PLI utility takes the full name of the site of fault (wire) and the fault value and performs the
stuck-at fault injection.

Function call $InjectFault(wire, FaultValue);

Example $ InjectFault(FA_inst.sum, 1’b1);

C.2 Fault Removal

The $RemoveFault task takes the full name of the site of fault (wire) and removes the injected stuck-
at fault from this wire.

Function call $RemoveFault(wire);

Example $RemoveFault(FA_inst.sum);

C.3 Transient Fault

The PLI transient fault injection takes the full name of site of fault (wire), the fault value and duration
of existence of fault; then performs the transient fault injection. This fault injection does not need a
fault removal function, because the injected fault will be removed after the defined fault duration.

Function call $TransientFault(wireName, FaultValue, faultDuration)

Example $TransientFault(FA_inst.sum, 1’b1, 2)

Appendix C
Programming Language Interface Test Utilities

1Managing the development and developing the PLI Test package has been done by Nastaran Nemati.

400 Programming Language Interface Test Utilities

C.4 Bridging Fault

In order to perform bridging fault injection, the full name for two wires that are bridged and the
mode of bridging (“and” or “or”) must be specified. Very similar to the other fault removal func-
tions, for bridging fault removal, the site of fault must be specified.

Function call $BridgingFault(wire1, wire2, BridgingMode);

Example $BridgingFault(FA_inst.sum, FA_inst.cout, “and”);

Function call $RemoveBridgingFault(wire1, wire2);

Example $RemoveBridgingFault(FA_inst.sum, FA_inst.cout);

C.5 Coupling Fault

Injection and removal of coupling fault is possible by passing the full name of two coupled wires
to the related PLI function.

Function call $CouplingFault(wire1,wire2);

Example $CouplingFault(FA_inst.sum, FA_inst.cout));

Function call $RemoveCouplingFault(wire1, wire2);

Example $RemoveCouplingFault(FA_inst.sum, FA_inst.cout);

C.6 Parallel Fault

Using PLI facilities, parallel faults can be injected and removed in the design under test. For this
purpose, the number of parallel faults or the parallel factor, the list of sites of faults and their related
stuck-at values must be defined.

Function call $ParInjectFault (parallelFactor, wireList, stuckAtList);

Example $ParInjectFault (3, FA_inst.sum, FA_inst.cout, FA_inst.cin, 1’b1, 1’b0, 1’b0);

In order for parallel fault removal, only the parallel factor and wire list are required.

Function call $ParInjectFault (parallelFactor, wireList);

Example $ParRemoveFault (3, FA_inst.sum, FA_inst.cout, FA_inst.cin);

C.7 Fault Collapsing

The fault collapsing function provided by PLI routines is based on line-oriented fault collapsing and
requires the name of the design under test and the output file to store the fault list.

Function call $FaultCollapsing (DUT, outFile);

Example $FaultCollapsing (FA_inst, “FA.flt”);

401C.12 X-Path Check

C.8 Forward Walker

PLI is capable of providing utilities to find one or all of the paths from one wire or input of the design
under test to the outputs. Possible modes for this task are “ONE” or “ALL”, which specify if one or
all of the forward paths found from the internal node to the primary outputs must be recorded.

Function call $forward_walker(startWire, mode);

Example $forward_walker(FA_inst.A, “ONE”);

C.9 Backward Walker

Using PLI, you can find one or all of the paths from one wire or output back to the inputs of the
design under test. Possible modes for this task are “ONE” or “ALL”, which specify if one or all of
the backward paths found from the internal node to the primary outputs must be recorded.

Function call $backward_walker(startWire, mode);

Example $backward_walker(FA_inst.Sum, “ALL”);

C.10 Find Cone

The cone that is driven by a certain wire can be found and recorded.

Function call $find_cone(startWire);

Example $find_cone(FA_inst.Cin);

C.11 Loader_Driver Finder

The information regarding the gate or module driving a wire (driver), or being driven by one (load),
is provided by the following PLI functions.

Function call $load (wire);

Example $load (FA_inst.Sum);

Function call $driver (wire);

Example $driver (FA_inst.Cin);

C.12 X-Path Check

During test applications such as deterministic test generation, it may be necessary to check for the
existence of an x-path from an internal node to the primary outputs. In this case by specifying the
name of the wire and the mode of finding x-path, the related PLI function can be used. Possible
modes for x-path checking are “ONE” or “ALL” which specify if one or all of the x-paths found
from the internal node to the primary outputs must be recorded.

Function call $x_path_check(wire, mode);

Example $x_path_check(FA.Cin, “ALL”);

402 Programming Language Interface Test Utilities

C.13 SCOAP Parameters

To calculate SCOAP testability parameters for combinational circuits, the name of the design under
test and the output file must be passed to the related function.

Function call $SCOAP(DUT, outFile);

Example $SCOAP(testbench_FA, “FA.scp”);

C.14 Signal Activity

The number of times that an event occurs on a certain wire or on all of the wires in the design can
be observed and recorded. The mode of finding signal activity specifies if the activity of one particu-
lar wire or all wires must be calculated, and if the result must be recorded in an output file or must
be printed in the simulator console. Based on the selected mode, the other required arguments (i.e.,
DUT, wire, and output file) must also be specified. As shown in the examples, in either case, the
unnecessary arguments can be easily ignored.

Function call $SignalActivities (mode, DUT, wire, outFile);

Example $SignalActivities (“ONE_Print”, testbench_FA.sum);

Example $SignalActivities (“ALL_File”, testbench_FA,“FA.sga”);

C.15 Enable Disable

For some test applications having the capability of enabling some modules and disabling the others
is useful. In that case the full name of the considered component and the mode (“enable”/“disable”)
must be specified.

Function call $enableDisable(DUT, DUT.component, mode);

Example $enableDisable(4bitAdder_inst. FA_inst1,0); //disable

Example $enableDisable(4bitAdder_inst. FA_inst2,1); //enable

403

The complete Verilog description for the Standard IEEE 1149.1 is included in this appendix. This
code was described in Chap. 8 and used in examples of this chapter.

Appendix D
IEEE Std. 1149.1 Boundary Scan Verilog Description

404 IEEE Std. 1149.1 Boundary Scan Verilog Description

405IEEE Std. 1149.1 Boundary Scan Verilog Description

406 IEEE Std. 1149.1 Boundary Scan Verilog Description

407IEEE Std. 1149.1 Boundary Scan Verilog Description

408 IEEE Std. 1149.1 Boundary Scan Verilog Description

409IEEE Std. 1149.1 Boundary Scan Verilog Description

wwwwwwwwwwww

411

What follows is the Verilog code of the virtual tester discussed in Chap. 8. This is brought here for
reference when studying the details of events taking place in the example of Chap. 8. Furthermore,
this test bench can be used as a virtual tester template for other circuits with the Standard IEEE std.
1149.1 boundary scan. In which case, only the size of test data and response will have to be set
according to those of CUT.

Appendix E
Boundary Scan IEEE std. 1149.1 Virtual Tester

412 Boundary Scan IEEE std. 1149.1 Virtual Tester

413Boundary Scan IEEE std. 1149.1 Virtual Tester

414 Boundary Scan IEEE std. 1149.1 Virtual Tester

415Boundary Scan IEEE std. 1149.1 Virtual Tester

416 Boundary Scan IEEE std. 1149.1 Virtual Tester

417Boundary Scan IEEE std. 1149.1 Virtual Tester

418 Boundary Scan IEEE std. 1149.1 Virtual Tester

419Boundary Scan IEEE std. 1149.1 Virtual Tester

420 Boundary Scan IEEE std. 1149.1 Virtual Tester

421Boundary Scan IEEE std. 1149.1 Virtual Tester

wwwwwwwwwwww

423

In order to perform test applications such as fault collapsing and fault simulation that have been
done in many instances in this book, a netlist of primitive logic gates is needed. To be able to obtain
this netlist from register transfer level (RTL) descriptions, a synthesis program is required. The
synthesis program must be able to generate its hardware using our gate primitives (Appendix B) in
order for our PLI functions (Appendix C) to be able to perform their test related tasks. For this
purpose, NetlistGen1 that is a netlist generation program has been developed. In the background,
NetlistGen uses the Web Version of Xilinx ISE (free version) for RT level synthesis, and it translates
its intermediate NGC output of the synthesized design into the netlist required by test PLI functions.
The end result is a synthesis program going from synthesizable Verilog code to a netlist of primi-
tives. This appendix shows the procedures for installing and using this program.

F.1 Installing and Configuring NetlistGen

For using the netlist generator you should first install Xilinx ISE web pack edition. The installation
process is listed below:

Download Windows based Xilinx ISE web pack edition from: · http://www.xilinx.com.
Click on “setup.exe” and follow the setup process. ·

– Choose Web Pack edition for installation.
– Leave the default options of checked boxes unchanged.
– Click on the install button to start installation.

F.2 Synthesis and Netlist Generation

After installing Xilinx ISE, for generating a Verilog netlist from a behavioral Verilog code, the
NetlistGen.exe file should be copied in the location as the behavioral description of your Verilog
file. A partial Verilog code showing the required input/output format and a part of the RT level
behavioral code is shown in Fig. F.1.

