

Digital Interface
Design and
Application

Digital Interface
Design and
Application
Jonathan A. Dell
University of York, UK

This edition first published 2015
Copyright © 2015 by John Wiley & Sons, Ltd. All rights reserved

Registered Office
John Wiley & Sons, Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of
the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The publisher is not associated with any product or vendor
mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy
or completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable for
damages arising herefrom. If professional advice or other expert assistance is required, the services of a
competent professional should be sought

Library of Congress Cataloging‐in‐Publication data applied for.

ISBN: 9781118974322

A catalogue record for this book is available from the British Library.

Cover Image: mishooo/iStockphoto

Set in 10.5/13pt Times by SPi Global, Pondicherry, India

1  2015

http://www.wiley.com

List of Figures	 x

List of Tables	 xiii

Preface	 xv

1  Review of Digital Electronics and Computer Architecture	 1
1.1	 Embedded Systems	 1

1.1.1	 Processor Architecture (Revision)	 2
1.1.2	 Interface Subsystem	 3

1.2	 Software Architecture	 4
1.3	 Essential Basic Logic Elements	 5

1.3.1	 The Basic Flip/Flop	 5
1.3.2	 The Edge‐Triggered D‐Type Flip/Flop (Latch)	 7
1.3.3	 Edge‐Triggered Latch with Enable	 8
1.3.4	 Multi‐Bit Registers	 9

1.4	 Output Configuration Options	 10
1.4 1	 Open Drain Configuration	 10

1.5	 The Address Decode	 11
1.5.1	 Partial Address Decode	 12

1.6	 ARM Architecture	 14
1.7	 Interface Software Development	 14

1.7.1	 Software Development for Embedded Systems	 18

Contents

vi	 Contents

1.8	 C Programming Revision	 19
1.8.1	 Arrays	 19
1.8.2	 Structures and typedef	 21
1.8.3	 Header Files	 21

1.9	 Conclusion	 22
References	 23
Further Reading	 23

2  Simple Input and Output Functions	 24
2.1	 Introduction	 24
2.2	 Computer Structure	 25
2.3	 Simple Interface Circuit Concepts	 26

2.3.1	 An Output Interface	 26
2.3.2	 Address Decode for Output	 28
2.3.3	 A Simple Input Interface	 29
2.3.4	 Address Decode for Input	 29

2.4	 Activation of I/O Circuits	 30
2.4.1	 Programming an Output	 30
2.4.2	 Programming an Input	 31

2.5	 Universal I/O Circuits	 31
2.5.1	 Combined I/O Address Decode	 32

2.6	 Practical I/O Circuits	 33
2.6.1	 STM32F4 Address Decoding	 35

2.7	 A Typical I/O Programme	 35
2.7.1	 Example GPIO Application	 37
2.7.2	 A Summary of Alternative I/O Operations	 40
2.7.3	 Programming I/O in Assembler Language	 41

2.8	 Suggested Design Challenge	 41
2.9	 Conclusion	 43
References	 44
Further Reading	 44

3  Timer Subsystems	 45
3.1	 Timer Subsystems	 45
3.2	 Basic Timer Configuration	 46
3.3	 The STM32F4 Timers	 47

3.3.1	 The Individual Timers	 50
3.4	 Programming the STM32F4 Timers	 51
3.5	 Timer Triggering	 55

Contents	 vii

3.5.1	 Setting up the Time‐Base	 55
3.5.2	 Using the Timer for an Input Measurement	 56

3.6	 Basic Timers	 58
3.7	 PWM Applications	 61
3.8	 Programming Challenge	 63
3.9	 Conclusion	 64
References	 65

4  Analogue Interface Subsystems	 66
4.1	 Analogue Interfaces	 66
4.2	 Digital to Analogue	 67

4.2.1	 The STM32F4 DAC	 69
4.3	 Analogue to Digital Conversion	 69

4.3.1	 Sampling	 70
4.3.2	 Switched Capacitor Converter	 72
4.3.3	 The Software Interface	 73
4.3.4	 The STM32F4 ADC	 74

4.4	 Software Control of DAC	 75
4.4.1	 Waveform Generation	 76
4.4.2	 Waveform Timing	 77
4.4.3	 DAC Using DMA	 79

4.5	 Software Control of ADC	 83
4.5.1	 ADC Interface Using Timer and DMA	 85

4.6	 Programming Challenge	 88
4.7	 Conclusion	 89
References	 89
Further Reading	 89

5  Serial Interface Subsystems	 90
5.1	 Introduction	 90
5.2	� RS232 Universal Asynchronous Receiver/Transmitter

(UART) Communications� 91
5.3	 The I2C Interface	 95

5.3.1	 Using the Touch Screen with an I2C Interface	 96
5.4	 SPI Interface	 101

5.4.1	 SPI Interface to an Analogue to Digital Converter	 103
5.5	 HDLC Serial Communication	 105
5.6	 The Universal Serial Bus (USB)	 107

5.6.1	 Hand‐shake Packets	 109

viii	 Contents

5.6.2	 Token Packets	 109
5.6.3	 Data Packets	 109
5.6.4	 USB Protocol	 110

5.7	 Programming Challenge	 110
5.8	 Conclusion	 111
References	 111

6  Advanced Functions	 112
6.1	 Advanced Functions	 112
6.2	 Interrupts	 112

6.2.1	 Interrupts in the STM32F4	 114
6.2.2	 The Nested Vector Interrupt Controller (NVIC)	 115
6.2.3	 Exceptions	 117

6.3	 Direct Memory Access (DMA)	 118
6.3.1	 The STM32F4 DMA System	 118
6.3.2	 DMA Request Mapping	 119
6.3.3	 DMA Management	 119

6.4	 The LCD Display Module	 121
6.4.1	 Character Generation	 125
6.4.2	 Parallel Interface	 127
6.4.3	 Touch Screen	 128

6.5	 The Wireless Interface Module	 131
6.6	 Digital Camera Interface	 133
6.7	 Conclusion	 134
Further Reading	 134

7  Application Case Study Examples	 135
7.1	 An Open‐Loop Digital Compass	 135

7.1.1	 Program Design	 136
7.1.2	 Setting up the MAG3110	 136
7.1.3	 Programming Challenge: A 360° Servo	 140

7.2	 The MSF Time Decoder	 140
7.2.1	 MSF Receiver Circuit Arrangement	 141
7.2.2	 Program Design	 141
7.2.3	 Setting up for an Interrupt	 142
7.2.4	 Acquiring the Data Bits	 143
7.2.5	 Decoding the MSF Data	 147
7.2.6	 Displaying the MSF Time Data	 150

Contents	 ix

7.3	 Decoding GPS Signals	 153
7.3.1	 Acquiring the GPS Message	 154
7.3.2	 Decoding the GPS Message	 155
7.3.3	 Selecting the Massage Stream	 158

7.4	 Conclusion	 159
References	 160

Appendix A: uVision IDE Notes	 161
A.1  Getting Started	 161
A.2  Help	 162
A.3  Project Development	 162
A.4  Debug Facilities	 164
A.5  Conclusion	 167

Appendix B: STM Discovery Examples Library	 168
B.1  Peripheral Examples	 168
B.2  Example Application	 171

Appendix C: DAC and ADC Support Software	 175
C.1  DAC Peripheral Features	 175
C.2  How to Use the DAC Driver	 176
C.3  ADC Peripheral Features	 177
C.4  How to Use the ADC driver	 177
C.5  Files for Reference	 178

Appendix D: Example Keyboard Interface	 179

Index	 185

Figure 1.1	 Fundamental computer architecture	 2
Figure 1.2	 Interface software structure	 4
Figure 1.3	 Cross‐coupled flip/flop circuit	 6
Figure 1.4	 Uncoupled circuit	 6
Figure 1.5	 D‐type edge‐triggered latch	 7
Figure 1.6	 Timing diagram	 7
Figure 1.7	 Flip/flop with enable functionality	 8
Figure 1.8	 Four‐bit register with group input enable IE

and group output enable OE	 9
Figure 1.9	 Push/pull output driver	 10
Figure 1.10	 Wired‐AND connection of multiple outputs	 11
Figure 1.11	 Full address decode example	 12
Figure 1.12	 Partial address decode	 13
Figure 1.13	 Block decode	 13
Figure 1.14	 Screen‐shot for uVision4 IDE	 15
Figure 1.15	 IDE management window	 20
Figure 2.1	 Fundamental processor structure	 25
Figure 2.2	 Bus timing relationships	 26
Figure 2.3	 Basic latch	 27
Figure 2.4	 A simple output interface	 27
Figure 2.5	 Simple decode for output	 28
Figure 2.6	 A tri‐state buffer	 29
Figure 2.7	 A simple input interface circuit	 29

List of Figures

List of Figures�	﻿	 xi

Figure 2.8	 Combined I/O	 32
Figure 2.9	 GPIO pin circuit	 34
Figure 2.10	 Observed code output pattern	 39
Figure 2.11	 16‐key matrix keyboard	 42
Figure 2.12	 Keyboard interface connections	 43
Figure 2.13	 Timing diagram for keyboard interface	 43
Figure 3.1	 A simple timer function	 47
Figure 3.2	 The simplified timer architecture	 48
Figure 3.3	 Upward count mode	 49
Figure 3.4	 Downward count mode	 49
Figure 3.5	 Centre aligned mode	 49
Figure 3.6	 Timing diagram for example code	 54
Figure 3.7	 Capture/compare input circuit	 57
Figure 3.8	 Simplified timers	 59
Figure 3.9	 A PWM signal set at 40%	 61
Figure 3.10	 Servo control with PWM	 64
Figure 3.11	 Servo controller circuit diagram	 64
Figure 4.1	 Binary weighted DAC network	 68
Figure 4.2	 DAC block diagram	 68
Figure 4.3	 A 3‐bit DAC transfer characteristic	 69
Figure 4.4	 Simple ADC subsystem design	 70
Figure 4.5	 Sample and hold	 71
Figure 4.6	 Sampling a sine wave	 71
Figure 4.7	 Switched capacitor converter	 72
Figure 4.8	 ADC interface timing	 73
Figure 4.9	 Triangle waveform	 76
Figure 4.10	 Timer triggering of DAC	 77
Figure 4.11	 Temperature sensor circuit	 88
Figure 5.1	 Manchester code	 91
Figure 5.2	 RS232 data format	 92
Figure 5.3	 UART module	 92
Figure 5.4	 An I2C interface circuit	 95
Figure 5.5	 I2C read and write modes	 96
Figure 5.6	 SPI interface connections	 102
Figure 5.7	 AD7680 connections	 104
Figure 5.8	 HDLC frame structure	 106
Figure 5.9	 HDLC frame control byte	 106
Figure 5.10	 USB connections	 107
Figure 5.11	 Touch screen interface	 111
Figure 6.1	 Interrupt basic concepts	 113

xii	 List of Figures

Figure 6.2	 Part of the NVIC	 115
Figure 6.3	 Simple processor with DMA	 118
Figure 6.4	 DMA controller architecture	 119
Figure 6.5	 An upper‐case A character	 126
Figure 6.6	 The WiFi module configuration	 132
Figure 6.7	 Digital camera interface (DCMI) configuration	 133
Figure 7.1	 The compass interface	 136
Figure 7.2	 MSF signal modulation format	 140
Figure 7.3	 MSF receiver circuit	 141
Figure 7.4	 GPS module connection	 153
Figure A.1	 The uVision screen (part)	 162
Figure A.2	 A typical help screen	 163
Figure A.3	 Context sensitive help	 163
Figure A.4	 Project file structure	 164
Figure A.5	 Project compiling and linking	 164
Figure A.6	 A debug run	 165
Figure A.7	 Debug tools	 165
Figure A.8	 A system viewer window	 166
Figure A.9	 Timer 3 registers	 166
Figure A.10	 Watch windows	 167

Table 1.1	 Memory map	 3
Table 1.2	 Truth table for the simple flip/flop	 6
Table 1.3	 Truth table for edge‐triggered latch	 7
Table 1.4	 Memory map	 13
Table 1.5	 Code interpretation	 18
Table 2.1	 Output address allocation	 28
Table 2.2	 Input address allocation	 30
Table 2.3	 I/O address allocation	 33
Table 2.4	 STM32F4 address allocations	 35
Table 2.5	 Programme linked comments	 37
Table 4.1	 DAC output allocation	 76
Table 4.2	 ADC input allocations	 84
Table 5.1	 STMP811 system control register 2	 98
Table 5.2	 Temperature gauge control register	 98
Table 5.3	 USB PID byte functions	 108
Table 6.1	 An extract of the vector table; the full table

has more than 81 entries!	 114
Table 6.2	 NVIC priority groups	 116
Table 6.3	 DMA allocated channels	 120
Table 6.4	 Interface port mappings	 122
Table 6.5	 Pixel assignments	 125
Table 6.6	 Demonstration functions	 132

List of Tables

xiv	 List of Tables

Table 7.1	 MAG3110 register summary	 137
Table 7.2	 MSF data bit allocations	 141
Table 7.3	 GPGGA navigation message format	 154

This book aims to provide a justified and well founded cornerstone in the
development of techniques required to establish reliable interface designs
used when embedded computers are deployed in any demanding application.
The book will focus on the ARM Microprocessor, which is now a leading
technology in the electronics industry and offers a wide range of performance
optimised features for particular applications. By using simple practical exam-
ples, the link between the embedded hardware and the programming task will
be clearly developed so that interface design can be undertaken with confidence
and the resulting systems will exhibit high reliability.

ARM Microprocessors have developed quickly over the last few years and
have been very widely adopted by the electronics industry, finding pervasive
applications in mobile phones, sensor networks and server systems to pick
just a few examples. Applications will continue to develop and become more
diverse over the years to come so a wide knowledge background in interface
design will be highly valuable.

This book will bring together aspects of digital hardware, interface design
and software integration (not otherwise available in a single text) in a progres-
sive arrangement to promote thorough comprehension of the examples. In
particular, the intimate linkage between low and high level languages (HLLs)
will be explained so that the advantages of optimisation can be considered
carefully. In many cases, the HLL approach will deliver rapid productivity but
performance optimisation will require a more detailed knowledge of the over-
heads involved.

Preface

xvi	 Preface

Readers should have a basic knowledge of digital electronics such as that
established in the early years of an undergraduate degree course. The book is
aimed at any student studying the requirements of interface design and
although starting at an introductory level it will also provide a reference work
for those involved in a wide variety of interface projects. Comprehensive
details will be provided to enable access for the widest possible readership
including those with a more software oriented background.

The author has over 25 years’ experience of teaching microprocessors and
interfacing at York University, and previously, Sheffield Hallam University,
although this was known as Sheffield Polytechnic at the time. Prior to his teaching
career, the author worked for several industrial organisations mainly focussing on
various projects involving microprocessors, digital electronics and computer
automated electronic test systems. These teaching and development experiences
have provided the author with an extensive knowledge of microcomputer archi-
tectures and interface design, which has enabled the development of this book.

The author’s earliest work with microprocessors used a very inflexible
four‐bit single‐chip computer produced by Texas Instruments. This had no
integrated peripherals and a very awkward architecture based on its optimisa-
tion for a pocket calculator role. Programming this chip involved using raw
machine code and some limited assembler facilities. Fortunately, this was
soon superseded by 8 and 16 bit architectures that offered full assembler
programming support but still required may additional components to provide
memory and peripheral resources. These types of system required consider-
able hardware and software development to incorporate all the elements that
would be needed for a particular application. The introduction of HLL com-
pilers and integrated development systems (IDE) provided significant advan-
tages in productivity for system developers and higher levels of hardware
integration allowed more extensive programmable interface resources to be
included so removing the need for extensive hardware design. The current
availability of systems based on the ARM processor and integrated periph-
erals, such as those found in the STM product STM32F4, together with its
IDE software package, bring together all the advantages offering amazing
capabilities and diverse application possibilities with rapid development.

The author has dealt with the issue of learning about many different pro-
cessor developments over his career but has always found that a small program
designed to flash a single LED was the best way to make a rapid start with the
new technology. This approach can be recommended wholeheartedly.

Jonathan A. Dell
University of York, UK

15 October 2014

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

This chapter will focus on the operation of basic logic elements, which should
be familiar to most readers, such as flip/flops and registers that form the basic
building blocks for interface elements. It will also cover the issue of address
decoding to enable these elements through a programme statement and pro-
vide an introduction to the ARM architecture and its built‐in peripherals.
Finally the linkage between C and low‐level assembler code will be shown
through a simple example.

1.1  Embedded Systems

Embedded systems take many different forms but all rely on some computing
processor whether it has a physical interface with the outside world like the
keyboard and screen of a typical PC, the physical connections forming a com-
munication network or specialised sensor and actuator hardware to control an
automated machine. The other essential element of any system making use of
a computer is its controlling program and in fact most embedded system com-
ponent vendors provide integrated development systems or environments
(IDE) that run on a PC to facilitate the software development. Interface design
requires careful assessment of both the hardware and software requirements

Review of Digital Electronics
and Computer Architecture

1

2	 Digital Interface Design and Application

so that when the objectives are considered the most effective solution can be
achieved. In summary, we can say that an embedded system is computerised
and tailor‐made for a particular application.

1.1.1  Processor Architecture (Revision)

It is important to have a clear understanding of the processor architecture so
that the integration of interface peripherals can be appreciated. The fundamental
hardware architecture of the computing element will be examined briefly to
show where interface components of any variety link up. Figure 1.1 shows a
simple architecture of processor and memory that is widely adopted; this is
interconnected by address, data and control buses. It is assumed that the reader
is familiar with the general operation of the processor in terms of the machine
instructions and data held in the memory as well as the cyclic operations of
instruction fetch and execution to perform the desired task. The interface
circuits connect onto the same buses, so as far as the processor is concerned
the interfaces look like an extension to the memory. An advantage of this
arrangement is that the same processor instructions can be used to manipulate
data in memory or interface values.

As a reminder, the function of the address bus is to differentiate all the
different elements of the system, as no two parts can have the same address or
a conflict and confusion will arise. It is usual to use a memory map in order to
show how the range offered by the address bus is allocated to different parts
of the system. Table 1.1 shows how memory and interface elements might be
allocated in a simple system with a 16‐bit address bus.

The data bus has an obvious function but it should be noted that its operation
is bi‐directional; except in special circumstances data is sent to the processor
or delivered by it. The most important task of the control bus is to indicate the
data bus flow direction and thus avoid a bus conflict. Memory and interface

Address

Memory InterfacesProcessor

Data

Control

Figure 1.1  Fundamental computer architecture

Review of Digital Electronics and Computer Architecture	 3

elements can then be arranged to perform the appropriate read or write function
as demanded. In a complex processor like the ARM the control bus may have
many other functions to accommodate such as direct memory access (DMA),
where the processor operation is temporarily suspended, and interrupt, which
enable hardware signals and specific software instructions to be linked. These
special functions will be examined in more detail in a later chapter.

The binary machine instructions held in the memory for the processor to
access are usually determined from a high‐level programming language, like
C, for example by a Compiler but this approach will always involve some
redundancy or overhead that may form an unacceptable burden in some
demanding situations where memory is limited or processing time is at a
premium. So for greater efficiency a low‐level assembler language, which has
a close linkage with each machine instruction, is sometimes employed.
Unfortunately the assembler language approach introduces considerable
complexity and is associated with low programming productivity, so it should
only be considered for the most demanding applications.

1.1.2  Interface Subsystem

When an interface circuit is designed it is essential to link up with the bus
signals using appropriate hardware circuits. In essence, the address bus must
connect with an address decode function to create latch enable signals and the
data bus must connect with output from registers or special input functions.
Finally, the control line, representing data bus direction, is usually combined
with the address decode logic so that an output function or input function can
be enabled correctly when bus access is demanded. This is quite a complex
task for an interface designer but some typical circuits will be discussed in
more detail in the following sections to show the principles involved. In fact,
the STM32F4 has many such interface subsystems integrated within the
microprocessor chip itself making their application more straightforward for
the user, removing a complex task for the designer. The resulting address map

Table 1.1  Memory map

Address range System element

0xc000 to 0xffff I/O interface
0xb000 to 0xbfff Redundant space
0x9000 to 0xafff 12k Data memory
0x0000 to 0x8fff 36k Programme memory

4	 Digital Interface Design and Application

for the STM32F4 device is shown in (ARM Cortex‐4 Data Sheet Doc
ID 022152 Rev 3 [1]) Section 1.4 and the principal eight 512 Mbyte blocks are
shown on the left hand side. Each of these blocks is further sub‐divided for the
many different roles within the processor.

1.2  Software Architecture

Any interface design will involve elements of both hardware and software
development. Fortunately for many applications the hardware design is almost
complete because it can make use of the inbuilt components. So the essential
tasks for the interface designer involve the use good software practice and
implement reliable operation. The C language will be used for the examples
throughout as this promotes a good software structure. If the design has special
performance requirements where assembly language should be used much
greater care in implementing the code is needed.

For the software design, a slightly more abstract model is required and it is
most effective to start with a simple system block diagram arranged to empha-
sise the interface functions, as illustrated in Figure 1.2. Any potential applica-
tion will require a diagram of this type so it is beneficial to start one at an early
stage in the design process and keep it updated with changes as the design
proceeds. An early development might identify the different aspects of
initialisation and use of the particular interface elements, for example.

This diagram simply shows a conceptual application, which makes a call
on specific interface elements to control an actuator of some kind or deliver
on‐screen status messages to the user. The links are shown as bi‐directional to

Application
software

Actuator
interface

Actuator
hardware

Screen
hardware

Screen
interface

Figure 1.2  Interface software structure

Review of Digital Electronics and Computer Architecture	 5

account for the feedback that should be delivered in a good design to confirm
correct interface operation. In a practical situation this may also require addi-
tional status signals from the actual hardware to provide the possibility of a
hand‐shake communication with the application program. Most of the built‐in
peripheral subsystems provide a host of status signals that can be used to
implement various forms of hand‐shake.

For the software aspects of interface design and development this book will
make use of the Keil uVision4 Integrated Development Environment (IDE)
provided by ST Microelectronics, which includes a C compiler. A brief intro-
duction to the uVision4 platform will be provided towards the end of this
chapter and Appendix A and B are included to provide a brief tutorial reference
to help when readers lack experience with this particular package. The debug
facilities included in the package provide valuable tools to track program flow,
observe changes in variable data and examine information from the integrated
peripherals.

1.3  Essential Basic Logic Elements

A brief resume of significant logic elements is provided in this section for
reference to show in particularly how interface circuits are constructed. The
interface designer will rarely need to develop new interface circuits but it is
useful to have a clear understanding of the main principles so that system
block diagrams of complex subsystems can be appreciated more fully.

It will be assumed that the reader has working familiarity with logic gates
and the creation of combinational functions using several gates, as well as
optimisation of the circuit using Boolean equations and Karnaugh mapping. If
revision of these topics is required the reader should refer to a suitable
reference text of which there are many, Wakerly in reference [2] is particularly
recommended. For interface circuits the most important elements apart from
simple gates are the flop/flops so this type of component will be reviewed in
more detail in the following sections.

1.3.1  The Basic Flip/Flop

The simplest two‐state flip/flop can be created from a pair of cross‐coupled
NAND gates as shown in the circuit Figure 1.3. This circuit is rather difficult
to analyse because of this coupling so it is most convenient to temporarily
break one of the links creating an extra input q as shown in Figure 1.4. If the

6	 Digital Interface Design and Application

inputs on RqS are 111, Q will be 0 and Q will be 1 by virtue of the NAND
logic so reconnecting will make no change and the circuit will be stable in the
set state. If the inputs are 001 Q will be 1 and Q will be 0 by virtue of the logic
so reconnecting will again make no change and the circuit will be stable in the
reset state. In cases when q and Q are different when the reconnection is made
the subsequent change brings the circuit to one of its stable conditions. For
example, when RqS is 011 Q is 1 and Q is 0 by virtue of the logic so the
subsequent change due to reconnection makes q become 0 but this will not
alter the circuit from its reset state.

However, this particular circuit is not functionally convenient in most appli-
cations because when the set and reset inputs are active (i.e. at logic 0) simul-
taneously the resulting state is not defined because both outputs take up the
same logic level and the subsequent stable state when the inputs are deacti-
vated is arbitrary. This conflicting situation is shown in the first row of the
truth table in Table 1.2.

R

S

Q

Q

Figure 1.3  Cross‐coupled flip/flop circuit

R

q

S

Q

Q

Figure 1.4  Uncoupled circuit

Table 1.2  Truth table for the simple flip/flop

S R Q Q

0 0 1 1
0 1 1 0
1 0 0 1
1 1 Last Q Last Q

Review of Digital Electronics and Computer Architecture	 7

1.3.2  The Edge‐Triggered D‐Type Flip/Flop (Latch)

The most practical form of flip/flop, usually referred to as a latch, uses a more
complex circuit containing a minimum of six gates, which will not be discussed
in detail here, and introduces the idea of a ‘data’ input and a ‘clock’ as shown
in the block diagram in Figure 1.5. A good description of this function can be
found in Wakerly [2]. The functionality of this form of latch is most useful to
know and can be described in several ways, that is truth table, Table 1.3 and tim-
ing diagram, Figure 1.6, both of which are useful in some circumstances. In
either case the clock edge, the rising edge for the sake of this particular
description, determines when the latch state changes and the D input deter-
mines the next state value, that is when D = 1 the resulting state is set (Q = 1)
or when D = 0 the resulting state is reset (Q = 0), as shown in the timing
diagram in Figure 1.6. Importantly, the input D has no effect and the state will
not change until a clock edge arrives.

D Q

Q

D-flip/flop

Clock

Figure 1.5  D‐type edge‐triggered latch

Table 1.3  Truth table for edge‐triggered latch

Clock D‐input Q Q next

0 X — No change
1 X — No change
Edge 0 X 0
Edge 1 X 1

Setup

D

Clock

Q

Hold

Figure 1.6  Timing diagram

8	 Digital Interface Design and Application

It should be observed that in the example timing diagram shown the latch
state only changes when there is a rising clock edge. If the clock is at a steady
high or low the latch state does not change even when the D input changes.
Note also that for reliable operation in practice the D input must be stable a few
nano‐seconds before the clock edge and remain stable for a few nano‐seconds
after. In logic documentation these times are referred to as the setup and hold
time. In most practical applications these requirements are not difficult to
achieve because the bus timing specifications are set up conveniently to avoid
any critical timing situations so problems should not arise unless long chains
of gate are employed at any point in the system.

Note that in a special alternative form of this function the latch state follows
the D input when clock is high so the resulting state is only stable indefinitely
when clock is taken low. In logic terminology this operation is referred to as a
‘transparent’ latch because when Q follows D while clock is high and the latch
appears to do nothing. This type will not be used in the interface circuits dis-
cussed subsequently but may find application in some special circumstances.

For applications in interface circuits the edge‐triggered D‐type latch has
significant advantages of reliability and will be employed throughout. It is,
however, important to carefully consider the timing relationship between clock
and the D input because when the criteria of setup and hold time is compro-
mised the resulting state will not always follow the designer’s expectations.

1.3.3  Edge‐Triggered Latch with Enable

In practical situations an additional functionality of enable/disable is frequently
required to ensure reliable operation under all possible conditions. This can be
achieved quite simply with an additional gate circuit, as shown in Figure 1.7,
when the latch is not enabled this makes the latch D input equal to its Q output
so that the latch state doesn’t change when active clock edges arrive. When

Enable
register D

D-type
flip/flop

Q

Data

Clock
enable
Output

Figure 1.7  Flip/flop with enable functionality

Review of Digital Electronics and Computer Architecture	 9

enabled, the data input reaches the latch and the next clock edge sets it to the
required state.

Importantly, this avoids the need to disable the latch by interrupting its
clock signal, which could be achieved with an additional gate. If used this
arrangement unfortunately has the side effect of delaying the clock edge by a
few nano‐seconds possibly compromising setup and hold times when least
expected. The solution shown is much more reliable and predictable so is
automatically adopted in most cases.

Note that in this circuit an output enable is also included by using a tristate
buffer to improve functionality as this switches the output to the third high‐
impedance state when disabled. This will be needed, for example if the latch
output is connected to a bus line where other circuits take the driving role some
of the time. This structure, with or without the output buffer, will form the
D‐type functional block in many of the following interface circuit structures.

1.3.4  Multi‐Bit Registers

For many interface applications multi‐bit latches, often referred to as regis-
ters, are required to link up with the multi‐bit data bus employed in a typical
microcomputer design. This is quite simply achieved as illustrated by the
4‐bit example, shown in Figure 1.8. Here, the clock and enable lines are
taken in common across the structure of D‐type latches. This scheme can be
extended easily to accommodate as many bits as the application requires and
a register block in a more complex diagram will be assumed to take this form
internally.

D0
D1
D2
D3

Clock

D

D-type

IE OE

Q D

D-type

IE OE

Q D

D-type

IE OE

Q D

D-type

IE OE

Q

Q0
Q1
Q2
Q3

GroupIE
GroupOE

Figure 1.8  Four‐bit register with group input enable IE and group output enable OE

10	 Digital Interface Design and Application

In an interface circuit signals to drive the group input enable (IE) and group
output enable (OE) inputs need to be determined and this is the main function
of a block of logic called the address decode because it effectively places the
interface at a unique position within the memory map of the processor. Note
that the group output enable may be fixed if the Q outputs are driving external
port connections but not if they are connected to a bus where conflicts could
arise. It the case of external output ports the tristate buffer will not strictly be
required.

1.4  Output Configuration Options

When registers are used in interface circuits the outputs may be required to
drive other components and this presents various situations that need to be
considered. The normal flip/flop output will drive a one or zero level with
equal strength; this will be quite satisfactory if it is only driving a simple input
on the connected circuit. The output circuit can be seen to have an active
circuit to pull the pin up to a one and an active circuit to pull the pin down to
a zero as shown in Figure 1.9. This bidirectional configuration is often referred
to as a push‐pull output.

1.4 1  Open Drain Configuration

An alternative option, which can be created using the output control block in
Figure 1.9, is to disable the pull‐up driver and replace it with a simple resistor
either on‐chip or externally; this is known as the open drain configuration.

Flip/flop Output
control

Active
high
driver
PMOS

Active
low
driver
NMOS

Optional
pull-up

Optional
pull-down

GPIO pin

VDD

Q

Figure 1.9  Push/pull output driver

Review of Digital Electronics and Computer Architecture	 11

Note that this has a detrimental effect on the maximum speed because the
resistor acts as a rather weak pull‐up driver but importantly allows wired logic
and multisource bus connections to be made and in fact will be used in con-
nection with the I2C serial interface later in Chapter 5. The optional resistors
are particularly useful in this situation. The diagram shown in Figure 1.10,
with one pull‐up resistor, exhibits a wired‐AND configuration because the
input to the system on the right will only get to a logic one when all the drivers
are off, as soon as any one of the drivers is on the input will become zero.

So the designer’s choice of push/pull or open‐drain and the terminating
resistor arrangement will depend on the application envisaged. The natural
choice in many situations will be push/pull with no resistors; only in special cir-
cumstances will other configurations be needed. Careful analysis of the require-
ments will be the best way to ensure that a satisfactory configuration is created.

1.5  The Address Decode

As stated previously interface elements are usually required to be located at a
particular point, or use a limited range of addresses, within the memory map
of the microcomputer’s architecture so that they can be accessed reliably by
the software instructions. This is achieved through a combinational logic
function taking the address bus as its inputs and delivering an enable for the
interface register when the defined address is presented by the processor. In
the arbitrarily chosen example shown in Figure 1.11, the interface is allocated
the address 0x8FA3 on a 16‐bit address bus so requires all 16 address bits to
present appropriate states to the interconnected group of AND gates for the
output enable to become active. This scheme is referred to as full address
decoding because it takes all individual address lines into account. The circuit
presented here is not sufficient for the IE and OE signals required because the
state of the control bus is not included so further gate combinations will often
be required in a practical situation.

VDD

Open-drain
driver

Open-drain
driver

Open-drain
driver

Figure 1.10  Wired‐AND connection of multiple outputs

12	 Digital Interface Design and Application

Note that in modern practical processor devices the address bus typically
has more bits, actually 32‐bits in the ARM processor, and the decode circuit
can become rather complex and unwieldy, requiring many gates to achieve the
required function. A more economical scheme is widely employed and this is
referred to as partial address decode. This uses fewer gates but has a serious
side effect in that it creates a partitioned memory map with unusable gaps in
some sections. With a vast 32‐bit address range this, however, will not present
a serious issue for most system designs.

1.5.1  Partial Address Decode

In the partial decode scheme a few of the most significant address bits and a
few of the least significant address bits are employed as inputs to the decode
circuit making the combinational function much simpler. The simplified
circuit is shown in Figure 1.12. However, the resulting enable will inevitably
be activated by a whole block of addresses within the memory map because
the middle bits now don’t care. Taking the same example previously but
removing the eight middle connections and their gating, that is A4 through
A11, means that any addresses between 0x8003 and 0x8FF3 will also activate
the interface. So a whole block of nearly 4K address locations are locked out
from other uses or otherwise redundant.

In practice the top group of address lines is fully decoded so as to divide the
whole memory map into useful blocks; some of these can be allocated to
memory and others to interface circuits as required by the system configuration.
A simple example of this uses the top three address bits connected to a three to
eight line decoder as shown in Figure 1.13. If address lines A15, A14 and A13
are used, eight blocks of 8 Kbytes are created in the memory map Table 1.4.

Interface
enable

A15
A14
A13
A12

A11
A10
A9
A8

A7
A6
A5
A4

A3
A2
A1
A0

Figure 1.11  Full address decode example

Review of Digital Electronics and Computer Architecture	 13

An examination of the memory map for the ARM processor (ARM Cortex
4 STM32F4 Data Sheet Chapter 4) reveals that the top four address bits of its
32‐bit address bus are decoded to provide eight 512 Mbyte blocks. Some of
these blocks are further subdivided by using lower address bits to activate the
built‐in memories and I/O functions; in particular most of the I/O functions
make use of 1 Kbyte blocks.

