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objectIveS
•	 Explain	the	basic	differences	between	digital	and	

analog quantities

•	 Show	how	voltage	levels	are	used	to	represent	
digital quantities

•	 Describe	various	parameters	of	a	pulse	waveform	
such	as	rise	time,	fall	time,	pulse	width,	fre-
quency, period, and duty cycle

•	 Explain	the	logic	operations	of	NOT,	AND,	 
and OR

•	 Describe	several	types	of	logic	functions

•	 Describe	programmable	logic,	discuss	the	
	various	types,	and	describe	how	PLDs	are	
	programmed	using	VHDL	and	Verilog	with	
	system	software

•	 Describe	the	basics	of	a	microcontroller

•	 Identify	fixed-function	digital	integrated	circuits	
according	to	their	technology	and	the	type	of	
packaging

Key termS
Key	terms	are	in	order	of	appearance	in	the	chapter.

•	 Discuss	how	various	logic	functions	are	used	in	
a digital system

•	 Recognize	various	instruments	and	understand	
how	they	are	used	in	measurement	and	trouble-
shooting	digital	devices	and	systems

vISIt the WebSIte
Study	aids	for	this	chapter	are	available	at 

http://pearsonhighered.com/floyd

analog
digital
digital system
binary
bit
Pulse
duty cycle
clock
timing diagram
data
Serial
Parallel
logic
Input
output
gate

not
Inverter
and
or
Programmable logic 
device
SPld
cPld
FPga
compiler
microcontroller
embedded system
Integrated circuit (Ic)
Fixed-function logic
troubleshooting

From	Chapter	1	of	Digital Fundamentals: A Systems Approach,	First	Edition.	Thomas	L.	Floyd.	Copyright	©	2013	by	Pearson	Education,	
Inc.	All	rights	reserved.
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INTRODuCTION	TO	DIgITAL	SySTEmS

IntroductIon
The	term	digital	is	derived	from	the	way	operations	are	
performed,	by	counting	digits.	For	many	years,	applica-
tions	of	digital	electronics	were	confined	to	computer	
systems.	Today,	digital	technology	is	applied	in	a	wide	
range	of	systems	in	addition	to	computers.	Such	applica-
tions as television, communications systems, radar, nav-
igation and guidance systems, military systems, medical 

instrumentation, industrial process control, and con-
sumer	electronics	use	digital	techniques.	Over	the	years	
digital	technology	has	progressed	from	vacuum-tube	cir-
cuits	to	fixed-function	integrated	circuits	to	programma-
ble	logic	and	embedded	microcontrollers.

This	chapter	introduces	you	to	digital	electronics	
and	provides	a	broad	overview	of	many	important	con-
cepts,	applications,	and	methods.

1 dIgItal and analog SIgnalS 
and SyStemS

electronic systems can be divided into two broad categories, digital and analog. digital elec-
tronics involves quantities with discrete values, and analog electronics involves quantities with 
continuous values. although you will be studying digital fundamentals in this text, you should 
also know something about analog because many applications require both; and interfacing 
between analog and digital is important.

after completing this section, you should be able to

•	 Define	analog

•	 Define	digital

•	 Explain	the	difference	between	digital	and	analog	signals

•	 State	the	advantages	of	digital	over	analog

•	 Discuss	modulation	methods

•	 Describe	two	types	of	digital	systems

An analog*	quantity	is	one	having	continuous	values.	A	digital	quantity	is	one	hav-
ing	a	discrete	set	of	values.	most	 things	that	can	be	measured	quantitatively	occur	in	
nature	in	analog	form.	For	example,	the	air	temperature	changes	over	a	continuous	range	
of	values.	During	a	given	day,	the	temperature	does	not	go	from,	say,	70°	to	71°	instan-
taneously;	it	takes	on	all	the	infinite	values	in	between.	If	you	graphed	the	temperature	
on	a	 typical	summer	day,	you	would	have	a	smooth,	continuous	curve	similar	 to	 the	
curve	in	Figure	1.	Other	examples	of	analog	quantities	are	time,	pressure,	distance,	and	
sound.

Rather	than	graphing	the	temperature	on	a	continuous	basis,	suppose	you	just	take	
a	temperature	reading	every	hour.	Now	you	have	sampled	values	representing	the	tem-
perature	at	discrete	points	in	time	(every	hour)	over	a	24-hour	period,	as	indicated	in	
Figure	2.	you	have	effectively	converted	an	analog	quantity	to	a	form	that	can	now	be	
digitized	by	representing	each	sampled	value	by	a	digital	code.	It	is	important	to	realize	
that	Figure	2	itself	is	not	the	digital	representation	of	the	analog	quantity.

*The	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	Term	glossary	at	the	end	of	the	chapter.
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INTRODuCTION	TO	DIgITAL	SySTEmS

the dIgItal advantage Digital	representation	has	certain	advantages	over	
analog	representation	in	electronics	applications.	For	one	thing,	digital	data	can	be	pro-
cessed	and	transmitted	more	efficiently	and	reliably	than	analog	data.	Also,	digital	data	has	
a	great	advantage	when	storage	is	necessary.	For	example,	music	when	converted	to	digital	
form	can	be	stored	more	compactly	and	reproduced	with	greater	accuracy	and	clarity	than	
is	possible	when	it	is	in	analog	form.	Noise	(unwanted	voltage	fluctuations)	does	not	affect	
digital	data	nearly	as	much	as	it	does	analog	signals.

analog Signals
An	analog	quantity,	such	as	voltage,	that	is	repetitive	or	varies	in	a	certain	manner	is	an	
analog	signal.	An	analog	signal	can	be	a	repetitive	waveform,	such	as	the	sine	wave	in	
Figure	3(a),	or	a	continuously	varying	audio	signal	that	carries	information	(music,	the	
spoken	word,	or	other	sounds),	as	shown	in	part	(b).	Other	examples	of	analog	signals	are	
amplitude-modulated	signals	(Am)	and	frequency-modulated	signals	(Fm),	as	illustrated	
in	parts	(c)	and	(d).	In	Am,	a	lower-frequency	information	signal,	such	as	voice,	varies	the	
amplitude	of	a	high-frequency	sine	wave.	In	Fm,	the	information	signal	varies	the	fre-
quency	of	the	sine	wave.

1

100

A.M.

95

90

85

80

75

70

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
P.M.

Time of day

Temperature
(°F)

fg01_00200

FIgure 2 Sampled-value representation (quantization) of the analog quantity in Figure 1. each 
value represented by a dot can be digitized by representing it as a digital code that consists  
of a series of 1s and 0s.
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FIgure 1 graph of an analog quantity (temperature versus time).
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INTRODuCTION	TO	DIgITAL	SySTEmS

digital Signals
A	digital	signal	is	a	representation	of	a	sequence	of	discrete	values	that	are	coded	into	a	
stream	of	1s	and	0s.	A	bit	stream	appears	as	a	train	of	pulses	or	voltage	levels	where	a	high	
voltage	level	conveys	a	binary	1	and	a	low	voltage	level	conveys	a	binary	0.	Bit	streams	
are	used	in	telecommunications,	computers,	and	other	system	applications.	Figure	4	illus-
trates	one	type	of	digital	signal.	The	duration	of	each	bit	(bit	time)	is	indicated	by	the	hash	
marks.

fg01_00300

(a) Sine wave

(c) Amplitude-modulated signal (d) Frequency-modulated signal

Frequency-
modulated
carrier

(b) Audio

Amplitude-
modulated
envelope Carrier

FIgure 3 examples of analog signals.

fg01_00400

000000 11111111

FIgure 4 example of a digital waveform.

dIgItal modulatIon In some applications, 
analog	and	digital	signals	are	combined	with	a	sine	wave,	
called a carrier,	 by	 amplitude	modulating	 the	 sine	wave	
with	the	digital	waveform.	A	common	example	is	a	modem	
that	turns	digital	data	from	a	computer	into	modulated	sig-
nals	in	the	voice	frequency	range	for	transmission	over	tele-
phone	lines.	A	digital-modulated	signal	is	shown	in	Figure	5	
where	the	digital	signal	(bit	stream)	in	Figure	4	modulates	
the	 sine	wave.	Dashed	 lines	mark	 the	bit	 times.	The	 fre-

quency	of	the	sine	wave	is	shown	arbitrarily	low	in	relation	to	the	digital-modulating	sig-
nal	for	illustration.

PulSe-code modulatIon (Pcm) A PCM signal represents sampled 
analog	signals	with	a	sequence	of	digital	codes.	It	is	used	in	computers	for	digital	audio,	in	
Blu-ray,	compact	disc	and	DVD	formats,	and	in	digital	telephone	systems.	The	sampling	
process	results	in	a	“stair-step”	voltage	as	shown	in	Figure	6.	The	analog	signal	is	sampled	
at	each	step,	and	each	sampled	value	 is	converted	(quantized)	 to	a	digital	code.	The	

fg01_00500

1 1 1 1 1 1 1 0 0 0 010 0

FIgure 5 example of a digital-modulated signal.

4



INTRODuCTION	TO	DIgITAL	SySTEmS

digital	signal	would	be	the	time	sequence	of	the	digital	codes	where	the	
binary	numbers	shown	for	each	step	appear	in	sequence	beginning	at	
the	left.	The	more	steps	there	are	the	more	accurate	is	the	digital	repre-
sentation.	The	length	of	the	code	depends	on	the	number	of	steps.

digital Systems
A digital system	 is	an	arrangement	of	 the	 individual	 logic	functions	
connected	to	perform	a	specified	operation	or	produce	a	defined	output.	
An	example	of	a	digital	system	is	a	computer,	as	shown	in	Figure	7	in	
basic	block	diagram	form.	A	computer	processes,	transfers,	and	stores	
data	in	digital	form	(1s	and	0s).	To	make	a	complete	system,	the	com-
puter	is	interfaced	with	peripheral	devices	such	as	a	modem,	a	mouse,	a	
keyboard,	and	a	monitor. fg01_00600

0001
0000

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

FIgure 6 Illustration of pulse-code modulation.

fg01_00700

Central-
processing
unit (CPU)

Input
Memory and

storage
Output

FIgure 7 basic block diagram of a computer.

fg01_00800

Red
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Green

Main
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Side

Combinational logic

Sequential logic

Long trigger

Short trigger

G0

G1

Gray
code

Long
timer

Short
timer

Traffic signal control logic

Traffic light
interface unit

Vehicle
sensor
input

System
clock

Timing circuits

FIgure 8 A	digital	traffic	light	controller.

Figure	8,	another	example	of	a	digital	system,	shows	the	traffic	light	controller.	All	of	
the	digital	signals	that	the	system	uses	to	properly	sequence	the	traffic	light	are	internally	
generated,	making	the	controller	a	type	of	finite	state	machine.
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INTRODuCTION	TO	DIgITAL	SySTEmS

analog Systems
An analog system	is	one	that	processes	data	in	analog	form	only.	One	example	is	a	public	
address	system,	used	to	amplify	sound	so	that	it	can	be	heard	by	a	large	audience.	The	
basic	diagram	in	Figure	9	illustrates	that	sound	waves,	which	are	analog	in	nature,	are	
picked	up	by	a	microphone	and	converted	to	a	small	analog	voltage	called	the	audio	signal.	
This	voltage	varies	continuously	as	the	volume	and	frequency	of	the	sound	changes	and	is	
applied	to	the	input	of	a	linear	amplifier.	The	output	of	the	amplifier,	which	is	an	increased	
reproduction	of	input	voltage,	goes	to	the	speaker(s).	The	speaker	changes	the	amplified	
audio	signal	back	to	sound	waves	that	have	a	much	greater	volume	than	the	original	sound	
waves	picked	up	by	the	microphone.

Audio signal

Amplified audio signal

Speaker

Microphone

Original sound waves

Reproduced
sound waves

Linear amplifier

fg01_00900

FIgure 9 a basic audio public address system.

fg01_01000

Mixer

Local
oscillator

RF
amplifier

88 MHz–108 MHz
electromagnetic
waves

IF
amplifier

Limiter Discriminator

De-emphasis
network

Audio and
power

amplifiers

Sound

Audio

Amplified
audio

Compensated
audio

FM fc

fc + 10.7 MHz

10.7 MHz FM
10.7 MHz

Amplified FM
10.7 MHz

Limited FM

FIgure 10 block diagram of superheterodyne Fm receiver.

Another	example	of	an	analog	system	is	the	Fm	receiver.	The	system	processes	the	
incoming	frequency-modulated	carrier	signal,	extracts	the	audio	signal	for	amplification,	
and	produces	audible	sound	waves.	A	block	diagram	is	shown	in	Figure	10	with	a	repre-
sentative	signal	shown	at	each	point	in	the	system.

a combination digital and analog System
The	compact	disk	(CD)	player	is	an	example	of	a	system	in	which	both	digital	and	analog	
elements	are	used.	The	simplified	block	diagram	in	Figure	11	illustrates	the	basic	system.	
music	in	digital	form	is	stored	on	the	compact	disk.	A	laser	diode	optical	system	picks	up	

6



INTRODuCTION	TO	DIgITAL	SySTEmS

the	digital	data	from	the	rotating	disk	and	transfers	it	to	the	digital-to-analog converter 
(dac).	The	DAC	changes	the	digital	data	into	an	analog	signal	that	is	an	electrical	repro-
duction	of	the	original	music.	This	signal	is	amplified	and	sent	to	the	speaker	for	you	to	
enjoy.	When	the	music	was	originally	recorded	on	the	CD,	a	process,	essentially	the	reverse	
of	the	one	described	here,	using	an	analog-to-digital converter (adc)	was	used.

Digital data

CD drive

10110011101

Analog
reproduction
of music audio
signal

Speaker

Sound
waves

Digital-to-analog
converter

Linear amplifier

fg01_01100
FIgure 11 Simplified	diagram	of	a	compact	disk	player.

2 bInary dIgItS, logIc levelS, 
and dIgItal WaveFormS

digital systems involve operations in which there are only two possible states. these states are 
represented by two different voltage levels: a hIgh and a loW. the two states can also be 
represented by current levels or pits and lands on a cd or dvd. In digital systems such as com-
puters, combinations of the two states, called codes, are used to represent numbers, symbols, 
alphabetic characters, and other types of information. the two-state number system is called 
binary, and its two digits are 0 and 1. a binary digit is called a bit.

after completing this section, you should be able to

•	 Define	binary

•	 Define	bit

•	 Name	the	bits	in	a	binary	system

•	 Explain	how	voltage	levels	are	used	to	represent	bits

•	 Explain	how	voltage	levels	are	interpreted	by	a	digital	circuit

•	 Describe	the	general	characteristics	of	a	pulse

•	 Determine	the	amplitude,	rise	time,	fall	time,	and	width	of	a	pulse

•	 Identify	and	describe	the	characteristics	of	a	digital	waveform

•	 Determine	the	amplitude,	period,	frequency,	and	duty	cycle	of	a	digital	waveform

•	 Explain	what	a	timing	diagram	is	and	state	its	purpose

•	 Explain	serial	and	parallel	data	transfer	and	state	the	advantage	and	disadvantage	of	each

1. Define	analog.

2. Define	digital.

3. Explain	the	difference	between	a	digital	quantity	and	an	ana-
log	quantity.

4. give	an	example	of	a	system	that	is	analog	and	one	that	is	a	
combination	of	both	digital	and	analog.	Name	a	system	that	is	
entirely	digital.

SectIon 1 checKuP*

*answers are at the end of the chapter.
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INTRODuCTION	TO	DIgITAL	SySTEmS

binary digits
Each	of	the	two	digits	in	the	binary	system,	1	and	0,	is	called	a	bit,	which	is	a	contraction	
of	the	words	binary digit.	In	digital	circuits,	two	different	voltage	levels	are	used	to	repre-
sent	the	two	bits.	generally,	1	is	represented	by	the	higher	voltage,	which	we	will	refer	to	
as	a	HIgH,	and	a	0	is	represented	by	the	lower	voltage	level,	which	we	will	refer	to	as	a	
LOW.	This	is	called	positive logic.

hIgh � 1 and loW � 0

Another	system	in	which	a	1	is	represented	by	a	LOW	and	a	0	is	represented	by	a	HIgH	is	
called negative logic.

groups	of	bits	(combinations	of	1s	and	0s),	called	codes, are used to represent num-
bers,	letters,	symbols,	instructions,	and	anything	else	required	in	a	given	application.

The	concept	of	a	digital	computer	can	be	traced	back	to	Charles	Babbage,	who	developed	a	
crude	mechanical	computation	device	in	the	1830s.	John	Atanasoff	was	the	first	to	apply	elec-
tronic	processing	to	digital	computing	in	1939.	In	1946,	an	electronic	digital	computer	called	
ENIAC	was	implemented	with	vacuum-tube	circuits.	Even	though	it	took	up	an	entire	room,	
ENIAC	didn’t	have	the	computing	power	of	your	handheld	calculator.

S y S t e m  n o t e

logic levels
The	voltages	used	to	represent	a	1	and	a	0	are	called	logic levels. Ideally, one voltage level 
represents	a	HIgH	and	another	voltage	level	represents	a	LOW.	In	a	practical	digital	cir-
cuit,	however,	a	HIgH	can	be	any	voltage	between	a	specified	minimum	value	and	a	spec-
ified	maximum	value.	Likewise,	a	LOW	can	be	any	voltage	between	a	specified	minimum	
and	a	specified	maximum.	There	can	be	no	overlap	between	the	accepted	range	of	HIgH	
levels	and	the	accepted	range	of	LOW	levels.

Figure	12	illustrates	the	general	range	of	LOWs	and	HIgHs	for	a	digital	circuit.	The	
variable VH(max)	represents	the	maximum	HIgH	voltage	value,	and	VH(min)	represents	the	
minimum	HIgH	voltage	value.	The	maximum	LOW	voltage	value	 is	 represented	by	
VL(max),	and	the	minimum	LOW	voltage	value	is	represented	by	VL(min).	The	voltage	val-
ues	between	VL(max) and VH(min)	are	unacceptable	for	proper	operation.	A	voltage	in	the	
unacceptable	range	can	appear	as	either	a	HIgH	or	a	LOW	to	a	given	circuit.	For	example,	
the	HIgH	input	values	for	a	certain	type	of	digital	circuit	technology	called	CmOS	may	
range	from	2	V	to	3.3	V	and	the	LOW	input	values	may	range	from	0	V	to	0.8	V.	If	a	volt-
age	of	2.5	V	is	applied,	the	circuit	will	accept	it	as	a	HIgH	or	binary	1.	If	a	voltage	of	0.5	V	
is	applied,	the	circuit	will	accept	it	as	a	LOW	or	binary	0.	For	this	type	of	circuit,	voltages	
between	0.8	V	and	2	V	are	unacceptable.

digital Waveforms
Digital	waveforms	consist	of	voltage	levels	that	are	changing	back	and	forth	between	the	
HIgH	and	LOW	levels	or	states.	Figure	13(a)	shows	that	a	single	positive-going	pulse is 
generated	when	the	voltage	(or	current)	goes	from	its	normally	LOW	level	to	its	HIgH	
level	and	then	back	to	its	LOW	level.	The	negative-going	pulse	in	Figure	13(b)	is	gener-
ated	when	the	voltage	goes	from	its	normally	HIgH	level	to	its	LOW	level	and	back	to	its	
HIgH	level.	A	digital	waveform	is	made	up	of	a	series	of	pulses.

the PulSe As	indicated	in	Figure	13,	a	pulse	has	two	edges:	a	leading edge	that	
occurs	first	at	time	t0 and a trailing edge	that	occurs	last	at	time	t1. For a positive-going 
pulse,	the	leading	edge	is	a	rising	edge,	and	the	trailing	edge	is	a	falling	edge.	The	pulses	

HIGH
(binary 1)

LOW
(binary 0)

VH(max)

VH(min)

VL(max)

VL (min)

Unacceptable

fg01_01200

FIgure 12 logic level 
ranges of voltage for a digital 
circuit.
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INTRODuCTION	TO	DIgITAL	SySTEmS

in	Figure	13	are	ideal	because	the	rising	and	falling	edges	are	assumed	to	change	in	zero	
time	(instantaneously).	In	practice,	these	transitions	never	occur	instantaneously,	although	
for	most	digital	work	you	can	assume	ideal	pulses.

Figure	14	shows	a	nonideal	pulse.	In	reality,	all	pulses	exhibit	some	or	all	of	these	
characteristics.	The	overshoot	and	ringing	are	sometimes	produced	by	stray	inductive	and	
capacitive	effects.	The	droop	can	be	caused	by	stray	
capacitance and circuit resistance, forming an RC 
circuit	with	a	low	time	constant.

The	time	required	for	a	pulse	 to	go	from	its	
LOW	level	to	its	HIgH	level	is	called	the	rise time 
(tr),	and	the	time	required	for	the	transition	from	the	
HIgH	level	to	the	LOW	level	is	called	the	fall time 
(tf). In practice, it is common to measure rise time 
from	 10%	 of	 the	 pulse	 amplitude	 (height	 from	
baseline)	 to	 90%	 of	 the	 pulse	 amplitude	 and	 to	
measure	the	fall	time	from	90%	to	10%	of	the	pulse	
amplitude,	as	 indicated	 in	Figure	14.	The	bottom	
10%	and	the	top	10%	of	the	pulse	are	not	included	
in	the	rise	and	fall	times	because	of	the	nonlineari-
ties	in	the	waveform	in	these	areas.	The	pulse width 
(tPW)	is	a	measure	of	the	duration	of	the	pulse	and	is	
often	defined	as	the	time	interval	between	the	50%	
points	on	the	rising	and	falling	edges,	as	indicated	
in	Figure	14.

WaveForm characterIStIcS most	waveforms	encountered	 in	digital	
systems are composed of series of pulses, sometimes called pulse trains, and can be classi-
fied	as	either	periodic	or	nonperiodic.	A	periodic	pulse	waveform	is	one	that	repeats	itself	
at	a	fixed	interval,	called	a	period (T).	The	frequency ( f )	is	the	rate	at	which	it	repeats	
itself	and	is	measured	in	hertz	(Hz).	A	nonperiodic	pulse	waveform,	of	course,	does	not	
repeat	itself	at	fixed	intervals	and	may	be	composed	of	pulses	of	randomly	differing	pulse	
widths	and/or	randomly	differing	time	intervals	between	the	pulses.	An	example	of	each	
type	is	shown	in	Figure	15.

Falling or
leading edge

(b) Negative–going pulse

HIGH

Rising or
trailing edge

LOW

(a) Positive–going pulse

HIGH

Rising or
leading edge

Falling or
trailing edge

LOW
t0 t1 t0 t1

fg01_01300

FIgure 13 Ideal pulses.

90%

50%

10%

Base line

Pulse width

Rise time Fall time

Amplitude tPW

tr tf

Undershoot

Ringing

Overshoot

Ringing
Droop

fg01_01400

FIgure 14 nonideal pulse characteristics.

T1

Period  =  T1  =  T2  =  T3  =  . . .  =  Tn

T2 T3

Frequency =  1
T

(a) Periodic (square wave)

(b) Nonperiodic

FIgure 15 examples of digital waveforms.
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The	frequency	( f )	of	a	pulse	(digital)	waveform	is	the	reciprocal	of	the	period.	The	
relationship	between	frequency	and	period	is	expressed	as	follows:

 f �
1
T

 (1)

 T �
1
f

 (2)

An	important	characteristic	of	a	periodic	digital	waveform	is	its	duty cycle,	which	is	
the	ratio	of	the	pulse	width	(tPW)	to	the	period	(T ).	It	can	be	expressed	as	a	percentage.

 duty cycle � ¢ tPW

T
≤100% (3)

10 10 11
t (ms)

T
tPW

fg01_01600
FIgure 16 

e X a m P l e  1

A	portion	of	a	periodic	digital	waveform	is	shown	in	Figure	16.	The	measure-
ments	are	in	milliseconds.	Determine	the	following:

(a) period   (b) frequency   (c) duty cycle

S o l u t I o n

(a) The	period	is	measured	from	the	edge	of	one	pulse	to	the	corresponding	edge	
of	the	next	pulse.	In	this	case	T is measured from leading edge to leading 
edge,	as	indicated.	T equals 10 ms.

(b) f =
1

T
=

1

10 ms
= 100 hz

(c) Duty cycle = ¢ tPW

T
≤100% = ¢ 1 ms

10 ms
≤100% = 10%

r e l a t e d  P r o b l e m *

A	periodic	digital	waveform	has	a	pulse	width	of	25	ms	and	a	period	of	150	ms.	
Determine	the	frequency	and	the	duty	cycle.

*answers are at the end of the chapter.

a digital Waveform carries binary Information
Binary	information	that	is	handled	by	digital	systems	appears	as	waveforms	that	represent	
sequences	of	bits.	When	the	waveform	is	HIgH,	a	binary	1	is	present;	when	the	waveform	
is	LOW,	a	binary	0	is	present.	Each	bit	in	a	sequence	occupies	a	defined	time	interval	
called a bit time.

10
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the clocK In	digital	systems,	all	waveforms	are	synchronized	with	a	basic	timing	
waveform	called	 the	clock.	The	clock	 is	 a	periodic	waveform	 in	which	each	 interval	
between	pulses	(the	period)	equals	the	time	for	one	bit.

An	example	of	a	clock	waveform	is	shown	in	Figure	17.	Notice	that,	in	this	case,	
each	change	in	level	of	waveform	A	occurs	at	the	leading	edge	of	the	clock	waveform.	In	
other	cases,	level	changes	occur	at	the	trailing	edge	of	the	clock.	During	each	bit	time	of	
the	clock,	waveform	A	 is	either	HIgH	or	LOW.	These	HIgHs	and	LOWs	represent	a	
sequence	of	bits	as	indicated.	A	group	of	several	bits	can	be	used	as	a	piece	of	binary	infor-
mation,	such	as	a	number	or	a	letter.	The	clock	waveform	itself	does	not	carry	information.

The	speed	at	which	a	computer	can	operate	depends	on	the	type	of	microprocessor	used	in	the	
system.	The	speed	specification,	for	example	3.5	gHz,	of	a	computer	is	the	maximum	clock	
frequency	at	which	the	microprocessor	can	run.

S y S t e m  n o t e

Bit
time

Bit sequence
represented by

waveform A

1

0

0

1
A

1 1 1 1 1 0

Clock

00000

fg01_01700
FIgure 17 example of a clock waveform synchronized with a waveform representation 
of a sequence of bits.

Clock

A

B

C

1 2 3 4 5 6 7 8

A, B, and C HIGH

fg01_01800
FIgure 18 example of a timing diagram.

tImIng dIagramS A timing diagram	is	a	graph	of	digital	waveforms	showing	
the	actual	time	relationship	of	two	or	more	waveforms	and	how	each	waveform	changes	in	
relation	to	the	others.	By	looking	at	a	timing	diagram,	you	can	determine	the	states	(HIgH	
or	LOW)	of	all	the	waveforms	at	any	specified	point	in	time	and	the	exact	time	that	a	
waveform	changes	state	relative	to	the	other	waveforms.	Figure	18	is	an	example	of	a	tim-
ing	diagram	made	up	of	four	waveforms.	From	this	timing	diagram	you	can	see,	for	exam-
ple,	that	the	three	waveforms	A, B, and C	are	HIgH	only	during	bit	time	7	(shaded	area)	
and	they	all	change	back	LOW	at	the	end	of	bit	time	7.

11
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data transfer
data	refers	to	groups	of	bits	that	convey	some	type	of	information.	Binary	data,	which	are	
represented	by	digital	waveforms,	must	be	transferred	from	one	circuit	to	another	within	a	
digital	system	or	from	one	system	to	another	in	order	to	accomplish	a	given	purpose.	For	
example,	numbers	stored	in	binary	form	in	the	memory	of	a	computer	must	be	transferred	
to	the	computer’s	central	processing	unit	in	order	to	be	added.	The	sum	of	the	addition	
must	then	be	transferred	to	a	monitor	for	display	and/or	transferred	back	to	the	memory.	In	
computer	systems,	as	illustrated	in	Figure	19,	binary	data	are	transferred	in	two	ways:	
serial	and	parallel.

Computer

Computer

1 0 1 1 0 0 1 0

t0 t1 t2 t3 t4 t5 t6 t7

0

t0 t1

1

0

0

1

1

0

1

t0 to t1 is first.
(a) Serial transfer of 8 bits of binary data from computer to modem. Interval

printer. The beginning time is t0.
(b) Parallel transfer of 8 bits of binary data from computer to

Modem

Printer

fg01_01900
FIgure 19 Illustration of serial and parallel transfer of binary data. only the data lines are shown.

When	bits	are	transferred	in	serial	form	from	one	point	to	another,	they	are	sent	one	
bit	at	a	time	along	a	single	line,	as	illustrated	in	Figure	19(a)	for	the	case	of	a	computer-to-
modem	transfer.	During	the	time	interval	from	t0 to t1,	the	first	bit	is	transferred.	During	
the	time	interval	from	t1 to t2,	the	second	bit	is	transferred,	and	so	on.	To	transfer	eight	bits	
in	series,	it	takes	eight	time	intervals.

universal	Serial	Bus	(uSB)	is	a	serial	bus	standard	for	device	interfacing.	It	was	originally	
developed	for	the	personal	computer	but	has	become	widely	used	on	many	types	of	handheld	
and	mobile	devices.	uSB	is	expected	to	replace	other	serial	and	parallel	ports.	uSB	operated	
at	12	mbps	(million	bits	per	second)	when	first	introduced	in	1995,	but	it	now	operates	at	up	to	
5	gbps.

S y S t e m  n o t e

When	bits	are	transferred	in	parallel	form,	all	the	bits	in	a	group	are	sent	out	on	sepa-
rate	lines	at	the	same	time.	There	is	one	line	for	each	bit,	as	shown	in	Figure	19(b)	for	the	
example	of	eight	bits	being	transferred	from	a	computer	to	a	printer	or	other	device.	To	
transfer	eight	bits	in	parallel,	it	takes	one	time	interval	compared	to	eight	time	intervals	for	
the	serial	transfer.

To	summarize,	an	advantage	of	serial	transfer	of	binary	data	is	that	a	minimum	of	
only	one	line	is	required.	In	parallel	transfer,	a	number	of	lines	equal	to	the	number	of	bits	
to	be	transferred	at	one	time	is	required.	A	disadvantage	of	serial	transfer	is	that	it	can	take	
longer	to	transfer	a	given	number	of	bits	than	with	parallel	transfer	at	the	same	clock	fre-
quency.	For	example,	if	one	bit	can	be	transferred	in	1	ms,	then	it	takes	8	ms to serially 
transfer	eight	bits	but	only	1	ms	to	parallel	transfer	eight	bits.	A	disadvantage	of	parallel	
transfer	is	that	it	takes	more	lines	than	serial	transfer.

12
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e X a m P l e  2

(a) Determine	the	total	time	required	to	serially	transfer	the	eight	bits	contained	
in	waveform	A	of	Figure	20,	and	indicate	the	sequence	of	bits.	The	left-most	
bit	is	the	first	to	be	transferred.	The	1	mHz	clock	is	used	as	reference.

(b) What	is	the	total	time	to	transfer	the	same	eight	bits	in	parallel?

Clock

A

fg01_02000

FIgure 20 

S o l u t I o n

(a) Since	the	frequency	of	the	clock	is	1	mHz,	the	period	is

T =
1

f
=

1

1 MHz
= 1 ms

	 It	takes	1	ms	to	transfer	each	bit	in	the	waveform.	The	total	transfer	time	for	
8 bits is

8 * 1 ms = 8 Ms

	 To	determine	the	sequence	of	bits,	examine	the	waveform	in	Figure	20	dur-
ing	each	bit	time.	If	waveform	A	is	HIgH	during	the	bit	time,	a	1	is	trans-
ferred.	If	waveform	A	is	LOW	during	the	bit	time,	a	0	is	transferred.	The	bit	
sequence	is	illustrated	in	Figure	21.	The	left-most	bit	is	the	first	to	be	trans-
ferred.

1 0 0 1 0 01 1

fg01_02100

FIgure 21 

(b) A	parallel	transfer	would	take	1 ms	for	all	eight	bits.

r e l a t e d  P r o b l e m

If	binary	data	are	transferred	on	a	uSB	at	the	rate	of	480	million	bits	per	second	
(480	mbps),	how	long	will	it	take	to	serially	transfer	16	bits?

1. Define	binary.

2. What	does	bit	mean?

3. What	are	the	bits	in	a	binary	system?

4. How	are	the	rise	time	and	fall	time	of	a	pulse	measured?

5. Knowing	the	period	of	a	waveform,	how	do	you	find	the	
	frequency?

6. Explain	what	a	clock	waveform	is.

7. What	is	the	purpose	of	a	timing	diagram?

8. What	is	the	main	advantage	of	parallel	transfer	over	serial	
transfer	of	binary	data?

SectIon 2 checKuP
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In	logic	operations,	the	true/false	conditions	mentioned	earlier	are	represented	by	a	
HIgH	(true)	and	a	LOW	(false).	Each	of	the	three	basic	logic	operations	produces	a	unique	
response	to	a	given	set	of	conditions.

not
The	not	operation	changes	one	logic	level	to	the	opposite	logic	level,	as	indicated	in	
Figure	23.	When	the	input	is	HIgH	(1),	the	output	is	LOW	(0).	When	the	input	is	LOW,	

Several	propositions,	when	combined,	form	propositional,	or	logic,	functions.	For	
example,	the	propositional	statement	“The	light	is	on”	will	be	true	if	“The	bulb	is	not	
burned	out”	is	true	and	if	“The	switch	is	on”	is	true.	Therefore,	this	logical	statement	can	
be	made:	The light is on only if the bulb is not burned out and the switch is on.	In	this	
example	the	first	statement	is	true	only	if	the	last	two	statements	are	true.	The	first	state-
ment	(“The	light	is	on”)	is	then	the	basic	proposition,	and	the	other	two	statements	are	the	
conditions	on	which	the	proposition	depends.

In	the	1850s,	the	Irish	logician	and	mathematician	george	Boole	developed	a	math-
ematical	system	for	formulating	logic	statements	with	symbols	so	that	problems	can	be	
written	and	solved	in	a	manner	similar	to	ordinary	algebra.	Boolean	algebra,	as	it	is	known	
today,	is	applied	in	the	design	and	analysis	of	digital	system.

The	term	logic	is	applied	to	digital	circuits	used	to	implement	logic	functions.	Several	
kinds of digital logic circuits	are	the	basic	elements	that	form	the	building	blocks	for	such	
complex	digital	systems	as	the	computer.	We	will	now	look	at	these	elements	and	discuss	
their	functions	in	a	very	general	way.

Three	basic	logic	operations	(NOT,	AND,	and	OR)	are	indicated	by	standard	distinc-
tive	shape	symbols	in	Figure	22.	The	lines	connected	to	each	symbol	are	the	inputs and 
outputs.	The	inputs	are	on	the	left	of	each	symbol	and	the	output	is	on	the	right.	A	circuit	
that	performs	a	specified	logic	operation	(AND,	OR)	is	called	a	logic	gate.	AND	and	OR	
gates	can	have	any	number	of	inputs,	as	indicated	by	the	dashes	in	the	figure.

In its basic form, logic is the realm of human reasoning that tells you a certain proposition 
(declarative	statement)	is	true	if	certain	conditions	are	true.	Propositions	can	be	classified	as	
true or false. many situations and processes that you encounter in your daily life can be 
expressed in the form of propositional, or logic, functions. Since such functions are true/false 
or yes/no statements, digital circuits with their two-state characteristics are applicable.

after completing this section, you should be able to

•	 List	three	basic	logic	operations

•	 Define	the	NOT	operation

•	 Define	the	AND	operation

•	 Define	the	OR	operation

3 logIc oPeratIonS

NOT ORAND

fg01_02200

FIgure 22 the basic logic operations and symbols.

HIGH (1) LOW (0) HIGH (1)LOW (0)

fg01_02300
FIgure 23 the not operation.
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the	output	is	HIgH.	In	either	case,	the	output	is	not	the	same	as	the	input.	The	NOT	opera-
tion	is	implemented	by	a	logic	circuit	known	as	an	inverter.

and
The	and	operation	produces	a	HIgH	output	only	when	all	the	inputs	are	HIgH,	as	indi-
cated	in	Figure	24	for	the	case	of	two	inputs.	When	one	input	is	HIgH	and	the	other	input	
is	HIgH,	the	output	is	HIgH.	When	any	or	all	inputs	are	LOW,	the	output	is	LOW.	The	
AND	operation	is	implemented	by	a	logic	circuit	known	as	an	AND gate.

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
HIGH (1)

fg01_02500
FIgure 25 the or operation.

or
The	or	operation	produces	a	HIgH	output	when	one	or	more	inputs	are	HIgH,	as	indi-
cated	in	Figure	25	for	the	case	of	two	inputs.	When	one	input	is	HIgH	or	the	other	input	is	
HIgH	or	both	inputs	are	HIgH,	the	output	is	HIgH.	When	both	inputs	are	LOW,	the	out-
put	is	LOW.	The	OR	operation	is	implemented	by	a	logic	circuit	known	as	an	OR gate.

HIGH (1)

HIGH (1)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

LOW (0)

LOW (0)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

fg01_02400
FIgure 24 the and operation.

1. When	does	the	NOT	operation	produce	a	HIgH	output?

2. When	does	the	AND	operation	produce	a	HIgH	output?

3. When	does	the	OR	operation	produce	a	HIgH	output?

4. What	is	an	inverter?

5. What	is	a	logic	gate?

SectIon 3 checKuP
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the comparison Function
magnitude comparison is performed by a logic circuit called a comparator.	A	comparator	
compares	two	quantities	and	indicates	whether	or	not	they	are	equal.	For	example,	suppose	
you	have	two	numbers	and	wish	to	know	if	they	are	equal	or	not	equal	and,	if	not	equal,	
which	is	greater.	The	comparison	function	is	represented	in	Figure	26.	One	number	 in	
binary	form	(represented	by	logic	levels)	is	applied	to	input	A,	and	the	other	number	in	
binary	form	(represented	by	logic	levels)	is	applied	to	input	B.	The	outputs	indicate	the	
relationship	of	the	two	numbers	by	producing	a	HIgH	level	on	the	proper	output	line.	Sup-
pose	that	a	binary	representation	of	the	number	2	is	applied	to	input	A and a binary represen-
tation	of	the	number	5	is	applied	to	input	B.	A	HIgH	level	will	appear	on	the	A 6 B (A is 
less	than	B)	output,	indicating	the	relationship	between	the	two	numbers	(2	is	less	than	5).	
The	wide	arrows	represent	a	group	of	parallel	lines	on	which	the	bits	are	transferred.

the three basic logic elements and, or, and not can be combined to form various types of 
logic functions: comparison, arithmetic, code conversion, encoding, decoding, data selection, 
counting, and storage. this section provides an overview of important logic functions and illus-
trates	how	they	can	be	used	in	a	specific	system.

after completing this section, you should be able to

•	 List	several	types	of	logic	functions

•	 Describe	comparison	and	list	the	four	arithmetic	functions

•	 Describe	code	conversion,	encoding,	and	decoding

•	 Describe	multiplexing	and	demultiplexing

•	 Describe	the	counting	function

•	 Describe	the	storage	function

4 combInatIonal and SequentIal 
logIc FunctIonS

Two
binary
numbers

Outputs

A

B
A < B

A = B

A > B
Comparator

(a) Basic magnitude comparator

A

B
A < B

A = B

A > BBinary
code for 2

HIGH

LOW
Comparator

(b) Example: A is less than B (2 < 5) as indicated by

LOW

Binary
code for 5

the HIGH output (A < B)

fg01_02600

FIgure 26 the comparison function.

the arithmetic Functions
addItIon Addition is performed by a logic circuit called an adder. An adder adds 
two	binary	numbers	(on	inputs	A and B)	with	a	carry	input	Cin and generates a sum (�) and 
a carry output (Cout),	 as	 shown	 in	Figure	 27(a).	 Figure	 27(b)	 illustrates	 the	 addition	
of	3	and	9.	you	know	that	the	sum	is	12;	the	adder	indicates	this	result	by	producing	the	
code	for	2	on	the	sum	output	and	1	on	the	carry	output.	Assume	that	the	carry	input	in	this	
example	is	0.

SubtractIon Subtraction	 is	 also	 performed	by	 a	 logic	 circuit.	A	 subtracter 
requires	three	inputs:	the	two	numbers	that	are	to	be	subtracted	and	a	borrow	input.	The	
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two	outputs	are	the	difference	and	the	borrow	output.	When,	for	instance,	5	is	subtracted	
from	8	with	no	borrow	input,	the	difference	is	3	with	no	borrow	output.	

multIPlIcatIon Multiplication is performed by a logic circuit called a multi-
plier.	Numbers	are	always	multiplied	two	at	a	time,	so	two	inputs	are	required.	The	output	
of	the	multiplier	is	the	product.	Because	multiplication	is	simply	a	series	of	additions	with	
shifts	in	the	positions	of	the	partial	products,	it	can	be	performed	by	using	an	adder	in	con-
junction	with	other	circuits.

Adder Adder

A

B

Binary
code for 3

Cout

Cin

Binary
code for 9

Binary 0

Binary
code for 2

Binary 1

Binary
code for 12

Two
binary
numbers

Carry out

A

B
Cout

CinCarry in

Sum

(a) Basic adder

Σ Σ

fg01_02700

(b) Example: A plus B (3 + 9 = 12)

FIgure 27 the addition function.

dIvISIon Division	can	be	performed	with	a	series	of	subtractions,	comparisons,	and	
shifts,	and	thus	it	can	also	be	done	using	an	adder	in	conjunction	with	other	circuits.	Two	inputs	
to	the	divider	are	required,	and	the	outputs	generated	are	the	quotient	and	the	remainder.

the code conversion Function
A code	is	a	set	of	bits	arranged	in	a	unique	pattern	and	used	to	represent	specified	informa-
tion.	A	code	converter	changes	one	form	of	coded	information	into	another	coded	form.	
Examples	are	conversion	between	binary	and	other	codes	such	as	the	binary	coded	decimal	
(BCD)	and	the	gray	code.

the encoding Function
The	encoding	function	is	performed	by	a	logic	circuit	called	
an encoder.	The	encoder	converts	information,	such	as	a	dec-
imal	 number	 or	 an	 alphabetic	 character,	 into	 some	 coded	
form.	For	example,	one	certain	type	of	encoder	converts	each	
of	the	decimal	digits,	0	through	9,	to	a	binary	code.	A	HIgH	
level	on	the	input	corresponding	to	a	specific	decimal	digit	
produces	logic	levels	that	represent	the	proper	binary	code	on	
the	output	lines.

Figure	28	is	a	simple	illustration	of	an	encoder	used	to	
convert	(encode)	a	calculator	keystroke	into	a	binary	code	
that	can	be	processed	by	the	calculator	circuits.

Encoder9

8 9

4 5 6

1 2 3

0 . +/–
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FIgure 28 a calculator keystroke encoded into a binary 
code for processing by the calculator system.

In	a	microprocessor,	the	arithmetic	logic	unit	(ALu)	performs	the	operations	of	add,	subtract,	
multiply,	and	divide	as	well	as	the	logic	operations	on	digital	data	as	directed	by	a	series	of	
instructions.	A	typical	ALu	is	constructed	of	many	thousands	of	logic	gates.

S y S t e m  n o t e
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the decoding Function
The	decoding	function	is	performed	by	a	logic	circuit	called	a	decoder.	The	decoder	con-
verts	coded	information,	such	as	a	binary	number,	into	a	noncoded	form,	such	as	a	decimal	

form.	For	example,	one	particular	type	of	decoder	con-
verts	 a	 4-bit	 binary	 code	 into	 the	 appropriate	 decimal	
digit.

Figure	 29	 is	 a	 simple	 illustration	 of	 one	 type	 of	
decoder	that	is	used	to	activate	a	7-segment	display.	Each	
of	the	seven	segments	of	the	display	is	connected	to	an	
output	 line	from	the	decoder.	When	a	particular	binary	
code	appears	on	the	decoder	inputs,	the	appropriate	out-
put	lines	are	activated	and	light	the	proper	segments	to	
display	 the	 decimal	 digit	 corresponding	 to	 the	 binary	
code.

the data Selection Function
Two	types	of	circuits	that	select	data	are	the	multiplexer	and	the	demultiplexer.	The	multi-
plexer,	or	mux	for	short,	is	a	logic	circuit	that	switches	digital	data	from	several	input	lines	
onto	a	single	output	line	in	a	specified	time	sequence.	Functionally,	a	multiplexer	can	be	
represented	by	an	electronic	switch	operation	that	sequentially	connects	each	of	the	input	
lines	to	the	output	line.	The	demultiplexer	(demux)	is	a	logic	circuit	that	switches	digital	
data	from	one	input	line	to	several	output	lines	in	a	specified	time	sequence.	Essentially,	
the	demux	is	a	mux	in	reverse.

multiplexing	and	demultiplexing	are	used	when	data	from	several	sources	are	to	be	
transmitted	over	one	line	to	a	distant	location	and	redistributed	to	several	destinations.	
Figure	30	illustrates	this	type	of	application	where	digital	data	from	three	sources	are	sent	
out	along	a	single	line	to	three	terminals	at	another	location.

Decoder

Binary-coded input

7-segment display

fg01_02900
FIgure 29 a decoder used to convert a special binary code into 
a 7-segment decimal readout.

In	Figure	30,	data	from	input	A	are	connected	to	the	output	line	during	time	interval	
�t1	and	transmitted	to	the	demultiplexer	that	connects	them	to	output	D.	Then,	during	
interval �t2,	the	multiplexer	switches	to	input	B	and	the	demultiplexer	switches	to	output	
E.	During	interval	�t3,	the	multiplexer	switches	to	input	C	and	the	demultiplexer	switches	
to	output	F.

To	summarize,	during	the	first	time	interval,	input	A	data	go	to	output	D.	During	the	
second	time	interval,	input	B	data	go	to	output	E.	During	the	third	time	interval,	input	C	
data	go	to	output	F.	After	this,	the	sequence	repeats.	Because	the	time	is	divided	up	among	
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FIgure 30 Illustration of a basic multiplexing/demultiplexing application.

18



INTRODuCTION	TO	DIgITAL	SySTEmS

the counting Function
A counter	is	a	sequential	device	and	is	a	type	of	state	machine	because	it	has	a	unique	
internal	sequence	of	states.	The	counting	function	is	important	in	digital	systems.	There	
are	many	types	of	digital	counters,	but	their	basic	purpose	is	to	count	events	or	to	generate	
sequences	represented	by	changing	levels	or	pulses.	To	count,	the	counter	must	“remember”	
the	present	number	so	that	it	can	go	to	the	next	proper	number	in	sequence.	Therefore,	
storage	capability	is	an	important	characteristic	of	all	counters,	and	flip-flops	are	generally	
used	to	implement	them.	Figure	31	illustrates	the	basic	idea	of	counter	operation.

several	sources	and	destinations	where	each	has	its	turn	to	send	and	receive	data,	this	pro-
cess is called time division multiplexing	(TDm).

the memory and Storage Functions
memory and storage	are	functions	that	are	required	in	most	digital	systems,	and	their	
purpose	is	to	retain	binary	data	for	a	period	of	time.	generally,	memory refers to relatively 
short-term	data	retention,	and	storage	refers	to	long-term	data	retention.	A	storage	device	
can	“memorize”	a	bit	or	a	group	of	bits	and	retain	the	information	as	long	as	necessary.	
memories	include	flip-flops,	registers,	and	semiconductor	memory.	Storage	includes	mag-
netic	disks	(hard	drives),	optical	disks	(CDs),	and	magnetic	tape.

FlIP-FloPS A flip-flop	is	a	bistable	(two	stable	states)	logic	circuit	that	can	store	
only	one	bit	at	a	time,	either	a	1	or	a	0.	The	output	of	a	flip-flop	indicates	which	bit	it	is	
storing.	A	HIgH	output	indicates	that	a	1	is	stored	and	a	LOW	output	indicates	that	a	0	is	
stored.	Flip-flops	are	implemented	with	logic	gates.

regISterS A register	is	formed	by	combining	several	flip-flops	so	that	groups	of	
bits	can	be	stored.	For	example,	an	8-bit	register	is	constructed	from	eight	flip-flops.	In	
addition	to	storing	bits,	registers	can	be	used	to	shift	the	bits	from	one	position	to	another	
within	the	register	or	out	of	the	register	to	another	circuit;	 therefore,	these	devices	are	
known	as	shift registers.

The	two	basic	types	of	shift	registers	are	serial	and	parallel.	The	bits	are	stored	in	a	
serial	shift	register	one	at	a	time.	A	good	analogy	to	the	serial	shift	register	is	loading	pas-
sengers	onto	a	bus	single	file	through	the	door.	They	also	exit	the	bus	single	file.	The	bits	
are	stored	in	a	parallel	register	simultaneously	from	parallel	lines.	For	this	case,	a	good	
analogy	is	loading	and	unloading	passengers	on	a	roller	coaster	where	they	enter	all	of	the	
cars	in	parallel	and	exit	in	parallel.

SemIconductor memorIeS Semiconductor memories are devices typi-
cally	used	for	storing	large	numbers	of	bits.	In	one	type	of	memory,	called	the	read-only 
memory	or	ROm,	the	binary	data	are	permanently	or	semipermanently	stored	and	cannot	
be	readily	changed.	In	the	random-access memory	or	RAm,	the	binary	data	are	temporar-
ily	stored	and	can	be	easily	changed.

magnetIc memorIeS Magnetic disk memories are used for mass storage of 
binary	data.	An	example	is	the	computer’s	internal	hard	disk.	magneto-optical	disks	use	
laser	beams	to	store	and	retrieve	data.	magnetic	tape	is	still	used	in	memory	applications	
and	for	backing	up	data	from	other	storage	devices.

The	internal	computer	memories,	RAm	and	ROm,	as	well	as	the	smaller	caches	are	semicon-
ductor	memories.	The	registers	in	a	microprocessor	are	constructed	of	semiconductor	flip-
flops.	Opto-magnetic	disk	memories	are	used	in	the	internal	hard	drive	and	for	the	CD-ROm.

S y S t e m  n o t e
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FIgure 31 Illustration of basic counter operation.

1. What	does	a	comparator	do?

2. What	are	the	four	basic	arithmetic	operations?

3. Describe	encoding	and	give	an	example.

4. Describe	decoding	and	give	an	example.

5. Explain	the	basic	purpose	of	multiplexing	and	demultiplexing.

6. Name	four	types	of	memory	and	storage	devices.

7. What	does	a	counter	do?

SectIon 4 checKuP

a programmable logic device (Pld) is a type of integrated circuit (Ic) that starts as a “blank 
slate” and into which a logic design is programmed. Programmable logic requires both hard-
ware	and	software.	PLDs	can	be	programmed	to	perform	specified	logic	functions	by	the	manu-
facturer	or	by	the	user.	One	advantage	of	programmable	logic	over	fixed-function	logic	is	that	
the devices use much less board space for an equivalent amount of logic. another advantage is 
that, with programmable logic, designs can be readily changed without rewiring or replacing 
components. also, a logic design can generally be implemented faster and with less cost with 
programmable	logic	than	with	fixed-function	ICs.

after completing this section, you should be able to

•	 State	the	major	types	of	programmable	logic	and	discuss	the	differences

•	 Discuss	methods	of	programming

•	 List	the	major	programming	languages	used	for	programmable	logic

•	 Discuss	the	programmable	logic	design	process

5 Programmable logIc

types of Programmable logic devices (Plds)
many	types	of	programmable	logic	devices	are	available,	ranging	from	small	devices	that	
can	replace	a	few	fixed-function	devices	to	complex	high-density	devices	that	can	replace	
thousands	of	fixed-function	devices.	Two	major	categories	of	user-programmable	logic	are	
Pld	(programmable	logic	device)	and	FPga	(field-programmable	gate	array),	as	indi-
cated	in	Figure	32.	PLDs	are	either	SPLDs	(simple	PLDs)	or	CPLDs	(complex	PLDs).

SImPle Programmable logIc devIce (SPld) The	SPLD	was	the	
original	PLD	and	is	still	available	for	small-scale	applications.	generally,	an	SPld can 
replace	up	to	ten	fixed-function	ICs	and	their	interconnections,	depending	on	the	type	of	
functions	and	the	specific	SPLD.	most	SPLDs	are	in	one	of	two	categories:	PAL	and	gAL.	
A Pal	(programmable	array	logic)	is	a	device	that	can	be	programmed	one	time.	It	con-
sists	of	a	programmable	array	of	AND	gates	and	a	fixed	array	of	OR	gates,	as	shown	in	
Figure	33(a).	A	gal	(generic	array	logic)	is	a	device	that	is	basically	a	PAL	that	can	be	
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reprogrammed	many	times.	It	consists	of	a	reprogrammable	array	of	AND	gates	and	a	
fixed	array	of	OR	gates	with	programmable	ouputs,	as	shown	in	Figure	33(b).	A	typical	
SPLD	package	is	shown	in	Figure	34	and	generally	has	from	24	to	28	pins.

comPleX Programmable logIc devIce (cPld) As	technology	
progressed	and	the	amount	of	circuitry	that	could	be	put	on	a	chip	(chip	density)	increased,	
manufacturers	were	able	to	put	more	than	one	SPLD	on	a	single	chip	and	the	CPLD	was	
born.	Essentially,	the	cPld is a device containing multiple SPLDs and can replace many 
fixed-function	ICs.	Figure	35	shows	a	basic	CPLD	block	diagram	with	four	logic	array	

SPLDs CPLDs

PLDs FPGAs

Programmable logic

fg01_03200

FIgure 32 Programmable logic hierarchy.
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fg01_03300FIgure 33 block diagrams of simple programmable logic devices (SPlds).
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FIgure 34 a typical SPld 
package.
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FIgure 35 general block diagram of a cPld.

21



INTRODuCTION	TO	DIgITAL	SySTEmS

blocks	(LABs)	and	a	programmable	interconnection	array	(PIA).	Depending	on	the	specific	
CPLD,	there	can	be	from	two	to	sixty-four	LABs.	Each	logic	array	block	is	roughly	equiva-
lent	to	one	SPLD.

generally,	CPLDs	can	be	used	to	implement	any	of	the	logic	functions	discussed	
earlier,	for	example,	decoders,	encoders,	multiplexers,	demultiplexers,	and	adders.	They	
are	available	in	a	variety	of	configurations,	typically	ranging	from	44	to	160	pin	packages.	
Examples	of	CPLD	packages	are	shown	in	Figure	36.

fg01_03600

(a) 80-pin PQFP (b) 128-pin PQFP

FIgure 36 typical cPld packages.
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FIgure 37 basic structure of an FPga.

FIeld-Programmable gate array (FPga) An FPga is generally 
more	complex	and	has	a	much	higher	density	than	a	CPLD,	although	their	applications	can	
sometimes	overlap.	As	mentioned,	the	SPLD	and	the	CPLD	are	closely	related	because	the	
CPLD	basically	contains	a	number	of	SPLDs.	The	FPgA,	however,	has	a	different	internal	
structure	(architecture),	as	illustrated	in	Figure	37.	The	three	basic	elements	in	an	FPgA	
are	the	logic	block,	the	programmable	interconnections,	and	the	input/output	(I/O)	blocks.
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The	logic	blocks	in	an	FPgA	are	not	as	complex	as	the	logic	array	blocks	(LABs)	in	
a	CPLD,	but	generally	there	are	many	more	of	them.	When	the	logic	blocks	are	relatively	
simple,	the	FPgA	architecture	is	called	fine-grained.	When	the	logic	blocks	are	larger	and	
more	complex,	the	architecture	is	called	coarse-grained.	The	I/O	blocks	are	on	the	outer	
edges	of	the	structure	and	provide	individually	selectable	input,	output,	or	bidirectional	
access	to	the	outside	world.	The	distributed	programmable	interconnection	matrix	pro-
vides	for	interconnection	of	the	logic	blocks	and	connection	to	inputs	and	outputs.	Large	
FPgAs	 can	have	 tens	 of	 thousands	of	 logic	 blocks	 in	 addition	 to	memory	 and	other	
resources.	A	typical	FPgA	ball-grid	array	package	is	shown	in	Figure	38.	These	types	of	
packages	can	have	over	1000	input	and	output	pins.

fg01_03800

(a) Top view (b) Bottom view

FIgure 38 a typical ball-grid array (bga) package.
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PLD development board

Programmable logic device

FIgure 39 basic setup for programming a Pld or FPga. (Photo courtesy of digilent, Inc.)

the Programming Process
An	SPLD,	CPLD,	or	FPgA	can	be	thought	of	as	a	“blank	slate”	on	which	you	implement	
a	specified	system	design	using	a	certain	process.	This	process	requires	a	software	devel-
opment	package	installed	on	a	computer	to	implement	a	circuit	design	in	the	programma-
ble	chip.	The	computer	must	be	interfaced	with	a	development	board	or	programming	
fixture	containing	the	device,	as	illustrated	in	Figure	39.

Several	steps,	called	the	design flow,	are	involved	in	the	process	of	implementing	a	
digital	logic	design	in	a	programmable	logic	device.	A	block	diagram	of	a	typical	program-
ming	process	is	shown	in	Figure	40.	As	indicated,	the	design	flow	has	access	to	a	design	
library.
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deSIgn entry This	is	the	first	programming	step.	The	circuit	
or	system	design	must	be	entered	into	the	design	application	software	
using	text-based	entry,	graphic	entry	(schematic	capture),	or	state	dia-
gram	description.	Design	entry	is	device	independent.	Text-based	entry	
is	accomplished	with	a	hardware	description	language	(HDL)	such	as	
VHDL,	Verilog,	or	AHDL.	graphic	(schematic)	entry	allows	prestored	
logic	functions	from	a	library	to	be	selected,	placed	on	the	screen,	and	
then	 interconnected	 to	 create	 a	 logic	 design.	 State-diagram	 entry	
requires	specification	of	both	the	states	through	which	a	sequential	logic	
circuit	progresses	and	the	conditions	that	produce	each	state	change.

Once	a	design	has	been	entered,	it	is	compiled.	A	compiler is a 
program	that	controls	 the	design	flow	process	and	 translates	source	
code	into	object	code	in	a	format	that	can	be	logically	tested	or	down-
loaded	 to	a	 target	device.	The	source	code	 is	created	during	design	
entry,	and	 the	object	code	 is	 the	final	code	 that	actually	causes	 the	
design	to	be	implemented	in	the	programmable	device.

FunctIonal SImulatIon The	 entered	 and	 compiled	
design	is	simulated	by	software	to	confirm	that	the	logic	circuit	func-
tions	as	expected.	The	functional	simulation	will	verify	that	correct	
outputs	are	produced	for	a	specified	set	of	inputs.	A	device-independent	
software	tool	for	doing	this	is	generally	called	a	waveform editor. Any 
flaws	demonstrated	by	 the	simulation	would	be	corrected	by	going	
back	to	design	entry	and	making	appropriate	changes.

SyntheSIS Synthesis	 is	where	the	design	is	translated	into	a	netlist,	which	has	a	
standard	form	and	is	device	independent.

ImPlementatIon Implementation	is	where	the	logic	structures	described	by	
the	netlist	are	mapped	into	the	actual	structure	of	the	specific	device	being	programmed.	
The	implementation	process	is	called	fitting or place and route and results in an output 
called	a	bitstream,	which	is	device	dependent.

tImIng SImulatIon This	step	comes	after	the	design	is	mapped	into	the	spe-
cific	device.	The	timing	simulation	is	basically	used	to	confirm	that	there	are	no	design	
flaws	or	timing	problems	due	to	propagation	delays.

doWnload Once	 a	 bitstream	has	 been	generated	 for	 a	 specific	programmable	
device,	it	has	to	be	downloaded	to	the	device	to	implement	the	software	design	in	hard-
ware.	Some	programmable	devices	have	to	be	installed	in	a	special	piece	of	equipment	
called a device programmer	or	on	a	development	board.	Other	types	of	devices	can	be	
programmed	while	in	a	system—called	in-system	programming	(ISP)—using	a	standard	
JTAg	(Joint	Test	Action	group)	interface.	Some	devices	are	volatile,	which	means	they	
lose	their	contents	when	reset	or	when	power	is	turned	off.	In	this	case,	the	bitstream	data	
must	be	stored	in	a	memory	and	reloaded	into	the	device	after	each	reset	or	power-off.	
Also,	the	contents	of	an	ISP	device	can	be	manipulated	or	upgraded	while	it	is	operating	in	
a	system.	This	is	called	“on-the-fly”	reconfiguration.

the microcontroller
A	microcontroller	is	different	than	a	PLD.	The	internal	circuits	of	a	microcontroller	are	
fixed,	and	a	program	(series	of	instructions)	directs	the	microcontroller	operation	in	order	
to	achieve	a	specific	outcome.	The	internal	circuitry	of	a	PLD	is	programmed	into	it,	and	
once	programmed,	the	circuitry	performs	required	operations.	Thus,	a	program	determines	
microcontroller	operation,	but	in	a	PLD	a	program	determines	the	logic	function.	micro-
controllers	are	generally	programmed	with	either	the	C	language	or	the	BASIC	language.
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fg01_04000
FIgure 40 basic programming flow block 
diagram.
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A	monolithic	integrated circuit (Ic)	is	an	electronic	circuit	that	is	constructed	
entirely	on	a	single	small	chip	of	silicon.	All	the	components	that	make	up	the	cir-
cuit—transistors,	diodes,	resistors,	and	capacitors—are	an	integral	part	of	that	sin-
gle	chip.	Fixed-function	logic	and	programmable	logic	are	two	broad	categories	of	
digital	ICs.	In	fixed-function	logic,	the	logic	functions	are	set	by	the	manufacturer	
and	cannot	be	altered.

Figure	41	shows	a	cutaway	view	of	one	type	of	fixed-function	IC	package	
with	the	circuit	chip	shown	within	the	package.	Points	on	the	chip	are	connected	to	
the	package	pins	to	allow	input	and	output	connections	to	the	outside	world.

A microcontroller	is	basically	a	special-purpose	small	computer.	microcontrollers	
are	generally	used	for	embedded	system	applications.	An	embedded system	is	one	that	is	
designed	to	perform	one	or	a	few	dedicated	functions.	By	contrast,	a	general-purpose	com-
puter,	such	as	a	laptop,	is	designed	to	perform	a	wide	range	of	functions	and	applications.

Embedded	microcontrollers	are	used	in	many	common	applications.	The	embedded	
microcontroller	is	part	of	a	complete	system,	which	may	include	additional	electronics	and	
mechanical	parts.	For	example,	a	microcontroller	in	a	television	set	displays	the	input	from	
the	remote	unit	on	the	screen	and	controls	the	channel	selection,	audio,	and	various	menu	
adjustments	like	brightness	and	contrast.	In	an	automobile	a	microcontroller	takes	engine	
sensor	inputs	and	controls	spark	timing	and	fuel	mixture.	Other	applications	include	home	
appliances,	thermostats,	cell	phones,	and	toys.

1. List	three	major	categories	of	programmable	logic	devices	
and	specify	their	acronyms.

2. How	does	a	CPLD	differ	from	an	SPLD?

3. Name	the	steps	in	the	programming	process.

4. Briefly	explain	each	step	named	in	question	3.

5. What	are	the	two	main	functional	characteristics	of	a	micro-
controller?

SectIon 5 checKuP

6 FIXed-FunctIon logIc devIceS

Plastic
case

Pins

Chip

fg01_04100

FIgure 41 cutaway view of one type 
of	fixed-function	surface-mount	IC	pack-
age, showing the chip mounted inside and 
connections to input and output pins.

all the logic elements and functions that have been discussed are generally available in inte-
grated	circuit	(IC)	form.	A	fixed-function	device	is	one	that	cannot	be	programmed	like	a	PLD.
digital systems have incorporated Ics for many years because of their small size, high reliability, 
low cost, and low power consumption. It is important to be able to recognize the Ic packages 
and to know how the pin connections are numbered, as well as to be familiar with the way in 
which	circuit	complexities	and	circuit	technologies	determine	the	various	IC	classifications.

after completing this section, you should be able to

•	 Recognize	the	difference	between	through-hole	devices	and	surface-mount	fixed-function	
devices

•	 Identify	dual	in-line	packages	(DIP)

•	 Identify	small-outline	integrated	circuit	packages	(SOIC)

•	 Identify	plastic	leaded	chip	carrier	packages	(PLCC)

•	 Identify	leadless	ceramic	chip	carrier	packages	(LCC)

•	 Determine	pin	numbers	on	various	types	of	IC	packages

•	 Explain	the	complexity	classifications	for	fixed-function	ICs
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Ic Packages
Integrated	circuit	(IC)	packages	are	classified	accord-
ing	to	the	way	they	are	mounted	on	printed	circuit	
(PC)	boards	as	either	through-hole	mounted	or	sur-
face	mounted.	The	through-hole	type	packages	have	
pins	(leads)	that	are	inserted	through	holes	in	the	PC	
board	and	can	be	soldered	to	conductors	on	the	oppo-
site	 side.	The	most	 common	 type	of	 through-hole	
package	is	the	dual	in-line	package	(dIP)	shown	in	
Figure	42(a).	The	DIP	is	useful	in	lab	work	because	it	
plugs	in	easily	to	a	protoboard.

most	IC	packages	use	surface-mount	technol-
ogy (Smt).	Surface	mounting	is	a	space-saving	alter-
native	to	through-hole	mounting.	The	holes	through	
the	PC	board	are	unnecessary	for	SmT.	The	pins	of	

surface-mounted	packages	are	soldered	directly	to	conductors	on	one	side	of	the	board,	
leaving	the	other	side	free	for	additional	circuits.	Also,	for	a	circuit	with	the	same	number	of	
pins,	a	surface-mounted	package	is	much	smaller	than	a	dual	in-line	package	because	the	
pins	are	placed	closer	together.	An	example	of	a	surface-mounted	package	is	the	small-
outline integrated circuit (SoIc)	shown	in	Figure	42(b).

Various	types	of	SmT	packages	are	available	in	a	range	of	sizes,	depending	on	the	
number	of	leads	(more	leads	are	required	for	more	complex	circuits	and	lead	configura-
tions).	Examples	of	several	types	are	shown	in	Figure	43.	As	you	can	see,	the	leads	of	the	
SSoP	(shrink	small-outline	package)	are	formed	into	a	“gull-wing”	shape.	The	leads	of	the	
Plcc	(plastic-leaded	chip	carrier)	are	turned	under	the	package	in	a	J-type	shape.	Instead	
of	leads,	the	lcc	(leadless	ceramic	chip)	has	metal	contacts	molded	into	its	ceramic	body.	
The	LQFP	also	has	gull-wing	leads.	Both	the	CSP	(chip	scale	package)	and	the	FBgA	(fine-
pitch	ball	grid	array)	have	contacts	embedded	in	the	bottom	of	the	package.

(c) LCC (350 � 350 mils)(a) SSOP (153 � 193 mils) (b) PLCC (350 � 350 mils)

(d) LQFP (7 � 7 mm) (e) Laminate CSP (3.5 � 3.5 mm) (f) FBGA (4 � 4 mm)

fg01_04300

        FIgure 43 Typical	SMT	package	configurations.	Parts	(e)	and	(f)	show	bottom	views.

(a) Dual in-line package (DIP) (b) Small-outline IC (SOIC)

fg01_04200

FIgure 42 examples of through-hole (dIP) and surface-mounted 
devices. the dIP is larger than the SoIc with the same number of 
leads.

Pin numbering
All	IC	packages	have	a	standard	format	for	numbering	the	pins	(leads).	The	dual	in-line	
packages	 (DIPs)	 and	 the	 shrink	 small-outline	 packages	 (SSOP)	 have	 the	 numbering	
arrangement	illustrated	in	Figure	44(a)	for	a	16-pin	package.	Looking	at	the	top	of	the	
package,	pin	1	is	indicated	by	an	identifier	that	can	be	either	a	small	dot,	a	notch,	or	a	beveled	
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edge.	The	dot	is	always	next	to	pin	1.	Also,	with	the	notch	oriented	
upward,	pin	1	is	always	the	top	left	pin,	as	indicated.	Starting	with	
pin	1,	the	pin	numbers	increase	as	you	go	down,	then	across	and	up.	
The	highest	pin	number	is	always	to	the	right	of	the	notch	or	oppo-
site	the	dot.

The	PLCC	and	LCC	packages	have	leads	arranged	on	all	four	
sides.	Pin	1	is	indicated	by	a	dot	or	other	index	mark	and	is	located	
at	the	center	of	one	set	of	leads.	The	pin	numbers	increase	going	
counterclockwise	as	viewed	from	the	top	of	the	package.	The	high-
est	pin	number	is	always	to	the	right	of	pin	1.	Figure	44(b)	illus-
trates	this	format	for	a	20-pin	PLCC	package.

Complexity	Classifications	 
for Fixed-Function Ics
Fixed-function	digital	ICs	are	classified	according	to	their	complexity.	They	are	listed	here	
from	the	least	complex	to	the	most	complex.	The	complexity	figures	stated	here	for	SSI,	
mSI,	LSI,	VLSI,	and	uLSI	are	generally	accepted,	but	definitions	may	vary	from	one	
source	to	another.

•	 Small-scale integration (SSI) describes	fixed-function	ICs	that	have	up	to	ten	equiv-
alent	gate	circuits	on	a	single	chip,	and	they	include	basic	gates	and	flip-flops.

•	 medium-scale integration (mSI) describes	integrated	circuits	that	have	from	10	to	
100	equivalent	gates	on	a	chip.	They	include	logic	functions	such	as	encoders,	decod-
ers,	counters,	registers,	multiplexers,	arithmetic	circuits,	small	memories,	and	others.

•	 large-scale integration (lSI) is	a	classification	of	ICs	with	complexities	of	from	
more	than	100	to	10,000	equivalent	gates	per	chip,	including	memories.

•	 very large-scale integration (vlSI) describes	integrated	circuits	with	complexities	
of	from	more	than	10,000	to	100,000	equivalent	gates	per	chip.

•	 ultra large-scale integration (ulSI) describes very large memories, larger micro-
processors,	and	larger	single-chip	computers.	Complexities	of	more	than	100,000	
equivalent	gates	per	chip	are	classified	as	uLSI.

Integrated circuit technologies
The	types	of	transistors	with	which	all	integrated	circuits	are	implemented	are	either	mOSFETs	
(metal-oxide	semiconductor	field-effect	transistors)	or	bipolar	junction	transistors.	A	cir-
cuit	technology	that	uses	mOSFETs	is	cmoS	(complementary	mOS).	bipolar is a type 
of	fixed-function	digital	circuit	technology	that	uses	bipolar	junction	transistors	and	is	
sometimes called ttl	(transistor-transistor	logic).	bicmoS	uses	a	combination	of	both	
CmOS	and	bipolar.	All	the	types	of	logic	gates	and	logic	functions	that	have	been	dis-
cussed	are	generally	available	as	ICs.

All	gates	and	other	functions	can	be	implemented	with	either	type	of	circuit	technol-
ogy.	SSI	and	mSI	circuits	are	generally	available	in	both	CmOS	and	bipolar	in	the	74XX	
series,	but	CmOS	is	the	most	common.

(a) DIP or SSOP

Notch

Pin 1
identifier

Pin 1
identifier

3 19

9 13

14

18

8

4

(b) PLCC or LCC

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

fg01_04400

FIgure 44 Pin numbering for standard types of Ic 
packages. top views are shown.

1. What	is	an	integrated	circuit?

2. Define	the	terms	DIP,	SmT,	SOIC,	SSI,	mSI,	LSI,	and	VLSI.

3. generally,	in	what	classification	does	a	fixed-function	IC	with	
the	following	number	of	equivalent	gates	fall?

(a) 10	 (b) 75	 (c) 500	 (d) 15,000	 (e) 200,000

SectIon 6 checKuP
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a Process control System
A	system	for	bottling	vitamin	tablets	is	shown	in	the	block	diagram	of	Figure	45.	To	begin,	
the	tablets	are	fed	into	a	large	funnel-type	hopper.	The	narrow	neck	of	the	hopper	creates	a	
serial	flow	of	tablets	into	a	bottle	on	the	conveyor	belt	below.	Only	one	tablet	at	a	time	
passes	the	sensor,	so	the	tablets	can	be	counted.

The	system	controls	the	number	of	tablets	into	each	bottle	and	displays	a	continually	
updated	readout	of	the	total	number	of	tablets	bottled.	This	system	utilizes	all	of	the	basic	
logic	functions	that	have	been	introduced	and	illustrates	how	these	functions	can	be	con-
nected	to	work	together	to	produce	a	specified	result.	This	system	is	purely	for	instruc-
tional	purposes	and	is	not	intended	to	necessarily	represent	the	most	efficient	or	best	way	
to	implement	the	operation.

general oPeratIon The	maximum	number	of	tablets	per	bottle	is	entered	
from	the	keypad,	changed	to	a	code	by	the	Encoder, and stored in Register A. Decoder A 
changes	the	code	stored	in	the	register	to	a	form	appropriate	for	turning	on	the	display.	
Code converter A	changes	the	code	to	a	binary	number	and	applies	it	to	the	A	input	of	the	
Comparator	(Comp).

An	optical	sensor	in	the	neck	of	the	hopper	detects	each	tablet	that	passes	and	pro-
duces	a	pulse.	This	pulse	goes	to	the	Counter	and	advances	it	by	one	count;	thus,	any	time	
during	the	filling	of	a	bottle,	the	binary	state	of	the	counter	represents	the	number	of	tablets	
in	the	bottle.	The	binary	count	is	transferred	from	the	counter	to	the	B	input	of	the	com-
parator	(Comp).	The	A	 input	of	the	comparator	is	the	binary	number	for	the	maximum	
tablets	per	bottle.	Now,	let’s	say	that	the	present	number	of	tablets	per	bottle	is	50.	When	the	
binary	number	in	the	counter	reaches	50,	the	A = B	output	of	the	comparator	goes	HIgH,	
indicating	that	the	bottle	is	full.

The	HIgH	output	of	the	comparator	causes	the	valve	in	the	neck	of	the	hopper	to	
close	and	stop	the	flow	of	tablets.	At	the	same	time,	the	HIgH	output	of	the	comparator	
activates	the	conveyor,	which	moves	the	next	empty	bottle	into	place	under	the	hopper.	
When	the	bottle	is	in	place,	the	conveyor	control	issues	a	pulse	that	resets	the	counter	to	
zero.	As	a	result,	 the	output	of	the	comparator	goes	back	LOW	and	causes	the	hopper	
valve	to	restart	the	flow	of	tablets.

For	each	bottle	filled,	the	maximum	binary	number	in	the	counter	is	transferred	to	the	
A	input	of	the	Adder.	The	B	input	of	the	adder	comes	from	Register B	that	stores	the	total	
number	of	tablets	bottled	up	through	the	last	bottle	filled.	The	adder	produces	a	new	cumu-
lative	sum	that	is	then	stored	in	register	B,	replacing	the	previous	sum.	This	keeps	a	run-
ning	total	of	the	tablets	bottled	during	a	given	run.

The	cumulative	sum	stored	in	register	B	goes	to	Decoder B,	which	detects	when	
register	B	has	reached	its	maximum	capacity	and	enables	the	MUX.	The	binary	sum	in	
register	B	is	converted	from	parallel	to	serial	form	by	the	muX	and	transmitted	over	the	
single	line	to	the	remote	Demultiplexer	(DEmuX),	which	changes	the	number	back	to	
parallel	form	for	storage	in	a	remote	computer	for	keeping	track	of	the	total	tablets	bottled	
in	a	specified	time	period.

a tablet-bottling system illustrates how the logic functions covered in this chapter can be used 
in a system environment. the functions used in this system are the encoder, decoder, code con-
verter, adder, multiplexer, demultiplexer, register, and counter. this system could be imple-
mented	in	three	ways:	with	a	PLD,	with	a	microcontroller,	or	with	fixed-function	ICs.	The	first	
two are how all digital systems are currently implemented.

after completing this section, you should be able to

•	 Understand	basic	system	operation	and	how	certain	components	work	together

•	 Explain	the	purpose	of	each	logic	function	in	the	total	system

•	 Describe	the	transfer	of	digital	data	throughout	the	system

7 a SyStem
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FIgure 45 block diagram of a tablet-bottling system.

1. How	is	the	number	of	tablets	per	bottle	entered	into	the	
system?

2. How	does	the	system	determine	when	a	bottle	is	full?

3. When	is	the	counter	reset?

SectIon 7 checKuP
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the oscilloscope
The	oscilloscope	(scope	for	short)	is	one	of	the	most	widely	used	instruments	for	general	
testing	and	troubleshooting.	The	scope	is	basically	a	graph-displaying	device	that	traces	
the	graph	of	a	measured	electrical	signal	on	its	screen.	In	most	applications,	the	graph	
shows	how	signals	change	over	time.	The	vertical	axis	of	the	display	screen	represents	

voltage,	and	the	horizontal	axis	represents	time.	Amplitude,	period,	and	
frequency	of	a	signal	can	be	measured	using	the	oscilloscope.	Also,	the	
pulse	width,	duty	cycle,	rise	time,	and	fall	time	of	a	pulse	waveform	can	
be	determined.	most	scopes	can	display	at	least	two,	and	many	can	dis-
play	four	signals	on	the	screen	at	one	time,	enabling	their	time	relation-
ship	to	be	observed.	A	typical	4-channel	digital	oscilloscope	is	shown	in	
Figure	46.

Two	basic	types	of	oscilloscopes,	analog	and	digital,	can	be	used	to	
view	digital	waveforms.	An	analog	scope	works	by	applying	the	measured	
waveform	directly	to	control	the	up	and	down	motion	of	the	electron	beam	
in	the	cathode-ray	tube	(CRT)	as	it	sweeps	across	the	display	screen.	As	a	
result,	the	beam	traces	out	the	waveform	pattern	on	the	screen.	A	digital	
scope	converts	the	measured	waveform	to	digital	information	by	a	sam-
pling	process	in	an	analog-to-digital	converter	(ADC).	The	digital	informa-
tion	is	then	used	to	reconstruct	the	waveform	on	the	screen.

The	digital	scope	is	more	widely	used	than	the	analog	scope.	However,	either	type	
can	be	used	in	many	applications;	each	has	characteristics	that	make	it	more	suitable	for	
certain	situations.	An	analog	scope	displays	waveforms	as	they	occur	in	“real	time.”	Dig-
ital	scopes	are	useful	for	measuring	transient	pulses	that	may	occur	randomly	or	only	once.	
Also,	because	information	about	the	measured	waveform	can	be	stored	in	a	digital	scope,	
it	may	be	viewed	at	some	later	time,	printed	out,	or	thoroughly	analyzed	by	a	computer	or	
other	means.

baSIc oPeratIon oF analog oScIlloScoPeS To	measure	a	volt-
age, a probe	must	be	connected	from	the	scope	to	the	point	in	a	circuit	at	which	the	volt-
age	 is	 present.	generally,	 a	 *10	 probe	 is	 used	 that	 reduces	 (attenuates)	 the	 signal	
amplitude	by	ten.	The	signal	goes	through	the	probe	into	the	vertical	circuits	where	it	is	
either	further	attenuated	or	amplified,	depending	on	the	actual	amplitude	and	on	where	
you	set	 the	vertical	control	of	 the	scope.	The	vertical	circuits	 then	drive	 the	vertical	
deflection	plates	of	the	CRT.	Also,	the	signal	goes	to	the	trigger	circuits	that	trigger	the	
horizontal	circuits	to	initiate	repetitive	horizontal	sweeps	of	the	electron	beam	across	the	
screen	using	a	sawtooth	waveform.	There	are	many	sweeps	per	second	so	that	the	beam	
appears	to	form	a	solid	line	across	the	screen	in	the	shape	of	the	waveform.	This	basic	
operation	is	illustrated	in	Figure	47.

troubleshooting is the process of systematically isolating, identifying, and correcting a fault 
in a circuit or system. a variety of instruments are available for use in troubleshooting and 
testing. Some common types of instruments are introduced and discussed in this section.

after completing this section, you should be able to

•	 Distinguish	between	an	analog	and	a	digital	oscilloscope

•	 Recognize	common	oscilloscope	controls

•	 Determine	amplitude,	period,	frequency,	and	duty	cycle	of	a	pulse	waveform	with	an	
oscilloscope

•	 Discuss	the	logic	analyzer	and	some	common	formats

•	 Describe	the	purpose	of	the	data	pattern	generator,	the	digital	multimeter	(DMM),	the	dc	
power supply, the logic probe, and the logic pulser

8 meaSurIng InStrumentS

FIgure 46 a digital oscilloscope. used with 

permission from tektronix, Inc.
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baSIc oPeratIon oF dIgItal oScIlloScoPeS Some parts of a dig-
ital	scope	are	similar	to	the	analog	scope.	However,	the	digital	scope	is	more	complex	than	
an	analog	scope	and	typically	has	an	LCD	screen	rather	than	a	CRT.	Rather	than	display-
ing	a	waveform	as	it	occurs,	the	digital	scope	first	acquires	the	measured	analog	waveform	
and	converts	it	to	a	digital	format	using	an	analog-to-digital	converter	(ADC).	The	digital	
data	is	stored	and	processed.	The	data	then	goes	to	the	reconstruction	and	display	circuits	
for	display	in	its	original	analog	form.	Figure	48	shows	a	basic	block	diagram	for	a	digital	
oscilloscope.

fg01_04800
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FIgure 48 block diagram of a digital oscilloscope. (Photo courtesy of digilent, Inc.)
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FIgure 47 block diagram of an analog oscilloscope. (Photo courtesy of digilent, Inc.)

oScIlloScoPe controlS A	front	panel	view	of	a	typical	digital	oscillo-
scope	is	shown	in	Figure	49.	Instruments	vary	depending	on	model	and	manufacturer,	but	
most	have	certain	common	features.	For	example,	the	four	vertical	sections	contain	a	Posi-
tion	control,	a	channel	menu	button,	and	a	volts/div	control.	The	horizontal	section	con-
tains	a	sec/div	control.

Some	of	the	main	oscilloscope	controls	are	now	discussed.	Refer	to	the	user	manual	
for	complete	details	of	your	particular	scope.
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vertIcal controlS In	the	vertical	section	of	the	scope	in	Figure	49,	there	are	
identical	controls	for	each	of	the	four	channels	(1,	2,	3,	and	4).	The	Position	control	lets	
you	move	a	displayed	waveform	up	or	down	vertically	on	the	screen.	The	buttons	on	the	
right	side	of	the	screen	provide	for	the	selection	of	several	items	that	appear	on	the	screen,	
such	as	the	coupling	modes	(ac,	dc,	or	ground),	coarse	or	fine	adjustment	for	the	volts/div,	
signal	inversion,	and	other	parameters.	The	volts/div	control	adjusts	the	number	of	volts	
represented	by	each	vertical	division	on	the	screen.	The	volts/div	setting	for	each	channel	
is	displayed	on	the	bottom	of	the	screen.

fg01_04900

                                  FIgure 49 a digital oscilloscope front panel. used with permission from tektronix, Inc.

(a) Untriggered waveform display (b) Triggered waveform display

fg01_05000

FIgure 50 comparison of an untriggered and a triggered waveform on an 
oscilloscope.

horIzontal controlS In	the	horizontal	section,	the	controls	apply	to	all	
channels.	The	Position	control	lets	you	move	a	displayed	waveform	left	or	right	horizon-
tally	on	the	screen.	The	sec/div	control	adjusts	the	time	represented	by	each	horizontal	
division	or	main	time	base.	The	sec/div	setting	is	displayed	at	the	bottom	of	the	screen.

trIgger controlS In	 the	Trigger	control	section,	 the	Level	control	deter-
mines	the	point	on	the	triggering	waveform	where	triggering	occurs	to	initiate	the	sweep	to	
display	input	waveforms.	The	menu	button	provides	for	the	selection	of	several	items	that	
appear	on	the	screen,	including	edge	or	slope	triggering,	trigger	source,	trigger	mode,	and	
other	parameters.	There	is	also	an	input	for	an	external	trigger	signal.

Triggering	stabilizes	a	waveform	on	the	screen	or	properly	triggers	on	a	pulse	that	
occurs	only	one	time	or	randomly.	Also,	it	allows	you	to	observe	time	delays	between	two	
waveforms.	Figure	50	compares	a	triggered	to	an	untriggered	signal.	The	untriggered	sig-
nal	tends	to	drift	across	the	screen,	producing	what	appears	to	be	multiple	waveforms.
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couPlIng a SIgnal Into the ScoPe Coupling	is	the	method	used	to	
connect	a	signal	voltage	to	be	measured	into	the	oscilloscope.	DC	and	AC	coupling	are	usu-
ally	selected	from	the	Vertical	menu	on	a	scope.	DC	coupling	allows	a	waveform	including	
its	dc	component	to	be	displayed.	AC	coupling	blocks	the	dc	component	of	a	signal	so	that	
you	see	the	waveform	centered	at	0	V.	The	ground	mode	allows	you	to	connect	the	channel	
input	to	ground	to	see	where	the	0	V	reference	is	on	the	screen.	Figure	51	illustrates	the	
result	of	DC	and	AC	coupling	using	a	pulse	waveform	that	has	a	dc	component.

Properly compensated Undercompensated Overcompensated

fg01_05200

FIgure 52 Probe compensation conditions.

0 V

(a) DC coupled waveform

0 V

(b) AC coupled waveform

fg01_05100

FIgure 51 displays of the same waveform having a dc component.

The	voltage	probe,	shown	in	Figure	46,	is	essential	for	connecting	a	signal	to	the	scope.	
Since	all	instruments	tend	to	affect	the	circuit	being	measured	due	to	loading,	most	scope	
probes	provide	a	high	series	resistance	to	minimize	loading	effects.	Probes	that	have	a	series	
resistance	ten	times	larger	than	the	input	resistance	of	the	scope	are	called	*10	probes.	Probes	
with	no	series	resistance	are	called	*1	probes.	The	oscilloscope	adjusts	its	calibration	for	the	
attenuation	of	the	type	of	probe	being	used.	For	most	measurements,	the	*10	probe	should	be	
used.	However,	if	you	are	measuring	very	small	signals,	a	*1	may	be	the	best	choice.

The	probe	has	an	adjustment	that	allows	you	to	compensate	for	the	input	capacitance	
of	the	scope.	most	scopes	have	a	probe	compensation	output	that	provides	a	calibrated	
square	wave	for	probe	compensation.	Before	making	a	measurement,	you	should	make	
sure	that	the	probe	is	properly	compensated	to	eliminate	any	distortion	introduced.	Typi-
cally,	there	is	a	screw	or	other	means	of	adjusting	compensation	on	a	probe.	Figure	52	
shows	scope	waveforms	for	three	probe	conditions:	properly	compensated,	undercompen-
sated,	and	overcompensated.	If	the	waveform	appears	either	over-	or	undercompensated,	
adjust	the	probe	until	the	properly	compensated	square	wave	is	achieved.

e X a m P l e  3

Based	on	the	readouts,	determine	the	amplitude	and	the	period	of	the	pulse	wave-
form	on	the	screen	of	a	digital	oscilloscope	as	shown	in	Figure	53.	Also,	calculate	
the	frequency.
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the logic analyzer
Logic	analyzers	are	used	for	measurements	of	multiple	
digital	 signals	and	measurement	situations	with	diffi-
cult	 trigger	requirements.	Basically,	 the	logic	analyzer	
came	 about	 as	 a	 result	 of	microprocessors	 in	 which	
troubleshooting	 or	 debugging	 required	 many	 more	
inputs	than	an	oscilloscope	offered.	many	oscilloscopes	
have	 two	 input	channels	and	some	are	available	with	
four.	Logic	analyzers	are	available	with	from	34	to	136	
input	channels.	generally,	an	oscilloscope	is	used	either	
when	amplitude,	 frequency,	and	other	 timing	parame-
ters	of	a	few	signals	at	a	time	or	when	parameters	such	
an	rise	and	fall	times,	overshoot,	and	delay	times	need	
to	be	measured.	The	 logic	 analyzer	 is	used	when	 the	
logic levels of a large number of signals need to be 
determined	and	for	the	correlation	of	simultaneous	sig-
nals	based	on	their	timing	relationships.	A	typical	logic	
analyzer	is	shown	in	Figure	54,	and	a	simplified	block	
diagram	is	in	Figure	55.

S o l u t I o n

The	volts/div	setting	is	1	V.	The	pulses	are	three	divisions	high.	Since	each	divi-
sion	represents	1	V,	the	pulse	amplitude	is

Amplitude = (3 div)(1 V/div) = 3 v

The	sec/div	setting	is	10	ms.	A	full	cycle	of	the	waveform	(from	beginning	
of	one	pulse	to	the	beginning	of	the	next)	covers	four	divisions;	therefore,	the	
period is

Period = (4 div)(10 ms/div) = 40 Ms

The	frequency	is	calculated	as

f =
1

T
=

1

40 ms
= 25 khz

r e l a t e d  P r o b l e m

For	a	volts/div	setting	of	4	V	and	sec/div	setting	of	2	ms,	determine	the	amplitude	
and	period	of	the	pulse	shown	on	the	screen	in	Figure	53.

fg01_05400
FIgure 54 typical logic analyzer. used with permission from tek-

tronix, Inc.

Ch1 10    s1 V

fg01_05300

FIgure 53 
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data acquISItIon The	large	number	
of	signals	that	can	be	acquired	at	one	time	is	a	
major	factor	 that	distinguishes	a	 logic	analyzer	
from	an	oscilloscope.	generally,	the	two	types	of	
data	acquisition	in	a	logic	analyzer	are	the	timing	
acquisition	 and	 the	 state	 acquisition.	 Timing	
acquisition	 is	 used	 primarily	when	 the	 timing	
relationships	among	the	various	signals	need	to	
be	 determined.	 State	 acquisition	 is	 used	when	
you	need	to	view	the	sequence	of	states	as	they	
appear	in	a	system	under	test.

It	is	often	helpful	to	have	correlated	timing	
and	 state	 data,	 and	 most	 logic	 analyzers	 can	
simultaneously	acquire	that	data.	For	example,	a	
problem may initially be detected as an invalid 
state.	However,	the	invalid	condition	may	be	caused	by	a	timing	violation	in	the	system	
under	test.	Without	both	types	of	information	available	at	the	same	time,	isolating	the	
problem	could	be	very	difficult.

channel count and memory dePth Logic	analyzers	contain	a	real-
time	acquisition	memory	in	which	sampled	data	from	all	the	channels	are	stored	as	they	
occur.	Two	features	that	are	of	primary	importance	are	the	channel	count	and	the	memory	
depth.	The	acquisition	memory	can	be	thought	of	as	having	a	width	equal	to	the	number	of	
channels	and	a	depth	that	is	the	number	of	bits	that	can	be	captured	by	each	channel	during	
a	certain	time	interval.

Channel	count	determines	the	number	of	signals	that	can	be	acquired	simultaneously.	
In	certain	types	of	systems,	a	large	number	of	signals	are	present,	such	as	on	the	data	bus	
in	a	microprocessor-based	system.	The	depth	of	the	acquisition	memory	determines	the	
amount	of	data	from	a	given	channel	that	you	can	view	at	any	given	time.

analySIS and dISPlay Once	data	has	been	sampled	and	stored	in	the	acquisi-
tion	memory,	it	can	typically	be	used	in	several	different	display	and	analysis	modes.	The	
waveform	display	is	much	like	the	display	on	an	oscilloscope	where	you	can	view	the	time	
relationship	of	multiple	signals.	The	listing	display	indicates	the	state	of	the	system	under	
test	by	showing	the	values	of	the	input	waveforms	(1s	and	0s)	at	various	points	in	time	
(sample	points).	Typically,	this	data	can	be	displayed	in	hexadecimal	or	other	formats.	
Figure	56	shows	simplified	versions	of	these	two	display	modes.	The	listing	display	sam-
ples	correspond	to	the	sampled	points	shown	in	red	on	the	waveform	display.

Clock
circuits

Input buffer
and

sampling

Acquisition
memory

Trigger logic
and memory

control

Channel
inputs

Analysis
and

display

fg01_05500

FIgure 55 Simplified	block	diagram	of	a	logic	analyzer.

1

(a) Waveform display (b) Listing display

2 3 4 5 6 7 8

Sample

1
2
3
4
5
6
7
8

Binary

1111
1110
1101
1100
1011
1010
1001
1000

Hex

F
E
D
C
B
A
9
8

Time

1 ns
10 ns
20 ns
30 ns
40 ns
50 ns
60 ns
70 ns

fg01_05600

FIgure 56 two logic analyzer display modes.

Two	more	modes	that	are	useful	in	computer	and	microprocessor-based	system	test-
ing	are	the	instruction	trace	and	the	source	code	debug.	The	instruction	trace	determines	
and	displays	instructions	that	occur,	for	example,	on	the	data	bus	in	a	microprocessor-
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based	system.	In	this	mode	the	op-codes	and	the	mnemonics	(English-like	
names)	of	instructions	are	generally	displayed	as	well	as	their	correspond-
ing	memory	address.	many	logic	analyzers	also	include	a	source	code	
debug	mode,	which	essentially	allows	you	to	see	what	is	actually	going	
on	in	the	system	under	test	when	a	program	instruction	is	executed.

ProbeS Three	basic	types	of	probes	are	used	with	logic	analyzers.	
One	is	a	multichannel	compression	probe	that	can	be	attached	to	points	on	
a	circuit	board,	as	shown	in	Figure	57.	Another	type	of	multichannel	probe,	
similar	to	the	one	shown,	plugs	into	dedicated	sockets	mounted	on	a	circuit	
board.	A	third	type	is	a	single-channel	clip-on	probe.

Signal generators
logIc SIgnal Source These	instruments	are	also	known	as	
pulse	 generators	 and	 data	 pattern	 generators.	 They	 are	 specifically	

designed	to	generate	digital	signals	with	precise	edge	placement	and	amplitudes	and	to	
produce	the	streams	of	1s	and	0s	needed	to	test	computer	buses,	microprocessors,	and	
other	digital	systems.

WaveForm and data Pattern generatorS The	arbitrary	wave-
form	generator	can	be	used	to	generate	standard	signals	like	sine	waves,	triangular	waves,	
and	pulses	as	well	as	signals	with	various	shapes	and	characteristics.	Waveforms	can	be	
defined	by	mathematical	or	graphical	input.	A	typical	arbitrary	waveform	generator	is	
shown	in	Figure	58(a).

The	data	pattern	generator,	 shown	 in	Figure	58(b),	provides	digital	waveforms	
with	programmable	bit	patterns.	The	function	generator,	shown	in	part	 (c),	provides	
pulse,	sine,	and	triangular	waveforms,	often	with	programmable	capability.	Signal	gen-
erators	have	logic-compatible	outputs	to	provide	the	proper	level	and	drive	for	inputs	to	
digital	circuits.

fg01_05800

(a) Arbitrary waveform generator (b) Data pattern generator (c) Function generator

FIgure 58 typical signal generators. used with permission from tektronix, Inc.

the digital multimeter (dmm)
The	digital	multimeter	 (Dmm)	 is	 a	versatile	 instrument	 found	on	virtually	 all	work-
benches.	All	Dmms	can	make	basic	ac	and	dc	voltage,	current,	and	resistance	measure-
ments.	Voltage	and	resistance	measurements	are	the	principal	quantities	measured	with	
Dmms.	For	current	measurements,	the	leads	are	switched	to	a	separate	set	of	jacks	and	
placed	in	series	with	the	current	path.	In	this	mode,	the	meter	acts	like	a	short	circuit,	so	
serious	problems	can	occur	if	the	meter	is	incorrectly	placed	in	parallel.

In	addition	to	the	basic	measurements,	most	Dmms	can	also	test	diodes	and	capaci-
tors	and	frequently	will	have	other	capabilities	such	as	frequency	measurements.	most	
new	Dmms	have	an	autoranging	feature,	meaning	that	the	user	is	not	required	to	select	a	

fg01_05700

FIgure 57 a typical 
multichannel logic analyzer 
probe. used with permission from 

tektronix, Inc.
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range	for	making	a	measurement.	If	the	range	is	not	set	automatically,	the	user	needs	to	set	
the	range	switch	for	voltage	measurements	higher	than	the	expected	reading	to	avoid	dam-
age	to	the	meter.

In	digital	systems,	Dmms	are	the	preferred	instrument	for	setting	dc	power	supply	
voltages	or	checking	the	supply	voltage	on	various	points	in	the	circuit.	Because	digital	
signals	are	nonsinusoidal,	the	Dmm	is	generally	not used for measurements of digital sig-
nals	(although	the	average	or	rms	value	can	be	determined	in	some	cases).	For	signal	
measurements,	the	oscilloscope	is	the	preferred	instrument.

In addition, DMMs are used in digital systems for testing 
continuity	between	points	in	a	circuit	and	checking	resistors	with	
the	ohmmeter	function.	For	checking	a	circuit	path	or	looking	for	
a	short,	Dmms	are	the	instrument	of	choice.	many	Dmms	sound	
a	beep	or	tone	when	there	is	continuity	between	the	leads,	mak-
ing	it	handy	to	trace	paths	without	having	to	look	at	the	display.	
If	the	Dmm	is	not	equipped	with	a	continuity	test,	the	ohmmeter	
function	can	be	used	 instead.	measurements	of	continuity	or	
resistance are never done in “live” circuits, as any circuit voltage 
will	disrupt	the	readings	and	can	be	dangerous.

Typical	 test	bench	and	handheld	Dmms	are	 shown	 in	
Figure	59.

the dc Power Supply
This	instrument	is	an	indispensable	instrument	on	any	test	bench.	The	power	supply	converts	
ac	power	from	the	standard	wall	outlet	into	regulated	dc	voltage.	All	digital	circuits	require	
dc	voltage.	most	logic	circuits	require	from	1.2	V	to	5	V	to	operate.	The	power	supply	is	used	
to	power	circuits	during	design,	development,	and	troubleshooting	when	in-system	power	is	
not	available.	Typical	test	bench	dc	power	supplies	are	shown	in	Figure	60.

fg01_05900

FIgure 59 typical dmms. courtesy of b&K Precision 

corporation.

fg01_06000
FIgure 60 typical dc power supplies. courtesy of b&K Precision corporation.

the logic Probe and logic Pulser
The	logic	probe	is	a	convenient,	inexpensive	handheld	tool	that	provides	a	means	of	trou-
bleshooting	a	digital	circuit	by	sensing	various	conditions	at	a	point	in	a	circuit.	A	probe	
can	detect	high-level	voltage,	low-level	voltage,	single	pulses,	repetitive	pulses,	and	opens	
on	a	PC	board.	A	probe	lamp	indicates	the	condition	that	exists	at	a	certain	point.

The	logic	pulser	produces	a	repetitive	pulse	waveform	that	can	be	applied	to	any	
point	in	a	circuit.	you	can	apply	pulses	at	one	point	in	a	circuit	with	the	pulser	and	check	
another	point	for	resulting	pulses	with	a	logic	probe.

1. What	is	the	main	difference	between	a	digital	and	an	analog	
oscilloscope?

2. Name	two	main	differences	between	a	logic	analyzer	and	an	
oscilloscope?

3. What	does	the	volts/div	control	on	an	oscilloscope	do?

4. What	does	the	sec/div	control	on	an	oscilloscope	do?

5. What	is	the	purpose	of	a	function	generator?

SectIon 8 checKuP
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Summary
•	 An	analog	quantity	has	continuous	values.

•	 A	digital	quantity	has	a	discrete	set	of	values.

•	 A	binary	digit	is	called	a	bit.

•	 A	pulse	is	characterized	by	rise	time,	fall	time,	pulse	width,	and	amplitude.

•	 The	frequency	of	a	periodic	waveform	is	the	reciprocal	of	the	period.	The	formulas	relating	fre-
quency and period are

f =
1

T
 and T =

1

f

•	 The	duty	cycle	of	a	pulse	waveform	is	the	ratio	of	the	pulse	width	to	the	period,	expressed	by	the	
following	formula	as	a	percentage:

Duty cycle = ¢ tPW

T
≤ 100%

•	 A	timing	diagram	is	an	arrangement	of	two	or	more	waveforms	showing	their	relationship	with	
respect	to	time.

•	 Three	basic	logic	operations	are	NOT,	AND,	and	OR.	The	standard	symbols	for	these	are	given	
in	Figure	61.

NOT ORAND

fg01_06100

FIgure 61 

•	 The	basic	logic	functions	are	comparison,	arithmetic,	code	conversion,	decoding,	encoding,	data	
selection,	storage,	and	counting.

•	 PLDs	are	integrated	circuits	into	which	logic	designs	can	be	programmed.

•	 Two	types	of	SPLDs	(simple	programmable	logic	devices)	are	PAL	(programmable	array	logic)	
and	gAL	(generic	array	logic).

•	 The	CPLD	(complex	programmable	logic	device)	contains	multiple	SPLDs	with	programmable	
interconnections.

•	 The	FPgA	(field-programmable	gate	array)	has	a	different	internal	structure	than	the	CPLD	and	
is	generally	used	for	more	complex	circuits	and	systems.

•	 Fixed-function	logic	consists	of	integrated	circuits	that	are	manufactured	with	logic	elements	that	
cannot	be	changed.

•	 The	two	broad	physical	categories	of	IC	packages	are	through-hole	mounted	and	surface	mounted.

•	 Three	families	of	fixed-function	integrated	circuits	are	CmOS,	bipolar,	and	BiCmOS.

•	 Bipolar	is	also	known	as	TTL	(transistor-transistor	logic).

•	 The	categories	of	 ICs	 in	 terms	of	 circuit	 complexity	 are	SSI	 (small-scale	 integration),	mSI	
(medium-scale	integration),	LSI,	VLSI,	and	uLSI	(large-scale,	very	large-scale,	and	ultra	large-
scale	integration).

•	 Common	instruments	used	in	testing	and	troubleshooting	digital	circuits	are	the	oscilloscope,	
logic	analyzer,	arbitrary	waveform	generator,	data	pattern	generator,	function	generator,	dc	power	
supply,	digital	multimeter,	logic	probe,	and	logic	pulser.

Key termS
analog Being	continuous	or	having	continuous	values.

and A	basic	logic	operation	in	which	a	true	(HIgH)	output	occurs	only	when	all	the	input	condi-
tions	are	true	(HIgH).

binary Having	two	values	or	states;	describes	a	number	system	that	has	a	base	of	two	and	utilizes	
1	and	0	as	its	digits.

bit A	binary	digit,	which	can	be	either	a	1	or	a	0.
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clock The	basic	 timing	signal	 in	a	digital	system;	a	periodic	waveform	used	to	synchronize	
operation.

compiler A	program	that	controls	the	design	flow	process	and	translates	source	code	into	object	
code	in	a	format	that	can	be	logically	tested	or	downloaded	to	a	target	device.

cPld A	complex	programmable	logic	device	that	consists	basically	of	multiple	SPLD	arrays	with	
programmable	interconnections.

data Information	in	numeric,	alphabetic,	or	other	form.

digital Related	to	digits	or	discrete	quantities;	having	a	set	of	discrete	values.

digital system An	arrangement	of	the	individual	logic	functions	connected	to	perform	a	specified	
operation	or	produce	a	defined	output.

duty cycle The	ratio	of	the	pulse	width	to	the	period	of	a	digital	waveform,	expressed	as	a	percentage.

embedded system generally,	a	single-purpose	system,	such	as	a	processor,	built	 into	a	larger	
system	for	the	purpose	of	controlling	the	system.

Fixed-function logic A	category	of	digital	 integrated	circuits	having	functions	 that	cannot	be	
altered.

FPga Field-programmable	gate	array.

gate A	logic	circuit	that	performs	a	basic	logic	operation	such	as	AND	or	OR.

Input The	signal	or	line	going	into	a	circuit.

Integrated circuit (Ic) A	type	of	circuit	in	which	all	of	the	components	are	integrated	on	a	single	
chip	of	semiconductive	material	of	extremely	small	size.

Inverter A	NOT	circuit;	a	circuit	that	changes	a	HIgH	to	a	LOW	or	vice	versa.

logic In	digital	electronics,	the	decision-making	capability	of	gate	circuits,	in	which	a	HIgH	rep-
resents	a	true	statement	and	a	LOW	represents	a	false	one.

microcontroller An	integrated	circuit	consisting	of	a	complete	computer	on	a	single	chip	and	used	
for	specified	control	functions.

not A	basic	logic	operation	that	performs	inversions.

or A	basic	logic	operation	in	which	a	true	(HIgH)	output	occurs	when	one	or	more	of	the	input	
conditions	are	true	(HIgH).

output The	signal	or	line	coming	out	of	a	circuit.

Parallel In	digital	systems,	data	occurring	simultaneously	on	several	lines;	the	transfer	or	process-
ing	of	several	bits	simultaneously.

Programmable logic device A	type	of	integrated	circuit	(IC)	that	starts	as	a	“blank	state”	and	into	
which	a	logic	design	is	programmed.

Pulse A	sudden	change	from	one	level	to	another,	followed	after	a	time,	called	the	pulse	width,	by	
a	sudden	change	back	to	the	original	level.

Serial Having	one	element	following	another,	as	in	a	serial	transfer	of	bits;	occurring	in	sequence	
rather	than	simultaneously.

SPld Simple	programmable	logic	device.

timing diagram A	graph	of	digital	waveforms	showing	the	time	relationship	of	two	or	more	
waveforms.

troubleshooting The	technique	or	process	of	systematically	identifying,	isolating,	and	correcting	
a	fault	in	a	circuit	or	system.

true/FalSe quIz
Answers are at the end of the chapter.

 1. An	analog	signal	is	one	having	continuous	values.

 2. A	digital	quantity	has	ten	discrete	values.

 3. There	are	two	digits	in	the	binary	system.

 4. The	term	bit	is	short	for	binary	digit.

 5. In	positive	logic,	a	LOW	level	represents	a	binary	1.

 6. If	the	period	of	a	pulse	waveform	increases,	the	frequency	also	increases.
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 7. A	timing	diagram	shows	the	timing	relationship	of	two	or	more	digital	waveforms.

 8. The	basic	logic	operations	are	AND,	OR,	and	mAyBE.

 9. If	the	input	to	an	inverter	is	a	1,	the	output	is	a	0.

 10. CPLD stands for complex programmable logic device.

 11. FPgA	stands	for	functionally programmed gate array.

 12. An	oscilloscope	is	used	to	observe,	measure,	and	analyze	waveforms.

SelF-teSt
Answers are at the end of the chapter.

 1. A	quantity	having	continuous	values	is

(a) a digital quantity (b) an analog quantity
(c) a binary quantity (d) a natural quantity

 2. The	term	bit means

(a) a small amount of data (b) a	1	or	a	0
(c) binary digit (d) both	answers	(b)	and	(c)

 3. The	time	interval	on	the	leading	edge	of	a	pulse	between	10%	and	90%	of	the	amplitude	is	the

(a) rise time   (b) fall time   (c) pulse	width	 	 	 (d) period

 4. A	pulse	in	a	certain	waveform	occurs	every	10	ms.	The	frequency	is

(a) 1	kHz	 	 	 (b) 1	Hz	 	 	 (c) 100	Hz	 	 	 (d) 10	Hz

 5. In	a	certain	digital	waveform,	the	period	is	twice	the	pulse	width.	The	duty	cycle	is

(a) 100%	 	 	 (b) 200%	 	 	 (c) 50%

 6. An inverter

(a) performs	the	NOT	operation	 (b) changes	a	HIgH	to	a	LOW
(c) changes	a	LOW	to	a	HIgH	 (d) does	all	of	the	above

 7. The	output	of	an	AND	gate	is	HIgH	when

(a) any	input	is	HIgH	 (b) all	inputs	are	HIgH
(c) no	inputs	are	HIgH	 (d) both	answers	(a)	and	(b)

 8. The	output	of	an	OR	gate	is	HIgH	when

(a) any	input	is	HIgH	 (b) all	inputs	are	HIgH
(c) no	inputs	are	HIgH	 (d) both	answers	(a)	and	(b)

 9. The	device	used	to	convert	a	binary	number	to	a	7-segment	display	format	is	the

(a) multiplexer   (b) encoder   (c) decoder   (d) register

 10. An example of a data storage device is

(a) the	logic	gate	 (b) the	flip-flop	 (c) the	comparator
(d) the	register	 (e) both	answers	(b)	and	(d)

 11. A	fixed-function	IC	package	containing	four	AND	gates	is	an	example	of

(a) MSI   (b) SmT	 	 	 (c) SOIC   (d) SSI

 12. An	LSI	device	has	a	circuit	complexity	of	from

(a) 10	to	100	equivalent	gates
(b) more	than	100	to	10,000	equivalent	gates
(c) 2000	to	5000	equivalent	gates
(d) more	than	10,000	to	100,000	equivalent	gates

 13. VHDL is a

(a) logic device (b) PLD programming language
(c) computer language (d) very	high	density	logic

 14. A CPLD is a

(a) controlled program logic device (b) complex programmable logic driver
(c) complex programmable logic device (d) central processing logic device
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 15. An	FPgA	is	a

(a) field-programmable	gate	array	 (b) fast programmable gate array
(c) field-programmable	generic	array	 (d) flash	process	gate	application

ProblemS
Answers to odd-numbered problems are at the end of the chapter.

SectIon 1 digital and analog Signals and Systems

 1. Name	two	advantages	of	digital	data	as	compared	to	analog	data.

 2. Name	an	analog	quantity	other	than	temperature	and	sound.

 3. List	three	common	products	that	can	have	either	a	digital	or	analog	output.

SectIon 2 binary digits, logic levels, and digital Waveforms

 4. Explain	the	difference	between	positive	and	negative	logic.

 5. Define	the	sequence	of	bits	(1s	and	0s)	represented	by	each	of	the	following	sequences	of	levels:
(a) HIgH,	HIgH,	LOW,	HIgH,	LOW,	LOW,	LOW,	HIgH
(b) LOW,	LOW,	LOW,	HIgH,	LOW,	HIgH,	LOW,	HIgH,	LOW

 6. List	the	sequence	of	levels	(HIgH	and	LOW)	that	represent	each	of	the	following	bit	sequences:
(a) 1	0	1	1	1	0	1	 	 	 (b) 1	1	1	0	1	0	0	1

 7. For	the	pulse	shown	in	Figure	62,	graphically	determine	the	following:
(a) rise time   (b) fall time   (c) pulse	width	 	 	 (d) amplitude

 8. Determine	the	period	of	the	digital	waveform	in	Figure	63.

 9. What	is	the	frequency	of	the	waveform	in	Figure	63?

 10. Is	the	pulse	waveform	in	Figure	63	periodic	or	nonperiodic?

 11. Determine	the	duty	cycle	of	the	waveform	in	Figure	63.

8   s0 1   s 2   s 3   s 4   s 5   s 6   s 7   s µµµµµµµµ

fg01_06400

FIgure 64 

 12. Determine	the	bit	sequence	represented	by	the	waveform	in	Figure	64.	A	bit	time	is	1	ms	in	this	
case.

 13. What	is	the	total	serial	transfer	time	for	the	eight	bits	in	Figure	64?	What	is	the	total	parallel	
transfer	time?

 14. What	is	the	period	if	the	clock	frequency	is	3.5	gHz?

Volts

10

5

0
0 1 2 3 4

t (   s)µ

fg01_06200

FIgure 62 

1
t (ms)0

V

3 5 7 9 11 13 15 17

fg01_06300
FIgure 63 
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SectIon 3 logic operations

 15. Form	a	single	logical	statement	from	the	following	information:
(a) The	light	is	ON	if	SW1	is	closed.
(b) The	light	is	ON	if	SW2	is	closed.
(c) The	light	is	OFF	if	both	SW1	and	SW2	are	open.

 16. A	logic	circuit	requires	HIgHs	on	all	its	inputs	to	make	the	output	HIgH.	What	type	of	logic	
circuit	is	it?

 17. A	basic	2-input	logic	circuit	has	a	HIgH	on	one	input	and	a	LOW	on	the	other	input,	and	the	
output	is	LOW.	Identify	the	circuit.

 18. A	basic	2-input	logic	circuit	has	a	HIgH	on	one	input	and	a	LOW	on	the	other	input,	and	the	
output	is	HIgH.	What	type	of	logic	circuit	is	it?

SectIon 4 combinational and Sequential logic Functions

 19. Name	the	logic	function	of	each	block	in	Figure	65	based	on	your	observation	of	the	inputs	and	
outputs.

(a) (b)

fg01_06600

FIgure 66 
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 20. A	pulse	waveform	with	a	frequency	of	10	kHz	is	applied	to	the	input	of	a	counter.	During	100	ms,	
how	many	pulses	are	counted?

 21. Consider	a	register	that	can	store	eight	bits.	Assume	that	it	has	been	reset	so	that	it	contains	
zeros	in	all	positions.	If	you	transfer	four	alternating	bits	(0101)	serially	into	the	register,	begin-
ning	with	a	1	and	shifting	to	the	right,	what	will	the	total	content	of	the	register	be	as	soon	as	the	
fourth	bit	is	stored?

SectIon 5 Programmable logic

 22. Which	of	the	following	acronyms	do	not	describe	a	type	of	programmable	logic?

	 	 PAL,	gAL,	SPLD,	VHDL,	CPLD,	AHDL,	FPgA

 23. What	do	each	of	the	following	stand	for?
(a) SPLD   (b) CPLD   (c) HDL   (d) FPgA	 	 	 (e) gAL

 24. Define	each	of	the	following	PLD	programming	terms:
(a) design entry   (b) simulation   (c) compilation   (d) download

 25. Describe	the	process	of	place-and-route.

SectIon 6 Fixed-Function logic devices

 26. A	fixed-function	digital	IC	chip	has	a	complexity	of	200	equivalent	gates.	How	is	it	classified?

 27. Explain	the	main	difference	between	the	DIP	and	SmT	packages.

 28. Label	the	pin	numbers	on	the	packages	in	Figure	66.	Top	views	are	shown.
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SectIon 7 a System

 29. List	three	ways	that	the	tablet-bottling	system	in	Figure	45	can	be	implemented.

 30. Which	function(s)	determines	when	each	bottle	is	full?

 31. Identify	the	purpose	of	each	register	in	Figure	45.

SectIon 8 measuring Instruments

 32. A	pulse	is	displayed	on	the	screen	of	an	oscilloscope,	and	you	measure	the	base	line	as	1	V	and	
the	top	of	the	pulse	as	8	V.	What	is	the	amplitude?

 33. A	waveform	is	measured	on	the	oscilloscope	and	its	amplitude	covers	three	vertical	divisions.	
If	the	vertical	control	is	set	at	2	V/div,	what	is	the	total	amplitude	of	the	waveform?

 34. The	period	of	a	pulse	waveform	measures	four	horizontal	divisions	on	an	oscilloscope.	If	the	
time	base	is	set	at	2	ms/div,	what	is	the	frequency	of	the	waveform?

anSWerS to SectIon checKuPS
SectIon 1 digital and analog Signals and Systems

 1. Analog	means	continuous.

 2. Digital	means	discrete.

 3. A	digital	quantity	has	a	discrete	set	of	values	and	an	analog	quantity	has	continuous	values.

 4. A	public	address	system	is	analog.	A	CD	player	is	analog	and	digital.	A	computer	is	all	digital.

SectIon 2 binary digits, logic levels, and digital Waveforms

 1. Binary	means	having	two	states	or	values.

 2. A	bit	is	a	binary	digit.

 3. The	bits	are	1	and	0.

 4. Rise	time:	from	10%	to	90%	of	amplitude.	Fall	time:	from	90%	to	10%	of	amplitude.

 5. Frequency	is	the	reciprocal	of	the	period.

 6. A	clock	waveform	is	a	basic	timing	waveform	from	which	other	waveforms	are	derived.

 7. A	timing	diagram	shows	the	time	relationship	of	two	or	more	waveforms.

 8. Parallel	transfer	is	faster	than	serial	transfer.

SectIon 3 logic operations

 1. When	the	input	is	LOW

 2. When	all	inputs	are	HIgH

 3. When	any	or	all	inputs	are	HIgH

 4. An	inverter	is	a	NOT	circuit.

 5. A	logic	gate	is	a	circuit	that	performs	a	logic	operation	(AND,	OR).

SectIon 4 combinational and Sequential logic Functions

 1. A	comparator	compares	the	magnitudes	of	two	input	numbers.

 2. Add, subtract, multiply, and divide

 3. Encoding	is	changing	a	familiar	form	such	as	decimal	to	a	coded	form	such	as	binary.

 4. Decoding	is	changing	a	code	to	a	familiar	form	such	as	binary	to	decimal.

 5. multiplexing	puts	data	from	many	sources	onto	one	line.	Demultiplexing	takes	data	from	one	
line	and	distributes	it	to	many	destinations.

 6. Flip-flops,	registers,	semiconductor	memories,	magnetic	disks

 7. A	counter	counts	events	with	a	sequence	of	binary	states.

SectIon 5 Programmable logic

 1. Simple	programmable	logic	device	(SPLD),	complex	programmable	logic	device	(CPLD),	and	
field-programmable	gate	array	(FPgA)

 2. A	CPLD	is	made	up	of	multiple	SPLDs.
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 3. Design	entry,	functional	simulation,	synthesis,	implementation,	timing	simulation,	and	download

 4. Design entry:	The	logic	design	is	entered	using	development	software.	Functional simulation: 
The	design	is	software	simulated	to	make	sure	it	works	logically.	Synthesis:	The	design	is	trans-
lated	into	a	netlist.	Implementation:	The	logic	developed	by	the	netlist	is	mapped	into	the	pro-
grammable	device.	Timing simulation:	The	design	is	software	simulated	to	confirm	that	there	
are	no	timing	problems.	Download:	The	design	is	placed	into	the	programmable	device.

 5. The	microcontroller	has	fixed	internal	circuits,	and	its	operation	is	directed	by	a	program.

SectIon 6 Fixed-Function logic devices

 1. An	IC	is	an	electronic	circuit	with	all	components	integrated	on	a	single	silicon	chip.

 2. DIP—dual	in-line	package;	SmT—surface-mount	technology;	SOIC—small-outline	integrated	
circuit;	SSI—small-scale	integration;	mSI—medium-scale	integration;	LSI—large-scale	inte-
gration;	VLSI—very	large-scale	integration.		

 3. (a) SSI   (b) MSI   (c) LSI   (d) VLSI   (e) uLSI

SectIon 7 a System

 1. Number	of	tablets	is	entered	via	keypad.

 2. The	system	counts	tablets	and	compares	to	preset	number	to	determine	when	a	bottle	is	full.

 3. Counter	is	reset	after	maximum	count	and	when	next	bottle	is	in	place.

SectIon 8 measuring Instruments

 1. The	analog	scope	applies	the	measured	waveform	directly	to	the	display	circuits.	The	digital	
scope	first	converts	the	measured	signal	to	digital	form.

 2. The	logic	analyzer	has	more	channels	than	the	oscillosope	and	has	more	than	one	data	display	
format.

 3. The	volts/div	control	sets	the	voltage	for	each	division	on	the	screen.

 4. The	sec/div	control	sets	the	time	for	each	division	on	the	screen.

 5. The	function	generator	produces	various	types	of	waveforms.

anSWerS to related ProblemS For 
eXamPleS
1  f = 6.67	kHz;	Duty cycle = 16.7%

2  Serial	transfer:	3.33	ns

3  Amplitude = 12 V; T = 8 ms

anSWerS to true/FalSe quIz
 1. T	 	 2. F  3. T	 	 	 4. T	 	 	 5. F   6. F

 7. T	 	 8. F  9. T	 	 10. T	 	 11. F  12. T

anSWerS to SelF-teSt
 1. (b)	 	 	 2. (d)	 	 	 3. (a)	 	 	 4. (c)	 	 	 5. (c)	 	 	 6. (d)	 	 	 7. (b)	 	 8. (d)

 9. (c)	 	 10. (e)	 	 11. (d)	 	 12. (d)	 	 13. (b)	 	 14. (c)	 	 15. (a)
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anSWerS to odd-numbered ProblemS
 1. Digital	can	be	transmitted	and	stored	more	efficiently	and	reliably.

 3. Clock

	 	 Thermometer

  Speedometer

 5. (a) 11010001  (b) 000101010

 7. (a) 550	ns	 	 (b) 600	ns	 	 (c) 2.7	ms  (d) 10	V

 9. 250	Hz

 11. 50%

 13. 8 ms;	1	ms

 15. Lon = SW1 + SW2 + SW1 # SW2

 17. AND	gate

 19. (a) adder     (b) multiplier

  (c) multiplexer  (d) comparator

 21. 01010000

 23. (a) Simple Programmable Logic Device

  (b) Complex Programmable Logic Device

  (c) Hardware	Description	Language

  (d) Field-Programmable	gate	Array

  (e) generic	Array	Logic

 25. Place-and-route	or	fitting	is	the	process	where	the	logic	structures	described	by	the	netlist	are	
mapped	into	the	actual	structure	of	the	specific	target	device.	This	results	in	an	output	called	a	
bitstream.

 27. DIP	pins	go	through	holes	in	a	circuit	board.	SmT	pins	connect	to	surface	pads.

 29. The	system	can	be	implemented	with	a	PLD,	a	microcontroller,	or	with	fixed-function	ICs.

 31. Register	A	stores	the	maximum	number	of	tablets/bottle.	Register	B	stores	the	cumulative	total	
of	tablets	bottled.

 33. 6	V
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Number SyStemS, 
OperatiONS, aNd COdeS

OutliNe
 1 The Decimal Number System 

 2 The Binary Number System 

 3 Decimal-to-Binary Conversion 

 4 Binary Arithmetic 

 5 1’s and 2’s Complements of Binary Numbers 

 6 Signed Numbers 

 7 Arithmetic Operations with Signed Numbers 

 8 Hexadecimal Numbers 

 9 Octal Numbers 

 10 Binary Coded Decimal (BCD) 

 11 Digital Codes 

 12 Error Detection Codes 

ObjeCtiveS
•	 Review	the	decimal	number	system

•	 Count	in	the	binary	number	system

•	 Convert	from	decimal	to	binary	and	from	binary	
to decimal

•	 Apply	arithmetic	operations	to	binary	numbers

•	 Determine	the	1’s	and	2’s	complements	of	a	
binary number

•	 Express	signed	binary	numbers	in	sign-magnitude,	
1’s	complement,	2’s	complement,	and	floating-
point format

•	 Carry	out	arithmetic	operations	with	signed	binary	
numbers

•	 Convert	between	the	binary	and	hexadecimal	
number systems

Key termS
lSb
mSb
byte
Floating-point number
Hexadecimal
Octal

bCd
alphanumeric
aSCii
parity
Cyclic redundancy 
check (CrC)

•	 Add	numbers	in	hexadecimal	form

•	 Convert	between	the	binary	and	octal	number	systems

•	 Express	decimal	numbers	in	binary	coded	decimal	
(BCD) form

•	 Add	BCD	numbers

•	 Convert	between	the	binary	system	and	the	Gray	
code

•	 Interpret	the	American	Standard	Code	for	Infor-
mation	Interchange	(ASCII)

•	 Explain	how	to	detect	code	errors

•	 Discuss	the	cyclic	redundancy	check	(CRC)

viSit tHe WebSite
Study aids for this chapter are available at  

http://pearsonhighered.com/floyd

iNtrOduCtiON
The binary number system and digital codes are fundamen-
tal	to	computers	and	to	digital	electronics	in	general.	In	this	
chapter,	the	binary	number	system	and	its	relationship	to	

From Chapter 2 of Digital Fundamentals: A Systems Approach,	First	Edition.	Thomas	L.	Floyd.	Copyright	©	2013	by	Pearson	Education,	
Inc.	All	rights	reserved.
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other	number	systems	such	as	decimal,	hexadecimal,	and	
octal is presented. Arithmetic operations with binary num-
bers are covered to provide a basis for understanding how 
computers	and	many	other	types	of	digital	systems	work.	
Also,	digital	codes	such	as	binary	coded	decimal	(BCD),	

the	Gray	 code,	 and	 the	ASCII	 are	 covered.	The	 parity	
method for detecting errors in codes is introduced. The 
tutorials on the use of the calculator in certain operations 
are	based	on	the	TI-36X	calculator.	The	procedures	shown	
may vary on other types.

1 tHe deCimal Number SyStem
you are familiar with the decimal number system because you use decimal numbers every day. 
although decimal numbers are commonplace, their weighted structure is often not under-
stood. in this section, the structure of decimal numbers is reviewed. this review will help you 
more easily understand the structure of the binary number system, which is important in com-
puters and digital electronics.

after completing this section, you should be able to

•	 Explain	why	the	decimal	number	system	is	a	weighted	system

•	 Explain	how	powers	of	ten	are	used	in	the	decimal	system

•	 Determine	the	weight	of	each	digit	in	a	decimal	number

In	the	decimal*	number	system	each	of	the	ten	digits,	0	through	9,	represents	a	certain	
quantity.	As	you	know,	the	ten	symbols	(digits) do not limit you to expressing only ten 
different quantities because you use the various digits in appropriate positions within a 
number	to	indicate	the	magnitude	of	the	quantity.	you	can	express	quantities	up	through	
nine	before	running	out	of	digits;	if	you	wish	to	express	a	quantity	greater	than	nine,	you	
use	two	or	more	digits,	and	the	position	of	each	digit	within	the	number	tells	you	the	mag-
nitude	it	represents.	If,	for	example,	you	wish	to	express	the	quantity	twenty-three,	you	use	
(by their respective positions in the number) the digit 2 to represent the quantity twenty 
and	the	digit	3	to	represent	the	quantity	three,	as	illustrated	below.

the decimal number 
system has ten digits.

The digit 2 has a weight of 
10 in this position.

The digit 3 has a weight 
of 1 in this position.

2  3

2 * 10 3 * 1+ 

20 + 3

23

The position of each digit in a decimal number indicates the magnitude of the quan-
tity represented and can be assigned a weight. The weights for whole numbers are positive 
powers	of	ten	that	increase	from	right	to	left,	beginning	with	100

= 1.

c105 104 103 102 101 100

For	fractional	numbers,	the	weights	are	negative	powers	of	ten	that	decrease	from	left	to	
right beginning with 10-1.

102 101 100.10-1 10-2 10-3 c
 Decimal point

the decimal number 
system has a base of 10.

*The	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	Term	glossary	at	the	end	of	the	chapter.
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e X a m p l e  1

Express the decimal number 47 as a sum of the values of each digit.

S O l u t i O N

The	digit	4	has	a	weight	of	10,	which	is	101,	as	indicated	by	its	position.	The	digit	7	
has	a	weight	of	1,	which	is	100,	as	indicated	by	its	position.

 47 = (4 * 101) + (7 * 100)

 = (4 * 10) + (7 * 1) = 40  7

r e l a t e d  p r O b l e m *

Determine	the	value	of	each	digit	in	939.

*answers are at the end of the chapter.

e X a m p l e  2

Express	the	decimal	number	568.23	as	a	sum	of	the	values	of	each	digit.

S O l u t i O N

The	whole	number	digit	5	has	a	weight	of	100,	which	is	102,	the	digit	6	has	a	
weight	of	10,	which	is	101,	the	digit	8	has	a	weight	of	1,	which	is	100, the frac-
tional	digit	2	has	a	weight	of	0.1,	which	is	10-1, and the fractional digit 3 has a 
weight	of	0.01,	which	is	10-2.

 568.23 = (5 * 102)  + (6 * 101) + (8 * 100) + (2 * 10-1) + (3 * 10-2)

 = (5 * 100) + (6 * 10)  + (8 * 1)  + (2 * 0.1)  + (3 * 0.01)

 =   500     60     8     0.2     0.03

r e l a t e d  p r O b l e m

Determine	the	value	of	each	digit	in	67.924.

C a l C u l a t O r  t u t O r i a l

powers of ten

e X a m p l e

Find the value of 103.

ti-36X Step 1:  1  0  yx

 Step 2:  3  =  1000

The value of a decimal number is the sum of the digits after each digit has been mul-
tiplied	by	its	weight,	as	Examples	1	and	2	illustrate.

the value of a digit is 
determined by its position 
in the number.

1. What weight does the digit 7 have in each of the following 
numbers?

(a) 1370  (b) 6725	 	 (c) 7051  (d) 58.72

2. Express each of the following decimal numbers as a sum of 
the products obtained by multiplying each digit by its appro-
priate weight:

(a) 51  (b) 137  (c) 1492	 	 (d) 106.58

SeCtiON 1 CHeCKup*

*answers are at the end of the chapter.
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the binary number system is another way to represent quantities. it is less complicated than 
the decimal system because it has only two digits. the decimal system with its ten digits is a 
base-ten system; the binary system with its two digits is a base-two system. the two binary 
digits (bits) are 1 and 0. the position of a 1 or 0 in a binary number indicates its weight, or 
value within the number, just as the position of a decimal digit determines the value of that 
digit. the weights in a binary number are based on powers of two.

after completing this section, you should be able to

•	 Count	in	binary

•	 Determine	the	largest	decimal	number	that	can	be	represented	by	a	given	number	of	bits

•	 Convert	a	binary	number	to	a	decimal	number

2 tHe biNary Number SyStem

Counting in binary
Learning to count in binary will help you to basically understand how digital circuits can 
be used to count events. This can be anything from counting items on an assembly line to 
counting	operations	in	a	computer.	To	learn	to	count	in	the	binary	system,	first	look	at	how	
you	count	in	the	decimal	system.	you	start	at	zero	and	count	up	to	nine	before	you	run	out	
of	digits.	you	then	start	another	digit	position	(to	the	left)	and	continue	counting	10	through	
99.	At	this	point	you	have	exhausted	all	two-digit	combinations,	so	a	third	digit	position	is	
needed	to	count	from	100	through	999.

A	comparable	situation	occurs	when	you	count	in	binary,	except	that	you	have	only	
two	digits,	called	bits.	Begin	counting:	0,	1.	At	this	point	you	have	used	both	digits,	so	
include	another	digit	position	and	continue:	10,	11.	you	have	now	exhausted	all	combina-
tions	of	two	digits,	so	a	third	position	is	required.	With	three	digit	positions	you	can	con-
tinue	to	count:	100,	101,	110,	and	111.	Now	you	need	a	fourth	digit	position	to	continue,	
and	so	on.	A	binary	count	of	zero	through	fifteen	is	shown	in	Table	1.	Notice	the	patterns	
with which the 1s and 0s alternate in each column.

As	 you	 can	 see	 in	Table	 1,	 four	 bits	 are	 required	 to	 count	 from	 zero	 to	 15.	 In	 
general,	with	n bits you can count up to a number equal to 2n - 1.

Largest decimal number = 2n - 1

For	example,	with	five	bits	(n = 5)	you	can	count	from	zero	to	thirty-one.

25 - 1 = 32 - 1 = 31

With six bits (n = 6)	you	can	count	from	zero	to	sixty-three.

26 - 1 = 64 - 1 = 63

A table of powers of two is given in the appendix “Conversions”.

the binary number system 
has two digits (bits).

the binary number 
system has a base of 2.

the value of a bit is 
determined by its position 
in the number.