Appendix F
Generating Netlist by Register Transfer Level
Synthesis (NetlistGen)

1This program has been developed by Hashem Haghbayan.

424 Generating Netlist by Register Transfer Level Synthesis (NetlistGen)

As shown, port declaration format for behavioral top module should list input output declarations
after the module header. NetlistGen cannot translate input or output in the port identifier list. Same
applies to port reg declarations.

When the RT level input is prepared as above, the following steps will result in the generation of
a netlist.

Run · NetlistGen.
When prompted, choose a name for your project. This name will become the project name of the ·
synthesis process of ISE.
When prompted for the name of the module, enter the name of the top level module of your ·
project. The name of the Verilog file of the top level module should be the same as the name of
the module. After that, NetlistGen reads the behavioral Verilog file. If you want to add any other
Verilog files to your design, you can add them in the next step. Added files should be available
in the root directory.
Now you should synthesize your design with Xilinx ISE. For that, choose “y” to synthesize your ·
design. For netlist generation, the NetlistGen_V2 netlist generator uses the intermediate EDIF
format that is obtained from Xilinx Synthesis Technology (xse.exe) NGC output.
When running · NetlistGen_V2, ISE installation path must be known. For this, ISE version 12.2
path is assumed. Enter the proper installation path if you are using a different ISE version.
After selecting the location of ISE installation, the synthesis process will start. The process will ·
be completed successfully if there are no compilation and synthesis errors.

 · NetlistGen will generate the netlist in the netlist_MODULENAME_V1.v file. Part of what is
automatically generated for example of Fig. F.1 is shown in Fig. F.2.

module Controller (reset, clk, op_code, rd_mem, wr_mem, ir_on_adr, pc_on_adr, . . .
 . . .
 input clk;
 input[1:0]op_code ;
 output rd_mem;
 output wr_mem;
 output ir_on_adr;
 output pc_on_adr;
 . . .
 reg [1:0] present_state, next_state;

 always @(posedge clk)
 if(reset) present_state <= `Reset;
 else present_state <= next_state;
 always @(present_state) begin
 . . .
 case(present_state)
 . . .
 `Fetch : begin
 next_state = `WaitState;
 pc_on_adr=1'b1; rd_mem=1'b1; data_on_dbus=1'b1;
 ld_ir=1'b1; inc_pc=1;
 end
 . . .
 endcase
 end
endmodule

Fig. F.1 Port declaration format and sample RT level code

425F.2 Synthesis and Netlist Generation

module Controller_net(global_reset, reset,
clk,
op_code,
rd_mem,
wr_mem,
. . .
 input clk;
 input[1:0]op_code ;
 . . .
 output rd_mem;
 output wr_mem;
wire_2_4,
wire_2_5;

pin #(2) pin_0 ({op_code[0], op_code[1]}, {op_code_0, op_code_1});

fanout_n #(2, 0, 0) FANOUT_8 (wire_8, {wire_8_0, wire_8_1});
fanout_n #(2, 0, 0) FANOUT_9 (wire_9, {wire_9_0, wire_9_1});
fanout_n #(8, 0, 0) FANOUT_10 (wire_3, {wire_3_0, wire_3_1, wire_3_2, wire_3_3, wire_3_4,
. . .
and_n #(2, 0, 0) AND_11 (pc_on_adr, {wire_2_4, wire_4_4});
notg #(0, 0) NOT_6 (wire_11, reset);
and_n #(2, 0, 0) AND_12 (wire_10, {wire_2_5, wire_11_0});
and_n #(2, 0, 0) AND_13 (wire_13, {wire_11_1, wire_4_5});
or_n #(2, 0, 0) OR_4 (rd_mem, {wire_8_1, wire_7_2});
and_n #(4, 0, 0) AND_15 (wr_mem, {op_code_0_4, wire_1_8, wire_3_7, wire_6_3});
dff INS_1 (wire_3, wire_10, clk, 1'b0, 1'b0, 1'b1, NbarT, Si, global_reset);
dff INS_2 (wire_2, wire_12, clk, 1'b0, 1'b0, 1'b1, NbarT, Si, global_reset);
endmodule

Fig. F.2 Netlist generated by NetlistGen

wwwwwwwwwwww

427

A
AC, 8, 17–18, 43, 47, 66, 67, 253, 255, 330
Access routine, 56–58
AC test, 8, 17
Activation, 47, 83, 84, 112, 127, 131–133, 135, 178,

180–182, 186, 188, 190–193, 195, 200, 214, 219,
222, 271, 276, 302

Adding BIST components, 342
Adding BIST hardware, 332, 333
Ad Hoc testability, 12
Adjustable expected coverage-per-test, 167–170
Aliasing, 117, 119, 122, 297, 299, 312, 314, 318, 320,

322, 340
Analog converter, 18
AND-bridging faults, 74
Appearance fault, 67, 88, 111, 112, 135
Arbitrary waveform generator, 17
Architecture design, 298
Asynchronous reset, 214, 234, 264, 302
Asynchronous set, 214
ATE. See Automatic test equipment
ATE architecture and instrumentation, 17–19
ATPG. See Automatic test pattern generation
At-speed testing, 8
Automatic test equipment (ATE), 7, 8, 13–20, 53, 223,

224, 238, 257, 261, 281, 285, 292, 294–299, 325,
329, 345

Automatic test pattern generation (ATPG), 116, 143,
201, 204, 209, 211, 235, 347, 357, 359

AWG. See Arbitrary waveform generator

B
Backtrace, 194, 197
Backtracing, 195–197
Backtrack, 187, 196
Bandwidth, 345
Basic CPT implementation, 137–138
Basic PODEM, 191–193
Basic TG procedure, 177–180
Bed-of-nails probing, 261
Behavioral description, 3, 29, 104, 105, 107, 108, 154,

229, 234, 236, 253, 335
Behavioral level, 29, 30
Behavioral level simulation, 15

Behavioral model, 5, 24, 236
Behavioral testbench, 55
BEST. See Built-in evaluation and self-test
BF. See Bridging fault
Bidirectional pin, 266
Bidirectional signal, 18
Bidirectional signal power, 18
Bidirectional switches, 77, 78
BILBO. See Built-in logic block observer
BILBO test process, 329
Binary counter, 300, 301, 303
Binding, 343
BIST. See Built-in self-test
BISTed CUT model, 335, 342
Bit line (BL), 258, 377, 378
Black box, 213
Block coverage, 54, 56
Board level, 12, 261277–281, 320–321, 326
Bonding, 14
Boolean difference, 72, 143–145
Boolean equation, 157
Boolean expression, 29, 30, 32, 36
Boolean function, 29, 30, 71, 83, 94, 145
Boundary register, 265, 266, 268, 270–273, 275, 276,

281, 283, 287, 290, 291, 324, 325
Boundary scan

standard, 261–264, 275, 290, 292
Boundary scan description language (BSDL), 261,

290–292
Branch coverage, 54
Bridging effect, 73, 310
Bridging fault, 73–76, 84–87, 378
Broadcast scan, 357–361, 372
BSDL. See Boundary scan description language
Buffer memory, 270
Built-in evaluation and self-test (BEST), 321–322
Built-in logic block observer (BILBO), 320, 328–329
Built-in self-test (BIST)

architectures, 16, 295–298, 312, 317, 319–330,
343, 383

controller, 295, 297–300, 312–314, 317–321, 323,
325, 327, 330, 332–335, 337–339, 342, 343, 384

procedure, 299, 300, 312, 320, 343
tester, 384

Bus conflict, 262

Index

Z. Navabi, Digital System Test and Testable Design: Using HDL Models and Architectures,
DOI 10.1007/978-1-4419-7548-5, © Springer Science+Business Media, LLC 2011

428 Index

BYPASS instruction, 272, 273, 282, 287
Bypass register, 265, 272, 283

C
Capture, 224, 264–266, 268, 269, 271, 272, 275, 276,

278, 287, 288, 291, 325, 329, 334, 340
Catastrophic failure, 7, 8
CB(l), 156
CC0(l), See. Combinational 0-controllability of line l
CC1(l), See. Combinational 1-controllability of line l
Cell coupling, 378
Channel, 17, 18, 357, 359, 360, 362, 363, 368, 369
Channel capacity, 345
Characteristic polynomial, 304, 306
Characteristics, 4, 105
Chip

level, 277, 279, 326
manufacturing, 3–4
testing, 6, 12, 14–15, 261, 324

Circuit level, 10, 15, 35, 69, 71, 82, 89, 95, 103, 106,
113, 154, 231

Circuits without reconvergent fanout, 150–
Clock enable, 251, 312, 332, 333, 367, 377
Clock rate, 11
Cluster, 244
CMOS, 30, 31, 65, 77–79, 228
Code-based decompression, 366–371
Code-based schemes, 347–363, 366
Codeword, 347, 349–356, 364, 366–369, 371
Column addresses, 253, 376
Combinational circuit RTG, 163–170
Combinational controllability, 155, 156, 160
Combinational 0-controllability of line l (CC0(l)), 155
Combinational 1-controllability of line l (CC1(l)), 155
Combinational fault simulation, 111
Combinational observability, 156, 160
Combinational test generation, 234, 244, 248–250, 258
Combinational TPG, 237–238
Compaction, 11, 147, 175, 200–211, 345
Compact test vectors, 9, 11, 201, 205
Compatibility, 201–205
Complexity, 8, 20, 36, 69, 122, 123, 141, 143, 145, 155,