Interface
enable

A15
A14
A13
A12

A3
A2
A1
A0

Figure 1.12  Partial address decode

A16 2

0

0
1
2
3
4

5
6
7

3 to 8
decode

A15

A14

Figure 1.13  Block decode

Table 1.4  Memory map

Base address Top address

0xe000 0xffff
0xc000 0xdfff
0xa000 0xbfff
0x8000 0x9fff
0x6000 0x7fff
0x4000 0x5fff
0x2000 0x3fff
0X0000 0x1fff

14	 Digital Interface Design and Application

1.6  ARM Architecture

The architecture of the STM32F4 ARM based microprocessor system is quite
complex in comparison with the simple architecture shown earlier in Figure 1.1
and has introduced many advanced features during its development. It has
several types of embedded memory and two high speed internal buses that
link with the embedded interface subsystems. The STM32F4 Data sheet has a
detailed block diagram in Section 2.2 Figure 2.5. This shows that the 32‐bit
floating point ARM cortex processor has three independent bus connections,
the instruction bus I, the data bus D and the system bus S. These are optimised
for particular types of interaction between the processor, the memories and the
peripherals. The advanced high‐performance bus (AHB) and the advanced
peripheral bus (APB) form the main resources that link the memories and
peripherals through the 32‐bit multi‐AHB bus matrix, see Figure 6 in the
(ARM Cortex‐4 Data Sheet Doc ID 022152 Rev 3).

The 32‐bit multi‐AHB bus matrix interconnects all the system masters
(processor (CPU), DMA subsystems, Ethernet peripherals and USB High
Speed peripherals) and the slaves (Flash memory, RAM, Flexible static
memory controller (FSMC) as well as the AHB and APB that link up the
peripherals) and ensures a seamless and efficient operation even when several
high‐speed peripherals are required to work simultaneously.

The peripherals provide a wide variety of functions but the most obvious in
the block diagram are the set of up to 14 timer modules, six universal synchronous
or asynchronous serial interfaces (universal synchronous/asynchronous receiver/
transmitter, USART), various proprietary interfaces as well as analogue to
digital (AD) and digital to analogue (DA) converters for analogue interface
requirements. Most of these will be discussed in detail in later chapters.

The examples given in the text make use of the STM32F4‐Discovery board,
which is available at low cost from various commercial distributors. The
family of boards included provides some useful expansion capabilities that
will be used for the case studies in Chapter 7.

1.7  Interface Software Development

The uVision4 IDE, which provides an extensive range of development and
debug tools, can be downloaded freely from the ST Microelectronics web site
and this package comes with a wide selection of examples set up to illustrate
the operation and control of various specific interface subsystems. These will
be used extensively throughout the text to show how practical design of inter-
face modules is achieved.

Review of Digital Electronics and Computer Architecture	 15

It is important to gain working familiarity with the tools presented through
the IDE screen and in overview it will be seen that this is split into several
sub‐windows. The top left window provides for project management so that
the various files needed for a particular implementation can be determined.
Note that this area has some alternative functions but more detail will be given
when particular examples are discussed. The central window area presents
resources for programming and debug that can be employed in the software
development. Some useful word processing functions are provided and debug
facilities include single‐stepping through the code statements, setting break-
points to halt execution at a particular point in the code so that the current state
can be examined and trace facilities to observe programme sequence and flow.
Various optional windows on the right allow the user to examine code action
on important aspects of the system memory and the peripheral subsystems.
The bottom central window shows the IDE command sequence and will
reflect the compiling and liking process steps, for example. Finally, an optional
window at the top of the central area shows the assembler language derived
from the C code statements, which is very useful in some situations. A screen
shot from a simple I/O programme is shown in Figure 1.14.

In summary, the user should be able to make use of the IDE to set up a
project, edit, compile and download the designed code and finally use the debug
facilities to confirm correct operation of the function. The various steps involved

Figure 1.14  Screen‐shot for uVision4 IDE

16	 Digital Interface Design and Application

in these processes are described in more detail in Appendix A to help the reader
gain familiarity with the IDE and the STM32F4‐Discovery board if required.

The examples provided by ST Microelectronics are listed in Appendix B
together with a brief summary of their intended target in terms of the periph-
erals that they address. These examples are written in C and all include the
correct project settings so as to make it a simple matter for the user to get a
practical implementation to work correctly. In many situations it will be most
convenient to start with one of these examples so as to ensure that all the dif-
fering requirements are satisfied. Once the various aspects are well under-
stood optimisation of the setup for a particular application will be possible.

The examples are set up to focus on a particular peripheral and the C language
is employed to enable the potential user to gain a rapid understanding of the
software requirements. It is also essential to use the product data sheet to pro-
vide the hardware description of the target peripheral so that the hardware and
software aspects can be linked effectively. For example, the block diagram for
an I/O port interface can be found in Section 6.3 of the STM32F4 Reference
manual together with a tabulation of the port configuration bits, this information
is essential to enable the user to control it more efficiently when required.

The C language examples activate and configure the port using a user friendly
and well documented approach. However, it should be appreciated that this
involves considerable overhead in terms of the individual machine instructions
and processing cycles that will be required. Much greater efficiency can be
achieved in terms of both processing cycles and memory requirements if
Assembler language programming is adopted. This is not as challenging as might
be expected because the debug facilities, provided within the Keil IDE, allow the
Assembler translation of the C code statements to be inspected, thus allowing the
user to rapidly learn how the assembler language statements are constructed.

To illustrate this linkage a simple C program is shown next where an array of
consecutive numbers is declared and the program calculates the total summation.

main()
{

int value[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int i, sum = 0;

for(i = 0; i <= 9; i++)
{

sum = sum + value[i];
}

}

Review of Digital Electronics and Computer Architecture	 17

The assembler language code delivered by the Keil uVision 4 compiler in
debug mode is shown next and it can be seen that the program contains
many more statements than might be imagined from the brevity of the C
statements. The first field shows the memory location, the second field the
instruction code, which is 16‐bits in most cases, and the third field the
assembler mnemonic with its operands. The function of each instruction is
fairly easy to understand remembering that the destination is the first
operand but more detail can be obtained from the ARM documentation. In
summary MOV and MOVS mean move, LDR means load register, ADD,
ADDS and SUM perform the obvious calculations, CMP provides compare
and B, BL and BLE provide program branches. The original C statements
are included as comments to roughly indicate how the two representations
are related.

0x0800038E B08B SUB sp, sp, #0x2C
 3: int value[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
0x08000390 2228 MOVS r2, #0x28
0x08000392 4908 LDR r1, [pc, #32];
@0x080003B4
0x08000394 A801 ADD r0, sp, #0x04
0x08000396 F000F821 BL.W __aeabi_memcpy
(0x080003DC)
 4: int i, sum = 0;
 5:
0x0800039A 2500 MOVS r5, #0x00
 6: for(i = 0; i <= 9; i++)
 7: {
0x0800039C 2400 MOVS r4, #0x00
0x0800039E E004 B 0x080003AA
 8: sum = sum + value[i];
 9: }
0x080003A0 A801 ADD   r0, sp, #0x04
0x080003A2 F8500024 LDR r0, [r0, r4, LSL #2]
0x080003A6 4405 ADD r5, r5, r0
0x080003A8 1C64 ADDS r4, r4, #1
0x080003AA C09 CMP r4, #0x09
0x080003AC DDF8 BLE 0x080003A0
 10: }
0x080003AE 2000 MOVS r0, #0x00
0x080003B0 B00B ADD sp, sp, #0x2C

18	 Digital Interface Design and Application

The data values are placed on the stack and 40 bytes are reserved for this.
Register r4 is used as the loop counter in the for‐loop. Register r0 is used as
the stack address of the current integer value in some instructions and the
actual representation of integer i in others. Register r5 represents the sum
variable accumulation. The tabulation Table 1.5 gives some interpretation of
the code to assist with comprehension in terms of the required operations.

In fact this code is quite efficient in most respects; in particular the
instruction at 080003A2 does a lot of work in calculating the address on the
stack of the data value required at each iteration of the program. Note that
each value uses 4 bytes. The only small inefficiency comes from the call to a
function, which initialises the data values on the stack.

1.7.1  Software Development for Embedded Systems

It is quite unusual to be able to address all the requirements of a system design
within a single program module so the IDE presents an optimal way to com-
bine all the resources that will be required. The development resources
provided by ST include a library of routines for each of the integrated subsys-
tems. For example, the General Purpose Input and Output (GPIO) functions
are in the library stm32f4xx_gpio.c and, for example, this provides routines

Table 1.5  Code interpretation

Instruction address Interpretation

0800038E 40 bytes reserved on push down stack
08000394 R0 points to first stack location
08000394 Call function to initialise array data values
08000396 Initialise sum to zero
0800039E Branch to end test
0800039C Initialise i to zero
0800039E Branch to test against limit
080003A0 R0 points to first stack location
080003A2 Next value retrieved from stack (at r0

indexed by four times loop count)
080003A6 Add next value to sum
080003A8 Loop counter increment
080003AA End test, loop counter compared with

limit value
080003AC Branch back when incomplete
080003AE End of program, r0 returned to 0
080003B0 Stack space given back

Review of Digital Electronics and Computer Architecture	 19

for GPIO_SetBits() and GPIO_ResetBits(), which will be examined more
extensively in the next chapter. Each of these files includes useful notes on
the particular subsystem and the functionality provided. Rather lengthy names
are used throughout these library modules to help the user understand their
application.

The only complex C programming concept that is used extensively is the
use of data structures throughout the peripheral driver package. In each driver
a data structure is defined, using the C typedef, which contains all the aspects
required in the initialisation of the particular module in question. All the
required structures are defined in the drivers so all the user has to do is to
assign appropriate values to the structure elements, that is structure_name.
element_name=0xf0Ae. In many cases the structure elements have a limited
range of possible values so in these situations a series of names are defined to
handle the values in a more intelligible way.

Examining the top left hand corner of the IDE screen a small panel showing
all of the file names involved in a particular development will be observed, see
Figures 1.14 and 1.15 for greater detail. These are grouped together in four
sub categories for convenience, user, STM_Discovery, StdPeriphDrivers and
MDK_ARM, but can be modified as required. Notice that startup_stm32f4xx.s
is always included in the MDK_ARM category to establish various initial
system resources like the clock generation and will call the user’s main code
module. The file stm32f4_discovery.c in the STM_Discovery category pro-
vides board specific elements. The file system_stm32f4xx.c resides in the user
category with any user designed code modules providing system specific ele-
ments. Finally the StdPeriphDrivers category should contain any peripheral
drivers relevant to the particular application.

1.8  C Programming Revision

It will be found that the C programming examples used throughout the text
and the support package rely heavily on structures and pointers as well as
functions so a few notes on these have been included here for reference. If the
reader is familiar with C programming conventions, this particular section can
be safely ignored.

1.8.1  Arrays

Array names are themselves pointers so can be passed to functions where read
and write access will be possible. In this example p[i] reads the message
characters from main. The string can be altered if required p[0] = ‘X’ will

20	 Digital Interface Design and Application

change the first character from T to X. Note that the declaration char *p can
also use the alternative form char p[].

int main(void)
{

int length;
char message[] = “TEST Message/r/n”;
length = my_length(message);

}

int my_length(char *p)
{

int i = 0;

while(p[i] != 0)

Figure 1.15  IDE management window

Review of Digital Electronics and Computer Architecture	 21

{
i++;

}
return(i);

}

1.8.2  Structures and typedef

These definitions allow a very convenient way to set up small data bases that
are particularly useful in grouping together all the parameters that need to be
initialised in a particular interface module. In this short example the structure
is declared in main and the function call passes a pointer to it. The function
can access the structure elements using the special ‐> shorthand instead of
*(p).first. If the structure is declared within a function, instead of in
main, its pointer can be passed to another function quite easily.

typedef struct MY_DATA
{

int first;
int second;

} MY_STRUCT;

int main(void)
{

MY_STRUCT record;

init_structure(&record);
}

void init_structure(MY_STRUCT *p)
{

p->first = 100;
p->second = 200;

}

1.8.3  Header Files

Header files (such as stm32f4xx_gpio.h) are used extensively within the
support package as there is a specific header file for each of the peripherals
that define both reference values and data structures. In order to incorporate a

22	 Digital Interface Design and Application

header file the #include statement is used and the header file location is
specified. For example:

#include “my_header.h” if the file is in a local or specified directory or
#include <my_header.h> if the file is in a standard location.

It is usual to have a #include statement for each required file but as the
application may involve many different peripherals this would become rather
tedious to handle. In order to pick the header files up automatically it is only
necessary to declare #include “stm32f4_discovery.h” to cover all possibilities.
This file actually contains #include “stm32f4xx.h”, which contains all the
references.

Remember that any functions that you create must be declared before the
start of main(), for example:

void GPIO_setup_pins(void);

These declarations can advantageously be part of your own header file, as
this is useful particularly when your source code spans several files, otherwise
they would have to be declared in each of them.

In summary, remember to declare the structures you want to use either in
main() or in your own functions. When access to the data structure is required,
such as with a supporting function, you must use a pointer to the structure that
has been defined correctly. Header files for the peripherals make their
programming more straightforward, allowing realistic names to be associated
with raw data values.

1.9  Conclusion

Some essential revision of processor architecture and a number of basic inter-
face design hardware and software issues have been discussed in this chapter.
It should be emphasised that familiarity with these aspects is key to establish-
ing techniques that can be used in effective interface design and will also
enable the reader to gain the maximum benefit from the following chapters.

The C language will be used extensively to promote rapid understanding of
the issues so the most straightforward constructs will be used and the reader
will not require knowledge of more than fundamental programming tech-
niques. The linkage between C and assembler has been illustrated by a simple
example but although this particular example is comparatively efficient assembler

Review of Digital Electronics and Computer Architecture	 23

language short cuts will be included where appropriate because it may help
the interface designer to obtain the required efficiency in a demanding appli-
cation. The uVision compiler and debug facilities always make it possible to
examine the assembler code so shortcuts can be seen quite easily from careful
analysis.

The next chapter will deal with simple parallel interface designs that can be
used to link up with a variety of basic input and output devices. The ARM
processor has several interfaces of this type built in so its user has to provide
only straightforward hardware circuitry for many practical applications.

References
[1] � ST Microelectronics (2012) STM32F405xx (ARM Cortex‐4) Data Sheet Doc ID 022152

Rev 3, www.st.com (accessed 20 December 2014).
[2] � Wakerly, J.F. (2006) Digital Design Principles and Practices; Prentice Hall; ISBN: 978 013

613 9874.

Further Reading
ST Microelectronics (2011) RM0090 (ARM Cortex‐4) Reference Manual Doc ID 018909 Rev 1,

www.st.com (accessed 20 December 2014).

http://www.st.com
http://www.st.com

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Simple input and output (I/O) operations are a fundamental part of any
embedded system where an LED indicator is turned on or a user input
button is provided. All processors for embedded applications provide I/O
functions that can perform this kind of job and the STM32F4 ARM based pro­
cessor actually includes 144 pins (16 pins on each of 9 ports) for this kind of
application but as will be shown later many are associated with other functions.

2.1  Introduction

This chapter will focus on the design and application of simple I/O techniques
using exclusively the basic logic elements outlined in Chapter 1, specifically
latches, tri‐state gates and address decoding logic. Most importantly it will
develop the concept of a programme controlled interface and C language
program examples, using pointers to handle interface addresses, will be
described. The chapter will also cover the development of these techniques for
the extensive range of reconfigurable I/O functions provided by the STM32F4,
a typical embedded processor design based on the ARM core. To enable the
user to handle their configuration and use conveniently, C programme tech­
niques will be discussed. At first acquaintance, the STM32F4 embedded

Simple Input and Output
Functions

2

Simple Input and Output Functions	 25

processor’s interface modules appear extremely complex but approaching
their functionality from a simple standpoint will facilitate their effective
employment in any particular application. User I/O programming in assem­
bler will be briefly discussed to show areas where it might be effective to
employ this approach. The chapter will conclude with a design challenge for
the reader based on the STM32F4 Discovery board and making use of the
techniques discussed.

2.2  Computer Structure

All general purpose computers and computers for embedded applications rely
on I/O interfaces to link up with their particular environment and the actual
interface task will span a huge range of alternatives. It is the intention here to
begin with very simple interface scenarios to establish a sound basis for the
more complex interface subsystems and interface techniques that will be fea­
tured in later chapters. So to enable the general structure of an input or output
interface to be established it is useful to review again the bus structure of a
typical embedded computer design. The important elements of the overall
system are the buses that enable communication between all the interdependent
modules. These are the address, data and control buses as shown in Figure 2.1.
It is important to remember, as explained in Chapter 1, that the data bus in
particular is bi‐directional and that, probably the most important, function of
the control bus is to indicate when the data bus is in input or output mode so
that bus conflicts can be eliminated. With these ideas in mind it will be easier
to comprehend the important aspects of an interface design.

As also explained in Chapter 1 the address bus determines the physical
location of all parts of the system within the memory map and is invariably
used to identify and select I/O circuits through their associated address decod­
ing logic. The data bus provides a multi‐bit bi‐directional pathway between

Address

Memory InterfacesProcessor

Data

Control

Figure 2.1  Fundamental processor structure

26	 Digital Interface Design and Application

the system components and also the I/O circuits although, in practice, these
often employ only a few bits depending on the complexity of the particular
function required. The most important signal in the control bus is that deter­
mining the data bus direction and thus whether an input, or output, interface
should be enabled. A simple timing diagram is shown in Figure 2.2 to
emphasise the relationships between these signals.

Note that read data becomes available shortly after the read address becomes
stable and that the write address and write data must both be stable before the
controlling RW signal goes high again.

2.3  Simple Interface Circuit Concepts

Users of the STM32F4 embedded computer are unlikely to actually design
an interface module linking to the buses directly but to understand the pro­
grammable options available a fairly detailed knowledge of the basics is
essential. The basic concepts for input and output interfaces will therefore be
presented here because these form the core elements in a wide variety of
practical interface designs. Although the circuits presented focus on a single
bit interface they can easily be extended to accommodate as many bits as the
application requires.

2.3.1  An Output Interface

The situation where the embedded system is required to control an output is
probably the most common of all requirements. The simplest output interface
that satisfies this requirement uses a basic D‐type flip/flop or latch building
block element as shown in the diagram in Figure 2.3. In fact this element is
used in almost all interface structures so a clear understanding of its operation
is very important.

As shown previously, the latch is designed to be edge sensitive and is thus
updated with a new information bit from the D input by a positive edge on its

Read address Write address

Read data Write data

ADDRESS

RW

DATA

Figure 2.2  Bus timing relationships

Simple Input and Output Functions	 27

clock input when the input enable (EI) is also active. An output enable as seen
in the previous chapter is not required in this simple case.

The latch D input can be connected directly to a particular line in the data
bus, d0, for example in this case. This connection will never create a bus
conflict situation. The output Q, and possibly Q̅ if this is also available, form
the signals used to drive physical outputs such as an LED in this simple appli­
cation. If the input enable signal (EI) is created from the address decode and
the bus write direction controls the latch clock it will be updated only when
the bus is performing an output correctly and the allocated interface address is
simultaneously active. The sketch of a completed output interface circuit
using the D‐type latch to directly drive an LED is shown in Figure 2.4. The
LED is driven through a resistor to limit current to an acceptable value, for
reference this is given by the following equation where logic high is V

H
 and

the LED forward voltage is V
LED

.

	
I

V V

R
H LED 3 6 1 2

470
5

. .
mA

	

Once the latch is set by writing a one the LED will be illuminated until the
flip/flop is reset once again. Notice that no extra gating is needed in the

D
D-type

Q

LED

latch

Clock

EI

Figure 2.3  Basic latch

Bus-write
control

d0

Address
decode

D

EI

470R

D-type
Q

LED

Figure 2.4  A simple output interface

28	 Digital Interface Design and Application

bus‐write control line as the latch will remain in the same state until address
decode enables it to accept a new value.

Note that bus timing will ensure that the D‐type is correctly clocked as
long a positive edge sensitive design is employed. Although a simple LED
has been used in this example there is practically no limit to other possibil­
ities if a power control circuit such as a ‘Smart Power’ MOSFET is included
in the design.

2.3.2  Address Decode for Output

It is of course essential to design the address decode logic so that there is no
conflict with other elements of the system. Although not a particularly diffi­
cult issue in this case because the circuit cannot compromise other bus activity
as it has no output driving the data bus lines. Table 2.1 shows an arbitrary
interface assignment using a 16‐bit address bus for the sake of discussion.
A full or partial address decoding scheme can be employed according to the
particular system requirements imposed. In fact, most practical address decod­
ing schemes will employ partial decoding as explained in Chapter 1 to mini­
mise the logical complexity of the combinational decoder circuit, a significant
consideration for most designers.

In this case, providing that the I/O demands are minimal, a decoder connecting
to the top four address bits and A0 will be sufficient. The circuit in Figure 2.5
will satisfy these requirements.

Table 2.1  Output address allocation

Allocated address Name Comment

0x8000 OUTBIT LED driver

A15

A14

A13

A12

A0

Figure 2.5  Simple decode for output

Simple Input and Output Functions	 29

2.3.3  A Simple Input Interface

The simplest input interface uses a tri‐state buffer element as shown in the
diagram Figure 2.6. When the output is connected to a bus line the high impe­
dance state is required so that when the interface is disabled the input circuit
does not contend with or interrupt other activity on the bus lines.

2.3.4  Address Decode for Input

The tri‐state output is connected to a particular line in the data bus, d0, for
example in this case. The buffer input can then be connected directly to a
simple switch to provide a binary input. The buffer enable is created from the
address decode and the bus read direction control thus enabling the buffer
only when the bus is performing an input correctly and the allocated address
is simultaneously active. A sketch of a typical circuit is shown in Figure 2.7.
The address decode, Table 2.2, is again arranged to avoid conflict but it can in
fact use the same address as the output interface, given earlier, because the
bus‐read and bus‐write controls are mutually exclusive.

Timing is quite satisfactory because the bus line will be set in the desired
state as soon as the correct address is established because the read is high
throughout the access cycle.

In Out

EN (Enable)

Figure 2.6  A tri‐state buffer

d0 Tri-state

470R

Vcc

EN

Switch
Address
decode

Bus-read
control

Figure 2.7  A simple input interface circuit

30	 Digital Interface Design and Application

The input is zero when the switch is closed and a pull‐up resistor is used to
provide logic one when the switch is open. An alternative arrangement
employing a pull‐down resistor can be used if required.

2.4  Activation of I/O Circuits

In order to activate an input or output through the circuits described previ­
ously, a processor instruction involving a suitable ‘move’ operation will be
needed, where data is written to the desired address or data is retrieved from
the desired address. In high level languages a simple assignment is all that will
be required but in low level languages Load, Store and Move types of opera­
tion will be effective as long as the interface address can be set up in a pro­
cessor register, for example. The interface address is needed whatever language
is being used so in the C language the following assignment statement will
activate the output latch as long as the correct address is defined in the way
suggested. In the C programme the interface address is handled through a
pointer variable that must be declared together with the other variables used.
The pointer itself is then set to the address of the interface circuits.

2.4.1  Programming an Output

The code that follows implements the actions needed to activate an output
interface. This will work whether the output interface is a single bit or multiple
bits up to the data bus width; that is 8, 16 or 32 bits. Notice how careful nam­
ing is used to help explain what relevance the numbers carry, this can improve
the code in terms of readability and maintenance.

#define OUTBIT 0x8000;
#define INBIT 0x8000;

int a, *p; /* declarations */

p = OUTBIT; /* set up pointer */

p = a; / output assignment */

Table 2.2  Input address allocation

Allocated address Name Comment

0x8000 INBIT Switch input

Simple Input and Output Functions	 31

After executing these operations the output port bit will be set according to
the contents of the variable ‘a’ and if its least significant bit (LSB) is one, the
LED will be illuminated. In any other situation the LED will be extinguished.

2.4.2  Programming an Input

In the case of an input interface reversing the assignment is all that is needed
to initiate the data transfer to a program defined variable, providing the address
is still correct.

a = *p;

Note that this assignment will read a whole word (i.e. 8 or 16 bits) when
only one bit is actually determined by the input switch, so a logical AND oper­
ation on the variable ‘a’ will be required to remove the undefined bits and give
the correct zero or one result that reflects the state of the switch.

a = a & 1;

In a practical application the variable ‘a’ can then be used to determine the
function of an ‘if’ statement or the action of a more complex structure as
required by the programme design.

if (a > 0)
{

printf(“Switch set\n”);
}
else {

printf(“Switch not set\n”);
}

2.5  Universal I/O Circuits

Many practical systems require a programme configurable I/O system that can
be set to operate as input or output according the instructions. This can be
achieved quite easily by combining the two simple one‐directional circuits
illustrated previously. Such a combination is shown in Figure 2.8. An extra
D‐type latch will be required to provide the direction control and this will
need its own distinct address to avoid conflict with the I/O access operations.

32	 Digital Interface Design and Application

The control provided by this latch is used to enable the tristate buffer in the
output path and disable, by virtue of its inversion, the tristate buffer on the
input path. The logic determines that input and output operations are mutually
exclusive. Input bus conflicts are still avoided because the input buffer is
controlled by the bus‐read signal as well. The circuit will act as an output
when the direction latch is set and as an input when the direction bit is reset.
The short delay from the extra gate that combines address decode, direction
and bus read will not cause a problem because read actually take place later in
the processor cycle.

2.5.1  Combined I/O Address Decode

Address decode in this example will need to identify a new address for the
direction control latch avoiding conflict with other system elements of course.
Using a 16‐bit address bus, for example it can be seen that a consecutive
address can be allocated for simplicity as only a few gates will be required in
the decode logic design. The same data bus LSB bit d0 is used for both the
interface elements in this circuit (see Table 2.3).

d0 D Q
D-type

Direction

EN

I/O

EI

D Q
D-type

Tri-state

EN

EI

2

1

Bus-write
control

Bus-read
control

Address
decode

Figure 2.8  Combined I/O

Simple Input and Output Functions	 33

The controlling programme will need to first determine whether the circuit
should operate as input or output, by setting or clearing the direction latch
through address 2 (0x8001), then it can execute an appropriate read or write
assignment using address 1 (0x8000). The elements of a C programme to
select input or output mode is given next, pointers are used as before for both
interface addressed assignments.

#define D_C 0x8001;
#define INOUT 0x8000;

int a, *p, *dc; /* declarations */

p = INOUT; /* set the pointers */
dc = D_C;

dc = 0; / input mode */
a = *p; /* input assignment */

dc = 1; / output mode */
p = a; / output assignment */

Any of the circuits discussed can easily be extended to accommodate multiple
input bits or multiple output bits as required, up to the data bus width available
in the system. Beyond this further addresses will need to be employed. Although
it is unlikely that an interface designer will need to resort to the construction of
circuits like these, it is useful to understand the principles behind their function­
ality as the practical circuits, which are implemented in the majority of program­
mable modules, have strong similarities with what has been described.

2.6  Practical I/O Circuits

The majority of processors for embedded applications, including the STM32F4
ARM based device, contain reconfigurable I/O blocks that can be set up
according to the user’s requirements. Although these circuits are quite complex

Table 2.3  I/O address allocation

Allocated address Name Comment

0x8000 OUTBIT In output mode
0x8000 INBIT In input mode
0x8001 D_C Direction, 1 output, 0 input

34	 Digital Interface Design and Application

they are all based on the simple techniques described here and the vendors
also provide useful example programmes and flexible device drivers to sim­
plify their configuration for particular application requirements.

The diagram in Figure 2.9 shows a simplified circuit of each I/O pin to
explain some of the programmable aspects that are available. The output has
two modes, in the push/pull mode both PMOS and NMOS devices are
activated whereas in open drain mode the PMOS device is disabled so the
output is only driven by the NMOS device. The optional pull up and pull
down resistors are effective whether the pin is acting as an input or output.
These programmable options greatly enhance the functionality of the pins
extending the range of external circuit designs that can be accommodated.
A good explanation of the push/pull and open drain applications can be found
in Wakerly [1].

On the STM32F4 processor each general‐purpose 16‐bit I/O port has no
less than ten 32‐bit configuration registers, which give it many alternative
modes of operation. It has two 32‐bit data registers for input and output and a
32‐bit set/reset register for bitwise operations on the outputs when these are
needed. A 32‐bit locking register freezes the I/O configuration from further
changes and two 32‐bit alternate function selection registers are used to enable
each of the pins to act as inputs or outputs for the various functional blocks
like timers and analogue converters that are provided on the STM32F4 pro­
cessor. Full details can be found in the data sheets and reference manuals for
the STM32F4 [2]. Apart from the general I/O configuration the General
Purpose Input and Output (GPIO) port also provides the ability for the pro­
cessor to control the electrical characteristics of individual pins whether in
input or output mode through configurable pull‐up and pull‐down resistors
and speed selection options.

Push/pull
or open drain

Schmitt trigger
input driver on/off

PMOS

Pull

I/O
pin

Pull
down

upNMOS

Output driver on/off

Output
control

VDD

VDD

Vss

Vss

Figure 2.9  GPIO pin circuit

Simple Input and Output Functions	 35

2.6.1  STM32F4 Address Decoding

The STM32F4 ARM based family of processors use a 32‐bit address bus so an
extensive address decode block will have been implemented on the chip. In
fact the memory map is set up to accommodate quite complex peripheral
interfaces where a 1 K block of addresses are allocated to each element. The
interface for the 16‐bit GPIO port D starts at 0x4002 0C00 and continues to
0x4002 0FFF; however, in this case only the first 10 locations, as listed in
Table 2.4, are actually used. The number of bits listed in the table refers to the
allocation for each pin. So each I/O pin is controlled by a single bit or possibly
a group of bits in the respective controlling register as indicated.

The function of each I/O pin in the interface is independent and can be set
as input, output or I/O. Most of the registers have read and write capability so
that the application programme can determine the settings made by previous
statements. Addresses above this point are not used and full details of the con­
trol registers are given in the STM32F4 processor reference manual Section 6.

2.7  A Typical I/O Programme

The programme to set up and control such an interface would leave the user to
handle quite a lot of independent pointers so the ST Microelectronics support
peripheral driver package provides a library of functions for handling the inter­
face more conveniently. For this general purpose interface the specific library
required is ‘stm32f4xx_gpio.c’, which uses the header file ‘stm32f4xx_gpio.h’
and users should ensure that their location can be found by the compiler. This
header file defines most of the predefined options for the GPIO port operation.

Table 2.4  STM32F4 address allocations

Address offset Register name Comment (number of bits)

0x00 GPIOx_MODER Interface mode (2)
0x04 GPIOx_OTYPER Output type (1)
0x08 GPIOx_OSPEED Interface speed (2)
0x0C GPIOx_PUPDR Pull‐up/pull‐down (2)
0x10 GPIOx_IDR Input data
0x14 GPIOx_ODR Output data
0x18 GPIOx_BSRR Bit set/reset (2)
0x1C GPIOx_LCKR Lock register
0x20 GPIOx_AFRL Alternate function low (4)
0x24 GPIOx_AFRH Alternate function high (4)

36	 Digital Interface Design and Application

For example, four possible GPIO modes are defined for its digital and analogue
applications:

GPIO_Mode_IN
GPIO_Mode_OUT
GPIO_Mode_AF (Alternate function Mode for connections
to various peripherals)
GPIO_Mode_AN (Analogue Mode for AD and DA converter
connections)

The two predefined output types are, see Section 2.6 for a brief explanation
of these two alternatives:

GPIO_OType_PP (push/pull)
GPIO_OType_OD (open drain)

There are four speed options; low, medium, fast and high that offer a closer
match with design requirements particularly if minimal power consumption is
desirable. The high speed mode is generally satisfactory for prototype evalua­
tion when requirements are quite relaxed. The speed options have no relevance
to pins configured as inputs.

GPIO_Speed_2MHz
GPIO_Speed_25MHz
GPIO_Speed_50MHz
GPIO_Speed_100MHz.

Finally, there are three possible pin termination arrangements, see
Section 2.6 for a brief explanation of these options. The choice will depend
mainly on the requirements of the connected circuit:

GPIO_PuPd_NOPULL
GPIO_PuPd_UP
GPIO_PuPd_DOWN.

The header file also provides a useful list of the functions implemented
within the peripheral driver package and some of the most useful functions are
summarised next with the details of their required parameters. The naming
shows fairly explicitly what function is performed in each case.

Simple Input and Output Functions	 37

/* Functions used to set and use the GPIO */
/* Initialization and Configuration function */
GPIO_Init(GPIOx, &GPIO_InitStruct);

/* GPIO Read and Write functions */
uint8_t GPIO_ReadInputDataBit(GPIOx, GPIO_Pin);
uint16_t GPIO_ReadInputData(GPIOx);
uint8_t GPIO_ReadOutputDataBit(GPIOx, GPIO_Pin);
uint16_t GPIO_ReadOutputData(GPIOx);
GPIO_SetBits(GPIOx, GPIO_Pin);
GPIO_ResetBits(GPIOx, GPIO_Pin);
GPIO_WriteBit(GPIOx, GPIO_Pin, BitAction BitVal);
GPIO_Write(GPIOx, PortVal);
GPIO_ToggleBits(GPIOx, GPIO_Pin);

/* GPIO Alternate functions configuration function */
void GPIO_PinAFConfig(GPIOx, GPIO_PinSource, GPIO_AF);

2.7.1  Example GPIO Application

To emphasise the principles and put the discussion into a more definite context
a simple example C program, given next, shows how the STM32F4 processor
is configured to provide a 4‐bit parallel output using four pins on port GPIOD.
Additional comments for explanation are given in Table 2.5. These pins are
connected to LEDs on the STM32F4 Discovery prototype board so that, by

Table 2.5  Programme linked comments

Note # Comments

1 typedef declaration for GPIO initialisation structure
2 Connect GPIOB module to the AHB clock so that its registers can

be loaded
3 The port pin names are logically ORd together to form the pin

specification value
4 Use GPIO_Init() lo load the registers with the setup data
5 Unterminated while loop
6 3 time units delay
7 7 time units delay
8 16 time units delay

38	 Digital Interface Design and Application

using a function providing several seconds delay, the output change sequence
can be easily observed with the naked eye.