In	computer	operations,	there	are	many	cases	where	adding	or	subtracting	1	to	a	number	stored	
in a counter is necessary. Computers have special instructions that use less time and generate 
less	machine	code	than	the	ADD	or	SuB	instructions.	For	the	Intel	processors,	the	INC	(incre-
ment)	instruction	adds	1	to	a	number.	For	subtraction,	the	corresponding	instruction	is	DEC	
(decrement),	which	subtracts	1	from	a	number.

S y S t e m  N O t e
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C a l C u l a t O r  t u t O r i a l

powers of two

e X a m p l e

Find the value of 25.

ti-36X Step 1:  2  yx  

 Step 2:  5  =  32

ball-COuNtiNg SyStem
Figure 1 illustrates the counting of tennis balls that go into a box from a conveyor belt. 
Nine balls go into each box. The counter counts the pulses from a sensor that detects the 
passing of a ball and produces a sequence of logic levels (digital waveforms) on each of its 
four parallel outputs. Each set of logic levels represents a 4-bit binary number (HIGH = 1 

S y S t e m  e X a m p l e  1

table 1  

deCimal 
Number

 
biNary Number

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1
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and LOW = 0),	as	indicated.	As	the	decoder	receives	these	waveforms,	it	decodes	each	
set of four bits and converts it to the corresponding decimal number in the 7-segment dis-
play.	When	the	counter	gets	to	the	binary	state	of	1001,	it	has	counted	nine	tennis	balls,	the	
display	shows	decimal	9,	and	a	new	box	is	moved	under	the	conveyor.	Then	the	counter	goes	
back	to	its	zero	state	(0000),	and	the	process	starts	over.	(The	number	9	was	used	only	in	the	
interest of single-digit simplicity.)

Counter Decoder

1st ball
2nd ball

9th ball
1 0 1 0 1 0 1 0 10

0 1 1 0 0 1 1 0 00

0 0 0 1 1 1 1 0 00

0 0 0 0 0 0 0 1 10

Ball count 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

fg02_00100
Figure 1 illustration of a simple binary counting application.

the Weighting Structure of binary Numbers
A binary number is a weighted number. The right-most bit is the lSb	(least	significant	bit)	
in a binary whole number and has a weight of 20

= 1. The weights increase from right to 
left by a power of two for each bit. The left-most bit is the mSb	(most	significant	bit);	its	
weight	depends	on	the	size	of	the	binary	number.

Fractional numbers can also be represented in binary by placing bits to the right of 
the	binary	point,	just	as	fractional	decimal	digits	are	placed	to	the	right	of	the	decimal	
point. The left-most bit is the MSB in a binary fractional number and has a weight of 
2-1

= 0.5. The fractional weights decrease from left to right by a negative power of two 
for each bit.

The weight structure of a binary number is

2n-1 c23 22 21 20. 2-1 2-2 c2-n

Binary point

where n	is	the	number	of	bits	from	the	binary	point.	Thus,	all	the	bits	to	the	left	of	the	
binary	point	have	weights	that	are	positive	powers	of	two,	as	previously	discussed	for	
whole numbers. All bits to the right of the binary point have weights that are negative pow-
ers	of	two,	or	fractional	weights.

the weight or value of a 
bit increases from right to 
left in a binary number.

c

The	powers	of	two	and	their	equivalent	decimal	weights	for	an	8-bit	binary	whole	
number	and	a	6-bit	binary	fractional	number	are	shown	in	Table	2.	Notice	that	the	weight	
doubles for each positive power of two and that the weight is halved for each negative 
power	of	two.	you	can	easily	extend	the	table	by	doubling	the	weight	of	the	most	signifi-
cant	positive	power	of	two	and	halving	the	weight	of	the	least	significant	negative	power	
of	two;	for	example,	29 = 512 and 2-7

= 0.0078125.

Computers use binary numbers to select memory locations. Each location is assigned a unique 
number called an address.	Some	microprocessors,	for	example,	have	32	address	lines	which	
can select 232	(4,294,967,296)	unique	locations.

S y S t e m  N O t e
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TABLE	2	 •	 binary weights.

pOSitive pOWerS OF tWO  
(WHOle NumberS)

Negative pOWerS OF tWO  
(FraCtiONal Number)

28 27 26 25 24 23 22 21 20 21 22 23 24 25 26

256 128 64 32 16 8 4 2 1 1>2
0.5

1>4
0.25

1>8
0.125

1>16
0.625

1>32
0.03125

1>64
0.015625

binary-to-decimal Conversion
The decimal value of any binary number can be found by adding the weights of all bits that 
are 1 and discarding the weights of all bits that are 0.

add the weights of all 1s 
in a binary number to get 
the decimal value.

e X a m p l e  4

Convert the fractional binary number 0.1011 to decimal.

S O l u t i O N

Determine	the	weight	of	each	bit	that	is	a	1,	and	then	sum	the	weights	to	get	the	
decimal fraction.

 Weight:   2-1   2-2   2-3   2-4

 Binary number:  0.1   0   1   1

 0.1011 = 2-1 + 2-3 + 2-4

 = 0.5 + 0.125 + 0.0625 = 0.6875

r e l a t e d  p r O b l e m

Convert the binary number 10.111 to decimal.

e X a m p l e  3

Convert the binary whole number 1101101 to decimal.

S O l u t i O N

Determine	the	weight	of	each	bit	that	is	a	1,	and	then	find	the	sum	of	the	weights	
to get the decimal number.

 Weight: 26 25 24 23 22 21 20

 Binary number: 1  1  0  1  1  0  1

 1101101 = 26 + 25 + 23 + 22 + 20

 = 64 + 32 + 8 + 4 + 1 = 109

r e l a t e d  p r O b l e m

Convert the binary number 10010001 to decimal.

1. What is the largest decimal number that can be represented in 
binary with eight bits?

2. Determine the weight of the 1 in the binary number 10000.

3. Convert the binary number 10111101.011 to decimal.

SeCtiON 2 CHeCKup
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Sum-of-Weights method
One	way	to	find	the	binary	number	that	is	equivalent	to	a	given	decimal	number	is	to	deter-
mine the set of binary weights whose sum is equal to the decimal number. An easy way to 
remember	binary	weights	is	that	the	lowest	is	1,	which	is	20, and that by doubling any 
weight,	you	get	the	next	higher	weight;	thus,	a	list	of	seven	binary	weights	would	be	64,	
32,	16,	8,	4,	2,	1	as	you	learned	in	the	last	section.	The	decimal	number	9,	for	example,	can	
be expressed as the sum of binary weights as follows:

9 = 8 + 1 or 9 = 23 + 20

Placing	1s	in	the	appropriate	weight	positions,	23 and 20, and 0s in the 22 and 21 positions 
determines	the	binary	number	for	decimal	9.

23

1

22

0

21

0

20

1 Binary number for decimal 9

to get the binary number 
for a given decimal 
number, find the binary 
weights that add up to the 
decimal number.

e X a m p l e  5

Convert the following decimal numbers to binary:

(a) 12  (b) 25  (c) 58	 	 (d) 82

S O l u t i O N

(a) 12 = 8 + 4 = 23 + 22    1100

(b) 25 = 16 + 8 + 1 = 24 + 23 + 20    11001

(c) 58 = 32 + 16 + 8 + 2 = 25 + 24 + 23 + 21    111010

(d) 82 = 64 + 16 + 2 = 26 + 24 + 21    1010010

r e l a t e d  p r O b l e m

Convert the decimal number 125 to binary.

repeated division-by-2 method
A systematic method of converting whole numbers from decimal to binary is the repeated 
division-by-2	process.	For	example,	to	convert	the	decimal	number	12	to	binary,	begin	
by dividing 12 by 2. Then divide each resulting quotient by 2 until there is a 0 whole-
number quotient. The remainders generated by each division form the binary number. 
The	first	 remainder	 to	 be	 produced	 is	 the	LSB	 (least	 significant	 bit)	 in	 the	 binary	

in Section 2 you learned how to convert a binary number to the equivalent decimal number. 
Now you will learn two ways of converting from a decimal number to a binary number.

after completing this section, you should be able to

•	 Convert	a	decimal	number	to	binary	using	the	sum-of-weights	method

•	 Convert	a	decimal	whole	number	to	binary	using	the	repeated	division-by-2	method

•	 Convert	a	decimal	fraction	to	binary	using	the	repeated	multiplication-by-2	method

3 deCimal-tO-biNary CONverSiON

to get the binary number 
for a given decimal 
number, divide the 
decimal number by 2 
until the quotient is 0. 
remainders form the 
binary number.
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Remainder

0

0

1

1

Stop when the
whole-number quotient is 0.

1 1 0 0

MSB LSB

 
1

2
= 0

 
3

2
= 1

 
6

2
= 3

 
12

2
= 6

number,	and	the	last	remainder	to	be	produced	is	the	mSB	(most	significant	bit).	This	
procedure is illustrated as follows for converting the decimal number 12 to binary.

e X a m p l e  6

Convert the following decimal numbers to binary:

(a) 19	 	 (b) 45

S O l u t i O N

(a)  Remainder

 

r e l a t e d  p r O b l e m

Convert	decimal	number	39	to	binary.

19

2
= 9 1

  
9

2
= 4 1

  
4

2
= 2 0

  
2

2
= 1 0

  
1

2
= 0 1

1  0  0  1  1

MSB LSB

(b)  Remainder

45

2
= 22 1

22

2
= 11 0

 
11

2
= 5 1

   
5

2
= 2 1

   
2

2
= 1 0

   
1

2
= 0 1

1  0  1  1  0  1

MSB LSB
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Converting decimal Fractions to binary
Examples	5	and	6	demonstrated	whole-number	conversions.	Now	let’s	 look	at	 frac-
tional conversions. An easy way to remember fractional binary weights is that the most 
significant	weight	is	0.5,	which	is	2-1,	and	that	by	halving	any	weight,	you	get	the	next	
lower	weight;	 thus	a	 list	of	four	fractional	binary	weights	would	be	0.5,	0.25,	0.125,	
0.0625.

Sum-OF-WeigHtS The sum-of-weights method can be applied to fractional deci-
mal	numbers,	as	shown	in	the	following	example:

0.625 = 0.5 + 0.125 = 2-1 + 2-3
= 0.101

There is a 1 in the 2-1	position,	a	0	in	the	2-2	position,	and	a	1	in	the	2-3 position.

repeated multipliCatiON by 2 As	 you	 have	 seen,	 decimal	 whole	
numbers can be converted to binary by repeated division by 2. Decimal fractions can 
be	converted	 to	binary	by	repeated	multiplication	by	2.	For	example,	 to	convert	 the	
decimal	fraction	0.3125	to	binary,	begin	by	multiplying	0.3125	by	2	and	then	multi-
plying each resulting fractional part of the product by 2 until the fractional product is 
zero	or	until	the	desired	number	of	decimal	places	is	reached.	The	carry	digits,	or	car-
ries,	generated	by	the	multiplications	produce	the	binary	number.	The	first	carry	pro-
duced	 is	 the	mSB,	 and	 the	 last	 carry	 is	 the	LSB.	This	 procedure	 is	 illustrated	 as	
follows:

C a l C u l a t O r  t u t O r i a l

Conversion of a decimal Number to a binary Number

e X a m p l e

Convert decimal 57 to binary.

    DEC

ti-36X Step 1:  3rd  EE

 Step 2:  5  7

	 		BIN

 Step 3:  3rd  X                111001

{
{

{
{

0

1

0

1

MSB LSB

Carry

0.3125 � 2 � 0.625

0.625 � 2 � 1.25

0.25 � 2 � 0.50

0.50 � 2 � 1.00

Continue to the desired number of decimal places
or stop when the fractional part is all zeros.

.0 1 0 1
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T

d d

binary addition
The four basic rules for adding binary digits (bits) are as follows:

0 + 0 = 0 Sum of 0 with a carry of 0

0 + 1 = 1 Sum of 1 with a carry of 0

1 + 0 = 1 Sum of 1 with a carry of 0

1 + 1 = 10 Sum of 0 with a carry of 1

Notice	that	the	first	three	rules	result	in	a	single	bit	and	in	the	fourth	rule	the	addition	of	
two	1s	yields	a	binary	two	(10).	When	binary	numbers	are	added,	the	last	condition	creates	
a	sum	of	0	in	a	given	column	and	a	carry	of	1	over	to	the	next	column	to	the	left,	as	illus-
trated in the following addition of 11 + 1:

 Carry Carry

1 1 

0 1 1

+ 0 0 1

1 0 0

In	the	right	column,	1 + 1 = 0	with	a	carry	of	1	to	the	next	column	to	the	left.	In	the	mid-
dle	column,	1 + 1 + 0 = 0	with	a	carry	of	1	to	the	next	column	to	the	left.	In	the	left	
column,	1 + 0 + 0 = 1.

When	there	is	a	carry	of	1,	you	have	a	situation	in	which	three	bits	are	being	added	
(a bit in each of the two numbers and a carry bit). This situation is illustrated as follows:

Carry bits

 1 + 0 + 0 = 01  Sum of 1 with a carry of 0

 1 + 1 + 0 = 10  Sum of 0 with a carry of 1

 1 + 0 + 1 = 10  Sum of 0 with a carry of 1

 1 + 1 + 1 = 11  Sum of 1 with a carry of 1

1. Convert each decimal number to binary by using the sum-of-
weights method:

(a) 23  (b) 57  (c) 45.5

2. Convert each decimal number to binary by using the repeated 
division-by-2 method (repeated multiplication-by-2 for fractions):

(a) 14  (b) 21  (c) 0.375

SeCtiON 3 CHeCKup

4 biNary aritHmetiC
binary arithmetic is essential in all digital computers and in many other types of digital sys-
tems. to understand digital systems, you must know the basics of binary addition, subtraction, 
multiplication, and division. this section provides an introduction that will be expanded in 
later sections.

after completing this section, you should be able to

•	 Add	binary	numbers

•	 Subtract	binary	numbers

•	 Multiply	binary	numbers

•	 Divide	binary	numbers

in binary 1  1 5 10, 
not the decimal digit 2.
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e X a m p l e  8

Perform the following binary subtractions:

(a) 11 - 01  (b) 11 - 10

S O l u t i O N

(a)
 

11

-  01

10
  

3

-  1

2

  

(b)
 

11

-  10

01
  

3

-  2

1
No borrows were required in this example. The binary number 01 is the same as 1.

r e l a t e d  p r O b l e m

Subtract 100 from 111.

e X a m p l e  7

Add the following binary numbers:

(a) 11 + 11  (b) 100 + 10  (c) 111 + 11  (d) 110 + 100

S O l u t i O N

The equivalent decimal addition is also shown for reference.

(a)
 

11

+11

110
  

3

+3

6

  

(b)
 

100

+10

110
  

4

+2

6

  

(c)
 

111

+  11

1010
  

7

+3

10

  

(d)
 

110

+100

1010
  

6

+4

10

r e l a t e d  p r O b l e m

Add 1111 and 1100.

binary Subtraction
The four basic rules for subtracting bits are as follows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1  0 - 1 with a borrow of 1

When	subtracting	numbers,	you	sometimes	have	to	borrow	from	the	next	column	to	the	
left.	A	borrow	is	required	in	binary	only	when	you	try	to	subtract	a	1	from	a	0.	In	this	case,	
when	a	1	is	borrowed	from	the	next	column	to	the	left,	a	10	is	created	in	the	column	being	
subtracted,	and	the	last	of	the	four	basic	rules	just	listed	must	be	applied.	Examples	8	and	
9	illustrate	binary	subtraction;	the	equivalent	decimal	subtractions	are	also	shown.

in binary 10  1 5 1, 
not the decimal digit 9.

e X a m p l e  9

Subtract 011 from 101.

S O l u t i O N

101

-  011

010
  

5

-  3

2
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binary multiplication
The four basic rules for multiplying bits are as follows:

 0 * 0 = 0

 0 * 1 = 0

 1 * 0 = 0

 1 * 1 = 1

Multiplication is performed with binary numbers in the same manner as with decimal 
numbers.	It	involves	forming	partial	products,	shifting	each	successive	partial	product	left	
one	place,	and	then	adding	all	the	partial	products.	Example	10	illustrates	the	procedure;	
the equivalent decimal multiplications are shown for reference.

Let’s examine exactly what was done to subtract the two binary numbers since a 
borrow is required. Begin with the right column.

Left column: Middle column:
When a 1 is borrowed, Borrow 1 from next column
a 0 is left, so 0 � 0 � 0. to the left, making a 10 in 

this column, then 10 � 1 � 1.

1
0
101 Right column:

�0 11 1 � 1 � 0
0 10

↓

↓

↓

r e l a t e d  p r O b l e m

Subtract 101 from 110.

binary multiplication 
of two bits is the same 
as multiplication of the 
decimal digits 0 and 1.

e X a m p l e  1 0

Perform the following binary multiplications:

(a) 11 * 11   (b) 101 * 111

S O l u t i O N

(a)   11 3  (b)  111 7
    3 11 3 3    3 101 3 5

Partial	 11	 9	 					Partial 111 35
products

e
 
111        products •      000 

   1001                         1111  
       100011 

r e l a t e d  p r O b l e m

Multiply 1101 * 1010.

binary division
Division	in	binary	follows	the	same	procedure	as	division	in	decimal,	as	Example	11	illus-
trates. The equivalent decimal divisions are also given.
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e X a m p l e  1 1

Perform the following binary divisions:

(a) 110 , 11    (b) 110 , 10

S O l u t i O N

(a)
 

10
11110

11  

000

 

2

36
6  
0

    
(b)

 

11
10110

10 

10

 

3

26
6

0

  
10

00

r e l a t e d  p r O b l e m

Divide 1100 by 100.

1. Perform the following binary additions:

(a) 1101 + 1010    (b) 10111 + 01101

2. Perform the following binary subtractions:

(a) 1101 - 0100    (b) 1001 - 0111

3. Perform the indicated binary operations:

(a) 110 * 111    (b) 1100 , 011

SeCtiON 4 CHeCKup

5 1’S aNd 2’S COmplemeNtS  
OF biNary NumberS
the 1’s complement and the 2’s complement of a binary number are important because they 
permit the representation of negative numbers. the method of 2’s complement arithmetic is 
commonly used in computers to handle negative numbers.

after completing this section, you should be able to

•	 Convert	a	binary	number	to	its	1’s	complement

•	 Convert	a	binary	number	to	its	2’s	complement	using	either	of	two	methods

Finding the 1’s Complement
The 1’s complement	of	a	binary	number	is	found	by	changing	all	1s	to	0s	and	all	0s	to	1s,	
as illustrated below:

 1 0 1 1 0 0 1 0   Binary number

 T T T T T T T T

 0 1 0 0 1 1 0 1   1>s complement

The simplest way to obtain the 1’s complement of a binary number with a digital 
circuit	is	to	use	parallel	inverters	(NOT	circuits),	as	shown	in	Figure	2	for	an	8-bit	binary	
number.

Change each bit in a 
number to get the 1’s 
complement.
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0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

fg02_00200

Figure 2 example of  inverters used to obtain 
the 1’s complement of a binary number.

Finding the 2’s Complement
The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s com-
plement.

2>s complement = (1>s complement) + 1

add 1 to the 1’s 
complement to get the 2’s 
complement.

e X a m p l e  1 2

Find the 2’s complement of 10110010.

S O l u t i O N

10110010

01001101

+        1

01001110

Binary number

1>s complement

Add 1

2>s complement

r e l a t e d  p r O b l e m

Determine the 2’s complement of 11001011.

Change all bits to the left 
of the least significant 1 
to get 2’s complement.

An	alternative	method	of	finding	the	2’s	complement	of	a	binary	number	is	as	follows:

 1. Start at the right with the LSB and write the bits as they are up to and including the 
first	1.

 2. Take	the	1’s	complements	of	the	remaining	bits.

e X a m p l e  1 3

Find the 2’s complement of 10111000 using the alternative method.

S O l u t i O N

 10111000    Binary number

 1’s complements         01001000    2’s complement
 of original bits  
  These bits stay the same. 

r e l a t e d  p r O b l e m

Find the 2’s complement of 11000000.

cc

e e
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The	2’s	complement	of	a	negative	binary	number	can	be	realized	using	inverters	and	
an	adder,	as	indicated	in	Figure	3.	This	illustrates	how	an	8-bit	number	can	be	converted	to	
its	2’s	complement	by	first	inverting	each	bit	(taking	the	1’s	complement)	and	then	adding	
1 to the 1’s complement with an adder circuit.

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Adder

Negative number

1’s complement

Input bits

Output bits (sum)

2’s complement

Carry

in

1

(add 1)

fg02_00300

Figure 3 example of obtaining the 2’s complement of a negative binary 
number.

To	convert	from	a	1’s	or	2’s	complement	back	to	the	true	(uncomplemented)	binary	
form,	use	the	same	two	procedures	described	previously.	To	go	from	the	1’s	complement	
back	to	true	binary,	reverse	all	the	bits.	To	go	from	the	2’s	complement	form	back	to	true	
binary,	take	the	1’s	complement	of	the	2’s	complement	number	and	add	1	to	the	least	sig-
nificant	bit.

1. Determine the 1’s complement  of each binary number:

(a) 00011010  (b) 11110111  (c) 10001101

2. Determine the 2’s complement of each binary number:

(a) 00010110  (b) 11111100  (c) 10010001

SeCtiON 5 CHeCKup

6 SigNed NumberS
digital systems, such as the computer, must be able to handle both positive and negative num-
bers. a signed binary number consists of both sign and magnitude information. the sign indi-
cates whether a number is positive or negative, and the magnitude is the value of the number. 
there are three forms in which signed integer (whole) numbers can be represented in binary: 
sign-magnitude, 1’s complement, and 2’s complement. Of these, the 2’s complement is the most 
important and the sign-magnitude is the least used. Noninteger and very large or small num-
bers can be expressed in floating-point format.

after completing this section, you should be able to

•	 Express	positive	and	negative	numbers	in	sign-magnitude

•	 Express	positive	and	negative	numbers	in	1’s	complement

•	 Express	positive	and	negative	numbers	in	2’s	complement

•	 Determine	the	decimal	value	of	signed	binary	numbers

•	 Express	a	binary	number	in	floating-point	format
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the Sign bit
The left-most bit in a signed binary number is the sign bit, which tells you whether the 
number is positive or negative.

a 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative 
number.

Sign-magnitude Form
When	a	signed	binary	number	is	represented	in	sign-magnitude,	the	left-most	bit	is	the	sign	
bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomple-
mented)	binary	for	both	positive	and	negative	numbers.	For	example,	the	decimal	number	
+25	is	expressed	as	an	8-bit	signed	binary	number	using	the	sign-magnitude	form	as

00011001

 Sign bit Magnitude bits

The decimal number -25 is expressed as

10011001

Notice that the only difference between +25 and -25 is the sign bit because the magnitude 
bits are in true binary for both positive and negative numbers.

in the sign-magnitude form, a negative number has the same magnitude bits as 
the corresponding positive number but the sign bit is a 1 rather than a zero.

1’s Complement Form
Positive numbers in 1’s complement form are represented the same way as the positive 
sign-magnitude	numbers.	Negative	numbers,	however,	are	the	1’s	complements	of	the	cor-
responding	positive	numbers.	For	example,	using	eight	bits,	the	decimal	number	-25 is 
expressed as the 1’s complement of +25 (00011001) as

11100110

cc
u

in the 1’s complement form, a negative number is the 1’s complement of the 
corresponding positive number.

2’s Complement Form
Positive numbers in 2’s complement form are represented the same way as in the sign-
magnitude and 1’s complement forms. Negative numbers are the 2’s complements of the 
corresponding	positive	numbers.	Again,	using	eight	bits,	let’s	take	decimal	number	-25 
and express it as the 2’s complement of +25	(00011001).	Inverting	each	bit	and	adding	1,	
you get

-25 = 11100111

in the 2’s complement form, a negative number is the 2’s complement of the 
corresponding positive number.

Computers use the 2’s complement for negative integer numbers in arithmetic operations. The 
reason is that subtraction of a number is the same as adding the 2’s complement of the number. 
Computers	form	the	2’s	complement	by	inverting	the	bits	and	adding	1,	using	special	instruc-
tions that produce the same result as the adder in Figure 3.

S y S t e m  N O t e

63



NumBER	SySTEmS,	OPERATIONS,	AND	CODES

e X a m p l e  1 4

Express the decimal number -39	as	an	8-bit	number	in	the	sign-magnitude,	1’s	
complement,	and	2’s	complement	forms.

S O l u t i O N

First,	write	the	8-bit	number	for	+39.

00100111

In	the	sign-magnitude form, -39 is produced by changing the sign bit to a 1 
and leaving the magnitude bits as they are. The number is

10100111

In	the	1’s complement form, -39	is	produced	by	taking	the	1’s	complement	
of +39 (00100111).

11011000

In	the	2’s complement form, -39	is	produced	by	taking	the	2’s	complement	
of +39 (00100111) as follows:

11011000 1>s complement
+    1 

 11011001 2>s complement

r e l a t e d  p r O b l e m

Express +19 and -19	as	8-bit	numbers	in	sign-magnitude,	1’s	complement,	and	
2’s complement.

the decimal value of Signed Numbers
SigN-magNitude Decimal values of positive and negative numbers in the sign-
magnitude form are determined by summing the weights in all the magnitude bit positions 
where	there	are	1s	and	ignoring	those	positions	where	there	are	zeros.	The	sign	is	deter-
mined by examination of the sign bit.

e X a m p l e  1 5

Determine the decimal value of this signed binary number expressed in sign-
magnitude: 10010101.

S O l u t i O N

The seven magnitude bits and their powers-of-two weights are as follows:

26 25 24 23 22 21 20

0 0 1 0 1 0 1

Summing	the	weights	where	there	are	1s,

16 + 4 + 1 = 21

The	sign	bit	is	1;	therefore,	the	decimal	number	is	21.

r e l a t e d  p r O b l e m

Determine the decimal value of the sign-magnitude number 01110111.
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1’S COmplemeNt Decimal values of positive numbers in the 1’s complement 
form are determined by summing the weights in all bit positions where there are 1s and 
ignoring	those	positions	where	there	are	zeros.	Decimal	values	of	negative	numbers	are	
determined	by	assigning	a	negative	value	to	the	weight	of	the	sign	bit,	summing	all	the	
weights	where	there	are	1s,	and	adding	1	to	the	result.

e X a m p l e  1 6

Determine the decimal values of the signed binary numbers expressed in 1’s 
complement:

(a) 00010111    (b) 11101000

S O l u t i O N

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 0 0 1 0 1 1 1

	 Summing	the	weights	where	there	are	1s,

16 + 4 + 2 + 1 = 23

(b) The bits and their powers-of-two weights for the negative number are as fol-
lows. Notice that the negative sign bit has a weight of -27 or -128.

-27 26 25 24 23 22 21 20

1 1 1 0 1 0 0 0

	 Summing	the	weights	where	there	are	1s,

-128 + 64 + 32 + 8 = -24

	 Adding	1	to	the	result,	the	final	decimal	number	is

-24 + 1 = 23

r e l a t e d  p r O b l e m

Determine the decimal value of the 1’s complement number 11101011.

2’S COmplemeNt Decimal values of positive and negative numbers in the 2’s 
complement form are determined by summing the weights in all bit positions where there 
are	1s	and	ignoring	those	positions	where	there	are	zeros.	The	weight	of	the	sign	bit	in	a	
negative number is given a negative value.

e X a m p l e  1 7

Determine the decimal values of the signed binary numbers expressed in 2’s com-
plement:

(a) 01010110        (b) 10101010

S O l u t i O N

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 1 0 1 0 1 1 0
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Summing	the	weights	where	there	are	1s,

64 + 16 + 4 + 2 = 86

(b) The bits and their powers-of-two weights for the negative number are as fol-
lows. Notice that the negative sign bit has a weight of -27

= -128.

-27 26 25 24 23 22 21 20

1 0 1 0 1 0 1 0

Summing	the	weights	where	there	are	1s,

-128 + 32 + 8 + 2 = 86

r e l a t e d  p r O b l e m

Determine the decimal value of the 2’s complement number 11010111.

From	these	examples,	you	can	see	why	the	2’s	complement	form	is	preferred	for	
representing	signed	integer	numbers:	To	convert	to	decimal,	it	simply	requires	a	summa-
tion of weights regardless of whether the number is positive or negative. The 1’s comple-
ment system requires adding 1 to the summation of weights for negative numbers but not 
for	positive	numbers.	Also,	the	1’s	complement	form	is	generally	not	used	because	two	
representations	of	zero	(00000000	or	11111111)	are	possible.

range of Signed integer Numbers
We	have	used	8-bit	numbers	for	illustration	because	the	8-bit	grouping	is	common	in	most	
computers and has been given the special name byte.	With	one	byte	or	eight	bits,	you	can	
represent	256	different	numbers.	With	two	bytes	or	sixteen	bits,	you	can	represent	65,536	
different	numbers.	With	four	bytes	or	32	bits,	you	can	represent	4.295 * 109 different 
numbers.	The	formula	for	finding	the	number	of	different	combinations	of	n bits is

Total combinations = 2n

For	2’s	complement	signed	numbers,	the	range	of	values	for	n-bit numbers is

Range = -(2n-1) to +(2n-1 - 1)

where in each case there is one sign bit and n - 1	magnitude	bits.	For	example,	with	four	
bits you can represent numbers in 2’s complement ranging from -(23) = -8 to 
23 - 1 = +7.	Similarly,	with	eight	bits	you	can	go	from	-128 to +127,	with	sixteen	bits	
you can go from -32,768 to +32,767, and so on. There is one less positive number than 
there	are	negative	numbers	because	zero	is	represented	as	a	positive	number	(all	zeros).

Floating-point Numbers
To represent very large integer	(whole)	numbers,	many	bits	are	required.	There	is	also	a	
problem	when	numbers	with	both	integer	and	fractional	parts,	such	as	23.5618,	need	to	be	
represented.	The	floating-point	number	system,	based	on	scientific	notation,	is	capable	of	
representing very large and very small numbers without an increase in the number of bits 
and also for representing numbers that have both integer and fractional components.

A floating-point number	(also	known	as	a	real number) consists of two parts plus a 
sign. The mantissa	is	the	part	of	a	floating-point	number	that	represents	the	magnitude	of	
the number and is between 0 and 1. The exponent	is	the	part	of	a	floating-point	number	
that represents the number of places that the decimal point (or binary point) is to be moved.

A	decimal	example	will	be	helpful	in	understanding	the	basic	concept	of	floating-
point	numbers.	Let’s	consider	a	decimal	number	which,	in	integer	form,	is	241,506,800.	
The	mantissa	is	.2415068	and	the	exponent	is	9.	When	the	integer	is	expressed	as	a	floating-
point	number,	it	is	normalized	by	moving	the	decimal	point	to	the	left	of	all	the	digits	so	

the range of magnitude of 
a binary number depends 
on the number of bits (n).
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that	the	mantissa	is	a	fractional	number	and	the	exponent	is	the	power	of	ten.	The	floating-
point number is written as

0.2415068 * 109

For	binary	floating-point	numbers,	the	format	is	defined	by	ANSI/IEEE	Standard	
754-1985	 in	 three	 forms:	 single-precision, double-precision, and extended-precision. 
These	all	have	the	same	basic	formats	except	for	the	number	of	bits.	Single-precision	floating-
point	numbers	have	32	bits,	double-precision	numbers	have	64	bits,	and	extended-precision	
numbers	have	80	bits.	We	will	restrict	our	discussion	to	the	single-precision	floating-point	
format.

In	addition	to	the	CPu	(central	processing	unit),	computers	use	coprocessors to perform com-
plicated	mathematical	calculations	using	floating-point	numbers.	The	purpose	is	to	increase	
performance	by	freeing	up	the	CPu	for	other	tasks.	The	mathematical	coprocessor	is	also	
known	as	the	floating-point	unit	(FPu).

S y S t e m  N O t e

SiNgle-preCiSiON FlOatiNg-pOiNt biNary NumberS In	 the	
standard	format	for	a	single-precision	binary	number,	the	sign	bit	(S)	is	the	left-most	bit,	
the	exponent	(E)	includes	the	next	eight	bits,	and	the	mantissa	or	fractional	part	(F)	includes	
the	remaining	23	bits,	as	shown	next.

 32 bits 

S Exponent (E) mantissa	(fraction,	F)

	 1	bit	 8	bits	 23	bits

In	the	mantissa	or	fractional	part,	the	binary	point	is	understood	to	be	to	the	left	of	the	
23	bits.	Effectively,	there	are	24	bits	in	the	mantissa	because	in	any	binary	number	the	left-
most	(most	significant)	bit	is	always	a	1.	Therefore,	this	1	is	understood	to	be	there	although	
it does not occupy an actual bit position.

The eight bits in the exponent represent a biased exponent, which is obtained by add-
ing 127 to the actual exponent. The purpose of the bias is to allow very large or very small 
numbers without requiring a separate sign bit for the exponents. The biased exponent 
allows a range of actual exponent values from -126 to +128.

To	illustrate	how	a	binary	number	is	expressed	in	floating-point	format,	let’s	use	
1011010010001	as	an	example.	First,	 it	can	be	expressed	as	1	plus	a	fractional	binary	
number by moving the binary point 12 places to the left and then multiplying by the appro-
priate power of two.

1011010010001 = 1.011010010001 * 212

Assuming	that	this	is	a	positive	number,	the	sign	bit	(S)	is	0.	The	exponent,	12,	is	expressed	as	
a biased exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is expressed 
as	the	binary	number	10001011.	The	mantissa	is	the	fractional	part	(F)	of	the	binary	number,	
.011010010001. Because there is always a 1 to the left of the binary point in the power-of-two 
expression,	it	is	not	included	in	the	mantissa.	The	complete	floating-point	number	is

S e F

0 10001011 01101001000100000000000

Next,	let’s	see	how	to	evaluate	a	binary	number	that	is	already	in	floating-point	for-
mat.	The	general	approach	to	determining	the	value	of	a	floating-point	number	is	expressed	
by the following formula:

Number = (-1)S(1 + F)(2E-127)
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To	illustrate,	let’s	consider	the	following	floating-point	binary	number:

S e F

1 10010001 10001110001000000000000

The sign bit is 1. The biased exponent is 10010001 = 145.	Applying	the	formula,	we	get

 Number = (-1)1 (1.10001110001)(2145-127)

 = (-1)(1.10001110001)(218) = -1100011100010000000

This	floating-point	binary	number	is	equivalent	to	-407,688 in decimal. Since the expo-
nent can be any number between -126 and +128,	extremely	large	and	small	numbers	can	
be	expressed.	A	32-bit	floating-point	number	can	replace	a	binary	integer	number	having	
129	bits.	Because	the	exponent	determines	the	position	of	the	binary	point,	numbers	con-
taining both integer and fractional parts can be represented.

There	are	two	exceptions	to	the	format	for	floating-point	numbers:	The	number	0.0	is	
represented	by	all	0s,	and	infinity	is	represented	by	all	1s	in	the	exponent	and	all	0s	in	the	
mantissa.

e X a m p l e  1 8

Convert the decimal number 3.248 * 104	 to	a	 single-precision	floating-point	
binary number.

S O l u t i O N

Convert the decimal number to binary.

3.248 * 104
= 32480 = 1111110111000002 = 1.11111011100000 * 214

The	mSB	will	not	occupy	a	bit	position	because	it	is	always	a	1.	Therefore,	
the mantissa is the fractional 23-bit binary number 11111011100000000000000 
and the biased exponent is

14 + 127 = 141 = 100011012

The	complete	floating-point	number	is

0 10001101 11111011100000000000000

r e l a t e d  p r O b l e m

Determine	the	binary	value	of	the	following	floating-point	binary	number:

0 10011000 10000100010100110000000

1. Express the decimal number +9	as	an	8-bit	binary	number	in	
the sign-magnitude system.

2. Express the decimal number -33	as	an	8-bit	binary	number	in	
the 1’s complement system.

3. Express the decimal number -46	as	an	8-bit	binary	number	in	
the 2’s complement system.

4. List	the	three	parts	of	a	signed,	floating-point	number.

SeCtiON 6 CHeCKup
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in the last section, you learned how signed numbers are represented in three different forms. in 
this section, you will learn how signed numbers are added, subtracted, multiplied, and divided. 
because the 2’s complement form for representing signed numbers is the most widely used in 
computers and microprocessor-based systems, the coverage in this section is limited to 2’s com-
plement arithmetic. the processes covered can be extended to the other forms if necessary.

after completing this section, you should be able to

•	 Add	signed	binary	numbers

•	 Define	overflow

•	 Explain	how	computers	add	strings	of	numbers

•	 Subtract	signed	binary	numbers

•	 Multiply	signed	binary	numbers	using	the	direct	addition	method

•	 Multiply	signed	binary	numbers	using	the	partial	products	method

•	 Divide	signed	binary	numbers

7 aritHmetiC OperatiONS  
WitH SigNed NumberS

addition
The two numbers in an addition are the addend and the augend. The result is the sum. 
There are four cases that can occur when two signed binary numbers are added.

 1. Both numbers positive

 2. Positive number with magnitude larger than negative number

 3. Negative number with magnitude larger than positive number

 4. Both numbers negative

Let’s	take	one	case	at	a	time	using	8-bit	signed	numbers	as	examples.	The	equivalent	deci-
mal numbers are shown for reference.

both numbers positive:         00000111 7

+00000100 +4

00001011 11

The sum is positive and is therefore in true (uncomplemented) binary.

positive number with magnitude larger than negative number:

Discard carry 

00001111 15

 +  11111010 +  -6

1  00001001 9

The	final	carry	bit	is	discarded.	The	sum	is	positive	and	therefore	in	true	(uncomplemented)	
binary.

Negative number with magnitude larger than positive number:

00010000 16

+  11101000 +  -24

11111000 -8

The sum is negative and therefore in 2’s complement form.

both numbers negative:

Discard carry 

11111011 -5

 +  11110111 +  -9

1  11110010 -14

The	final	carry	bit	is	discarded.	The	sum	is	negative	and	therefore	in	2’s	complement	form.

addition of two positive 
numbers yields a positive 
number.

addition of a positive 
number and a smaller 
negative number yields a 
positive number.

addition of a positive 
number and a larger 
negative number or two 
negative numbers yields 
a negative number in 2’s 
complement.
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In	a	computer,	the	negative	numbers	are	stored	in	2’s	complement	form	so,	as	you	
can	see,	the	addition	process	is	very	simple:	Add the two numbers and discard any final 
carry bit.

OverFlOW CONditiON When two numbers are added and the number of bits 
required	to	represent	the	sum	exceeds	the	number	of	bits	in	the	two	numbers,	an	overflow 
results	as	indicated	by	an	incorrect	sign	bit.	An	overflow	can	occur	only	when	both	num-
bers	are	positive	or	both	numbers	are	negative.	If	the	sign	bit	of	the	result	is	different	than	
the	sign	bit	of	the	numbers	that	are	added,	overflow	is	indicated.	The	following	8-bit	exam-
ple will illustrate this condition.

01111101 125

 +  00111010 + 58

10110111 183

Sign incorrect
Magnitude incorrect

In	this	example	the	sum	of	183	requires	eight	magnitude	bits.	Since	there	are	seven	magni-
tude	bits	in	the	numbers	(one	bit	is	the	sign),	there	is	a	carry	into	the	sign	bit	which	pro-
duces	the	overflow	indication.

NumberS added tWO at a time Now	let’s	look	at	the	addition	of	a	string	
of	numbers,	added	two	at	a	time.	This	can	be	accomplished	by	adding	the	first	two	numbers,	
then	adding	the	third	number	to	the	sum	of	the	first	two,	then	adding	the	fourth	number	to	
this	result,	and	so	on.	This	is	how	computers	add	strings	of	numbers.	The	addition	of	num-
bers	taken	two	at	a	time	is	illustrated	in	Example	19.

•
e X a m p l e  1 9

Add	the	signed	numbers:	01000100,	00011011,	00001110,	and	00010010.

S O l u t i O N

The equivalent decimal additions are given for reference.

68 01000100

+ 27 + 00011011

95 01011111

+ 14 + 00001110

109 01101101

+ 18 + 00010010

127 01111111

  

 

Add 1st two numbers

1st sum

Add 3rd number

2nd sum

Add 4th number

Final sum

r e l a t e d  p r O b l e m

Add	00110011,	10111111,	and	01100011.	These	are	signed	numbers.

Subtraction
Subtraction	is	a	special	case	of	addition.	For	example,	subtracting	+6 (the subtrahend) 
from +9 (the minuend) is equivalent to adding -6 to +9.	Basically,	the subtraction oper-
ation changes the sign of the subtrahend and adds it to the minuend. The result of a sub-
traction is called the difference.

the sign of a positive or negative binary number is changed by taking its 2’s 
complement.

Subtraction is addition 
with the sign of the 
subtrahend changed.
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For	example,	when	you	take	the	2’s	complement	of	the	positive	number	00000100 (+4), 
you	get	11111100,	which	is	-4 as the following sum-of-weights evaluation shows:

-128 + 64 + 32 + 16 + 8 + 4 = -4

As	another	example,	when	you	take	the	2’s	complement	of	the	negative	number	11101101	
(-19),	you	get	00010011,	which	is	+19 as the following sum-of-weights evaluation shows:

16 + 2 + 1 = 19

Since	subtraction	is	simply	an	addition	with	the	sign	of	the	subtrahend	changed,	the	
process is stated as follows:

to subtract two signed numbers, take the 2’s complement of the subtrahend 
and add. discard any final carry bit.

Example 20 illustrates the subtraction process.

When doing binary 
subtraction with the 2’s 
complement method, it is 
very important that both 
numbers have the same 
number of bits.e X a m p l e  2 0

Perform each of the following subtractions of the signed numbers:

(a) 00001000 - 00000011 (b) 00001100 - 11110111

(c) 11100111 - 00010011 (d) 10001000 - 11100010

S O l u t i O N

Like	in	other	examples,	the	equivalent	decimal	subtractions	are	given	for	reference.

(a) In	this	case,	8 - 3 = 8 + (-3) = 5.

00001000

+ 11111101

1 00000101
  

Minuend (+8)

2>s complement of subtrahend (-3)

Difference (+5) Discard carry 

(b) In	this	case,	12 - (-9) = 12 + 9 = 21.

00001100

+ 00001001

00010101

  

Minuend (+12)

2>s complement of subtrahend (+9)

Difference (+21)

(c) In	this	case,	-25 - (+19) = -25 + (-19) = -44.

11100111

+ 11101101

1 11010100
  

Minuend (-25)

2>s complement of subtrahend (-19)

Difference (-44) Discard carry 

(d) In	this	case,	-120 - (-30) = -120 + 30 = -90.

10001000

+ 00011110

10100110
  

Minuend (-120)

2>s complement of subtrahend (+30)

Difference (-90)

r e l a t e d  p r O b l e m

Subtract 01000111 from 01011000.

multiplication
The numbers in a multiplication are the multiplicand, the multiplier, and the product. 
These are illustrated in the following decimal multiplication:

8

* 3

24

  

Multiplicand

Multiplier

Product
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The multiplication operation in most computers is accomplished using addition. As you have 
already	seen,	subtraction	is	done	with	an	adder;	now	let’s	see	how	multiplication	is	done.

Direct addition and partial products are two basic methods for performing multipli-
cation	using	addition.	In	the	direct	addition	method,	you	add	the	multiplicand	a	number	of	
times	equal	to	the	multiplier.	In	the	previous	decimal	example	(8 * 3), three multiplicands 
are added: 8 + 8 + 8 = 24. The disadvantage of this approach is that it becomes very 
lengthy	if	the	multiplier	is	a	large	number.	For	example,	to	multiply	350 * 75, you must 
add	350	to	itself	75	times.	Incidentally,	this	is	why	the	term	times is used to mean multiply.

When	two	binary	numbers	are	multiplied,	both	numbers	must	be	in	true	(uncomple-
mented) form. The direct addition method is illustrated in Example 21 adding two binary 
numbers at a time.

multiplication is 
equivalent to adding a 
number to itself a number 
of times equal to the 
multiplier.

e X a m p l e  2 1

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 
(multiplier) using the direct addition method.

S O l u t i O N

Since	both	numbers	are	positive,	they	are	in	true	form,	and	the	product	will	be	
positive.	The	decimal	value	of	the	multiplier	is	4,	so	the	multiplicand	is	added	to	
itself four times as follows:

01001101  1st time

+  01001101  2nd time

10011010  Partial sum

+  01001101  3rd time

11100111  Partial sum

+  01001101  4th time

100110100  Product

Since	the	sign	bit	of	the	multiplicand	is	0,	it	has	no	effect	on	the	outcome.	
All of the bits in the product are magnitude bits.

r e l a t e d  p r O b l e m

Multiply 01100001 by 00000110 using the direct addition method.

The	partial	products	method	is	perhaps	the	more	common	one	because	it	reflects	the	
way you multiply longhand. The multiplicand is multiplied by each multiplier digit begin-
ning	with	the	least	significant	digit.	The	result	of	the	multiplication	of	the	multiplicand	by	
a multiplier digit is called a partial product. Each successive partial product is moved 
(shifted)	one	place	to	the	left	and	when	all	the	partial	products	have	been	produced,	they	
are	added	to	get	the	final	product.	Here	is	a	decimal	example.

239

* 123

717

478 

+  239 

29,397

  

Multiplicand

Multiplier

1st partial product (3 * 239)

2nd partial product (2 * 239)

3rd partial product (1 * 239)

Final product

The sign of the product of a multiplication depends on the signs of the multiplicand 
and the multiplier according to the following two rules:

•	 if the signs are the same, the product is positive.

•	 if the signs are different, the product is negative.
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The basic steps in the partial products method of binary multiplication are as follows:

Step 1: Determine if the signs of the multiplicand and multiplier are the same or dif-
ferent. This determines what the sign of the product will be.

Step 2: Change any negative number to true (uncomplemented) form. Because most 
computers	store	negative	numbers	in	2’s	complement,	a	2’s	complement	oper-
ation is required to get the negative number into true form.

Step 3: Starting	with	the	least	significant	multiplier	bit,	generate	the	partial	products.	
When	the	multiplier	bit	is	1,	the	partial	product	is	the	same	as	the	multiplicand.	
When	the	multiplier	bit	is	0,	the	partial	product	is	zero.	Shift	each	successive	
partial product one bit to the left.

Step 4: Add each successive partial product to the sum of the previous partial products 
to	get	the	final	product.

Step 5: If	the	sign	bit	that	was	determined	in	step	1	is	negative,	take	the	2’s	comple-
ment	of	the	product.	If	positive,	leave	the	product	in	true	form.	Attach	the	sign	
bit to the product.

e X a m p l e  2 2

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

S O l u t i O N

Step 1:   The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The sign bit of the product will 
be 1 (negative).

Step 2:  	Take	the	2’s	complement	of	the	multiplier	to	put	it	in	true	form.

11000101 h 00111011

Step 3 and 4:   The multiplication proceeds as follows. Notice that only the magnitude bits are used in these steps.

1010011

*  0111011

1010011

+  1010011 

11111001

+  0000000 

011111001

+  1010011  

1110010001

+  1010011  

100011000001

+  1010011   

1001100100001

+  0000000   

1001100100001

  

Multiplicand

Multiplier

1st partial product

2nd partial product

Sum of 1st and 2nd

3rd partial product

Sum

4th partial product

Sum

5th partial product

Sum

6th partial product

Sum

7th partial product

Final product

Step 5:  	Since	the	sign	of	the	product	is	a	1	as	determined	in	step	1,	take	the	2’s	complement	of	the	product.

1001100100001 h 0110011011111
Attach the sign bit 

1  0110011011111

r e l a t e d  p r O b l e m

Verify the multiplication is correct by converting to decimal numbers and performing the multiplication.
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division
The numbers in a division are the dividend, the divisor, and the quotient. These are illus-
trated in the following standard division format.

dividend

divisor
= quotient

The division operation in computers is accomplished using subtraction. Since subtraction 
is	done	with	an	adder,	division	can	also	be	accomplished	with	an	adder.

The result of a division is called the quotient; the quotient is the number of 
times that the divisor will go into the dividend. This means that the divisor can be 
subtracted	from	the	dividend	a	number	of	times	equal	to	the	quotient,	as	illustrated	
by dividing 21 by 7.

21

- 7

14

- 7

7

- 7

0

  

Dividend

1st subtraction of divisor

1st partial remainder

2nd subtraction of divisor

2nd partial remainder

3rd subtraction of divisor

Zero remainder

In	this	simple	example,	the	divisor	was	subtracted	from	the	dividend	three	times	before	a	
remainder	of	zero	was	obtained.	Therefore,	the	quotient	is	3.

The sign of the quotient depends on the signs of the dividend and the divisor accord-
ing to the following two rules:

•	 if the signs are the same, the quotient is positive.

•	 if the signs are different, the quotient is negative.

When	two	binary	numbers	are	divided,	both	numbers	must	be	in	true	(uncomple-
mented) form. The basic steps in a division process are as follows:

Step 1: Determine if the signs of the dividend and divisor are the same or different. 
This	determines	what	the	sign	of	the	quotient	will	be.	Initialize	the	quotient	to	
zero.

Step 2: Subtract the divisor from the dividend using 2’s complement addition to get 
the	first	partial	remainder	and	add	1	to	the	quotient.	If	this	partial	remainder	is	
positive,	go	to	step	3.	If	the	partial	remainder	is	zero	or	negative,	the	division	
is complete.

Step 3: Subtract	the	divisor	from	the	partial	remainder	and	add	1	to	the	quotient.	If	the	
result	is	positive,	repeat	for	the	next	partial	remainder.	If	the	result	is	zero	or	
negative,	the	division	is	complete.

Continue to subtract the divisor from the dividend and the partial remainders until 
there	is	a	zero	or	a	negative	result.	Count	the	number	of	times	that	the	divisor	is	subtracted	
and	you	have	the	quotient.	Example	23	illustrates	these	steps	using	8-bit	signed	binary	
numbers.

e X a m p l e  2 3

Divide 01100100 by 00011001.

S O l u t i O N

Step 1: The	signs	of	both	numbers	are	positive,	so	the	quotient	will	be	positive.	
The	quotient	is	initially	zero:	00000000.
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Step 2: Subtract the divisor from the dividend using 2’s complement addition 
(remember	that	final	carries	are	discarded).

01100100  Dividend

+  11100111  2>s complement of divisor

01001011  Positive 1st partial remainder

 Add 1 to quotient: 00000000 + 00000001 = 00000001.

Step 3: Subtract the divisor from the 1st partial remainder using 2’s comple-
ment addition.

01001011  1st partial remainder

+  11100111  2>s complement of divisor

00110010  Positive 2nd partial remainder

 Add 1 to quotient: 00000001 + 00000001 = 00000010.

Step 4: Subtract the divisor from the 2nd partial remainder using 2’s comple-
ment addition.

00110010  2nd partial remainder

+  11100111  2>s complement of divisor

00011001  Positive 3rd partial remainder

 Add 1 to quotient: 00000010 + 00000001 = 00000011.

Step 5: Subtract the divisor from the 3rd partial remainder using 2’s comple-
ment addition.

00011001  3rd partial remainder

+  11100111  2>s complement of divisor

00000000  Zero remainder

 Add 1 to quotient: 00000011 + 00000001 = 00000100	 (final	 quo-
tient). The process is complete.

r e l a t e d  p r O b l e m

Verify that the process is correct by converting to decimal numbers and perform-
ing the division.

1. List the four cases when numbers are added.

2. Add the signed numbers 00100001 and 10111100.

3. Subtract the signed numbers 00110010 from 01110111.

4. What is the sign of the product when two negative numbers 
are multiplied?

5. Multiply 01111111 by 00000101.

6. What is the sign of the quotient when a positive number is 
divided by a negative number?

7. Divide 00110000 by 00001100.

SeCtiON 7 CHeCKup
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8 HeXadeCimal NumberS

The hexadecimal	number	system	has	a	base	of	sixteen;	that	is,	it	is	composed	of	16	
numeric and alphabetic characters. Most digital systems process binary data in groups 
that	are	multiples	of	four	bits,	making	the	hexadecimal	number	very	convenient	because	
each hexadecimal digit represents a 4-bit binary number (as listed in Table 3).

the hexadecimal number 
system consists of digits 
0–9 and letters a–F.

table 3 

deCimal biNary HeXadeCimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

the hexadecimal number system has sixteen characters; it is used primarily as a compact way 
of displaying or writing binary numbers because it is very easy to convert between binary and 
hexadecimal. as you are probably aware, long binary numbers are difficult to read and write 
because it is easy to drop or transpose a bit. Since computers and microprocessors understand 
only 1s and 0s, it is necessary to use these digits when you program in “machine language.” 
imagine writing a sixteen bit instruction for a microprocessor system in 1s and 0s. it is much 
more efficient to use hexadecimal or octal; octal numbers are covered in Section 9. Hexadeci-
mal is widely used in computer and microprocessor applications.

after completing this section, you should be able to

•	 List	the	hexadecimal	characters
•	 Count	in	hexadecimal
•	 Convert	from	binary	to	hexadecimal
•	 Convert	from	hexadecimal	to	binary
•	 Convert	from	hexadecimal	to	decimal
•	 Convert	from	decimal	to	hexadecimal
•	 Add	hexadecimal	numbers
•	 Determine	the	2’s	complement	of	a	hexadecimal	number
•	 Subtract	hexadecimal	numbers
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Ten	numeric	digits	and	six	alphabetic	characters	make	up	the	hexadecimal	number	
system.	The	use	of	letters	A,	B,	C,	D,	E,	and	F	to	represent	numbers	may	seem	strange	at	
first,	but	keep	in	mind	that	any	number	system	is	only	a	set	of	sequential	symbols.	If	you	
understand	what	quantities	these	symbols	represent,	then	the	form	of	the	symbols	them-
selves is less important once you get accustomed to using them. We will use the subscript 
16	to	designate	hexadecimal	numbers	to	avoid	confusion	with	decimal	numbers.	Some-
times you may see an “h” following a hexadecimal number.

Counting in Hexadecimal
How do you count in hexadecimal once you get to F? Simply start over with another col-
umn and continue as follows:

               . . ., E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, . . .

With	two	hexadecimal	digits,	you	can	count	up	to	FF16, which is decimal 255. To 
count	beyond	this,	three	hexadecimal	digits	are	needed.	For	instance,	10016 is decimal 
256, 10116	is	decimal	257,	and	so	forth.	The	maximum	3-digit	hexadecimal	number	is	
FFF16,	or	decimal	4095.	The	maximum	4-digit	hexadecimal	number	is	FFFF16, which is 
decimal	65,535.

With	computer	memories	in	the	gigabyte	(GB)	range,	specifying	a	memory	address	in	binary	
is	quite	cumbersome.	For	example,	it	takes	32	bits	to	specify	an	address	in	a	4	GB	memory.	It	
is	much	easier	to	express	a	32-bit	code	using	8	hexadecimal	digits.

S y S t e m  N O t e

binary-to-Hexadecimal Conversion
Converting	a	binary	number	to	hexadecimal	is	a	straightforward	procedure.	Simply	break	
the	binary	number	into	4-bit	groups,	starting	at	the	right-most	bit	and	replace	each	4-bit	
group with the equivalent hexadecimal symbol.

e X a m p l e  2 4

Convert the following binary numbers to hexadecimal:

(a) 1100101001010111  (b) 111111000101101001

S O l u t i O N

(a) 1100101001010111

    C  A  5  7  5 Ca5716
T T T T

e e e e (b) 00111111000101101001

	 			3	 		F	 	 1	 	 6	 	 9	 	5 3F16916
T T TT T

e e e e e

Two	zeros	have	been	added	in	part	(b)	to	complete	a	4-bit	group	at	the	left.

r e l a t e d  p r O b l e m

Convert the binary number 1001111011110011100 to hexadecimal.

Hexadecimal-to-binary Conversion
To	convert	from	a	hexadecimal	number	to	a	binary	number,	reverse	the	process	and	replace	
each hexadecimal symbol with the appropriate four bits.

Hexadecimal is a 
convenient way to 
represent binary numbers.
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e X a m p l e  2 5

Determine the binary numbers for the following hexadecimal numbers:

(a) 10A416  (b) CF8E16  (c) 974216

S O l u t i O N

(a) 1   0  A  4

  1000010100100

(b) C	 		F		 8			 E

 1100111110001110

(c) 9	 			7			 4				 2

 1001011101000010
T T T Te e e e T T T Te e e ee e eT T T

In	part	(a),	the	mSB	is	understood	to	have	three	zeros	preceding	it,	thus	forming	
a 4-bit group.

r e l a t e d  p r O b l e m

Convert	the	hexadecimal	number	6BD3	to	binary.

It	should	be	clear	that	it	is	much	easier	to	deal	with	a	hexadecimal	number	than	with	
the	equivalent	binary	number.	Since	conversion	is	so	easy,	 the	hexadecimal	system	is	
widely	used	for	representing	binary	numbers	in	programming,	printouts,	and	displays.

Hexadecimal-to-decimal Conversion
One	way	to	find	the	decimal	equivalent	of	a	hexadecimal	number	is	to	first	convert	the	
hexadecimal number to binary and then convert from binary to decimal.

Conversion between 
hexadecimal and binary is 
direct and easy.

T Te e

T T Te e e

e X a m p l e  2 6

Convert the following hexadecimal numbers to decimal:

(a) 1C16  (b) A8516

S O l u t i O N

Remember,	convert	the	hexadecimal	number	to	binary	first,	then	to	decimal.

(a)   1  C

 00011100 = 24 + 23 + 22
= 16 + 8 + 4 = 2810

(b) 		 A	 	 8	 	 5

  101010000101 = 211 + 29 + 27 + 22 + 20

  = 2048 + 512 + 128 + 4 + 1 = 269310

r e l a t e d  p r O b l e m

Convert	the	hexadecimal	number	6BD	to	decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multi-
ply	the	decimal	value	of	each	hexadecimal	digit	by	its	weight	and	then	take	the	sum	of	
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decimal-to-Hexadecimal Conversion
Repeated	division	of	a	decimal	number	by	16	will	produce	the	equivalent	hexadecimal	
number,	formed	by	the	remainders	of	the	divisions.	The	first	remainder	produced	is	the	
least	 significant	 digit	 (LSD).	Each	 successive	division	by	16	yields	 a	 remainder	 that	
becomes a digit in the equivalent hexadecimal number. This procedure is similar to 
repeated division by 2 for decimal-to-binary conversion that was covered in Section 3. 
Example	28	illustrates	the	procedure.	Note	that	when	a	quotient	has	a	fractional	part,	the	
fractional part is multiplied by the divisor to get the remainder.

e X a m p l e  2 7

Convert the following hexadecimal numbers to decimal:

(a) E516  (b) B2F816

S O l u t i O N

Recall	 from	Table	 3	 that	 letters	A	 through	F	 represent	 decimal	 numbers	 10	
through	15,	respectively.

(a) E516 = (E * 16) + (5 * 1) = (14 * 16) + (5 * 1) = 224 + 5 = 22910

(b)  B2F816 = (B * 4096)  + (2 * 256) + (F * 16)  + (8 * 1)

  = (11 * 4096) + (2 * 256) + (15 * 16) + (8 * 1)

  =   45,056  +  512  +  240  +  8 = 45,81610

r e l a t e d  p r O b l e m

Convert 60A16 to decimal.

C a l C u l a t O r  t u t O r i a l

Conversion of a Hexadecimal Number to a decimal Number

e X a m p l e

Convert	hexadecimal	28A	to	decimal.

	 	 				 	 HEX

ti-36X Step 1:  3rd  (

           A

 Step 2:  2  8  3rd  1/x

          DEC

 Step 3:  3rd  EE         650

these	products.	The	weights	of	a	hexadecimal	number	are	increasing	powers	of	16	(from	
right	to	left).	For	a	4-digit	hexadecimal	number,	the	weights	are

163 162 161 160

4096 256 16 1
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Hexadecimal addition
Addition can be done directly with hexadecimal numbers by remembering that the hexa-
decimal	digits	0	through	9	are	equivalent	to	decimal	digits	0	through	9	and	that	hexadeci-
mal digits A through F are equivalent to decimal numbers 10 through 15. When adding 
two	hexadecimal	numbers,	use	the	following	rules.	(Decimal	numbers	are	indicated	by	a	
subscript 10.)

 1. In	any	given	column	of	an	addition	problem,	think	of	the	two	hexadecimal	digits	in	
terms	of	their	decimal	values.	For	instance,	516 = 510 and C16 = 1210.

 2. If	the	sum	of	these	two	digits	is	1510	or	less,	bring	down	the	corresponding	hexa-
decimal digit.

 3. If	the	sum	of	these	two	digits	is	greater	than	1510, bring down the amount of the sum 
that exceeds 1610 and carry a 1 to the next column.

e X a m p l e  2 8

Convert	the	decimal	number	650	to	hexadecimal	by	repeated	division	by	16.

S O l u t i O N

Hexadecimal 
remainder

� 40 0.625 � 16 � 10 �

� 2 0.5 � 16 � 8 �

� 0 0.125 � 16 � 2 �

Stop when whole number Hexadecimal number
quotient is zero.

MSD LSD

2 8 A

.125
2

16

.5
40

16

.625
650

16
A

8

2

r e l a t e d  p r O b l e m

Convert	decimal	2591	to	hexadecimal.

C a l C u l a t O r  t u t O r i a l

Conversion of a decimal Number to a Hexadecimal Number

e X a m p l e

Convert	decimal	650	to	hexadecimal.

        DEC

ti-36X Step 1:  3rd  EE

 Step 2:  6  5  0

    	 	 	HEX

 Step 3:  3rd  (         28A
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Hexadecimal Subtraction
As	you	have	learned,	the	2’s	complement	allows	you	to	subtract	by	adding	binary	num-
bers.	Since	a	hexadecimal	number	can	be	used	to	represent	a	binary	number,	it	can	also	be	
used to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. Method 1 
is the most common and easiest to use. Methods 2 and 3 are alternate methods.

method 1:  Convert	 the	hexadecimal	number	to	binary.	Take	the	2’s	complement	of	
the binary number. Convert the result to hexadecimal. This is illustrated in 
Figure 4.

e X a m p l e  2 9

Add the following hexadecimal numbers:

(a) 2316 + 1616   (b) 5816 + 2216  

(c) 2B16 + 8416   (d) DF16 + AC16

S O l u t i O N

(a)
 

2316 right column: 316 + 616 = 310 + 610 = 910 = 916

+1616 left column: 216 + 116 = 210 + 110 = 310 = 316

3916

(b)
 

5816 right column: 816 + 216 = 810 + 210 = 1010 = A16

+2216 left column: 516 + 216 = 510 + 210 = 710 = 716   

7a16

(c)
 

2B16 right column:  B16 + 416 = 1110 + 410 = 1510 = F16

+8416  left column:  216 + 816 = 210 + 810 = 1010 = A16  

aF16

(d)

 

DF16 right column: F16 + C16 = 1510 + 1210 = 2710                       

+AC16 2710 - 1610 = 1110 = B16 with a 1 carry           

18b16 left column: D16 + A16 + 116 = 1310 + 1010 + 110 = 2410

2410 - 1610 = 810 = 816 with a 1 carry              

r e l a t e d  p r O b l e m

Add 4C16 and 3A16.

Example:

2’s complement
in hexadecimal

2’s complement
in binary

BinaryHexadecimal

D611010110001010102A

fg02_00400

Figure 4 getting the 2’s complement of a hexadecimal number, method 1.
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method 3:  Write the sequence of single hexadecimal digits. Write the sequence in 
reverse below the forward sequence. The 1’s complement of each hex digit is 
the digit directly below it. Add 1 to the resulting number to get the 2’s com-
plement.	This	is	illustrated	in	Figure	6.

Example:

2’s complement
in hexadecimal

1’s complement
in hexadecimal

plus 1

Subtract from
maximum

Hexadecimal

D6D5 + 1FF – 2A2A

fg02_00500

Figure 5 getting the 2’s complement of a hexadecimal number, method 2.

Example:

2’s complement
in hexadecimal

D6

1’s complement
in hexadecimal

plus 1

D5 + 1
2
D

3
C

4
B

0
F

Hexadecimal

2A

1
E

2
D

3
C

4
B

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

0
F

1
E

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

fg02_00600

Figure 6 getting the 2’s complement of a hexadecimal number, method 3.

method 2:  Subtract the hexadecimal number from the maximum hexadecimal number 
and add 1. This is illustrated in Figure 5.

e X a m p l e  3 0

Subtract the following hexadecimal numbers:

(a) 8416 - 2A16  (b) C316 - 0B16

S O l u t i O N

(a) 2A16 = 00101010

2’s complement of 2A16 = 11010110 = D616  (using Method 1)

8416

+D616 Add                                                            

15A16 Drop carry, as in 2>s complement addition

 The difference is 5a16.
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(b) 0B16 = 00001011

2’s complement of 0B16 = 11110101 = F516  (using Method 1)

C316

+ F516 Add          

1B816 Drop carry

The difference is b816.

r e l a t e d  p r O b l e m

Subtract 17316 from BCD16.

1. Convert the following binary numbers to hexadecimal:

(a) 10110011  (b) 110011101000

2. Convert the following hexadecimal numbers to binary:

(a) 5716  (b) 3A516  (c) F80B16

3. Convert 9B3016 to decimal.

4. Convert the decimal number 573 to hexadecimal.

5. Add the following hexadecimal numbers directly:

(a) 1816 + 3416  (b) 3F16 + 2A16

6. Subtract the following hexadecimal numbers:

(a) 7516 - 2116  (b) 9416 - 5C16

SeCtiON 8 CHeCKup

9 OCtal NumberS
like the hexadecimal number system, the octal number system provides a convenient way to 
express binary numbers and codes. However, it is used less frequently than hexadecimal in 
conjunction with computers and microprocessors to express binary quantities for input and 
output purposes.

after completing this section, you should be able to

•	 Write	the	digits	of	the	octal	number	system

•	 Convert	from	octal	to	decimal

•	 Convert	from	decimal	to	octal

•	 Convert	from	octal	to	binary

•	 Convert	from	binary	to	octal

The octal	number	system	is	composed	of	eight	digits,	which	are

0, 1, 2, 3, 4, 5, 6, 7

To	count	above	7,	begin	another	column	and	start	over:

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, g
Counting	in	octal	is	similar	to	counting	in	decimal,	except	that	the	digits	8	and	9	are	

not	used.	To	distinguish	octal	numbers	from	decimal	numbers	or	hexadecimal	numbers,	
we	will	use	the	subscript	8	to	indicate	an	octal	number.	For	instance,	158 in octal is equiv-
alent to 1310 in decimal and D in hexadecimal. Sometimes you may see an “o” or a “Q” 
following an octal number.

the octal number system 
has a base of 8.
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Octal-to-decimal Conversion
Since	the	octal	number	system	has	a	base	of	eight,	each	successive	digit	position	is	an	
increasing	power	of	eight,	beginning	in	the	right-most	column	with	80. The evaluation of 
an octal number in terms of its decimal equivalent is accomplished by multiplying each 
digit	by	its	weight	and	summing	the	products,	as	illustrated	here	for	23748.

 Weight: 83 82 81 80

 Octal number: 2  3  7  4

 23748 = (2 * 83)  + (3 * 82)  + (7 * 81) + (4 * 80)

 = (2 * 512) + (3 * 64) + (7 * 8)  + (4 * 1)

 =  1024  +  192  +  56  +  4 = 127610

decimal-to-Octal Conversion
A	method	of	converting	a	decimal	number	to	an	octal	number	is	the	repeated	division-by-8	
method,	which	is	similar	to	the	method	used	in	the	conversion	of	decimal	numbers	to	
binary	or	to	hexadecimal.	To	show	how	it	works,	let’s	convert	the	decimal	number	359	to	
octal.	Each	successive	division	by	8	yields	a	remainder	that	becomes	a	digit	in	the	equiva-
lent	octal	number.	The	first	remainder	generated	is	the	least	significant	digit	(LSD).

7

4

5

Remainder
� 44 0.875 � 8 �

� 5 0.5 � 8 �

� 0 0.625 � 8 �

Stop when whole number Octal number
quotient is zero.

MSD LSD

5 4 7

.625
5

8

.5
44

8

.875
359

8

C a l C u l a t O r  t u t O r i a l

Conversion of a decimal Number to an Octal Number

e X a m p l e 

Convert	decimal	439	to	octal.

       DEC

ti-36X Step 1:  3rd  EE

 Step 2:  4  3  9

      OCT

 Step 3:  3rd  )         667

Octal-to-binary Conversion
Because	each	octal	digit	can	be	represented	by	a	3-bit	binary	number,	it	is	very	easy	to	
convert from octal to binary. Each octal digit is represented by three bits as shown in 
Table 4.

Octal is a convenient 
way to represent binary 
numbers, but it is not 
as commonly used as 
hexadecimal.
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To	convert	an	octal	number	to	a	binary	number,	simply	replace	each	octal	digit	with	
the appropriate three bits.

TABLE	4	 •	 Octal/binary conversion.

OCtal digit
 

biNary

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

r e l a t e d  p r O b l e m

Convert each of the binary numbers to decimal and verify that each value agrees 
with the decimal value of the corresponding octal number.

e X a m p l e  3 1

Convert each of the following octal numbers to binary:

(a) 138    (b) 258    (c) 1408    (d) 75268

S O l u t i O N

(a) 1 3
   T   T
  001011

(b) 2 5
   T   T
  010101

(c) 1 4 0
   T   T   T
  001100000

(d) 7 5 2 6
       T   T   T   T
     111101010110

e ee e e ee ee ee

binary-to-Octal Conversion
Conversion of a binary number to an octal number is the reverse of the octal-to-binary 
conversion.	The	procedure	is	as	follows:	Start	with	the	right-most	group	of	three	bits	and,	
moving	from	right	to	left,	convert	each	3-bit	group	to	the	equivalent	octal	digit.	If	there	are	
not	three	bits	available	for	the	left-most	group,	add	either	one	or	two	zeros	to	make	a	com-
plete	group.	These	leading	zeros	do	not	affect	the	value	of	the	binary	number.

e X a m p l e  3 2

Convert each of the following binary numbers to octal:

(a) 110101      (b) 101111001   

(c) 100110011010   (d) 11010000100

S O l u t i O N

(a) 110101
    T   T

   6 5 = 658

(b) 101111001
    T   T   T
   5 7 1 = 5718

e ee e e

(c) 100110011010
    T   T   T   T
   4 6 3 2 = 46328

e e e e (d) 011010000100
    T   T   T   T
   3 2 0 4 = 32048

e e e e

r e l a t e d  p r O b l e m

Convert the binary number 1010101000111110010 to octal.
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1. Convert the following octal numbers to decimal:

(a) 738    (b) 1258

2. Convert the following decimal numbers to octal:

(a) 9810    (b) 16310

3. Convert the following octal numbers to binary:

(a) 468    (b) 7238    (c) 56248

4. Convert the following binary numbers to octal:

(a) 110101111  (b) 1001100010  (c) 10111111001

SeCtiON 9 CHeCKup

10 biNary COded deCimal (bCd)
binary coded decimal (bCd) is a way to express each of the decimal digits with a binary code. 
there are only ten code groups in the bCd system, so it is very easy to convert between decimal 
and bCd. because we like to read and write in decimal, the bCd code provides an excellent 
interface to binary systems. examples of such interfaces are keypad inputs and digital readouts.

after completing this section, you should be able to

•	 Convert	each	decimal	digit	to	BCD

•	 Express	decimal	numbers	in	BCD

•	 Convert	from	BCD	to	decimal

•	 Add	BCD	numbers

the 8421 bCd Code
The	8421	code	is	a	common	type	of	bCd (binary coded decimal) code. Binary coded decimal 
means	that	each	decimal	digit,	0	through	9,	is	represented	by	a	binary	code	of	four	bits.	The	
designation	8421	indicates	the	binary	weights	of	the	four	bits	(23, 22, 21, 20). The ease of 
conversion	between	8421	code	numbers	and	 the	familiar	decimal	numbers	 is	 the	main	
advantage of this code. All you have to remember are the ten binary combinations that rep-
resent	the	ten	decimal	digits	as	shown	in	Table	5.	The	8421	code	is	the	predominant	BCD	
code,	and	when	we	refer	to	BCD,	we	always	mean	the	8421	code	unless	otherwise	stated.

in bCd, 4 bits represent 
each decimal digit.

iNvalid COdeS you	should	realize	that,	with	four	bits,	sixteen	numbers	(0000	
through	1111)	can	be	represented	but	that,	in	the	8421	code,	only	ten	of	these	are	used.	The	
six	code	combinations	that	are	not	used—1010,	1011,	1100,	1101,	1110,	and	1111—are	
invalid	in	the	8421	BCD	code.

To	express	any	decimal	number	in	BCD,	simply	replace	each	decimal	digit	with	the	
appropriate	4-bit	code,	as	shown	by	Example	33.

TABLE	5	 •	 decimal/bCd conversion.

deCimal digit 

bCd

0 1 2 3 4 5 6 7 8 9

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

e X a m p l e  3 3

Convert each of the following decimal numbers to BCD:

(a) 35    (b) 98	 	 	 	 (c) 170    (d) 2469
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It	is	equally	easy	to	determine	a	decimal	number	from	a	BCD	number.	Start	at	the	
right-most	bit	and	break	the	code	into	groups	of	four	bits.	Then	write	the	decimal	digit	
represented by each 4-bit group.

ee e

e X a m p l e  3 4

Convert each of the following BCD codes to decimal:

(a) 10000110    (b) 001101010001    (c) 1001010001110000

S O l u t i O N

(a) 10000110

    T   T   
    8      6

(b) 001101010001

    T   T   T

    3      5      1

(c) 1001010001110000

    T   T   T   T
    9      4      7      0

ee e ee e

r e l a t e d  p r O b l e m

Convert the BCD code 10000010001001110110 to decimal.

appliCatiONS Digital	 clocks,	 digital	 thermometers,	 digital	meters,	 and	 other	
devices with seven-segment displays typically use BCD code to simplify the displaying of 
decimal	numbers.	BCD	is	not	as	efficient	as	straight	binary	for	calculations,	but	it	is	par-
ticularly	useful	if	only	limited	processing	is	required,	such	as	in	a	digital	thermometer.

bCd addition
BCD is a numerical code and can be used in arithmetic operations. Addition is the most 
important	operation	because	the	other	three	operations	(subtraction,	multiplication,	and	divi-
sion) can be accomplished by the use of addition. Here is how to add two BCD numbers: 

Step 1:	 Add	the	two	BCD	numbers,	using	the	rules	for	binary	addition	in	Section	4.

Step 2: If	a	4-bit	sum	is	equal	to	or	less	than	9,	it	is	a	valid	BCD	number.

Step 3:	 If	a	4-bit	sum	is	greater	than	9,	or	if	a	carry	out	of	the	4-bit	group	is	generated,	
it	is	an	invalid	result.	Add	6	(0110)	to	the	4-bit	sum	in	order	to	skip	the	six	
invalid	states	and	return	the	code	to	8421.	If	a	carry	results	when	6	is	added,	
simply add the carry to the next 4-bit group.

(b)  9						8
       T   T
  10011000

r e l a t e d  p r O b l e m

Convert	the	decimal	number	9673	to	BCD.

e ee e

(c)  1      7      0
       T   T   T

 000101110000

e ee e ee e

(d)  2						4						6						9
       T   T   T   T
  0010010001101001

S O l u t i O N

(a)  3      5
       T   T
  00110101

S y S t e m  N O t e

BCD is sometimes used for arithmetic operations in computers. To represent BCD numbers in 
a	computer,	they	usually	are	“packed,”	so	that	eight	bits	has	two	BCD	digits.	Normally,	a	com-
puter will add numbers as if they were straight binary. Special instructions are available for 
computer programmers to correct the results when BCD numbers are added or subtracted. For 
example,	in	Assembly	Language,	the	programmer	will	include	a	DAA	(Decimal	Adjust	for	
Addition) instruction to automatically correct the answer to BCD following an addition.
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Example 35 illustrates BCD additions in which the sum in each 4-bit column is equal 
to	or	less	than	9,	and	the	4-bit	sums	are	therefore	valid	BCD	numbers.	Example	36	illus-
trates	the	procedure	in	the	case	of	invalid	sums	(greater	than	9	or	a	carry).

An	alternative	method	to	add	BCD	numbers	is	to	convert	them	to	decimal,	perform	
the	addition,	and	then	convert	the	answer	back	to	BCD.

e X a m p l e  3 5

Add the following BCD numbers:

(a) 0011 + 0100 (b) 00100011 + 00010101

(c) 10000110 + 00010011 (d) 010001010000 + 010000010111

S O l u t i O N

The decimal number additions are shown for comparison.

(a)
 

0011 3

+  0100  +  4

1111 7

 
(b)

 
0010 0011 23

+  0001 0101 +  15

0011 1000 38

(c)
 

1000 0110 86

+  0001 0011 +  13

1001 1001 99
 

(d)
 

0100 0101 0000 450

+  0100 0001 0111 +  417

1000 0110 0111 867

Note	that	in	each	case	the	sum	in	any	4-bit	column	does	not	exceed	9,	and	the	
results are valid BCD numbers.

r e l a t e d  p r O b l e m

Add the BCD numbers: 1001000001000011 + 0000100100100101.

ee

e X a m p l e  3 6

ee

Add the following BCD numbers:

(a) 1001 + 0100 (b) 1001 + 1001

(c) 00010110 + 00010101 (d) 01100111 + 01010011

S O l u t i O N

The decimal number additions are shown for comparison.

(a) 1001	 9
 1 0100  14
	 1101	 Invalid	BCD	number	(.9)	 	 	 	 	 13
         1 0110 	 Add	6
 0001    0011 Valid BCD number

 T  T

 1 3

(b) 1001	 	 9
 1 1001  1	9
	 1	 0010	 Invalid	because	of	carry	 	 	 	 	 	 	 	 18
         1 0110		 Add	6
 0001    1000 Valid BCD number

 T  T

	 1	 8
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(c)	 0001	 	 	 	 0110	 	 16
 1 0001    0101  1 15
	 0010	 	 	 	 1011	 Right	group	is	invalid	(.9),	 	 	 	 	 31
    left group is valid.
  1	0110	 Add	6	to	invalid	code.	Add
		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 carry,	0001,	to	next	group.
 0011    0001 Valid BCD number

 T  T

 3 1

(d)	 0110	 0111	 	 67
 1 0101 0011  1 53
 1011 1010 Both groups are invalid (.9)	 	 	 	 	 120

       1 0110    1 0110	 	 	 	Add	6	to	both	groups.	
 0001   0010 0000 Valid BCD number

 T  T  T

 1 2 0

r e l a t e d  p r O b l e m

Add the BCD numbers: 01001000 + 00110100.

eee

ee

1. What is the binary weight of each 1 in the following BCD 
numbers?

(a) 0010    (b) 1000   

(c) 0001    (d) 0100

2. Convert the following decimal numbers to BCD:

(a) 6	 	 	 	 	 (b) 15   

(c) 273     (d) 849

3. What decimal numbers are represented by each BCD code?

(a) 10001001       

(b)  001001111000

(c) 000101010111

4. In	BCD	addition,	when	is	a	4-bit	sum	invalid?

SeCtiON 10 CHeCKup

11 digital COdeS
many specialized codes are used in digital systems. you have just learned about the bCd 
code; now let’s look at a few others. Some codes are strictly numeric, like bCd, and others 
are alphanumeric; that is, they are used to represent numbers, letters, symbols, and 
instructions. the codes introduced in this section are the gray code, the aSCii code, and 
the unicode.

after completing this section, you should be able to

•	 Explain	the	advantage	of	the	Gray	code

•	 Convert	between	Gray	code	and	binary

•	 Use	the	ASCII	code

•	 Discuss	the	Unicode
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biNary-tO-gray COde CONverSiON Conversion between binary code 
and	Gray	code	is	sometimes	useful.	The	following	rules	explain	how	to	convert	from	a	
binary	number	to	a	Gray	code	word:

 1. The	most	significant	bit	(left-most)	in	the	Gray	code	is	the	same	as	the	corresponding	
MSB in the binary number.

 2. Going	from	left	to	right,	add	each	adjacent	pair	of	binary	code	bits	to	get	the	next	
Gray	code	bit.	Discard	carries.

For	example,	the	conversion	of	the	binary	number	10110	to	Gray	code	is	as	follows:

1 - + S 0 - + S 1 - + S 1- + S 0  Binary
T T T T T

1	 1	 1	 0	 1	 Gray

The	Gray	code	is	11101.

gray-tO-biNary COde CONverSiON To	 convert	 from	Gray	 code	 to	
binary,	use	a	similar	method;	however,	there	are	some	differences.	The	following	rules	
apply:

 1. The	most	significant	bit	(left-most)	in	the	binary	code	is	the	same	as	the	correspond-
ing	bit	in	the	Gray	code.

 2. Add	each	binary	code	bit	generated	to	the	Gray	code	bit	in	the	next	adjacent	position.	
Discard carries.

the gray Code
The gray code	is	unweighted	and	is	not	an	arithmetic	code;	that	is,	there	are	no	specific	
weights	assigned	to	the	bit	positions.	The	important	feature	of	the	Gray	code	is	that	 it 
exhibits only a single bit change from one code word to the next in sequence. This property 
is	important	in	many	applications,	such	as	shaft	position	encoders,	where	error	susceptibil-
ity	increases	with	the	number	of	bit	changes	between	adjacent	numbers	in	a	sequence.

Table	6	is	a	listing	of	the	4-bit	Gray	code	for	decimal	numbers	0	through	15.	Binary	
numbers	are	shown	in	the	table	for	reference.	Like	binary	numbers,	the Gray code can 
have any number of bits.	Notice	the	single-bit	change	between	successive	Gray	code	
words.	For	instance,	in	going	from	decimal	3	to	decimal	4,	the	Gray	code	changes	from	
0010	to	0110,	while	the	binary	code	changes	from	0011	to	0100,	a	change	of	three	bits.	
The	only	bit	change	in	the	Gray	code	is	 in	 the	third	bit	from	the	right:	 the	other	bits	
remain the same.

the single bit change 
characteristic of the gray 
code minimizes the chance 
for error.

deCimal biNary gray COde deCimal biNary gray COde

0 0000 0000 	 8 1000 1100

1 0001 0001 	 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

TABLE	6	 •	 Four-bit gray code.
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For	example,	the	conversion	of	the	Gray	code	word	11011	to	binary	is	as	follows:

1	 1	 0	 1	 1	 Gray

1 0 0 1 0 Binary

The binary number is 10010.
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e X a m p l e  3 7

(a) Convert	the	binary	number	11000110	to	Gray	code.

(b) Convert	the	Gray	code	10101111	to	binary.

S O l u t i O N

(a) Binary	to	Gray	code:

1 - + S 1 - + S 0 - + S 0 - + S 0 - + S 1 - + S 1- + S 0
T T  T  T  T  T  T  T 

1 0 1 0 0 1 0 1

(b) Gray	code	to	binary:

1 0 1 0 1 1 1 1

1 1 0 0 1 0 1 0

r e l a t e d  p r O b l e m

(a) Convert	binary	101101	to	Gray	code.
(b) Convert	Gray	code	100111	to	binary.	

SHaFt eNCOder
The	concept	of	a	3-bit	shaft	position	encoder	is	shown	in	Figure	7.	Basically,	there	are	
three	concentric	rings	that	are	segmented	into	eight	sectors.	The	more	sectors	there	are,	the	
more	accurately	the	position	can	be	represented,	but	we	are	using	only	eight	to	illustrate.	
Each	sector	of	each	ring	is	either	reflective	or	nonreflective.	As	the	rings	rotate	with	the	
shaft,	they	come	under	an	IR	emitter	that	produces	three	separate	IR	beams.	A	1	is	indi-
cated	where	there	is	a	reflected	beam,	and	a	0	is	indicated	where	there	is	no	reflected	beam.	
The	IR	detector	senses	the	presence	or	absence	of	reflected	beams	and	produces	a	corre-
sponding	3-bit	code.	The	IR	emitter/detector	is	in	a	fixed	position.	As	the	shaft	rotates	
counterclockwise	through	360°,	the	eight	sectors	move	under	the	three	beams.	Each	beam	
is	either	reflected	or	absorbed	by	the	sector	surface	to	represent	a	binary	or	Gray	code	
number that indicates the shaft position.

In	Figure	7(a),	the	sectors	are	arranged	in	a	straight	binary	pattern,	so	that	the	detec-
tor output goes from 000 to 001 to 010 to 011 and so on. When a beam is aligned over a 
reflective	sector,	the	output	is	1;	when	a	beam	is	aligned	over	a	nonreflective	sector,	the	
output	is	0.	If	one	beam	is	slightly	ahead	of	the	others	during	the	transition	from	one	sector	
to	the	next,	an	erroneous	output	can	occur.	Consider	what	happens	when	the	beams	are	on	
the	111	sector	and	about	to	enter	the	000	sector.	If	the	mSB	beam	is	slightly	ahead,	the	
position	would	be	incorrectly	indicated	by	a	transitional	011	instead	of	a	111	or	a	000.	In	
this	type	of	application,	it	is	virtually	impossible	to	maintain	precise	mechanical	alignment	

S y S t e m  e X a m p l e  2
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alphanumeric Codes
In	order	to	communicate,	you	need	not	only	numbers,	but	also	letters	and	other	symbols.	In	
the	strictest	sense,	alphanumeric codes are codes that represent numbers and alphabetic 
characters	(letters).	most	such	codes,	however,	also	represent	other	characters	such	as	
symbols and various instructions necessary for conveying information.

At	a	minimum,	an	alphanumeric	code	must	represent	10	decimal	digits	and	26	letters	
of	the	alphabet,	for	a	total	of	36	items.	This	number	requires	six	bits	in	each	code	combina-
tion	because	five	bits	are	insufficient	(25

= 32).	There	are	64	total	combinations	of	six	
bits,	so	there	are	28	unused	code	combinations.	Obviously,	in	many	applications,	symbols	
other	than	just	numbers	and	letters	are	necessary	to	communicate	completely.	you	need	
spaces,	periods,	colons,	semicolons,	question	marks,	etc.	you	also	need	instructions	to	tell	
the	receiving	system	what	to	do	with	the	information.	With	codes	that	are	six	bits	long,	you	
can	handle	decimal	numbers,	the	alphabet,	and	28	other	symbols.	This	should	give	you	an	
idea	of	the	requirements	for	a	basic	alphanumeric	code.	The	ASCII	is	the	most	common	
alphanumeric code and is covered next.

aSCii
aSCii	is	the	abbreviation	for	American	Standard	Code	for	Information	Interchange.	Pro-
nounced	“askee,”	ASCII	is	a	universally	accepted	alphanumeric	code	used	in	most	com-
puters	and	other	electronic	equipment.	most	computer	keyboards	are	standardized	with	the	
ASCII.	When	you	enter	a	letter,	a	number,	or	control	command,	the	corresponding	ASCII	
code goes into the computer.

of	the	IR	emitter/detector	beams;	therefore,	some	error	will	usually	occur	at	many	of	the	
transitions between sectors.

The	Gray	code	is	used	to	eliminate	the	error	problem	which	is	inherent	in	the	binary	
code.	As	shown	 in	Figure	7(b),	 the	Gray	code	assures	 that	only	one	bit	will	change	
between	adjacent	sectors.	This	means	that	even	though	the	beams	may	not	be	in	precise	
alignment,	 there	will	never	be	a	 transitional	error.	For	example,	 let’s	again	consider	
what happens when the beams are on the 111 sector and about to move into the next sec-
tor,	101.	The	only	two	possible	outputs	during	the	transition	are	111	and	101,	no	matter	
how the beams are aligned. A similar situation occurs at the transitions between each of 
the other sectors.

(a) Binary code (b) Gray code

000

001

111110

101

100

011 010

1

1
0

IR
emitter/detector

000

001

100101

111

110

010 011

1

1
1

IR
emitter/detector

IR beams

Reflected Nonreflected

fg02_00700

Figure 7 a simplified illustration of how the gray code solves the error problem in shaft 
position encoders. three bits are shown to illustrate the concept, although most shaft encoders  
use more than 10 bits to achieve a higher resolution.
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ASCII	has	128	characters	and	symbols	represented	by	a	7-bit	binary	code.	Actually,	
ASCII	can	be	considered	an	8-bit	code	with	the	mSB	always	0.	This	8-bit	code	is	00	
through	7F	in	hexadecimal.	The	first	thirty-two	ASCII	characters	are	nongraphic	com-
mands that are never printed or displayed and are used only for control purposes. Exam-
ples	of	the	control	characters	are	“null,”	“line	feed,”	“start	of	text,”	and	“escape.”	The	
other characters are graphic symbols that can be printed or displayed and include the let-
ters	of	the	alphabet	(lowercase	and	uppercase),	the	ten	decimal	digits,	punctuation	signs,	
and other commonly used symbols.

Table	7	is	a	listing	of	the	ASCII	code	showing	the	decimal,	hexadecimal,	and	binary	
representations for each character and symbol. The left section of the table lists the names 
of the 32 control characters (00 through 1F hexadecimal). The graphic symbols are listed 
in the rest of the table (20 through 7F hexadecimal).

e X a m p l e  3 8

Determine	the	binary	ASCII	codes	that	are	entered	from	the	computer’s	keyboard	
when the following C language program statement is typed in. Also express each 
code in hexadecimal.

if (x 7 5)

S O l u t i O N

The	ASCII	code	for	each	symbol	is	found	in	Table	7.

Symbol Binary Hexadecimal

i 1101001 6916

f 1100110 6616

Space 0100000 2016

( 0101000 2816

x 1111000 7816

> 0111110 3E16

5 0110101 3516

) 0101001 2916

r e l a t e d  p r O b l e m

Determine	the	sequence	of	ASCII	codes	required	for	the	following	C	program	
statement and express them in hexadecimal:

if (y 6 8)

A	computer	keyboard	has	a	dedicated	microprocessor	that	constantly	scans	keyboard	circuits	
to	detect	when	a	key	has	been	pressed	and	released.	A	unique	scan	code	is	produced	by	com-
puter	software	representing	that	particular	key.	The	scan	code	is	then	converted	to	an	alphanu-
meric	code	(ASCII)	for	use	by	the	computer.

S y S t e m  N O t e
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tHe aSCii CONtrOl CHaraCterS The	first	thirty-two	codes	in	the	ASCII	
table (Table 7) represent the control characters. These are used to allow devices such as a 
computer and printer to communicate with each other when passing information and data. 
Table	8	lists	the	control	characters	and	the	control	key	function	that	allows	them	to	be	
entered	directly	from	an	ASCII	keyboard	by	pressing	the	control	key	(CTRL)	and	the	 
corresponding symbol. A brief description of each control character is also given. The 

Name deCimal HeX KeyS deSCriptiON

NUL  0 00 CTRL	@ null character

SOH  1 01 CTRL	A start of header

STX  2 02 CTRL	B start of text

ETX  3 03 CTRL	C end of text

EOT  4 04 CTRL	D end of transmission

ENQ  5 05 CTRL	E enquire

ACK 	 6 06 CTRL	F acknowledge

BEL  7 07 CTRL	G bell

BS 	 8 08 CTRL	H backspace

HT 	 9 09 CTRL	I horizontal	tab

LF 10 0A CTRL	J line feed

VT 11 0B CTRL	K vertical tab

FF 12 0C CTRL	L form feed (new page)

CR 13 0D CTRL	m carriage return

SO 14 0E CTRL	N shift out

SI 15 0F CTRL	O shift in

DLE 16 10 CTRL	P data	link	escape

DC1 17 11 CTRL	Q device control 1

DC2 18 12 CTRL	R device control 2

DC3 19 13 CTRL	S device control 3

DC4 20 14 CTRL	T device control 4

NAK 21 15 CTRL	u negative	acknowledge

SyN 22 16 CTRL	V synchronize

ETB 23 17 CTRL	W end	of	transmission	block

CAN 24 18 CTRL	X cancel

EM 25 19 CTRL	y end of medium

SUB 26 1A CTRL	Z substitute

ESC 27 1B CTRL	[ escape

FS 28 1C CTRL	/ file	separator

GS 29 1D CTRL	] group separator

RS 30 1E CTRL	^ record separator

US 31 1F CTRL	_ unit separator

TABLE	8	 •	 aSCii control characters.
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descriptions	are	based	on	obsolete	teletype	requirements,	and	the	codes	are	generally	used	
for different purposes than the description implies.

extended aSCii Characters
In	addition	to	the	128	standard	ASCII	characters,	there	are	an	additional	128	characters	
that	were	adopted	by	IBm	for	use	in	their	PCs	(personal	computers).	Because	of	the	popu-
larity	of	the	PC,	these	particular	extended	ASCII	characters	are	also	used	in	applications	
other	than	PCs	and	have	become	essentially	an	unofficial	standard.

The	extended	ASCII	characters	are	represented	by	an	8-bit	code	series	from	hexadeci-
mal	80	to	hexadecimal	FF	and	can	be	grouped	into	the	following	general	categories:	foreign	
(non-English)	alphabetic	characters,	foreign	currency	symbols,	Greek	letters,	mathematical	
symbols,	drawing	characters,	bar	graphing	characters,	and	shading	characters.

unicode
Unicode provides the ability to encode all of the characters used for the written languages 
of	the	world	by	assigning	each	character	a	unique	numeric	value	and	name	utilizing	the	
universal	character	set	(uCS).	It	is	applicable	in	computer	applications	dealing	with	multi-
lingual	text,	mathematical	symbols,	or	other	technical	characters.

unicode	has	a	wide	array	of	characters,	and	their	various	encoding	forms	have	begun	
to	supplant	ASCII	in	many	environments.	While	ASCII	basically	uses	7-bit	codes,	uni-
code uses relatively abstract “code points”—non-negative integer numbers—that map 
sequences	of	one	or	more	bytes,	using	different	encoding	forms	and	schemes.	To	permit	
compatibility,	unicode	assigns	the	first	128	code	points	to	the	same	characters	as	ASCII.	
One	can,	therefore,	think	of	ASCII	as	a	7-bit	encoding	scheme	for	a	very	small	subset	of	
Unicode and of the UCS.

unicode	consists	of	about	100,000	characters,	a	set	of	code	charts	for	visual	refer-
ence,	an	encoding	methodology	and	set	of	standard	character	encodings,	and	an	enumera-
tion	of	character	properties	such	as	uppercase	and	lowercase.	It	also	consists	of	a	number	
of	related	items,	such	as	character	properties,	rules	for	text	normalization,	decomposition,	
collation,	rendering,	and	bidirectional	display	order	(for	the	correct	display	of	text	contain-
ing	both	right-to-left	scripts,	such	as	Arabic	or	Hebrew,	and	left-to-right	scripts).

1. Convert	the	following	binary	numbers	to	the	Gray	code:

(a) 1100  (b) 1010  (c) 11010

2. Convert	the	following	Gray	codes	to	binary:

(a) 1000  (b) 1010  (c) 11101

3. What	is	the	ASCII	representation	for	each	of	the	following	
characters? Express each as a bit pattern and in hexadecimal 
notation.

(a) K	 	 (b) r  (c) $  (d) +

SeCtiON 11 CHeCKup

12 errOr deteCtiON COdeS
in this section, two methods for adding bits to codes to detect a single-bit error are discussed. the 
parity method of error detection is introduced, and the cyclic redundancy check is discussed.

after completing this section, you should be able to

•	 Determine	if	there	is	an	error	in	a	code	based	on	the	parity	bit

•	 Assign	the	proper	parity	bit	to	a	code

•	 Explain	the	cyclic	redundancy	check	(CRC)
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parity method for error detection
Many systems use a parity bit as a means for bit error detection. Any group of bits contain 
either	an	even	or	an	odd	number	of	1s.	A	parity	bit	is	attached	to	a	group	of	bits	to	make	the	
total	number	of	1s	in	a	group	always	even	or	always	odd.	An	even	parity	bit	makes	the	total	
number	of	1s	even,	and	an	odd	parity	bit	makes	the	total	odd.

A given system operates with even or odd parity,	but	not	both.	For	instance,	if	a	system	
operates	with	even	parity,	a	check	is	made	on	each	group	of	bits	received	to	make	sure	the	
total	number	of	1s	in	that	group	is	even.	If	there	is	an	odd	number	of	1s,	an	error	has	occurred.

As	an	illustration	of	how	parity	bits	are	attached	to	a	code,	Table	9	lists	the	parity	bits	
for each BCD number for both even and odd parity. The parity bit for each BCD number is 
in the P column.

eveN parity Odd parity

P bCd P bCd

0 0000 1 0000

1 0001 0 0001

1 0010 0 0010

0 0011 1 0011

1 0100 0 0100

0 0101 1 0101

0 0110 1 0110

1 0111 0 0111

1 1000 0 1000

0 1001 1 1001

a parity bit tells if the 
number of 1s in a group of 
bits is odd or even.

The	parity	bit	can	be	attached	to	the	code	at	either	the	beginning	or	the	end,	depend-
ing	on	system	design.	Notice	that	the	total	number	of	1s,	including	the	parity	bit,	is	always	
even for even parity and always odd for odd parity.

deteCtiNg aN errOr A parity bit provides for the detection of a single bit error 
(or	any	odd	number	of	errors,	which	is	very	unlikely)	but	cannot	check	for	two	errors	in	one	
group.	For	instance,	let’s	assume	that	we	wish	to	transmit	the	BCD	code	0101.	(Parity	can	be	
used	with	any	number	of	bits;	we	are	using	four	for	illustration.)	The	total	code	transmitted,	
including	the	even	parity	bit,	is

Even parity bit

00101
  e

     BCD code

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes a 0).

Even parity bit

00001

Bit errror

When	this	code	is	received,	the	parity	check	circuitry	determines	that	there	is	only	a	single	
1	(odd	number),	when	there	should	be	an	even	number	of	1s.	Because	an	even	number	of	
1s	does	not	appear	in	the	code	when	it	is	received,	an	error	is	indicated.

An odd parity bit also provides in a similar manner for the detection of a single error 
in a given group of bits.

TABLE	9	 •	 the bCd code with parity bits.
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Cyclic redundancy Check
The cyclic redundancy check (CrC) is a widely used code used for detecting one- and 
two-bit	transmission	errors	when	digital	data	is	transferred	on	a	communication	link.	The	
communication	link	can	be	between	two	computers	that	are	connected	to	a	network	or	
between	a	digital	storage	device	(such	as	a	CD,	DVD,	or	a	hard	drive)	and	a	PC.	If	it	is	
properly	designed,	the	CRC	can	also	detect	multiple	errors	for	a	number	of	bits	in	sequence	
(burst	errors).	In	CRC,	a	certain	number	of	check	bits,	sometimes	called	a	checksum, are 
appended to the data bits (added to end) that are being transmitted. The transmitted data is 
tested	by	the	receiver	for	errors	using	the	CRC.	Not	every	possible	error	can	be	identified,	
but	the	CRC	is	much	more	efficient	than	just	a	simple	parity	check.

CRC	is	often	described	mathematically	as	the	division	of	two	polynomials	to	generate	a	
remainder. A polynomial is a mathematical expression that is a sum of terms with positive 
exponents.	When	the	coefficients	are	limited	to	1s	and	0s,	it	is	called	a	univariate polynomial. 
An example of a univariate polynomial is 1x3 + 0x2 + 1x1 + 1x0 or simply x3 + x1 + x0, 
which	can	be	fully	described	by	the	4-bit	binary	number	1011.	most	cyclic	redundancy	checks	
use	a	16-bit	or	larger	polynomial,	but	for	simplicity	the	process	is	illustrated	here	with	four	bits.

mOdulO-2 OperatiONS Simply	put,	CRC	is	based	on	the	division	of	 two	
binary	numbers;	and,	as	you	know,	division	is	just	a	series	of	subtractions	and	shifts.	
To	do	subtraction,	a	method	called	modulo-2 addition can be used. Modulo-2 addition 
(or	subtraction)	is	the	same	as	binary	addition	with	the	carries	discarded,	as	shown	in	
the truth table in Table 10. truth tables are widely used to describe the operation of 

e X a m p l e  4 0

An	odd	parity	system	receives	the	following	code	groups:	10110,	11010,	110011,	
110101110100,	and	1100010101010.	Determine	which	groups,	 if	 any,	are	 in	
error.

S O l u t i O N

Since	odd	parity	is	required,	any	group	with	an	even	number	of	1s	is	incorrect.	
The following groups are in error: 110011 and 1100010101010.

r e l a t e d  p r O b l e m

The	following	ASCII	character	is	received	by	an	odd	parity	system:	00110111.	Is	
it correct?

iNput 
bitS

Output 
bit

0 0 0

0 1 1

1 0 1

1 1 0

e X a m p l e  3 9

Assign the proper even parity bit to the following code groups:

(a) 1010 (b) 111000 (c) 101101

(d) 1000111001001 (e)  101101011111

S O l u t i O N

make	the	parity	bit	either	1	or	0	as	necessary	to	make	the	total	number	of	1s	even.	
The parity bit will be the left-most bit (color).

(a) 01010 (b) 1111000 (c) 0101101

(d) 0100011100101 (e) 1101101011111

r e l a t e d  p r O b l e m

Add	an	even	parity	bit	to	the	7-bit	ASCII	code	for	the	letter	K.

TABLE	10	 •	
modulo-2 operation.
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logic	circuits.	With	two	bits,	there	is	a	total	of	four	possible	combinations,	as	shown	in	
the	table.	This	particular	table	describes	the	modulo-2	operation	also	known	as	exclusive-
OR. A simple rule for modulo-2 is that the output is 1 if the inputs are different; other-
wise,	it	is	0.

CrC prOCeSS The process is as follows:

 1. Select	a	fixed	generator	code;	it	can	have	fewer	bits	than	the	data	bits	to	be	checked.	
This code is understood in advance by both the sending and receiving devices and 
must be the same for both.

 2. Append a number of 0s equal to the number of bits in the generator code to the data bits.

 3. Divide the data bits including the appended bits by the generator code bits using 
modulo-2.

 4. If	the	remainder	is	0,	the	data	and	appended	bits	are	sent	as	is.

 5. If	the	remainder	is	not	0,	the	appended	bits	are	made	equal	to	the	remainder	bits	in	
order to get a 0 remainder before data is sent.

 6. At	the	receiving	end,	the	receiver	divides	the	incoming	appended	data	bit	code	by	the	
same generator code as used by the sender.

 7. If	the	remainder	is	0,	there	is	no	error	detected	(it	is	possible	in	rare	cases	for	multiple	
errors	to	cancel).	If	the	remainder	is	not	0,	an	error	has	been	detected	in	the	transmis-
sion and a retransmission is requested by the receiver.

Figure	8	illustrates	the	CRC	process.

Remainder � 0

(a) Transmitting end of communication link

Remainder � 0

Append data
bits with

remainder
(initially

with x zeros).

Divide using
modulo-2

subtraction.

Send.

Check
remainder.

Data bits plus
appended bitsData bits plus appended bits

y data bits

x-bit generator code

Remainder � 0

(b) Receiving end of communication link

Remainder � 0

Divide using
modulo-2

subtraction.

Error(s).
Request

retransmission.

No errors.
Process the
data bits.

Check
remainder.

Data bits

x-bit generator code

Data bits plus appended bits

fg02_00800

Figure 8 the CrC process.
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e X a m p l e  4 1

Determine	the	transmitted	CRC	for	the	following	byte	of	data	(D)	and	generator	
code	(G).	Verify	that	the	reminder	is	0.

D: 11010011

G: 1010

S O l u t i O N

Since	the	generator	code	has	four	data	bits,	add	four	0s	(blue)	to	the	data	byte.	
The appended data (D¿) is

D = 110100110000

Divide the appended data by the generator code (red) using the modulo-2 opera-
tion until all bits have been used.

D

G
=

110100110000

1010

110100110000
1010

 1110
 1010

 1000
 1010

  1011
  1010

    1000
    1010

     100

Remainder = 0100.	Since	the	remainder	is	not	0,	append	the	data	with	the	four	
remainder bits (blue). Then divide by the generator code (red). The transmitted 
CRC	is	110100110100.

110100110100
1010

 1110
 1010

 1000
 1010

  1011
  1010

    1010
    1010

      00

Remainder = 0

r e l a t e d  p r O b l e m

Change the generator code to 1100 and verify that a 0 remainder results when the 
CRC	process	is	applied	to	the	data	byte	(11010011).
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e X a m p l e  4 2

During	transmission,	an	error	occurs	in	the	second	bit	from	the	left	in	the	appended	
data byte generated in Example 41. The received data is

D = 100100110100

Apply	the	CRC	process	to	the	received	data	to	detect	the	error	using	the	same	
generator code (1010).

S O l u t i O N

100100110100
1010

 1100
 1010

  1101
  1010

  1111
  1010

   1010
   1010

    0100

Remainder = 0100.	Since	it	is	not	zero,	an	error	is	indicated.

r e l a t e d  p r O b l e m

Assume	two	errors	in	the	data	byte	as	follows:	10011011.	Apply	the	CRC	process	
to	check	for	the	errors	using	the	same	received	data	and	the	same	generator	code.

1. Which odd-parity code is in error?

(a) 1011  (b) 1110  (c) 0101  (d) 1000

2. Which even-parity code is in error?

(a) 11000110  (b) 00101000

(c) 10101010  (d) 11111011

3. Add an even parity bit to the end of each of the following codes.

(a) 1010100  (b) 0100000

(c) 1110111  (d) 1000110

4. What	does	CRC	stand	for?

5. Apply modulo-2 operations to determine the following:

(a) 1 + 1  (b) 1 - 1  (c) 1 - 0  (d) 0 + 1

SeCtiON 12 CHeCKup

Summary
•	 A	binary	number	is	a	weighted	number	in	which	the	weight	of	each	whole	number	digit	is	a	posi-

tive power of two and the weight of each fractional digit is a negative power of two. The whole 
number	weights	increase	from	right	to	left—from	least	significant	digit	to	most	significant.

•	 A	binary	number	can	be	converted	to	a	decimal	number	by	summing	the	decimal	values	of	the	
weights of all the 1s in the binary number.

•	 A	decimal	whole	number	can	be	converted	to	binary	by	using	the	sum-of-weights	or	the	repeated	
division-by-2 method.

•	 A	decimal	fraction	can	be	converted	to	binary	by	using	the	sum-of-weights	or	the	repeated	multi-
plication-by-2 method.
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•	 The	basic	rules	for	binary	addition	are	as	follows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

•	 The	basic	rules	for	binary	subtraction	are	as	follows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1

•	 The	1’s	complement	of	a	binary	number	is	derived	by	changing	1s	to	0s	and	0s	to	1s.

•	 The	2’s	complement	of	a	binary	number	can	be	derived	by	adding	1	to	the	1’s	complement.

•	 Binary	subtraction	can	be	accomplished	with	addition	by	using	the	1’s	or	2’s	complement	method.

•	 A	positive	binary	number	is	represented	by	a	0	sign	bit.

•	 A	negative	binary	number	is	represented	by	a	1	sign	bit.

•	 For	arithmetic	operations,	negative	binary	numbers	are	represented	in	1’s	complement	or	2’s	
complement form.

•	 In	an	addition	operation,	an	overflow	is	possible	when	both	numbers	are	positive	or	when	both	
numbers	are	negative.	An	incorrect	sign	bit	in	the	sum	indicates	the	occurrence	of	an	overflow.

•	 The	hexadecimal	number	system	consists	of	16	digits	and	characters,	0	through	9	followed	by	A	
through F.

•	 One	hexadecimal	digit	represents	a	4-bit	binary	number,	and	its	primary	usefulness	is	in	simplify-
ing	bit	patterns	and	making	them	easier	to	read.

•	 A	decimal	number	can	be	converted	to	hexadecimal	by	the	repeated	division-by-16	method.

•	 The	octal	number	system	consists	of	eight	digits,	0	through	7.

•	 A	decimal	number	can	be	converted	to	octal	by	using	the	repeated	division-by-8	method.

•	 Octal-to-binary	conversion	is	accomplished	by	simply	replacing	each	octal	digit	with	its	3-bit	
binary equivalent. The process is reversed for binary-to-octal conversion.

•	 A	decimal	number	is	converted	to	BCD	by	replacing	each	decimal	digit	with	the	appropriate	4-bit	
binary code.

•	 The	ASCII	is	a	7-bit	alphanumeric	code	that	is	widely	used	in	computer	systems	for	input	and	
output of information.

•	 A	parity	bit	is	used	to	detect	an	error	in	a	code.

•	 The	CRC	(cyclic	redundancy	check)	is	based	on	polynomial	division	using	modulo-2	operations.

Key termS
alphanumeric Consisting	of	numerals,	letters,	and	other	characters.

aSCii American	Standard	Code	for	Information	Interchange;	the	most	widely	used	alphanumeric	
code.

bCd Binary	coded	decimal;	a	digital	code	in	which	each	of	the	decimal	digits,	0	through	9,	is	
represented by a group of four bits.

byte A group of eight bits.

Cyclic redundancy check (CrC) A type of error detection code.

Floating-point number A	number	representation	based	on	scientific	notation	in	which	the	number	
consists of an exponent and a mantissa.

Hexadecimal Describes	a	number	system	with	a	base	of	16.

lSb Least	significant	bit;	the	right-most	bit	in	a	binary	whole	number	or	code.

mSb most	significant	bit;	the	left-most	bit	in	a	binary	whole	number	or	code.

Octal Describes a number system with a base of eight.

parity In	relation	to	binary	codes,	the	condition	of	evenness	or	oddness	of	the	number	of	1s	in	a	
code group.
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true/FalSe Quiz
Answers are at the end of the chapter.

 1. The decimal number system is a weighted system with ten digits.

 2. The binary number system is a weighted system with two digits.

 3. LSB stands for lowest single bit.

 4. In	binary,	1 + 1 = 2.

 5. The 1’s complement of the binary number 1010 is 0101.

 6. The 2’s complement of the binary number 0001 is 1110.

 7. The right-most bit in a signed binary number is the sign bit.

 8. The	hexadecimal	number	system	has	16	characters,	six	of	which	are	alphabetic	characters.

 9. BCD stands for binary coded decimal.

 10. ASCII	stands	for	American	standard	code	for	information	indication.

 11. CRC	stands	for	cyclic	redundancy	check.

 12. The modulo-2 sum of 11 and 10 is 100.

SelF-teSt
Answers are at the end of the chapter.

 1. 2 * 101 + 8 * 100 is equal to

(a) 10  (b) 280	 	 (c) 2.8	 	 (d) 28

 2. The binary number 1101 is equal to the decimal number

(a) 13  (b) 49	 	 (c) 11  (d) 3

 3. The binary number 11011101 is equal to the decimal number

(a) 121  (b) 221  (c) 441  (d) 256

 4. The decimal number 17 is equal to the binary number

(a) 10010  (b) 11000  (c) 10001  (d) 01001

 5. The decimal number 175 is equal to the binary number

(a) 11001111  (b) 10101110  (c) 10101111  (d) 11101111

 6. The sum of 11010 + 01111 equals

(a) 101001  (b) 101010  (c) 110101  (d) 101000

 7. The difference of 110 - 010 equals

(a) 001  (b) 010  (c) 101  (d) 100

 8. The 1’s complement of 10111001 is

(a) 01000111  (b) 01000110  (c) 11000110  (d) 10101010

 9. The 2’s complement of 11001000 is

(a) 00110111  (b) 00110001  (c) 01001000  (d) 00111000

 10. The decimal number +122 is expressed in the 2’s complement form as

(a) 01111010   (b) 11111010  (c) 01000101  (d) 10000101

 11. The decimal number -34 is expressed in the 2’s complement form as

(a) 01011110  (b) 10100010  (c) 11011110  (d) 01011101

 12. A	single-precision	floating-point	binary	number	has	a	total	of

(a) 8	bits	 	 (b) 16	bits	 	 (c) 24 bits  (d) 32 bits

 13. In	the	2’s	complement	form,	the	binary	number	10010011	is	equal	to	the	decimal	number

(a) -19  (b) +109  (c) +91  (d) -109
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 14. The binary number 101100111001010100001 can be written in octal as

(a) 54712308  (b) 54712418  (c) 26345218  (d) 231625018

 15. The binary number 10001101010001101111 can be written in hexadecimal as

(a) AD46716  (b) 8C46F16  (c) 8D46F16  (d) AE46F16

 16. The binary number for F7A916 is

(a) 1111011110101001  (b) 1110111110101001
(c) 1111111010110001  (d) 1111011010101001

 17. The BCD number for decimal 473 is

(a) 111011010  (b) 110001110011  (c) 010001110011  (d) 010011110011

 18. Refer	to	Table	7.	The	command	STOP	in	ASCII	is

(a) 1010011101010010011111010000  (b) 1010010100110010011101010000
(c) 1001010110110110011101010001  (d) 1010011101010010011101100100

 19. The code that has an even-parity error is

(a) 1010011  (b) 1101000  (c) 1001000  (d) 1110111

 20. In	the	cyclic	redundancy	check,	the	absence	of	errors	is	indicated	by

(a) Remainder = generator code (b) Remainder = 0
(c) Remainder = 1 (d) Quotient = 0

prOblemS
Answers to odd-numbered problems are at the end of the chapter.

SeCtiON 1 the decimal Number System

 1. What	is	the	weight	of	the	digit	6	in	each	of	the	following	decimal	numbers?
(a) 1386	 	 (b) 54,692	 	 (c) 671,920

 2. Express each of the following decimal numbers as a power of ten:
(a) 10  (b) 100  (c) 10,000	 	 (d) 1,000,000

 3. Give	the	value	of	each	digit	in	the	following	decimal	numbers:
(a) 471  (b) 9356	 	 (c) 125,000

 4. How high can you count with four decimal digits?

SeCtiON 2 the binary Number System

 5. Convert the following binary numbers to decimal:
(a) 11 (b) 100 (c) 111 (d) 1000
(e) 1001 (f) 1100 (g) 1011 (h) 1111

 6. Convert the following binary numbers to decimal:
(a) 1110 (b) 1010 (c) 11100 (d) 10000
(e) 10101 (f) 11101 (g) 10111 (h) 11111

 7. Convert each binary number to decimal:
(a) 110011.11 (b) 101010.01 (c) 1000001.111
(d) 1111000.101 (e) 1011100.10101 (f) 1110001.0001
(g) 1011010.1010 (h) 1111111.11111

 8. What is the highest decimal number that can be represented by each of the following numbers 
of binary digits (bits)?
(a) two (b) three (c) four (d) five	 (e) six
(f) seven (g) eight (h) nine (i) ten (j) eleven

 9. How many bits are required to represent the following decimal numbers?
(a) 17 (b) 35 (c) 49	 (d) 68
(e) 81	 (f) 114 (g) 132 (h) 205

 10. Generate	the	binary	sequence	for	each	decimal	sequence:
(a) 0 through 7 (b) 8	through	15	 (c) 16	through	31
(d) 32	through	63	 (e) 64	through	75
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SeCtiON 3 decimal-to-binary Conversion

 11. Convert each decimal number to binary by using the sum-of-weights method:
(a) 10 (b) 17 (c) 24 (d) 48
(e) 61	 (f) 93	 (g) 125 (h) 186

 12. Convert each decimal fraction to binary using the sum-of-weights method:
(a) 0.32  (b) 0.246	 	 (c) 0.0981

 13. Convert each decimal number to binary using repeated division by 2:
(a) 15 (b) 21 (c) 28	 (d) 34
(e) 40 (f) 59	 (g) 65	 (h) 73

 14. Convert each decimal fraction to binary using repeated multiplication by 2:
(a) 0.98	 	 (b) 0.347  (c) 0.9028

SeCtiON 4 binary arithmetic

 15. Add the binary numbers:
(a) 11 + 01 (b) 10 + 10 (c) 101 + 11
(d) 111 + 110 (e) 1001 + 101 (f) 1101 + 1011

 16. Use direct subtraction on the following binary numbers:
(a) 11 - 1 (b) 101 - 100 (c) 110 - 101
(d) 1110 - 11 (e) 1100 - 1001 (f) 11010 - 10111

 17. Perform the following binary multiplications:
(a) 11 * 11 (b) 100 * 10 (c) 111 * 101
(d) 1001 * 110 (e) 1101 * 1101 (f) 1110 * 1101

 18. Divide the binary numbers as indicated:
(a) 100 , 10  (b) 1001 , 11  (c) 1100 , 100

SeCtiON 5 1’s and 2’s Complements of binary Numbers

 19. What	are	two	ways	of	representing	zero	in	1’s	complement	form?

 20. How	is	zero	represented	in	2’s	complement	form?

 21. Determine the 1’s complement of each binary number:
(a) 101 (b) 110 (c) 1010
(d) 11010111 (e) 1110101 (f) 00001

 22. Determine the 2’s complement of each binary number using either method:
(a) 10 (b) 111 (c) 1001 (d) 1101
(e) 11100 (f) 10011 (g) 10110000 (h) 00111101

SeCtiON 6 Signed Numbers

 23. Express	each	decimal	number	in	binary	as	an	8-bit	sign-magnitude	number:
(a) +29  (b) -85  (c) +100  (d) -123

 24. Express	each	decimal	number	as	an	8-bit	number	in	the	1’s	complement	form:
(a) -34  (b) +57  (c) -99  (d) +115

 25. Express	each	decimal	number	as	an	8-bit	number	in	the	2’s	complement	form:
(a) +12  (b) -68  (c) +101  (d) -125

 26. Determine the decimal value of each signed binary number in the sign-magnitude form:
(a) 10011001  (b) 01110100  (c) 10111111

 27. Determine the decimal value of each signed binary number in the 1’s complement form:
(a) 10011001  (b) 01110100  (c) 10111111

 28. Determine the decimal value of each signed binary number in the 2’s complement form:
(a) 10011001  (b) 01110100  (c) 10111111

 29. Express	each	of	the	following	sign-magnitude	binary	numbers	in	single-precision	floating-point	
format:
(a) 0111110000101011  (b) 100110000011000

 30. Determine	the	values	of	the	following	single-precision	floating-point	numbers:
(a) 1 10000001 01001001110001000000000
(b) 0 11001100 10000111110100100000000

105



NumBER	SySTEmS,	OPERATIONS,	AND	CODES

SeCtiON 7 arithmetic Operations with Signed Numbers

 31. Convert each pair of decimal numbers to binary and add using the 2’s complement form:
(a) 33 and 15  (b) 56	and	-27  (c) -46 and 25  (d) -110 and -84

 32. Perform each addition in the 2’s complement form:
(a) 00010110 + 00110011  (b) 01110000 + 10101111

 33. Perform each addition in the 2’s complement form:
(a) 10001100 + 00111001  (b) 11011001 + 11100111

 34. Perform each subtraction in the 2’s complement form:
(a) 00110011 - 00010000  (b) 01100101 - 11101000

 35. Multiply 01101010 by 11110001 in the 2’s complement form.

 36. Divide 01000100 by 00011001 in the 2’s complement form.

SeCtiON 8 Hexadecimal Numbers

 37. Convert each hexadecimal number to binary:
(a) 3816 (b) 5916 (c) A1416 (d) 5C816
(e) 410016 (f) FB1716 (g) 8A9D16

 38. Convert each binary number to hexadecimal:
(a) 1110 (b) 10 (c) 10111
(d) 10100110 (e) 1111110000 (f) 100110000010

 39. Convert each hexadecimal number to decimal:
(a) 2316 (b) 9216 (c) 1A16 (d) 8D16
(e) F316 (f) EB16 (g) 5C216 (h) 70016

 40. Convert each decimal number to hexadecimal:
(a) 8	 (b) 14 (c) 33 (d) 52
(e) 284	 (f) 2890	 (g) 4019	 (h) 6500

 41. Perform the following additions:
(a) 3716 + 2916  (b) A016 + 6B16  (c) FF16 + BB16

 42. Perform the following subtractions:
(a) 5116 - 4016  (b) C816 - 3A16  (c) FD16 - 8816

SeCtiON 9 Octal Numbers

 43. Convert each octal number to decimal:
(a) 128 (b) 278 (c) 568 (d) 648 (e) 1038
(f) 5578 (g) 1638 (h) 10248 (i) 77658

 44. Convert	each	decimal	number	to	octal	by	repeated	division	by	8:
(a) 15 (b) 27 (c) 46	 (d) 70
(e) 100 (f) 142 (g) 219	 (h) 435

 45. Convert each octal number to binary:
(a) 138 (b) 578 (c) 1018 (d) 3218 (e) 5408
(f) 46538 (g) 132718 (h) 456008 (i) 1002138

 46. Convert each binary number to octal:
(a) 111 (b) 10 (c) 110111
(d) 101010 (e) 1100 (f) 1011110
(g) 101100011001 (h) 10110000011 (i) 111111101111000

SeCtiON 10 binary Coded decimal (bCd)

 47. Convert	each	of	the	following	decimal	numbers	to	8421	BCD:
(a) 10 (b) 13 (c) 18	 (d) 21 (e) 25 (f) 36
(g) 44 (h) 57 (i) 69	 (j) 98	 (k) 125 (l) 156

 48. Convert	each	of	the	decimal	numbers	in	Problem	47	to	straight	binary,	and	compare	the	number	
of bits required with that required for BCD.

 49. Convert the following decimal numbers to BCD:
(a) 104 (b) 128	 (c) 132 (d) 150 (e) 186
(f) 210 (g) 359	 (h) 547 (i) 1051
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 50. Convert each of the BCD numbers to decimal:
(a) 0001 (b) 0110 (c) 1001
(d) 00011000 (e) 00011001 (f) 00110010
(g) 01000101 (h) 10011000 (i) 100001110000

 51. Convert each of the BCD numbers to decimal:
(a) 10000000 (b) 001000110111
(c) 001101000110 (d) 010000100001
(e) 011101010100 (f) 100000000000
(g) 100101111000 (h) 0001011010000011
(i) 1001000000011000 (j) 0110011001100111

 52. Add the following BCD numbers:
(a) 0010 + 0001 (b) 0101 + 0011
(c) 0111 + 0010 (d) 1000 + 0001
(e) 00011000 + 00010001 (f) 01100100 + 00110011
(g) 01000000 + 01000111 (h) 10000101 + 00010011

 53. Add the following BCD numbers:
(a) 1000 + 0110 (b) 0111 + 0101
(c) 1001 + 1000 (d) 1001 + 0111
(e) 00100101 + 00100111 (f) 01010001 + 01011000
(g) 10011000 + 10010111 (h) 010101100001 + 011100001000

 54. Convert	each	pair	of	decimal	numbers	to	BCD,	and	add	as	indicated:
(a) 4 + 3 (b) 5 + 2 (c) 6 + 4 (d) 17 + 12
(e) 28 + 23 (f) 65 + 58 (g) 113 + 101 (h) 295 + 157

SeCtiON 11 digital Codes

 55. In	a	certain	application	a	4-bit	binary	sequence	cycles	from	1111	to	0000	periodically.	There	are	
four	bit	changes,	and	because	of	circuit	delays,	these	changes	may	not	occur	at	the	same	instant.	For	
example,	if	the	LSB	changes	first,	the	number	will	appear	as	1110	during	the	transition	from	1111	
to	0000	and	may	be	misinterpreted	by	the	system.	Illustrate	how	the	Gray	code	avoids	this	problem.

 56. Convert	each	binary	number	to	Gray	code:
(a) 11011  (b) 1001010  (c) 1111011101110

 57. Convert	each	Gray	code	to	binary:
(a) 1010  (b) 00010  (c) 11000010001

 58. Convert	each	of	the	following	decimal	numbers	to	ASCII.	Refer	to	Table	7.
(a) 1 (b) 3 (c) 6	 (d) 10 (e) 18
(f) 29	 (g) 56	 (h) 75 (i) 107

 59. Determine	each	ASCII	character.	Refer	to	Table	7.
(a) 0011000 (b) 1001010 (c) 0111101
(d) 0100011 (e) 0111110 (f) 1000010

 60. Decode	the	following	ASCII	coded	message:

 1001000 1100101 1101100 1101100 1101111 0101110
 0100000 1001000 1101111 1110111 0100000 1100001
 1110010 1100101 0100000 1111001 1101111 1110101
 0111111

 61. Write	the	message	in	Problem	60	in	hexadecimal.

 62. Convert	the	following	statement	to	ASCII:

30 INPUT A, B

SeCtiON 12 error detection Codes

 63. Determine which of the following even parity codes are in error:
(a) 100110010  (b) 011101010  (c) 10111111010001010

 64. Determine which of the following odd parity codes are in error:
(a) 11110110  (b) 00110001  (c) 01010101010101010

 65. Attach the proper even parity bit to each of the following bytes of data:
(a) 10100100  (b) 00001001  (c) 11111110

 66. Apply modulo-2 to the following:
(a) 1100 + 1011  (b) 1111 + 0100  (c) 10011001 + 100011100
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 67. Verify that modulo-2 subtraction is the same as modulo-2 addition by adding the result of each 
operation	in	problem	66	to	either	of	the	original	numbers	to	get	the	other	number.	This	will	
show that the result is the same as the difference of the two numbers.

 68. Apply	CRC	to	the	data	bits	10110010	using	the	generator	code	1010	to	produce	the	transmitted	
CRC	code.

 69. Assume	that	the	code	produced	in	problem	68	incurs	an	error	in	the	most	significant	bit	during	
transmission.	Apply	CRC	to	detect	the	error.

aNSWerS tO SeCtiON CHeCKupS
SeCtiON 1 the decimal Number System

 1. (a) 1370: 10  (b)	 6725:	100	 	 (c) 7051: 1000  (d)	 58.72:	0.1

 2. (a) 51 = (5 * 10) + (1 * 1)  (b) 137 = (1 * 100) + (3 * 10) + (7 * 1)

  (c) 1492 = (1 * 1000) + (4 * 100) + (9 * 10) + (2 * 1)

  (d) 106.58 = (1 * 100) + (0 * 10) + (6 * 1) + (5 * 0.1) + (8 * 0.01)

SeCtiON 2 the binary Number System

 1. 28 - 1 = 255

 2. Weight	is	16.

 3. 10111101.011 = 189.375

SeCtiON 3 decimal-to-binary Conversion

 1. (a) 23 = 10111  (b) 57 = 111001  (c) 45.5 = 101101.1

 2. (a) 14 = 1110   (b) 21 = 10101   (c) 0.375 = 0.011

SeCtiON 4 binary arithmetic

 1. (a) 1101 + 1010 = 10111 (b) 10111 + 01101 = 100100

 2. (a) 1101 - 0100 = 1001 (b) 1001 - 0111 = 0010

 3. (a) 110 * 111 = 101010 (b) 1100 , 011 = 100

SeCtiON 5 1’s and 2’s Complements of binary Numbers

 1. (a) 1’s comp of 00011010 = 11100101 (b) 1’s comp of 11110111 = 00001000

  (c) 1’s comp of 10001101 = 01110010

 2. (a) 2’s comp of 00010110 = 11101010 (b) 2’s comp of 11111100 = 00000100

  (c) 2’s comp of 10010001 = 01101111

SeCtiON 6 Signed Numbers

 1. Sign-magnitude: +9 = 00001001

 2. 1’s comp: -33 = 11011110

 3. 2’s comp: -46 = 11010010

 4. Sign	bit,	exponent,	and	mantissa

SeCtiON 7 arithmetic Operations with Signed Numbers

 1. Cases	of	addition:	positive	number	is	larger,	negative	number	is	larger,	both	are	positive,	both	
are negative

 2. 00100001 + 10111100 = 11011101

 3. 01110111 - 00110010 = 01000101

 4. Sign of product is positive.

 5. 00000101 * 01111111 = 01001111011

 6. Sign of quotient is negative.

 7. 00110000 , 00001100 = 00000100
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SeCtiON 8 Hexadecimal Numbers

 1. (a) 10110011 = B316 (b) 110011101000 = CE816

 2. (a) 5716 = 01010111 (b) 3A516 = 001110100101

  (c) F8OB16 = 1111100000001011

 3. 9B3016 = 39,72810

 4. 57310 = 23D16

 5. (a) 1816 + 3416 = 4C16 (b) 3F16 + 2A16 = 6916

 6. (a) 7516 - 2116 = 5416 (b) 9416 - 5C16 = 3816

SeCtiON 9 Octal Numbers

 1. (a) 738 = 5910  (b) 1258 = 8510

 2. (a) 9810 = 1428  (b) 16310 = 2438
 3. (a) 468 = 100110  (b) 7238 = 111010011  (c) 56248 = 101110010100

 4. (a) 110101111 = 6578  (b) 1001100010 = 11428  (c) 10111111001 = 27718

SeCtiON 10 binary Coded decimal (bCd)

 1. (a) 0010: 2  (b) 1000:	8  (c) 0001: 1  (d) 0100: 4

 2. (a) 610 = 0110  (b) 1510 = 00010101  (c) 27310 = 001001110011

  (d) 84910 = 100001001001

 3. (a) 10001001 = 8910  (b) 001001111000 = 27810  (c) 000101010111 = 15710

 4. A 4-bit sum is invalid when it is greater than 910.

SeCtiON 11 digital Codes

 1. (a) 11002 = 1010	Gray	 (b) 10102 = 1111	Gray	 (c) 110102 = 10111	Gray

 2. (a) 1000 Gray = 11112 (b) 1010 Gray = 11002 (c) 11101 Gray = 101102

 3. (a) K:	1001011 S 4B16 (b) r: 1110010 S 7216

  (c) +: 0100100 S 2416 (d) + : 0101011 S 2B16

SeCtiON 12 error detection Codes

 1. (c) 0101 has an error.

 2. (d) 11111011 has an error.

 3. (a) 10101001  (b) 01000001  (c) 11101110  (d) 10001101

 4. Cyclic	redundancy	check

 5. (a) 0  (b) 0  (c) 1  (d) 1

aNSWerS tO related prOblemS  
FOr eXampleS
  1 9	has	a	value	of	900,	3	has	a	value	of	30,	9	has	a	value	of	9.

  2 6	has	a	value	of	60,	7	has	a	value	of	7,	9	has	a	value	of	9/10	(0.9),	2	has	a	value	of	2/100	
(0.02),	4	has	a	value	of	4/1000	(0.004).