172, 206, 261, 285, 345, 366, 378, 381, 387
Compression, 24, 119, 120, 122, 312, 345–347
Concurrent BIST (CBIST), 298, 326–328
Concurrent fault simulation, 131–133
Concurrent testing, 8, 201, 203
Concurrent testing (ATE), 8
Concurrent testing (Online), 8
Cone, 140, 162, 196, 300, 301
Confidence level, 161, 162
Configurable LFSR, 309–311, 329, 332
Conjunction, 359
Consistency, 266
Continuous waveform testing, 18
Controllability, 10, 12, 146–157, 159, 160, 162, 163,

213, 217, 218, 225, 227, 261, 319, 322, 325, 357
0-Controllability, 156, 159, 218
1-Controllability, 156, 159, 218

Controlling event, 299
Control point, 220, 221
Control registers, 267, 282, 283
Control value, 147–149, 156, 195, 197, 217
Convergence, 56, 91, 138, 140, 151
Core isolation, 12, 261, 262
Cost of test, 13, 14, 261, 345
Coupled cell, 378
Coupling, 378
Coverage expectation graph, 170
Critical path

faults, 137
tracing, 137, 197
tracing fault simulation, 141–144

Cross-coupled, 227
CSBL

Hardware, 320
test process, 321

CSC. See Cyclical scan chain
Cube, 182–184, 186–190, 191, 354, 361, 362
CUT. See Circuit-under-test
Cyclical scan chain, 363, 365–366

D
D-Algorithm, 182–191, 194, 196, 197, 199
Data polynomial, 308
Data retention fault, 387
DC

instrumentation, 17
test, 8

D-cube, 184–187, 189, 191
Decoder, 216, 219, 262, 271, 272, 281–283, 301,

345–347, 349, 351, 362–371, 376, 377, 383,
386–387, 389, 391

Decompression
hardware, 345, 347, 362–365, 372
methods, 362–371
unit, 348, 363

Deductive fault simulation, 133–137
Defect, 3, 7, 10, 63–101
Defect coverage, 73
Delay element, 214, 302
Design and test, 21–62
Design error, 1
Design for test, 26, 141, 281
Design rules, 261
Design validation, 234–235
Detection, 24, 86, 112, 114, 116, 124, 135, 137, 140,

145–147, 152–153, 161–163, 166, 178, 182, 198,
206, 208, 311

Detection probability, 152–153, 162–163
Deterministic search, 145
Deterministic test generation, 175–211
Developing a virtual tester, 234, 238–244, 292
Device identification register, 265
Device under test (DUT), 5–7, 16–19, 95, 97
DFF. See D flip-flop
D

f-hard 1
,, 161

D
f-hard N

, 161

[Au1]

429Index

D-frontier, 186–190, 194, 197
DFT, 21, 27, 56, 141, 205, 213–258, 281, 295, 296, 330
Diagnosis, 112, 117, 122
Dictionary-based, 346, 351–354, 359, 368–370
Differential fault simulation, 140–141
Digital stimulus and measure instruments, 17
Digitizer, 17
Disjoint compatibility, 204
Distances based,160
Disturb BIST structure, 389–391
Disturb BIST Walking-0, 389
Disturb MBIST, 387–389
D-notation, 178
Dominance fault collapsing, 92–95
Dominate, 92–94
Don’t care, 347, 355, 356, 363
DRAM, 15, 375, 376, 387
Dual clocking, 229–231
DUT, See Device under test
Dynamic compaction, 209–211
Dynamic RAM, 375
Dynamic test, 201, 209

E
EEPROM, 375
Electrical fault, 17
Embedded, 16–19
Engaging ORAs, 312
Engaging TPGs, 300, 301
Equivalence checker, 3
Equivalent fault, 86, 87, 91, 92
Equivalent single stuck-at faults, 86, 87
Erasable PROM (EPROM), 375
Estimating hardest detection, 162
Evaluate test vectors, 9, 163
Exhaustive, 87, 118, 145, 160, 162, 296, 300, 301, 378
Exhaustive counters, 300–301
Exhaustive test, 300, 301, 378
Expected response, 4, 5, 48, 53, 241, 251, 295
Expected result, 9
Expected signature, 316, 318, 320, 321, 323, 327
External testing, 8
EXTEST instruction, 275–278, 286

F
Fabrication, 14
Failure, 7, 8, 14, 63, 186, 187, 195, 327, 328, 377
FAN. See Fanout oriented test generation algorithm
Fanout branch, 72, 92, 139, 150, 157, 195
Fanout free, 94–95, 150, 151, 196, 198
Fanout stem, 72, 91, 92, 138, 150, 151, 157, 198, 217
Fanout oriented test generation algorithm, 196–197
Fast Fourier transform (FFT), 19
Fault

activation, 112, 178, 181
blocking, 112
collapsing, 10, 25, 86–101, 107, 108, 113, 114, 164,

215, 236, 241, 242

coverage, 10, 11, 26, 27, 55, 86, 112–115, 119,
163, 164, 166, 167, 170, 172, 174, 176, 201,
202, 205–209, 213, 236, 238, 258, 296–300, 319,
322, 324, 325, 329, 330, 332, 336, 338, 349,
357–359

coverage procedure, 113–114
cubes, 185
detection, 24, 112, 146, 178, 311
diagnosis, 117, 122
dictionary, 26, 111, 113, 114, 117–122
dominance, 92, 93
dropping, 111, 113, 114, 118, 125, 130, 137, 140,

166, 168, 169, 205
effect, 15, 83, 119, 131, 171, 177, 178, 185, 186, 216
equivalence, 86, 87, 140
independent test generation, 146, 147, 197–198
list, 24–25, 95, 96, 101, 104, 105, 107–110, 113,

114, 118, 131, 133–137, 140, 163, 166, 205, 210,
238, 338

list compilation, 24–25
model, 10, 24, 25, 63–101, 103, 104, 147, 176,

376–378
oriented test generation, 116–117, 146, 147, 160,

174–177, 197, 198
propagation, 112, 131–135, 179, 191
reduction, 10, 101
simulation, 10, 11, 25–26, 55, 56, 80, 95, 96,

103–141, 158, 163, 164, 171, 175, 177, 197, 201,
205–207, 210, 236, 297–299, 322, 324, 325, 329,
330, 336–339

simulation requirements, 104–105
simulation technologies, 122–141

Faultable, 26, 62, 104, 107–109, 113, 114, 118, 128,
147, 164, 171, 206

Fault injection (FI), 25, 59–62, 96, 104, 107, 109–111,
124, 127–130, 140, 169, 173, 207, 208, 242

Fault removal (FR), 59–61, 109
Faulty, 10, 24–26, 60, 65–69, 71–84, 86, 92, 94,

103–105, 108, 110–114, 116–119, 121–125, 127,
130, 132, 133, 143–145, 171, 177, 178, 200, 207,
241, 397

Feedback, 40, 159, 214–216, 226–229, 233, 236, 238,
244–246, 248, 250, 253, 302–304, 316, 317, 319,
321–324, 328, 339, 365

flip-flop, 214, 238, 248, 253, 323
path, 227, 228, 248, 304, 316
register, 214, 215, 226, 229, 233, 244–246, 248,

322–325, 328
FFT. See fast Fourier transform
FI. See Fault injection
Finite state machine (FSM), 36, 37, 40, 218, 366–370
Fixed expected coverage, 163–167
Flaw, 2, 3, 63
Floating, 263
Formal, 3, 72, 111, 145, 177, 178, 180–182
Fourier, 19
FPGA, 16, 235
FR. See Fault removal
Frequency, 7–9, 17, 18, 51, 291, 303, 306, 349–351
FSM. See Finite state machine

430 Index

Full scan, 225, 226, 234, 238, 241, 244, 245, 248–251,
253–255, 329, 330, 358

design, 234–245, 248, 250, 252
DFT technique, 225–246
insertion, 226–227

Functional fault, 67–68, 71, 83, 377
Functional level, 67
Functional model, 146
Functional test, 5, 176, 234, 235, 277, 378–379
Functional test generation, 5, 176
Functionally equivalent, 86

G
Gate fault list propagation, 134–135
Gate faults, 87–89, 134–135
Gate level

fault, 65, 66, 71–86, 100, 105
fault simulation, 55, 103–104
simulation, 55, 105, 107, 124

Gate oriented fault collapsing, 87–90
Generator, 17, 174, 298, 308, 319, 389, 390
Generic parameter, 291
Generic TAP controller, 283
Glitch, 267
Golomb, 355–357, 365, 371
Good signature, 330, 336–338
Gross data retention fault, 387
Guided probe testing, 8