#include “stm32f4_discvery.h”

int main(void)
{

GPIO_InitTypeDef GPIO_InitStructure; /* note 1 */

/* GPIOD Peripheral clock enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD,

ENABLE); /*note 2 */

/* Configure PD12, PD13, PD14 and PD15 in output
push/pull mode */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_

Pin_13| GPIO_Pin_14| GPIO_Pin_15; /* note 3 */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOD, &GPIO_InitStructure); /* note 4 */

while (1) /* note 5 */
{

/* PD12 to be toggled */
GPIO_SetBits(GPIOD, GPIO_Pin_12);

Delay(0x3FFFFF); /* Insert delay note 6 */

/* PD13 to be toggled */
GPIO_SetBits(GPIOD, GPIO_Pin_13);

Delay(0x3FFFFF); /* Insert delay */

/* PD14 to be toggled */
GPIO_SetBits(GPIOD, GPIO_Pin_14);

Delay(0x3FFFFF); /* Insert delay */

/* PD15 to be toggled */
GPIO_SetBits(GPIOD, GPIO_Pin_15);

Delay(0x7FFFFF); /* Insert delay note 7*/

Simple Input and Output Functions	 39

GPIO_ResetBits(GPIOD, GPIO_Pin_12|GPIO_
Pin_13|GPIO_Pin_14|GPIO_Pin_15);

Delay(0xFFFFFF); /* Insert delay note 8*/
}

}

It can be seen that the user’s task in putting this code together is greatly sim­
plified by making use of the standard peripheral driver package stm32f4xx_
gpio.c as it defines all the useful functions and data structures to initialise the
GPIO parameters and manipulate the module effectively as shown earlier. This
helps to setup and use the GPIOD controlling registers in a more convenient
and user friendly way. The first code statement in main() enables the clock for
GPIOD (Table 2.5 note 2), this effectively switches the port on, and is necessary
because only a few parts of the system are enabled initially by default. It will
not be possible to communicate with the GPIO module before this step is com­
pleted. Note that the initialisation and access routines can apply to one or more
pins as required. For this example, a standard GPIO configuration for all four
pins is made use of. This approach to initialisation using a defined data struc­
ture helps to ensure that all the required settings are provided by the user.

The code presented and the peripheral driver package make use of C language
functionality to provide procedures such as GPIO_SetBits() that auto­
matically make the appropriate address assignments and thus the required
changes on the port pins. The intention is to make the programming task for
the user as straightforward and comprehensible as possible.

In terms of the actual time sequence the operation of this example will pro­
vide a four phase signal on the outputs as depicted in the diagram in Figure 2.10,
these signals can be observed with an oscilloscope quite easily if the delays
are shortened to multiples of a few milliseconds. The code next shows a very
simple delay function that can be used for experiment.

Time units 3 3 3 7 16

GPIO 12

GPIO 13

GPIO 14

GPIO 15

Figure 2.10  Observed code output pattern

40	 Digital Interface Design and Application

void Delay(int time)
{

int i;
while (time > 0)
{

time--;
i = 100;
while(i > 0)
{

i--;
}

}
}

2.7.2  A Summary of Alternative I/O Operations

There are many ways to manipulate output pins beyond the set and reset
that has been employed in the previous example. For instance the GPIO_
Write() function can be used to set all the port bits simultaneously, as illus­
trated by the statement next, where the variable a provides the pattern of
bits required.

GPIO_Write(GPIOD, a);

Alternatively to configure some port pins as input will require a small change
to the port mode in the GPIO_InitStructure as shown here, the assignment for
output type becomes irrelevant in this case so does not need to be included.

/* Configure PD0, PD1, PD2 and PD3 in input mode */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_
Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
 GPIO_Init(GPIOD, &GPIO_InitStructure);

Once these changes are made, the data on the four allocated pins can be
accessed by the GPIO_ReadInputData() function or individually by the
GPIO_ReadInputDataBit() function as illustrated here.

Simple Input and Output Functions	 41

a = GPIO_ReadInputData(GPIOD);
a = GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_0);

Note that to use these examples on the STM32F4 Discovery board the
development system uVision4 from STM Microelectronics should be
employed together with various support files provided such as ‘startup_
stm32f4xx.s’, which configures the system clock structure by using the
SystemInit() function that is called before branching to the users application
main() block. Examples provided within the package give more examples of
I/O programming techniques.

2.7.3  Programming I/O in Assembler Language

There will inevitably be some situations where the overhead of C proce­
dures will not be acceptable and a resort to assembly language program­
ming will have to be made. It is clear, however, that port initialisation is
only done once so it would generally not be productive to use assembler for
this part of the code design. Actual input or output interactions with the pins
are more likely to be time critical and thus assembler programming would
be most advantageous in this part. Taking an example of the GPIO_SetBits()
function this only demands a new value to be written to the bit set/reset reg­
ister GPIO_BSRR at address offset 0x18, that is 0x4002 0C18 for GPIOD.

An assembler instruction to perform this function can be defined if the
GPIOD base address is in register r0 = 0x40020c00 and the bit mask for pin 12
is in register r1 = 0x1000. In this instance the store half word ARM instruction
will be all that is needed to set GPIO pin 12 high:

strh r1, [r0, #0x18]

Note the use of a half word instruction here because the upper half of this
address is used for the reset bits and these should not be affected at this stage.
It is evident the assembler code is not self‐explanatory so great care has to be
taken if it is utilised.

2.8  Suggested Design Challenge

For the Design Challenge readers should attempt to design a programme to
implement an interface to a small 16‐key matrix keyboard, of the type shown
in Figure 2.11 available from Farnell under part number 113‐0806 [3]. The

42	 Digital Interface Design and Application

suggested electrical arrangement for the keyboard involves eight independent
connections for the rows and columns, that is four outputs and four inputs.
These can be provided by port D on the STM32F4 device, for example as
shown in Figure 2.12, but many alternative arrangements are possible. When
a key is activated by the user a logic one placed on the related output line will
force an input line to logic one through the switch at the crossing point. All
four input lines have a pull‐down resistor to ensure that the unconnected lines
do not float to logic one possibly giving an erroneous key indication. Note that
the specification for this key board suggests that a 5 ms de‐bounce period
should be allowed for reliable key recognition.

The main function of the required programme is to scan the keyboard one
column at a time and read the inputs at each stage. A timing diagram for this
is shown in Figure 2.13. When an input becomes one the key at the crossing
point with the active output is the one that is depressed by the user. It can be
assumed, in the first instance, that only one key at a time is depressed but in
actual practice ‘rollover’ may occur, when two keys are depressed before one
is released, and this should be accommodated by the controlling programme

Figure 2.11  16‐key matrix keyboard

Simple Input and Output Functions	 43

if possible. Also mechanical key bounce or instability may occur in practice
so suitable delays of a few milliseconds should be allowed to elapse before a
key signature is accepted as correct. This interface task will ensure a clear
understanding of the principles described in this chapter and useful practice in
employing the STM development environment. It is suggested that the code is
developed in stages so as not to introduce too much complexity all at once.

2.9  Conclusion

Readers should refer to the ST web site [4] for access to the full range of micro­
controller development tools and support libraries. Programming expertise and
productivity will quickly develop as familiarity with the STM32F4 increases.

Output ports

G
P

IO
B

4

G
P

IO
B

5

G
P

IO
B

6

G
P

IO
B

7
GPIOD12

GPIOD13
Input
ports

10K

10K

10K

10K

GPIOD14

GPIOD15

Figure 2.12  Keyboard interface connections

Column 1

Column 2

Column 3

Column 4

Read rows

Figure 2.13  Timing diagram for keyboard interface

44	 Digital Interface Design and Application

This chapter has provided an introduction to input and output interface
circuits and the basic concept of their activation through a series of programme
statements. The address decoding requirements were described to activate
simple interfaces together with the use of pointers in the C language to handle
them. The extensive I/O functionality of the STM32F4 processor, determined
through its multiple control registers, has been discussed briefly together with
its controlling program code.

Program examples are given throughout with a view to providing resources
that can be adapted to specific user requirements. All these examples make
use of the ST Microelectronics support tools and peripheral drivers, which
are freely available together with low cost hardware boards for prototype
development.

Although it is recommended that the reader attempt the design challenge
independently a possible solution for reference is provided in the Appendix D
at the end of the book.

In the next chapter, analogue interfaces, involving specifically AD and DA
converter modules, will be described together with C program examples for
their practical application.

References
[1] � Wakerly, J.F. (2006) Digital Design Principles and Practices; Prentice Hall; ISBN: 978 013

613 9874.
[2] � ST Microelectronics (2011) STM32F4 Reference Manual. RM009 (ARM Cortex‐4)

Reference Manual Doc ID 018909 Rev 1, www.st.com (accessed September 2014).
[3] � Farnell element14 Data sheets from: http://www.farnell.com following links to STM32F4

Discovery (accessed 20 December 2014).
[4]  ST Microelectronics www.st.com (accessed 20 December 2014).

Further Reading
ARM Ltd Keil uVision IDE Integrated Development Environment, www.keil.com/uvision/

ide_ov_starting.asp (accesses September 2014).
ST Microelectronics (2012) STM201432F4 Data Sheet. S32F405xx (ARM Cortex‐4) Data

Sheet Doc ID 022152 Rev 3, www.st.com (accessed September 2014).

http://www.st.com
http://www.farnell.com
http://www.st.com
http://www.keil.com/uvision/ide_ov_starting.asp
http://www.keil.com/uvision/ide_ov_starting.asp
http://www.st.com

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

3.1  Timer Subsystems

The need for timing in I/O applications has already been encountered in
Chapter 2 where the de‐bounce time for a simple keyboard had to be accom-
modated. The solution taken for this issue was to simply waste time by lock-
ing the computer into a repeated loop. There are two reasons why this is not a
good approach one is that the actual time is difficult to predict with any degree
of accuracy and the second is that the computer resources are wasted during
this delay and could be employed much more productively. A better method to
deliver the required time interval is clearly desirable in practical application
designs. It turns out that a simple hardware system can deliver an accurately
defined time interval but it should be understood that this will not release the
computer resources for more productive work unless other techniques are also
employed. These will be discussed in Chapter 5.

The de‐bounce application does not itself present a particularly demanding
timer requirement but in many applications of embedded systems accurate
and predictable time intervals are a high priority. In a control system for
example, the response to a change in demand must be delivered within a
specific time interval or instability might result. So when the embedded appli-
cation has a real time requirement, measuring time intervals or generating

Timer Subsystems

3

46	 Digital Interface Design and Application

time‐based events, this clearly has to be addressed. Accurate timing is also
essential if the embedded application has to manage multiple tasks to accom-
modate the different activities it is required to perform. This, however, needs
other resources to enable the switch between tasks and this aspect will also be
discussed later.

Another commonly used technique in embedded systems is the Watchdog
where system integrity is monitored at specific time intervals and then the
system is reset if a fault is detected. There are many different ways to imple-
ment a watchdog system monitor, some are more efficient than others, but a
long period timer is usually one of the key elements.

To address the timing requirements of many embedded systems that require
operations to be performed in real time this chapter will focus on the timer
subsystems that form an important component in many of the commercial
microcontrollers that are designed for these applications. A review of the
block diagram for the STM32F4 microcontroller (in the ST Microelectronics
Data Sheet, Figure 5 [1]) reveals that there are no less than eight independent
timer units. Most of these are formed using very similar hardware elements.
We will start by reviewing a simple logical structure to furnish this sort of
function and go on to examine one of the STM32F4 units in more detail. The
chapter will conclude with a short example application illustrating the flexi-
bility of the timer to address a complex requirement.

In summary timers are required because it is impossible for the reasons
given previously to create precise time intervals by software routines alone.
For example, if an accurate 10 ms interval was required between particular
interface functions a timer unit could provide and guarantee this aspect of the
specification.

3.2  Basic Timer Configuration

A simple multi‐bit logical counter can be used to perform a timer function as
long as it is provided with an accurate clock derived from a specific crystal
reference oscillator or a signal derived from the actual processor clock. The
actual counter circuit will not be discussed here so the reader should refer to
Synchronous clock driven counters in Wakerly [2] or other sources. For this
simple timer, the availability of a synchronous up going counter with an initial
preload capability will be assumed. The block diagram in Figure 3.1 shows
how the basic blocks are arranged.

Before starting the n‐bit timer operation, the preload register value, which
could take on a value anywhere from zero to the maximum counter value

Timer Subsystems	 47

(2n − 1) is loaded into the counter register. Once counting is actually enabled the
upward counting will proceed from the preload value supplied. The key interval
is then the number clock cycles required to run through the counter states until
it reaches its maximum value, that is (2n − Preload) × Tc the clock period. When
the counter reaches its maximum value the overflow output becomes active and
on the next cycle the counter starts over again from the preload value. For
example, if the number of bits n is 4 and the preload value is eight the period
will be 8 × Tc and the count sequence will be 8, 9, 10, 11, 12, 13, 14, 15, 8, 9,
10, 11, 12, 13, 14, 15, 8, 9, 10, and so on. Note that the 8 count value will
always appear at the start of each sequence because the preload action takes
place during the final state of the sequence (15). If the preload value is changed
the current sequence is completed before the new timing action takes effect.

3.3  The STM32F4 Timers

The timers implemented in the STM32F4 look much more involved and have
many more additional features than have been discussed in Section 3.1. The
actual block diagram is shown in Figure 65 in the ST Microelectronics Reference
Manual [3] but its most significant features are summarised in Figure 3.2.

The actual hardware presents various options for the timer clock but in the
default mode it is derived from the AHB (Advanced Host Bus) timing. This is
calculated from the values set in the clock control module (see Section 2.2 in
the STM32F4 Reference Manual [3]) because the input clock (8 MHz on the
Discovery board) is multiplied in a Phase‐Locked Loop (PLL) as follows.

	
f

PLLN

PLLM PLLPAHB 8 8
336

8 2
168MHz MHz MHz

	

Xtal
ref

Enable

Load

Up-counter Overflow

Preload register

Figure 3.1  A simple timer function

48	 Digital Interface Design and Application

So these default settings make the AHB clock 168 MHz as shown and this
is further divided by a prescaler to deliver the APB (Advanced Peripheral Bus)
clocks.

	
f

APBPSCAPB

168 MHz

	

The default setting of the prescaler (APBPSC) for APB1 is 4 and for APB2
is 2 so f

APB1
 is 42 MHz and f

APB2
 is 84 MHz. There is, however, a special

arrangement for the timer clocks in that the APB clock is multiplied by 2 as
long as the APBPSC is not 1.

Thus the timer clock becomes 84 MHz for timers attached to APB1 (2, 3, 4,
5, 12, 13 and 14) and 168 MHz for the other modules. The timer clock source
is scaled down by its own prescaler value so when it is set to 84 in the APB1
timers for example the resulting timer clock will be 1 MHz.

In these modules the counter operates in a slightly different way to that
described earlier. In the up mode the counter increases on each clock cycle
until it reaches the value in the auto reload register (ARR) when it is reset to
zero to start over again. This is shown schematically in Figure 3.3.

In the down mode the counter decreases on each clock cycle until it reaches
zero when it is set to the ARR value to start over again. This is shown sche-
matically in Figure 3.4.

In an alternative centre aligned mode the counter increases to the ARR
value and then decreases to zero. This is used in Pulse Width Modulation
(PWM) applications in particular and its operation is shown schematically in
Figure 3.5.

Auto-reload register

Repeat
counter

Clk
Prescaler Up/down counter

Capture/compare 1

Capture/compare 2

Capture/compare 3

Capture/compare 4

Figure 3.2  The simplified timer architecture

Timer Subsystems	 49

The current timer value is constantly compared with the four capture/
compare registers allowing different outputs related to the basic time‐base to
be created or different measurements of an input signal to be made for example.

If the repetition counter is used the timer update event trigger is generated
after counting up to the reload value is repeated for the number of times
programmed in the repetition counter register. This allows for much longer
intervals between event triggers.

Count

ARR
value

0
Time

Figure 3.3  Upward count mode

Count

ARR
value

0
Time

Figure 3.4  Downward count mode

Count

ARR
value

0
Time

Figure 3.5  Centre aligned mode

50	 Digital Interface Design and Application

3.3.1  The Individual Timers

Some of the timer units have special features for specific applications but
Timers 2–5 form a group with common features, all are general‐purpose
timers consisting of a 16‐bit or 32‐bit auto‐reload counter, driven by a pro-
grammable prescaler that gives wide flexibility over the basic period supplied
for counting. The connected registers can capture the current value when trig-
gered by an external signal or continuously compare their preset value with
the current counter value. They may be used for a variety of purposes,
including measuring the pulse lengths of input signals (input capture mode) or
generating output waveforms (the output compare mode and the PWM mode).
Derived pulse lengths and waveform periods, from a few microseconds to
several milliseconds, can be accommodated using a combination the timer
prescaler and the options provided within the Reset and Clock Control (RCC)
module resources, which will not be discussed further at this point. The timers
are completely independent, and do not share any resources but they can be
synchronised together if the application requires.

The main features of this group include 16‐bit (TIM3 and TIM4) or 32‐bit
(TIM2 and TIM5) up counter, down counter or up/down auto‐reload counter.
Also each has a 16‐bit programmable prescaler that can be used to divide the
counter reference clock frequency by any factor between 1 and 65 535. Each
unit has up to four independent channels for the different modes: Input capture,
Output compare, PWM generation (Edge‐ and Centre‐aligned modes are
available) and the One‐pulse output mode. A synchronisation circuit is
included to control the timer reliably with external signals and to interconnect
several timers when required.

The timers all include the capability to link up with advanced interface
techniques like Interrupts or DMA, which will be discussed in a later chapter,
but these can be initiated by requests based on the following four types of
counter event:

1.  An update event such as counter overflow/underflow or counter initialisa-
tion by software or internal or external trigger signals.

2.  A trigger event such as counter start, counter stop, counter initialisation or
count increment by an internal or external trigger.

3.  An input capture event.
4.  An output compare event.

Special hardware in these modules provides support for interfaces with
incremental quadrature encoders and hall‐sensor circuitry used in position

Timer Subsystems	 51

measurement applications. Finally a trigger input can be used as an external
clock or cycle‐by‐cycle management of the counting process.

The other timers are very similar but offer a slightly different feature set
aligned with specific applications. The STM32F4 ARM Reference Manual [1]
should be consulted for the details of individual modules. For example TMR6
and TMR7 have no physical outputs but may be used as generic timers for
time‐base generation. They are also specifically used to drive the digital‐to‐
analogue converter (DAC) and in fact, are internally connected to the DAC
and are thus able to drive it through their trigger outputs (TRGO). Timers
TIM1 and TIM8 have advanced features specifically optimised for advanced
PWM applications.

3.4  Programming the STM32F4 Timers

ST Microelectronics provide a standard peripheral driver for the timer units in
the file ‘stm32f4xx_tim.c’, which contains a package of useful support
functions and also some useful notes on the timer set up options. All the
preconfigured functionality can be found in the header file ‘stm32f4xx_tim.h’.
For example the counter mode options are:

TIM_CounterMode_Up
TIM_CounterMode_Down
TIM_CounterMode_CenterAligned1
TIM_CounterMode_CenterAligned2
TIM_CounterMode_CenterAligned3

The first two are self‐explanatory but the centre‐aligned modes are explained
in the data sheet in Section 13 [1]. Basically in these modes the counter counts
from 0 to the ARR value, generates a counter overflow event, then counts from
the auto‐reload value back down to 0 and generates a counter underflow event.
Then it restarts counting from 0 again. These modes are particularly useful in
the generation of PWM signals as will be shown in a later section.

The timer output compare modes options are:

TIM_OCMode_Timing where the output is frozen (match
used for timebase generation)
TIM_OCMode_Active where the output becomes active
on match
TIM_OCMode_Inactive where the output becomes
inactive on match

52	 Digital Interface Design and Application

TIM_OCMode_Toggle where the output toggles on match
TIM_OCMode_PWM1
TIM_OCMode_PWM2

This functionality is used to control an output waveform or indicate when a
period of time has elapsed. When a match is found between the capture/
compare register and the counter, the output compare function assigns the
corresponding output pin to a programmable value defined by the output
compare mode and the output polarity. The output pin can keep its level, be set
active, be set inactive or can toggle on the match condition. More detail on
these modes can be found in the data sheet, particularly the PWM mode,
which is used in the included example.

The device driver header file stm32f4xx_tim.h shows all the timer related
functions that are supported and these are split into the following principle
groups: Time Base management, Output Compare management, Input
Compare management and Advanced control, Flag management, and so on.
For example, TIM_OC1Init(TIM3, &TIM_OCInitStructure) from the OC
management group uses the following data structure elements:

TIM_OCMode; Specifies the timer mode.
TIM_OutputState; Specifies the timer Output Compare state
TIM_Pulse; Specifies the pulse value to be loaded
into the CCR
TIM_OCPolarity; Specifies the timer output polarity

The code shown next uses Timer 3 to generate three complementary output
signals each with different duty cycles. The main steps in the procedure start
with configuring the output ports and switching them to their alternate function
so as to pick up the timer signals, these settings are in the TIM_PinsConfig()
function. Then the next step is to set up the fundamental time base parameters
to provide required repeat interval. Next, specify the capture/compare config-
uration for each channel; this includes the setting of the compare register
value. Once this is complete, the code goes into an endless loop but the timer
output activity can be observed on the respective pins.

/* Timer 3 Functions */
#include "stm32f4_discovery.h"

void TIM_PinsConfig(void);

int main(void)
{

Timer Subsystems	 53

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;

TIM_PinConfig();

/* Time base configuration */
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 2000;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;

TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

/* Channel Configuration */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_

OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0x1f4;
TIM_OCInitStructure.TIM_OCPolarity = TIM_

OCPolarity_High;

TIM_OC1Init(TIM3, &TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = 0xfa;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);

/* TIM3 counter enable */
TIM_Cmd(TIM3, ENABLE);

while (1)
{
}

}

void TIM_PinsConfig(void)
{
/* Configure I/O Pins for timer output lines*/

GPIO_InitTypeDef GPIO_InitStructure;

/* TIM3 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

/* GPIOB clock enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

54	 Digital Interface Design and Application

/* GPIOB Configuration: TIM3 CH1 (PB4), CH2
(PB5), CH3 (PB0) and CH4 (PB1) */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_
Pin_1 | GPIO_Pin_4 | GPIO_Pin_5;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP ;
GPIO_Init(GPIOB, &GPIO_InitStructure);

/* Connect TIM3 pins to AF2 */
GPIO_PinAFConfig(GPIOB, GPIO_PinSource0, GPIO_

AF_TIM3);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource1, GPIO_

AF_TIM3);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource4, GPIO_

AF_TIM3);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource5, GPIO_

AF_TIM3);
}

In this example, the ARR value is 2000, which is set as the timer period and
the prescaler is zero. Note that the output compare mode ‘PWM1’ leaves the
output active until the point at which the counter reaches the compare value
provided. Also using the Discovery board standard settings the timer (TIM3)
clock is attached to APB1 and is 84 MHz as shown earlier so the timing of the
example waveforms shown in Figure 3.6 will be of the 23.8 µs period.

23.8 μs

Figure 3.6  Timing diagram for example code

Timer Subsystems	 55

3.5  Timer Triggering

The timers can be used to provide a trigger for other functions within the
STM32F4 device. For example TIM3_CH1 could be used to trigger the
analogue to digital conversion (ADC) so that it samples an input at precisely
1 ms intervals.

It is also possible to cascade counters so that very long intervals can be
created; here the first takes on a master mode while the second acts as a slave.
Alternatively a group of timers can be synchronised together when the
cascaded trigger is used to initiate reset action on the whole group.

The possible trigger source options that allow the selection of the information
to be sent in master mode to slave timers for synchronisation through the
TRGO signal are:

TIM_TRGOSource_Reset
TIM_TRGOSource_Enable used to synchronize a slave
or create a window for it
TIM_TRGOSource_Update where a master can act as a
prescaler for a slave
TIM_TRGOSource_OC1 pulse mode
TIM_TRGOSource_OC1Ref channel 1 compare match
TIM_TRGOSource_OC2Ref channel 2 compare match
TIM_TRGOSource_OC3Ref channel 3 compare match
TIM_TRGOSource_OC4Ref channel 4 compare match

The example function call here shows a typical TRGO setting:

TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);

This function will in fact select the generation of a trigger when the counter
reaches the ARR value in the upward direction or zero in the downward case.

3.5.1  Setting up the Time‐Base

Once the general format of the signals required for the application has been
decided on, it will then be essential to determine the time‐base that will be
needed. In most case this will require suitable values to be assigned to the
prescaler (PCS) and the counter ARR. In general it will be better to make
the ARR value as large as possible to provide the maximum resolution for
time values set in the capture/compare registers.

56	 Digital Interface Design and Application

Let’s suppose the application requires a time base of 10 ms, from a knowledge
of the counter clock (84 MHz if the timer is driven by APB1, otherwise
168 MHz) it is clear that a total count ratio will be (10e−3 × 84e6) = 840 000
(or 1 680 000 for a timer on APB2). This is much too big for the 16‐bit counter
itself so a prescale value of (840 000/216) = 13 (or 25 for an APB2 case), using
the nearest whole number, will be needed. The ARR value will then be
(840 000/13) 64615 = 0xfc67, just fitting in the 16‐bit counter. Working back
shows that a period of 9.9999 ms will be achieved. In fact, if we select, say,
14 (or 28 in the APB2 case) for the prescale then a similar calculation shows
that 60 000 will be required in the ARR and this will achieve a period much
closer to 10 ms. No significant change to the timer resolution will result. It is
frequently beneficial to try a few different alternatives to see which gives the
most convenient result.

3.5.2  Using the Timer for an Input Measurement

In some applications it will be required to measure the period or time of arrival
of an input signal so the following example will show how this can be achieved.
It will be essential as a first step to establish the overall time base. Using TIM3
the channel one input is on GPIOB pin 4 and the channel configuration must
determine the channel selected, the edge polarity, the capture mode, the pres-
caler value, if required, and the filter parameters, if needed. Figure 3.7 shows
a simplified circuit of the input channel that delivers the activation to the
capture register.

The options listed here are available to set up the input compare configuration.

TIM_Channel, that is one of the four possible
compare channels
TIM_ICPolarity either Rising, Falling or Both Edges
TIM_ICSelection, that is the signal source, direct
timer input, indirect timer input or input from a
slave counter
TIM_ICPrescaler the possible ratios are limited to
1, 2, 4 or 8
TIM_ICFilter this can take any value between 0 and
16 (0xf) and is used to determine the minimum
length of input to become an acceptable trigger.

Once the required configuration is determined the values for these parame-
ters are assembled into the control register bits by the function TIM_ICInit();

Timer Subsystems	 57

TIM_ICInit(TIM4, &TIM_ICInitStructure);

The code modules shown here implement a typical configuration as a basis
for further development.

#include “stm32f4xx_discovery.h”

TIM_ICInitTypeDef TIM_ICInitStructure;

void TIM_Config(void);

int main(void)
{

TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInitStructure.TIM_ICPolarity = TIM_

ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_

ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;

TIM_ICInit(TIM3, &TIM_ICInitStructure);

/* Select the TIM3 Input Trigger: TI1FP1 */
TIM_SelectInputTrigger(TIM3, TIM_TS_TI1FP1);

/* TIM enable counter */
TIM_Cmd(TIM3, ENABLE);

/* Enable the CC1 Interrupt Request */
TIM_ITConfig(TIM3, TIM_IT_CC1, ENABLE);

while (1);
}

Ch1
Filter Edge

detector

From slave

Prescale
divider Capture

From Ch2

Source

Figure 3.7  Capture/compare input circuit

58	 Digital Interface Design and Application

void TIM_Config(void)
{

GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;

/* TIM3 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

/* GPIOB clock enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

/* TIM3 chennel1 configuration: PB.04 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NoPull ;
GPIO_Init(GPIOB, &GPIO_InitStructure);

/* Connect TIM pin to AF2 */
GPIO_PinAFConfig(GPIOB, GPIO_PinSource4, GPIO_

AF_TIM3);
}

This code includes a statement to set up an interrupt based on CCR1 but as
will be shown later other code modules are actually needed to set this up.

Note that it is also possible to measure the frequency and the duty cycle of
the input signal in two different capture registers if the timer is set up in the
PWM mode. In this case both capture circuits are connected to the same input
but one acts as a master and the other as a slave. There is an example of this in
the STM32F4 application library provided.

3.6  Basic Timers

The STM32F4 also contains two simplified timer units (TIM6 and TIM7) that
do not contain any capture/compare register logic and have no connections
through physical pins. They do provide a 16‐bit count register and ARR and a
prescaler. The block diagram in Figure 3.8 shows the structure of these
simplified modules.

The interface to these modules is entirely through software commands but
they can also be used to trigger the DAC or generate interrupts and DMA
requests at precisely determined intervals. When a software interface is

Timer Subsystems	 59

employed the status register flags (e.g. TIM_FLAG_Update) can be used in a
hand‐shake driven procedure as illustrated in the following code. The timer in
this example is set for 0.1 ms (the prescaler clock is 84 MHz as these timers
are on APB1) so the output bit that has been set up (GPIOD pin 12) should
toggle on each millisecond. Note the observed time will be slightly longer
because of the handshake function but this can be corrected if the prescale
value is adjusted. A corrected value of 7788 was found to give a very exact
toggle period on the Discovery board.

#include “stm32f4xx_Discovery.h”;

void GPIOD_Init(void);
void TIM6_Init();
void TIM6_Wait(uint16_t t_period);

int main(void)
{

GPIOD_Init();
TIM6_Init();

while(1)
{

TIM6_Wait(10);
GPIO_ToggleBits(GPIOD, GPIO_Pin_12);

}
}

void TIM6_Init(uint16_t t_period)
{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

/*TIM6 Clock Enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
/* Time Base Configuration */
TIM_TimeBaseStructure.TIM_Period = t_period;

16 bit auto-reload register

16 bit counter
16 bit

prescaler

Clk

Figure 3.8  Simplified timers

60	 Digital Interface Design and Application

TIM_TimeBaseStructure.TIM_Prescaler = 8400;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;

TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure);

/* Prescaler Configuration */
TIM_PrescalerConfig(TIM6, 8400, TIM_PSCReloadMode_

Immediate);

TIM_Cmd(TIM6, ENABLE);
}

/* time given in tenths of a millisecond */
void TIM6_Wait(uint16_t t_period)
{

/* set period in ARR */
TIM_SetAutoreload(TIM6, t_period);
TIM_SetCounter(TIM6, 0);
while (TIM_GetFlagStatus(TIM6, TIM_FLAG_Update) != 1)
{}
TIM_ClearFlag(TIM6, TIM_FLAG_Update);

}

void GPIOD_Init(void)
{

GPIO_InitTypeDef GPIO_InitStructure;

/* PD12 */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOD, &GPIO_InitStructure);
}

In applications where the timer is used for other functions, such as DAC
synchronisation, the set up will not have to encounter the additional overhead
of handshaking so timing will be more accurately defined by the ARR and
prescale values set up.

Timer Subsystems	 61

3.7  PWM Applications

Many systems involving power control or motor speed control in particular
rely on a PWM scheme where the on to off ratio of a digital signal needs to
vary. The diagram in Figure 3.9 shows a PWM signal set to about 40% of the
whole period.

The sample program in this section uses PWM to control the brightness of
an LED but could also be used to control the speed of a DC motor if a suitable
interface was constructed. The basic PWM period is set to 100 Hz by defining
the ARR and the on percentage can vary from 0 to 100% by setting the value
in CCR1. One hundred steps in the brightness are determined by the for loop
parameters and there is a lengthy delay between each iteration so that the
changes are more visible to an observer.

#include “stm32ff_discovery.h”

#define SECOND 0xffff

void PWM_PinsConfig(void);
void PWM_TIMConfig(uin16_t base_period);
void PWM_SetPeriod(uint16_t period);
void PWM_SetFraction(uint16_t fraction);
void wait(int time);

int main(void)
{

int time, on_time, i;

PWM_PinsConfig();

PWM_TIMConfig(time);

PWM_SetPeriod(time);
PWM_SetFraction(on_time);

while(1)
{

for (i = 5; i < 95; i++)

40% On

PWM period

60% Off

Figure 3.9  A PWM signal set at 40%

62	 Digital Interface Design and Application

{
on_time = i;
PWM_SetFraction(on_time);
wait(SECOND);

}
}

}

/* TIM4 PWM on Ch1 GPIOd12 */
void PWM_PinsConfig(void)
{

GPIO_InitTypeDef GPIO_InitStructure;

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOD, &GPIO_InitStructure);

GPIO_AFConfig(GPIOD, GPIO_PinSource12, TIM4_CH1);
GPIOD->AFR[1] = 0x0200;

}

/* PWM period in ARR and fraction in CCR1 */
void PWM_TIMConfig(uin16_t base_period)
{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);

/* Time Base Configuration */
TIM_TimeBaseStructure.TIM_Period = base_period;
TIM_TimeBaseStructure.TIM_Prescaler = 8400;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;

TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);

/* Channel Configuration */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;

Timer Subsystems	 63

TIM_OCInitStructure.TIM_OutputState = TIM_
OutputState_Enable;

TIM_OCInitStructure.TIM_Pulse = 0x1f4;
TIM_OCInitStructure.TIM_OCPolarity = TIM_

OCPolarity_High;

TIM_OC1Init(TIM4, &TIM_OCInitStructure);

/* Prescaler Configuration */
TIM_PrescalerConfig(TIM4, 8400, TIM_PSCReloadMode_

Immediate);

TIM_Cmd(TIM4, ENABLE);
}

void PWM_SetPeriod(uint16_t period)
{

TIM_SetAutoreload(TIM4, period);
}

void PWM_SetFraction(uint16_t fraction)
{

TIM_SetCompare1(TIM4, fraction);
}

This example program code has been arranged to link up with one of the
LEDs installed on the STM32F4 Discovery board so that the effect of the code
can be easily observed. The PWM output varies from 5 to 95% so the LED
brightness will vary from dark to bright on a slowly changing basis. The pulse
width modulation can also be shown on an oscilloscope attached to GPIOD
Pin 12.

3.8  Programming Challenge

For this application, a control program is required for a miniature servo actu-
ator such as those used in radio controlled models; the Hitec HS422, which
can be obtained from servoshop.co.uk, is a good example. This requires a
PWM signal with a period of 20 ms and the Hitec specifications show that
when the on period is 0.9 ms the actuator setting is 0°, 1.5 ms on gives 90° and
2.1 ms on gives 180°. Although the variation of pulse width is fairly small, it
can easily be defined by the compare value provided in the timer. The timing
diagram in Figure 3.10 shows roughly what is required.

http://servoshop.co.uk

64	 Digital Interface Design and Application

The program should be set up to run through the full range of positions
slowly and then return slowly back to the origin. This operation can be
observed on an oscilloscope but if the real actuator is connected it will require
a separate power source as it represents too much load for the USB driven
supply on the Discovery board. A diagram of the hardware configuration is
shown in Figure 3.11.