  3 10010001 = 128 + 16 + 1 = 145

  4 10.111 = 2 + 0.5 + 0.25 + 0.125 = 2.875

  5 125 = 64 + 32 + 16 + 8 + 4 + 1 = 1111101

  6 39 = 100111

  7 1111 + 1100 = 11011

  8 111 - 100 = 011

  9 110 - 101 = 001

 10 1101 * 1010 = 10000010

 11 1100 , 100 = 11
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 12 00110101

 13 01000000

 14 See Table 11.

table 11

SigN-magNitude 1’S COmp 2’S COmp

+19 00010011 00010011 00010011

-19 10010011 11101100 11101101

 15 01110111 = +11910

 16 11101011 = -2010

 17 11010111 = -4110

 18 11000010001010011000000000

 19 01010101

 20 00010001

 21 1001000110

 22 (83)(-59) = -4897 (10110011011111 in 2’s comp)

 23 100 , 25 = 4 (0100)

 24 4F79C16

 25 01101011110100112

 26 6BD16 = 011010111101 = 210 + 29 + 27 + 25 + 24 + 23 + 22 + 20

 = 1024 + 512 + 128 + 32 + 16 + 8 + 4 + 1 = 172510

 27 60A16 = (6 * 256) + (0 * 16) + (10 * 1) = 154610

 28 259110 = A1F16

 29 4C16 + 3A16 = 8616

 30 BCD16 - 17316 = A5A16
 31 (a) 0010112 = 1110 = 138 (b) 0101012 = 2110 = 258
  (c) 0011000002 = 9610 = 1408 (d) 1111010101102 = 392610 = 75268
 32 12507628  33 1001011001110011  34 82,27610

 35 1001100101101000  36 10000010  37 (a) 111011	(Gray)	 	 (b) 1110102

 38 The sequence of codes for if (y 6 8) is 691666162016281679163C1638162916

 39 01001011

 40 yes

 41 A 0 remainder results

 42 Errors are indicated.

aNSWerS tO true/FalSe Quiz
 1. T  2. T  3. F   4. F   5. T   6. F

 7. F  8. T  9. T  10. F  11. T  12. F

aNSWerS tO SelF-teSt
 1. (d)   2. (a)   3. (b)   4. (c)   5. (c)   6. (a)   7. (d)   8. (b)

 9. (d)  10. (a)  11. (c)  12. (d)  13. (d)  14. (b)  15. (c)  16. (a)

 17. (c)  18. (a)  19. (b)  20. (b)
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aNSWerS tO Odd-Numbered prOblemS
 1. (a) 1  (b) 100  (c) 100,000

 3. (a) 400; 70; 1  (b) 9000;	300;	50;	6

  (c) 100,000;	20,000;	5000;	0;	0;	0

 5. (a) 3   (b) 4   (c) 7   (d) 8	 	 (e) 9

  (f) 12  (g) 11  (h) 15

 7. (a) 51.75      (b) 42.25        (c) 65.875	 	

  (d) 120.625	 	 (e) 92.65625	 	 (f) 113.0625	 	

  (g) 90.625	 	 		(h) 127.96875

 9. (a) 5 bits  (b) 6	bits	 	 (c) 6	bits	 	 (d) 7 bits

  (e) 7 bits  (f) 7 bits  (g) 8	bits	 	 (h) 8	bits

 11. (a) 1010    (b) 10001   (c) 11000

  (d) 110000    (e) 111101   (f) 1011101

  (g) 1111101  (h) 10111010

 13. (a) 1111    (b) 10101     (c) 11100  

  (d) 100010   (e) 101000  (f) 111011  

  (g) 1000001  (h) 1001001

 15. (a) 100    (b) 100   (c) 1000  

  (d) 1101  (e) 1110  (f) 11000

 17. (a) 1001   (b) 1000     (c) 100011  

  (d) 110110  (e) 10101001  (f) 10110110

 19. all 0s or all 1s

 21. (a) 010      (b) 001     (c) 0101  

  (d) 00101000  (e) 0001010  (f) 11110

 23. (a) 00011101  (b) 11010101  

  (c) 01100100  (d) 11111011

 25. (a) 00001100  (b) 10111100

  (c) 01100101  (d) 10000011

 27. (a) −102  (b) +116	 	 (c) −64

 29. (a) 0 10001101 11110000101011000000000

  (b) 1 10001010 11000001100000000000000

 31. (a) 00110000  (b) 00011101

  (c) 11101011  (d) 100111110

 33. (a) 11000101  (b) 11000000

 35. 100111001010

 37. (a) 00111000  (b) 01011001

  (c) 101000010100 (d) 010111001000

  (e) 0100000100000000 (f) 1111101100010111

  (g) 1000101010011101

 39. (a) 35   (b) 146	 	 (c) 26	 	 	 (d) 141

  (e) 243  (f) 235   (g) 1474  (h) 1792

 41. (a) 6016  (b) 10B16  (c) 1BA16

 43. (a) 10   (b) 23   (c) 46	 	 	 (d) 52  (e) 67

  (f) 367	 	 (g) 115  (h) 532  (i) 4085

 45. (a) 001011 (b) 101111      

  (c) 001000001 (d) 011010001  
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  (e) 101100000   (f) 100110101011

  (g) 001011010111001 (h) 100101110000000

  (i) 001000000010001011

 47. (a) 00010000 (b) 00010011  

  (c) 00011000 (d) 00100001  

  (e) 00100101 (f) 00110110

  (g) 01000100 (h) 01010111  

  (i) 01101001 (j) 10011000  

  (k) 000100100101 (l) 000101010110

 49. (a) 000100000100 (b) 000100101000

  (c) 000100110010 (d) 000101010000

  (e) 000110000110 (f) 001000010000

  (g) 001101011001 (h) 010101000111

  (i) 0001000001010001

 51. (a) 80	 	 (b) 237  (c) 346	 	 (d) 421  

  (e) 754  (f) 800	 	 (g) 978	 	 (h) 1683	 	

  (i) 9018	 	 (j) 6667

 53. (a) 00010100 (b) 00010010

  (c) 00010111 (d) 00010110

  (e) 01010010 (f) 000100001001

  (g) 000110010101 (h) 0001001001101001

 55. The	Gray	code	makes	only	one	bit	change	at	a	time	when	going	from	one	number	in	the	
sequence to the next.

 57. (a) 1100  (b) 00011  (c) 10000011110

 59. (a) CAN  (b) J  (c) =

  (d) #     (e) 7  (f) B

 61. 48	65	6C	6C	6F	2E	20	48	6F	77	20	61	72	65	20	79	6F	75	3F

 63. (b) is incorrect.

 65. (a) 110100100  (b) 000001001  (c) 111111110

 67. In	each	case,	you	get	the	other	number.

 69. The	remainder	is	10,	indicating	an	error.
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 Parameters 

 9 Programmable Logic 

 10 Troubleshooting 

objectives
•	 Apply	Boolean	arithmetic

•	 Apply	the	basic	laws	and	rules	of	Boolean	algebra

•	 Describe	the	operation	of	the	inverter,	the	AND	
gate,	and	the	OR	gate

•	 Describe	the	operation	of	the	NAND	gate	and	the	
NOR gate

•	 Express	the	operation	of	NOT,	AND,	OR,	NAND,	
and	NOR	gates	with	Boolean	algebra

•	 Describe	the	operation	of	the	exclusive-OR	and	
exclusive-NOR gates

•	 Recognize	and	use	both	the	distinctive	shape	logic	
gate	symbols	and	the	rectangular	outline	logic	
gate	symbols	of	ANSI/IEEE	Standard	91-1984

Key terms
boolean algebra
variable
complement
sum term
Product term
inverter
truth table
timing diagram
and gate
or gate
nand gate
nor gate
exclusive-or gate
exclusive-nor gate

Propagation delay time
Fan-out
unit load
and array
Fuse
antifuse
eProm
eeProm
Flash
sram
target device
jtag
vHdL
verilog

•	 Construct	timing	diagrams	showing	the	proper	
time	relationships	of	inputs	and	outputs	for	the	
various logic gates

•	 Define	propagation delay time, power dissipation, 
speed-power product, and fan-out in relation to 
logic gates

•	 Use	each	logic	gate	in	simple	applications

•	 Discuss	the	basic	concepts	of	programmable	logic	
and describe logic gates using VHDL and Verilog

•	 Describe	basic	troubleshooting	methods

visit tHe Website
Study	aids	for	this	chapter	are	available	at

http://pearsonhighered.com/floyd

From	Chapter	3	of	Digital Fundamentals: A Systems Approach,	First	Edition.	Thomas	L.	Floyd.	Copyright	©	2013	by	Pearson	Education,	
Inc. All rights reserved.
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introduction
The	emphasis	in	this	chapter	is	on	the	operation,	applica-
tion,	and	troubleshooting	of	logic	gates.	The	relationship	
of	input	and	output	waveforms	of	a	gate	using	timing	
diagrams	 is	 thoroughly	 covered.	 Boolean	 algebra	 is	
introduced.

Logic	symbols	used	to	represent	the	logic	gates	are	
in	accordance	with	ANSI/IEEE	Standard	91-1984.	This	
standard	has	been	adopted	by	private	industry	and	the	

military	 for	 use	 in	 internal	 documentation	 as	 well	 as	
published	literature.

Programmable	 logic	 is	 discussed	 in	 this	 chapter	
because	of	the	widespread	use	of	PLDs.	Because	inte-
grated	circuits	(ICs)	are	used	in	applications,	the	logic	
function	of	a	device	is	generally	of	much	greater	impor-
tance to the technician or technologist than the details of 
the	 component-level	 circuit	 operation	 within	 the	 IC	
package.	Hardware	description	 languages	 (HDLs)	 for	
programmable	logic	are	introduced.

boolean algebra is the mathematics of digital systems. a basic knowledge of boolean algebra is 
indispensable to the study and analysis of logic circuits, such as not, and, and or.

after completing this section, you should be able to

•	 Define	variable

•	 Define	literal

•	 Identify	a	sum	term
•	 Evaluate	a	sum	term
•	 Identify	a	product	term
•	 Evaluate	a	product	term
•	 Explain	Boolean	addition
•	 Explain	Boolean	multiplication
•	 Apply	the	commutative	laws	of	addition	and	multiplication
•	 Apply	the	associative	laws	of	addition	and	multiplication
•	 Apply	the	distributive	law
•	 Apply	the	rules	of	Boolean	algebra

1 introduction to booLean aLgebra

boolean algebra*	uses	variables	and	operators	to	describe	a	logic	circuit.	Variable, com-
plement, and literal are terms used in Boolean algebra. A variable	is	a	symbol	(usually	an	italic	
uppercase	letter	or	word)	used	to	represent	an	action,	a	condition,	or	data.	Any	single	variable	
can	have	only	a	1	or	a	0	value.	The	complement	is	the	inverse	of	a	variable	and	is	indicated	by	
a	bar	over	the	variable	(overbar).	For	example,	the	complement	of	the	variable	A is A. If 
A = 1, then A = 0. If A = 0, then A = 1.	The	complement	of	the	variable	A is read as “not 
A” or “A	bar.”	Sometimes	a	prime	symbol	rather	than	an	overbar	is	used	to	denote	the	comple-
ment	of	a	variable;	for	example,	B	indicates	the	complement	of	B.	In	this	text,	only	the	over-
bar is used. A literal	is	a	constant	value	assigned	to	a	variable	or	the	complement	of	a	variable.

In	a	microprocessor,	the	arithmetic	logic	unit	(ALU)	performs	arithmetic	and	Boolean	logic	
operations	on	digital	data	as	directed	by	program	instructions.	Logical	operations	are	equiva-
lent	to	the	basic	gate	operations	that	you	are	familiar	with	but	deal	with	a	minimum	of	8	bits	at	
a	time.	Examples	of	Boolean	logic	instructions	are	AND,	OR,	and	NOT,	which	are	called	
mnemonics.	An	assembly	 language	program	uses	 the	mnemonics	 to	specify	an	operation.	
Another	program	called	an	assembler	translates	the	mnemonics	into	a	binary	code	that	can	be	
understood	by	the	microprocessor.

s y s t e m  n o t e

*The	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	Term	glossary	at	the	end	of	the	chapter.
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boolean addition
boolean addition	is	equivalent	to	the	OR	operation.	The	logical	OR	
function	of	two	variables	is	represented	mathematically	by	a + between	
the	two	variables,	for	example,	A + B.	The	plus	sign	is	read	as	“OR.”	
Addition	in	Boolean	algebra	involves	variables	whose	values	are	either	
binary	1	or	binary	0.	The	basic	rules	of	Boolean	addition	are	illustrated	in	Figure	1	with	
their	relation	to	the	OR	gate.	Notice	that	Boolean	addition	differs	from	binary	addition	in	
the	case	where	two	1s	are	added.	There	is	no	carry	in	Boolean	addition.

In	Boolean	algebra,	a	sum term	is	a	sum	of	literals.	In	logic	circuits,	a	sum	term	is	pro-
duced	by	an	OR	operation	with	no	AND	operations	involved.	Some	examples	of	sum	terms	
are A + B, A + B + C, and A + B + C + D.	A	sum	term	is	equal	to	1	when	one	or	more	
of	the	literals	in	the	term	are	1.	A	sum	term	is	equal	to	0	only	if	each	of	the	literals	is	0.

the or operation is the 
boolean form of addition.

e X a m P L e  1

Determine the values of A,	B,	C,	and	D	that	make	the	sum	term	A + B + C + D 
equal	to	0.

s o L u t i o n

For	the	sum	term	to	be	0,	each	of	the	literals	in	the	term	must	be	0.	Therefore,	
A = 0, B = 1 so that B = 0, C = 0, and D = 1 so that D = 0.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0

r e L a t e d  P r o b L e m *

Determine the values of A and B	that	make	the	sum	term	A + B	equal	to	0.

*answers are at the end of the chapter.

boolean multiplication
boolean multiplication	is	equivalent	to	the	AND	operation.	The	logi-
cal	AND	function	of	two	variables	is	represented	mathematically	either	
by	placing	a	dot	between	the	two	variables,	as	A # B,	or	by	simply	writ-
ing	the	adjacent	letters	without	the	dot,	as	AB. The variables are either 
binary	1	or	binary	0,	and	the	rules	of	binary	multiplication	apply	to	Boolean	multiplication.	
The	basic	rules	of	Boolean	multiplication	are	illustrated	in	Figure	2	with	their	relation	to	
the AND gate.

In	Boolean	algebra,	a	product term	is	the	product	of	literals.	In	logic	circuits,	a	prod-
uct	term	is	produced	by	an	AND	operation	with	no	OR	operations	involved.	Some	examples	
of	product	terms	are	AB, ABC, and ABCD.	A	product	term	is	equal	to	1	only	if	each	of	the	
literals	in	the	term	is	1.	A	product	term	is	equal	to	0	when	one	or	more	of	the	literals	are	0.

e X a m P L e  2

Determine the values of A,	B,	C,	and	D	that	make	the	product	term	ABCD	equal	to	1.

s o L u t i o n

For	the	product	term	to	be	1,	each	of	the	literals	in	the	term	must	be	1.	Therefore,	
A = 1, B = 0 so that B = 1, C = 1, and D = 0 so that D = 1.

ABCD = 1 # 0 # 1 # 0 = 1 #1 # 1 # 1 = 1

r e L a t e d  P r o b L e m

Determine the values of A and B	that	make	the	product	term	A B	equal	to	1.

 0 + 0 = 0  0 + 1 = 1 1 + 0 = 1 1 + 1 = 1

ua04_00100

Figure 1 

 0 • 0 = 0  0 • 1 = 0 1 • 0 = 0  1 • 1 = 1

ua04_00200

Figure 2 

the and operation is 
the boolean form of 
multiplication.
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Laws of boolean algebra
The	basic	laws	of	Boolean	algebra—the	commutative laws	for	addition	and	multiplica-
tion,	the	associative laws	for	addition	and	multiplication,	and	the	distributive law—are	
the	same	as	in	ordinary	algebra.	Each	of	the	laws	is	illustrated	with	two	or	three	variables,	
but the number of variables is not limited to this.

commutative LaWs The	commutative	law	for	the	addition	of	two	variables	is	
written	as

 A � B � B � A (1)

This	law	states	that	the	order	in	which	the	variables	are	ORed	
makes	no	difference.	Figure	3	illustrates	the	commutative	law	as	
applied	to	the	OR	gate	and	shows	that	it	doesn’t	matter	to	which	
input	each	variable	is	applied.	(The	symbol K means	“equivalent	
to.”)
The	commutative	law	for	the	multiplication	of	two	variables	is

 AB � BA (2)

This	 law	 states	 that	 the	order	 in	which	 the	variables	 are	ANDed	
makes	no	difference.	Figure	4	illustrates	this	law	as	applied	to	the	
AND gate.

associative LaWs The	associative	law	of	addition	is	writ-
ten	as	follows	for	three	variables:

 A � (B � C) � (A � B) � C (3)

This	law	states	that	when	ORing	more	than	two	variables,	the	result	is	the	same	regardless	
of	the	grouping	of	the	variables.	Figure	5	illustrates	this	law	as	applied	to	2-input	OR	
gates.

A

B
 B + A

B
 A + B

A

fg04_00100

Figure 3 application of the commutative law of 
addition.

A

B
BA

B
AB

A

fg04_00200

Figure 4 
application of the commutative law of multiplication.

The	associative	law	of	multiplication	is	written	as	follows	for	three	variables:

 A(BC) � (AB)C (4)

This	law	states	that	it	makes	no	difference	in	what	order	the	variables	are	grouped	when	
ANDing	more	than	two	variables.	Figure	6	illustrates	this	law	as	applied	to	2-input	AND	
gates.

B + C
B

C

A + (B + C)
A

A + B
B

C
(A + B) + C

A

fg04_00300

Figure 5 Application	of	the	associative	law	of	addition.	Open	file	F03-05	to	verify.

muLtisim

BC
B

C

A(BC)
A

AB
B

C
(AB)C

A

fg04_00400

Figure 6 Application	of	the	associative	law	of	multiplication.	Open	file		F03-06	
to verify.

muLtisim

distributive LaW The	distributive	law	is	written	for	three	variables	as	follows:

 A(B � C) � AB � AC (5)
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TABLE	1	 •	 basic rules of boolean algebra.

1. A + 0 = A  7. A # A = A

2. A + 1 = 1  8. A # A = 0

3. A # 0 = 0  9. A = A

4. A # 1 = A 10. A + AB = A

5. A + A = A 11. A + AB = A + B

6. A + A = 1 12. (A + B)(A + C) = A + BC

A,	B,	or	C	can	represent	a	single	variable	or	a	combination	of	variables.

LOgIC	gATES	AND	gATE	COmBINATIONS

This	law	states	that	ORing	two	or	more	variables	and	then	ANDing	the	result	with	a	
single	variable	is	equivalent	to	ANDing	the	single	variable	with	each	of	the	two	or	more	
variables	and	then	ORing	the	products.	The	distributive	law	also	expresses	the	process	of	
factoring	in	which	the	common	variable	A	is	factored	out	of	the	product	terms,	for	exam-
ple,	 AB + AC = A(B + C).	 Figure	7	 illustrates	 the	distributive	 law	 in	 terms	of	 gate	
implementation.

rules of boolean algebra
Table	1	lists	12	basic	rules	that	are	useful	in	manipulating	and	simplifying	boolean expres-
sions.	Rules	1	through	9	will	be	viewed	in	terms	of	their	application	to	logic	gates.	Rules	
10	through	12	will	be	derived	in	terms	of	the	simpler	rules	and	the	laws	previously	dis-
cussed.

B + C
C

A
X

B

 X = A(B + C)

AB
B

X

A

C

A
AC

 X = AB + AC

fg04_00500
Figure 7 Application	of	distributive	law.	Open	file	F03-07	to	verify.

muLtisim

rule 1: A � 0 � A	 A	variable	ORed	with	0	is	always	equal	to	the	variable.	If	the	input	
variable A	is	1,	the	output	variable	X	is	1,	which	is	equal	to	A. If A	is	0,	the	output	is	0,	
which	is	also	equal	to	A.	This	rule	is	illustrated	in	Figure	8,	where	the	lower	input	is	fixed	
at	0.

 X = A + 0 = A

X = 0
 A = 0

 0
X = 1

 A = 1

 0

fg04_00600
Figure 8 

rule 2: A � 1 � 1	 A	variable	ORed	with	1	is	always	equal	to	1.	A	1	on	an	input	to	an	
OR	gate	produces	a	1	on	the	output,	regardless	of	the	value	of	the	variable	on	the	other	
input.	This	rule	is	illustrated	in	Figure	9,	where	the	lower	input	is	fixed	at	1.
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rule 3: A ~ 0 � 0	 A	variable	ANDed	with	0	is	always	equal	to	0.	Any	time	one	input	to	
an	AND	gate	is	0,	the	output	is	0,	regardless	of	the	value	of	the	variable	on	the	other	input.	
This	rule	is	illustrated	in	Figure	10,	where	the	lower	input	is	fixed	at	0.

 X = A + 1 = 1

X = 1
 A = 0

 1
X = 1

 A = 1

 1

fg04_00700

Figure 9 

 X = A • 0 = 0

X = 0
 A = 1

 0
X = 0

 A = 0

 0

fg04_00800
Figure 10 

 X = A • 1 = A

X = 0
 A = 0

 1
X = 1

 A = 1

 1

fg04_00900

Figure 11 

 X = A + A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

fg04_01000

Figure 12 

rule 4: A ~ 1 � A	 A	variable	ANDed	with	1	is	always	equal	to	the	variable.	If	A	is	0,	
the	output	of	the	AND	gate	is	0.	If	A	is	1,	the	output	of	the	AND	gate	is	1	because	both	
inputs	are	now	1s.	This	rule	is	shown	in	Figure	11,	where	the	lower	input	is	fixed	at	1.

rule 5: A � A � A	 A	variable	ORed	with	itself	is	always	equal	to	the	variable.	If	A	is	0,	
then 0 + 0 = 0; and if A	is	1,	then	1 + 1 = 1.	This	is	shown	in	Figure	12,	where	both	
inputs	are	the	same	variable.

rule 6: A � A � 1	 A	variable	ORed	with	its	complement	is	always	equal	to	1.	If	A	is	0,	
then 0 + 0 = 0 + 1 = 1. If A	is	1,	then	1 + 1 = 1 + 0 = 1.	See	Figure	13,	where	one	
input	is	the	complement	of	the	other.

 X = A + A = 1

X = 1
 A = 1

 A = 0
X = 1

 A = 0

 A = 1

fg04_01100

Figure 13 

rule 7: A ~ A � A	 A	variable	ANDed	with	itself	is	always	equal	to	the	variable.	If	
A = 0, then 0 # 0 = 0; and if A = 1, then 1 # 1 = 1.	Figure	14	illustrates	this	rule.
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rule 8: A ~ A � 0	 A	variable	ANDed	with	its	complement	is	always	equal	to	0.	Either	
A or A	will	always	be	0;	and	when	a	0	is	applied	to	the	input	of	an	AND	gate,	the	output	
will	be	0	also.	Figure	15	illustrates	this	rule.

 X = A • A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

fg04_01200

Figure 14 

X = 0
 A = 1

 A = 0
X = 0

 A = 0

 A = 1

 X = A • A = 0

fg04_01300

Figure 15 

 A = 1
A = 0

X = A = 1  A = 0
A = 1

X = A = 0 

X = A = A 

fg03_01600

Figure 16 

rule 9: A = A	 The	double	complement	of	a	variable	is	always	equal	to	the	variable.	If	
you	start	with	the	variable	A	and	complement	(invert)	it	once,	you	get	A.	If	you	then	take	
A	and	complement	(invert)	it,	you	get	A,	which	is	the	original	variable.	This	rule	is	shown	
in	Figure	16	using	inverters.

rule 10: A � AB � A	 This	rule	can	be	proved	by	applying	the	distributive	law,	rule	2,	
and	rule	4	as	follows:

 A + AB = A # 1 + AB = A(1 + B)  Factoring (distributive law)

 = A # 1  Rule 2: (1 + B) = 1

 = A  Rule 4: A # 1 = A

The	proof	is	shown	in	Table	2,	which	shows	the	truth	table	and	the	resulting	logic	circuit	
simplification.

muLtisim

B

A

A
straight connection

A

0

0

1

1

B

0

1

0

1

AB

0

0

0

1

A � AB

0

0

1

1

equal

tb04_00200

TABLE	2	 •	 rule 10: A � AB � A.	Open	file	T03-02	to	verify.
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rule 11: A � AB � A � B	 This	rule	can	be	proved	as	follows:

 A + AB = (A + AB) + AB  Rule 10: A = A + AB

 = (AA + AB) + AB  Rule 7: A = AA

 = AA + AB + AA + AB  Rule 8: adding AA = 0

 = (A + A)(A + B)  Factoring

 = 1 # (A + B)  Rule 6: A + A = 1

 = A + B  Rule 4: drop the 1

The	proof	is	shown	in	Table	3,	which	shows	the	truth	table	and	the	resulting	logic	
circuit	simplification.

rule 12: (A � B)(A � C) � A � BC	 This	rule	can	be	proved	as	follows:

 (A + B)(A + C) = AA + AC + AB + BC  Distributive law

 = A + AC + AB + BC  Rule 7: AA = A

 = A(1 + C) + AB + BC  Factoring (distributive law)

 = A # 1 + AB + BC  Rule 2: 1 + C = 1

 = A(1 + B) + BC  Factoring (distributive law)

 = A # 1 + BC  Rule 2: 1 + B = 1

 = A + BC  Rule 4: A # 1 = A

The	proof	is	shown	in	Table	4,	which	shows	the	truth	table	and	the	resulting	logic	circuit	
simplification.muLtisim

B
A

C

C
B
A

equal

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

(A + B)(A + C) A + BC

0

0

0

1

1

1

1

1

A + B A + C 

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

1

BC

0

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

tb04_00400

TABLE	4	 •	 rule 12: (A � B)(A � C) � A � BC.	Open	file	T03-04	to	verify.
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B

A

A
B

A

0

0

1

1

B

0

1

0

1

A + B

0

1

1

1

equal

AB

0

1

0

0

A + AB

0

1

1

1

tb04_00300

TABLE	3	 •	 rule 11: A � AB � A � B.	Open	file	T03-03	to	verify.
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*answers are at the end of the chapter.

1. If A = 0,	what	does	A	equal?

2. Determine the values of A,	B,	and	C	that	make	the	sum	term	
A + B + C	equal	to	0.

3. Determine the values of A,	B,	and	C	that	make	the	product	
term ABC	equal	to	1.

4. Apply	the	associative	law	of	addition	to	the	expression	
A + (B + C + D).

5. Apply	the	distributive	law	to	the	expression	A(B + C + D).

section 1 cHecKuP*

2 tHe inverter
the inverter (not circuit) performs the operation called inversion or complementation. the 
inverter changes one logic level to the opposite level. in terms of bits, it changes a 1 to a 0 and 
a 0 to a 1.

after completing this section, you should be able to

•	 Identify	negation	and	polarity	indicators
•	 Identify	an	inverter	by	either	its	distinctive	shape	symbol	or	its	rectangular	outline	symbol
•	 Produce	the	truth	table	for	an	inverter
•	 Describe	the	logical	operation	of	an	inverter

Standard	 logic	 symbols	 for	 the	 inverter	 are	 shown	 in	
Figure	17.	Part	(a)	shows	the	distinctive shape	symbols,	and	
part	 (b)	shows	 the	rectangular outline	 symbols.	 In	 this	 text,	
distinctive	shape	symbols	are	generally	used;	however,	the	rec-
tangular	outline	symbols	are	found	in	many	industry	publica-
tions,	and	you	should	become	familiar	with	them	as	well.	(Logic	
symbols	 are	 in	 accordance	 with	 ansi/ieee	 Standard	
91-1984.)

the negation and Polarity indicators
The negation indicator is a “bubble” ( ) that indicates inversion or complementation 
when	it	appears	on	the	input	or	output	of	any	logic	element,	as	shown	in	Figure	17(a)	
for	the	inverter.	generally,	inputs	are	on	the	left	of	a	logic	symbol	and	the	output	is	on	
the	 right.	When	appearing	on	 the	 input,	 the	bubble	means	 that	 a	0	 is	 the	 active	or	
asserted	input	state,	and	the	input	is	called	an	active-LOW	input.	When	appearing	on	
the	output,	the	bubble	means	that	a	0	is	the	active	or	asserted	output	state,	and	the	out-
put	 is	called	an	active-LOW	output.	The	absence	of	a	bubble	on	 the	 input	or	output	
means	 that	a	1	 is	 the	active	or	asserted	state,	and	in	 this	case,	 the	 input	or	output	 is	
called active-HIGH.

The	polarity	or	level	indicator	is	a	“triangle”	( )	that	indicates	inversion	when	it	
appears	on	the	input	or	output	of	a	logic	element,	as	shown	in	Figure	17(b).	When	appearing	
on	the	input,	it	means	that	a	LOW	level	is	the	active	or	asserted	input	state.	When	appearing	
on	the	output,	it	means	that	a	LOW	level	is	the	active	or	asserted	output	state.

Either	indicator	(bubble	or	triangle)	can	be	used	both	on	distinctive	shape	symbols	
and	on	rectangular	outline	symbols.	Figure	17(a)	indicates	the	principal	inverter	symbols	
used	in	this	text.	Note	that	a	change	in	the	placement	of	the	negation	or	polarity	indicator	
does	not	imply	a	change	in	the	way	an	inverter	operates.

(a) Distinctive shape symbols
with negation indicators

(b) Rectangular outline symbols
with polarity indicators

1

1

fg03_00100

Figure 17 standard logic 
symbols for the inverter 
(ansi/ieee std. 91-1984).
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inverter truth table
When	a	HIgH	level	is	applied	to	an	inverter	input,	a	LOW	level	will	appear	on	its	output.	
When	a	LOW	level	is	applied	to	its	input,	a	HIgH	will	appear	on	its	output.	This	operation	
is	summarized	in	Table	5,	which	shows	the	output	for	each	possible	input	in	terms	of	levels	
and	corresponding	bits.	A	table	such	as	this	is	called	a	truth table.

inverter operation
Figure	18	shows	the	output	of	an	inverter	for	a	pulse	input,	where	t1 and t2 indicate the cor-
responding	points	on	the	input	and	output	pulse	waveforms.

When the input is LoW, the output is HigH; when the input is HigH, the 
output is LoW, thereby producing an inverted output pulse.

TABLE	5	 •	 inverter 
truth table.

inPut outPut

LOW	(0) HIgH	(1)

HIgH	(1) LOW	(0)

HIGH (1) HIGH (1)

LOW (0)
t1 t2

Input pulse

LOW (0)
t1 t2

Output pulse

fg03_00200

Figure 18 Inverter	operation	with	a	pulse	input.	Open	file	
F03-18 to verify inverter operation.

a timing diagram 
shows how two or more 
waveforms relate in time.

t1 t2

Input

Output

fg03_00300

Figure 19 timing 
diagram for the case in  
Figure 18.

timing diagrams
A timing diagram	is	basically	a	graph	that	accurately	displays	the	relationship	of	two	or	
more	waveforms	with	respect	to	each	other	on	a	time	basis.	For	example,	the	time	relation-
ship	of	the	output	pulse	to	the	input	pulse	in	Figure	18	can	be	shown	with	a	simple	timing	
diagram	by	aligning	the	two	pulses	so	that	the	occurrences	of	the	pulse	edges	appear	in	the	
proper	time	relationship.	The	rising	edge	of	the	input	pulse	and	the	falling	edge	of	the	out-
put	pulse	occur	at	the	same	time	(ideally).	Similarly,	the	falling	edge	of	the	input	pulse	and	
the	rising	edge	of	the	output	pulse	occur	at	the	same	time	(ideally).	This	timing	relationship	
is	shown	in	Figure	19.	In	practice,	there	is	a	very	small	delay	from	the	input	transition	until	
the	corresponding	output	transition.	Timing	diagrams	are	especially	useful	for	illustrating	
the	time	relationship	of	digital	waveforms	with	multiple	pulses.

e X a m P L e  3

A	waveform	is	applied	to	an	inverter	in	Figure	20.	Determine	the	output	wave-
form	corresponding	to	the	input	and	show	the	timing	diagram.	According	to	the	
placement	of	the	bubble,	what	is	the	active	output	state?

 0
Input Output

1

fg03_00400

Figure 20 

s o L u t i o n
The	 output	 waveform	 is	 exactly	 opposite	 to	 the	
input	(inverted),	as	shown	in	Figure	21,	which	is	the	
basic	timing	diagram.	The	active	or	asserted	output	

state is 0.

r e L a t e d  P r o b L e m

If	the	inverter	is	shown	with	the	negative	indicator	(bubble)	on	the	input	instead	
of	the	output,	how	is	the	timing	diagram	affected?

1

0
Input

1

0
Output

fg03_00500

Figure 21 

muLtisim

122



LOgIC	gATES	AND	gATE	COmBINATIONS

Logic expression for an inverter
As	you	have	learned,	in	Boolean	algebra	a	variable	is	generally	designated	by	one	or	two	
letters	although	there	can	be	more.	Letters	near	the	beginning	of	the	alphabet	usually	des-
ignate	inputs,	while	letters	near	the	end	of	the	alphabet	usually	designate	outputs.	The	
complement	of	a	variable	is	designated	by	a	bar	over	the	letter.	A	variable	can	take	on	a	
value	of	either	1	or	0.	If	a	given	variable	is	1,	its	complement	is	0	and	vice	versa.

The	operation	of	an	inverter	(NOT	circuit)	can	be	expressed	as	follows:	If	the	input	
variable is called A	and	the	output	variable	is	called	X,	then

X = A

This	expression	states	that	the	output	is	the	complement	of	the	input,	so	if	 A = 0, then 
X = 1, and if A = 1, then X = 0.	Figure	22	illustrates	this.	The	complemented	variable	
A can be read as “A bar” or “not A.”

an application
Figure	23	shows	a	circuit	for	producing	the	1’s	complement	of	an	8-bit	binary	number.	The	
bits	of	the	binary	number	are	applied	to	the	inverter	inputs	and	the	1’s	complement	of	the	
number	appears	on	the	outputs.

X = AA

fg03_00600

Figure 22 the inverter 
complements an input variable.

1

0

1

0

0

1

1

0

0

1

0

1

0

1

1

0

Binary number

1’s complement

fg03_00700

Figure 23 example of a 1’s complement circuit 
using inverters.

1. When	a	1	is	on	the	input	of	an	inverter,	what	is	the	output?

2. An	active-HIgH	pulse	(HIgH	level	when	asserted,	LOW	
level	when	not)	is	required	on	an	inverter	input.

(a) Draw	the	appropriate	logic	symbol,	using	the	distinctive	shape	
and	the	negation	indicator,	for	the	inverter	in	this	application.

(b) Describe	the	output	when	a	positive-going	pulse	is	
applied	to	the	input	of	an	inverter.

section 2 cHecKuP

3 tHe and gate
the and gate is one of the basic gates that can be combined to form any logic function. an 
and gate can have two or more inputs and performs what is known as logical multiplication.

after completing this section, you should be able to

•	 Identify	an	AND	gate	by	its	distinctive	shape	symbol	or	by	its	rectangular	outline	symbol
•	 Describe	the	operation	of	an	AND	gate
•	 Generate	the	truth	table	for	an	AND	gate	with	any	number	of	inputs
•	 Produce	a	timing	diagram	for	an	AND	gate	with	any	specified	input	waveforms
•	 Write	the	logic	expression	for	an	AND	gate	with	any	number	of	inputs
•	 Discuss	examples	of	AND	gate	applications
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The term gate	 is	used	to	describe	a	circuit	 that	performs	a	
basic	logic	operation.	The	AND	gate	is	composed	of	two	or	more	
inputs	and	a	single	output,	as	indicated	by	the	standard	logic	sym-
bols	shown	in	Figure	24.	Inputs	are	on	the	left,	and	the	output	is	on	
the	right	in	each	symbol.	gates	with	two	inputs	are	shown;	how-
ever,	an	AND	gate	can	have	any	number	of	inputs	greater	than	one.	
Although	examples	of	both	distinctive	shape	symbols	and	rectan-
gular	outline	 symbols	are	 shown,	 the	distinctive	 shape	 symbol,	
shown	in	part	(a),	is	used	predominantly	in	this	text.

A

B
X

(a) Distinctive shape

A

B
X

(b) Rectangular outline with the
AND (&) qualifying symbol

&

fg03_00800

Figure 24 standard logic symbols for the and gate 
showing two inputs (ansi/ieee std. 91-1984).

TABLE	6	 •	 truth 
table for a 2-input  
and gate.

inPuts outPut

A B X

0 0 0

0 1 0

1 0 0

1 1 1

1 = HIGH, 0 = LOW

For an and gate, all 
HigH inputs produce a 
HigH output.

an and gate can have 
more than two inputs.

operation of an and gate
An and gate	produces	a	HIgH	output	only	when	all	of	the	inputs	are	HIgH.	When	any	of	
the	inputs	is	LOW,	the	output	is	LOW.	Therefore,	the	basic	purpose	of	an	AND	gate	is	to	
determine	when	certain	conditions	are	simultaneously	true,	as	indicated	by	HIgH	levels	
on	all	of	its	inputs,	and	to	produce	a	HIgH	on	its	output	to	indicate	that	all	these	conditions	
are	true.	The	inputs	of	the	2-input	AND	gate	in	Figure	24	are	labeled	A and B,	and	the	
output	is	labeled	X.	The	gate	operation	can	be	stated	as	follows:

For a 2-input and gate, output X is HigH only when inputs A and B are 
HigH; X is LoW when either A or B is LoW, or when both A and B are 
LoW.

and gate truth table
The	logical	operation	of	a	gate	can	be	expressed	with	a	truth	table	that	lists	all	input	com-
binations	with	the	corresponding	outputs,	as	illustrated	in	Table	6	for	a	2-input	AND	gate.	
The	truth	table	can	be	expanded	to	any	number	of	inputs.	Although	the	terms	HIgH	and	
LOW	tend	to	give	a	“physical”	sense	to	the	input	and	output	states,	the	truth	table	is	shown	
with	1s	and	0s;	a	HIgH	is	equivalent	to	a	1	and	a	LOW	is	equivalent	to	a	0	in	positive	
logic.	For	any	AND	gate,	regardless	of	the	number	of	inputs,	the	output	is	HIgH	only 
when	all	inputs	are	HIgH.

The	total	number	of	possible	combinations	of	binary	inputs	to	a	gate	is	determined	by	
the	following	formula:

 N � 2n (6)

where	N	is	the	number	of	possible	input	combinations	and	n	is	the	number	of	input	varia-
bles.	To	illustrate,

For two input variables:     N = 22
= 4 combinations

For three input variables:    N = 23
= 8 combinations

For four input variables:     N = 24
= 16 combinations

You	can	determine	the	number	of	input	bit	combinations	for	gates	with	any	number	of	
inputs	by	using	Equation	6.

Logic	gates	are	one	of	the	fundamental	building	blocks	of	computers.	most	of	the	functions	in	
a	computer,	with	the	exception	of	certain	types	of	memory,	are	implemented	with	logic	gates	
used	on	a	very	large	scale.	For	example,	a	microprocessor,	which	is	the	main	part	of	a	compu-
ter,	is	made	up	of	hundreds	of	thousands	or	even	millions	of	logic	gates.

s y s t e m  n o t e
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operation with Pulse inputs
In	most	applications,	the	inputs	to	a	gate	are	not	stationary	levels	but	are	voltage	wave-
forms	that	change	frequently	between	HIgH	and	LOW	logic	levels.	Now	let’s	look	at	the	
operation	of	AND	gates	with	pulse	waveform	inputs,	keeping	in	mind	that	an	AND	gate	
obeys	the	truth	table	operation	regardless	of	whether	its	inputs	are	constant	levels	or	levels	
that	change	back	and	forth.

e X a m P L e  4

(a) Develop	the	truth	table	for	a	3-input	AND	gate.

(b) Determine	 the	 total	number	of	possible	 input	combinations	 for	a	4-input	
AND gate.

s o L u t i o n

(a) There	are	eight	possible	input	combinations	(23
= 8)	for	a	3-input	AND	gate.	

The	input	side	of	the	truth	table	(Table	7)	shows	all	eight	combinations	of	
three	bits.	The	output	side	is	all	0s	except	when	all	three	input	bits	are	1s.

tabLe 7  

inPuts outPut

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

(b) N = 24
= 16.	There	are	16	possible	combinations	of	input	bits	for	a	4-input	

AND gate.

r e L a t e d  P r o b L e m

Develop	the	truth	table	for	a	4-input	AND	gate.

Let’s	examine	the	waveform	operation	of	an	AND	gate	by	looking	at	 the	inputs	
with	 respect	 to	each	other	 in	order	 to	determine	 the	output	 level	at	 any	given	 time.	 
In	Figure	25,	 inputs	A and B	are	both	HIgH	(1)	during	the	 time	interval,	 t1,	making	

Computers	can	utilize	all	of	 the	basic	 logic	operations	when	it	 is	necessary	 to	selectively	
manipulate	certain	bits	in	one	or	more	bytes	of	data.	Selective	bit	manipulations	are	done	with	
a mask.	For	example,	to	clear	(make	all	0s)	the	right	four	bits	in	a	data	byte	but	keep	the	left	
four	bits,	ANDing	the	data	byte	with	11110000	will	do	the	job.	Notice	that	any	bit	ANDed	
with	zero	will	be	0	and	any	bit	ANDed	with	1	will	remain	the	same.	If	10101010	is	ANDed	
with	the	mask	11110000,	the	result	is	10100000.

s y s t e m  n o t e
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	output	X	HIgH	(1)	during	this	interval.	During	time	interval	t2,	input	A	is	LOW	(0)	and	
input	B	is	HIgH	(1),	so	the	output	is	LOW	(0).	During	time	interval	t3,	both	inputs	are	
HIgH	(1)	again,	and	therefore	the	output	is	HIgH	(1).	During	time	interval	t4,	input	A is 
HIgH	(1)	and	input	B	is	LOW	(0),	resulting	in	a	LOW	(0)	output.	Finally,	during	time	
interval t5,	input	A	is	LOW	(0),	input	B	is	LOW	(0),	and	the	output	is	therefore	LOW	(0).	
As	you	know,	a	diagram	of	input	and	output	waveforms	showing	time	relationships	is	
called a timing diagram.

e X a m P L e  5

If	two	waveforms,	A and B,	are	applied	to	the	AND	gate	inputs	as	in	Figure	26,	
what	is	the	resulting	output	waveform?

HIGH
LOW

B

A

B
X

HIGH
LOW

HIGH
LOW

A and B are both HIGH during these four time intervals.
Therefore X is HIGH.

A

X

fg03_01100

Figure 26 

s o L u t i o n

The	output	waveform	X	is	HIgH	only	when	both	A and B	waveforms	are	HIgH	
as	shown	in	the	timing	diagram	in	Figure	26.

r e L a t e d  P r o b L e m

Determine	the	output	waveform	and	show	a	timing	diagram	if	the	second	and	
fourth	pulses	in	waveform	A	of	Figure	26	are	replaced	by	LOW	levels.

Remember,	when	observing	the	waveform	operation	of	logic	gates,	it	is	important	to	
pay	careful	attention	to	the	time	relationships	of	all	the	inputs	with	respect	to	each	other	
and	to	the	output.

1A 0 1 1 0

1B 1 1 0 0

1X 0 1 0 0

t1 t2 t3 t4 t5

A

B
X

fg03_01000
Figure 25 example of and gate operation with a timing 
diagram showing input and output relationships.

e X a m P L e  6

For	the	two	input	waveforms,	A and B,	in	Figure	27,	show	the	output	waveform	
with	its	proper	relation	to	the	inputs.
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A HIGH
LOW

Inputs

B HIGH
LOW

HIGH
LOW

Output

A

B
X

X

fg03_01200
Figure 27 

s o L u t i o n

The	output	waveform	is	HIgH	only	when	both	of	the	input	waveforms	are	HIgH	
as	shown	in	the	timing	diagram.

r e L a t e d  P r o b L e m

Show	the	output	waveform	if	the	B	input	to	the	AND	gate	in	Figure	27	is	always	
HIGH.

s o L u t i o n

The	output	waveform	X	of	the	3-input	AND	gate	is	HIgH	only	when	all	three	
input	waveforms	A,	B,	and	C are HIGH.

r e L a t e d  P r o b L e m

What	 is	 the	output	waveform	of	 the	AND	gate	 in	Figure	28	 if	 the	C	 input	 is	
always	HIgH?

e X a m P L e  7

For	the	3-input	AND	gate	in	Figure	28,	determine	the	output	waveform	in	relation	
to	the	inputs.

 B

 A

 C

 X

A

C
XB

fg03_01300

Figure 28 

e X a m P L e  8

Use	multisim	to	simulate	a	3-input	AND	gate	with	 input	waveforms	 that	cycle	 through	binary	numbers	0	
through	9.

s o L u t i o n

Use	the	multisim	word	generator	in	the	up	counter	mode	to	provide	the	combination	of	waveforms	representing	
the	binary	sequence,	as	shown	in	Figure	29.	The	first	three	waveforms	on	the	oscilloscope	display	are	the	inputs,	
and	the	bottom	waveform	is	the	output.
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Logic expressions for and gates
The	operation	of	a	2-input	AND	gate	can	be	expressed	in	equation	form	as	follows:	If	one	
input	variable	is	A,	 the	other	input	variable	is	B,	and	the	output	variable	is	X,	 then	the	
Boolean	expression	is

X = AB

Figure	30(a)	shows	the	AND	gate	logic	symbol	with	two	input	variables	and	the	output	
variable indicated.

X = AB
A

B

(a)

ABX = C
A

C

(b)

B X = ABCD
A

C

(c)

B

D

fg03_01500

Figure 30 boolean expressions for and gates with two, three, and four inputs.

When variables are shown 
together like ABC, they 
are anded.

To	extend	the	AND	expression	to	more	than	two	input	variables,	simply	use	a	new	
letter	for	each	input	variable.	The	function	of	a	3-input	AND	gate,	for	example,	can	be	
expressed	as	X = ABC,	where	A,	B,	and	C	are	the	input	variables.	The	expression	for	a	

fg03_01400

r e L a t e d  P r o b L e m

Use	multisim	software	to	create	the	setup	and	simulate	the	3-input	AND	gate	as	illustrated	in	this	example.	A	
multisim	tutorial	is	available	at	the	website.

muLtisim

Figure 29 
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4-input	AND	gate	can	be	X = ABCD,	and	so	on.	Parts	(b)	and	(c)	of	Figure	30	show	AND	
gates	with	three	and	four	input	variables,	respectively.

You	can	evaluate	an	AND	gate	operation	by	using	the	Boolean	expressions	for	the	
output.	For	example,	each	variable	on	 the	 inputs	can	be	either	a	1	or	a	0;	so	for	 the	
2-input	AND	gate,	make	substitutions	in	the	equation	for	the	output,	X = AB,	as	shown	
in	Table	8.	This	evaluation	shows	that	the	output	X	of	an	AND	gate	is	a	1	(HIgH)	only	
when	both	inputs	are	1s	(HIgHs).	A	similar	analysis	can	be	made	for	any	number	of	input	
variables.  

tabLe 8  

A B AB � X

0 0 0 # 0 = 0

0 1 0 # 1 = 0

1 0 1 # 0 = 0

1 1 1 # 1 = 1

Reset to zero
between enable pulses.

A

Enable

1 ms

1 ms

Counter

Register,
decoder,

and
frequency

display

fg03_01600

Figure 31 the and gate performing an enable/inhibit function for a frequency counter.

enabLe/inHibit device
A	common	system	application	of	the	AND	gate	is	to	enable	(that	is,	to	allow)	the	passage	of	a	
signal	(pulse	waveform)	from	one	point	to	another	at	certain	times	and	to	inhibit	(prevent)	the	
passage	at	other	times.	This	particular	use	of	an	AND	gate	is	shown	in	Figure	31,	where	the	
AND	gate	controls	the	passage	of	a	signal	(waveform	A)	to	a	digital	counter.	This	system	
measures	the	frequency	of	waveform	A.	The	enable	pulse	has	a	width	of	precisely	1	ms.	When	
the	enable	pulse	is	HIgH,	waveform	A	passes	through	the	gate	to	the	counter;	and	when	the	
enable	pulse	is	LOW,	the	signal	is	prevented	from	passing	through	the	gate	(inhibited).

s y s t e m  e X a m P L e  1

During	the	1	millisecond	(1	ms)	interval	of	the	enable	pulse,	pulses	in	waveform	A	pass	
through	the	AND	gate	to	the	counter.	The	number	of	pulses	passing	through	during	the	1	ms	
interval	is	equal	to	the	frequency	of	waveform	A.	For	example,	Figure	31	shows	six	pulses	in	
one	millisecond,	which	is	a	frequency	of	6	kHz.	If	1000	pulses	pass	through	the	gate	in	the	1	
ms	interval	of	the	enable	pulse,	there	are	1000	pulses/ms,	or	a	frequency	of	1	mHz.

The	counter	counts	the	number	of	pulses	per	second	and	produces	a	binary	output	
that	goes	to	a	decoding	and	display	circuit	to	produce	a	readout	of	the	frequency.	The	
enable	pulse	repeats	at	certain	intervals	and	a	new	updated	count	is	made	so	that	if	the	
frequency	changes,	the	new	value	will	be	displayed.	Between	enable	pulses,	the	counter	is	
reset	so	that	it	starts	at	zero	each	time	an	enable	pulse	occurs.	The	current	frequency	count	
is	stored	in	a	register	so	that	the	display	is	unaffected	by	the	resetting	of	the	counter.

seat beLt aLarm system
In	Figure	32,	an	AND	gate	is	used	in	a	simple	automobile	seat	belt	alarm	system	to	detect	
when	the	ignition	switch	is	on	and	the	seat	belt	is	unbuckled.	If	the	ignition	switch	is	on,	a	
HIgH	is	produced	on	input	A	of	the	AND	gate.	If	the	seat	belt	is	not	properly	buckled,	a	

s y s t e m  e X a m P L e  2
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Ignition
switch

Seat
belt

Ignition on = HIGH for 30 s

A

B
C

HIGH
LOW

HIGH
LOW

= On
= Off

= Unbuckled
= Buckled

Audible
alarm
circuit

Timer

HIGH activates
alarm.

fg03_01700
Figure 32 Simplified	seat	belt	alarm	system	using	an	AND	gate.

HIgH	is	produced	on	input	B	of	the	AND	gate.	Also,	when	the	ignition	switch	is	turned	on,	
a	timer	is	started	that	produces	a	HIgH	on	input	C	for	30	s.	If	all	three	conditions	exist—
that	is,	if	the	ignition	is	on	and	the	seat	belt	is	unbuckled	and	the	timer	is	running—the	
output	of	the	AND	gate	is	HIgH,	and	an	audible	alarm	is	energized	to	remind	the	driver.

4 tHe or gate
the or gate is another of the basic gates from which all logic functions are constructed. an 
or gate can have two or more inputs and performs what is known as logical addition.

after completing this section, you should be able to

•	 Identify	an	OR	gate	by	its	distinctive	shape	symbol	or	by	its	rectangular	outline	symbol
•	 Describe	the	operation	of	an	OR	gate
•	 Generate	the	truth	table	for	an	OR	gate	with	any	number	of	inputs
•	 Produce	a	timing	diagram	for	an	OR	gate	with	any	specified	input	waveforms
•	 Write	the	logic	expression	for	an	OR	gate	with	any	number	of	inputs
•	 Discuss	an	OR	gate	application

An or gate	has	two	or	more	inputs	and	one	output,	as	indicated	by	the	standard	logic	
symbols	in	Figure	33,	where	OR	gates	with	two	inputs	are	illustrated.	An	OR	gate	can	have	
any	number	of	inputs	greater	than	one.	Although	both	distinctive	shape	and	rectangular	out-
line	symbols	are	shown,	the	distinctive	shape	OR	gate	symbol	is	used	in	this	text.

an or gate can have 
more than two inputs.

A

B
X

(a) Distinctive shape

A

B
X

(b) Rectangular outline with the

≥ 1

OR (≥ 1) qualifying symbol

fg03_01800

Figure 33 standard logic symbols for the or gate 
showing two inputs (ansi/ieee std. 91-1984).

1. When	is	the	output	of	an	AND	gate	HIgH?

2. When	is	the	output	of	an	AND	gate	LOW?

3. Describe	the	truth	table	for	a	5-input	AND	gate.

section 3 cHecKuP
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operation of an or gate
An	OR	gate	produces	a	HIgH	on	the	output	when	any	of	the	inputs	is	HIgH.	The	output	is	
LOW	only	when	all	of	the	inputs	are	LOW.	Therefore,	an	OR	gate	determines	when	one	or	
more	of	its	inputs	are	HIgH	and	produces	a	HIgH	on	its	output	to	indicate	this	condition.	
The	inputs	of	the	2-input	OR	gate	in	Figure	33	are	labeled	A and B,	and	the	output	is	
labeled X.	The	operation	of	the	gate	can	be	stated	as	follows:

For a 2-input or gate, output X is HigH when either input A or input B is 
HigH, or when both A and B are HigH; X is LoW only when both A and B 
are LoW.

The	HIgH	level	is	the	active	or	asserted	output	level	for	the	OR	gate.

or gate truth table
The	operation	of	a	2-input	OR	gate	is	described	in	Table	9.	This	truth	table	can	be	expanded	
for	any	number	of	inputs;	but	regardless	of	the	number	of	inputs,	the	output	is	HIgH	when	
one	or	more	of	the	inputs	are	HIgH.

operation with Pulse inputs
Now	let’s	look	at	the	operation	of	an	OR	gate	with	pulse	wave-
form	inputs,	keeping	in	mind	its	logical	operation.	Again,	the	
important	 thing	 in	 the	analysis	of	gate	operation	with	pulse	
waveforms	 is	 the	 time	 relationship	 of	 all	 the	 waveforms	
involved.	For	example,	in	Figure	34,	inputs	A and B are both 
HIgH	(1)	during	time	interval	t1,	making	output	X	HIgH	(1).	
During time interval t2,	input	A	is	LOW	(0),	but	because	input	
B	is	HIgH	(1),	the	output	is	HIgH	(1).	Both	inputs	are	LOW	
(0)	during	time	interval	t3,	so	there	is	a	LOW	(0)	output	during	
this time. During time interval t4,	 the	 output	 is	 HIgH	 (1)	
because	input	A	is	HIgH	(1).

In	this	illustration,	we	have	applied	the	truth	table	opera-
tion	of	the	OR	gate	to	each	of	the	time	intervals	during	which	
the	 levels	 are	 nonchanging.	 Examples	 9	 through	 11	 further	
illustrate	OR	gate	operation	with	waveforms	on	the	inputs.

For an or gate, at least 
one HigH input produces 
a HigH output.

TABLE	9	 •	 truth 
table for a 2-input  
or gate.

inPuts outPut

A B X

0 0 0

0 1 1

1 0 1

1 1 1

1 = HIGH, 0 = LOW

e X a m P L e  9

If	the	two	input	waveforms,	A and B,	in	Figure	35	are	applied	to	the	OR	gate,	
what	is	the	resulting	output	waveform?

Input B

A

B
X

Input A

Output X

When either input or both inputs are HIGH,
the output is HIGH.

fg03_02100

Figure 35 

1A 0 0 1

1B 1 0 0

1X 1 0 1

t1 t2 t3 t4

A

B
X

fg03_02000
Figure 34 example of or gate operation with a timing 
diagram showing input and output time relationships.
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s o L u t i o n

The	output	waveform	X	of	a	2-input	OR	gate	is	HIgH	when	either	or	both	input	
waveforms	are	HIgH	as	shown	in	the	timing	diagram.	In	this	case,	both	input	
waveforms	are	never	HIgH	at	the	same	time.

r e L a t e d  P r o b L e m

Determine	 the	 output	 waveform	 and	 show	 the	 timing	 diagram	 if	 input	 A is 
changed	such	that	it	is	HIgH	from	the	beginning	of	the	existing	first	pulse	to	the	
end	of	the	existing	second	pulse.

s o L u t i o n

When	either	or	both	input	waveforms	are	HIgH,	the	output	is	HIgH	as	shown	by	
the	output	waveform	X in the timing diagram.

r e L a t e d  P r o b L e m

Determine	the	output	waveform	and	show	the	timing	diagram	if	the	middle	pulse	
of	input	A	is	replaced	by	a	LOW	level.

e X a m P L e  1 0

For	the	two	input	waveforms,	A and B,	in	Figure	36,	show	the	output	waveform	
with	its	proper	relation	to	the	inputs.

 B
Inputs

 A

Output

A

B
X

 X

fg03_02200
Figure 36 

 B

 A

 C

 X

A

C
XB

fg03_02300
Figure 37 

e X a m P L e  1 1

For	the	3-input	OR	gate	in	Figure	37,	determine	the	output	waveform	in	proper	
time	relation	to	the	inputs.

s o L u t i o n

The	output	is	HIgH	when	one	or	more	of	the	input	waveforms	are	HIgH	as	indi-
cated	by	the	output	waveform	X in the timing diagram.

r e L a t e d  P r o b L e m

Determine	the	output	waveform	and	show	the	timing	diagram	if	input	C	is	always	
LOW.
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Logic expressions for or gates
The	operation	of	a	2-input	OR	gate	can	be	expressed	as	follows:	If	one	input	variable	is	A,	if	
the	other	input	variable	is	B,	and	if	the	output	variable	is	X,	then	the	Boolean	expression	is

X = A + B

Figure	38(a)	shows	the	OR	gate	logic	symbol	with	two	input	variables	and	the	output	vari-
able labeled.

X = A + B
A

B

(a)

A

C
B

(b)

X = A + B + C
A

C

(c)

B

D
X = A + B + C  +  D

fg03_02400

Figure 38 boolean expressions for or gates with two, three, and four inputs.

tabLe 10  

A B A � B � X

0 0 0 + 0 = 0

0 1 0 + 1 = 1

1 0 1 + 0 = 1

1 1 1 + 1 = 1

To	extend	the	OR	expression	to	more	than	two	input	variables,	a	new	letter	is	used	
for	 each	 additional	 variable.	 For	 instance,	 the	 function	 of	 a	 3-input	 OR	 gate	 can	 be	
expressed	as	X = A + B + C.	The	expression	for	a	4-input	OR	gate	can	be	written	as	
X = A + B + C + D,	and	so	on.	Parts	(b)	and	(c)	of	Figure	38	show	OR	gates	with	three	
and	four	input	variables,	respectively.

OR	gate	operation	can	be	evaluated	by	using	the	Boolean	expressions	for	the	output	
X	by	substituting	all	possible	combinations	of	1	and	0	values	for	the	input	variables,	as	
shown	in	Table	10	for	a	2-input	OR	gate.	This	evaluation	shows	that	the	output	X of an OR 
gate	is	a	1	(HIgH)	when	any	one	or	more	of	the	inputs	are	1	(HIgH).	A	similar	analysis	
can	be	extended	to	OR	gates	with	any	number	of	input	variables.	

intrusion detection
A	simplified	portion	of	an	intrusion	detection	and	alarm	system	is	shown	in	Figure	39.	 
This	system	could	be	used	for	one	room	in	a	home—a	room	with	two	windows	and	a	door.	
The	sensors	are	magnetic	switches	that	produce	a	HIgH	output	when	open	and	a	LOW	

s y s t e m  e X a m P L e  3

Another	mask	operation	that	is	used	in	computer	programming	to	selectively	make	certain	bits	
in	a	data	byte	equal	to	1	(called	setting)	while	not	affecting	any	other	bit	is	done	with	the	OR	
operation.	A	mask	is	used	that	contains	a	1	in	any	position	where	a	data	bit	is	to	be	set.	For	
example,	if	you	want	to	force	the	sign	bit	in	an	8-bit	signed	number	to	equal	1,	but	leave	all	
other	bits	unchanged,	you	can	OR	the	data	byte	with	the	mask	10000000.

s y s t e m  n o t e

= Open
= Closed

HIGH
LOW

Open door/window
sensors

Alarm
circuit

HIGH activates
alarm.

fg03_02500

Figure 39 A	simplified	
intrusion detection system 
using an or gate.
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The term NAND	is	a	contraction	of	NOT-AND	and	implies	an	AND	function	with	a	
complemented	(inverted)	output.	The	standard	logic	symbol	for	a	2-input	NAND	gate	and	
its	equivalency	to	an	AND	gate	followed	by	an	inverter	are	shown	in	Figure	40(a),	where	
the	symbol	K	means	equivalent	to.	A	rectangular	outline	symbol	is	shown	in	part	(b).

the nand gate is the 
same as the and gate 
except the output is 
inverted.

operation of a nand gate
A nand gate	produces	a	LOW	output	only	when	all	the	inputs	are	HIgH.	When	any	of	
the	inputs	is	LOW,	the	output	will	be	HIgH.	For	the	specific	case	of	a	2-input	NAND	gate,	
as	shown	in	Figure	40	with	the	inputs	labeled	A and B	and	the	output	labeled	X,	the	opera-
tion	can	be	stated	as	follows:

For a 2-input nand gate, output X is LoW only when inputs A and B are 
HigH; X is HigH when either A or B is LoW, or when both A and B are LoW.

This	operation	is	opposite	that	of	the	AND	in	terms	of	the	output	level.	In	a	NAND	gate,	
the	LOW	level	(0)	is	the	active	or	asserted	output	level,	as	indicated	by	the	bubble	on	 
the	output.	Figure	41	illustrates	the	operation	of	a	2-input	NAND	gate	for	all	four	input	

output	when	closed.	As	long	as	the	windows	and	the	door	are	secured,	the	switches	are	
closed	and	all	three	of	the	OR	gate	inputs	are	LOW.	When	one	of	the	windows	or	the	door	
is	opened,	a	HIgH	is	produced	on	that	 input	 to	 the	OR	gate	and	the	gate	output	goes	
HIgH.	It	then	activates	and	latches	an	alarm	circuit	to	warn	of	the	intrusion.

5 tHe nand gate
the nand gate is a popular logic element because it can be used as a universal gate; that is, 
nand gates can be used in combination to perform the and, or, and inverter operations.

after completing this section, you should be able to

•	 Identify	a	NAND	gate	by	its	distinctive	shape	symbol	or	by	its	rectangular	outline	symbol
•	 Describe	the	operation	of	a	NAND	gate
•	 Develop	the	truth	table	for	a	NAND	gate	with	any	number	of	inputs
•	 Produce	a	timing	diagram	for	a	NAND	gate	with	any	specified	input	waveforms
•	 Write	the	logic	expression	for	a	NAND	gate	with	any	number	of	inputs
•	 Describe	NAND	gate	operation	in	terms	of	its	negative-OR	equivalent
•	 Discuss	NAND	gate	applications

1. When	is	the	output	of	an	OR	gate	HIgH?

2. When	is	the	output	of	an	OR	gate	LOW?

3. Describe	the	truth	table	for	a	3-input	OR	gate.

section 4 cHecKuP

A

B
X

A

B
X

A

B
X

(a) Distinctive shape, 2-input NAND gate and its (b) Rectangular outline, 2-input NAND

&

NOT/AND equivalent gate with polarity indicator

fg03_02600

Figure 40 standard nand 
gate logic symbols (ansi/ieee 
std. 91-1984).
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LOgIC	gATES	AND	gATE	COmBINATIONS

TABLE	11	 •	 truth 
table for a 2-input  
nand gate.

inPuts outPut

A B X

0 0 1

0 1 1

1 0 1

1 1 0

1 = HIGH, 0 = LOW.

combinations,	and	Table	11	is	the	truth	table	summarizing	the	logical	operation	of	the	
2-input	NAND	gate.

operation with Pulse inputs
Now	let’s	look	at	the	pulse	waveform	operation	of	a	NAND	gate.	Remember	from	the	
truth	table	that	the	only	time	a	LOW	output	occurs	is	when	all	of	the	inputs	are	HIgH.

s o L u t i o n

Output	waveform	X	is	LOW	only	during	the	four	time	intervals	when	both	input	
waveforms	A and B	are	HIgH	as	shown	in	the	timing	diagram.

r e L a t e d  P r o b L e m

Determine	the	output	waveform	and	show	the	timing	diagram	if	input	waveform	
B is inverted.

e X a m P L e  1 2

If	the	two	waveforms	A and B	shown	in	Figure	42	are	applied	to	the	NAND	gate	
inputs,	determine	the	resulting	output	waveform.

B

A

B
X

A

X

Bubble indicates
an active-LOW
output.

A and B are both HIGH during these
four time intervals. Therefore X is LOW.

fg03_02800

Figure 42 

e X a m P L e  1 3

Show	the	output	waveform	for	 the	3-input	NAND	gate	 in	Figure	43	with	 its	
proper	time	relationship	to	the	inputs.

B
A

C
X

A

X

B

C

fg03_02900

Figure 43 

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
HIGH (1)

HIGH (1)

LOW (0)
HIGH (1)

HIGH (1)

HIGH (1)
LOW (0)

fg03_02700

Figure 41 Operation	of	a	2-input	NAND	gate.	Open	file	F03-41	to	verify	
nand gate operation.

muLtisim
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negative-or equivaLent oPeration oF a nand gate Inher-
ent	in	a	NAND	gate’s	operation	is	the	fact	that	one	or	more	LOW	inputs	produce	a	HIgH	
output.	Table	11	shows	that	output	X	is	HIgH	(1)	when	any	of	the	inputs,	A and B,	is	LOW	
(0).	From	this	viewpoint,	a	NAND	gate	can	be	used	for	an	OR	operation	that	requires	one	
or	more	LOW	inputs	to	produce	a	HIgH	output.	This	aspect	of	NAND	operation	is	referred	
to as negative-or. The term negative	in	this	context	means	that	the	inputs	are	defined	to	
be	in	the	active	or	asserted	state	when	LOW.

For a 2-input nand gate performing a negative-or operation, output X is 
HigH when either input A or input B is LoW, or when both A and B are 
LoW.

When	a	NAND	gate	is	used	to	detect	one	or	more	LOWs	on	its	inputs	rather	
than	all	HIgHs,	it	is	performing	the	negative-OR	operation	and	is	represented	by	the	
standard	logic	symbol	shown	in	Figure	44.	Although	the	two	symbols	in	Figure	44	
represent	the	same	physical	gate,	they	serve	to	define	its	role	or	mode	of	operation	in	
a	particular	application.		

NAND Negative-OR

fg03_03000

Figure 44 standard symbols rep-
resenting the two equivalent 
 operations of a nand gate.

s o L u t i o n

The	output	waveform	X	is	LOW	only	when	all	three	input	waveforms	are	HIgH	
as	shown	in	the	timing	diagram.

r e L a t e d  P r o b L e m

Determine	the	output	waveform	and	show	the	timing	diagram	if	input	waveform	
A is inverted.

storage tanK HigH-LeveL detection
Two	tanks	are	used	to	store	certain	liquid	chemicals	that	are	required	in	a	manufacturing	
process.	Each	tank	has	a	sensor	that	detects	when	the	chemical	level	drops	to	25%	of	full.	
The	sensors	produce	a	HIgH	level	of	5	V	when	the	tanks	are	more	than	one-quarter	full.	

When	the	volume	of	chemical	in	a	tank	drops	to	one-quarter	
full,	the	sensor	puts	out	a	LOW	level	of	0	V.

A single green light-emitting diode (LED) on an indica-
tor	panel	show	when	both	 tanks	are	more	 than	one-quarter	
full.

Figure	45	shows	a	NAND	gate	with	its	two	inputs	con-
nected	to	the	tank	level	sensors	and	its	output	connected	to	the	
indicator	panel.	The	operation	can	be	stated	as	follows:	If	tank	
A and	tank	B	are	above	one-quarter	full,	the	LED	is	on.

As	long	as	both	sensor	outputs	are	HIgH	(5	V),	indicat-
ing	that	both	tanks	are	more	than	one-quarter	full,	the	NAND	
gate	output	is	LOW	(0	V).	The	green	LED	circuit	is	arranged	
so that a LOW voltage turns it on. The resistor limits the LED 
current.	The	system	can	be	modified	to	monitor	more	than	two	
tanks	by	increasing	the	number	of	NAND	gate	inputs	to	cor-
respond	to	the	number	of	tanks.

s y s t e m  e X a m P L e  4

Level sensor

HIGH

Level sensor

HIGH

Green light
indicates both
tanks are
greater than
1/4 full.

LOW

+V

Tank A

Tank B

fg03_03100

Figure 45 
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storage tanK LoW-LeveL  
detection
An	alternate	approach	to	System	Example	4	is	a	system	in	
which	a	red	LED	display	comes	on	when	at	least	one	of	the	
tanks	falls	to	the	quarter-full	level	rather	than	have	the	green	
LED	display	indicate	when	both	are	above	one	quarter.

Figure	46	shows	a	NAND	gate	operating	as	a	negative-
OR gate to detect the occurrence of at least one LOW on its 
inputs.	A	sensor	puts	out	a	LOW	voltage	if	the	volume	in	its	
tank	goes	to	one-quarter	full	or	less.	When	this	happens,	the	
gate	output	goes	HIgH.	The	red	LED	circuit	in	the	panel	is	
arranged	so	that	a	HIgH	voltage	turns	it	on.	The	operation	
can	be	stated	as	 follows:	 If	 tank	A or	 tank	B or both are 
below	one-quarter	full,	the	LED	is	on.

Notice	 that,	 in	 this	 system	example	and	 in	System	
Example	4,	the	same	2-input	NAND	gate	is	used,	but	a	dif-
ferent	gate	symbol	is	used	in	the	schematic,	illustrating	the	
different	way	in	which	the	NAND	and	equivalent	negative-
OR	operations	can	be	used.

Red light
indicates
one or both
tanks are less
than 1/4 full.

HIGH

LOW

HIGH

Tank A

Tank B

fg03_03200

Figure 46 

s y s t e m  e X a m P L e  5

e X a m P L e  1 4

For	the	4-input	NAND	gate	in	Figure	47,	operating	as	a	negative-OR	gate,	deter-
mine	the	output	with	respect	to	the	inputs.

A

C

D

X

B A
B
C
D

X

Bubbles indicate
active-LOW inputs.

fg03_03300

Figure 47 

s o L u t i o n

The	output	waveform	X	is	HIgH	any	time	an	input	waveform	is	LOW	as	shown	
in the timing diagram.

r e L a t e d  P r o b L e m

Determine	 the	output	waveform	 if	 input	waveform	A is inverted before it is 
applied	to	the	gate.
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the nor gate, like the nand gate, is a useful logic element because it can also be used as a uni-
versal gate; that is, nor gates can be used in combination to perform the and, or, and inverter 
operations.

after completing this section, you should be able to

•	 Identify	a	NOR	gate	by	its	distinctive	shape	symbol	or	by	its	rectangular	outline	symbol
•	 Describe	the	operation	of	a	NOR	gate
•	 Develop	the	truth	table	for	a	NOR	gate	with	any	number	of	inputs
•	 Produce	a	timing	diagram	for	a	NOR	gate	with	any	specified	input	waveforms
•	 Write	the	logic	expression	for	a	NOR	gate	with	any	number	of	inputs
•	 Describe	NOR	gate	operation	in	terms	of	its	negative-AND	equivalent
•	 Discuss	a	NOR	gate	application

6 tHe nor gate

The term NOR	 is	a	contraction	of	NOT-OR	and	implies	an	OR	function	with	an	
inverted	(complemented)	output.	The	standard	logic	symbol	for	a	2-input	NOR	gate	and	its	
equivalent	OR	gate	followed	by	an	inverter	are	shown	in	Figure	48(a).	A	rectangular	out-
line	symbol	is	shown	in	part	(b).

the nor is the same as 
the or except the output 
is inverted.

A

B
X

A

B
X

A

B
X

(a) Distinctive shape, 2-input NOR gate and its NOT/OR
      equivalent

(b) Rectangular outline, 2-input
NOR gate with polarity indicator

≥1

fg03_03400

Figure 48 standard nor gate logic symbols (ansi/ieee std. 91-1984).

Logic expressions for nand gates
The	Boolean	expression	for	the	output	of	a	2-input	NAND	gate	is

X = AB

This	expression	says	that	the	two	input	variables,	A and B,	are	first	ANDed	and	then	com-
plemented,	as	indicated	by	the	bar	over	the	AND	expression.	This	is	a	description	in	equa-
tion	form	of	the	operation	of	a	NAND	gate	with	two	inputs.	Evaluating	this	expression	for	
all	possible	values	of	the	two	input	variables,	you	get	the	results	shown	in	Table	12.

Once	an	expression	is	determined	for	a	given	logic	function,	that	function	can	be	evalu-
ated	for	all	possible	values	of	the	variables.	The	evaluation	tells	you	exactly	what	the	output	
of	the	logic	circuit	is	for	each	of	the	input	conditions,	and	it	therefore	gives	you	a	complete	
description	of	the	circuit’s	logic	operation.	The	NAND	expression	can	be	extended	to	more	
than	two	input	variables	by	including	additional	letters	to	represent	the	other	variables.

a bar over a variable or 
variables indicates an 
inversion.

tabLe 12  

A B AB � X

0 0 0 # 0 = 0 = 1

0 1 0 # 1 = 0 = 1

1 0 1 # 0 = 0 = 1

1 1 1 # 1 = 1 = 0

1. When	is	the	output	of	a	NAND	gate	LOW?

2. When	is	the	output	of	a	NAND	gate	HIgH?

3. Describe	the	functional	differences	between	a	NAND	gate	and	
a	negative-OR	gate.	Do	they	both	have	the	same	truth	table?

4. Write	the	output	expression	for	a	NAND	gate	with	inputs	A,	
B,	and	C.

section 5 cHecKuP
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inPuts outPut
A B X

0 0 1

0 1 0

1 0 0

1 1 0

1 = HIGH, 0 = LOW.

LOgIC	gATES	AND	gATE	COmBINATIONS

operation of a nor gate
A nor gate	produces	a	LOW	output	when	any	of	its	inputs	is	HIgH.	Only	when	all	of	its	
inputs	are	LOW	is	the	output	HIgH.	For	the	specific	case	of	a	2-input	NOR	gate,	as	shown	
in	Figure	48	with	the	inputs	labeled	A and B	and	the	output	labeled	X,	the	operation	can	be	
stated	as	follows:

For a 2-input nor gate, output X is LoW when either input A or input B is 
HigH, or when both A and B are HigH; X is HigH only when both A and B 
are LoW.

This	operation	results	in	an	output	level	opposite	that	of	the	OR	gate.	In	a	NOR	gate,	the	
LOW	output	is	the	active	or	asserted	output	level	as	indicated	by	the	bubble	on	the	output.	
Figure	49	illustrates	the	operation	of	a	2-input	NOR	gate	for	all	four	possible	input	combi-
nations,	and	Table	13	is	the	truth	table	for	a	2-input	NOR	gate.

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

HIGH (1)

HIGH (1)
LOW (0)

fg03_03500
Figure 49 operation of a 2-input nor	gate.	Open	file	F03-49	to	verify	nor 
gate operation.

operation with Pulse inputs
The	next	two	examples	illustrate	the	operation	of	a	NOR	gate	with	pulse	waveform	inputs.	
Again,	as	with	the	other	types	of	gates,	we	will	simply	follow	the	truth	table	operation	to	
determine	the	output	waveforms	in	the	proper	time	relationship	to	the	inputs.

e X a m P L e  1 5

If	the	two	waveforms	shown	in	Figure	50	are	applied	to	a	NOR	gate,	what	is	the	
resulting	output	waveform?

s o L u t i o n

Whenever	any	input	of	the	NOR	gate	is	HIgH,	the	output	is	LOW	as	shown	by	
the	output	waveform	X in the timing diagram.

r e L a t e d  P r o b L e m

Invert	input	B	and	determine	the	output	waveform	in	relation	to	the	inputs.

A

B

X

A

B
X

fg03_03600

Figure 50 

TABLE	13	 •	 truth 
table for a 2-input  
nor gate.

muLtisim
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LOgIC	gATES	AND	gATE	COmBINATIONS

negative-and equivaLent oF tHe nor gate A	NOR	gate,	like	
the	NAND,	has	another	aspect	of	its	operation	that	is	inherent	in	the	way	it	logically	func-
tions.	Table	13	shows	that	a	HIgH	is	produced	on	the	gate	output	only	when	all	of	the	
inputs	are	LOW.	From	this	viewpoint,	a	NOR	gate	can	be	used	for	an	AND	operation	that	
requires	all	LOW	inputs	to	produce	a	HIgH	output.	This	aspect	of	NOR	operation	is	called	
negative-and. The term negative	in	this	context	means	that	the	inputs	are	defined	to	be	in	
the	active	or	asserted	state	when	LOW.

For a 2-input nor gate performing a negative-and operation, output X is 
HigH only when both inputs A and B are LoW.

When	a	NOR	gate	is	used	to	detect	all	LOWs	on	its	inputs	rather	than	one	or	
more	HIgHs,	it	is	performing	the	negative-AND	operation	and	is	represented	by	the	
standard	symbol	in	Figure	52.	Remember	that	the	two	symbols	in	Figure	52	repre-
sent	the	same	physical	gate	and	serve	only	to	distinguish	between	the	two	modes	of	
its	operation.	

NOR Negative-AND

fg03_03800

Figure 52 standard symbols 
representing the two equivalent  
operations of a nor gate.

Landing gear status monitor
As	part	of	an	aircraft’s	functional	monitoring	system,	a	landing	gear	status	monitor	is	
required	to	indicate	the	status	of	the	landing	gears	prior	to	landing.	A	green	LED	display	
turns	on	if	all	three	gears	are	properly	extended	when	the	“gear	down”	switch	has	been	
activated	in	preparation	for	landing.	A	red	LED	display	turns	on	if	any	of	the	gears	fail	to	
extend	properly	prior	to	landing.	When	a	landing	gear	is	extended,	its	sensor	produces	a	
LOW	voltage.	When	a	landing	gear	is	retracted,	its	sensor	produces	a	HIgH	voltage.

Power	 is	 applied	 to	 the	 circuit	 only	 when	 the	 “gear	 down”	 switch	 is	 activated.	 
A	NOR	gate	is	used	for	each	of	the	two	requirements	as	shown	in	Figure	53.	One	NOR	
gate	operates	as	a	negative-AND	to	detect	a	LOW	from	each	of	the	three	landing	gear	sen-
sors.	When	all	 three	of	 the	gate	 inputs	are	LOW,	the	 three	 landing	gears	are	properly	
extended	and	the	resulting	HIgH	output	from	the	negative-AND	gate	turns	on	the	green	
LED	display.	The	other	NOR	gate	operates	as	a	NOR	to	detect	 if	one	or	more	of	 the	

s y s t e m  e X a m P L e  6

e X a m P L e  1 6

Show	the	output	waveform	for	the	3-input	NOR	gate	in	Figure	51	with	the	proper	
time	relation	to	the	inputs.

A

X

A

C
XB

C

B

fg03_03700

Figure 51 

s o L u t i o n

The	output	X	is	LOW	when	any	input	is	HIgH	as	shown	by	the	output	waveform	
X in the timing diagram.

r e L a t e d  P r o b L e m

With the B and C	inputs	inverted,	determine	the	output	and	show	the	timing	diagram.
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Logic expressions for nor gates
The	Boolean	expression	for	the	output	of	a	2-input	NOR	gate	can	be	written	as

X = A + B

This	equation	says	that	the	two	input	variables	are	first	ORed	and	then	complemented,	as	
indicated	by	the	bar	over	the	OR	expression.	Evaluating	this	expression,	you	get	the	results	
shown	in	Table	14.	The	NOR	expression	can	be	extended	to	more	than	two	input	variables	
by	including	additional	letters	to	represent	the	other	variables.

h a n d s  o n  t i p
When driving a load such as an 
LED	with	a	logic	gate,	consult	
the	manufacturer’s	data	sheet	
for	maximum	drive	capabilities	
(output	current).	A	regular	IC	
logic	gate	may	not	be	capable	
of	handling	the	current	required	
by	certain	loads	such	as	some	
LEDs.	Logic	gates	with	a	
buffered	output,	such	as	an	
open-collector	(OC)	or	open-
drain	(OD)	output,	are	
available.	The	output	current	
capability	of	typical	logic	gates	
is limited to the mA or 
relatively	low	mA	range.

e X a m P L e  1 7

For	the	4-input	NOR	gate	operating	as	a	negative-AND	in	Figure	54,	determine	
the	output	relative	to	the	inputs.

B

D
X

A

C

A

B

C

D

X

fg03_04100

Figure 54 

s o L u t i o n

Any	time	all	of	the	input	waveforms	are	LOW,	the	output	is	HIgH	as	shown	by	
output	waveform	X in the timing diagram.

r e L a t e d  P r o b L e m

Determine	the	output	with	input	D	inverted	and	show	the	timing	diagram.

tabLe 14  

A B A + B � X

0 0 0 + 0 = 0 = 1

0 1 0 + 1 = 1 = 0

1 0 1 + 0 = 1 = 0

1 1 1 + 1 = 1 = 0

	landing	gears	remain	retracted	when	the	“gear	down”	switch	is	activated.	When	one	or	
more	of	the	landing	gears	remain	retracted,	the	resulting	HIgH	from	the	sensor	is	detected	
by	the	NOR	gate,	which	produces	a	LOW	output	to	turn	on	the	red	LED	warning	display.

+V

Red LED
Gear retracted

Green LED
All gear extended

Landing gear sensors
Extended = LOW
Retracted = HIGH

fg03_04000

Figure 53 
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the exclusive-or gate
Standard	symbols	for	an	exclusive-OR	(XOR	for	short)	gate	are	shown	in	Figure	55.	The	
XOR	gate	has	only	two	inputs.	The	exclusive-or gate	performs	modulo-2	addition.	The	
output	of	an	exclusive-OR	gate	is	HIgH	only	when	the	two	inputs	are	at	opposite	logic	
levels.	This	operation	 can	be	 stated	 as	 follows	with	 reference	 to	 inputs	A and B and 
output	X:

For an exclusive-or gate, output X is HigH when input A is LoW and input 
B is HigH, or when input A is HigH and input B is LoW; X is LoW when A 
and B are both HigH or both LoW.

A
B

X
A
B

X
= 1

(b) Rectangular outline(a) Distinctive shape

fg03_04200
Figure 55 standard logic symbols for the exclusive-or 
gate.

For an exclusive-or gate, 
opposite inputs make the 
output HigH.

Exclusive-OR	gates	connected	to	form	an	adder	circuit	allow	a	computer	to	perform	addition,	
subtraction,	multiplication,	and	division	in	its	Arithmetic	Logic	Unit	(ALU).	An	exclusive-OR	
gate	combines	basic	AND,	OR,	and	NOT	logic.

s y s t e m  n o t e

exclusive-or and exclusive-nor gates are formed by a combination of and gates, or gates, 
and inverters. However, because of their fundamental importance in many applications, these 
gates are often treated as basic logic elements with their own unique symbols.

after completing this section, you should be able to

•	 Identify	the	exclusive-OR	and	exclusive-NOR	gates	by	their	distinctive	shape	symbols	or	
by their rectangular outline symbols

•	 Describe	the	operations	of	exclusive-OR	and	exclusive-NOR	gates
•	 Show	the	truth	tables	for	exclusive-OR	and	exclusive-NOR	gates
•	 Produce	a	timing	diagram	for	an	exclusive-OR	or	exclusive-NOR	gate	with	any	specified	

input waveforms

7 tHe eXcLusive-or and  
eXcLusive-nor gates

1. When	is	the	output	of	a	NOR	gate	HIgH?

2. When	is	the	output	of	a	NOR	gate	LOW?

3. Describe	the	functional	difference	between	a	NOR	gate	and	a	
negative-AND	gate.	Do	they	both	have	the	same	truth	table?

4. Write	the	output	expression	for	a	3-input	NOR	gate	with	input	
 variables A,	B,	and	C.

section 6 cHecKuP
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the exclusive-nor gate
Standard	symbols	for	an	exclusive-nor	(XNOR)	gate	are	shown	in	Figure	58.	Like	the	
XOR	gate,	an	XNOR	has	only	two	inputs.	The	bubble	on	the	output	of	the	XNOR	symbol	
indicates	that	its	output	is	opposite	that	of	the	XOR	gate.	When	the	two	input	logic	levels	
are	opposite,	the	output	of	the	exclusive-NOR	gate	is	LOW.	The	operation	can	be	stated	as	
follows	(A and B	are	inputs,	X	is	the	output):

For an exclusive-nor gate, output X is LoW when input A is LoW and input 
B is HigH, or when A is HigH and B is LoW; X is HigH when A and B are 
both HigH or both LoW.

The	four	possible	input	combinations	and	the	resulting	outputs	for	an	XOR	gate	are	
illustrated	in	Figure	56.	The	HIgH	level	is	the	active	or	asserted	output	level	and	occurs	
only	when	the	inputs	are	at	opposite	levels.	The	operation	of	an	XOR	gate	is	summarized	
in	the	truth	table	shown	in	Table	15.	

TABLE	15	 •	 truth 
table for an exclusive- 
or gate.

inPuts outPut

A B X

0 0 0

0 1 1

1 0 1

1 1 0

A
B

X
A
B

X
= 1

(b) Rectangular outline(a) Distinctive shape

fg03_04500

Figure 58 standard logic symbols for the 
 exclusive-nor gate.

The	four	possible	input	combinations	and	the	resulting	outputs	for	an	XNOR	gate	are	
shown	in	Figure	59.	The	operation	of	an	XNOR	gate	is	summarized	in	Table	16.	Notice	
that	the	output	is	HIgH	when	the	same	level	is	on	both	inputs.

s y s t e m  e X a m P L e  7

circuit FauLt detection
A	certain	system	contains	two	identical	circuits	operating	in	parallel.	As	long	as	both	are	
operating	properly,	the	outputs	of	both	circuits	are	always	the	same.	If	one	of	the	circuits	
fails,	the	outputs	will	be	at	opposite	levels	at	some	time.	This	
method is called redundancy.

The	outputs	of	the	circuits	are	connected	to	the	inputs	of	
an	XOR	gate	as	shown	in	Figure	57.	A	failure	in	either	one	of	
the	circuits	produces	differing	outputs,	which	cause	the	XOR	
inputs	 to	be	 at	 opposite	 levels.	This	 condition	produces	 a	
HIgH	on	the	output	of	the	XOR	gate,	indicating	a	failure	in	
one of the circuits.

HIGH

LOW
HIGH (indicates failure)

Circuit A

Circuit B

fg03_04400

Figure 57 

LOW (0)

LOW (0)

LOW (0)

HIGH (1)

HIGH (1)

LOW (0)

HIGH (1)

HIGH (1)

HIGH (1)

fg03_05600

LOW (0) LOW (0)

LOW (0)

Figure 56 All	possible	logic	levels	for	an	exclusive-OR	gate.	Open	file		F03-56	
to verify Xor gate operation.

muLtisim
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Logic expressions for the Xor  
and Xnor gates
The	Boolean	expression	for	an	exclusive-OR	gate	is

X = A � B

and	the	expression	for	an	exclusive-NOR	gate	is

X = A � B

Expressions	for	both	the	XOR	and	XNOR	gates	can	also	be	written	in	terms	of	AND,	OR,	
and	NOT;	for	the	XOR	gate,

X = AB + AB

and	for	the	XNOR	gate,

X = AB + AB

operation with Pulse inputs
As	we	have	done	with	the	other	gates,	let’s	examine	the	operation	of	XOR	and	XNOR	
gates	with	pulse	waveform	inputs.	As	before,	we	apply	the	truth	table	operation	during	
each	distinct	time	interval	of	the	pulse	waveform	inputs,	as	illustrated	in	Figure	60	for	an	
XOR	gate.	You	can	see	that	the	input	waveforms	A and B	are	at	opposite	levels	during	time	
intervals t2 and t4.	Therefore,	the	output	X	is	HIgH	during	these	two	times.	Since	both	
inputs	are	at	the	same	level,	either	both	HIgH	or	both	LOW,	during	time	intervals	t1 and 
t3,	the	output	is	LOW	during	those	times	as	shown	in	the	timing	diagram.

A
B

X

A

B

X

1 0 0 1

1 1 0 0

0 1 0 1

t1 t2 t3 t4

fg03_04700

Figure 60 example of exclusive-or gate operation with 
pulse waveform inputs.

e X a m P L e  1 8

Determine	the	output	waveforms	for	the	XOR	gate	and	for	the	XNOR	gate,	given	
the	input	waveforms,	A and B,	in	Figure	61.

TABLE	16	 •	 truth 
table for an exclusive- 
nor gate.

inPuts outPut

A B X

0 0 1

0 1 0

1 0 0

1 1 1

LOW (0)

LOW (0)
HIGH (1)

LOW (0)

HIGH (1)
LOW (0)

HIGH (1)

LOW (0)
LOW (0)

HIGH (1)

HIGH (1)
HIGH (1)

fg03_04600

Figure 59 All	possible	logic	levels	for	an	exclusive-NOR	gate.	Open	file	
F03-59 to verify Xnor gate operation.

muLtisim
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the Xor gate as an adder
An	exclusive-OR	gate	can	be	used	as	a	two-bit	modulo-2	adder.	The	basic	rules	for	binary	
addition	are	as	follows:	0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. An exami-
nation	of	the	truth	table	for	an	XOR	gate	shows	that	its	output	is	the	binary	sum	of	the	two	
input	bits.	In	the	case	where	the	inputs	are	both	1s,	the	output	is	the	sum	0,	but	you	lose	the	
carry	of	1.	Later	you	will	see	how	XOR	gates	are	combined	to	make	complete	adding	cir-
cuits.	Table	17	illustrates	an	XOR	gate	used	as	a	modulo-2	adder.

s o L u t i o n

The	output	waveforms	are	shown	in	Figure	61.	Notice	that	the	XOR	output	is	
HIgH	only	when	both	inputs	are	at	opposite	levels.	Notice	that	the	XNOR	output	
is	HIgH	only	when	both	inputs	are	the	same.

r e L a t e d  P r o b L e m

Determine	 the	 output	 waveforms	 if	 the	 two	 input	 waveforms,	 A and B,	 are	
inverted.

INPUT BITS         OUTPUT (SUM)

A B

0

0

1

1

0

1

0

1

0

1

1

0 (without  
the 1 carry bit)

tb03_01300

TABLE	17	 •	 an Xor gate used 
to add two bits.

1. When	is	the	output	of	an	XOR	gate	HIgH?

2. When	is	the	output	of	an	XNOR	gate	HIgH?

3. How	can	you	use	an	XOR	gate	to	detect	when	two	bits	are	
different?

section 7 cHecKuP

A

B

XOR

XNOR

A
B

fg03_04800

Figure 61 
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ProPagation deLay time This	parameter	is	a	result	of	the	limitation	on	
switching	speed	or	frequency	at	which	a	logic	circuit	can	operate.	The	terms	low speed and 
high speed,	applied	to	logic	circuits,	refer	to	the	propagation	delay	time.	The	shorter	the	
propagation	delay,	the	higher	the	speed	of	the	circuit	and	the	higher	the	frequency	at	which	
it	can	operate.

Propagation delay time, tP,	of	a	logic	gate	is	the	time	interval	between	the	transition	
of	an	input	pulse	and	the	occurrence	of	the	resulting	transition	of	the	output	pulse.	Two	
different	measurements	of	propagation	delay	time	are	associated	with	a	logic	gate	and	
apply	to	all	the	types	of	basic	gates:

•	 tPHL: The	time	between	a	specified	reference	point	on	the	input	pulse	and	a	corre-
sponding	reference	point	on	the	resulting	output	pulse,	with	the	output	changing	from	
the HIGH level to the LOW level (HL).

•	 tPLH: The	time	between	a	specified	reference	point	on	the	input	pulse	and	a	corre-
sponding	reference	point	on	the	resulting	output	pulse,	with	the	output	changing	from	
the LOW level to the HIGH level (LH).

Several	things	define	the	performance	of	a	logic	circuit.	These	performance	characteristics	are	
the switching speed measured in terms of the propagation delay time, the power dissipation, 
the fan-out or drive capability, the speed-power product, the dc supply voltage, and the input/
output logic levels. two major types of ic logic circuit families, cmos and bipolar (ttL), will 
be referenced in this section.

after completing this section, you should be able to

•	 Define	propagation delay time

•	 Define	power dissipation

•	 Define	fan-out

•	 Define	unit load

•	 Define	speed-power product

8 gate PerFormance  
cHaracteristics and Parameters

High-speed logic has a 
short propagation delay 
time.

Input Output

tPHL tPHL

50%

50%

Input

H

L

Output

H

L

(a) (b)

fg03_05200

Figure 62 

e X a m P L e  1 9

Show	the	propagation	delay	times	of	the	inverter	in	Figure	62(a).

s o L u t i o n

The	propagation	delay	times,	tPHL and tPLH,	are	indicated	in	part	(b)	of	the	figure.	
In	this	case,	the	delays	are	measured	between	the	50%	points	of	the	corresponding	
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dc suPPLy voLtage (VCC) The	typical	dc	supply	voltage	for	CmOS	logic	is	
either	5	V,	3.3	V,	2.5	V,	or	1.8	V,	depending	on	the	category.	An	advantage	of	CmOS	is	
that	the	supply	voltages	can	vary	over	a	wider	range	than	for	bipolar	logic.	Propagation	
delay	time	and	power	dissipation	can	be	affected	by	variation	in	supply	voltage.	For	exam-
ple,	the	5	V	CmOS	can	tolerate	supply	variations	from	2	V	to	6	V	and	still	operate	prop-
erly	although	propagation	delay	time	and	power	dissipation	are	significantly	affected.	The	
3.3	V	CmOS	can	operate	with	supply	voltages	from	2	V	to	3.6	V.	The	typical	dc	supply	
voltage	for	bipolar	logic	is	5.0	V	with	a	minimum	of	4.5	V	and	a	maximum	of	5.5	V.

PoWer dissiPation The power dissipation, PD,	of	a	logic	gate	is	the	product	
of	the	dc	supply	voltage	and	the	average	supply	current.	Normally,	the	supply	current	
when	the	gate	output	is	LOW	is	greater	than	when	the	gate	output	is	HIgH.	The	manufac-
turer’s	data	sheet	usually	designates	the	supply	current	for	the	LOW	output	state	as	ICCL 
and for the HIGH state as ICCH.	The	average	supply	current	is	determined	based	on	a	50%	
duty	cycle	(output	LOW	half	the	time	and	HIgH	half	the	time),	so	the	average	power	dis-
sipation	of	a	logic	gate	is

 Pd � Vcc a
IccH � IccL

2
b  (7)

CmOS	gates	have	very	low	power	dissipations	compared	to	the	bipolar	family.	How-
ever,	the	power	dissipation	of	CmOS	is	dependent	on	the	frequency	of	operation.	At	zero	
frequency	the	quiescent	power	is	typically	in	the	microwatt/gate	range,	and	at	the	maxi-
mum	operating	frequency	it	can	be	in	the	low	milliwatt	range;	therefore,	power	is	some-
times	specified	at	a	given	frequency.

inPut and outPut Logic LeveLs VIL	is	the	LOW	level	input	voltage	for	
a	logic	gate,	and	VIH	is	the	HIgH	level	input	voltage.	The	5	V	CmOS	accepts	a	maximum	
voltage	of	1.5	V	as	VIL	and	a	minimum	voltage	of	3.5	V	as	VIH.	Bipolar	logic	accepts	a	
maximum	voltage	of	0.8	V	as	VIL	and	a	minimum	voltage	of	2	V	as	VIH.

VOL	is	the	LOW	level	output	voltage	and	VOH	is	the	HIgH	level	output	voltage.	For	
5	V	CmOS,	the	maximum	VOL	is	0.33	V	and	the	minimum	VOH	is	4.4	V.	For	bipolar	logic,	
the maximum VOL	is	0.4	V	and	the	minimum	VOH	is	2.4	V.	All	values	depend	on	operating	
conditions	as	specified	on	the	data	sheet	for	the	specific	device.

sPeed-PoWer Product (sPP) This	parameter	(speed-power product) can 
be	used	as	a	measure	of	the	performance	of	a	logic	circuit	taking	into	account	the	propaga-
tion	delay	time	and	the	power	dissipation.	It	is	especially	useful	for	comparing	the	various	
logic	gate	series	within	the	CmOS	and	bipolar	families	or	for	comparing	a	CmOS	gate	to	
a TTL gate.

The	SPP	of	a	logic	circuit	is	the	product	of	the	propagation	delay	time	and	the	power	
dissipation	and	is	expressed	in	joules	(J),	which	is	the	unit	of	energy.	The	formula	is

 SPP � tpPd (8)

edges	of	the	input	and	output	pulses.	The	values	of	tPHL and tPLH are not necessar-
ily	equal	but	in	many	cases	they	are	the	same.

r e L a t e d  P r o b L e m

One	 type	of	 logic	gate	has	a	specified	maximum	 tPLH and tPHL	of	10	ns.	For	
another	 type	of	gate	 the	value	 is	4	ns.	Which	gate	can	operate	at	 the	highest	 
frequency?

a lower power dissipation 
means less current from 
the dc supply.
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Fan-out and Loading The fan-out of a logic gate is the maximum number of 
inputs	of	the	same	series	in	an	IC	family	that	can	be	connected	to	a	gate’s	output	and	still	
maintain	the	output	voltage	levels	within	specified	limits.	Fan-out	is	a	significant	parame-
ter	only	for	bipolar	logic	because	of	the	type	of	circuit	technology.	Since	very	high	imped-
ances	are	associated	with	CmOS	circuits,	the	fan-out	is	very	high	but	depends	on	frequency	
because	of	capacitive	effects.

Fan-out	is	specified	in	terms	of	unit loads.	A	unit	load	for	a	logic	gate	equals	one	
input	to	a	like	circuit.	For	example,	if	the	current	from	a	LOW	input	(IIL) of a certain gate 
is	0.4	mA	and	the	current	that	a	LOW	output	(IOL)	can	accept	is	8.0	mA,	the	number	of	
unit loads that the gate can drive in the LOW state is

Unit loads =
IOL

IIL
=

8.0 mA

0.4 mA
= 20

Figure	63	shows	a	logic	gate	driving	a	number	of	other	gates	of	the	same	circuit	tech-
nology,	where	the	number	of	gates	depends	on	the	particular	circuit	technology.	For	exam-
ple,	the	maximum	number	of	gate	inputs	(unit	loads)	that	a	certain	series	bipolar	gate	can	
drive	is	20.

e X a m P L e  2 0

A	certain	gate	has	a	propagation	delay	of	5	ns	and	ICCH = 1 mA and ICCL = 2.5 mA 
with	a	dc	supply	voltage	of	5	V.	Determine	the	speed-power	product.

s o L u t i o n

 PD = VCC ¢
ICCH + ICCL

2
≤ = 5 V ¢ 1 mA + 2.5 mA

2
≤ = 5 V(1.75 mA)

 = 8.75 mW

 SPP = (5 ns) (8.75 mW) = 43.75 pj

r e L a t e d  P r o b L e m

If	the	propagation	delay	of	a	gate	is	15	ns	and	its	SPP	is	150	pJ,	what	is	its	aver-
age	power	dissipation?

a higher fan-out means 
that a gate output can be 
connected to more gate 
inputs.

1. Which	IC	logic	technology	generally	has	the	lowest	power	
dissipation?

2. A	positive	pulse	is	applied	to	an	inverter	input.	The	time	from	
the	leading	edge	of	the	input	to	the	leading	edge	of	the	output	is	
10	ns.	The	time	from	the	trailing	edge	of	the	input	to	the	trailing	
edge	of	the	output	is	8	ns.	What	are	the	values	of	tPLH and tPHL?

3. A	certain	gate	has	a	propagation	delay	time	of	6	ns	and	a	power	
dissipation	of	3	mW.	Determine	the	speed-power	product?

4. Define	ICCL and ICCH.

5. Define	VIL and VIH.

6. Define	VOL and VOH.

section 8 cHecKuP

Driving gate

1

2

20

Load gate

fg03_05300

Figure 63 the nand gate output 
fans out to a maximum number of 
nand gates of the same type.
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basic concept of the and array
most	types	of	PLDs	use	some	form	of	and array.	Basically,	this	array	consists	of	AND	
gates	and	a	matrix	of	interconnections	with	programmable	links	at	each	cross	point,	as	
shown	in	Figure	64(a).	The	purpose	of	the	programmable	links	is	to	either	make	or	break	a	
connection	between	a	row	line	and	a	column	line	in	the	interconnection	matrix.	For	each	
input	to	an	AND	gate,	only	one	programmable	link	is	left	intact	in	order	to	connect	the	
desired	variable	 to	 the	gate	 input.	Figure	64(b)	 illustrates	an	array	after	 it	has	been	
programmed.

in this section, the basic concept of the programmable and array, which forms the basis for 
most programmable logic, is discussed, and the major process technologies are covered. a 
programmable	logic	device	(PLD)	is	one	that	does	not	initially	have	a	fixed-logic	function	but	
that can be programmed to implement just about any logic design. as you have learned, two 
types of PLd are the sPLd and cPLd. in addition to the PLd, the other major category of 
programmable logic is the FPga. For simplicity, all of these devices will be referred to as 
PLds. also, some important concepts in programming are discussed.

after completing this section, you should be able to

•	 Describe	the	concept	of	a	programmable	AND	array
•	 Discuss	various	process	technologies
•	 Discuss	downloading	a	design	to	a	programmable	logic	device
•	 Discuss	text	entry	and	graphic	entry	as	two	methods	for	programmable	logic	design
•	 Explain	in-system	programming
•	 Write	simple	VHDL	and	Verilog	program	code	for	logic	gates

9 ProgrammabLe Logic

BBAA

X1

X2

X3

BBAA

X1 = AB

X2 = AB

X3 = AB

(b) Programmed(a) Unprogrammed

Programmable link

fg03_06200

Figure 64 basic concept of a programmable and array.

e X a m P L e  2 1

Show	the	AND	array	 in	Figure	64(a)	programmed	for	 the	 following	outputs:	
X1 = AB, X2 = AB, and X3 = A B

s o L u t i o n

See	Figure	65.
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Programmable Link Process technologies
Several	different	process	technologies	are	used	for	programmable	links	in	PLDs.

Fuse tecHnoLogy This	was	the	original	programmable	link	technology.	It	is	
still	used	in	some	SPLDs.	The	fuse	is	a	metal	link	that	connects	a	row	and	a	column	in	the	

interconnection	matrix.	Before	programming,	 there	 is	 a	
fused	connection	at	each	intersection.	To	program	a	device,	
the	selected	fuses	are	opened	by	passing	a	current	through	
them	sufficient	to	“blow”	the	fuse	and	break	the	connec-
tion.	 The	 intact	 fuses	 remain	 and	 provide	 a	 connection	
between	the	rows	and	columns.	The	fuse	link	is	illustrated	
in	Figure	66.	Programmable	 logic	devices	 that	use	 fuse	
technology	are	one-time	programmable	(otP).

antiFuse tecHnoLogy An antifuse	programmable	link	is	the	opposite	of	a	
fuse	link.	Instead	of	breaking	the	connection,	a	connection	is	made	during	programming.	
An	antifuse	starts	out	as	an	open	circuit	whereas	 the	fuse	starts	out	as	a	short	circuit.	
Before	programming,	there	are	no	connections	between	the	rows	and	columns	in	the	inter-
connection	matrix.	An	antifuse	is	basically	two	conductors	separated	by	an	insulator.	To	
program	a	device	with	antifuse	technology,	a	programmer	tool	applies	a	sufficient	voltage	
across	selected	antifuses	to	break	down	the	insulation	between	the	two	conductive	materi-
als,	causing	the	insulator	to	become	a	low-resistance	link.	The	antifuse	link	is	illustrated	in	
Figure	67.	An	antifuse	device	is	also	a	one-time	programmable	(OTP)	device.

BBAA

X1

X2

X3

fg03_06300

Figure 65 

r e L a t e d  P r o b L e m

How	many	rows,	columns,	and	AND	gate	inputs	are	required	for	three	input	vari-
ables	in	a	3-AND	gate	array?

(a) Fuse intact before
programming

(b) Programming
current

(c) Fuse open after
programming

fg03_06400

Figure 66 the programmable fuse link.

(a) Antifuse is open before
programming.

Contacts

Insulator

(b) Programming voltage
breaks down insulation
layer to create contact.

+

(c) Antifuse is effectively
shorted after programming.

–

fg03_06500

Figure 67 the programmable antifuse link.
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eProm tecHnoLogy In	certain	programmable	logic	devices,	the	programma-
ble	links	are	similar	to	the	memory	cells	in	eProms	(electrically	programmable	read-
only	memories).	This	type	of	PLD	is	programmed	using	a	special	tool	known	as	a	device	
programmer.	The	device	is	inserted	into	the	programmer,	which	is	connected	to	a	compu-
ter	running	the	programming	software.	most	EPROm-based	PLDs	are	one-time	program-
mable	(OTP).	However,	those	with	windowed	packages	can	be	erased	with	UV	(ultraviolet)	
light	and	reprogrammed	using	a	standard	PLD	programming	fixture.	EPROm	process	
technology	uses	a	special	type	of	mOS	transistor,	known	as	a	floating-gate	transistor,	as	the	
programmable	link.	The	floating-gate	device	utilizes	a	process	called	Fowler-Nordheim	
tunneling	to	place	electrons	in	the	floating-gate	structure.

In	a	programmable	AND	array,	the	floating-gate	transistor	acts	as	a	switch	to	connect	
the	row	line	to	either	a	HIgH	or	a	LOW,	depending	on	the	input	variable.	For	input	vari-
ables	that	are	not	used,	the	transistor	is	programmed	to	be	permanently	off	(open).	Figure	
68	shows	one	AND	gate	in	a	simple	array.	Variable	A controls the state of the transistor in 
the	first	column,	and	variable	B controls the transistor in the third column. When a transis-
tor is off,	like	an	open	switch,	the	input	line	to	the	AND	gate	is	at	+V (HIGH). When a 
transistor is on,	like	a	closed	switch,	the	input	line	is	connected	to	ground	(LOW).	When	
variable A or B	is	0	(LOW),	the	transistor	is	on,	keeping	the	input	line	to	the	AND	gate	
LOW. When A or B	is	1	(HIgH),	the	transistor	is	off,	keeping	the	input	line	to	the	AND	
gate HIGH.

BBAA

X = AB

+V

+V

Transistor permanently
programmed off

Transistor turned on or off
by state of input A

Transistor turned on or off
by state of input B

fg03_06600

Figure 68 a simple and array with eProm technology. only one gate in the 
array is shown for simplicity.

eeProm tecHnoLogy Electrically	erasable	programmable	read-only	memory	
technology	is	similar	to	EPROm	because	it	also	uses	a	type	of	floating-gate	transistor	in	
E2CmOS cells. The difference is that eeProm	can	be	erased	and	reprogrammed	electri-
cally	without	the	need	for	UV	light	or	special	fixtures.	An	E2CmOS	device	can	be	pro-
grammed	after	being	installed	on	a	printed	circuit	board,	and	many	can	be	reprogrammed	
while	operating	in	a	system.	This	is	called	in-system programming (isP).	Figure	68	can	
also	be	used	as	an	example	to	represent	an	AND	array	with	EEPROm	technology.

FLasH tecHnoLogy Flash	technology	is	based	on	a	single	transistor	link	and	is	
both	nonvolatile	and	reprogrammable.	Flash	elements	are	a	 type	of	EEPROm	but	are	
faster	and	result	in	higher	density	devices	than	the	standard	EEPROm	link.

sram tecHnoLogy many	FPgAs	and	some	CPLDs	use	a	process	technology	
similar to that used in srams	(static	random-access	memories).	The	basic	concept	of	
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SRAm-based	programmable	 logic	arrays	 is	 illustrated	 in	Figure	69(a).	A	SRAm-type	
memory	cell	is	used	to	turn	a	transistor	on or off	to	connect	or	disconnect	rows	and	col-
umns.	For	example,	when	the	memory	cell	contains	a	1	(green),	the	transistor	is	on and 
connects	the	associated	row	and	column	lines,	as	shown	in	part	(b).	When	the	memory	cell	
contains	a	0	(blue),	the	transistor	is	off	so	there	is	no	connection	between	the	lines,	as	
shown	in	part	(c).

BBAA

X = AB

SRAM
cell

SRAM
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SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell 1

SRAM
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(b) Transistor on (c) Transistor off

(a) SRAM-based programmable array

fg03_06700

Figure 69 basic concept of an and array with sram technology.

most	system-level	designs	incorporate	a	variety	of	devices	such	as	RAms,	ROms,	controllers,	
and	processors	that	are	interconnected	by	general-purpose	logic	devices	often	referred	to	as	
“glue”	logic.	PLDs	have	come	to	replace	many	of	the	SSI	and	mSI	“glue”	devices.	The	use	of	
PLDs	provides	a	reduction	in	package	count.

For	example,	 in	computer	memory	systems,	PLDs	can	be	used	for	memory	address	
decoding	and	to	generate	memory	write	signals	as	well	as	other	functions.

s y s t e m  n o t e

The	fuse,	antifuse,	EPROm,	EEPROm,	and	flash	process	technologies	are	nonvola-
tile,	so	they	retain	their	programming	when	the	power	is	off.	A	fuse	is	permanently	open,	
an	antifuse	is	permanently	closed,	and	floating-gate	transistors	used	in	EPROm-based	and	
	EEPROm-based	arrays	can	retain	their	on or off	state	indefinitely.

SRAm	technology	is	different	from	the	other	process	technologies	discussed	because	
it	is	a	volatile	technology.	This	means	that	a	SRAm	cell	does	not	retain	data	when	power	
is turned off.	The	programming	data	must	be	loaded	into	a	memory;	and	when	power	is	
turned on,	the	data	from	the	memory	reprograms	the	SRAm-based	PLD.
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device Programming
The	general	concept	of	programming	has	been	discussed	and	you	have	seen	how	inter-
connections	can	be	made	in	a	simple	array	by	opening	or	closing	 the	programmable	
links.	SPLDs,	CPLDs,	and	FPgAs	are	programmed	in	essentially	the	same	way.	The	
devices	with	OTP	(one-time	programmable)	process	 technologies	 (fuse,	antifuse,	or	
EPROm)	must	be	programmed	with	a	special	hardware	fixture	called	a	programmer. 
The	programmer	is	connected	to	a	computer	by	a	standard	interface	cable.	Development	
software	is	 installed	on	the	computer,	and	the	device	is	 inserted	into	the	programmer	
socket.	most	programmers	have	adapters	 that	allow	different	 types	of	packages	to	be	
plugged	in.

EEPROm,	flash,	and	SRAm-based	programmable	logic	devices	are	reprogrammable	
and	can	be	reconfigured	multiple	times.	Although	a	device	programmer	can	be	used	for	
this	type	of	device,	it	is	generally	programmed	initially	on	a	PLD	development	board,	as	
shown	in	Figure	70.	A	logic	design	can	be	developed	using	this	approach	because	any	
necessary	changes	during	the	design	process	can	be	readily	accomplished	by	simply	repro-
gramming	the	PLD.	A	PLD	to	which	a	software	logic	design	can	be	downloaded	is	called	
a target device.	In	addition	to	the	target	device,	development	boards	typically	provide	
other	circuitry	and	connectors	for	interfacing	to	the	computer	and	other	peripheral	circuits.	
Also,	test	points	and	display	devices	for	observing	the	operation	of	the	programmed	device	
are	included	on	the	development	board.

 

PLD development board

Programmable logic device

Figure 70 Programming setup for reprogrammable logic devices. (Photo courtesy of 
digilent, inc.)

design entry Design	entry	is	where	the	logic	design	is	programmed	using	devel-
opment	software.	The	two	main	ways	to	enter	a	design	are	by	text	entry	or	graphic	(sche-
matic)	entry,	and	manufacturers	of	programmable	 logic	provide	software	packages	 to	
support	their	devices	that	allow	for	both	methods.

text entry	in	most	development	software,	regardless	of	the	manufacturer,	supports	
two	or	more	hardware	development	languages	(HdLs).	For	example,	all	software	pack-
ages	support	both	IEEE	standard	HDLs,	VHDL,	and	Verilog.	Some	software	packages	
also	support	certain	proprietary	languages	such	as	AHDL.

In graphic (schematic) entry,	logic	symbols	such	as	AND	gates	and	OR	gates	are	
placed	on	the	screen	and	interconnected	to	form	the	desired	circuit.	In	this	method	you	use	
the	familiar	logic	symbols,	but	the	software	actually	converts	each	symbol	and	intercon-
nections	to	a	text	file	for	the	computer	to	use;	you	do	not	see	this	process.	A	simple	
example	of	two	text	entry	screens	and	a	graphic	entry	screen	for	an	AND	gate	is	shown	in	
Figure	71.	graphic	entry	is	generally	used	for	less-complex	logic	circuits;	and	text	entry,	
although	it	can	also	be	used	for	very	simple	logic,	is	generally	used	for	larger,	more	complex	
implementation.
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in-system Programming (isP)
Certain	CPLDs	and	FPgAs	can	be	programmed	after	they	have	been	installed	on	a	system	
printed	circuit	board	(PCB).	After	a	logic	design	has	been	developed	and	fully	tested	on	a	
development	board,	it	can	then	be	programmed	into	a	“blank”	device	that	is	already	sol-
dered	onto	a	system	board	in	which	it	will	be	operating.	Also,	if	a	design	change	is	required,	
the	device	on	the	system	board	can	be	reconfigured	to	incorporate	the	design	modifications.

In	a	production	situation,	programming	a	device	on	the	system	board	minimizes	han-
dling	and	eliminates	the	need	for	keeping	stocks	of	preprogrammed	devices.	It	also	rules	
out	 the	possibility	of	wrong	parts	being	placed	 in	 a	product.	Unprogrammed	 (blank)	
devices	can	be	kept	in	the	warehouse	and	programmed	on-board	as	needed.	This	mini-
mizes	the	capital	a	business	needs	for	inventories	and	enhances	the	quality	of	its	products.

(a)	Verilog	and	VHDL	text	entry

Figure 71 examples of design entry for an and gate.

(b)	Equivalent	graphic	(schematic)	entry
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JTAG The	standard	established	by	the	Joint	Test	Action	group	is	the	commonly	used	
name	 for	 IEEE	 Std.	 1149.1.	 The	 jtag	 standard	 was	 developed	 to	 provide	 a	 simple	
method,	called	boundary	scan,	for	testing	programmable	devices	for	functionality	as	well	
as	testing	circuit	boards	for	bad	connections—shorted	pins,	open	pins,	bad	traces,	and	the	
like.	Also,	JTAg	has	been	used	as	a	convenient	way	of	configuring	programmable	devices	
in-system.	As	the	demand	for	field-upgradable	products	increases,	the	use	of	JTAg	as	a	
convenient	way	of	reprogramming	CPLDs	and	FPgAs	increases.

JTAg-compliant	devices	have	internal	dedicated	hardware	that	interprets	instruc-
tions	and	data	provided	by	four	dedicated	signals.	These	signals	are	defined	by	the	JTAg	
standard	to	be	TDI	(Test	Data	In),	TDO	(Test	Data	Out),	TmS	(Test	mode	Select),	and	
TCK	(Test	Clock).	The	dedicated	JTAg	hardware	interprets	instructions	and	data	on	the	
TDI	and	TmS	signals,	and	drives	data	out	on	the	TDO	signal.	The	TCK	signal	is	used	to	
clock	the	process.

embedded Processor Another	approach	to	in-system	programming	is	the	
use	of	an	embedded	microprocessor	and	memory.	The	processor	is	embedded	within	the	
system	along	with	the	CPLD	or	FPgA	and	other	circuitry,	and	it	is	dedicated	to	the	pur-
pose	of	in-system	configuration	of	the	programmable	device.

As	you	have	learned,	SRAm-based	devices	are	volatile	and	lose	their	programmed	
data	when	the	power	is	turned	off.	It	is	necessary	to	store	the	programming	data	in	a	PROm	
(programmable	read-only	memory),	which	is	nonvolatile.	When	power	is	turned	on, the 
embedded	processor	takes	control	of	transferring	the	stored	data	from	the	PROm	to	the	
CPLD or FPGA.

Also,	an	embedded	processor	is	sometimes	used	for	reconfiguration	of	a	programmable	
device	while	the	system	is	running.	In	this	case,	design	changes	are	done	with	software,	and	
the	new	data	are	then	loaded	into	a	PROm	without	disturbing	the	operation	of	the	system.	The	
processor	controls	the	transfer	of	the	data	to	the	device	“on-the-fly”	at	an	appropriate	time.

introduction to vHdL and verilog
Hardware	description	languages	(HDLs),	such	as	VHDL	and	Verilog,	differ	from	software	
programming	languages	because	they	include	ways	of	describing	the	propagation	of	time	
and	other	characteristics	of	the	logic.	An	HDL	implements	a	new	logic	design	in	hardware	
(PLD),	whereas	a	software	programming	language	such	as	C	or	BASIC	instructs	existing	
hardware	what	to	do.	The	two	standard	hardware	description	languages	(HDLs)	used	for	
programming	PLDs	are	vHdL and verilog. Tutorials for both VHDL and  Verilog are 
found on the website.

HdL descriPtions oF Logic gates The logic gates covered in this 
chapter	 are	 described	 with	 VHDL	 and	 with	 Verilog	 in	 Figures	 72	 through	 76.	 Two	 

Figure 72 inverter.

XA

fg03_07200

X = A

 vHdL

entity Inverter is
 port	(A:	in	bit;	X:	out bit);

end entity Inverter;

architecture NOTfunction of Inverter is

begin
	 X	6= not A;

end architecture NOTfunction;

verilog

module	Inverter	(A,	X);

 input A;

 output	X;

  assign	X	= !A;

endmodule
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Figure 75 3-input nand gate.
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X = ABC
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 vHdL

entity NANDgate is

 port	(A,	B,	C:	in	bit;	X:	out bit);

end entity NANDgate;

architecture NANDfunction of NANDgate is

begin

	 X	6= A nand B nand C;

end architecture NANDfunction;

 verilog

module	NANDgate	(A,	B,	C,	X);

 input	A,	B,	C;

 output	X;

  assign	X	= !(A && B && C);

endmodule

Figure 76 exclusive-nor gate.
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 vHdL

entity	XNORgate	is

 port	(A,	B:	in	bit;	X:	out bit);

end entity	XNORgate;

architecture	XNORfunction	of	XNORgate	is

begin

	 X	6= A xnor B;

end architecture	XNORfunction;

 verilog
module	X	NORgate	(A,	B,	X);

 input	A,	B;

 output	X;

  assign	X	= !((A && !B) || (!A && B));

endmodule

Figure 73 and gate.

X
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 vHdL

entity ANDgate is

 port	(A,	B:	in	bit;	X:	out bit);

end entity ANDgate;

architecture ANDfunction of ANDgate is

begin

	 X	6= A and B;

end architecture ANDfunction;

verilog

module	ANDgate	(A,	B,	X);

 input	A,	B;

 output	X;

  assign	X	= A && B;

endmodule

 

fg03_07400

X = A + B

A

B
X

vHdL

entity ORgate is

 port	(A,	B:	in	bit;	X:	out bit);

end entity ORgate;

architecture ORfunction of ORgate is

begin

	 X	6= A or B;

end architecture ORfunction;

Figure 74 or gate.
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verilog
module	ORgate	(A,	B,	X);

 input	A,	B;

 output	X;

  assign	X	= A || B;

endmodule
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gates	are	left	as	Checkup	exercises.	VHDL	describes	a	function	with	an	entity/architecture 
structure. Verilog uses a module	structure	to	describe	a	function.	Verilog	logical	operators	
are	!	for	NOT,	&&	for	AND,	and	 } 	for	OR.	Keywords	that	are	part	of	the	language	syntax	
are	shown	bold	for	clarity	in	both	VHDL	and	Verilog.			

1. List	six	process	technologies	used	for	programmable	links	in	
programmable	logic.

2. What does the term volatile	mean	in	relation	to	PLDs;	which	
process	technology	is	volatile?

3. What	are	two	design	entry	methods	for	programming	PLDs	
and	FPgAs?

4. Define	JTAg.

5. Write	VHDL	and	Verilog	descriptions	of	a	NOR	gate	with	
three	inputs.

6. Write	VHDL	and	Verilog	descriptions	of	an	XOR	gate.

section 9 cHecKuP

10 troubLesHooting
troubleshooting is the process of recognizing, isolating, and correcting a fault or failure in a 
system. to be an effective troubleshooter, you must understand how the system works and 
be able to recognize incorrect performance. troubleshooting can be at the system level, the 
circuit board level, or the component level. today, troubleshooting down to the board level 
is	usually	sufficient.	Once	a	board	is	determined	to	be	defective,	it	is	usually	replaced	with	a	
new one. However, if the circuit board is to be saved, component-level troubleshooting may 
be necessary.

after completing this section, you should be able to

•	 Describe	the	steps	in	a	troubleshooting	procedure
•	 Discuss	the	half-splitting	method
•	 Discuss	the	signal-tracing	method
•	 Describe	the	troubleshooting	of	a	particular	process	control	system

basic Hardware troubleshooting methods
Troubleshooting	at	a	system	level	requires	good	detective	work.	When	a	problem	occurs,	
the	list	of	potential	causes	is	usually	quite	large.	You	must	gather	a	sufficient	amount	of	
detailed	information	and	systematically	narrow	the	list	of	potential	causes	to	determine	the	
problem.	As	a	general	guide	to	troubleshooting	a	system,	the	following	steps	should	be	
followed:

 1. gather	information	on	the	problem.

 2. Identify	the	symptoms	and	possible	failures.

 3. Isolate	point(s)	of	failure.

 4. Apply	proper	tools	to	determine	the	cause	of	the	problem.

 5. Fix	the	problem.

cHecK tHe obvious After	collecting	information	on	the	problem,	make	sure	to	
first	check	for	obvious	faults:	absence	of	DC	power,	blown	fuses,	tripped	circuit	breakers,	
faulty	burned	out	 indicators	 such	 as	 lamps,	 loose	 connectors,	 broken	or	 loose	wires,	
switches	in	the	wrong	position,	physical	damages,	boards	not	properly	inserted,	wire	frag-
ments	or	solder	splashes	shorting	components,	and	poor	quality	contacts	on	printed	circuit	
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boards.	For	any	troubleshooting	task,	you	must	have	a	system/circuit	diagram.	Other	use-
ful	documents	are	a	table	of	signal	characteristics	and	a	prewritten	troubleshooting	guide	
for	the	specific	system.

rePLacement Assume	that	a	given	system	has	multiple	circuit	boards.	The	sim-
plest	and	quickest	way	to	fix	a	problem	is	by	replacing	the	circuit	boards	one	by	one	with	
a	known	good	board	until	the	problem	is	corrected.	This	approach,	of	course,	requires	that	
duplicate	boards	be	available.	Another	drawback	to	this	approach	is	that	an	outside	source	
may	be	causing	the	fault,	such	as	a	short	in	a	connector;	and	by	replacing	the	board,	the	
fault	is	transferred	to	the	new	board.

reProducing tHe symPtoms Once	the	symptoms	of	a	faulty	system	are	
identified,	find	a	way	to	reproduce	the	problem.	If	the	problem	can	be	reproduced,	it	can	be	
isolated	and	resolved.	In	some	systems,	the	symptom	may	be	self-evident,	but	in	others	it	
may	have	to	be	induced	by	application	of	a	level	or	signal	at	a	given	point.	Once	this	is	
done,	then	a	systematic	approach	can	be	used	to	isolate	the	cause	or	causes	of	a	problem.	
You	should	always	consider	the	possibility	that	there	is	more	than	one	fault.

If	the	symptoms	are	intermittent,	the	task	of	troubleshooting	becomes	more	difficult.	
For	example,	in	some	cases	a	component	may	be	temperature	sensitive	and	fail	only	when	
the	temperature	is	too	high	or	too	low.	In	these	cases,	the	temperature	can	be	varied	by	the	
simple	process	of	blowing	cool	air	on	the	component	of	concern	to	lower	the	temperature	
or	using	a	heat	gun	to	raise	it,	while	monitoring	the	operation	of	the	system.

HaLF-sPLitting metHod In	this	procedure,	you	check	for	the	presence	or	
absence	of	a	signal	at	a	point	halfway	between	input	and	output.	If	the	signal	is	present,	
you	know	the	fault	is	in	the	second	half.	If	the	signal	is	absent,	you	know	the	fault	is	in	the	
first	half.	Then	you	split	the	defective	half	in	half	and	check	for	a	signal.	The	process	is	
continued	until	a	certain	area	of	the	system	has	been	isolated.	This	may	be	a	single	circuit	
board	in	a	system	with	many	circuit	boards	or	a	component	on	a	given	circuit	board.	In	a	
large	system,	this	procedure	can	save	a	lot	of	time	over	moving	down	the	line	checking	
each	block	or	stage	as	you	go.	This	method	is	usually	best	applied	in	large	complex	sys-
tems.	Figure	77	is	a	simple	illustration	of	this	method.	The	system	is	represented	with	the	
four	green	blocks.	Additional	steps	are	added	to	left	or	right	for	additional	blocks.

h a n d s  o n  t i p
Proper	grounding	is	important	
when	you	set	up	to	take	
measurements	or	work	on	a	
system.	Properly	grounding	the	
oscilloscope	protects	you	from	
shock,	and	grounding	yourself	
protects	circuits	from	damage.	
grounding	the	oscilloscope	
means to connect it to earth 
ground	by	plugging	the	three-
prong	power	cord	into	a	
grounded outlet. Grounding 
yourself	means	using	a	wrist-
type	grounding	strap,	
particularly	when	you	are	
working	with	CmOS	logic.	
The	wrist	strap	must	have	a	
high-value	resistor	between	the	
strap	and	ground	for	protection	
against accidental contact 
with	a	voltage	source.

For	accurate	measurements,	
make	sure	that	the	ground	in	
the	circuit	you	are	testing	is	the	
same	as	the	scope	ground.	This	
can	be	done	by	connecting	the	
ground	lead	on	the	scope	probe	
to	a	known	ground	point	in	the	
circuit,	such	as	the	metal	
chassis	or	a	ground	point	on	
the circuit.
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A B
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YES NO
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Block B.

Fault is in
Block C.

fg03_07700

Figure 77 concept of the half-splitting method. the blue arrows indicate the test points.

signaL-tracing metHod Signal	tracing	is	the	procedure	of	tracking	signals	
as	they	progress	through	a	system	from	input	to	output.	Signal	tracing	can	be	used	with	
half-splitting,	where	you	check	for	a	signal	at	each	point	from	where	the	absence	of	a	sig-
nal	was	detected.	Signal	tracing	can	also	begin	at	the	output	where	there	is	an	incorrect	or	
absent	signal	and	go	back	toward	the	input	from	point	to	point	until	a	correct	signal	is	
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found.	Also,	you	can	begin	at	the	input	and	check	the	signal	and	move	toward	the	output	
from	point	to	point	until	the	correct	signal	is	lost.	In	both	cases,	the	fault	would	be	between	
the	point	and	the	output.	Of	course,	you	must	know	what	the	signal	is	supposed	to	look	like	
in	order	to	know	if	anything	is	wrong.	Figure	78	illustrates	the	concept	of	signal	tracing.

Starting point
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A B
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C D

YES NO Signal missing
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YES NO

Signal missing
or incorrect?

YES NO

Signal missing
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YES NO

Fault is in
Block A.

Check
input
source.

Fault is in
Block B.

Fault is in
Block C.

Fault is in
Block D.

Symptom:
No output

fg03_07800
Figure 78 concept of the signal-tracing method. input to output is shown. the same applies if 
you start at the output and go toward the input.

signaL substitution and injection Signal	substitution	is	used	when	
the	system	being	tested	has	been	separated	from	its	signal	source.	A	generator	signal	is	used	
to	replace	the	normal	signal	that	comes	from	the	source	when	the	system	or	portion	of	a	
system	is	recombined	with	the	part	that	normally	produces	the	input	signal.	Signal	injection	
can	be	used	to	insert	a	signal	at	certain	points	in	the	system	using	the	half-splitting	approach.

fg03_07900
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Figure 79 block diagram of a process control system.

e X a m P L e  2 2

A	simple	generic	self-contained	system	that	is	not	software	driven	is	used	to	illustrate	the	basic	approach	to	trouble-
shooting.	This	system,	which	is	a	type	of	state	machine,	is	used	to	control	a	sequential	process	in	a	variety	of	specific	
applications.	A	block	diagram	of	the	system	is	shown	in	Figure	79.	It	consists	of	four	interdependent	functional	
blocks.	The	outputs	consist	of	four	signals	that	sequentially	initiate	four	processes	in	a	given	sequence.	A	sensor		
detects	specified	conditions	in	the	process	and	causes	the	outputs	to	be	altered	to	accommodate	the	condition.

In	a	particular	application,	the	system	controls	the	packaging	of	golf	balls	into	a	tubular	canister	on	an	auto-
mated	assembly	line.	A	pulse	on	the	Process	1	output	moves	the	next	canister	into	position,	which	starts	the	 
process.	The	pulse	on	the	Process	2	output	enables	six	balls	to	drop	into	the	canister.	When	the	canister	is	filled,	
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Figure 80 correct timing diagram for the process control system.
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Figure 81 test setup for troubleshooting the process control system.

a	pulse	on	the	Process	3	output	causes	the	canister	lid	to	be	attached	and	sealed.	A	pulse	on	the	Process	4	output	
initiates	the	attachment	of	the	label	to	the	canister	and	sends	it	on	its	way	down	the	line.

You	observe	that	the	canisters	get	jammed	up	on	the	assembly	line	and	do	not	move	past	a	certain	point.	As	
the	troubleshooter,	how	would	you	proceed	to	troubleshoot	this	problem?

s o L u t i o n

Identify	the	symptom	as	follows:	When	the	system	reaches	Process	3,	the	lid	is	not	attached	and	the	canister	waits	
in	position,	keeping	the	next	canister	from	moving	into	position.	The	cause	is	most	likely	either	the	absence	of	a	
pulse	on	the	Process	3	output	or	the	sequence	is	hanging	up	at	Process	2	and	not	going	to	Process	3.	It	is	difficult	
to	narrow	the	cause	down	to	one	specific	block	because	certain	failures	in	any	one	block	could	result	in	the	prob-
lem.	The	specification	document	for	the	system	shows	the	proper	operation	in	terms	of	a	timing	diagram,	which	
is	shown	in	Figure	80.

The	next	step	is	to	use	an	oscilloscope	to	look	at	the	output	waveforms.	The	setup	is	shown	in	Figure	81	
with	the	physical	system	plugged	into	an	electrical	outlet.

After	checking	that	DC	power	is	going	to	all	circuits	and	inspecting	the	system	for	obvious	faults,	connect	
the	outputs	and	observe	them	on	the	scope.	Process	1,	3,	and	4	outputs	are	at	a	constant	LOW	level,	and	Process	2	
is	a	constant	HIgH	level.	This	measurement	confirms	that	Process	2	output	is	stuck	in	the	HIgH	state,	so	the	
system	can’t	advance	through	its	normal	sequence.

A	fault	in	the	Sequential	Logic	board	is	causing	the	state	machine	to	lock	up	in	the	Process	2	state.	To	verify	
this,	observe	the	system	sequencing	through	the	first	two	states.	In	order	to	do	this,	the	system	must	be	reset	peri-
odically	so	that	the	incorrect	sequence	repeats	itself.	A	pulse	generator	can	generate	reset	pulses	with	the	period	
set	to	exceed	the	normal	cycle	time	of	the	system.	The	scope	display	shown	in	Figure	82	is	observed	during	this	
test	procedure.	This	shows	that	the	state	machine	is	recycling	through	states	1	and	2	instead	of	states	1,	2,	3,	and	4.	
Without	a	reset,	the	system	gets	to	state	2	and	locks	up.	The	reset	forces	it	back	to	state	1	each	time.
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Figure 82 repetitive 
waveforms when faulty system 
is periodically reset.