H
Handshaking, 18, 48
Hard-to-detect fault, 146, 162, 311
Hardware description language (HDL)

based fault coverage, 114
Hardware modeling, 15
Hardware testing, 117, 122, 295
Hazard, 231
Hazard removal, 85
HDL. See Hardware description language
Heuristic, 145, 163, 186, 195, 196
Hierarchical naming, 52
Hierarchical scan, 292
Higher levels of abstraction, 32, 67, 68
High level, 1, 17, 23, 55, 197, 238
High speed, 17
Huffman codes, 349–351, 366, 368
Huffman model, 40, 41, 214, 226, 227, 229, 234, 236,

245, 249, 253, 254, 258, 320, 322, 324, 325, 328
Huffman tree, 349–351, 367, 368
Hybrid BIST, 298, 308, 309, 325, 327

I
Idempotent coupling, 378
IEEE standard, 22, 261–294
Illinois scan, 358–360, 372
Implication, 180–182, 191, 193
Improving controllability, 12, 213, 217–218, 261, 265

Improving observability, 12, 213, 216, 261, 265
In-circuit testing, 8, 261
Incompatible, 201
Initialization, 29, 290, 299
Initial state, 267, 368
Initial statement, 49, 51, 52, 95, 242, 336, 337
Inject fault, 15, 25, 26, 59–62, 104, 105, 107–111, 113,

114, 116, 118, 119, 123, 124, 127–131, 166, 169,
171, 173, 177, 182, 187, 199, 207, 208, 241, 242,
244, 338

Input cell, 266, 268, 271, 275, 277, 288, 325
Instruction, 42–44, 47, 65–67, 261–268, 271–276, 278,

279, 281–283, 286, 287, 290, 291, 294
Instruction fault, 67
Instruction register (IR), 43–45, 47, 253, 255, 264–273,

275, 281–283, 287, 291, 332
Integrated circuit, 14, 122
Integrated liquid cooling system, 18
Interconnection, 2, 3, 5, 14, 29, 30, 32, 68, 69, 71, 226,

275, 286
Internal testing, 8
Internal-XOR LFSR, 307
Intersection, 135, 184
Intersection of fault lists, 135
Intest instruction, 272, 275–277, 286, 287
Inversion coupling, 378
IP core, 141, 345
IR, See Instruction register
Isolated serial scan, 223–225

J
Joint test action group (JTAG), 261
Jumper, 12, 215
Justification, 77, 180–182, 184, 186–191, 199

K
Karnaugh map, 71–74, 84, 85, 182
K-cell coupling, 378

L
Latch, 41, 227–229, 231–233
Layout, 3, 8, 64
Least significant, 253, 268, 330, 381, 383, 386
Level sensitive scan design (LSSD), 233,

324–325
Linear feedback shift register (LFSR)

characteristic equation, 304
cycle, 305, 307, 308, 330, 338
with serial input, 308–309, 316

Linear system, 362
Line oriented fault collapsing, 89–91, 97
Logic BIST, 295, 343, 345
Lookup, 9, 122, 369, 383, 387
Lookup memory, 383
LSSD, See Level sensitive scan design
LSSD on-chip self test (LOCST), 324–326
Lumped, 69, 71, 253

431Index

M
Mandatory instruction, 264, 265, 271–277, 281
Manufacturing test, 1, 3, 7, 14, 17, 19–20, 235
MARCH A, 380–381
MARCH B, 380–381
MARCH C, 380–381
March C

algorithm, 379–380
BIST counter, 382, 386, 388
MBIST, 385–389

Marching-1, 302
March test, 378–381, 387
MARCH X test, 380–381
MARCH Y test, 380–381
Mask misalignment, 64, 65
Mass storage, 271
Master, 229, 231–233, 337
Master/slave flip-flop, 229
MATS+, 380–381
MATS++, 380–381
MATS test, 380–381
Maximum-length LFSR, 306–308
MBIST. See Memory BIST
Mealy machine, 36, 37, 40, 199, 216
Measurement, 10, 18, 19, 25–27, 56
Memory

based BIST, 295–297
cell, 375–378, 380, 387, 389
fault model, 375, 377–378
read operation, 47, 376, 377, 379–381, 384, 386
structure, 375–377, 381, 390
test, 302, 375–391
write operation, 376, 377, 379–381, 384, 386

Memory BIST (MBIST), 296, 375–391
MISR. See Multi-input signature register
Mode control, 216, 217, 253, 266, 275, 276, 329
Modular LFSR, 307–308
Modulo, 37, 304, 305, 308, 314, 356
Moore’s law, 8
MOS, 30
Multi-input signature register (MISR), 119, 121,

317–320, 322, 323, 325–330, 332–334, 337, 338,
340, 341, 358

Multiple fault, 75–77, 82, 83, 117, 122, 127, 128,
146, 176

Multiple-input broadcast scan, 359–360, 372
Multiple observe points, 218
Multiple path, 182, 185
Multiple scan

architecture, 251–253
chains, 278–281, 347, 353, 354, 357–359
design, 251–254, 329
test procedure, 252

Multiple sensitized paths, 181–182, 190
Multiplexed test data, 229

N
Nail, 261
Neighboring cores, 261

Neighboring gates, 73
Netlist, 3–5, 23, 24, 26, 27, 56, 95, 104, 105, 107, 112,

123, 124, 128, 129, 154, 158, 229, 234–237, 241,
253, 256, 283, 330, 332, 335, 341

Netlist Gen, 107, 234–236
nMOS, 30, 64, 68, 77, 79, 80
Noise, 18, 19
Nonblocking assignment, 52
Non-controlling value, 195
Non-faulty gate, 67
Non-functional module, 283
Non-invasive mode, 262, 272
Non-invasive operation, 266
Non-overlapping, 228
Non-polynomial, 145
Non-volatile, 375
Non-zero, 305
NP-complete, 11, 250

O
Objective, 56, 194, 196
Observability, 10, 12, 146–150, 152, 154–157, 159, 160,

163, 174, 194, 195, 213, 215, 216, 218, 225, 261,
265, 299, 319, 322, 328, 331, 363

Observation point, 218, 221
Offline BIST, 297
Offline testing, 8
One-controllability, 147–149
One-hot, 301, 302
One’s counting, 314
Online BIST, 297–298, 304
OR bridging fault, 74–76, 84–86

P
Package, 14, 262, 292
Package level, 14
Parallel fault simulation, 127–133
Parallel load/loading, 214, 223, 224, 268, 276, 300
Parallel mode, 253, 323, 331, 334, 335, 358
Parallel scan, 251, 252, 255, 363
Parallel serial full scan (PSFS), 358
Parallel shift-register sequence generator (SRSG), 317,

319, 322, 323, 325, 332, 333
Parallel signature analysis, 317–319
Parallel synchronizer, 368
Parallel to serial converter, 364
Parity checking, 316
Partial scan, 248–251
Partitioning combinational circuit, 300
Partitioning test data, 347, 348
Path coverage, 56
Path oriented test generation (PODEM), 191–196
Path sensitization, 181, 185
Pattern generator, 319, 389, 390
Pattern memory, 17, 18
PCB. See Printed circuit board
Performance, 2, 7, 8, 14, 17, 123, 127, 128, 130,

248, 271

432 Index

Periodic, 48, 50, 51, 54, 242
Period of linear feedback shift register, 303–311
Permanent, 69, 71, 86, 377
Physical level, 64
PI. See Primary input
Pipeline circuit, 321
PLI. See Procedural language interface
pMOS, 68, 77, 79–81
PODEM. See Path oriented test generation
0-Point cube, 183
1-Point cube, 183, 184
Polynomial, 304–310, 316–318, 320, 322, 324, 330,

336–339
Posedge, 36, 53, 114, 171, 207
Post manufacturing test, 4, 5, 20, 21, 143, 234, 235, 242
Power consumption, 27, 213, 215
Power level, 17
Power management, 14, 17
Power supply, 19
Precalculated expected coverage-per-test, 170
Prefix-free, 351, 367
Present state, 39, 45, 47, 227, 245, 246, 328
Previous time frame, 200
Primary input (PI)

combinational controllability, 155
sequential controllability, 155

Primary output (PO), 10, 83, 90, 111, 137, 145,
148, 150, 156, 158, 159, 162, 171, 177–179,
181, 190–193, 196, 197, 199, 200, 213, 214,
216, 217, 227, 244, 246, 248, 254, 322–325,
329, 330, 332, 340

Prime cubes, 183, 184
Primitive, 29–32, 35, 57, 88, 97, 107, 128, 182,

184–187, 189, 197, 215, 236, 237, 306
Primitive cube, 182–184, 186, 187, 190, 191
Primitive polynomial, 306, 307
Printed circuit board (PCB), 122, 261
Probability based controllability and observability,

148–150
Probe, 261
Probe test, 8
Procedural language interface (PLI), 16, 21, 56–59,