3.9  Conclusion

All the timer modules provide an extensive range of facilities that can adapt to
many different applications. Although several example applications have been
examined in this chapter, as mentioned in several places the STM32F4
Discovery development support package includes other examples that can
form the basis for accommodating new system requirements. A careful study
of the STM32F4 reference manual is also recommended to show all the
options that have not been covered specifically in this chapter.

For a new application a careful sketch of the requirements will quickly
reveal the most appropriate timer mode and settings required. It is frequently
beneficial to evaluate alternative settings to determine those that give the best
results in terms of accurate timing required in a real time environment.

Subsequent chapters will use timers in various roles, for example, in con-
nection with ADC and DAC converters because these systems frequently need
precise synchronisation. Also different programming modes of operation
including interrupts and DMA will frequently be triggered by timer activity so

0° 90°

PWM period 20 ms

180°

Figure 3.10  Servo control with PWM

GPIOD
12

Yellow

H
S

-4
22

Red

Black

+ 6V

Figure 3.11  Servo controller circuit diagram

Timer Subsystems	 65

the availability these modules is well justified and a good working knowledge
of them will be invaluable.

References
[1] � ST Microelectronics (2012) STM201432F4 Data Sheet. S32F405xx (ARM Cortex‐4) Data

Sheet Doc ID 022152 Rev 3, www.st.com (accessed September 2014).
[2] � Wakerly, J.F. (2006) Digital Design Principles and Practices, Prentice Hall; ISBN: 978 013

613 9874.
[3] � ST Microelectronics (2011) RM0090 (ARM Cortex‐4) STM32F4 Reference Manual Doc

ID 018909 Rev 1, www.st.com (accessed 20 December 2014).

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

4.1  Analogue Interfaces

A quick review will reveal that many embedded system designs require some
form of analogue interface because of the analogue nature of the real world in
which such systems have to operate. This chapter will focus on analogue to
digital and digital to analogue interface techniques because they will be
required whenever an analogue signal has to be created or monitored in a
digital computer algorithm.

Taking temperature measurement as just one analogue example, it is evident
that the basic analogue measurement must be converted to digital form so that
the computer can manipulate its digital representation in a control algorithm.
Similarly, the drive for a DC servo will be calculated as a digital value in the
control algorithm but will have to take analogue form to activate the motor
control voltage. This chapter will present, in particular, the Analogue to Digital
converter (ADC) and the Digital to Analogue converter (DAC) through a
discussion of the conversion techniques employed in some popular designs.
The ADC converter actually presents a considerable design challenge so there
are a wide range of different solutions to be found in commercial practice.
Also, as the rate of conversion is a key factor in many applications, the key
aspects of performance for these subsystems will be summarised. The chapter

Analogue Interface
Subsystems

4

Analogue Interface Subsystems	 67

will include a description of simple sampling applications, for signal acquisition,
in a variety of practical situations.

Although C code will be employed extensively to promote readability and
understanding the linked assembler code will be explained in detail to enable
the design of highly efficient interfaces where time considerations have a
high priority.

4.2  Digital to Analogue

The digital to analogue conversion process will be presented initially because
it is comparatively straightforward and it also forms an inherent part of one
of the more popular ADC designs. This conversion process requires in prin-
ciple a set of binary weighted resistors or a binary weighted current distribu-
tion network and a corresponding set of switches that are activated by the
latched binary input from the data bus that is stored in the converter’s input
register.

The binary weighted resistor network is usually implemented by an R/2R
network connected to provide binary weighted currents. These are summed at
the input node of an op‐amp as shown in the diagram Figure 4.1. This type of
network is used because it can be fabricated reliably in production. A simpler
binary weighted resistor network would have a huge range of values that are
difficult to define accurately.

The current in the MSB resistor is simply
V

R
REF

2
 and this will produce an

output at V
OUT

 equal to
VREF

2
. At point C, the two parallel resistors will share

the current flow equally whether the switch is in the left or right position.
A similar current sharing happens at point B and point A. The currents in the

resistors below points A, B and C are
V

R
REF

4
,
V

R
REF

8
 and

V

R
REF

16
, respectively. Thus,

the overall transfer function is given by:

	
V R b

V

R
b

V

R
b

V

R
b

V

ROUT
REF REF REF REF

3 2 1 02 4 8 16 	

where b
n
 represents the binary value, b

3
 is the MSB (most significant bit)

and b
0
 is the least significant bit (LSB). This network can be easily extended

to accommodate as many more bits as required and accuracy is maintained
because the limited range of resistor values can be fabricated on an integrated
circuit successfully.

68	 Digital Interface Design and Application

Detail of the actual circuit development is not important but an explanation
can be found in reference books [1] if required. A simplified block diagram as
shown in Figure 4.2 will suffice to explain the operation of the overall con-
verter at this point and highlight the important interface connections. Note
that the control lines must be derived logically from address decode and the
bus write direction control signal.

Most DAC implementations use a linear encoding (i.e. V V
D

REF n0 2
)

where D represents the binary value and n the number of bits. All the transi-
tions in its conversion characteristic have an equal size, as shown in the 3‐bit
example in Figure 4.3. Apart from the obviously equal steps it should also be
noted that the maximum output is one step lower than the reference or full
scale value. Non‐linear encoding based on a mathematical relationship like
sine or cosine is used in some specialised applications and a different arrange-
ment of resistors is used in this case.

The most significant performance characteristics are the reference voltage
V

REF
, because this limits the maximum possible output, the number of bits

quantisation, because this determines the resolution, and the conversion time
or its inverse the rate because this must match the application requirements. In

VREF

DAC

Control
lines

Analogue
output

R
eg

is
te

r

Data
bus

Figure 4.2  DAC block diagram

C
R

LSB MSB
R

B
R

A
R VREF

VOUT

2R 2R2R2R2R

Figure 4.1  Binary weighted DAC network

Analogue Interface Subsystems	 69

a system with an audio output, for example a resolution of 16‐bits and a rate
of 44.1 kHz will be required to achieve the quality of performance provided by
an audio CD.

4.2.1  The STM32F4 DAC

There are two DACs in the STM32F4 device, which can be used independently
or in synchronism as required, these have 12‐bit resolution and a conversion
time of 6 µs for large value changes or a maximum rate of 1 M samples per
second for small changes. The block diagram in the ARM Reference Manual
[2], Figure 48, is much more complex than the simple diagram in Figure 4.2
reflecting the fact that it has a number of alternative modes of operation such
as triangular wave generation and direct memory access (DMA), which can
both relieve the processor from software servicing requirements. Also
conversion can be triggered from an external signal if required. The reference
is usually set to the processor supply voltage (Vdd), typically 3.3 V on the
Discovery board, but can be provided externally if the application requires it.

4.3  Analogue to Digital Conversion

There is no simple way to make a conversion in this direction so a complex
subsystem is used. There is no perfect solution for this conversion direction so
a wide range of architectures have been used by different designers. In a simple
form of ADC the output from a DAC is compared with the unknown analogue
input and the digital value is adjusted until a match is achieved. One control
strategy starts with all the bits cleared and the MSB set to one, this makes the

VREF

7 × VREF/2n

6 × VREF/2n

5 × VREF/2n

4 × VREF/2n

3 × VREF/2n

2 × VREF/2n

VREF/2n

0
000

001 011 101 111
010 100 110

Figure 4.3  A 3‐bit DAC transfer characteristic

70	 Digital Interface Design and Application

DAC output half full scale (V
FS

/2). If the compare shows a greater than rela-
tionship then the MSB is needed, otherwise the MSB is reset to zero. The bit
next to MSB (V

FS
/4) is set and again if the compare shows greater than this bit

will be needed, otherwise it is reset. This procedure is repeated for each of the
bits in turn until the LSB is reached. This strategy is known as the successive
approximation or binary search converter and is shown schematically in the
block diagram in Figure 4.4. This form can be quite effective because it
requires the minimum number of clock cycles to perform all the bit decisions,
working down from the MSB to the LSB. Practical performance can typically
achieve a 3 µs conversion time with this type of architecture. Note that output
data is only available when all decisions are completed so careful control
arrangements are needed to manage the conversion interface.

4.3.1  Sampling

To allow the converter subsystem described previously to operate correctly the
analogue input must not change by more than one LSB until the successive
approximation process has been completed otherwise early bit choices will
become incorrect. From a knowledge of the conversion time (T

C
) the maximum

rate of change at the input can be determined and must not exceed a value of
V

FS
/2nT

C
. A typical 14‐bit ADC with a conversion time of 6 µs and 3.3 V reference

Analogue
input

Compare
R

eg
is

te
r

ADC

Data
bus

Successive approximation
controller

Control
lines

DAC

VREF

Figure 4.4  Simple ADC subsystem design

Analogue Interface Subsystems	 71

gives a maximum rate of 33 V/s, rather a low value. This stability requirement
cannot be achieved easily other than by using a special sample and hold
function as shown in Figure 4.5. It is assumed that the sampling process T

S
 is

short compared with the hold T
H
, which is usually matched to or exceeds the

conversion time (T
C
). The overall performance will be significantly improved

by using this element.
If a simple sine‐wave input, as shown in Figure 4.6, is considered the sam-

pling process can be explained and the maximum input frequency at the con-
verter input can be determined. If we consider a sine wave matched to the full
scale converter range it can be seen that the rate reaches a maximum at the
zero crossing point. The mathematical gradient at this point is 2πf V

FS
 and this

Sample
and hold

ADC
Analogue
input

S/H

Figure 4.5  Sample and hold

VFS

TSA

VFS/2

Sampling
points

Figure 4.6  Sampling a sine wave

72	 Digital Interface Design and Application

must be less than or equal the sample maximum rate of input change, that is

2 2fV V TFS FS
n

S/ so the maximum input frequency f
TMAX n
S

1
2

 if we

assume a maximum of 1 LSB change in the sample time (T
S
). This, however,

gives a very optimistic value and it is frequently found in practice that the
performance is governed by the Nyquist sampling criterion because this deter-

mines that there must be at least two samples per cycle so 2
MAX

SA

f T where

T T TSA C S With a 6 µs conversion time and short sampling time the maximum
input frequency will be more than 300 kHz, a much more useful performance.

4.3.2  Switched Capacitor Converter

Some types of ADC do not require a distinct sample and hold element because
they effectively perform the sampling process internally. The implementation
available commercially is known as the switched capacitor converter and its
basic operation is described using the diagram in Figure 4.7. The conversion
process requires four phases, three to set up the capacitor array and the fourth
to assess the individual bits by cyclically testing each in turn.

The conversion process still requires careful management because the
resulting value is not available until all bit decisions have been made.

In phase 1 the switch S1 is closed making the inverting node become zero
and all the bit switches are to the left as shown so that all capacitors are
discharged to zero.

In phase 2 switch S1 remains closed, S2 selects Vin and the bit switches are
all set to the right. The inverting node is still zero so all capacitors are charged
up to Vin.

MSB

S1
C C/2

S2

C/4 C/2N–2 C/2N–2 C/2N–2

LSB

Bit
switches

Vin Vref

Figure 4.7  Switched capacitor converter

Analogue Interface Subsystems	 73

In phase 3 switch S1 is opened and the amplifier forms a comparator,
releasing the inverting node. The bit switches are all switched to the left so
that the negative node voltage becomes −Vin.

In phase 4 S1 is still open, S2 selects Vref and the cyclic conversion process
takes place. First the MSB bit is switched to the right selecting Vref. The sum
of the capacitors in the array to the right of the MSB is exactly C so this forms
a 1:1 charge divider. The inverting node voltage is then (−Vin + Vref/2). Thus,
if Vin is greater than Vref/2 the node voltage remains negative and the high
compare output shows that the converter MSB bit is one otherwise the MSB
is zero and the MSB switch is reset to zero. The next to MSB bit is switched
to Vref. This forms a divider so that the inverting node voltage becomes
(−Vin + Vref/2 + Vref/4) if the MSB is one or (−Vin + Vref/4) if the MSB is
zero. In either case if Vin is greater the next bit is one otherwise it is zero and
the bit switch is reset.

This process sounds quite complex but can be performed quickly. The main
advantage of this architecture is that fabrication techniques allow capacitors to
be defined more precisely than resistors so high ratios required can be more
easily achieved.

4.3.3  The Software Interface

The software interface to an ADC is a little more complex than the diagram
might suggest because the conversion process has to be allowed to complete
its successive approximation or other conversion algorithm and thus the output
data is not available until this point is reached. This timing is conveniently
shown in a simple timing diagram as shown in Figure 4.8.

To manage this interface the processor must implement a handshake to
determine when conversion is complete so that the new data can be collected
when it is definitely ready. A simple while loop structure in C can achieve this
hand‐shake, assuming the availability of a read function, is shown here.

TS

TC
Converter
busy

Sample Hold EOC

Figure 4.8  ADC interface timing

74	 Digital Interface Design and Application

busy = read(busy_flag);
while (busy)
{

busy = read(busy_flag);
}
read(ADC_data);

The while loop will continually read the busy flag and only exit when
conversion is done. Notice that this is quite wasteful of processor time because
it is effectively idle for a long period. Alternative methods to achieve more
efficient interface management, such as interrupts or DMA, are available and
these will be discussed later.

4.3.4  The STM32F4 ADC

There are three ADCs and their block diagram is shown in the ARM
Reference Manual Figure 28 [2], this is much more complex than the basic
converter shown in Figure 4.2 and includes a sample and hold system. The
12‐bit ADC is a successive approximation converter with a built‐in program-
mable sampling system. It has up to 19 selectable input channels allowing it
to measure signals from 16 external sources, 2 internal sources and the V

BAT

battery monitor in stand‐alone applications. The analogue conversion of the
channels can be performed using various user selected modes, single shot,
continuous, scan, for automatic conversion of a group of channels, or dis-
continuous, for a short group of conversions, for example. The ADC resolu-
tion can be configured as 12‐bit, 10‐bit, 8‐bit or 6‐bit, to achieve optimum
levels of performance, and the result is stored into a left or right‐aligned
16‐bit data register as required. The converters can be operated in various
dual and triple modes to allow near simultaneous measurements when
required by the application.

Various methods of converter synchronisation with external signals and
timers are available and the special analogue watchdog feature allows the
controlling application software to detect when the input voltage goes beyond
the user‐defined, higher or lower threshold. Automatic data transfer through
DMA can be selected to optimise the level of service support in the applica-
tion software and interrupt generation signalling the end of conversion and
some other key situations are implemented.

The following examples illustrate the basic operation of the converter and
the more advanced techniques are discussed in later chapters.

Analogue Interface Subsystems	 75

4.4  Software Control of DAC

Using the Keil peripherals package stm32f4xx_dac.c file provides firmware
functions to manage the following functionalities of the DAC peripheral: DAC
channels configuration, conversion trigger, output buffer, data format and
DMA management, as well as interface management flags and interrupts.
Appendix III gives a summary of the functions available and the physical pin
connections are given in Table 4.1.

The example next shows DAC initialisation and control using a C imple-
mentation and the support functions provided by Keil. The infinite while loop
generates a saw‐tooth waveform.

#include "stm32f4_Discovery.h"
main()
{

int i;
uint16_t Data;

/* Preconfiguration before using DAC & GPIO */
GPIO_InitTypeDef GPIO_InitStructure;
DAC_InitTypeDef DAC_InitStructure;

/* Enable write access to DAC registers */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);

/* Configure DAC_OUTx (DAC_OUT1: PA4) in analogue
mode.*/

/* Enable the GPIO AHB clock using */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

/* DAC channel 1 (DAC_OUT1 = PA.4) configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOA, &GPIO_InitStructure);

/* DAC channel1 Configuration */
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;
DAC_InitStructure.DAC_WaveGeneration = DAC_

WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_

OutputBuffer_Enable;

76	 Digital Interface Design and Application

DAC_Init(DAC_Channel_1, &DAC_InitStructure);

/* Enable the DAC channel */
DAC_Cmd(DAC_Channel_1, ENABLE);

while (1)
{

for(i = 0; i < 4000; i++)
{

Data = i;
DAC_SetChannel1Data(DAC_Align_12b_R, Data);

}
}

}

4.4.1  Waveform Generation

The DAC can be used in an alternative mode using the automatic triangle
generation facility and this is shown in the next example. A sketch of the
triangle wave is shown in Figure 4.9 for reference. The amplitude can be the
full scale range of the DAC or any fraction of it. There are various ways to
determine the period and some of these will be discussed.

A similar initialisation to that used in the previous example is required but
in addition some form of activation or triggering will be needed to increment

A
m

pl
itu

de

Period

Figure 4.9  Triangle waveform

Table 4.1  DAC output allocation

OUT

DAC1 GPIOA4
DAC2 GPIOA5

Analogue Interface Subsystems	 77

the current value as the generation of the triangle proceeds. In this case the
DAC register value is changed as soon as the effecting statement is executed:

/* DAC channel1 Configuration */
DAC_InitStructure.DAC_Trigger = DAC_Trigger_

Software;
DAC_InitStructure.DAC_WaveGeneration = DAC_

WaveGeneration_Triangle;
DAC_InitStructure.DAC_LFSRUnmask_

TriangleAmplitude = DAC_TriangleAmplitude_1023;
DAC_InitStructure.DAC_OutputBuffer = DAC_

OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);

DAC_SoftwareTriggerCmd(DAC_Channel_1, ENABLE);

Note that the triangle wave amplitude is chosen from the limited range of
values available, that is 2 1n where n is between 1 and 12.

4.4.2  Waveform Timing

The previous example will deliver a new sample value on every clock edge
(APB1 42 MHz) but in many cases the rate will need to be controlled according
to user requirements. This can be achieved quite conveniently by using a
trigger from one of the timers as shown in the diagram Figure 4.10.

In the following example the timer TIM6 prescaler is set for a 10 µs clock
interval and its auto reload register (ARR) is set to 2. This is used to synchro-
nize the conversion through its trigger output (TRGO) and is accomplished by
reassigning the DAC_Trigger to DAC_Trigger_T6_TRGO as shown in the
following code. It is also possible to use an external trigger through a physical
pin if required in the particular application. In this example TIM6 triggers the

Clock Timer TRGO Trigger

DAC

Output

Figure 4.10  Timer triggering of DAC

78	 Digital Interface Design and Application

DAC every 30 µs and as the triangle amplitude is 63 steps a half‐period of just
under 2 ms will be observed.

#include “stm32f4_Discovery.h”

void init_dac(void);
void init_timer(void);

int main(void)
{

init_timer();
init_dac();

/* Enable the DAC channel */
DAC_Cmd(DAC_Channel_1, ENABLE);

while(1);
{
}

}

void init_dac(void)
{
/* DAC channel1 Configuration */

GPIO_InitTypeDef GPIO_InitStructure;
DAC_InitTypeDef DAC_InitStructure;

/* Enabled write access to DAC registers */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);

/* Configure DAC_OUTx (DAC_OUT1: PA4) in analogue mode.*/
/* Enable the GPIO AHB clock using */

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

/* DAC channel 1 (DAC_OUT1 = PA.4) configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOA, &GPIO_InitStructure);

DAC_InitStructure.DAC_Trigger = DAC_Trigger_T6_
TRGO;

DAC_InitStructure.DAC_WaveGeneration = DAC_
WaveGeneration_Triangle;

Analogue Interface Subsystems	 79

DAC_InitStructure.DAC_LFSRUnmask_
TriangleAmplitude = DAC_TriangleAmplitude_63;

DAC_InitStructure.DAC_OutputBuffer = DAC_
OutputBuffer_Enable;

DAC_Init(DAC_Channel_1, &DAC_InitStructure);
}

void init_timer(void)
{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

/*TIM6 Clock Enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);
/* Time Base Configuration 84MHz / ((ARR + 1) * PSC)*/
/* PrescalerValue = (uint16_t) ((SystemCoreClock / 2) /

28000000) -1;*/
TIM_TimeBaseStructure.TIM_Period = 2;
TIM_TimeBaseStructure.TIM_Prescaler = 840;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;

TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure);

/* Prescaler Configuration */
TIM_PrescalerConfig(TIM6, 840, TIM_PSCReloadMode_

Immediate);

TIM_SelectOutputTrigger(TIM6, TIM_TRGOSource_Update);

TIM_Cmd(TIM6, ENABLE);
}

4.4.3  DAC Using DMA

When more complex waveforms are required, the new sample value can be
calculated in software at each step or pre‐calculated and placed in a table of
consecutive values. When this is set up the DAC data can be supplied directly
through DMA, this will be discussed more extensively in Chapter 6 but a
simple example is given here as a taster. The DMA method is much more effi-
cient because it only requires processor intervention during the setup phase
and can be optimised to deliver the required waveform at the appropriate
sample rate for the required application.

80	 Digital Interface Design and Application

The main issues to take account of in the code are defining the address in
memory from which the data will be accessible and the address of the DAC
holding register (DHR), which is the destination of the DMA transfer. The
Keil debug mode reveals all the DAC addresses, if this subunit is inspected it
will be found that DHR is 0x40007408, and if the data is created as a constant
array C can determine its address by using the ‘&’ sign. The waveform timing
between samples is determined entirely by the DAC trigger from TIM6 so in
this example a frequency of 100 Hz was chosen so if there are to be n samples

the sample rate s is (100 × n) and the TIM6 ARR must be set to
84 106

s
 when

the TIM6 prescaler is zero, that is
84 10

100 32
26250

6

 when there are 32 samples.

Note that the DMA mode is set to circular so that the waveform is automati-
cally repeated.

#include "stm32f4_discovery.h"
#include "stm32f4xx_dma.h"

void dma_setup(void);
void init_timer(void);

#define DAC_DHR12R1_ADDRESS 0x40007408

const uint16_t Sine12bit[32] = {
2047, 2447, 2831, 3185, 3498, 3750, 3939, 4056,

4095, 4056,
3939, 3750, 3495, 3185, 2831, 2447, 2047, 1647,

1263, 909,
599, 344, 155, 38, 0, 38, 155, 344, 599, 909,

1263, 1647};

int main(void)
{

dma_setup();
init_timer();

/*DMA through Stream 5 Channel 7*/
DAC_DMACmd(DAC_Channel_1, ENABLE);

while(1)
{
}

}

Analogue Interface Subsystems	 81

void dma_setup(void)
{

DAC_InitTypeDef DAC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);

/* DAC channel1 Configuration */
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T6_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_

WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_

OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);

/* DMA1_Stream5 channel7 configuration */
DMA_DeInit(DMA1_Stream5);
DMA_InitStructure.DMA_Channel = DMA_Channel_7;
DMA_InitStructure.DMA_PeripheralBaseAddr =

(uint32_t)DAC_DHR12R1_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr =

(uint32_t)&Sine12bit;
DMA_InitStructure.DMA_DIR = DMA_DIR_

MemoryToPeripheral;
DMA_InitStructure.DMA_BufferSize = 32;
DMA_InitStructure.DMA_PeripheralInc = DMA_

PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_

Enable;
DMA_InitStructure.DMA_PeripheralDataSize =

DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_

MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_

High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_

Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_

FIFOThreshold_HalfFull;

82	 Digital Interface Design and Application

DMA_InitStructure.DMA_MemoryBurst = DMA_
MemoryBurst_Single;

DMA_InitStructure.DMA_PeripheralBurst = DMA_
PeripheralBurst_Single;

DMA_Init(DMA1_Stream5, &DMA_InitStructure);

/* Enable DMA1_Stream5 */
DMA_Cmd(DMA1_Stream5, ENABLE);

/* Enable DAC Channel 1 */
DAC_Cmd(DAC_Channel_1, ENABLE);

/* Enable DMA for DAC Channel1 */
DAC_DMACmd(DAC_Channel_1, ENABLE);

}

void init_timer(void)
{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

/*TIM6 Clock Enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6,

ENABLE);
/* Time Base Configuration */
/* PrescalerValue = (uint16_t) ((SystemCoreClock / 2) /

28000000) -1;*/
TIM_TimeBaseStructure.TIM_Period = 0xff;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;

TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure);

/* Prescaler Configuration */
TIM_PrescalerConfig(TIM6, 0, TIM_PSCReloadMode_

Immediate);
/* TRGO Source selection */
TIM_SelectOutputTrigger(TIM6, TIM_TRGOSource_

Update);

TIM_Cmd(TIM6, ENABLE);
}

Analogue Interface Subsystems	 83

4.5  Software Control of ADC

Using the STM32F4 peripherals package stm32f4xx_adc.c file provides firmware
functions to manage the following functionalities of the ADC peripheral:
Initialisation and Configuration (in addition to ADC multi‐mode selection),
Analogue Watchdog configuration, Temperature Sensor, Vrefint (Voltage
Reference internal) and VBAT management, Regular Channels Configuration,
Regular Channels DMA Configuration, Injected Channels Configuration, as well
as Interrupts and Flags management. There are no less than 20 registers controlling
various elements of the converter and Appendix C gives a summary of the
functions available. The physical pin connections are summarised in Table 4.2,
where it will be seen that some pins are shared between some of the converters.

The programs here illustrate the set up for a simple converter configuration
and a handshake interface control based on the end‐of‐conversion flag (EOC).
Note that the processor will wait until this event occurs so there is no chance
of an erroneous value being retrieved from the converter data register.

int main(void)
{

ADC_InitTypeDef ADC_InitStructure;
ADC_CommonInitTypeDef ADC_CommonInitStructure;
GPIO_InitTypeDef GPIO_InitStructure;

int value;

/* Enable ADC2, and GPIO clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE);

/* 2. ADC pins configuration */

/* Configure ADC2 Channel 12 pin as analog input */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOC, &GPIO_InitStructure);

/* 3. Configure the ADC Prescaler, conversion
resolution and data */

/* alignment using the ADC_Init() function. */

/* ADC Common Init */
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_

Independent;

84	 Digital Interface Design and Application

ADC_CommonInitStructure.ADC_Prescaler = ADC_
Prescaler_Div2;

ADC_CommonInitStructure.ADC_DMAAccessMode =
ADC_DMAAccessMode_Disabled;

ADC_CommonInitStructure.ADC_TwoSamplingDelay =
ADC_TwoSamplingDelay_5Cycles;

ADC_CommonInit(&ADC_CommonInitStructure);

/* ADC3 Init */
ADC_InitStructure.ADC_Resolution = ADC_

Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge =

ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 1;
ADC_Init(ADC3, &ADC_InitStructure);

/* 4. Activate the ADC peripheral using ADC_
Cmd() function. */

ADC_Cmd(ADC2, ENABLE);

/* Start ADC2 Software Conversion */
ADC_SoftwareStartConv(ADC2);

while (ADC_GetFlagStatus(ADC2, ADC_FLAG_EOC) != 1)
{
}
value = ADC_GetConversionValue(ADC2);

}

Table 4.2  ADC input allocations

IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7
ADC1 A0 A1 A2 A3 A4 A5 A6 A7
ADC2 A0 A1 A2 A3 A4 A5 A6 A7
ADC3 A0 A1 A2 A3 F6 F7 F8 F9

IN8 IN9 IN10 IN11 IN12 In13 IN14 IN15
ADC1 B0 B1 C0 C1 C2 C3 C4 C5
ADC2 B0 B1 C0 C1 C2 C3 C4 C5
ADC3 F10 F3 C0 C1 C2 C3 F4 F5

Analogue Interface Subsystems	 85

This procedure looks quite complex mainly because there are three discrete
elements that must be dealt with in the set up phase, firstly the ADC analogue
input pins configuration, secondly the configuration of the ADC common
aspects such as the prescaler that determines the conversion clock rate and the
sampling structure, thirdly the individual ADC aspects such as its conversion
resolution and data alignment. Some form of trigger is needed to activate the
conversion and a simple software trigger is used here. Note that ADC2 is used
in this example and that its input on Channel 12 is connected via GPIOC pin 2.

A further example using a timer trigger and an efficient DMA interface will
be given in the next section.

4.5.1  ADC Interface Using Timer and DMA

In this procedure the converter is used to make 100 measurements precisely
timed at 100 µs intervals. When the block of readings is complete the DMA
interface will signal the software so that it can process the results as required.

The main issues that the code has to address in addition to the usual aspects
are configuring ADC3 for DMA in this case. The procedure follows the now
familiar steps, enabling the peripheral clocks, setting up the physical pin, in
this case GPIOC pin 2, as analogue input for channel 12 and configuring the
ADC common and individual aspects as well as its channel configuration. It
will be seen later that ADC3 uses the controller DMA2 stream 0 or 1 channel
2 and for this example stream 0 is chosen. The memory area receiving the
ADC values is defined in the main module and the DMA controller needs to
reflect the buffer length specified. The DMA process is managed in this
example by monitoring the DMA flag status in DMA_FLAG_TCIFx to deter-
mine when the stream transfer is complete. A much more effective arrange-
ment would be employ interrupts that can be generated by the DMA controller
because the processor would not be idly waiting for the transfer to complete.

int main(void)
{

uint16_t ADC3_Values[100];

config_ADC_pins(); /* GPIOC pin 2 */
config_ADC_common(); /* independent */
config_ADC3_values(); /*ADC3 configuration */
config_DMA2_stream(); /* stream 0 channel 2 */

/* Enable DMA request after last transfer
(Single-ADC mode) */

ADC_DMARequestAfterLastTransferCmd(ADC3, ENABLE);

86	 Digital Interface Design and Application

/* Enable ADC3 DMA */
ADC_DMACmd(ADC3, ENABLE);

/* Enable ADC3 */
ADC_Cmd(ADC3, ENABLE);

/* Start ADC3 Software Conversion */
ADC_SoftwareStartConv(ADC3);

while (1)
{

while(DMA_GetFlagStatus(DMA2_Stream0, DMA_
FLAG_TCIFx) != 1)

{
}

/* process block of data */
 /* convert the ADC value (from 0 to 0xFFF) to a
voltage value (from 0V to 3.3V)*/

ADC3ConvertedVoltage = ADC3ConvertedValue
*3300/0xFFF;

}
}

void config_DMA2_stream (void)
{

DMA_InitTypeDef DMA_InitStructure;

/* Enable DMA2 clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);

/* DMA2 Stream 0 channel 2 configuration */
DMA_InitStructure.DMA_Channel = DMA_Channel_2;
DMA_InitStructure.DMA_PeripheralBaseAddr =

(uint32_t)ADC3_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr =

(uint32_t)&ADC3_Values;
DMA_InitStructure.DMA_DIR = DMA_DIR_

PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_

PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_

Disable;
MA_InitStructure.DMA_PeripheralDataSize =

DMA_PeripheralDataSize_HalfWord;

Analogue Interface Subsystems	 87

DMA_InitStructure.DMA_MemoryDataSize = DMA_
MemoryDataSize_HalfWord;

DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_

Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_

FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_

MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_

PeripheralBurst_Single;
DMA_Init(DMA2_Stream0, &DMA_InitStructure);
DMA_Cmd(DMA2_Stream0, ENABLE);

}

/* Configure GPIO pin 2 for ADC3 Channel 12 as
analog input */
void config_ADC_pins(void)
{

GPIO_InitTypeDef GPIO_InitStructure;

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);

}

/* ADC Common Init */
void config_ADC_common(void)
{

ADC_CommonInitTypeDef ADC_CommonInitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE);

ADC_CommonInitStructure.ADC_Mode = ADC_Mode_
Independent;

ADC_CommonInitStructure.ADC_Prescaler = ADC_
Prescaler_Div2;

ADC_CommonInitStructure.ADC_DMAAccessMode =
ADC_DMAAccessMode_Disabled;

ADC_CommonInitStructure.ADC_TwoSamplingDelay =
ADC_TwoSamplingDelay_5Cycles;

88	 Digital Interface Design and Application

ADC_CommonInit(&ADC_CommonInitStructure);
}

/* ADC3 Init */
void config_ADC3_values(void)
{

ADC_InitTypeDef ADC_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE);

ADC_InitStructure.ADC_Resolution = ADC_
Resolution_12b;

ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge =

ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_

Right;
ADC_InitStructure.ADC_NbrOfConversion = 1;
ADC_Init(ADC3, &ADC_InitStructure);

/* ADC3 regular channel 12 configuration */
ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 1,

ADC_SampleTime_3Cycles);
}

4.6  Programming Challenge

A data logging application is required that records temperature readings over a
long period assessing the maximum and minimum values over a period of 24 h.
Readings should be taken every minute and these should be derived from
actual readings every 10 s. A simple temperature sensor such as LM35CZ can
be connected up to the Discovery board as shown in the circuit Figure 4.11.

+5V

LM35CZ

Temperature
sensor

GPIOC Pin 2
(ADC2 chennel 12)

Figure 4.11  Temperature sensor circuit

Analogue Interface Subsystems	 89

The transfer relationship for the LMC35 in its simplest mode is 10 mV per °C
so at 25°C the output will be 250 mV, conveniently in the converter input range.

4.7  Conclusion

This chapter has focussed on the analogue input and output interface tech-
niques provided within the STM32F4 device. A brief introduction to converter
technology has been included to establish the principles involved but this is by
no means complete as there are many alternative designs in use that exhibit
enhanced performance in terms of conversion rate, which is needed in more
demanding applications. Many books focus on converter technology and these
should be consulted for further explanation.

Many alternative modes of operation are available from the STM32F4
converter subsystems but it is hoped that the examples given will provide a
starting point for a wide range of practical applications.

In a new application the overall requirements must be carefully defined and
the key aspects of the conversion process such as resolution and throughput
determined. If the STM32F4 converter modules can meet these basic require-
ments, the mode can then be selected to match the operating scheme demanded.

The STM32F4 Discovery applications package gives further examples.
One describes how to use the ADC and DMA to transfer continuously con-
verted data from ADC3 channel 7 to memory. Each time an end of conversion
occurs, the DMA transfers the converted data in circular mode. Another
describes using the ADC peripheral to convert a regular channel in triple inter-
leaved mode and by using DMA in mode 2, where two values are transferred
on each DMA request and achieving a very high throughput rate.

References
[1] � Hoeschele, D.F. (1994) Analog‐to‐Digital and Digital‐to‐Analog Conversion Techniques,

2nd edn. John Wiley & Sons, Ltd.
[2] � ST Microelectronics (2011) STM32F4 Reference Manual. RM009 (ARM Cortex‐4)

Reference Manual Doc ID 018909 Rev 1, www.st.com (accessed September 2014).