1. List	five	steps	in	the	troubleshooting	procedure.

2. Name	two	troubleshooting	methods.

3. List	five	obvious	things	to	look	for	first	in	a	failed	system.

4. Is	it	important	to	know	about	the	relationship	between	a	cause	
and	a	symptom?

section 10 cHecKuP

summary
•	 gate	symbols	and	Boolean	expressions	for	the	outputs	of	an	inverter	and	2-input	gates	are	shown	

in	Figure	83.

A A
A

B
AB

A

B
AB

A

B
A + B

A

B
A + B

fg04_05100
Figure 83 

•	 Commutative	laws:	  A + B = B + A

         AB = BA

•	 Associative	laws:	 	 	 A + (B + C) = (A + B) + C

                        A(BC) = (AB)C

•	 Distributive	law:		 	 	 A(B + C) = AB + AC

•	 Boolean	rules: 1. A + 0 = A

 2. A + 1 = 1

 3. A # 0 = 0

 4. A # 1 = A

 5. A + A = A

 6. A + A = 1

  7. A # A = A

  8. A # A = 0

  9. A = A

 10. A + AB = A

 11. A + AB = A + B

 12. (A + B)(A + C) = A + BC

•	 The	inverter	output	is	the	complement	of	the	input.

•	 The	AND	gate	output	is	HIgH	only	when	all	the	inputs	are	HIgH.

The	final	step	is	to	replace	the	Sequential	Logic	board	(middle	board)	in	Figure	81	and	run	the	system	with-
out	the	reset	input.	After	doing	the	swap	out,	you	find	that	the	system	works	properly.	The	next	decision	to	be	
made	is	whether	to	repair	or	discard	the	faulty	board.	If	the	board	is	to	be	saved,	you	would	then	begin	the	trou-
bleshooting	process	at	the	board	level	to	determine	which	component(s)	is	defective.
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•	 The	OR	gate	output	is	HIgH	when	any	of	the	inputs	is	HIgH.

•	 The	NAND	gate	output	is	LOW	only	when	all	the	inputs	are	HIgH.

•	 The	NAND	can	be	viewed	as	a	negative-OR	whose	output	is	HIgH	when	any	input	is	LOW.

•	 The	NOR	gate	output	is	LOW	when	any	of	the	inputs	is	HIgH.

•	 The	NOR	can	be	viewed	as	a	negative-AND	whose	output	is	HIgH	only	when	all	the	inputs	are	
LOW.

•	 The	exclusive-OR	gate	output	is	HIgH	when	the	inputs	are	not	the	same.

•	 The	exclusive-NOR	gate	output	is	LOW	when	the	inputs	are	not	the	same.

•	 Distinctive	shape	symbols	and	truth	tables	for	various	logic	gates	(limited	to	2	inputs)	are	shown	
in	Figure	84.
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Figure 84 

•	 The	average	power	dissipation	of	a	logic	gate	is

PD = VCC ¢ ICCH + ICCL

2
≤

•	 The	speed-power	product	of	a	logic	gate	is

SPP = tpPD

•	 most	programmable	logic	devices	(PLDs)	are	based	on	some	form	of	AND	array.

•	 Programmable	link	technologies	are	fuse,	antifuse,	EPROm,	EEPROm,	flash,	and	SRAm.

•	 A	PLD	can	be	programmed	in	a	hardware	fixture	called	a	programmer	or	mounted	on	a	develop-
ment	printed	circuit	board.

•	 PLDs	have	an	associated	software	development	package	for	programming.

•	 Two	methods	of	design	entry	using	programming	software	are	text	entry	(HDL)	and	graphic	
(schematic)	entry.

•	 ISP	PLDs	can	be	programmed	after	they	are	installed	in	a	system,	and	they	can	be	reprogrammed	
at	any	time.

•	 JTAg	stands	for	Joint	Test	Action	group	and	is	an	interface	standard	(IEEE	Std.	1149.1)	used	for	
programming	and	testing	PLDs.

•	 An	embedded	processor	is	used	to	facilitate	in-system	programming	of	PLDs.

•	 CmOS	is	made	with	mOS	field-effect	transistors.

•	 Bipolar	(TTL)	is	made	with	bipolar	junction	transistors.

•	 As	a	rule,	CmOS	has	a	lower	power	consumption	than	bipolar.
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•	 VHDL	and	Verilog	are	hardware	description	languages	used	to	describe	a	 logic	function	for	 
programming	into	a	PLD.

•	 Half-splitting	and	signal	tracing	are	two	troubleshooting	methods.

Key terms
and array An	array	of	AND	gates	consisting	of	a	matrix	of	programmable	interconnections.

and gate A	logic	gate	that	produces	a	HIgH	output	only	when	all	of	the	inputs	are	HIgH.

antifuse A	type	of	PLD	nonvolatile	programmable	link	that	can	be	left	open	or	can	be	shorted	
once	as	directed	by	the	program.

boolean algebra The mathematics of logic circuits.

complement The	 inverse	or	opposite	of	a	number.	 In	Boolean	algebra,	 the	 inverse	 function,	
expressed	with	a	bar	over	a	variable.	The	complement	of	a	1	is	0,	and	vice	versa.

eeProm A	 type	 of	 nonvolatile	 PLD	 reprogrammable	 link	 based	 on	 electrically	 erasable	
programmable	read-only	memory	cells	and	can	be	turned	on	or	off	repeatedly	by	programming.

eProm A	 type	of	PLD	nonvolatile	programmable	 link	based	on	electrically	programmable	
read-only	memory	cells	and	can	be	turned	either	on	or	off	once	with	programming.

exclusive-nor gate A	logic	gate	that	produces	a	LOW	only	when	the	two	inputs	are	at	opposite	
levels.

exclusive-or (Xor) gate A	logic	gate	that	produces	a	HIgH	output	only	when	its	two	inputs	are	
at	opposite	levels.

Fan-out The	number	of	equivalent	gate	inputs	of	the	same	family	series	that	a	logic	gate	can	drive.

Flash A	type	of	PLD	nonvolatile	reprogrammable	link	technology	based	on	a	single	transistor	
cell.

Fuse A	type	of	PLD	nonvolatile	programmable	link	that	can	be	left	shorted	or	can	be	opened	once	
as	directed	by	the	program.

inverter A	logic	circuit	that	inverts	or	complements	its	input.

jtag Joint	Test	Action	group;	an	interface	standard	designated	IEEE	Std.	1149.1.

nand gate A	logic	gate	that	produces	a	LOW	output	only	when	all	the	inputs	are	HIgH.

nor gate A	logic	gate	in	which	the	output	is	LOW	when	one	or	more	of	the	inputs	are	HIgH.

or gate A	logic	gate	that	produces	a	HIgH	output	when	one	or	more	inputs	are	HIgH.

Propagation delay time The	time	interval	between	the	occurrence	of	an	input	transition	and	the	
occurrence	of	the	corresponding	output	transition	in	a	logic	circuit.

Product term The	Boolean	product	of	two	or	more	literals	equivalent	to	an	AND	operation.

sram A	type	of	PLD	volatile	reprogrammable	link	based	on	static	random-access	memory	cells	
and	can	be	turned	on	or	off	repeatedly	with	programming.

sum term The	Boolean	sum	of	two	or	more	literals	equivalent	to	an	OR	operation.

target device A	PLD	mounted	on	a	programming	fixture	or	development	board	into	which	a	
software	logic	design	is	to	be	downloaded.

timing diagram A	diagram	of	waveforms	 showing	 the	proper	 timing	 relationship	of	 all	 the	
waveforms.

truth table A	table	showing	the	inputs	and	corresponding	output(s)	of	a	logic	circuit.

unit load A	measure	of	fan-out.	One	gate	input	represents	one	unit	load	to	the	output	of	a	gate	
within	the	same	IC	family.

variable A	symbol	used	to	represent	an	action,	a	condition,	or	data	that	can	have	a	value	of	1	or	0,	
usually	designated	by	an	italic	letter	or	word.

verilog A	standard	hardware	description	 language	 that	uses	a	module	structure	 to	describe	a	
function.

vHdL A	standard	hardware	description	language	that	describes	a	function	with	an	entity/architecture	
structure.
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FiXed-Function Logic devices
The	diagrams	shown	are	for	CmOS	and	bipolar	IC	devices.	The	XX	in	each	part	number	designates	
a	particular	IC	family.	For	example,	XX = HC	stands	for	high-speed	CmOS.
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ua03_00100true/FaLse quiz
Answers are at the end of the chapter.

 1. An	inverter	performs	the	NOR	operation.

 2. An	AND	gate	can	have	only	two	inputs.

 3. If	any	input	to	an	OR	is	1,	the	output	is	1.

 4. If	all	inputs	to	an	AND	gate	are	1,	the	output	is	0.

 5. A	NAND	gate	has	an	output	that	is	opposite	the	output	of	an	AND	gate.

 6. A	NOR	gate	can	be	considered	as	an	OR	gate	followed	by	an	inverter.

 7. The	output	of	an	exclusive-OR	is	0	if	the	inputs	are	opposite.

 8. Two	types	of	fixed-function	logic	integrated	circuits	are	bipolar	and	NmOS.

 9. BCD	stands	for	binary	coded	decimal.

 10. Fan-out is the number of similar gates that a given gate can drive.

 11. Programmable	logic	devices	are	generally	implemented	with	inverters.

 12. VHDL	is	a	type	of	programmable	logic	device.

seLF-test
Answers are at the end of the chapter.

 1. Boolean	addition	represents	the

(a) inverter    (b) AND gate    (c) NOR gate    (d) OR gate

164



LOgIC	gATES	AND	gATE	COmBINATIONS

 2. Boolean	multiplication	represents	the

(a) inverter    (b) AND gate    (c) NAND gate    (d) OR gate

 3. The	Boolean	expression	for	a	three-input	AND	gate	is

(a) A + B + C    (b) A + BC    (c) ABC    (d) ABC + ABC

 4. The	output	of	an	exclusive-OR	gate	is	1	when

(a) inputs	are	both	1	 (b) the	inputs	are	not	the	same
(c) the	inputs	are	the	same	 (d) the	inputs	are	both	0

 5. When	the	input	to	an	inverter	is	HIgH	(1),	the	output	is

(a) HIgH	or	1	 	 	 	 (b) LOW	or	1	 	 	 	 (c) HIgH	or	0	 	 	 	 (d) LOW	or	0

 6. An	inverter	performs	an	operation	known	as

(a) complementation	 (b) assertion
(c) inversion (d)	 both	answers	(a)	and	(c)

 7. The	output	of	an	AND	gate	with	inputs	A,	B,	and	C	is	a	1	(HIgH)	when

(a) A = 1, B = 1, C = 1    (b) A = 1, B = 0, C = 1    (c) A = 0, B = 0, C = 0

 8. The	output	of	an	OR	gate	with	inputs	A,	B,	and	C	is	a	1	(HIgH)	when

(a) A = 1, B = 1, C = 1 (b) A = 0, B = 0, C = 1
(c) A = 0, B = 0, C = 0 (d)	 answers	(a),	(b),	and	(c)
(e) only	answers	(a)	and	(b)

 9. A	pulse	is	applied	to	each	input	of	a	2-input	NAND	gate.	One	pulse	goes	HIgH	at	t = 0 and 
goes	back	LOW	at	t = 1	ms.	The	other	pulse	goes	HIgH	at	t = 0.8	ms	and	goes	back	LOW	at	
t = 3	ms.	The	output	pulse	can	be	described	as	follows:

(a) It goes LOW at t = 0	and	back	HIgH	at	t = 3 ms.
(b) It goes LOW at t = 0.8	ms	and	back	HIgH	at	t = 3 ms.
(c) It goes LOW at t = 0.8	ms	and	back	HIgH	at	t = 1 ms.
(d) It goes LOW at t = 0.8	ms	and	back	LOW	at	t = 1 ms.

 10. A	pulse	is	applied	to	each	input	of	a	2-input	NOR	gate.	One	pulse	goes	HIgH	at	t = 0 and goes 
back	LOW	at	 t = 1	ms.	The	other	pulse	goes	HIgH	at	 t = 0.8	ms	and	goes	back	LOW	at	
t = 3	ms.	The	output	pulse	can	be	described	as	follows:

(a) It goes LOW at t = 0	and	back	HIgH	at	t = 3 ms.
(b) It goes LOW at t = 0.8	ms	and	back	HIgH	at	t = 3 ms.
(c) It goes LOW at t = 0.8	ms	and	back	HIgH	at	t = 1 ms.
(d) It goes HIGH at t = 0.8	ms	and	back	LOW	at	t = 1 ms.

 11. A	pulse	is	applied	to	each	input	of	an	exclusive-OR	gate.	One	pulse	goes	HIgH	at	t = 0 and 
goes	back	LOW	at	t = 1	ms.	The	other	pulse	goes	HIgH	at	t = 0.8	ms	and	goes	back	LOW	at	
t = 3	ms.	The	output	pulse	can	be	described	as	follows:

(a) It goes HIGH at t = 0	and	back	LOW	at	t = 3 ms.
(b) It goes HIGH at t = 0	and	back	LOW	at	t = 0.8 ms.
(c) It goes HIGH at t = 1	ms	and	back	LOW	at	t = 3 ms.
(d) both	answers	(b)	and	(c)

 12. A	positive-going	pulse	is	applied	to	an	inverter.	The	time	interval	from	the	leading	edge	of	the	
input	to	the	leading	edge	of	the	output	is	7	ns.	This	parameter	is

(a) speed-power	product	 (b) propagation	delay,	tPHL
(c)	 propagation	delay,	tPLH (d)	 pulse	width

 13. The	purpose	of	a	programmable	link	in	an	AND	array	is	to

(a) connect	an	input	variable	to	a	gate	input
(b) connect	a	row	to	a	column	in	the	array	matrix
(c) disconnect	a	row	from	a	column	in	the	array	matrix
(d) do all of the above

 14. The term OTP means

(a) open	test	point	 (b) one-time	programmable
(c)	 output	test	program	 (d)	 output	terminal	positive

 15. Types	of	PLD	programmable	link	process	technologies	are

(a) antifuse (b) flash
(c)	 ROm	 (d) both (a) and (b)
(e) both (a) and (c)
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 16. A	volatile	programmable	link	technology	is

(a) fuse (b) EPROm
(c)	 SRAm	 (d)	 EEPROm

 17. Two	ways	to	enter	a	logic	design	using	PLD	development	software	are

(a) text and numeric (b) text	and	graphic
(c)	 graphic	and	coded	 (d)	 compile	and	sort

 18. JTAg	stands	for

(a) Joint	Test	Action	group	 (b) Java	Top	Array	group
(c) Joint	Test	Array	group	 (d) Joint	Time	Analysis	group

 19. In-system	programming	of	a	PLD	typically	utilizes

(a) an	embedded	clock	generator	 (b) an	embedded	processor
(c) an	embedded	PROm	 (d) both (a) and (b)
(e) both (b) and (c)

 20. To	measure	the	period	of	a	pulse	waveform,	you	must	use

(a) a	Dmm	 (b) a	logic	probe
(c) an	oscilloscope	 (d) a	logic	pulser

 21. Once	you	measure	the	period	of	a	pulse	waveform,	the	frequency	is	found	by

(a) using another setting 
(b) measuring	the	duty	cycle
(c) finding	the	reciprocal	of	the	period	
(d) using	another	type	of	instrument

ProbLems
Answers to odd-numbered problems are at the end of the chapter.

section 1 introduction to boolean algebra 
 1. Using	Boolean	notation,	write	an	expression	that	is	a	1	whenever	one	or	more	of	its	variables	

(A,	B,	C,	and	D)	are	1s.

 2. Write	an	expression	that	is	a	1	only	if	all	of	its	variables	(A,	B,	C,	D,	and	E)	are	1s.

 3. Write	an	expression	that	is	a	1	when	one	or	more	of	its	variables	(A,	B,	and	C)	are	0s.

 4. Evaluate	the	following	operations:
(a) 0 + 0 + 1    (b) 1 + 1 + 1    (c) 1 # 0 # 0
(d) 1 # 1 # 1       (e) 1 # 0 # 1       (f) 1 # 1 + 0 # 1 # 1

 5. Find	the	values	of	the	variables	that	make	each	product	term	1	and	each	sum	term	0.
(a)  AB     (b) ABC    (c) A + B   (d) A + B + C
(e) A + B + C       (f) A + B   (g) AB C

 6. Find the value of X	for	all	possible	values	of	the	variables.
(a) X = (A + B)C + B
(b) X = (A + B)C
(c) X = ABC + AB
(d) X = (A + B)(A + B)
(e) X = (A + BC)(B + C)

 7. Identify	the	law	of	Boolean	algebra	upon	which	each	of	the	following	equalities	is	based:
(a) AB + CD + ACD + B = B + AB + ACD + CD
(b) ABCD + ABC = DCBA + CBA
(c) AB(CD + EF + GH) = ABCD + ABEF + ABGH

 8. Identify	the	Boolean	rule(s)	on	which	each	of	the	following	equalities	is	based:
(a) AB + CD + EF = AB + CD + EF
(b) AAB + ABC + ABB = ABC
(c) A(BC + BC) + AC = A(BC) + AC
(d) AB(C + C) + AC = AB + AC
(e) AB + ABC = AB
(f) ABC + AB + ABCD = ABC + AB + D
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section 2 the inverter 
 9. The	input	waveform	shown	in	Figure	85	is	applied	to	an	inverter.	Draw	the	timing	diagram	of	

the	output	waveform	in	proper	relation	to	the	input.
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 10. A	network	of	cascaded	inverters	is	shown	in	Figure	86.	If	a	HIgH	is	applied	to	point	A, deter-
mine	the	logic	levels	at	points	B through F.

 11. If	the	waveform	in	Figure	85	is	applied	to	point	A	in	Figure	86,	determine	the	waveforms	at	
points	B through F.

section 3 the and gate 
 12. Draw	the	rectangular	outline	symbol	for	a	4-input	AND	gate.

 13. Determine	the	output,	X,	for	a	2-input	AND	gate	with	the	input	waveforms	shown	in	Figure	
87.	Show	the	proper	relationship	of	output	to	inputs	with	a	timing	diagram.

 14. Repeat	Problem	13	for	the	waveforms	in	Figure	88.

 15. The	input	waveforms	applied	to	a	3-input	AND	gate	are	as	indicated	in	Figure	89.	Show	the	
output	waveform	in	proper	relation	to	the	inputs	with	a	timing	diagram.

 16. The	input	waveforms	applied	to	a	4-input	AND	gate	are	as	indicated	in	Figure	90.	Show	the	
output	waveform	in	proper	relation	to	the	inputs	with	a	timing	diagram.
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section 4 the or gate 
 17. Determine	the	output	for	a	2-input	OR	gate	when	the	input	waveforms	are	as	in	Figure	88	and	

draw	a	timing	diagram.

 18. Repeat	Problem	15	for	a	3-input	OR	gate.

 19. Repeat	Problem	16	for	a	4-input	OR	gate.

 20. For	the	five	input	waveforms	in	Figure	91,	determine	the	output	if	the	five	signals	are	ANDed.	
Determine	the	output	if	the	five	signals	are	ORed.	Draw	the	timing	diagram	for	each	case.
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 21. Draw	the	rectangular	outline	symbol	for	a	4-input	OR	gate.

 22. Show	the	truth	table	for	a	3-input	OR	gate.

section 5 the nand gate 
 23. For	the	set	of	input	waveforms	in	Figure	92,	determine	the	output	for	the	gate	shown	and	draw	

the timing diagram.

 24. Determine	the	gate	output	for	the	input	waveforms	in	Figure	93	and	draw	the	timing	diagram.

 25. Determine	the	output	waveform	in	Figure	94.

 26. As	you	have	learned,	the	two	logic	symbols	shown	in	Figure	95	represent	equivalent	operations.	
The	difference	between	the	two	is	strictly	from	a	functional	viewpoint.	For	the	NAND	symbol,	
look	for	two	HIgHs	on	the	inputs	to	give	a	LOW	output.	For	the	negative-OR,	look	for	at	least	
one	LOW	on	the	inputs	to	give	a	HIgH	on	the	output.	Using	these	two	functional	viewpoints,	
show	that	each	gate	will	produce	the	same	output	for	the	given	inputs.
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section 6 the nor gate 
 27. Repeat	Problem	23	for	a	2-input	NOR	gate.

 28. Determine	the	output	waveform	in	Figure	96	and	draw	the	timing	diagram.
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 29. Repeat	Problem	25	for	a	4-input	NOR	gate.

 30. The	NAND	and	the	negative-OR	symbols	represent	equivalent	operations,	but	they	are	func-
tionally	different.	For	the	NOR	symbol,	look	for	at	least	one	HIgH	on	the	inputs	to	give	a	LOW	
on	the	output.	For	the	negative-AND,	look	for	two	LOWs	on	the	inputs	to	give	a	HIgH	output.	
Using	these	two	functional	points	of	view,	show	that	both	gates	in	Figure	97	will	produce	the	
same	output	for	the	given	inputs.

section 7 the exclusive-or and exclusive-nor gates 
 31. How	does	an	exclusive-OR	gate	differ	from	an	OR	gate	in	its	logical	operation?

 32. Repeat	Problem	23	for	an	exclusive-OR	gate.

 33. Repeat	Problem	23	for	an	exclusive-NOR	gate.

 34. Determine	the	output	of	an	exclusive-OR	gate	for	the	inputs	shown	in	Figure	88	and	draw	a	
timing diagram.

section 8 gate Performance characteristics and Parameters 
 35. Determine tPLH and tPHL	 from	the	oscilloscope	display	in	Figure	98.	The	readings	indicate	

volts/div	and	sec/div	for	each	channel.
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 36. Gate A has tPLH = tPHL = 6 ns. Gate B has tPLH = tPHL = 10	ns.	Which	gate	can	be	operated	
at	a	higher	frequency?

 37. If	a	logic	gate	operates	on	a	dc	supply	voltage	of	+5	V	and	draws	an	average	current	of	4	mA,	
what	is	its	power	dissipation?

 38. The variable ICCH	 represents	 the	dc	supply	current	from	VCC	when	all	outputs	of	an	IC	are	
HIGH. The variable ICCL	represents	the	dc	supply	current	when	all	outputs	are	LOW.	For	a	given	
5	V	IC	with	four	NAND	gates,	what	is	the	average	power	dissipation	when	all	the	gate	outputs	
are	HIgH	for	half	the	time	and	LOW	for	half	the	time?	ICCH = 0.5 mA and ICCL = 1 mA.

section 9 Programmable Logic 
 39. In	the	simple	programmed	AND	array	with	programmable	links	in	Figure	99,	determine	the	

Boolean	output	expressions.
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 40. Determine	by	row	and	column	number	which	fusible	links	must	be	blown	in	the	programmable	
AND	 array	 of	 Figure	 100	 to	 implement	 each	 of	 the	 following	 product	 terms:	
X1 = ABC, X2 = ABC, X3 = ABC.
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 41. Describe	a	4-input	AND	gate	using	VHDL.

 42. Repeat	Problem	41	using	Verilog.

 43. Describe	a	5-input	NOR	gate	using	VHDL.

 44. Repeat	Problem	43	using	Verilog.

section 10 troubleshooting 
 45. Define	troubleshooting.

 46. Explain	the	half-splitting	method	of	troubleshooting.

 47. Explain	the	signal-tracing	method	of	troubleshooting.

 48. Discuss signal substitution and injection.

 49. give	some	examples	of	the	type	of	information	that	you	look	for	when	a	system	is	reported	to	
have failed.

 50. If	the	symptom	in	a	particular	system	is	no	output,	name	two	possible	general	causes.

 51. If	the	symptom	of	a	particular	system	is	an	incorrect	output,	name	two	possible	causes.

 52. What	obvious	things	should	you	look	for	before	starting	the	troubleshooting	process?

 53. How	would	you	isolate	a	fault	in	a	system?

 54. Name	two	common	instruments	used	in	troubleshooting.

 55. Assume	that	you	have	isolated	the	problem	down	to	a	specific	circuit	board.	What	are	your	
options	at	this	point?

special Problems 
 56. Sensors	are	used	to	monitor	the	pressure	and	the	temperature	of	a	chemical	solution	stored	in	a	

vat.	The	circuitry	for	each	sensor	produces	a	HIgH	voltage	when	a	specified	maximum	value	is	
exceeded.	An	alarm	requiring	a	LOW	voltage	input	must	be	activated	when	either	the	pressure	
or	the	temperature	is	excessive.	Develop	a	circuit	for	this	application.

 57. In	a	certain	automated	manufacturing	process,	electrical	components	are	automatically	inserted	
in	a	PC	board.	Before	the	insertion	tool	is	activated,	the	PC	board	must	be	properly	positioned,	
and	the	component	to	be	inserted	must	be	in	the	chamber.	Each	of	these	prerequisite	conditions	
is	 indicated	by	a	HIgH	voltage.	The	 insertion	 tool	 requires	a	LOW	voltage	 to	activate	 it.	
Develop	a	circuit	to	implement	this	process.

 58. modify	the	frequency	counter	in	Figure	31	to	operate	with	an	enable	pulse	that	is	active-LOW	
rather	than	HIgH	during	the	1	ms	interval.

 59. Assume	that	the	enable	signal	in	Figure	31	has	the	waveform	shown	in	Figure	101.	Assume	that	
waveform	B	is	also	available.	Show	how	to	produce	an	active-HIgH	reset	pulse	to	the	counter	
only	during	the	time	that	the	enable	signal	is	LOW.
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 60. Develop	a	device	to	fit	in	the	beige	block	of	Figure	102	that	will	cause	the	headlights	of	an	
automobile	to	be	turned	off	automatically	15	s	after	the	ignition	switch	is	turned	off,	if	the	light	
switch	is	left	on.	Assume	that	a	LOW	is	required	to	turn	the	lights	off.

171



LOgIC	gATES	AND	gATE	COmBINATIONS

 61. modify	the	logic	circuit	for	the	intrusion	alarm	in	Figure	39	so	that	two	additional	rooms,	each	
with	two	windows	and	one	door,	can	be	protected.

 62. Further	modify	 the	 logic	circuit	 from	Problem	61	for	a	change	 in	 the	 input	sensors	where	
Open = LOW and Closed = HIGH.

muLtisim troubLesHooting 
Practice 
 63. Open	file	P03-63,	and	follow	the	instructions	given	there.

 64. Open	file	P03-64,	and	follow	the	instructions	given	there.

 65. Open	file	P03-65,	and	follow	the	instructions	given	there.

 66. Open	file	P03-66,	and	follow	the	instructions	given	there.

ansWers to section cHecKuPs
section 1 introduction to boolean algebra
 1. A = 0 = 1

 2. A = 1, B = 1, C = 0; A + B + C = 1 + 1 + 0 = 0 + 0 + 0 = 0

 3. A = 1, B = 0, C = 1; ABC = 1 # 0 #1 = 1 #1 #1 = 1

 4. A + (B + C + D) = (A + B + C) + D

 5. A(B + C + D) = AB + AC + AD

section 2 the inverter
 1. When	the	inverter	input	is	1,	the	output	is	0.

  (a) 

ua03_00200

  (b) A	negative-going	pulse	is	on	the	output	(HIgH	to	LOW	and	back	HIgH).

section 3 the and gate
 1. An	AND	gate	output	is	HIgH	only	when	all	inputs	are	HIgH.

 2. An	AND	gate	output	is	LOW	when	one	or	more	inputs	are	LOW.

 3. Five-input	AND:	X = 1	when	 ABCDE = 11111, and X = 0 for all other combinations of 
ABCDE.

section 4 the or gate
 1. An	OR	gate	output	is	HIgH	when	one	or	more	inputs	are	HIgH.

 2. An	OR	gate	output	is	LOW	only	when	all	inputs	are	LOW.

 3. Three-input	OR:	X = 0	when	ABC = 000, and X = 1 for all other combinations of ABC.

section 5 the nand gate
 1. A	NAND	output	is	LOW	only	when	all	inputs	are	HIgH.

 2. A	NAND	output	is	HIgH	when	one	or	more	inputs	are	LOW.

 3. NAND:	active-LOW	output	for	all	HIgH	inputs;	negative-OR:	active-HIgH	output	for	one	or	
more	LOW	inputs.	They	have	the	same	truth	tables.

 4. X = ABC

section 6 the nor gate
 1. A	NOR	output	is	HIgH	only	when	all	inputs	are	LOW.

 2. A	NOR	output	is	LOW	when	one	or	more	inputs	are	HIgH.

muLtisim
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 3. NOR:	active-LOW	output	for	one	or	more	HIgH	inputs;	negative-AND:	active-HIgH	output	
for	all	LOW	inputs.	They	have	the	same	truth	tables.

 4. X = A + B + C

section 7 the exclusive-or and exclusive-nor gates
 1. An	XOR	output	is	HIgH	when	the	inputs	are	at	opposite	levels.

 2. An	XNOR	output	is	HIgH	when	the	inputs	are	at	the	same	levels.

 3. Apply	the	bits	to	the	XOR	inputs;	when	the	output	is	HIgH,	the	bits	are	different.

section 8 gate Performance characteristics and Parameters
 1. Lowest	power—CmOS

 2. tPLH = 10 ns; tPHL = 8 ns

 3. 18	pJ

 4. ICCL—dc	supply	current	for	LOW	output	state;	ICCH—dc	supply	current	for	HIgH	output	state

 5. VIL—LOW	input	voltage;	VIH—HIgH	input	voltage

 6. VOL—LOW	output	voltage;	VOH—HIgH	output	voltage

section 9 Programmable Logic
 1. Fuse,	antifuse,	EPROm,	EEPROm,	flash,	and	SRAm

 2. Volatile	means	that	all	the	data	are	lost	when	power	is	off	and	the	PLD	must	be	reprogrammed;	
SRAm-based

 3. Text	entry	and	graphic	entry

 4. JTAg	is	Joint	Test	Action	group;	the	IEEE	Std.	1149.1	for	programming	and	test	interfacing.

 5.  
   vHdL verilog

  entity NORgate is module	NORgate	(A,	B,	C,	X);

    port	(A,	B,	C:	in	bit;	X:	out bit);  input	A,	B,	C;

  end entity NORgate;  output	X;

  architecture NORfunction of NORgate is     assign	X	= !(A || B || C);

  begin endmodule

	 	 	 	 X	<=	A	nor B nor C;

  end architecture NORfunction;

   vHdL verilog

  entity	XORgate	is module	XORgate	(A,	B,	X);

    port	(A,	B:	in	bit;	X:	out bit);  input	A,	B;

  end entity	XORgate;	 	 output	X;

  architecture	XORfunction	of	XORgate	is     assign	X	= (A && !B) || (!A && B);

  begin endmodule

	 	 	 	 X	<=	A	xor B;

  end architecture	XORfunction;

 6.  

section 10 troubleshooting
 1. gather	information,	identify	symptoms	and	possible	causes,	isolate	point(s)	of	failure,	apply	

proper	tools	to	determine	cause,	and	fix	problem.

 2. Half-splitting	and	signal	tracing

 3. Blown	fuse,	absence	of	DC	power,	loose	connections,	broken	wires,	loosely	connected	circuit	
board

 4. Yes
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ansWers to reLated ProbLems  
For eXamPLes
 1 A + B = 0	when	A = 1 and B = 0.

 2 A B = 1	when	A = 0 and B = 0.

 3 The timing diagram is not affected.

 4 See	Table	18.

tabLe 18  

inPuts outPut inPuts outPut

ABCD X ABCD X

0000 0 1000 0

0001 0 1001 0

0010 0 1010 0

0011 0 1011 0

0100 0 1100 0

0101 0 1101 0

0110 0 1110 0

0111 0 1111 1

 5 See	Figure	103.
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 6 The	output	waveform	is	the	same	as	input	A.

 7 See	Figure	104.

 8 Results	are	the	same	as	example.

 9 See	Figure	105.

 10 See	Figure	106.

 11 See	Figure	107.
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 12 See	Figure	108.

 13 See	Figure	109.
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 14 See	Figure	110.

 15 See	Figure	111.

 16 See	Figure	112.
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 17 The	output	is	always	LOW.	The	output	is	a	straight	line.

 18 The	outputs	are	unaffected.

 19 The	gate	with	4	ns	tPLH and tPHL	can	operate	at	the	highest	frequency.

 20 10	mW

 21 6	columns,	9	rows,	and	3	AND	gates	with	three	inputs	each.
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ansWers to true/FaLse quiz
 1. F   2. F   3. T   4. F   5. T   6. T

 7. F   8. F   9. T  10. T  11. F  12. F

ansWers to seLF-test
 1. (d)   2. (b)   3. (c)   4. (b)   5. (d)   6. (d)   7. (a)

 8. (e)   9. (c)  10. (a)  11. (d)  12. (b)  13. (d)  14. (b)

 15. (d)  16. (c)  17. (b)  18. (a)   19. (d)  20. (c)  21. (c)

ansWers to odd-numbered ProbLems
 1. X = A + B + C + D

 3. X = A + B + C

 5. (a) AB = 1	when	A = 1, B = 1

  (b) ABC = 1	when	A = 1, B = 0, C = 1

  (c) A + B = 0	when	A = 0, B = 0

  (d) A + B + C = 0	when	A = 1, B = 0, C = 1

  (e) A + B + C = 0	when	A = 1, B = 1, C = 0

  (f) A + B = 0	when	A = 1, B = 0

  (g) AB C = 1	when	A = 1, B = 0, C = 0

 7. (a) Commutative  (b) Commutative  (c) Distributive

 9. See	Figure	P–1.

 11. See	Figure	P–2.
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 13. See	Figure	P–3.
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 15. See	Figure	P–4.
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 17. See	Figure	P–5.
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 19. See	Figure	P–6.
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 21. See	Figure	P–7.
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 23. See	Figure	P–8.
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 25. See	Figure	P–9.
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 27. See	Figure	P–10.
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 29. See	Figure	P–11.
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 31. XOR = AB + AB; OR = A + B

 33. See	Figure	P–12.
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 35. tPLH = 4.3 ns; tPHL = 10.5 ns

 37. 20	mW

 39. X1 = AB, X2 = A B, X3 = AB.

 41. entity ANDgate is

   port	(A,	B,	C,	D:	in	bit;	X:	out bit);

  end entity ANDgate;
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Board position
Activate insertion tool
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Figure P–13 

  architecture ANDfunction of ANDgate is

  begin

	 	 	 X	6= A and B and C and D;

  end architecture ANDfunction;

 43. entity NORgate is

   port	(A,	B,	C,	D,	E:	in	bit;	X:	out bit);

  end entity NORgate;

  architecture NORfunction of NORgate is

  begin

	 	 	 X	6= not(A or B or C or D or E);

  end architecture NORfunction;

 45. Troubleshooting	is	the	process	of	recognizing,	isolating,	and	correcting	a	fault	or	failure	in	a	
system.

 47. In	the	signal-tracing	method,	a	signal	is	tracked	as	it	progresses	through	a	system	until	a	point	
is	found	where	the	signal	disappears	or	is	incorrect.

 49. When	a	failure	is	reported,	determine	when	and	how	it	failed	and	what	are	the	symptoms.

 51. An	incorrect	output	can	be	caused	by	an	incorrect	dc	supply	voltage,	improper	ground,	incorrect	
component	value,	or	a	faulty	component.

 53. To	isolate	a	fault	in	a	system,	apply	half-splitting	or	signal	tracing.

 55. When	a	fault	has	been	isolated	to	a	particular	circuit	board,	the	options	are	to	repair	the	board	
or	replace	the	board	with	a	known	good	board.

 57. See	Figure	P–13.

 59. See	Figure	P–14.
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 61. See	Figure	P–15.
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 63. circuit fault:	Input	B	of	AND	gate	U1	shorted	to	ground.

  Predicted effect of fault:	Output	X	is	always	LOW.

  observed effect of introduced fault:	Output	X	is	always	LOW.

 65. observed operation:	Output	X	is	LOW	whenever	input	B	is	HIgH.

  suspected fault:	Input	A	of	NOR	gate	shorted	to	ground.

  effect of introduced fault:	Output	X	is	LOW	whenever	B	is	HIgH.
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Combinational logiC
outline
 1 Basic Combinational Logic Circuits 

 2 Boolean Expressions and Truth Tables 

 3 DeMorgan’s Theorems 

 4 The Universal Property of NAND and NOR 
Gates 

 5 Pulse Waveform Operation 

 6 Combinational Logic with VHDL and Verilog 

 7 A System 

 8 Troubleshooting 

objeCtives
•	 Study	the	operation	of	basic	combinational	logic	

circuits, such as AND-OR, AND-OR-Invert, 
exclusive-OR, and exclusive-NOR

•	 Write	the	Boolean	output	expression	for	any	
 combinational logic circuit

•	 Develop	a	truth	table	from	the	output	expression	
for a combinational logic circuit

•	 Apply	DeMorgan’s	theorems	to	Boolean	expressions

•	 Develop	a	combinational	logic	circuit	for	a	given	
Boolean output expression

•	 Develop	a	combinational	logic	circuit	for	a	given	
truth table

•	 Use	NAND	gates	to	implement	any	combinational	
logic function

•	 Use	NOR	gates	to	implement	any	combinational	
logic function

•	 Write	VHDL	and	Verilog	programs	for	simple	
logic circuits

Key terms
soP
Pos
universal gate
Component

signal
node
signal tracing

•	 Apply	combinational	logic	to	a	system	application

•	 Troubleshoot	faulty	logic	circuits

•	 Troubleshoot	logic	circuits	by	using	signal	tracing	
and waveform analysis

visit the Website
Study aids for this chapter are available at  

http://pearsonhighered.com/floyd

introduCtion
In this chapter, you will be introduced to SOP and POS 
implementations, which are basic forms of combina-
tional logic. When logic gates are connected together to 
produce a specified output for certain specified combina-
tions of input variables, with no storage involved, the 
resulting circuit is in the category of combinational 
logic.* In combinational logic, the output level is at all 
times dependent on the combination of input levels. This 
chapter expands on the material introduced in earlier 
chapters with a coverage of the operation, implementa-
tion, and troubleshooting of various combinational logic 
circuits. The VHDL structural approach is introduced 
and applied to combinational logic. Corresponding 
Verilog programs are also covered.

From Chapter 4 of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved.

*The bold terms in color are key terms and are included in a Key Term glossary at the end of the chapter.
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and-or logic
Figure 1(a) shows an AND-OR circuit using ANSI standard distinctive shape symbols 
consisting of two 2-input AND gates and one 2-input OR gate; Figure 1(b) is the ANSI 
standard rectangular outline symbol.

sum-of-product (soP) expressions are implemented with an and gate for each product term 
and one or gate for summing all of the product terms. the soP implementation is called 
and-or logic and is the basic form for realizing standard boolean functions. in this section, 
the and-or and the and-or-invert are examined; the exclusive-or and exclusive-nor 
gates, which are actually a form of and-or logic, are also covered.

after completing this section, you should be able to

•	 Describe	the	operation	of	AND-OR	and	AND-OR-Invert	circuits
•	 Describe	the	operation	of	exclusive-OR	and	exclusive-NOR	gates

1 basiC Combinational  
logiC CirCuits

TABLE	1	 •	 truth table for the and-or logic in Figure 1.

inPuts outPut

A B C D AB CD X

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 1 1

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 1 1 0 1

1 1 1 0 1 0 1

1 1 1 1 1 1 1

A

B

C

D CD

AB SOP
X = AB + CD

(a) Logic diagram (ANSI standard distinctive
shape symbols)

A

B

C

D

X

(b) ANSI standard rectangular outline symbol

&

&

≥1

fg05_00100

Figure 1 an example of 
and-or logic. open file  
F04-01 to verify the operation.

multisim
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The truth table for a 4-input AND-OR logic circuit is shown in Table 1. The interme-
diate AND gate outputs (the AB and CD columns) are also shown in the table. The opera-
tion of the AND-OR circuit in Figure 1 is stated as follows:

For a 4-input and-or logic circuit, the output X is high (1) if both input A 
and input B are high (1) or both input C and input D are high (1).

The term soP shown above the output expression in Figure 1 stands for sum-of-
products. The AND operation is Boolean multiplication, so when two or more variables 
are ANDed together, the result is a product. AB and CD are Boolean product terms. Also 
the OR operation is Boolean addition. When these two product terms are ORed together, 
the result is Boolean addition. Therefore, the expression X = AB + CD is a sum-of-
products (SOP), which is a standard form. An SOP expression can have any number of 
AND (product) terms ORed together.

and-or-invert logic
When the output of an AND-OR circuit is complemented (inverted), it results in an AND-
OR-Invert circuit. AND-OR logic directly implements SOP expressions. Product-of-sum 
(POS) expressions can be implemented with AND-OR-Invert logic. This is illustrated as fol-
lows, by developing the corresponding AND-OR-Invert (AOI) expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

The logic diagram in Figure 3(a) shows an AND-OR-Invert circuit with four inputs. 
The ANSI standard rectangular outline symbol is shown in part (b).

storage tanK monitor
In a certain chemical-processing plant, a liquid chemical is used in a manufacturing pro-
cess. The chemical is stored in three different tanks. A level sensor in each tank produces 
a HIGH voltage when the level of chemical in the tank drops below a specified point. The 
circuit monitors the chemical level in each tank and indicates when the level in any two of 
the tanks drops below the specified point.

The AND-OR circuit in Figure 2 has inputs from the sensors on tanks A, B, and C as 
shown. The AND gate G1 checks the levels in tanks A and B, gate G2 checks tanks A and 
C, and gate G3 checks tanks B and C. When the chemical level in any two of the tanks gets 
too low, one of the AND gates will have HIGHs on both of its inputs, causing its output to 
be HIGH; and so the final output X from the OR gate is HIGH. This HIGH input is then 
used to activate an indicator such as a lamp or audible alarm, as shown in the figure.

s y s t e m  e x a m P l e  1

fg05_00200

Low-level
indicator

X

G3

G2

G1

A B C

Figure 2 

and-or logic produces 
an soP expression.
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fg05_00300

A

B

C

D CD

AB POS

AB + CD  =  (A + B)(C + D)

A

B

C

D

X

(b)

&

&

≥1

AB + CD

(a)

Figure 3 an example of and-or-invert logic. open file F04-03 to verify the operation.

A

X = AB + AB

(b) ANSI distinctive(a) Logic diagram

B
X

A

B
X

A

B

= 1

(c) ANSI rectangular
shape symbol outline symbol

fg05_00500Figure 4 exclusive-or logic diagram and symbols. open file F04-04 to verify the operation.

The output expression for the circuit in Figure 4 is

X = AB + AB

Evaluation of this expression results in the truth table in Table 2. Notice that the output is 
HIGH only when the two inputs are at opposite levels. A special exclusive-OR opera-
tor � is often used, so the expression X = AB + AB can be stated as “X is equal to A 
exclusive-OR B” and can be written as

X = A �  B

The operation of the AND-OR-Invert circuit in Figure 3 is stated as follows:

For a 4-input and-or-invert logic circuit, the output X is loW (0) if both 
input A and input B are high (1) or both input C and input D are high (1).

A truth table can be developed from the AND-OR truth table in Table 1 by simply chang-
ing all 1s to 0s and all 0s to 1s in the output column.

The term Pos shown above the output expression in Figure 3 (a) stands for product-of-
sums. The OR operation is Boolean addition, so when two or more variables are ORed 
together, the result is a sum. A + B and C + D are Boolean sum terms. Also the AND 
operation is Boolean multiplication. When these two sum terms are ANDed together, the 
result is Boolean multiplication. Therefore, the expression (A + B)(C + D) is a product-
of-sums (POS), which is a standard form. A POS expression can have any number of OR 
(sum) terms ANDed together.

exclusive-or logic
Although, because of the importance of exclusive-OR gate, this circuit is considered 
a type of logic gate with its own unique symbol, it is actually a combination of two 
AND gates, one OR gate, and two inverters, as shown in Figure 4(a). The two ANSI 
standard exclusive-OR logic symbols are shown in parts (b) and (c).

the xor gate is actually 
a combination of other 
gates.

TABLE	2	 •	 truth 
table for an  
exclusive-or.

A B X

0 0 0

0 1 1

1 0 1

1 1 0

multisim

multisim
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exclusive-nor logic
As you know, the complement of the exclusive-OR function is the exclusive-NOR, which 
is derived as follows:

X = AB + AB = (AB)( AB) = (A + B)(A + B) = A B + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the same level.
The exclusive-NOR can be implemented by simply inverting the output of an exclu-

sive-OR, as shown in Figure 5(a), or by directly implementing the expression A B + AB, 
as shown in part (b).

A

B

X

XOR

(a) X = AB + AB

A

B X

AB

(b) X = AB + AB

AB

fg05_00600
Figure 5 two equivalent ways of implementing the exclusive-nor. open files F04-05 
(a) and (b) to verify the operation.

data transmission With error deteCtion
A certain data transmission system uses exclusive-OR gates to implement even-parity gen-
eration and checking to detect an error in a 4-bit code. A parity bit is added to a binary 
code in order to provide error detection. For even parity, a parity bit is added to the original 
code to make the total number of 1s in the code even.

The parity generator circuit in Figure 6 produces a 1 output when there is an odd 
number of 1s on the inputs in order to make the total number of 1s in the output code even. 

s y s t e m  e x a m P l e  2

A0

A1
Data bits Even parity bit

Parallel-to-serial
converter and transmitter

Receiver and
serial-to-parallel

converter

Data bits

Parity generator

Transmission media

Parity checker

A2

A3

A0

A1
Data bits

Even parity bit
Error

A2

A3

fg04_00600

Figure 6 

multisim
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A 0 output is produced when there is an even number of 1s on the inputs. A total of five 
bits is converted to serial form and transmitted. At the receiving end, the transmitted code 
is converted back to parallel form. The parity checker produces a 1 output when there is an 
error in the five-bit code and a 0 when there is no error.

1. Determine the output (1 or 0) of a 4-variable AND-OR-Invert 
circuit for each of the following input conditions:

(a) A = 1, B = 0, C = 1, D = 0

(b) A = 1, B = 1, C = 0, D = 1

(c) A = 0, B = 1, C = 1, D = 1

2. Determine the output (1 or 0) of an exclusive-OR gate for 
each of the following input conditions:

(a) A = 1, B = 0

(b) A = 1, B = 1

(c) A = 0, B = 1

(d) A = 0, B = 0

3. Develop the truth table for a certain 3-input logic circuit with the 
output expression X = ABC + ABC + A B C + ABC + ABC.

4. Draw the logic diagram for an exclusive-NOR circuit.

seCtion 1 CheCKuP*

*answers are at the end of the chapter.

2 boolean exPressions and  
truth tables

For every boolean 
expression there is a logic 
circuit, and for every logic 
circuit there is a boolean 
expression.

in this section, examples are used to illustrate how to develop a logic circuit from a boolean 
expression or a truth table.

after completing this section, you should be able to

•	 Develop	a	logic	circuit	from	a	Boolean	expression
•	 Develop	a	logic	circuit	from	a	truth	table

From a boolean expression to a logic Circuit
Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE, with 
a domain of five variables. The first term is formed by ANDing A with B, and the second 
term is formed by ANDing C, D, and E. The two terms are then ORed to form the output 
X. These operations are indicated in the structure of the expression as follows:

                                                                                                 AND

X =   AB  +   CDE   

                                                                                                 OR
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fg05_00900

AB

B

X = AB + CDE

A

E
D

CDE

C

Figure 7 logic circuit for X � AB � CDE.

As another example, let’s implement the following expression:

X = AB(CD + EF)

A breakdown of this expression shows that the terms AB and (CD + EF) are ANDed. The 
term CD + EF is formed by first ANDing C and D and ANDing E and F, and then ORing 
these two terms. This structure is indicated in relation to the expression as follows:

 AND

 NOT

 OR

X = AB(CD + EF)

 AND

Before you can implement the final expression, you must create the sum term CD + EF; 
but before you can get this term; you must create the product terms CD and EF; but before 
you can get the term CD, you must create D. So, as you can see, the logic operations must 
be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

 1. One inverter to form D

 2. Two 2-input AND gates to form CD and EF

 3. One 2-input OR gate to form CD + EF

 4. One 3-input AND gate to form X

The logic circuit for this expression is shown in Figure 8(a). Notice that there is a maximum 
of four gates and an inverter between an input and output in this circuit (from input D to 
output). Often the total propagation delay time through a logic circuit is a major considera-
tion. Propagation delays are additive, so the more gates or inverters between input and out-
put, the greater the propagation delay time.

Many control programs require logic operations to be performed by a computer. A driver pro-
gram is a control program that is used with computer peripherals. For example, a mouse driver 
requires logic tests to determine if a button has been pressed and further logic operations to 
determine if it has moved, either horizontally or vertically. Within the heart of a microproces-
sor is the arithmetic logic unit (ALU), which performs these logic operations as directed by 
program instructions. All of the logic described in this chapter can also be performed by the 
ALU, given the proper instructions.

s y s t e m  n o t e

Note that in this particular expression, the AND operations forming the two individual 
terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term 
AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then 
required to combine the two AND terms. The resulting logic circuit is shown in Figure 7.
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Unless an intermediate term, such as CD + EF in Figure 8(a), is required as an out-
put for some other purpose, it is usually best to reduce a circuit to its SOP form in order to 
reduce the overall propagation delay time. The expression is converted to SOP as follows, 
and the resulting circuit is shown in Figure 8(b).

AB(CD + EF) = ABCD + ABEF

From a truth table to a logic Circuit
If you begin with a truth table instead of an expression, you can write the SOP expression 
from the truth table and then implement the logic circuit. Table 3 specifies a logic function.

E

A

D

B
C

C

D

A

B

E

F EF

CD  X = AB(CD + EF)

CD + EF

D

F
ABEF

ABCD

 X = ABCD + ABEF

(b) Sum-of-products implementation of the circuit in part (a)(a)

fg05_01000
Figure 8 logic circuits for X � AB(CD � EF) � ABCD � ABEF.

table 3 

inPuts outPut
A B C X ProduCt term

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 ABC

1 0 0 1 AB C

1 0 1 0

1 1 0 0

1 1 1 0

The Boolean SOP expression obtained from the truth table by ORing the product 
terms for which X = 1 is

X = ABC + AB C

The first term in the expression is formed by ANDing the three variables A, B, and C. The 
second term is formed by ANDing the three variables A, B, and C.

The logic gates required to implement this expression are as follows: three inverters 
to form the A, B, and C variables; two 3-input AND gates to form the terms ABC and 
AB C; and one 2-input OR gate to form the final output function, ABC + AB C.

The implementation of this logic function is illustrated in Figure 9.
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multisim

e x a m P l e  1

Develop the logic circuit for the operation specified in the truth table of Table 4.

table 4 

inPuts outPut

A B C X ProduCt term

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 ABC

1 0 0 0

1 0 1 1 ABC

1 1 0 1 ABC

1 1 1 0

s o l u t i o n

Notice that X = 1 for only three of the input conditions. Therefore, the logic 
expression is

X = ABC + ABC + ABC

The logic gates required are three inverters, three 3-input AND gates and one 
3-input OR gate. The logic circuit is shown in Figure 10.

A
ABC

ABC

A

ABC
X 

BC

BC

fg05_01200

Figure 10 open file 
F04-10 to verify the operation.

multisim

*answers are at the end of the chapter.

r e l a t e d  P r o b l e m*

If there were no complemented variables in the Boolean expression for the logic 
circuit of Figure 10, what would be the resulting circuit?

A

B X = ABC + ABC

C

A
ABC

B

C
ABC

fg05_01100

Figure 9 logic circuit for 
X � ABC � AB C. 
open file F04-09 to verify  
the operation.
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r e l a t e d  P r o b l e m

Show that the four cases in Table 5 are the only times there are three and only 
three 1s in the code.

a combinational logic 
circuit can be described 
by a truth table.

e x a m P l e  2

Develop a logic circuit with four input variables that will only produce a 1 output 
when exactly three input variables are 1s.

s o l u t i o n

Out of sixteen possible combinations of four variables, the combinations in which 
there are exactly three 1s are listed in Table 5, along with the corresponding prod-
uct term for each.

table 5  

A B C D ProduCt term

0 1 1 1 ABCD

1 0 1 1 ABCD

1 1 0 1 ABCD

1 1 1 0 ABCD

The product terms are ORed to get the following expression:

X = ABCD + ABCD + ABCD + ABCD

This expression is implemented in Figure 11 with AND-OR logic.

ABCD

X

ABCD

ABCD

ABCD

D C B A

fg05_01300

Figure 11 open file 
F04-11 to verify the  
operation.

multisim

Constructing a truth table for a logic Circuit
Once you have determined the Boolean expression for a given logic circuit, you can develop a 
truth table that shows the output for all possible values of the input variables. The procedure 
requires that you evaluate the Boolean expression for all possible combinations of values for 
the input variables. In the case of the circuit in Figure 12, there are four input variables (A, B, C, 
and D) and therefore sixteen (24

= 16) combinations of values are possible.
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evaluating the exPression To evaluate the 
expression A(B + CD), first find the values of the variables 
that make the expression equal to 1, using the rules for Boolean 
addition and multiplication. In this case, the expression equals 
1 only if A = 1 and B + CD = 1 because

A(B + CD) = 1 # 1 = 1

Now determine when the B + CD term equals 1. The term 
B + CD = 1 if either B = 1 or CD = 1 or if both B and CD 
equal 1 because

 B + CD = 1 + 0 = 1

 B + CD = 0 + 1 = 1

 B + CD = 1 + 1 = 1

The term CD = 1 only if C = 1 and D = 1.
To summarize, the expression A(B + CD) = 1 when A = 1 and B = 1 regardless 

of the values of C and D or when A = 1 and C = 1 and D = 1 regardless of the value of 
B. The expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the results in truth table Format The first step is to 
list the sixteen input variable combinations of 1s and 0s in a binary sequence as shown in 
Table 6. Next, place a 1 in the output column for each combination of input variables that 
was determined in the evaluation. Finally, place a 0 in the output column for all other com-
binations of input variables. These results are shown in the truth table in Table 6.

CD
D

B
B + CD

C

A
A(B + CD)

fg04_01600
Figure 12 a combinational logic circuit showing the 
development of the boolean expression for the output.

TABLE	6	 •	 truth table for the logic circuit in Figure 12.

inPuts outPut
A B C D A(B � CD)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1
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1. Implement the following Boolean expressions as they are 
stated:

(a) X = ABC + AB + AC

(b) X = AB(C + DE)

2. Develop a logic circuit that will produce a 1 on its output only 
when all three inputs are 1s or when all three inputs are 0s.

3. Replace the AND gates with OR gates and the OR gate with 
an AND gate in Figure 12. Determine the Boolean expression 
for the output.

4. Construct a truth table for the circuit in Question 2.

seCtion 2 CheCKuP

e x a m P l e  3

Use Multisim to generate the truth table for the logic circuit in Figure 12.

s o l u t i o n

Construct the circuit in Multisim and connect the Multisim Logic Converter to the inputs and output, as shown in 
Figure 13. Click on the 

ua04_00500

 conversion bar, and the truth table appears in the display as shown.

 

Truth table

Boolean expression

fg04_01700

multisim

You can also generate the simplified Boolean expression from the truth table by clicking on 

ua04_00400

.

r e l a t e d  P r o b l e m

Open Multisim and create the setup. Do the conversions shown in this example.

Figure 13 
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3 demorgan’s theorems
demorgan’s theorems provide mathematical verification of the equivalency of the nand and 
negative-or gates and the equivalency of the nor and negative-and gates.

after completing this section, you should be able to

•	 State	DeMorgan’s	theorems
•	 Relate	DeMorgan’s	theorems	to	the	equivalency	of	the	NAND	and	negative-OR	gates	and	

to the equivalency of the nor and negative-and gates
•	 Apply	DeMorgan’s	theorems	to	the	simplification	of	Boolean	expressions

DeMorgan’s first theorem is stated as follows:

the complement of a product of variables is equal to the sum of the comple-
ments of the variables.

Stated another way,

the complement of two or more anded variables is equivalent to the or of 
the complements of the individual variables.

The formula for expressing this theorem for two variables is

 XY � X � Y (1)

DeMorgan’s second theorem is stated as follows:

the complement of a sum of variables is equal to the product of the comple-
ments of the variables.

Stated another way,

the complement of two or more ored variables is equivalent to the and of 
the complements of the individual variables.

The formula for expressing this theorem for two variables is

 X � Y � X Y (2)

Figure 14 shows the gate equivalencies and truth tables for Equations 1 and 2.

to apply demorgan’s 
theorem, break the bar 
over the product of 
variables and change the 
sign from and to or.

fg04_01500

X + Y
X

Y
XY

X

Y

NAND Negative-OR

XY
X

Y
X + Y

X

Y

NOR Negative-AND

0

0

1

1

0

1

0

1

OUTPUT

X YX + Y

1

0

0

0

1

0

0

0

INPUTS

X Y

XY

0

0

1

1

0

1

0

1

1

1

1

0

1

1

1

0

OUTPUT

X + Y

INPUTS

X Y

Figure 14 gate equivalen-
cies and the corresponding 
truth tables that illustrate 
demorgan’s theorems. notice 
the equality of the two output 
columns in each table. this 
shows that the equivalent  
gates perform the same logic 
function.
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As stated, DeMorgan’s theorems also apply to expressions in which there are more 
than two variables. The following examples illustrate the application of DeMorgan’s theo-
rems to 3-variable and 4-variable expressions.

e x a m P l e  4

Apply DeMorgan’s theorems to the expressions XYZ and X + Y + Z.

s o l u t i o n

 XYZ = X + Y + Z

 X + Y + Z = X Y Z

r e l a t e d  P r o b l e m

Apply DeMorgan’s theorem to the expression X + Y + Z.

e x a m P l e  5

Apply DeMorgan’s theorems to the expressions WXYZ and W + X + Y + Z.

s o l u t i o n

 WXYZ = W + X + Y + Z

 W + X + Y + Z = W X Y Z

r e l a t e d  P r o b l e m

Apply DeMorgan’s theorem to the expression W X Y Z.

Each variable in DeMorgan’s theorems as stated in Equations 1 and 2 can also repre-
sent a combination of other variables. For example, X can be equal to the term AB + C, 
and Y can be equal to the term A + BC. So if you can apply DeMorgan’s theorem for two 
variables as stated by XY = X + Y  to the expression (AB + C)(A + BC), you get the fol-
lowing result:

(AB + C)(A + BC) = (AB + C) + (A + BC)

Notice that in the preceding result you have two terms, AB + C and A + BC, to each of 
which you can again apply DeMorgan’s theorem X + Y = X Y  individually, as follows:

(AB + C) + (A + BC) = (AB)C + A(BC)

Notice that you still have two terms in the expression to which DeMorgan’s theorem can 
again be applied. These terms are AB and BC. A final application of DeMorgan’s theorem 
gives the following result:

(AB)C + A(BC) = (A + B)C + A(B + C)

Although this result can be simplified further by the use of Boolean rules and laws, DeMorgan’s 
theorems cannot be applied further.

1. Apply DeMorgan’s theorems to the following expressions:

(a) ABC + (D + E)

(b) (A + B)C

(c) A + B + C + DE

seCtion 3 CheCKuP
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up to this point, you have studied combinational circuits implemented with and gates, or 
gates, and inverters. in this section, the universal property of the nand gate and the nor 
gate is discussed. the universality of the nand gate means that it can be used as an inverter 
and that combinations of nand gates can be used to implement the and, or, and nor 
operations. similarly, the nor gate can be used to implement the inverter (not), and, or, 
and nand operations.

after completing this section, you should be able to

•	 Use	NAND	gates	to	implement	the	inverter,	the	AND	gate,	the	OR	gate,	and	the	NOR	gate
•	 Use	NOR	gates	to	implement	the	inverter,	the	AND	gate,	the	OR	gate,	and	the	NAND	gate

the nand gate as a universal logic element
The NAND gate is a universal gate because it can be used to produce the NOT, the AND, 
the OR, and the NOR functions. An inverter can be made from a NAND gate by connect-
ing all of the inputs together and creating, in effect, a single input, as shown in Figure 
15(a) for a 2-input gate. An AND function can be generated by the use of NAND gates 
alone, as shown in Figure 15(b). An OR function can be produced with only NAND gates, 
as illustrated in part (c). Finally, a NOR function is produced as shown in part (d).

In Figure 15(b), a NAND gate is used to invert (complement) a NAND output to 
form the AND function, as indicated in the following equation:

X = AB = AB

4 the universal ProPerty  
oF nand and nor gates

AAA A

(a) One NAND gate used as an inverter

AB
A

B

A

B
AB = AB

(b) Two NAND gates used as an AND gate

AB

A + B
A

B

A

B

A

(c) Three NAND gates used as an OR gate

AB = A + B

B

G1

G2

G3

A + B
A

B

A

B

(d) Four NAND gates used as a NOR gate

A + B

A

B

G1

G2

G3 G4

AB = A + B

fg05_01800
Figure 15 universal application of nand gates. open files F04-15(a), (b), (c), and 
(d) to verify each of the equivalencies.

Combinations of nand 
gates can be used to 
produce any logic 
function.

multisim
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In Figure 15(c), NAND gates G1 and G2 are used to invert the two input variables 
before they are applied to NAND gate G3. The final OR output is derived as follows by 
application of DeMorgan’s theorem:

X = A B = A + B

In Figure 15(d), NAND gate G4 is used as an inverter connected to the circuit of part 
(c) to produce the NOR operation A + B.

the nor gate as a universal logic element
Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and 
NAND functions. A NOT circuit, or inverter, can be made from a NOR gate by connecting 
all of the inputs together to effectively create a single input, as shown in Figure 16(a) with 
a 2-input example. Also, an OR gate can be produced from NOR gates, as illustrated in 
Figure 16(b). An AND gate can be constructed by the use of NOR gates, as shown in Fig-
ure 16(c). In this case the NOR gates G1 and G2 are used as inverters, and the final output 
is derived by the use of DeMorgan’s theorem as follows:

X = A + B = AB

Figure 16(d) shows how NOR gates are used to form a NAND function.

Combinations of nor 
gates can be used to 
produce any logic 
function.

AAA A

(a) One NOR gate used as an inverter

A

B
A + B

(b) Two NOR gates used as an OR gate

A + B
A

B

A + B

A

B

(c) Three NOR gates used as an AND gate

AB
A

B
A + B = AB

A

B

G1

G2

G3

A

B

A

B

(d) Four NOR gates used as a NAND gate

AB

A

B

AB

G1

G2

G4G3 AB

fg05_01900

Figure 16 universal application of nor gates. open files F04-16(a), (b), (c), and (d) to verify 
each of the equivalencies.

1. Use NAND gates to implement each expression:

(a) X = A + B

(b) X = AB

2. Use NOR gates to implement each expression:

(a) X = A + B

(b) X = AB

seCtion 4 CheCKuP

multisim
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general combinational logic with pulse waveform inputs is examined in this section. Keep in 
mind that the operation of each gate is the same for pulse waveform inputs as for constant-
level inputs. the output of a logic circuit at any given time depends on the inputs at that par-
ticular time, so the relationship of the time-varying inputs is of primary importance.

after completing this section, you should be able to

•	 Predict	behavior	of	combinational	logic	with	pulse	waveform	inputs
•	 Develop	a	timing	diagram	for	any	given	combinational	logic	circuit	with	specified	inputs

The operation of any gate is the same regardless of whether its inputs are pulsed or 
constant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth 
table of a circuit. The examples in this section illustrate the analysis of combinational logic 
circuits with pulse waveform inputs.

The following is a review of the operation of individual gates for use in understand-
ing combinational circuits with pulse waveform inputs:

 1. The output of an AND gate is HIGH only when all inputs are HIGH at the same time.

 2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.

 3. The output of a NAND gate is LOW only when all inputs are HIGH at the same time.

 4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.

5 Pulse WaveForm oPeration

e x a m P l e  6

Determine the final output waveform X for the circuit in Figure 17, with input 
waveforms A, B, and C as shown.

B

A

C

X = A(B + C) = AB + AC

X
B

C

X

A

Y

Y

Inputs

fg05_03100
Figure 17 

s o l u t i o n

The output expression, AB + AC, indicates that the output X is LOW when both 
A and B are HIGH or when both A and C are HIGH or when all inputs are HIGH. 
The output waveform X is shown in the timing diagram of Figure 17. The inter-
mediate waveform Y at the output of the OR gate is also shown.

r e l a t e d  P r o b l e m

Determine the output waveform if input A is a constant HIGH level.
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A

 X = AB + AB

B
G2

G3

G1

fg05_03200
Figure 18 

e x a m P l e  7

Draw the timing diagram for the circuit in Figure 18 showing the outputs of G1, G2
, and G3 with the input waveforms, A, and B, as indicated.

s o l u t i o n

When both inputs are HIGH or when both inputs are LOW, the output X is HIGH 
as shown in Figure 19. Notice that this is an exclusive-NOR circuit. The interme-
diate outputs of gates G2 and G3 are also shown in Figure 19.

A

B

X

G2 output

G3 output

fg05_03300

Figure 19 

r e l a t e d  P r o b l e m

Determine the output X in Figure 18 if input B is inverted.

e x a m P l e  8

Determine the output waveform X for the logic circuit in Figure 20(a) by first 
finding the intermediate waveform at each of points Y1, Y2, Y3, and Y4. The input 
waveforms are shown in Figure 20(b).

s o l u t i o n

All the intermediate waveforms and the final output waveform are shown in the 
timing diagram of Figure 20(c).

r e l a t e d  P r o b l e m

Determine the waveforms Y1, Y2, Y3, Y4 and X if input waveform A is inverted.
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A
B

Y2

Y1

Y4

Y3

C
D

X

(a)

A

B

C

D

Y1

Y2

Y3

Y4

X

(b)

(c)

fg05_03400
Figure 20 

e x a m P l e  9

Determine the output waveform X for the circuit in Example 8, Figure 20(a), directly from the output 
expression.

s o l u t i o n

The output expression for the circuit is developed in Figure 21. The SOP form indicates that the output is HIGH 

when A is LOW and C is HIGH or when B is LOW and C is HIGH or when C is LOW and D is HIGH.

A
B

C
D

X

A + B
(A + B)C

C

CD

= (A + B)C + CD = (A + B)C + CD = AC + BC + CD

fg05_03500

Figure 21 

The result is shown in Figure 22 and is the same as the one obtained by the intermediate-waveform method 
in Example 8. The corresponding product terms for each waveform condition that results in a HIGH output are 
indicated.
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A

B

C

D

BC

AC AC
CD

X = AC + BC + CD

fg05_03600

Figure 22 

r e l a t e d  P r o b l e m

Repeat this example if all the input waveforms are inverted.

1. One pulse with tW = 50 ms is applied to one of the inputs of an 
exclusive-OR circuit. A second positive pulse with tW = 10 ms 
is applied to the other input beginning 15 ms after the leading 
edge of the first pulse. Show the output in relation to the inputs.

2. The pulse waveforms A and B in Figure 17 are applied to the 
exclusive-NOR circuit in Figure 18. Develop a complete tim-
ing diagram.

seCtion 5 CheCKuP

three basic approaches to describing logic functions with vhdl are the data flow method, the 
structural method, and the behavioral method. in this section, the data flow method for combi-
national logic is discussed. the purpose of using vhdl or verilog to describe a logic function 
is so that it can then be programmed into a Pld. VHDL and Verilog tutorials are available on 
the website.

after completing this section, you should be able to

•	 Explain	the	entity	in	VHDL
•	 Explain	the	architecture	in	VHDL
•	 Explain	the	module	in	Verilog

6 Combinational logiC With vhdl  
and verilog

A VHDL data flow description of a logic function contains an entity and an architec-
ture. The entity identifies the inputs and outputs of the function within a port statement, 
and the architecture describes the logic. In writing a VHDL program, both entity and archi-
tecture must be used together in what is called an entity/architecture pair. In Verilog, both 
of these are done in a single module. As mentioned before, both of these HDLs have their 
adherents and both claim that their choice is better. Actually, both VHDL and Verilog 
have certain pros and cons. Some say VHDL is more versatile but that Verilog is easier to 
learn. Keep in mind that with this coverage, we are only touching the tip of the iceberg.
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vhdl and verilog descriptions  
from a boolean expression
In order to describe combinational logic, you should have either the Boolean expression or 
the truth table. Example 10 shows the use of the std_logic data type in VHDL. The bit data 
type is shown in the remaining programs.

e x a m P l e  1 0

Write the VHDL and the Verilog descriptions of AND-OR logic with two 2-input AND gates. The expression is

X = AB + CD

s o l u t i o n

Name assignments can be anything all run together or separated by an underscore.

 vhdl
library ieee;
use ieee.std_logic_1164.all;

entity ANDORlogic is
 port (A, B, C, D: in std_logic; X: out std_logic);

end entity ANDORlogic;

architecture ANDORfunction of ANDORlogic is 
begin
 X 6= (A and B) or (C and D);

end architecture ANDORfunction;

 verilog
module ANDORlogic (A, B, C, D, X);

 input A, B, C, D;

 output X;

  assign X = (A && B) } (C && D);

endmodule

r e l a t e d  P r o b l e m

If the AND-OR logic has four AND gates each with two inputs, modify the programs.

e x a m P l e  1 1

Write VHDL and Verilog programs for a logic function having the following Boolean expression:

X = (A B + C)(D E + F)

s o l u t i o n

 vhdl
entity Combo_Logic is
 port (A, B, C, D, E, F: in bit; X: out bit);

end entity Combo_Logic;

architecture Logic_Function of Combo_Logic is 
begin
 X 6=  ((not A and not B) or C) and ((not D 

and not E) or F);

end architecture Logic_Function;

 verilog
module Combo_Logic (A, B, C, D, E, F, X);

 input A, B, C, D, E, F;

 output X;

  assign X =  ((!A && !B) } C) && ((!D 
&& !E) } F);

endmodule

r e l a t e d  P r o b l e m

How would the programs change if there were a bar over each of the parenthetical terms?

vhdl and verilog descriptions from a truth table
VHDL or Verilog descriptions can also be written directly from a truth table as Example 
12 shows.
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e x a m P l e  1 2

Write VHDL and Verilog programs for a logic function having the following truth table (Table 7).

table 7  

inPuts outPut

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

s o l u t i o n

As you know, the Boolean terms for the combination of inputs that produce a 1 output form the Boolean expres-
sion. In this case, there are five terms that can be written directly to the VHDL and Verilog programs.

 vhdl
entity Table_7 is
 port (A, B, C, D: in bit; X: out bit);

end entity Table_7;

architecture Logic_Function of Table_7 is 
begin
 X 6= (A and not B and C and D) or (A and
 B and not C and not D) or (A and B

 and not C and D) or (A and B and C

 and not D) or (A and B and C and D);

end architecture Logic_Function;

 verilog
module Table_7 (A, B, C, D, X);

 input A, B, C, D;

 output X;

  assign X = (A && !B && C && D) } 

 (A && B && !C && !D) }

 (A && B && !C && D) }

 (A && B && C && !D) }

 (A && B && C && D);

endmodule

r e l a t e d  P r o b l e m

How would the programs change if an all 0s input also produced a 1 in the table?
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structural approach to vhdl Programming
The structural approach to writing a VHDL description of a logic function can be com-
pared to installing IC devices on a circuit board and interconnecting them with wires. With 
the structural approach, you describe logic functions and specify how they are connected 
together. The VHDL component is a way to predefine a logic function for repeated use in 
a program or in other programs. The component can be used to describe anything from a 
simple logic gate to a complex logic function. The VHDL signal can be thought of as a 
way to specify a “wire” connection between components.

A VHDL component describes predefined logic that can be stored as a package decla-
ration in a VHDL library and called as many times as necessary in a program. You can use 
components to avoid repeating the same code over and over within a program. For example, 
you can create a VHDL component for an AND gate and then use it as many times as you 
wish without having to write a program for an AND gate every time you need one.

VHDL components are stored and are available for use when you write a program. 
This is similar to having, for example, a storage bin of ICs available when you are con-
structing a circuit. Every time you need to use one in your circuit, you reach into the stor-
age bin and place it on the circuit board.

The VHDL program for any logic function can become a component and used when-
ever necessary in a larger program with the use of a component declaration of the follow-
ing general form. Component is a VHDL keyword.

component name_of_component is
 port (port definitions);

end component name_of_component;

For simplicity, let’s assume that there are predefined VHDL data flow descriptions of a 
2-input AND gate with the entity name AND_gate and a 2-input OR gate with the entity 
name OR_gate, as shown in Figure 23.

Next, assume that you are writing a program for a logic circuit that has several AND 
gates. Instead of rewriting the program in Figure 23 over and over, you can use a compo-
nent declaration to specify the AND gate. The port statement in the component declaration 
must correspond to the port statement in the entity declaration of the AND gate.

component AND_gate is
 port (A, B: in bit; X: out bit);

end component AND_gate;

X
A

B

entity AND_gate is
   port (A, B: in bit; X: out bit);
end entity AND_gate;

architecture ANDfunction of AND_gate is
begin
   X <= A and B;
end architecture ANDfunction;

A

B
X

2-input AND gate

entity OR_gate is
   port (A, B: in bit; X: out bit);
end entity OR_gate;

architecture ORfunction of OR_gate is
begin
   X <= A or B;
end architecture ORfunction;2-input OR gate

fg05_04400

Figure 23 Predefined pro-
grams for a 2-input and gate 
and a 2-input or gate to be 
used as components in a larger 
program.
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using ComPonents in a Program To use a component in a 
program, you must write a component instantiation statement for each instance 
in which the component is used. You can think of a component instantiation as 
a request or call for the component to be used in the main program. For exam-
ple, the simple SOP logic circuit in Figure 24 has two AND gates and one OR 
gate. Therefore, the VHDL program for this circuit will have two components 
and three component instantiations or calls.

signals In VHDL, signals are analogous to wires that interconnect components on a 
circuit board. The signals in Figure 24 are named OUT1 and OUT2. Signals are the inter-
nal connections in the logic circuit and are treated differently than the inputs and outputs. 
Whereas the inputs and outputs are declared in the entity declaration using the port state-
ment, the signals are declared within the architecture using the signal statement. signal is a 
VHDL keyword.

the Program The program for the logic in Figure 24 begins with an entity decla-
ration as follows:

--Program for the logic circuit in Figure 24

entity AND_OR_Logic is
 port (IN1, IN2, IN3, IN4: in bit; OUT3: out bit);

end entity AND_OR_Logic;

The architecture declaration contains the component declarations for the AND gate 
and the OR gate, the signal definitions, and the component instantiations.

architecture LogicOperation of AND_OR_Logic is

component AND_gate is
 port (A, B: in bit); X: out bit);

end component AND_gate;

component OR_gate is
 port (A, B: in bit; X: out bit);

end component OR_gate;

signal OUT1, OUT2: bit;

OUT3

IN1
G1

IN2

IN3

IN4
G2

G3

OUT1

OUT2

fg05_04500

Figure 24 

Component declaration for 
the AND gate

Component declaration for 
the OR gate

Signal declaration

end architecture LogicOperation;

ComPonent instantiations Let’s look at the component instantiations. 
First, notice that the component instantiations appear between the keyword begin and the 
end statement. For each instantiation an identifier is defined, such as G1, G2, and G3 in this 
case. Then the component name is specified. The port map essentially makes all the connec-
tions for the logic function using the operator = 7 . For example, the first instantiation,

G1: AND_gate port map (A =7 IN1, B =7 IN2, X =7 OUT1);

can be explained as follows: Input A of AND gate G1 is connected to input IN1, input B 
of the gate is connected to input IN2, and the output X of the gate is connected to the 
signal OUT1.

The three instantiation statements together completely describe the logic circuit in 
Figure 24, as illustrated in Figure 25.

begin

G1: AND_gate port map (A =7 IN1, B =7 IN2, X =7 OUT1);

G2: AND_gate port map (A =7 IN3, B =7 IN4, X =7 OUT2);

G3: OR_gate port map (A =7 OUT1, B =7 OUT2, X =7 OUT3);

Component  
instantiations
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Although the data flow approach using Boolean expressions would have been easier 
and probably the best way to describe this particular circuit, we have used this simple cir-
cuit to explain the concept of the structural approach. Example 13 compares the structural 
and data flow approaches to writing a VHDL program for an SOP logic circuit.

OUT3

IN1

G1

IN2

G2

G3

OUT1

OUT2

A => IN1

A

B
X

B => IN2

A

B
X

A => IN3

B => IN4 X => OUT2

X => OUT1

OUT1

OUT2

A

B
X

A => OUT1

B => OUT2IN3

IN4

X => OUT3

fg05_04600

Figure 25 illustration of 
the instantiation statements 
and port mapping applied to 
the and-or logic. signals are 
shown in red.

e x a m P l e  1 3

Write a VHDL program for the SOP logic circuit in Figure 26 using the structural approach and the data flow 
approach. Assume that VHDL components for a 3-input NAND gate and for a 2-input NAND are available. 
Notice the NAND gate G4 is shown as a negative-OR.

OUT4

IN1
G1

IN3

OUT1
IN2

IN7
G3

IN8

IN4
G2

IN6
IN5

OUT2

OUT3

G4

fg05_04700

Figure 26 

s o l u t i o n

The components and component instantiations are highlighted.

--Program for the logic circuit in Figure 26

entity SOP_Logic is
 port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is
--component declaration for 3-input NAND gate

component NAND_gate3 is
 port (A, B, C: in bit X: out bit);

end component NAND_gate3;

--component declaration for 2-input NAND gate

component NAND_gate2 is
 port (A, B: in bit; X: out bit);

end component NAND_gate;

signal OUT1, OUT2, OUT3: bit;
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begin

--component instantiations

G1: NAND_gate3 port map (A =7 IN1, B =7 IN2, C =7 IN3, X =7 OUT1);

G2: NAND_gate3 port map (A =7 IN4, B =7 IN5, C =7 IN6, X =7 OUT2);

G3: NAND_gate2 port map (A =7 IN7, B =7 IN8, X =7 OUT3);

G4: NAND_gate3 port map (A =7 OUT1, B =7 OUT2, C =7 OUT3, X =7 OUT4);

end architecture LogicOperation;

Using the data flow approach, the program for the logic circuit in Figure 26 is

entity SOP_Logic is
 port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT4: out bit);

end entity SOP_Logic;

architecture LogicOperation of SOP_Logic is
begin

OUT4 6= (IN1 and IN2 and IN3) or (IN4 and IN5 and IN6) or (IN7 and IN8);

end architecture LogicOperation;

As you can see, the data flow approach results in a much simpler code for this particular logic function. 
However, in situations where a logic function consists of many blocks of complex logic, the structural approach 
might have an advantage over the data flow approach.

r e l a t e d  P r o b l e m

If another NAND gate is added to the circuit in Figure 26 with inputs IN9 and IN10, write a component instantia-
tion to add to the program.

1. What does an entity in VHDL do?

2. What does an architecture in VHDL do?

3. What performs the same function in Verilog as the entity/
architecture pair in VHDL?

4. Name two approaches to writing a VHDL program.

5. What is a VHDL component?

6. State the purpose of a component instantiation in a program 
architecture.

7. How are interconnections made between components in 
VHDL?

8. The use of components in a VHDL program represents what 
approach?

seCtion 6 CheCKuP

7 a system
a storage tank system for a pancake syrup manufacturing company is the focus of this section. 
the control logic allows a volume of corn syrup to be preheated to a specified temperature to 
achieve the proper viscosity prior to being sent to a mixing vat where ingredients such as sugar, 
flavoring, preservative, and coloring are added. level and temperature sensors in the tank and 
the flow sensor provide the inputs for the logic.

after completing this section, you should be able to

•	 Explain	how	the	system	works
•	 Write	VHDL	and	Verilog	programs	so	that	the	system	can	be	implemented	in	a	PLD
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system operation
A tank that holds corn syrup for use in a pancake syrup manufacturing process is shown in 
Figure 27. In preparation for mixing, the temperature of the corn syrup when released from 
the tank into a mixing vat must be at a specified value for proper viscosity to produce 
required flow characteristics. This temperature can be selected via a keypad input. The con-
trol logic maintains the temperature at this value by turning a heater on and off. The analog 
output from the temperature transducer (Tanalog) is converted to an 8-bit binary code by an 
analog-to-digital converter and then to an 8-bit BCD code. A temperature controller detects 
when the temperature falls below the specified value and turns the heater on. When the 
temperature reaches the specified value, the heater is turned off.

Monitoring
and control

logic

Finlet
Vinlet

Voutlet

T
Lmax

Lmin

Tanalog Temp

Outlet
valve

To mixing vat
Temperature
transducer

Level
sensors

Heater

Flow sensor

Inlet valve

fg05_05000

Figure 27 tank with level and temperature sensors and controls.

The level sensors produce a HIGH when the corn syrup is at or above the minimum 
or at the maximum level. The valve control logic detects when the maximum level (Lmax) 
or minimum level (Lmin) has been reached and when solution is flowing into the tank 
(Finlet). Based on these inputs, the control logic opens or closes each valve (Vinlet and 
Voutlet). New corn syrup can be added to the tank via the inlet valve only when the mini-
mum level is reached. Once the inlet valve is opened, the level in the tank must reach the 
maximum point before the inlet valve is closed. Also, once the outlet valve is opened, the 
level must reach the minimum point before the outlet valve is closed. New syrup is always 
cooler than the syrup in the tank. Syrup cannot be released from the tank while it is being 
filled or its temperature is below the specified value.

inlet valve Control The conditions for which the inlet valve is open, 
allowing the tank to fill, are

•	 The	solution	level	is	at	minimum	(Lmin).

•	 The	tank	is	filling	(Finlet) but the maximum level has not been reached (Lmax).

Table 8 is the truth table for the inlet valve. A HIGH (1) is the active level for the 
inlet valve to be open (on). From the truth table, an expression for the inlet valve control 
output can be written.

Vinlet = LmaxLminFinlet + LmaxLminFinlet + LmaxLminFinlet

The SOP expression can be reduced to the following simplified expression using 
Boolean methods:

Vinlet = Lmin + LmaxFinlet
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outlet valve Control The conditions for which the outlet valve is open 
allowing the tank to drain are

•	 The	syrup	level	is	above	minimum	and	the	tank	is	not	filling.

•	 The	temperature	of	the	syrup	is	at	the	specified	value.

Table 9 is the truth table for the outlet valve. A HIGH (1) is the active level for the 
outlet valve to be open (on). Note: T is both an input and an output (T = Temp).

TABLE	8	 •	 truth table for inlet valve control.

inPuts outPut

Lmax Lmin Finlet Vinlet desCriPtion

0 0 0 1 Level below minimum. No inlet flow.

0 0 1 1 Level below minimum. Inlet flow.

0 1 0 0 Level above min and below max. No inlet flow.

0 1 1 1 Level above min and below max. Inlet flow.

1 0 0 X Invalid.

1 0 1 X Invalid.

1 1 0 0 Level at maximum. No inlet flow.

1 1 1 0 Level at maximum. Inlet flow.

TABLE	9	 •	 truth table for outlet valve control.

inPuts outPut

Lmax Lmin Finlet T Voutlet desCriPtion

0 0 0 0 0 Level below minimum. No inlet flow. Temp low.

0 0 0 1 0 Level below minimum. No inlet flow. Temp correct.

0 0 1 0 0 Level below minimum. Inlet flow. Temp low.

0 0 1 1 0 Level below minimum. Inlet flow. Temp correct.

0 1 0 0 0 Level above min and below max. No inlet flow. Temp low.

0 1 0 1 1 Level above min and below max. No inlet flow. Temp correct.

0 1 1 0 0 Level above min and below max. Inlet flow. Temp low.

0 1 1 1 0 Level above min and below max. Inlet flow. Temp correct.

1 0 0 0 X Invalid.

1 0 0 1 X Invalid.

1 0 1 0 X Invalid.

1 0 1 1 X Invalid.

1 1 0 0 0 Level at maximum. No inlet flow. Temp low.

1 1 0 1 1 Level at maximum. No inlet flow. Temp correct.

1 1 1 0 0 Level at maximum. Inlet flow. Temp low.

1 1 1 1 0 Level at maximum. Inlet flow. Temp correct.
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From the truth table, an expression for the outlet valve control output can be written.

Voutlet = LmaxLminFinlet T + LmaxLminFinletT

The SOP expression can be reduced to the following simplified expression using Boolean 
methods:

Voutlet = LminFinletT

simulation of the valve Control logic
The inlet and outlet valve control logic simulation screen is shown in Figure 28. SPDT 
switches are used to represent the level and flow sensor inputs and the temperature indica-
tion. Probes are used to indicate the output states.

Analog-to-
digital

converter

Binary-to-
BCD

converter

Temperature-
control logic

Tanalog T = Temp

8-bit
binary code

8-bit BCD for
measured temperature

8-bit BCD for
specified temperature

fg05_02900

Figure 29 block diagram for temperature control system.

temPerature Control The temperature control logic accepts an 8-bit BCD 
code representing the measured temperature and compares it to the BCD code for the speci-
fied temperature. A block diagram is shown in Figure 29.

fg05_05100

Figure 28 multisim circuit screen for the valve control logic. open file F04-28 and run the 
simulation.

multisim
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When the measured temperature and the specified temperature are the same, the 
two BCD codes are equal and the T output is LOW (0). When the measured temperature 
falls below the specified value, there is a difference in the BCD codes and the T output is 
HIGH (1), which turns on the heater. The temperature control logic can be implemented 
with exclusive-OR gates, as shown in Figure 30. Each pair of corresponding bits from 
the two BCD codes is applied to an exclusive-OR gate. If the bits are the same, the out-
put of the XOR gate is 0; and if they are different, the output of the XOR gate is 1. When 
one or more XOR outputs equal 1, the T output of the OR gate equals 1, causing the 
heater to turn on.

T = Temp

BCD for specified
temperature

BCD for
measured

temperature

A7

A6

A5

A4

A3

A2

A1

A0

B7 B6 B5 B4 B3 B2 B1 B0

fg04_03000
Figure 30 logic diagram of the temperature control logic.

vhdl and verilog for inlet, outlet,  
and temperature Controls
In order to implement this control system in a PLD, a VHDL program is developed. This 
implementation does not include the analog-to-digital converter or the binary-to-BCD 
converter required for the temperature control.

First, assign input labels to the temperature control logic. The BCD for measured 
temperature inputs are assigned A0 through A7, as shown in Figure 30. The BCD for 
specified temperature inputs are assigned B0 through B7, as shown. The inlet and outlet 
valve controls in Figure 27 already have input label assignments. The VHDL program 
using the data flow approach is as follows.

entity TankControlLogic is
 port (Finlet, Lmax, Lmin, A0, A1, A2, A3,

    A4, A5, A6, A7, B0, B1, B2, B3, B4, B5,

    B6, B7: in bit; T: buffer bit; Vinlet, Voutlet: out bit);

end entity TankControlLogic;

architecture Logic_Function of TankControlLogic is 
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begin
 T 6= (A0 xor B0) or (A1 xor B1) or (A2 xor B2) or
    (A3 xor B3) or (A4 xor B4) or (A5 xor B5) or
    (A6 xor B6) or (A7 xor B7);

 Vinlet 6= not Lmin or not Lmax and Finlet;

 Voutlet 6= Lmin and not Finlet and Temp;
end architecture Logic_Function;

Alternately, the system logic can be programmed using Verilog.

module TankControlLogic (Finlet, Lmax, Lmin, 
    Vinlet, Voutlet, T, A0, A1, A2, A3, A4, A5, A6, A7, B0,
    B1, B2, B3, B4, B5, B6, B7);
 input Finlet Lmax, Lmin, Temp, A0, A1, A2, A3, A4,
    A5, A6, A7, B0, B1, B2, B3, B4, B5, B6, B7;
 output Vinlet, Voutlet, T;

assign T = ((A0 && !B0) } (!A0 && B0)) } ((A1 && !B1) } (!A1 && B1)) } 
      ((A2 && !B2) } (!A2 && B2)) } ((A3 && !B3) } (!A3 && B3)) } 
      ((A3 && !B3) } (!A3 && B3)) } ((A4 && !B4) } (!A4 && B4)) } 
      ((A5 && !B5) } (!A5 && B5)) } ((A6 && !B6)) } (!A6 && B6)) } 
      ((A7 && !B7) } (!A7 && B7))

assign Vinlet = !Lmin } (!Lmax && Finlet);
assign Voutlet = Lmin && !Finlet && Temp;

endmodule

Alternately, the expression for T in the Verilog program can be written in a more compact 
form using the Verilog bit-wise operator for XOR, ^, rather than the logical operators !, &&, 
and y as follows: 

T = (A0 ^ B0) y (A1 ^ B1) y (A4 ^ B4) y (A5 ^ B5) y (A6 ^ B6) y (A7 ^ B7);

1. For how many input conditions is the inlet valve open?

2. For how many input conditions is the outlet valve open?

3. Why does the outlet valve control require four inputs and the 
inlet valve only three?

4. Once the level reaches maximum and the tank starts draining, 
when does the outlet valve turn off?

seCtion 7 CheCKuP
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the preceding sections have given you some insight into the operation of combinational 
logic circuits and the relationships of inputs and outputs. this type of understanding is 
essential when you troubleshoot digital circuits and systems because you must know what 
logic levels or waveforms to look for throughout the circuit for a given set of input condi-
tions. you have learned two basic troubleshooting methods and studied the troubleshooting 
of an example system. there were two options once the defective circuit board was identi-
fied: to repair or to not repair the board. of course, a new board replaces the defective 
board in either case.

in this section, an oscilloscope is used to troubleshoot at the board level when a device output is 
connected to several device inputs. also, an example of signal tracing and waveform analysis 
methods is presented using a scope for locating a fault in combinational logic.

after completing this section, you should be able to

•	 Define	a	circuit	node
•	 Use	an	oscilloscope	to	find	a	faulty	circuit	node
•	 Use	an	oscilloscope	to	find	an	open	gate	output
•	 Use	an	oscilloscope	to	find	a	shorted	gate	input	or	output
•	 Use	an	oscilloscope	for	signal	tracing

In a combinational logic circuit, the output of a driving device may be connected to 
two or more load devices as shown in Figure 31. The interconnecting paths share a com-
mon electrical point known as a node.

The driving device in Figure 31 is driving the node, and the other devices repre-
sent loads connected to the node. A driving device can drive a number of load device 
inputs up to its specified fan-out. Several types of failures are possible in this situa-
tion. Some of these failure modes are difficult to isolate to a single bad device because 

all the devices connected to the node are affected. Com-
mon types of failures are the following:

1.  Open output in driving device. This failure will cause a 
loss of signal to all load devices.

2.  Open input in a load device. This failure will not affect 
the operation of any of the other devices connected to 
the node, but it will result in loss of signal output from 
the faulty device.

3.  Shorted output in driving device. This failure can cause 
the node to be stuck in the LOW state (short to ground) 
or in the HIGH state (short to VCC).

4.  Shorted input in a load device. This failure can also 
cause the node to be stuck in the LOW state (short to 
ground) or in the HIGH state (short to VCC).

troubleshooting Common 
Faults at the board level
oPen outPut in driving deviCe In this 
situation there is no pulse activity on the node. With circuit 
power on, an open node will normally result in a “floating” 
level, as illustrated in Figure 32.

Driving
device

Load
device 1

Load
device 2

Load
device 3

Load
device n

Node

Figure 31 illustration of a node in a logic circuit.

8 troubleshooting

h a n d s  o n  t i p
In addition to components, 
visual inspection should 
include connectors. Edge 
connectors are frequently used 
to bring power, ground, and 
signals to a circuit board.  
The mating surfaces of the 
connector need to be clean and 
have a good mechanical fit.  
A dirty connector can cause 
intermittent or complete failure 
of the circuit. Edge connectors 
can be cleaned with a common 
pencil eraser and wiped clean 
with a Q-tip soaked in alcohol. 
Also, all connectors should be 
checked for loose-fitting pins.
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oPen inPut in a load deviCe If the check for an open driver output in IC1 
is negative (there is pulse activity), then a check for an open input in a load device should 
be performed. Check the output of each device for pulse activity, as illustrated in Figure 
33. If one of the inputs that is normally connected to the node is open, no pulses will be 
detected on that device’s output.

If there is no pulse activity at the output pin on IC1, there is an internal open. If
there is pulse activity directly on the output pin but not on the node interconnections,
the connection between the pin and the board is open.

IC1

74
A

H
C

00

IC2 IC3

74
A

H
C

00

74
A

H
C

00

fg04_03200

There are pulses on
the gate input with

the other input HIGH.

No pulse activity is indicated
at any point on the node. Scope
may indicate "floating" level.

HIGH

Figure 32 open output in driving device. assume a high is on one input.

IC2 IC3IC1

74
A

H
C

00

74
A

H
C

00

74
A

H
C

00

HIGH

Check the output pin of each device connected to the node with other device inputs HIGH.
No pulse activity on an output indicates an open input or open output.

fg04_03300

HIGH HIGH

Figure 33 open input in a load device.
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outPut or inPut shorted to ground 
When the output is shorted to ground in the driving device 
or the input to a load device is shorted to ground, it will 
cause the node to be stuck LOW, as previously mentioned. 
A quick check with a scope probe will indicate this, as 
shown in Figure 34. A short to ground in the driving 
device’s output or in any load input will cause this symp-
tom, and further checks must therefore be made to isolate 
the short to a particular device.

signal tracing and Waveform 
analysis
Although the methods of isolating an open or a short at 
a node point are very useful from time to time, the 
technique of signal tracing is of value in just about 
every troubleshooting situation. Waveform measure-
ment is accomplished with an oscilloscope or a logic 
analyzer.

Basically, the signal tracing method requires that you observe the waveforms 
and their time relationships at all accessible points in the logic circuit. You can 
begin at the inputs and, from an analysis of the waveform timing diagram for each 
point, determine where an incorrect waveform first occurs. With this procedure you 
can usually isolate the fault to a specific device. A procedure beginning at the output 
and working back toward the inputs can also be used. In this approach, it is neces-
sary to know what the signal should be based on a thorough knowledge of the circuit 
or on a documented troubleshooting procedure showing waveforms at various cru-
cial points.

The general procedure for signal tracing starting at the inputs is outlined as  
follows:

•	 Within	a	system,	define	the	section	of	logic	that	is	suspected	of	being	faulty.

•	 Start	at	the	inputs	to	the	section	of	logic	under	examination.	We	assume,	for	this	dis-
cussion, that the input waveforms coming from other sections of the system have 
been found to be correct.

•	 For	each	device,	beginning	at	the	input	and	working	toward	the	output	of	the	logic	
circuit, observe the output waveform of the device and compare it with the input 
waveforms by using the oscilloscope or the logic analyzer.

•	 Determine	if	the	output	waveform	is	correct,	using	your	knowledge	of	the	logical	
operation of the device or from a troubleshooting procedure, if available.

•	 If	the	output	is	incorrect,	the	device	under	test	may	be	faulty.	Pull	the	IC	device	that	
is suspected of being faulty, and test it out-of-circuit. If the device is found to be 
faulty, replace the IC. If it works correctly, the fault is in the external circuitry or in 
another IC to which the tested one is connected.

•	 If	the	output	is	correct,	go	to	the	next	device.	Continue	checking	each	device	until	an	
incorrect waveform is observed.

Figure 35 illustrates the general signal tracing procedure from inputs to output for 
simple combinational logic in the following steps:

step 1: Observe the output at test point 5 (TP5) relative to the inputs at TP1 and TP2. 
If it is correct, go to step 2. If the inputs are correct and the output is not cor-
rect, the gate or its connections are bad; or, if the output is LOW, the input to 
gate G2 may be shorted. In this case, the fault is in IC2. Replace it and recheck 
the operation.

step 2: Observe the output of the inverter (TP6) relative to the input at TP3. If it is 
correct, go to Step 3. If the input is correct and the output is not correct, the 

IC1
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H
C

00

IC2 IC3
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A

H
C

00
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A

H
C
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fg04_03400

HIGH

There is a LOW level at all
points connected to the node.

Figure 34 shorted output in the driving device or shorted 
input in a load.

h a n d s  o n  t i p
As you know, testing and 
troubleshooting logic circuits 
often require observing and 
comparing two digital 
waveforms simultaneously, 
such as an input and the output 
of a gate, on an oscilloscope. 
For digital waveforms, the 
scope should always be set to 
DC coupling on each channel 
input to avoid “shifting” the 
ground level. You should 
determine where the 0 V level 
is on the screen for both 
channels.
 To compare the timing of 
the waveforms, the scope 
should be triggered from only 
one channel (don’t use vertical 
mode or composite triggering). 
The channel selected for 
triggering should always be  
the one that has the lowest 
frequency waveform, if 
possible.
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inverter or its connections are bad; or, if the output is LOW, the input to gate 
G3 may be shorted. In this case, you can’t determine which IC is bad, so both 
IC1 and IC2 should be replaced and the operation rechecked.

step 3: Observe the output of gate G2 (TP7) relative to the inputs at TP3 and TP5. If it 
is correct, go to Step 4. If the output is not correct, the gate or its connections 
are bad; or, if the output is LOW, the input to gate G4 may be shorted. In this 
case, the fault is in IC2. Replace it and recheck the operation.

step 4: Observe the output of gate G3 (TP8) relative to the inputs at TP4 and TP6. If it 
is correct, go to Step 5. If the output is not correct, the gate or its connections 
are bad; or, if the output is LOW, the input to gate G4 (TP7) may be shorted. In 
this case, the fault is in IC2. Replace it and recheck the operation.

step 5: Observe the output of gate G4 (TP9) relative to the inputs at TP7 and TP8. 
If it is correct, the circuit is okay. If the output is not correct, the gate or its 
connections are bad or its load is shorted. Replace IC2 and see if that cor-
rects the problem. If it doesn’t, you will have to investigate further depend-
ing on where the G4 output goes.

TP1

TP2

TP5

TP3

TP6

TP5

TP3

TP7

Step 1
If correct, go to step 2.
If incorrect, test IC2 and connections.

Step 2
If correct, go to step 3.
If incorrect, test IC1 and connections.

Step 3
If correct, go to step 4.
If incorrect, test IC2 and connections.

TP1

TP2

Scope is externally triggered from test point 1 (TP1).

The inverter is in IC1 and the NAND/negative-OR gates are in IC2.
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Step 4
If correct, go to step 5.
If incorrect, test IC2 and connections.

Step 5
If correct, circuit is OK.
If incorrect, test IC2 and connections.
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Figure 35 example of signal tracing and waveform analysis in a portion of a printed circuit 
board. tP indicates test point. the correct waveforms are shown.

215



COMBINATIONAL LOGIC

e x a m P l e  1 4

Determine the fault in the logic circuit of Figure 36(a) by using waveform analysis. You have observed the wave-
forms shown in green in Figure 36(b). The red waveforms are correct and are provided for comparison.

A

B

C

D

(a)

G2

G3

A

B

C

D

G1 output

G2 output

G3 output

(b)

G4 output

Inverter
output

G4

G1

fg05_04200
Figure 36 

s o l u t i o n

 1. Determine what the correct waveform should be for each gate. The correct waveforms are shown in red, 
superimposed on the actual measured waveforms, in Figure 36(b).

 2. Compare waveforms gate by gate until you find a measured waveform that does not match the correct 
waveform.

In this example, everything tested is correct until gate G3 is checked. The output of this gate is not correct 
as the differences in the waveforms indicate. An analysis of the waveforms indicates that if the D input to gate G3 
is open and acting as a HIGH, you will get the output waveform measured (shown in red). Notice that the output 
of G4 is also incorrect due to the incorrect input from G3.

Replace the IC containing G3, and check the circuit’s operation again.

r e l a t e d  P r o b l e m

For the inputs in Figure 36(b), determine the output waveform for the logic circuit (output of G4) if the inverter 
has an open output.

1. List four common internal failures in logic gates.

2. One input of a NOR gate is externally shorted to +VCC. How 
does this condition affect the gate operation?

3. Determine the output of gate G4 in Figure 36(a), with inputs 
as shown in part (b), for the following faults:

(a) one input to G1 shorted to ground

(b) the inverter input shorted to ground

(c) an open output in G3

seCtion 8 CheCKuP
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summary
•	 AND-OR	logic	produces	an	output	expression	in	SOP	form.

•	 AND-OR-Invert	logic	produces	a	complemented	SOP	form,	which	is	actually	a	POS	form.

•	 The	operational	symbol	for	exclusive-OR	is � . An exclusive-OR expression can be stated in 
two equivalent ways:

AB + AB = A � B

•	 To	describe	a	logic	circuit,	start	with	the	logic	circuit,	and	develop	the	Boolean	output	expression	
or the truth table or both.

•	 Implementation	of	a	logic	circuit	is	the	process	in	which	you	start	with	the	Boolean	output	expres-
sions or the truth table and develop a logic circuit that produces the output function.

•	 DeMorgan’s	theorems:

1. The complement of a product is equal to the sum of the complements of the terms in the product.

XY = X + Y

2. The complement of a sum is equal to the product of the complements of the terms in the sum.

X + Y = X Y

•	 NAND	and	negative-OR	operations	are	equivalent.

•	 NOR	and	negative-AND	operations	are	equivalent.

•	 In	 the	structural	approach,	a	VHDL	component	 is	a	predefined	 logic	function	stored	for	use	
throughout a program or in other programs.

•	 A	component	instantiation	is	used	to	call	for	a	component	in	a	program.

•	 A	VHDL	signal	effectively	acts	as	an	internal	interconnection	in	a	VHDL	structural	description.

Key terms
Component A VHDL feature that can be used to predefine a logic function for multiple use 
throughout a program or programs.

node A common connection point in a circuit in which a gate output is connected to one or more 
gate inputs.

Pos Product-of-sums; a form of Boolean expression that is basically the ANDing of ORed 
terms.

signal A waveform; a type of VHDL object that holds data.

signal tracing A troubleshooting technique in which waveforms are observed in a step-by-step 
manner beginning at the input and working toward the output or vice versa. At each point the 
observed waveform is compared with the correct signal for that point.

soP Sum-of-products; a form of Boolean expression that is basically the ORing of ANDed terms.

universal gate Either a NAND gate or a NOR gate. The term universal refers to the property of a 
gate that permits any logic function to be implemented by that gate or by a combination of that kind.

true/False Quiz
Answers are at the end of the chapter.

 1. AND-OR logic can have only two 2-input AND gates.

 2. If the inputs of an exclusive-OR gate are the same, the output is HIGH (1).

 3. If the inputs of an exclusive-NOR gate are different, the output is LOW (0).

 4. A parity generator can be implemented using exclusive-OR gates.

 5. NAND gates cannot be used to produce the OR function.

 6. NOR gates can be used to produce the AND function.

 7. Any SOP expression can be implemented using only NAND gates.
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 8. The dual symbol for a NAND gate is a negative-AND symbol.

 9. Negative-OR is equivalent to NAND.

 10. Data flow and structural are two approaches to writing VHDL programs.

selF-test
Answers are at the end of the chapter.

 1. The output expression for an AND-OR circuit having one AND gate with inputs A, B, C, and D 
and one AND gate with inputs E and F is

(a)  ABCDEF 
(b) A + B + C + D + E + F
(c) (A + B + C + D)(E + F) 
(d) ABCD + EF

 2. A logic circuit with an output X = ABC + AC consists of

(a) two AND gates and one OR gate
(b) two AND gates, one OR gate, and two inverters
(c) two OR gates, one AND gate, and two inverters
(d) two AND gates, one OR gate, and one inverter

 3. To implement the expression ABCD + ABCD + ABC D, it takes one OR gate and

(a) one AND gate 
(b) three AND gates
(c) three AND gates and four inverters 
(d) three AND gates and three inverters

 4. The output expression for an AND-OR-Invert circuit having one AND gate with inputs, A, B, C, 
and D and one AND gate with inputs E and F is

(a) ABCD + EF (b) A + B + C + D + E + F
(c) (A + B + C + D)(E + F) (d) (A + B + C + D)(E + F)

 5. An exclusive-OR function is expressed as

(a) A B + AB (b) AB + AB
(c) (A + B)(A + B) (d) (A + B) + (A + B)

 6. The AND operation can be produced with

(a) two NAND gates (b) three NAND gates
(c) one NOR gate (d) three NOR gates

 7. The OR operation can be produced with

(a) two NOR gates (b) three NAND gates
(c) four NAND gates (d) both answers (a) and (b)

 8. All Boolean expressions can be implemented with

(a) NAND gates only
(b) NOR gates only
(c) combinations of NAND and NOR gates
(d) combinations of AND gates, OR gates, and inverters
(e) any of these

 9. A VHDL component

(a) can be used once in each program
(b) is a predefined description of a logic function
(c) can be used multiple times in a program
(d) is part of a data flow description
(e) answers (b) and (c)

 10. A VHDL component is called for use in a program by using a

(a) signal
(b) variable
(c) component instantiation
(d) architecture declaration
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Problems
Answers to odd-numbered problems are at the end of the chapter.

seCtion 1 basic Combinational logic Circuits 
 1. Draw the ANSI distinctive shape logic diagram for a 3-wide, 4-input AND-OR-Invert circuit. 

Also draw the ANSI standard rectangular outline symbol.

 2. Write the output expression for each circuit in Figure 37.

 3. Write the output expression for each circuit as it appears in Figure 38.
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D
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 4. Develop the truth table for each circuit in Figure 38.

 5. Develop the truth table for each circuit in Figure 39 on the next page.

seCtion 2 boolean expressions and truth tables 
 6. Develop an AND-OR-Invert logic circuit for a power saw that removes power (logic 0) if the 

guard is not in place (logic 0) and the switch is on (logic 1) or the switch is on and the motor is 
too hot (logic 1).

 7. An AND-OR-Invert logic chip has two 4-input AND gates connected to a 2-input NOR gate. 
Write the Boolean expression for the circuit (assume the inputs are labeled A through H).

 8. Use AND gates, OR gates, or combinations of both to implement the following logic expres-
sions as stated:
(a) X = AB (b) X = A + B
(c) X = AB + C (d) X = ABC + D
(e) X = A + B + C (f) X = ABCD
(g) X = A(CD + B) (h) X = AB(C + DEF) + CE(A + B + F)

 9. Use AND gates, OR gates, and inverters as needed to implement the following logic expres-
sions as stated:
(a) X = AB + BC (b) X = A(B + C)
(c) X = AB + AB (d) X = ABC + B(EF + G)
(e) X = A[BC(A + B + C + D)] (f) X = B(CDE + EFG)(AB + C)
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 10. Use NAND gates, NOR gates, or combinations of both to implement the following logic expres-
sions as stated:
(a) X = AB + CD + (A + B)(ACD + BE)
(b) X = ABC D + DEF + AF
(c) X = A[B + C(D + E)]

 11. Write the logic expression for the truth table in Table 10. Determine the number and the types 
of gates required.

(a) (b)

(d)(c)

(e)

(f)

C

A

B

D

X

A

B

C

E

D

X X

A

B

D

C

X

A

B

C

D

D

C

X

A

B

E

F

H

G

X

A

B

C

E

D

fg05_05600
Figure 39 

table 10  

inPuts outPut

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1
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 12. Write the logic expression for the truth table in Table 11. Determine the number and the types 
of gates required.

table 11  

inPuts outPut

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

 13. Develop a truth table for each of the following standard SOP expressions:
(a) ABC + ABC + ABC (b) X Y Z + X YZ + XY Z + X YZ + XYZ

 14. Develop a truth table for each of the following standard SOP expressions:
(a) ABCD + ABCD + AB CD + A B C D
(b) WXYZ + WXYZ + WXYZ + WXYZ + WXYZ

 15. For each truth table in Table 12 on page 214, derive a standard SOP and a standard POS expression.

seCtion 3 demorgan’s theorems 
 16. Apply DeMorgan’s theorems to each expression:

(a) A + B
(b) AB
(c) A + B + C
(d) ABC
(e) A(B + C)
(f) AB + CD
(g) AB + CD

(h) (A + B)(C + D)

 17. Apply DeMorgan’s theorems to each expression:

(a) AB(C + D)
(b) AB(CD + EF)

(c) (A + B + C + D) + ABCD

(d) (A + B + C + D)(AB CD)

(e) AB(CD + EF)(AB + CD)

221



COMBINATIONAL LOGIC

 18. Apply DeMorgan’s theorems to the following:

(a) (ABC)(EFG) + (HIJ)(KLM)

(b) (A + BC + CD) + BC

(c) (A + B)(C + D)(E + F)(G + H)

seCtion 4 the universal Property of nand and nor gates 

 19. Implement the logic circuits in Figure 37 using only NAND gates.

 20. Implement the logic circuit in Figure 40 using only NAND gates.

 21. Repeat Problem 19 using only NOR gates.

 22. Repeat Problem 20 using only NOR gates.

seCtion 5 Pulse Waveform operation 
 23. Given the logic circuit and the input waveforms in Figure 41, draw the output waveform.

A

X

B

C

fg05_05800

Figure 40 

B X 

A
A

B

fg05_05900

Figure 41 

table 12  

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

(d)

A B C D X

0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

(c)

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

(b)

A B C X

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

(a)
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 24. For the logic circuit in Figure 42, draw the output waveform in proper relationship to the inputs.

A

B

A

B X 

fg05_06000

Figure 42 

 25. For the input waveforms in Figure 43, what logic circuit will generate the output waveform 
shown?

A

B

C

X

Inputs

Output

fg05_06100
Figure 43 

 26. Repeat Problem 25 for the waveforms in Figure 44.

A

B

C

X

Inputs

Output

fg05_06200
Figure 44 

 27. For the circuit in Figure 45, draw the waveforms at the numbered points in the proper relation-
ship to each other.

A
B
C
D

E
F

X

A
B

C
D

F
E

1

2

3

4
5

fg05_06300

Figure 45 

 28. Assuming a propagation delay through each gate of 10 nanoseconds (ns), determine if the 
desired output waveform X in Figure 46 (a pulse with a minimum tPW = 25 ns positioned as 
shown) will be generated properly with the given inputs.

A

B

C

D

E

X

100 ns pulse width

25 ns minimum

X

A

B

C

D

E

G1

G2

G3

G4

fg05_06400

Figure 46 
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seCtion 6 Combinational logic with vhdl and verilog 
 29. Describe a 3-input AND gate with VHDL and Verilog.

 30. Write a VHDL program using the data flow approach (Boolean expressions) to describe the 
logic circuit in Figure 37(b). Write a Verilog program.

 31. Write VHDL programs using the data flow approach (Boolean expressions) for the logic cir-
cuits in Figure 38(e) and (f). Write a Verilog program for both circuits.

 32. Write a VHDL program using the structural approach for the logic circuit in Figure 39(d). 
Assume component declarations for each type of gate are already available. Write a Verilog 
program.

 33. Repeat Problem 32 for the logic circuit in Figure 39(f).

 34. Describe the logic represented by the truth table in Table 10 using VHDL and Verilog.

 35. Develop a VHDL program for the logic in Figure 47(a), using both the data flow and the struc-
tural approach. Compare the resulting programs. Write the program in Verilog.

 36. Develop a VHDL program for the logic in Figure 47(b), using both the data flow and the struc-
tural approach. Compare the resulting programs. Write the program in Verilog.

G4

X

A
B

C

D

E

G2

G1

G3

G5

fg05_0470b

    (b)

A

B
C

D

E

G2

G1

G4

G3

fg04_0470a
Figure 47 

(a)

 37. Given the following VHDL program, create the truth table that describes the logic circuit.

   entity CombLogic is
   port (A, B, C, D: in bit; X: out bit);
 end entity CombLogic;

 architecture Example of CombLogic is
   begin
     X 6= not((not A and not B) or (not A and not C) or (not A and not D) or
              (not B and not C) or (not B and not D) or (not D and not C));
 end architecture Example;

 38. Describe the logic circuit shown in Figure 48 with a VHDL program, using the data flow 
approach.

X 

A1

A2

B1

B2

G1

G2

G3

G4

G5
G6

G7

fg05_07200

Figure 48 

 39. Repeat Problem 38 using the VHDL structural approach.

seCtion 7 a system 
 40. Implement the inlet valve logic using NOR gates and inverters.

 41. Repeat Problem 40 for the outlet valve logic.

224



COMBINATIONAL LOGIC

 42. Implement the temperature control logic using XNOR gates.

 43. Show a circuit to enable an additive to be introduced into the syrup through another inlet only 
when the temperature is at the specified value and the syrup is at the low-level sensor. 

seCtion 8 troubleshooting 
 44. For the logic circuit and the input waveforms in Figure 49, the indicated output waveform is 

observed. Determine if this is the correct output waveform.

A

B

C

D

A

B

C

D

X

fg05_06500

Figure 49 

 45. The output waveform in Figure 50 is incorrect for the inputs that are applied to the circuit. 
Assuming that one gate in the circuit has failed, with its output either an apparent constant 
HIGH or a constant LOW, determine the faulty gate and the type of failure (output open or 
shorted).

 46. Repeat Problem 45 for the circuit in Figure 51, with input and output waveforms as shown.

A

B

F

E

C

D

G1

G2

G3

G4 X

F

X

E

D

C

B

A

fg05_06700
Figure 51 

 47. Figure 52(a) is a logic circuit under test. Figure 52(b) shows the waveforms as observed on a 
logic analyzer. The output waveform is incorrect for the inputs that are applied to the circuit. 
Assuming that one gate in the circuit has failed, with its output either an apparent constant 
HIGH or a constant LOW, determine the faulty gate and the type of failure.

A

B

C

D

E

X

A

B
C

D

E

G2

G1

G4

G3

fg05_06600
Figure 50 
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 48. The logic circuit in Figure 53 has the input waveforms shown.
(a) Determine the correct output waveform in relation to the inputs.
(b) Determine the output waveform if the output of gate G3 is open.
(c) Determine the output waveform if the upper input to gate G5 is shorted to ground.

A

B

X

(b)

C

D

E

F

X

A
B
C
D
E
F

G1

G2

G3

G4

(a)

fg05_06900
Figure 52 

 49. The logic circuit in Figure 54 has only one intermediate test point available besides the out-
put, as indicated. For the inputs shown, you observe the indicated waveform at the test point. 
Is this waveform correct? If not, what are the possible faults that would cause it to appear as 
it does?

A

B

X

C

D

E

F

TP

TP

A
B

C
D

E
F

fg05_07100

Figure 54 

special Problems 
 50. Develop a logic circuit to produce a HIGH output only if the input, represented by a 4-bit binary 

number, is greater than twelve or less than three. First develop the truth table and then draw the 
logic diagram.

 51. Develop the logic circuit necessary to meet the following requirements:

  A battery-powered lamp in a room is to be operated from two switches, one at the back door and 
one at the front door. The lamp is to be on if the front switch is on and the back switch is off, or 
if the front switch is off and the back switch is on. The lamp is to be off if both switches are off 
or if both switches are on. Let a HIGH output represent the on condition and a LOW output 
represent the off condition.

 52. Develop the NAND logic for a hexadecimal keypad encoder that will convert each key closure 
to binary.

A

B

C

D

E

G4

X

A
B

C

D

E

G2

G1

G3

G5

fg05_07000
Figure 53 
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multisim troubleshooting 
PraCtiCe 

 53. Open file P04-53 and follow the instructions given there.

 54. Open file P04-54 and follow the instructions given there.

 55. Open file P04-55 and follow the instructions given there.

 56. Open file P04-56 and follow the instructions given there.

ansWers to seCtion CheCKuPs
seCtion 1 basic Combinational logic Circuits
 1. (a) AB + CD = 1 # 0 + 1 # 0 = 1

(b) AB + CD = 1 #1 + 0 #1 = 0
(c) AB + CD = 0 #1 + 1 # 1 = 0

 2. (a) AB + AB = 1 # 0 + 1 # 0 = 1 (b) AB + AB = 1 #1 + 1 # 1 = 0
(c) AB + AB = 0 # 1 + 0 #1 = 1 (d) AB + AB = 0 # 0 + 0 # 0 = 0

 3. X = 1 when ABC = 000, 011, 101, 110, and 111; X = 0 when ABC = 001, 010, and 100

 4. X = AB + A B; the circuit consists of two AND gates, one OR gate, and two inverters. See 
Figure 5(b) for diagram.

seCtion 2 boolean expressions and truth tables
 1. (a) X = ABC + AB + AC: three AND gates, one OR gate

(b) X = AB(C + DE): three AND gates, one OR gate

 2. X = ABC + A B C; two AND gates, one OR gate, and three inverters

 3. A + B(C + D)

 4. 

multisim

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

seCtion 3 demorgan’s theorems
 1. (a) A + B + C + DE

(b) A B C
(c) A B C + (D + E)

seCtion 4 the universal Property of nand and nor gates
 1. (a) X = A + B: a 2-input NAND gate with A and B on its inputs.

(b) X = AB: a 2-input NAND with A and B on its inputs, followed by one NAND used as an 
inverter.

 2. (a)  X = A + B: a 2-input NOR with inputs A and B, followed by one NOR used as an 
inverter.

(b) X = AB: a 2-input NOR with A and B on its inputs.
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seCtion 5 Pulse Waveform operation
 1. The exclusive-OR output is a 15 ms pulse followed by a 25 ms pulse, with a separation of 10 ms 

between the pulses.

 2. The output of the exclusive-NOR is HIGH when both inputs are HIGH or when both inputs are 
LOW.

seCtion 6 Combinational logic with vhdl and verilog
 1. An entity defines inputs and outputs.

 2. An architecture defines type of circuit.

 3. Module

 4. Data flow and structural (behavioral is a third type)

 5. A VHDL component is a predefined program describing a specified logic function.

 6. A component instantiation is used to call for a specified component in a program architecture.

 7. Interconnections between components are made using VHDL signals.

 8. Components are used in the structural approach.

seCtion 7 a system
 1. Three

 2. Two

 3. The outlet valve control depends on the temperature where the inlet valve does not.

 4. The outlet valve turns off when there is no inlet flow and the level is above minimum.

seCtion 8 troubleshooting
 1. Common gate failures are input or output open; input or output shorted to ground.

 2. Input shorted to VCC causes output to be stuck LOW.

 3. (a) G4 output is HIGH until rising edge of seventh pulse, then it goes LOW.
(b) G4 output is the same as input D.
(c) G4 output is the inverse of the G2 output shown in Figure 36(b).

ansWers to related Problems  
For examPles
 1 The same as Figure 10 without the inverters

 2 There is only one complemented variable for each AND gate.

 3 Multisim results should agree with Figure 13.

 4 X + Y + Z = XYZ

 5 W X Y Z = W + X + Y + Z

 6 See Figure 55.

 7 See Figure 56.

AHIGH

B
C

X

fg05_07500
Figure 55 

A

B

X

fg05_07600

Figure 56 

 8 See Figure 57.

 9 See Figure 58.
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 10 
vhdl

 entity ANDORlogic is
     port (A, B, C, D, E, F, G, H: in bit; X: out bit);
 end entity ANDORlogic;
 architecture ANDORfunction of ANDORlogic is 
 begin
      X 6= (A and B) or (C and D) or (E and F) or 

(G and H);
 end architecture ANDORfunction;

A

B

C

D

Y1

X

Y2

Y3

Y4

fg05_07700

Figure 57 

A

B

C

D

X

fg05_07800

Figure 58 

verilog
module ANDORlogic (A, B, C, D, E, F, G, H, X);
    input A, B, C, D, E, F, G, H;
    output X;
         assign  X = (A && B) || (C && D) || (E && F) || 

(G && H);
endmodule

11
vhdl

 entity Combo_Logic is
     port (A, B, C, D, E, F: in bit; X: out bit);
 end entity Combo_Logic;
  architecture Logic_Function of Combo_Logic is 

begin
      X 6= not(not(not A and not B) or C) and 

not(not(not D and not E) or F);
 end architecture Logic_Function;

verilog
module Combo_Logic (A, B, C, D, E, F, X);
    input A, B, C, D, E, F;
    output X;
         assign X = !(!(!A && !B) || C) && !(!(!D && !E) || 

            F);
endmodule

12 
vhdl

 entity Table_7 is
     port (A, B, C, D: in bit; X: out bit);
 end entity Table_7;
  architecture Logic_Function of Table_7 is begin
      x 6= (not A and not B and not C and not D) 

or (A and not B and C and D) or (A and B 
and not C and not D) or (A and B and not C 
and D) or (A and B and C and not D) or (A 
and B and C and D);

 end architecture Logic_Function;

verilog
module Combo_Logic (A, B, C, D, X);
    input A, B, C, D;
    output X;
         assign  X = (!A && !B && !C && !D) || (A && !B 

&& C && D) || (A && B && !C && !D) || (A 
&& B && !C && D) || (A && B && C && 
!D) || (A && B && C && D);

endmodule

 13 G5: NAND_gate2 port map (A = 7 IN9, B = 7 IN10, X = 7 OUT5);

 14 See Figure 59.

A

B

C

D

G4

fg05_07900

Figure 59 
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ansWers to true/False Quiz
 1. F   2. F   3. T   4. T   5. F

 6. T   7. T   8. F   9. T  10. T

ansWers to selF-test
 1. (d)   2. (b)   3. (c)   4. (d)   5. (b)

 6. (a)   7. (d)   8. (e)   9. (e)  10. (c)

ansWers to odd-numbered Problems
 1. See Figure P–16.

C
B

F
E

I

A

D

&

&

≥1

&

H
G

L
K
J

X

fgp_01900
Figure P–16 

 3. (a) X = ABB

  (b) X = AB + B

  (c) X = A + B

  (d) X = (A + B) + AB

  (e) X = ABC

  (f) X = (A + B)(B + C)
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table P–1  

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

  (b) See Table P–2. X = ABC + CD

table P–2  

A B C D X

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

 5. (a) See Table P–1. X = (A + B)(C + D)
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 (c) See Table P–3. X = (AB + C)D + E

table P–3 

A B C D E X

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 0 1 1

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 1 1

1 0 0 1 0 0

1 0 0 1 1 1

1 0 1 0 0 0

1 0 1 0 1 1

1 0 1 1 0 1

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 1 1

1 1 0 1 0 1

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 1
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table P–4 

A B C D X

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

   (d) See Table P–4. 

table P–5 

A B C D E X

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 1 1 1

0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 0 1 1 1

X = (A + B)(BC) + D

  (e) See Table P–5. X = (AB + C)D + E
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 5. (f ) See Table P–6. X = (AB + CD)(EF + GH)

For all other entries X = 0.
X = don’t care 
An abbreviated table is shown because  
there are 256 combinations.

table P–6 

A B C D E F G H X

0 X 0 X X X X X 1

X 0 0 X X X X X 1

0 X X 0 X X X X 1

X 0 X 0 0 X X X 1

X X X X 0 X 0 X 1

X X X X X 0 0 X 1

X X X X 0 X X 0 1

X X X X X 0 X 0 1

A B C D E X

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 1 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 1

1 0 0 1 1 1

1 0 1 0 0 1

1 0 1 0 1 0

1 0 1 1 0 1

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 1

1 1 0 1 1 1

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 1 0 1

1 1 1 1 1 1

table P–5  (Continued ) 
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A

(a) X = AB + BC

X

A

C (b) X = A(B + C)

X

A
B
C

B

(c) X = AB + AB

X

A

B

(d) X = ABC + B(EF + G)

X

B
C
E
F
G

B

A
C

X

B
B
A

C
D

(e) X = A[BC(A + B + C + D)]

(f) X = B(CDE + EFG) (AB + C)

C

X
B

C

F
G
A

B

D

E

fgp_02000

Figure P–17 

 7. A B C D + E F G H

 9. See Figure P–17.

 11. X = A B C + A B C + A B C + A B C + A B C 
  Five 3-input AND gates, one 5-input OR gate, and three inverters.

 13. (a) See Table P–7.

  (b) See Table P–8.

 15. (a) X = A BC + AB C + ABC + ABC
 X = (A + B + C)(A + B + C)(A + B + C)(A + B + C)

  (b) X = ABC + ABC + ABC
 X = (A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

  (c)  X = A B C D + A B  CD + A BCD + ABCD + ABCD + AB CD + ABC D
 X = (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

    (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

  (d)  X = A BCD + ABC D + ABCD + ABCD + ABCD + ABC D + ABCD
 X = (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)
   (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

 17. (a) A + B + CD

  (b) A + B + (C + D)(E + F)

table P–7 

A B C X

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

table P–8 

X Y Z Q

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
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  (c) A BCD + A + B + C + D

  (d) A + B + C + D + AB CD

  (e) AB + (C + D)(E + F) + ABCD

 19. See Figure P–18.

 21. See Figure P–19.

X

C

A
B
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C
X

(a) (b)

Figure P–18 

A

B

D

C X
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Figure P–19 

 23. X = A + B + B = ABB = 0
  The output X is always LOW.

 25. X is HIGH when ABC are all HIGH or when A is HIGH and B is LOW and C is LOW or when 
A is HIGH and B is LOW and C is HIGH.

  X = ABC + AB C + ABC

  See Figure P–20.

 27. See Figure P–21.
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X � ABC � ABC � ABC 
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Figure P–20 

 29. X 6= A and B and C; X = A && B && C;

 31. VHDL for 38(e):

  entity Circuit 4_38e is
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   port (A, B, C: in bit; X: out bit);
  end entity Circuit4_38e;
  architecture LogicFunction of Circuit4_38e is
  begin
   X 6= ((a nand b) and B) nand C;
  end architecture LogicFunction;

  Verilog for Figure 38(e):

  module Circuit4_38e (A, B, C, X);
  input (A, B, C);
  output X;
  assign X = !((( !(A && B)) && B) && C);
  endmodule

  VHDL for 38(f):

  entity Circuit4_38f is
   port (A, B, C: in bit; X: out bit);
  end entity Circuit4_38f;
  architecture LogicFunction of Circuit4_38f is
  begin
   X 6= (A or B) and (not B or C);
  end architecture LogicFunction;

  Verilog for Figure 38(f):

  module Circuit4_38f (A, B, C, X);
  input (A, B, C);
  output X;
  assign X = (A }  B) && (! B }  C);
  endmodule

 33. Number gates from top to bottom and left to right G1, G2, G3, etc. Relabel inputs IN1, IN2, 
IN3, etc. and output OUT.

  entity Circuit4_39f is
   port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit;
   OUT: out bit);
  end entity Circuit4_39f;
  architecture LogicFunction of Circuit4_39f is
  component NAND_gate is
   port (A, B: in bit; X: out bit);
  end component NAND_gate;
   signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT,
   G6OUT: bit;
  begin
    G1: NAND_gate port map (A =7 IN1, B =7 IN2, X =7 G1OUT);

    G2: NAND_gate port map (A =7 IN3, B =7 IN4, X =7 G2OUT);

    G3: NAND_gate port map (A =7 IN5, B =7 IN6, X =7 G3OUT);

    G4: NAND_gate port map (A =7 IN7, B =7 IN8, X =7 G4OUT);

    G5: NAND_gate port map (A =7 G1OUT, B =7 G2OUT, X =7 G5OUT);

    G6: NAND_gate port map (A =7 G3OUT, B =7 G4OUT, X =7 G6OUT);

    G7: NAND_gate port map (A =7 G5OUT, B =7 G6OUT, X =7 OUT);
  end architecture LogicFunction;

  Verilog for 39(f):

  module Circuit4_39f (A, B, C, D, E, F, G, H, X);
  input (A, B, C, D, E, F, G, H);
  output X;
  assign X = !(((A && B) }  (C && D)) && ((E && F) }  (G && H)));
  endmodule

 35. Data flow approach

  entity Fig_47a is
   port (A, B, C, D, E: in bit; X: out bit);
  end entity Fig_47a;
  architecture DataFlow of Fig_47a is
  begin
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   X 6= (A and B and C) or (D and not E);
  end architecture DataFlow;
  Structural approach

  entity Fig_47a is
   port (IN1, IN2, IN3, IN4, IN5: in bit; OUT: out bit);
  end entity Fig_47a;
  architecture Structure of Fig_47a is
  component AND_gate is
   port (A, B: in bit; X: out bit);
  end component AND_gate;
  component OR_gate is
   port (A, B: in bit; X: out bit);
  end component OR_gate;
  component Inverter is
   port (A: in bit; X: out bit);
  end component Inverter;
   signal G1OUT, G2OUT, G3OUT, INVOUT: bit;
  begin
    G1: AND_gate port map (A =7 IN1, B =7 IN2, X =7 G1OUT);
    G2: AND_gate port map (A =7 G1OUT, B =7 IN3, X =7 G2OUT);
   INV: Inverter port map (A =7 IN5, X =7 INVOUT);
    G3: AND_gate port map (A =7 IN4, B =7 INVOUT, X =7 G3OUT);
    G4: OR_gate port map (A =7 G2OUT, B =7 G3OUT, X =7 OUT);
  end architecture Structure;

  Verilog for 47(a):
  module Circuit_47a (A, B, C, D, E, X);
  input (A, B, C, D, E);
  output X;
  assign X = ((A && B) && C) }  (D && !E)

  endmodule 

37.  See Table P–9. table P–9 

inPuts outPut

A B C D X

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0

0 0 1 0 0

1 0 1 0 0

0 1 1 0 0

1 1 1 0 0

0 0 0 1 0

1 0 0 1 0

0 1 0 1 0

1 1 0 1 1

0 0 1 1 0

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1
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 39. The AND gates are numbered top to bottom G1, G2, G3, G4. The OR gate is G5 and the 
inverters are, top to bottom, G6 and G7. Change A1, A2, B1, B2 to IN1, IN2, IN3, IN4 
respectively. Change X to OUT.

  entity Circuit4_48 is
   port (IN1, IN2, IN3, IN4: in bit; OUT: out bit);
  end entity Circuit4_48;
  architecture Logic of Circuit4_48 is
  component AND_gate is
   port (A, B: in bit; X: out bit);
  end component AND_gate;
  component OR_gate is
   port (A, B, C, D: in bit; X: out bit);
  end component OR_gate;
  component Inverter is
   port (A: in bit; X: out bit);
  end component Inverter;
    signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT, G6OUT, G7OUT: bit;
  begin
    G1: AND_gate port map (A =7 IN1, B =7 IN2, X =7 G1OUT);
    G2: AND_gate port map (A =7 IN2, B =7 G6OUT, X =7 G2OUT);
    G3: AND_gate port map (A =7 G6OUT, B =7 G7OUT, X =7 G3OUT);
    G4: AND_gate port map (A =7 G7OUT, B =7 IN1, X =7 G4OUT);
    G5: OR_gate port map (A =7 G1OUT, B =7 G2OUT, C =7 G3OUT, 

D =7 G4OUT, X =7 OUT);
    G6: Inverter port map (A =7 IN3, X =7 G6OUT);
   G7: Inverter port map (A =7 IN4, X =7 G7OUT);
  end architecture Logic;

 41. See Figure P–22.

T
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Figure P–22 

Lmin VadditiveT

fgp_03100

Figure P–23 

 43. See Figure P–23.

 45. X = ABC + DE. Since X is the same as the G3 output, either G1 or G2 has failed, with its 
output stuck LOW.

 47. X = AB + CD + EF = (AB)(CD)(EF) 
 = (A + B)(C + D)(E + F) 
Since X does not go HIGH when C or D is HIGH, the output of gate G2 must be stuck LOW.