62, 95, 97, 108, 109, 114, 128, 154, 158, 208,
236, 338

Production, 13, 19, 299
Programmable register structure, 311
Programmable ROM, 375
Programmable threshold, 17
Programmable voltage level, 17
Propagate cube, 184
Propagate fault, 131, 177, 178, 186
Propagation, 15, 31, 110, 112, 119, 123, 132,

134–137, 178–182, 184–187, 189, 191, 193,
194, 199, 200, 230

Propagation D-cube, 184, 189, 191
Protocol aware ATE, 16
PRPG. See Pseudo random pattern generator
Pseudo code, 59, 187, 190, 192, 194, 197, 206, 224
Pseudoinput, 215, 227, 237, 250, 258, 325
Pseudooutput, 244, 250

Pseudo primary input (PPI), 237, 250, 254
Pseudo primary output (PPO), 215, 227, 254
Pseudo random pattern generator (PRPG), 319–323,

325, 327, 328, 330, 333
Pseudo random sequence generator, 319
Pseudo-random serial test data, 317, 325
Pseudo-random test patterns, 300
Pseudo-static latch, 228
PSFS. See Parallel serial full scan

Q
Quality, 14, 19, 54, 143
Quotient polynomial, 309

R
Race, 3
Radiation, 63
RAM. See Random access memory
Random access memory (RAM), 384, 390
Random access scan, 253
Random pattern generator, 319
Random search, 145
Random sequence generator, 319
Random test generation (RTG), 114, 116, 146, 155, 160,

174, 175, 201, 205, 206, 210, 211
Random test socket (RTS)

BIST insertion, 330–335
hardware, 322–323

Random time intervals, 52–53
Read only memory (ROM), 381
Recognizing faults, 71–72
Reconvergent fanout, 91–92, 138, 140, 149–151, 154,

155, 163, 181, 182, 217
Recursive function, 97
Recursive process, 197
Redundant fault, 85–86
Redundant test vector, 205
Register transfer level (RTL)

BIST design, 329–330
design full scan, 235–238
design multiple scan, 251–252
design process, 1, 7, 13, 15, 16, 21
scan design, 253, 258
simulation, 2, 10
synthesis, 2–3

Reliability, 8, 85, 381
Remainder polynomial, 309
Residue-5, 37, 41, 50, 114, 119, 121, 171, 172, 206,

211, 234, 238, 241, 244, 254
Resistive wire, 3
Reverse order fault simulation, 205
RF, 17
Ring counter, 301–303
Rise and fall delays, 35
ROM. See Read only memory
Root, 349
Row decoder, 377
RTG. See Random test generation

433Index

RTL. See Register transfer level
RTS. See Random test socket
Rule of ten, 13
RUNBIST, 321, 323, 331
Run-length, 347, 361, 362, 365, 370–371

S
SA0, 77, 79, 82, 84, 87–91, 94, 112, 131, 134, 137, 140,

144–146, 152, 177, 178, 180, 181, 187–191, 195,
196, 198–200, 216

SA1, 77, 79, 81–89, 91–94, 112, 131, 135, 139, 148,
160, 181, 182, 190, 192, 193

SAMPLE instruction, 272–274
Sampling, 272
Sampling process, 320
Sandia Controllability/Observability Analysis Program

(SCOAP)
combinational parameters, 155–158
controllability and observability, 155–160, 194
sequential parameters, 155, 158–160

SB(l), 159
SC0(l), 159
SC1(l), 159
Scan architectures, 225, 244–253, 262–271, 278, 279,

297, 358–361
Scan-based decompression, 363, 372
Scan chain, 27, 239, 241, 245, 248, 251, 252,

255–258, 265, 272, 277–281, 284–286, 292,
320, 324, 325, 330, 341, 342, 345, 347, 348,
353, 354, 357–368, 372

Scan design, 234–245, 248–254, 258, 291, 298, 299,
329, 357

Scan designs for RTL, 253–258
Scan flip-flop, 231, 238, 244, 253, 254, 262, 276
Scan in, 358, 359
Scan insertion, 12, 226–227, 234, 238, 253, 258,

330–332
Scan mode, 358
Scan out, 325
Scan path, 233, 248, 254, 272, 286
Scan register, 226–227, 229, 230, 251, 261, 262, 265–266,

270–272, 275–277, 281, 283, 287, 290, 291, 294,
310, 324–326, 328, 334, 340–342, 367, 369

Scan testability rules, 271–277
Scan testing, 17, 226, 234, 250–251, 254, 262, 271–277,

281–283, 298, 323
SCOAP. See Sandia Controllability/Observability

Analysis Program
Search space, 145, 191
Seed, 119, 309, 310, 318, 324, 325, 336, 338, 339,

361, 362
Segment, 11, 17, 18, 138, 171, 251, 252, 326, 340
Selection, 49, 117, 146, 160, 163, 166, 180, 191, 192,

194, 196, 197, 205, 221, 227, 231, 248, 250, 271,
299, 312, 376

Selective Huffman, 351, 363, 366–368
Self-test, 267, 321–322, 325–326
Semiconductor, 399
Sense amplifier, 376

Sensitivity list, 33, 36, 39
Sensitization, 181, 185, 190
Sensitized path, 179–182, 190, 197
Sequential circuit

fault coverage, 114
fault dictionary, 114, 119–121
fault simulation, 111
Huffman model, 40–41, 214, 226, 253
random test generation (RTG), 143, 171–174, 210
test generation, 143–147, 171, 172, 175–200, 210,

213, 214, 225, 236, 258
Sequential controllability, 155, 159, 160
Sequential 0-controllability of line l, 159
Sequential 1-controllability of line l, 159
Sequential observability, 159, 160
Sequential observability of line l, 159
Sequential SCOAP parameter, 158–160
Sequential testbench, 50–51
Serial access, 245
Serial fault simulation, 124–128, 130, 137, 140
Serial input signature analyzer (SISA), 319, 322, 323,

330, 332, 333, 336–338
Serial input signature register (SISR), 316–317,

319–324, 325
Serial LFSRs, 316–317
Serial load, 226
Serial parallel shift register, 224, 226
Serial synchronizer, 364, 370, 371
Settling time, 111
Shadow architecture, 245
Shadow register, 245–248
Sharing control pins, 219–221
Sharing observability pins, 218–219
Signature, 24, 26, 119, 297, 299, 308, 312–314,

316–323, 325, 327, 330, 332–334, 336–338, 340
Signature analysis, 317–319, 332
Silicon, 14, 290
Simple march BIST, 381–385
Simplified D-algorithm, 190
Simultaneous control and observation, 222–225
Single fault, 77, 82–83, 128
Single stuck-at fault, 83, 86–87, 103, 104, 122, 134,

140, 147, 176
Single stuck-at structural fault, 77–83
SISA. See Serial input signature analyzer
SISR. See Serial input signature register
Slave, 229, 231–233
Slow clock, 229, 248
SOC. See System on chip
SOCRATES, 197
Spectral analysis, 19
SRSG, 317, 319, 322–326, 330, 332, 333, 336
Standard cell, 292
Standard LFSR, 304–305, 307
Standard test protocol, 263
State coupling fault, 378
State-dependent faults, 75
State machine, 36–42, 44, 51, 52, 218, 262, 299, 300,

323, 366, 367, 369
Statement coverage, 54, 56

AU2

434 Index

State transition, 38, 41, 370
Static analysis, 155
Static combinational compaction, 205
Static compaction, 201, 204–209
Static RAM (SRAM), 375–377
Static sequential compaction, 206–209
Stem, 72, 91, 92, 138, 139, 150, 151, 157, 198, 217
Strobe, 17
Structural fault, 68–72, 77–83, 377
Structural gate level faults, 71–84, 103
Structural test, 5
Stuck-at fault, 60, 61, 77–81, 86–87, 103, 104, 107,

108, 122, 134, 137, 139, 140, 147, 171, 176,
297, 377, 378

Stuck-at-0 faults, 72, 73, 76, 77, 82, 84, 86, 108, 109,
145, 377

Stuck-at-1 faults, 69, 71, 73, 76, 77, 79, 81, 82, 85, 86
Stuck-at models, 122, 135, 147
Stuck-open fault, 72, 76, 79
STUMPS, 325–327, 329, 330, 340–343
Superposition, 304
Supply, 19, 29, 73, 81
Synchronizer, 345, 347, 363–371
Synchronizing, 52, 271, 364, 365
Synchronous, 41, 50, 214, 229
Syndrome, 117–122
Synthesis, 1–4, 22–24, 107, 112, 234–236, 238, 330, 347
System clock, 51, 229, 288, 347, 353, 363–365, 367, 369
System testing, 4, 9, 10, 15, 20, 141
System on chip (SOC), 13–15, 18, 376

T
TAP controller, 267–273, 275–278, 281–284,

286–288, 294
Target fault, 360
TCLK, 246, 248, 262, 267, 287, 288
TDI. See Test Data In
TDO. See Test Data Out
Testability

analysis, 24–25
hardware evaluation, 16
insertion, 11, 14, 215–225
measure, 143, 155
measurement, 10, 25–27, 56
methods, 8, 11–15, 20, 223