Further reading
ST Microelectronics (2012) STM32F4 Data Sheet. S32F405xx (ARM Cortex‐4) Data Sheet

Doc ID 022152 Rev 3, www.st.com (accessed September 2014).

http://www.st.com
http://www.st.com

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

This chapter will focus on serial communications interfaces because these form
an important aspect of many embedded system designs. In particular industry
standard communication protocols will be described together with the design
of supporting software. Examples will feature RS232 Communications, inter‐
integrated circuit (I2C) and serial peripheral interface (SPI) protocols and the
universal serial bus (USB). Although C code will be employed for the examples,
particular aspects of the linked assembler code will be explained where this is
significant for enhanced performance.

5.1  Introduction

Serial interfaces are required when the complexity and cost of a parallel inter-
face cannot be justified such as where the communication distance is more
than a few meters. In a serial interface the data bits are assembled into a serial
pattern for transmission along a single wire to their destination. In order to
recover the original data a synchronised clock is required in the receiver to
extract the bits from the serial stream as they arrive. Some serial interfaces use
a supplementary dedicated connection for clock, whereas others require the receiver
to regenerate the clock locally, obviating the need for any extra connections.

Serial Interface Subsystems

5

Serial Interface Subsystems	 91

For short distance serial interfaces a clock connection can be accommodated
because the cost will not be significant but for longer distance communica-
tions a local clock regeneration arrangement is the only feasible alternative.
Some serial systems employ an encoding process where the data is delivered
in a form that will enable self‐clocking to be established, an example of this is
the Manchester code. In essence this uses a high to low transition at the bit
time centre to encode a one and a high to low transition at the bit centre to
encode a zero. It can be observed from Figure 5.1 that this requires many extra
signal transitions and consequently a greater bandwidth in a communications
channel. It is, however, used in the 10 Mbs Ethernet local area network imple-
mentation. As a reminder NRZ means non‐return to zero between bits.

5.2 � RS232 Universal Asynchronous Receiver/Transmitter
(UART) Communications

Historically, RS232 was used to interconnect computers and distant terminals
and was the first serial protocol to be widely accepted throughout industry for
these longer distance communications. It uses a single wire pair; that is signal
and ground and delivers reliable communication at low cost. To solve the
clock regeneration problem this scheme uses a local clock that is triggered by
the falling edge at the start of the signal group and synchronism is assumed to
be accurate enough over a limited group of following bits. Before the block of
8 data bits is transmitted the serial line is held high so that the start of data is
clearly defined. The serial signal format including the essential stop bit to
return the line to the high state is shown in Figure 5.2. The special hardware
module designed for this function is known as a universal asynchronous
receiver transmitter (UART) and this includes the clock regeneration. In prac-
tice the clock regeneration is usually based on a measurement of the start‐bit
length and then the following bits are accepted at the approximate centre of
their bit position, thus avoiding the inevitable distortion of the signal edges
that accumulate over a lengthy connection path.

NRZ
data

Manchester
data

0 1 1 1 0 0 1 0

Figure 5.1  Manchester code

92	 Digital Interface Design and Application

The STM32F4 includes six blocks that can implement UART functions but
four of them can also implement synchronous communications where a
controlling clock signal is generated, so they are actually called universal
synchronous/asynchronous receiver/transmitter (USART) modules [1].

The diagram in Figure 5.3 shows the main blocks of a typical UART
module. The baud rate generator provides the bit timing clocks for transmitter
and receiver shift registers. A typical rate of 9600 bps will require a trans-
mitter clock period of 1/9600 almost exactly 104 µs, this is usually derived
from the internal system clock and the UART reference manual provides
values for the BRG (Baud Rate Generator) registers to achieve a variety of
standard rates [1].

In the default mode the equation for the baud rate divider (BRDIV) is

BRDIV
fck

BRATE8 2
 when f

ck
 is set to 8 MHz the divider becomes 52.0625.

In many designs the fractional part is ignored resulting in a slight but insignif-
icant error. In the STM32F4 USART implementation the fractional part of the
divider is set in the least significant 4 bits (0.0625 × 16) = 1 so the resulting
value of baud rate register (USARTDIV) is 0x0341 [1]. This provides a con-
siderable improvement in clock accuracy. The STM32F4 interface utilities
actually perform this calculation for the user so only the actual baud rate
required is submitted in the initialisation function call.

S
TA

R
T

0 0 0 0 01 1 1

S
TO

P

Figure 5.2  RS232 data format

Transmit data register (TDR)

Transmit shift register

TX
RX

Receive shift register

Baud rate
generator

Receive data register (RDR)

Internal bus

Figure 5.3  UART module

Serial Interface Subsystems	 93

On the STM32F4DIS‐BB base board USART6 is available and a special
higher voltage buffer SP3232EEY to implement the standard 12V signal is
included for the 9‐pin D connector COM1. Code to connect the pins and ini-
tiate USART6 is shown next. Note the USART nomenclature used on the
STM32F4 to emphasise the additional synchronous option of this module [1].

void GPIO_set_ioports(void)
{

/* USART6 uses Alternate Function 8 */
/* TX is on GPIOC Pin6 and RX is on GPIOC Pin7 */

GPIO_InitTypeDef GPIO_InitStructure;

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);

/* TX output and RX input*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOC, &GPIO_InitStructure);

/* select Alternate functions (GPIOC->AFR[0] =
0x88000000;)*/

GPIO_PinAFConfig(GPIOC, GPIO_Pin_6, GPIO_AF_USART6);
GPIO_PinAFConfig(GPIOC, GPIO_Pin_7, GPIO_AF_USART6);

}

void USART6_setup(void)
{

USART_InitTypeDef USART_InitStruct;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART6,
ENABLE);

USART_InitStruct.USART_BaudRate = 9600;
USART_InitStruct.USART_WordLength = USART_

WordLength_8b;
USART_InitStruct.USART_StopBits = USART_StopBits_1;
USART_InitStruct.USART_Parity = USART_Parity_No;
USART_InitStruct.USART_Mode = USART_Mode_Rx |

USART_Mode_Tx;

94	 Digital Interface Design and Application

USART_InitStruct.USART_HardwareFlowControl =
USART_HardwareFlowControl_None; /* if using
both _RTS_CTS */

USART_Init(USART6, &USART_InitStruct);
USART_Cmd(USART6, ENABLE);

}

As the serial interface is quite slow compared to code execution the handling
of transfers to the transmit data register (TXDR) and from the receive data
register (RXDR) must be constructed carefully to prevent possible overruns in
the case of transmission or reception not being completed. The code that
follows shows how the transmit register empty (TXE) flag is tested in the case
of transmission, transmission complete (TC) is also tested to safeguard the
process. For reception receiver not empty (RXNE) is tested to wait for the
buffer to be full, then the received data register can be accessed.

void char_print(char p)
{
/* outut to serial interface on UART6 */

/* wait for TXE */
while (USART_GetFlagStatus(USART6, USART_

FLAG_TXE) != 1)
{
}
USART_SendData(USART6, p);
while (USART_GetFlagStatus(USART6, USART_

FLAG_TC) != 1)
{
}

}

char get_char(void)
{

/* input via serial input on UART6 */
char p;
/* wait till buffer is full */
while (USART_GetFlagStatus(USART6, USART_FLAG_

RXNE) != 1)
{
}

Serial Interface Subsystems	 95

p = USART_ReceiveData(USART6);
return(p & 0x7f);

}

These functions could quite easily be implemented in assembler code
because the USART6 registers addresses and the bit test positions are well
documented. However, there would not be much advantage in using this
approach as the data transfer rate is quite slow in any case.

Note that when the PC Hyper‐terminal is used it will usually be essential to
defeat the hardware flow control, which is implemented by default. This is
achieved by supplying a signal for the request to send (RTS), pin 7 on the
9‐way D‐type connector, to activate transmission from the keyboard. This can
be obtained from the clear to send (CTS), pin 8 on the D‐type, so a wire link
between these pins on the back of the Discovery base board will satisfy this
requirement.

5.3  The I2C Interface

The I2C was developed for short interconnections between components,
offering a considerable economy in situations where multiple connec-
tions for data, address and control would have been used otherwise. This
greatly simplifies the printed circuit board (PCB) design as it only
requires two connections, apart from the common ground. This is shown
in the diagram Figure 5.4.

The interfaced components have a master/slave relationship and the con-
nections are named serial clock (SCL) and serial data (SDA). Both use an
open‐drain configuration with pull‐up resistors so that drive can be activated

STM32F4 Pull-up
resistors10

k

10
k

STMP811
SCL

VDD

SDA

I/O expanderGPIOB 8
(12S1 SCL)

GPIOB 9
(12S1 SDA)

Figure 5.4  An I2C interface circuit

96	 Digital Interface Design and Application

in either device at appropriate times. The STM32F4 has three independent
I2C interface modules and two further modules that can take on the I2C role
if required. Read and write data transfers across the I2C bus are defined by the
diagrams shown in Figure 5.5.

The start condition is defined when SCL is high and SDA falls and the stop
condition is defined when SCL is high and SDA rises. The register address
is 7 bits and the eighth least significant bit (LSB) indicates whether a read
or write (R/W) operation follows. The STM32F4 support utilities file
stm32f4xx_i2c.c provides software resources to initialise the I2C hardware
block in preparation for communication and but it is up to the user to assemble
message sequences correctly in software.

The acknowledge bit (ACK) is generated by the receiving device and the
master provides an extra clock cycle for this to happen. Note that a new start
(RESTART) is needed to switch the direction on SDA in the read processes. To
terminate the read transfers the master issues a negative acknowledgement
(NACK) on the final read cycle. This ensures that the slave releases the SDA line
so that the master can generate the stop condition. In the write transfers the
master is in control so it can terminate the sequence by creating the stop condition.

The STM32F4 I2C interface also offers a 10‐bit addressing mode for com-
ponents with extended capability.

5.3.1  Using the Touch Screen with an I2C Interface

A useful example of an I2C interface is set up on the STM32F4 DIS_LCD
board forming an interface with the touch screen controller STMP811. This
component also contains a temperature sensor so this forms the subject of this
example. The code that follows shows how the I2C module connections are

One byte read S
ta

rt

S
to

p

S
to

p

S
to

p

S
to

p

Device
address

Device
address

Data
read

Data
read

Data
read + 1

Key

A
C

K

A
C

K

A
C

K
A

C
K

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

N
A

C
K

N
A

C
K

A
C

K

A
C

K

A
C

K

A
C

K

R
es

ta
rt

R
es

ta
rt

R
/W

=
0

R
/W

=
0

R
/W

=
0

R
/W

=
0

R
/W

=
1

R
/W

=
1

Data
read + 2

Slave Master

Reg
address

Reg
address

Reg
address

Reg
address

S
ta

rt Device
address

Device
address

Data
to be

written

Data to
write

Data to
write + 1

Data to
write + 2

S
ta

rt Device
address

S
ta

rt Device
address

More than one
byte read

One byte write

More than one
byte write

Figure 5.5  I2C read and write modes

Serial Interface Subsystems	 97

set up and the initialisation is achieved. Notice that the pins are defined as
open‐drain (OD) so that the SCL and SDA lines can perform correctly. Also
in this case the I2C clock speed is set to 100 kHz.

void I2C_InitPinsandI2C(void)
{

I2C_InitTypeDef I2C_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

/* set up B8 (SCL) and B9 (SDA) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 |

GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOB, &GPIO_InitStructure);

GPIO_PinAFConfig(GPIOB, GPIO_Pin_8, GPIO_AF_I2C1);
GPIO_PinAFConfig(GPIOB, GPIO_Pin_9, GPIO_AF_I2C1);

/* Note: the ST code module is incorrect so a
direct method is used here */

GPIOB->AFR[1] = 0x044;

I2C_InitStructure.I2C_ClockSpeed = 100000;
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
I2C_InitStructure.I2C_OwnAddress1 = 0x00;
I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
I2C_InitStructure.I2C_AcknowledgedAddress =

I2C_AcknowledgedAddress_7bit;

I2C_Init(I2C1, &I2C_InitStructure);
I2C_AcknowledgeConfig(I2C1, ENABLE);
I2C_Cmd(I2C1, ENABLE);

}

A particular sequence of actions is required to set up the STMP811 initialis-
ing and reading the various registers. It has no less than 49 internal registers

98	 Digital Interface Design and Application

controlling its four main functions, a GPIO expander, an analogue to digital
(AD) converter, a touch‐screen interface and a temperature gauge. System
control register two at address 0x04 can select the parts that are actually
needed as detailed in Table 5.1.

Firstly the elements I/O Expander are all switched on by writing zero to
register 0x04, secondly the temperature subsystem mode is selected by writing
to register TEMP_CTRL at address 0x60 where the bits have the functions
shown in Table 5.2.

Finally the temperature value is read from register 0x61 (MSB) and 0x62
(LSB).

IOE_write_reg(I2C1, 0x04, 0); /* SYS_CR2 */
IOE_write_reg(I2C1, 0x60, 7); /* TEMP_CTRL */

temp1 = IOE_read_reg(I2C1, 0x61); /* MS Byte */
temp0 = IOE_read_reg(I2C1, 0x62); /* LS Byte */

The code for writing to a register within the structure of the STMPE811 I/O
expander is shown next in the function IOE_write_register() [2]. This requires
five I2C steps as determined by the 1‐byte write sequence in Figure 5.5. Each

Table 5.1  STMP811 system control register 2

SYS_CR2 Bit # Name Function

3 TS_OFF Temperature gauge off
2 GPIO_OFF I/O expansion off
1 TSC_OFF Touch screen controller off
0 ADC_OFF Analogue to digital converter off

Table 5.2  Temperature gauge control register

TEMP_CTRL Bit # Name Function

4 THRES_RANGE 0 – greater than or equal threshold
1 – otherwise

3 THRES_EN Temperature threshold enable
2 ACQ_MODE 0 – once only

1 – every 10 ms
1 ACK Acquire temperature
0 EN Enable

Serial Interface Subsystems	 99

operation must check appropriate I2C event status bits to confirm that the
appropriate operations have been accomplished before the next one is attempted.

void IOE_write_reg(uint8_t DeviceAddr, uint8_t
RegisterAddr, uint8_t RegisterValue)
{

/* 1 send start */
I2C_GenerateSTART(I2C1, ENABLE);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

MODE_SELECT) != 1)
{}
/* 2 send device address */
I2C_Send7bitAddress(I2C1, DeviceAddr, I2C_

Direction_Transmitter);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

TRANSMITTER_MODE_SELECTED) != 1)
{}
/* 3 send register address */
I2C_SendData(I2C1, RegisterAddr);   /*ident

register select*/
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

BYTE_TRANSMITTED) != 1)
{}
/* 4 send register value */
I2C_SendData(I2C1, RegisterValue);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

BYTE_TRANSMITTED) != 1)
{}
/* 5 send stop condition */
I2C_GenerateSTOP(I2C1, ENABLE);

}

For reading the contents of a register the code next shows the seven step
sequence required as shown in the 1‐byte read case in Figure 5.5. This starts
off in the same way as the write operation but at step 4 a RESTART must be
issued so that the I2C interface can be switched to a read mode. Also it will be
observed that the last I2C cycle will have to generate the negative acknowl-
edge so the configuration is set to I2C_NACKPosition_Current just before the
single read operation in step 6.

100	 Digital Interface Design and Application

uint8_t IOE_read_reg(uint8_t DeviceAddr, uint8_t
RegisterAddr)

{
uint8_t temp;

/* 1. generate START */
I2C_GenerateSTART(I2C1, ENABLE);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

MODE_SELECT) != 1)
{}
/* 2. ADDRESS and WRITE */
I2C_Send7bitAddress(I2C1, DeviceAddr, I2C_

Direction_Transmitter);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

TRANSMITTER_MODE_SELECTED) != 1)
{}
/* 3. REG address */
I2C_SendData(I2C1, RegisterAddr);

/*outp register select*/
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

BYTE_TRANSMITTED) != 1)
{}
/* 4. RESTART */
I2C_GenerateSTART(I2C1, ENABLE);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

MODE_SELECT) != 1)
{}

/* 5. ADDRESS and READ */
I2C_Send7bitAddress(I2C1, DeviceAddr, I2C_

Direction_Receiver);
while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_

RECEIVER_MODE_SELECTED) != 1)
{}
/* 6. READ byte, NACK follows */
I2C_NACKPositionConfig(I2C1, I2C_NACKPosition_

Current);

while(I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_
BYTE_RECEIVED) != 1)

{}

Serial Interface Subsystems	 101

temp = I2C_ReceiveData(I2C1);

/* 7. send STOP*/
I2C_GenerateSTOP(I2C1, ENABLE);

return(temp);
}

It will be seen that the I/O Expander can also generate an interrupt from
various sources within its logic such as the touch sensor that can be useful in
its overall management.

Debug of interface modules of this type, where a number of different actions
have to be taken, is quite difficult to approach. It would be advantageous to
include a route to exit from the while loops if an error occurs or if the procedure
takes too long to complete. This will avoid the problem when the code gets
stuck for no apparent reason.

If one of the timers is used and set to a period of 100 ms, for example the
code shown next illustrates a possible design, here the timeout() function
returns zero until a specified time has elapsed. Different return values can be
used to identify the error reporting code section.

if (timeout())
{

DEBUG_PRINT("RX Timeout error\r\n");
return(1);

}

5.4  SPI Interface

The SPI was developed for similar short distance applications in embedded
systems as I2C but offering a considerably higher data throughput based on a
clock rate of several megahertz and considerably reduced protocol overhead.
One of its many possible applications is to form the basic mode communica-
tion link with an SD memory card. It forms a synchronous data link performing
full duplex communication between devices having a Master/Slave relation-
ship. The Master always initiates the communication process and also pro-
vides the clock allowing one or multiple Slave units to be accommodated.

The SPI link requires four connections, as shown in Figure 5.6, apart from
the common ground, these are serial clock (SCK in the figure), master out/
slave in (MOSI), master in/slave out and active low slave select (SS). Each of

102	 Digital Interface Design and Application

the three available SPI interface modules on the STM32F4 implement a single
SS select and this is clearly redundant in many cases if only a single slave is
envisaged in the design.

The SPI interface connections are mapped through GPIOA, GPIOB and
GPIOC as shown in the STM32F4 data sheet Table 8 Alternate Function
Mapping [2]. Taking SPI3 the assignment is mainly on GPIOC, SCL uses pin
10, MISO (Master In/Serial Out) uses pin 11, MOSI uses pin 12 and finally
the slave select is assigned to GPIOA pin 15. The interface is quite straightfor-
ward to set up as shown by the initialisation code next. The main issue to con-
sider is the clock edge on which you require data to become valid, this will
usually be determined by the particular peripheral in question and its data
sheet should be studied carefully.

void init_SPI_pins(void)
{

GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStruct;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,

ENABLE);

/* GPIOD Configuration: (SCK GPIOC10, MISO C11,
MOSI C12) */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_Init(GPIOD, &GPIO_InitStructure);

MOSI

MISO

SCK

MOSI

MISO

SCK

SSSS
Master Slave

Figure 5.6  SPI interface connections

Serial Interface Subsystems	 103

GPIO_PinAFConfig(GPIOC, GPIO_Pin_10, GPIO_AF_SPI3);
GPIO_PinAFConfig(GPIOC, GPIO_Pin_11, GPIO_AF_SPI3);
GPIO_PinAFConfig(GPIOC, GPIO_Pin_12, GPIO_AF_SPI3);

/* note this function mishandles AFR[1] assignment */
GPIOC->AFR[1] = 0x00066600;

SPI_InitStruct.SPI_Direction = SPI_
Direction_2Lines_FullDuplex;

SPI_InitStruct.SPI_Mode = SPI_Mode_Master;
SPI_InitStruct.SPI_DataSize = SPI_DataSize_16b;
SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStruct.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStruct.SPI_NSS = SPI_NSS_Soft;
SPI_InitStruct.SPI_BaudRatePrescaler = SPI_

BaudRatePrescaler_2;
SPI_InitStruct.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStruct.SPI_CRCPolynomial = 0;

SPI_Init(SPI3, &SPI_InitStruct);

SPI_Cmd(SPI3, ENABLE);
}

5.4.1  SPI Interface to an Analogue to Digital Converter

Although there are many components equipped with comprehensive imple-
mentations of the SPI interface many others use a more application oriented
implementation set up to accomplish specific design objectives. In this
example application the 16‐bit AD7680 was designed to operate up to 100k
samples per second so a dedicated SPI interface implementation was used.
This AD converter only has a MISO connection besides the clock and its
select signal is used to trigger new conversions. The circuit diagram is shown
in Figure 5.7.

The SPI master mode will be used to generate clocks, although no command
to the slave is actually required, so a dummy 0xff data byte is conventionally
transmitted. To start with the converter has to be brought out of its power‐
down mode before a valid conversion can be made, this can be achieved by
issuing a dummy 16 clock cycles with SS low. Conversion will start the next
time SS goes low. It will be essential to generate the SS signal by manipu-
lating a simple output because when the SPI is operating in master mode the
slave select signal generated internally remains low continuously. For this

104	 Digital Interface Design and Application

application GPIOA pin 15 is assigned as a simple output so that it can be set
low before clocks are generated and return high afterwards.

The SPI direction can be temporarily reassigned if required:

SPI_BiDirectionalLineConfig(SPI_Direction_1Line_Tx);

The code shown next will generate 16 clock cycles and wake up the converter.

GPIO_ResetBits(GPIOA, SS_Pin);
SPI_I2S_SendData(SPI3, temp);
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_

TXE) != 1)
{
}
SPI_I2S_SendData(SPI3, temp);
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_

TXE) != 1)
{
}
GPIO_SetBits(GPIOA, SS_Pin);

Data can then be retrieved from the converter as soon as the receiver reg-
ister is full. However, the converter requires 24 clock cycles on SCL to
complete the conversion and deliver all the data bits. Within this bit‐stream the
data sheet shows that there are four leading and four trailing zeros surround-
ing the 16‐bit converter data. Three bytes will need to be transmitted to achieve
this. Reading out the received byte can be interleaved with the transmission so
that the receiver buffer is ready for the next reception.

STM32F4

12
C

3

Analog devices
AD7680
16-bit
ADC

GPIOC10 SCLK
Analogue
input

MISO

SS

GPIOC11
(GPIOA15)

Figure 5.7  AD7680 connections

Serial Interface Subsystems	 105

GPIO_ResetBits(GPIOA, SS_Pin);
SPI_I2S_SendData(SPI3, temp);
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_
TXE) != 1)
{
}
SPI_I2S_SendData(SPI3, temp);
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_
RXNE) != 1)
{
}
temp1 = SPI_I2S_ReceiveData(SPI3);
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_
TXE) != 1)
{
}
while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_
RXNE) != 1)
{
}
temp2 = SPI_I2S_ReceiveData(SPI3);

Further code along the same lines will be needed to complete the required
24 clock cycles. The slave select pin can be taken high again after all the
clocks have been delivered.

5.5  HDLC Serial Communication

As the demand for high speed digital communication increased the limitations
and overheads of the simple strategies described earlier became evident. Also
with the advent of improved techniques such as the phase‐locked‐loop (PLL)
it became much more straightforward to regenerate a reliable clock in the
receiver using the data edges as a reference. The PLL has inherent inertia like
its mechanical counterpart so its operation will not be compromised if some
of the data edges are missing, such as when there are consecutive ones or
zeros. All that must be insured is that such a constant one or zero situation is
not allowed to persist too long. The High‐Level Data Link Control (HDLC)
scheme employs extra bits stuffed into the data stream every time there are
five consecutive ones, these can easily be removed in the receiver to restore
the original data. The start of a data frame is still required so a special Flag

106	 Digital Interface Design and Application

symbol of six consecutive ones is used, this can never occur anywhere else in
the frame. The frame is transmitted LSB first in the NRZI format where con-
secutive ones remain high and zeros change at the centre of bit time. This
ensures a data transition at least every 6 bit times during the frame and every
7 during the flags. Specialised hardware in the transmitter and receiver inter-
face modules handles these operations, which mark out clearly the frames
boundaries and provide enough edges to stabilise the PLL clock. The resulting
frame structure is shown in Figure 5.8.

The Address byte effectively forms a channel number to distinguish pri-
mary and secondary sources.

The control byte distinguishes three types of frame as shown in Figure 5.9,
Information (I), Supervisory (S) and Unnumbered (U). In the information
frame control byte there are both send N(S) and receive N(R) sequence
numbers encoded in three bits so error control information can be included. In
a later version the sequence numbers were extended to 7 bits to improve
efficiency. The supervisory frame is used for flow and error control when
there is no data to send, there are only four possible frames in this group. The
U frames are used mainly for link set up and management functions.

The P/F bit has two functions, Poll when set by the primary to obtain a
response from a secondary, and Final when set by the secondary to indicate a
response or the end of a transmission sequence.

N (R)

N (R)

U U U U

S S

N (S)

7 6 5 4 3 2 1 0

U 1 1

0

0 I - Frame

S - Frame

U - Frame

1P/F

P/F

P/F

Figure 5.9  HDLC frame control byte

Bit stuffing/stripping region

Flag

8 8 8 N 16 8

Address Control Information FCS Flag

Figure 5.8  HDLC frame structure

Serial Interface Subsystems	 107

The frame check sequence (FCS) is a cyclic redundancy check (CRC)
calculation that forms a very effective test for errors on the complete frame.
The frame always finishes with another Flag, which may sometimes form the
start Flag for the next frame.

Only a few of the details have been discussed here but HDLC was the inspi-
ration for the standard IEEE 802.2, which is widely employed in connecting
to the Internet so its relevance is obvious.

5.6  The Universal Serial Bus (USB)

The USB protocol was introduced to provide a more flexible and reconfigu-
rable interconnection arrangement for PC peripherals, that would allow items
to be added or removed without the need to modify and adapt the whole
system. USB is now very familiar to PC users allowing a wide variety of
devices such as digital cameras, MP3 audio players, webcams and memory
sticks to be connected. It is another serial communications protocol with many
similarities to HDLC that has been widely adopted throughout the PC industry
but is much more complex than the other techniques that have been covered in
this chapter so far. A sketch of the USB connector is shown in Figure 5.10 but
a wide range of connector physical sizes are available.

USB employs a four wire connector comprising of data lines (D+ and D−),
power and ground. The D+ and D− form a differential connection path using
a pair of twisted wires, which allows the USB to work at high speeds across a
link up to 5 m in length. The included power connection provides a 5 V supply,
supporting loads up to 100 mA, which can be used by the linked device if it
does not have its own power source. The connector is designed carefully to
ensure the order of connection so that ‘hot swapping’ can be accomplished
safely. The cable shield is connected first, then the power and ground then
finally the data lines. Three classes of data rate are recognised standards, these
are high speed (HS) 480 Mbps, full speed (FS) 12 Mbps and low speed (LS)
1.5 Mbps.

Gold contacts

Ceramic insulator

4 3 2 1

G
nd

D
+

D
–

V
cc

Figure 5.10  USB connections

108	 Digital Interface Design and Application

During USB communication data is transmitted as packets in NRZI
format, where a sequence of ones remain high but zeros always toggle at
the bit centre. The packet always starts with a special sync (00000001)
and bit stuffing is used to break up sequences of one. A special terminating
end‐of‐packet (EOP) sequence is also defined. Initially all packets are
sent from the host, via the root hub, to devices. Some of those packets
direct a device to send some packets in reply. There are three main types
of packet and these are Hand‐shake, Token and Data, which all have a
unique packet identifier (PID) as the first byte. Table 5.3 shows a basic set

Table 5.3  USB PID byte functions

PID # PID byte Name Notes

0000 0000 1111 Reserved

1000 0001 1110 SPLIT USB 2 split transaction

0100 0010 1101 PING Does endpoint accept USB 2?

1100 0011 1100 PRE Special for low‐bandwidth USB

ERR Split transaction error for USB 2

0010 0100 1011 ACK Data packet accepted

1010 0101 1010 NAK Data packet not accepted; retransmit required

0110 0110 1001 NYET Data not ready yet (USB 2)

1110 0111 1000 STALL Transfer impossible; error recovery needed

0001 1000 0111 OUT Host‐to‐device transfer address

1001 1001 0110 IN Device‐to‐host transfer address

0101 1010 0101 SOF Start of frame marker sent every millisecond

1101 1011 0100 SETUP Host‐to‐device control transfer address

0011 1100 0011 DATA0 Even # data bytes

1010 0101 1010 DATA1 Odd # data bytes

0111 1110 0001 DATA2 USB 2 data packet

1111 1111 0000 MDATA USB 2 data packet

Key:

Hand‐shake Token Data

Serial Interface Subsystems	 109

of PID values that have been extended to accommodate the USB 2 stan-
dard. The actual PID byte is transmitted LSB first and the last four bits are
a complement of the first four. This helps with error checking when the
packets are short.

5.6.1  Hand‐shake Packets

These packets only use the PID byte; error checking relies on the byte structure
alone. The only possible response from the host is ACK; if it is not ready it
won’t ask for data to be sent. NYET and ERR were added for USB2 extensions.
NYET allows the device to indicate that its buffers are full so the host can use a
PING before proceeding rather than sending a whole frame that will be rejected.

5.6.2  Token Packets

Tokens are only sent by the host and consist of the PID followed by an 11 bit
field and a 5 bit CRC. The 7 bits of this data field are the device address and
the last four give the number of data packets required. The appropriate hand‐
shake for IN and OUT tokens will be expected in response.

The SETUP token operates like an OUT token but is followed by an eight
byte DATA0 packet with a special format.

The USB host sends out a start of frame SOF token, which contains an
11‐bit incrementing number field, every millisecond to synchronise data
transfers. In USB 2 seven extra SOF tokens are introduced to define ‘micro‐
frames’ containing 60 000 bit times for the fastest data rate.

5.6.3  Data Packets

Up to 1024 data bytes can follow these PID values (64 for medium speed and
8 for low speed). The two forms DATA0 and DATA1 alternate and allow a
better error management to be achieved. The receiver keeps track of the
sequence so that when a packet is lost the sequence will be violated and a
retransmission can be requested.

The most recent acknowledgement will indicate which type was received
correctly. So unless the acknowledgement matches the last packet transmitted
it is this that will need retransmission.

The PRE packet is a special preamble issued by the host just prior to a low
bandwidth packet communication.

110	 Digital Interface Design and Application

5.6.4  USB Protocol

When the device is first connected the host performs a process called enu-
meration where it first resets the device, then assigns it an address and pro-
ceeds to interrogate it to determine the basic operating characteristics, such
as device type and data rate. All subsequent data communications are initi-
ated by the host and use a hand‐shake exchange to confirm success. The
host uses the address of the target device and specifies the class type and
direction of data transfer required. As devices are enumerated, the host
keeps track of the total bandwidth that all of the devices are requesting
whether they are using the isochronous or interrupt driven modes. They can
consume up to 90% of the total bandwidth available (i.e. with USB 2.0
480 Mbps and with USB 3.0 4.8 Gbps). After the 90% allocation is used up,
the host denies access to any other isochronous or interrupt driven devices.
Control packets and packets for bulk transfers use any bandwidth left over
(i.e. at least 10%).

The STM32F4 device contains two USB interface modules that can be con-
figured to operate as host or slave device according to the particular applica-
tion envisaged. These are both fully implemented on the Discovery board and
one of them is used to download code from the PC host and interact with the
integrated development environment (IDE) in Debug mode.

The ST Microelectronics support package contains valuable USB examples
using both the host mode and the device mode. One of the host examples in
the file USB_Host_Examples implements an inertial mouse based on the
Discovery board using the USB human interface device (HID) class and
another in the file USB_Device_Examples provides an interface, using the
USB mass storage interface class (MSC), to a memory microSD card. Other
examples using the host and device modes are also provided giving a range of
possible applications.

5.7  Programming Challenge

The development of an interface for the touch‐sensitive screen is required;
this is shown in Figure 5.11 and uses the I2C interface to communicate
with the STMP811 controller chip on the LDC35RT display board.
Whenever a user input is detected a corresponding set of X‐Y coordinates
should be delivered to the hyper terminal on the PC. Do not attempt to use
the interrupt at this stage unless you are familiar with the material in
Chapter 7.

Serial Interface Subsystems	 111

5.8  Conclusion

Various serial interface protocols including RS232, I2C, SPI and USB, have
been examined in this chapter. These are widely utilised in common practice
for a huge variety of different applications and a thorough knowledge of them
will be invaluable when a new design is considered or new system compo-
nents are required.

The software applications illustrated utilise simple polling techniques to
determine when data can be transmitted or when data has been received but it
should be becoming evident that more efficient interface management would
be a significant advantage particularly when there is a large volume of data to
deliver or retrieve. The interrupt techniques essential in achieving this will be
described in Chapter 6.

Only brief details of advanced protocols like USB have been provided in
this chapter because very comprehensive and well documented examples are
provided in the STM32F4 Discovery support software package [1]. These
examples will form a useful starting point for new design requirements.

References
[1] � ST Microelectronics (2011) STM32F4 Reference Manual. RM009 (ARM Cortex‐4)

Reference Manual Doc ID 018909 Rev 1, www.st.com (accessed September 2014).
[2] � ST Microelectronics (n.d.) STMPE811 Data Sheet, Doc ID 14489 Rev 5, www.st.com

(accessed September 2014).

STM32F4 Peripheral Driver functions from the support library:
stm32f4xx_usart.c
stm32f4xx_i2c.c
stm32f4xx_spi.c
USB Protocol Documentation from various web sites.

Analogue touch screen

STMP811
controller

SDA X+

X–

Y+

Y–

GPIOB_Pin9
GPIOB_Pin8

GPIOC_Pin13

SCL

Interrupt

Figure 5.11  Touch screen interface

http://www.st.com
http://www.st.com

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

6.1  Advanced Functions

This chapter will focus on techniques required in order to support more
complex interfaced peripherals. In particular Interrupt and direct memory
access (DMA) techniques are included to show how more efficient interface
management can be achieved. The general requirements of wireless interfaces
will be discussed and some practical examples including digital camera and
LCD panel display interfaces will be described. The STM32F4 software
examples included in the support package are an invaluable resource illus-
trating the different ways that these interfaces can be handled.

6.2  Interrupts

The general concept behind interrupts is that an event in a peripheral, such as
an analogue to digital converter (ADC) value becoming available or a timer
overflow occurring, can suspend the current processor background operation
and instigate particular processor action to deal with that event automatically.
When the event servicing action is complete the processor is allowed to return
to its normal operation once again.