 49. No, the output of the CD gate is stuck LOW.

 51. X = lamp on, A = front door switch on, B = back door switch on. See Figure P–24.

X
A

B

fgp_03200

Figure P–24 
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 53. Circuit fault: Input C is shorted to ground.

  Predicted effect of fault: X1 and X2 are always off. X3 is on only when both B and C are 
HIGH. X4 is on when either B or C is LOW.

  observed effect of introduced fault: X1 and X2 are always off. X3 is on only when both B 
and C are HIGH (switches B and C are both open).

 55. observed operation: X1 is on when either A or B is LOW. X2 is always off. X3 is on when 
both A and B are HIGH or when C is LOW. X4 is always ON. X5 is on when C is HIGH and 
either A or B is LOW.

  suspected fault: Output of U3 is shorted to ground.

  effect of introduced fault: X1 is on when either A or B is LOW. X2 is always off. X3 is on 
when both A and B are HIGH or when C is LOW. X4 is always ON. X5 is on when C is 
HIGH and either A or B is LOW.
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Functions oF 
combinational logic

outline
 1 A System 

 2 Half and Full Adders 

 3 Parallel Adders 

 4 Ripple Carry and Look-Ahead Carry Adders 

 5 Comparators 

 6 Decoders 

 7 Encoders 

 8 Code Converters 

 9 Multiplexers (Data Selectors) 

 10 Demultiplexers 

 11 Parity Generators/Checkers 

 12 Logic Functions with VHDL and Verilog 

 13 Troubleshooting 

objectives
•	 Explain	a	tablet-bottling	control	system

•	 Distinguish	between	half-adders	and	full-adders

•	 Use	full-adders	to	implement	multibit	parallel	
binary adders

•	 Explain	the	differences	between	ripple	carry	and	
look-ahead carry parallel adders

•	 Use	the	magnitude	comparator	to	determine	the	
relationship between two binary numbers and use 
cascaded comparators to handle the comparison of 
larger numbers

•	 Implement	a	basic	binary	decoder

•	 Use	BCD-to-7-segment	decoders	in	display	systems

Key terms
Half-adder
Full-adder
cascading
ripple carry
look-ahead carry
Decoder
encoder

Priority encoder
multiplexer (muX)
Demultiplexer 
(DemuX)
Parity bit
glitch

•	 Apply	a	decimal-to-BCD	priority	encoder	in	a	
simple keyboard application

•	 Convert	from	binary	to	Gray	code,	and	Gray	code	
to binary by using logic devices

•	 Apply	data	selectors/multiplexers	in	multiplexed	
displays and as a function generator

•	 Use	decoders	as	demultiplexers

•	 Explain	the	meaning	of	parity

•	 Use	parity	generators	and	checkers	to	detect	bit	
errors in digital systems

•	 Implement	a	simple	data	communications	system

•	 Write	VHDL	and	Verilog	programs	for	various	
combination logic functions

•	 Identify	glitches,	common	bugs	in	digital	systems

visit tHe Website
Study aids for this chapter are available at

 http://pearsonhighered.com/floyd

From Chapter 5 of Digital Fundamentals: A Systems Approach,	First	Edition.	Thomas	L.	Floyd.	Copyright	©	2013	by	Pearson	Education,	
Inc.	All	rights	reserved.
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introDuction
In	this	chapter,	several	types	of	combinational	logic	cir-
cuits	 are	 introduced	 including	 adders,	 comparators,	
decoders,	encoders,	code	converters,	multiplexers	(data	
selectors),	demultiplexers,	and	parity	generators/checkers.	
The tablet-bottling system is discussed in relation  

to the application of the logic functions covered. Pro-
grammable logic implementation of several logic func-
tions using VHDL and Verilog is covered. Examples of 
fixed-function	IC	devices	are	included	at	the	end	of	the	
chapter.

a tablet-bottling control system will be examined in more detail in this section. this particular 
system is somewhat simplified to illustrate how all the logic functions that will be covered in 
this chapter can be applied. as with most systems, there are other ways in which a system’s 
function can be implemented. by studying this system and how it works, you will learn how the 
various logic functions can be interconnected and operate as a complete system to accomplish 
a given task.

after completing this section, you should be able to

•	 Explain	the	overall	operation	of	the	tablet-bottling	control	system

•	 Describe	the	purpose	of	each	logic	function

Figure 1 is a general block diagram of the tablet-bottling control system. The job of 
this	system	is	simply	to	fill	each	bottle	with	a	preset	number	of	tablets,	which	is	accom-
plished by counting the number of tablets going into a bottle and limiting the quantity  
to the preset number. The system is set for 50 tablets per bottle but with eight bits can 
accommodate up to 255 tablets per bottle. The system can store a binary number represent-
ing up to 255 total tablets before sending the accumulated sum to a computer where the 
total	will	be	tallied	over	a	specified	time	period.	This	limitation	is	because	register	B	can	
store eight bits.

KeyPaD, encoDer, anD register a The	keypad	has	ten	outputs,	one	for	
each	of	the	decimal	digits.	When	a	key	is	pressed,	the	encoder	changes	the	decimal	input	to	the	
corresponding	4-bit	BCD	code,	as	shown	in	Figure	2.	Register	A	stores	12	bits,	which	is	three	
BCD	digits.	Because	there	are	to	be	50	tablets	per	bottle,	a	0	is	first	entered	on	the	keypad;	and	
the	BCD	code	for	0,	which	is	0000,	is	stored	in	the	shift	register.	next	a	5	is	entered,	and	the	
BCD	code	0101	is	stored	in	the	register,	as	indicated.	Finally,	another	0	is	entered.

DecoDer a anD coDe converter a Decoder	A	transforms	the	BCD	
input	from	register	A	into	a	3-digit	7-segment	code	for	the	“Tablets/bottle”	display.	Actu-
ally,	decoder	A	consists	of	three	BCD-to-7-segment	decoders	because	three	digits	must	be	
displayed at the same time (remember the number can be up to 255). Code converter A 
converts	the	BCD	code	to	a	7-bit	binary	number	for	comparison	with	the	actual	binary	
tablet count. Figure 3 illustrates these functions.

comParator, counter, aDDer, anD register b The set number 
of	tablets	per	bottle	(50)	is	applied	to	the	comparator,	which	compares	it	to	the	actual	number	
of	tablets	in	a	bottle	at	any	point	in	time.	The	counter	counts	each	tablet	as	it	falls	into	a	bottle,	
and the number in the counter is continuously compared to the set number. As long as the 
number	of	tablets	counted	is	less	than	the	set	number,	the	valve	remains	open.	When	the	count	
reaches	the	set	number,	the	output	of	the	comparator	produces	an	output	signal	(HIGH)	that	
closes	the	valve	and	advances	the	conveyer	to	the	next	bottle.	The	counter	is	reset	to	zero,	the	
valve	is	opened	when	the	comparator	output	goes	back	to	zero,	and	the	filling	of	the	new	bottle	
begins.

1 a system
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The number of tablets in the bottle is added to the previous total number of tablets 
stored	in	register	B,	and	the	new	sum	is	stored	back	into	register	B.	When	the	sum	that	is	
stored	in	the	register	reaches	the	limit	of	250	(five	bottles),	as	determined	by	decoder	B,	
the parallel output of the register is multiplexed to the remote site where the sum is accu-
mulated and stored in a computer. Figure 4 shows this operation at the point where the 
bottle	is	full	with	50	tablets	and	the	previous	sum	in	register	B	is	100.	The	new	sum	of	150	
replaces the previous sum of 100.

DecoDer b, muX, anD DemuX Decoder	B	decodes	the	contents	of	register	B	
to detect the binary code for 250 and enable the multiplexer. The multiplexer acts as a 
parallel-to-serial	converter.	The	multiplexing	sequence	(source	not	shown)	is	initiated,	and	
the eight data bits are sent serially to the demultiplexer at a remote location. The demulti-
plexer converts the serial data back to parallel format and sends it to a computer that accu-
mulates	the	totals	over	an	extended	period	of	time,	as	illustrated	in	Figure	5.
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1. After	four	bottles	(50	tablets/bottle)	have	been	filled,	what	are	
the	binary	numbers	in	Register	A	and	Register	B?

2. If	the	number	of	tablets	per	bottle	is	reset	to	25,	what	are	the	
binary	numbers	in	Registers	A	and	B	after	five	bottles	have	
been	filled?

3. Explain the purpose of the comparator.

4. Explain	the	purpose	of	Decoder	B.

section 1 cHecKuP*

*answers are at the end of the chapter.

adders are important in computers and also in other types of digital systems in which numeri-
cal data are processed, as you have seen. an understanding of the basic adder operation is 
fundamental to the study of digital systems. in this section, the half-adder and the full-adder 
are introduced.

after completing this section, you should be able to

•	 Describe	the	function	of	a	half-adder

•	 Draw	a	half-adder	logic	diagram

•	 Describe	the	function	of	the	full-adder

•	 Draw	a	full-adder	logic	diagram	using	half-adders

•	 Implement	a	full-adder	using	AND-OR	logic

the Half-adder
The basic rules for binary addition are stated as follows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

The operations are performed by a logic circuit called a half-adder.

the half-adder accepts two binary digits on its inputs and produces two binary 
digits on its outputs—a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6.

2 HalF anD Full aDDers

a half-adder adds two bits 
and produces a sum and 
an output carry.

Σ
A

B Cout

Σ Sum

Carry

OutputsInput bits

fg06_00100

Figure 6 logic symbol for a half-adder. open 
file F05-06 to verify operation.

HalF-aDDer logic From	the	operation	of	the	half-adder	as	stated	in	Table	1,	
expressions can be derived for the sum and the output carry as functions of the inputs. 

multisim
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TABLE	1	 •	 Half-adder truth table.

A B Cout 

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

� = sum
Cout = output carry
A and B = input variables (operands)

notice	that	the	output	carry	(Cout) is a 1 only when both A and B	are	1s;	therefore,	Cout can 
be	expressed	as	the	AnD	of	the	input	variables.

 Cout  AB (1)

now	observe	that	the	sum	output	(�)	is	a	1	only	if	the	input	variables,	A and B,	are	not	
equal.	The	sum	can	therefore	be	expressed	as	the	exclusive-oR	of	the	input	variables.

   A �  B (2)

From	Equations	1	and	2,	the	logic	implementation	required	for	the	half-adder	func-
tion	can	be	developed.	The	output	carry	is	produced	with	an	AnD	gate	with	A and B on the 
inputs,	and	the	sum	output	is	generated	with	an	exclusive-oR	gate,	as	shown	in	Figure	7.	
Remember	that	the	exclusive-oR	can	be	implemented	with	AnD	gates,	an	oR	gate,	and	
inverters.

Cout = AB

Σ = A ⊕ B = AB + AB

A

B

fg06_00200
Figure 7 Half-adder logic diagram.

Σ
A

Cin

Cout

Σ Sum

Output carry

Input
bits

B

Input carry

fg06_00300

Figure 8 logic symbol for a full-adder. 
open file F05-08 to verify operation.

a full-adder has an input 
carry while the half-adder 
does not.

the Full-adder
The second category of adder is the full-adder.*

the full-adder accepts two input bits and an input carry and generates a sum 
output and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an 
input	carry.	A	logic	symbol	for	a	full-adder	is	shown	in	Figure	8,	and	the	truth	table	in	
Table 2 shows the operation of a full-adder.

Full-aDDer logic The full-adder must add the two input bits and the input 
carry. From the half-adder you know that the sum of the input bits A and B	is	the	exclusive-oR	

multisim

*The bold terms in color are key terms and are included in a Key Term glossary at the end of the chapter.
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TABLE	2	 •	 Full-adder truth table.

A B Cin Cout 

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cin = input	carry,	sometimes	designated	as	CI
Cout = output	carry,	sometimes	designated	as	CO
� = sum
A and B = input variables (operands)

of	those	two	variables,	A � B. For the input carry (Cin)	to	be	added	to	the	input	bits,	it	must	
be	exclusive-oRed	with	A � B,	yielding	the	equation	for	the	sum	output	of	the	full-adder.

   (A �  B) �  Cin (3)

This	means	that	to	implement	the	full-adder	sum	function,	two	2-input	exclusive-oR	gates	
can be used. The first must generate the term A � B,	and	the	second	has	as	its	inputs	the	
output	of	the	first	XoR	gate	and	the	input	carry,	as	illustrated	in	Figure	9(a).

The	output	carry	is	a	1	when	both	inputs	to	the	first	XoR	gate	are	1s	or	when	both	
inputs	to	the	second	XoR	gate	are	1s.	You	can	verify	this	fact	by	studying	Table	2.	The	
output carry of the full-adder is therefore produced by input A	AnDed	with	input	B and 
A � B	AnDed	with	Cin.	These	two	terms	are	oRed,	as	expressed	in	Equation	4.	This	
function is implemented and combined with the sum logic to form a complete full-adder 
circuit,	as	shown	in	Figure	9(b).

 Cout  AB  (A �  B)Cin (4)

notice	in	Figure	9(b)	there	are	two	half-adders,	connected	as	shown	in	the	block	
diagram	of	Figure	10(a),	with	their	output	carries	oRed.	The	logic	symbol	shown	in	Figure	
10(b) will normally be used to represent the full-adder.

Cin

B
A

Σ = (A ⊕ B) ⊕ Cin

A ⊕ B

(a) Logic required to form the sum of three bits

Cin

B
A A ⊕ B

(A ⊕ B)Cin

AB

Cout = AB + (A ⊕ B)Cin

(b) Complete logic circuit for a full-adder (each half-adder is enclosed
by a shaded area)

Σ = (A ⊕ B) ⊕ Cin

fg06_00400

Figure 9 Full-adder logic. open file F05-09 to verify operation.multisim
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(b) Full-adder logic symbol

Input
carry, Cin

AB

(a) Arrangement of two half-adders to form a full-adder

A ⊕ BΣ
A

B Cout

Σ Sum
(A ⊕ B) ⊕ Cin

Output carry, Cout

Σ
A

B Cout

Σ

Half-adder Half-adder

AB + (A ⊕ B)Cin

(A ⊕ B)Cin
Σ

A

Cin

Cout

Σ
B

A

B

fg06_00500

Figure 10 Full-adder implemented with half-adders.

e X a m P l e  1

For	each	of	the	three	full-adders	in	Figure	11,	determine	the	outputs	for	the	inputs	shown.

s o l u t i o n

(a) The input bits are A = 1, B = 0, and Cin = 0.

1 + 0 + 0 = 1 with no carry

	 Therefore,	� = 1 and Cout = 0.

(b) The input bits are A = 1, B = 1, and Cin = 0.

1 + 1 + 0 = 0 with a carry of 1

	 Therefore,	� = 0 and Cout = 1.

(c) The input bits are A = 1, B = 0, and Cin = 1.

1 + 0 + 1 = 0 with a carry of 1

	 Therefore,	� = 0 and Cout = 1.

r e l a t e D  P r o b l e m *

What	are	the	full-adder	outputs	for	A = 1, B = 1, and Cin = 1?

*answers are at the end of the chapter.

(a)

Σ
A

Cin

Cout

Σ
B

1

0

0

(b)

Σ
A

Cin

Cout

Σ
B

1

0

1

(c)

Σ
A

Cin

Cout

Σ
B

1

1

0

fg06_00600

Figure 11 

1. Determine the sum (�) and the output carry (Cout) of a half-
adder for each set of input bits:

(a) 01    (b) 00    (c) 10    (d) 11

2. A full-adder has Cin = 1.	What	are	the	sum	(�) and the out-
put carry (Cout) when A = 1 and B = 1?

section 2 cHecKuP
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two or more full-adders are connected to form parallel binary adders. in this section, you will 
learn the basic operation of this type of adder and its associated input and output functions.

after completing this section, you should be able to

•	 Use	full-adders	to	implement	a	parallel	binary	adder

•	 Explain	the	addition	process	in	a	parallel	binary	adder

•	 Use	the	truth	table	for	a	4-bit	parallel	adder

•	 Expand	the	4-bit	adder	to	accommodate	8-bit	or	16-bit	addition

3 Parallel aDDers

Addition	is	performed	by	computers	on	two	numbers	at	a	time,	called	operands. The source 
operand is a number that is to be added to an existing number called the destination operand, 
which	is	held	in	an	ALU	register,	such	as	the	accumulator.	The	sum	of	the	two	numbers	is	then	
stored back in the accumulator. Addition is performed on integer numbers or floating-point 
numbers using ADD or FADD instructions respectively.

s y s t e m  n o t e

As	you	saw	in	section	2,	a	single	full-adder	is	capable	of	adding	two	1-bit	numbers	
and	an	input	carry.	To	add	binary	numbers	with	more	than	one	bit,	you	must	use	additional	
full-adders.	When	one	binary	number	is	added	to	another,	each	column	generates	a	sum	bit	
and	a	1	or	0	carry	bit	to	the	next	column	to	the	left,	as	illustrated	here	with	2-bit	numbers.

                                                                               Carry bit from right column

1
1
1

+ 01

100

          	In	this	case,	the	
carry bit from  
second column  
becomes a sum bit.

A2 B2 A1 B1

0

(MSB) Σ2Σ3 Σ1 (LSB)

General format, addition
of two 2-bit numbers:

A2A1
+ B2B1

Σ3Σ2Σ1

A

Σ

BA

Σ

B Cin Cin

Cout Cout

fg06_00700

Figure 12 block diagram of a 2-bit parallel adder using 
two full-adders. open file F05-12 to verify operation.

To	add	two	binary	numbers,	a	full-adder	is	required	for	each	bit	in	the	numbers.	so	
for	2-bit	numbers,	two	adders	are	needed;	for	4-bit	numbers,	four	adders	are	used;	and	so	
on. The carry output of each adder is connected to the carry input of the next higher-order 
adder,	as	shown	in	Figure	12	for	a	2-bit	adder.	notice	that	either	a	half-adder	can	be	used	
for the least significant position or the carry input of a full-adder can be made 0 (grounded) 
because there is no carry input to the least significant bit position.

multisim
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In	Figure	12	the	least	significant	bits	(LsB)	of	the	two	numbers	are	represented	by	A1 
and B1. The next higher-order bits are represented by A2 and B2. The three sum bits are 
�1, �2, and �3.	notice	that	the	output	carry	from	the	left-most	full-adder	becomes	the	
most	significant	bit	(msB)	in	the	sum,	�3.

e X a m P l e  2

Determine the sum generated by the 3-bit parallel adder in Figure 13 and show 
the intermediate carries when the binary numbers 101 and 011 are being added.

s o l u t i o n

The	LsBs	of	the	two	numbers	are	added	in	the	right-most	full-adder.	The	sum	bits	
and the intermediate carries are indicated in blue in Figure 13.

r e l a t e D  P r o b l e m

What	are	the	sum	outputs	when	111	and	101	are	added	by	the	3-bit	parallel	adder?

1

Σ2 Σ1
0

1

0
Σ3Σ4
01

1001

11

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

fg06_00800

Figure 13 

Four-bit Parallel adders
A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with 
four	full-adder	stages	as	shown	in	Figure	14.	Again,	the	LsBs	(A1 and B1) in each number 
being	added	go	into	the	right-most	full-adder;	the	higher-order	bits	are	applied	as	shown	to	
the	successively	higher-order	adders,	with	the	msBs	(A4 and B4) in each number being 
applied to the left-most full-adder. The carry output of each adder is connected to the carry 
input of the next higher-order adder as indicated. These are called internal carries.

A2 B2 A1 B1

Σ2 Σ1

(LSB)

A3 B3A4 B4

Σ3Σ4

C4

(a) Block diagram 

C0

C1C2C3

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4
Output
carry

Binary
number A

Input
carry

4-bit
sum

(b) Logic symbol

Binary
number B

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

(MSB)

fg06_00900

Figure 14 a 4-bit parallel adder.
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In	keeping	with	most	manufacturers’	data	sheets,	the	input	labeled	C0 is the input 
carry	to	the	least	significant	bit	adder;	C4,	in	the	case	of	four	bits,	is	the	output	carry	of	the	
most	significant	bit	adder;	and	�1	(LsB)	through	�4	(msB)	are	the	sum	outputs.	The	logic	
symbol is shown in Figure 14(b).

In	 terms	of	 the	method	used	to	handle	carries	 in	a	parallel	adder,	 there	are	 two	
types: the ripple carry adder and the carry look-ahead adder. These are discussed in 
Section 4.

truth table for a 4-bit Parallel adder
Table	3	is	the	truth	table	for	a	4-bit	adder.	on	some	data	sheets,	truth	tables	may	be	called	
function tables or functional truth tables. The subscript n represents the adder bits and can 
be	1,	2,	3,	or	4	for	the	4-bit	adder.	Cn-1 is the carry from the previous adder. Carries C1,	C2
,	and	C3 are generated internally. C0 is an external carry input and C4 is an output. Exam-
ple 3 illustrates how to use Table 3.

TABLE	3	 •	 truth table for each stage of a 4-bit parallel adder.

Cn21 An Bn n Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

e X a m P l e  3

Use	the	4-bit	parallel	adder	truth	table	(Table	3)	to	find	the	sum	and	output	carry	
for the addition of the following two 4-bit numbers if the input carry (Cn-1) is 0:

A4A3A2A1 = 1100 and B4B3B2B1 = 1100

s o l u t i o n

For n = 1: A1 = 0, B1 = 0, and Cn-1 = 0.	From	the	1st	row	of	the	table,

�1 = 0 and C1 = 0

For n = 2: A2 = 0, B2 = 0, and Cn-1 = 0.	From	the	1st	row	of	the	table,

�2 = 0 and C2 = 0

For n = 3: A3 = 1, B3 = 1, and Cn-1 = 0.	From	the	4th	row	of	the	table,

�3 = 0 and C3 = 1
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adder expansion
The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by 
using two 4-bit adders. The carry input of the low-order adder (C0) is connected to 
ground	because	there	is	no	carry	into	the	least	significant	bit	position,	and	the	carry	out-
put	of	 the	low-order	adder	is	connected	to	the	carry	input	of	 the	high-order	adder,	as	
shown in Figure 15(a). This process is known as cascading.	notice	that,	in	this	case,	the	
output carry is designated C8 because it is generated from the eighth bit position. The 
low-order	adder	is	the	one	that	adds	the	lower	or	less	significant	four	bits	in	the	numbers,	
and the high-order adder is the one that adds the higher or more significant four bits in 
the 8-bit numbers.

similarly,	four	4-bit	adders	can	be	cascaded	to	handle	two	16-bit	numbers	as	shown	
in	Figure	15(b).	notice	that	the	output	carry	is	designated	C16 because it is generated from 
the sixteenth bit position.

Σ8

(a) Cascading of two 4-bit adders to form an 8-bit adder

Σ7 Σ6 Σ5

1234

C8

Cout

A8 A7 A6 A5

1234

B8 B7 B6 B5

1234 Cin

Σ4 Σ3 Σ2 Σ1

1234Cout

A4 A3 A2 A1

1234

B4 B3 B2 B1

1234 Cin

C0

AB

Σ
AB

Σ

Σ8 Σ7 Σ6 Σ5

1234Cout

A8 A7 A6 A5

1234

B8 B7 B6 B5

1234 Cin

Σ4 Σ3 Σ2 Σ1

1234Cout

A4 A3 A2 A1

1234

B4 B3 B2 B1

1234 Cin

C0

AB

Σ
AB

Σ

Σ12Σ11Σ10 Σ9

1234Cout

A12A11 A10 A9

1234

B12B11 B10 B9

1234 Cin

AB

Σ

Σ16

(b) Cascading of four 4-bit adders to form a 16-bit adder

Σ15 Σ14Σ13

1234

C16

Cout

A16 A15 A14 A13

1234

B16B15 B14B13

1234 Cin

AB

Σ

fg06_01200

Figure 15 examples of adder expansion.

adders can be expanded 
to handle more bits by 
cascading.

For n = 4: A4 = 1, B4 = 1, and Cn-1 = 1.	From	the	last	row	of	the	table,

�4 = 1 and C4 = 1

C4	becomes	the	output	carry;	the	sum	of	1100	and	1100	is	11000.

r e l a t e D  P r o b l e m

Use	the	truth	table	(Table	3)	to	find	the	result	of	adding	the	binary	numbers	1011	and	
1010.
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1234

1234

1

1 0 1 0 1 0 1 1 1

0 0 1 1 1 1 0 1 0 0

0

10111001
10011110

101010111

11 0 1 1

1

1234

1234CoutCout

CinCin 12341234

AB
Σ

AB
Σ

Figure 16 

e X a m P l e  4

Show the input and output states (1s and 0s) for the 8-bit adder in Figure 15(a) for 
the following 8-bit input numbers:

A8 A7A6 A5A4 A3 A2 A1 = 10111001 and B8B7B6B5B4B3B2B1 = 10011110

s o l u t i o n

The sum of the two 8-bit numbers is

�9�8�7�6�5�4�3�2�1 = 101010111

The input and output states are shown in Figure 16.

r e l a t e D  P r o b l e m

Use	4-bit	adders	to	implement	a	12-bit	parallel	adder.

s y s t e m  e X a m P l e  1

a voting system
A	simple	voting	system	can	be	used	to	simultaneously	provide	the	number	of	“yes”	votes	
and	the	number	of	“no”	votes.	This	type	of	voting	system	can	be	used	where	a	group	of	
people are assembled and there is a need for immediately determining opinions (for or 
against),	making	decisions,	or	voting	on	certain	issues	or	other	matters.

In	its	simplest	form,	the	system	includes	a	switch	for	“yes”	or	“no”	selection	at	each	
position in the assembly and a digital display for the number of yes votes and one for the 
number	of	no	votes.	The	basic	system	is	shown	in	Figure	17	for	a	6-position	setup,	but	it	
can be expanded to any number of positions with additional 6-position modules and addi-
tional parallel adder and display circuits.

In	Figure	17	each	full-adder	can	produce	the	sum	of	up	to	three	votes.	The	sum	and	
output carry of each full-adder then goes to the two lower-order inputs of a parallel binary 
adder. The two higher-order inputs of the parallel adder are connected to ground (0) 
because there is never a case where the binary input exceeds 0011 (decimal 3). For this 
basic	 6-position	 system,	 the	outputs	 of	 the	parallel	 adder	 go	 to	 a	BCD-to-7-segment	
decoder	 that	drives	 the	7-segment	display.	As	mentioned,	 additional	 circuits	must	be	
included when the system is expanded.

The resistors from the inputs of each full-adder to ground assure that each input is 
LoW	when	the	switch	is	in	the	neutral	position	(Cmos	logic	is	used).	When	a	switch	is	
moved	to	the	“yes”	or	to	the	“no”	position,	a	HIGH	level	(VCC) is applied to the associated 
full-adder input.
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Σ

A

1
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3

4

B

1

2
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4

C0

Σ

1

2

3

4

C4
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Σ
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Cin

Cout

Σ
B

Σ
A
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Cout

Σ
B

Full-adder 1

Full-adder 2
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decoder
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NO
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NO
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YES logic

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Parallel adder 2

Σ
A

Cin

Cout

Σ
B

Σ
A

Cin

Cout

Σ
B

Full-adder 3

Full-adder 4

BCD
to

7-segment
decoder

330 Ω resistors (typical)

NO logic

1.0 k�

VCC

Six-Position Adder Module

Switches

NO

YES

100 kΩ resistors should be connected from the inputs of the
CMOS full-adders to ground.

fg06_01400

Figure 17 

1. Two 4-bit numbers (1101 and 1011) are applied to a 4-bit 
 parallel adder. The input carry is 1. Determine the sum (�) 
and the output carry.

2. How many 4-bit adders would be required to add two binary 
numbers each representing decimal numbers up through 
100010?

section 3 cHecKuP
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the ripple carry adder
A ripple carry adder is one in which the carry output of each full-adder is connected to the 
carry input of the next higher-order stage (a stage is one full-adder). The sum and the out-
put	carry	of	any	stage	cannot	be	produced	until	the	input	carry	occurs;	this	causes	a	time	
delay	in	the	addition	process,	as	illustrated	in	Figure	18.	The	carry	propagation	delay	for	
each full-adder is the time from the application of the input carry until the output carry 
occurs,	assuming	that	the	A and B inputs are already present.

as mentioned in the last section, parallel adders can be placed into two categories based on the 
way in which internal carries from stage to stage are handled. those categories are ripple 
carry and look-ahead carry. externally, both types of adders are the same in terms of inputs 
and outputs. the difference is the speed at which they can add numbers. the look-ahead carry 
adder is much faster than the ripple carry adder.

after completing this section, you should be able to

•	 Discuss	the	difference	between	a	ripple	carry	adder	and	a	look-ahead	carry	adder

•	 State	the	advantage	of	look-ahead	carry	addition

•	 Define	carry generation and carry propagation and explain the difference

•	 Develop	look-ahead	carry	logic

4 riPPle carry anD looK-aHeaD  
carry aDDers

Full-adder 1 (FA1) cannot produce a potential output carry until an input carry is 
applied. Full-adder 2 (FA2) cannot produce a potential output carry until FA1 produces an 
output carry. Full-adder 3 (FA3) cannot produce a potential output carry until an output 
carry	is	produced	by	FA1	followed	by	an	output	carry	from	FA2,	and	so	on.	As	you	can	see	
in	Figure	18,	 the	input	carry	to	the	least	significant	stage	has	to	ripple	through	all	 the	
adders before a final sum is produced. The cumulative delay through all the adder stages is 
a	“worst-case”	addition	time.	The	total	delay	can	vary,	depending	on	the	carry	bit	pro-
duced	by	each	full-adder.	If	two	numbers	are	added	such	that	no	carries	(0)	occur	between	
stages,	the	addition	time	is	simply	the	propagation	time	through	a	single	full-adder	from	
the	application	of	the	data	bits	on	the	inputs	to	the	occurrence	of	a	sum	output;	however,	
worst-case addition time must always be assumed.

the look-ahead carry adder
The speed with which an addition can be performed is limited by the time required for the 
carries	to	propagate,	or	ripple,	through	all	the	stages	of	a	parallel	adder.	one	method	of	

1
1

1

1

1

1

MSB

010111

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

01

1

A

Σ

B Cin

Cout

LSB

1
1

8 ns8 ns8 ns8 ns

FA1FA2FA3FA4

32 ns

fg06_01500

Figure 18 a 4-bit 
parallel ripple carry adder 
showing “worst-case” carry  
propagation delays.
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speeding up the addition process by eliminating this ripple carry delay is called look-
ahead carry addition. The look-ahead carry adder anticipates the output carry of each 
stage,	and	based	on	the	inputs,	produces	the	output	carry	by	either	carry	generation	or	
carry propagation.

carry generation occurs when an output carry is produced (generated) internally by 
the	full-adder.	A	carry	is	generated	only	when	both	input	bits	are	1s.	The	generated	carry,	
Cg,	is	expressed	as	the	AnD	function	of	the	two	input	bits,	A and B.

 Cg  AB (5)

carry propagation occurs when the input carry is rippled to become the output 
carry. An input carry may be propagated by the full-adder when either or both of the input 
bits	are	1s.	The	propagated	carry,	Cp,	is	expressed	as	the	oR	function	of	the	input	bits.

 Cp  A  B (6)

The	conditions	for	carry	generation	and	carry	propagation	are	illustrated	in	Figure	19.	The	
three arrowheads symbolize ripple (propagation).

The output carry of a full-adder can be expressed in terms of both the generated carry 
(Cg) and the propagated carry (Cp). The output carry (Cout) is a 1 if the generated carry is 
a	1	oR	if	the	propagated	carry	is	a	1	AnD	the	input	carry	(Cin)	is	a	1.	In	other	words,	we	
get an output carry of 1 if it is generated by the full-adder (A = 1 AnD B = 1) or if the 
adder propagates the input carry (A = 1 oR B = 1)	AnD	Cin = 1. This relationship is 
expressed as

 Cout  Cg  CpCin (7)

now	let’s	see	how	this	concept	can	be	applied	to	a	parallel	adder,	whose	individual	
stages	are	shown	in	Figure	20	for	a	4-bit	example.	For	each	full-adder,	the	output	carry	is 

0 1 1

1

Generated
carry

1

Propagated
carry

1

Propagated carry/
Generated carry

1011111

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

10

A

Σ

B Cin

Cout

1

Propagated
carry

fg06_01600

Figure 19 illustration of 
conditions for carry generation 
and carry propagation.

A2 B2

Cin2

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

FA1FA2FA3FA4

Cout4

A4 B4

Cin4

A3 B3

Cin3

A1 B1

Cin1

Cout3 Cout2 Cout1

Full-adder 4

Cg4 = A4B4
Cp4 = A4 + B4

Full-adder 3

Cg3 = A3B3
Cp3 = A3 + B3

Full-adder 2

Cg2 = A2B2
Cp2 = A2 + B2

Full-adder 1

Cg1 = A1B1
Cp1 = A1 + B1

fg06_01700

Figure 20 carry genera-
tion and carry propagation in 
terms of the input bits to a 
4-bit adder.
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dependent on the generated carry (Cg), the propagated carry (Cp), and its input carry (Cin). 
The Cg and Cp functions for each stage are immediately available as soon as the input bits A 
and B	and	the	input	carry	to	the	LsB	adder	are	applied	because	they	are	dependent	only	on	
these bits. The input carry to each stage is the output carry of the previous stage.

Based	on	this	analysis,	we	can	now	develop	expressions	for	the	output	carry,	Cout,	of	
each full-adder stage for the 4-bit example.

Full-adder 1:

Cout1 = Cg1 + Cp1Cin1

Full-adder 2:

 Cin2 = Cout1

 Cout2 = Cg2 + Cp2Cin2 = Cg2 + Cp2Cout1 = Cg2 + Cp2(Cg1 + Cp1Cin1)

 = Cg2 + Cp2Cg1 + Cp2Cp1Cin1

Full-adder 3:

 Cin3 = Cout2

 Cout3 = Cg3 + Cp3Cin3 = Cg3 + Cp3Cout2 = Cg3 + Cp3(Cg2 + Cp2Cg1 + Cp2Cp1Cin1)

 = Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1

Full-adder 4:

 Cin4 = Cout3

 Cout4 = Cg4 + Cp4Cin4 = Cg4 + Cp4Cout3

 = Cg4 + Cp4(Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1)

 = Cg4 + Cp4Cg3 + Cp4Cp3Cg2 + Cp4Cp3Cp2Cg1 + Cp4Cp3Cp2Cp1Cin1

notice	that	in	each	of	these	expressions,	the	output	carry	for	each	full-adder	stage	is	
dependent only on the initial input carry (Cin1), the Cg and Cp	functions	of	that	stage,	and	
the Cg and Cp functions of the preceding stages. Since each of the Cg and Cp functions can 
be expressed in terms of the A and B	inputs	to	the	full-adders,	all	the	output	carries	are	
immediately	available	(except	for	gate	delays),	and	you	do	not	have	to	wait	for	a	carry	to	
ripple	through	all	the	stages	before	a	final	result	is	achieved.	Thus,	the	look-ahead	carry	
technique speeds up the addition process.

The Cout equations are implemented with logic gates and connected to the full-adders 
to	create	a	4-bit	look-ahead	carry	adder,	as	shown	in	Figure	21.
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A4 B4 A3 B3 A2 B2 A1 B1

Σ4(MSB) Σ1(LSB)
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Σ

B
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Σ
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Cin Cin1

Cg4

Cp4

Cg3

Cp3

Cg2

Cp2

Cg1

Cp1

Cout3

Cout2

Cout1

Cout4

Σ3 Σ2
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Figure 21 logic diagram for a 4-stage look-ahead carry adder.
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equality
The	exclusive-noR	gate	can	be	used	as	a	basic	comparator	because	its	output	is	a	0	if	the	
two input bits are not equal and a 1 if the input bits are equal. Figure 22 shows the exclu-
sive-noR	gate	as	a	2-bit	comparator.

1. The input bits to a full-adder are A = 1 and B = 0. Determine 
Cg and Cp.

2. Determine the output carry of a full-adder when 
Cin = 1, Cg = 0, and Cp = 1.

section 4 cHecKuP

5 comParators
the basic function of a comparator is to compare the magnitudes of two binary quantities to 
determine the relationship of those quantities. in its simplest form, a comparator circuit deter-
mines whether two numbers are equal.

after completing this section, you should be able to

•	 Use	the	exclusive-NOR	gate	as	a	basic	comparator

•	 Explain	the	internal	logic	of	a	magnitude	comparator	that	has	both	equality	and	inequality	
outputs

•	 Use	a	comparator	to	compare	the	magnitudes	of	two	4-bit	numbers

•	 Apply	cascading	to	expand	a	comparator	to	eight	or	more	bits

0
1

0
The input bits are not equal.

1
1

1
The input bits are equal.

1
0

0
The input bits are equal.

0
0

1
The input bits are not equal.

fg06_01900

Figure 22 basic comparator operation.

a comparator determines 
if two binary numbers are 
equal or unequal.

In	order	to	compare	binary	numbers	containing	two	bits	each,	an	additional	exclusive-
noR	gate	is	necessary.	The	two	least	significant	bits	(LsBs)	of	the	two	numbers	are	com-
pared by gate G1,	and	the	two	most	significant	bits	(msBs)	are	compared	by	gate	G2,	as	
shown	in	Figure	23.	If	the	two	numbers	are	equal,	their	corresponding	bits	are	the	same,	
and	the	output	of	each	exclusive-noR	gate	is	a	1.	If	the	corresponding	sets	of	bits	are	not	
equal,	a	0	occurs	on	that	exclusive-noR	gate	output.

In	 order	 to	 produce	 a	 single	 output	 indicating	 an	
equality	or	inequality	of	two	numbers,	an	AnD	gate	can	be	
combined	with	XnoR	gates,	as	shown	in	Figure	23.	The	
output	of	each	exclusive-noR	gate	is	applied	to	the	AnD	
gate	input.	When	the	two	input	bits	for	each	exclusive-noR	
are	equal,	the	corresponding	bits	of	the	numbers	are	equal,	
producing	a	1	on	both	inputs	to	the	AnD	gate	and	thus	a	1	
on	the	output.	When	the	two	numbers	are	not	equal,	one	or	
both	sets	of	corresponding	bits	are	unequal,	and	a	0	appears	
on	at	least	one	input	to	the	AnD	gate	to	produce	a	0	on	its	
output.	Thus,	the	output	of	the	AnD	gate	indicates	equality	
(1) or inequality (0) of the two numbers. Example 5 illus-
trates this operation for two specific cases.

General format: Binary number A → A1A0
Binary number B → B1B0

A0

B0

A1

B1

A = B
HIGH indicates equality.

G1

G2MSBs

LSBs

fg06_02000

Figure 23 logic diagram for equality comparison of two 
2-bit numbers. open file  F05-23 to verify operation.

multisim
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The	basic	comparator	can	be	expanded	to	any	number	of	bits.	The	AnD	gate	sets	the	
condition that all corresponding bits of the two numbers must be equal if the two numbers 
themselves are equal.

e X a m P l e  5

Apply	each	of	the	following	sets	of	binary	numbers	to	the	comparator	inputs	in	Figure	23,	and	determine	the	
output by following the logic levels through the circuit.

(a) 10 and 10  (b) 11 and 10

s o l u t i o n

(a) The output is 1	for	inputs	10	and	10,	as	shown	in	Figure	24(a).

(b) The output is 0	for	inputs	11	and	10,	as	shown	in	Figure	24(b).

A0 = 1

B0 = 0

A1 = 1

B1 = 1

0 → not equal

0

1

(b)

A0 = 0

B0 = 0

A1 = 1

B1 = 1

1 → equal

1

1

(a)

fg06_02100

Figure 24 

r e l a t e D  P r o b l e m

Repeat the process for binary inputs of 01 and 10.

In	a	computer,	the	cache is a very fast intermediate memory between the central processing 
unit	(CPU)	and	the	slower	main	memory.	The	CPU	requests	data	by	sending	out	its	address 
(unique location) in memory. Part of this address is called a tag. The tag address comparator 
compares	the	tag	from	the	CPU	with	the	tag	from	the	cache	directory.	If	the	two	agree,	the	
addressed	data	is	already	in	the	cache	and	is	retrieved	very	quickly.	If	the	tags	disagree,	the	
data must be retrieved from the main memory at a much slower rate.

s y s t e m  n o t e

inequality
In	addition	to	the	equality	output,	many	IC	comparators	provide	additional	outputs	that	
indicate	which	of	the	two	binary	numbers	being	compared	is	the	larger.	That	is,	there	is	an	
output that indicates when number A is greater than number B (A 7 B) and an output that 
indicates when number A is less than number B (A 6 B), as shown in the logic symbol for 
a 4-bit comparator in Figure 25.

To determine an inequality of binary numbers A and B,	you	first	examine	the	highest-
order bit in each number. The following conditions are possible:

 1. If	A3 = 1 and B3 = 0, number A is greater than number B.

 2. If	A3 = 0 and B3 = 1, number A is less than number B.

 3. If	A3 = B3, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general 
procedure	used	in	a	comparator	is	to	check	for	an	inequality	in	a	bit	position,	starting	with	

A0

A1

A2

A3

B0

B1

B2

B3

A

0

3

B

0

3

COMP

A > B

A = B

A < B

fg06_02200

Figure 25 logic symbol for 
a 4-bit comparator with  
inequality indication.
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the	highest-order	bits	(msBs).	When	such	an	inequality	is	found,	the	relationship	of	the	
two	numbers	is	established,	and	any	other	inequalities	in	lower-order	bit	positions	must	be	
ignored	because	it	is	possible	for	an	opposite	indication	to	occur;	the highest-order indica-
tion must take precedence.

e X a m P l e  6

Determine the A = B, A 7 B, and A 6 B out-
puts for the input numbers shown on the compa-
rator in Figure 26.

s o l u t i o n

The number on the A inputs is 0110 and the 
number on the B inputs is 0011. The A + B 
 output is HigH and the other outputs are 
loW.

r e l a t e D  P r o b l e m

What	 are	 the	 comparator	 outputs	 when	
A3A2A1A0 = 1001 and B3B2B1B0 = 1010?

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

fg06_02300
Figure 26 

h a n d s  o n  t i p
most	Cmos	devices	contain	
protection circuitry to guard 
against damage from high static 
voltages or electric fields. 
However,	precautions	must	be	
taken to avoid applications of 
any voltages higher than 
maximum rated voltages. For 
proper	operation,	input	and	
output voltages should be 
between ground and VCC.	Also,	
remember that unused inputs 
must always be connected to an 
appropriate logic level (ground 
or VCC).	Unused	outputs	may	be	
left open.

1. The binary numbers A = 1011 and B = 1010 are applied to 
the inputs of the comparator in Figure 25. Determine the out-
puts.

2. The binary numbers A = 11001011 and B = 11010100 are 
applied to an 8-bit comparator. Determine the states of the 
outputs.

section 5 cHecKuP

6 DecoDers
a decoder is a digital circuit that detects the presence of a specified combination of bits (code) 
on its inputs and indicates the presence of that code by a specified output level. in its general 
form, a decoder has n input lines to handle n bits and from one to 2n output lines to indicate the 
presence of one or more n-bit combinations. in this section, several decoders are introduced. 
the basic principles can be extended to other types of decoders.

after completing this section, you should be able to

•	 Define	decoder

•	 Develop	a	logic	circuit	to	decode	any	combination	of	bits

•	 Expand	decoders	to	accommodate	larger	numbers	of	bits	in	a	code

•	 Discuss	zero	suppression	in	7-segment	displays

•	 Apply	decoders	to	specific	applications

the basic binary Decoder
Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-
cuit.	An	AnD	gate	can	be	used	as	the	basic	decoding	element	because	it	produces	a	HIGH	
output	only	when	all	of	its	inputs	are	HIGH.	Therefore,	you	must	make	sure	that	all	of	the	

261



FUnCTIons	oF	ComBInATIonAL	LoGIC

inputs	to	the	AnD	gate	are	HIGH	when	the	binary	number	1001	occurs;	this	can	be	done	
by	inverting	the	two	middle	bits	(the	0s),	as	shown	in	Figure	27.

1

1

(a)

1

0

0

1

1

A1

A2

(b)

A0

A1

A2

A3

(LSB)

(MSB)

X = A3A2A1A0

fg06_02600

Figure 27 Decoding logic for the binary code 1001 with an active-HigH 
output.

in the representation of a 
binary number or other 
weighted code in this  
text, the lsb is the right-
most	bit	in	a	horizontal	
arrangement and the 
topmost bit in a vertical 
arrangement, unless 
specified otherwise.

The	logic	equation	for	the	decoder	of	Figure	27(a)	is	developed	as	illustrated	in	Fig-
ure	27(b).	You	should	verify	that	the	output	is	0	except	when	A0 = 1, A1 = 0, A2 = 0, 
and A3 = 1 are applied to the inputs. A0	is	the	LsB	and	A3	is	the	msB.

If	a	nAnD	gate	is	used	in	place	of	the	AnD	gate	in	Figure	27,	a	LoW	output	will	
indicate	the	presence	of	the	proper	binary	code,	which	is	1001	in	this	case.

An instruction	tells	the	computer	what	operation	to	perform.	Instructions	are	in	machine	code	(1s	
and	0s)	and,	in	order	for	the	computer	to	carry	out	an	instruction,	the	instruction	must	be	decoded.	
Instruction	decoding	is	one	of	the	steps	in	instruction	pipelining,	which	are	as	follows:	Instruction	
is	read	from	the	memory	(instruction	fetch),	instruction	is	decoded,	operand(s)	is	(are)	read	from	
memory	(operand	fetch),	instruction	is	executed,	and	result	is	written	back	to	memory.	Basically,	
pipelining allows the next instruction to begin processing before the current one is completed.

s y s t e m  n o t e

e X a m P l e  7

Determine the logic required to decode the binary number 1011 by producing a 
HIGH	level	on	the	output.

s o l u t i o n

The decoding function can be formed by complementing only the variables that 
appear	as	0	in	the	desired	binary	number,	as	follows:

X = A3A2A1A0  (1011)

This function can be implemented by connecting the true (uncomplemented) variables 
A0,	A1,	and	A3	directly	to	the	inputs	of	an	AnD	gate,	and	inverting	the	variable	A2 
before	applying	it	to	the	AnD	gate	input.	The	decoding	logic	is	shown	in	Figure	28.

A2

A0

A1

A2

A3

X = A3A2A1A0

fg06_02700

Figure 28 Decoding logic 
for producing a HigH output 
when 1011 is on the inputs.

r e l a t e D  P r o b l e m

Develop the logic required to detect the binary code 10010 and produce an active-
LoW	output.
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TABLE	4	 •	 Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-loW 
outputs.

Decimal binary inPuts DecoDing outPuts

Digit A3 A2 A1 A0 Function 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 0 0 0 0 A3A2A1A0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 0 0 0 1 A3A2A1A0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 2 0 0 1 0 A3A2A1A0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 3 0 0 1 1 A3A2A1A0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

 4 0 1 0 0 A3A2A1A0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

 5 0 1 0 1 A3A2A1A0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

 6 0 1 1 0 A3A2A1A0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

	 7 0 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

 8 1 0 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

	 9 1 0 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

10 1 0 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

11 1 0 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

12 1 1 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 1 1 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

14 1 1 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

15 1 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

the 4-bit Decoder
In	order	to	decode	all	possible	combinations	of	four	bits,	sixteen	decoding	gates	are	
required (24

= 16). This type of decoder is commonly called either a 4-line-to-16-
line decoder because there are four inputs and sixteen outputs or a 1-of-16 decoder 
because	for	any	given	code	on	the	inputs,	one	of	the	sixteen	outputs	is	activated.	A	
list of the sixteen binary codes and their corresponding decoding functions is given in 
Table 4.

If	an	active-LoW	output	is	required	for	each	decoded	number,	the	entire	decoder	can	
be	implemented	with	nAnD	gates	and	inverters.	In	order	to	decode	each	of	the	sixteen	
binary	codes,	sixteen	nAnD	gates	are	required	(AnD	gates	can	be	used	to	produce	active-
HIGH	outputs).

A	logic	symbol	for	a	4-line-to-16-line	(1-of-16)	decoder	with	active-LoW	outputs	is	
shown	in	Figure	29.	The	BIn/DEC	label	indicates	that	a	binary	input	makes	the	corre-
sponding	decimal	output	active.	The	input	labels	8,	4,	2,	and	1	represent	the	binary	weights	
of the input bits (23222120).

multisim
Figure 29 logic symbol for 
a 4-line-to-16-line (1-of-16) 
decoder. open file F05-29 to 
verify operation.
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Figure 30 

e X a m P l e  8

A	certain	application	requires	that	a	5-bit	number	be	decoded.	Use	4-bit	decoders	like	the	one	in	Figure	30	to	
implement	the	logic.	note	the	En	(enable)	function.	The	binary	number	is	represented	by	the	format	A4A3A2A1A0.

s o l u t i o n

since	each	decoder	can	handle	only	four	bits,	two	decoders	must	be	used	to	decode	five	bits.	The	fifth	bit,	A4,	is	
connected	to	the	chip	select	inputs,	CS1 and CS2,	of	one	decoder,	and	A4 is connected to the CS1 and CS2 inputs 
of	the	other	decoder,	as	shown	in	Figure	31.	When	the	decimal	number	is	15	or	less,	A4 = 0, the low-order 
decoder	is	enabled,	and	the	high-order	decoder	is	disabled.	When	the	decimal	number	is	greater	than	15,	A4 = 1 
so A4 = 0,	the	high-order	decoder	is	enabled,	and	the	low-order	decoder	is	disabled.

r e l a t e D  P r o b l e m

Determine the output in Figure 31 that is activated for the binary input 10110.
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Figure 31 
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inPut/outPut (i/o) Port
A decoder is used in computers and other types of systems for input/output selection as 
depicted in the general diagram of Figure 32.

s y s t e m  e X a m P l e  2
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These data
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unused or
connect to
other I/O
ports.
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Figure 32 a simplified i/o port system with a port address decoder with 
only four address lines shown.

Computers must communicate with a variety of external devices called peripherals 
by	sending	and/or	receiving	data	through	what	is	known	as	input/output	(I/o)	ports.	These	
external	devices	include	printers,	modems,	scanners,	external	disk	drives,	keyboard,	video	
monitors,	and	other	computers.	As	illustrated	in	Figure	32,	a	decoder	can	be	used	to	select	
the	I/o	port	as	determined	by	the	computer	so	that	data	can	be	sent	or	received	from	a	
specific external device.

Each	I/o	port	has	a	number,	called	an	address,	which	uniquely	identifies	it.	When	the	
computer	wants	to	communicate	with	a	particular	device,	it	issues	the	appropriate	address	
code	for	the	I/o	port	to	which	that	particular	device	is	connected.	This	binary	port	address	
is	decoded	and	the	appropriate	decoder	output	is	activated	to	enable	the	I/o	port.

As	shown	in	Figure	32,	binary	data	are	transferred	within	the	computer	on	a	data	bus,	
which	is	a	set	of	parallel	lines.	For	example,	an	8-bit	bus	consists	of	eight	parallel	lines	that	
can	carry	one	byte	of	data	at	a	time.	The	data	bus	goes	to	all	of	the	I/o	ports,	but	any	data	
coming in or going out will only pass through the port that is enabled by the port address 
decoder.
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the bcD-to-Decimal Decoder
The	BCD-to-decimal	decoder	converts	each	BCD	code	(8421	code)	into	one	of	ten	possi-
ble	decimal	digit	indications.	It	is	frequently	referred	as	a	4-line-to-10-line decoder or a 
1-of-10 decoder.

The method of implementation is the same as for the 1-of-16 decoder previously 
discussed,	except	that	only	ten	decoding	gates	are	required	because	the	BCD	code	repre-
sents	only	the	ten	decimal	digits	0	through	9.	A	list	of	the	ten	BCD	codes	and	their	corre-
sponding decoding functions is given in Table 5. Each of these decoding functions is 
implemented	with	nAnD	gates	to	provide	active-LoW	outputs.	If	an	active-HIGH	output	
is	required,	AnD	gates	are	used	for	decoding.	The	logic	is	identical	to	that	of	the	first	ten	
decoding gates in the 1-of-16 decoder (see Table 4).

TABLE	5	 •	 bcD decoding functions.

Decimal bcD coDe DecoDing 

Digit A3 A2 A1 A0 Function

0 0 0 0 0 A3A2A1A0

1 0 0 0 1 A3A2A1A0

2 0 0 1 0 A3A2A1A0

3 0 0 1 1 A3A2A1A0

4 0 1 0 0 A3A2A1A0

5 0 1 0 1 A3A2A1A0

6 0 1 1 0 A3A2A1A0

7 0 1 1 1 A3A2A1A0

8 1 0 0 0 A3A2A1A0

9 1 0 0 1 A3A2A1A0

e X a m P l e  9

Figure	 33(a)	 shows	 a	BCD/DEC	decoder.	 If	 the	 input	waveforms	 in	 Figure	 
33(b)	are	applied	to	the	inputs	of	the	decoder,	show	the	output	waveforms.

s o l u t i o n

The	output	waveforms	are	shown	in	Figure	33(c).	As	you	can	see,	the	inputs	are	
sequenced	through	the	BCD	for	digits	0	through	9.	The	output	waveforms	in	the	
timing diagram indicate that sequence on the decimal-value outputs.

r e l a t e D  P r o b l e m

Construct a timing diagram showing input and output waveforms for the case 
where	the	BCD	inputs	sequence	through	the	decimal	numbers	as	follows:	0,	2,	4,	
6,	8,	1,	3,	5,	and	9.
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the bcD-to-7-segment Decoder
The	BCD-to-7-segment	decoder	accepts	the	BCD	code	on	its	inputs	and	provides	outputs	
to	drive	7-segment	display	devices	to	produce	a	decimal	readout.	The	logic	diagram	for	a	
basic	 7-segment	 decoder	 is	 shown	 in	 Figure	 34.	 The	 active-LoW	 outputs	 drive	 a	
	common-cathode	type	of	7-segment	display.
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Figure 34 logic symbol for 
a bcD-to-7-segment decoder/
driver with active-loW out-
puts. open file  F05-34 to verify 
operation.

multisim
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seven-segment DisPlay
In	addition	to	its	decoding	and	segment	drive	capability,	a	BCD-to-7-segment	decoder/
driver often has several additional features as indicated by the LT, RBI, BI>RBO functions 
in	the	logic	symbol	of	Figure	35.	As	indicated	by	the	bubbles	on	the	logic	symbol,	all	of	
the outputs (a through g)	are	active-LoW	as	are	the	LT 	(lamp	test),	RBI (ripple blanking 
input),	and	BI>RBO (blanking input/ripple blanking output) functions. The outputs can 
drive	a	common-cathode	7-segment	display	directly.

s y s t e m  e X a m P l e  3

When	a	LoW	is	applied	to	the	LT  input and the BI>RBO	is	HIGH,	all	of	the	seven	
segments in the display are turned on. Lamp test is used to verify that no segments are 
burned out.

Zero suppression is a feature used for multidigit displays to blank out unnecessary 
zeros and results in leading or trailing zeros in a number not showing on a display. For 
example,	in	a	6-digit	display	the	number	6.4	may	be	displayed	as	006.400	if	the	zeros	are	
not	blanked	out.	Blanking	the	zeros	at	the	front	of	a	number	is	called	leading zero suppres-
sion and blanking the zeros at the back of the number is called trailing zero suppression. 
Keep	in	mind	that	only	nonessential	zeros	are	blanked.	With	zero	suppression,	the	number	
030.080 will be displayed as 30.08 (the essential zeros remain).

Zero suppression is accomplished using the RBI and BI>RBO functions. RBI is the 
ripple blanking input and RBO	is	the	ripple	blanking	output;	these	are	used	for	zero	sup-
pression. BI is the blanking input that shares the same pin with RBO;	in	other	words,	the	
BI>RBO	pin	can	be	used	as	an	input	or	an	output.	When	used	as	a	BI	(blanking	input),	all	
segment	outputs	are	HIGH	(nonactive)	when	BI	is	LoW,	which	overrides	all	other	inputs.	
The BI function is not part of the zero suppression capability of the device.

All	of	the	segment	outputs	of	the	decoder	are	nonactive	(HIGH)	if	a	zero	code	(0000)	
is	on	its	BCD	inputs	and	if	its	RBI	is	LoW.	This	causes	the	display	to	be	blank	and	pro-
duces	a	LoW	RBO.

The logic diagram in Figure 36(a) illustrates leading zero suppression for a whole 
number. The highest-order digit position (left-most) is always blanked if a zero code is on 
its	BCD	inputs	because	the	RBI	of	the	most-significant	decoder	is	made	LoW	by	connect-
ing it to ground. The RBO of each decoder is connected to the RBI of the next lowest-order 
decoder	so	that	all	zeros	to	the	left	of	the	first	nonzero	digit	are	blanked.	For	example,	in	
part (a) of the figure the two highest-order digits are zeros and therefore are blanked. The 
remaining	two	digits,	3	and	0	are	displayed.

The logic diagram in Figure 36(b) illustrates trailing zero suppression for a fractional 
number.	The	lowest-order	digit	(right-most)	is	always	blanked	if	a	zero	code	is	on	its	BCD	
inputs because the RBI is connected to ground. The RBO of each decoder is connected 
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b
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d

e

f

g
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4
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Figure 35 
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(a) Illustration of leading zero suppression
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(b) Illustration of trailing zero suppression
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Figure 36 Examples	of	zero	suppression.

to the RBI of the next highest-order decoder so that all zeros to the right of the first nonzero 
digit	are	blanked.	In	part	(b)	of	the	figure,	the	two	lowest-order	digits	are	zeros	and	therefore	
are	blanked.	The	remaining	two	digits,	5	and	7	are	displayed.	To	combine	both	leading	and	
trailing	zero	suppression	in	one	display	and	to	have	decimal	point	capability,	additional	
logic is required.

1. A 3-line-to-8-line decoder can be used for octal-to-decimal 
decoding.	When	a	binary	101	is	on	the	inputs,	which	output	
line	is	activated?

2. How many 1-of-16 decoders are necessary to decode a 6-bit 
binary	number?

3. Would	you	select	a	decoder/driver	with	active-HIGH	or	
active-LoW	outputs	to	drive	a	common-cathode	7-segment	
LED	display?

section 6 cHecKuP
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the Decimal-to-bcD encoder
This type of encoder has ten inputs—one for each decimal digit—and four outputs cor-
responding	to	the	BCD	code,	as	shown	in	Figure	37.	This	is	a	basic	10-line-to-4-line	
encoder.

The	BCD	(8421)	code	 is	 listed	 in	Table	6.	From	this	 table	you	can	
determine	the	relationship	between	each	BCD	bit	and	the	decimal	digits	in	
order	to	analyze	the	logic.	For	instance,	the	most	significant	bit	of	the	BCD	
code,	A3,	is	always	a	1	for	decimal	digit	8	or	9.	An	oR	expression	for	bit	A3 
in terms of the decimal digits can therefore be written as

A3 = 8 + 9

Bit	A2	is	always	a	1	for	decimal	digit	4,	5,	6	or	7	and	can	be	expressed	as	an	
oR	function	as	follows:

A2 = 4 + 5 + 6 + 7

Bit	A1	is	always	a	1	for	decimal	digit	2,	3,	6,	or	7	and	can	be	expressed	as

A1 = 2 + 3 + 6 + 7

an encoder is a combinational logic circuit that essentially performs a “reverse” decoder func-
tion. an encoder accepts an active level on one of its inputs representing a digit, such as a deci-
mal or octal digit, and converts it to a coded output, such as bcD or binary. encoders can also 
be devised to encode various symbols and alphabetic characters. the process of converting 
from familiar symbols or numbers to a coded format is called encoding.

after completing this section, you should be able to

•	 Determine	the	logic	for	a	decimal-to-BCD	encoder

•	 Explain	the	purpose	of	the	priority	feature	in	encoders

•	 Expand	an	encoder

•	 Apply	the	encoder	to	a	specific	system	example

7 encoDers

table 6 

bcD coDe

Decimal Digit A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

DEC/BCD
0

1

2

3

4

5

6

7

9

1

2

4

8

Decimal
input

BCD
output

8

fg06_03700

Figure 37 logic symbol for a decimal-to-
bcD encoder.
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Finally,	A0	is	always	a	1	for	decimal	digit	1,	3,	5,	7,	or	9.	The	expression	for	A0 is

A0 = 1 + 3 + 5 + 7 + 9

now	let’s	look	at	the	logic	circuitry	required	for	encoding	each	decimal	digit	to	a	
BCD	code	by	using	the	logic	expressions	just	developed.	It	is	simply	a	matter	of	oRing	the	
appropriate	decimal	digit	input	lines	to	form	each	BCD	output.	The	basic	encoder	logic	
resulting from these expressions is shown in Figure 38.

The	basic	operation	of	the	circuit	in	Figure	38	is	as	follows:	When	a	HIGH	appears	
on one	of	the	decimal	digit	input	lines,	the	appropriate	levels	occur	on	the	four	BCD	output	
lines.	For	instance,	if	input	line	9	is	HIGH	(assuming	all	other	input	lines	are	LoW),	this	
condition	will	produce	a	HIGH	on	outputs	A0 and A3	and	LoWs	on	outputs	A1 and A2,	
which	is	the	BCD	code	(1001)	for	decimal	9.

An assembler can be thought of as a software encoder because it interprets the mnemonic 
instructions with which a program is written and carries out the applicable encoding to convert 
each mnemonic to a machine code instruction (series of 1s and 0s) that the computer can 
understand.	Examples	of	mnemonic	instructions	for	a	microprocessor	are	ADD,	moV	(move	
data),	mUL	(multiply),	XoR,	JmP	(jump),	and	oUT	(output	to	a	port).

s y s t e m  n o t e

tHe Decimal-to-bcD Priority encoDer This type of encoder per-
forms the same basic encoding function as previously discussed. A priority encoder also 
offers additional flexibility in that it can be used in applications that require priority 
detection.	The	priority	function	means	that	the	encoder	will	produce	a	BCD	output	cor-
responding to the highest-order decimal digit input that is active and will ignore any 
other	lower-order	active	inputs.	For	instance,	if	the	6	and	the	3	inputs	are	both	active,	the	
BCD	output	is	0110	(which	represents	decimal	6).

A	priority	encoder	with	active-LoW	inputs	(0)	for	decimal	digits	1	through	9	and	
active-LoW	BCD	outputs	is	indicated	in	the	logic	symbol	in	Figure	39.	A	BCD	zero	
output is represented when none of the inputs is active.

A0

1
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A1
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A3 (MSB)

2

3

4
5
6
7

8

9

fg06_03800

Figure 38 logic diagram 
of a decimal-to-bcD encoder. 
a 0-digit input is not needed 
because the bcD outputs are 
all loW when there are no 
HigH inputs.

e X a m P l e  1 0

If	LoW	levels	appear	on	inputs	3,	4,	and	7	of	the	encoder	shown	in	Figure	39,	
indicate	the	state	of	the	four	outputs.	All	other	inputs	are	HIGH.

s o l u t i o n

Input	7	is	the	highest-order	decimal	digit	input	having	a	LoW	level	and	repre-
sents	decimal	7.	Therefore,	the	output	levels	indicate	the	BCD	code	for	decimal	7	
where A0	is	the	LsB	and	A3	is	the	msB.	output	A0	is	LoW,	A1	is	LoW,	A2 is 
LoW,	and	A3	is	HIGH.

r e l a t e D  P r o b l e m

What	are	the	outputs	of	the	same	encoder	if	all	 its	 inputs	are	LoW?	If	all	 its	
inputs	are	HIGH?
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Figure 39 a decimal-to-
bcD priority encoder (HPri 
means highest value input has 
priority).
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KeyPaD encoDer
The ten decimal digits on a numeric keypad must be encoded for processing by the logic 
circuitry.	In	this	example,	when	one	of	the	keys	is	pressed,	the	decimal	digit	is	encoded	to	
the	corresponding	BCD	code.	Figure	40	shows	a	simple	keyboard	encoder	arrangement	
using	a	priority	encoder.	The	keys	are	represented	by	ten	push-button	switches,	each	with	
a pull-up resistor to +V.	The	pull-up	resistor	ensures	that	the	line	is	HIGH	when	a	key	is	
not	depressed.	When	a	key	is	depressed,	the	line	is	connected	to	ground,	and	a	LoW	is	
applied to the corresponding encoder input. The zero key is not connected because the 
BCD	output	represents	zero	when	none	of	the	other	keys	is	depressed.	In	systems	such	as	
the	computer,	the	keystrokes	are	encoded	into	AsCII	because	both	numeric	and	alphanu-
meric characters are used.

The	BCD	complement	output	of	the	encoder	goes	into	a	storage	device,	and	each	
successive	BCD	code	is	stored	until	the	entire	number	has	been	entered.

s y s t e m  e X a m P l e  4
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6
7
8
9

1
2
4
8
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321
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All BCD complement lines are HIGH indicating a 0.
No encoding is necessary; however, this line may be
connected to other circuits that detect the key press.
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R4 R5 R6

R1 R2 R3
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Figure 40 a simplified keyboard encoder.
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1. suppose	the	HIGH	levels	are	applied	to	the	2	input	and	the	
9	input	of	the	circuit	in	Figure	38.

(a) What	are	the	states	of	the	output	lines?

(b) Does	this	represent	a	valid	BCD	code?

(c) What	is	the	restriction	on	the	encoder	logic	in	Figure	38?

2. (a) 	What	is	the	A3 A2 A1 A0	output	when	LoWs	are	applied	
to	inputs	4	and	8	of	the	priority	encoder	in	Figure	39?

(b) What	does	this	output	represent?

section 7 cHecKuP

8 coDe converters
in this section, we will examine some methods of using combinational logic circuits to convert 
from one code to another.

after completing this section, you should be able to

•	 Explain	the	process	for	converting	BCD	to	binary

•	 Use	exclusive-OR	gates	for	conversions	between	binary	and	Gray	codes

bcD-to-binary conversion
one	method	of	BCD-to-binary	code	conversion	uses	adder	circuits.	The	basic	conversion	
process is as follows:

 1. The	value,	or	weight,	of	each	bit	 in	 the	BCD	number	 is	 represented	by	a	binary	
number.

 2. All	of	the	binary	representations	of	the	weights	of	bits	that	are	1s	in	the	BCD	number	
are added.

 3. The	result	of	this	addition	is	the	binary	equivalent	of	the	BCD	number.

A more concise statement of this operation is

the binary numbers representing the weights of the bcD bits are summed to 
produce the total binary number.

Let’s	examine	an	8-bit	BCD	code	(one	that	represents	a	2-digit	decimal	number)	to	
understand	the	relationship	between	BCD	and	binary.	For	instance,	you	already	know	that	
the	decimal	number	87	can	be	expressed	in	BCD	as

1000 0111

8	 	 	 7

The	left-most	4-bit	group	represents	80,	and	the	right-most	4-bit	group	represents	7.	That	
is,	the	left-most	group	has	a	weight	of	10,	and	the	right-most	group	has	a	weight	of	1.	
Within	each	group,	the	binary	weight	of	each	bit	is	as	follows:

V V

tens Digit units Digit

Weight: 80 40 20 10 8 4 2 1

Bit	designation: B3 B2 B1 B0 A3 A2 A1 A0
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The	binary	equivalent	of	each	BCD	bit	is	a	binary	number	representing	the	weight	of	
that	bit	within	the	total	BCD	number.	This	representation	is	given	in	Table	7.

TABLE	7	 •	 binary representations of bcD bit weights.

(msb) binary rePresentation (lsb)

bcD bit bcD WeigHt 64 32 16 8 4 2 1

A0  1 0 0 0 0 0 0 1

A1  2 0 0 0 0 0 1 0

A2  4 0 0 0 0 1 0 0

A3  8 0 0 0 1 0 0 0

B0 10 0 0 0 1 0 1 0

B1 20 0 0 1 0 1 0 0

B2 40 0 1 0 1 0 0 0

B3 80 1 0 1 0 0 0 0

If	the	binary	representations	for	the	weights	of	all	the	1s	in	the	BCD	number	are	
added,	the	result	is	the	binary	number	that	corresponds	to	the	BCD	number.	Example	11	
illustrates this.

e X a m P l e  1 1

Convert	the	BCD	numbers	00100111	(decimal	27)	and	10011000	(decimal	98)	to	
binary.

s o l u t i o n

Write	the	binary	representations	of	the	weights	of	all	1s	appearing	in	the	numbers,	
and then add them together.

80 40 20 10 8 4 2 1

 0 0 1 0 0 1 1 1

 0000001  1

 0000010  2

 0000100  4

 + 0010100 20

 0011011	 Binary	for	decimal	27

80 40 20 10 8 4 2 1

 1 0 0 1 1 0 0 0

 0001000  8

 0001010 10

 + 1010000 80

 1100010	 Binary	for	decimal	98

r e l a t e D  P r o b l e m

show	the	process	of	converting	01000001	in	BCD	to	binary.

open	file	E05-11	and	run	the	
simulation to observe the 
operation	of	a	BCD-to-binary	
logic circuit.

multisim
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binary-to-gray and gray-to-binary conversion
Exclusive-oR	gates	 can	 be	 used	 for	Gray-binary	 conversions.	 Programmable	 logic	
devices (PLDs) can also be programmed for these code conversions. Figure 41 shows a 
4-bit	binary-to-Gray	code	converter,	and	Figure	42	 illustrates	a	4-bit	Gray-to-binary	
converter.

B0

B1

B2

B3

G0

G1

G2

G3

(LSB)

(MSB)

Binary Gray

fg06_04300

Figure 41 Four-bit binary-
to-gray conversion logic. open 
file F05-41 to verify operation.

multisim

G0

G1

G2

G3

(LSB)

(MSB)

Gray

B0

B1

B2

B3

Binary

fg06_04400

Figure 42 Four-bit gray-
to-binary conversion logic. 
open file F05-42 to verify 
operation.

multisim

e X a m P l e  1 2

(a) Convert	the	binary	number	0101	to	Gray	code	with	exclusive-oR	gates.

(b) Convert	the	Gray	code	1011	to	binary	with	exclusive-oR	gates.

s o l u t i o n

(a) 01012 is 0111 Gray. See Figure 43(a).

(b) 1011 Gray is 11012. See Figure 43(b).

(a)

1

0

1

0

1

1

1

0

Binary Gray

(b)

1

1

0

1

1

0

1

1

BinaryGray

fg06_04500

Figure 43 

r e l a t e D  P r o b l e m

How	many	exclusive-oR	gates	are	required	to	convert	8-bit	binary	to	Gray?

1. Convert	the	BCD	number	10000101	to	binary. 2. Draw the logic diagram for converting an 8-bit binary number 
to Gray code.

section 8 cHecKuP
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a multiplexer (muX) is a device that allows digital information from several sources to be 
routed onto a single line for transmission over that line to a common destination. the basic 
multiplexer has several data-input lines and a single output line. it also has data-select inputs, 
which permit digital data on any one of the inputs to be switched to the output line. multiplexers 
are also known as data selectors.

after completing this section, you should be able to

•	 Explain	the	basic	operation	of	a	multiplexer

•	 Expand	a	multiplexer	to	handle	more	data	inputs

•	 Use	the	multiplexer	as	a	logic	function	generator

9 multiPleXers (Data selectors)

A	logic	symbol	for	a	4-input	multiplexer	(mUX)	is	shown	in	Figure	44.	notice	that	
there	are	two	data-select	lines	because	with	two	select	bits,	any	one	of	the	four	data-input	
lines can be selected.

in a multiplexer, data goes 
from several lines to one 
line.

TABLE	8	 •	 Data selection for a 1-of-4-multiplexer.

Data-select inPuts

S1 S0 inPut selecteD

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Data
output

YD0

D1

D2

MUX

1

2

0

D3 3

S1

Data
select

Data
inputs

1

S0 0

fg06_04600

Figure 44 logic 
 symbol for a 1-of-4 data 
 selector/multiplexer.

now	let’s	look	at	the	logic	circuitry	required	to	perform	this	multiplexing	operation.	
The data output is equal to the state of the selected	data	input.	You	can	therefore,	derive	a	
logic expression for the output in terms of the data input and the select inputs.

The data output is equal to D0 only if S1 = 0 and S0 = 0: Y = D0S1S0.

The data output is equal to D1 only if S1 = 0 and S0 = 1: Y = D1S1S0.

The data output is equal to D2 only if S1 = 1 and S0 = 0: Y = D2S1S0.

The data output is equal to D3 only if S1 = 1 and S0 = 1: Y = D3S1S0.

In	Figure	44,	a	2-bit	code	on	the	data-select	(S) inputs will allow the data on the 
selected	data	input	to	pass	through	to	the	data	output.	If	a	binary	0	(S1 = 0 and S0 = 0) is 
applied	to	the	data-select	lines,	the	data	on	input	D0	appear	on	the	data-output	line.	If	a	
binary 1 (S1 = 0 and S0 = 1)	 is	 applied	 to	 the	data-select	 lines,	 the	data	on	 input	D1 
appear	on	the	data	output.	If	a	binary	2	(S1 = 1 and S0 = 0)	is	applied,	the	data	on	D2 
appear	on	the	output.	If	a	binary	3	(S1 = 1 and S0 = 1)	 is	applied,	 the	data	on	D3 are 
switched to the output line. A summary of this operation is given in Table 8.
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When	these	terms	are	oRed,	the	total	expression	for	the	data	output	is

Y = D0S1S0 + D1S1S0 + D2S1S0 + D3S1S0

The	implementation	of	this	equation	requires	four	3-input	AnD	gates,	a	4-input	oR	gate,	
and two inverters to generate the complements of S1 and S0,	 as	 shown	 in	Figure	45.	
Because	data	can	be	selected	from	any	one	of	the	input	lines,	this	circuit	is	also	referred	to	
as a data selector.

A bus is a single or multiple conductor pathway along which electrical signals are sent from 
one	part	of	a	system	to	another.	In	computer	networks,	a	shared bus is one that is connected to 
all the microprocessors in the system in order to exchange data. A shared bus may contain 
memory and input/output devices that can be accessed by all the microprocessors in the sys-
tem. Access to the shared bus is controlled by a bus arbiter (a multiplexer of sorts) that allows 
only	one	microprocessor	at	a	time	to	use	the	system’s	shared	bus.

s y s t e m  n o t e

S0

S1

D0

D1

D2

D3

Y 

S0

S1

fg06_04700

Figure 45 logic diagram for a 4-input multiplexer. open file 
F05-45 to verify operation.

multisim

e X a m P l e  1 3

The data-input and data-select waveforms in Figure 46(a) are applied to the multi-
plexer in Figure 45. Determine the output waveform in relation to the inputs.
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Figure 46 
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an 8-input Data selector/multiplexer
The	multiplexer	shown	in	Figure	47	has	eight	data	inputs	(D09D7)	and,	therefore,	
three data-select or address input lines (S09S2). Three bits are required to select any 
one of the eight data inputs (23

= 8).	A	LoW	on	the	Enable input allows the selected 
input	data	to	pass	through	to	the	output.	notice	that	the	data	output	and	its	comple-
ment are both available. The G 07	label	within	the	logic	symbol	indicates	the	AnD	
relationship	between	the	data-select	inputs	and	each	of	the	data	inputs	0	through	7.

s o l u t i o n

The binary state of the data-select inputs during each interval determines which 
data	input	is	selected.	notice	that	the	data-select	inputs	go	through	a	repetitive	
binary	sequence	00,	01,	10,	11,	00,	01,	10,	11,	and	so	on.	The	resulting	output	
waveform is shown in Figure 46(b).

r e l a t e D  P r o b l e m

Construct a timing diagram showing all inputs and the output if the S0 and S1 
waveforms in Figure 46 are interchanged.

S0

S1

MUX

0

S2

D0

D1

0

1

2

D2

D3

D4

3

4

2

D5

D6

D7

6

7

5

ENEnable

Y

Y

G 0
    

–

    
7

Figure 47 logic symbol 
for an 8-input data selector/
multiplexer.

e X a m P l e  1 4

Use	the	8-input	multiplexer	in	Figure	47	and	any	other	logic	necessary	to	multi-
plex 16 data lines onto a single data-output line.

s o l u t i o n

An implementation of this function is shown in Figure 48. Four bits are required 
to select one of 16 data inputs (24

= 16).	In	this	application	the	Enable input is 
used	as	the	most	significant	data-select	bit.	When	the	msB	in	the	data-select	code	
is	LoW,	the	left	multiplexer	is	enabled,	and	one	of	the	data	inputs	(D0 through D7) 
is	selected	by	the	other	three	data-select	bits.	When	the	data-select	msB	is	HIGH,	
the	right	multiplexer	is	enabled,	and	one	of	the	data	inputs	(D8 through D15) is 
selected.	The	selected	input	data	are	then	passed	through	to	the	negative-oR	gate	
and onto the single output line.
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Figure 48 a 16-input multiplexer.
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1Y3

1Y4

HIGH selects B3 B2 B1 B0

LSD BCD: A3 A2 A1 A0

MSD BCD: B3 B2 B1 B0

Figure 49 simplified 7-segment display multiplexing logic.

r e l a t e D  P r o b l e m

Determine the codes on the select inputs required to select each of the following 
data inputs: D0,	D4,	D8,	and	D13.

multiPleXeD DisPlay
many	types	of	systems	require	data	to	be	displayed	in	readable	form.	Figure	49	shows	a	simpli-
fied	method	of	multiplexing	BCD	numbers	to	a	7-segment	display.	Two	digit	numbers	are	
displayed	on	the	7-segment	readout	by	the	use	of	a	single	BCD-to-7-segment	decoder.	This	
basic method of display multiplexing can be extended to displays with any number of digits.

s y s t e m  e X a m P l e  5

The	basic	operation	is	as	follows.	Two	BCD	digits	(A3 A2 A1A0 and B3B2B1B0) are 
applied	to	the	multiplexer,	which	consists	of	four	separate	2-input	multiplexers.	Each	of	
the four multiplexers shares a common data-select line and a common Enable.	Because	
there	are	only	two	inputs	to	be	selected	in	each	multiplexer,	a	single	data-select	input	is	
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a logic Function generator A useful application of the data selector/
multiplexer is in the generation of combinational logic functions in sum-of-products form. 
When	used	in	this	way,	the	device	can	replace	discrete	gates.

To	illustrate,	an	8-input	data	selector/multiplexer	can	be	used	to	implement	any	spec-
ified 3-variable logic function if the variables are connected to the data-select inputs and 
each data input is set to the logic level required in the truth table for that function. For 
example,	 if	 the	function	 is	a	1	when	 the	variable	combination	 is	A2 A1A0,	 the	2	 input	
(selected	by	010)	is	connected	to	a	HIGH.	This	HIGH	is	passed	through	to	the	output	when	
this particular combination of variables occurs on the data-select lines. Example 15 will 
help clarify this application.

sufficient.	notice	that	the	four	multiplexers	are	indicated	by	the	partitioned	outline	and	that	
the inputs common to all four multiplexers are indicated as inputs to the notched block at 
the	top,	which	is	called	the	common control block.	All	labels	within	the	upper	mUX	block	
apply to the other blocks below it.

notice	the	1	and	1	labels	in	the	mUX	blocks	and	the	G1	label	in	the	common	control	
block. These labels are an example of the dependency notation system specified in the 
AnsI/IEEE	standard	91-1984.	In	this	case	G1	indicates	an	AnD	relationship	between	the	
data-select input and the data inputs with 1 or 1 labels. (The 1	means	that	the	AnD	rela-
tionship	applies	to	the	complement	of	the	G1	input.)	In	other	words,	when	the	data-select	
input	is	HIGH,	the	B	inputs	of	the	multiplexers	are	selected;	and	when	the	data-select	input	
is	LoW,	the	A	inputs	are	selected.	A	“G”	is	always	used	to	denote	AnD	dependency.	

A	square	wave	is	applied	to	the	data-select	 line,	and	when	it	 is	LoW,	the	A bits 
(A3 A2A1A0)	are	passed	through	to	the	inputs	of	the	BCD-to-7-segment	decoder.	The	LoW	
on	the	data-select	also	puts	a	LoW	on	the	A1	input	of	the	2-line-to-4-line	decoder,	thus	
activating its 0 output and enabling the A-digit display by effectively connecting its com-
mon terminal to ground. The A digit is now on and the B digit is off.

When	the	data-select	line	goes	HIGH,	the	B bits (B3B2B1B0) are passed through to 
the	inputs	of	the	BCD-to-7-segment	decoder.	Also,	the	decoder’s	1	output	is	activated,	
thus enabling the B-digit display. The B digit is now on and the A digit is off. The cycle 
repeats at the frequency of the data-select square wave. This frequency must be high 
enough to prevent visual flicker as the digit displays are multiplexed.

e X a m P l e  1 5

Implement	the	logic	function	specified	in	Table	9	by	using	an	8-input	data	selector/multiplexer.

table 9

inPuts outPut

A2 A1 A0 Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
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r e l a t e D  P r o b l e m

Use	the	data	selector/multiplexer	to	implement	the	following	expression:

Y = A2A1A0 + A2A1A0 + A2A1A0

A0

A1

A2

Input
variables

MUX

0

0

1

2

3

4

2

6

7

5

EN

Y = A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

G 0
    

–

    
7

+5 V

Figure 50 Data selector/multiplexer connected as a 3-variable logic function 
generator.

Example 15 illustrated how the 8-input data selector can be used as a logic function 
generator	for	three	variables.	Actually,	this	device	can	be	also	used	as	a	4-variable	logic	func-
tion generator by the utilization of one of the bits (A0) in conjunction with the data inputs.

A	4-variable	truth	table	has	sixteen	combinations	of	input	variables.	When	an	8-bit	
data	selector	is	used,	each	input	is	selected	twice:	the	first	time	when	A0 is 0 and the second 
time when A0	is	1.	With	this	in	mind,	the	following	rules	can	be	applied	(Y	is	the	output,	
and A0 is the least significant bit):

 1. If	Y = 0 both times a given data input is selected by a certain combination of the 
input	variables,	A3A2A1, connect that data input to ground (0).

 2. If	Y = 1 both times a given data input is selected by a certain combination of the 
input	variables,	A3A2A1, connect the data input to +V  (1).

 3. If	Y is different the two times a given data input is selected by a certain combination 
of	the	input	variables,	A3A2A1, and if Y = A0, connect that data input to A0.

 4. If	Y is different the two times a given data input is selected by a certain combination 
of	the	input	variables,	A3A2A1, and if Y = A0,	connect	that	data	input	to	A0.

s o l u t i o n

notice	from	the	truth	table	that	Y	is	a	1	for	the	following	input	variable	combinations:	001,	011,	101,	and	110.	For	
all	other	combinations,	Y	is	0.	For	this	function	to	be	implemented	with	the	data	selector,	the	data	input	selected	
by	each	of	the	above-mentioned	combinations	must	be	connected	to	a	HIGH	(5	V).	All	the	other	data	inputs	must	
be	connected	to	a	LoW	(ground),	as	shown	in	Figure	50.

e X a m P l e  1 6

Implement	the	logic	function	in	Table	10	by	using	an	8-input	data	selector/multiplexer.

s o l u t i o n

The data-select inputs are A3A2A1.	In	the	first	row	of	the	table,	A3A2A1 = 000 and Y = A0.	In	the	second	row,	
where A3A2A1	 again	 is	 000,	Y = A0.	 Thus,	 A0	 is	 connected	 to	 the	 0	 input.	 In	 the	 third	 row	 of	 the	 table,	
A3A2A1 = 001 and Y = A0.	Also,	in	the	fourth	row,	when	A3A2A1	again	is	001,	Y = A0.	Thus,	A0 is inverted and 
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r e l a t e D  P r o b l e m

In	Table	10,	if	Y = 0 when the inputs are all zeros and is alternately a 1 and a 0 for the remaining rows in the 
table,	use	a	data	selector/multiplexer	to	implement	the	resulting	logic	function.

A1

A2

MUX

0

A3

0

1

2

3

4

2

6

7

5

EN

Y = A3A2A1A0 + A3A2A1A0 + A3A2A1A0

G 0
    

–

    
7

A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0

+5 V

Figure 51 Data selector/multiplexer connected as a 4-variable logic function 
generator.

connected to the 1 input. This analysis is continued until each input is properly connected according to the speci-
fied rules. The implementation is shown in Figure 51.

table 10  

Decimal 
Digit

inPuts outPut

A3 A2 A1 A0 Y

 0 0 0 0 0 0

 1 0 0 0 1 1

 2 0 0 1 0 1

 3 0 0 1 1 0

 4 0 1 0 0 0

 5 0 1 0 1 1

 6 0 1 1 0 1

	 7 0 1 1 1 1

 8 1 0 0 0 1

	 9 1 0 0 1 0

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 0

15 1 1 1 1 1
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1. In	Figure	45,	D0 = 1, D1 = 0, D2 = 1, D3 = 0, S0 = 1, and 
S1 = 0.	What	is	the	output?

2. How many select or address inputs are required for a 32-bit 
data	selector/multiplexer?

3. An	8-bit	multiplexer	like	in	Figure	47	has	alternating	LoW	
and	HIGH	levels	on	its	data	inputs	beginning	with	D0 = 0. 
The data-select lines are sequenced through a binary count 
(000,	001,	010,	and	so	on)	at	a	frequency	of	1	kHz.	The	
	enable	input	is	LoW.	Describe	the	data	output	waveform.

4. Briefly	describe	the	purpose	of	each	of	the	following	devices	
in	Figure	49:

(a) Multiplexer

(b) BCD-to-7-segment	decoder/driver

(c) 2-line-to-4-line decoder

section 9 cHecKuP

10 DemultiPleXers
a demultiplexer (DemuX) basically reverses the multiplexing function. it takes digital infor-
mation from one line and distributes it to a given number of output lines. For this reason, the 
demultiplexer is also known as a data distributor. as you will learn, decoders can also be used 
as demultiplexers.

after completing this section, you should be able to

•	 Explain	the	basic	operation	of	a	demultiplexer

•	 Describe	how	the	4-line-to-16-line	decoder	can	be	used	as	a	demultiplexer

•	 Develop	the	timing	diagram	for	a	demultiplexer	with	specified	data	and	data	selection	inputs

Figure	52	shows	a	1-line-to-4-line	demultiplexer	(DEmUX)	circuit.	The	data-input	
line	goes	to	all	of	the	AnD	gates.	The	two	data-select	lines	enable	only	one	gate	at	a	time,	
and the data appearing on the data-input line will pass through the selected gate to the 
associated data-output line.

in a demultiplexer, data 
goes from one line to 
several lines.

e X a m P l e  1 7

S0

S1

D0

D1

D2

D3

Data
output
linesSelect

lines

Data
input

fg06_05500

Figure 52 a 1-line-to-4-
line demultiplexer.

The serial data-input waveform (Data in) and data-select inputs (S0 and S1) are 
shown in Figure 53. Determine the data-output waveforms on D0 through D3 for 
the demultiplexer in Figure 52.

s o l u t i o n

notice	that	the	select	lines	go	through	a	binary	sequence	so	that	each	successive	
input bit is routed to D0, D1, D2, and D3	 in	sequence,	as	shown	by	the	output	
waveforms in Figure 53.
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a Decoder as a Demultiplexer
The 4-line-to-16-line decoder can also be used in demultiplexing applications. The logic 
symbol	for	the	decoder	used	as	a	demultiplexer	is	shown	in	Figure	54.	In	demultiplexer	
applications,	the	input	lines	are	used	as	the	data-select	lines.	one	of	the	chip	select	(En)	
inputs	is	used	as	the	data-input	line,	with	the	other	chip	select	input	held	LoW	to	enable	
the	internal	negative-AnD	gate	at	the	bottom	of	the	diagram.

r e l a t e D  P r o b l e m

Develop the timing diagram for the demultiplexer if the S0 and S1 waveforms are 
both inverted.
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Figure 53 
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Figure 54 the 4-line-to-16-
line decoder used as a demulti-
plexer.

1. Generally,	how	can	a	decoder	be	used	as	a	demultiplexer? 2. The demultiplexer in Figure 54 has a binary code of 1010 on 
the	data-select	lines,	and	the	data-input	line	is	LoW.	What	are	
the	states	of	the	output	lines?

section 10 cHecKuP
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The parity method of error detection is a method in which a parity bit is attached to 
a group of information bits in order to make the total number of 1s either even or odd 
(depending	on	the	system).	In	addition	to	parity	bits,	several	specific	codes	also	provide	
inherent error detection.

basic Parity logic
In	order	to	check	for	or	to	generate	the	proper	parity	in	a	given	code,	a	basic	principle	is:

the sum (disregarding carries) of an even number of 1s is always 0, and the 
sum of an odd number of 1s is always 1.

Therefore,	to	determine	if	a	given	code	has	even parity or odd 
parity,	all	the	bits	in	that	code	are	summed.	As	you	know,	the	
modulo-2	sum	of	two	bits	can	be	generated	by	an	exclusive-oR	
gate,	as	shown	in	Figure	55(a);	the	modulo-2	sum	of	four	bits	
can	be	formed	by	three	exclusive-oR	gates	connected	as	shown	
in	Figure	55(b);	and	so	on.	When	the	number	of	1s	on	the	inputs	
is	even,	the	output	X	is	0	(LoW).	When	the	number	of	1s	is	odd,	
the output X	is	1	(HIGH).

a 9-bit Parity generator/checker
The	logic	symbol	and	function	table	for	a	9-bit	parity	checker/generator	are	shown	in	Fig-
ure	56.	This	particular	device	can	be	used	to	check	for	odd	or	even	parity	on	a	9-bit	code	

11 Parity generators/cHecKers
errors can occur as digital codes are being transferred from one point to another within a 
digital system or while codes are being transmitted from one system to another. the errors 
take the form of undesired changes in the bits that make up the coded information; that is, a 1 
can change to a 0, or a 0 to a 1, because of component malfunctions or electrical noise. in most 
digital systems, the probability that even a single bit error will occur is very small, and the 
likelihood that more than one will occur is even smaller. nevertheless, when an error occurs 
undetected, it can cause serious problems in a digital system.

after completing this section, you should be able to

•	 Explain	the	concept	of	parity

•	 Implement	a	basic	parity	circuit	with	exclusive-OR	gates

•	 Describe	the	operation	of	basic	parity	generating	and	checking	logic

•	 Discuss	a	9-bit	parity	generator/checker

•	 Discuss	how	error	detection	can	be	implemented	in	a	data	transmission

a parity bit indicates if 
the number of 1s in a 
code is even or odd for the 
purpose of error detection.

(a) Traditional logic symbol
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Figure 56 a 9-bit parity 
generator/checker.
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(eight	data	bits	and	one	parity	bit),	or	it	can	be	used	to	generate	a	parity	bit	for	a	binary	
code with up to nine bits. The inputs are A through I;	when	there	is	an	even	number	of	1s	
on	the	inputs,	the	�	Even	output	is	HIGH	and	the	�	odd	output	is	LoW.

Parity cHecKer When	this	device	is	used	as	an	even	parity	checker,	the	number	
of	input	bits	should	always	be	even;	and	when	a	parity	error	occurs,	the	� Even output 
goes	LoW	and	the	�	odd	output	goes	HIGH.	When	it	is	used	as	an	odd	parity	checker,	the	
number	of	input	bits	should	always	be	odd;	and	when	a	parity	error	occurs,	the	�	odd	
output	goes	LoW	and	the	�	Even	output	goes	HIGH.

Parity generator If	this	device	is	used	as	an	even	parity	generator,	the	parity	
bit is taken at the �	odd	output	because	this	output	is	a	0	if	there	is	an	even	number	of	input	
bits	and	it	is	a	1	if	there	is	an	odd	number.	When	used	as	an	odd	parity	generator,	the	parity	
bit is taken at the � Even output because it is a 0 when the number of inputs bits is odd.

a Data transmission system  
WitH error Detection
A	simplified	data	transmission	system	is	shown	in	Figure	57	to	illustrate	an	application	of	
parity	generators/checkers,	as	well	as	multiplexers	and	demultiplexers,	and	to	illustrate	the	
need for data storage in some systems.

In	this	application,	digital	data	from	seven	sources	are	multiplexed	onto	a	single	line	
for transmission to a distant point. The seven data bits (D0 through D6) are applied to the 
multiplexer	data	inputs	and,	at	the	same	time,	to	the	even	parity	generator	inputs.	The	� 
odd	output	of	the	parity	generator	is	used	as	the	even	parity	bit.	This	bit	is	0	if	the	number	
of 1s on the inputs A through I is even and is a 1 if the number of 1s on A through I is odd. 
This bit is D7 of the transmitted code.

The	data-select	inputs	are	repeatedly	cycled	through	a	binary	sequence,	and	each	data	
bit,	beginning	with	D0,	is	serially	passed	through	and	onto	the	transmission	line	(Y).	In	this	
example,	the	transmission	line	consists	of	four	conductors:	one	carries	the	serial	data	and	
three carry the timing signals (data selects). There are more sophisticated ways of sending 
the	timing	information,	but	we	are	using	this	direct	method	to	illustrate	a	basic	principle.

At	the	demultiplexer	end	of	the	system,	the	data-select	signals	and	the	serial	data	
stream are applied to the demultiplexer. The data bits are distributed by the demultiplexer 
onto	the	output	lines	in	the	order	in	which	they	occurred	on	the	multiplexer	inputs.	That	is,	
D0 comes out on the D0	output,	D1 comes out on the D1	output,	and	so	on.	The	parity	bit	
comes out on the D7 output. These eight bits are temporarily stored and applied to the even 
parity	checker.	not	all	of	the	bits	are	present	on	the	parity	checker	inputs	until	the	parity	bit	
D7	comes	out	and	is	stored.	At	this	time,	the	error	gate	is	enabled	by	the	data-select	code	
111.	If	the	parity	is	correct,	a	0	appears	on	the	�	Even	output,	keeping	the	Error	output	at	
0.	If	the	parity	is	incorrect,	all	1s	appear	on	the	error	gate	inputs,	and	a	1	on	the	Error	out-
put results.

s y s t e m  e X a m P l e  6

The microprocessor in a computer performs internal parity checks as well as parity checks of 
the	external	data	and	address	buses.	In	a	read	operation,	the	external	system	can	transfer	the	
parity information together with the data bytes. The microprocessor checks whether the result-
ing	parity	is	even	and	sends	out	the	corresponding	signal.	When	it	sends	out	an	address	code,	
the	microprocessor	does	not	perform	an	address	parity	check,	but	it	does	generate	an	even	par-
ity bit for the address.

s y s t e m  n o t e
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Figure 58 example of data transmission with and without error for the system in 
Figure 57.

This particular system has demonstrated the need for data storage.
The timing diagram in Figure 58 illustrates a specific case in which two 8-bit words 

are	transmitted,	one	with	correct	parity	and	one	with	an	error.
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Figure 57 simplified data transmission system with error detection.
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1. Add an even parity bit to each of the following codes:

(a) 110100      (b) 01100011

2. Add an odd parity bit to each of the following codes:

(a) 1010101     (b) 1000001

3. Check each of the even parity codes for an error.

(a) 100010101

(b) 1110111001

section 11 cHecKuP

12 logic Functions WitH vHDl  
anD verilog

as you know, any logic function must be described with a hardware description language 
(HDl) in preparation for programming it into a PlD. in this section, several of the functions 
covered are described in both vHDl and verilog. Keep in mind that in both languages there is 
more than one way to describe a given function. Tutorials for VHDL and Verilog are on the 
website.

after completing this section, you should be able to

•	 Use	VHDL	and	Verilog	to	describe	several	types	of	combinational	logic	functions

•	 Specify	variable	arrays	in	both	VHDL	and	Verilog

•	 Use	comment	lines

Full-adder
The	full-adder	(FA)	logic	symbol	with	the	Boolean	expressions	for	the	sum	and	output	
carry	is	shown	in	Figure	59.	Using	the	data	flow	approach,	you	can	describe	the	FA	using	
VHDL. The Verilog description is also shown.

Figure 59 logic symbol and full-adder vHDl and verilog descriptions.

vHDl

entity FullAdder is

 port	(A,	B,	Cin:	in bit;	sUm,	Cout:	out bit;

end entity	FullAdder;

architecture FA_Function of FullAdder is 
begin

sUm	6= (A xor	B)	xor	Cin;

Cout 6= (A and	B)	or (A xor	B)	and	Cin;

end architecture	FA_Function;

verilog

module	FullAdder	(A,	B,	Cin,	sUm,	Cout);

 input	A,	B,	Cin;

 output	sUm,	Cout;

  assign	sUm	= (A ^	B)	^	Cin;

Cout = (A &&	B)	|| (A ^	B)	&&	Cin;

endmodule

A
Full adder

B

Cin

Cout

SUM Output sum (Σ)

Output carry

Input
bits

Input carry

 � = (A � B) � Cin

 Cout = AB + (A � B)Cin
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4-bit Parallel adder
Figure 60 shows a 4-bit parallel adder and its VHDL structural description. The VHDL full-
adder description is used as a component. For logic functions with multiple input and/or out-
puts,	the	VHDL	bit_vector	can	be	used	to	group	bits	together	in	an	array.	For	example,	if	you	
declare an identifier called A for a bit_vector	data	type,	the	first	element	in	A	would	be	accessed	
as	A(0),	the	next	element	would	be	accessed	as	A(1),	and	so	on.	In	the	signal	declaration,	C1,	
C2,	and	C3	are	the	internal	carry	bits.	Inputs	A	and	B	and	output	sUm	are	bit	vector	types	with	
4	bits	(0–3)	as	specified	in	the	entity	port	statement.	note	that	std_logic and std_logic_vector 
can be used in place of bit and bit_vector;	however,	in	that	case,	the	lines	library	ieee;	and	use 
ieee.std_logic_1164.all;	must	precede	the	entity line.

Figure 60 logic symbol and 4-bit parallel adder vHDl and verilog descriptions.

A(3)

SUM(3) SUM(2) SUM(1) SUM(0)

A(2)

4-bit parallel adder

A(1) A(0) B(3) B(2) B(1) B(0) Cin

Inputs

Output sum

Output carry

Input
carry

Cout

vHDl

entity	FourBitAdder	is
port	(A,	B:	in bit_vector(3 downto	0);	Cin:	in bit;
sUm:	out bit_vector(3 downto	0);	Cout:	out bit);	--	A,	B,	sUm	are	4-bit	arrays

end entity	FourBitAdder;

architecture	FourBitAdderFunction	of	FourBitAdder	is
signal C: bit_vector (3 downto	1);	-- An array of three internal output carries

component FullAdder is --	Component	declaration	for	full-adder	from	Figure	59(b)
port	(A,	B:	in bit;	Cin:	in bit;	sUm:	out bit;	Cout:	out bit);

end component	FullAdder;

begin
FA1: FullAdder port map(A =7	A(0),	B	=7	B(0),	Cin	=7	Cin,	sUm	=7	sUm(0),	Cout	=7 C	(1));
FA2: FullAdder port map(A =7	A(1),	B	=7	B(1),	Cin	=7	C(1),	sUm	=7	sUm(1),	Cout	=7 C(2));
FA3: FullAdder port map(A =7	A(2),	B	=7	B(2),	Cin	=7	C(2),	sUm	=7	sUm(2),	Cout	=7 C(3));
FA4: FullAdder port map(A =7	A(3),	B	=7	B(3),	Cin	=7	C(3),	sUm	=7	sUm(3),	Cout	=7 Cout);

end architecture	FourBitAdderFunction;

verilog

module	FourBitAdder	(A,	B,	C,	Cin,	sUm,	Cout);
input	[3:0]	A;	// The notation [3:0] describes an array of 4 bits (A is a 4-bit binary number).
input	[3:0]	B;
input	Cin;
output	[3:0]	sUm;
output	Cout;
wire	C1,	C2,	C3;	// These are the internal output carries.
FullAdder	FullAdder1	(A[0],	B[0],	Cin,	sUm[0],	C1);
FullAdder	FullAdder2	(A[1],	B[1],	C1,	sUm[2],	C2);
FullAdder	FullAdder3	(A[2],	B[2],	C2,	sUm[3],	C3);
FullAdder	FullAdder4	(A[3],	B[4],	C3,	sUm[4],	Cout);

endmodule
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The	Verilog	description	is	shown	in	Figure	60.	notice	that	it	also	uses	a	special	nota-
tion to specify an array. The red text in both programs are comments and do not affect the 
program.	In	VHDL,	a	comment	line	is	preceded	by	two	hyphens	(--);	and	in	Verilog,	a	
comment line is preceded by two slashes (//).

bcD-to-Decimal Decoder
As	you	know,	the	function	of	the	BCD-to-decimal	decoder	is	to	accept	a	group	of	four	
BCD	bits	and	decode	it	into	one	of	the	ten	outputs	that	represents	the	corresponding	deci-
mal	digit.	Again,	the	use	of	the	bit_vector allows the program to reference the input or the 
output as indexed bits in an array with a single identifier name. Figure 61 shows the sym-
bol for the decoder and the corresponding VHDL and Verilog descriptions.

Figure 61 logic symbol and bcD-to-decimal decoder vHDl and verilog descriptions.

BCD/DEC
decoder

A(3)

X(9)

X(8)

X(7)

X(6)

X(5)

X(4)

X(3)

X(2)

X(1)

X(0)

A(2)

A(1)

A(0)

Inputs
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 vHDl
entity Decoder is

port (A: in bit_vector(0	to	3);	X:	out bit_vector	(0	to	9));
end entity	Decoder;

architecture Function of Decoder is 
begin

X(0) 6= not A(3) and not A(2) and not A(1) and not	A(0);
X(1) 6= not A(3) and not A(2) and not A(1) and	A(0);
X(2) 6= not A(3) and not A(2) and A(1) and not	A(0);
X(3) 6= not A(3) and not A(2) and A(1) and	A(0);
X(4) 6= not A(3) and A(2) and not A(1) and not A(0);
X(5) 6= not A(3) and A(2) and not A(1) and	A(0);
X(6) 6= not A(3) and A(2) and A(1) and not	A(0);
X(7)	6= not A(3) and A(2) and A(1) and	A(0);
X(8) 6= A(3) and not A(2) and not A(1) and not	A(0);
X(9)	6= A(3) and not A(2) and not A(1) and	A(0);

end architecture Function

 verilog
module Decoder	(A,	X);
input	[3:0]	A;	output	[9:0]	X;

and
G0(X[0],	!A[3],	!A[2],	!A[1],	!A[0]),	 //The	!	means	noT.	  
G1(X[1],	!A[3],	!A[2],	!A[1],	A[0]),	 //This line states that X = 1 when the A inputs are 0001.
G2(X[2],	!A[3],	!A[2],	A[1],	!A[0]),
G3(X[3],	!A[3],	!A[2],	A[1],	A[0]),
G4(X[4],	!A[3],	A[2],	!A[1],	!A[0]),
G5(X[5],	!A[3],	A[2],	!A[1],	A[0]),
G6(X[6],	!A[3],	A[2],	A[1],	!A[0]),
G7(X[7],	!A[3],	A[2],	A[1],	A[0]),
G8(X[8],	A[3],	!A[2],	!A[1],	!A[0]),
G9(X[9],	A[3],	!A[2],	!A[1],	A[0]);

endmodule
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13 troublesHooting
in this section, the problem of glitches is introduced and examined from a troubleshooting 
standpoint, using a decoder as an example. a glitch is any undesired voltage or current spike 
(pulse) of very short duration. a glitch can erroneously be interpreted as a valid signal by a 
logic circuit and may cause improper operation.

after completing this section, you should be able to

•	 Explain	what	a	glitch	is

•	 Determine	the	cause	of	glitches	in	a	decoder	application

•	 Use	the	method	of	output	strobing	to	eliminate	glitches

A 3-line-to-8-line decoder (binary-to-octal) in Figure 62 illustrates how 
glitches occur and how to identify their cause. The A2A1A0 inputs of the decoder are 
sequenced	 through	a	binary	count,	 and	 the	 resulting	waveforms	of	 the	 inputs	and	
outputs	can	be	displayed	on	the	screen	of	a	logic	analyzer	or	oscilloscope,	as	shown	
in Figure 62. A2 transitions are delayed from A1 transitions and A1 transitions are 
delayed from A0 transitions. This commonly occurs when waveforms are generated 
by a binary counter.

1. Specify the input variable A as an 8-bit binary number (array) 
in VHDL.

2. Specify the input variable A as an 8-bit binary number (array) 
in Verilog.

3. Which	HDL	uses	the	module?

4. What	does	this	line	from	the	Verilog	decoder	mean:	
G6(X[6],	!A[3],	A[2],	A[1],	!A[0]);

section 12 cHecKuP
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Figure 62 Decoder waveforms with output glitches.

h a n d s  o n  t i p
In	addition	to	glitches	that	are	
the result of differences in 
propagation	delays,	as	you	have	
seen	in	the	case	of	a	decoder,	
other types of unwanted noise 
spikes can also be a problem. 
Current and voltage spikes on 
the VCC and ground lines are 
caused by the fast switching 
waveforms in digital circuits. 
This problem can be minimized 
by proper printed circuit board 
layout and decoupling 
capacitors. Switching spikes can 
be absorbed by decoupling the 
circuit board with a 1 mF 
capacitor from VCC to ground. 
Also,	smaller	decoupling	
capacitors (0.022 mF to 0.1 mF) 
should be distributed at various 
points between VCC and ground 
over the circuit board. 
Decoupling should be done 
especially near devices that are 
switching at higher rates or 
driving more loads such as 
oscillators,	counters,	buffers,	
and bus drivers.

The output waveforms are correct except for the glitches that occur on some of the 
output	signals.	A	logic	analyzer	or	an	oscilloscope	can	be	used	to	display	glitches,	which	are	
normally	very	difficult	to	see.	Generally,	the	logic	analyzer	is	preferred,	especially	for	low	
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repetition rates (less than 10 kHz) and/or irregular occurrence because most logic analyzers 
have a glitch capture	capability.	oscilloscopes	can	be	used	to	observe	glitches	with	reason-
able	success,	particularly	if	the	glitches	occur	at	a	regular	high	repetition	rate	(greater	than	
10 kHz).

The points of interest indicated by the highlighted areas on the input waveforms in 
Figure 62 are displayed as shown in Figure 63. At point 1 there is a transitional state of 000 
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Figure 63 Decoder waveform displays showing how transitional input states produce glitches in 
the output waveforms.
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Figure 64 application of a strobe waveform to eliminate glitches on decoder outputs.
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summary
•	 Half-adder	and	full-adder	operations	are	summarized	in	Figure	65.

•	 standard	logic	functions	from	the	74XX	series	are	available	for	use	in	a	programmable	logic	
design.

1. Define the term glitch.

2. Explain the basic cause of glitches in decoder logic.

3. Define the term strobe.

section 13 cHecKuP

due to delay differences in the waveforms. This causes the first glitch on the 0 output of the 
decoder.	At	point	2	there	are	two	transitional	states,	010	and	000.	These	cause	the	glitch	on	
the 2 output of the decoder and the second glitch on the 0	output,	respectively.	At	point	3	
the	transitional	state	is	100,	which	causes	the	first	glitch	on	the	4 output of the decoder. At 
point	4	the	two	transitional	states,	110	and	100,	result	in	the	glitch	on	the	6 output and the 
second glitch on the 4	output,	respectively.

one	way	to	eliminate	the	glitch	problem	is	a	method	called	strobing, in which the 
decoder is enabled by a strobe pulse only during the times when the waveforms are not in 
transition. This method is illustrated in Figure 64.
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Figure 65 

Key terms
cascading Connecting two or more similar devices in a manner that expands the capability of one 
device.

Decoder A digital circuit that converts coded information into a familiar or noncoded form.

Demultiplexer (DemuX) A circuit that switches digital data from one input line to several output 
lines in a specified time sequence.
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encoder A digital circuit that converts information to a coded form.

Full-adder A digital circuit that adds two bits and an input carry to produce a sum and an 
output carry.

glitch A	 voltage	 or	 current	 spike	 of	 short	 duration,	 usually	 unintentionally	 produced	 and	
unwanted.

Half-adder A	digital	circuit	that	adds	two	bits	and	produces	a	sum	and	an	output	carry.	It	cannot	
handle input carries.

look-ahead carry A method of binary addition whereby carries from preceding adder stages are 
anticipated,	thus	eliminating	carry	propagation	delays.

multiplexer (muX) A circuit that switches digital data from several input lines onto a single out-
put line in a specified time sequence.

Parity bit A bit attached to each group of information bits to make the total number of 1s odd or 
even for every group of bits.

Priority encoder An encoder in which only the highest value input digit is encoded and any other 
active input is ignored.

ripple carry A method of binary addition in which the output carry from each adder becomes the 
input carry of the next higher-order adder.
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true/False QuiZ
Answers are at the end of the chapter.

 1. A half-adder adds two binary bits.

 2. A half-adder has a sum output only.

 3. A full-adder adds three bits and produces two outputs.

 4. Two 4-bit numbers can be added using two full-adders.

 5. When	the	two	input	bits	are	both	1	and	the	carry	input	bit	is	a	1,	the	sum	output	of	a	full	adder	is	0.

 6. A comparator determines when two binary numbers are equal.

 7. A decoder detects the presence of a specified combination of input bits.

 8. The 4-line-to-10-line decoder and the 1-of-10 decoder are two different types.

 9. An encoder essentially performs a reverse decoder function.

 10. A multiplexer is a logic circuit that allows digital information from a single source to be routed 
onto several lines.

 11. Any logic function can be described using VHDL or Verilog.

selF-test
Answers are at the end of the chapter.

 1. A half-adder is characterized by

(a) two inputs and two outputs (b) three inputs and two outputs
(c) two inputs and three outputs (d) two inputs and one output

 2. A full-adder is characterized by

(a) two inputs and two outputs (b) three inputs and two outputs
(c) two inputs and three outputs (d) two inputs and one output

 3. The inputs to a full-adder are A = 1, B = 1, Cin = 0. The outputs are

(a) � = 1, Cout = 1 (b) � = 1, Cout = 0
(c) � = 0, Cout = 1 (d) � = 0, Cout = 0

 4. A 4-bit parallel adder can add

(a) two 4-bit binary numbers (b) two 2-bit binary numbers
(c) four bits at a time (d) four bits in sequence

 5. To	expand	a	4-bit	parallel	adder	to	an	8-bit	parallel	adder,	you	must

(a) use four 4-bit adders with no interconnections
(b) use two 4-bit adders and connect the sum outputs of one to the bit inputs of the other
(c) use eight 4-bit adders with no interconnections
(d) use two 4-bit adders with the carry output of one connected to the carry input of the other

 6. If	a	magnitude	comparator	has	A = 1011 and B = 1001	on	its	inputs,	the	outputs	are

(a) A 7 B = 0, A 6 B = 1, A = B = 0 (b) A 7 B = 1, A 6 B = 0, A = B = 0
(c) A 7 B = 1, A 6 B = 1, A = B = 0 (d) A 7 B = 0, A 6 B = 0, A = B = 1

 7. If	a	1-of-16	decoder	with	active-LoW	outputs	exhibits	a	LoW	on	the	decimal	12	output,	what	
are	the	inputs?

(a) A3A2A1A0 = 1010 (b) A3A2A1A0 = 1110
(c) A3A2A1A0 = 1100 (d) A3A2A1A0 = 0100

 8. A	BCD-to-7	segment	decoder	has	0100	on	its	inputs.	The	active	outputs	are

(a) a,	c,	f,	g  (b) b,	c,	f,	g  (c) b,	c,	e,	f  (d) b,	d,	e,	g

 9. In	general,	a	multiplexer	has

(a) one	data	input,	several	data	outputs,	and	selection	inputs
(b) one	data	input,	one	data	output,	and	one	selection	input
(c) several	data	inputs,	several	data	outputs,	and	selection	inputs
(d) several	data	inputs,	one	data	output,	and	selection	inputs
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 10. Data selectors are basically the same as

(a) decoders  (b) demultiplexers  (c) multiplexers  (d) encoders

 11. Which	of	the	following	codes	exhibit	even	parity?

(a) 10011000 (b) 01111000 (c) 11111111
(d) 11010101 (e) all (f) both answers (b) and (c)

 12. An entity and architecture are associated with

(a) Abel  (b) Verilog  (c) VHDL  (d) PLD

Problems
Answers to odd-numbered problems are at the end of the chapter.

section 1 a system 

 1. Assume the tablet-bottling control system is set for 36 tablets per bottle. Determine the binary 
numbers	in	register	A	and	register	B	after	5	bottles	have	been	filled.

 2. After	one	more	bottle	is	filled	from	Problem	1,	determine	the	output	of	the	adder.

 3. For	Problem	1,	what	is	the	output	of	the	BCD-to-binary	code	converter	A?

 4. For	Problem	1,	determine	the	active	outputs	from	the	3-digit	BCD-to-7-segment	decoder	A.

section 2 Half and Full adders 

 5. For	the	full-adder	of	Figure	9,	determine	the	logic	state	(1	or	0)	at	each	gate	output	for	the	fol-
lowing inputs:
(a) A = 1, B = 1, Cin = 1  (b) A = 0, B = 1, Cin = 1  (c) A = 0, B = 1, Cin = 0

 6. What	are	the	full-adder	inputs	that	will	produce	each	of	the	following	outputs:
(a) � = 0, Cout = 0 (b) � = 1, Cout = 0
(c) � = 1, Cout = 1 (d) � = 0, Cout = 1

 7. Determine the outputs of a full-adder for each of the following inputs:
(a) A = 1, B = 0, Cin = 0 (b) A = 0, B = 0, Cin = 1
(c) A = 0, B = 1, Cin = 1 (d) A = 1, B = 1, Cin = 1

section 3 Parallel adders 

 8. For	 the	parallel	adder	 in	Figure	66,	determine	the	complete	sum	by	analysis	of	 the	 logical	
operation of the circuit. Verify your result by longhand addition of the two input numbers.

 9. Repeat	Problem	8	for	the	circuit	and	input	conditions	in	Figure	67.
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 10. The circuit shown in Figure 68 is a 4-bit circuit that can add or subtract numbers in a form used 
in	 computers	 (positive	 numbers	 in	 true	 form;	 negative	 numbers	 in	 complement	 form).	
(a) Explain what happens when the Add/Subt.	input	is	HIGH.	(b)	What	happens	when	Add/Subt. 
is	LoW?

 11. For	the	circuit	in	Figure	68,	assume	the	inputs	are	Add/Subt. = 1, A = 1001 and B = 1100. 
What	is	the	output?
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 12. The	input	waveforms	in	Figure	69	are	applied	to	a	2-bit	adder.	Determine	the	waveforms	for	the	
sum and the output carry in relation to the inputs by constructing a timing diagram.

 13. The following sequences of bits (right-most bit first) appear on the inputs to a 4-bit parallel 
adder. Determine the resulting sequence of bits on each sum output.
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A1 1001

A2 1110

A3 0000

A4 1011

B1 1111

B2 1100

B3 1010

B4 0010

 14. In	the	process	of	checking	a	4-bit	parallel	adder,	the	following	logic	levels	are	observed	on	the	
inputs:	HIGH	(msB),	HIGH,	HIGH,	HIGH,	and	HIGH	(msB),	LoW,	LoW,	HIGH.	The	fol-
lowing	levels	are	observed	on	the	outputs:	LoW	(msB),	HIGH,	LoW,	HIGH.	Determine	if	the	
adder is functioning properly.

section 4 ripple carry and look-ahead carry adders 

 15. Each of the eight full-adders in an 8-bit parallel ripple carry adder exhibits the following propa-
gation delays:

 A to � and Cout: 40 ns
 B to � and Cout: 40 ns
 Cin to �: 35 ns
 Cin to Cout: 25 ns

  Determine the maximum total time for the addition of two 8-bit 
numbers.

 16. Show the additional logic circuitry necessary to make the 4-bit 
look-ahead carry adder in Figure 21 into a 5-bit adder.

section 5 comparators 

 17. The	waveforms	in	Figure	70	are	applied	to	the	comparator	as	
shown. Determine the output (A = B) waveform.
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 18. For	the	4-bit	comparator	in	Figure	71,	plot	each	output	waveform	for	the	inputs	shown.	The	
outputs	are	active-HIGH.
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 19. For	each	set	of	binary	numbers,	determine	the	output	states	for	the	comparator	of	Figure	25.
(a) A3A2A1A0 = 1100
 B3B2B1B0 = 1001

(b) A3A2A1A0 = 1000
 B3B2B1B0 = 1011

(c) A3A2A1A0 = 0100
 B3B2B1B0 = 0100

section 6 Decoders 

 20. When	a	HIGH	is	on	the	output	of	each	of	the	decoding	gates	in	Figure	72,	what	is	the	binary	
code	appearing	on	the	inputs?	The	msB	is	A3.

 21. show	 the	decoding	 logic	 for	 each	of	 the	 following	codes	 if	 an	active-HIGH	(1)	output	 is	
required:
(a) 1101 (b) 1000 (c) 11011 (d) 11100
(e) 101010 (f) 111110 (g) 000101 (h) 1110110

 22. solve	Problem	21,	given	that	an	active-LoW	(0)	output	is	required.

 23. You	wish	to	detect	only	the	presence	of	the	codes	1010,	1100,	0001,	and	1011.	An	active-HIGH	
output is required to indicate their presence. Develop the decoding logic with a single output 
that	will	indicate	when	any	one	of	these	codes	is	on	the	inputs.	For	any	other	code,	the	output	
must	be	LoW.

 24. If	the	input	waveforms	are	applied	to	the	decoding	logic	as	indicated	in	Figure	73,	sketch	the	
output waveform in proper relation to the inputs.
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 25. BCD	numbers	are	applied	sequentially	to	the	BCD-to-decimal	decoder	in	Figure	74.	Draw	a	tim-
ing	diagram,	showing	each	output	in	the	proper	relationship	with	the	others	and	with	the	inputs.
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 26. A	7-segment	decoder/driver	drives	the	display	in	Figure	75.	If	the	waveforms	are	applied	as	
indicated,	determine	the	sequence	of	digits	that	appears	on	the	display.

section 7 encoders 

 27. For	the	decimal-to-BCD	encoder	logic	of	Figure	38,	assume	that	the	9	input	and	the	3	input	are	
both	HIGH.	What	is	the	output	code?	Is	it	a	valid	BCD	(8421)	code?

 28. A	priority	encoder	has	active-LoW	levels	on	inputs	1,	5,	and	9.	What	BCD	code	appears	on	the	
outputs	if	all	the	other	inputs	are	HIGH?

section 8 code converters 

 29. Convert	the	following	decimal	numbers	to	BCD	and	then	to	binary.
(a) 2  (b) 8  (c) 13  (d) 26  (e) 33

 30. show	the	logic	required	to	convert	a	10-bit	binary	number	to	Gray	code,	and	use	that	logic	to	
convert the following binary numbers to Gray code:
(a) 1010101010  (b) 1111100000  (c) 0000001110  (d) 1111111111
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 31. show	the	logic	required	to	convert	a	10-bit	Gray	code	to	binary,	and	use	that	logic	to	convert	
the following Gray code words to binary:
(a) 1010000000  (b) 0011001100  (c) 1111000111  (d) 0000000001

section 9 multiplexers (Data selectors) 

 32. For	 the	 multiplexer	 in	 Figure	 76,	 determine	 the	 output	 for	 the	 following	 input	 states:	
D0 = 0, D1 = 1, D2 = 1, D3 = 0, S0 = 1, S1 = 0.

 33. If	the	data-select	inputs	to	the	multiplexer	in	Figure	76	are	sequenced	as	shown	by	the	wave-
forms	in	Figure	77,	determine	the	output	waveform	with	the	data	inputs	specified	in	Problem	
32.
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 34. The	waveforms	in	Figure	78	are	observed	on	the	inputs	of	an	8-input	multiplexer.	sketch	the	Y 
output waveform.

section 10 Demultiplexers 

 35. Develop the total timing diagram (inputs and outputs) for a demultiplexer in which the inputs 
are as follows: The data-select inputs are repetitively sequenced through a straight binary count 
beginning	with	0000,	and	the	data	input	is	a	serial	data	stream	carrying	BCD	data	representing	
the	decimal	number	2468.	The	least	significant	digit	(8)	is	first	in	the	sequence,	with	its	LsB	
first,	and	it	should	appear	in	the	first	4-bit	positions	of	the	output.

section 11 Parity generators/checkers 

 36. The	waveforms	in	Figure	79	are	applied	to	the	4-bit	parity	logic.	Determine	the	output	wave-
form	in	proper	relation	to	the	inputs.	For	how	many	bit	times	does	even	parity	occur,	and	how	
is	it	indicated?	The	timing	diagram	includes	eight	bit	times.
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 37. Determine the � Even and the �	odd	outputs	of	a	9-bit	parity	generator/checker	for	the	inputs	
in Figure 80. Refer to the function table in Figure 56.
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section 12 logic Functions with vHDl and verilog 

 38. Write	a	VHDL	program	for	an	8-bit	parallel	adder.

 39. Write	a	Verilog	program	for	an	8-bit	parallel	adder.

 40. Write	a	VHDL	program	for	a	decimal-to-BCD	encoder.

 41. Write	a	Verilog	program	for	a	decimal-to-BCD	encoder.

section 13 troubleshooting 

 42. The full-adder in Figure 81 is tested under all input conditions with the input waveforms shown. 
From your observation of the � and Cout	waveforms,	is	it	operating	properly,	and	if	not,	what	is	
the	most	likely	fault?
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 43. List the possible faults for each decoder/display in Figure 82.

 44. Develop a systematic test procedure to check out the complete operation of the keyboard 
encoder in Figure 40.

 45. You	are	testing	a	BCD-to-binary	converter	consisting	of	4-bit	adders	as	shown	in	Figure	83.	
First	verify	that	the	circuit	converts	BCD	to	binary.	The	test	procedure	calls	for	applying	BCD	
numbers in sequential order beginning with 010 and checking for the correct binary output. 
What	symptom	or	symptoms	will	appear	on	the	binary	outputs	in	the	event	of	each	of	the	fol-
lowing	faults?	For	what	BCD	number	is	each	fault	first	detected?
(a) The A1 input is open (top adder).
(b) The Cout is open (top adder).
(c) The �4 output is shorted to ground (top adder).
(d) The 32 output is shorted to ground (bottom adder).

 46. For	the	7-segment	display	multiplexing	system	in	Figure	49,	determine	the	most	likely	cause	or	
causes for each of the following symptoms:
(a) The B-digit (MSD) display does not turn on at all.
(b) neither	7-segment	display	turns	on.
(c) The f-segment of both displays appears to be on all the time.
(d) There is a visible flicker on the displays.
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 47. Develop	a	systematic	procedure	to	fully	test	the	data	selector	shown	in	Figure	47.

 48. During	the	testing	of	the	data	transmission	system	in	Figure	57,	a	code	is	applied	to	the	D0 
through D6 inputs that contains an odd number of 1s. A single bit error is deliberately intro-
duced	on	the	serial	data	transmission	line	between	the	mUX	and	the	DEmUX,	but	the	system	
does not indicate an error (error output = 0).	After	some	investigation,	you	check	the	inputs	to	
the even parity checker and find that D0 through D6	contain	an	even	number	of	1s,	as	you	would	
expect.	Also,	you	find	that	the	D7	parity	bit	is	a	1.	What	are	the	possible	reasons	for	the	system	
not	indicating	the	error?

 49. In	general,	describe	how	you	would	fully	test	the	data	transmission	system	in	Figure	57,	and	
specify a method for the introduction of parity errors.

special Problems 

 50. modify	the	design	of	the	7-segment	display	multiplexing	system	in	Figure	49	to	accommodate	
two additional digits.

 51. Using	Table	2,	write	the	soP	expressions	for	the	� and Cout of a full-adder and show the logic 
diagrams.	Then	implement	them	with	inverters	and	AnD-oR	logic.

 52. Implement	 the	 logic	 function	specified	 in	Table	11	and	write	a	VHDL	program	for	 the	
implementation.

table 11  

inPuts outPut

A3 A2 A1 A0 Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

 53. Using	two	of	the	6-position	adder	modules	from	Figure	17,	develop	a	12-position	voting	
system.
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multisim troublesHooting 
Practice 
 54. open	file	P05-54	and	follow	the	instructions	given	there.

 55. open	file	P05-55	and	follow	the	instructions	given	there.

 56. open	file	P05-56	and	follow	the	instructions	given	there.

 57. open	file	P05-57	and	follow	the	instructions	given	there.

ansWers to section cHecKuPs
section 1 a system

 1. Register A: 50 = 110010;	Register	B:	200 = 11001000

 2. Register A: 25 = 11001;	Register	B:	125 = 1111101

 3. The comparator determines when a bottle is filled with the preset number of tablets.

 4. Decoder	B	detects	when	register	B	contains	the	maximum	number.

section 2 Half and Full adders

 1. (a) � = 1, Cout = 0
(b) � = 0, Cout = 0
(c) � = 1, Cout = 0
(d) � = 0, Cout = 1

 2. � = 1, Cout = 1

section 3 Parallel adders

 1. Cout�4�3�2�1 = 11001

 2. Three 4-bit adders are required to add two 10-bit numbers.

section 4 ripple carry and look-ahead carry adders

 1. Cg = 0, Cp = 1

 2. Cout = 1

section 5 comparators

 1. A 7 B = 1, A = B = 0, A 6 B = 0, when A = 1011 and B = 1010

 2. A 6 B = 1; A = B = 0; A 7 B = 0

section 6 Decoders

 1. output	5	is	active	when	101	is	on	the	inputs.

 2. Four 1-of-16 decoders are used to decode a 6-bit binary number.

 3. Active-HIGH	output	drives	a	common-cathode	LED	display.

section 7 encoders

 1. (a) A0 = 1, A1 = 1, A2 = 0, A3 = 1
(b) no,	this	is	not	a	valid	BCD	code.
(c) only	one	input	can	be	active	for	a	valid	output.

 2. (a) A3 = 0, A2 = 1, A1 = 1, A0 = 1
(b) The	output	is	0111,	which	is	the	complement	of	1000	(8).

section 8 code converters

 1. 10000101 (BCD) = 10101012

 2. An	8-bit	binary-to-Gray	converter	consists	of	seven	exclusive-oR	gates	in	an	arrangement	like	
that in Figure 41 but with inputs B09B7.

multisim
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section 9 multiplexers (Data selectors)

 1. The output is 0.

 2. 5 select inputs (25
= 32).

 3. The	data	output	alternates	between	LoW	and	HIGH	as	the	data-select	inputs	sequence	through	
the binary states.

 4. (a) The	multiplexer	multiplexes	the	two	BCD	codes	to	the	7-segment	decoder.
(b) The	BCD-to-7-segment	decoder	decodes	the	BCD	to	energize	the	display.
(c) The	2-line-to-4-line	decoder	enables	the	7-segment	displays	alternately.

section 10 Demultiplexers

 1. A decoder can be used as a multiplexer by using the input lines for data selection and an Enable 
line for data input.

 2. The	outputs	are	all	HIGH	except	D10,	which	is	LoW.

section 11 Parity generators/checkers

 1. (a) Even parity: 1110100
  (b) Even parity: 001100011

 2. (a) odd	parity:	11010101

  (b) odd	parity:	11000001

 3. (a) Code	is	correct,	four	1s.

  (b) Code	is	in	error,	seven	1s

section 12 logic Functions with vHDl and verilog

 1. A: in bit_vector	(7	downto	0);

 2. input	[7:0]	A;

 3. Module is used in Verilog.

 4. X = 6 when the A inputs are 0110.

section 13 troubleshooting

 1. A glitch is a very short-duration voltage spike (usually unwanted).

 2. Glitches are caused by transition states.

 3. Strobe is the enabling of a device for a specified period of time when the device is not in transition.

ansWers to relateD Problems  
For eXamPles
 1 � = 1, Cout = 1

 2 �1 = 0, �2 = 0, �3 = 1, �4 = 1

 3 1011 + 1010 = 10101

 4 See Figure 84.
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Figure 84 
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A0 = 1
B0 = 0

A1 = 0
B1 = 1 0

0

0 → not equal

fg06_09300
Figure 85 
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Figure 86 
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fg06_09600

Figure 87 

 8 output	22

 9 see	Figure	87.

S1

S0

Y

fg06_09700

Figure 88 

 10 All	inputs	LoW:	A0 = 0, A1 = 1, A2 = 1, A3 = 0

	 	 All	inputs	HIGH:	All	outputs	HIGH.

 11 BCD	01000001

    00000001 1

    00101000 40

	 	 	 Binary	 00101001	 41

 12 seven	exclusive-oR	gates

 13 See Figure 88.

 14 D0: S3 = 0, S2 = 0, S1 = 0, S0 = 0

 D4: S3 = 0, S2 = 1, S1 = 0, S0 = 0

 D8: S3 = 1, S2 = 0, S1 = 0, S0 = 0

 D13: S3 = 1, S2 = 1, S1 = 0, S0 = 1

 5 See Figure 85.

 6 A 7 B = 0, A = B = 0, A 6 B = 1

 7 See Figure 86.
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 15 see	Figure	89.

G
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4
5
6
7

EN

A0

+5 V

A1
A2

0–
7

MUX

Figure 89 
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=    A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0

Figure 90 
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fg06_10000

Figure 91 

 16 see	Figure	90.

 17 see	Figure	91.

ansWers to true/False QuiZ
 1. T  2. F  3. T   4. F   5. F   6. T

 7. T  8. F  9. T  10. F  11. T

ansWers to selF-test
 1. (a)   2. (b)   3. (c)   4. (a)   5. (d)   6. (b)

 7. (c)   8. (b)   9. (d)  10. (c)  11. (f)  12. (c)
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ansWers to oDD-numbereD Problems
 1. Register	A:	000000110110;	Register	B:	10110100

 3. 00100100

 5. (a)  A � B = 0, � = 1, (A � B)Cin = 0, AB = 1, Cout = 1

  (b)  A � B = 1, � = 0, (A � B)Cin = 1, AB = 0, Cout = 1

  (c)  A � B = 1, � = 1, (A � B)Cin = 0, AB = 0, Cout = 0

 7. (a) � = 1, Cout = 0;

  (b) � = 1, Cout = 0;

  (c) � = 0, Cout = 1;

  (d) � = 1, Cout = 1

 9. 11100

 11. �3 �2 �1 �0 = 1101

 13. �1 = 0110; �2 = 1011; �3 = 0110; �4 = 0001; �5 = 1000

 15. 225 ns

 17. A = B	is	HIGH	when	A0 = B0 and A1 = B1; see Figure P–25.
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B1

A = B

fgp_03300
Figure P–25 
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Figure P–26 

 19. (a) A 7 B = 1; A = B = 0; A 6 B = 0

  (b) A 6 B = 1; A = B = 0; A 7 B = 0

  (c) A = B = 1; A 6 B = 0; A 7 B = 0

 21. See Figure P–26.
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 23. X = A3A2A1A0 + A3A2A1A0 + A3A2A1A0 + A3A2A1A0

 25. see	Figure	P–27.