Testbench, 1–3, 16, 21–28, 48–56, 58–62, 77–79, 81,
95, 96, 109–111, 114, 118, 119, 121, 122, 127,
128, 130, 154, 158, 164, 166, 168–172, 206, 208,
209, 234, 235, 238, 241, 242, 254, 258, 286, 287,
330, 336, 337, 342, 343, 384, 386

Test compaction, 11, 147, 201, 205, 206, 208–211
Test compatibility, 201–204
Test compression, 345–372
Test concerns, 1, 8–15
Test controller, 18
Test cube, 182, 187, 188, 347, 353, 354, 361, 362
Test cycles, 143, 174, 320, 325, 326, 329, 330, 332–334,

336, 338, 339

Test data compaction, 200–211
Test data compression, 345–347, 349
Test Data In (TDI), 226, 263–266, 268, 272, 277–280,

286–288
Test data memory, 296
Test Data Out (TDO), 263, 265, 266, 268, 271–273,

277–280, 283, 286, 288
Test effectiveness, 172
Tester channel, 357, 359, 362, 363, 368, 369
Testers, 5–9, 14, 16, 18, 19, 103, 108, 177, 206, 242,

254, 270, 346, 357, 359, 362–364, 367, 369, 371
Test generation, 5, 10–11, 25–27, 56, 72, 82, 83, 95, 96,

108, 112–117, 143–147, 155, 163, 170–172,
174–178, 180–182, 184–186, 189, 191, 193,
195–197, 199–201, 204, 205, 209, 214, 215, 217,
225, 236, 238, 244, 248–250, 252–254, 258, 347,
357, 372

Test head, 18, 19
Testing, 2, 21, 82, 111, 146, 200, 214, 261, 296, 357
Testing cost, 14
Test logic, 223, 262, 263, 267, 286, 290
Test methods, 8–12, 14–16, 21–22, 24, 37, 42, 83, 95,

214, 234, 261, 381
Test mode select (TMS), 262, 267, 268, 270, 277, 279,

280, 286–288, 290
Test pattern, 5, 300, 322, 347, 349, 350, 352–355,

357–360, 381, 383, 386, 387, 389
Test pattern generators (TPGs), 116, 143–174, 296–312,

317, 319–321, 324, 328, 330, 332, 340, 343, 389,
396

Test plan, 238
Test procedure, 24, 227, 234, 246–248, 250–253, 258,

285, 298, 299, 333, 343, 378–381
Test program, 4, 5, 7, 21, 57, 100, 105, 234, 235, 238,

242, 257, 258, 261, 290, 295, 296, 298, 299
Test refinement, 112, 114–116
Test Reset (TRST), 262, 267, 291
Test response memory, 297
Test session, 319, 320, 322, 325, 327, 333, 334, 383, 384
Test set

compatibility, 203–205
verification, 234, 244

Test time, 1, 7, 9, 11–13, 16, 18, 20, 25, 27, 146, 147,
172, 203, 213, 215, 218, 221, 222, 230, 245, 248,
251, 253, 258, 277, 278, 296, 298, 318, 320, 325,
329, 336, 338, 343, 345, 359, 372, 378

Test vectors
compatibility, 201–202
ordering, 206
reordering, 202

THD, 18
Thermal management, 18
Threshold, 17, 210, 216
Throughput, 14, 15, 18
Time frame, 199, 200
Time frame expansion, 199, 200
TMS. See Test mode select
Total cost, 13
TPGs. See Test pattern generators

435Index

Transient fault, 81
Transistor fault, 77, 79, 82
Transition counter, 314–316
Transition faults (TF), 378
Transparent latch, 227
Tree, 196, 349, 368
Trial and error, 299
Tri-state control, 216, 217
Twisted ring counter, 302–303
Two-phase test generation, 176–177, 211
Two-port flip-flops, 231–234

U
Undetectable fault, 85
Unfolding, 214, 215, 226, 234, 236–238
Unidirectional, 30
Unique sensitized path, 197
Unique syndrome, 117, 119
Universal slot, 19
Unspecified bit, 347, 349, 354
UpdateDR, 269, 270, 273, 275, 276, 290
User defined logic, 266
User defined registers, 266, 272

V
Verification, 2, 3, 23, 234, 244
Verilog

model, 2, 23, 77, 231, 335
testbench, 23–29, 48, 56, 77, 95–97, 106, 109, 114, 117,

118, 125, 154–155, 158, 164, 168, 169, 171, 174,
175, 206, 215, 237, 238, 241, 258, 285, 330, 336

VHDL, 53, 290, 291
Virtual boundary scan tester, 285–290
Virtual circuit, 127, 357, 358
Virtual injection, 131
Virtual parallel gate, 130
Virtual tester, 16, 27, 48, 215, 224, 225, 234,

238–244, 254, 255, 257, 281, 285–287, 290,
292, 294, 296, 329

Visual inspection, 23

W
Wafer

level, 14
prober, 7
testing, 7

Walking-0, 387, 389–391
Walking-1, 301, 302
Waveform

digitizer, 17
fidelity, 18
generator, 17
modulation, 18

Weighted LFSR, 311
Word line, 377, 378

X
X-path, 193–196

Y
Yield, 14, 23, 172, 176, 305

	Cover
	Digital System Testand Testable Design
	ISBN 9781441975478
	Preface
	Acknowledgments
	Contents
	Introduction
	Software and Course Materials

	Chapter 1: Basics of Test and Role of HDLs
	1.1 Design and Test
	1.1.1 RTL Design Process
	1.1.1.1 RTL Simulation
	1.1.1.2 RT Level Synthesis
	1.1.1.3 Physical Layout
	1.1.1.4 Chip Manufacturing

	1.1.2 Postmanufacturing Test
	1.1.2.1 Device and Its Test Data
	1.1.2.2 Testers
	1.1.2.3 Using Test Results
	1.1.2.4 Types of Tests

	1.2 Test Concerns
	1.2.1 Test Methods
	1.2.1.1 Fault Model
	1.2.1.2 Fault Reduction
	1.2.1.3 Fault Simulation
	1.2.1.4 Testability Measurement
	1.2.1.5 Test Generation
	1.2.1.6 Test Compaction

	1.2.2 Testability Methods
	1.2.2.1 Ad Hoc Testability
	1.2.2.2 Scan Insertion
	1.2.2.3 Boundary Scan
	1.2.2.4 Built-in Self-test

	1.2.3 Testing Methods
	1.2.4 Cost of Test
	1.2.4.1 Rule of 10
	1.2.4.2 Chip Testing

	1.3 HDLs in Digital System Test
	1.3.1 Hardware Modeling
	1.3.2 Developing Test Methods
	1.3.3 Virtual Testers
	1.3.4 Testability Hardware Evaluation
	1.3.5 Protocol Aware ATE

	1.4 ATE Architecture and Instrumentation1
	1.4.1 Digital Stimulus and Measure Instruments
	1.4.2 DC Instrumentation
	1.4.3 AC Instrumentation
	1.4.4 RF Instrumentation
	1.4.5 ATE

	1.5 Summary
	References

	Chapter 2: Verilog HDL for Design and Test
	2.1 Motivations of Using HDLs for Developing Test Methods
	2.2 Using Verilog in Design
	2.2.1 Using Verilog for Simulation
	2.2.2 Using Verilog for Synthesis
	2.2.2.1 Postsynthesis Simulation

	2.3 Using Verilog in Test
	2.3.1 Good Circuit Analysis
	2.3.2 Fault List Compilation and Testability Analysis
	2.3.3 Fault Simulation
	2.3.4 Test Generation
	2.3.5 Testability Hardware Design

	2.4 Basic Structures of Verilog
	2.4.1 Modules, Ports, Wires, and Variables
	2.4.2 Levels of Abstraction
	2.4.3 Logic Value System

	2.5 Combinational Circuits
	2.5.1 Transistor-level Description
	2.5.2 Gate-level Description
	2.5.3 Equation-level Description
	2.5.4 Procedural Level Description
	2.5.4.1 Multiplexer Example
	2.5.4.2 Procedural ALU Example

	2.5.5 Instantiating Other Modules
	2.5.5.1 ALU Example Using Adder
	2.5.5.2 Iterative Instantiation

	2.6 Sequential Circuits
	2.6.1 Registers and Shift Registers
	2.6.2 State Machine Coding
	2.6.2.1 Residue-5 Divider
	2.6.2.2 The Moore Implementation of Residue-5 in Verilog
	2.6.2.3 Huffman Coding Style

	2.7 A Complete Example (Adding Machine)
	2.7.1 Control/Data Partitioning
	2.7.2 Adding Machine Specification
	2.7.3 CPU Implementation
	2.7.3.1 Datapath Design
	2.7.3.2 Controller Design
	2.7.3.3 Datapath HDL Description
	2.7.3.4 Controller HDL Description
	2.7.3.5 The Complete HDL Design

	2.8 Testbench Techniques
	2.8.1 Testbench Techniques
	2.8.2 A Simple Combinational Testbench
	2.8.3 A Simple Sequential Testbench
	2.8.4 Limiting Data Sets
	2.8.5 Synchronized Data and Response Handling
	2.8.6 Random Time Intervals
	2.8.7 Text IO
	2.8.8 Simulation Code Coverage