Advanced Functions

6

Advanced Functions	 113

These basic concepts are shown in Figure 6.1 and the sequence of action
that will follow the arrival of the hardware interrupt request signal from the
peripheral is explained later. First the processor will complete its current
instruction, which may take a few processor clock cycles depending what
stage execution has reached. This is known as the inherent latency and some
processors are able to stop more quickly than others. In fact, the ARM Cortex
4 has very low latency for these interrupting actions. If the interrupt is accepted
the interrupt grant signal is issued as soon as this situation is achieved. At this
point the processor stores the location that the current code has reached and
uses a vector to access the starting point of the service routine. When the ser-
vice code is finally completed the processor retrieves the stored location and
resumes whatever operations were stopped.

In practical situations, when several peripherals can generate competing
interrupt requests, more complex logical arrangements are required to sort this
out. Firstly a priority scheme is usually used to determine which interrupt will
be acted upon and those that will be locked out for the present. Normally the
higher priority interrupt will be serviced first and when it is complete the
lower priority interrupt will take over. Secondly a more extensive vector table
will be needed to link the various interrupts with their different service rou-
tines. In the STM32F4 the vector table is placed in a low memory area starting
at (0x0000 0040) and each peripheral is assigned to a particular vector loca-
tion so that it can be accessed efficiently and easily.

Interface processing organised around interrupts can be much more effi-
cient in terms of processor resources than the more simple polling approach
that has been used up to now. In earlier examples documented in this book,
such as the interface involving a comparatively slow ADC, the polling
approach employed would waste valuable processor resources while the con-
verter finishes its job. Using an interrupt would allow the processor to proceed

Address

Processor

Data
Control

Interrupt request
from peripheral

Interrupt grant

ISR
entry
point

Instruction
memory

Interrup
service
routine

ISR

Figure 6.1  Interrupt basic concepts

114	 Digital Interface Design and Application

with other background tasks and automatically process converter data when it
becomes available and not before. A human user interface, such as a touch‐
screen, illustrates another application where interrupts are of great value
because for much of the time the interface will be idle and processor resources
would easily be wasted waiting for the user to take some action such as touch-
ing a new point on the screen.

So to provide interrupt capability most processors including the STM32F4
contain special hardware elements that allow an event in one of the subsys-
tems or external signal to activate the interrupt and allow the processor to
branch, using the vector table, to special related code known as the interrupt
service routine (ISR). This special functionality also allows the interrupted
processor task to be resumed automatically once the ISR is completed.

6.2.1  Interrupts in the STM32F4

The STM32F4 contains many subsystems such as timers, converters and
serial interface modules that can generate an interrupt event so there are
potentially many sources that need to be handled correctly. To facilitate inter-
rupts in this processor a vectored and prioritised system is implemented. The
vector table (see extract in Table 6.1) provides the link between the particular
interrupt and its ISR and the priority controller sorts out the situation when
several different events occur simultaneously through their predefined
priority relationship.

Table 6.1  An extract of the vector table; the full table has more than 81 entries!

Position Priority Function Address

6 13 EXT interrupt 0 0x0000 0058
7 14 EXT interrupt 1 0x0000 005C

11 18 DMA stream 0 0x0000 006C
12 19 DMA stream 1 0x0000 0070

18 25 ADC interrupts 0x0000 0088

28 35 TIM2 interrupt 0x0000 00B0
29 36 TIM3 interrupt 0x0000 00B4

31 38 I2C1 interrupt 0x0000 00BC

Advanced Functions	 115

In practice the user has to complete a number of different steps to implement
an interrupt controlled interface. Templates for some of these tasks, such as
the file stm32f4xx._it.c that is for all exception handler and peripheral ISRs,
are provided in the support software from ST Microelectronics. In essence the
user will be required to satisfy the following steps in preparing for an imple-
mentation of an interrupt driven interface.

1.  Set up the interrupt controller so that it can access the Vector Table entry
related to the peripheral hardware in question, this will include the user
selected part of priority assignment. A typical structure for this part of the
task will be shown next.

2.  Design the ISR that can handle the peripheral in question. This can be placed
in the interrupt code module as long as it is named correctly to connect with
the vector table entry definition found in the file startup_stm32f4xx.s.

3.  Enable the particular event source by setting interrupt enable (IE) bits in
the related peripheral control registers within the module involved. Notice
that interrupt pending status bits are also included in most cases to enable
interrupt management to be achieved when the interrupt is temporarily
prevented by its priority relationship, for example.

If these steps are addressed carefully a successful interrupt driven interface
will be achieved.

6.2.2  The Nested Vector Interrupt Controller (NVIC)

The function of the Nested Vector Interrupt Controller (NVIC) is to sort out the
priority of the current interrupt request and if it is accepted it will activate the
CPU in its interrupt mode. The NVIC will be used with the ADC3 in the fol-
lowing example and the steps outlined previously can be seen in the following
code. Figure 6.2 shows the important features of the NVIC diagrammatically.

Vector
Table

address

Processor
interrupt

Peripheral
hardware
signal

Index
register

Priority
register

NVIC

Figure 6.2  Part of the NVIC

116	 Digital Interface Design and Application

The position in the vector table for ADC global interrupt is 0x0000 0088, this
is calculated from the table base 0x0000 0040, the index position of the ADC
global vector 18 (0x12) and four bytes per vector. Similarly the reference files
show that the table entry for the TIM3 global vector is at index position 29 (0x1d)
so its vector is at 0x0000 00b4. (Refer to files stm32f4_misc.h, stm23f4xx.h,
stm32f4xx_it.c and startup_stm32f4xx.c in the ST support package.)

In addition to the hardware defined priority the user has an opportunity to
select 1 of 16 priority levels for a particular interrupt source. Four additional
bits in the NVIC define what are referred to as Pre‐emption priority and Sub
Priority relationships. The overall interrupt (IRQ) priority order is then sorted
by highest to lowest priority as follows:

1.  The lowest pre‐emption priority
2.  The lowest sub‐priority
3.  The lowest hardware priority, associated with the IRQ number.

The 4 bits allocated in the NVIC for these two user selectable relationships
are split into five groupings, which are selected by using the library function
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0) that sets the required
bits in the System Control register. The results of these groupings are shown
in Table 6.2.

If the Priority Group is not initialised the priority is just taken as the raw
value formed by combining the pre‐emption and sub‐priority fields. The group-
ing is not relevant when there are only one or two interrupt sources to handle.

NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemption

Priority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;

Table 6.2  NVIC priority groups

NVIC group Pre‐emption bits Sub‐priority bits

0 0 4 (0–15)
1 1 3 (0–7)
2 2 (0–4) 2 (0–4)
3 3 (0–7) 1
4 4 (0–15) 0

Advanced Functions	 117

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

The chosen ADC3 interrupt source will need to be configured and the
module will need to be switched on.

ADC_ITConfig(ADC3, ADC_IT_EOC, ENABLE);
ADC_Cmd(ADC3, ENABLE);

The following function must appended to a copy of stm32f4xx_it.c, which
also contains the exception handler templates, and saved in a file named along
the lines of AtoD_it.c, which should then be included in the user group before
compilation. The name of the function must conform to those given in startup_
stm32f4xx.s, which sets up the vector table in memory when the code is com-
piled, that is ADC_IRQHandler() and TIM3_IRQHandler() in the case
of timer TIM3, for example. A simplified ISR for the converter is shown here.

void ADC_IRQHandler(void)
{

uint16_t temp;

ITFlag = ADC_GetITStatus(ADC3, ADC_IT_EOC);

/* Access ADC and store its value */
temp = ADC_GetConversionValue(ADC3);

ADC_ClearITFlag(ADC3, ADC_IT_EOC);
}

Once the ADC is started it will continue to generate interrupts every time a
new value is ready. Don’t forget to clear the flag so that it is ready to be set by
the next conversion.

6.2.3  Exceptions

Processor exceptions are treated like interrupts and there are 16 possible excep-
tions that may be generated by the ARM CPU fault conditions that can arise
during program execution; these are set out more extensively in the ARM‐
Cortex M4 documentation but will not be discussed in any detail here. It will be
noted that the file stm32f4xx_it.c contains dummy functions to support these
exceptions so that the user can provide their own handling routines if required.

118	 Digital Interface Design and Application

6.3  Direct Memory Access (DMA)

DMA offers the most efficient way to move large volumes of data between
interfaced peripheral modules and memory because it involves the minimum
processor action to set up and no further interaction until the transfer is
complete. Figure 6.3 summarises the main hardware concept.

The DMA controller was conceived to allow high speed interfaces such as
Hard Disk bulk storage or Video output devices to have direct access to the system
memory. In a simple processor as shown here the DMA controller would take
over the address, data and control buses while the transfer proceeds. This means
that the processor action must be suspended while the DMA controller is in oper-
ation or a bus conflict would arise. In early processor designs the DMA controller
would issue a DMA request and the processor would respond with a DMA grant
just before it suspended its action. When the data transfer came to an end the pro-
cessor would be re‐enabled. This is notably inefficient however as the processor
action is stopped for significant periods while the DMA action takes over.

In a later development it was recognised that there are likely to be redun-
dant bus cycles during normal program execution so it would be possible to
interleaved DMA activity with processor activity. This would clearly be more
efficient as the processor continues working but the maximum DMA rate
might be compromised a little.

In the ARM processor the advanced bus matrix architecture allows the CPU
to continue working with some resources while the DMA accesses others.
This achieves the highest possible efficiency overall.

6.3.1  The STM32F4 DMA System

In the STM32F4 the DMA controller forms a powerful system resource and is
used in order to provide efficient high‐speed data transfer between peripherals
and memory and between memory and memory if required. Data can be
quickly moved by DMA without any CPU interaction leaving it free to process

Address

Processor

Data
Control

Memory Interfaces DMA
controller

High speed
interfaces

Figure 6.3  Simple processor with DMA

Advanced Functions	 119

application code. Based around the complex bus matrix architecture, the
DMA controller combines a powerful master bus architecture based on dual
AHBs with an independent FIFO to optimise the bandwidth of the system. A
simplified block diagram is shown in Figure 6.4. The two DMA controllers
each have eight streams (16 in total) enabling each of them to be dedicated to
managing memory access requests from one or more peripherals. Each stream
can have up to eight requests channels in total and each has an arbiter for
handling the priority between DMA requests. Up to four priority levels can be
assigned in the software to direct arbitration, very high, high, medium and
low, but the hardware will determine the final choice in the case of equal pri-
ority situations, that is request 0 has priority over request 1, for example.

6.3.2  DMA Request Mapping

The various peripherals are mapped onto specific DMA channel requests by
the hardware configuration of the STM32F4 device, specifically the digital‐
to‐analogue converters (DACs) and ADCs are mapped as shown in Table 6.3,
which is extracted from Tables 20 and 21 in the STM32F4 Reference Manual.

6.3.3  DMA Management

In general the DMA controllers can perform peripheral to memory and
memory to peripheral transactions, also memory to memory transactions can
be set up in the case of DMA2 because of its specific arrangement of connec-
tions to the bus matrix. A specified number of transactions take place and each
DMA transaction follows a three stage process; firstly loading a word or byte

Ch0

Ch7

8 Channels
for each
stream

Stream
Arbitration

FIFO
for

each stream

Peripheral
port

AHB
master

AHB
master

Memory
port

0
1
2
3
4
5
6
7

Figure 6.4  DMA controller architecture

120	 Digital Interface Design and Application

from peripheral register or memory location, then storing the data to peripheral
register or memory location and finally decrementing the transaction counter
so that it contains the number still left to complete. The DMA mode can be
chosen to increment addresses in the source or destination as required and the
circular mode can be used to handle continuous data flows or circular buffers.
The waveform generation example in Chapter 5 used this configuration. When
the circular mode is activated, the number of data items to be transferred is
automatically reloaded with the initial value programmed during the stream
configuration phase, and the DMA requests continue to be activated.

Each DMA stream has an independent four word FIFO that can be used to
temporarily store data coming from the source before transmitting it to the
destination. A software configurable threshold level, either 1/4, 1/2, 3/4 or
full, is available to determine when the DMA request is finally initiated. The
actual number of bytes transferred will depend whether bytes or words are
being used in the particular application.

DMA transfer completion is indicated by the setting of the interrupt flag bit
in the DMA interrupt status registers; this can be the result of different events
depending on the DMA mode selected. If the DMA itself is providing flow
control the flag is set when the transaction counter has reached zero in the
memory to peripheral mode or when the stream is disabled before the end of
the programmed transfer. Otherwise if the peripheral is providing flow control
the flag is set when the last external data burst or single DMA request has been
generated by the peripheral or the stream is disabled by a software command.
In either case if the transfers involve the FIFO the flag is set when the remain-
ing data has been transferred and the FIFO is again empty.

The interrupt flag can be inspected by the function shown here:

status = DMA_GetFlagStatus(DMA1_Stream0, DMA_FLAG_TCIF0);

There are good examples in the ST applications library that show the use of
DMA in several different situations.

Table 6.3  DMA allocated channels

Peripheral Controller Stream Channel

DAC1 DMA1 5 7
DAC2 DMA1 6 7
ADC1 DMA2 0 or 4 0
ADC2 DMA2 2 or 3 1
ADC3 DMA2 0 or 1 2

Advanced Functions	 121

6.4  The LCD Display Module

The STM32F4DIS_LCD module uses a Solomon Semiconductors SSD2119
driver that provides an interface to a 320 by 240 TFT LCD matrix display on
which the user can implement a wide range of designs. Each red, green or blue
pixel is driven by a 6‐bit value giving 262K (26 ×  26 × 26) possible colour rep-
resentations. The Discovery prototype board has the PS[3:0] bits hard wired
to 0010 selecting a 8/16 bit interface using an historic protocol driven by write
(WR) and read (RD). The data input port mapping shown on the data sheet,
which is reproduced in Table 6.4, is distributed between GPIOD and GPIOE
in an apparently rather awkward arrangement. One way to handle this is to set
one bit at a time using a tabular driven procedure as illustrated next. The map-
ping is actually optimised to use the Flexible Static Memory controller
(FSMC) and the ST Microelectronics example provided in the support package
uses this approach.

/* set all 16 interface bits, split into two parts
low eight first */
void setdata_16(uint16_t data_16)
{

/* low 8-bit assignments */
GPIO_TypeDef* port_L8[] = {GPIOD, GPIOD, GPIOD,

GPIOD, GPIOE, GPIOE, GPIOE, GPIOE};
uint16_t pin_L8[] = {GPIO_Pin_14, GPIO_Pin_15,

GPIO_Pin_0, GPIO_Pin_1, GPIO_Pin_7, GPIO_Pin_8,
GPIO_Pin_9, GPIO_Pin_10};

/* high 8-bit assignments */
GPIO_TypeDef* port_H8[] = {GPIOE, GPIOE, GPIOE,

GPIOE, GPIOD, GPIOD, GPIOD, GPIOD};
uint16_t pin_H8[] = {GPIO_Pin_11, GPIO_

Pin_12,GPIO_Pin_13, GPIO_Pin_14, GPIO_Pin_15, GPIO_
Pin_8, GPIO_Pin_9, GPIO_Pin_10};

int i;

/* DC = 1 and RD = 1 */
GPIO_SetBits(GPIOE, DC);
GPIO_SetBits(GPIOD, RD);

/* set low 8-bits */
for(i = 0; i < 8; i++)

122	 Digital Interface Design and Application

{
if (data_16 & 1) /* test LSB */
{

GPIO_SetBits(port_L8[i], pin_L8[i]);
}
else
{

GPIO_ResetBits(port_L8[i], pin_L8[i]);
}
data_16 = data_16 >> 1;

}

/* set high 8-bits */
for(i = 0; i < 8; i++)
{

if (data_16 & 1)
{

GPIO_SetBits(port_H8[i], pin_H8[i]);
}
else
{

GPIO_ResetBits(port_H8[i], pin_H8[i]);
}
data_16 = data_16 >> 1;

}
/* toggle WR to load data */
GPIO_ResetBits(GPIOD, WR);
TIM6_Wait(10);
GPIO_SetBits(GPIOD, WR);

}

Interface timing characteristics (LCD data sheet section 14) show that the
minimum time for WR low is 40 ns and if read is used the minimum time for

Table 6.4  Interface port mappings

Bit # 15 14 13 12 11 10 9 8
GPIO Port D10 D9 D8 E15 E14 E13 E12 E11

Bit # 7 6 5 4 3 2 1 0
GPIO Port E10 E9 E8 E7 D1 D0 D15 D14

Advanced Functions	 123

RD low is 500 ns. The WR low time is set at the end of the procedure men-
tioned previously using TIM6 giving a generous period of about 8 µs.

Before the interface can be utilised it must be initialised in the particular
way described in the data sheet, basically turning the device on and waking it
up from its sleep mode. Notice that there are two alternative interface modes
that can be used. In the simplest mode the pixel RGB value is encoded in a
single 16‐bit word, that is 5 bits for R and B, 6 bits for G, giving a possibility
of 64K different colours. In an alternative mode the RGB values are distrib-
uted between two consecutive words and 6 bits are allocated for each of the
colours giving a possibility of all 262K possibilities! The initialisation code
shown next sets important register values but most of these are actually the
power‐on reset (POR) values.

void display_on(void)
{

uint8_t temp_8;
uint16_t temp_16;

/* set R07h with 0x0021 */
temp_8 = 0x07;
set_reg(temp_8);
temp_16 = 0x0021;
setdata_16(temp_16);

/* set R00h with 0x0001 */
temp_8 = 0x0;
set_reg(temp_8);
temp_16 = 0x0001;
setdata_16(temp_16);

/* set R07h with 0x0023 */
temp_8 = 0x07;
set_reg(temp_8);
temp_16 = 0x0023;
setdata_16(temp_16);

/* set R10h with 0x0000 exit sleep mode */
temp_8 = 0x10;
set_reg(temp_8);
temp_16 = 0x0000;
setdata_16(temp_16);

124	 Digital Interface Design and Application

/* wait 30ms */
TIM6_Wait(40000);

/* set R07h with 0x0033 */
temp_8 = 0x07;
set_reg(temp_8);
temp_16 = 0x0033;
setdata_16(temp_16);

/* set R11h with TY1 = 1, TY0 = 0 for Type B
data format */

temp_8 = 0x11;
set_reg(temp_8);
temp_16 = 0x42B0; /* DFM bits 10 for

262k and TY bits 10 */
setdata_16(temp_16);

/* leave setting of R02h */
}

Writing information to the driver requires a two phase operation, first the 8
bit register address is provided while DC is set to zero and during the second
phase 16 bit register data is provided while DC is set to one. It will be observed
that an optimised code setting the lower 8 bits alone is provided by the function
set_register(). Once the initialisation is complete the interface is ready to
transfer pixel data this requires register 34 (0x22) to be selected first then the
following data transfers contain the red, green and blue pixel values placed at
specific points in the 16‐bit word as shown in Table 6.5. The write sequence
automatically increments the pixel address counter so each set of values set
successive pixels across the page. The following code shows how the pixel
colour values are encoded for this phases of the operation.

void ramdata_write(uint8_t red, uint8_t green,
uint8_t blue)
{

/* set bits for R, G and B */
data_16 = (red & 0x1f) << 10;
data_16 = data_16 | ((green & 0x3f) << 5);
data_16 = data_16 | (blue & 0x1f);
setdata_16(data_16);

}

Advanced Functions	 125

For the full screen a sequence of 320 × 240 (76 800) consecutive write
operations will be needed to complete the picture. Note that the interface
controller provides an option to access a smaller screen window if required.

6.4.1  Character Generation

In many applications it will be desirable to establish a method to write alpha-
numeric symbols on the screen so a character generator will be needed to
provide pixel values. In a typical case each character is described in terms of
its pixel pattern using a 16 column by 24 row format. This fits conveniently
into 24 consecutive words of 16‐bit memory. Taking a capital A character, for
example, will require only a few specific pixels to be activated and these pat-
terns are encoded into 16‐bit data as shown later. The blank rows below line
18 are reserved for the descending tails of characters, like g and y, for example.

The consecutive character codes can be described as a constant array in C
and a complete set of 32 character codes is provided in the LCD library (see
file fonts.c).

/* A */
const uint16_t coder[] = {0x0000, 0x0380, 0x0380,
0x06C0, 0x06C0, 0x06C0, 0x0C60, 0x0C60,

0x1830, 0x1830, 0x1830, 0x3FF8, 0x3FF8, 0x701C,
0x600C, 0x600C,

0xC006, 0xC006, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000,

};

A complete character generator will take character and column as input and
deliver a value which can be used to provide the row data. A typical character
is shown in Figure 6.5.

To write a character each line must be assembled one pixel at a time then
the cursor is moved one line down the screen and the process of assembly is
repeated. As shown in the example next the assembly process uses a single bit

Table 6.5  Pixel assignments

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R R R R R G G G G G G B B B B B
4 3 2 1 0 5 4 3 2 1 0 4 3 2 1 0

126	 Digital Interface Design and Application

mask to test the character row value and determine whether the particular
pixel should be white or black.

void DrawChar(uint16_t x_pos, uint16_t y_pos, const
uint16_t *c)
{

uint16_t index, i;
uint16_t x_addr, mask;

x_addr = x_pos;
/* set cursor start position */
set_reg(0x4e);
setdata_16(y_pos);
set_reg(0x4f);
setdata_16(x_addr);

for (index = 0; index < 24; index++)
{

mask = 0x8000;
set_reg(0x22); /* prepare write to RAM */
for (i = 0; i < 16; i++)
{

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 × 0000
0 × 0380
0 × 0380
0 × 06c0
0806c0
0 × 06c0
0 × 0c60
0 × 0c60
0 ×1830
0 × 1830
0 × 1830
0 × 3ff8
0 × 3ff8
0 × 701c
0 × 600c
0 × 600c
0 × c006
0 × c006
0 × 0000
0 × 0000
0 × 0000
0 × 0000
0 × 0000
0 × 0000

Figure 6.5  An upper‐case A character

Advanced Functions	 127

if ((c[index] & mask) == 0)
{

setdata_16(0); /* BLACK */
}
else
{

setdata_16(0xFFFF); /* WHITE */
}
mask = mask >> 1;

}
/* set next cursor start position */
x_addr++;
set_reg(0x4e);
setdata_16(y_pos);
set_reg(0x4f);
setdata_16(x_addr);

}
}

6.4.2  Parallel Interface

Although the interface described in the previous sections shows a simple and
understandable structure a much more efficient parallel interface using the
built‐in FSMC is also possible and much more efficient in terms of the data
handling requirement. The pin assignments are already set up for this mode of
operation as shown by Table 7 in the STM32F4 Discovery data sheet. The
important bus control signals provided by the FSMC are exactly matched to
the requirements of the LCD:

Chip Select (CS) is driven by Not Enable 1 (NE1) as FSMC Bank 1 is selected,
Data/Control (DC) is driven by A19, a higher order address bit,
Read (RD) is driven by Not Output Enable (NOE),
and Write (WR) is driven by Not Write Enable (NWE)

Once the FSMC is configured it is only necessary to make assignments to the
appropriate addresses to effect a register selection or data transfer operation.

#define LCD_CMD (*(uint16_t *)0x60000000)
#define LCD_DATA (*(uint16_t *)0x60100000)

128	 Digital Interface Design and Application

LCD_CMD = LCD_Reg;
LCD_DATA = LCD_RegValue;

The example provided with the Discovery firmware support in the file
stm32f4xx_discovery_lcd.c gives a working demonstration of this technique
setting up the FSMC and using it to drive the LCD. The file also shows a wide
range of useful character and simple graphic functions such as drawing lines
and circles.

6.4.3  Touch Screen

The interface to the touch sensitive screen is provided via a special controller
STMPE811 (see the resources provided in Further reading), this provides a
built‐in four‐wire touch‐screen interface using an enhanced movement tracking
algorithm to avoid excessive data output and various other useful features such
as a 8 bit GPIO extender, a 12 bit AD converter and a temperature sensor. The
interface with the ARM chip is accomplished through the I2C interface, where
transactions are passed to address 0x82 as the ADR0 pin is grounded.

The ARM cored STM32F4 device has an in‐built I2C interface so this must
be configured and enabled before any communication with the touch‐screen
interface can be established. The code shown next, as used for the examples in
Chapter 5, enables the port pins involved in the two signals requires I2C_SCL
and I2C_SDA and sets up the basic parameters for the I2C operation.

void I2C_InitPins(void)
{

I2C_InitTypeDef I2C_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

/* set up B8 (SCL) and B9 (SDA) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 |

GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;

GPIO_Init(GPIOB, &GPIO_InitStructure);

Advanced Functions	 129

GPIO_PinAFConfig(GPIOB, GPIO_Pin_8, GPIO_AF_I2C1);
GPIO_PinAFConfig(GPIOB, GPIO_Pin_9, GPIO_AF_I2C1);

/* Note: the ST code module is incorrect so AFR[1]
is set directly */

GPIOB->AFR[1] = 0x0044;

I2C_InitStructure.I2C_ClockSpeed = 400000;
I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
I2C_InitStructure.I2C_OwnAddress1 = 0x00;
I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
I2C_InitStructure.I2C_AcknowledgedAddress =

I2C_AcknowledgedAddress_7bit;

I2C_Init(I2C1, &I2C_InitStructure);

I2C_AcknowledgeConfig(I2C1, ENABLE);
I2C_Cmd(I2C1, ENABLE);

}

Communication over the I2C interface must follow the correct procedure or
protocol as described in Chapter 5. The basic sequence involves a start
condition followed by the device address and register address.

void I2C_WriteDeviceReg(uint8_t DeviceAddr, uint8_t
RegAddr, uint8_t RegVal)
{

I2C_GenerateSTART(I2C1, ENABLE);
I2C_Send7bitAddress(I2C1, DeviceAddr, I2C_

DirectionTransmitter);
I2C_GenerateSTOP(I2C1, ENABLE);

}

When I2C communication has been set up the data sheet suggests the follow-
ing are the steps to initialise and configure the touch‐screen controller (TSC):

1.  Disable the clock gating for the TSC and ADC in the SYS_CFG2 register.
2.  Configure the touch‐screen operating mode and the window tracking

index.
3.  A touch detection status may also be detected by enabling the corresponding

interrupt flag. With this interrupt, the user is informed when the touch is
detected as well as when it is lifted again.

130	 Digital Interface Design and Application

4.  Configure the TSC_CFG register to specify the ‘panel voltage settling
time’, touch detection delays and the averaging method to be used.

5.  A windowing feature may also be enabled through TSCWdwTRX,
TSCWdwTRY, TSCWdwBLX and TSCWdwBLY registers. By default,
the windowing covers the entire touch panel.

6.  Configure the TSC_FIFO_TH register to specify the threshold value to
cause an interrupt. The corresponding interrupt bit in the interrupt module
must also be enabled. This interrupt bit should be masked off during data
fetching from the FIFO in order to prevent an unnecessary triggering of this
interrupt. Upon completion of the data fetching, this bit can be re‐enabled.

7.  By default, the FIFO_RESET bit in the TSC_FIFO_CTRL_STA register
holds the FIFO in Reset mode. Upon enabling the TSC (through the EN
bit in TSC_CTRL), this FIFO reset is automatically de‐asserted. The
FIFO status may be observed from the TSC_FIFO_CTRL_STA register
or alternatively through the interrupt.

8.  Once the data is filled beyond the FIFO threshold value, an interrupt is
triggered (assuming the corresponding interrupt has been enabled).
The user is required to continuously read out the data set until the
current FIFO content is below the threshold value, and then the user
may clear the interrupt flag. As long as the current FIFO size exceeds
the threshold value, an interrupt from the TSC is sent to the interrupt
module. Therefore, even if the interrupt flag is cleared, the interrupt
flag is automatically asserted, as long as the FIFO size exceeds the
threshold value.

9.  The current FIFO size can be obtained from the TSC_FIFO_SZ register.
This information may assists the user in determining how many data sets
are to be read out from the FIFO, if the user intends to read all in one shot.
The user may also read one data set at a time.

10.  The TSC_DATA_X register holds the X‐coordinates. This register can be
used in all touch‐screen operating modes.

11.  The TSC_DATA_Y register holds the Y‐coordinates. TSC_DATA_Y reg-
ister holds the Y‐coordinates.

12.  The TSC_DATA_Z register holds the Z value. TSC_DATA_Z register
holds the Z‐coordinates.

13.  The TSCDATA_XYZ register holds the X, Y and Z values. These values
are packed into 4 bytes. This register can only be used when the touch‐
screen operating mode is 000 and 001. This register is to facilitate fewer
read operations and greater efficiency overall.

14.  For the TSC_FRACT_Z register, the user may configure it based on the
touch‐screen panel resistance. This allows the user to specify the resolution

Advanced Functions	 131

of the Z value. With the Z value obtained from the register, the user simply
needs to multiply the Z value with the touch‐screen panel resistance to
obtain the touch resistance for the current position.

15.  The TSC_DATA register allows an alternative reading format, with
minimum I2C transaction overhead, by using the non‐auto‐increment
mode (or an equivalent mode with the SPI interface). The data format is
the same as TSC_DATA_XYZ, with the exception that all the data fetched
are from the same address.

16.  Enable the EN bit of the TSC_CTRL register to start the touch detection
and data acquisition.

17.  During the auto‐hibernate mode, a touch detection can cause a wake‐up
to the device only when the TSC is enabled and the touch detect status
interrupt mask is enabled.

18.  In order to prevent confusion, it is recommended that the user does not
mix the data fetching format (TSC_DATA_X, TSC_DATA_Y, TSC_
DATA_Z, TSC_DATA_XYZ and TSC_DATA) between one reading and
the next.

19.  It is also recommended that the user should perform a FIFO reset and
TSC disabling when the ADC or TSC settings are reconfigured.

After all these issues have been addressed the touch‐screen should be ready
for action and can be re‐enabled through the SYS_CFG2 register.

6.5  The Wireless Interface Module

The Discover WiFi wireless module STM32F4DIS‐WiFi provides ‘off the
shelf’ serial to WiFi connectivity conforming to the 2.4 GHz IEEE802.11
standard that will be adequate for some applications (see Discover Wi‐Fi
UserManual_V1.5.pdf). It can also be used as a standalone WiFi station or
network controller. The module uses the SN8200 from muRata which con-
tains a controlling ARM processor and connects to the serial port USART1 on
the Discovery board (TX on GPIOB pin 6 and RX on GPIOB pin 7) as shown
in the diagram Figure 6.6. Note that an option to use an serial peripheral inter-
face (SPI) is also included.

Extensive examples are provided in the Discovery support package which
enables a wireless network to be established and a variety of operations to be
tested. The software sets up communications sockets to enable a WiFi link to
be established. The main functions of the demonstration software are listed in
Table 6.6 and these are provided as a simple menu for the user to select from.

132	 Digital Interface Design and Application

Note that when using the Discovery base board the port connected to the 9‐pin
D socket is linked via USART6 whereas USART3 is used in the example
code. Also the board rate for this link should be lower than suggested because
USART6 is connected on the lower speed APB2. This involves some editing
in the main code module only.

Selecting 1 (WiFi Scan) for example, delivers a message along the lines of
the example here:

-WifiScan

SSID: BTHomeHub-E45D CH: 5 RSSI: 171 Sec: 1
SSID: BTOpenzone CH: 5 RSSI: 171 Sec: 0
SSID: SKYE9468 CH: 11 RSSI: 162 Sec: 4

Selecting menu item 2 will allow the user to choose the SSID channel and
enter the password for the link. Further details of the other options are provided
in the WiFi User manual.

STM32F4 base board

J5_2/4

J6_3 USART RX

J6_5 USART TX

J6 11/12 GND

Discover WiFi
SN8200

USARTI_TX

USARTI_RX
(GPIOB_6)

(GPIOB_7)

GND

VDD

Figure 6.6  The WiFi module configuration

Table 6.6  Demonstration functions

0. Get WiFi Status 10. UDP Server
1. WiFi Scan 11. WiFi Off
2. WiFi Join 12. WiFi On
3. Get IP 13. HTTP get request
4. TCP Client 14. HTTP post request
5. TCP Server 15. HTTP post Json request
6. Send from socket 16. HTTP chunked post request
7. WiFi Leave 17. HTTS get request
8. AP On/Off 18. TLS (Transport Layer Security) Client
9. UDP Client 19. TLS Server (HTTPS Server)

Advanced Functions	 133

6.6  Digital Camera Interface

A low cost digital camera module is available as part of the Discovery platform
STM32F3DIS‐CAM and the support package from ST gives an example
showing how to use the digital camera interface (DCMI) module to control
the OV9655 Camera board connected via the Discovery base board
STM32F4DIS‐BB.

The OV955 camera is a 1.3 MPixel low voltage CMOS device that provides
the full functionality of a single‐chip Super Extended Graphics Array (SXGA
1280 × 1024) camera and image processor in a physically small package. This
camera has an image array capable of operating at up to 15 frames per second
in SXGA resolution with complete user control over image quality, formatting
and output data transfers. All required image processing functions are also
programmable through the OmniVision Serial Camera Control Bus SCCB
interface (like the I2C protocol).

In this example the DCMI, which is part of the STM32F4 device, is config-
ured to communicate with the camera in continuous mode. The I2C1 module
is used to configure the OV9655 camera in 8 bit RGB mode using 5:6:5 reso-
lution. The user can select between two resolutions QQVGA(160 × 120) or
QVGA(320 × 240) in order to display the captured image on the 320 × 240
LCD, this selection is performed in the ‘main.h’ file.

All camera data received by the DCMI are transferred through the DMA
and displayed on the LCD panel that uses a parallel FSMC interface. As a
result the CPU is released to execute other application tasks.

The flexible DCMI is a synchronous parallel interface that can receive
high‐speed data flows up to 54 Mbytes/s. It consists of up to 14 data lines
(D13‐D0) and a pixel clock line (PIXCLK). The pixel clock has a program-
mable polarity, so that data can be captured on either its rising or falling edge.
A general block diagram of the DCMI is shown in Figure 6.7.