A0

A1

A2

A3

0

1

2

3

4

5

6

7

8

9

HIGH

HIGH

HIGH

fgp_03500

Figure P–27 

 27. A3A2A1A0 = 1011,	invalid	BCD

 29. (a) 2 = 0010BCD = 00102

  (b) 8 = 1000BCD = 10002

  (c) 13 = 00010011BCD = 11012

  (d) 26 = 00100110BCD = 110102

  (e) 33 = 00110011BCD = 1000012

 31. (a) 1010000000 Gray S 1100000000 binary

  (b) 0011001100 Gray S 0010001000 binary

  (c) 1111000111 Gray S 1010000101 binary

  (d) 0000000001 Gray S 0000000001 binary

  See Figure P–28.

G0

B0

G1

B1

G2

B2

G3

B3

G4

B4

G5

B5

G6

B6

G7

B7

G8

B9

G9

B8

fgp_03600

Figure P–28 

 33. see	Figure	P–29.
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fgp_03700
Figure P–29 
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 35. See Figure P–30.
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Figure P–30 
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Figure P–31 

 39. module	8_Bit_Adder	(A,	B,	C,	Cin,	sUm,	Cout);
  input	[7:0]	A;
  input	[7:0]	B;
  input	Cin;
  output	[7:0]	sUm;
  output	[7:0]	Cout;
  wire	C1,	C2,	C3,	C4,	C5,	C6,	C7;
	 	 	 Full	Adder	Full	Adder	1	(A[0],	B[0],	Cin,	sUm[0],	C1);
	 	 	 Full	Adder	Full	Adder	2	(A[1],	B[1],	Cin,	sUm[1],	C2);

 37. See Figure P–31.
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	 	 	 Full	Adder	Full	Adder	3	(A[2],	B[2],	Cin,	sUm[2],	C3);
	 	 	 Full	Adder	Full	Adder	4	(A[3],	B[3],	Cin,	sUm[3],	C4);
	 	 	 Full	Adder	Full	Adder	5	(A[4],	B[4],	Cin,	sUm[4],	C5);
	 	 	 Full	Adder	Full	Adder	6	(A[5],	B[5],	Cin,	sUm[5],	C6);
	 	 	 Full	Adder	Full	Adder	7	(A[6],	B[6],	Cin,	sUm[6],	C7);
	 	 	 Full	Adder	Full	Adder	8	(A[7],	B[7],	Cin,	sUm[7],	Cout);
  endmodule

 41. module	Encoder	(D,	X);
  input	[9:0]	D;	output	[3:0]	X;
  X[0] =  (D[1] }  D[3] }  D[5] } 	D[7]	 } 	D[9])	&& !(D[0] }  D[2] }  D[4] }  D[6] } 	D[8]);
  X[1] =  (D[2] }  D[3] }  D[6] } 	D[7])	&& !(D[0] }  D[1] }  D[4] }  D[5] }  D[8] } 	D[9]);
  X[2] =  (D[4] }  D[5] }  D[6] } 	D[7])	&& !(D[0] }  D[1]) }  D[2] }  D[(3] }  D[8] } 	D[9]);
  X[3] =  (D[8] } 	D[9])	&& !(D[0] }  D[1] }  D[2] }  D[3] }  D[4] }  D[5] }  D[6] } 	D[7]);
  endmodule

 43. (a) oK

  (b) segment g	burned	out;	output	G	open

  (c) Segment b	output	stuck	LoW

 45. (a)  The A1	input	of	the	top	adder	is	open:	All	binary	values	corresponding	to	a	BCD	number	
having	a	value	of	0,	1,	4,	5,	8,	or	9	will	be	off	by	2.	This	will	first	be	seen	for	a	BCD	value	
of 0000 0000.

  (b)  The carry out of the top adder is open: All values not normally involving an output carry 
will	be	off	by	32.	This	will	first	be	seen	for	a	BCD	value	of	0000	0000.

  (c)  The �4 output of the top adder is shorted to ground: Same binary values above 15 will be 
short	by	16.	The	first	BCD	value	to	indicate	this	will	be	0001	1000.

  (d)  The �3 output of the bottom adder is shorted to ground: Every other set of 16 values starting 
with	16	will	be	short	16.	The	first	BCD	value	to	indicate	this	will	be	0001	0110.

 47. 1. Place	a	LoW	on	the	Enable	input.

  2. Apply	a	HIGH	to	D0	and	a	LoW	to	D1 through D7.

  3.  Go through the binary sequence on the select inputs and check Y and Y  according to Table 
P–10.

table P–10 

S2 S1 S0 Y Y 

0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 0 1

  4.  Repeat the binary sequence of select inputs for each set of data inputs listed in Table P–11. 
A	HIGH	on	the	Y output should occur only for the corresponding combinations of select 
inputs shown.

 49. Apply	a	HIGH	in	turn	to	each	Data	input,	D0 through D7	with	LoWs	on	all	the	other	inputs.	
For	each	HIGH	applied	to	a	data	input,	sequence	through	all	eight	binary	combinations	of	
select inputs (S2S1S0)	and	check	for	HIGH	on	the	corresponding	data	output	and	LoWs	on	all	
the other data outputs.

 51. � = A BCin + ABCin + AB Cin + ABCin
  Cout = ABCin + ABCin + ABCin + ABCin
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table P–11 

D0 D1 D2 D3 D4 D5 D6 D7 Y Y S2 S1 S0

L H L L L L L L 1 0 0 0 1

L L H L L L L L 1 0 0 1 0

L L L H L L L L 1 0 0 1 1

L L L L H L L L 1 0 1 0 0

L L L L L H L L 1 0 1 0 1

L L L L L L H L 1 0 1 1 0

L L L L L L L H 1 0 1 1 1

A

Cin

Σ

B

A

Cin

B

Cout

Figure P–32 

  See Figure P–32.
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 53. See the block diagram in Figure P–33.

 55. circuit fault:	Input	B	of	3-to-8	decoder	is	shorted	to	VCC.

  Predicted effect of fault:	Inputs	are	decoded	as	follows:	
0000 = 2, 0001 = 3, 0010 = 2, 0011 = 3, 0100 = 6, 0101 = 7, 0110 = 6, 0111 = 7, 
1000 and higher = no decoded output.

  observed effect of introduced fault:	Inputs	are	decoded	as	follows:	
0000 = 2, 0001 = 3, 0010 = 2, 0011 = 3, 0100 = 6,
0101 = 7, 0110 = 6, 0111 = 7, 1000 and higher = no decoded output.

 57. observed operation:	Data	output	X	is	incorrect	for	binary	inputs	of	0011,	0111,	1011,	and	
1111.

  suspected fault:	Line	from	input	s2	to	multiplexer	input	B	is	shorted	to	ground.

  effect of introduced fault:	Data	output	X	is	incorrect	for	binary	inputs	of	0011,	0111,	1011,	
and 1111.
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From Chapter 6 of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved.
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outLine
 1 A System 

 2 Latches 

 3 Flip-Flops 

 4 Flip-Flop Operating Characteristics 

 5 Timers 

 6 Bistable Logic with VHDL and Verilog 

 7 Traffic signal control system with VHDL 
and Verilog 

 8 Troubleshooting 

objectives
•	 Describe	a	traffic	signal	control	system

•	 Use	logic	gates	to	construct	basic	latches

•	 Explain	the	difference	between	an	S-R	latch	and	a	
D latch

•	 Recognize	the	difference	between	a	latch	and	a	
flip-flop

•	 Explain	how	D	and	J-K	flip-flops	differ

•	 Understand	the	significance	of	propagation	delays,	
set-up	time,	hold	time,	maximum	operating	fre-
quency, minimum clock pulse widths, and power 
dissipation in the application of flip-flops

•	 Apply	flip-flops	in	basic	applications

•	 Explain	how	retriggerable	and	nonretriggerable	
one-shots differ

•	 Connect	a	555	timer	to	operate	as	either	an	astable	
multivibrator or a one-shot

•	 Use	VHDL	and	Verilog	to	implement	flip-flops

Key terms
Latch
bistable
set
reset
clock
edge-triggered flip-flop
d flip-flop
synchronous
j-K flip-flop
toggle

preset
clear
propagation delay time
set-up time
hold time
power dissipation
monostable
one-shot
astable
timer

•	 Use	VHDL	and	Verilog	to	implement	a	traffic	
signal control system

•	 Discuss	system	troubleshooting

visit the Website
Study aids for this chapter are available at 

http://pearsonhighered.com/floyd

introduction
A traffic signal control system is introduced at the 
beginning of this chapter. Bistable, monostable, and 
astable logic devices called multivibrators are covered. 
Two categories of bistable devices are the latch and the 
flip-flop. Bistable devices have two stable states, called 
SET	and	RESET;	they	can	retain	either	of	these	states	
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indefinitely, making them useful as storage devices. The 
basic difference between latches and flip-flops is the 
way in which they are changed from one state to the 
other. The flip-flop is a basic building block for counters, 
registers, and other sequential control logic and is used 
in certain types of memories. The monostable multivi-
brator, commonly known as the one-shot, has only one 
stable state. A one-shot produces a single controlled-

width pulse when activated or triggered. The astable 
multivibrator has no stable state and is used primarily as 
an oscillator, which is a self-sustained waveform genera-
tor. Pulse oscillators are used as the sources for timing 
waveforms	in	digital	systems.	Using	VHDL	and	Verilog	
to describe bistable logic as well as the traffic signal con-
trol system is covered.

1 a system
in this section, a traffic signal control system is presented to illustrate how combinational logic, 
flip-flops, and timers can be used to accomplish a specified function. the system controls the 
sequencing of traffic lights at a busy main street and an occasionally used side street.

after completing this section, you should be able to

•	 Describe	how	the	system	is	implemented

•	 Explain	how	timers	are	used	in	this	system

•	 Explain	how	flip-flops	are	used	in	this	system

timing requirements
The following are the timing requirements for the traffic signal control system. These 
requirements are illustrated in Figure 1.

•	 The	green	light	for	the	main	street	will	stay	on	for	a	minimum	of	25	s	or	as	long	as	
there is no vehicle on the side street.

•	 The	green	light	for	the	side	street	will	stay	on	until	there	is	no	vehicle	on	the	side	
street	up	to	a	maximum	of	25	s.

•	 The	yellow	caution	light	will	stay	on	for	4	s	between	changes	from	green	to	red	on	
both the main street and the side street.

Main Side

First state: 25 seconds
minimum or as long as
there is no vehicle on
side street

Second state: 4 seconds Third state: 25 seconds
maximum or until
there is no vehicle on
side street

Fourth state: 4 seconds

Main Side Main Side Main Side

fg06_06500
FiGure 1 traffic light timing sequence.

the state diagram
A state diagram graphically shows the sequence of states, the conditions for each state, and 
the	requirements	for	transitions	from	one	state	to	the	next.	Although	Figure	1	is	a	basic	
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form of state diagram, a standard type of diagram shows the logic states and the Boolean 
expressions	for	the	transitions.

deFininG the variabLes The variables that determine how the system 
sequences through the various states are defined as follows:

•	 Vs A vehicle is present on the side street.

•	 TL	 The	25	s	timer	(long	timer)	is	on.

•	 TS	 The	4	s	timer	(short	timer)	is	on.

A complemented variable indicates the opposite condition.

state descriptions A state diagram* is shown in Figure 2. Each of the four 
states is assigned a 2-bit Gray code as indicated. A looping arrow means that the system 
remains in a state, and an arrow between states means that the system transitions to the 
next	state.	The	Boolean	expression	or	variable	associated	with	each	of	the	arrows	in	the	
state diagram indicates the condition under which the system remains in a state or transi-
tions	to	the	next	state.

First State The Gray code is 00. In this state (S1), the light is green on the main street and 
red	on	the	side	street	for	25	s	when	the	long	timer	is	on or there is no vehicle on the side 
street.	This	condition	is	expressed	as	TL + Vs.	The	system	transitions	to	the	next	state	
when the long timer goes off and there is a vehicle on the side street. This condition is 
expressed	as	TLVs.

Second State The Gray code is 01. In this state (S2), the light is yellow on the main street 
and	red	on	the	side	street.	The	system	remains	in	this	state	for	4	s	when	the	short	timer	is	
on.	This	condition	is	expressed	as	TS.	The	system	transitions	to	the	next	state	when	the	
short timer goes off.	This	condition	is	expressed	as	TS.

Third State The Gray code is 11. In this state (S3), the light is red on the main street and 
green	on	the	side	street	for	25	s	when	the	long	timer	is	on as long as there is a vehicle on 
the	side	street.	This	condition	is	expressed	as	TLVs.	The	system	transitions	to	the	next	state	
when the long timer goes off or when there is no vehicle on the side street. This condition 
is	expressed	as	TL + Vs.

TL + Vs

TLVsTS

TL + Vs TS

TS

TLVs

Third state
11

Main: red
Side:green

Fourth state
10

Main: red
Side: yellow

First state
00

Main: green
Side: red

Second state
01

Main: yellow
Side: red

TS

fg06_06600

FiGure 2 state diagram 
for the traffic signal control 
system.

*The	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	Term	glossary	at	the	end	of	the	chapter.
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Fourth State The Gray code is 10. In this state (S4), the light is red on the main street and 
yellow	on	the	side	street.	The	system	remains	in	this	state	for	4	s	when	the	short	timer	is	
on.	This	condition	is	expressed	as	TS. The system transitions back to the first state when 
the short timer goes off.	This	condition	is	expressed	as	TS.

block diagram
The traffic signal control system consists of three parts: combinational logic, sequential 
logic, and timing circuits, as shown in Figure 3.

Red

Yellow

Green

Main

Red

Yellow

Green

Side

Combinational logic

Sequential logic

Long trigger

Short trigger

G0

G1

Gray
code

Long
timer

Short
timer

Traffic signal control logic

Traffic light
interface unit

Vehicle
sensor
input

System
clock

Timing circuits

FiGure 3 block diagram of the traffic signal control system.

The combinational logic portion of the system provides outputs to turn the signal 
lights on and off. It also provides trigger outputs to start the long and short timers. The 
input sequence to this logic represents the four states described by the state diagram. 
The	timing	circuits	portion	of	the	system	provides	the	25	s	and	the	4	s	timing	outputs.	
The sequential logic produces the sequence of 2-bit Gray codes representing the four 
states.

the combinational Logic
The combinational logic consists of a state decoder, light output logic, and trigger logic.

state decoder This logic decodes the 2-bit Gray code from the sequential logic 
to determine which of the four states the system is in. The inputs to the state decoder are 
the two Gray code bits G1 and G0. There are four state outputs S1, S2, S3, and S4. For each 
of the four input codes, one and only one of the outputs is activated. The logic and Boolean 
expressions	are	shown	in	Figure	4.

LiGht output LoGic This logic has the four state outputs of the state decoder 
as	its	inputs	and	produces	six	outputs	to	turn	the	traffic	lights	on	and	off.	These	outputs	are	
designated MR, MY, MG	(main	red,	main	yellow,	main	green)	and	SR, SY, SG	(side	red,	
side	yellow,	side	green).
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Refer	to	the	state	diagram	in	Figure	2.	The	main	red	is	on in the third state (S3) or in 
the fourth state (S4),	so	the	Boolean	expression	is

MR = S3 + S4

The main yellow is on in the second state (S2),	so	the	expression	is

MY = S2

The main green is on in the first state (S1),	so	the	expression	is

MG = S1

Similarly,	the	state	diagram	is	used	to	obtain	the	following	expressions	for	the	side	street:

 SR = S1 + S2

 SY = S4
 SG = S3

triGGer LoGic The trigger logic produces two outputs, the long trigger output 
and	the	short	trigger	output.	The	long	trigger	output	initiates	the	25	s	timer	on	a	LoW-to-
HIGH transition at the beginning of the first or third states. The short trigger output initi-
ates	the	4	s	timer	on	a	LoW-to-HiGH	transition	at	the	beginning	of	the	second	or	fourth	
states.	The	Boolean	expressions	for	this	logic	are

 LongTrig = S1 + S3

 ShortTrig = S2 + S4

timing circuits
The	timing	circuits	portion	of	the	traffic	signal	control	system	in	Figure	3	consists	of	a	25	s	
timer	and	a	4	s	timer,	as	shown	in	Figure	5.	The	25	s	timer	and	the	4	s	timer	are	triggered	by	
the long trigger and short trigger signals, respectively, from the combinational logic. The sys-
tem	clock	is	produced	by	an	astable	multivibrator	(covered	later)	or	other	type	of	oscillator.

Short timer

Timing circuits

Short trigger

Long timerLong trigger

Oscillator System clock

To sequential
logic

25 s timer

4 s timer

FiGure 5 block diagram of 
the timing circuits and the sys-
tem clock generator.

G0

G1

S1

S2

S3

S4

Gray code
state inputs

State outputs

fg06_06900

FiGure 4 State	decoder	logic	and	output	expressions.

S1 = G1G0

S2 = G1G0

S3 = G1G0

S4 = G1G0
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sequential Logic
The sequential logic controls the sequencing of the traffic signals, based on inputs from the 
timing circuits and the side street vehicle sensor. The sequential logic produces a 2-bit 
Gray code sequence for each of the four states that were described in Figure 2.

the counter The sequential logic consists of a 2-bit Gray code counter made up of 
two flip-flops and the associated logic, as shown in Figure 6. The counter produces the four-
state sequence on outputs G0 and G1.	Transitions	from	one	state	to	the	next	are	determined	by	
the short timer (TS), the long timer (TL), and vehicle sensor for the side street (Vs) inputs. The 
10	kHz	clock	input	(CLK)	comes	from	the	system	clock	oscillator	in	the	timing	circuits.

1. Referring	to	the	state	diagram,	how	long	can	the	system	
remain in the first state?

2. How long can the system remain in the fourth state?

3. What	determines	how	long	the	main	street	light	stays	red?

section 1 checKup*

*answers are at the end of the chapter.

2 Latches
the latch is a type of temporary storage device that has two stable states (bistable) and is nor-
mally placed in a category separate from that of flip-flops. Latches are similar to flip-flops 
because they are bistable devices that can reside in either of two states using a feedback 
arrangement, in which the outputs are connected back to the opposite inputs. the main differ-
ence between latches and flip-flops is in the method used for changing their state.

after completing this section, you should be able to

•	 Explain	the	operation	of	a	basic	S-R	latch

•	 Explain	the	operation	of	a	gated	S-R	latch

•	 Explain	the	operation	of	a	gated	D	latch

•	 Implement	an	S-R	or	D	latch	with	logic	gates

the s-r (set-reset) Latch
A latch is a type of bistable logic device or multivibrator.	An	active-HiGH	input	S-R	
	(SET-RESET)	latch	is	formed	with	two	cross-coupled	noR	gates,	as	shown	in	Figure	7(a);	 
an	active-LoW	input	S@R latch is formed with two cross-coupled NAND gates, as shown 

Input logic
G0

G1

TS
TL
Vs

CLK

2-bit Gray
code counter

TS : Short timer (4 s)
TL : Long timer (25 s)
Vs : Vehicle sensor for the side street

To state
decoder

fg08_06200

FiGure 6 block diagram of 
the sequential logic.

a latch can reside in 
either of its two states, 
set or reset.
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in	Figure	7(b).	notice	 that	 the	output	of	each	gate	 is	con-
nected to an input of the opposite gate. This produces the 
regenerative feedback that is characteristic of all latches and 
flip-flops.

To	explain	 the	operation	of	 the	 latch,	we	will	use	 the	
NAND gate S@R	latch	in	Figure	7(b).	This	latch	is	redrawn	in	
Figure	8	with	the	negative-oR	equivalent	symbols	used	for	the	
nAnD	gates.	This	is	done	because	LoWs	on	the	S and R lines 
are the activating inputs.

The latch in Figure 8 has two inputs, S and R, and two 
outputs, Q and Q. Let’s start by assuming that both inputs 
and the Q output are HIGH, which is the normal latched state. 
Since the Q output is connected back to an input of gate G2, 

and the R input is HIGH, the output of G2	must	be	LoW.	This	LoW	output	is	coupled	
back to an input of gate G1, ensuring that its output is HIGH.

When	the	Q output is HIGH, the latch is in the set state. It will remain in this state 
indefinitely	until	a	LoW	is	temporarily	applied	to	the	R	input.	With	a	LoW	on	the	R input 
and a HIGH on S, the output of gate G2 is forced HIGH. This HIGH on the Q output is 
coupled back to an input of G1, and since the S input is HIGH, the output of G1	goes	LoW.	
This	LoW	on	the	Q output is then coupled back to an input of G2, ensuring that the Q 
output	remains	HiGH	even	when	the	LoW	on	the	R	input	is	removed.	When	the	Q output 
is	LoW,	the	latch	is	in	the	reset	state.	now	the	latch	remains	indefinitely	in	the	RESET	
state	until	a	momentary	LoW	is	applied	to	the	S input.

In normal operation, the outputs of a latch are always complements of each other.

When Q is hiGh, Q is LoW, and when Q is LoW, Q is hiGh.

An	invalid	condition	in	the	operation	of	an	active-LoW	input	S@R latch occurs when 
LoWs	are	applied	to	both	S and R	at	the	same	time.	As	long	as	the	LoW	levels	are	simul-
taneously held on the inputs, both the Q and Q outputs are forced HIGH, thus violating the 
basic	complementary	operation	of	the	outputs.	Also,	if	the	LoWs	are	released	simultane-
ously,	both	outputs	will	attempt	to	go	LoW.	Since	there	is	always	some	small	difference	
in the propagation delay time of the gates, one of the gates will dominate in its transition to 
the	LoW	output	state.	This,	in	turn,	forces	the	output	of	the	slower	gate	to	remain	HiGH.	
in	this	situation,	you	cannot	reliably	predict	the	next	state	of	the	latch.

Figure	9	illustrates	the	active-LoW	input	S@R latch operation for each of the four 
possible	combinations	of	levels	on	the	inputs.	(The	first	three	combinations	are	valid,	but	
the	last	is	not.)	Table	1	summarizes	the	logic	operation	in	truth	table	form.	operation	of	the	
active-HiGH	input	noR	gate	latch	in	Figure	7(a)	is	similar	but	requires	the	use	of	opposite	
logic levels.

Q

Q

S

R

G1

G2

fg07_00200

FiGure 8 negative-or 
equivalent of the nand gate 
S@r latch in Figure 7(b).

set means that the Q 
output is hiGh.

reset means that the Q 
output is LoW.

Table	1	 •	 truth table for an active-LoW input s-r latch.

inputs outputs

S R Q Q comments

1 1 NC NC No change. Latch remains in present state.

0 1 1 0 Latch SET.

1 0 0 1 Latch	RESET.

0 0 1 1 Invalid condition

(a) Active-HIGH input S-R latch

R

S

Q

Q

(b) Active-LOW input S-R latch 

S

R

Q

Q

fg07_00100
FiGure 7 two versions of set-reset (s-r) latches. open 
files F06-07(a) and (b) and verify the operation of both latches.

muLtisim

Logic	symbols	for	both	the	active-HiGH	input	and	the	active-LoW	input	latches	are	
shown in Figure 10.

Example	1	illustrates	how	an	active-LoW	input	S@R latch responds to conditions on 
its	inputs.	LoW	levels	are	pulsed	on	each	input	in	a	certain	sequence	and	the	resulting 
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Q

Q

S

R

G1

G2
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0
Simultaneous LOWs on both inputs

Output states
are uncertain when
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back HIGH.

1

0
1

1

(d) Invalid condition

(b) Two possibilities for the RESET operation

Q
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1 Outputs do
not change
state.  Latch
remains SET if
previously SET and
remains RESET if
previously RESET.

HIGHS on both inputs

(c) No-change condition

1

(a) Two possibilities for the SET operation
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0
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Latch starts out RESET (Q = 0).

No transitions occur
because latch is
already RESET.

Q

Q

S

R

G1

G2
1

0

1
1

0

1

0

Outputs make
transitions when R
goes LOW and remain
in same state after R
goes back HIGH.

Latch starts out SET (Q = 1).

G2

G1

fg07_00300

FiGure 9 the three modes of basic s@r latch operation (set, reset, no-change) 
and the invalid condition.

Q output waveform is observed. The S = 0, R = 0 condition is avoided because it results 
in	an	invalid	mode	of	operation	and	is	a	major	drawback	of	any	SET-RESET	type	of	latch.

Q

Q

S

R

S

R

Q

Q

S

R

S-R latch
(a) Active-HIGH input

S-R latch
(b) Active-LOW input

fg07_00400

FiGure 10 Logic symbols 
for the s-r and s@r latch.

e X a m p L e  1

If the S and R	waveforms	in	Figure	11(a)	are	applied	to	the	inputs	of	the	latch	in	
Figure	10(b),	determine	the	waveform	that	will	be	observed	on	the	Q output. 
Assume that Q	is	initially	LoW.
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the Gated s-r Latch
A gated latch requires an enable input, EN	(G	is	also	used	to	designate	an	enable	input).	
The	logic	diagram	and	logic	symbol	for	a	gated	S-R	latch	are	shown	in	Figure	12.	The	S 
and R inputs control the state to which the latch will go when a HIGH level is applied to 
the EN input. The latch will not change until EN	is	HiGH;	but	as	long	as	it	remains	HiGH,	
the output is controlled by the state of the S and R inputs. The gated latch is a level-sensitive 
device. In this circuit, the invalid state occurs when both S and R are simultaneously HIGH 
and EN is also HIGH.

S

QR

Q

(b) Logic symbol

EN

S

R

EN

Q

Q

(a) Logic diagram

fg07_00800

FiGure 12 a gated s-r 
latch.

s o L u t i o n

See	Figure	11(b).

r e L a t e d  p r o b L e m*

Determine the Q	output	of	an	active-HiGH	input	S-R	latch	if	the	waveforms	in	
Figure	11(a)	are	inverted	and	applied	to	the	inputs.

*answers are at the end of the chapter.

S

(a) R

Q(b)

fg07_00500
FiGure 11 

e X a m p L e  2

Determine the Q	output	waveform	if	the	inputs	shown	in	Figure	13(a)	are	applied	
to	a	gated	S-R	latch	that	is	initially	RESET.

S

(a)

R

Q
(b)

EN

fg07_00900
FiGure 13 
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the Gated d Latch
Another	type	of	gated	latch	is	called	the	D	latch.	it	differs	from	the	S-R	latch	because	it	has	
only one input in addition to EN. This input is called the D	(data)	input.	Figure	14	contains	
a	logic	diagram	and	logic	symbol	of	a	D	latch.	When	the	D input is HIGH and the EN input 
is	HiGH,	the	latch	will	set.	When	the	D	input	is	LoW	and	EN is HIGH, the latch will reset. 
Stated another way, the output Q follows the input D when EN is HIGH.

D

Q

Q

(b) Logic symbol

EN

D

EN

Q

Q

(a) Logic diagram

fg07_01000

FiGure 14 a gated d latch.

e X a m p L e  3

Determine the Q	output	waveform	if	the	inputs	shown	in	Figure	15(a)	are	applied	
to	a	gated	D	latch,	which	is	initially	RESET.

s o L u t i o n

The Q	waveform	is	shown	in	Figure	15(b).	When	D is HIGH and EN is HIGH, Q 
goes	HiGH.	When	D	is	LoW	and	EN is HIGH, Q	goes	LoW.	When	EN	is	LoW,	
the state of the latch is not affected by the D input.

r e L a t e d  p r o b L e m

Determine the Q output of the gated D latch if the D	 input	in	Figure	15(a)	is	
inverted.

D

(a)

Q(b)

EN

fg07_01100
FiGure 15 

s o L u t i o n

The Q	waveform	is	shown	in	Figure	13(b).	When	S is HIGH and R	is	LoW,	a	
HIGH on the EN	input	sets	the	latch.	When	S	is	LoW	and	R is HIGH, a HIGH on 
the EN	input	resets	the	latch.	When	both	S and R	are	LoW,	the	Q output does not 
change from its present state.

r e L a t e d  p r o b L e m

Determine the Q	output	of	a	gated	S-R	latch	if	the	S and R	inputs	in	Figure		13(a)	
are inverted.
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1. List three types of latches.

2. Develop	the	truth	table	for	the	active-HiGH	input	S-R	latch	in	
Figure	7(a).

3. What	is	the	Q output of a D latch when EN = 1 and D = 1?

section 2 checKup

Flip-flops are synchronous bistable devices, also known as bistable multivibrators. in this case, 
the term synchronous means that the output changes state only at a specified point (leading or 
trailing edge) on the triggering input called the clock (cLK), which is designated as a control 
input, C; that is, changes in the output occur in synchronization with the clock. Flip-flops are 
edge-sensitive whereas gated latches are level-sensitive.

after completing this section, you should be able to

•	 Define	clock

•	 Define	edge-triggered flip-flop

•	 Explain	the	difference	between	a	flip-flop	and	a	latch

•	 Identify	an	edge-triggered	flip-flop	by	its	logic	symbol

•	 Discuss	the	difference	between	a	positive	and	a	negative	edge-triggered	flip-flop

•	 Discuss	and	compare	the	operation	of	D	and	J-K	edge-triggered	flip-flops	and	explain	the	
differences in their truth tables.

•	 Discuss	the	asynchronous	inputs	of	a	flip-flop

edge-triggered Flip-Flops
An edge-triggered flip-flop	changes	state	either	at	the	positive	edge	(rising	edge)	or	at	the	
negative	edge	(falling	edge)	of	the	clock	pulse	and	is	sensitive	to	its	inputs	only	at	this	tran-
sition of the clock. Two types of edge-triggered flip-flops are covered in this section: D and 
J-K.	The	logic	symbols	for	these	flip-flops	are	shown	in	Figure	16.	notice	that	each	type	 
can	be	either	positive	edge-triggered	(no	bubble	at	C	 input)	or	negative	edge-triggered	

3 FLip-FLops

the dynamic input 
indicator � means the flip-
flop changes state only on 
the edge of a clock pulse.

Latches	are	sometimes	used	for	multiplexing	data	onto	a	bus.	For	example,	data	being	input	to	
a	computer	from	an	external	source	have	to	share	the	data	bus	with	data	from	other	sources.	
When	the	data	bus	becomes	unavailable	to	the	external	source,	the	existing	data	must	be	tem-
porarily	stored,	and	latches	placed	between	the	external	source	and	the	data	bus	may	be	used	
to	do	this.	When	the	data	bus	is	unavailable	to	the	external	source,	the	latches	must	be	discon-
nected	from	the	bus	using	a	method	known	as	tristating.	When	the	data	bus	becomes	available,	
the	external	data	pass	through	the	latches,	thus	the	term	transparent latch. The gated D latch 
performs this function because when it is enabled, the data on its input appear on the output 
just as though there were a direct connection. Data on the input are stored as soon as the latch 
is disabled.

s y s t e m  n o t e
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	(bubble	at	C	input).	The	key	to	identifying	an	edge-triggered	flip-
flop by its logic symbol is the small triangle inside the block at the 
clock	(C)	input.	This	triangle	is	called	the	dynamic input indicator.

the edGe-triGGered d FLip-FLop The D input 
of the d flip-flop is called a synchronous input because data on 
the input is transferred to the flip-flop’s output only on the trigger-
ing	edge	of	the	clock	pulse.	When	D is HIGH, the Q output goes 
HIGH on the triggering edge of the clock pulse, and the flip-flop 
is	SET.	When	D	is	LoW,	the	Q	output	goes	LoW	on	the	trigger-
ing	edge	of	the	clock	pulse,	and	the	flip-flop	is	RESET.

This basic operation of a positive edge-triggered D flip-flop 
is	illustrated	in	Figure	17,	and	Table	2	is	the	truth	table	for	this	
type	of	flip-flop.	Remember,	 the flip-flop cannot change state 
except on the triggering edge of a clock pulse. The D input can 
change	at	any	time	when	the	clock	input	is	LoW	or	HiGH	(except	
for a very short interval around the triggering transition of the 
clock)	without	affecting	the	output.	Just	remember	that	Q follows 
D at the triggering edge of the clock.

D

Q

Q

(a) D

C

J

QK

Q

(b) J-K

C

D

Q

Q

C

J

QK

Q

C

Dynamic input
indicator

FiGure 16 edge-triggered flip-flop logic symbols (top: 
positive edge-triggered; bottom: negative edge-triggered).

D
Q

(a) D = 1; flip-flop SETS on positive clock
edge. (If already SET, it remains SET.)

C
t0

1

CLK
t0

1

0
D

Q

(b) D = 0; flip-flop RESETS on positive
clock edge. (If already RESET, it remains
RESET.)

C
t0

0
t0

1

0

Q Q

FiGure 17 operation of a positive edge-triggered d flip-flop.

Table	2	 •	 truth table for a positive edge-triggered d flip-flop.

inputs outputs

D cLK Q Q comments

1 c 1 0 SET	(stores	a	1)

0 c 0 1 RESET	(stores	a	0)

c = clock	transition	LoW	to	HiGH

the Q output of a d 
flip-flop assumes the 
state of the D input on 
the triggering edge of the 
clock.

Semiconductor memories in computers consist of large numbers of individual cells. Each stor-
age	cell	holds	a	1	or	a	0.	one	type	of	memory	is	the	Static	Random	Access	memory	or	SRAm,	
which uses flip-flops for the storage cells because a flip-flop will retain either of its two states 
indefinitely as long as dc power is applied, thus the term static. This type of memory is classi-
fied as a volatile memory because all the stored data are lost when power is turned off. Another 
type	of	memory,	the	Dynamic	Random	Access	memory	or	DRAm,	uses	capacitance	rather	
than flip-flops as the basic storage element and must be periodically refreshed in order to main-
tain the stored data.

s y s t e m  n o t e
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The operation and truth table for a negative edge-triggered D flip-flop are the same as 
those	for	a	positive	edge-triggered	device	except	that	the	falling	edge	of	the	clock	pulse	is	
the triggering edge.

(a)

(b)

D

Q

CLK

Q
1

0

1

0

1

0

1

0
1 2 3 4 5 6

FiGure 19 

e X a m p L e  4

Determine the Q and Q output waveforms of the flip-flop in Figure 18 for the D 
and	CLK	inputs	in	Figure	19	(a).	Assume	that	the	positive	edge-triggered	flip-flop	
is	initially	RESET.

s o L u t i o n

 1. At clock pulse 1, D	is	LoW,	so	Q	remains	LoW.

 2. At clock pulse 2, D	is	LoW,	so	Q	remains	LoW	(RESET).

 3. At clock pulse 3, D is HIGH, so Q	goes	HiGH	(SET).

 4. At	clock	pulse	4,	D	is	LoW,	so	Q	goes	LoW	(RESET).

 5. At	clock	pulse	5,	D is HIGH, so Q	goes	HiGH	(SET).

 6. At clock pulse 6, D is HIGH, so Q stays HIGH.

Once Q is determined, Q is easily found since it is simply the complement of Q. 
The resulting waveforms for Q and Q	are	shown	in	Figure	19(b)	for	the	input	
waveforms.

r e L a t e d  p r o b L e m

Determine Q and Q for the D	input	in	Figure	19(a)	if	the	flip-flop	is	a	negative	
edge-triggered device.

D

Q

Q

C

FiGure 18 

e X a m p L e  5

Given	the	waveforms	in	Figure	20(a)	for	the	D input and the clock, determine the 
Q	output	waveform	if	the	flip-flop	starts	out	RESET.
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the edGe-triGGered j-K FLip-FLop The J and K inputs of the j-K flip-
flop are synchronous inputs because data on these inputs are transferred to the flip-flop’s 
output	only	on	the	triggering	edge	of	the	clock	pulse.	When	J is HIGH and K	is	LoW,	the	
Q output goes HIGH on the triggering edge of the clock pulse, and the flip-flop is SET. 
When	J	is	LoW	and	K is HIGH, the Q	output	goes	LoW	on	the	triggering	edge	of	the	
clock	pulse,	and	the	flip-flop	is	RESET.	When	both	J and K	are	LoW,	the	output	does	not	
change	from	its	prior	state.	When	J and K are both HIGH, the flip-flop changes state on the 
triggering edge of the clock. This is called the toggle mode.

This basic operation of a positive edge-triggered flip-flop is illustrated in Figure 21, 
and	Table	3	is	the	truth	table	for	this	type	of	flip-flop.	Remember,	 the flip-flop cannot 
change state except on the triggering edge of a clock pulse. The J and K inputs can be 
changed	at	any	time	when	the	clock	input	is	LoW	or	HiGH	(except	for	a	very	short	inter-
val	around	the	triggering	transition	of	the	clock)	without	affecting	the	output.

s o L u t i o n

The Q output goes to the state of the D input at the time of the positive-going 
clock	edge.	The	resulting	output	is	shown	in	Figure	20(b).

r e L a t e d  p r o b L e m

Determine the Q output for the D flip-flop if the D	 input	 in	Figure	 20(a)	 is	
inverted.

CLK

(a) D

Q(b)

D

Q

Q

C

fg07_02100FiGure 20 

in the toggle mode, a j-K 
flip-flop changes state on 
every clock pulse.

J

K

Q = Q0 (no change)

(c) J = 0, K = 0; flip-flop does not change. (If SET, it
remains SET; if RESET, it remains RESET.)

C
t0

0

0

J

K

Q

(a) J = 1, K = 0; flip-flop SETS on positive clock
edge. (If already SET, it remains SET.)

C
t0

1

0

CLK
t0

1

0
J

K

Q

(b) J = 0, K = 1; flip-flop RESETS on positive
clock edge. (If already RESET, it remains
RESET.)

C
t0

t0

0

1

t0

1

0

Q

Q

Q

J

K

Q 

(d) J = 1, K = 1; flip-flop changes on each clock pulse
(toggle).

C

1

1 Q

Q

Q

FiGure 21 operation of a positive edge-triggered j-K flip-flop.
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The	operation	and	truth	table	for	a	negative	edge-triggered	J-K	flip-flop	are	the	same	
as	those	for	a	positive	edge-triggered	device	except	that	the	falling	edge	of	the	clock	pulse	
is the triggering edge.

Table	3	 •	 truth table for a positive edge-triggered 
j-K flip-flop.

inputs outputs

J K cLK Q Q comments

0 0 c Q0 Q0 No change

0 1 c 0 1 RESET

1 0 c 1 0 SET

1 1 c Q0 Q0 Toggle

c = clock	transition	LoW	to	HiGH
Q0 = output level prior to clock transition

(a)

J

K

(b)

1 2 3 4 5
1

0CLK

Q

1

0
1

0

1

0
Toggle No

change
Reset Set Set

J

Q

Q

C

K

CLK

fg07_02400

FiGure 22 

e X a m p L e  6

The	waveforms	in	Figure	22(a)	are	applied	to	the	J, K, and clock inputs as indicated. Determine the Q output, 
assuming	that	the	flip-flop	is	initially	RESET.

s o L u t i o n

Since this is a negative edge-triggered flip-flop, as indicated by the “bubble” at the clock input, the Q output will 
change only on the negative-going edge of the clock pulse.

 1. At the first clock pulse, both J and K	are	HiGH;	and	because	this	is	a	toggle	condition,	Q goes HIGH.

 2. At	clock	pulse	2,	a	no-change	condition	exists	on	the	inputs,	keeping	Q at a HIGH level.

 3. When	clock	pulse	3	occurs,	J	is	LoW	and	K	is	HiGH,	resulting	in	a	RESET	condition;	Q	goes	LoW.

 4. At	clock	pulse	4,	J is HIGH and K	is	LoW,	resulting	in	a	SET	condition;	Q goes HIGH.

 5. A	SET	condition	still	exists	on	J and K	when	clock	pulse	5	occurs,	so	Q will remain HIGH.

The resulting Q	waveform	is	indicated	in	Figure	22(b).

r e L a t e d  p r o b L e m

Determine the Q	output	of	the	J-K	flip-flop	if	the	J and K	inputs	in	Figure	22(a)	are	inverted.

330



LATCHES,	FLip-FLopS, 	AnD	TimERS

e X a m p L e  7

Determine the Q and Q output waveforms of the flip-flop in Figure 23 for the J, 
K,	and	CLK	inputs	in	Figure	24(a).	Assume	that	the	positive	edge-triggered	flip-
flop	is	initially	RESET.

(a)

(b)

J

K

Q

CLK

Q
1

0

1

0

1

0

1

0

1

0
1 2 3 4 5 6

FiGure 24 

J

QK

Q

C

FiGure 23 

s o L u t i o n

 1. At clock pulse 1, J	is	LoW	and	K	is	LoW,	so	Q does not change.

 2. At clock pulse 2, J	is	LoW	and	K is HIGH, so Q	remains	LoW	(RESET).

 3. At clock pulse 3, J is HIGH and K	is	LoW,	so	Q	goes	HiGH	(SET).

 4. At	clock	pulse	4,	J	is	LoW	and	K is HIGH, so Q	goes	LoW	(RESET).

 5. At	clock	pulse	5,	J is HIGH and K is HIGH, so Q	toggles	HiGH	(SET).

 6. At clock pulse 6, J is HIGH and K is HIGH, so Q	toggles	LoW.

Once Q is determined, Q is easily found since it is simply the complement of Q. 
The resulting waveforms for Q and Q	are	shown	in	Figure	24(b)	for	the	input	
waveforms	in	part	(a).

r e L a t e d  p r o b L e m

Determine Q and Q for the J and K	 inputs	in	Figure	24(a)	if	the	flip-flop	is	a	
negative edge-triggered device.

e X a m p L e  8

The	waveforms	in	Figure	25(a)	are	applied	to	the	flip-flop	as	shown.	Determine	
the Q	output,	starting	in	the	RESET	state.
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asynchronous preset and clear inputs
For the flip-flops just discussed, the D and J-K inputs are called synchronous inputs 
because data on these inputs are transferred to the flip-flop’s output only on the triggering 
edge	of	the	clock	pulse;	that	is,	the	data	are	transferred	synchronously	with	the	clock.

Most flip-flops also have asynchronous inputs. These are inputs that affect the state of 
the flip-flop independent of the clock. They are normally called preset	 (PRE)	and	clear 
(CLR),	or	direct set (SD) and direct reset (RD). An active level on the preset input will set the 
flip-flop,	and	an	active	level	on	the	clear	input	will	reset	it.	A	logic	symbol	for	a	J-K	flip-flop	
with	preset	and	clear	inputs	is	shown	in	Figure	26.	These	inputs	are	active-LoW,	as	indicated	
by the bubbles. These preset and clear inputs must both be kept HIGH for synchronous 
operation.	in	normal	operation,	preset	and	clear	would	not	be	LoW	at	the	same	time.

an active preset input 
makes the Q output hiGh 
(set).

an active clear input 
makes the Q output LoW 
(reset).

All logic operations that are performed with hardware can also be implemented in software. For 
example,	the	operation	of	a	J-K	flip-flop	can	be	performed	with	specific	computer	instructions.	if	
two bits were used to represent the J and K inputs, the computer would do nothing for 00, a data 
bit representing the Q	output	would	be	set	(1)	for	10,	the	Q	data	bit	would	be	cleared	(0)	for	01,	
and the Q data bit would be complemented for 11. Although it may be unusual to use a computer 
to simulate a flip-flop, the point is that all hardware operations can be simulated using software.

s y s t e m  n o t e

J

Q

Q

C

K

PRE

CLR

fg07_02600

FiGure 26 Logic symbol for 
a j-K flip-flop with active-
LoW preset and clear inputs.

s o L u t i o n

The Q output assumes the state determined by the states of the J and K inputs at the 
positive-going	edge	(triggering	edge)	of	the	clock	pulse.	A	change	in	J or K after the 
triggering	edge	of	the	clock	has	no	effect	on	the	output,	as	shown	in	Figure	25(b).

r e L a t e d  p r o b L e m

Interchange the J and K inputs and determine the resulting Q output.

CLK

J

K

Q

Q

Q

C

J

K

(a)

(b)

fg07_02500
FiGure 25 

332



LATCHES,	FLip-FLopS, 	AnD	TimERS

Frequency division
one	application	of	a	flip-flop	is	dividing	(reducing)	the	frequency	of	a	periodic	waveform.	
When	a	pulse	waveform	is	applied	to	the	clock	input	of	a	D	or	J-K	flip-flop	that	is	con-
nected to toggle (D = Q or J = K = 1), the Q output is a square wave with one-half the 
frequency of the clock input. Thus, a single flip-flop can be applied as a divide-by-2 device, 
as is illustrated in Figure 28. As you can see, the flip-flop changes state on each triggering 
clock	edge	(positive	edge-triggered	in	this	case)	for	both	a	D	and	a	J-K	flip-flop.	This	
results in an output that changes at half the frequency of the clock waveform.

D

Q

Q

C

PRE

CLR

(a)

(b)

1 2 3 4 5CLK

Q

D

6 7 8 9

Preset Clock Clear

PRE

CLR

FiGure 27 open file F06-27 to verify the operation.

e X a m p L e  9

For the positive edge-triggered D flip-flop with preset and clear inputs in Figure 
27,	determine	the	Q	output	for	the	inputs	shown	in	the	timing	diagram	in	part	(a)	
if Q	is	initially	LoW.

s o L u t i o n

 1. During clock pulses 1, 2, and 3, the preset (PRE)	is	LoW,	keeping	the	flip-
flop SET regardless of the synchronous D input.

 2. For	clock	pulses	4,	5,	6,	and	7,	the	output	follows	the	input	on	the	triggering	
edge of the clock pulse because both PRE and CLR are HIGH.

 3. For clock pulses 8 and 9, the clear (CLR)	input	is	LoW,	keeping	the	flip-
flop	RESET	regardless	of	the	synchronous	inputs.

The resulting Q	output	is	shown	in	Figure	27(b).

r e L a t e d  p r o b L e m

If you interchange the PRE and CLR	waveforms	in	Figure	27(a),	what	will	the	Q 
output look like?

muLtisim
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Further division of a clock frequency can be achieved by using the output of one flip-
flop as the clock input to a second flip-flop, as shown in Figure 29. The frequency of the 
QA output is divided by 2 by flip-flop B. The QB output is, therefore, one-fourth the fre-
quency of the original clock input. Propagation delay times are not shown on the timing 
diagrams.

By connecting flip-flops in this way, a frequency division of 2n is achieved, where n 
is	the	number	of	flip-flops.	For	example,	three	flip-flops	divide	the	clock	frequency	by	
23

= 8; four flip-flops divide the clock frequency by 24 = 16; and so on.

CLK

Q

Q

HIGH

CLKCLK

J

C

K

D

Q

Q

C

FiGure 28 the d and j-K flip-flops as  divide-by-2 
devices. Q is one-half the frequency of cLK.

QA

CLK

HIGH

Flip-flop A

QB

HIGH

Flip-flop B

CLK

QA

QB

J

C

K

J

C

K

fg07_03800

FiGure 29 Example	of	two	J-K	flip-flops	used	
to divide the clock frequency by 4. QA is one-half 
and QB is one-fourth the frequency of cLK.

QAJ

C

K

Flip-flop A

f in

QBJ

C

K

Flip-flop B

QCJ

C

K

Flip-flop C

 fout

HIGH

fg07_03900

FiGure 30 

e X a m p L e  1 0

Develop the fout	waveform	for	the	circuit	in	Figure	30	when	an	8	kHz	square	
wave input is applied to the clock input of flip-flop A.

s o L u t i o n

The three flip-flops are connected to divide the input frequency by eight (23
= 8) 

and the fout waveform is shown in Figure 31. Since these are positive edge-
triggered flip-flops, the outputs change on the positive-going clock edge. There is 
one	output	pulse	for	every	eight	input	pulses,	so	the	output	frequency	is	1	kHz.	
Waveforms	of	QA and QB are also shown.
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counting
Another important application of flip-flops is in digital counters. The concept is illus-
trated	in	Figure	32.	negative	edge-triggered	J-K	flip-flops	are	used	for	illustration.	Both	
flip-flops	are	initially	RESET.	Flip-flop	A	toggles	on	the	negative-going	transition	of	
each clock pulse. The Q output of flip-flop A clocks flip-flop B, so each time QA makes 
a	HiGH-to-LoW	transition,	flip-flop	B	toggles.	The	resulting	QA and QB waveforms are 
shown in the figure.

f in

QA

fout

QB

fg07_04000

FiGure 31 

r e L a t e d  p r o b L e m

How many flip-flops are required to divide a frequency by thirty-two?

HIGH

J

C

K

CLK

Flip-flop A

J

C

K

Flip-flop B

QA

QB

1 2 3 4 5 6 7 8

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 2 3 0 1 2 3

CLK

QA

QB

Binary
sequence

Binary
sequence

fg07_04100

FiGure 32 Flip-flops used to generate a binary count 
sequence. two repetitions (00, 01, 10, 11) are shown.

Observe the sequence of QA and QB in Figure 32. Prior to clock pulse 1, QA = 0 and 
QB = 0; after clock pulse 1, QA = 1 and QB = 0; after clock pulse 2, QA = 0 and 
QB = 1; and after clock pulse 3, QA = 1 and QB = 1. If we take QA as the least signifi-
cant bit, a 2-bit sequence is produced as the flip-flops are clocked. This binary sequence 
repeats every four clock pulses, as shown in the timing diagram of Figure 32. Thus, the 
flip-flops	are	counting	in	sequence	from	0	to	3	(00,	01,	10,	11)	and	then	recycling	back	to	
0 to begin the sequence again.
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FiGure 33 
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fg07_04300

FiGure 34 

e X a m p L e  1 1

Determine the output waveforms in relation to the clock for QA, QB, and QC in 
the circuit of Figure 33 and show the binary sequence represented by these 

waveforms.

s o L u t i o n

The	output	timing	diagram	is	shown	in	Figure	34.	notice	that	the	outputs	change	
on the negative-going edge of the clock pulses. The outputs go through the binary 
sequence 000, 001, 010, 011, 100, 101, 110, and 111 as indicated.

r e L a t e d  p r o b L e m

How many flip-flops are required to produce a binary sequence representing 
	decimal	numbers	0	through	15?

traFFic siGnaL controL system, 
sequentiaL LoGic
Recall	from	Section	1	that	the	sequential	logic	is	one	of	the	component	blocks	of	the	traffic	
signal	control	system.	The	diagram	in	Figure	35	shows	how	two	D	flip-flops	can	be	used	to	
implement the Gray code counter. Outputs for the counter control logic provide the D 
inputs to the flip-flops, so they sequence through the proper states.

The	D	flip-flop	transition	table	is	shown	in	Table	4.	A	next-state	table	developed	
from	the	state	diagram	in	Figure	2	is	shown	in	Table	5.

the counter controL LoGic	 Using	Tables	4	and	5,	the	conditions	required	
for	each	flip-flop	 to	go	 to	 the	1	 state	can	be	determined.	For	example,	G0 goes from 
0 to 1 when the present state is 00 and the condition on input D0 is TLVs, as indicated 

s y s t e m  e X a m p L e  1
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on	the	second	row	of	Table	5.	D0 must be a 1 to make G0 go to a 1 or to remain a 1 on the 
next	clock	pulse.	A	Boolean	expression	describing	the	conditions	that	make	D0 a 1 is 
derived	from	Table	5	as	follows,	where	Q1 = G1 and Q0 = G0:

D0 = G1G0TLVs + G1G0TS + G1G0TS + G1G0TLVs

In the two middle terms, the TS and the TS	variables	cancel,	leaving	the	expression

D0 = G1G0TLVs + G1G0 + G1G0TLVs

It can be shown that the D0	expression	can	be	further	simplified	using	the	Karnaugh map 
method	(See	the	website	for	coverage	of	the	Karnaugh	map	method).

D0 = G1TLVs + G1G0 + G0TLVs

D1

Input logic
D0

C

10 kHz clock

G0

G1
TS
TL
Vs

C

Q1

To state
decoder

Q0

fg08_06300

FiGure 35 sequential logic diagram with two d flip-flops used to  implement a 
counter.

Table	4	 •	 d flip-flop transition table.

output transitions FLip-FLop input

QN QN�1 D

0 S 0 0

0 S 1 1

1 S 0 0

1 S 1 1

Table	5	 •	 Next-state	table	for	the	counter.

present state neXt state FF inputs

Q1 Q0 Q1 Q0 input conditions D1 D0

0 0 0 0 TL + Vs 0 0

0 0 0 1 TLVs 0 1

0 1 0 1 TS 0 1

0 1 1 1 TS 1 1

1 1 1 1 TL Vs 1 1

1 1 1 0 TL + Vs 1 0

1 0 1 0 TS 1 0

1 0 0 0 TS 0 0
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TL

Vs

TS

G0

C

D0 Q0

C

D1 Q1 G1

Gray
code

Clock

fg08_06400

FiGure 36 complete diagram of the sequential logic.

Also,	from	Table	5,	an	expression	for	D1 can be developed as follows where Q1 = G1 
and Q0 = G0:

D1 = G1G0TS + G1G0TLVs + G1G0TL + G1G0Vs + G1G0TS

It can be shown that the D1	 expression	 can	 be	 further	 simplified	 using	Boolean	 and	
	Karnaugh	map	methods.

D1 = G0TS + G1TS

Based	on	the	minimized	expressions	for	D0 and D1, the complete sequential logic diagram 
is shown in Figure 36.

1. Describe the main difference between a gated D latch and an 
edge-triggered D flip-flop.

2. How	does	a	J-K	flip-flop	differ	from	a	D	flip-flop	in	its	basic	
operation?

3. Assume that the flip-flop in Figure 20 is negative edge-trig-
gered.	Describe	the	output	waveform	for	the	same	CLK	and	D 
waveforms.

4. How	must	a	J-K	flip-flop	be	connected	to	function	as	a	divide-
by-2 device?

5. How	many	flip-flops	are	required	to	produce	a	divide-by-64	
device?

section 3 checKup
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propagation delay times
A propagation delay time is the interval of time required after an input signal has been 
applied for the resulting output change to occur. Four categories of propagation delay 
times are important in the operation of a flip-flop:

 1. Propagation delay tPLH as measured from the triggering edge of the clock pulse to the 
LoW-to-HiGH	transition	of	the	output.	This	delay	is	illustrated	in	Figure	37(a).

 2. Propagation delay tPHL as measured from the triggering edge of the clock pulse to the 
HiGH-to-LoW	transition	of	the	output.	This	delay	is	illustrated	in	Figure	37(b).

4 FLip-FLop operatinG  
characteristics

50% point on triggering edge

50% point on LOW-to-HIGH
transition of Q

tPLH

CLK

Q

(a)

tPHL

Q

CLK 50% point

50% point on HIGH-to-LOW
transition of Q

(b)

fg07_03200

FiGure 37 propagation delays, clock to output.

tPHL

(a) (b)

CLR

Q50% point

tPLH

Q

PRE 50% point

50% point

50% point

fg07_03300

FiGure 38 propagation delays, preset input to output and clear input to output.

 3. Propagation delay tPLH as measured from the leading edge of the preset input to the 
LoW-to-HiGH	transition	of	the	output.	This	delay	is	illustrated	in	Figure	38(a)	for	
an	active-LoW	preset	input.

 4. Propagation delay tPHL as measured from the leading edge of the clear input to the 
HiGH-to-LoW	transition	of	the	output.	This	delay	is	illustrated	in	Figure	38(b)	for	
an	active-LoW	clear	input.

the performance, operating requirements, and limitations of flip-flops are specified by several 
operating characteristics or parameters found on the data sheet for the device. Generally, the 
specifications are applicable to all cmos and bipolar (ttL) flip-flops.

after completing this section, you should be able to

•	 Define	propagation delay time

•	 Explain	the	various	propagation	delay	time	specifications

•	 Define	set-up time and discuss how it limits flip-flop operation

•	 Define	hold time and discuss how it limits flip-flop operation

•	 Discuss	the	significance	of	maximum	clock	frequency

•	 Discuss	the	various	pulse	width	specifications

•	 Define	power dissipation and calculate its value for a specific device
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set-up time
The set-up time (ts) is the minimum interval required for the logic levels to be maintained 
constantly	on	the	inputs	(J and K, or D)	prior	to	the	triggering	edge	of	the	clock	pulse	in	
order for the levels to be reliably clocked into the flip-flop. This interval is illustrated in 
Figure 39 for a D flip-flop.

50% point

50% point on triggering edge

Set-up time (ts)

CLK

D

fg07_03400

FiGure 39 set-up time (ts). the logic level must be present on 
the D input for a time equal to or greater than ts before the trig-
gering edge of the clock pulse for reliable data entry.

Hold time (th)

CLK

D

50% point on
triggering edge

50% point

fg07_03500

FiGure 40 hold time (th). the logic level must remain on the 
D input for a time equal to or greater than th after the triggering 
edge of the clock pulse for reliable data entry.

hold time
The hold time (th) is the minimum interval required for the logic levels to remain on the 
inputs after the triggering edge of the clock pulse in order for the levels to be reliably 
clocked	into	the	flip-flop.	This	is	illustrated	in	Figure	40	for	a	D	flip-flop.

Maximum	Clock	Frequency
The	maximum	clock	frequency	(fmax) is the highest rate at which a flip-flop can be reliably 
triggered.	At	clock	 frequencies	above	 the	maximum,	 the	flip-flop	would	be	unable	 to	
respond quickly enough, and its operation would be impaired.

pulse Widths
Minimum pulse widths (tPW) for reliable operation are usually specified by the manufac-
turer for the clock, preset, and clear inputs. Typically, the clock is specified by its mini-
mum	HiGH	time	and	its	minimum	LoW	time.

power dissipation
The power dissipation of any digital circuit is the total power consumption of the device. 
For	example,	if	the	flip-flop	operates	on	a	+5 V	dc	source	and	draws	5	mA	of	current,	the	
power dissipation is

P = VCC * ICC = 5 V * 5 mA = 25 mW

h a n d s  o n  t i p
An advantage of CMOS is that 
it can operate over a wider 
range of dc supply voltages 
(typically	2	V	to	6	V)	than	
bipolar and, therefore, less 
expensive	power	supplies	that	
do not have precise regulation 
can be used. Also, batteries can 
be used as secondary or 
primary sources for CMOS 
circuits. In addition, lower 
voltages mean that the IC 
dissipates less power. The 
drawback is that the 
performance of CMOS is 
degraded with lower supply 
voltages.	For	example,	the	
guaranteed	maximum	clock	
frequency of a CMOS flip-flop 
is much less at VCC = 2 V 
than at VCC = 6 V.
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The power dissipation is very important in most applications in which the capacity of 
the	dc	supply	is	a	concern.	As	an	example,	let’s	assume	that	you	have	a	digital	system	that	
requires	a	total	of	ten	flip-flops,	and	each	flip-flop	dissipates	25	mW	of	power.	The	total	
power requirement is

PT = 10 * 25 mW = 250 mW = 0.25 W

This tells you the output capacity required of the dc supply. If the flip-flops operate on 
+5 V dc, then the amount of current that the supply must provide is

I =
250 mW

5 V
= 50 mA

You must use a +5 V	dc	supply	that	is	capable	of	providing	at	least	50	mA	of	current.

1. Define the following:

(a) set-up time  (b) hold time

2. Assume one flip-flop has a tPHL = 17 ns and another has a 
tPHL = 40 ns.	Which	flip-flop	can	be	operated	at	the	highest	
frequency?

section 4 checKup

5 timers
two basic types of timing circuits commonly used in electronic systems are the one-shot or 
monostable multivibrator and the free-running or astable multivibrator. the one-shot is a 
device with only one stable state. a one-shot is normally in its stable state and will change to its 
unstable state only when triggered. once it is triggered, the one-shot remains in its unstable 
state for a predetermined length of time and then automatically returns to its stable state. the 
time that the device stays in its unstable state determines the pulse width of its output. the 
astable multivibrator has no stable state and changes back and forth between its two unstable 
states at a specified rate.

after completing this section, you should be able to

•	 Describe	the	basic	operation	of	a	one-shot

•	 Explain	how	a	nonretriggerable	one-shot	works

•	 Explain	how	a	retriggerable	one-shot	works

•	 Set	up	specific	one-shots	to	obtain	a	given	output	pulse	width

•	 Describe	the	basic	elements	of	a	555	timer

•	 Set	up	a	555	timer	as	a	one-shot

•	 Set	up	a	555	timer	as	an	astable	multivibrator

Figure	41	shows	the	block	diagram	of	a	one-shot	(monostable	multivibrator)	that	is	
composed	of	a	logic	section	and	a	timing	section.	When	a	pulse	is	applied	to	the	trigger 
input, the output of the one-shot, Q, goes HIGH.

The timing section consists of a resistor and a capacitor. The capacitor immediately 
begins to charge through R. The rate at which it charges is determined by the RC time con-
stant	(the	product	of	the	values	of	the	resistor	and	capacitor).	When	the	capacitor	charges	
to	a	certain	voltage	level,	the	output	of	the	one-shot	goes	back	LoW.	The	duration	of	the	
output pulse, tPW, is proportional to the RC time constant by the equation tPW = kRC, 
where k is a constant of proportionality and depends on the particular device.

a one-shot produces a 
single pulse each time it is 
triggered.
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A	typical	one-shot	logic	symbol	is	shown	in	Figure	42(a),	and	the	same	symbol	with	
an	external	R and C	is	shown	in	Figure	42(b).	The	two	basic	types	of	one-shots	are	nonre-
triggerable and retriggerable.

Trigger input

t0 t0

tPW = kRC

Timing
section

Logic
section

FiGure 41 block diagram of a one-shot.

Trigger

Q

CEXT
REXT

CXQ

Q

RX/CX

Q

+V

(a) (b)

Trigger

fg07_04500

FiGure 42 basic one-shot logic symbols. CX and RX 
stand	for	external	components.

Q

Q

(a)

(b)

Trigger

tPW

These pulses are
ignored by the
one-shot.

tPW

Trigger

FiGure 43 nonretriggerable one-shot action.

A nonretriggerable one-shot will not respond to any additional trigger pulses from 
the time it is triggered into its unstable state until it returns to its stable state. In other 
words, it will ignore any trigger pulses occurring before it times out. The time that the one-
shot remains in its unstable state is the pulse width of the output.

Figure	43	shows	the	nonretriggerable	one-shot	being	triggered	at	intervals	greater	
than its pulse width and at intervals less than the pulse width. Notice that in the second 
case, the additional pulses are ignored.

A retriggerable one-shot can be triggered before it times out. The result of retrigger-
ing	is	an	extension	of	the	pulse	width	as	illustrated	in	Figure	44.

h a n d s  o n  t i p
In normal operation, a one-shot 
produces only a single pulse, 
which can be difficult to 
measure on an oscilloscope 
because the pulse does not 
occur regularly. To obtain a 
stable display for test purposes, 
it is useful to trigger the one-
shot from a pulse generator that 
is set to a longer period than 
the	expected	pulse	width	and	
trigger the oscilloscope from 
the same pulse. For very long 
pulses, either store the 
waveform using a digital 
storage oscilloscope or shorten 
the time constant by some 
known	factor.	For	example,	
replace a 1000 mF capacitor 
with a 1 mF capacitor to shorten 
the time by a factor of 1000. A 
faster pulse is easier to see and 
measure in an oscilloscope.
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a sequentiaL timer
One practical one-shot application is a sequential timer that can be used to illuminate a 
series	of	lights.	This	type	of	circuit	can	be	used,	for	example,	in	a	lane	change	directional	
indicator	for	highway	construction	projects,	as	shown	in	Figure	45,	or	in	sequential	turn	
signals on automobiles.

Figure	46	shows	three	one-shots	connected	as	a	sequential	timer.	The	
labels	RX/CX	and	CX	are	for	 the	external	connection	of	 resistance	and	
capacitance. This particular circuit produces a sequence of three 1 s pulses. 
The first one-shot is triggered by a switch closure or a low-frequency pulse 
input,	producing	a	1	s	output	pulse.	When	the	first	one-shot	(oS	1)	times	out	
and	the	a	1	s	pulse	goes	LoW,	the	second	one-shot	(oS	2)	is	triggered,	also	
producing	a	1	s	output	pulse.	When	this	second	pulse	goes	LoW,	the	third	
one-shot	(oS	3)	is	triggered	and	the	third	1	s	pulse	is	produced.	The	output	
timing is illustrated in the figure. Variations of this basic arrangement can 
be used to produce a variety of timed outputs, such as the one shown in 
Figure	45,	which	would	require	eight	one-shots.	(A	single	one-shot	controls	
the	arrowhead	when	all	five	lights	are	on	at	the	same	time.)	The	time	for	
each light is set with the timing components.

specific one-shots
Two	specific	iC	one-shots	are	the	74121,	which	is	nontriggerable	and	the	74xx122,	which	
is	retriggerable.	The	output	pulse	width	formula	for	the	74121	is

 tpW � 0.7RCeXt (1)

R can be either the internal resistor (2 kV)	or	the	external	resistor	(REXT) with a selected 
value;	0.7	is	the	constant	of	proportionality,	k.

The	pulse	width	formula	for	the	74xx122	is

 tpW � 0.32RCeXt a1 �
0.7
R

b  (2)

R can be either the internal resistor (10 kV)	or	the	external	resistor	(REXT) with a selected 
value;	0.32 (1 + 0.7>R)	is	the	constant	of	proportionality,	k.	Refer	to	manufacturer’s	data	
sheet for connection details.  

Trigger

Q

(a)

(b)

Q

tPW

tPW

Retriggers
Trigger

FiGure 44 retriggerable one-shot action.

MERGE

FiGure 45 Example	of	a	timing	application.

s y s t e m  e X a m p L e  2
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the 555 timer as a one-shot
The	555	timer is a versatile and widely used IC device because it can be configured in two 
different	modes	as	either	a	monostable	multivibrator	(one-shot)	or	as	an	astable	multivi-
brator	(pulse	oscillator).

An	external	resistor	and	capacitor	connected	as	shown	in	Figure	47	are	used	to	set	up	
the	555	timer	as	a	nonretriggerable	one-shot.	The	pulse	width	of	the	output	is	determined	
by the time constant of R1 and C1 according to the following formula:

 tpW � 1.1R1C1 (3)

The control voltage input is not used and is connected to a decoupling capacitor C2 to pre-
vent noise from affecting the trigger and threshold levels.

Q1
Q2

Q3

RX/CX    CX RX/CX    CX RX/CX    CX

External
timing

components
(RC)

External
timing

components
(RC)

External
timing

components
(RC)

OS 1 OS 2 OS 3

FiGure 46 sequential timer.

C2
0.01    F
(decoupling optional)

RESET

555

VCC

DISCH

THRESH

TRIG

(7)

(6)

(2)

(3)

(5)

R1

(4) (8)

GND

(1)

OUT

CONT

+VCC

C1 µ

fg07_05400

FiGure 47 the 555 timer connected as a one-shot.

Before	a	trigger	pulse	is	applied	to	the	one-shot,	the	output	is	LoW	and	an	internal	
transistor is on, keeping C1	discharged.	When	a	negative-going	trigger	pulse	is	applied	to	
begin the pulse, the output goes HIGH and the internal transistor turns off, allowing capac-
itor C1 to begin charging through R1.	When	C1 charges to one-third of the supply voltage 
(1>3 VCC),	the	output	goes	back	LoW	and	the	internal	transistor	turns	on immediately, dis-
charging C1. The charging rate of C1 determines how long the output is HIGH.
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the 555 timer as an astable multivibrator
An	astable	multivibrator	is	a	device	that	has	no	stable	states;	it	changes	back	and	forth	
(oscillates)	between	two	unstable	states	without	any	external	triggering.	The	resulting	out-
put is typically a square wave that is used as a clock signal in many types of sequential 
logic circuits. Astable multivibrators are also known as pulse oscillators.

A	555	timer	connected	to	operate	as	an	astable	multivibrator	is	shown	in	Figure	48.	
notice	that	the	threshold	input	(THRESH)	is	now	connected	to	the	trigger	input	(TRIG).	
The	external	components	R1, R2, and C1 form the timing network that sets the frequency of 
oscillation. The 0.01 mF capacitor, C2,	connected	to	the	control	(CONT)	input	is	strictly	for	
decoupling	and	has	no	effect	on	the	operation;	in	some	cases	it	can	be	left	off.

e X a m p L e  1 2

What	is	the	output	pulse	width	for	a	555	monostable	circuit	with	R1 = 2.2 kV 
and C1 = 0.01 mF?

s o L u t i o n

From Equation 3 the pulse width is

tPW = 1.1R1C1 = 1.1(2.2 kV)(0.01 mF) = 24.2 Ms

r e L a t e d  p r o b L e m

For C1 = 0.01 mF, determine the value of R1 for a pulse width of 1 ms.

C2
0.01    F
(decoupling optional)

µ

RESET

555

VCC

DISCH

THRESH

TRIG

(7)

(6)

(2)

(3)

(5)

C1

(4) (8)

GND

(1)

OUT

CONT

+VCC

R1

R2

fg07_05700

FiGure 48 the 555 timer connected as an astable 
 multivibrator (oscillator).

Initially, when the power is turned on, the capacitor (C1) is uncharged and thus the 
trigger voltage is at 0 V. This causes the internal transistor to be off. Now, C1 begins charg-
ing through R1 and R2.	When	the	capacitor	voltage	reaches	2>3 VCC, the internal transistor 

All computers require a timing source to provide accurate clock waveforms. The timing sec-
tion controls all system timing and is responsible for the proper operation of the system hard-
ware. The timing section usually consists of a crystal-controlled oscillator and counters for 
frequency	division.	Using	a	high-frequency	oscillator	divided	down	to	a	lower	frequency	pro-
vides for greater accuracy and frequency stability.

s y s t e m  n o t e
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By selecting R1 and R2, the duty cycle of the output can be adjusted. Since C1 charges 
through R1 + R2 and discharges only through R2, duty cycles approaching a minimum of 
50	percent	can	be	achieved	if	R2 W R1 so that the charging and discharging times are 
approximately	equal.

An	expression	for	the	duty	cycle	is	developed	as	follows.	The	time	that	the	output	is	
HIGH (tH) is how long it takes C1 to charge from 1>3 VCC to 2>3 VCC.	it	is	expressed	as

 tH � 0.7(R1 � R2)C1 (5)

The	time	that	the	output	is	LoW	(tL) is how long it takes C1 to discharge from 1>3 VCC to 
2>3 VCC.	it	is	expressed	as

 tL � 0.7R2C1 (6)

The period, T, of the output waveform is the sum of tH and tL. This is the reciprocal of f in 
Equation	4.

T = tH + tL = 0.7(R1 + 2R2)C1

Finally, the duty cycle is

 Duty cycle =
tH
T

=
tH

tH + tL

  duty cycle � ¢ R1 � R2

R1 � 2R2
≤100% (7)

is turned on, creating a discharge path for the capacitor through R2 and the transistor. The 
capacitor now begins to discharge, and at the point where the capacitor discharges down to 
1>3 VCC, the transistor turns off. Another charging cycle begins, and the entire process 
repeats.	The	result	is	a	rectangular	wave	output	whose	duty	cycle	(ratio	of	pulse	width	to	
period)	depends	on	the	values	of	R1 and R2. The frequency of oscillation is given by the 
following	formula,	or	it	can	be	found	using	the	graph	in	Figure	49.

 f �
1.44

(R1 � 2R2)C1
 (4)

( 
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FiGure 49 Frequency of oscillation as a function of C1 
and R1 � 2R2. the sloped lines are values of R1 � 2R2.
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1. Describe the difference between a nonretriggerable and a 
retriggerable one-shot.

2. How is the output pulse width set in most IC one-shots?

3. What	is	the	pulse		width	of	a	555	timer	one-shot	when	
C = 1 mF and R = 10 kV?

4. Explain	the	difference	in	operation	between	an	astable	
 multivibrator and a monostable multivibrator.

5. For a certain astable multivibrator, tH = 15 ms and 
T = 20 ms.	What	is	the	duty	cycle	of	the	output?

section 5 checKup

s o L u t i o n

Use	Equations	4	and	7.

 f =
1.44

(R1 + 2R2)C1
=

1.44

(2.2 kV + 9.4 kV)0.022 mF
= 5.64 khz

 Duty cycle = ¢ R1 + R2

R1 + 2R2
≤100% = ¢ 2.2 kV + 4.7 kV

2.2 kV + 9.4 kV
≤100% = 59.5%

r e L a t e d  p r o b L e m

What	value	of	R2	is	required	to	increase	the	frequency	to	10	kHz?

C2
0.01    F

RESET

555

VCC

DISCH

THRESH

TRIG

+5.5 V

R1
2.2 k�

GND

OUT

CONT

R2

C1
0.022    F

4.7 k�

µµ

fg07_06100

FiGure 50 open file F06-50 to verify 
operation.

e X a m p L e  1 3

A	555	timer	configured	to	run	in	the	astable	mode	(pulse	oscillator)	is	shown	in	
Figure	50.	Determine	the	frequency	of	the	output	and	the	duty	cycle.

muLtisim
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s-r Latch
The	logic	diagram	for	the	programming	model	of	an	S-R	latch	is	shown	in	Figure	51.	The	
latch is described using VHDL and Verilog.

as you know, any logic function must be described with a hardware description language 
(hdL) in preparation for programming it into a pLd. in this section, the s-r latch and the d 
and j-K flip-flops are described in both vhdL and verilog. Keep in mind that in both lan-
guages there is more than one way to describe a given function. refer to the vhdL or verilog 
tutorials on the website.

after completing this section, you should be able to

•	 Use	VHDL	and	Verilog	to	describe	several	types	of	latches	and	flip-flops

•	 Specify	variable	arrays	in	both	VHDL	and	Verilog

•	 Use	comment	lines

6 bistabLe LoGic With vhdL  
and veriLoG

Q

Q

S

R

vhdL

entity	SR	Latch	is
 port	(S,	R:	in bit;	Q,	Qnot:	inout bit);
end entity	SR	Latch;

architecture	SRLatchBehavior	of	SRLatch	is 
begin
	 Q	6= S nand	Qnot;
	 Qnot	6=	R	nand	Q;
end architecture	SR	LatchBehavior;

verilog

module	SRLatch(S,	R,	Q,	notQ);
 output	Q,	notQ;
 input	S,	R;

  assign	Q	= !(S	&&	notQ);
  assign	notQ	= !(R	&&	Q);
endmodule

FiGure 51 Logic diagram and vhdL and verilog programs for the s-r latch. the symbol && 
in the verilog program means and and the symbol ! means not.

d Flip-Flop
The	logic	diagram	for	a	D	flip-flop	is	shown	in	Figure	52.	The	flip-flop	is	described	using	
VHDL	and	Verilog.	The	pulse	transition	detector	converts	the	clock	pulse	(CLK)	to	a	short	
spike	(Clock)	on	its	triggering	edge.	The	VHDL	program	includes	this	triggering	with	the	if 
rising_edge term and in the Verilog program with the @(posedge clock) term.

j-K Flip-Flop
The	logic	diagram	for	a	J-K	flip-flop	is	shown	in	Figure	53.	The	flip-flop	is	described	using	
VHDL	and	Verilog.	The	pulse	transition	detector	converts	the	clock	pulse	(CLK)	to	a	short	
spike	(Clock)	on	its	triggering	edge.	The	VHDL	program	includes	this	triggering	with	the	
if rising_edge term and in the Verilog program with the @(posedge clock) term.
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vhdL

library	ieee;
use	ieee.std_logic_1164.all;

entity DFlipFlop is
 port(D,	Clock:	in std_logic;	Q,	Qnot:	buffer std_logic);
end entity	DFlipFlop;

architecture DFlipFlopBehavior of DFlipFlop is
signal	S,	R:	std_logic;
begin
 process(D,	Clock,	S,	R,	Q,	Qnot)
 begin
  if rising_edge(Clock)	then --Run	if	positive	Clock	edge

    S 6= D nand	clock;
	 	 	 	 R	6= notD nand	clock;
   end if;
	 	 	 	 Q	6= S nand	Qnot;
	 	 	 	 Qnot	6=	R	nand	Q;
 end process;
end architecture	DFlipFlopBehavior;

G1

G2

G3

G4

CLK

Q

Q

Pulse
transition
detector

Clock

D S

R

verilog

module	DFlipFlop(D,	Clock,	Q,	notQ);
 output	Q,	notQ;
 input	D,	Clock;
 reg	S,	R;
 always	@(posedge	Clock)	//Run	if	positive	Clock	edge
  begin
   S 6= !(D	&&	Clock);	
	 	 	 R	6=	(D	&&	Clock);
  end
 assign	Q	= !(S	&&	notQ);
 assign	notQ	= !(R	&&	Q);
endmodule

FiGure 52 Logic diagram and vhdL and verilog programs for the d flip-flop.
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vhdL

library	ieee;
use	ieee.std_logic_1164.all;

entity	JKFlipFlop	is
 port	(J,	K,	Clock:	in std_logic;	Q,	notQ:	buffer std_logic);
end entity	JKFlipFlop;

architecture	JKFlipFlopBehavior	of	JKFlipFlop	is
signal	J1,	K1:	std_logic;
begin
process(J,	K,	Clock,	J1,	K1,	Q,	notQ)
 begin
  if rising_edge(Clock)	then --Run	if	positive	Clock	edge
	 	 	 	 J1	6= not((J	and	Clock)	and	notQ);
	 	 	 	 K1	6= not((K	and	Clock)	and	Q);
  end if;
	 	 	 	 Q	6=	J1	nand	notQ;
	 	 	 	 notQ	6=	K1	nand	Q;
 end process;
end architecture	JKFlipFlopBehavior;

verilog

module	JKFlipFlop(J,	K,	Clock,	Q,	notQ);
 output	Q,	notQ;
 input	J,	K,	Clock;
 reg	J1,	K1;
 always	@(posedge	Clock)	//Run	if	positive	Clock	edge
  begin
	 	 	 J1	6= !(J	&& Clock &&	notQ);
	 	 	 K1	6= !(K	&& Clock &&	Q);
  end
 assign	Q	= !(J1	&&	notQ);
 assign	notQ	= !(J1	&&	Q);
endmodule

FiGure 53 Logic diagram and vhdL and verilog programs for the j-K flip-flop.
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FiGure 54 block diagram of the traffic signal control system.

1. Explain	how	VHDL	specifies	an	edge-triggered	operation.

2. Explain	how	Verilog	specifies	an	edge-triggered	operation.

3. Write	the	lines	of	code	in	both	VHDL	and	Verilog	to	specify	
a negative edge-triggered operation.

4. Define each of the following logical Verilog operators: !, } ,
and &&.

section 6 checKup

7 traFFic siGnaL controL system  
With vhdL and veriLoG

the traffic signal control system presented in section 1 can be implemented in a pLd by first 
describing it with vhdL or verilog. in this section, you will see how each block in the system 
is coded and is used as a component to describe the complete system. as for any vhdL or 
verilog coverage, it will be helpful to refer to the tutorials on the website.

after completing this section, you should be able to

•	 Discuss	the	general	approach	to	programming	a	system	for	implementation	in	a	PLD

•	 See	how	the	VHDL	and	Verilog	programs	are	used	to	implement	the	system

The	traffic	signal	control	system	block	diagram	from	Section	1	is	repeated	in	Figure	54.	
The system consists of three blocks: Timing circuits, Sequential logic, and Combinational 
logic. There is a small difference in that the system clock now also goes to the timing cir-
cuits because of the way in which the timing circuits are implemented.
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the timing circuits block
The	two	parts	of	the	Timing	circuits	block	are	the	Frequency	divider	(FD)	and	the	Timer	
circuits	(TC).	A	system	clock	frequency	of	24	mHz	is	assumed.	The	Frequency	divider	part	
divides	the	24	mHz	system	clock	down	to	a	1	Hz	clock.	The	Timer	circuits	part	simulates	the	
one-shot outputs described in Section 1 to produce outputs of TS = 4 s and TL = 25 s.

Frequency divider The	purpose	of	the	frequency	divider	is	to	produce	a	1	Hz	
clock	for	the	timer	circuits.	The	input	Clkin	in	this	application	is	a	24.00	mHz	oscillator	
that	drives	the	program	code.	SetCount	is	used	to	initialize	the	count	for	a	1	Hz	interval.	
The	program	FreqDivide	counts	up	from	zero	to	the	value	assigned	to	SetCount	(one-half	
the	oscillator	speed)	and	inverts	the	output	identifier	Clkout.

The	integer	value	Cnt	is	set	to	zero	prior	to	operation.	The	clock	pulses	are	counted	
and	compared	to	the	value	assigned	to	SetCount.	When	the	number	of	pulses	counted	
reaches the value in SetCount, the output ClkOut is checked to see if it is currently set to a 
1	or	0.	if	Clkout	is	currently	0,	Clkout	is	assigned	a	1;	otherwise,	Clkin	is	set	to	1.	Cnt	is	
assigned a value of 0 and the process repeats. Toggling the output ClkOut each time the 
value	of	SetCount	is	reached	creates	a	1	Hz	clock	output	with	a	50%	duty	cycle.

vhdL For the Frequency divider 
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FiGure 55 programming model for the traffic signal control system.

A	programming	model	for	the	traffic	signal	control	system	is	shown	in	Figure	55,	
where all the input and output labels are given. Notice that the Timing circuits block is split 
into	two	parts;	the	Frequency	divider	and	the	Timer	circuits;	and	the	Combinational	logic	
block	is	divided	into	the	State	decoder	and	two	logic	sections	(Light	output	logic	and	Trig-
ger	logic).	This	model	will	be	used	to	develop	VHDL	and	Verilog	programs	for	the	system.

library	ieee;
use	ieee.std_logic_1164.all;

entity FreqDivide is
port(Clkln, in std_logic;
  ClkOut: buffer std_logic);
end entity	FreqDivide;

architecture FreqDivide Behavior of FreqDivide is
begin
 FreqDivide: process(Clkln)	
 variable Cnt: integer :=	0;							
 variable SetCount: integer;       

	 	Clkln:	24.00	mHz	clock	driver
Clkout:	output	at	1	Hz

   Cnt: Counts up to value in SetCount
SetCount: Holds 1>2 timer interval value
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begin
 SetCount := 12000000;	--	1/2	duty	cycle
 if (clkin‘event and ClkIn =	‘1’)	then 
  if	(Cnt	=	SetCount)	then
   if ClkOut = ‘0’ then
    ClkOut 6=	‘1’;	--output	high	50%
   else
    ClkOut 6=	‘0’;	--output	Low	50%
   end if;
   Cnt :=	0;
  else
   Cnt := Cnt +	1;	
  end if;
 end if;
end process;
end architecture	FreqDivideBehavior;

SetCount is assigned a value equal to half the  
system	clock	to	produce	a	1	Hz	output.	in	this	 
case,	a	24	mHz	system	clock	is	used.

  The if statement causes program to wait for a 
clock event and clock = 1 to start operation.

Check that the terminal value in SetCount has 
been reached at which time ClkOut is toggled 
and Cnt is reset to 0.

∂

  If terminal value has not been reached, Cnt is incremented.

veriLoG For the Frequency divider 

module Freqdivide	(Clkln, ClkOut);
 input      Clkln;
 inout      ClkOut;
 integer   Cnt =	0;																																	
 integer   SetCount =	12000000;	//1>2 duty cycle
 reg	[0:0]	Q;

 always @(posedge clkln)     
 begin
  if	(Cnt	= = SetCount)
  begin
   if (Clkout	= =	0)
   begin
	 	 	 	 Q	=	1;	//output	high	50%
   end    
   else
   begin
	 	 	 	 Q	=	0;	//output	Low	50%
   end
   Cnt =	0;
  end
  else
  begin
   Cnt = Cnt +	1;									    If terminal value has not been reached. 
  end                                           Cnt is incremented.
 end
 assign ClkOut =	Q;				
endmodule

					Clkln:	24.00	mHz	clock	driver
				Clkout:	output	at	1	Hz
         Cnt: Counts up to value in SetCount
SetCount: Holds 1>2 timer interval value
												Q:	Holds	output	value	within	the	always	block

  The always statement causes program to wait for a 
positive edge clock event.

Check that the terminal value in SetCount has been 
reached at which time ClkOut is toggled and Cnt is 
reset to 0.

				Value	stored	in	Q	is	assigned	to	Clkout	outside	the	
always block.

SetCount is assigned a value equal 
to half the system clock to produce 
a	1	Hz	output.	in	this	case	a	24	mHz	
system clock is used.

 

∂

timer circuits The program TimerCircuits uses two one-shot instances consist-
ing	of	a	25	s	timer	(TLong)	and	a	4	s	timer	(TShort).	The	25	s	and	the	4	s	timers	are	trig-
gered	by	long	trigger	(LongTrig)	and	short	trigger	(ShortTrig).	in	the	VHDL	and	Verilog	
programs,	countdown	timers	driven	by	a	1	Hz	clock	input	(Clk)	replicate	the	one-shot	
components TLong and TShort. The values stored in SetCountLong and SetCountShort 
are assigned to the Duration inputs of one-shot components TLong and TShort, setting the 
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veriLoG For the timinG circuits 

                                                                                                                                            LongTrig: Long timeout timer enable input
                                                                                                                                            ShortTrig: Short timeout timer enable input
																																																																																																																																																					Clk:	1	Hz	Clock	input
                                                                                                                                                      TS: Short timer timeout signal
                                                                                                                                                      TL: Long timer timeout signal

module	TimerCircuits(LongTrig,	ShortTrig,	Clk,	TS,	TL);																																														SetCountLong: Holds long timer duration
 input	LongTrig,	ShortTrig,	Clk;																																																																										 		SetCountShort: Holds short timer duration
 inout	TS,	TL;

 wire[8:0] SetCountLong =	25;												Long and short count times are hard-coded 
 wire[8:0] SetCountShort =	4;														to	25	and	4	based	on	a	1	Hz	clock.
	 oneShot	TLong(.Enable(LongTrig),	.Clk(Clk),	.Duration(SetCountLong),	.Qout(TL));			   Instantiation TLong
	 oneShot	TShort(.Enable(ShortTrig),	.Clk(Clk),	.Duration(SetCountShort),	.Qout(TS));			   Instantiation TShort
endmodule

the sequential Logic block
The	Sequential	 logic	 (SL)	 determines	 the	 sequence	of	 the	 traffic	 lights.	The	program	
SequentialLogic provides the Gray code logic needed to drive the traffic signal system 
based on input from the program TimerCircuits and the side street vehicle sensor. The 
sequential logic code produces a 2-bit Gray code sequence for each of the four sequence 
states defined in the program. The component definition dff is used to instantiate two DFlip-
Flop instances DFF0 and DFF1. DFF0 and DFF1 drive the two-bit Gray code. The Gray 
code output sequences the traffic light system through each of four states. Internal variables 
D0	and	D1	store	the	results	of	the	D0	and	D1	Boolean	expressions	developed	in	System	
Example	1.	The	stored	results	in	D0	and	D1	are	assigned	to	DFlipFlops	DFF0	and	DFF1	
along	with	the	system	clock	to	drive	outputs	G0	and	G1	from	the	DFlipFlop	Q	outputs.

6

25-second	and	4-second	timeouts.	When	Enable	is	set	LoW,	the	one-shot	timer	is	initiated	
and	output	Qout	is	set	HiGH.	When	the	one-shot	timers	time	out,	Qout	is	set	LoW.	The	
output of one-shot component TLong is sent to TimerCircuits identifier TL. The output of 
one-shot component TShort is sent to TimerCircuits identifier TS.

vhdL For the timinG circuits 

library	ieee;																																									
use	ieee.std_logic_1164.all;	 	

entity TimerCircuits is                             
 port(LongTrig, ShortTrig, Clk: in std_logic;         
   TS, TL: buffer std_logic);																																		
end entity	TimerCircuits;																										

architecture TimerBehavior of TimerCircuits is
component OneShot is
 port(Enable,	Clk:	in std_logic;          
   Duration :in integer range 0 to 25;
	 	 	 Qout						:buffer std_logic);
end component	oneShot;

signal SetCountLong, SetCountShort: integer range 0 to 25;
begin
 SetCountLong 6=	25;	
 SetCountShort 6=	4;
  TLong:OneShot port map(Enable=7LongTrig, Clk=7Clk, Duration=7SetCountLong,	Qout=7TL);
  TShort:OneShotport map(Enable=7ShortTrig, Clk=7Clk, Duration=7SetCountShort,	Qout=7TS);
end architecture	TimerBehavior;					

         LongTrig: Long timeout timer enable input
        ShortTrig: Short timeout timer enable input
																		Clk:	1	Hz	Clock	input
                   TS: Short timer timeout signal
                    TL: Long timer timeout signal

Long and short count times are hard-coded  
to	25	and	4	based	on	a	1	Hz	clock.

∂

 Instantiation TLong

 Instantiation TShort

6
SetCountLong: Holds long timer duration
SetCountShort: Holds short timer duration

 Component declaration for OneShot.
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vhdL For the sequentiaL LoGic 

library	ieee;																																																																																			VS: Vehicle sensor input
use	ieee.std_logic_1164.all;                                                           TL: Long timer input
                                                                                                         TS: Short timer input
entity SequentialLogic is                                                               Clk: System clock
port(VS,	TL,	TS,	Clk:	in std_logic;	G0,	G1:	inout std_logic);					G0: Gray code output bit 0
end entity	SequentialLogic;																																																												G1: Gray code output bit 1
                                                                                                         D0: Logic for DFlipFlop DFF0
architecture SequenceBehavior of SequentialLogic is                  D1: Logic for DFlipFlop DFF1

component dff is
port(D,	Clk:	in std_logic;                 Component declaration
Q:	out std_logic);                              for	D	flip-flop	(dff)
end component	dff;

signal D0, D1: std_logic;
begin
D1 6=	(G0	and not	TS)	or	(G1	and	TS);																																						Logic definitions for D flip-flop 
D0 6=	(not G1 and not TL and	VS)	or	(not G1 and	G0)											inputs D0 and D1 derived from 
or	(G0	and TL and	VS);																																																																Boolean	expressions	developed	

in	System	Example	1.
DFF0: dff port map(D=7 D0, Clk =7	Clk,	Q	=7	G0);											

Component instantiationsDFF1: dff port map(D=7 D1, Clk =7	Clk,	Q	=7	G1);

end architecture	SequenceBehavior;

f

6

∂

the combinational Logic block
The combinational logic block consists of three parts: State decoder, Light output logic, 
and Trigger logic.

state decoder The	state	decoder	(SD)	is	part	of	the	Combinational	logic	block.	
The source program StateDecoder decodes the 2-bit Gray code from the program Sequen-
tialLogic to determine which of four states the system is in. The inputs to the state decoder 
are	the	two	Gray	code	bits	G1	and	G0.	The	Boolean	expressions	for	the	four	state	outputs	
S1,	S2,	S3	and	S4,	were	developed	in	Section	1.	For	each	of	the	four	input	codes,	one	and	
only one of the outputs is activated.

                                                                                                         VS: Vehicle sensor input
                                                                                                         TL: Long timer input
                                                                                                         TS: Short timer input
module	SequentialLogic(VS,	TL,	TS,	Clk,	G0,	G1);																				Clk: System clock
input	VS,	TL,	TS,	Clk;																																																																			G0: Gray code output bit 0
inout	G0,	G1;																																																																																		G1: Gray code output bit 1
                                                                                                         D0: Logic for DFlip-Flop DFF0
wire	D0,	D1;																																																																																			D1: Logic for DFlipFlop DFF1

assign D1 =	(G0	&& !TS)	 } 	(G1	&&	TS);																																									
assign D0 =	(!G1  && !TL &&	VS)	 } 	(!G1 &&	G0)	 } 	(G0	&& TL &&	VS);

dff	DFF0(.d(D0),	.Clk(Clk),	.q(G0));							
Component instantiationsdff	DFF1(.d(D1),	.Clk(Clk),	.q(G1));

endmodule

Logic definitions 
for D flip-flop 
inputs D0 and 
D1 derived from 
Boolean	expres-
sions developed 
in System  
Example	1.

6

6

veriLoG For the sequentiaL LoGic
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vhdL For the state decoder 

library	ieee;
use	ieee.std_logic_1164.all;																																																																							G0,G1 :Gray code input
                                                                                                                    S1–S4	:State	output
entity StateDecoder is
port(G0,	G1:	in std_logic;	S1,	S2,	S3,	S4:	out std_logic);
end entity	StateDecoder;
                                                               

architecture StateDecoderBehavior of StateDecoder is 
begin                                                           

S1 6= not G1 and not	G0;
S2 6= not G1 and	G0;				
S3 6= G1 and	G0;															
S4	6= G1 and not	G0;											

end architecture	StateDecoderBehavior;

2-bit Gray code

G1 G0

State 1 0 0

State 2 0 1

State 3 1 1

State	4 1 0

Logic definitions for 
state decoder developed 
in Section 1

∂

veriLoG For the state decoder 

                                                                                                                    G0,G1 :Gray code input
module	StateDecoder(G0,	G1,	S1,	S2,	S3,	S4);																																									S1–S4	:State	output
input	G0,	G1;
output	S1,	S2,	S3,	S4;															

assign S1 = !G1 && !G0;	
assign S2 = !G1 &&	G0;	
assign S3 = G1 &&	G0;
assign	S4	= G1 && !G0;

endmodule  

2-bit Gray code

G1 G0

State 1 0 0

State 2 0 1

State 3 1 1

State	4 1 0

Logic definitions for 
state decoder developed 
in Section 1

∂

LiGht output LoGic This	block	of	logic	accepts	inputs	Sig1–Sig4	from	the	
state	decoder	and	produces	the	traffic	light	outputs	mR,	mY,	mG,	SR,	SY,	and	SG	for	the	
traffic	light	interface	unit.	The	Boolean	expressions	were	developed	in	Section	1	and	are	
implemented in the program TrafficLights, which describes the complete system.

triGGer LoGic This block of logic accepts input Sig1 and Sig3 from the state 
decoder and produces the triggers, LongTime and ShortTime, for the Timer Circuits. The 
Boolean	expressions	were	developed	in	Section	1	and	are	implemented	in	the	program	
TrafficLights.

the complete traffic signal control system
The program TrafficLights completes the traffic signal control system. Components Freq-
Divide, TimerCircuits, SequentialLogic, and StateDecoder are used to compose the com-
pleted	system.	Signal	CLKin	from	the	TrafficLights	program	source	code	is	 the	clock	
input to the FreqDivide component. The frequency divided output ClkOut is stored as 
local variable Clock and is the divided clock input to the TimerCircuits and Sequential-
Logic components. TimerCircuits is controlled by local variables LongTime and Short-
Time, which are controlled by the outputs Sig1 and Sig3 from component StateDecoder. 
StateDecoder	also	provides	outputs	Sig1	through	Sig4	to	control	the	traffic	lights	mG,	SG,	
mY,	SY,	mR,	and	SR.	TimerCircuit	timeout	signals	TS	and	TL	are	stored	in	variables	
TLin	(timer	long	in)	and	TSin	(timer	short	in).
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Signals TSin and TLin from TimerCircuits are used along with vehicle sensor VSin 
as inputs to the SequentialLogic component. The outputs from SequentialLogic G0 and G1 
are stored in variables Gray0 and Gray1 as inputs to component StateDecoder. Component 
StateDecoder	returns	signals	S1	through	S4	which	are	in	turn	passed	to	variables	Sig1	
through	Sig4.	The	values	stored	in	variables	Sig1	through	Sig4	provide	the	logic	for	out-
puts	mG,	SG,	mY,	SY,	mR,	SR;	and	local	timer	triggers	LongTime	and	ShortTime	are	
sent to TimerCircuits.

                                                                                                                                                       VSin : Vehicle sensor input
library	ieee;																																																																																																																																			CLKin	:	System	Clock
use	ieee.std_logic_1164.all;																																																																																																											mR	 :	main	red	light	output
                                                                                                                                                       SR	 :	Side	red	light	output
entity TrafficLights is                                                                                                                    MY : Main yellow light output
port(VSin,	Clkin:	in std_logic;	mR,	SR,	mY,	SY,	mG,	SG:	out std_logic);																													SY : Side yellow light output
end entity	TrafficLights;																																																																																																															MG : Main green light output
                                                                                                                                                       SG : Side green light output

architecture TrafficLightsBehavior of TrafficLights is

component StateDecoder is    
port(G0,	G1:	in std_logic;	S1,	S2,	S3,	S4:	out std_logic);							Component declaration for StateDecoder
end component	StateDecoder;

component SequentialLogic is    
port(VS,	TL,	TS,	Clk:	in std_logic;	G0,	G1:	inout std_logic);							Component declaration for SequentialLogic
end component	SequentialLogic;

component TimerCircuits is    
port(LongTrig,	ShortTrig,	Clk:	in std_logic;	TS,	TL:	buffer std_logic);							Component declaration for TimerCircuits
end component	TimerCircuits;

component FreqDivide is
port(Clkin:	in std_logic;	Clkout:	buffer std_logic);								Component declaration for FreqDivider
end component	FreqDivide;

signal	Sig1,	Sig2,	Sig3,	Sig4,	Gray0,	Gray1:	std_logic;
signal LongTime, ShortTime, TLin, TSin, Clock: std_logic;

begin                                                                                                                          Sig1-4								:	Return	values	from	StateDecoder
mR	6=	Sig3	or	Sig4;																																																																																																		Gray0-1     : SequentialLogic Gray code return
SR	6=	Sig2	or	Sig1;																																																																																																			LongTime : Trigger input to TimerCircuits
MY 6=	Sig2;																																																																																																														ShortTime : Trigger input to TimerCircuits
SY 6=	Sig4;																																																																																																															TLin          : Store TimerCircuits long timeout
MG 6=	Sig1;																																																																																																														TSin          : Store TimerCircuits Short timeout
SG 6=	Sig3;																																																																																																															Clock        : Divided clock from FreqDivide

LongTime 6=	Sig1	or	Sig3;																
Logic definitions for the trigger logicShortTime 6=	not(Sig1	or	Sig3);

SD: StateDecoder  port map(G0	=7 Gray0, G1 =7 Gray1, S1 =7 Sig1, S2 =7 Sig2, S3 =7	Sig3,	S4	=7	Sig4);				
SL: SequentialLogic port map(VS	=7 VSin, TL =7 TLin, TS =7 TSin, Clk =7 Fout, G0 =7 Gray0, G1 =7	Gray1);
TC: TimerCircuits port map(LongTrig=7LongTime, ShortTrig=7ShortTime, Clk=7Clock, TS=7TSin, TL=7TLin);
FD: FreqDivide    port map	(Clkln	=7	CLKin,	Clkout	=7-Clock);

end architecture TrafficLightsBehavior

vhdL For the traFFic siGnaL controL system 

Logic definitions for the 
light output logic

∂

6

f

f

f

f

Component 
instantiationsf
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       veriLoG For the traFFic siGnaL controL system 

                                                                     VSin    : Vehicle sensor input
module	TrafficLights(VSin,	CLKin,	mR,	SR,	mY,	SY,	mG,	SG);	 CLKin	:	System	Clock
input	VSin,	CLKin;		 mR						:	main	red	light	output
output	mR,	SR,	mY,	SY,	mG,	SG;		 SR							:	Side	red	light	output
                            MY      : Main yellow light output
                                  SY       : Side yellow light output
wire	Sig1,	Sig2,	Sig3,	Sig4,	Gray0,	Gray1;		 MG     : Main green light output
wire	LongTime,	ShortTime,	TLin,	TSin,	Clk,	Clock;		 SG       : Side green light output
                   
 Sig1-4								:	Return	values	from	StateDecoder
assign	mR	= Sig3 ||	Sig4;																					 Gray0-1     : SequentialLogic Gray code return
assign	SR	= Sig2 ||	Sig1;		 LongTime : Trigger input to TimerCircuits
assign MY =	Sig2;																									 ShortTime : Trigger input to TimerCircuits
assign SY =	Sig4;																					 TLin          : Store TimerCircuits long timeout
assign MG =	Sig1;								 TSin          : Store TimerCircuits short timeout
assign SG =	Sig3;																 Clock        : Divided clock from FreqDivide
assign LongTime = Sig1 || Sig3 
assign ShortTime =	!(Sig1	||	Sig3);

StateDecoder	SD(.G0(Gray0),	.G1(Gray1),	.S1(Sig1),	.S2(Sig2),	.S3(Sig3),	.S4(Sig4));			
SequentialLogic	SL(.VS(VSin),	.TL(TLin),	.TS(TSin),	.Clk(Clock),	.G0(Gray0),	.G1(Gray1));																		Component instantiations 
TimerCircuits	TC(.LongTrig(LongTime),	.ShortTrig(ShortTime),	.Clk(Clock),	.TS(TSin),	.TL(TLin));
FreqDivide	FD(.Clkin(CLKin),	.Clkout(Clock));

endmodule

Logic definitions for 
the light output logic

Logic definitions for 
the trigger logic6

∂

1. How are the programs broken down in terms of system 
blocks?

2. How is the complete system program formed?

3. Describe the observable difference between VHDL and 
 Verilog programs.

section 7 checKup

8 troubLeshootinG
it is standard practice to test a new circuit or system design to be sure that it is operating as 
specified. this process is sometimes referred to as debugging. a circuit or system can be 
debugged in two ways: software simulation and hardware testing. in software simulation, a 
program such as multisim is used to construct and test the new design. in hardware testing, 
designs are “breadboarded” and tested before the design is finalized. the term breadboard 
refers to a method of temporarily hooking up a circuit so that its operation can be verified and 
any design flaws worked out before a prototype unit is built. once a design has been thor-
oughly tested, the prototype is implemented on one or more circuit boards. a complete system 
test is then done on the boards. in this section, the traffic signal control system is the focus, and 
several aspects of testing, debugging, and troubleshooting will be discussed.

after completing this section, you should be able to

•	 Discuss	software	simulation	applied	to	system	debugging

•	 Describe	prototype	breadboarding	as	a	method	of	testing	a	design.

•	 Explain	several	methods	of	hardware	troubleshooting

V
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multisim software simulation
combinationaL LoGic Figure	56	shows	the	multisim	simulation	screen	for	
the complete combinational logic portion of the traffic signal control system including the 
state decoder, light output logic, and trigger logic. Switches are used to simulate the Gray 
code inputs, and probes are used to indicate the activity on the outputs of the combina-
tional logic. The switches and probes are for simulation testing only and are not part of the 
logic circuit.

timinG circuits Figure	57	shows	the	simulation	screen	for	the	timing	circuits	
portion	of	the	traffic	signal	control	system	including	the	25	s	timer,	4	s	timer,	and	oscilla-
tor. This is an alternate version that differs from the HDL description shown earlier in the 
chapter	and	represents	the	implementation	using	555	timers.

simuLation time versus reaL time Simulation time is based on the 
software	program	and	the	computer	it	is	running	on;	it	is	much	greater	than	real	time	that	
will occur in the actual circuit. For the particular computer used to generate the simulation 
shown	in	Figure	57,	the	ratio	of	simulation	time	to	real	time	is	1000	but	may	vary	depend-
ing on the speed of the computer used to run the software as well as other factors. Because 
of this ratio of simulation time to real time, the RC time constant values for the one-shots 
are 1000 times smaller than the values you would use in an actual hardware circuit.  
By connecting a Multisim probe to a one-shot output and using the switch to trigger  
that one-shot, you can observe the output in real time. A virtual oscilloscope connected to 
that	output	will	record	a	much	shorter	time	than	the	real	time	observation.	For	example,	a	
scope	connected	to	the	output	of	the	25	s	long	timer	(U1)	as	shown	in	Figure	58(a)	will	

fg06_07000

FiGure 56 multisim circuit screen for the combinational logic showing the first state. open 
multisim file F06-56 on the website and run the simulation for the combinational logic portion of 
the traffic signal control system. observe the operation for each of the four states in the light 
sequence.

muLtisim
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prototype checK The computer simulation of timers is more likely to have 
an undetected error because of the simulation versus real time issue previously discussed. 
It is usually advisable to verify a block like this prior to combining it into the complete 
system. For this application, the timing circuits are constructed on a prototyping system, 
and the results are measured carefully. The prototyping system that is selected is one that 
is closely linked to Multisim and can later be used to develop a circuit board. It is the 
National Instruments ELVIS system. The prototype circuit and measured data are shown 
in	Figure	59.

fg07_06800

FiGure 57 multisim screen for a version of the timing circuits. the switches are for test purposes only.

Grace Hopper, a mathematician and pioneer programmer, developed considerable trouble-
shooting	skills	as	a	naval	officer	working	with	the	Harvard	mark	i	computer	in	the	1940s.	She	
found and documented in the Mark I’s log the first real computer bug. It was a moth that had 
been trapped in one of the electromechanical relays inside the machine, causing the computer 
to malfunction. From then on, when asked if anything was being accomplished, those working 
on the computer would reply that they were “debugging” the system. The term stuck, and find-
ing	problems	 in	a	computer	 (or	other	electronic	device),	particularly	 the	software,	would	
always be known as debugging.

s y s t e m  n o t e

display	an	output	pulse	with	a	duration	of	24.2	ms	when	the	timer	is	triggered.	However,	
a	probe	connected	to	that	output	will	stay	on	for	approximately	24	s	(depending	on	the	
computer	and	the	number	of	time	steps	used	in	the	simulation).	The	output	of	the	555	
timer	configured	as	an	oscillator	is	shown	in	Figure	58(b)	using	the	virtual	scope.
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sequentiaL LoGic Figure 60 shows the simulation screen for the sequential 
logic portion of the traffic signal control system.

the compLete traFFic siGnaL controL system Now that all 
three parts of the system have been simulated and tested, they are combined to form the 
complete system. A simulation screen for the complete system is shown in Figure 61. Each 
part of the system has been converted to a Multisim subcircuit.

The main green light will stay on continuously as long as there is no vehicle on the 
side	street.	When	a	vehicle	appears	on	the	side	street,	the	main	green	light	will	time	out	and	
change	to	red	for	25	s	to	allow	side	street	traffic	to	move.	if	there	is	continuous	traffic	on	
the	side	street,	the	main	red	and	green	lights	will	alternate	every	25	s.

Probe light stays on for
approximately 24 s

Scope indicates 24.2 ms

(a) Illustration of one-shot simulation.

(b) 10 kHz oscillator output

Switch is moved to ground
momentarily to trigger one-shot.

fg07_06900
FiGure 58 testing the simulated timer circuit. open multisim file F06-58 on the website. run 
the timing circuit simulation using your multisim software and observe the  operation.

muLtisim
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fg07_07000

FiGure 59  

circuit output

Ul	Long	timer 29 s pulse

U2	Short	timer 4.6	s	pulse

U3	oscillator 9.6	kHz

fg08_06500

FiGure 60 multisim screen for sequential logic simulation. the switches are for test  purposes 
only. When a probe is red, a 1 is indicated. open file F06-60 on the  website using your multisim 
software. all of the inputs are shown as switch inputs for  simulation purposes. set up the input 
conditions for TL, Ts, and Vs. then momentarily make the clock input go LoW (ground) and then 
back hiGh (Vcc). Follow the sequence indicated by the state diagram in Figure 2.

muLtisim

361



LATCHES,	FLip-FLopS, 	AnD	TimERS

development software simulation
Once a new design has been verified by Multisim simulation and prototyping, it is 
described with VHDL or Verilog code. The code is then entered into a computer using 
development software with a text editor,	as	shown	in	Figure	62(a)	for	the	traffic	signal	
control system with VHDL. The code is then compiled by the computer using the devel-
opment software that was used to enter the VHDL or Verilog design into the computer. 
Two	major	types	of	software	development	tools	are	Altera	Quartus	and	Xilinx	iSE,	tutori-
als	for	which	are	available	on	the	website.	When	the	code	is	compiled,	a	test	feature	of	the	

fg08_06600

FiGure 61 simulation of the traffic signal control system with each part represented by a sub-
circuit. open File F06-61 on the website. run the traffic signal controller simulation using your 
multisim software and observe the operation. Lights will appear randomly when first turned on. 
simulation times may vary.

muLtisim

(a) VHDL code is entered on text editor.

FiGure 62 traffic signal control design entered in vhdL and simulated using pLd 
 development software (quartus ii in this case).
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development software is used to specify inputs and run a simulation to produce the 
output	waveform(s)	on	a	screen,	generally	called	the	waveform editor, as shown in 
Figure	62(b).

hardware testing
Let’s assume that the traffic signal control system has been described using the VHDL 
or	Verilog	code	from	Section	7	and	downloaded	into	a	programmable	logic	device	
(pLD)	using	a	development	software	such	as	Altera	Quartus	or	Xilinx	iSE.	The	pLD	
is mounted on a development board such as the one shown in Figure 63. There are 
several methods for testing system circuit boards with PLDs on them.

traditionaL testinG Depending	on	 the	 complexity	of	 the	 system,	
standard	laboratory	or	field	instruments	can	be	used,	as	shown	in	Figure	64.	For	sys-
tems	with	a	large	number	of	waveforms	to	observe,	a	logic	analyzer	instead	of	an	
oscilloscope would be used. You can apply input signals to input pins and check the output 
pins for the proper waveforms. This traditional method is practical for one-of-a kind devel-
opment boards and for the preproduction testing of prototype systems.

bed-oF-naiLs testinG The testing of printed circuit boards at production lev-
els must be done automatically. The bed-of-nails	 (Bon)	method	was	one	of	 the	first	
approaches	to	automated	testing.	The	pc	board	is	placed	on	a	fixture	with	an	array	of	small	
nail-like test probes that make contact with test points on the board. The signals at each test 
point are checked simultaneously by automated test equipment. The concept is illustrated 
in	Figure	65.

Basically, the purpose of automated production testing is to find any manufacturing 
flaws, such as open or shorted pins and wrong, missing, or misaligned components. This 
automated process does not primarily test for functionality of the logic. It is assumed that 
each component has been tested for functionality prior to installation on the circuit board 
and that the only flaws should be those created during manufacturing.

FLyinG probe testinG Another method for testing printed circuit boards is 
called the flying probe method. A typical flying probe and its basic operation are shown in 
Figure 66. A test probe is positioned above a circuit board that is to be tested. The probe 
can	be	automatically	moved	in	three	axes—along	the	x-axis,	the	y-axis,	and	the	z-axis	of	
the	board—to	make	contact	with	any	specified	test	points.	The	movement	of	the	probe	is	
controlled by software that uses the physical layout of the board to determine the coordi-
nates. Many flying probe testers have multiple probes for one board.

The flying probe method of testing overcomes some of the limitations of the bed-of-
nails	method.	First,	the	Bon	method	requires	a	different	fixture	for	each	type	of	circuit	
board,	but	the	flying	probe	method	requires	no	fixture.	Also,	the	flying	probe	can	access	

(b) Simulation waveforms on the waveform editor.

FiGure 62 (continued)

PLD

FiGure 63 a typical development 
board used for programming and test-
ing a pLd. a design specified in 
vhdL or verilog is implemented in 
the pLd.

h a n d s  o n  t i p
Glitches that occur in digital 
systems are very fast 
(extremely	short	in	duration)	
and can be difficult to see on an 
oscilloscope, particularly at 
lower sweep rates. A logic 
analyzer,	however,	can	show	a	
glitch easily. To look for 
glitches	using	a	logic	analyzer,	
select	“latch”	mode	or	(if	
available)	transitional	
sampling. In the latch mode, 
the	analyzer	looks	for	a	voltage	
level	change.	When	a	change	
occurs, even if it is of 
extremely	short	duration	(a	few	
nanoseconds),	the	information	
is	“latched”	into	the	analyzer’s	
memory as another sampled 
data	point.	When	the	data	are	
displayed, the glitch will show 
as an obvious change in the 
sampled data, making it easy to 
identify.
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FiGure 64 traditional test-
ing using standard instru-
ments. an oscilloscope or a 
logic analyzer can be used.  
(photo used with permission from 
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fg11_07300

FiGure 65 bed-of-nails 
automated testing.
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more points on a board because the probe can be moved to any position, and it can access 
the top of the board where the components are.

boundary scan testinG Limited access to test points led to the concept of 
placing	the	test	points	within	the	integrated	circuit	devices	themselves.	most	pLDs	(CpLDs	
and	FpGAs)	include	boundary	scan	logic	as	part	of	their	internal	structure	independent	of	
the	functionality	of	the	logic	programmed	into	the	pLD.	These	devices	are	JTAG	compli-
ant	(JTAG	is	a	connection	standard).

A circuit, known as a boundary scan cell, is placed between the programmable logic 
and each input and output pin of the PLD. The cells are basically memory cells that store a 
1 or a 0. The cells connected to the programmable logic inputs are called input cells, and 
those connected to the programmable logic outputs are called output cells. boundary scan 
testing	is	based	on	the	JTAG	standard	(iEEE	Std.	1149.1).

troubLeshootinG in the FieLd Once a system has been installed on 
site,	faults	that	may	occur	generally	require	on-site	troubleshooting.	For	example,	let’s	
assume that the traffic signal control system is in a housing mounted on a pole at the inter-
section.	in	this	situation,	there	would	not	be	time	for	extensive	troubleshooting	because	the	
traffic	light	must	be	back	up	and	working	quickly.	Unless	the	fault	is	obvious	and	easy	to	
remedy, such as a loose wire or blown fuse, the approach is to replace the circuit board. 
The faulty board can then be tested and repaired off-site.

(a) 3-axis movement (b) Movement from point to point

fg11_07400
FiGure 66 Flying probe testing of a circuit board.

1. What	are	the	two	basic	approaches	to	debugging	or	testing?

2. How would you test a one-of-a kind or prototype circuit board?

3. List three methods for production testing a circuit board.

section 8 checKup

summary
•	 Latches	are	bistable	devices	whose	state	normally	depends	on	asynchronous	inputs.

•	 Edge-triggered	flip-flops	are	bistable	devices	with	synchronous	inputs	whose	state	depends	on	the	
inputs only at the triggering transition of a clock pulse. Changes in the outputs occur at the trig-
gering transition of the clock.

•	 monostable	multivibrators	(one-shots)	have	one	stable	state.	When	the	one-shot	is	triggered,	the	
output goes to its unstable state for a time determined by an RC circuit.
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•	 Astable	multivibrators	have	no	stable	states	and	are	used	as	oscillators	to	generate	timing	wave-
forms in digital systems.

•	 VHDL	and	Verilog	can	be	used	to	describe	a	complete	system.

•	 Two	methods	of	debugging	are	software	simulation	and	hardware	testing.

Key terms
astable Having no stable state. An astable multivibrator oscillates between two quasi-stable states.

bistable Having two stable states. Flip-flops and latches are bistable multivibrators.

clear An	input	used	to	reset	a	flip-flop	(make	the	Q	output	0).

clock The triggering input of a flip-flop.

d flip-flop A type of bistable multivibrator in which the output assumes the state of the D input on 
the triggering edge of a clock pulse.

edge-triggered flip-flop A type of flip-flop in which the data are entered and appear on the output 
on the same clock edge.

hold time The time interval required for the control levels to remain on the inputs to a flip-flop 
after the triggering edge of the clock in order to reliably activate the device.

j-K flip-flop A	type	of	flip-flop	that	can	operate	in	the	SET,	RESET,	no-change,	and	toggle	modes.

Latch A bistable digital circuit used for storing a bit.

monostable Having only one stable state. A monostable multivibrator, commonly called a one-
shot, produces a single pulse in response to a triggering input.

one-shot A monostable multivibrator.

power dissipation The amount of power required by a circuit.

preset An	asynchronous	input	used	to	set	a	flip-flop	(make	the	Q	output	1).

propagation delay time The interval of time required after an input signal has been applied for the 
resulting output change to occur.

reset The	state	of	a	flip-flop	or	latch	when	the	output	is	0;	the	action	of	producing	a	RESET	
state.

set The	state	of	a	flip-flop	or	latch	when	the	output	is	1;	the	action	of	producing	a	SET	state.

set-up time The time interval required for the control levels to be on the inputs to a digital circuit, 
such as a flip-flop, prior to the triggering edge of a clock pulse.

synchronous Having	a	fixed	time	relationship.

timer A circuit that can be used as a one-shot or as an oscillator.

toggle The action of a flip-flop when it changes state on each clock pulse.

true/FaLse quiz
Answers are at the end of the chapter.

 1. A latch has two stable states.

 2. A latch is considered to be in the SET state when the Q	output	is	LoW.

 3. A gated D latch must be enabled in order to change state.

 4. Flip-flops and latches are both bistable devices.

 5. An edge-triggered D flip-flop changes state whenever the D input changes.

 6. A clock input is necessary for an edge-triggered flip-flop.

 7. When	both	the	J and K	inputs	are	HiGH,	an	edge-triggered	J-K	flip-flop	changes	state	on	each	
clock pulse.

 8. A one-shot is also known as an astable multivibrator.

 9. When	triggered,	a	one-shot	produces	a	single	pulse.

 10. The	555	timer	can	be	used	as	a	one-shot	or	as	a	pulse	oscillator.
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seLF-test
Answers are at the end of the chapter.

 1. if	an	S-R	latch	has	a	1	on	the	S input and a 0 on the R input and then the S input goes to 0, the 
latch will be

(a) set    (b) reset    (c) invalid    (d) clear

 2. The	invalid	state	of	an	S-R	latch	occurs	when

(a) S = 1, R = 0 (b) S = 0, R = 1
(c) S = 1, R = 1 (d) S = 0, R = 0

 3. For a gated D latch, the Q output always equals the D input

(a) before the enable pulse (b) during the enable pulse
(c) immediately after the enable pulse (d) answers	(b)	and	(c)

 4. Like the latch, the flip-flop belongs to a category of logic circuits known as

(a) monostable multivibrators (b) bistable multivibrators
(c) astable multivibrators (d) one-shots

 5. The purpose of the clock input to a flip-flop is to

(a) clear the device 
(b) set the device
(c) always cause the output to change states
(d) cause	the	output	to	assume	a	state	dependent	on	the	controlling	(J-K or D)	inputs.

 6. For an edge-triggered D flip-flop,

(a) a change in the state of the flip-flop can occur only at a clock pulse edge
(b) the state that the flip-flop goes to depends on the D input
(c) the output follows the input at each clock pulse
(d) all of these answers

 7. A	feature	that	distinguishes	the	J-K	flip-flop	from	the	D	flip-flop	is	the

(a) toggle condition (b) preset input
(c) type of clock (d) clear input

 8. A flip-flop is in the toggle condition when

(a) J = 1, K = 0 (b) J = 1, K = 1
(c) J = 0, K = 0 (d) J = 0, K = 1

 9. A	J-K	flip-flop	with	J = 1 and K = 1	has	a	10	kHz	clock	input.	The	Q output is

(a) constantly HIGH (b) constantly	LoW
(c) a	10	kHz	square	wave	 (d) a	5	kHz	square	wave

 10. A one-shot is a type of

(a) monostable multivibrator (b) astable multivibrator (c) timer
(d) answers	(a)	and	(c)	 (e) answers	(b)	and	(c)

 11. The output pulse width of a nonretriggerable one-shot depends on

(a) the trigger intervals (b) the supply voltage
(c) a resistor and capacitor (d) the threshold voltage

 12. An astable multivibrator

(a) requires a periodic trigger input (b) has no stable state
(c) is an oscillator (d) produces a periodic pulse output
(e) answers	(a),	(b),	(c),	and	(d)	 (f) answers	(b),	(c),	and	(d)	only

probLems
Answers to odd-numbered problems are at the end of the chapter.

section 1 a system

 1. How long can the traffic signal control system remain in the first state?

 2. How long can the system remain in the fourth state?
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 3. Write	the	Boolean	expressions	for	the	light	outputs	mR,	mY,	mG,	SR,	SY,	and	SG	in	terms	of	
G0 and G1.

 4. Using	the	expressions	developed	in	problem	3,	show	the	logic	diagram	for	the	light	outputs.

section 2 Latches

 5. if	the	waveforms	in	Figure	67	are	applied	to	an	active-LoW	input	S-R	latch,	draw	the	resulting	
Q output waveform in relation to the inputs. Assume that Q	starts	LoW.
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 6. Solve	problem	5	for	the	input	waveforms	in	Figure	68	applied	to	an	active-HiGH	S-R	latch.

 7. Solve	problem	5	for	the	input	waveforms	in	Figure	69.

 8. For	a	gated	S-R	latch,	determine	the	Q and Q	outputs	for	the	inputs	in	Figure	70.	Show	them	in	
proper relation to the enable input. Assume that Q	starts	LoW.

 9. Solve	problem	8	for	the	inputs	in	Figure	71.

 10. Solve	problem	8	for	the	inputs	in	Figure	72.

 11. For	a	gated	D	latch,	the	waveforms	shown	in	Figure	73	are	observed	on	its	inputs.	Draw	the	timing	
diagram	showing	the	output	waveform	you	would	expect	to	see	at	Q	if	the	latch	is	initially	RESET.

section 3 Flip-Flops

 12. Two	edge-triggered	D	flip-flops	are	shown	in	Figure	74.	if	the	inputs	are	as	shown,	draw	the	Q 
output	of	each	flip-flop	relative	to	the	clock,	and	explain	the	difference	between	the	two.	The	
flip-flops	are	initially	RESET.

QR

QS
S

R

fg07_07200

FiGure 67 
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 13. The Q output of an edge-triggered D flip-flop is shown in relation to the clock signal in Figure 
75.	Determine	the	input	waveform	on	the	D	input	that	is	required	to	produce	this	output	if	the	
flip-flop is a positive edge-triggered type.
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 14. Draw the Q	output	relative	to	the	clock	for	a	D	flip-flop	with	the	inputs	as	shown	in	Figure	76.	
Assume positive edge-triggering and Q	initially	LoW.

 15. Solve	problem	14	for	the	inputs	in	Figure	77.

 16. For	a	positive	edge-triggered	J-K	flip-flop	with	inputs	as	shown	in	Figure	78,	determine	the	Q 
output relative to the clock. Assume that Q	starts	LoW.

 17. Solve	problem	16	for	the	inputs	in	Figure	79.

 18. Determine the Q waveform relative to the clock if the signals shown in Figure 80 are applied to 
the	inputs	of	the	J-K	flip-flop.	Assume	that	Q	is	initially	LoW.
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Q

fg07_08000

FiGure 75 
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 19. For	a	negative	edge-triggered	J-K	flip-flop	with	the	inputs	in	Figure	81,	develop	the	Q output 
waveform relative to the clock. Assume that Q	is	initially	LoW.
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 20. The following serial data are applied to the flip-flop through the AND gates as indicated in Fig-
ure 82. Determine the resulting serial data that appear on the Q output. There is one clock pulse 
for each bit time. Assume that Q is initially 0 and that PRE and CLR	are	HiGH.	Rightmost	bits	
are applied first.

  J1: 1 0 1 0 0 1 1; J2: 0 1 1 1 0 1 0; J3: 1 1 1 1 0 0 0; K1: 0 0 0 1 1 1 0; K2: 1 1 0 1 1 0 0;
K3: 1 0 1 0 1 0 1

 21. For the circuit in Figure 82, complete the timing diagram in Figure 83 by showing the Q output 
(which	is	initially	LoW).	Assume	PRE and CLR remain HIGH.

 22. Solve Problem 21 with the same J and K inputs but with the PRE and CLR inputs as shown in 
Figure	84	in	relation	to	the	clock.

 23. A	D	flip-flop	is	connected	as	shown	in	Figure	85.	Determine	the	Q output in relation to the 
clock.	What	specific	function	does	this	device	perform?
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 24. For the circuit in Figure 86, develop a timing diagram for eight clock pulses, showing the QA 
and QB outputs in relation to the clock.
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FiGure 86 

section 4 Flip-Flop operating characteristics

 25. What	determines	the	power	dissipation	of	a	flip-flop?

 26. Typically, a manufacturer’s data sheet specifies four different propagation delay 
times associated with a flip-flop. Name and describe each one.

 27. The data sheet of a certain flip-flop specifies that the minimum HIGH time for 
the	clock	pulse	 is	30	ns	and	 the	minimum	LoW	time	is	37	ns.	What	 is	 the	
maximum	operating	frequency?

 28. The	flip-flop	in	Figure	87	is	initially	RESET.	Show	the	relation	between	the	Q 
output and the clock pulse if propagation delay tPLH	(clock	to	Q)	is	8	ns.

 29. The direct current required by a particular flip-flop that operates on a +5 V dc 
source	is	found	to	be	10	mA.	A	certain	digital	device	uses	15	of	these	flip-flops.	
Determine the current capacity required for the +5 V dc supply and the total power dissipation 
of the system.

 30. For	the	circuit	in	Figure	86,	determine	the	maximum	frequency	of	the	clock	signal	for	reliable	
operation	if	the	set-up	time	for	each	flip-flop	is	2	ns	and	the	propagation	delays	(tPLH and tPHL)	
from	clock	to	output	are	5	ns	for	each	flip-flop.

section 5 timers

 31. Determine	the	pulse	width	of	a	555	timer	configured	as	a	one-shot	if	the	external	resistor	
is 3.3 kV	and	the	external	capacitor	is	2000	pF.

 32. An	output	pulse	of	5	ms	duration	is	to	be	generated	by	a	555	operating	as	a	one-shot.	
Using	a	capacitor	of	10,000	pF,	determine	the	value	of	external	resistance	required.

 33. Create	a	one-shot,	using	a	555	timer	that	will	produce	a	0.25	s	output	pulse.

 34. A	555	timer	is	configured	to	run	as	an	astable	multivibrator	as	shown	in	Figure	88.	Deter-
mine its frequency.

 35. Determine	the	values	of	the	external	resistors	for	a	555	timer	used	as	an	astable	multivi-
brator	with	an	output	frequency	of	20	kHz,	if	the	external	capacitor	C is 0.002 mF and the 
duty	cycle	is	to	be	approximately	75%.

section 6 bistable Logic with vhdL and verilog

 36. Given the following VHDL statement:

Q	6=	J1 nand notQ;

  Create the functionally equivalent statement replacing the nand operator with the and operator.

 37. In Verilog, the reg	data	type	is	used	to	describe	the	internal	identifiers	S	and	R	in	the	DFlipFlop	
description	in	Figure	52.	name	an	equivalent	VHDL	data	type.

 38. in	the	VHDL	JKFlipFlop	code	in	Figure	53,	a	process block structure contains the functional code 
defining	the	behavior	of	the	flip	flop.	What	Verilog	code	structure	performs	this	functionality?

 39. Name the Verilog keyword required to set the result of a Boolean equation to an output 
 identifier.
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section 7 traffic signal control system with vhdL and verilog

 40. in	the	programming	model	in	Figure	55,	what	does	the	FreqDivide	block	do?

 41. List	the	statements	in	the	VHDL	program	for	the	TimerCircuits	that	result	in	the	4	s	and	25	s	
time intervals.

 42. Repeat	problem	41	for	the	Verilog	program.

 43. Write	the	lines	of	code	in	both	VHDL	and	Verilog	that	describe	the	sequential	logic.

 44. What	numerical	value	would	be	assigned	to	SetCount	in	the	FreqDivide	component	of	the	traf-
fic	signal	control	system	if	the	system	clock	were	reduced	to	12	Hz?

 45. We	would	like	to	add	an	additional	state	to	the	StateDecoder	component.	Explain	the	modifica-
tion	required	to	introduce	a	fifth	output	state	S5.

 46. Can	the	program	TrafficLights	be	simplified	if	a	1	Hz	clock	replaced	the	24	mHz	system	clock?	
if	so,	explain	the	required	TrafficLights	program	source	modifications.

 47. in	the	traffic	signal	control	system,	a	“Walk/Don’t	Walk”	sign	is	added	to	the	main	and	side	
streets.	The	“Walk”	and	“Don’t”	displays	are	to	have	separate	inputs;	one	for	“Walk”	and	a	
second	for	“Don’t”.	What	changes	to	the	TrafficLights	program	are	needed	to	operate	the	
new signs?

section 8 troubleshooting

 48. The flip-flop in Figure 89 is tested under all input conditions as shown. Is it operating properly? 
If not, what is the most likely fault?
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 49. A	quad	nAnD	gate	iC	is	used	to	construct	a	gated	S-R	latch	on	a	protoboard	in	the	lab	as	
shown	in	Figure	90.	The	schematic	in	part	(a)	is	used	to	connect	the	circuit	in	part	(b).	When	
you try to operate the latch, you find that the Q output stays HIGH no matter what the inputs are. 
Determine the problem.

 50. Determine if the flip-flop in Figure 91 is operating properly, and if not, identify the most prob-
able fault.

 51. The parallel data storage circuit in Figure 92 does not operate properly. To check it out, you first 
make sure that VCC	and	ground	are	connected,	and	then	you	apply	LoW	levels	to	all	the	D 
inputs and pulse the clock line. You check the Q	outputs	and	find	them	all	to	be	LoW;	so	far,	so	
good.	next	you	apply	HiGHs	to	all	the	D	inputs	and	again	pulse	the	clock	line.	When	you	check	
the Q	outputs,	they	are	still	all	LoW.	What	is	the	problem,	and	what	procedure	will	you	use	to	
isolate the fault to a single device?
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 52. The	flip-flop	circuit	in	Figure	93(a)	is	used	to	generate	a	binary	count	sequence.	The	gates	form	
a	decoder	that	is	supposed	to	produce	a	HiGH	when	a	binary	zero	or	a	binary	three	state	occurs	
(00	or	11).	When	you	check	the	QA and QB	outputs,	you	get	the	display	shown	in	part	(b),	which	
reveals	glitches	on	the	decoder	output	(X)	in	addition	to	the	correct	pulses.	What	is	causing	
these glitches, and how can you eliminate them?

Ch1 5 V

74121 74121

47 k�
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 53. Determine the QA, QB and X	outputs	over	six	clock	pulses	in	Figure	93(a)	for	each	of	the	fol-
lowing	faults	in	the	bipolar	(TTL)	circuits.	Start	with	both	QA and QB	LoW.
(a) JA input open
(b) KB input open
(c) QB output open
(d) clock input to flip-flop B shorted
(e) gate G2 output open

 54. Two	one-shot	iCs	are	connected	on	a	circuit	board	as	shown	in	Figure	94.	After	observing	the	
oscilloscope display, do you conclude that the circuit is operating properly? If not, what is the 
most likely problem?

special problems  

 55. implement	a	basic	counting	circuit	that	produces	a	binary	sequence	from	zero	through	seven	by	
using	negative	edge-triggered	J-K	flip-flops.

 56. In the shipping department of a softball factory, the balls roll down a conveyor and through a chute 
single	file	into	boxes	for	shipment.	Each	ball	passing	through	the	chute	activates	a	switch	circuit	
that	produces	an	electrical	pulse.	The	capacity	of	each	box	is	32	balls.	implement	a	logic	circuit	to	
indicate	when	a	box	is	full	so	that	an	empty	box	can	be	moved	into	position.

 57. List	the	changes	that	would	be	necessary	in	the	traffic	signal	control	system	to	add	a	15	s	left	
turn arrow for the main street. The turn arrow will occur after the red light and prior to the green 
light. Modify the state diagram in Figure 2 to show these changes.
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muLtisim troubLeshootinG 
practice
 58. open	file	p06-58	and	follow	the	instructions	given	there.