	2.9 PLI Basics
	2.9.1 Access Routines
	2.9.2 Steps for HDL/PLI Implementation
	2.9.3 Fault Injection in the HDL/PLI Environment

	2.10 Summary
	References

	Chapter 3: Fault and Defect Modeling
	3.1 Fault Modeling
	3.1.1 Fault Abstraction
	3.1.2 Functional Faults
	3.1.3 Structural Faults

	3.2 Structural Gate Level Faults
	3.2.1 Recognizing Faults
	3.2.2 Stuck-open Faults
	3.2.3 Stuck-at-0 Faults
	3.2.4 Stuck-at-1 Faults
	3.2.5 Bridging Faults
	3.2.5.1 AND-bridging Faults
	3.2.5.2 OR-bridging Faults

	3.2.6 State-dependent Faults
	3.2.7 Multiple Faults
	3.2.8 Single Stuck-at Structural Faults
	3.2.8.1 Stuck-at Faults
	3.2.8.2 Single Fault

	3.2.9 Detecting Single Stuck-at Faults

	3.3 Issues Related to Gate Level Faults
	3.3.1 Detecting Bridging Faults
	3.3.2 Undetectable Faults
	3.3.3 Redundant Faults

	3.4 Fault Collapsing
	3.4.1 Indistinguishable Faults
	3.4.2 Equivalent Single Stuck-at Faults
	3.4.3 Gate-oriented Fault Collapsing
	3.4.3.1 Gate Faults
	3.4.3.2 Gate-oriented Fault Collapsing Procedure

	3.4.4 Line-oriented Fault Collapsing
	3.4.5 Problem with Reconvergent Fanouts
	3.4.6 Dominance Fault Collapsing
	3.4.6.1 Dominance Principles
	3.4.6.2 Dominance in Fanout-free Circuits

	3.5 Fault Collapsing in Verilog
	3.5.1 Verilog Testbench for Fault Collapsing
	3.5.2 PLI Implementation of Fault Collapsing

	3.6 Summary
	References

	Chapter 4: Fault Simulation Applications and Methods
	4.1 Fault Simulation
	4.1.1 Gate-level Fault Simulation
	4.1.2 Fault Simulation Requirements
	4.1.2.1 Gate-level Simulation
	4.1.2.2 Behavioral Simulation
	4.1.2.3 Reading Data Files
	4.1.2.4 Fault Injection Capability
	4.1.2.5 Writing Report Files

	4.1.3 An HDL Environment
	4.1.3.1 Input Files and Information
	4.1.3.2 Fault Injection
	4.1.3.3 Performing Fault Simulation

	4.1.4 Sequential Circuit Fault Simulation
	4.1.5 Fault Dropping
	4.1.6 Related Terminologies
	4.1.6.1 Fault Activation
	4.1.6.2 Fault Propagation
	4.1.6.3 Fault Detection
	4.1.6.4 Fault Blocking

	4.2 Fault Simulation Applications
	4.2.1 Fault Coverage
	4.2.1.1 Fault Coverage Procedure
	4.2.1.2 HDL-based Fault Coverage
	4.2.1.3 Sequential Circuit Fault Coverage

	4.2.2 Fault Simulation in Test Generation
	4.2.2.1 Test Refinement
	4.2.2.2 Random Test Generation
	4.2.2.3 Fault-oriented Test Generation

	4.2.3 Fault Dictionary Creation
	4.2.3.1 Fault Dictionary
	4.2.3.2 Generating a Fault Dictionary
	4.2.3.3 Sequential Circuit Fault Dictionary
	4.2.3.4 Using Fault Dictionaries

	4.3 Fault Simulation Technologies
	4.3.1 Serial Fault Simulation
	4.3.2 Parallel Fault Simulation
	4.3.2.1 Parallel Fault Simulation Algorithm
	4.3.2.2 Verilog Implementation
	4.3.2.3 Comparing Parallel Fault Simulation

	4.3.3 Concurrent Fault Simulation
	4.3.3.1 Concurrent Fault Simulation Algorithm
	4.3.3.2 Implementing Concurrent Fault Simulation
	4.3.3.3 Comparing Concurrent Fault Simulation

	4.3.4 Deductive Fault Simulation
	4.3.4.1 Deductive Fault Simulation Algorithm
	4.3.4.2 Gate Fault List Propagation
	4.3.4.3 Deductive Fault Simulation Example

	4.3.5 Comparison of Deductive Fault Simulation
	4.3.6 Critical Path Tracing Fault Simulation
	4.3.6.1 Basic CPT Implementation
	4.3.6.2 Reconvergent Fanouts in CPT
	4.3.6.3 CPT Example
	4.3.6.4 Comparing CPT

	4.3.7 Differential Fault Simulation

	4.4 Summary
	References

	Chapter 5: Test Pattern Generation Methods and Algorithms
	5.1 Test Generation Basics
	5.11 Boolean Difference
	5.1.2 Test Generation Process
	5.1.2.1 Deterministic Search
	5.1.2.2 Random Search
	5.1.2.3 Methods and Algorithms

	5.1.3 Fault and Tests
	5.1.3.1 Fault-oriented Test Generation
	5.1.3.2 Fault Independent Test Generation
	5.1.3.3 Random Test Generation
	5.1.3.4 Unspecified Inputs

	5.1.4 Terminologies and Definitions

	5.2 Controllability and Observability
	5.2.1 Controllability
	5.2.2 Observability
	5.2.3 Probability-based Controllability and Observability
	5.2.3.1 Circuits without Reconvergent Fanout
	5.2.3.2 Reconvergent Fanouts
	5.2.3.3 Detection Probability
	5.2.3.4 Verilog Testbench

	5.2.4 SCOAP Controllability and Observability
	5.2.4.1 SCOAP Combinational Parameters
	5.2.4.2 SCOAP Combinational Examples
	5.2.4.3 Verilog Testbench for SCOAP Parameter Calculations
	5.2.4.4 SCOAP Sequential Parameters

	5.2.5 Distances Based

	5.3 Random Test Generation
	5.3.1 Limiting Number of Random Tests
	5.3.1.1 Estimating Hardest Detection
	5.3.1.2 Detection Probability

	5.3.2 Combinational Circuit RTG
	5.3.2.1 Fixed Expected Coverage per Test
	5.3.2.2 Adjustable Expected Coverage per Test
	5.3.2.3 Precalculated Expected Coverage per Test

	5.3.3 Sequential Circuit RTG

	5.4 Summary
	References

	Chapter 6: Deterministic Test Generation Algorithms
	6.1 Deterministic Test Generation Methods
	6.1.1 Two-phase Test Generation
	6.1.2 Fault-oriented TG Basics
	6.1.2.1 Basic TG Procedure
	6.1.2.2 A More Formal Approach to TG
	6.1.2.3 Multiple Sensitized Paths

	6.1.3 The D-Algorithm
	6.1.3.1 Primitive Cubes
	6.1.3.2 Propagation D-Cubes
	6.1.3.3 J-Frontier
	6.1.3.4 D-Frontier
	6.1.3.5 D-Algorithm Procedure
	6.1.3.6 Simplified D-Algorithm

	6.1.4 PODEM (Path-oriented Test Generation)
	6.1.4.1 Basic PODEM
	6.1.4.2 A Smarter PODEM

	6.1.5 Other Deterministic Fault-oriented TG Methods
	6.1.5.1 Fan
	6.1.5.2 Socrates

	6.1.6 Fault-independent Test Generation

	6.2 Sequential Circuit Test Generation
	6.3Test Data Compaction
	6.3.1 Forms of Test Compaction
	6.3.2 Test Compatibility
	6.3.2.1 Test Vector Compatibility
	6.3.2.2 Test Vector Reordering
	6.3.2.3 Test Set Compatibility

	6.3.3 Static Compaction
	6.3.3.1 Static Combinational Compaction
	6.3.3.2 Static Sequential Compaction

	6.3.4 Dynamic Compaction

	6.4 Summary
	References

	Chapter 7: Design for Test by Means of Scan
	7.1 Making Circuits Testable
	7.1.1 Tradeoffs
	7.1.2 Testing Sequential Circuits
	7.1.2.1 Sequential Circuit Huffman Model
	7.1.2.2 Unfolding Sequential Model

	7.1.3 Testability of Combinational Circuits

	7.2 Testability Insertion
	7.2.1 Improving Observability
	7.2.2 Improving Controllability
	7.2.3 Sharing Observability Pins
	7.2.4 Sharing Control Pins
	7.2.5 Reducing Select Inputs
	7.2.6 Simultaneous Control and Observation
	7.2.6.1 Simultaneous Control of Test Points
	7.2.6.2 Simultaneous Observation of Test Points
	7.2.6.3 Isolated Serial Scan

	7.3 Full Scan DFT Technique
	7.3.1 Full Scan Insertion
	7.3.1.1 Scan Register
	7.3.1.2 Test Procedure

	7.3.2 Flip-flop Structures
	7.3.2.1 Latches and Flip-flop
	7.3.2.2 Multiplexed Test Data
	7.3.2.3 Dual Clocking
	7.3.2.4 Two-port Flip-flops