DMA

FIFO Data
extraction

A
H

B
2_

B
U

S

Control and status
registers

Synchronise

Data(13 – 0)
V_SYNC &
H_SYNC

PIX_CLK

Figure 6.7  Digital camera interface (DCMI) configuration

134	 Digital Interface Design and Application

Elements of the data stream are packed into a 32‐bit data register (DCMI_DR)
and then transferred through a general‐purpose DMA channel. The image
buffer in memory is managed by the DMA, not by the camera interface.

The data received from the camera can be organised in lines/frames (raw
YUB/RGB/Bayer modes) or can be a sequence of JPEG images. To enable
JPEG image reception, the JPEG bit (bit 3 of DCMI_CR register) must be set.

The data flow is synchronised either by hardware using the optional
HSYNC (horizontal synchronisation) and VSYNC (vertical synchronisation)
signals or by synchronisation codes embedded in the data flow.

6.7  Conclusion

This chapter has presented more detail about the Interrupt and DMA subsys-
tems implemented in the STM32F4 device. Much more detail on both is
provided in the ARM Reference Manual and this should be studied carefully
before a new application is attempted although it is hoped that the examples
provided will form a useable basis for development.

The LCD display example shows a more involved peripheral interface
utilising the basic input and output facilities. It should be noted that a much
more efficient interface is possible using the FSMC module and this is detailed
as an example in the ST support package.

The WiFi interface is briefly introduced but the reader is recommended to
download the support package and experiment with it to discover some of the
features available.

The camera interface is also explained briefly as its support package covers
the various aspects quite effectively.

Further Reading
The modules used in this chapter and their support software are all available from Farnell

Electronics.

LCD Module STM32F4DIS‐LCD:
SOLOMON SYSTECH SSD2119 TFT LCD Driver
ST Microelectronics STMPE811 resistive touch‐screen controller
WiFi Module STM32F4‐WiFi
Discover Wi‐Fi UserManual_V1.5.pdf
Camera module STM32F4DIS‐CAM:
OmniVision Serial Camera Control Bus (SCCB), www.ovt.com/download_document.php?

type=document&DID=63 (accessed 10 October 2014).

http://www.ovt.com/download_document.php?type=document&DID=63
http://www.ovt.com/download_document.php?type=document&DID=63

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

This chapter will provide well documented case studies to illustrate the
concepts described in earlier chapters and explain some useful concepts in C
to process complex input data formats. Although these applications are based
on the STM32F4 Discovery platform, many of the considerations discussed
apply whatever platform is envisaged for a final product. So these examples
should provide a useful resource for implementations on future products and
applications. The particular applications that will be considered here include
a Magnetic Compass module, an MSF time receiver and a simple GPS (Global
Positioning System) navigator.

7.1  An Open‐Loop Digital Compass

In this application a digital compass in the form of a Freescale Semiconductor
MAG3110 Digital Magnetometer [1] is employed. A small module containing
this sensor SEN‐12670 is available from Sparkfun Electronics [2]. The
MAG3110 sensor is actually a three‐axis magnetometer and uses an I2C inter-
face to control and access the three magnetic field sensors, which are mounted
mutually at right angles to each other. Several suitable interface modules are
available on the STM32F4 as there are no conflicting requirements but the

Application Case Study
Examples

7

136	 Digital Interface Design and Application

I2C2 module has been chosen in this case so the circuit arrangement is as
shown in Figure 7.1.

7.1.1  Program Design

The program should start by initialising the two I/O port pins and configuring the
I2C2 module. The main procedure then needs to follow the general scheme set
out in the MAG3110 data sheet. To start with it shows that the I2C base address
for the sensor is 0x0E so this needs to be part of the initialisation. To configure
the sensor for action the sequence required is given in the follow notes.

A short summary of the register table provided in the MAG3110 product
data sheet is given for reference in Table 7.1, those registers not listed here
relate to the Z axis and user provided offset values that can be applied to each
measurement axis when required by the application.

When CTRL_1 is 0x01 this gives the active mode and the highest sampling
rate. When in standby mode setting the trigger immediate (TI) bit causes an
immediate reading but in Active mode a measurement in progress will continue.

When CTRL_2 is set to 0xA0 the sensor is automatically reset before each
reading (recommended) and the user set offsets are not applied.

The XYZDR bit can be polled to determine when new measurement data is
available or more efficiently the interrupt can be used as this is linked to the
state of the XYZDR bit.

7.1.2  Setting up the MAG3110

The MAG3110 data sheet describes many possible operating modes but in this
case an example of triggered measurements with an output data rate
(ODR) of 10 Hz and output sampling ratio (OSR) of 128 will be used.

Discovery board
Vcc

GPIOB 10 SCL
GPIOB 11 SDL

12C2

SCL
SDA12C

MAG3110

Compass module slave Master

Figure 7.1  The compass interface

Application Case Study Examples	 137

The register values required can be found in the data sheet and the following
activation scheme should be applied.

1.  Enable automatic magnetic sensor resets by setting bit 7 in CTRL_REG2.
(CTRL_2 = 0x80)

2.  Initiate a triggered measurement with OSR of 128 by writing 0x1A to
CTRL_REG1 (CTRL_1 = 0x1A).

3.  The MAG3110 will acquire the triggered measurement and go back into its
STANDBY mode. It is possible at this point to synchronise with the data
availability by polling the XYZDR bit status then the acquired data can be
read out. Alternatively an interrupt can be activated when data becomes
available.

4.  When a new measurement is required go back to step 2 to initiate a new
trigger.

When the I2C initialisation is complete a simple group of program state-
ments will implement these requirements. The single byte data write function
will accomplish the setting of CTRL_1 and CTRL_2, the singe byte read
function will test the XYZDR status and the multi‐byte read sequence will
acquire the 6 bytes of measurement data. This automatically increments the
register address between read operations.

Table 7.1  MAG3110 register summary

Register address Name Function

0x00 DR_STATUS Per channel new data ready status
Bit 4 XYZDR, Bit 1 YDR, Bit 0 XDR

0x01 OUT_X_MSB Bits 15–8
0x02 OUT_X_LSB Bits 7–0
0x03 OUT_Y_MSB Bits15–8
0x04 OUT_Y_LSB Bits 7–0
0x07 WHOAMI Device ID (0xC4)
0x0F DIE_TEMP Signed 8‐bit in °C
0x10 CTRL_1 Operating Mode Bit 0 Active Mode

Bit 1 Trigger Immediate (TI)
Bits 7–5 = data rate and oversampling
ratio. All zero gives DR 80Hz and 16
sample average

0x11 CTRL_2 Operating Mode, Bit 5 RAW, Bit 4 reset
sensor, Bit 7 Auto Reset

138	 Digital Interface Design and Application

uint8_t MAG_XYZ[6];

configure_GPIOB();
configure_I2C1();

/* configure MAG3110 */
MAG_write_reg(0x0E, 0x12, 0x80);  /* CTRL_2 = 0x80 */
MAG_write_reg(0x0E, 0x11, 0x1A);  /* CTRL_1 = 0x1A */

while ((MAG_read_reg(0x0E, 0x00) & 0x08) == 0)  /*
read XYZDR */

{
}
MAG_read_sixbyte(0x0E, 0x01, MAG_XYZ[]);/* read

X, Y and Z values */

The MAG_read and MAG_write functions are derived from the I2C functions
described in Chapter 5. In particular the 6 byte read function follows the general
format shown in Figure 5.5 and a coded implementation is given next. The code
starts by following the steps of a single byte each read. Then after a restart mul-
tiple bytes of data are read from sequential registers automatically after each
MAG3110 acknowledgement (ACK) is received until a no acknowledge (NAK)
occurs from the master followed by a stop condition (STOP) signalling the end
of transmission. As long as the fast read (FR) bit in CTRL_1 is clear, the complete
16‐bit data for each measurement is read accessing all 6 bytes sequentially.

void MAG_read_sixbyte(uint8_t ADDR, uint8_t REGA,
uint8_t XYZ[])
{

uint8_t i;
/* send start */

I2C_GenerateSTART(I2C2, ENABLE);
while(I2C_CheckEvent(I2C2, I2C_EVENT_MASTER_

MODE_SELECT) != 1)
{}
/* send device address */
I2C_Send7bitAddress(I2C2, ADDR, I2C_Direction_

Transmitter);
while(I2C_CheckEvent(I2C2, I2C_EVENT_MASTER_

TRANSMITTER_MODE_SELECTED) != 1)
{}

Application Case Study Examples	 139

/* send register address */
*/

I2C_SendData(I2C2, REGA);
while(I2C_CheckEvent(I2C3, I2C_EVENT_MASTER_

BYTE_TRANSMITTED) != 1)
{}

/* send RESTART */
I2C_GenerateSTART(I2C2, ENABLE);
while(I2C_CheckEvent(I2C2, I2C_EVENT_MASTER_

MODE_SELECT) != 1)
{}
I2C_Send7bitAddress(I2C2, ADDR, I2C_Direction_

Receiver);
while(I2C_CheckEvent(I2C2, I2C_EVENT_MASTER_

RECEIVER_MODE_SELECTED) != 1)
{}

/* read five bytes with normal ACK */
for(i = 0; i < 5; i++)
{

while(I2C_CheckEvent(I2C2, I2C_EVENT_MASTER_
BYTE_RECEIVED) != 1)

{}
XYZ[i] = I2C_ReceiveData(I2C2);

}
/* read last byte */

I2C_NACKPositionConfig(I2C2, I2C_NACKPosition_
Next);

while(I2C_CheckEvent(I2C2, I2C_EVENT_MASTER_
BYTE_RECEIVED) != 1)

{}
XYZ[5] = I2C_ReceiveData(I2C2);

/* send stop */
I2C_GenerateSTOP(I2C3, ENABLE);

}

Once the code modules have been set up the measurement data can be
accessed as soon as a new measurement is available or whenever required if a
triggered mode is being used.

140	 Digital Interface Design and Application

7.1.3  Programming Challenge: A 360° Servo

Use the compass and a suitable actuator to implement a 360° servo system.
The user will provide a desired heading and the servo should rotate
automatically to match this requirement. Practically, this will require a
mechanical construction to carry the compass module on an arm attached to
the actuator motor and some care will be needed to accommodate the inter-
connection wiring.

7.2  The MSF Time Decoder

The MSF 60 kHz low frequency transmission from the Rugby station is the
principle means of national distribution of standard time and frequency
provided by the National Physical Laboratory (NPL). The transmitter power
is quite high so that the signal strength is reliable across northern and western
Europe. This application is based on a simple 60 kHz receiver (such as Model
SYM‐RFT‐60 from PV Electronics [3]) that delivers a logic signal derived
from the MSF Rugby transmission, which is modulated with time and date
fields according to the specification in reference [3] and summarised in the
following figures and tables.

Each minute is divided into 60 s except in the rare case when there is one
extra when a leap second is required. The signal modulation format is shown
in Figure 7.2.

Note that in this diagram high represents 0 bit data and low represents 1 bit
data. The date and time is encoded in the A bits as shown in Table 7.2 and each
field is encoded in BCD format.

British Summer time is indicated by bit B58, which is set during this period.
More detail can be found directly from the NPL [4].

Second 00

Bits

10
0

m
s

20
0

m
s

30
0

m
s

500 ms 1s

1s

A B

0

Second 01 – 59*

* 60 when a leap second occurs

0

Figure 7.2  MSF signal modulation format

Application Case Study Examples	 141

7.2.1  MSF Receiver Circuit Arrangement

The output from the MSF receiver can be connected to any GPIO input as long
as it can be used to generate an interrupt, so GPIOB Pin 4 has been chosen
for convenience as it is available on CON4 pin 31 on the Discovery board
and uses a dedicated interrupt on the NVIC (Nested Vectored Interrupt
Controller: see ST Microelectronics Reference Manual). The circuit is shown
in Figure 7.3: Note that the output of this receiver is inverted compared with
the earlier diagram Figure 7.2.

7.2.2  Program Design

The program design is centred on interrupts, which are triggered by the
falling edge at each second boundary. A time delay is then used to select
the strobe position for each data acquisition. In the zero second the data must

Table 7.2  MSF data bit allocations

A Bit #s Weights Group Range

17–24 80, 40, 20, 10 Year 00–99
8, 4, 2, 1

25–29 10 Month 01–12
8, 4, 2, 1

30–35 20, 10 Date 00–31
8, 4, 2, 1

36–38 4, 2, 1 Weekday 0 (Sun) to 6 (Sat)
39–44 20, 10 Hour 00–23

8, 4, 2, 1
45–51 40, 20, 10 Minute 00–59

8, 4, 2, 1

Aerial

Discovery base board

CON4 pin 31
(GPIOB pin 4)

Low frequency
receiver module

SYM-RFT-60

P
O

N

G
N

D

Logic
output
TCON

Figure 7.3  MSF receiver circuit

142	 Digital Interface Design and Application

be low at 400 ms, for example and for the data bits 150 ms would place the
strobe point in the centre of bit A and a further 100 ms (250 ms in total)
would place the strobe point at the centre of bit B. The interrupt system
should be re‐enabled just before the start of the next second; this requires a
further delay of 550 ms (950 ms in total) in the zero second and 700 ms
(950 ms in total) after the data strobes in the following cycles. If the timer
capture/compare registers are employed and the timer clock is set to 0.1 ms
we can set ARR (auto reload register) to 9500, CC1 to 1500, CCR2 to 2500
and CCR3 to 4000. Every time the initial edge causes an interrupt further
interrupts are disabled for the time being and the timer register is set to zero.
When the timer reaches overflow the interrupt is re‐enabled allowing the
next edge to be detected.

7.2.3  Setting up for an Interrupt

To establish the interrupt system an external interrupt source (EXTI) is
enabled using GPIOB pin 4 fall/rising edge to which the receiver output is
connected. The code that follows shows how this is achieved. Note that
EXTI line 4 has a dedicated interrupt service routine (ISR) name, see
stm32f4xx.h.

void setup_EXTI(void)
{

NVIC_InitTypeDef NVIC_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;

/* Enable SYSCFG clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG,

ENABLE);

/* Connect EXTI Line4 to PB4 pin */
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB,

EXTI_PinSource4);

/* Configure EXTI Line4 */
EXTI_InitStructure.EXTI_Line = EXTI_Line4;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_

Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);

Application Case Study Examples	 143

/* Enable and set EXTI Line4 Interrupt to a low
priority */

NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemption

Priority = 0x02;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x02;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

}

7.2.4  Acquiring the Data Bits

The related ISR that must be appended to the file stm32f4xx_it.c, as explained
previously, is shown next. The function name must correspond with the defi-
nition is startup_stm32f4.s. Global variables, although not recommended,
were set up for the variables data_bitA[], data_bitB[], second and first_second_
captured to simplify the overall control. These variables must be declared
outside main and referred to as extern in any other associated files. The first
objective of the ISR is to capture the zero second then to acquire the data bits
in following seconds. In all cases the process that follows the interrupt from
the leading edge starts by disabling further interrupts by clearing the interrupt
mask register (IMR) bit, re‐enabling it just before the next second is about to
begin. This avoids any spurious interrupts that could possibly occur during
this rather long period. The interrupt is re‐enabled by setting the IMR bit. Note
that there is no built‐in function for controlling the IMR so the user has to
manipulate it directly. Examine the actual statements to see how this is
achieved, remembering that the ‘~’ character means bitwise complement. The
interrupt pending bit must also be cleared to prevent the possibility of further
interrupts from this edge. This mechanism is implemented for management
when interrupts are temporarily blocked by a higher priority event.

TIM3 is then prepared as it remains in control for most of the following sec-
ond. The first if statement captures the zero second as soon as it is first detected
after switch on. Once synchronised, the data bits are accumulated from each
following second by testing the receiver input at the two strobe points deter-
mined by CCR1 and CCR2, taking account of the data polarity shown earlier.
The receiver input is also tested at the third strobe point determined by CCR3
because when this is at logical zero it will detect the next zero second when it
eventually occurs. The second counter is reset to zero at this point. This will
automatically take account of leap seconds, should one be added.

144	 Digital Interface Design and Application

void EXTI4_IRQHandler(void)
{

EXTI->IMR &= ~EXTI_Line4;   /* disable interrupt */
EXTI_ClearITPendingBit(EXTI_Line4);

/* prepare TIM3 */
TIM_SetCounter(TIM3, 0);
TIM_ClearFlag(TIM3, TIM_FLAG_CC1);
TIM_ClearFlag(TIM3, TIM_FLAG_CC2);
TIM_ClearFlag(TIM3, TIM_FLAG_CC3);
TIM_ClearFlag(TIM3, TIM_FLAG_Update);

if (first_second_captured == 0)
{

while(TIM_GetFlagStatus(3, TIM_FLAG_CC3)
!= 1) /* wait on CCR3 */

{
}
TIM_ClearFlag(TIM3, TIM_FLAG_CC3);
if (test_data() != 1) /* should be low

for second 0 */
{

first_second_captured = 1;
second++;

}
else
{

second = 0;   /* any non zero i.e. 1 – 59 */
}

}
else /* acquire data bits for A and B */
{

while(TIM_GetFlagStatus(TIM3, TIM_FLAG_CC1)
!= 1) /*wait for CCR1*/

{
}
TIM_ClearFlag(TIM3, TIM_FLAG_CC1);
if (test_data() != 0)
{

data_bitA[second] = 0;
}

Application Case Study Examples	 145

else
{

data_bitA[second] = 1;
}
while(TIM_GetFlagStatus(TIM3, TIM_FLAG_CC2) != 1)

/*wait for CCR2*/
{
}
TIM_ClearFlag(TIM3, TIM_FLAG_CC2);
if (test_data() != 0)
{

data_bitB[second] = 0;
}
else
{

data_bitB[second] = 1;
}
/* check for next zero second */
while(TIM_GetFlagStatus(TIM3, TIM_FLAG_CC3)

!= 1) /*wait for CCR3*/
{
}
TIM_ClearFlag(TIM3, TIM_FLAG_CC3);
if (test_data() == 0)
{

second = 0;
decode_MSFdata(ydt_vals);
printMSF_ydt(ydt_vals);

}
STRING_PRINT("\b\b");
BCD_PRINT(second);
while(TIM_GetFlagStatus(TIM3, TIM_FLAG_Update)

!= 1) /* timer overflow? */
{
}
TIM_ClearFlag(TIM3, TIM_FLAG_Update);
second++;

}
EXTI->IMR |= EXTI_Line4; /* re-enable interrupt */

}

146	 Digital Interface Design and Application

/* read input bit on GPIOB Pin 4 include inversion */
uint8_t test_data(void)
{

if(GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_4) != 0)
{

return 0;
}
else
{

return 1;
}

}

The timer settings according to the calculations shown previously are
shown next. The prescaler is set to 8400 giving a 0.1 s timer clock period.

void setup_TIM3(void)
{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

/*TIM3 Clock Enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

/* Time Base Configuration */
TIM_TimeBaseStructure.TIM_Period = 9500;
TIM_TimeBaseStructure.TIM_Prescaler = 8400;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;

TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

TIM_Cmd(TIM3, ENABLE);
}

void setup_Compare(uint16_t CCR1_Val, uint16_t
CCR2_Val, uint16_t CCR3_Val)
{

TIM_OCInitTypeDef TIM_OCInitStructure;

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing;
TIM_OCInitStructure.TIM_OutputState = TIM_

OutputState_Enable;

Application Case Study Examples	 147

TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
TIM_OCInitStructure.TIM_OCPolarity = TIM_

OCPolarity_High;

TIM_OC1Init(TIM3, &TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Disable);

TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

TIM_OC2Init(TIM3, &TIM_OCInitStructure);

TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable);

TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

TIM_OC3Init(TIM3, &TIM_OCInitStructure);

TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Disable);
}

7.2.5  Decoding the MSF Data

The received data bits are first decoded into integer values according the
weightings assigned and these are stored in a date and time structure defined
in the top module. The digits are read MSB first and the corresponding weight
is accumulated when the bit is 1. A pointer to the structure is used so that the
values are retained and the arrays of bit data need an extern declaration if
this function is in a separate file.

extern char data_bitA[];
extern char data_bitB[];

void decode_MSFdata(struct MSF_Time *ytd_vals)
{

year_weight[] = {80, 40, 20, 10, 8, 4, 2, 1};
month_weight[] = {10, 8, 4, 2,1};
date_weight[] = {20, 10, 8, 4, 2, 1};
day_weight[] = {4, 2,1};
hour_weight[] = {20, 10, 8, 4, 2, 1};
minute_weight[] = {40, 20, 10, 8, 4, 2, 1};

int year, month, date, day, hour, minute;

index = 0;

148	 Digital Interface Design and Application

/* decode year */
i = 0;
ytd_vals->year = 0;
for (index = 17; index < 25; index++)
{

if (data_bitA[index] != 0)
{

ytd_vals->year = ytd_vals->year +
year_weight[i++];

}
else
{

i++;
}

}

/* decode month */
i = 0;
ytd_vals->month = 0;
for (index = 25; index < 30; index++)
{

if (data_bitA[index] != 0)
{

ytd_vals->month = ytd_vals->month +
month_weight[i++];

}
else
{

i++;
}

}

/* decode date */
i = 0;
ytd_vals->date = 0;
for (index = 30; index < 36; index++)
{

if (data_bitA[index] != 0)
{

ytd_vals->date = ytd_vals->date +
date_weight[i++];

Application Case Study Examples	 149

}
else
{

i++;
}

}

/* decode day */
i = 0;
ytd_vals->day = 0;
for (index = 36; index < 39; index++)
{

if (data_bitA[index] != 0)
{

ytd_vals->day = ytd_vals->day +
day_weight[i++];

}
else
{

i++;
}

}

/* decode hour */
i = 0;
ytd_vals->hour = 0;
for (index = 39; index < 45; index++)
{

if (data_bitA[index] != 0)
{

ytd_vals->hour = ytd_vals->hour +
hour_weight[i++];

}
else
{

i++;
}

}

/* decode minute */
i = 0;

150	 Digital Interface Design and Application

ytd_vals->minute = 0;
for (index = 45; index < 52; index++)
{

if (data_bitA[index] != 0)
{

ytd_vals->minute = ytd_vals->minute +
minute_weight[i++];

}
else
{

i++;
}

}
}

7.2.6  Displaying the MSF Time Data

Once the bits are decoded a simple group of print operations can deliver the
information to the hyper terminal interface. A pointer to the day and month
names are provided by simple functions as shown and the STRING_
PRINT() function using USART6 is included for completeness. The
USART6 module and its I/O connections will also have to be set up as
shown before.

void printMSF_ydt(struct MSF_Time *ydt)
{

STRING_PRINT("MSF Time Decoder\r\n\n");

STRING_PRINT("Year 20");
BCD_PRINT(ydt->year);
STRING_PRINT("\r\n");
STRING_PRINT(day_name(ydt->day));
STRING_PRINT(" ");
STRING_PRINT(month_name(ydt->month));
STRING_PRINT(" ");
BCD_PRINT(ydt->date);
STRING_PRINT("\r\n");
BCD_PRINT(ydt->hour);
STRING_PRINT(" : ");
BCD_PRINT(ydt->minute);
STRING_PRINT(" : ");

Application Case Study Examples	 151

BCD_PRINT(ydt->second);
STRING_PRINT("\r\n");

}

void BCD_PRINT(int val)
{

int i, bcd, mask = 1;
int bcd1, bcd10;
int mult[] = {1, 2, 4, 8, 0x16, 0x32, 0x64, 0x128};
char string[10];

bcd = 0;
for (i = 0; i <= 8; i++)
{

if ((val & mask) != 0)
{

bcd = bcd_add(bcd, mult[i]);
}
mask = mask << 1;

}
bcd1 = bcd & 0x0f;
bcd10 = (bcd & 0xf0) >> 4;

string[0] = bcd10 + '0';
string[1] = bcd1 + '0';
string[2] = 0; /* NULL termination */
STRING_PRINT(string);

}

char *day_name(int day)
{

static char *name[] = {
"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday"};

return name[day];
}

char *month_name(int month)
{

static char *name[] = {
"Illegal month", "January", "February", "March",
"April", "May", "June", "July",

152	 Digital Interface Design and Application

"August", "September", "October",
"November", "December"};

return name[month];
}

int bcd_add(int a, int b)
{

int bcd;

bcd = a + b;

if ((bcd & 0x0f) > 9)
{

bcd = bcd + 6; /* adjust value */
}

return bcd;
}

void STRING_PRINT(char *p)
{

int k = 0;

while (p[k] != 0)
{

char_print(p[k++]);
}

}

void char_print(char p)
{
/* output to serial interface on UART6 */

/* wait for TXE */
while (USART_GetFlagStatus(USART6, USART_

FLAG_TXE) != 1)
{
}
USART_SendData(USART6, p);
while (USART_GetFlagStatus(USART6, USART_

FLAG_TC) != 1)
{
}

}

Application Case Study Examples	 153

7.3  Decoding GPS Signals

Many companies supply integrated GPS modules that contain a receiver for
the satellite transmissions and a tracker/decoder that delivers one of the stan-
dard navigation message structures, NMEA (National Marine Electronics
Association) or SiRF binary format. A suitable GPS module for evaluation
EB056 is available from Matrix Technology Solutions Ltd, and this uses the
Fastrax UP500 module that acquires signals from multiple orbiting satellites
to calculate its current position [5]. Once an initial position (fix) has been
acquired the module continues to send out navigation messages. This example
will use the NMEA format as this delivers simple messages composed of
ASCII characters.

The EN056 module is connected to the Discovery base board as shown in
Figure 7.4 to link with an available USART interface.

After the initial fix the GPS receiver provides a constant stream of data as it
delivers navigation information about the 3D location from the satellites cur-
rently in view. If the receiver is set in NMEA mode, the only format for the
UP500, various navigation messages formed into simple ASCII strings are
available and the user can select those that are relevant to the information
required. An example of one of these is shown next, this contains both time
and navigation data.

$GPGGA,161229.487,3723.2475,N,12157.3416,W,1,07,1.0,9.0,M,47.
4,M,,*18

The string is broken into fields by the ‘,’ character and the first field
$GPGGA determines the type of message. Other message strings that may be
encountered are $GPRMC (minimum navigation data), $GPGSA (overall
satellite reception data) and $GPGSV (detailed satellite data) and they each
have specific formats.

For the $GPGGA message the following fields are detailed in Table 7.3.

GPS module
matrix technology

EB056

Discovery base board

CON4 pin 8 (USART2 RX)

CON4 pin 7 (USART2 TX)

TX

RX

Figure 7.4  GPS module connection

154	 Digital Interface Design and Application

7.3.1  Acquiring the GPS Message

The GPS module is interfaced through an RS232 connection and USART2 was
chosen for this link, its TX line is on GPIOD pin 5 and the RX line is on GPIOD
pin 6. Once the USART is set up and its pins connected, the whole GPS messages
can be acquired by a straightforward function that waits for the starting $ and a
while loop that continues until the terminating * is encountered. The get_
NMEA_char() function simply reads the next character on the USART2 interface
as soon as it is ready. As the GPS module is usually set to deliver several types
of message it may be more appropriate to test for the message type, that is
$GPGGA, which is in the first field in the message string. Code performing this
operation is included at the start of the message decode function discussed later.

int i, j, k, started;
char message_string[100];

i = 0;
k = 0;
started = 0;
/* read GPS until $ is found */
while (started != 1)
{

message_string[i] = get_NMEA_char();
/*test_string[k++];*/

Table 7.3  GPGGA navigation message format

Index Function Format Example

  1 Time hhmmss.sss 161229.487
  2 Latitude ddmm.ssss 3723.2475
  3 Direction N or S N
  4 Longitude dddmm.ssss 12157.3416
  5 Direction E or W W
  6 Fix Quality 1–8 (1 GPS) (0 invalid) 1
  7 # satellites One or two digits 07
  8 Horizontal DOP — 1.0
  9 Height, M Height above mean sea level 9.0,M
10 Geoid height, M Above datum 47.4,M
11 Empty — —
12 Empty — —
13 *checksum Two digits *18

Application Case Study Examples	 155

if (message_string[i] != '$')
{

started = 0;
}
else
{

started = 1;
}

}
while (message_string[i] != '*') /* terminal

character */
{

message_string[++i] = get_NMEA_char();
/*test_string[k++];*/

}
message_string[i + 1] = 0; /* string termination

*/

char get_NMEA_char(void)
{

char input_char;
while (USART_GetFlagStatus(USART2, USART_FLAG_

RXNE) != 1)
{
}
input_char = USART_ReceiveData(USART2);
return(input_char & 0x7F);

}

7.3.2  Decoding the GPS Message

To split up the message into its different fields is fairly straightforward by not-
ing each field separation character and using a case statement for successive
fields as shown next. Only the fields one to seven have been processed in this
example but this could easily be extended to others if required. The initial
string is checked against the desired message type $GPGGA and each of the
extracted strings are terminated with a NULL. The data structure GPGGA is
assembled to contain all the separate fields conveniently and allow further
field decode functions to be developed.

156	 Digital Interface Design and Application

typedef struct parameter_strings
{

char data_key[10];
char time[11];
char latitude[10];
char latNSW[10];
char longitude[10];
char longEW[10];
char fix[10];
char sats[10];

}GPGGA;

void decode_main(GPGGA *ptr, char NMEA_string[])
{

char str_buf[10];

int i, j, k;

i = 0;
j = 0;
k = 0;

/* copy key to local buffer */
while (NMEA_string[i] != ',')
{

ptr->data_key[i] = NMEA_string[i];
i++;

}
ptr->data_key [i] = 0; /* null termination

for first string */
j++;
if (strcmp(ptr->data_key, "$GPGGA") == 0)

/* message match? */
{

i++;
while (j < 8)
{

k = 0;
while (NMEA_string[i] != ',')
{

switch (j)
{

Application Case Study Examples	 157

case 1 :
ptr->time[k++] = NMEA_string[i++];
break;

case 2 :
ptr->latitude[k++] = NMEA_string[i++];
break;

case 3 :
ptr->latNS[k++] = NMEA_string[i++];
break;

case 4 :
ptr->longitude[k++] = NMEA_string[i++];
break;

case 5 :
ptr->longEW[k++] = NMEA_string[i++];
break;

case 6 :
ptr->fix[k++] = NMEA_string[i++];

/* fix status */
break;

case 7 :
ptr->sats[k++] = NMEA_string[i++];

/* number x or xx */
break;

default :
break;

}
}
j++;
i++;

}
 /* complete NULL terminations */

ptr->data_key[6] = 0;
ptr->time[10] = 0;
ptr->latitude[9] = 0;
ptr->latNS[1] = 0;
ptr->longitude[9] = 0;
ptr->longEW[1] = 0;
ptr->fix[1] = 0;
ptr->sats[k] = 0; /* accounts for 1 or 2

characters */

158	 Digital Interface Design and Application

print_strings(ptr);
} /* end of if $GGPA */

}

Once the message is split up in this way the various fields can be converted
into numeric values if required. For example, taking latitude the first two char-
acters represent degrees, the next five (two before and three after the decimal
point) represent minutes of a degree as units and fraction so a floating point
calculation would be needed to establish a real value. The three characters
after the decimal point could be represented as a value for the seconds, by
multiplying by 60 of course.

7.3.3  Selecting the Massage Stream

The GPS message stream can be tailored to specific needs by delivering short
ASCII formatted messages to the module. For example, the group of strings
shown here, turn off all streams except GPGGA. In each case the checksum is
calculated carefully as the GPS module checks it on reception.

char VTGOFF[] = "$PSRF103,05,00,00,01*21\r\n";
char RMCOFF[] = "$PSRF103,04,00,00,01*20\r\n";
char GSVOFF[] = "$PSRF103,03,00,00,01*27\r\n";
char GSAOFF[] = "$PSRF103,02,00,00,01*26\r\n";
char SETGGA[] = "$PSRF103,00,00,01,01*25\r\n";

send_NMEA_string(VTGOFF);
send_NMEA_string(RMCOFF);
send_NMEA_string(GSVOFF);
send_NMEA_string(GSAOFF);
send_NMEA_string(SETGGA);

The function shown next, send_NMEA_string(), uses the TX output from
USART2 to deliver the message to the module in a similar way to previous
examples.

void send_NMEA_string(char *pt)
{

uint16_t i;

i = 0;

Application Case Study Examples	 159

while(pt[i] != 0) /* continue until a NULL
termination is reached */

{
/* wait for TXE */
while (USART_GetFlagStatus(USART2, USART_

FLAG_TXE) != 1)
{
}
USART_SendData(USART3, pt[i++]);
while (USART_GetFlagStatus(USART2, USART_

FLAG_TC) != 1)
{
}

}
}

7.4  Conclusion

The code modules detailed in this chapter are provided to give further exam-
ples of the interface techniques discussed in earlier chapters and some useful
extensions based on C programming techniques. Although these examples are
incomplete programs, it should only require a little effort to construct a
complete and useable application.

A themed approach has been taken to each of the chapters to link theory and
practice in each subject area and promote a clear and well justified under-
standing. However, many embedded systems use a variety of different inter-
face techniques simultaneously so the resources utilised need to be planned
carefully to ensure that conflicts do not arise. In many cases the interface
modules can be connected through different physical pins so physical con-
flicts can often be resolved simply by reallocation to an alternative set.

All the code modules discussed in these chapters have been evaluated on
the STM32F4‐Discovery kit using the Keil uVision IDE platform and rely on
the interface drivers provided. In several sections the possibility of using
Assembler language to achieve greater efficiency has been outlined but it
should be clearly understood that the risks of using this approach outweigh the
advantages in all but the most demanding situations.

Lastly, good luck with your applications using the STM32F4 ARM based
device in particular but please appreciate that the principles discussed in these
chapters have application to any embedded system design whatever core
processor is chosen.