 59. open	file	p06-59	and	follow	the	instructions	given	there.

 60. Open file P06-60 and follow the instructions given there.

 61. Open file P06-61 and follow the instructions given there.

 62. Open file P06-62 and follow the instructions given there.

ansWers to section checKups
section 1 a system

 1. For	25	s	(TL) or as long as there is no vehicle on the side street (Vs)

 2. For	4	s	(TS)

 3. main	will	stay	red	for	up	to	25	s	if	there	is	a	vehicle	on	the	side	street	(TLVs).

section 2 Latches

 1. Three	types	of	latches	are	S-R,	gated	S-R,	and	gated	D.

 2. SR = 00, NC; SR = 01, Q = 0; SR = 10, Q = 1; SR = 11, invalid

 3. Q = 1

section 3 Flip-Flops

 1. The	output	of	a	gated	D	latch	can	change	any	time	the	gate	enable	(EN)	input	is	active.	The	
output of an edge-triggered D flip-flop can change only on the triggering edge of a clock pulse.

 2. The output of the D flip-flop follows the D	input	on	each	clock	pulse.	The	output	of	the	J-K	flip-
flop depends on both of the states of the J and K inputs.

 3. Output Q	goes	HiGH	on	the	trailing	edge	of	the	first	clock	pulse,	LoW	on	the	trailing	edge	of	
the	second	pulse,	HiGH	on	the	trailing	edge	of	the	third	pulse,	and	LoW	on	the	trailing	edge	of	
the fourth pulse.

 4. For divide-by-2 operation, the flip-flop must toggle (J = 1, K = 1).

 5. Six	flip-flops	are	used	in	a	divide-by-64	device.

section 4 Flip-Flop operating characteristics

 1. (a)  Set-up time is the time required for input data to be present before the triggering edge of the 
clock pulse.

(b) Hold time is the time required for data to remain on the inputs after the triggering edge of 
the clock pulse.

 2. The flip-flop with tPHL = 17 ns

section 5 timers

 1. A nonretriggerable one-shot times out before it can respond to another trigger input. A retrig-
gerable one-shot responds to each trigger input.

 2. pulse	width	is	set	with	external	R and C components.

 3. 11 ms.

 4. An astable multivibrator has no stable state. A monostable multivibrator has one stable state.

 5. Duty cycle = (15 ms>20 ms)100% = 75%

section 6 bistable Logic with vhdL and verilog

 1. VHDL specifies edge-triggered operation with the if rising_edge term.

 2. Verilog specifies edge-triggered operation with @(posedge clock).

 3. VHDL;	if falling_edge; Verilog: @(negedge clock)

 4. !	is	noT,	||	is	oR,	and	&&	is	AnD.

muLtisim
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section 7 traffic signal control system with vhdL and verilog

 1. The program blocks are TimerCircuits, FreqDivide, SequentialLogic, and StateDecoder.

 2. The program blocks listed in answer 1 are specified as components in the complete system pro-
gram.	The	two	timer	triggers	and	the	six	light	control	outputs	are	specified	in	terms	of	the	state	
decoder	output	using	Boolean	expressions.

 3. A noticeable difference is that Verilog generally provides for shorter programs.

section 8 troubleshooting

 1. multisim	software	simulation;	development	software	simulation.

 2. Test one-of-a-kind circuit board using traditional test methods with lab instruments.

 3. Production test using bed-of-nails, flying probe, or boundary scan techniques.

ansWers to reLated probLems  
For eXampLes
 1 The Q	output	is	the	same	as	shown	in	Figure	11(b).

 2 See	Figure	95.

 3 See Figure 96.
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 4 See	Figure	97.

 5 See Figure 98.

 6 See Figure 99.

 7 See Figure 100.
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 10 25 = 32. Five flip-flops are required.

 11 Sixteen	states	require	four	flip-flops	(24 = 16).

 12 R1 = 91 kV

 13 R2 � 2.2 kV

ansWers to true/FaLse quiz
 1. T  2. F  3. T   4. T  5. F  6. T
 7. T  8. F  9. T  10. T

ansWers to seLF-test
 1. (a)  2. (c)  3. (d)	 	 	 4. (b)	 	 	 5. (d)	 	 	 6. (d)

 7. (a)  8. (b)  9. (d)  10. (d)  11. (c)  12. (f)

ansWers to odd-numbered probLems
 1. The	system	remains	in	the	first	state	for	25	s	or	as	long	as	there	is	no	vehicle	on	the	side	street.

 3. MR = G1G0 + G1G0 MY = G1G0 MG = G1 G0

  SR = G1 G0 + G1G0 SY = G1G0  SG = G1G0
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 8 See Figure 101.

 9 See Figure 102.
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 5. See	Figure	p–34.
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 7. See	Figure	p–35.

 9. See Figure P–36.

 11. See	Figure	p–37.

 13. See Figure P–38.

 15. See Figure P–39.

 17. See	Figure	p–40.
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 19. See	Figure	p–41.
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 21. See	Figure	p–42.

 23. divide-by-2;	see	Figure	p–43.

 25. Direct current and dc supply voltage

 27. 14.9	mHz

 29. 150	mA,	750	mW

 31. 7.26	ms

 33. C1 = 1 mF, R1 = 227 kV	(use	220	kV).	See	Figure	p–44.
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 35. R1 = 18 kV, R2 = 9.1 kV.

 37. signal

 39. assign

 41. SetCountLong 6=	25;	SetCountShort	6=	4;
 43. VHDL: D1 6=	(G0	and not	TS)	or	(G1	and	TS);
         D0 6=		(not G1 and not TL and	VS)	or	(not G1 and	G0)	or	(G0	and TL and	VS);
  Verilog: assign D1 =	(G9	&& !TS)	 } 	(G1	&&	TS);
                 assign D0 =		(!G1 && !TS &&	VS)	 } 	(!G1 &&	G0)	 } 	(G0	&& TL &&	VS);

 45. Answers may vary.

  1.  An additional Gray code bit G3 is added. Additionally, the Gray code input must recycle 
from count 110 back to 000, requiring a truncated sequence.

  2. Additional	output	identifier	55	is	created.

  3.  Combinational	logic	for	S1,	S2,	S3,	S4,	and	S5	are	modified	to	incorporate	the	following	
truncated 3-bit Gray code sequence:

	 	 	 State	1	(S1):	G2 = 0, G1 = 0, G0 = 0

	 	 	 State	2	(S2):	G2 = 0, G1 = 0, G0 = 1

	 	 	 State	3	(S3):	G2 = 0, G1 = 1, G0 = 1

	 	 	 State	4	(S4):	G2 = 0, G1 = 1, G0 = 0

	 	 	 State	5	(S5):	G2 = 1, G1 = 1, G0 = 0

 47. Changes are

  1. The	Walk	portion	of	the	sign	is	simply	wired	to	a	HiGH.

  2.  Two new output variables are added: DontMain and DontSide are applied to the Don’t 
input of the sign.

  3.  Output DontMain is assigned the logic statement for SG. Output DontSide is assigned the 
logic statement for MG.

 49. The wire from pin 6 to pin 10 and the ground wire are reversed on the protoboard.

 51. CLR shorted to ground.

 53. See	Figure	p–45.	Delays	not	shown.
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 55. See	Figure	p–46.

 57. Changes	required	for	the	system	to	incorporate	a	15	s	left	turn	signal	on	main:

  1.  Change the 2-bit Gray code sequence to a 3-bit sequence.

  2.  Add decoding logic to the State Decoder to decode the turn signal state.

  3.  Change the Output Logic to incorporate the turn signal output.

  4.  Change the Trigger Logic to incorporate a trigger output for the turn signal timer.

  5. Add	a	15	second	timer.

	 	 	 	 	See	Figure	p–47.

 59. circuit fault:	Line	to	K	input	is	shorted	to	VCC.

  predicted effect of fault:	if	line	to	J	input	is	LoW,	Q	output	will	go	and	remain	LoW	and	notQ	
output will go and remain HIGH. If line to J	input	is	HiGH,	Q	and	notQ	will	toggle.

  observed effect of introduced fault:	if	line	to	J	input	is	LoW,	Q output will go and remain 
LoW	and	notQ	output	will	go	and	remain	HiGH.	if	line	to	J	input	is	HiGH,	Q	and	notQ	will	
toggle.

 61. observed operation: Pulse width of one-shot is 690 ms rather than 6.9 ms.

  suspected fault: 1 kV resistor accidentally used in place of 10 kV timing resistor, or a 0.1 mF 
capacitor is used in place of the 1 mF timing capacitor.

  effect of introduced fault: Pulse width of one-shot is 690 ms rather than 6.9 ms.

381



382



Shift RegiSteRS

From Chapter 7 of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved.

383



Shift RegiSteRS

Outline
 1 A System 

 2 Basic Shift Register Operations 

 3 Types of Shift Registers 

 4 Bidirectional Shift Registers 

 5 Shift Register Counters 

 6 Security System with VHDL and Verilog 

 7 Troubleshooting 

ObjectiveS
•	 Use	shift	registers	in	a	system

•	 Identify	the	basic	forms	of	data	movement	in	shift	
registers

•	 Explain	how	serial	in/serial	out,	serial	in/parallel	
out,	parallel	in/serial	out,	and	parallel	in/parallel	
out shift registers operate

•	 Describe	how	a	bidirectional	shift	register	oper-
ates

•	 Determine	the	sequence	of	a	Johnson	counter

•	 Set	up	a	ring	counter	to	produce	a	specified	
sequence

•	 Construct	a	ring	counter	from	a	shift	register

•	 Use	a	shift	register	as	a	time-delay	device

Key teRmS
Register
Stage

load
bidirectional

intROductiOn
Shift	 registers	 are	 a	 type	 of	 sequential	 logic	 circuit	
closely related to digital counters. Registers are used pri-
marily for the storage of digital data and typically do not 
possess	a	characteristic	internal	sequence	of	states	as	do	
counters.	There	are	exceptions,	however,	and	these	are	
covered in Section 5.

In this chapter a system using shift registers is 
introduced. The basic types of shift registers are studied 
and several applications are presented. Also, trouble-
shooting methods are discussed, and implementation of 
a system using VHDL and Verilog is presented.

viSit the WebSite
Study aids for this chapter are available at 

http://pearsonhighered.com/floyd

•	 Use	a	shift	register	to	implement	a	serial-to-parallel	
data converter

•	 Describe	a	basic	shift-register-controlled	keyboard	
encoder

•	 Describe	a	system	using	VHDL	and	Verilog
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basic Operation
A	4-digit	entry	code	is	set	with	user-accessible	DIP	switches.	Initially	pressing	the	#	key	
sets	up	the	system	for	the	first	digit	in	the	code.	For	entry,	the	code	is	entered	one	digit	at	a	
time	on	the	keypad	and	converted	to	a	BCD	code	for	processing	by	the	security	code	logic.	
If the entered code agrees with the stored code, the output activates the access mechanism 
and allows the door or gate, depending on the type of area that is secured, to be opened.

the Security code logic
The	security	code	logic	compares	the	code	entered	on	the	keypad	with	the	predetermined	
code.	A	logic	diagram	of	the	security	code	logic	with	keypad	is	shown	in	Figure	2.

In	order	to	gain	entry,	first	the	#	key	on	the	keypad	is	pressed	to	enable	the	one-shots	
to be triggered, thus initializing the 8-bit shift register C with a preset pattern (00010000). 
Next	the	four	digits	of	the	code	are	entered	in	proper	sequence	on	the	keypad.	As	each	digit	
is	entered,	it	is	converted	to	BCD	by	the	decimal-to-BCD	encoder,	and	a	clock	pulse	is	
produced by one-shot A that shifts the 4-bit code into register A. The one-shot is triggered 
by	a	transition	on	the	output	of	the	OR	gate	when	a	key	is	pressed.	At	the	same	time,	the	
corresponding BCD digit from the code-selection logic is shifted into register B. Also, 
one-shot	B	is	triggered	after	one-shot	A	to	provide	a	delayed	clock	pulse	for	register	C	to	
serially	shift	the	preloaded	pattern	(00010000).	The	left-most	three	0s	are	simply	“fillers”	
and serve no purpose in the operation of the system. The outputs of registers A and B are 
applied to the comparator; if the codes are the same, the output of the comparator goes 
HIGH, placing shift register C in the SHIFT mode.

this section provides an introduction to the use of shift registers for temporarily storing and 
shifting data in a system. A security system that provides coded access to a secured area is devel-
oped. the system consists of a keypad, security code logic, and code-selection logic. When secu-
rity code is stored in the system, access is achieved by entering the correct code on a keypad.

After completing this section, you should be able to

•	 Explain	the	overall	operation	of	the	system
•	 Describe	how	shift	registers	are	used	for	both	parallel	and	serial	storage	and	movement	of	

data
•	 Explain	how	other	devices	such	as	the	one-shot,	the	encoder,	and	the	comparator	are	used	

in the system

1 A SyStem

A	block	diagram	for	the	security	system	is	shown	in	Figure	1.	The	system	consists	of	
the	security	code	logic,	the	code-selection	logic,	and	the	keypad.	The	keypad	is	a	stan	dard	
numeric	keypad.

To lock or gate
opener interface

Security
code logic

Keypad

Code-selection
logic

figuRe 1 block diagram of the security system.
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figuRe 2 Block	diagram	of	the	security	code	logic	with	keypad.
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Each time an entered digit agrees with the preset digit, the 1 in shift register C is 
shifted right one position. On the fourth code agreement, the 1 appears on the output of the 
shift	register	and	activates	the	mechanism	to	unlock	the	door	or	open	the	gate.	If	the	code	
digits do not agree, the output of the comparator goes LOW, placing shift register C in the 
LOAD mode so the shift register is reinitialized to the preset pattern (00010000).

the code-Selection logic
A logic diagram of the code-selection logic is shown in Figure 3. This part of the system 
includes a set of DIP switches into which a 4-digit entry code is set. Initially pressing the # 
key	sets	up	the	system	for	the	first	digit	in	the	code	by	causing	a	preset	pattern	to	be	loaded	
into	shift	register	C	(0001).	Initially,	the	four	bits	in	the	first	code	digit	are	selected	by	a	
HIGH on the Q0 output of the shift register, enabling the four AND gates labeled A1–A4. 
As	each	digit	of	the	code	is	entered	on	the	keypad,	the	clock	from	the	security	code	logic	
shifts	the	1	in	the	shift	register	to	sequentially	enable	each	set	of	four	AND	gates.	As	a	
result,	the	BCD	digits	in	the	security	code	appear	sequentially	on	the	outputs.	In	the	secu-
rity	code	logic,	each	of	the	code	digits	is	compared	to	the	digit	entered	on	the	keypad.

1. Explain	the	purpose	of	the	OR	gate	in	Figure	2.

2. If	the	digit	4	is	entered	on	the	keypad,	what	appears	on	the	
output of register A?

3. Explain	the	purpose	of	one-shot	B	in	the	security	code	logic.

SectiOn 1 checKup*

*Answers	are	at	the	end	of	the	chapter.

2 bASic Shift RegiSteR OpeRAtiOnS
Shift registers consist of arrangements of flip-flops and are important in applications involving 
the temporary storage and the transfer of data in a digital system. A register has no specified 
sequence	of	states,	except	in	certain	very	specialized	applications.	A	register,	in	general,	is	used	
solely	for	storing	and	shifting	data	(1s	and	0s)	entered	into	it	from	an	external	source	and	typi-
cally possesses no characteristic internal sequence of states.

After completing this section, you should be able to

•	 Explain	how	a	flip-flop	stores	a	data	bit
•	 Define	the	storage	capacity	of	a	shift	register
•	 Describe	the	shift	capability	of	a	register

A register* is a digital circuit with two basic functions: data storage and data movement. 
The	storage	capability	of	a	register	makes	it	an	important	type	of	memory	device.	Figure	4	
illustrates the concept of storing a 1 or a 0 in a D flip-flop. A 1 is applied to the data input as 
shown,	and	a	clock	pulse	is	applied	that	stores	the	1	by	setting the flip-flop. When the 1 on the 
input is removed, the flip-flop remains in the SET state, thereby storing the 1. A similar proce-
dure applies to the storage of a 0 by resetting the flip-flop, as also illustrated in Figure 4.

The storage capacity of a register is the total number of bits (1s and 0s) of digital data 
it can retain. Each stage (flip-flop) in a shift register represents one bit of storage capacity; 
therefore, the number of stages in a register determines its storage capacity.

The shift capability of a register permits the movement of data from stage to stage 
within	the	register	or	into	or	out	of	the	register	upon	application	of	clock	pulses.	Figure	5	
illustrates	the	types	of	data	movement	in	shift	registers.	The	block	represents	any	arbitrary	
4-bit register, and the arrows indicate the direction of data movement.

A register can consist of 
one or more flip-flops used 
to store and shift data.

*The	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	Term	glossary	at	the	end	of	the	chapter.

387



SHIFT REGISTERS

Q1 1
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Q becomes a 1 at the
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or remains a 1 if already
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When a 0 is on D,
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fg09_00100

figuRe 4 the flip-flop as a storage element.

Data outData in

(a) Serial in/shift right/serial out

Data out Data in

(b) Serial in/shift left/serial out (c) Parallel in/serial out

Data in

Data out

(e) Parallel in/parallel out

Data in

Data out

(d) Serial in/parallel out

Data out

Data in

(f) Rotate right (g) Rotate left

figuRe 5 basic data movement in shift registers. (four bits are used for illustration. 
The	bits	move	in	the	direction	of	the	arrows.)

1. What two principal functions are performed by a shift 
 register?

2. What indicates when a flip-flop in a register is storing a 1?

SectiOn 2 checKup

3 typeS Of Shift RegiSteRS
in this section, four types of shift registers are discussed: serial in/serial out, serial in/parallel 
out, parallel in/serial out, and parallel in/parallel out.

After completing this section, you should be able to

•	 Describe	the	operation	of	four	types	of	shift	register
•	 Explain	how	data	bits	are	entered	into	a	shift	register
•	 Describe	how	data	bits	are	shifted	through	the	register
•	 Explain	how	data	bits	are	taken	out	of	a	shift	register
•	 Develop	and	analyze	timing	diagrams	for	shift	registers

Serial in/Serial Out Shift Registers
The	serial	in/serial	out	shift	register	accepts	data	serially—that	is,	one	bit	at	a	time	on	a	
single	line.	It	produces	the	stored	information	on	its	output	also	in	serial	form.	Let’s	first	
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look	at	the	serial	entry	of	data	into	a	typical	shift	register.	Figure	6	shows	a	4-bit	device	
implemented with D flip-flops. With four stages, this register can store up to four 
bits of data.
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input
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CLK
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C

Q1

FF1

D

C

Q2

FF2

D

C

Q3

FF3

Serial data output

Serial data output
Q3

fg09_00300

figuRe 6 Serial in/serial out shift register.

Table	1	shows	the	entry	of	the	four	bits,	1010,	into	the	shift	register	in	Figure	6,	
beginning	with	the	least	significant	bit.	The	register	is	initially	clear.	The	0	is	put	onto	the	
serial	data	input	line,	making	the	data	bit	D = 0	for	FF0.	When	the	first	clock	pulse	is	
applied, FF0 is reset, thus storing the 0.

TABLE	1	 •	 Shifting a 4-bit code into the shift register in 
figure 6. data bits are indicated by a beige screen.

clK ff0 (Q0) ff1 (Q1) ff2 (Q2) ff3 (Q3)

Initial 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 1 0 1 0

Frequently,	it	is	necessary	to	clear	an	internal	register	in	a	computer.	For	example,	a	register	
may be cleared prior to an arithmetic or other operation. One way that registers in a computer 
are cleared is using software to subtract the contents of the register from itself. The result, of 
course,	will	always	be	zero.	For	example,	a	computer	instruction	that	performs	this	operation	
is	SUB	AL,AL.	With	this	instruction,	the	register	named	AL	is	cleared.

S y S t e m  n O t e

Next	the	second	bit,	which	is	a	1,	is	applied	to	the	serial	data	input,	making	D = 1 
for FF0 and D = 0 for FF1 because the D input of FF1 is connected to the Q0 output. 
When	the	second	clock	pulse	occurs,	the	1	on	the	data	input	is	shifted	into	FF0,	causing	
FF0 to set; and the 0 that was in FF0 is shifted into FF1.

The	third	bit,	a	0,	is	now	put	onto	the	serial	data	input	line,	and	a	third	clock	pulse	is	
applied. The 0 is entered into FF0, the 1 stored in FF0 is shifted into FF1, and the 0 stored 
in FF1 is shifted into FF2.

The	last	bit,	a	1,	is	now	applied	to	the	serial	data	input,	and	a	fourth	clock	pulse	is	
applied. This time the 1 is entered into FF0, the 0 stored in FF0 is shifted into FF1, the 1 
stored in FF1 is shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This com-
pletes the serial entry of the four bits into the shift register, where they can be stored for 
any length of time as long as the flip-flops have dc power.

If you want to get the data out of the register, the bits must be shifted out serially and 
taken	off	the	Q3	output,	as	Table	2	illustrates.	After	CLK4	in	the	data-entry	operation	just	

for serial data, one bit at 
a time is transferred.
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TABLE	2	 •	 Shifting a 4-bit code out of the shift register in 
figure 6. data bits are indicated by a beige screen.

clK ff0 (Q0) ff1 (Q1) ff2 (Q2) ff3 (Q3)

Initial 1 0 1 0

5 0 1 0 1

6 0 0 1 0

7 0 0 0 1

8 0 0 0 0

described (Table 1), the LSB, 0, appears on the Q3	output.	When	clock	pulse	CLK5	is	
applied, the second bit appears on the Q3	output.	Clock	pulse	CLK6	shifts	the	third	bit	to	the	
serial	data	output,	and	CLK7	shifts	the	fourth	bit	to	the	output.	While	the	original	four	bits	
are	being	shifted	out,	more	bits	can	be	shifted	in.	All	zeros	have	been	shifted	in	after	CLK	8.

e X A m p l e  1

Show	the	states	of	the	5-bit	register	in	Figure	7(a)	for	the	specified	data	input	and	
clock	waveforms.	Assume	that	the	register	is	initially	cleared	(all	0s).
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figuRe 7 Open file f07-07 to verify operation.
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A	traditional	 logic	block	symbol	 for	an	8-bit	serial	 in/serial	out	shift	 register	 is	
shown	in	Figure	8.	The	“SRG	8”	designation	indicates	a	shift	register	(SRG)	with	an	8-bit	
capacity.

S O l u t i O n

The	first	data	bit	(1)	is	entered	into	the	register	on	the	first	clock	pulse	and	then	
shifted from left to right as the remaining bits are entered and shifted. The register 
contains Q4Q3Q2Q1Q0 = 11010	after	five	clock	pulses.	See	Figure	7(b).

R e l A t e d  p R O b l e m*

Show the states of the register if the data input is inverted. The register is initially 
cleared.

*Answers	are	at	the	end	of	the	chapter.

CLK

Data in

Q7

Q7

C

SRG 8

fg09_00700

figuRe 8 logic symbol for 
an 8-bit serial in/serial out shift 
register.

All microprocessors have special instructions that can emulate a serial shift register. The accu-
mulator	register	can	shift	data	to	the	left	or	right.	A	right	shift	is	equivalent	to	a	divide-by-2	
operation	and	a	left	shift	is	equivalent	to	a	multiply-by-2	operation.	Data	in	the	accumulator	can	
be shifted left or right with the rotate instructions; ROR is the rotate right instruction, and ROL 
is the rotate left instruction. Two other instructions treat the carry flag bit as an additional bit for 
the rotate operation. These are the RCR for rotate carry right and RCL for rotate carry left.

S y S t e m  n O t e

Serial in/parallel Out Shift Registers
Data	bits	are	entered	serially	(least-significant	bit	first)	into	a	serial	in/parallel	out	shift	
register	in	the	same	manner	as	in	serial	in/serial	out	shift	registers.	The	difference	is	the	
way	in	which	the	data	bits	are	taken	out	of	the	register;	in	the	parallel	out	register,	the	out-
put of each stage is available. Once the data bits are stored, each bit appears on its respec-
tive output line, and all bits are available simultaneously, rather than on a bit-by-bit basis 
as	with	the	serial	output.	Figure	9	shows	a	4-bit	serial	in/parallel	out	shift	register	and	its	
logic	block	symbol.
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figuRe 9 A serial in/parallel out shift register.
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e X A m p l e  2

Show	the	states	of	the	4-bit	register	(SRG	4)	for	the	data	input	and	clock	wave-
forms in Figure 10(a). The register initially contains all 1s.

S O l u t i O n

The	register	contains	0110	after	four	clock	pulses.	See	Figure	10(b).

R e l A t e d  p R O b l e m

If	the	data	input	remains	0	after	the	fourth	clock	pulse,	what	is	the	state	of	the	
register	after	three	additional	clock	pulses?

(a)
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CLK
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(b)
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Q0 Q1 Q2 Q3
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figuRe 10 
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fg09_02800
figuRe 11 the serial in/serial out shift register as a time-delay device.

time delAy
The	serial	in/serial	out	shift	register	can	be	used	to	provide	a	time	delay	from	input	to	output	
that is a function of both the number of stages (n)	in	the	register	and	the	clock	frequency.

When a data pulse is applied to the serial input as shown in Figure 11 (A and B con-
nected	together),	it	enters	the	first	stage	on	the	triggering	edge	of	the	clock	pulse.	It	is	then	
shifted	from	stage	to	stage	on	each	successive	clock	pulse	until	it	appears	on	the	serial	
output n	clock	periods	later.	This	time-delay	operation	is	illustrated	in	Figure	11,	in	which	
an	8-bit	serial	in/serial	out	shift	register	is	used	with	a	clock	frequency	of	1	MHz	to	achieve	
a time delay (td) of 8 ms (8 * 1 ms).

S y S t e m  e X A m p l e  1
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The	time	delay	can	be	adjusted	up	or	down	by	changing	the	clock	frequency.	The	time	
delay	can	also	be	increased	by	cascading	shift	registers	and	decreased	by	taking	the	outputs	
from successively lower stages in the register if the outputs are available, as illustrated in 
Figure	12,	using	an	8-bit	serial	in/parallel	out	shift	register	with	a	clock	period	of	2	ms.
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figuRe 12 Shift	register	and	timing	diagram	showing	time	delays.

parallel in/Serial Out Shift Registers
For a register with parallel data inputs, the bits are entered simultaneously into their 
respective stages on parallel lines rather than on a bit-by-bit basis on one line as with serial 
data	inputs.	The	serial	output	is	the	same	as	in	serial	in/serial	out	shift	registers,	once	the	
data are completely stored in the register.

Figure	13	illustrates	a	4-bit	parallel	in/serial	out	shift	register	and	a	typical	logic	sym-
bol. Notice that there are four data-input lines, D0, D1, D2, and D3, and a SHIFT>LOAD 
input, which allows four bits of data to load in parallel into the register. When SHIFT>LOAD 
is LOW, gates G1 through G4 are enabled, allowing each data bit to be applied to the D 
input	of	its	respective	flip-flop.	When	a	clock	pulse	is	applied,	the	flip-flops	with	D = 1 
will set and those with D = 0 will reset, thereby storing all four bits simultaneously.

for parallel data, multiple 
bits are transferred at one 
time.

393



SHIFT REGISTERS

When SHIFT>LOAD is HIGH, gates G1 through G4 are disabled and gates G5 
through G7	are	enabled,	allowing	the	data	bits	to	shift	right	from	one	stage	to	the	next.	The	
OR gates allow either the normal shifting operation or the parallel data-entry operation, 
depending on which AND gates are enabled by the level on the SHIFT>LOAD input. 
Notice that FF0 has a single AND to disable the parallel input, D0.	It	does	not	require	an	
AND/OR	arrangement	because	there	is	no	serial	data	in.

e X A m p l e  3

Show the data-output waveform for a 4-bit register with the parallel input data 
and	the	clock	and	SHIFT>LOAD waveforms given in Figure 14(a). Refer to Fig-
ure 13(a) for the logic diagram.

S O l u t i O n

On	clock	pulse	1,	the	parallel	data	(D0D1D2D3 = 1010) are loaded into the regis-
ter,	making	Q3	a	0.	On	clock	pulse	2,	the	1	from	Q2 is shifted onto Q3;	on	clock	
pulse 3, the 0 is shifted onto Q3;	on	clock	pulse	4,	the	last	data	bit	(1)	is	shifted	
onto Q3;	and	on	clock	pulse	5,	all	data	bits	have	been	shifted	out,	and	only	1s	
remain in the register (assuming the D0 input remains a 1). See Figure 14(b).

R e l A t e d  p R O b l e m

Show	the	data-output	waveform	for	the	clock	and	SHIFT>LOAD inputs shown in 
Figure 14(a) if the parallel data are D0D1D2D3 = 0101.
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figuRe 13 A 4-bit parallel in/serial out shift register. Open file f07-13 to verify operation.
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parallel in/parallel Out Shift Registers
Both	parallel	entry	and	parallel	output	of	data	have	already	been	discussed.	The	parallel	in/
parallel out register employs both methods. Immediately following the simultaneous entry 
of all data bits, the bits appear on the parallel outputs. Figure 15 shows the logic diagram 
of	a	parallel	in/parallel	out	register.
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figuRe 15 A parallel in/parallel out register.

SeRiAl-tO-pARAllel dAtA cOnveRteR
Serial data transmission from one digital system to another is commonly used to reduce the 
number	of	wires	in	the	transmission	line.	For	example,	eight	bits	can	be	sent	serially	over	
one	wire,	but	it	takes	eight	wires	to	send	the	same	data	in	parallel.

Serial	data	transmission	is	widely	used	by	peripherals	to	pass	data	back	and	forth	to	a	
computer.	For	example,	USB	(universal serial bus)	is	used	to	connect	keyboards,	printers,	

S y S t e m  e X A m p l e  2

A universal shift register 
has both serial and 
parallel input and output 
capability.
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figuRe 14 
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scanners, and more to the computer. All computers process data in parallel form, thus the 
requirement	for	serial-to-parallel	conversion.	A	simplified	serial-to-parallel	data	converter,	
in	which	two	types	of	shift	registers	are	used,	is	shown	in	Figure	16.
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figuRe 16 

The HIGH-to-LOW transition of the start bit sets the control flip-flop, which enables 
the	clock	generator.	After	a	fixed	delay	time,	the	clock	generator	begins	producing	a	pulse	
waveform, which is applied to the data-input register and to the divide-by-8 counter. The 
clock	has	a	frequency	precisely	equal	to	that	of	the	incoming	serial	data,	and	the	first	clock	
pulse	after	the	start	bit	occurs	during	the	first	data	bit.

The timing diagram in Figure 18 illustrates the following basic operation: The eight 
data bits (D7 through D0) are serially shifted into the data-input register. Shortly after the 
eighth	clock	pulse,	the	terminal	count	(TC) goes from LOW to HIGH, indicating the coun-
ter	is	at	the	last	state.	This	rising	edge	is	ANDed	with	the	clock	pulse,	which	is	still	HIGH,	
producing a rising edge at TC # CLK. This parallel loads the eight data bits from the data-
input	shift	register	to	the	data-output	register.	A	short	time	later,	the	clock	pulse	goes	LOW	
and this HIGH-to-LOW transition triggers the one-shot, which produces a short-duration 
pulse	to	clear	the	counter	and	reset	the	control	flip-flop	and	thus	disable	the	clock	genera-
tor.	The	system	is	now	ready	for	the	next	group	of	eleven	bits,	and	it	waits	for	the	next	
HIGH-to-LOW transition at the beginning of the start bit.

By	reversing	the	process	just	stated,	parallel-to-serial	data	conversion	can	be	accom-
plished. Since the serial data format must be produced, start and stop bits must be added to 
the	sequence.

Start
bit (0)

Stop
bit (1)

Stop
bit (1)

D7 D6 D5 D4 D3 D2 D1 D0
t

fg09_03400

figuRe 17 Serial data format.

To illustrate the operation of this serial-to-parallel converter, the serial data format 
shown	in	Figure	17	is	used.	It	consists	of	eleven	bits.	The	first	bit	(start	bit)	is	always	0	and	
always	begins	with	a	HIGH-to-LOW	transition.	The	next	eight	bits	(D7 through D0) are the 
data bits (one of the bits can be parity), and the last one or two bits (stop bits) are always 1s. 
When no data bits are being sent, there is a continuous HIGH on the serial data line.
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figuRe 18 

univeRSAl ASynchROnOuS ReceiveR 
tRAnSmitteR (uARt)
Computers and microprocessor-based systems also send and receive data in a parallel for-
mat.	Frequently,	these	systems	must	communicate	with	external	devices	that	send	and/or	
receive serial data. An interfacing device used to accomplish these conversions is the 
UART	(Universal	Asynchronous	Receiver	Transmitter).	Figure	19	illustrates	the	UART	in	
a general microprocessor-based system application.

S y S t e m  e X A m p l e  3
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1. Develop	the	logic	diagram	for	the	shift	register	in	Figure	6,	
using	J-K	flip-flops	to	replace	the	D	flip-flops.

2. How	many	clock	pulses	are	required	to	enter	a	byte	of	data	
serially into an 8-bit shift register?

3. The	bit	sequence	1101	is	serially	entered	(least-significant	bit	
first)	into	a	4-bit	parallel	out	shift	register	that	is	initially	
clear. What are the Q	outputs	after	two	clock	pulses?

4. How	can	a	serial	in/parallel	out	register	be	used	as	a	serial	in/
serial out register?

5. Explain	the	function	of	the	SHIFT>LOAD input.

6. In Figure 15, D0 = 1, D1 = 0, D2 = 0, and D3 = 1. After 
three	clock	pulses,	what	are	the	data	outputs?

SectiOn 3 checKup

A	UART	includes	both	serial-to-parallel	and	parallel-to-serial	conversion,	as	shown	
in	the	block	diagram	in	Figure	20.	The	data	bus	is	basically	a	set	of	parallel	conductors	
along	which	data	move	between	the	UART	and	the	microprocessor	system.	Buffers	inter-
face the data registers with the data bus.

UART
Micro-

processor
system

Parallel
data bus

External
device

(printer, communications
system, etc.)

Serial data out

Serial data in

fg09_03600
figuRe 19 uARt interface.

Receiver
data register

Transmitter
data register

Buffers

Data bus

CLK
Transmitter

parallel in/serial
out shift register

Receiver
serial in/parallel
out shift register

Serial data out Serial data in

CLK

fg09_03700
figuRe 20 basic uARt block diagram.

The	UART	receives	data	in	serial	format,	converts	the	data	to	parallel	format,	and	
places	them	on	the	data	bus.	The	UART	also	accepts	parallel	data	from	the	data	bus,	con-
verts	the	data	to	serial	format,	and	transmits	them	to	an	external	device.
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4 bidiRectiOnAl Shift RegiSteRS
A bidirectional	shift	register	is	one	in	which	the	data	can	be	shifted	either	left	or	right.	It	can	
be implemented by using gating logic that enables the transfer of a data bit from one stage to 
the	next	stage	to	the	right	or	to	the	left,	depending	on	the	level	of	a	control	line.

After completing this section, you should be able to

•	 Explain	the	operation	of	a	bidirectional	shift	register

•	 Develop	and	analyze	timing	diagrams	for	bidirectional	shift	registers

A 4-bit bidirectional shift register is shown in Figure 21. A HIGH on the 
RIGHT>LEFT  control input allows data bits inside the register to be shifted to the right, 
and	a	LOW	enables	data	bits	inside	the	register	to	be	shifted	to	the	left.	An	examination	of	
the	gating	logic	will	make	the	operation	apparent.	When	the	RIGHT/LEFT  control input is 
HIGH, gates G1 through G4 are enabled, and the state of the Q output of each flip-flop is 
passed through to the D input of the following	flip-flop.	When	a	clock	pulse	occurs,	the	
data bits are shifted one place to the right. When the RIGHT>LEFT  control input is LOW, 
gates G5 through G8 are enabled, and the Q output of each flip-flop is passed through to the 
D input of the preceding	flip-flop.	When	a	clock	pulse	occurs,	the	data	bits	are	then	shifted	
one place to the left.

fg09_01900
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D

C
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C

figuRe 21 four-bit bidirectional shift register. Open file f07-21 to verify the operation.

e X A m p l e  4

Determine	the	state	of	the	shift	register	of	Figure	21	after	each	clock	pulse	for	the	
given RIGHT>LEFT  control input waveform in Figure 22(a). Assume that 
Q0 = 1, Q1 = 1, Q2 = 0, and Q3 = 1 and that the serial data-input line is LOW.

S O l u t i O n

See Figure 22(b).

multiSim
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R e l A t e d  p R O b l e m

Invert the RIGHT>LEFT  waveform, and determine the state of the shift register 
in	Figure	21	after	each	clock	pulse.

(right) (left) (right) (left)RIGHT/LEFT

CLK

Q0 1

Q1 1

Q2 0

Q3

0 0 0 1 1 0 0 0 1

1 0 1 1 0 1 0 1 0

1 1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 01

(a)

(b)

fg09_02000
figuRe 22 

A	shift	register	counter	is	basically	a	shift	register	with	the	serial	output	connected	back	to	the	
serial input to produce special sequences. these devices are often classified as counters because 
they	exhibit	a	specified	sequence	of	states.	Two	of	the	most	common	types	of	shift	register	
counters, the johnson counter and the ring counter, are introduced in this section.

After completing this section, you should be able to

•	 Discuss	how	a	shift	register	counter	differs	from	a	basic	shift	register
•	 Explain	the	operation	of	a	Johnson	counter
•	 Specify	a	Johnson	sequence	for	any	number	of	bits
•	 Explain	the	operation	of	a	ring	counter	and	determine	the	sequence	of	any	specific	ring	

counter

the johnson counter
In a johnson counter	the	complement	of	the	output	of	the	last	flip-flop	is	connected	back	
to the D	input	of	the	first	flip-flop	(it	can	be	implemented	with	other	types	of	flip-flops	as	
well).	 If	 the	 counter	 starts	 at	 0,	 this	 feedback	 arrangement	 produces	 a	 characteristic	

5 Shift RegiSteR cOunteRS

1. Assume that the 4-bit bidirectional shift register in Figure 21 
has the following contents: Q0 = 1, Q1 = 1, Q2 = 0, and 
Q3 = 0. There is a 1 on the serial data-input line. If 

RIGHT>LEFT 	is	HIGH	for	three	clock	pulses	and	LOW	for	
two	more	clock	pulses,	what	are	the	contents	after	the	fifth	
clock	pulse?

SectiOn 4 checKup
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The	implementations	of	 the	4-stage	and	5-stage	Johnson	counters	are	shown	in	
Figure	23.	The	implementation	of	a	Johnson	counter	is	very	straightforward	and	is	the	
same regardless of the number of stages. The Q output of each stage is connected to the D 
input	of	the	next	stage	(assuming	that	D	flip-flops	are	used).	The	single	exception	is	that	
the Q	output	of	the	last	stage	is	connected	back	to	the	D	input	of	the	first	stage.	As	the	
sequences	in	Table	3	and	4	show,	if	the	counter	starts	at	0,	it	will	“fill	up”	with	1s	from	left	
to	right,	and	then	it	will	“fill	up”	with	0s	again.

Diagrams	of	 the	 timing	operations	of	 the	4-bit	and	5-bit	 Johnson	counters	are	
shown in Figures 24 and 25, respectively.

sequence	of	states,	as	shown	in	Table	3	for	a	4-bit	device	and	in	Table	4	for	a	5-bit	device.	
Notice	that	the	4-bit	sequence	has	a	total	of	eight	states,	or	bit	patterns,	and	that	the	5-bit	
sequence	has	a	total	of	ten	states.	In	general,	a	Johnson	counter	will	produce	a	modulus	of	
2n, where n is the number of stages in the counter.

TABLE	3	 •	 four-bit johnson sequence.

clOcK pulSe Q0 Q1 Q2 Q3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

TABLE	4	 •	 five-bit johnson sequence.

clOcK pulSe Q0 Q1 Q2 Q3 Q4

0 0 0 0 0 0

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

5 1 1 1 1 1

6 0 1 1 1 1

7 0 0 1 1 1

8 0 0 0 1 1

9 0 0 0 0 1
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(a) Four-bit Johnson counter

(b) Five-bit Johnson counter

fg09_02300
figuRe 23 four-bit and 5-bit johnson counters.
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figuRe 24 timing sequence for a 4-bit johnson counter.
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Q0
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fg09_02500

figuRe 25 timing sequence for a 5-bit johnson counter.

the Ring counter
The ring counter	utilizes	one	flip-flop	for	each	state	in	its	sequence.	It	has	the	advantage	
that	decoding	gates	are	not	required.	In	the	case	of	a	10-bit	ring	counter,	there	is	a	unique	
output for each decimal digit.
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A	logic	diagram	for	a	10-bit	ring	counter	is	shown	in	Figure	26.	The	sequence	for	
this	ring	counter	is	given	in	Table	5.	Initially,	a	1	is	preset	into	the	first	flip-flop,	and	the	
rest of the flip-flops are cleared. Notice that the interstage connections are the same as 
those	for	a	Johnson	counter,	except	that	Q rather than Q	is	fed	back	from	the	last	stage.	
The	ten	outputs	of	the	counter	indicate	directly	the	decimal	count	of	the	clock	pulse.	For	
instance, a 1 on Q0 represents a zero, a 1 on Q1 represents a one, a 1 on Q2 represents a 
two, a 1 on Q3 represents a three, and so on. You should verify for yourself that the 1 is 
always	retained	in	the	counter	and	simply	shifted	“around	the	ring,”	advancing	one	stage	
for	each	clock	pulse.

Modified	sequences	can	be	achieved	by	having	more	than	a	single	1	in	the	counter,	as	
illustrated	in	Example	5.

PRE

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

CLR
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D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

fg09_02600

figuRe 26 A 10-bit ring counter. Open file f07-26 to verify operation.

e X A m p l e  5

If	a	10-bit	ring	counter	similar	 to	Figure	26	has	 the	initial	state	1010000000,	
determine the waveform for each of the Q outputs.

S O l u t i O n

See Figure 27.

TABLE	5	 •	 ten-bit ring counter sequence.

clOcK pulSe Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

multiSim
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figuRe 27 

KeybOARd encOdeR
The	keyboard	encoder	is	a	good	example	of	the	application	of	a	shift	register	used	as	a	ring	
counter	in	conjunction	with	other	devices.

Figure	28	 shows	a	 simplified	keyboard	encoder	 for	encoding	a	key	closure	 in	a	
64-key	matrix	organized	in	eight	rows	and	eight	columns.	Two	4-bit	shift	registers	are	con-
nected	as	an	8-bit	ring	counter	with	a	fixed	bit	pattern	of	seven	1s	and	one	0	preset	into	it	
when the power is turned on. Two priority encoders are used as eight-line-to-three-line 
encoders	(9	input	HIGH,	8	output	unused)	to	encode	the	ROW	and	COLUMN	lines	of	the	
keyboard	matrix.	The	parallel	in/parallel	out	register	holds	the	ROW/COLUMN	code	from	
the priority encoders.

The	basic	operation	of	the	keyboard	encoder	in	Figure	28	is	as	follows:	The	ring	
counter	“scans”	the	rows	for	a	key	closure	as	the	clock	signal	shifts	the	0	around	the	coun-
ter	at	a	5	kHz	rate.	The	0	(LOW)	is	sequentially	applied	to	each	ROW	line,	while	all	other	
ROW lines are HIGH. All the ROW lines are connected to the ROW encoder inputs, so the 
3-bit output of the ROW encoder at any time is the binary representation of the ROW line 
that	is	LOW.	When	there	is	a	key	closure,	one	COLUMN	line	is	connected	to	one	ROW	
line.	When	the	ROW	line	is	taken	LOW	by	the	ring	counter,	that	particular	COLUMN	line	
is	also	pulled	LOW.	The	COLUMN	encoder	produces	a	binary	output	corresponding	to	
the	COLUMN	in	which	the	key	is	closed.	The	3-bit	ROW	code	plus	the	3-bit	COLUMN	
code	uniquely	identifies	the	key	that	is	closed.	This	6-bit	code	is	applied	to	the	inputs	of	the	
key	code	register.	When	a	key	is	closed,	the	two	one-shots	produce	a	delayed	clock	pulse	
to	parallel-load	the	6-bit	code	into	the	key	code	register.	This	delay	allows	the	contact	
bounce	to	die	out.	Also,	the	first	one-shot	output	inhibits	the	ring	counter	to	prevent	it	from	
scanning	while	the	data	are	being	loaded	into	the	key	code	register.

S y S t e m  e X A m p l e  4

R e l A t e d  p R O b l e m

If a 10-bit ring counter has an initial state 0101001111, determine the waveform 
for each Q output.
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figuRe 28 

1. How	many	states	are	there	in	an	8-bit	Johnson	counter	sequence?

2. Write	the	sequence	of	states	for	a	3-bit	Johnson	counter	start-
ing with 000.

3. In	the	keyboard	encoder,	how	many	times	per	second	does	the	
ring	counter	scan	the	keyboard?

4. What	is	the	6-bit	ROW/COLUMN	code	(key	code)	for	the	top	
row	and	the	left-most	column	in	the	keyboard	encoder?

5. What	do	you	believe	is	the	purpose	of	the	diodes	in	the	key-
board encoder? What do you believe is the purpose of the 
resistors?

SectiOn 5 checKup

The	6-bit	code	in	the	key	code	register	is	now	applied	to	a	ROM	(read-only	mem-
ory)	to	be	converted	to	an	appropriate	alphanumeric	code	that	identifies	the	keyboard	
character. 
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The	security	system	that	was	introduced	in	Section	1	can	be	described	using	VHDL	or	Verilog	
for implementation in a pld. the three blocks of the system (keypad, security code logic, and 
code-selection logic) are combined in the program code to describe the complete system.

After completing this section, you should be able to

•	 Discuss	the	general	approach	to	programming	a	system	for	implementation	in	a	PLD
•	 See	how	the	VHDL	and	Verilog	programs	are	used	to	implement	the	system

The	security	system	block	diagram	is	shown	in	Figure	29	as	a	programming	model.	
Six	program	components	perform	the	 logical	operations	of	 the	security	system.	Each	
component	corresponds	to	a	block	or	blocks	in	the	figure.	The	security	system	program	
SecuritySystem	contains	the	code	that	defines	how	the	components	interact.

6 SecuRity SyStem With vhdl  
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figuRe 29 Security system block diagram as a programming model.

The	security	system	includes	a	ten-bit	input	vector	Key—one	input	bit	for	each	deci-
mal	digit—and	an	input	Enter,	representing	a	typical	numeric	keypad.	Once	a	key	is	pressed,	
the	data	stored	in	input	array	Key	is	sent	to	the	decimal-to-BCD	encoder	(BCDEncoder).	Its	
4-bit	output	is	then	sent	to	the	inputs	of	the	4-bit	parallel	in/parallel	out	shift	register	A	
(FourBitParSftReg).	An	external	system	clock	applied	to	input	Clk	drives	the	overall	secu-
rity system. The Alarm output signal is set HIGH upon a successful arming operation.

Pressing	the	Enter	key	sends	an	initial	HIGH	clock	signal	to	the	code-selection	logic	
block	(CodeSelection),	which	loads	an	initial	binary	value	of	1000	to	shift	register	B.	At	
this time, a binary 0000 is stored in shift register A, and the output of the magnitude  
comparator (ComparatorFourBit) is set LOW. The code-selection logic is now ready to 
present	the	first	stored	code	value	that	is	to	be	compared	to	the	value	of	the	first	numeric	
keypad	entry.	At	this	time	a	LOW	on	the	8-bit	parallel	in/serial	out	shift	register	C	(Eight-
BitShiftReg) S_L input loads an initial value of 00010000.
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When	a	numeric	key	is	pressed,	the	output	of	the	OR	gate	(ORGate)	clocks	the	first	
stored value to the inputs of shift register B, and the output of the decimal-to-BCD encoder 
is sent to the inputs of shift register A. If the values in shift registers A and B match, the 
output of the magnitude comparator is set HIGH; and the code-selection logic is ready to 
clock	in	the	next	stored	code	value.

At the conclusion of four successful comparisons of stored code values against four 
correct	keypad	entries,	the	value	00010000	initially	in	shift	register	C	will	shift	four	places	to	
the	right,	setting	the	Alarm	output	to	a	HIGH.	An	incorrect	keypad	entry	will	not	match	the	
stored code value in shift register B and the magnitude comparator will output a LOW. With 
the	comparator	output	LOW,	the	code-selection	logic	will	reset	to	the	first	stored	code	value;	
and the value 00010000 is reloaded into shift register C, starting the process over again.

To	clock	the	keypad	and	the	stored	code	values	through	the	system,	two	one-shots	
(OneShot) are used. The one-shots allow data to stabilize before acting on it. One-shot A 
receives	an	Enable	signal	from	the	keypad	OR	gate,	which	initiates	the	first	timed	process.	
The	OR	gate	output	is	also	sent	to	the	code-selection	logic,	and	the	first	code	value	from	
the code-selection logic is sent to the inputs of shift register A. When one-shot A times out, 
the	selected	keypad	entry	and	the	current	code	from	the	code-selection	logic	are	stored	in	
shift registers A and B for comparison by the magnitude comparator, and an Enable is sent 
to one-shot B. If the codes in shift registers A and B match, the value stored in shift register 
C shifts one place to the right after one-shot B times out.

The	six	components	used	in	the	security	system	program	SecuritySystem	are	shown	
in Figure 30. The VHDL and Verilog programs for each component are available in the 
appendix	“Programs	for	Security	System	Components.”
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(OneShot)

Components

Security System
(SecuritySystem)

figuRe 30 Security system 
components (vhdl/verilog 
codes	are	available	in		the	appendix	
“programs for Security System 
components.”

vhdl fOR the SecuRity SyStem

library ieee;
use	ieee.std_logic_1164.all;																																																	

entity SecuritySystem is                                                     
port (key: in std_logic_vector(0 to 9); Enter: in std_logic;    
   Clk: in std_logic; Alarm: out std_logic);                             
end entity SecuritySystem;

architecture SecuritySystemBehavior of SecuritySystem is

Key								:	10	-	Key	input
Enter					:	#	-	Key	input
Clk								:	System	clock
Alarm    : Alarm output
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component BCDEncoder is
port(D: in std_logic_vector(0 to 9);             Component declaration for
   Q: out std_logic_vector(0 to 3));        BCDEncoder
end component BCDEncoder;

component FourBitParSftReg is
port(D: in std_logic_vector(0 to 3);             Component declaration for
	 	 	 Clk:	in std_logic;                                 FourBitParSftReg    
   Q: out std_logic_vector(0 to 3));
end component FourBitParSftReg;

component ComparatorFourBit is
port(A, B: in std_logic_vector(0 to 3);        Component declaration for
   EQ: out std_logic);                              ComparatorFourBit
end component ComparatorFourBit;

component OneShot is
port(Enable,	Clk:	in std_logic;                     Component declaration for
   QOut: buffer std_logic);                     OneShot
end component OneShot;

component EightBitShiftReg is
port(S_L,	Clk:	in std_logic;                          

Component declaration for   D: in std_logic_vector(0 to 7);            EightBitShiftReg 
   Q: buffer std_logic);
end component EightBitShiftReg;

component CodeSelection is
port(Shiftln,	Clk:	in std_logic;                     Component declaration for
   Bout: out std_logic_vector(1 to 4));     CodeSelection
end component CodeSelection;

signal bcdout: std_logic_vector(0 to 3);
signal SftAout: std_logic_vector(0 to 3);
signal Sftbout: std_logic_vector(0 to 3);
signal mcodein: std_logic_vector(0 to 3);
signal ORgate: std_logic;
signal magcompare: std_logic;
signal timeoutA, timeoutb: std_logic;

begin
ORgate 6=		(Key(0)	or	Key(1)	or	Key(2)	or	Key(3)	or	Key(4)																																								Logic	definition	for	ORGate

or	key(5)	or	Key(6)	or	Key(7)	or	Key(8)	or	Key(9));																																																																													

BCD: BCDEncoder
port map(D(0)=7Key(0),D(1)=7Key(1),D(2)=7Key(2),D(3)=7Key(3),
     D(4)=7Key(4),D(5)=7Key(5),D(6)=7Key(6),D(7)=7Key(7),D(8)=7Key(8),D(9)=7Key(9),
     Q(0)=7BCDout(0),Q(1)=7BCDout(1),Q(2)=7BCDout(2),Q(3)=7BCDout(3));

ShiftRegisterA: FourBitParSftReg
port map(D(0)=7BCDout(0),D(1)=7BCDout(1),D(2)=7BCDout(2),D(3)=7BCDout(3),
	 	 	 	 	Clk=7not TimeoutA,Q(0)=7SftAout(0),Q(1)=7SftAout(1),Q(2)=7SftAout(2),Q(3)=7SftAout(3));

ShiftRegisterB: FourBitParSftReg
port map(D(0)=7MCodein(0),D(1)=7MCodein(1),D(2)=7MCodein(2),D(3)=7MCodein(3),
	 	 	 	 	Clk=7not TimeoutA,Q(0)=7SftBout(0),Q(1)=7SftBout(1),Q(2)=7SftBout(2),Q(3)=7SftBout(3));
Magnitude	Comparator:	ComparatorFourBit	port map(A=7SftAout,B=7SftBout,EQ=7MagCompare);

OSA:OneShot port map(Enable=7Enter	or	ORgate,Clk=7Clk,QOut=7TimeoutA);
OSB:OneShot port map(Enable=7not	TimeoutA,Clk=7Clk,QOut=7TimeoutB);

ShiftRegisterC:EightBitShiftReg
port map(S_L=7MagCompare,Clk=7 TimeoutB,D(0)=7‘0’,D(1)=7‘0’,
     D(2)=7‘0’,D(3)=7‘1’,D(4)=7‘0’,D(5)=7‘0’,D(6)=7‘0’,D(7)=7‘0’,Q=7Alarm);
CodeSelectionA: CodeSelection
port map(ShiftIn=7MagCompare,Clk=7Enter or ORGate,Bout=7MCodein);
end architecture SecuritySystemBehavior;

BDCout : BCD encoder return
SftAout : Shift Register A return
SftBout : Shift Register B return
MCodein	:	Security	Code	value
ORgate	:	OR	output	from	10-keypad
MagCompare	:	Key	entry	to	code	compare
TimeoutA/B	:	One-shot	timer	variables

Component 
instantiations∂

∂

∂

∂

∂

∂

∂
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veRilOg fOR the SecuRity SyStem

module SecuritySystem(Key, Enter, Clk, Alarm); Key					:	10	-	Key	input
 input	[9:0]	Key;	 Enter			:	#	-	Key	input
 input Enter; Clk					:	System	clock
 input	Clk;	 Alarm : Alarm output
 output Alarm;

 wire[3:0] BCDout; BDCout : BCD encoder return
 wire[3:0] SftAout; SftAout  : 4-bit shift register A
 wire[3:0] SftBout; SftBout  : 4-bit shift register B
 wire[3:0] MCodein; MCodein		:	Security	Code	value
 wire ORGate; ORgate		:	OR	output	from	10-keypad
 wire MagCompare; MagCompare	:	Key	entry	to	code	compare
 wire TimeoutA, TimeoutB;      TimeoutA/B	:	One-shot	timer	variables

 assign ORGate =	(	Key[0]	||	Key[1]	||	Key[2]	||	Key[3]	||	Key[4]	||							Logic	definition	for
																																			Key[5]	||	Key[6]	||	Key[7]	||	Key[8]	||	Key[9]	||);					OR Gate

	 BCDEncoder	BCD(.D(Key),.Q(BCDout));
	 FourBitParSftReg	ShiftRegisterA(.D(BCDout),.Clk(!TimeoutA),.Q(SftAout));
	 FourBitParSftReg	ShiftRegisterB(.D(MCodein),.Clk(!TimeoutA),.Q(SftBout));
	 ComparatorFourBit	MagnitudeComparator(.A(SftAout),.B(SftBout),.EQ(MagCompare));																					

Component instantiations 	 OneShot	OSA(.Enable(Enter	||	ORGate),.Clk(Clk),.QOut(TimeoutA));
	 OneShot	OSB(.Enable(!TimeoutA),.Clk(Clk),.QOut(TimeoutB));
	 EightBitShiftReg	ShiftRegisterC(.S_L(MagCompare),.Clk(TimeoutB),.D(0010),.Q(Alarm));
	 CodeSelection	CodeSelectionA(.ShiftIn(MagCompare),.Clk(Enter	||	ORGate),.Bout(MCodein));
endmodule

6

∂  

1. List the types of components used in the VHDL 
program?

2. What	is	the	only	block	in	the	security	system	not	defined	as	a	
component? How is it described?

SectiOn 6 checKup

7 tROubleShOOting
In	this	section,	in	addition	to	Multisim	debugging	and	software	testing,	a	traditional	method	of	
troubleshooting	sequential	logic	and	other	more	complex	system	hardware	is	also	discussed.	
This	method	uses	a	procedure	of	“exercising”	the	circuit	under	test	with	a	known	input	wave-
form (stimulus) and then observing the output for the correct bit pattern.

After completing this section, you should be able to

•	 Use	Multisim	to	debug	a	system	design	before	implementation
•	 Describe	how	development	software	is	used	to	implement	and	test	a	system
•	 Explain	the	procedure	of	“exercising”	as	a	troubleshooting	technique
•	 Discuss	troubleshooting	of	a	serial-to-parallel	converter
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multisim Simulation
Figure 31 shows the simulation screen for the security code logic that was covered in Sec-
tion	1.	A	DIP	switch	(J6)	is	used	to	simulate	the	10-digit	keypad	and	switch	J1	simulates	
the	#	key.	Switches	J2–J5	are	used	for	test	purposes	to	enter	the	code	that	is	produced	by	
the code selection logic in the complete system. Probe lights are used only for test pur-
poses to indicate the states of registers A and B, the output of the comparator, and the 
output of register C.

Figure 32 shows the simulation screen for the code-selection logic. Switches are 
selected for this application as the most convenient and cost-effective way to enter and 
store the code, thus eliminating the need for a semiconductor memory.

Software	Development	and	Testing
A VHDL or Verilog code for a device or system can be tested in software before being 
committed to hardware (PLD). The 4-bit bidirectional shift register is used for illustration. 
A development software simulation run with Altera Quartus II for the following 4-bit bidi-
rectional shift register VHDL code is shown in Figure 33.
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figuRe 31 Multisim	screen	for	the	security	code	logic.	The	switches	and	probe	lights	are	for	test	
purposes only. When a probe light is on, a 1 is indicated. Open f07-31 and run the simulation to 
verify operation.

multiSim
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figuRe 32 multisim screen for the code-selection logic. the probe lights are for test purposes 
only. When a probe light is on, a 1 is indicated. Open f07-32 and run the code-selection logic 
simulation to observe the operation.

library ieee;
use ieee.std_logic_1164.all;

entity FourBitBiDirSftReg is
port(R_L,	Dataln,	Clk: in std_logic);
   Q0, Q1, Q2, Q3: buffer std_logic);
end entity FourBitBiDirSftReg;

architecture FourBitBehavior of FourBitBiDirSftReg is
component dff is
 port(D,Clk:	in std_logic;
    Q: out std_logic);
end component dff;

signal D0, D1, D2, D3: std_logic;
begin
 D06=(Datain and R_L) or (not R_L and Q1);
 D16=(Q0 and R_L) or (not R_L and Q2);
 D26=(Q1 and R_L) or (not R_L and Q3);
 D36=(Q2 and R_L) or (not R_L and Datain);

DFF0:dff port map(D=7	D0,	Clk	=7	Clk,	Q	=7 Q0);
DFF1:dff port map(D=7	D1,	Clk	=7	Clk,	Q	=7 Q1);
DFF2:dff port map(D=7	D2,	Clk	=7	Clk,	Q	=7 Q2);
DFF3:dff port map(D=7	D3,	Clk	=7	Clk,	Q	=7 Q3);
end architecture FourBitBehavior;

R_L : Right-Left Shift
Datain : Serial data in
Clk	:	System	clock
Q0–Q3 : Shift register output

D0: Logic for DFlipFlop DFF0
D1: Logic for DFlipFlop DFF1
D2: Logic for DFlipFlop DFF2
D3: Logic for DFlipFlop DFF3

Component declaration 
for D flipflop (dff)

Bidirectional shift register logic 
defined	for	DFlipFlop	stages	
DFF0 through DFF3

∂

∂

∂

Component instantiations

multiSim
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figuRe 33 Development	software	simulation	of	4-bit	bidirectional	shift	
register operation.

h a n d s  o n  t i p
When measuring digital signals 
with an oscilloscope, you 
should always use dc coupling, 
rather than ac coupling. The 
reason that ac coupling is not 
best for viewing digital signals 
is that the 0 V level of the signal 
will appear at the average level 
of the signal, not at true ground 
or 0 V level. It is much easier to 
find	a	“floating”	ground	or	
incorrect logic level with dc 
coupling. If you suspect an open 
ground in a digital circuit, 
increase the sensitivity of the 
scope	to	the	maximum	possible.	
A good ground will never 
appear to have noise under this 
condition, but an open will 
likely	show	some	noise,	which	
appears as a random fluctuation 
in the 0 V level.

The	difference	in	this	simulation	and	a	Multisim	simulation	is	as	follows.	Multisim	is	
used to debug and verify a design before it is described with an HDL such as VHDL or 
Verilog. The development software simulation is used to test the HDL code before pro-
gramming it into a PLD. In this simulation Datain is set to a logic HIGH and shifted to 
Q0, given a logic HIGH on input shift direction R_L. A logic LOW is now assigned to 
the	direction	bit	R_L	and	the	logic	HIGH	on	Q0	is	shifted	to	Q3.	After	three	clock	cycles,	
the	direction	bit	R_L	is	set	to	a	logic	HIGH	and	the	value	shifted	to	Q0	is	shifted	back	to	
Q3, demonstrating the action of the 4-bit bidirectional shift register.

Hardware	Testing
The	serial-to-parallel	data	converter	in	Figure	16	in	System	Example	2	is	used	to	illustrate	
the	“exercising”	procedure.	The	main	objective	in	exercising	the	circuit	is	to	force	all	ele-
ments	(flip-flops	and	gates)	into	all	of	their	states	to	be	certain	that	nothing	is	stuck	in	a	
given state as a result of a fault. The input test pattern, in this case, must be designed to 
force	each	flip-flop	in	the	registers	into	both	states;	to	clock	the	counter	through	all	of	its	
eight	states;	and	to	take	the	control	flip-flop,	the	clock	generator,	the	one-shot,	and	the	
AND gate through their paces.

The	input	test	pattern	that	accomplishes	this	objective	for	the	serial-to-parallel	data	
converter is based on the serial data format in Figure 17. It consists of the pattern 10101010 
in	one	serial	group	of	data	bits	followed	by	01010101	in	the	next	group,	as	shown	in	Figure	
34. These patterns are generated on a repetitive basis by a special test-pattern generator. 
The basic test setup is shown in Figure 35.

After both patterns have been run through the circuit under test, all the flip-flops in 
the data-input register and in the data-output register have resided in both SET and RESET 
states,	the	counter	has	gone	through	its	sequence	(once	for	each	bit	pattern),	and	all	the	
other	devices	have	been	exercised.

To	check	for	proper	operation,	each	of	the	parallel	data	outputs	is	observed	for	an	
alternating pattern of 1s and 0s as the input test patterns are repetitively shifted into the 
data-input register and then loaded into the data-output register. The proper timing dia-
gram	is	shown	in	Figure	36.	The	outputs	can	be	observed	in	pairs	with	a	dual-trace	oscil-
loscope, or all eight outputs can be observed simultaneously with a logic analyzer 
configured	for	timing	analysis.

If	one	or	more	outputs	of	the	data-output	register	are	incorrect,	then	you	must	back	up	
to the outputs of the data-input register. If these outputs are correct, then the problem is 
associated	 with	 the	 data-output	 register.	 Check	 the	 inputs	 to	 the	 data-output	 register	
directly	on	the	pins	of	the	PLD	package	for	an	open	input	line.	Check	that	power	and	
ground	are	correct	(look	for	the	absence	of	noise	on	the	ground	line).	Verify	that	the	load	line	
is	a	solid	LOW	and	that	there	are	clock	pulses	on	the	clock	input	of	the	correct	amplitude.	
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figuRe 35 Serial-to-parallel	data	converter	implemented	in	a	PLD	being	exercised. 
(Instrument	photos	courtesy	of	Tektronix,	Inc.;	board	photo	courtesy	of	Digilent,	Inc.)
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fiXed-functiOn lOgic

1. What	is	the	purpose	of	providing	a	test	input	to	a	sequential	
logic circuit?

2. Generally, when an output waveform is found to be incorrect, 
what	is	the	next	step	to	be	taken?

SectiOn 7 checKup

SummARy
•	 The	basic	types	of	data	movement	in	shift	registers	are

 1. Serial	in/shift	right/serial	out

 2. Serial	in/shift	left/serial	out

 3. Parallel	in/serial	out

 4. Serial	in/parallel	out

 5. Parallel	in/parallel	out

 6. Rotate right

 7. Rotate left

•	 Shift	register	counters	are	shift	registers	with	feedback	that	exhibit	special	sequences.	Examples	
are	the	Johnson	counter	and	the	ring	counter.

•	 The	Johnson	counter	has	2n	states	in	its	sequence,	where	n is the number of stages.

•	 The	ring	counter	has	n	states	in	its	sequence.

Key teRmS
bidirectional Having two directions. In a bidirectional shift register, the stored data can be shifted 
right or left.

load To enter data into a shift register.

Register One or more flip-flops used to store and shift data.

Stage One storage element in a register.

Make	sure	that	the	connection	to	the	logic	analyzer	did	not	short	two	output	lines	together.	
If	all	of	these	checks	pass	inspection,	then	it	is	likely	that	the	output	register	is	defective.	If	
the data-input register outputs are also incorrect, the fault could be associated with the 
input register itself or with any of the other logic, and additional investigation is necessary 
to isolate the problem.
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tRue/fAlSe Quiz
Answers are at the end of the chapter.

 1. Shift registers consist of an arrangement of flip-flops.

 2. Two functions of a shift register are data storage and data movement.

 3. In a serial shift register, several data bits are entered at the same time.

 4. All	shift	registers	are	defined	by	specified	sequences.

 5. A shift register can have both parallel and serial outputs.

 6. A	shift	register	with	four	stages	can	store	a	maximum	count	of	fifteen.

 7. The	Johnson	counter	is	a	special	type	of	shift	register.

 8. The	modulus	of	an	8-bit	Johnson	counter	is	eight.

 9. A	ring	counter	uses	one	flip-flop	for	each	state	in	its	sequence.

 10. A shift register can be used as a time delay device.

Self-teSt
Answers are at the end of the chapter.

 1. A stage in a shift register consists of

(a) a latch (b) a flip-flop
(c) a byte of storage (d) four bits of storage

 2. To serially shift a byte of data into a shift register, there must be

(a) one	clock	pulse	 (b) one load pulse
(c) eight	clock	pulses	 (d) one	clock	pulse	for	each	1	in	the	data

 3. To parallel load a byte of data into a shift register with a synchronous load, there must be

(a) one	clock	pulse
(b) one	clock	pulse	for	each	1	in	the	data
(c) eight	clock	pulses
(d) one	clock	pulse	for	each	0	in	the	data

 4. The	group	of	bits	10110101	is	serially	shifted	(right-most	bit	first)	into	an	8-bit	parallel	output	
shift	register	with	an	initial	state	of	11100100.	After	two	clock	pulses,	the	register	contains

(a) 01011110 (b) 10110101
(c) 01111001 (d) 00101101
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 5. With	a	100	kHz	clock	frequency,	eight	bits	can	be	serially	entered	into	a	shift	register	in

(a) 80 ms (b) 8 ms
(c) 80 ms (d) 10 ms

 6. With	a	1	MHz	clock	frequency,	eight	bits	can	be	parallel	entered	into	a	shift	register

(a) in 8 ms
(b) in the propagation delay time of eight flip-flops
(c) in 1 ms
(d) in the propagation delay time of one flip-flop

 7. A	modulus-10	Johnson	counter	requires

(a) ten flip-flops (b) four flip-flops
(c) five	flip-flops	 (d) twelve flip-flops

 8. A	modulus-10	ring	counter	requires	a	minimum	of

(a) ten flip-flops (b) five	flip-flops
(c) four flip-flops (d) twelve flip-flops

 9. When	an	8-bit	serial	in/serial	out	shift	register	is	used	for	a	24	ms	time	delay,	the	clock	fre-
quency	must	be

(a) 41.67	kHz	 (b) 333	kHz
(c) 125	kHz	 (d) 8	MHz

 10. The	purpose	of	the	ring	counter	in	the	keyboard	encoding	circuit	of	Figure	28	is

(a) to	sequentially	apply	a	HIGH	to	each	row	for	detection	of	key	closure
(b) to	provide	trigger	pulses	for	the	key	code	register
(c) to	sequentially	apply	a	LOW	to	each	row	for	detection	of	key	closure
(d) to	sequentially	reverse	bias	the	diodes	in	each	row

pROblemS
Answers to odd-numbered problems are at the end of the chapter.

SectiOn 1 A System
 1. Write	the	BCD	code	sequence	produced	by	the	encoder	in	Figure	2	if	a	4-digit	access	number	

4739	is	entered	on	the	keypad.

 2. What is the state of shift register C in Figure 2 after two correct code digits are entered for the 
entry code 4739?

 3. Assume the entry code is 1939. Determine the states of shift register A and shift register C after 
the second correct digit has been entered in Figure 2.

 4. If	the	digit	4	is	entered	on	the	keypad,	what	appears	on	the	outputs	of	shift	register	A	in	Figure	
2?

 5. Initially, what is the state of the Q outputs of the shift register in Figure 3.

 6. What	is	the	state	of	the	shift	register	in	Figure	3	after	three	clock	pulses?

 7. Assume	the	entry	code	is	7646	and	the	digits	7645	are	entered.	Determine	the	states	of	shift	
register A and shift register C after each of the digits is entered.

 8. To increase the entry code to 5 digits, what would have to be added to the logic in Figure 3?

SectiOn 2 basic Shift Register Operations
 9. Why are shift registers considered basic memory devices?

 10. What is the storage capacity of a register that can retain two bytes of data?

 11. Name two functions of a shift register.

SectiOn 3 types of Shift Registers
 12. The	sequence	1011	is	applied	to	the	input	of	a	4-bit	serial	shift	register	that	is	initially	cleared.	

What	is	the	state	of	the	shift	register	after	three	clock	pulses?
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CLK

Serial data input

fg09_04800

figuRe 37 

 14. Solve Problem 13 for the waveforms in Figure 38.

CLK

Serial data input

fg09_04900

figuRe 38 

 15. What	is	the	state	of	the	register	in	Figure	39	after	each	clock	pulse	if	it	starts	in	the	101001111000	
state?

SRG 12

C

D

CLK

Serial data in
Serial data out

CLK

Serial data in

fg09_05000

figuRe 39 

 16. For	the	serial	in/serial	out	shift	register,	determine	the	data-output	waveform	for	the	data-input	
and	clock	waveforms	in	Figure	40.	Assume	that	the	register	is	initially	cleared.

SRG 10

C

D

CLK

Serial data in
Serial data out

CLK

Serial data in

fg09_05100
figuRe 40 

 17. Solve	Problem	16	for	the	waveforms	in	Figure	41.

CLK

Serial data in

fg09_05200

figuRe 41 

 13. For	the	data	input	and	clock	in	Figure	37,	determine	the	states	of	each	flip-flop	in	the	shift	register	
of	Figure	6	and	show	the	Q waveforms. Assume that the register contains all 1s initially.
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 24. Solve Problem 23 if the parallel inputs are all 1.

 25. Solve Problem 23 if the serial input is inverted.

 19. Show a complete timing diagram including the parallel outputs for the shift register in Figure 9. 
Use	the	waveforms	in	Figure	40	with	the	register	initially	clear.

 20. Solve Problem 19 for the input waveforms in Figure 41.

 21. Develop the Q0 through Q7	outputs	for	an	8-bit	serial	in/parallel	out	shift	register	with	the	input	
waveform shown in Figure 43.

Serial in

CLK

CLR

figuRe 43 

 22. The shift register in Figure 44(a) has SHIFT>LOAD	and	CLK	inputs	as	shown	in	part	(b).	The	
serial data input (SER) is a 0. The parallel data inputs are D0 = 1, D1 = 0, D2 = 1, and 
D3 = 0 as shown. Develop the data-output waveform in relation to the inputs.

 23. The	waveforms	in	Figure	45	are	applied	to	an	8-bit	parallel	in/serial	out	shift	register.	The	paral-
lel inputs are all 0. Determine the Q7 waveform.

CLK

CLK INHIBIT

SERIAL IN

LOADSHIFT /

figuRe 45 

CLK

Data out

t

Binary number

fg09_05300

figuRe 42 
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CLK

SER

SHIFT/LOAD

D0 D1 D2 D3

SHIFT/LOAD
Data
out

(a) (b)

SRG 4

C

1 0 1 0

fg09_05500
figuRe 44 

 18. A	leading-edge	clocked	serial	in/serial	out	shift	register	has	a	data-output	waveform	as	shown	
in	Figure	42.	What	binary	number	is	stored	in	the	8-bit	register	if	the	first	data	bit	out	(left-most)	
is the LSB?
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CLK

D0

D1

D2

D3

LOAD

CLEAR

SHIFT /

figuRe 46 

 27. Solve	Problem	26	if	the	SHIFT>LOAD input is inverted and the register is initially clear.

 28. Use	two	4-bit	shift	registers	to	form	an	8-bit	shift	register.	Show	the	required	connections.

SectiOn 4 bidirectional Shift Registers
 29. For the 8-bit bidirectional register in Figure 47, determine the state of the register after each 

clock	pulse	for	the	RIGHT/LEFT  control waveform given. A HIGH on this input enables a shift 
to the right, and a LOW enables a shift to the left. Assume that the register is initially storing the 
decimal	number	seventy-six	in	binary,	with	the	right-most	position	being	the	LSB.	There	is	a	
LOW on the data-input line.

CLK

Data in

RIGHT/LEFT CLK

RIGHT/LEFT

SRG 8

C

D

Data out

fg09_05800

figuRe 47 

 30. Solve Problem 29 for the waveforms in Figure 48.

CLK

RIGHT/LEFT

fg09_05900

figuRe 48 

 31. Use	two	4-bit	bidirectional	shift	registers	to	create	an	8-bit	bidirectional	shift	register.	Show	the	
connections. Assume each shift register has a shift left (SL) data input and a shift right (SR) 
data input.

 32. Determine the Q	outputs	of	a	4-bit	serial	in/parallel	out	bidirectional	shift	register	with	the	
inputs shown in Figure 49.

CLK

CLR

RIGHT/LEFT

Serial in

figuRe 49 

 26. Determine all the Q	output	waveforms	for	a	4-bit	parallel	in/parallel	out	shift	register	when	the	
inputs	are	as	shown	in	Figure	46.
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SectiOn 5 Shift Register counters
 33. How	many	flip-flops	are	required	to	implement	each	of	the	following	in	a	Johnson	counter	

configuration:
(a) modulus-6	 (b) modulus-10
(c) modulus-14 (d) modulus-16

 34. Draw	the	logic	diagram	for	a	modulus-18	Johnson	counter.	Show	the	timing	diagram	and	write	
the	sequence	in	tabular	form.

 35. For the ring counter in Figure 50, show the waveforms for each flip-flop output with respect to 
the	clock.	Assume	that	FF0	is	initially	SET	and	that	the	rest	are	RESET.	Show	at	least	ten	clock	
pulses.

 36. The	waveform	pattern	in	Figure	51	is	required.	Devise	a	ring	counter,	and	indicate	how	it	can	be	
preset to produce this waveform on its Q9	output.	At	CLK16	the	pattern	begins	to	repeat.

CLK

Q9 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fg09_06200

figuRe 51 

SectiOn 6 Security	System	with	VHDL	and	Verilog
 37. If	the	code	selection	component	of	the	security	system	is	modified	to	store	a	five-digit	code,	

what changes are needed to support the additional digit?

 38. Explain	the	need	for	component	one-shot	B	in	the	security	system.

 39. What	would	happen	if	two	keypad	keys	were	pressed	before	one-shot	A	could	complete	its	
timeout? How would the system respond?

SectiOn 7 troubleshooting
 40. Based	on	the	waveforms	in	Figure	52(a),	determine	the	most	likely	problem	with	the	register	in	

part	(b)	of	the	figure.
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D
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D
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 41. Refer	to	the	parallel	in/serial	out	shift	register	in	Figure	13.	The	register	is	in	the	state	where	
Q0Q1Q2Q3 = 1001, and D0D1D2D3 = 1010 is loaded in. When the SHIFT>LOAD input is 
taken	HIGH,	the	data	shown	in	Figure	53	are	shifted	out.	Is	this	operation	correct?	If	not,	what	
is	the	most	likely	problem?

1 0 1 1Q3

CLK

1

fg09_06400

figuRe 53 

 42. You have found that the bidirectional register in Figure 21 will shift data right but not left. What 
is	the	most	likely	fault?

 43. For	 the	 keyboard	 encoder	 in	 Figure	 28,	 list	 the	 possible	 faults	 for	 each	 of	 the	 following	
symptoms:
(a) The	state	of	the	key	code	register	does	not	change	for	any	key	closure.
(b) The	state	of	the	key	code	register	does	not	change	when	any	key	in	the	third	row	is	closed.	

A	proper	code	occurs	for	all	other	key	closures.
(c) The	state	of	the	key	code	register	does	not	change	when	any	key	in	the	first	column	is	

closed.	A	proper	code	occurs	for	all	other	key	closures.
(d) When	any	key	in	the	second	column	is	closed,	the	left	three	bits	of	the	key	code	(Q0Q1Q2) 

are correct, but the right three bits are all 1s.

 44. Develop	a	test	procedure	for	exercising	the	keyboard	encoder	in	Figure	28.	Specify	the	proce-
dure	on	a	step-by-step	basis,	indicating	the	output	code	from	the	key	code	register	that	should	
be observed at each step in the test.

 45. What symptoms are observed for the following failures in the serial-to-parallel converter in 
Figure	16:
(a) AND	gate	output	stuck	in	HIGH	state
(b) clock	generator	output	stuck	in	LOW	state
(c) third	stage	of	data-input	register	stuck	in	SET	state
(d) terminal	count	output	of	counter	stuck	in	HIGH	state

Special problems  
 46. Modify	the	serial-to-parallel	converter	in	Figure	16	to	provide	16-bit	conversion.

 47. Develop an 8-bit parallel-to-serial data converter that produces the data format in Figure 17. 
Show a logic diagram and specify the devices.

 48. Develop a power-on LOAD	circuit	for	the	keyboard	encoder	in	Figure	28.	This	circuit	must	
generate a short-duration LOW pulse when the power switch is turned on.

multiSim tROubleShOOting 
pRActice
 49. Open	file	P07-49	and	follow	the	instructions	given	there.

 50. Open	file	P07-50	and	follow	the	instructions	given	there.

 51. Open	file	P07-51	and	follow	the	instructions	given	there.

 52. Open	file	P07-52	and	follow	the	instructions	given	there.

 53. Open	file	P07-53	and	follow	the	instructions	given	there.

AnSWeRS tO SectiOn checKupS
SectiOn 1 A System
 1. The	OR	gate	detects	a	key	closure	and	triggers	one-shot	A.

 2. 0100 

 3.	 OS	B,	provides	a	delayed	clock	to	register	C.

SectiOn 2 basic Shift Register Operations
 1. Storage and data movement are two functions of a shift register.

 2. When the Q output of a flip-flop is HIGH, a 1 is stored.

multiSim
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SectiOn 3 types of Shift Registers
 1. FF0: data input to J0, data input to K0; FF1: Q0 to J1, Q0 to K1; FF2: Q1 to J2, Q1 to K2; FF3: Q2 

to J3, Q2 to K3

 2. Eight	clock	pulses

 3. 0100	after	2	clock	pulses

 4. Take	the	serial	output	from	the	right-most	flip-flop	for	serial	out	operation.

 5. When SHIFT>LOAD	 is	 HIGH,	 the	 data	 are	 shifted	 right	 one	 bit	 per	 clock	 pulse.	 When	
SHIFT>LOAD is LOW, the data on the parallel inputs are loaded into the register.

 6. The data outputs are 1001.

SectiOn 4 bidirectional Shift Registers
 1. 1111	after	the	fifth	clock	pulse

SectiOn 5 Shift Register counters
 1. Sixteen	states	are	in	an	8-bit	Johnson	counter	sequence.

 2. For	a	3-bit	Johnson	counter:	000,	100,	110,	111,	011,	001,	000

 3. 625	scans/second

 4. Q5Q4Q3Q2Q1Q0 = 011011

 5. The diodes provide unidirectional paths for pulling the ROWs LOW and preventing HIGHs on 
the	ROW	lines	from	being	connected	to	the	switch	matrix.	The	resistors	pull	the	COLUMN	
lines HIGH.

SectiOn 6 Security	System	with	VHDL	and	Verilog
 1. Decimal-to-BCD	encoder,	4-bit	parallel-in/parallel-out	shift	register,	8-bit	parallel-in/serial-out	

shift register, 4-bit magnitude comparator, code-selection logic, one-shot.

 2. The	OR	gate	is	not	treated	as	a	component.	It	is	described	with	a	Boolean	expression.

SectiOn 7 troubleshooting
 1. A	test	input	is	used	to	sequence	the	circuit	through	all	of	its	states.

 2. Check	the	input	to	that	portion	of	the	circuit.	If	the	signal	on	that	input	is	correct,	the	fault	is	
isolated to the circuitry between the good input and the bad output.

AnSWeRS tO RelAted pROblemS  
fOR eXAmpleS
 1 See Figure 54.
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0

0

The output is Q4Q3Q2Q1Q0 = 00101
after 5 clock pulses.

fg09_06500
figuRe 54 
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 2 The	state	of	the	register	after	three	additional	clock	pulses	is	0000.

 3 See Figure 55.

CLK

SHIFT/LOAD
Q3 Unknown

1 2 3 4 5 6

fg09_06600

figuRe 55 

 4 See	Figure	56.
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 5 See Figure 57.
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figuRe 57 

AnSWeRS tO tRue/fAlSe Quiz
 1. T  2. T  3. F   4. F  5. T  6. T  

 7. T  8. F  9. T  10. T

AnSWeRS tO Self-teSt
 1. (b)  2. (c)  3. (a)  4. (c)   5. (a)

 6. (d)  7. (c)  8. (a)  9. (b)  10. (c)

AnSWeRS tO Odd-numbeRed pROblemS
 1. 1001001101110100

 3. shift register A: 1001

  shift register C: 00000100

 5. Q0 = 1, Q1 = 0, Q2 = 0, Q3 = 0

 7. The	states	of	shift	registers	A	and	C	after	each	key	closure	when	entering	7645	are:

  After key 7 is pressed:

  Shift register A contains 0111

  Shift register C contains 11000 423
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  After key 6 is pressed:

  Shift register A contains 0110

  Shift register C contains 11100

  After key 4 is pressed:

  Shift register A contains 0100

  Shift register C contains 11110

  After key 5 (an incorrect entry) is pressed:

  Shift register A contains 0000

  Shift register C contains 10000

 9. Shift registers store binary data.

 11. Shift data and store data.

 13. See Figure P–48.
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Q0

Data in

Q1

Q2

Q3

fgp_07400

figuRe p–48 
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CLK

Data in

Data out

fgp_07500
figuRe p–49 

 15. Initially: 101001111000

CLK1: 010100111100

CLK2: 001010011110

CLK3: 000101001111

CLK4: 000010100111

CLK5: 100001010011

CLK6: 110000101001

CLK7: 111000010100

CLK8: 011100001010

CLK9: 001110000101

CLK10: 000111000010

CLK11: 100011100001

CLK12: 110001110000

 17. See Figure P–49.
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 19. See Figure P–50.
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Q3

fgp_07600
figuRe p–50 

 21. See Figure P–51.

 23. See Figure P–52.

 25. See Figure P–53.

CLK

Serial in

Q0

CLR

Q1

Q2

Q3

Q4 through Q7 remain LOW.
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 27. See Figure P–54.
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 29. Initially	(76): 01001100

CLK1: 10011000 left

CLK2: 01001100 right

CLK3: 00100110 right

CLK4: 00010011 right

CLK5: 00100110 left

CLK6: 01001100 left

CLK7: 00100110 right

CLK8: 01001100 left

CLK9: 00100110 right

CLK10: 01001100 left

CLK11: 10011000 left

 31. See Figure P–55.
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Q0 Q1 Q2 Q3
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CLK
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D1 D2 D3D0

C

SRG 4

figuRe p–55 

 33. (a) 3  (b) 5  (c) 7  (d) 8

 35. See	Figure	P–56.

 37. The hard coded binary value stored in the 8-bit shift register C component will need to be 
changed from 000100002 to 001000002.

 39. If	two	key	presses	were	read	by	the	code	selection	component	before	one	shot	A	could	timeout,	
we	would	skip	a	stored	code	value.	The	system	would	read	the	second	value	as	an	error	and	
the system would not disarm.
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 41. D3 input open

 43. (a) 	No	clock	at	switch	closure	because	of	faulty	NAND	(negative-OR)	gate	or	one-shot;	open	
clock	(C)	input	to	key	code	register;	open	SH>LD	input	to	key	code	register

  (b)  Diode in third row open; Q2 output of ring counter open

  (c) 	The	NAND	(negative-OR)	gate	input	connected	to	the	first	column	is	open	or	shorted.

  (d) The	“2”	input	to	the	column	encoder	is	open.

 45. (a) Contents of data output register remain constant.

  (b) Contents of both registers do not change.

  (c)  Third stage output of data output register remains HIGH.

  (d) 	Clock	generator	is	disabled	after	each	pulse	by	the	flip-flop	being	continuously	SET	and	
then RESET.

 47. See Figure P–57.
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 49. circuit fault:	Line	to	CLK	input	of	U3	is	open.

  predicted effect of fault:	Q0	and	Q1	will	sequence	normally.	Q2	and	Q3	will	remain	LOW.

  Observed effect of introduced fault:	Q0	and	Q1	will	sequence	normally.	Q2	and	Q3	will	
remain LOW.

 51. circuit fault:	The	QH	output	of	the	74LS165	shift	register	is	shorted	to	ground.

  predicted effect of fault: The QH output is always LOW but the notQH output behaves as 
expected.

  Observed effect of introduced fault: The QH output is always LOW but the notQH output 
behaves	as	expected.

 53. Observed operation: The ring counter can initiate circulation of 1s but not 0s.

  Suspected fault:	The	notRESET	line	of	the	first	stage	is	shorted	to	VCC.

  effect of introduced fault: The ring counter can initiate circulation of 1s but not 0s.
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From Chapter 8 of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved.
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outline
 1 A System 

 2 Finite State Machines 

 3 Asynchronous Counters 

 4 Synchronous Counters 

 5 Up/Down Synchronous Counters 

 6 Cascaded Counters 

 7 Counter Decoding 

 8 Counters with VHDL and Verilog 

 9 Troubleshooting 

objeCtives
•	 Explain	how	a	digital	clock	operates

•	 Discuss	the	types	of	state	machines

•	 Describe	the	difference	between	an	asynchronous	
and a synchronous counter

•	 Analyze	counter	timing	diagrams

•	 Analyze	counter	circuits

•	 Explain	how	propagation	delays	affect	the	opera-
tion of a counter

•	 Determine	the	modulus	of	a	counter

•	 Modify	the	modulus	of	a	counter

•	 Recognize	the	difference	between	a	4-bit	binary	
counter and a decade counter

•	 Use	an	up/down	counter	to	generate	forward	and	
reverse binary sequences

•	 Determine	the	sequence	of	a	counter

•	 Use	cascaded	counters	to	achieve	a	higher	modulus

key terms
Counter
state machine
moore state machine
mealy state machine
Asynchronous

recycle
modulus
Decade
synchronous
Cascade

•	 Use	logic	gates	to	decode	any	given	state	of	a	
counter

•	 Eliminate	glitches	in	counter	decoding

•	 Troubleshoot	counters	for	various	types	of	faults

visit the Website
Study aids for this chapter are available at 

http://pearsonhighered.com/floyd

introDuCtion
Flip-flops can be connected together to perform count-
ing operations. Such a group of flip-flops is a counter. 
The number of flip-flops used and the way in which 
they are connected determine the number of states 
(called the modulus) and also the specific sequence of 
states that the counter goes through during each com-
plete cycle.

Counters are classified into two broad categories 
according	to	the	way	they	are	clocked:	asynchronous	and	
synchronous. In asynchronous counters, commonly called 
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ripple counters,	the	first	flip-flop	is	clocked	by	the	external	
clock	pulse	and	then	each	successive	flip-flop	is	clocked	by	
the output of the preceding flip-flop. In synchronous 
counters,	the	clock	input	is	connected	to	all	of	the	flip-flops	

so	that	they	are	clocked	simultaneously.	Within	each	of	
these two categories, counters are classified primarily by 
the type of sequence, the number of states, or the number of 
flip-flops in the counter.

1 A system
A counter* is a sequential logic device that is used to divide signal frequency, count events, and 
generate specified sequences of bits. Counters are made up of flip-flops connected in various 
ways to produce the desired results. A common example of an application of counters is in 
timekeeping systems.

After completing this section, you should be able to

•	 Explain	the	overall	operation	of	a	digital	clock

•	 Describe	how	counters	are	used	for	counting	down	a	frequency	to	achieve	an	output	that	
indicates time of day

Figure	1	is	a	simplified	logic	diagram	of	a	digital	clock	that	displays	seconds,	min-
utes,	and	hours.	First,	a	60	Hz	sinusoidal	ac	voltage	is	converted	to	a	60	Hz	pulse	wave-
form	and	divided	down	to	a	1	Hz	pulse	waveform	by	a	divide-by-60	counter	formed	by	a	
divide-by-10 counter followed by a divide-by-6 counter.

Seconds counter (divide-by-60)Hours counter Minutes counter (divide-by-60)

Seconds

BCD/7-seg

EN
C

CTR DIV 6

(0–9)

BCD/7-seg

EN

C

CTR DIV 10

(0–5)

Minutes

BCD/7-seg

EN
C

CTR DIV 6

(0–9)

BCD/7-seg

EN
C

CTR DIV 10

(0–5)

Hours

BCD/7-seg

FF

C

(0–9)

BCD/7-seg

EN
C

(0–1)

C
CTR DIV 10

EN
CTR DIV 6

C

1 Hz60 Hz
Wave-

shaping
circuit

60 Hz ac
Divide-by-60

Q CTR DIV 10

fg08_04900

FiGure 1 simplified logic diagram for a 12-hour digital clock. logic details using specific 
devices are shown in Figures 2 and 3.

*The	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	Term	glossary	at	the	end	of	the	chapter.
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Both the seconds and minutes counts are also produced by divide-by-60 counters, the 
details of which are shown in Figure 2. These counters count from 0 to 59 and then recycle 
to 0; synchronous decade counters are used in this particular implementation. Notice that 
the divide-by-6 portion is formed with a decade counter with a truncated sequence achieved 
by using the decoder count 6 to asynchronously clear the counter. The terminal count 
(TC),	59,	is	also	decoded	to	enable	the	next	counter	in	the	chain.	The	terminal count is the 
final state in a counter’s sequence.

CLR CTR DIV 6

HIGH
CTEN

C

Q3

CTR DIV 10

Q2 Q1 Q0

CTEN
TC = 9C

CLK

units

CLR CLR

To next
counter

Q3 Q2 Q1 Q0

Decode 6

Decode 59

TC = 59
To ENABLE
of next CTR

tens

fg08_05000
FiGure 2 logic diagram of typical divide-by-60 counter using synchronous decade counters. 
note that the outputs are in binary order (the right-most bit is the lsb).

The hours counter is implemented with a decade counter and a flip-flop as shown in 
Figure	3.	Consider	that	initially	both	the	decade	counter	and	the	flip-flop	are	REsET,	and	
the decode-12 gate (G2) and the decode-9 gate (G1) outputs are HIGH. The decade counter 
advances	through	all	of	its	states	from	zero	to	nine,	and	on	the	clock	pulse	that	recycles	 
it	 from	 nine	 back	 to	 zero,	 the	 flip-flop	 goes	 to	 the	 sET	 state	 (J = 1, K = 0). This 

LOAD

0 0 0 1

J

K

D3 D2 D1 D0

Q3 Q2 Q1 Q0

CLK

Q

Decode
12

BCD/7-seg

8 4 2 1

g f e d c b a

BCD/7-seg

8 4 2 1

g f e d c b a

To units-of-hours
display

To tens-of-hours
display

CTR DIV 10

G2

G1

Decode 9

fg08_05100

FiGure 3 logic diagram for hours counter and decoders. note that on the 
counter inputs and outputs, the right-most bit is the lsb.
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illuminates a 1 on the tens-of-hours display. The total count is now ten (the decade counter 
is	in	the	zero	state	and	the	flip-flop	is	sET).

next,	the	total	count	advances	to	eleven	and	then	to	twelve.	In	state	12	the	Q2 output 
of the decade counter is HIGH, the flip-flop is still SET, and thus the decode-12 gate out-
put	is	LoW.	This	activates	the	LOAD	input	of	the	decade	counter.	on	the	next	clock	pulse,	
the	decade	counter	 is	preset	 to	0001	from	the	data	 inputs,	and	 the	flip-flop	 is	REsET	
(J = 0, K = 1). As you can see, this logic always causes the counter to recycle from 
twelve	back	to	one	rather	than	back	to	zero.

A state machine is a sequential circuit having a limited (finite) number of states occuring in 
a prescribed order. A counter is an example of a state machine; the number of states is 
called the modulus. two types of state machines are the moore and the mealy. the moore 
state machine is one where the outputs depend only on the internal present state. the 
mealy state machine is one where the outputs depend on both the internal present state 
and on the inputs. both types have a timing input (clock) that is not considered a controlling 
input.

After completing this section, you should be able to

•	 Describe	a	Moore	state	machine

•	 Describe	a	Mealy	state	machine

•	 Discuss	examples	of	Moore	and	Mealy	state	machines

General models of Finite state machines
A Moore state machine consists of combinational logic that determines the sequence and mem-
ory	(flip-flops),	as	shown	in	Figure	4(a).	A	Mealy	state	machine	is	shown	in	part	(b).	In	the	
Moore	machine,	the	combinational	logic	is	a	gate	array	with	outputs	that	determine	the	next	
state of the flip-flops in the memory. There may or may not be inputs to the combinational 
logic. There may also be output combinational logic, such as a decoder. If there is an input(s), 
it does not affect the outputs because they always correspond to and are dependent only on the 
present state of the memory. For the Mealy machine, the present state affects the outputs, just 
as in the Moore machine; but in addition, the inputs also affect the outputs. The outputs come 
directly from the combinational logic and not the memory.

2 Finite stAte mAChines

Outputs

OutputsCombinational
logic

Memory

(a)  Moore machine (b)  Mealy machine

Input(s)

Present state

Combinational
logic

Memory

FiGure 4 two types of sequential logic.

1. Explain	the	purpose	of	each	nAnD	gate	in	Figure	3. 2. Identify the two recycle conditions for the hours counter in 
Figure	1.	Explain	the	reason	for	each.

seCtion 1 CheCkup*

*Answers are at the end of the chapter.
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exAmple oF A moore mAChine Figure 5(a) shows a Moore machine 
(modulus-26 binary counter with states 0 through 25) that is used to control the number of 
tablets	(25)	that	go	into	each	bottle	in	an	assembly	line.	When	the	binary	number	in	the	
memory (flip-flops) reaches binary 25 (11001), the counter recycles to 0 and the tablet flow 
and	clock	is	cut	off	until	the	next	bottle	is	in	place.	The	combinational	logic	for	state	transi-
tions sets the modulus of the counter so that it sequences from binary state 0 to binary state 
25, where 0 is the reset or rest state and the output combinational logic decodes binary 
state	25.	There	is	no	input	in	this	case,	other	than	the	clock,	so	the	next	state	is	determined	
only	by	the	present	state,	which	makes	this	a	Moore	machine.	one	tablet	is	bottled	for	each	
clock	pulse.	once	a	bottle	is	in	place,	the	first	tablet	is	inserted	at	binary	state	1,	the	second	
at binary state 2, and the twenty-fifth tablet when the binary state is 25. Count 25 is decoded 
and	used	to	stop	the	flow	of	tablets	and	the	clock.	The	counter	recycles	to	binary	state	0	
and	waits	until	the	next	bottle	is	in	position.	Then	the	clock	resumes,	the	count	goes	to	
binary state 1, and the cycle repeats, as illustrated by the state diagram in Figure 5(b).

Present state

Combinational
logic for state

transitions
Flip-flops

Clock

Logic for
decoding

binary state 25

Output
(state binary 25)

Bottle in place

binary
0

Bottle not in place

binary
1

binary
25

Modulus 26 counter

(a)  Moore machine (b)  State diagram

FiGure 5 A fixed-modulus binary counter as an example of a moore state machine. the dashed line 
in the state diagram means the states between binary 1 and 25 are not shown for simplicity.

Present state

Combinational
logic for the state

transitions
Flip-flops

25 50 100
Modulus-select inputs

Combinational
logic for

decoding count
25 or 50 or 100

Output
(final state)

(a)  Mealy machine (b)  State diagram

binary
0

binary
1

binary
25

binary
51

binary
50

binary
100

binary
26

Bottle not in place

Bottle in place
Input 50 =1

Input 25 =1

Input 100 =1

FiGure 6 A variable-modulus binary counter as an example of a mealy state machine. the red 
arrows in the state diagram represent the recycle paths that depend on the input number. the 
black dashed lines mean the interim states are not shown for simplicity.

exAmple oF A meAly mAChine Let’s assume that the tablet-bottling sys-
tem	uses	three	different	sizes	of	bottles:	a	25-tablet	bottle,	a	50-tablet	bottle,	and	a	100-tablet	
bottle.	This	operation	requires	a	state	machine	with	three	different	terminal	counts:	25,	50,	
and 100. One approach is illustrated in Figure 6(a). The combinational logic sets the  
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modulus of the counter depending on the modulus-select inputs. The output of the counter 
depends	on	both	the	present	state	and	the	modulus-select	 inputs,	making	this	a	Mealy	
machine. The state diagram is shown in part (b).

the term asynchronous refers to events that do not have a fixed time relationship with each 
other and, generally, do not occur at the same time. An asynchronous counter is one in which 
the flip-flops (FF) within the counter do not change states at exactly the same time because they 
do not have a common clock pulse.

After completing this section, you should be able to

•	 Describe	the	operation	of	a	2-bit	asynchronous	binary	counter

•	 Describe	the	operation	of	a	3-bit	asynchronous	binary	counter

•	 Define	ripple in relation to counters

•	 Describe	the	operation	of	an	asynchronous	decade	counter

•	 Develop	counter	timing	diagrams

A 2-bit Asynchronous binary Counter
Figure	7	shows	a	2-bit	counter	connected	for	asynchronous	operation.	notice	that	the	clock	
(CLK)	is	applied	to	the	clock	input	(C) of only the first flop-flop, FF0, which is always the 
least significant bit (LSB). The second flip-flop, FF1, is triggered by the Q0 output of FF0. 
FF0	changes	state	at	the	positive-going	edge	of	each	clock	pulse,	but	FF1	changes	only	
when triggered by a positive-going transition of the Q0 output of FF0. Because of the 
inherent	propagation	delay	time	through	a	flip-flop,	a	transition	of	the	input	clock	pulse	
(CLK)	and	a	transition	of	the	Q0	output	of	FF0	can	never	occur	at	exactly	the	same	time.	
Therefore, the two flip-flops are never simultaneously triggered, so the counter operation is 
asynchronous.

3 AsynChronous Counters

J1 Q1

K1

J0

Q1

Q0

K0

HIGH

CLK
C C

FF1FF0

fg08_00100

Q0

FiGure 7 A 2-bit asynchronous binary counter. open file F08-07 to verify 
operation.

the clock input of an 
asynchronous counter is 
always connected only to 
the lsb flip-flop.

multisim

1. What	characterizes	a	finite	state	machine?

2. Name the types of finite state machines.

3. Explain	the	difference	between	the	two	types	of	state	
machines.

seCtion 2 CheCkup
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the timinG DiAGrAm Let’s	examine	the	basic	operation	of	the	asynchronous	
counter	of	Figure	7	by	applying	four	clock	pulses	to	FF0	and	observing	the	Q output of 
each flip-flop. Figure 8 illustrates the changes in the state of the flip-flop outputs in response 
to	the	clock	pulses.	Both	flip-flops	are	connected	for	toggle	operation	(J = 1, K = 1) and 
are	assumed	to	be	initially	REsET	(Q	LoW).

Q0

CLK

Q0 (LSB)

1 2 3 4

Q1 (MSB)

Outputs

fg08_00200
FiGure 8 timing diagram for the counter of Figure 7. output 
waveforms are shown in green.

The	positive-going	edge	of	CLK1	(clock	pulse	1)	causes	the	Q0 output of FF0 to go 
HIGH, as shown in Figure 8. At the same time the Q0	output	goes	LoW,	but	it	has	no	
effect on FF1 because a positive-going transition must occur to trigger the flip-flop. After 
the	leading	edge	of	CLK1,	Q0 = 1 and Q1 = 0.	The	positive-going	edge	of	CLK2	causes	
Q0	to	go	LoW.	output	Q0 goes HIGH and triggers FF1, causing Q1 to go HIGH. After the 
leading	edge	of	CLK2,	Q0 = 0 and Q1 = 1.	The	positive-going	edge	of	CLK3	causes	Q0 
to go HIGH again. Output Q0	goes	LoW	and	has	no	effect	on	FF1.	Thus,	after	the	leading	
edge	of	CLK3,	Q0 = 1 and Q1 = 1.	The	positive-going	edge	of	CLK4	causes	Q0 to go 
LoW,	while	Q0 goes HIGH and triggers FF1, causing Q1	to	go	LoW.	After	the	leading	
edge	of	CLK4,	Q0 = 0 and Q1 = 0. The counter has now recycled to its original state 
(both	flip-flops	are	REsET).

In the timing diagram, the waveforms of the Q0 and Q1 outputs are shown relative 
to	the	clock	pulses	as	illustrated	in	Figure	8.	For	simplicity,	the	transitions	of	Q0, Q1, and 
the	clock	pulses	are	shown	as	simultaneous	even	though	this	is	an	asynchronous	counter.	
There	 is,	 of	 course,	 some	 small	 delay	 between	 the	CLK	 and	 the	Q0 transition and 
between the Q0 transition and the Q1 transition.

note	in	Figure	8	that	the	2-bit	counter	exhibits	four	different	states,	as	you	would	
expect	with	two	flip-flops	(22

= 4). Also, notice that if Q0 represents the least significant 
bit (LSB) and Q1 represents the most significant bit (MSB), the sequence of counter states 
represents a sequence of binary numbers as listed in Table 1.

Asynchronous counters 
are also known as ripple 
counters.

Q0 is always the lsb 
unless otherwise specified.

TABLE	1	 •	 binary state sequence for the 
counter in Figure 7.

CloCk pulse Q1 Q0

Initially 0 0

1 0 1

2 1 0

3 1 1

4	(recycles) 0 0

Since it goes through a binary sequence, the counter in Figure 7 is a binary counter. It 
actually	counts	the	number	of	clock	pulses	up	to	three,	and	on	the	fourth	pulse	it	recycles	to	its	
original state (Q0 = 0, Q1 = 0). The term recycle is commonly applied to counter operation; 
it	refers	to	the	transition	of	the	counter	from	its	final	state	back	to	its	original	state.
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A 3-bit AsynChronous binAry Counter The state sequence for a 
3-bit binary counter is listed in Table 2, and a 3-bit asynchronous binary counter is shown 
in	Figure	9(a).	The	basic	operation	is	the	same	as	that	of	the	2-bit	counter	except	that	the	
3-bit counter has eight states, due to its three flip-flops. A timing diagram is shown in Fig-
ure	9(b)	for	eight	clock	pulses.	notice	that	the	counter	progresses	through	a	binary	count	
of	zero	 through	seven	and	 then	 recycles	 to	 the	zero	 state.	This	counter	can	be	easily	
expanded	for	higher	count,	by	connecting	additional	toggle	flip-flops.

TABLE	2	 •	 state sequence for a 3-bit binary 
counter.

CloCk pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

propAGAtion DelAy Asynchronous counters are commonly referred to as 
ripple counters	for	the	following	reason:	The	effect	of	the	input	clock	pulse	is	first	“felt”	
by FF0. This effect cannot get to FF1 immediately because of the propagation delay 
through FF0. Then there is the propagation delay through FF1 before FF2 can be triggered. 

Q0 (LSB)

Q2 (MSB)

J2 Q2

K2

J1 Q1

K1

HIGH

CLK C C

FF2FF1

J0 Q0

K0

C

FF0

1 2 3 4 5CLK 6 7 8

10 10 10 10 0

Q1 10 10 1010

00 11 11

0

000

(a)

(b) Recycles back to 0

Q1Q0

fg08_00300
FiGure 9 three-bit asynchronous binary counter and its timing diagram for one cycle. 
open file F08-09 to verify operation.

multisim

437



CoUnTERs

Thus,	the	effect	of	an	input	clock	pulse	“ripples”	through	the	counter,	taking	some	time,	
due to propagation delays, to reach the last flip-flop.

To illustrate, notice that all three flip-flops in the counter of Figure 9 change state on the 
leading	edge	of	CLK4.	This	ripple	clocking	effect	is	shown	in	Figure	10	for	the	first	four	clock	
pulses,	with	the	propagation	delays	indicated.	The	LoW-to-HIGH	transition	of	Q0 occurs one 
delay time (tPLH)	after	the	positive-going	transition	of	the	clock	pulse.	The	LoW-to-HIGH	
transition of Q1 occurs one delay time (tPLH) after the positive-going transition of Q0. The 
LoW-to-HIGH	transition	of	Q2 occurs one delay time (tPLH) after the positive-going transition 
of Q1. As you can see, FF2 is not triggered until two delay times after the positive-going edge 
of	the	clock	pulse,	CLK4.	Thus,	it	takes	three	propagation	delay	times	for	the	effect	of	the	clock	
pulse,	CLK4,	to	ripple	through	the	counter	and	change	Q2	from	LoW	to	HIGH.

1 2 3 4CLK

tPLH

(CLK to Q0)

tPHL (CLK to Q0)

tPLH (Q0 to Q1)

tPHL (CLK to Q0)

tPHL (Q0 to Q1)

tPLH (Q1 to Q2)

Q0

Q1

Q2

fg08_00400

FiGure 10 propagation 
delays in a 3-bit asynchronous 
(ripple-clocked) binary counter.

This cumulative delay of an asynchronous counter is a major disadvantage in many 
applications	because	it	 limits	the	rate	at	which	the	counter	can	be	clocked	and	creates	
decoding	problems.	The	maximum	cumulative	delay	in	a	counter	must	be	less	than	the	
period	of	the	clock	waveform.

e x A m p l e  1

A	4-bit	asynchronous	binary	counter	is	shown	in	Figure	11(a).	Each	flip-flop	is	
negative edge-triggered and has a propagation delay for 10 nanoseconds (ns). 
Develop a timing diagram showing the Q output of each flip-flop, and determine 
the	total	propagation	delay	time	from	the	triggering	edge	of	a	clock	pulse	until	a	
corresponding change can occur in the state of Q3.	Also	determine	the	maximum	
clock	frequency	at	which	the	counter	can	be	operated.

s o l u t i o n

The timing diagram with delays omitted is as shown in Figure 11(b). For the total 
delay	time,	the	effect	of	CLK8	or	CLK16	must	propagate	through	four	flip-flops	
before Q3 changes, so

tp(tot) = 4 * 10 ns = 40 ns

The	maximum	clock	frequency	is

fmax =
1

tp(tot)
=

1

40 ns
= 25 mhz

The counter should be operated below this frequency to avoid problems due to 
the propagation delay.

r e l A t e D  p r o b l e m*

Show the timing diagram if all of the flip-flops in Figure 11(a) are positive edge-
triggered.
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Asynchronous Decade Counters
The modulus of a counter is the number of unique states through which the counter will 
sequence.	The	maximum	possible	number	of	states	(maximum	modulus)	of	a	counter	is	2n, 
where n is the number of flip-flops in the counter. Counters can be designed to have a 
number	of	 states	 in	 their	 sequence	 that	 is	 less	 than	 the	maximum	of	2n. This type of 
sequence is called a truncated sequence.

One common modulus for counters with truncated sequences is ten (called MOD10). 
Counters with ten states in their sequence are called decade counters. A decade counter 
with	a	count	sequence	of	zero	(0000)	through	nine	(1001)	is	a	BCD	decade	counter	because	
its ten-state sequence produces the BCD code. This type of counter is useful in display 
applications in which BCD is required for conversion to a decimal readout.

To obtain a truncated sequence, it is necessary to force the counter to recycle before 
going	through	all	of	its	possible	states.	For	example,	the	BCD	decade	counter	must	recycle	
back	to	the	0000	state	after	the	1001	state.	A	decade	counter	requires	four	flip-flops	(three	
flip-flops are insufficient because 23

= 8).
Let’s	use	a	4-bit	asynchronous	counter	such	as	the	one	in	Example	1	and	modify	its	

sequence	to	illustrate	the	principle	of	truncated	counters.	one	way	to	make	the	counter	recycle	
after the count of nine (1001) is to decode count ten (1010) with a NAND gate and connect the 
output of the NAND gate to the clear (CLR) inputs of the flip-flops, as shown in Figure 12(a).

pArtiAl DeCoDinG Notice in Figure 12(a) that only Q1 and Q3 are connected to 
the	nAnD	gate	inputs.	This	arrangement	is	an	example	of	partial decoding, in which the 
two unique states (Q1 = 1 and Q3 = 1) are sufficient to decode the count of ten because 
none	of	the	other	states	(zero	through	nine)	have	both	Q1 and Q3 HIGH at the same time. 
When	the	counter	goes	into	count	ten	(1010),	the	decoding	gate	output	goes	LoW	and	
asynchronously resets all the flip-flops.

multisim

A counter can have 2n 
states, where n is the 
number of flip-flops.

*Answers are at the end of the chapter.
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fg08_00500

FiGure 11 Four-bit asynchronous binary counter and its timing diagram. open file 
F08-11 and verify the operation.
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The resulting timing diagram is shown in Figure 12(b). Notice that there is a glitch on 
the Q1 waveform. The reason for this glitch is that Q1 must first go HIGH before the count 
of ten can be decoded. Not until several nanoseconds after the counter goes to the count of 
ten	does	the	output	of	the	decoding	gate	go	LoW	(both	inputs	are	HIGH).	Thus,	the	coun-
ter is in the 1010 state for a short time before it is reset to 0000, thus producing the glitch 
on Q1 and the resulting glitch on the CLR line that resets the counter.

other	truncated	sequences	can	be	implemented	in	a	similar	way,	as	Example	2	shows.

1 2 3 4 5 6 7 8 9 10

Q0

Q1

Q2

Q3

CLK

(b)

CLR

10 decoder

HIGH

CLK C C C C

Q0 Q1 Q2 Q3

FF0 FF1 FF2 FF3

(a)

J0

K0

J1

K1

J2

K2

J3

K3

CLRCLRCLRCLR

CLR

Glitch

Glitch

fg08_00600

FiGure 12 An asynchro-
nously clocked decade counter 
with asynchronous recycling.

e x A m p l e  2

Show how an asynchronous counter can be implemented having a modulus of twelve with a straight binary 
sequence from 0000 through 1011.

s o l u t i o n

since	three	flip-flops	can	produce	a	maximum	of	eight	states,	four	flip-flops	are	required	to	produce	any	modulus	
greater	than	eight	but	less	than	or	equal	to	sixteen.

When	the	counter	gets	to	its	last	state,	1011,	it	must	recycle	back	to	0000	rather	than	going	to	its	normal	next	
state	of	1100,	as	illustrated	in	the	following	sequence	chart:

Q3 Q2 Q1 Q0

0 0 0 0
· · · ·
· · · ·
· · · ·

1 0 1 1

1 1 0 0 normal	next	state

Recycles
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1. What	does	the	term	asynchronous mean in relation to 
counters?

2. How	many	states	does	a	modulus-14	counter	have?	What	is	
the	minimum	number	of	flip-flops	required?

seCtion 3 CheCkup

r e l A t e D  p r o b l e m

How	can	the	counter	in	Figure	13(a)	be	modified	to	make	it	a	modulus-13	counter?

(a)

12 decoder
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FF0

C C C

Q1 Q2 Q3
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Q0

Q1

Q2

Q3
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output
(CLR)

Glitch

Glitch

CLK

(b)

fg08_00700

FiGure 13 Asynchronously clocked modulus-12 counter with asynchronous recycling.

Observe that Q0 and Q1 both go to 0 anyway, but Q2 and Q3	must	be	forced	to	0	on	the	twelfth	clock	pulse.	
Figure 13(a) shows the modulus-12 counter. The NAND gate partially decodes count twelve (1100) and resets 
flip-flop	2	and	flip-flop	3.	Thus,	on	the	twelfth	clock	pulse,	the	counter	is	forced	to	recycle	from	count	eleven	to	
count	zero,	as	shown	in	the	timing	diagram	of	Figure	13(b).	(It	is	in	count	twelve	for	only	a	few	nanoseconds	
before it is reset by the glitch on CLR.)
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the term synchronous refers to events that have a fixed time relationship with each other. A 
synchronous counter is one in which all the flip-flops in the counter are clocked at the same 
time by a common clock pulse.

After completing this section, you should be able to

•	 Describe	the	operation	of	a	2-bit	synchronous	binary	counter

•	 Describe	the	operation	of	a	3-bit	synchronous	binary	counter

•	 Describe	the	operation	of	a	4-bit	synchronous	binary	counter

•	 Describe	the	operation	of	a	synchronous	decade	counter

•	 Develop	counter	timing	diagrams

A 2-bit synchronous binary Counter
Figure	14	shows	a	2-bit	synchronous	binary	counter.	notice	that	an	arrangement	different	
from that for the asynchronous counter must be used for the J1 and K1 inputs of FF1 in 
order to achieve a binary sequence.

The	operation	of	this	synchronous	counter	is	as	follows:	
First, assume that the counter is initially in the binary 0 state; 
that	is,	both	flip-flops	are	REsET.	When	the	positive	edge	of	
the	first	clock	pulse	 is	applied,	FF0	will	 toggle	and	Q0 will 
therefore	go	HIGH.	What	happens	to	FF1	at	the	positive-going	
edge	of	CLK1?	To	find	out,	let’s	look	at	the	input	conditions	
of FF1. Inputs J1 and K1	are	both	LoW	because	Q0, to which 
they	are	connected,	has	not	yet	gone	HIGH.	Remember,	there	
is	a	propagation	delay	from	the	 triggering	edge	of	 the	clock	
pulse until the Q	output	actually	makes	a	transition.	so,	J = 0 
and K = 0	when	 the	 leading	edge	of	 the	first	clock	pulse	 is	
applied. This is a no-change condition, and therefore FF1 does 

not change state. A timing detail of this portion of the counter operation is shown in 
Figure 15(a).

After	CLK1,	Q0 = 1 and Q1 = 0	(which	is	the	binary	1	state).	When	the	leading	
edge	of	CLK2	occurs,	FF0	will	 toggle	and	Q0	will	go	LoW.	since	FF1	has	a	HIGH	
(Q0 = 1) on its J1 and K1	inputs	at	the	triggering	edge	of	this	clock	pulse,	the	flip-flop	tog-
gles and Q1	goes	HIGH.	Thus,	after	CLK2,	Q0 = 0 and Q1 = 1 (which is a binary 2 
state). The timing detail for this condition is shown in Figure 15(b).

4 synChronous Counters

J1 Q1

K1

J0

Q1

Q0

K0

HIGH

CLK

C C

FF1FF0

fg08_01100

FiGure 14 A 2-bit synchronous binary counter.
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FiGure 15 timing details for the 2-bit synchronous counter operation (the propagation delays 
of both flip-flops are assumed to be equal).

the clock input goes 
to each flip-flop in a 
synchronous counter.
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When	the	leading	edge	of	CLK3	occurs,	FF0	again	toggles	to	the	sET	state	(Q0 = 1), 
and FF1 remains SET (Q1 = 1) because its J1 and K1	 inputs	are	both	LoW	(Q0 = 0). 
After this triggering edge, Q0 = 1 and Q1 = 1 (which is a binary 3 state). The timing 
detail is shown in Figure 15(c).

Finally,	at	the	leading	edge	of	CLK4,	Q0 and Q1	go	LoW	because	they	both	have	a	
toggle condition on their J and K inputs. The timing detail is shown in Figure 15(d). The 
counter has now recycled to its original state, binary 0.

The	complete	timing	diagram	for	the	counter	in	Figure	14	is	shown	in	Figure	16.	notice	
that all the waveform transitions appear coincident; that is, the propagation delays are not 
indicated. Although the delays are an important factor in the synchronous counter operation, 
in an overall timing diagram they are normally omitted for simplicity. Major waveform rela-
tionships resulting from the normal operation of a circuit can be conveyed completely with-
out showing small delay and timing differences. However, in high-speed digital circuits, 
these small delays are an important consideration in design and troubleshooting.

Q0

CLK

Q1

1 2 3 4

fg08_01300
FiGure 16 timing diagram for the counter of 
Figure 14.

A 3-bit synchronous binary Counter
A 3-bit synchronous binary counter is shown in Figure 17, and its timing diagram is shown 
in	Figure	18.	You	can	understand	this	counter	operation	by	examining	its	sequence	of	
states as shown in Table 3.
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C
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FF0

Q1
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C

FF1

Q2J2

K2

C

FF2Q0Q1

fg08_01400
FiGure 17 A 3-bit synchronous binary counter. open file F08-17 to verify the 
operation.
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FiGure 18 timing diagram for the counter of Figure 17.
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First,	let’s	look	at	Q0. Notice that Q0	changes	on	each	clock	pulse	as	the	counter	
progresses	from	its	original	state	to	its	final	state	and	then	back	to	its	original	state.	To	
produce this operation, FF0 must be held in the toggle mode by constant HIGHs on its J0 
and K0 inputs. Notice that Q1 goes to the opposite state following each time Q0 is a 1. 
This	change	occurs	at	CLK2,	CLK4,	CLK6,	and	CLK8.	The	CLK8	pulse	causes	 the	
counter to recycle. To produce this operation, Q0 is connected to the J1 and K1 inputs of 
FF1.	When	Q0	is	a	1	and	a	clock	pulse	occurs,	FF1	is	in	the	toggle	mode	and	therefore	
changes state. The other times, when Q0 is a 0, FF1 is in the no-change mode and remains 
in its present state.

next,	let’s	see	how	FF2	is	made	to	change	at	the	proper	times	according	to	the	binary	
sequence. Notice that both times Q2 changes state, it is preceded by the unique condition 
in which both Q0 and Q1 are HIGH. This condition is detected by the AND gate and 
applied to the J2 and K2	inputs	of	FF2.	Whenever	both	Q0 and Q1 are HIGH, the output of 
the	AnD	gate	makes	the	J2 and K2 inputs of FF2 HIGH, and FF2 toggles on the following 
clock	pulse.	At	all	other	times,	the	J2 and K2	inputs	of	FF2	are	held	LoW	by	the	AnD	gate	
output, and FF2 does not change state.

The	analysis	of	the	counter	in	Figure	17	is	summarized	in	Table	4.

TABLE	3	 •	 state sequence for a 3-bit binary counter.

CloCk pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

A 4-bit synchronous binary Counter
Figure	19(a)	shows	a	4-bit	synchronous	binary	counter,	and	Figure	19(b)	shows	its	timing	
diagram. This particular counter is implemented with negative edge-triggered flip- 
flops. The reasoning behind the J and K input control for the first three flip-flops is the 

The TSC or time stamp counter in some microprocessors is used for performance monitoring, 
which enables a number of parameters important to the overall performance of a system to be 
determined	exactly.	By	reading	the	TsC	before	and	after	the	execution	of	a	procedure,	the	
precise time required for the procedure can be determined based on the processor cycle time. 
In	this	way,	the	TsC	forms	the	basis	for	all	time	evaluations	in	connection	with	optimizing	
system	operation.	For	example,	it	can	be	accurately	determined	which	of	two	or	more	pro-
gramming sequences is more efficient. This is a very useful tool for compiler developers and 
system programmers in producing the most effective code.

s y s t e m  n o t e
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same as previously discussed for the 3-bit counter. The fourth stage, FF3, changes only 
twice in the sequence. Notice that both of these transitions occur following the times that 
Q0, Q1, and Q2 are all HIGH. This condition is decoded by AND gate G2 so that when a 
clock	pulse	occurs,	FF3	will	change	state.	For	all	other	times	the	J3 and K3 inputs of FF3 
are	LoW,	and	it	is	in	a	no-change	condition.

TABLE	4	 •	 summary of the analysis of the counter in Figure 17.

outputs J-K inputs At the next CloCk pulse

CloCk pulse Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 FF2 FF1 FF0

Initially 0 0 0 0 0 0 0 1 1 NC* NC Toggle

1 0 0 1 0 0 1 1 1 1 NC Toggle Toggle

2 0 1 0 0 0 0 0 1 1 NC NC Toggle

3 0 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

4 1 0 0 0 0 0 0 1 1 NC NC Toggle

5 1 0 1 0 0 1 1 1 1 NC Toggle Toggle

6 1 1 0 0 0 0 0 1 1 NC NC Toggle

7 1 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

Counter	recycles	back	to	000.

*NC indicates No Change.
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FF0 FF2 FF3FF1 Q0 Q1 Q2
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Q0 Q1

(b)
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Q1

Q2

Q3

Q0 Q1 Q0 Q1 Q2 Q0 Q1 Q0 Q1 Q2
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fg08_01600
FiGure 19 A 4-bit synchronous binary counter and timing diagram. points where the AnD 
gate outputs are hiGh are indicated by the shaded areas.
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A 4-bit synchronous Decade Counter
As	you	know,	a	BCD	decade	counter	exhibits	a	truncated	binary	sequence	and	goes	from	
0000	through	the	1001	state.	Rather	than	going	from	the	1001	state	to	the	1010	state,	it	
recycles to the 0000 state. A synchronous BCD decade counter is shown in Figure 20. The 
timing diagram for the decade counter is shown in Figure 21.

A decade counter has ten 
states.
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K0

C
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FF0
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FF1

Q2

C

FF2
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K1
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K2
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J3

K3

Q3

FF3

Q3

fg08_01700

FiGure 20 A synchronous bCD decade counter. open file F08-20 to verify operation.

You	can	understand	the	counter	operation	by	examining	the	sequence	of	states	in	
Table 5 and by following the implementation in Figure 20. First, notice that FF0 (Q0) tog-
gles	on	each	clock	pulse,	so	the	logic	equation	for	its	J0 and K0 inputs is

J0 = K0 = 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.
next,	notice	in	Table	5	that	FF1	(Q1)	changes	on	the	next	clock	pulse	each	time	

Q0 = 1 and Q3 = 0, so the logic equation for the J1 and K1 inputs is

J1 = K1 = Q0Q3

This equation is implemented by ANDing Q0 and Q3 and connecting the gate output to the 
J1 and K1 inputs of FF1.

Flip-flop 2 (Q2)	changes	on	the	next	clock	pulse	each	time	both	Q0 = 1 and Q1 = 1. 
This	requires	an	input	logic	equation	as	follows:

J2 = K2 = Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate output to the 
J2 and K2 inputs of FF2.

Finally, FF3 (Q3)	changes	to	the	opposite	state	on	the	next	clock	pulse	each	time	
Q0 = 1, Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q3 = 1 (state 9). The equa-
tion	for	this	is	as	follows:

J3 = K3 = Q0Q1Q2 + Q0Q3

multisim

1 2 3 4 5CLK 6 7 8

Q0
10 10 10 10 0

Q1
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Q2
00 11 1100
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FiGure 21 timing diagram 
for the bCD decade counter 
(Q0 is the lsb).
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This	function	is	implemented	with	the	AnD/oR	logic	connected	to	the	J3 and K3 inputs of 
FF3 as shown in the logic diagram in Figure 20. Notice that the differences between this 
decade counter and the modulus-16 binary counter in Figure 19 are the Q0Q3 AND gate, 
the Q0Q3	AnD	gate,	and	the	oR	gate;	this	arrangement	detects	the	occurrence	of	the	1001	
state	and	causes	the	counter	to	recycle	properly	on	the	next	clock	pulse.

TABLE	5	 •	 states of a bCD decade counter.

CloCk pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0

 1 0 0 0 1

 2 0 0 1 0

 3 0 0 1 1

	 4 0 1 0 0

 5 0 1 0 1

 6 0 1 1 0

 7 0 1 1 1

 8 1 0 0 0

 9 1 0 0 1

10 (recycles) 0 0 0 0

pArAllel-to-seriAl DAtA Conversion 
(multiplexinG)
We	have	already	discussed	a	data	transmission	system	using	multiplexing	and	demulti-
plexing	techniques.	Essentially,	the	parallel	data	bits	on	the	multiplexer	inputs	are	con-
verted to serial data bits on the single transmission line. A group of bits appearing 
simultaneously on parallel lines is called parallel data. A group of bits appearing on a 
single line in a time sequence is called serial data.

Parallel-to-serial conversion is normally accomplished by the use of a counter to 
provide	a	binary	sequence	for	the	data-select	inputs	of	a	data	selector/multiplexer,	as	illus-
trated in Figure 22. The Q outputs of the modulus-8 counter are connected to the data-
select	inputs	of	an	8-bit	multiplexer.

Figure 23 is a timing diagram illustrating the operation of this circuit. The first byte 
(eight-bit	group)	of	parallel	data	is	applied	to	the	multiplexer	inputs.	As	the	counter	goes	
through	a	binary	sequence	from	zero	to	seven,	each	bit,	beginning	with	D0, is sequentially 

s y s t e m  e x A m p l e  1

Computers contain an internal counter that can be programmed for various frequencies and 
tone	durations,	thus	producing	“music.”	To	select	a	particular	tone,	the	programmed	instruc-
tion selects a divisor that is sent to the counter. The divisor sets the counter up to divide the 
basic	peripheral	clock	frequency	to	produce	an	audio	tone.	The	duration	of	a	tone	can	also	be	
set by a programmed instruction; thus, a basic counter is used to produce melodies by control-
ling the frequency and duration of tones.

s y s t e m  n o t e
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selected	and	passed	through	the	multiplexer	to	the	output	line.	After	eight	clock	pulses	the	
data	byte	has	been	converted	to	a	serial	format	and	sent	out	on	the	transmission	line.	When	
the	counter	recycles	back	to	0,	the	next	byte	is	applied	to	the	data	inputs	and	is	sequentially	
converted to serial form as the counter cycles through its eight states. This process contin-
ues repeatedly as each parallel byte is converted to a serial byte.
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1. How does a synchronous counter differ from an asynchronous 
counter?

2. How many states does an 8-bit synchronous binary counter 
have?

seCtion 4 CheCkup

5 up/DoWn synChronous Counters
An up/down counter is one that is capable of progressing in either direction through a certain 
sequence. An up/down counter, sometimes called a bidirectional counter, can have any speci-
fied sequence of states. A 3-bit binary counter that advances upward through its sequence (0, 1, 
2, 3, 4, 5, 6, 7) and then can be reversed so that it goes through the sequence in the opposite 
direction (7, 6, 5, 4, 3, 2, 1, 0) is an illustration of up/down sequential operation.

After completing this section, you should be able to

•	 Explain	the	basic	operation	of	an	up/down	counter

In general, most up/down counters can be reversed at any point in their sequence. For 
instance,	the	3-bit	binary	counter	can	be	made	to	go	through	the	following	sequence:

 UP UP

0, 1, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, etc.

	 DoWn	 DoWn

Table 6 shows the complete up/down sequence for a 3-bit binary counter. The arrows 
indicate	the	state-to-state	movement	of	the	counter	for	both	its	UP	and	its	DoWn	modes	
of	operation.	An	examination	of	Q0 for both the up and down sequences shows that FF0 
toggles	on	each	clock	pulse.	Thus,	the	J0 and K0 inputs of FF0 are

J0 = K0 = 1

For the up sequence, Q1	changes	state	on	the	next	clock	pulse	when	Q0 = 1. For the down 
sequence, Q1	changes	on	the	next	clock	pulse	when	Q0 = 0. Thus, the J1 and K1 inputs of 
FF1	must	equal	1	under	the	conditions	expressed	by	the	following	equation:

J1 = K1 = (Q0
# UP) + (Q0

# DOWN)

¶ ¶

e e

TABLE	6	 •	 up/Down sequence for a 3-bit binary counter.

CloCk pulse up Q2 Q1 Q0 DoWn

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1
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For the up sequence, Q2	changes	state	on	the	next	clock	pulse	when	Q0 = Q1 = 1. For 
the down sequence, Q2	changes	on	the	next	clock	pulse	when	Q0 = Q1 = 0. Thus, the 
J2 and K2	inputs	of	FF2	must	equal	1	under	the	conditions	expressed	by	the	following	
equation:

J2 = K2 = (Q0
# Q1

# UP) + (Q0
# Q1

# DOWN)

Each of the conditions for the J and K inputs of each flip-flop produces a toggle at the 
appropriate point in the counter sequence.

Figure	24	shows	a	basic	implementation	of	a	3-bit	up/down	binary	counter	using	the	
logic equations just developed for the J and K inputs of each flip-flop. Notice that the 
UP/DOWN	control	input	is	HIGH	for	UP	and	LoW	for	DoWn.
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FiGure 24 A basic 3-bit up/down synchronous counter. open file F08-24 to verify operation.
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show	the	 timing	diagram	and	determine	the	sequence	of	a	4-bit	synchronous	
binary	up/down	counter	if	the	clock	and	UP/DOWN control inputs have wave-
forms as shown in Figure 25(a). The counter starts in the all-0s state and is posi-
tive edge-triggered.

s o l u t i o n

The timing diagram showing the Q outputs is shown in Figure 25(b). From these 
waveforms, the counter sequence is as shown in Table 7.

multisim

incrementing a counter 
increases its count by one.

Decrementing a counter 
decreases its count by one.
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r e l A t e D  p r o b l e m

Show the timing diagram if the UP/DOWN control waveform in Figure 25(a) is 
inverted.

tAble 7 

Q3 Q2 Q1 Q0

0 0 0 0

0 0 0 1

0 0 1 0 UP

0 0 1 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1 DoWn

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 1 UP

0 0 1 0

0 0 0 1
DoWn

0 0 0 0

∂

∂

∂

∂

Automobile pArkinG Control
This	system	example	illustrates	the	use	of	an	up/down	counter	to	solve	an	everyday	prob-
lem. The problem is to devise a means of monitoring available spaces in a one-hundred-
space	parking	garage	and	provide	for	an	indication	of	a	full	condition	by	illuminating	a	
display sign and lowering a gate bar at the entrance.