	7.3.3 Full Scan Design and Test
	7.3.3.1 Design and Design Validation
	7.3.3.2 Synthesis and Netlist Generation
	7.3.3.3 Unfolding
	7.3.3.4 Combinational TPG
	7.3.3.5 Scan Insertion
	7.3.3.6 Developing a Virtual Tester
	7.3.3.7 Test Set Verification

	7.4 Scan Architectures
	7.4.1 Full Scan Design
	7.4.2 Shadow Register DFT
	7.4.2.1 Shadow Architecture
	7.4.2.2 Shadow Test Procedure
	7.4.2.3 Shadow Versus Full Scan

	7.4.3 Partial Scan Methods
	7.4.3.1 A Partial Scan Architecture
	7.4.3.2 Partial Scan Test Procedure
	7.4.3.3 Partial Scan Versus Full Scan

	7.4.4 Multiple Scan Design
	7.4.4.1 Multiple Scan Architecture
	7.4.4.2 Multiple Scan Test Procedure
	7.4.4.3 Compared with Full Scan

	7.4.5 Other Scan Designs

	7.5 RT Level Scan Design
	7.5.1 RTL Design Full Scan
	7.5.2 RTL Design Multiple Scan
	7.5.3 Scan Designs for RTL

	7.6 Summary
	References

	Chapter 8: Standard IEEE Test Access Methods
	8.1 Boundary Scan Basics
	8.2 Boundary Scan Architecture
	8.2.1 Test Access Port
	8.2.2 BS-1149.1 Registers
	8.2.2.1 Instruction Register
	8.2.2.2 Data Registers

	8.2.3 TAP Controller
	8.2.4 The Decoder Unit
	8.2.5 Select and O ther Units

	8.3 Boundary Scan Test Instructions
	8.3.1 Mandatory Instructions
	8.3.1.1 Bypass Instruction
	8.3.1.2 Sample Instruction
	8.3.1.3 Preload Instruction
	8.3.1.4 Extest Instructions
	8.3.1.5 Intest Instruction

	8.4 Board Level Scan Chain Structure
	8.4.1 One Serial Scan Chain
	8.4.2 Multiple-scan Chain with One Control Test Port
	8.4.3 Multiple-scan Chains with One TDI, TDO but Multiple TMS
	8.4.4 Multiple-scan Chain, Multiple Access Port

	8.5 RT Level Boundary Scan
	8.5.1 Inserting Boundary Scan Test Hardware for CUT
	8.5.1.1 Instruction Register
	8.5.1.2 Decoder Unit
	8.5.1.3 Boundary Scan Register
	8.5.1.4 Testable Design

	8.5.2 Two Module Test Case
	8.5.3 Virtual Boundary Scan Tester
	8.5.3.1 Boundary Scan Driver Module
	8.5.3.2 IO Driver Module

	8.6 Boundary Scan Description Language
	8.7 Summary
	References

	Chapter 9: Logic Built-in Self-test
	9.1 BIST Basics
	9.1.1 Memory-based BIST
	9.1.1.1 Providing Test Data
	9.1.1.2 Test Response Analysis

	9.1.2 BIST Effectiveness
	9.1.3 BIST Types
	9.1.3.1 Offline BIST
	9.1.3.2 Online BIST
	9.1.3.3 Hybrid BIST
	9.1.3.4 Concurrent BIST

	9.1.4 Designing a BIST
	9.1.4.1 Architecture Design
	9.1.4.2 Designing TPGs
	9.1.4.3 Designing ORAs
	9.1.4.4 BIST Procedure

	9.2 Test Pattern Generation
	9.2.1 Engaging TPGs
	9.2.2 Exhaustive Counters
	9.2.3 Ring Counters
	9.2.4 Twisted Ring Counter
	9.2.5 Linear Feedback Shift Register
	9.2.5.1 LFSR Characteristic Equation
	9.2.5.2 Standard LFSR
	9.2.5.3 Period of LFSR
	9.2.5.4 Modular LFSR
	9.2.5.5 LFSR with Serial Input
	9.2.5.6 Configurable LFSR
	9.2.5.7 Weighted LFSR

	9.3 Output Response Analysis
	9.3.1 Engaging ORAs
	9.3.2 One’s Counter
	9.3.3 Transition Counter
	9.3.4 Parity Checking
	9.3.5 Serial LFSRs (SISR)
	9.3.6 Parallel Signature Analysis

	9.4 BIST Architectures
	9.4.1 BIST-related Terminologies
	9.4.1.1 TPGs and ORAs
	9.4.1.2 Test Cycles, Round, and Sessions

	9.4.2 A Centralized and Separate Board-level BIST Architecture (CSBL)
	9.4.2.1 CSBL Hardware
	9.4.2.2 CSBL Test Process
	9.4.2.3 CSBL Features

	9.4.3 Built-in Evaluation and Self-test (BEST)
	9.4.4 Random Test Socket (RTS)
	9.4.4.1 RTS Hardware
	9.4.4.2 RTS Test Process
	9.4.4.3 RTS Features and Improvements

	9.4.5 LSSD On-chip Self Test
	9.4.5.1 LOCST Architecture
	9.4.5.2 LOCST Test Process
	9.4.5.3 LOCST Features

	9.4.6 Self-testing Using MISR and SRSG
	9.4.6.1 STUMPS Structure
	9.4.6.2 STUMPS Test Process
	9.4.6.3 STUMPS Features

	9.4.7 Concurrent BIST
	9.4.7.1 CBIST Structure and Operation

	9.4.8 BILBO
	9.4.8.1 BILBO Architecture
	9.4.8.2 BILBO Test Process

	9.4.9 Enhancing Coverage

	9.5 RT Level BIST Design
	9.5.1 CUT Design, Simulation, and Synthesis
	9.5.2 RTS BIST Insertion
	9.5.2.1 Scan Insertion in netlist
	9.5.2.2 Adding BIST Hardware
	9.5.2.3 Design of the BIST Controller
	9.5.2.4 BISTed CUT Model

	9.5.3 Configuring the RTS BIST
	9.5.3.1 Acceptable Configurations
	9.5.3.2 Good Signatures
	9.5.3.3 Evaluating Configurations by Simulation

	9.5.4 Incorporating Configurations in BIST
	9.5.5 Design of STUMPS
	9.5.5.1 Inserting Scan Registers
	9.5.5.2 Adding BIST Components
	9.5.5.3 STUMPS Configuration

	9.5.6 RTS and STUMPS Results

	9.6 Summary
	References

	Chapter 10: Test Compression
	10.1 Test Data Compression
	10.2 Compression Methods
	10.2.1 Code-based Schemes
	10.2.1.1 Huffman Codes
	10.2.1.2 Dictionary-based Codes
	10.2.1.3 Run-length Codes
	10.2.1.4 Golomb Codes

	10.2.2 Scan-based Schemes
	10.2.2.1 Broadcast Scan
	10.2.2.2 Illinois Scan
	10.2.2.3 Multiple-input Broadcast Scan
	10.2.2.4 Other Methods

	10.3 Decompression Methods
	10.3.1 Decompression Hardware Architecture
	10.3.2 Cyclical Scan Chain
	10.3.3 Code-based Decompression
	10.3.3.1 Huffman
	10.3.3.2 Dictionary-based
	10.3.3.3 Run-length
	10.3.3.4 Golomb

	10.3.4 Scan-Based Decompression

	10.4 Summary
	References

	Chapter 11: Memory Testing by Means of Memory BIST
	11.1 Memory Testing
	11.2 Memory Structure
	11.3 Memory Fault Model
	11.3.1 Stuck-at Faults
	11.3.2 Transition Faults
	11.3.3 Coupling Faults
	11.3.4 Bridging and State CFs

	11.4 Functional Test Procedures
	11.4.1 March Test Algorithms
	11.4.2 March C- Algorithm
	11.4.3 MATS+ Algorithm
	11.4.4 Other March Tests

	11.5 MBIST Methods
	11.5.1 Simple March MBIST
	11.5.1.1 Simple March MBIST Architecture
	11.5.1.2 Test Session
	11.5.1.3 Simple March BIST Controller
	11.5.1.4 Simple March BIST Structure
	11.5.1.5 BIST Tester

	11.5.2 March C- MBIST
	11.5.2.1 March C- BIST Counter-sequencer
	11.5.2.2 Decoder

	11.5.3 Disturb MBIST
	11.5.3.1 Disturb BIST Walking-0
	11.5.3.2 Disturb BIST Structure

	11.6 Summary
	References

	Appendix AUsing HDLs for Protocol Aware ATE1
	Appendix BGate Components for PLI Test Applications
	Appendix CProgramming Language Interface Test Utilities
	Appendix DIEEE Std. 1149.1 Boundary Scan Verilog Description
	Appendix EBoundary Scan IEEE std. 1149.1 Virtual Tester
	Appendix FGenerating Netlist by Register Transfer LevelSynthesis (NetlistGen)
	Index