160	 Digital Interface Design and Application

References
[1] � Freescale Semiconductor, Inc. (n.d.) MAG3110 Data Sheet www.freescale.com/files/

sensors/doc/data_sheet/MAG3110.pdf (accessed 11 October 2014).
[2]  SparkFun Electronics (n.d.) SEN‐12670 www.sparkfun.com/ (accessed 22 October 2014).
[3]  PV Electronics (n.d.) www.pvelectronics.co.uk (accessed 22 October 2014).
[4] � NPL Time & Frequency Services (n.d.) MSF Time Code, www.npl.co.uk/upload/pdf/

MSF_Time_Date_Code.pdf (accessed 1 October 2014).
[5] � Matrix Technology Solutions (n.d.) GPS Prototype Module, www.matrixtsl.com/eblocks.

php (accessed 1 October 2014).

http://www.freescale.com/files/sensors/doc/data_sheet/MAG3110.pdf
http://www.freescale.com/files/sensors/doc/data_sheet/MAG3110.pdf
http://www.sparkfun.com/
http://www.pvelectronics.co.uk
http://www.npl.co.uk/upload/pdf/MSF_Time_Date_Code.pdf
http://www.npl.co.uk/upload/pdf/MSF_Time_Date_Code.pdf
http://www.matrixtsl.com/eblocks.php
http://www.matrixtsl.com/eblocks.php

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

This appendix provides a brief introduction to the Keil uVision4 IDE for
developing a project based on the STM32F4, Editing, Compiling and
Downloading code to the Discovery prototype board. The uVision software
and the STM32F4 support files can be downloaded from the web by going to:

www.keil.com/uvision/ide_ov_starting.asp for uVision and
www.farnell.com following links to STM32F4 Discovery

A.1  Getting Started

Once installed, launch the Keil uVision4 IDE (Integrated Development
Environment) by double clicking on its icon when a new screen will open
up. The top section is shown in Figure A.1.

To get started you might expect to open a new project but it is strongly rec-
ommended that you use the examples provided by ST Microelectronics. It would
be best to copy the whole project file from the downloaded example directories
into your work area and rename it as appropriate. If you use finder to locate the
downloaded directories you should find the directory STM32F4‐Discovery_
FW_V1.1.0\Project\Peripheral_Examples\TIM_ComplementarySignals,

Appendix A
uVision IDE Notes

http://www.keil.com/uvision/ide_ov_starting.aspforuVision
http://www.farnell.comfollowinglinkstoSTM32F4Discovery

162	 Appendix A

which contains source files for one of the simplest application examples. Go
to the directory MDK‐ARM and in there you will see TIM_ComplementarySignals.
uvproj, which contains the environment settings that will be needed.

Once copied you can open the project file by double clicking its new name
‘filename.uvproj’ and it should bring up the uVision IDE automatically.
Proceed to open and modify the source files as required but don’t forget to
save your work at the end of an editing session.

A.2  Help

Help can be obtained at any time through a complete set of online, searchable
manuals through the uVision4 environment. This is illustrated in Figure A.2.

uVision4 also provides context‐sensitive help while you are editing your
source file. You may request help for most keywords, standard library rou-
tines, directives and instructions. Select or click on the name you want help
with and press F1. uVision4 will open the help file and locate the item required.
In this case the C function getkey() is highlighted in Figure A.3.

A.3  Project Development

When uVision is running you will observe that a file hierarchy has been
established in the project management area but you are quite free to
change this later to incorporate new or other files if you wish (Figures A.4
and A.5).

On the drop‐down window under Project you will find the entry ‘Build
Target …’ this will compile your code, as long as no errors are found and it

Figure A.1  The uVision screen (part)

Appendix A	 163

can access all the files that are needed, in preparation for downloading to the
target board.

You can now download the code into the target and observe the action of
your code in real time. Using a logic analyser or an oscilloscope you can
monitor the outputs and confirm that the selected pins deliver the correct
waveform and timing.

Figure A.2  A typical help screen

Figure A.3  Context sensitive help

164	 Appendix A

A.4  Debug Facilities

The Keil uVision IDE provides an extensive debug and simulation environment
which you can use to test out your program and its interaction with the periph-
erals. Debug runs interactively with the hardware so you can still observe
outputs that take new levels and changes that occur to variables, and so on.

To activate Debug press the ‘d’ button towards the right hand end of the
toolbar and you will see the windows change dramatically. You will normally
observe a two widow display consisting of your C code in the lower window
and the compiled assembler code in the upper window. A typical view of the
two debug screens is shown in Figure A.6.

Figure A.4  Project file structure

Figure A.5  Project compiling and linking

Appendix A	 165

Breakpoint and single step are some of the most powerful tools available,
these and other techniques can be selected through the buttons and drop‐down
menus on the new toolbar along the top edge of the code windows, or the
bottom row of the partial diagram as shown in Figure A.7.

The main debug tools are listed in the table:

Reset Step into Show next
statement

Register
window

Serial window

Run Step over Command
window

Call stack Analysis window

Stop Step out Disassembly
window

Watch widow Trace window

Run to cursor Symbol window Memory
window

System Viewer
window

Figure A.6  A debug run

Figure A.7  Debug tools

166	 Appendix A

Most of these are self explanatory but a few experiments will reveal what is
intended.

In particular the ‘system viewer window’ as shown if Figure A.8 enables
you to examine the detailed programming of the registers in each GPIO, TIM
or other peripheral.

Figure A.9  Timer 3 registers

Figure A.8  A system viewer window

Appendix A	 167

In Figure A.9 the programming registers for TIM3 are shown and in
particular the capture/compare status bits CC1IF, and so on, can be observed.

Watch windows, as shown in Figure A.10 at the lower right hand side, can
be set up to monitor the dynamic variation of system variables and other
aspects of the code as required.

A.5  Conclusion

In conclusion, the Keil uVision4 IDE provides very extensive tools for you to
develop and debug programs for particular applications based on the standard
device drivers provided for the STM32F4 device.

For a new assignment, select carefully all the device drivers that you are
going to use then you will only need to focus on the C programme development
itself. If you make use of an existing project essential initialization functions
will be set up automatically, by including system_stm32f4.c, stm32f4_
discovery.c and startup_stm32f4xx.s, so if you start a project from scratch you
will need to use the same approach or use these as a basis for a developing
your own implementation.

Figure A.10  Watch windows

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

This appendix summarises the ST Microelectronics Keil Peripheral Example
Library for STM32F4‐Discovery and the advanced application examples.

B.1  Peripheral Examples

In the Peripheral Examples folder the following sub‐folders will be found.
A brief description of the functionality provided within each folder is given in
the table.

Sub‐folder name Functionality of interface

ADC3_DMA Describes how to use the ADC3 and DMA to
transfer continuously converted data from ADC3
to memory. The ADC3 is configured to convert
continuously channel7. Each time an end of
conversion occurs the DMA transfers, in circular
mode, the converted data from ADC3 DR
register to the ADC3ConvertedValue variable

Appendix B
STM Discovery Examples
Library

Appendix B	 169

Sub‐folder name Functionality of interface

ADC_Interleaved_DMAmode2 Provides a short description of how to use the
ADC peripheral to convert a regular channel in
triple interleaved mode using DMA in mode 2
with 8.4 Msps

DAC_SignalsGeneration Provides a short description of how to use the
DAC peripheral to generate several signals
using DMA controller. When the user presses
the USER push‐button, DMA transfers the two
selected waveforms to the DAC

DMA_FLASH_RAM Provides a description of how to use a DMA
channel to transfer a word data buffer from
FLASH memory to embedded SRAM memory

EXTI Shows how to configure the external interrupt
lines. In this example, the EXTI Line0
(connected to PA0 pin) is configured to generate
an interrupt on each rising edge. In the interrupt
routine a led connected to PD.12 pin on the
STM32F4‐Discovery board is toggled

FLASH_Program Provides a description of how to program the
STM32F4xx FLASH memory

FLASH_Write_Protection Provides a description of how to enable and
disable the write protection for the STM32F4xx
FLASH memory

IO_Toggle Describes how to toggle the GPIO pins
connected on the AHB bus specifically LED4,
LED3, LED5 and LED6 which are connected
respectively to PD.12, PD.13, PD.14 and PD.15
on the STM32F4‐Discovery board

IWDG Shows how to update at regular period the
IWDG reload counter and how to simulate a
software fault generating an MCU IWDG reset
on expiry of a programmed time period

MEMS Shows how to configure the MEMS accelerometer
which is part of the STM32F4‐Discovery board to
detect acceleration on X/Y axis and to detect the
click/double click on its Z axis

(Continued)

(Continued)

170	 Appendix B

Sub‐folder name Functionality of interface

PWR_CurrentConsumption Shows how to configure the STM32F4xx
system to obtain measurements of the different
low power modes offering minimal current
consumption

PWR_STANDBY Shows how to switch the system to its
STANDBY mode and wakeup from this
situation again using various methods

PWR_STOP Shows how to switch the system to its STOP
mode and wakeup again from this mode using
RTC wakeup timer event

RCC Shows how to use, for debug purposes, the
RCC_GetClocksFreq function to retrieve the
current status and frequencies of different on
chip clocks

SysTick Shows how to configure the SysTick to generate
a time base equal to 1 ms when the system clock
is set to 168 MHz

TIM_Complementary
Signals

Shows how to configure the TIM1 peripheral
to generate three complementary TIM1 signals,
to insert a defined dead time value, to use the
break feature and to lock the desired
parameters

TIM_PWM_Input Shows how to use the TIM peripheral to
measure the frequency and duty cycle of an
external signal

TIM_PWM_Output Shows how to configure the TIM peripheral in
pulse width modulation (PWM) mode

TIM_TimeBase Shows how to configure the TIM peripheral
in output compare timing mode with the
corresponding Interrupt requests for each
channel in order to generate four different
time base signals

DMA, direct memory access; ADC, analogue to digital; EXTI, external interrupt;
GPIO, general purpose input and output; IWDG, Independent Watchdog;
MCU, Microcontroller Unit; MEMS, Microelectromechanical System; RCC, reset and
clock control and RTC Real Time Clock.

(Continued)

Appendix B	 171

B.2  Example Application

In the folders provided in support of the Discovery Base Board (STM32F4DIS‐BB)
the following example applications will be found.

STM32F4xx_FPU_FFT_
Example

This example shows how the FPU unit in the
Cortex‐M4 is used and demonstrates the calculation
of the maximum energy bin in the frequency
domain of the input signal with the use of complex
FFT, complex magnitude and maximum functions

STM32F4xx_Camera_
Example

This example shows how the DCMI is used to
control the OV9655 Camera module (STM32F4DIS‐
CAM) connected via the STM32F4DIS‐BB board
All required image processing functions are
programmable through the SCCB interface (I2C like
protocol)
In this example the DCMI is configured to
interface with this 8 bit data camera in continuous
mode. The I2C1 is used to configure the OV9655
in 8 bit RGB 5:6:5 mode. The user can select
between two resolutions QQVGA(160 × 120) or
QVGA(320 × 240) in order to display the captured
image on the LCD(320 × 240), this selection is
performed in main.h file. All camera data received
by the DCMI are transferred through DMA and
displayed on the LCD (connected to the FSMC in
this case). As a result the CPU is free to execute
other tasks

STM32F4xx_SDIO_
Example

1. � This example provides an application showing
how to use the SDIO firmware library and an
associated driver to implement the FAT file
system on the SD Card memory

2. � This example provides basic suggestions of how
to use the SDIO firmware library and an
associated driver to perform read/write
operations on the SD Card memory that could
be mounted on the STM32F4DIS‐BB board

STM32F4xx_USART_
Example

This example shows how to retarget the C library
printf() function to the inbuilt USART. This
implementation outputs the printf() message on the
hyper‐terminal using USART6

(Continued)

172	 Appendix B

STM32F4xx_Ethernet_
Example (Using FreeRTOS)

httpserver_netconn
This example implements a web server application,
based on the netconn API

httpserver_socket
This example implements a web server application,
based on the socket API

udptcp_echo_server_netconn
This example implements a UDP‐TCP echo server
demonstration
Note that for http server netconn, http server socket
and UDP/TCP echo server netconn demonstrations,
LwIP v1.3.2 is used as the TCP/IP stack and
FreeRTOS v6.1.0 is used as the Real Time Kernel

STM32F4xx_Ethernet_
Example (Stand alone)

httpserver
This example implements a web server application

tcp_echo_server
This example implements a TCP echo server
demonstration

tcp_echo_client
This example implements a TCP echo client
demonstration

udp_echo_server
This example implement a UDP echo server
demonstration

udp_echo_client
This example implements a UDP echo client
demonstration
Note that for all these STM32F4 demonstrations
LwIP v1.3.2 is used as the TCP/IP stack

STM32F4xx_LCD_Example LCD_35T
This example implements a test of the LCD
module, where a red, green and blue ribbon appear
on the screen
The LCD driver supports all bpp configurations but
16 bpp is used by default

LCD_Touch
This example shows how to proceed with touch
screen calibration using four points at the corners

(Continued)

Appendix B	 173

STM32F4xx_USB_Example USB_Device_Examples
DFU
This example implements a device firmware
upgrade (DFU) capability. It adheres to the
DFU class specification, defined by the USB
Implementers Forum, for reprogramming an
application through the USB‐FS‐Device. The
DFU principle is particularly well suited to
applications that need to be reprogrammed in the
field

MSC
The mass storage example provides a typical
application using the USB OTG Device
peripheral to communicate with a PC host using
the bulk transfer method while a microSD card
is used as the storage media. This example
employs the BOT (bulk only transfer) protocol
and all the required SCSI (small computer
system interface) commands, and is windows
compatible

VCP
This example implements a virtual COM port
(VCP) capability which allows the STM32F4
device to behave as a USB‐to‐RS232 bridge. It uses
an implementation of the CDC class following the
PSTN sub‐protocol

USB_Host_Examples
HID
This example provides an implementation of a
USB OTG host peripheral. When an USB device is
attached to the Host port, the device is enumerated
and checked whether it can support an HID device
or not, if the attached device has HID capability,
then the user can select a mouse or keyboard
application
The mouse application can highlighted
a user selected screen area in green. In
the keyboard application, the display shows the
entered characters in green on the display screen

(Continued)

(Continued)

174	 Appendix B

MSC
This example implements a USB OTG host peripheral
where the STM32F4 behaves as a mass storage Host
that can enumerate, show its contents and display the
supported BMP images in the attached USB flash
disk. The user has various options but is able to write
a small file (less to 1 KB) on the disk

STM32F4xx_uCOSII_
Example

This example provides an implementation the small
computer operating system uC/OS‐II‐V2.91
Two tasks are implemented

App_TaskStar, which controls the LED blinking
App_TaskKbd, which controls the LED blinking
frequency through User button pressing

API, Application Programming Interface; DCIM, digital camera interface; HID, human
interface device; FFT, Fast Fourier Transform; FSMC, Flexible Static Memory controller;
FPU Floating Point Processor Unit; OTG USB, On‐The‐Go technology;
SCCB, Serial Camera Control Bus; SDIO, Secure Digital memory card input/output;
TCP, Transmission Control Protocol; UDP, User Datagram Protocol and
 USART, universal synchronous/asynchronous receiver/transmitter.

(Continued)

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

A summary of the software support provided for digital to analogue converter
(DAC) and analogue to digital converter (ADC) subsystems in particular.

C.1  DAC Peripheral Features

DAC channels
The device integrates two 12‐bit DACs that can be used independently or
simultaneously (dual mode).

DAC triggers
DAC conversion can be non‐triggered when the related output is available
once data is written to the register.

DAC conversion can be triggered by:
1.	 An external event using a related input pin.
2.	 A timer generated event.
3.	 Using a software command.

DAC buffer mode feature
Each DAC channel integrates an output buffer that can be used to reduce the
output impedance and to drive external loads directly without having to add

Appendix C
DAC and ADC Support
Software

176	 Appendix C

an external operational amplifier. The device data sheet gives more details
about the impedance value that can be achieved.

DAC wave generation feature
Both DAC channels can be used to generate:

1.	 A pseudo‐random Noise waveform,
2.	 A Triangle waveform.

DAC data format
The DAC data format can be:

1.	 8‐bit right alignment,
2.	 12‐bit left alignment,
3.	 12‐bit right alignment.

DAC data value to voltage correspondence
The analogue output voltage on each DAC channel pin is determined by the
following equation:
DAC OUT VREF DOR_ * / 4095 where DOR is the DAC Data
Register and VEF+ is the input reference voltage, typically 3.3 V on the
Discovery board. The device data sheet explains other options.

DMA requests
When enabled a direct memory access (DMA) request can be generated
when an external trigger (but not a software trigger) occurs. DMA requests
are mapped to specific stream and channel configurations.

C.2  How to Use the DAC Driver

The following sequence of operations is always needed to set up the DAC.
DAC APB (advanced peripheral bus) clock must be enabled to get write access
to DAC registers using the function:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE).

Configure the related outputs (DAC_OUT1: GPIOA_4 or DAC_OUT2:
GPIOA_5) in analogue mode.
Configure the chosen DAC channel using the DAC_Init() function

Choose between possible timer sources, software or none for DAC_Trigger.
Select between none, noise or triangle by setting DAC_WaveGeneration.
Specify the LFSR number of bits for noise wave generation or the
maximum triangle amplitude in DAC_LFSRUnmask_TriangleAmplitude,
see stm32f4xx_dac.h for the range of values permitted.
Specify whether the output buffer is ENABLED or DISABLED in
DAC_OutputBuffer.

Appendix C	 177

Enable the chosen DAC channel using the DAC_Cmd(DACx, ENABLE)
function.

When these steps are completed the DAC peripheral should be fully operational.

C.3  ADC Peripheral Features

Regular channels group configuration
These functions allow the user to configure the ADC and its channels group

features.
Activate the continuous mode.
Configure and activate the Discontinuous mode.
Read the ADC converted values.

Multi mode ADCs Regular channels configuration
Refer to ‘Regular channels group configuration’ description to configure
the ADC1, ADC2 and ADC3 regular channels.
Select the multi‐mode ADC regular channels features (dual or triple mode)
Read the ADCs converted values as a group.

DMA for Regular channels group features configuration allows the user to:
Enable the DMA mode for a regular channel group,
Enable the generation of DMA requests continuously at the end of the
last DMA transfer.

Injected channels group configuration allows the user to:
Configure the ADC Injected channels group features.
Activate the Continuous mode.
Activate the Injected Discontinuous mode.
Activate the Auto‐Injected mode.
Read the ADC converted values.

C.4  How to Use the ADC driver

This sequence of operations will always be needed to setting up the ADC.

1.  Enable the ADC interface clock with the function:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE)

2.  ADC pins configuration
Enable the clock for the ADC’s group of GPIO pins using the function:
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
Configure these ADC pins in analogue mode

178	 Appendix C

3.  Configure the ADC Common features
Select one of the 13 possible modes as ADC_Mode
Select the ADC prescaler from one of the four (2, 4, 6 or 8) possible ratios
in ADC_Prescaler
Select the DMA transfer format from the three alternatives or disabled in
ADC_DMAAccessMode
Configure the ADC delay between two sampling phases from the range
between 5 and 20 cycles ADC_TwoSamplingDelay.

4.  Configure the ADC individual features
Select the ADC bit resolution from 12, 10, 8 or 6 in ADC_Resolution
Specify whether the conversion is to be performed in scan (multichannel) or single
channel mode by setting ENABLE or DISABLE in ADC_ScanConvMode
Choose between single (DISABLE) or continuous conversion (ENABLE)
for the parameter ADC_ContinuousConvMode
Select ADC external trigger edge for regular channel conversion from
none, rising, falling or rising and falling in ADC_ExternalTrigConvEdge
Configure the ADC external trigger sources for regular channel conversion
from a selection of timers, capture/compare and external trigger sources in
ADC_ExternalTrigConv
Select from right or left alignment in ADC_DataAlign
Select the number of conversions that will be performed in the sequencer
for a regular channel group, this must be between 1 and 16, in ADC_Nbr
OfConversion.

5.  Activate the ADC peripheral by using ADC_Cmd(ADCx, ENABLE).

When all these steps have been taken the ADC should be ready to perform
conversions when triggered.

C.5  Files for Reference

stm32f4xx_dac.h
stm32f4xx_dac.c
stm32f4xx_adc.h
stm32f4xx_adc.c

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

A partial solution to the keyboard‐scan design challenge is provided in the
following code. This is based around a three‐column by four‐row keypad so
will need a slight extension for the four by four keypad suggested. Functions
are used to set up the required resources, inputs, outputs and timer. Other
functions provide delays to control scanning and de‐bounce tests. The opera-
tions to activate the scan columns and obtain row data are in further functions
to simplify main() as much as possible. The translation of the row and column
vales to the actual key‐face signature is also provided.

#include “stm32f4_discovery.h”

void SetupOutPins(void);
void SetupInputPins(void);
void SetupTimerDelay(uint16_t time);
void Set_Column(int i);
void Timed_Wait(uint16_t time);
uint8_t get_row(void);
char get_key(uint8_t col, uint8_t row);

Appendix D
Example Keyboard Interface

180	 Appendix D

int main(void)
{

uint8_t i, row;
char key;

SetupOutPins();
SetupInputPins();
SetupTimerDelay(1000); /* 1000us de‐bounce */

while(1)
{

for (i = 1; i <4; i++) /* scan columns */
{

Set_Column(i);
row =get_row();
if (row != 0)
{

key = get_key(i, row);
}
Timed_Wait(100); /* 100ms column scan */

}
}

}

uint8_t get_row()
{

uint16_t row, rowx;

row = (GPIO_Read_InputData(GPIOB) & 0xf000);
if (row != 0)
{

Timed_Wait(10); /* try again in 1ms */
rowx = (GPIO_Read_InputData(GPIOB) & 0xf000);
if (rowx != row)
{

row = 0;
}
else /*wait till key lifted*/
{

while((GPIO_ReadInputData(GPIOD)& 0xf000)
== row)
{

Appendix D	 181

Timed_Wait(10);
}

}
}
return(row >> 12);

}

/* translate row (1, 2, 4,8) and column (1,2,3,4)
to key code */
char get_key(uint8_t col, uint8_t row)
{

char keys[] = {’1’, ’2’, ’3’, ’4’, ’5’, ’6’,
’7’, ’8’, ’9’, ’*’, ’0’, ’#’};

char key;
switch (row)
{

case 1
key = keys[(col ‐ 1)];
break;

case 2:
key = keys[(col ‐ 1) + 3];
break;

case 4:
key = keys[(col ‐ 1) + 6];
break;

case 8:
key = keys[(col ‐ 1) + 9];
break;

default:
break;

}
return (key);

}

/* Use GPIOB pins 5, 6, 7, 8 for column outputs */
void SetupOutPins(void)
{

GPIO_InitTypeDef GPIO_InitStructure;
/* GPIOD Peripheral clock enable */

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD,
ENABLE);

182	 Appendix D

/* Configure PB5, PB6, PB7 and PB8 in output
pushpull mode */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_
Pin_6 | GPIO_Pin_7 | GPIO_Pin_8;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOD, &GPIO_InitStructure);

}

/* Use GPIOD pins 12, 13, 14, 15 for row inputs*/
void SetupInputPins(void)
{

GPIO_InitTypeDef GPIO_InitStructure;
/* GPIOD Peripheral clock enable */

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,
ENABLE);
/* Configure PD12, PD13, PD14 and PD15 in input mode */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 |
GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN;
GPIO_Init(GPIOB, &GPIO_InitStructure);

}

/* Use TIM6 to provide one millisecond for de-bounce */
void SetupTimerDelay(uint16_t time)
{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

/*TIM6 Clock Enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6,

ENABLE);

/* Time Base Configuration */
TIM_TimeBaseStructure.TIM_Period = time;
TIM_TimeBaseStructure.TIM_Prescaler = 8400;

/* 1/10 ms */
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_

CounterMode_Up;

Appendix D	 183

TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure);

/* Prescaler Configuration */
TIM_PrescalerConfig(TIM6, 8400, TIM_

PSCReloadMode_Immediate);

TIM_Cmd(TIM6, ENABLE);
}

void Set_Column(int i)
{

switch(i)
{

case 1:
GPIO_ResetBits(GPIOB, GPIO_Pin_7);
GPIO_SetBits(GPIOB, GPIO_Pin_4);
break;

case 2:
GPIO_ResetBits(GPIOD, GPIO_Pin_4);
GPIO_SetBits(GPIOD, GPIO_Pin_5);
break;

case 3:
GPIO_ResetBits(GPIOD, GPIO_Pin_5);
GPIO_SetBits(GPIOD, GPIO_Pin_6);
break;

case 4:
GPIO_ResetBits(GPIOD, GPIO_Pin_6);
GPIO_SetBits(GPIOD, GPIO_Pin_7);
break;

default:
break;

}
}

void Timed_Wait(uint16_t time)
{

/* set period in ARR */
TIM_SetAutoreload(TIM6, time);
TIM_SetCounter(TIM6, 0);
while (TIM_GetFlagStatus(TIM6, TIM_FLAG_Update) != 1)
{}
TIM_ClearFlag(TIM6, TIM_FLAG_Update);

)

184	 Appendix D

Note that it would be quite straightforward to establish an interrupt driven
interface that could be triggered by user activation of the keypad. This would
help to make the interface more efficient.

It will be found that some keypad assemblies contain a built‐in encoder,
which delivers both a character code and an interrupt signal, so the interface
design is considerably simplified.

Digital Interface Design and Application, First Edition. Jonathan A. Dell.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

address-bus, 2
address decode, 11
analogue to digital converter (ADC), 69

binary search ADC, 70
STM32F4 ADCs, 74
support functions, 168
switched capacitor ADC, 72
timing, 73

ARM architecture, 14
arrays, 19
assembler language, 16
asynchronous, 91

baud rate, 92
binary search, 70
break-point, 164
bus matrix, 119
bus timing, 28

C language revision, 19
arrays, 19
functions, 19

capture/compare, 48

case studies, 135
character generator, 125
checksum, 154
clock, 50
compass module, 135

D-type, 7
data structures in C, 21

arrays, 19
structures, 21

debounce, 42
debug tools, 164
delay function, 39

software, 40
timer, 60

digital camera interface (DCMI), 133
digital compass, 135
digital to analogue converter (DAC), 67

binary weighted network, 67
programming, 75
transfer characteristic, 69
triggering, 77
waveform generation, 76

Index

186	 Index

direct memory access (DMA), 118
ADC using DMA, 85
DAC using DMA, 79

discovery support library, 168
display (LCD), 121
driver, 10

edge-triggered, 7
embedded system, 1
event

timer, 55
interrupt, 115

exceptions, 117

flags (status)
ADC, 83
USART, 94
timer, 59

flip-flop, 5
frequency (clock), 48
function examples, 18

bcd_add(), 152
BCD_PRINT, 151
char_print(), 152
day_name(), 151
decode_MSFdata(), 147
EXTI4_IRQHandler(), 144
get_NMEA_char(), 155
MAG_read_sixbyte(), 138
month_name(), 151
printMSF_ydt(), 150
setup_Compare(), 146
setup_EXTI(), 142
setup_TIM3(), 146
STRING_PRINT(), 152

general purpose input and output (GPIO)
pin circuit, 33
pin programming, 34

global variables, 143
GPS navigation, 153

HDLC, 105
control byte, 106
frame structure, 106

header files, 21
high level C language, 18
hyper terminal, 95

I2C, 95
read and write modes, 96
temperature gauge, 98
touch screen interface, 96

I/O pins, 31
inputs, 29
integrated development environment

(IDE), 18
interface software, 14
interrupt mask register, 143
interrupt pending register, 143
interrupt service routine (ISR), 113
interrupts, 112

keyboard, 41

latency, 113
libraries, 18
light emitting diode (LED), 27
linking, 164
liquid crystal display (LCD), 121
logic elements, 5
loops (poling), 113

machine instructions, 2
magnetometer, 135
masking (interrupt), 143
master-in-slave-out (MISO), 101
master-out-slave-in (MOSI), 101
memory map, 3
motor, 61
MSF time signal, 140

naming (ISR), 117
Nested Vectored Interrupt Controller

(NVIC), 115
networking protocols (HDLC), 105
Nyquist sampling, 72

open drain, 10
open loop, 135
outputs, 26

peripheral driver, 16
phase-locked loop, 47
pointers, 30
polling, 113
prescaler, 85

Index	 187

priority (interrupt), 114
processor architecture, 2

ARM, 14
project build report, 164
project file structure, 164
pull-down, 10
pull-up, 10
pulse-width-modulation (PWM), 61
push-pull, 10

quantization, 68

receiver (MSF), 141
receiver (RS232), 91
register, 9
resolution, 69
RS232, 91

data format, 92

sample and hold, 71
sampling, 70
sensor (temperature), 88
serial communication, 90

Manchester coding, 91
RS232, 91

serial peripheral interface (SPI), 101
ADC interface, 103

servo, 63
compass servo, 140

software architecture, 4
software program design, 18
start and stop bits (RS232), 91
status registers

ADC, 83
USART, 94
timer, 59

structures, 21
successive approximation, 70
system clock, 48
system viewer window, 166

target system, 2
temperature sensor, 88
template (ISR), 117
timeout, 101
timer, 45

count modes, 48
STM32F4 timers, 47
programming, 51
time-base, 55
time measurement, 56
triggering, 55

transmitter (RS232), 91
typedef, 21

universal asynchronous
receiver/transmitter
(UART), 91

universal I/O, 31
universal serial bus (USB), 107

connections, 107
protocol, 110

universal synchronous/
asynchronous receiver/transmitter
(USART), 92

uVision4, 14
getting started, 161

vectors, 113
voltage reference , 67

watch window, 167

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1 Review of Digital Electronics and Computer Architecture
	1.1 Embedded Systems
	1.1.1 Processor Architecture (Revision)
	1.1.2 Interface Subsystem

	1.2 Software Architecture
	1.3 Essential Basic Logic Elements
	1.3.1 The Basic Flip/Flop
	1.3.2 The Edge-Triggered D-Type Flip/Flop (Latch)
	1.3.3 Edge-Triggered Latch with Enable
	1.3.4 Multi-Bit Registers

	1.4 Output Configuration Options
	1.4 1 Open Drain Configuration

	1.5 The Address Decode
	1.5.1 Partial Address Decode

	1.6 ARM Architecture
	1.7 Interface Software Development
	1.7.1 Software Development for Embedded Systems

	1.8 C Programming Revision
	1.8.1 Arrays
	1.8.2 Structures and typedef
	1.8.3 Header Files

	1.9 Conclusion
	References
	Further Reading

	Chapter 2 Simple Input and Output Functions
	2.1 Introduction
	2.2 Computer Structure
	2.3 Simple Interface Circuit Concepts
	2.3.1 An Output Interface
	2.3.2 Address Decode for Output
	2.3.3 A Simple Input Interface
	2.3.4 Address Decode for Input

	2.4 Activation of I/O Circuits
	2.4.1 Programming an Output
	2.4.2 Programming an Input

	2.5 Universal I/O Circuits
	2.5.1 Combined I/O Address Decode

	2.6 Practical I/O Circuits
	2.6.1 STM32F4 Address Decoding

	2.7 A Typical I/O Programme
	2.7.1 Example GPIO Application
	2.7.2 A Summary of Alternative I/O Operations
	2.7.3 Programming I/O in Assembler Language

	2.8 Suggested Design Challenge
	2.9 Conclusion
	References
	Further Reading

	Chapter 3 Timer Subsystems
	3.1 Timer Subsystems
	3.2 Basic Timer Configuration
	3.3 The STM32F4 Timers
	3.3.1 The Individual Timers

	3.4 Programming the STM32F4 Timers
	3.5 Timer Triggering
	3.5.1 Setting up the Time-Base
	3.5.2 Using the Timer for an Input Measurement

	3.6 Basic Timers
	3.7 PWM Applications
	3.8 Programming Challenge
	3.9 Conclusion
	References

	Chapter 4 Analogue Interface Subsystems
	4.1 Analogue Interfaces
	4.2 Digital to Analogue
	4.2.1 The STM32F4 DAC

	4.3 Analogue to Digital Conversion
	4.3.1 Sampling
	4.3.2 Switched Capacitor Converter
	4.3.3 The Software Interface
	4.3.4 The STM32F4 ADC

	4.4 Software Control of DAC
	4.4.1 Waveform Generation
	4.4.2 Waveform Timing
	4.4.3 DAC Using DMA

	4.5 Software Control of ADC
	4.5.1 ADC Interface Using Timer and DMA

	4.6 Programming Challenge
	4.7 Conclusion
	References
	Further Reading

	Chapter 5 Serial Interface Subsystems
	5.1 Introduction
	5.2 RS232 Universal Asynchronous Receiver/Transmitter (UART) Communications
	5.3 The I2C Interface
	5.3.1 Using the Touch Screen with an I2C Interface

	5.4 SPI Interface
	5.4.1 SPI Interface to an Analogue to Digital Converter

	5.5 HDLC Serial Communication
	5.6 The Universal Serial Bus (USB)
	5.6.1 Hand-shake Packets
	5.6.2 Token Packets
	5.6.3 Data Packets
	5.6.4 USB Protocol

	5.7 Programming Challenge
	5.8 Conclusion
	References

	Chapter 6 Advanced Functions
	6.1 Advanced Functions
	6.2 Interrupts
	6.2.1 Interrupts in the STM32F4
	6.2.2 The Nested Vector Interrupt Controller (NVIC)
	6.2.3 Exceptions

	6.3 Direct Memory Access (DMA)
	6.3.1 The STM32F4 DMA System
	6.3.2 DMA Request Mapping
	6.3.3 DMA Management

	6.4 The LCD Display Module
	6.4.1 Character Generation
	6.4.2 Parallel Interface
	6.4.3 Touch Screen

	6.5 The Wireless Interface Module
	6.6 Digital Camera Interface
	6.7 Conclusion
	Further Reading

	Chapter 7 Application Case Study Examples
	7.1 An Open-Loop Digital Compass
	7.1.1 Program Design
	7.1.2 Setting up the MAG3110
	7.1.3 Programming Challenge: A 360° Servo

	7.2 The MSF Time Decoder
	7.2.1 MSF Receiver Circuit Arrangement
	7.2.2 Program Design
	7.2.3 Setting up for an Interrupt
	7.2.4 Acquiring the Data Bits
	7.2.5 Decoding the MSF Data
	7.2.6 Displaying the MSF Time Data

	7.3 Decoding GPS Signals
	7.3.1 Acquiring the GPS Message
	7.3.2 Decoding the GPS Message
	7.3.3 Selecting the Massage Stream

	7.4 Conclusion
	References

	Appendix A: uVision IDE Notes
	A.1 Getting Started
	A.2 Help
	A.3 Project Development
	A.4 Debug Facilities
	A.5 Conclusion

	Appendix B: STM Discovery Examples Library
	B.1 Peripheral Examples
	B.2 Example Application

	Appendix C: DAC and ADC Support Software
	C.1 DAC Peripheral Features
	C.2 How to Use the DAC Driver
	C.3 ADC Peripheral Features
	C.4 How to Use the ADC driver
	C.5 Files for Reference

	Appendix D: Example Keyboard Interface
	Index
	EULA