A system that solves this problem consists of optoelectronic sensors at the entrance and 
exit	of	the	garage,	an	up/down	counter	and	associated	circuitry,	and	an	interface	circuit	that	
uses the counter output to turn the FULL sign on or off as required and lower or raise the gate 
bar	at	the	entrance.	A	general	block	diagram	of	this	system	is	shown	in	Figure	26.

s y s t e m  e x A m p l e  2
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A logic diagram of the up/down counter is shown in Figure 27. It consists of two cas-
caded up/down decade counters. The operation is described in the following paragraphs.

The counter is initially preset to 0 using the parallel data inputs, which are not shown. 
Each	automobile	entering	the	garage	breaks	a	light	beam,	activating	a	sensor	that	produces	
an	electrical	pulse.	This	positive	pulse	sets	the	s-R	latch	on	its	leading	edge.	The	LoW	on	
the Q output of the latch puts the counter in the UP mode. Also, the sensor pulse goes 
through	the	noR	gate	and	clocks	the	counter	on	the	LoW-to-HIGH	transition	of	its	trail-
ing edge. Each time an automobile enters the garage, the counter is advanced by one 
(incremented).	When	the	one-hundredth	automobile	enters,	the	counter	goes	to	its	last	
state (10010). The MAX/MIN output goes HIGH and activates the interface circuit (no 
detail), which lights the FULL sign and lowers the gate bar to prevent further entry.

When	an	automobile	exits,	an	optoelectronic	sensor	produces	a	positive	pulse,	which	
resets	the	s-R	latch	and	puts	the	counter	in	the	DoWn	mode.	The	trailing	edge	of	the	
clock	decreases	the	count	by	one	(decremented). If the garage is full and an automobile 
leaves, the MAX/MIN	output	of	the	counter	goes	LoW,	turning	off	the	FULL	sign	and	rais-
ing the gate.

1. A	4-bit	up/down	binary	counter	is	in	the	DoWn	mode	and	in	
the	1010	state.	on	the	next	clock	pulse,	to	what	state	does	the	
counter	go?

2. What	is	the	terminal	count	of	a	4-bit	binary	counter	in	the	UP	
mode?	In	the	DoWn	mode?	What	is	the	next	state	after	the	
terminal	count	in	the	DoWn	mode?

seCtion 5 CheCkup

6 CAsCADeD Counters
Counters can be connected in cascade to achieve higher-modulus operation. in essence, cas-
cading means that the last-stage output of one counter drives the input of the next counter.

After completing this section, you should be able to

•	 Determine	the	overall	modulus	of	cascaded	counters

•	 Analyze	the	timing	diagram	of	a	cascaded	counter	configuration

•	 Use	cascaded	counters	as	a	frequency	divider

•	 Use	cascaded	counters	to	achieve	specified	truncated	sequences
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AsynChronous CAsCADinG An	example	of	 two	asynchronous	 counters	
connected in cascade is shown in Figure 28 for a 2-bit and a 3-bit ripple counter. The tim-
ing diagram is shown in Figure 29. Notice that the final output of the modulus-8 counter, 
Q4,	occurs	once	for	every	32	input	clock	pulses.	The	overall	modulus	of	the	two	cascaded	
counters is 4 * 8 = 32; that is, they act as a divide-by-32 counter.
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K0

CLK C
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K1

C

J2
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C

J3

Q3

K3

C

J4

K4
Q1

Modulus-4 counter Modulus-8counter

Q4

C

fg08_03600

HIGH HIGH

FiGure 28 two cascaded asynchronous counters (all J and K inputs are hiGh).
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fg08_03700
FiGure 29 timing diagram for the cascaded counter configuration of Figure 28.
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fg08_03800

FiGure 30 A modulus-100 counter using two cascaded decade counters.

the overall modulus 
of cascaded counters is 
equal to the product of the 
individual moduli.

synChronous CAsCADinG When	operating	synchronous	counters	in	a	cas-
caded configuration, it is necessary to use the count enable and the terminal count func-
tions to achieve higher-modulus operation. On some devices the count enable is labeled 
simply CTEN (or some other designation such as G), and terminal count (TC) is analogous 
to	ripple	clock	output	(RCO) on some IC counters.

Figure 30 shows two decade counters connected in cascade. The terminal count  
(TC) output of counter 1 is connected to the count enable (CTEN) input of counter 2. 
Counter	2	is	inhibited	by	the	LoW	on	its	CTEN input until counter 1 reaches its last, or 
terminal, state and its terminal count output goes HIGH. This HIGH now enables counter 2, 
so	that	when	the	first	clock	pulse	after	counter	1	reaches	its	terminal	count	(CLK10),	counter	
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2 goes from its initial state to its second state. Upon completion of the entire second cycle 
of counter 1 (when counter 1 reaches terminal count the second time), counter 2 is again 
enabled	and	advances	to	its	next	state.	This	sequence	continues.	since	these	are	decade	
counters, counter 1 must go through ten complete cycles before counter 2 completes its 
first cycle. In other words, for every ten cycles of counter 1, counter 2 goes through one 
cycle.	Thus,	counter	2	will	complete	one	cycle	after	one	hundred	clock	pulses.	The	overall	
modulus of these two cascaded counters is 10 * 10 = 100.

When	viewed	as	a	frequency	divider,	the	circuit	of	Figure	30	divides	the	input	clock	
frequency	by	100.	Cascaded	counters	are	often	used	to	divide	a	high-frequency	clock	
signal to obtain highly accurate pulse frequencies. Cascaded counter configurations used 
for such purposes are sometimes called countdown chains.	For	example,	suppose	that	you	
have	a	basic	clock	frequency	of	1	MHz	and	you	wish	to	obtain	100	kHz,	10	kHz,	and	 
1	kHz;	a	series	of	cascaded	decade	counters	can	be	used.	If	the	1	MHz	signal	is	divided	by	
10,	the	output	is	100	kHz.	Then	if	the	100	kHz	signal	is	divided	by	10,	the	output	is	10	
kHz.	Another	division	by	10	produces	the	1	kHz	frequency.	The	general	implementation	
of this countdown chain is shown in Figure 31.

CTR DIV 10

C1 MHz

TC

HIGH

CTEN

CTR DIV 10

CTEN TC

CTR DIV 10

C

CTEN TC

100 kHz 10 kHz 1 kHz

C

fg08_03900

FiGure 31 three cascaded decade counters forming a divide-by-1000 frequency divider with 
intermediate divide-by-10 and divide-by-100 outputs.

e x A m p l e  4

Determine the overall modulus of the two cascaded counter configurations in Figure 32.

CTR DIV 8 CTR DIV 12 CTR DIV 16

(a)

CTR DIV 10 CTR DIV 4 CTR DIV 7

(b)

CTR DIV 5Input Output

Input Output

fg08_04000

FiGure 32 

The	time	stamp	counter	(TsC),	mentioned	in	a	previous	system	note,	is	a	64-bit	counter.	It	is	
interesting	to	observe	that	if	this	counter	(or	any	full-modulus	64-bit	counter)	is	clocked	at	a	
frequency	of	1	GHz,	it	will	take	585	years	for	it	to	go	through	all	of	its	states	and	reach	its	
terminal	 count.	 In	contrast,	 a	32-bit	 full-modulus	counter	will	 exhaust	 all	of	 its	 states	 in	
approximately	4.3	seconds	when	clocked	at	1	GHz.	The	difference	is	astounding.

s y s t e m  n o t e
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e x A m p l e  5

Use	up/down	decade	counters	connected	in	the	UP	mode	to	obtain	a	10	kHz	waveform	from	a	1	MHz	clock.	
Show the logic diagram.

s o l u t i o n

To	obtain	10	kHz	from	a	1	MHz	clock	requires	a	division	factor	of	100.	Two	decade	counters	must	be	cascaded	
as shown in Figure 33. The left counter produces a terminal count (TC)	pulse	for	every	10	clock	pulses.	The	right	
counter produces a terminal count (TC)	pulse	for	every	100	clock	pulses.

D3D2D1D0D3D2D1D0

Q0

CTR DIV 10

Q1 Q2 Q3

D/U

TC 10 kHzCTEN

C

Q0

CTR DIV 10

Q1 Q2 Q3

C

CLK

LOADLOAD

1 MHz

LOAD

D/U

CTEN

LOAD

TC

FiGure 33 A divide-by-100 counter using two decade up/down decade counters connected for the up 
sequence.

r e l A t e D  p r o b l e m

Determine the frequency of the waveform at the Q0 output of the second counter (the one on the right) in Figure 33.

Cascaded Counters with truncated sequences
The preceding discussion has shown how to achieve an overall modulus (divide-by-factor) 
that is the product of the individual moduli of all the cascaded counters. This can be con-
sidered full-modulus cascading.

Often an application requires an overall modulus that is less than that achieved by 
full-modulus cascading. That is, a truncated sequence must be implemented with cascaded 
counters. To illustrate this method, we will use the cascaded counter configuration in Fig-
ure	34.	This	particular	circuit	uses	four	4-bit	synchronous	binary	counters.	If	these	four	
counters	(sixteen	bits	total)	were	cascaded	in	a	full-modulus	arrangement,	the	modulus	
would be

216
= 65,536

s o l u t i o n

In Figure 32(a), the overall modulus for the 3-counter configuration is

8 * 12 * 16 = 1536

In	Figure	32(b),	the	overall	modulus	for	the	4-counter	configuration	is

10 * 4 * 7 * 5 = 1400

r e l A t e D  p r o b l e m

How	many	cascaded	decade	counters	are	required	to	divide	a	clock	frequency	by	100,000?
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1. How many decade counters are necessary to implement a 
divide-by-1000	(modulus-1000)	counter?	A	divide-
by-10,000?

2. show	with	general	block	diagrams	how	to	achieve	each	of	the	
following,	using	a	flip-flop,	a	decade	counter,	and	a	4-bit	
binary	counter,	or	any	combination	of	these:

(a) Divide-by-20 counter (b) Divide-by-32 counter

(c) Divide-by-160 counter (d) Divide-by-320 counter

seCtion 6 CheCkup

Let’s	assume	that	a	certain	application	requires	a	divide-by-40,000	counter	(modulus	
40,000).	The	difference	between	65,536	and	40,000	is	25,536,	which	is	the	number	of	
states that must be deleted from the full-modulus sequence. The technique used in the cir-
cuit	of	Figure	34	is	to	preset	the	cascaded	counter	to	25,536	(63C0	in	hexadecimal)	each	
time it recycles, so that it will count from 25,536 up to 65,535 on each full cycle. There-
fore,	each	full	cycle	of	the	counter	consists	of	40,000	states.

notice	in	Figure	34	that	the	TC (terminal count) output of the right-most counter is 
inverted and applied to the LOAD	input	of	each	4-bit	counter.	Each	time	the	count	reaches	
its terminal value of 65,535, which is 11111111111111112, TC goes HIGH and causes the 
number on the parallel data inputs (63C016) to be synchronously loaded into the counter 
with	the	clock	pulse.	Thus,	there	is	one	TC	pulse	from	the	right-most	4-bit	counter	for	
every	40,000	clock	pulses.

With	this	technique	any	modulus	can	be	achieved	by	synchronous	loading	of	the	
counter to the appropriate initial state on each cycle.

LOAD

0000

ENABLE TC

C

CLK

HIGH

CTR DIV 16

D0D1D2D3

LSD 016

0011

ENABLE TC

C
CTR DIV 16

D0D1D2D3

C16

1100

ENABLE TC

C
CTR DIV 16

D0D1D2D3

316

0110

ENABLE TC

C
CTR DIV 16

D0D1D2D3

MSD616

Output

FiGure 34 A divide-by-40,000 counter using 4-bit binary counters. note that each of the 
parallel data inputs is shown in binary order (the right-most bit D0 is the lsb in each counter).
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suppose	that	you	wish	to	decode	binary	state	6	(110)	of	a	3-bit	binary	counter.	When	
Q2 = 1, Q1 = 1, and Q0 = 0, a HIGH appears on the output of the decoding gate, indi-
cating that the counter is at state 6. This can be done as shown in Figure 35. This is called 
active-HIGH decoding.	Replacing	the	AnD	gate	with	a	nAnD	gate	provides	active-LoW	
decoding.

HIGH

CLK
1 11

LSB MSB

Decoded 6

Q0

Q2Q1Q0

C

J2

K2

C

J1

K1

C

J0

K0

Q0

Q1

Q1

Q2

Q2

fg08_04300

FiGure 35 Decoding of state 6 (110). open file F08-35 to verify operation.

in many applications, it is necessary that some or all of the counter states be decoded. the 
decoding of a counter involves using decoders or logic gates to determine when the counter is 
in a certain binary state in its sequence. For instance, the terminal count function previously 
discussed is a single decoded state (the last state) in the counter sequence.

After completing this section, you should be able to

•	 Implement	the	decoding	logic	for	any	given	state	in	a	counter	sequence

•	 Explain	why	glitches	occur	in	counter	decoding	logic

•	 Use	the	method	of	strobing	to	eliminate	decoding	glitches

7 Counter DeCoDinG

e x A m p l e  6

Implement the decoding of binary state 2 and binary state 7 of a 3-bit synchro-
nous counter. Show the entire counter timing diagram and the output waveforms 
of the decoding gates. Binary 2 = Q2Q1Q0 and binary 7 = Q2Q1Q0.

s o l u t i o n

see	 Figure	 36.	 The	 3-bit	 counter	was	 originally	 discussed	 in	 section	 4	
(Figure 17).

r e l A t e D  p r o b l e m

Show the logic for decoding state 5 in the 3-bit counter.

multisim
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Decoding Glitches
We	have	discussed	the	problem	of	glitches	produced	by	the	decoding	process.	The	propa-
gation delays due to the ripple effect in asynchronous counters create transitional states in 
which the counter outputs are changing at slightly different times. These transitional states 
produce	undesired	voltage	spikes	of	short	duration	(glitches)	on	the	outputs	of	a	decoder	
connected to the counter. The glitch problem can also occur to some degree with synchro-
nous	counters	because	the	propagation	delays	from	the	clock	to	the	Q outputs of each flip-
flop in a counter can vary slightly.

Figure 37 shows a basic asynchronous BCD decade counter connected to a BCD-to-
decimal	decoder.	To	see	what	happens	in	this	case,	let’s	look	at	a	timing	diagram	in	which	
the	propagation	delays	are	taken	into	account,	as	shown	in	Figure	38.	notice	that	these	
delays cause false states of short duration. The value of the false binary state at each criti-
cal transition is indicated on the diagram. The resulting glitches can be seen on the decoder 
outputs.

A glitch is an unwanted 
spike of voltage.

multisim
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FiGure 36 A 3-bit counter with active-hiGh decoding of count 2 and count 7. open file 
F08-36 to verify operation.
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One way to eliminate the glitches is to enable the decoded outputs at a time after the 
glitches	have	had	time	to	disappear.	This	method	is	known	as	strobing and can be accom-
plished	in	the	case	of	an	active-HIGH	clock	by	using	the	LoW	level	of	the	clock	to	enable	
the decoder, as shown in Figure 39. The resulting improved timing diagram is shown in 
Figure	40.
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FiGure 37 A basic bCD decade counter and decoder.
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FiGure 38 outputs with glitches from the decoder in Figure 37. Glitch 
widths are exaggerated for illustration and are usually only a few nanoseconds 
wide.
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1. What	transitional	states	are	possible	when	a	4-bit	asynchro-
nous binary counter changes from

(a) count 2 to count 3 (b) count	3	to	count	4

(c) count 1010 to count 1110

(d) count 15 to count 0

seCtion 7 CheCkup
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FiGure 39 the basic bCD 
decade counter and decoder 
with strobing to eliminate 
glitches.
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FiGure 40 strobed decoder 
outputs for the circuit of Fig-
ure 39.

8 Counters With vhDl AnD veriloG
in this section, the vhDl and verilog programs for two types of counters are presented. A 
4-bit synchronous binary counter is shown in Figure 41 and a decade counter is shown in Fig-
ure 42.

After completing this section, you should be able to

•	 Discuss	the	VHDL	and	Verilog	descriptions	of	a	4-bit	synchronous	binary	counter

•	 Discuss	the	VHDL	and	Verilog	descriptions	of	a	decade	counter
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vhDl For Four-bit binAry Counter

Clk
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C C C C

Q0 Q1

HIGH

Qout

FiGure 41 4-bit synchronous binary counter.

library ieee;
use	ieee.std_logic_1164.all;

entity FourBitBinaryCounter is
port	(Clk:	in std_logic;
	 	 Qout:	out std_logic);
end entity FourBitBinaryCounter;

architecture FourBitCounterBehavior of FourBitBinaryCounter is
 component	jkff	is
  port	(J,	K,	Clk:	in std_logic;
	 	 	 	 Q:	out std_logic);
end component	jkff;

signal	G1,	G2:	std_logic;
signal	Q0,	Q1,	Q2:	std_logic;
begin
 G1 6= Q0 and Q1;
 G2 6= G1 and Q2;

	 JKFF0:	jkff	port map (J =7‘1’,K	=7‘1’,	 Clk	=7	Clk,	Q	=7 Q0);
	 JKFF1:	jkff	port map (J =7	Q0,K	=7	Q0,	Clk	=7	Clk,	Q	=7 Q1);
	 JKFF2:	jkff	port map (J =7	G1,K	=7	G1,	Clk	=7	Clk,	Q	=7 Q2);
	 JKFF3:	jkff	port map (J =7	G2,K	=7	G2,	Clk	=7	Clk,	Q	=7 QOut);
end architecture FourBitCounterBehavior;

Four-bit binary Counter

veriloG For Four-bit binAry Counter

module	FourBitBinaryCounter	(Clk,	Qout);
 input	Clk;
 output QOut;

 wire G1, G2;
 wire Q0, Q1, Q2;

 assign G1 = Q0 && Q1;
 assign G2 = G1 && Q2;

	 jkff	JKFF0(.J(1),	 		.K(1),	 		.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Q0));
	 jkff	JKFF1(.J(Q0),	.K(Q0),	.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Q1));
	 jkff	JKFF2(.J(G1),	.K(G1),	.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Q2));
	 jkff	JKFF3(.J(G2),	.K(G2),	.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Qout));
endmodule
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Decade Counter
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FiGure 42 Decade counter.

vhDl For Four-bit DeCADe Counter

library ieee;
use	ieee.std_logic_1164.all;

entity FourBitDecadeCounter is
port(Clk:	in std_logic;
	 	 Qout:	buffer std_logic);
end entity FourBitDecadeCounter;

architecture FourBitCounterBehavior of FourBitDecadeCounter is
component	jkff	is
 port	(J,	K,	Clk:	in std_logic;
	 	 	 Q:	out std_logic);
end component	jkff;

signal	G1,	G2,	G3:	std_logic;
signal	Q0,	Q1,	Q2:	std_logic;
begin
 G1 6= Q0 and not QOut;
 G2 6= Q0 and Q1;
 G3 6= (Q0 and QOut) or (G2 and Q2);

	 JKFF0:	jkff	port map (J =7	‘1’,	K	=7	‘1’,	Clk	=7	Clk,	Q	=7 Q0);
	 JKFF1:	jkff	port map (J =7	G1,	K	=7	G1,	Clk	=7	Clk,	Q	=7 Q1);
	 JKFF2:	jkff	port map (J =7	G2,	K	=7	G2,	Clk	=7	Clk,	Q	=7 Q2);
	 JKFF3:	jkff	port map (J =7	G3,	K	=7	G3,	Clk	=7	Clk,	Q	=7 QOut);
end architecture FourBitCounterBehavior;

veriloG For Four-bit DeCADe Counter

module	FourBitDecadeCounter	(Clk,	Qout);
  input	Clk;
  output QOut;

 wire G1, G2, G3;
 wire Q0, Q1, Q2;

 assign G1 = (Q0 && !QOut);
 assign G2 = (Q0 && Q1);
 assign G3 = (Q0 && QOut) 0 0  (G2 && Q2);

	 jkff	JKFF0(.J(1),	 		.K(1),	 		.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Q0));
	 jkff	JKFF1(.J(G1),	.K(G1),	.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Q1));
	 jkff	JKFF2(.J(G2),	.K(G2),	.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Q2));
	 jkff	JKFF3(.J(G3),	.K(G3),	.Clk(Clk),	.Prn(1),	.clrn(1),	.Q(Qout));
endmodule
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the troubleshooting of counters can be simple or quite involved, depending on the type of 
counter and the type of fault. this section will give you some insight into how to approach the 
troubleshooting of sequential circuits.

After completing this section, you should be able to

•	 Detect	a	faulty	counter

•	 Isolate	faults	in	maximum-modulus	cascaded	counters

•	 Isolate	faults	in	cascaded	counters	with	truncated	sequences

•	 Determine	faults	in	counters	implemented	with	individual	flip-flops

Counters
The symptom for a faulty counter is usually that it does not advance its count. If this is the 
case,	then	check	power	and	ground	on	the	chip.	Look	at	these	lines	with	a	scope	to	make	
sure	there	is	no	noise	present	(a	noisy	ground	may	actually	be	open).	Check	that	there	are	
clock	pulses	and	that	they	have	the	correct	amplitude	and	rise	time	and	that	there	is	not	
extraneous	noise	on	the	line.	(sometimes	clock	pulses	can	be	loaded	down	by	other	ICs,	
making	it	appear	that	the	counter	is	faulty	when	it	is	not).	If	power,	ground,	and	the	clock	
pulses	are	okay,	check	all	inputs	(including	enable,	load,	and	clear	inputs),	to	see	that	they	
are connected correctly and that the logic is correct. An open input can cause a counter to 
work	correctly	some	of	the	time—inputs	should	never	be	left	open,	even	if	they	are	not	
used.	(An	unused	input	should	be	connected	to	an	inactive	level).	If	the	counter	is	stuck	in	
a	state	and	the	clock	is	present,	determine	what	input	should	be	present	to	advance	the	
counter. This may point to a faulty input (including clear or load inputs), which can be 
caused	by	logic	elsewhere	in	the	circuit.	If	inputs	are	all	checked	okay,	an	output	may	be	
pulled	LoW	or	HIGH	by	an	external	short	or	open	(or	another	faulty	IC),	keeping	the	out-
put from advancing.

Cascaded Counters with maximum modulus
A failure in one of the counters in a chain of cascaded counters can affect all the counters 
that	follow	it.	For	example,	if	a	count	enable	input	opens,	it	effectively	acts	as	a	HIGH	(for	
TTL), and the counter is always enabled. This type of failure in one of the counters will 
cause	 that	counter	 to	 run	at	 the	 full	 clock	 rate	and	will	 also	cause	all	 the	 succeeding	
counters	to	run	at	higher	than	normal	rates.	This	is	illustrated	in	Figure	43	for	a	divide-
by-1000 cascaded counter arrangement where an open enable (CTEN) input acts as a TTL 
HIGH	and	continuously	enables	the	second	counter.	other	faults	that	can	affect	“down-
stream”	counter	stages	are	open	or	shorted	clock	inputs	or	terminal	count	outputs.	In	some	
of these situations, pulse activity can be observed, but it may be at the wrong frequency. 
Exact	frequency	or	frequency	ratio	measurements	must	be	made.

1.	 In	the	VHDL	program	for	the	4-bit	synchronous	binary	coun-
ter,	what	is	the	purpose	of	the	lines:

G1 6= Q0 and Q1;
G2 6= G1 and Q2;

2.	 What	is	the	purpose	of	four	jkff	lines	in	the	Verilog	program	
for	the	decade	counter?

seCtion 8 CheCkup

9 troubleshootinG
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To	check	this	counter,	apply	a	known	clock	frequency,	for	example	1	MHz,	and	mea-
sure the output frequency at the final terminal count output. If the counter is operating 
properly, the output frequency is

fout =
fin

modulus
=

1 MHz

40,000
= 25 Hz

In this case, the specific failure described in the preceding paragraph will cause the output 
frequency to be

fout =
fin

modulus
=

1 MHz

7232
� 138 Hz
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fg08_05800FiGure 44 example of a failure in a cascaded counter with a truncated sequence.
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fg08_05700
FiGure 43 example of a failure that affects following counters in a cascaded arrangement.

Cascaded Counters with truncated sequences
The	count	sequence	of	a	cascaded	counter	with	a	truncated	sequence,	such	as	that	in	Figure	44,	
can	be	affected	by	other	types	of	faults	in	addition	to	those	mentioned	for	maximum-modulus	
cascaded	counters.	For	example,	a	failure	in	one	of	the	parallel	data	inputs,	the	LOAD input, 
or the inverter can alter the preset count and thus change the modulus of the counter.

For	example,	suppose	the	D3	 input	of	the	most	significant	counter	in	Figure	44	is	
open and acts as a HIGH. Instead of 616 (0110) being preset into the counter, E16 (1110) is 
preset in. So, instead of beginning with 63C016 (25,53610) each time the counter recycles, 
the sequence will begin with E3C016 (58,30410). This changes the modulus of the counter 
from	40,000	to	65,536 - 58,304 = 7232.
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s o l u t i o n

Check	to	see	if	the	frequency	measured	at	TC	4	is	correct.	If	it	is,	the	counter	is	working	properly.

 truncated modulus = full modulus - preset count

 = 164 - 82C016

 = 65,536 - 33,472 = 32,064

The	correct	frequency	at	TC	4	is

f4 =
10 MHz

32,064
� 312 Hz

There	is	a	problem.	The	measured	frequency	of	637.8	Hz	does	not	agree	with	the	correct	calculated	frequency	of	
312	Hz.

To	find	the	faulty	counter,	determine	the	actual	truncated	modulus	as	follows:

modulus =
fin
fout

=
10 MHz

637.8 Hz
= 15,679

Because	the	truncated	modulus	should	be	32,064,	most	likely	the	counter	is	being	preset	to	the	wrong	count	when	
it	recycles.	The	actual	preset	count	is	determined	as	follows:

 truncated modulus = full modulus - preset count

 preset count = full modulus - truncated modulus

 = 65,536 - 15,679

 = 49,857

 = C2C016

This shows that the counter is being preset to C2C016 instead of 82C016 each time it recycles.
Counters	1,	2,	and	3	are	being	preset	properly	but	counter	4	is	not.	since	C16 = 11002, the D2 input to 

counter	4	is	HIGH	when	it	should	be	LoW.	This	is	most	likely	caused	by	an	open input.	Check	for	an	external	
open	caused	by	a	bad	solder	connection,	a	broken	conductor,	or	a	bent	pin	on	the	IC.	If	none	can	be	found,	replace	
the	IC	and	the	counter	should	work	properly.

r e l A t e D  p r o b l e m

Determine	what	the	output	frequency	at	TC	4	would	be	if	the	D3 input of counter 3 were open.

Hz
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016 C16 216 816

0 0 0 0 0 0 0 0 0 0 0 01111
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C

HIGH
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C
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C
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C

CTR1 CTR2 CTR3 CTR4
TC 4

D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0

MHz
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e x A m p l e  7

Frequency	measurements	are	made	on	the	truncated	counter	in	Figure	45	as	indicated.	Determine	if	the	counter	is	
working	properly,	and	if	not,	isolate	the	fault.
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Counters implemented with individual  
Flip-Flops
Counters implemented with individual flip-flop and gate ICs are sometimes more difficult 
to	troubleshoot	because	there	are	many	more	inputs	and	outputs	with	external	connections	
than there are in an IC counter. The sequence of a counter can be altered by a single open 
or	short	on	an	input	or	output,	as	Example	8	illustrates.

e x A m p l e  8

Suppose that you observe the output waveforms (green) that are indicated for the 
counter	in	Figure	46.	Determine	if	there	is	a	problem	with	the	counter.

s o l u t i o n

The Q2 waveform is incorrect. The correct waveform is shown as a red dashed 
line. You can see that the Q2	waveform	looks	exactly	like	the	Q1 waveform, so 
whatever is causing FF1 to toggle appears to also be controlling FF2.

Checking	the	J and K	inputs	to	FF2,	you	find	a	waveform	that	looks	like	Q0. 
This result indicates that Q0 is somehow getting through the AND gate. The only 
way this can happen is if the Q1 input to the AND gate is always HIGH. However, 
you have seen that Q1 has a correct waveform. This observation leads to the con-
clusion that the lower input to the AND gate must be internally open and acting as 
a	HIGH.	Replace	the	AnD	gate	and	retest	the	circuit.

r e l A t e D  p r o b l e m

Describe the Q2	output	of	the	counter	in	Figure	46	if	the	Q1 output of FF1 is open.

h a n d s  o n  t i p
To observe the time 
relationship between two 
digital signals with a dual-trace 
analog oscilloscope, the proper 
way to trigger the scope is with 
the slower of the two signals. 
The reason for this is that the 
slower signal has fewer 
possible trigger points than the 
faster signal and there will be 
no ambiguity for starting the 
sweep. Vertical mode 
triggering uses a composite of 
both channels and should never 
be used for determining 
absolute time information. 
since	clock	signals	are	usually	
the fastest signal in a digital 
system, they should not be used 
for triggering.

1. What	failures	can	cause	the	counter	in	Figure	43	to	have	no	
pulse activity on any of the TC	outputs?

2. What	happens	if	the	inverter	in	Figure	45	develops	an	open	
output?

seCtion 9 CheCkup
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summAry
•	 Asynchronous	and	synchronous	counters	differ	only	in	the	way	in	which	they	are	clocked.	syn-
chronous	counters	can	run	at	faster	clock	rates	than	asynchronous	counters.

•	 The	maximum	modulus	of	a	counter	is	the	maximum	number	of	possible	states	and	is	a	function	
of the number of stages (flip-flops). Thus,

Maximum modulus = 2n

 where n is the number of stages in the counter. The modulus of a counter is the actual number of 
states	in	its	sequence	and	can	be	equal	to	or	less	than	the	maximum	modulus.

•	 The	overall	modulus	of	cascaded	counters	is	equal	to	the	product	of	the	moduli	of	the	individual	
counters.

key terms
Asynchronous Not occurring at the same time.

Cascade To	connect	“end-to-end”	as	when	several	counters	are	connected	from	the	terminal	count	
output	of	one	counter	to	the	enable	input	of	the	next	counter.

Counter A sequential logic device that is used to divide signal frequency, count events, and gener-
ate specified sequences of bits.

Decade Characterized	by	ten	states	or	values.

mealy state machine A state machine in which the outputs depend on both the internal present 
state and on the inputs.

modulus The number of unique states through which a counter will sequence.

moore state machine A state machine in which the outputs depend only on the internal present 
state.

recycle To	undergo	transition	(as	in	a	counter)	from	the	final	or	terminal	state	back	to	the	initial	state.

state machine A	logic	system	exhibiting	a	sequence	of	states	conditioned	by	internal	logic	and	
external	inputs;	any	sequential	circuit	exhibiting	a	specified	sequence	of	states.

synchronous Occurring at the same time.
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fg08_02300up-down synchronous decade counter

FixeD-FunCtion loGiC

true/FAlse Quiz
Answers are at the end of the chapter.

 1. In an asynchronous counter, all flip-flops change state at the same time.

 2. In	a	synchronous	counter,	all	flip-flops	are	clocked	simultaneously.

467



CoUnTERs

 3. An	asynchronous	counter	is	also	known	as	a	ripple	counter.

 4. A	decade	counter	has	sixteen	states.

 5. A	counter	with	four	stages	has	a	maximum	modulus	of	sixteen.

 6. To	achieve	a	maximum	modulus	of	32,	sixteen	stages	are	required.

 7. If	the	present	state	is	1000,	the	next	state	of	a	4-bit	up/down	counter	in	the	DoWn	mode	is	0111.

 8. Two	cascaded	decade	counters	divide	the	clock	frequency	by	20.

 9. A	counter	with	a	truncated	sequence	has	less	than	its	maximum	number	of	states.

 10. To achieve a modulus of 100, ten decade counters are required.

selF-test
Answers are at the end of the chapter.

 1. Asynchronous	counters	are	known	as

(a) ripple counters (b) multiple	clock	counters
(c) decade counters (d) modulus counters

 2. An asynchronous counter differs from a synchronous counter in

(a) the number of states in its sequence (b) the	method	of	clocking
(c) the type of flip-flops used (d) the value of the modulus

 3. The modulus of a counter is

(a) the number of flip-flops
(b) the actual number of states in its sequence
(c) the number of times it recycles in a second
(d) the	maximum	possible	number	of	states

 4. A	3-bit	binary	counter	has	a	maximum	modulus	of

(a) 3  (b) 6  (c) 8  (d) 16

 5. A	4-bit	binary	counter	has	a	maximum	modulus	of

(a) 16  (b) 32  (c) 8  (d) 4

 6. A modulus-12 counter must have

(a) 12 flip-flops  (b) 3 flip-flops  (c) 4	flip-flops	 	 (d) synchronous	clocking

 7. Which	one	of	the	following	is	an	example	of	a	counter	with	a	truncated	modulus?

(a) Modulus 8  (b) Modulus	14	 	 (c) Modulus 16  (d) Modulus 32

 8. A	4-bit	ripple	counter	consists	of	flip-flops	that	each	have	a	propagation	delay	from	clock	to	Q 
output	of	12	ns.	For	the	counter	to	recycle	from	1111	to	0000,	it	takes	a	total	of

(a) 12 ns  (b) 24	ns	 	 (c) 48	ns	 	 (d) 36 ns

 9. A	BCD	counter	is	an	example	of

(a) a full-modulus counter (b) a decade counter 
(c) a truncated-modulus counter (d) answers (b) and (c)

 10. Which	of	the	following	is	an	invalid	state	in	an	8421	BCD	counter?

(a) 1100  (b) 0010  (c) 0101  (d) 1000

 11. Three cascaded modulus-10 counters have an overall modulus of

(a) 30  (b) 100  (c) 1000  (d) 10,000

 12. A	10	MHz	clock	frequency	is	applied	to	a	cascaded	counter	consisting	of	a	modulus-5	counter,	
a modulus-8 counter, and two modulus-10 counters. The lowest output frequency possible is

(a) 10	kHz	 	 (b) 2.5	kHz	 	 (c) 5	kHz	 	 (d) 25	kHz

 13. A	4-bit	binary	up/down	counter	is	in	the	binary	state	of	zero.	The	next	state	in	the	DoWn	
mode is

(a) 0001  (b) 1111  (c) 1000  (d) 1110

 14. The terminal count of a modulus-13 binary counter is

(a) 0000  (b) 1111  (c) 1101  (d) 1100
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problems
Answers to odd-numbered problems are at the end of the chapter.

seCtion 1 A system

 1. Assume	that	the	digital	clock	of	Figure	1	is	initially	reset	to	12	o’clock.	Determine	the	binary	
state	of	each	counter	after	sixty-two	60	Hz	pulses	have	occurred.

 2. What	is	the	output	frequency	of	each	counter	in	the	digital	clock	circuit	of	Figure	1?

seCtion 2 Finite state machines

 3. Represent	a	decade	counter	with	the	terminal	state	decoded	as	a	state	machine.	Identify	the	type	
and	show	the	block	diagram	and	the	state	diagram.

 4. Identify	the	type	of	state	machine	for	the	traffic	signal	control	system	in	the	chapter	“Latches,	
Flip-flops,	and	Timers.”	state	the	reason	why	it	is	the	type	you	specified.

seCtion 3 Asynchronous Counters

 5. For	the	ripple	counter	shown	in	Figure	47,	show	the	complete	timing	diagram	for	eight	clock	
pulses,	showing	the	clock,	Q0, and Q1 waveforms.
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CLK

J0 Q0

K0

C C

fg08_06900

FiGure 47 

J2 Q2

K2

J1 Q1

K1

HIGH

CLK C C

J0 Q0

K0

C
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 6. For	the	ripple	counter	in	Figure	48,	show	the	complete	timing	diagram	for	sixteen	clock	pulses.	
show	the	clock,	Q0, Q1, and Q2 waveforms.

 7. In the counter of Problem 6, assume that each flip-flop has a propagation delay from the trigger-
ing	edge	of	the	clock	to	a	change	in	the	Q output of 8 ns. Determine the worst-case (longest) 
delay	time	from	a	clock	pulse	to	the	arrival	of	the	counter	in	a	given	state.	specify	the	state	or	
states for which this worst-case delay occurs.

 8. show	how	to	connect	a	4-bit	asynchronous	counter	for	each	of	the	following	moduli	using	the	
Clear	input:
(a) 9  (b) 11  (c) 13  (d) 14	 	 (e) 15

seCtion 4 synchronous Counters

 9. If the counter of Problem 7 were synchronous rather than asynchronous, what would be the 
longest	delay	time?

 10. show	the	complete	timing	diagram	for	the	5-stage	synchronous	binary	counter	in	Figure	49.	
Verify that the waveforms of the Q outputs represent the proper binary number after each 
clock	pulse.
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 11. By	analyzing	the	J and K	inputs	to	each	flip-flop	prior	to	each	clock	pulse,	prove	that	the	decade	
counter	in	Figure	50	progresses	through	a	BCD	sequence.	Explain	how	these	conditions	in	each	
case	cause	the	counter	to	go	to	the	next	proper	state.
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 12. The	waveforms	in	Figure	51	are	applied	to	the	count	enable,	clear,	and	clock	inputs	as	indi-
cated. Show the counter output waveforms in proper relation to these inputs. The clear input is 
asynchronous.

 13. A	BCD	decade	counter	is	shown	in	Figure	52.	The	waveforms	are	applied	to	the	clock	and	clear	
inputs as indicated. Determine the waveforms for each of the counter outputs (Q0, Q1, Q2, and 
Q3). The clear is synchronous, and the counter is initially in the binary 1000 state.
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seCtion 5 up/Down synchronous Counters

 14. Show a complete timing diagram for a 3-bit up/down counter that goes through the following 
sequence.	Indicate	when	the	counter	is	in	the	UP	mode	and	when	it	is	in	the	DoWn	mode.	
Assume positive edge-triggering.

0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0

 15. Develop the Q output waveforms for the binary up/down counter with the input waveforms 
shown in Figure 53. Start with a count of 0000.
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 16. Repeat	Problem	15	if	the	D/U input signal is inverted with the CLR the same.

 17. Repeat	Problem	15	if	the	CLR is inverted with the D/U inputs the same.

seCtion 6 Cascaded Counters

 18. For	each	of	the	cascaded	counter	configurations	in	Figure	54,	determine	the	frequency	of	the	
waveform at each point indicated by a circled number, and determine the overall modulus.

 19. Expand	the	counter	in	Figure	31	to	create	a	divide-by-10,000	counter	and	a	divide-by-100,000	
counter.

 20. With	general	block	diagrams,	show	how	to	obtain	the	following	frequencies	from	a	10	MHz	
clock	by	using	single	flip-flops,	modulus-5	counters,	and	decade	counters:
(a) 5	MHz	 (b) 2.5	MHz	 (c) 2	MHz	 (d) 1	MHz	 (e) 500	kHz
(f) 250	kHz	 (g) 62.5	kHz	 (h) 40	kHz	 (i) 10	kHz	 (j) 1	kHz

seCtion 7 Counter Decoding

 21. Given a BCD decade counter with only the Q outputs available, show what decoding logic is 
required to decode each of the following states and how it should be connected to the counter. 
A HIGH output indication is required for each decoded state. The MSB is to the left.
(a) 0001 (b) 0011 (c) 0101 (d) 0111 (e) 1000
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 23. If the counter in Figure 55 is asynchronous, determine where the decoding glitches occur on the 
decoder output waveforms.

 24. Modify the circuit in Figure 55 to eliminate decoding glitches.

 25. Analyze	the	counter	in	Figure	35	for	the	occurrence	of	glitches	on	the	decode	gate	output.	If	
glitches occur, suggest a way to eliminate them.

 26. Analyze	the	counter	in	Figure	36	for	the	occurrence	of	glitches	on	the	outputs	of	the	decoding	
gates.	If	glitches	occur,	make	a	design	change	that	will	eliminate	them.

seCtion 8 Counters with vhDl and verilog

 27. Expand	 the	4-bit	 synchronous	binary	counter	 in	Figure	41	 to	five	bits.	Describe	 the	 input	
requirements for a third AND gate G3, required to provide the J4 and K4 inputs to the additional 
JK	flip-flop	stage.	Write	the	assignment	statement	for	G3	using	VHDL	or	Verilog.

 28. What	are	three	advantages	of	implementing	a	counter	system	using	VHDL?

 29. Referring	to	the	four-bit	synchronous	decade	counter	in	Figure	42,	draw	the	resulting	timing	
diagram	if	the	equation	for	G3	is	modified	as	follows:

  G3 6= (Q0 and QOut) or (G1 and Q1);

 30. Referring	to	the	4-bit	synchronous	binary	counter	timing	diagram	in	Figure	19,	the	output	of	the	
JKFF2	flip-flop	represents	the	binary	value	2	raised	to	what	power?

seCtion 9 troubleshooting

 31. For the counter in Figure 7, show the timing diagram for the Q0 and Q1 waveforms for each of 
the following faults (assume Q0 and Q1	are	initially	LoW):
(a) clock	input	to	FF0	shorted	to	ground
(b) Q0 output open
(c) clock	input	to	FF1	open
(d) J input to FF0 open
(e) K input to FF1 shorted to ground

 32. solve	Problem	31	for	the	counter	in	Figure	14.

 33. Isolate	the	fault	in	the	counter	in	Figure	9(a)	by	analyzing	the	waveforms	in	Figure	56.

 34. From	the	waveform	diagram	in	Figure	57,	determine	the	most	likely	fault	in	the	counter	of	
Figure 17.

 35. solve	Problem	34	if	the	Q2 output has the waveform observed in Figure 58. Outputs Q0 and Q1 
are the same as in Figure 57.
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 22. For	 the	4-bit	binary	counter	connected	 to	 the	decoder	 in	Figure	55,	determine	each	of	 the	
decoder	output	waveforms	in	relation	to	the	clock	pulses.
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 36. You	apply	a	5	MHz	clock	to	the	cascaded	counter	in	Figure	34	and	measure	a	frequency	of	
76.2939	Hz	at	the	last	TC	output.	Is	this	correct,	and	if	not,	what	is	the	most	likely	problem?

 37. Develop	a	table	for	use	in	testing	the	counter	in	Figure	34	that	will	show	the	frequency	at	the	
final TC output for all possible open failures of the parallel data inputs (D0, D1, D2, and D3) 
taken	one	at	a	time.	Use	10	MHz	as	the	test	frequency	for	the	clock.

 38. The	tens-of-hours	7-segment	display	in	the	digital	clock	system	of	Figure	1	continuously	dis-
plays	a	1.	All	the	other	digits	work	properly.	What	could	be	the	problem?

 39. What	would	be	the	visual	indication	of	an	open	Q1 output in the tens portion of the minutes 
counter	in	Figure	1?	Also	see	Figure	2.

 40. one	day	complaints	begin	flooding	in	from	patrons	of	a	parking	garage	that	uses	the	control	
system depicted in Figures 26 and 27. The patrons say that they enter the garage because the 
gate is up and the FULL sign is off but that, once in, they can find no empty space. As the tech-
nician	in	charge	of	this	facility,	what	do	you	think	the	problem	is,	and	how	will	you	trouble-
shoot	and	repair	the	system	as	quickly	as	possible?

special problems  

 41. For	the	automobile	parking	control	system	in	Figure	26,	a	pattern	of	entrance	and	exit	sensor	
pulses	during	a	given	24-hour	period	are	shown	in	Figure	59.	If	there	were	53	cars	already	in	the	
garage	at	the	beginning	of	the	period,	what	is	the	state	of	the	counter	at	the	end	of	the	24	hours?
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 42. The binary number for decimal 57 appears on the parallel data inputs of the parallel-to-serial 
converter in Figure 22 (D0	is	the	LsB).	The	counter	initially	contains	all	zeros	and	a	10	kHz	
clock	is	applied.	Develop	the	timing	diagram	showing	the	clock,	the	counter	outputs,	and	the	
serial data output.

 43. Develop a modulus-1000 counter by using decade counters.

 44. Modify	the	counter	in	Figure	34	to	achieve	a	modulus	of	30,000.

 45. Repeat	Problem	44	for	a	modulus	of	50,000.

 46. Modify	the	digital	clock	in	Figures	1,	2,	and	3	so	that	it	can	be	preset	to	any	desired	time.

 47. Implement	an	alarm	circuit	for	the	digital	clock	that	can	detect	a	predetermined	time	(hours	and	
minutes only) and produce a signal to activate an audio alarm.

 48. Modify	the	circuit	in	Figure	27	for	a	1000-space	parking	garage	and	a	3000-space	parking	garage.
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multisim troubleshootinG 
prACtiCe
 49. open	file	P08-49	and	follow	the	instructions	given	there.

 50. Open file P08-50 and follow the instructions given there.

 51. Open file P08-51 and follow the instructions given there.

 52. Open file P08-52 and follow the instructions given there.

 53. Open file P08-53 and follow the instructions given there.

AnsWers to seCtion CheCkups
seCtion 1 A system

 1. Gate G1	resets	flip-flop	on	first	clock	pulse	after	count	9.	Gate	G2 decodes count 12 to preset 
counter to 0001.

 2. The	hours	decade	counter	advances	through	each	state	from	zero	to	nine,	and	as	it	recycles	from	
nine	back	to	zero,	the	flip-flop	is	toggled	to	the	sET	state.	This	produces	a	ten	(10)	on	the	dis-
play.	When	the	hours	decade	counter	is	in	state	12,	the	decode	nAnD	gate	causes	the	counter	
to	recycle	to	state	1	on	the	next	clock	pulse.	The	flip-flop	resets.	This	results	in	a	one	(01)	on	the	
display.

seCtion 2 Finite state machines

 1. A finite state machine has a limited number of states that occur in a prescribed order.

 2. Moore and Mealy are two types of finite state machines.

 3. In a Moore machine, only the present state determines the outputs. In a Mealy machine, not 
only the present state but the input(s) determine the outputs.

seCtion 3 Asynchronous Counters

 1. Asynchronous means that each flip-flop after the first one is enabled by the output of the preced-
ing flip-flop.

 2. A	modulus-14	counter	has	fourteen	states	requiring	four	flip-flops.

seCtion 4 synchronous Counters

 1. All	flip-flops	in	a	synchronous	counter	are	clocked	simultaneously.

 2. An	8-bit	synchronous	binary	counter	has	64	states.

seCtion 5 up/Down synchronous Counters

 1. The counter goes to 1001.

 2. UP:	1111:	DoWn:	0000;	the	next	state	is	1111.

seCtion 6 Cascaded Counters

 1. Three	decade	counters	produce	÷	1000;	4	decade	counters	produce	÷	10,000.

 2. (a) ,  20: flip-flop and DIV 10
(b) ,  32: flip-flop and DIV 16
(c) ,  160: DIV 16 and DIV 10
(d) ,  320: DIV 16 and DIV 10 and flip-flop

seCtion 7 Counter Decoding

 1. (a) No transitional states because there is a single bit change
(b) 0000, 0001, 0010, 0101, 0110, 0111
(c) No transitional states because there is a single bit change
(d) 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110

multisim
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seCtion 8 Counters with vhDl and verilog

 1. G1 6= Q0 and Q1; Defines the logic for gate G1 = Q0Q1

  G2 6= G1 and Q2; Defines the logic for gate G2 = Q0Q1Q2

 2. These four lines define how the flip-flops are connected.

seCtion 9 troubleshooting 

 1. No pulses on TC	outputs:	CTEN	of	first	counter	shorted	to	ground	or	to	a	LoW;	clock	input	of	
first	counter	open;	clock	line	shorted	to	ground	or	to	a	LoW;	TC output of first counter shorted 
to	ground	or	to	a	LoW.

 2. With	the	inverter	output	open,	the	counter	does	not	recycle	at	the	preset	count	but	acts	as	a	full-
modulus counter.
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 2 Connect Q0 to the NAND gate as a third input (Q2 and Q3 are two of the inputs). Connect the 
CLR line to the CLR input of FF0 as well as FF2 and FF3.

 3 See Figure 61.

 4 Five decade counters are required. 105
= 100,000

 5 fQ0 = 1 MHz>[(10)(2)] = 50 kHz

 6 See Figure 62.

 7 8AC016 would be loaded. 164 - 8AC016 = 65,536 - 32,520 = 30,016 
fTC4 = 10 MHz 30,016 = 333.2 Hz

 8 See Figure 63.

AnsWers to relAteD problems  
For exAmples
 1 See Figure 60.
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AnsWers to true/FAlse Quiz
 1. F 2. T 3. T 4. F 5. T
 6. F 7. T 8. F 9. T 10. F

AnsWers to selF-test
  1. (a) 2. (b) 3. (b) 4. (c) 5. (a) 6. (c) 7. (b)
 8. (c) 9. (d) 10. (a) 11. (c) 12. (b) 13. (b) 14. (d)

AnsWers to oDD-numbereD problems
 1. Hours	tens:	0001

	 	 Hours	units:	0010

	 	 Minutes	tens:	0000

	 	 Minutes	units:	0001

	 	 seconds	tens:	0000

	 	 seconds	units:	0010

 3. This is a Moore machine. See Figure P–58.
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FiGure p–59 

 5. See Figure P–59.

 7. Worst-case	delay	is	24	ns;	it	occurs	when	all	flip-flops	change	state	from	011	to	100	or	from	
111 to 000.

 9. 8 ns

 11. Initially, each flip-flop is reset.

	 	 At	CLK1:

   J0 = K0 = 1 Therefore Q0 goes to a 1.

   J1 = K1 = 0 Therefore Q1 remains a 0.

   J2 = K2 = 0 Therefore Q2 remains a 0.

   J3 = K3 = 0 Therefore Q3 remains a 0.

	 	 At	CLK2:

   J0 = K0 = 1 Therefore Q0 goes to a 0.

   J1 = K1 = 1 Therefore Q1 goes to a 1.

Combinational
logic for state

transitions

Decade counter

Present state

Clock

Flip-flops
Logic for
decoding
state1001

Output
(terminal

state)

binary
0

binary
0

binary
0

FiGure p–58 
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   J2 = K2 = 0 Therefore Q2 remains a 0.

   J3 = K3 = 0 Therefore Q3 remains a 0.

	 	 At	CLK3:

   J0 = K0 = 1 Therefore Q0 goes to a 1.

   J1 = K1 = 0 Therefore Q1 remains a 1.

   J2 = K2 = 0 Therefore Q2 remains a 0.

   J3 = K3 = 0 Therefore Q3 remains a 0.

	 	 A	continuation	of	this	procedure	for	the	next	seven	clock	pulses	will	show	that	the	counter	
progresses through the BCD sequence.

 13. See Figure P–60.
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 15. See Figure P–61.
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 17. See Figure P–62.
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 19. See Figure P–63 for divide-by-10,000. Add one more DIV10 counter to create a divide-
by-100,000.

 21. see	Figure	P–64.
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 31. (a) Q0 and Q1 will not change from their initial state.

  (b) normal	operation	except	Q0 floating

  (c) Q0 waveform is normal; Q1 remains in initial state.

  (d) normal operation

  (e) The counter will not change from its initial state.

 33. The K input of FF1 must be connected to ground rather than to the J	input.	Check	for	a	wiring	
error.

 35. Q0 input to AND gate open and acting as a HIGH

 37. See Table P–12.

 39. The	decode	6	gate	interprets	count	4	as	a	6	(0110)	and	clears	the	counter	back	to	0	(actually	
0010 since Q1 is open). The apparent sequence of the tens portion of the counter is 0010, 
0011, 0010, 0011, 0110.

 41. 68

 43. See Figure P–66.

 45. 65,536 - 50,000 = 15,536

  Preset the counter to 15,536 so that it counts from 15,536 up to 65,536 on each full cycle, thus 
producing a sequence of 50,000 states (modulus 50,000). 
15,536 = 111100101100002 = 3CB016

  See Figure P–67.

 23. CLK2,	output	0;	CLK4,	outputs	2,	0;	CLK6,	output	4;	CLK8,	outputs	6,	4,	0;	CLK10,	output	
8;	CLK12,	outputs	10,	8;	CLK14,	output	12;	CLK16,	outputs	14,	12,	8

 25. A glitch of the AND gate output occurs on the 111 to 000 transition. Eliminate by ANDing 
CLKwith counter outputs (strobe) or use Gray code.

 27. The	addition	of	AnD	gate	(G3)	causes	the	additional	fifth	J-K	flip-flop	stage	(FF4)	to	change	
when Q0, Q1, Q2, and Q3 are HIGH.

  vhDl: G3 6= G2 and Q3;
  verilog: assign G3 = G2 && Q3;

 29. See Figure P–65.
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tAble p–12  

 
stAGe
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loADeD 
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1 0 63C1 250.006	Hz

1 1 63C2 250.012	Hz

1 2 63C4 250.025	Hz

1 3 63C8 250.050	Hz

2 0 63D0 250.100	Hz

2 1 63E0 250.200	Hz

2 2 63C0 250	Hz

2 3 63C0 250	Hz

3 0 63C0 250	Hz

3 1 63C0 250	Hz

3 2 67C0 256.568	Hz

3 3 6BC0 263.491	Hz

4 0 73C0 278.520	Hz
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 47. See Figure P–68.
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 49. Circuit fault:	Line	to	CLK	input	of	U3	is	open.

  predicted effect of fault:	Q0	and	Q1	will	sequence	normally.	Q2	and	Q3	will	remain	LoW.

  observed effect of introduced fault: Q0 and Q1 will sequence normally. Q2 and Q3 will remain 
LoW.

 51. Circuit fault: The Q output of U3 is shorted to ground.

  predicted effect of fault: The Q3Q2Q1Q0 count sequence is 0000, 0001, 0010, 0011, 0000, 
. . . rather than a decade up count.

  observed effect of introduced fault: The Q3Q2Q1Q0 count sequence is 0000, 0001, 0010, 
0011, 0000, . . . rather than a decade up count.

 53. observed operation:	The	74Ls190	decade	counter	always	functions	as	a	down	counter.

  suspected fault: Line to notU/D input of counter always HIGH.

  effect of introduced fault:	The	74Ls190	decade	counter	always	functions	as	a	down	counter.
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MeMory and Storage

From Chapter 10 of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved.
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MeMory and Storage

outline
 1 Memory System Hierarchy 

 2 Semiconductor Memory Basics 

 3 The Random-Access Memory (RAM) 

 4 The Read-Only Memory (ROM) 

 5 Programmable ROMs 

 6 The Flash Memory 

 7 Memory Expansion 

 8 Special Types of Memories 

 9 Magnetic and Optical Storage 

 10 Troubleshooting 

objectiveS
•	 Explain	memory	hierarchy

•	 Define	the	basic	memory	characteristics

•	 Explain	what	a	RAM	is	and	how	it	works

•	 Explain	the	difference	between	static	RAMs	
(SRAMs)	and	dynamic	RAMs	(DRAMs)

•	 Explain	what	a	ROM	is	and	how	it	works

•	 Describe	the	various	types	of	PROMs

•	 Discuss	the	characteristics	of	a	flash	memory

•	 Describe	the	expansion	of	ROMs	and	RAMs	to	
increase	word	length	and	word	capacity

•	 Discuss	special	types	of	memories	such	as	FIFO	
and LIFO

•	 Describe	the	basic	organization	of	magnetic	disks	
and magnetic tapes

•	 Describe	the	basic	operation	of	magneto-optical	
disks	and	optical	disks

Key terMS
Memory hierarchy
Memory
byte
Word
cell
address
capacity
Write
read
raM
roM

SraM
draM
bus
ddr
ProM
eProM
Flash memory
FiFo
liFo
Hard disk

•	 Describe	basic	methods	for	memory	testing

•	 Develop	flowcharts	for	memory	testing

viSit tHe WebSite
Study aids for this chapter are available at  

http://pearsonhighered.com/floyd

introduction
The memory devices covered in this chapter are gen-
erally used for longer-term storage of larger amounts 
of	 data	 as	 compared	 to	 shift	 registers,	 which	 are	 
type of strorage device and essentially a small-scale 
memory.

Computers and other types of systems require the 
permanent or semipermanent storage of large amounts of 
binary data. Microprocessor-based systems rely on stor-
age devices and memories for their operation because of 
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three	key	characteristics	of	memory	are	cost,	capacity,	and	access	time.	Memory	
cost	 is	usually	specified	in	cost	per	bit.	the	capacity	of	a	memory	is	measured	 in	 the	
amount	of	data	(bits	or	bytes)	it	can	store.	the	access	time	is	the	time	it	takes	to	acquire	a	
specified	unit	of	data	from	the	memory.	the	greater	the	capacity,	the	smaller	the	cost	and	
the greater the access time. The smaller the access time, the greater the cost. The goal of 
using	a	memory	hierarchy	is	to	obtain	the	shortest	possible	average	access	time	while	
minimizing	the	cost.

the	speed	with	which	data	can	be	processed	depends	both	on	the	processor	speed	and	
on	the	time	it	takes	to	access	stored	data.	Memory hierarchy* is the arrangement of various 
memory	system	elements	within	the	computer	architecture	to	maximize	process-
ing	speed	and	minimize	cost.	Memory	can	be	classified	according	to	its	“distance”	
from the processor in terms of the number of machine cycles or access time 
required	to	get	data	for	processing.	Distance	is	measured	in	time,	not	in	physical	
location. Faster memory elements are considered closer to the processor com-
pared	to	slower	types	of	memory	elements.	Also,	the	cost	per	bit	is	much	greater	
for the memory close to the processor than for the memory that is further from the 
processor. Figure 1 illustrates the arrangement of elements in a typical memory 
hierarchy.

A	primary	distinction	between	the	memory	and	storage	elements	in	Figure	1	
is the time required for the processor to access data and programs. This access 
time	is	known	as	memory latency. The greater the latency, the further from the 
processor a memory or storage element is considered to be. For example, typical 
register latency can be up to 1 or 2 ns, cache latency can be up to about 50 ns, main 
memory	latency	can	be	up	to	about	90	ns,	and	hard	disk	latency	can	be	up	to	about	
20 ms. Auxiliary memory latency can range up to several seconds.

registers
Registers	are	memory	elements	that	are	located	within	the	processor.	they	have	a	very	
small	latency	as	well	as	a	low	capacity	(number	of	bits	that	can	be	stored).	One	goal	of	

the necessity for storing programs and for retaining data 
during processing.

In computer terminology, memory usually refers to 
registers,	cache,	main	(RAM	and	ROM),	and	hard	disk.	

Storage	refers	to	tape,	optical	disk,	and	magnetic	disk.	In	
this chapter semiconductor memories and magnetic and 
optical storage media are covered.

a memory system performs the data storage function in a computer. the memory system holds 
data temporarily during processing and also stores data and programs on a long-term basis. a 
computer has several types of memory, such as registers, cache, main, and hard disk. other types 
of storage can also be used, such as magnetic tape, optical disk, and magnetic disk. Memory 
hierarchy as well as the system processor determines the processing speed of a computer.

after completing this section, you should be able to

•	 Discuss	several	types	of	memory
•	 Define	memory	hierarchy
•	 Describe	key	elements	in	a	memory	hierarchy

1 MeMory SySteM HierarcHy

Processor

Registers

Caches

Main memory

Primary storage

Secondary storage

Tertiary storage

Hard disk

Auxiliary storage

Figure 1 typical memory 
hierarchy.

*the	bold	terms	in	color	are	key	terms	and	are	included	in	a	Key	term	glossary	at	the	end	of	the	chapter.
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programming	is	to	keep	as	much	frequently	used	data	in	the	registers	as	possible.	the	
number of registers in a processor can vary from the tens to hundreds.

caches
the	next	level	in	the	hierarchy	is	the	memory	cache,	which	provides	temporary	storage.	
The L1 cache is located in the processor, and the L2 cache is outside of the processor. A 
programming	goal	is	to	keep	as	much	of	a	program	as	possible	in	the	cache,	especially	the	
parts	of	a	program	that	are	most	extensively	used.	there	can	be	more	than	two	caches	in	a	
memory system.

Main Memory
Main	memory	generally	consists	of	two	elements:	RAM	(random-access	memory)	and	
ROM	(read-only	memory).	the	RAM	is	a	working	memory	that	temporarily	stores	less	
frequently	used	data	and	program	instructions.	the	RAM	is	volatile,	which	means	that	the	
stored	contents	are	lost	when	the	power	is	turned	off.	the	ROM	is	for	permanent	storage	
of frequently used programs and data; ROM is nonvolatile. Registers, caches, and main 
memory are considered primary storage.

Hard disk
the	hard	disk	has	a	very	high	latency	and	is	used	for	mass	storage	of	data	and	programs	on	
a	permanent	basis.	the	hard	disk	is	also	used	for	virtual	memory,	space	allocated	for	data	
when	the	primary	memory	fills	up.	In	effect,	virtual	memory	simulates	primary	memory	
with	the	disadvantage	of	high	latency.	Capacities	range	up	to	about	1	terabyte	(tB).

1 TB = 1,000,000,000,000 B = 1012 B

In	addition	to	the	internal	hard	disk,	secondary	storage	can	also	include	off-line	stor-
age.	Off-line	storage	includes	DVDs,	CD-ROM,	CD-RW,	and	USB	flash	drive.	Off-line	
storage is removable storage.

auxiliary Storage
Auxiliary storage, also called tertiary storage, includes magnetic tape libraries and optical 
jukeboxes.	A	tape library can store immense amounts of data (up to hundreds of peta-
bytes). A petabyte (PB) is

1 PB = 1,000,000,000,000,000 B = 1015 B

An optical jukebox is a robotic storage device that automatically loads and unloads opti-
cal	disks.	It	may	have	as	many	as	2,000	slots	for	disks	and	can	store	hundreds	of	petabytes.

relationship of cost, capacity, and access time
Figure	2	shows	how	capacity	(the	amount	of	data	a	memory	can	store)	and	cost	per	unit	of	
storage varies as the distance from the processor, in terms of access time or latency, 
increases. The capacity increases and the cost decreases as access time increases.

Memory Hierarchy Performance
In a computer system, the overall processing speed is usually limited by the memory, not 
the	processor.	Programming	determines	how	well	a	particular	memory	hierarchy	is	uti-
lized.	the	goal	is	to	process	data	at	the	fastest	rate	possible.	two	key	factors	in	establish-
ing maximum processor performance are locality and hit rate.

If	a	block	of	data	is	referenced,	it	will	tend	to	be	either	referenced	again	soon	or	a	
nearby	data	block	will	be	referenced	soon.	Frequent	referencing	of	the	same	data	block	is	
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known	as	temporal locality, and the program code should be arranged so that the piece of 
the	data	in	the	cache	is	reused	frequently.	Referencing	an	adjacent	data	block	is	known	as	
spatial locality, and the program code should be arranged to use consecutive pieces of data 
on a frequent basis.

A miss	is	a	failed	attempt	by	the	processor	to	read	or	write	a	block	of	data	in	a	given	
level	of	memory	(such	as	the	cache).	A	miss	causes	the	processor	to	have	to	go	to	a	lower	
level	of	memory	(such	as	main	memory),	which	has	a	longer	latency.	the	three	types	of	
misses	are	instruction	read	miss,	data	read	miss,	and	data	write	miss.	A	successful	attempt	
to	read	or	write	a	block	of	data	in	a	given	level	of	memory	is	called	a	hit. Hits and misses 
are	illustrated	in	Figure	3,	where	the	processor	is	requesting	data	from	the	cache.

Registers

Capacity

Cost/unit

L1 Cache L2 Cache Hard disk Auxiliary
memory

Main
memory

Access
time

Processor

Figure 2 changes in memory capacity and cost per unit of data as latency (access time) 
increases.

Request
issued

Request
issued

Data
retrieved

Data
retrieved

Registers

Caches

Main memory

Cache miss

Data not in
cache–access
main memory

Cache hit

Hard disk

Auxiliary storage

Processor

Figure 3 illustration of a cache hit and a miss.

The hit rate	is	the	percentage	of	memory	accesses	that	find	the	requested	data	in	the	
given level of memory. The miss rate	is	the	percentage	of	memory	accesses	that	fail	to	find	
the requested data in the given level of memory and is equal to 1 – hit rate. The time 
required to access the requested information in a given level of memory is called the hit 
time.	the	higher	the	hit	rate	(hit	to	miss	ratio),	the	more	efficient	the	memory	hierarchy	is.
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1. State the purpose of memory hierarchy.

2. What	is	access	time?

3. How	does	memory	capacity	affect	the	cost	per	bit?

4. Does	higher	level	memory	generally	have	lower	capacity	than	
lower	level	memory?

5. What	is	a	hit?	A	miss?

6. What	determines	the	efficiency	of	the	memory	hierarchy?

Section 1 cHecKuP*

*answers are at the end of the chapter.

2 SeMiconductor MeMory baSicS
Memory is the portion of a computer or other system that stores binary data. in a computer, 
memory is accessed millions of times per second, so the requirement for speed and accuracy is 
paramount. very fast semiconductor memory is available today in modules with over 1 gb (a 
gigabyte is one billion bytes) of capacity. these large-memory modules use exactly the same 
operating principles as smaller units, so we will use smaller ones for illustration in this chapter 
to simplify the concepts.

after completing this chapter, you should be able to

•	 Explain	how	a	memory	stores	binary	data
•	 Discuss	the	basic	organization	of	a	memory
•	 Describe	the	write	operation
•	 Describe	the	read	operation
•	 Describe	the	addressing	operation
•	 Explain	what	RAMs	and	ROMs	are

units of binary data: bits, bytes,  
nibbles, and Words
As a rule, memories store data in units that have from one to eight bits. The smallest unit 
of	binary	data,	as	you	know,	is	the	bit. In many applications, data are handled in an 8-bit 
unit called a byte	or	in	multiples	of	8-bit	units.	the	byte	can	be	split	into	two	4-bit	units	
that are called nibbles.	Bytes	can	also	be	grouped	into	words.	the	term	word	can	have	two	
meanings	in	computer	terminology.	In	memories,	it	is	defined	as	a	group	of	bits	or	bytes	
that acts as a single entity that can be stored in one memory location. In assembly lan-
guage,	a	word	is	specifically	defined	as	two	bytes.

the	general	definition	of	word is a complete unit of information consisting of a unit of binary 
data.	When	applied	to	computer	instructions,	a	word	is	more	specifically	defined	as	two	bytes	
(16	bits).	As	a	very	important	part	of	assembly	language	used	in	computers,	the	DW	(Define	
Word)	directive	means	to	define	data	in	16-bit	units.	this	definition	is	independent	of	the	par-
ticular	microprocessor	or	the	size	of	its	data	bus.	Assembly	language	also	allows	definitions	of	
bytes	(8	bits)	with	the	DB	directive,	double	words	(32	bits)	with	the	DD	directive,	and	quad-
words	(64	bits)	with	the	QD	directive.

S y S t e M  n o t e
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the basic Memory array
Each storage element in a memory can retain either a 1 or a 0 and is called a cell. Memories 
are	made	up	of	arrays	of	cells,	as	illustrated	in	Figure	4	using	64	cells	as	an	example.	Each	
block	in	the	memory array	represents	one	storage	cell,	and	its	location	can	be	identified	
by	specifying	a	row	and	a	column.
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(a) 8 × 8 array

1 2 3 4

(c) 64 × 1 array(b) 16 × 4 array
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Figure 4 A	64-cell	memory	array	organized	in	three	
different ways.

the	64-cell	array	can	be	organized	in	several	ways	based	on	units	of	data.	Figure	4(a)	
shows	an	8 * 8	array,	which	can	be	viewed	as	either	a	64-bit	memory	or	an	8-byte	mem-
ory.	Part	(b)	shows	a	16 * 4	array,	which	is	a	16-nibble	memory,	and	part	(c)	shows	a	
64 * 1	array,	which	is	a	64-bit	memory.	A	memory	is	identified	by	the	number	of	words	
it	can	store	times	the	word	size.	For	example,	a	16k * 8	memory	can	store	16,384	words	
of eight bits each. The inconsistency here is common in memory terminology. The actual 
number	of	words	is	always	a	power	of	2,	which,	in	this	case,	is	214

= 16,384.	However,	it	
is	common	practice	to	state	the	number	to	the	nearest	thousand,	in	this	case,	16k.

Memory address and capacity
A representation of a small 8 * 8	memory	chip	is	shown	in	Figure	5(a).	the	location	of	a	
unit of data in a memory array is called its address. For example, in Figure 5(b), the 
address	of	a	bit	in	the	2-dimensional	array	is	specified	by	the	row	and	column	as	shown.	In	
Figure	5(c),	the	address	of	a	byte	is	specified	only	by	the	row.	So,	as	you	can	see,	the	
address	depends	on	how	the	memory	is	organized	into	units	of	data.	Laptop	computers	
have	random-access	memories	organized	in	bytes.	this	means	that	the	smallest	group	of	
bits that can be addressed is eight.
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(a) Physical structure of 64-bit memory.

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

(b) The address of the blue bit
is row 5, column 4.
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(c) The address of the blue byte
      is row 3.

Figure 5 examples of memory address in a 2-dimensional memory array.
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Figure 6 illustrates the expansion of the 8 * 8	(64-bit)	array	to	a	64-byte	memory.	
the	address	of	a	byte	in	the	array	is	specified	by	the	row	and	column,	as	shown.	In	this	
case,	the	smallest	group	of	bits	that	can	be	accessed	is	eight	(1	byte).	this	can	be	viewed	
as	a	3-dimensional	array	as	shown	in	part	(b).
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3

8

1 2 3 4 5 6 7 8

(a) The 8 � 8 bit array expanded to a 64 � 8 bit array. This array forms a memory module.

1
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7
8

1 2 3 4 5 6 7 8

The address of the blue byte is row 5, column 8.(b) 

Figure 6 example of memory address in an expanded (multiple) array.

The capacity of a memory is the total number of data units that can be stored. For 
example,	in	the	bit-organized	memory	array	in	Figure	5(b),	the	capacity	is	64	bits.	In	the	
byte-organized	memory	array	in	Figure	5(c),	the	capacity	is	8	bytes,	which	is	also	64	bits.	
In	Figure	6(b),	 the	capacity	 is	64	bytes.	Computer	memories	 typically	have	256	MB	
(megabyte is one million bytes) or more of internal memory. Computers usually transfer 
and	store	data	as	64-bit	words,	in	which	case	all	eight	bits	of	row	five	in	each	chip	in	Fig-
ure	6(a)	would	be	accessed.

MeMory banKS and ranKS A bank	is	a	section	of	memory	within	a	single	
memory	array	(chip).	A	memory	chip	can	have	one	or	more	banks.	Memory	banks	can	be	
used	for	storing	frequently	used	information.	When	the	section	of	memory	is	identified,	the	data	
can	be	accessed	more	quickly.	A	rank	is	a	group	of	chips	that	make	up	a	memory	module	
that	stores	data	in	units	such	as	words	or	bytes.	these	terms	are	illustrated	in	Figure	7.

basic Memory operations
Addressing	is	the	process	of	accessing	a	specified	location	in	memory.	Since	a	memory	
stores binary data, data must be put into the memory and data must be copied from the 
memory	when	needed.	the	write	operation	puts	data	into	a	specified	address	in	the	mem-
ory, and the read	operation	copies	data	out	of	a	specified	address	in	the	memory.	the	
addressing	operation,	which	is	part	of	both	the	write	and	the	read	operations,	selects	the	
specified	memory	address.

Bank

1-byte of data

1 2 3 4 5 6 7 8
Rank

64-bit (8-byte) word

Figure 7 Simple illustration of memory bank and memory rank.
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Data	units	go	into	the	memory	during	a	write	operation	and	come	out	of	the	memory	
during a read operation on a set of lines called the data bus. As indicated in Figure 8, the 
data	bus	is	bidirectional,	which	means	that	data	can	go	in	either	direction	(into	the	memory	
or	out	of	the	memory).	In	this	case	of	byte-organized	memories,	the	data	bus	has	at	least	
eight	lines	so	that	all	eight	bits	in	a	selected	address	are	transferred	in	parallel.	For	a	write	
or a read operation, an address is selected by placing a binary code representing the desired 
address on a set of lines called the address bus. The address code is decoded internally, 
and the appropriate address is selected. In the case of the expanded (multiple) array mem-
ory	in	Figure	8(b)	there	are	two	decoders,	one	for	the	rows	and	one	for	the	columns.	the	
number of lines in the address bus depends on the capacity of the memory. For example, a 
15-bit	address	code	can	select	32,768	locations	(215) in the memory, a 16-bit address code 
can select 65,536 locations (216) in the memory, and so on. In personal computers a 32-bit 
address	bus	can	select	4,294,967,296	locations	(232),	expressed	as	4g.

Address
decoder

Address bus Data bus

Write

Memory array

Read

(a) Single array memory

Row
address
decoder

Address bus Data bus

Write

Memory array

Read

(b) Multiple array memory

Column address decoder

Figure 8 block diagram of a single-array memory and a multiple-array mem-
ory showing address bus, address decoder(s), bidirectional data bus, and  
read/write inputs.

tHe Write oPeration A	simplified	write	operation	is	illustrated	in	Figure	9.	
To store a byte of data in the memory, a code held in the address register is placed on the 
address bus. Once the address code is on the bus, the address decoder decodes the address 
and	selects	the	specified	location	in	the	memory.	the	memory	then	gets	a	write	command,	
and the data byte held in the data register is placed on the data bus and stored in the 
selected	memory	address,	thus	completing	the	write	operation.	When	a	new	data	byte	is	
written	into	a	memory	address,	the	current	data	byte	stored	at	that	address	is	overwritten	
(replaced	with	a	new	data	byte).

489



MEMORy	AnD	StORAgE

tHe read oPeration A	simplified	read	operation	is	illustrated	in	Figure	10.	
Again, a code held in the address register is placed on the address bus. Once the address 
code	is	on	the	bus,	the	address	decoder	decodes	the	address	and	selects	the	specified	loca-
tion	in	the	memory.	the	memory	then	gets	a	read	command,	and	a	“copy”	of	the	data	byte	
that is stored in the selected memory address is placed on the data bus and loaded into the 
data	register,	thus	completing	the	read	operation.	When	a	data	byte	is	read	from	a	memory	
address, it also remains stored at that address. This is called nondestructive read.
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Data bus
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Byte-organized memory array
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Write

1 Address code 101 is placed on the address bus and address 5 is selected.

Data byte is placed on the data bus.

Write command causes the data byte to be stored in address 5, replacing previous data.
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3
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1 0 0 0 1 1 0 11 0 1

Figure 9 illustration of the write operation.
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Read

1 Address code 011 is placed on the address bus and address 3 is selected.

Read command is applied.

The contents of address 3 is placed on the data bus and shifted into data register.
The contents of address 3 is not erased by the read operation.
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Figure 10 illustration of the read operation.
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raMs and roMs
the	two	major	categories	of	semiconductor	memories	are	the	RAM	and	the	ROM.	raM 
(random-access	memory)	is	a	type	of	memory	in	which	all	addresses	are	accessible	in	an	
equal	amount	of	time	and	can	be	selected	in	any	order	for	a	read	or	write	operation.	All	
RAMs have both read and write	capability.	Because	RAMs	lose	stored	data	when	the	
power	is	turned	off,	they	are	volatile memories.

roM	(read-only	memory)	is	a	type	of	memory	in	which	data	are	stored	permanently	
or	semipermanently.	Data	can	be	read	from	a	ROM,	but	there	is	no	write	operation	as	in	
the	RAM.	the	ROM,	like	the	RAM,	is	a	random-access	memory	but	the	term	RAM tradi-
tionally means a random-access read/write memory. Several types of RAMs and ROMs 
will	be	covered	in	this	chapter.	Because	ROMs	retain	stored	data	even	if	power	is	turned	
off, they are nonvolatile memories.

1. What	is	the	smallest	unit	of	data	that	can	be	stored	in	a	memory?

2. What	is	the	bit	capacity	of	a	memory	that	can	store	256	bytes	
of	data?

3. What	is	a	write	operation?

4. What	is	a	read	operation?

5. How	is	a	given	unit	of	data	located	in	a	memory?

6. Describe	the	difference	between	a	RAM	and	a	ROM.

Section 2 cHecKuP

3 tHe randoM-acceSS MeMory (raM)
a raM is a read/write memory in which data can be written into or read from any selected 
address in any sequence. When a data unit is written into a given address in the raM, the data 
unit previously stored at that address is replaced by the new data unit. When a data unit is 
read from a given address in the raM, the data unit remains stored and is not erased by the 
read operation. this nondestructive read operation can be viewed as copying the content of an 
address while leaving the content intact. a raM is typically used for short-term data storage 
because it cannot retain stored data when power is turned off.

after completing this section, you should be able to

•	 Name	the	two	categories	of	RAM
•	 Explain	what	a	SRAM	is
•	 Describe	the	SRAM	storage	cell
•	 Explain	the	difference	between	an	asynchronous	SRAM	and	a	synchronous	burst	SRAM
•	 Explain	the	purpose	of	a	cache	memory
•	 Explain	what	a	DRAM	is
•	 Describe	the	DRAM	storage	cells
•	 Discuss	the	types	of	DRAM
•	 Compare	the	SRAM	with	the	DRAM

the raM Family
the	two	major	categories	of	RAM	are	the	static RAM (SRAM) and the dynamic RAM 
(DRAM).	SraMs generally use latches as storage elements and can therefore store data 
indefinitely	as long as dc power is applied. draMs use capacitors as storage elements and 
cannot	retain	data	very	long	without	the	capacitors	being	recharged	by	a	process	called	
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refreshing.	Both	SRAMs	and	DRAMs	will	lose	stored	data	when	dc	power	is	removed	
and,	therefore,	are	classified	as	volatile	memories.

Data	can	be	read	much	faster	from	SRAMs	than	from	DRAMs.	However,	DRAMs	
can	store	much	more	data	than	SRAMs	for	a	given	physical	size	and	cost	because	the	
DRAM	cell	is	much	simpler,	and	more	cells	can	be	crammed	into	a	given	chip	area	than	in	
the SRAM.

The basic types of SRAM are the asynchronous SRAM and the synchronous SRAM 
with	a	burst	feature.	the	basic	types	of	DRAM	are	the	Fast Page Mode DRAM (FPM 
DRAM),	the	Extended Data Out DRAM	(EDO	DRAM),	the	Burst EDO DRAM	(BEDO	
DRAM),	and	the	synchronous DRAM	(SDRAM).	these	are	shown	in	Figure	11.

Static
RAM

(SRAM)

Dynamic
RAM

(DRAM)

Asynchronous
SRAM

(ASRAM)

Synchronous
SRAM with
burst feature
(SB SRAM)

Extended
Data Out
DRAM

(EDO DRAM)

Burst
EDO DRAM

(BEDO
DRAM)

Fast Page
Mode

DRAM
(FPM DRAM)

Synchronous
DRAM

(SDRAM)

Random-
Access

Memory
(RAM)

Figure 11 the raM family.

Static raMs (SraMs)
MeMory cell All	SRAMs	are	characterized	by	latch	memory	cells.	As	long	as	dc	
power	is	applied	to	a	static memory	cell,	it	can	retain	a	1	or	0	state	indefinitely.	If	power	
is removed, the stored data bit is lost.

Figure	12	shows	a	basic	SRAM	gated	D	latch	memory	cell.	the	cell	is	
selected	by	an	active	level	on	the	Select	line	and	a	data	bit	(1	or	0)	is	written	into	
the	cell	by	placing	it	on	the	Data	in	line.	A	data	bit	is	read	by	taking	it	off	the	
Data	out	line.

baSic Static MeMory cell array The memory cells in a 
SRAM	are	organized	in	rows	and	columns,	as	illustrated	in	Figure	13	for	the	case	
of an n * 4	array.	All	the	cells	in	a	row	share	the	same	Row	Select	line.	Each	set	
of	Data	in	and	Data	out	lines	go	to	each	cell	in	a	given	column	and	are	connected	
to	a	single	data	line	that	serves	as	both	an	input	and	output	(Data	I/O)	through	the	
data input and data output buffers.

to	write	a	data	unit,	for	example	a	nibble,	into	a	given	row	of	cells	in	the	
memory	array,	the	Row	Select	line	is	taken	to	its	active	state	and	four	data	bits	

are	placed	on	the	Data	I/O	lines.	the	Write	line	is	then	taken	to	its	active	state,	which	
causes each data bit to be stored in a selected cell in the associated column. To read a data 
unit,	the	Read	line	is	taken	to	its	active	state,	which	causes	the	four	data	bits	stored	in	the	
selected	row	to	appear	on	the	Data	I/O	lines.

Select

Data in Data out

fg10_00800

Figure 12 a typical SraM gated d 
latch memory cell.
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Basic	Asynchronous	SRAM	Organization
An	asynchronous	SRAM	is	one	in	which	the	operation	is	not	synchronized	with	a	system	
clock.	to	illustrate	the	general	organization	of	a	SRAM,	a	32k * 8 bit memory is used. A 
logic	symbol	for	this	memory	is	shown	in	Figure	14.

In	the	READ	mode,	the	eight	data	bits	that	are	stored	in	
a selected address appear on the data output lines. In the 
WRItE	mode,	the	eight	data	bits	that	are	applied	to	the	data	
input lines are stored at a selected address. The data input and 
data output lines (I>O0 through I>O7) share the same lines. 
During	READ,	they	act	as	output	lines	(O0 through O7) and 
during	WRItE	they	act	as	input	lines	(I0 through I7).

triState outPutS and buSeS Tristate buffers 
in	a	memory	allow	the	data	lines	to	act	as	either	input	or	output	
lines and connect the memory to the data bus in a computer. 
these	buffers	have	three	output	states:	HIgH	(1),	LOW	(0),	
and	HIgH-Z (open). Tristate outputs are indicated on logic 
symbols by a small inverted triangle (�),	as	shown	in	Figure	
14,	and	are	used	for	compatibility	with	bus	structures	such	as	
those found in microprocessor-based systems.

Physically, a bus is one or more conductive paths that 
serve	to	interconnect	two	or	more	functional	components	of	a	
system or several diverse systems. Electrically, a bus is a col-
lection	of	specified	voltage	levels	and/or	current	levels	and	
signals	that	allow	various	devices	to	communicate	and	work	
properly together.

A	microprocessor	is	connected	to	memories	and	input/output	devices	by	certain	bus	
structures.	An	address	bus	allows	the	microprocessor	to	address	the	memories,	and	a	data	
bus	provides	for	transfer	of	data	between	the	microprocessor,	the	memories,	and	the	input/
output	devices	such	as	monitors,	printers,	keyboards,	and	modems.	A	control	bus	allows	
the microprocessor to control data transfers and timing for the various components.

Row Select 1

Row Select 2

Row Select n

Row Select 0

Memory cell

Data Input/Output
Buffers and Control

Data I/O
Bit 0

Data I/O
Bit 1

Data I/O
Bit 2

Data I/O
Bit 3

Figure 13 basic SraM array.
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Figure 14 logic diagram for an asynchronous 
32k :  8 SraM.
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MeMory array SRAM	chips	can	be	organized	in	single	bits,	nibbles	(4	bits),	
bytes	(8	bits),	or	multiple	bytes	(words	with	16,	24,	32	bits,	etc.).

Figure	15	shows	the	organization	of	a	small	32k * 8 SRAM. The memory cell array 
is	arranged	in	256	rows	and	128	columns,	each	with	8	bits,	as	shown	in	part	(a).	there	are	
actually 215

= 32,768 addresses and each address contains 8 bits. The capacity of this 
example	memory	 is	 32,768	bytes	 (typically	 expressed	 as	32	kB).	Although	 small	 by	
today’s standards, this memory serves to introduce the basic concepts.

the	SRAM	in	Figure	15(b)	works	as	follows.	First,	 the	chip	select,	CS, must be 
LOW	for	the	memory	to	operate.	(Other	terms	for	chip	select	are	enable or chip enable.) 
Eight	of	the	fifteen	address	lines	are	decoded	by	the	row	decoder	to	select	one	of	the	256	
rows.	Seven	of	the	fifteen	address	lines	are	decoded	by	the	column	decoder	to	select	one	of	
the 128 8-bit columns.

WE

256
rows

128 columns

8 bits

(a) Memory array configuration

Address lines

Eight input
tristate buffers

Row
decoder

Input
data

control
I/O7

I/O0
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Tristate buffers
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G1

Eight output buffers

Output
data
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(b) Memory block diagram

Column decoder
Memory arrays

256 rows ×
128 columns ×

8 bits

Memory array

256 rows ×
128 columns ×

8 bits
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Figure 15 Basic	organization	of	an	asynchronous	32k : 8 SraM.

read In	the	READ	mode,	the	write	enable	input,	WE,	is	HIgH	and	the	output	enable,	
OE,	is	LOW.	the	input	tristate	buffers	are	disabled	by	gate	G1, and the column output 
tristate buffers are enabled by gate G2. Therefore, the eight data bits from the selected 
address	are	routed	through	the	column	I/O	to	the	data	lines	(I>O0 though I>O7),	which	are	
acting as data output lines.

Write In	the	WRItE	mode,	WE	 is	LOW	and	OE	 is	HIgH.	the	input	buffers	are	
enabled by gate G1, and the output buffers are disabled by gate G2. Therefore, the eight 
input data bits on the data lines are routed through the input data control and the column 
I/O	to	the	selected	address	and	stored.

read and Write cycleS Figure	16	shows	 typical	 timing	diagrams	 for	a	
memory	read	cycle	and	a	write	cycle.	For	the	read	cycle	shown	in	part	(a),	a	valid	address	
code	is	applied	to	the	address	lines	for	a	specified	time	interval	called	the	read cycle time, 
tRC. Next, the chip select (CS) and the output enable (OE)	inputs	go	LOW.	One	time	inter-
val after the OE	input	goes	LOW,	a	valid	data	byte	from	the	selected	address	appears	on	
the data lines. This time interval is called the output enable access time, tGQ.	two	other	
access times for the read cycle are the address access time, tAQ, measured from the begin-
ning of a valid address to the appearance of valid data on the data lines and the chip enable 
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access time, tEQ,	measured	from	the	HIgH-to-LOW	transition	of	CS to the appearance of 
valid data on the data lines.

During	each	read	cycle,	one	unit	of	data,	a	byte	in	this	case,	is	read	from	the	memory.
For	the	write	cycle	shown	in	Figure	16(b),	a	valid	address	code	is	applied	to	the	

address	lines	for	a	specified	time	interval	called	the	write cycle time, tWC. Next, the chip 
select (CS)	and	the	write	enable	(WE)	inputs	go	LOW.	the	required	time	interval	from	the	
beginning of a valid address until the WE	input	goes	LOW	is	called	the	address setup time, 
ts(A). The time that the WE	input	must	be	LOW	is	the	write	pulse	width.	the	time	that	the	
input WE	must	remain	LOW	after	valid	data	are	applied	to	the	data	inputs	is	designated	
tWD; the time that the valid input data must remain on the data lines after the WE input goes 
HIgH	is	the	data hold time, th(D).

During	each	write	cycle,	one	unit	of	data	is	written	into	the	memory.

basic Synchronous SraM with burst Feature
Unlike	the	asynchronous	SRAM,	a	synchronous	SRAM	is	synchronized	with	the	system	
clock.	For	example,	in	a	computer	system,	the	synchronous	SRAM	operates	with	the	same	
clock	signal	that	operates	the	microprocessor	so	that	the	microprocessor	and	memory	are	
synchronized	for	faster	operation.

the	fundamental	concept	of	the	synchronous	feature	of	a	SRAM	can	be	shown	with	
Figure	17,	which	is	a	simplified	block	diagram	of	a	32k * 8 memory for purposes of illus-
tration. The synchronous SRAM is similar to the asynchronous SRAM in terms of the 
memory	array,	address	decoder,	and	read/write	and	enable	inputs.	the	basic	difference	is	
that	the	synchronous	SRAM	uses	clocked	registers	to	synchronize	all	inputs	with	the	sys-
tem	clock.	the	address,	the	read/write	input,	the	chip	enable,	and	the	input	data	are	all	
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Valid addressAddress

Valid data
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Figure 16 basic read and write cycle timing for the SraM in Figure 15.
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latched	into	their	respective	registers	on	an	active	clock	pulse	edge.	Once	this	information	
is	latched,	the	memory	operation	is	in	sync	with	the	clock.

For	the	purpose	of	simplification,	a	notation	for	multiple	parallel	lines	or	bus	lines	is	
introduced	in	Figure	17,	as	an	alternative	to	drawing	each	line	separately.	A	set	of	parallel	
lines	can	be	indicated	by	a	single	heavy	line	with	a	slash	and	the	number	of	separate	lines	
in	the	set.	For	example,	the	following	notation	represents	a	set	of	8	parallel	lines:

Memory array
32k×8

Address
decoder

Burst
logic

A0 A1

A′0
A′1

Burst
control

CLK
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register

A0–A14
(external
address) 15 13
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synchronous
SRAM.
There is no
Data output
register in the
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SRAM.

15
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8

8

8

Output
buffers

Data I/O
control

Write
register

Enable
register

8

WE

CS

OE

I/O0–I/O7
(Data I/O) 8

Data output
register
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Figure 17 a basic block diagram of a synchronous SraM with burst feature.

8

The address bits A0 through A14 are latched into the Address register on the positive 
edge	of	a	clock	pulse.	On	the	same	clock	pulse,	the	state	of	the	write	enable	(WE) line and 
chip select (CS)	are	latched	into	the	Write	register	and	the	Enable	register	respectively.	
these	are	one-bit	registers	or	simply	flip-flops.	Also,	on	the	same	clock	pulse	the	input	
data	are	latched	into	the	Data	input	register	for	a	Write	operation,	and	data	in	a	selected	
memory	address	are	latched	into	the	Data	output	register	for	a	Read	operation,	as	deter-
mined	by	the	Data	I/O	control	based	on	inputs	from	the	Write	register,	Enable	register,	and	
the Output enable (OE).

two	basic	types	of	synchronous	SRAM	are	the	flow-through and the pipelined. The 
flow-through	synchronous	SRAM	does	not	have	a	Data	output	register,	so	the	output	data	
flow	asynchronously	to	the	data	I/O	lines	through	the	output	buffers.	the	pipelined syn-
chronous	SRAM	has	a	Data	output	register,	as	shown	in	Figure	17,	so	the	output	data	are	
synchronously	placed	on	the	data	I/O	lines.

tHe burSt Feature As	shown	in	Figure	17,	synchronous	SRAMs	normally	
have	an	address	burst	 feature,	which	allows	 the	memory	 to	 read	or	write	up	 to	 four	
sequential	locations	using	a	single	address.	When	an	external	address	is	latched	in	the	
address	register,	 the	two	lowest-order	address	bits,	 A0 and A1, are applied to the burst 
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logic. This produces a sequence of four internal addresses by adding 00, 01, 10, and 11 to 
the	two	lowest-order	address	bits	on	successive	clock	pulses.	the	sequence	always	begins	
with	the	base	address,	which	is	the	external	address	held	in	the	address	register.

The address burst logic in a typical synchronous SRAM consists of a binary counter 
and	exclusive-OR	gates,	as	shown	in	Figure	18.	For	2-bit	burst	logic,	the	internal	burst	
address sequence is formed by the base address bits A2-A14	plus	the	two	burst	address	bits	
A=

1 and A=
0.

to	begin	the	burst	sequence,	the	counter	is	in	its	00	state	and	the	two	lowest-order	
address bits are applied to the inputs of the XOR gates. Assuming that A0 and A1 are both 
0,	the	internal	address	sequence	in	terms	of	its	two	lowest-order	bits	is	00,	01,	10,	and	11.

Burst control
Binary counter

Q1 Q0
CLK

A ′
Lowest-order bits
of internal burst
address

A ′

A0 A1

Lowest-order bits of
external address

0

1

fg10_01400
Figure 18 address burst logic.

cache Memory
One of the major applications of SRAMs is in cache memories in computers. cache mem-
ory is a relatively small, high-speed memory that stores the most recently used instructions 
or	data	from	the	larger	but	slower	main	memory.	Cache	memory	can	also	use	dynamic	
RAM	(DRAM),	which	 is	covered	next.	typically,	SRAM	is	several	 times	 faster	 than	
DRAM.	Overall,	a	cache	memory	gets	stored	information	to	the	microprocessor	much	
faster	than	if	only	high-capacity	DRAM	is	used.	Cache	memory	is	basically	a	cost-effective	
method	of	improving	system	performance	without	having	to	resort	to	the	expense	of	mak-
ing all of the memory faster.

The concept of cache memory is based on the idea that computer programs tend to 
get instructions or data from one area of main memory before moving to another area. 
Basically,	the	cache	controller	“guesses”	which	area	of	the	slow	dynamic	memory	the	
CPU	(central-processing	unit)	will	need	next	and	moves	it	to	the	cache	memory	so	that	it	
is	ready	when	needed.	If	the	cache	controller	guesses	right,	the	data	are	immediately	avail-
able	to	the	microprocessor.	If	the	cache	controller	guesses	wrong,	the	CPU	must	go	to	the	
main	memory	and	wait	much	longer	for	the	correct	instructions	or	data.	Fortunately,	the	
cache controller is right most of the time.

cacHe analogy There are many analogies that can be used to describe a cache 
memory, but comparing it to a home refrigerator is perhaps the most effective. A home 
refrigerator	can	be	thought	of	as	a	“cache”	for	certain	food	items	while	the	supermarket	is	
the	main	memory	where	all	foods	are	kept.	Each	time	you	want	something	to	eat	or	drink,	
you	can	go	to	the	refrigerator	(cache)	first	to	see	if	the	item	you	want	is	there.	If	it	is,	you	
save a lot of time. If it is not there, then you have to spend extra time to get it from the 
supermarket	(main	memory).

l1 and l2 cacHeS A	first-level	cache	(L1	cache)	is	usually	integrated	into	the	
processor	chip	and	has	a	very	limited	storage	capacity.	L1	cache	is	also	known	as	primary 
cache. A second-level cache (L2 cache) is a separate memory chip or set of chips external 
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dynamic raM (draM) Memory cells
dynamic memory cells store a data bit in a small capacitor rather than in a latch. The 
advantage	of	this	type	of	cell	is	that	it	is	very	simple,	thus	allowing	very	large	memory	
arrays	to	be	constructed	on	a	chip	at	a	lower	cost	per	bit.	the	disadvantage	is	that	the	stor-

age	capacitor	cannot	hold	its	charge	over	an	extended	period	of	time	and	will	lose	
the stored data bit unless its charge is refreshed periodically. To refresh requires 
additional	memory	circuitry	and	complicates	the	operation	of	the	DRAM.	Figure	20	
shows	a	typical	DRAM	cell	consisting	of	a	single	MOS	transistor	(MOSFEt)	and	a	
capacitor.

In	this	type	of	cell,	the	transistor	acts	as	a	switch.	the	basic	simplified	opera-
tion	is	illustrated	in	Figure	21	and	is	as	follows.	A	LOW	on	the	R>W 	line	(WRItE	
mode) enables the tristate input buffer and disables the output buffer. For a 1 to be 
written	into	the	cell,	the	DIN	line	must	be	HIgH,	and	the	transistor	must	be	turned	
on	by	a	HIgH	on	the	row	line.	the	transistor	acts	as	a	closed	switch	connecting	the	
capacitor	to	the	bit	line.	this	connection	allows	the	capacitor	to	charge	to	a	positive	

voltage,	as	shown	in	Figure	21(a).	When	a	0	is	to	be	stored,	a	LOW	is	applied	to	the	DIN 
line. If the capacitor is storing a 0, it remains uncharged, or if it is storing a 1, it discharges 
as	indicated	in	Figure	21(b).	When	the	row	line	is	taken	back	LOW,	the	transistor	turns	off	
and	disconnects	the	capacitor	from	the	bit	line,	thus	“trapping”	the	charge	(1	or	0)	on	the	
capacitor.

To read from the cell, the R>W (Read>Write)	 line	 is	HIgH,	enabling	 the	output	
buffer	and	disabling	the	input	buffer.	When	the	row	line	is	taken	HIgH,	the	transistor	
turns on and connects the capacitor to the bit line and thus to the output buffer (sense 
amplifier),	so	the	data	bit	appears	on	the	data-output	line	(DOUT). This process is illus-
trated in Figure 21(c).

For refreshing the memory cell, the R>W 	line	is	HIgH,	the	row	line	is	HIgH,	and	
the	refresh	line	is	HIgH.	the	transistor	turns	on,	connecting	the	capacitor	to	the	bit	line.	
The output buffer is enabled, and the stored data bit is applied to the input of the refresh 
buffer,	which	is	enabled	by	the	HIgH	on	the	refresh	input.	this	produces	a	voltage	on	the	
bit line corresponding to the stored bit, thus replenishing the capacitor. This is illustrated 
in Figure 21(d).

to the processor and usually has a larger storage capacity than an L1 cache. L2 cache is 
also	known	as	secondary cache.	Some	systems	may	have	higher-level	caches	(L3,	L4,	
etc.),	but	L1	and	L2	are	the	most	common.	Also,	some	systems	use	a	disk	cache	to	enhance	
the	performance	of	the	hard	disk	because	DRAM,	although	much	slower	than	SRAM,	is	
much	faster	than	the	hard	disk	drive.	Figure	19	illustrates	L1	and	L2	cache	memories	in	a	
computer system.

Main memory
(DRAM)

Microprocessor

L1 cache
(internal)

Clock (CLK)

L2 cache
(SRAM)

Cache
controller

Data bus

Address bus

fg10_01500

Figure 19 block diagram showing l1 and l2 cache memories in a computer system.

Column (bit line)
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Figure 20 a MoS draM cell.
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Basic	DRAM	Organization
the	major	application	of	DRAMs	is	in	the	main	memory	of	computers.	the	difference	
between	DRAMs	and	SRAMs	is	the	type	of	memory	cell.	As	you	have	seen,	the	DRAM	
memory cell consists of one transistor and a capacitor and is much simpler than the SRAM 
cell.	this	allows	much	greater	densities	in	DRAMs	and	results	in	greater	bit	capacities	for	
a	given	chip	area,	although	much	slower	access	time.

Again,	because	charge	stored	in	a	capacitor	will	leak	off,	the	DRAM	cell	requires	a	
frequent refresh operation to preserve the stored data bit. This requirement results in more 
complex	circuitry	than	in	a	SRAM.	Several	features	common	to	most	DRAMs	are	now	
discussed, using a generic 1M * 1	bit	DRAM	as	an	example.

addreSS MultiPlexing DRAMs	use	a	technique	called	address multiplex-
ing	 to	 reduce	 the	 number	 of	 address	 lines.	 Figure	 22	 shows	 the	 block	 diagram	 of	 a	
1,048,576-bit	 (1	Mb)	DRAM	with	a	1M * 1	organization.	We	will	 focus	on	the	blue	
blocks	to	illustrate	address	multiplexing.	the	green	blocks	represent	the	refresh	logic.

The ten address lines are time multiplexed at the beginning of a memory cycle by the 
row	address	select	(RAS) and the column address select (CAS)	 into	two	separate	10-bit	
address	fields.	First,	the	10-bit	row	address	is	latched	into	the	row	address	register.	next,	
the	10-bit	column	address	is	latched	into	the	column	address	register.	the	row	address	and	
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Figure 21 basic operation of a draM cell.
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the	column	address	are	decoded	to	select	one	of	the	1,048,576	addresses	(220
= 1,048,576) 

in	the	memory	array.	the	basic	timing	for	the	address	multiplexing	operation	is	shown	in	
Figure 23.
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Figure 22 Simplified	block	diagram	of	a	1M : 1 draM.
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Figure 23 basic timing for address multiplexing.

read and Write cycleS At	the	beginning	of	each	read	or	write	memory	
cycle, RAS and CAS	go	active	(LOW)	to	multiplex	the	row	and	column	addresses	into	the	
registers and decoders. For a read cycle, the R>W 	input	is	HIgH.	For	a	write	cycle,	the	
R>W 	input	is	LOW.	this	is	illustrated	in	Figure	24.

FaSt Page Mode In	the	normal	read	or	write	cycle	described	previously,	the	row	
address	for	a	particular	memory	location	is	first	loaded	by	an	active-LOW	RAS and then 
the	column	address	for	that	location	is	loaded	by	an	active-LOW	CAS. The next location is 
selected by another RAS	followed	by	a	CAS, and so on.
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A	“page”	is	a	section	of	memory	available	at	a	single	row	address	and	consists	of	all	the	
columns	in	a	row.	Fast	page	mode	allows	fast	successive	read	or	write	operations	at	each	col-
umn	address	in	a	selected	row.	A	row	address	is	first	loaded	by	RAS	going	LOW	and	remaining	
LOW	while	CAS	is	toggled	between	HIgH	and	LOW.	A	single	row	address	is	selected	and	
remains	selected	while	RAS is active. Each successive CAS selects another column in the 
selected	row.	So,	after a fast page mode cycle, all	of	the	addresses	in	the	selected	row	have	been	
read	from	or	written	into,	depending on R/W. For example, a fast page mode cycle for the 
DRAM	in	Figure	22	requires	CAS	to	go	active	1024	times	for	each	row	selected	by	RAS.

Fast page mode operation for read is illustrated by the timing diagram in Figure 25. 
When	CAS	goes	to	its	nonasserted	state	(HIgH),	it	disables	the	data	outputs.	therefore,	the	
transition of CAS	to	HIgH	must	occur	only	after	valid	data	are	latched	by	the	external	system.
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Figure 25 Fast page mode timing for a read operation.
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reFreSH cycleS As	you	know,	DRAMs	are	based	on	capacitor	charge	storage	
for	each	bit	in	the	memory	array.	this	charge	degrades	(leaks	off)	with	time	and	tempera-
ture, so each bit must be periodically refreshed (recharged) to maintain the correct bit state. 
typically,	a	DRAM	must	be	refreshed	every	8	ms	to	16	ms,	although	for	some	devices	the	
refresh period can exceed 100 ms.

A	read	operation	automatically	refreshes	all	the	addresses	in	the	selected	row.	How-
ever,	in	typical	applications,	you	cannot	always	predict	how	often	there	will	be	a	read	
cycle, and so you cannot depend on a read cycle to occur frequently enough to prevent data 
loss.	therefore,	special	refresh	cycles	must	be	implemented	in	DRAM	systems.

Burst refresh and distributed refresh	are	 the	 two	basic	refresh	modes	for	refresh	
operations.	In	burst	refresh,	all	rows	in	the	memory	array	are	refreshed	consecutively	each	
refresh	period.	For	a	memory	with	a	refresh	period	of	8	ms,	a	burst	refresh	of	all	rows	
occurs	once	every	8	ms.	the	normal	read	and	write	operations	are	suspended	during	a	
burst	refresh	cycle.	In	distributed	refresh,	each	row	is	refreshed	at	intervals	interspersed	
between	normal	read	or	write	cycles.	For	example,	the	memory	in	Figure	22	has	1024	
rows.	As	 an	 example,	 for	 an	8	ms	 refresh	period,	 each	 row	must	 be	 refreshed	 every	
8 ms>1024 = 7.8 ms	when	distributed	refresh	is	used.

the	two	types	of	refresh	operations	are	RAS only refresh and CAS before RAS refresh. 
RAS-only refresh consists of a RAS	transition	to	the	LOW	(active)	state,	which	latches	the	
address	of	 the	row	to	be	refreshed	while	CAS	 remains	HIgH	(inactive)	 throughout	the	
cycle.	An	external	counter	is	used	to	provide	the	row	addresses	for	this	type	of	operation.

The CAS before RAS refresh is initiated by CAS	going	LOW	before	RAS	goes	LOW.	
this	sequence	activates	an	internal	refresh	counter	that	generates	the	row	address	to	be	
refreshed.	this	address	is	switched	by	the	data	selector	into	the	row	decoder.

types of draMs
now	that	you	have	learned	the	basic	concept	of	a	DRAM,	let’s	briefly	look	at	some	major	
types. These are the Fast Page Mode (FPM) DRAM, the Extended Data Out (EDO) DRAM, 
the Burst Extended Data Out (BEDO) DRAM, the Synchronous (S) DRAM, and the Double 
Data Note	(DDR)	SDRAM.

FPM draM Fast	page	mode	operation	was	described	earlier.	this	type	of	DRAM	
traditionally has been the most common and has been the type used in computers until the 
development	of	 the	EDO	DRAM.	Recall	 that	 a	page	 in	memory	 is	 all	of	 the	column	
addresses	contained	within	one	row	address.

The idea of the FPM draM is based on the probability that the next several memory 
addresses	to	be	accessed	are	in	the	same	row	(on	the	same	page).	Fortunately,	this	happens	
a large percentage of the time. FPM saves time over pure random accessing because in FPM 
the	row	address	is	specified	only	once	for	access	to	several	successive	column	addresses	
whereas	for	pure	random	accessing,	a	row	address	is	specified	for	each	column	address.

Recall that in a fast page mode read operation, the CAS	signal	has	to	wait	until	the	
valid	data	from	a	given	address	are	accepted	(latched)	by	the	external	system	(CPU)	before	
it	can	go	to	its	nonasserted	state.	When	CAS goes to its nonasserted state, the data outputs 
are disabled. This means that the next column address cannot occur until after the data 
from	the	current	column	address	are	transferred	to	the	CPU.	this	limits	the	rate	at	which	
the	columns	within	a	page	can	be	addressed.

edo draM the	Extended	Data	Out	DRAM,	sometimes	called	hyper page mode 
DRAM,	 is	similar	to	the	FPM	DRAM.	the	key	difference	is	that	the	CAS signal in the 
edo draM	does	not	disable	the	output	data	when	it	goes	to	its	nonasserted	state	because	
the valid data from the current address can be held until CAS is asserted again. This means 
that the next column address can be accessed before the external system accepts the cur-
rent valid data. The idea is to speed up the access time.

bedo draM the	Burst	Extended	Data	Out	DRAM	is	an	EDO	DRAM	with	address	
burst capability. Recall from the discussion of the synchronous burst SRAM that the address 
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burst	feature	allows	up	to	four	addresses	to	be	internally	generated	from	a	single	external	
address,	which	saves	some	access	time.	this	same	concept	applies	to	the	bedo draM.

SdraM Faster	DRAMs	are	 needed	 to	 keep	up	with	 the	 ever-increasing	 speed	of	
microprocessors.	the	Synchronous	DRAM	is	one	way	to	accomplish	this.	Like	the	syn-
chronous SRAM discussed earlier, the operation of the SdraM	is	synchronized	with	the	
system	clock,	which	also	runs	the	microprocessor	in	a	computer	system.	the	same	basic	
ideas	described	in	relation	to	the	synchronous	burst	SRAM,	also	apply	to	the	SDRAM.

this	synchronized	operation	makes	 the	SDRAM	totally	different	 from	the	other	
asynchronous	DRAM	types.	With	asynchronous	memories,	the	microprocessor	must	wait	
for	the	DRAM	to	complete	its	internal	operations.	However,	with	synchronous	operation,	
the	DRAM	latches	addresses,	data,	and	control	information	from	the	processor	under	con-
trol	of	the	system	clock.	this	allows	the	processor	to	handle	other	tasks	while	the	memory	
read	or	write	operations	are	in	progress,	rather	than	having	to	wait	for	the	memory	to	do	its	
thing as is the case in asynchronous systems.

ddr SdraM ddr	stands	for	double	data	rate.	A	DDR	SDRAM	is	clocked	on	both	
edges	of	a	clock	pulse,	whereas	a	SDRAM	is	clocked	on	only	one	edge.	Because	of	the	
double	clocking,	a	DDR	SDRAM	is	theoretically	twice	as	fast	as	an	SDRAM.	Sometimes	
the	SDRAM	is	referred	to	as	an	SDR	SDRAM	(single	data	rate	SDRAM)	for	contrast	with	
the	DDR	SDRAM.

1. List	two	types	of	SRAM.

2. What	is	a	cache?

3. Explain	how	SRAMs	and	DRAMs	differ.

4. Describe	the	refresh	operation	in	a	DRAM.

5. List	four	types	of	DRAM.

Section 3 cHecKuP

4 tHe read-only MeMory (roM)
a roM contains permanently or semipermanently stored data, which can be read from the 
memory	but	either	cannot	be	changed	at	all	or	cannot	be	changed	without	specialized	equip-
ment. a roM stores data that are used repeatedly in system applications, such as tables, con-
versions,	or	programmed	instructions	for	system	initialization	and	operation.	ROMs	retain	
stored data when the power is off and are therefore nonvolatile memories.

after completing this section, you should be able to

•	 List	the	types	of	ROMs
•	 Describe	a	basic	mask	ROM	storage	cell
•	 Explain	how	data	are	read	from	a	ROM
•	 Discuss	internal	organization	of	a	typical	ROM

the roM Family
Figure	26	shows	how	semiconductor	ROMs	are	categorized.	the	mask	ROM	is	the	type	in	
which	the	data	are	permanently	stored	in	the	memory	during	the	manufacturing	process.	
The ProM,	or	programmable	ROM,	is	the	type	in	which	the	data	are	electrically	stored	by	
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Read-Only
Memory
(ROM)

Electrically
Erasable
PROM
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Figure 26 the roM family.
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Figure 27 roM cells.

the	user	with	the	aid	of	specialized	equipment.	Both	the	mask	ROM	and	the	PROM	can	be	
of either MOS or bipolar technology. The eProM, or erasable PROM, is strictly a MOS 
device. The uv eProM is electrically programmable by the user, but the stored data must 
be erased by exposure to ultraviolet light over a period of several minutes. The electrically 
erasable PROM (eeProM or E2PROM)	can	be	erased	in	a	few	milliseconds.

the Mask roM
the	mask	ROM	is	usually	referred	to	simply	as	a	ROM.	It	is	permanently	programmed	
during	the	manufacturing	process	to	provide	widely	used	standard	functions,	such	as	popu-
lar	conversions,	or	to	provide	user-specified	functions.	Once	the	memory	is	programmed,	
it	cannot	be	changed.	Most	IC	ROMs	utilize	the	presence	or	absence	of	a	transistor	con-
nection	at	a	row/column	junction	to	represent	a	1	or	a	0.

Figure	27	shows	MOS	ROM	cells.	the	presence	of	a	connection	from	a	row	line	to	
the	gate	of	a	transistor	represents	a	1	at	that	location	because	when	the	row	line	is	taken	
HIgH,	all	transistors	with	a	gate	connection	to	that	row	line	turn	on	and	connect	the	HIgH	
(1)	to	the	associated	column	lines.	At	row/column	junctions	where	there	are	no	gate	con-
nections,	the	column	lines	remain	LOW	(0)	when	the	row	is	addressed.

to	illustrate	the	ROM	concept,	Figure	28	shows	a	small,	simplified	ROM	array.	the	
blue squares represent stored 1s, and the gray squares represent stored 0s. The basic read 
operation	is	as	follows.	When	a	binary	address	code	is	applied	to	the	address	input	lines,	the	
corresponding	row	line	goes	HIgH.	this	HIgH	is	connected	to	the	column	lines	through	
the	transistors	at	each	junction	(cell)	where	a	1	is	stored.	At	each	cell	where	a	0	is	stored,	the	
column	line	stays	LOW	because	of	a	terminating	resistor.	the	column	lines	form	the	data	
output.	the	eight	data	bits	stored	in	the	selected	row	appear	on	the	output	lines.

As	you	can	see,	the	example	ROM	in	Figure	28	is	organized	into	16	addresses,	each	
of	which	stores	8	data	bits.	thus,	it	is	a	16 * 8 (16-by-8) ROM, and its total capacity is 
128	bits	or	16	bytes.	ROMs	can	be	used	as	look-up	tables	(LUts)	for	code	conversions	and	
logic function generation.
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0
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Show	a	basic	ROM,	similar	 to	 the	one	 in	Figure	28,	programmed	for	a	4-bit	
binary-to-gray	conversion.

S o l u t i o n

Table 1 is developed for use in programming the ROM.

table 1 

binary gray
B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

Figure 28 a representation 
of a 16 : 8-bit roM array.
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internal roM organization Most IC ROMs have a more complex 
internal	organization	than	that	in	the	basic	simplified	example	just	presented.	to	illustrate	
how	an	IC	ROM	is	structured,	let’s	use	a	1024-bit	device	with	a	256 * 4	organization.	
the	logic	symbol	is	shown	in	Figure	30.	When	any	one	of	256	binary	codes	(eight	bits)	 

r e l a t e d  P r o b l e M *

Using	Figure	29,	determine	the	gray	code	output	when	a	binary	code	of	1011	is	
applied to the address input lines.

G3

Gray code output

Binary code
applied to

address
input lines

G2 G1 G0
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B1

B2

B3

1 0
Address
decoder

0

1

2

3

4
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7

8

9
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11

12
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14

15

1

2

4

8

Figure 29 representation of a roM programmed as a binary-to-
gray code converter.

*answers are at the end of the chapter.

The resulting 16 * 4	ROM	array	is	shown	in	Figure	29.	you	can	see	that	
a	binary	code	on	the	address	input	lines	produces	the	corresponding	gray	code	
on	the	output	lines	(columns).	For	example,	when	the	binary	number	0110	is	
applied	to	the	address	input	lines,	address	6,	which	stores	the	gray	code	0101,	
is selected.
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is applied to the address lines, four data bits appear on the outputs if the 
chip	select	inputs	are	LOW.	(256	addresses	require	eight	address	lines.)

Although the 256 * 4	organization	of	this	device	implies	that	there	
are	256	rows	and	4	columns	in	the	memory	array,	this	is	not	actually	the	
case. The memory cell array is actually a 32 * 32	matrix	(32	rows	and	32	
columns),	as	shown	in	the	block	diagram	in	Figure	31.

the	ROM	in	Figure	31	works	as	follows.	Five	of	the	eight	address	
lines (A0 through A4)	are	decoded	by	the	row	decoder	(often	called	the	
Y	decoder)	 to	select	one	of	 the	32	 rows.	three	of	 the	eight	address	
lines (A5 through A7) are decoded by the column decoder (often called 
the X decoder) to select four of the 32 columns. Actually, the column 
decoder	consists	of	four	1-of-8	decoders	(data	selectors),	as	shown	in	
Figure 31.

the	result	of	this	structure	is	that	when	an	8-bit	address	code	(A0 
through A7)	is	applied,	a	4-bit	data	word	appears	on	the	data	outputs	when	
the chip select lines (CS0 and CS1)	are	LOW	to	enable	the	output	buffers.	
this	type	of	internal	organization	(architecture)	is	typical	of	IC	ROMs	of	
various capacities.

ROM 256×4
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lines
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0
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A
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O1

O2

O3

Data
output
lines∆

∆

∆

∆

fg10_02600
Figure 30 a 256 : 4 roM logic symbol. the 
A 0

255 designator means that the 8-bit address 
code selects addresses 0 through 255.
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Row
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fg10_02700

Chip
select
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CS1

Figure 31 a 1024-bit roM with a 256 : 4	organization	based	on	a	32 : 32 
array.

ROM	is	used	in	a	computer	to	store	the	BIOS	(Basic	Input/Output	System).	these	are	pro-
grams that are used to perform fundamental supervisory and support functions for the compu-
ter. For example, BIOS programs stored in the ROM control certain video monitor functions, 
provide	for	disk	formatting,	scan	the	keyboard	for	inputs,	and	control	certain	printer	functions.

S y S t e M  n o t e
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roM acceSS tiMe A typical timing diagram that illustrates ROM access time is 
shown	in	Figure	32.	the	access time, ta, of a ROM is the time from the application of a 
valid address code on the input lines until the appearance of valid output data. Access time 
can also be measured from the activation of the chip select (CS) input to the occurrence of 
valid	output	data	when	a	valid	address	is	already	on	the	input	lines.

1. What	is	the	bit	storage	capacity	of	a	ROM	with	a	512 * 8 
organization?

2. List the types of read-only memories.

3. How	many	address	bits	are	required	for	a	2048-bit	memory	
organized	as	a	256 * 8	memory?

Section 4 cHecKuP

5 PrograMMable roMS
Programmable roMs (ProMs) are basically the same as mask roMs once they have been 
programmed. as you have learned, roMs are a type of programmable logic device. the dif-
ference is that ProMs come from the manufacturer unprogrammed and are custom pro-
grammed	in	the	field	to	meet	the	user’s	needs.

after completing this section, you should be able to

•	 Distinguish	between	a	mask	ROM	and	a	PROM
•	 Describe	a	basic	PROM	memory	cell
•	 Discuss	EPROMs	including	UV	EPROMs	and	EEPROMs
•	 Analyze	an	EPROM	programming	cycle

ProMs
A ProM	uses	some	type	of	fusing	process	to	store	bits,	in	which	a	memory	link is burned 
open or left intact to represent a 0 or a 1. The fusing process is irreversible; once a PROM 
is programmed, it cannot be changed.

Previous
address

Valid address on
input lines

Address
inputs

(A0–An)

Address transition

Valid data on
output lines

Data
outputs

(O0–O7)

Data output
transition

ta

(Chip select)
CS

fg10_02800

Figure 32 roM access 
time (ta) from address change 
to data output with chip select 
already active.
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Figure	33	illustrates	a	MOS	PROM	array	with	fusible	links.	the	fusible	links	are	
manufactured	into	the	PROM	between	the	source	of	each	cell’s	transistor	and	its	column	
line.	In	the	programming	process,	a	sufficient	current	is	injected	through	the	fusible	link	to	
burn	it	open	to	create	a	stored	0.	the	link	is	left	intact	for	a	stored	1.

Rows

Fusible
link

+VDD

Columns

Figure 33 MoS ProM array with fusible links. (all drains are com-
monly connected to Vdd.)

three	basic	fuse	technologies	used	in	PROMs	are	metal	links,	silicon	links,	and	pn 
junctions.	A	brief	description	of	each	of	these	follows.

 1. Metal	links	are	made	of	a	material	such	as	nichrome.	Each	bit	in	the	memory	array	is	
represented	by	a	separate	link.	During	programming,	the	link	is	either	“blown”	open	
or	left	intact.	this	is	done	basically	by	first	addressing	a	given	cell	and	then	forcing	a	
sufficient	amount	of	current	through	the	link	to	cause	it	to	open.

 2. Silicon	links	are	formed	by	narrow,	notched	strips	of	polycrystalline	silicon.	Pro-
gramming	of	these	fuses	requires	melting	of	the	links	by	passing	a	sufficient	amount	
of current through them. This amount of current causes a high temperature at the fuse 
location	that	oxidizes	the	silicon	and	forms	an	insulation	around	the	now-open	link.

 3. Shorted junction, or avalanche-induced migration, technology consists basically of 
two	semiconductor	pn	junctions	arranged	back-to-back.	During	programming,	one	of	
the diode junctions is avalanched, and the resulting voltage and heat cause aluminum 
ions	to	migrate	and	short	the	junction.	the	remaining	junction	is	then	used	as	a	forward-
biased diode to represent a data bit.

eProMs
An eProM	is	an	erasable	PROM.	Unlike	an	ordinary	PROM,	an	EPROM	can	be	repro-
grammed	if	an	existing	program	in	the	memory	array	is	erased	first.

An	EPROM	uses	an	nMOSFEt	array	with	an	isolated-gate	structure.	the	isolated	
transistor	gate	has	no	electrical	connections	and	can	store	an	electrical	charge	for	indefinite	
periods of time. The data bits in this type of array are represented by the presence or absence 
of a stored gate charge. Erasure of a data bit is a process that removes the gate charge.

A	typical	EPROM	is	represented	in	Figure	34	by	a	logic	diagram.	Its	operation	is	
representative	of	 that	of	other	 typical	EPROMs	of	various	sizes.	As	 the	 logic	symbol	
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shows,	 this	device	has	2048	addresses	 (211
= 2048),	 each	with	eight	bits.	

Notice that the eight outputs are tristate (�).
two	basic	types	of	erasable	PROMs	are	the	ultraviolet	erasable	PROM	

(UV	EPROM)	and	the	electrically	erasable	PROM	(EEPROM).

uv eProMS you	can	 recognize	 the	UV	EPROM	device	by	 the	UV	
transparent	window	on	the	package.	the	isolated	gate	in	the	Fet of an ultra-
violet	EPROM	is	“floating”	within	an	oxide	insulating	material.	the	program-
ming	process	causes	electrons	to	be	removed	from	the	floating	gate.	Erasure	is	
done by exposure of the memory array chip to high-intensity ultraviolet radia-
tion	through	the	UV	window	on	top	of	the	package.	the	positive	charge	stored	
on	the	gate	is	neutralized	after	several	minutes	to	an	hour	of	exposure	time.

To read from the memory, the output enable input (OE)	must	be	LOW	
and	the	power-down/program	(CE/PGM)	input	LOW.

to	program	or	write	to	the	device,	a	high	dc	voltage	is	applied	to	VPP and 
OE	is	HIgH.	the	eight	data	bits	to	be	programmed	into	a	given	address	are	
applied to the outputs (O0 through O7), and the address is selected on inputs A0 
through A10.	next,	a	HIgH	level	pulse	is	applied	to	the	CE/PGM input. The 
addresses can be programmed in any order.

A	timing	diagram	for	the	programming	is	shown	in	Figure	35.	these	
signals are normally produced by an EPROM programmer.
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∆
∆

fg10_03100
Figure 34 the logic symbol for a 
2048 : 8 eProM.

eeProMS An	electrically	erasable	PROM	can	be	both	erased	and	programmed	with	
electrical	pulses.	Since	it	can	be	both	electrically	written	into	and	electrically	erased,	the	
EEPROM can be rapidly programmed and erased in-circuit for reprogramming.

two	types	of	EEPROMs	are	the	floating-gate	MOS	and	the	metal	nitride-oxide	sili-
con	(MnOS).	the	application	of	a	voltage	on	the	control	gate	in	the	floating-gate	structure	
permits	the	storage	and	removal	of	charge	from	the	floating	gate.

Program

Address n

th(A)

th(E)

th(D)

ts(D)

ts(VPP)

ts(E)

ts(A)

Data to
be programmed in

A0–A10

OE

O0–O7

CE/PGM

VPP

n + 1

fg10_03200

Figure 35 timing diagram 
for a 2048 : 8 uv eProM 
programming cycle, with criti-
cal setup times (ts) and hold 
times (th) indicated.

1. How	do	PROMs	differ	from	ROMs?

2. After erasure, all bits are (1s, 0s) in a typical EPROM.

3. What	is	the	normal	mode	of	operation	for	a	PROM?

Section 5 cHecKuP
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Flash memories	are	high-density	read/write	memories	(high-density	translates	into	
large	bit	storage	capacity)	that	are	nonvolatile,	which	means	that	data	can	be	stored	indefi-
nitely	without	power.	they	are	sometimes	used	in	place	of	small-capacity	hard	disk	drives	
in laptop computers.

High-density	means	that	a	large	number	of	cells	can	be	packed	into	a	given	surface	
area on a chip; that is, the higher the density, the more bits that can be stored on a given 
size	chip.	this	high	density	is	achieved	in	flash	memories	with	a	storage	cell	that	consists	
of	a	single	floating-gate	MOS	transistor.	A	data	bit	is	stored	as	charge	or	the	absence	of	
charge	on	the	floating	gate	depending	if	a	0	or	a	1	is	stored.

Flash Memory cell
A	single-transistor	cell	in	a	flash	memory	is	represented	in	Figure	36.	the	stacked	gate	
MOS	transistor	consists	of	a	control	gate	and	a	floating	gate	in	addition	to	the	drain	and	
source.	the	floating	gate	stores	electrons	(charge)	as	a	result	of	a	sufficient	voltage	applied	
to the control gate. A 0 is stored when there is more charge and a 1 is stored when there is 
less or no charge.	the	amount	of	charge	present	on	the	floating	gate	determines	if	the	tran-
sistor	will	turn	on	and	conduct	current	from	the	drain	to	the	source	when	a	control	voltage	
is applied during a read operation.

Control
gate

Floating
gate Drain

Source

MOS
transistor
symbol

–
–
–
–
–
–

–
–
–
–
–
–

Many electrons = more charge = stored 0.

–

–

Few electrons = less charge = stored 1.

fg10_03300
Figure 36 the storage cell in a flash memory.

the ideal memory has high storage capacity, nonvolatility, in-system read and write capabil-
ity, comparatively fast operation, and cost effectiveness. the traditional memory technologies 
such as roM, ProM, eProM, eeProM, SraM, and draM individually exhibit one or 
more of these characteristics. Flash memory has all of the desired characteristics.

after completing this section, you should be able to

•	 Discuss	the	basic	characteristics	of	a	flash	memory
•	 Describe	the	basic	operation	of	a	flash	memory	cell
•	 Compare	flash	memories	with	other	types	of	memories
•	 Discuss	the	USB	flash	drive

6 tHe FlaSH MeMory

basic Flash Memory operation
there	are	three	major	operations	in	a	flash	memory:	the	programming operation, the read 
operation, and the erase operation.

511



MEMORy	AnD	StORAgE

PrograMMing Initially,	all	cells	are	at	the	1	state	because	charge	was	removed	
from each cell in a previous erase operation. The programming operation adds electrons 
(charge)	to	the	floating	gate	of	those	cells	that	are	to	store	a	0.	no	charge	is	added	to	those	
cells	that	are	to	store	a	1.	Application	of	a	sufficient	positive	voltage	to	the	control	gate	
with	respect	to	the	source	during	programming	attracts	electrons	to	the	floating	gate,	as	indi-
cated	in	Figure	37.	Once	programmed,	a	cell	can	retain	the	charge	for	up	to	100	years	with-
out	any	external	power.

Control
gate

Floating
gate

–

–

To store a 0, a sufficient positive voltage is
applied to the control gate with respect to the
source to add charge to the floating gate during
programming.

–
–

–

–

–

–

+VPROG

+VD

0 V

–

–

To store a 1, no charge is added and the cell is
left in the erased condition.

+VD

fg10_03400

Figure 37 Simplified	illustration	of	storing	a	0	or	a	1	in	a	flash	cell	during	the	pro-
gramming operation.

read During	a	read	operation,	a	positive	voltage	is	applied	to	the	control	gate.	the	
amount	of	charge	present	on	the	floating	gate	of	a	cell	determines	whether	or	not	the	volt-
age	applied	to	the	control	gate	will	turn	on	the	transistor.	If	a	1	is	stored,	the	control	gate	
voltage	is	sufficient	to	turn	the	transistor	on.	If	a	0	is	stored,	the	transistor	will	not	turn	on	
because	the	control	gate	voltage	is	not	sufficient	to	overcome	the	negative	charge	stored	in	
the	floating	gate.	think	of	the	charge	on	the	floating	gate	as	a	voltage	source	that	opposes	
the	voltage	applied	to	the	control	gate	during	a	read	operation.	So	the	floating	gate	charge	
associated	with	a	stored	0	prevents	the	control	gate	voltage	from	reaching	the	turn-on	
threshold,	whereas	the	small	or	zero	charge	associated	with	a	stored	1	allows	the	control	
gate voltage to exceed the turn-on threshold.

When	the	transistor	turns	on,	there	is	current	from	the	drain	to	the	source	of	the	cell	
transistor. The presence of this current is sensed to indicate a 1, and the absence of this 
current is sensed to indicate a 0. This basic idea is illustrated in Figure 38.

When a 0 is read, the transistor remains off
because the charge on the floating gate prevents
the read voltage from exceeding the turn-on
threshold.

+VREAD

+VD

0 V

–

–

When a 1 is read, the transistor turns on because
the absence of charge on the floating gate
allows the read voltage to exceed the turn-on
threshold.

+VD

0 V

– –
– –
– –
– –
– –
– –

+VREAD I

Control
gate

Floating
gate

fg10_03500

Figure 38 the read operation of a flash cell in an array.

512



MEMORy	AnD	StORAgE

eraSe During	an	erase	operation,	charge	is	removed	from	all	the	memory	
cells.	A	sufficient	positive	voltage	is	applied	to	the	transistor	source	with	respect	
to the control gate. This is opposite in polarity to that used in programming. This 
voltage	attracts	electrons	 from	the	floating	gate	and	depletes	 it	of	charge,	as	
illustrated	in	Figure	39.	A	flash	memory	is	always	erased	prior	to	being	repro-
grammed.

basic Flash Memory array
A	simplified	array	of	flash	memory	cells	is	shown	in	Figure	40.	Only	one	row	line	
is	accessed	at	a	time.	When	a	cell	in	a	given	bit	line	turns	on	(stored	1)	during	a	
read	operation,	there	is	current	through	the	bit	line,	which	produces	a	voltage	drop	
across	the	active	load.	this	voltage	drop	is	compared	to	a	reference	voltage	with	a	
comparator circuit and an output level indicating a 1 is produced. If a 0 is stored, 
then there is no current or little current in the bit line and an opposite level is pro-
duced on the comparator output.

–

–

To erase a cell, a sufficient positive voltage is
applied to the source with respect to the control
gate to remove charge from the floating gate
during the erase operation.

–

–

–

–

–

–

+VERASE

0 V

–

fg10_03600
Figure 39 Simplified	illustration	of	
removing charge from a cell during 
erase.

Row select 0

Row select 1

Row select n

Reference

Active load

+V

Comparator
Data out 0

Bit line 0

Column select 0

+V

Data out m

Bit line m

Column select m

fg10_03700

Figure 40 basic flash memory array.

the	memory	stick	is	a	storage	medium	that	uses	flash	memory	technology	in	a	phys-
ical	configuration	smaller	than	a	stick	of	chewing	gum.	Memory	sticks	are	typically	avail-
able	in	128	MB	to	32	gB	capacities	and	as	a	kit	with	a	PC	card	adaptor.	Because	of	its	
compact design, it is ideal for use in small digital electronics products, such as laptop com-
puters and digital cameras.
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comparison of Flash Memories  
with other Memories
Let’s	compare	flash	memories	with	other	types	of	memories	with	which	you	are	already	
familiar.

FlaSH vS. roM, eProM, and eeProM Read-only memories are high-
density,	nonvolatile	devices.	However,	once	programmed	 the	contents	of	a	ROM	can	
never be altered. Also, the initial programming is a time-consuming and costly process.

Although the EPROM is a high-density, nonvolatile memory, it can be erased only 
by removing it from the system and using ultraviolet light. It can be reprogrammed only 
with	specialized	equipment.

The EEPROM has a more complex cell structure than either the ROM or EPROM 
and	so	the	density	is	not	as	high,	although	it	can	be	reprogrammed	without	being	removed	
from	 the	 system.	 Because	 of	 its	 lower	 density,	 the	 cost/bit	 is	 higher	 than	 ROMs	 or	
EPROMs.

A	flash	memory	can	be	reprogrammed	easily	in	the	system	because	it	is	essentially	a	
READ/WRItE	 device.	 the	 density	 of	 a	 flash	 memory	 compares	 with	 the	 ROM	 and	
EPROM	because	both	have	single-transistor	cells.	A	flash	memory	(like	a	ROM,	EPROM,	
or	EEPROM)	is	nonvolatile,	which	allows	data	to	be	stored	indefinitely	with	power	off.

FlaSH vS. SraM As you have learned, static random-access memories are volatile 
READ/WRItE	devices.	A	SRAM	requires	constant	power	to	retain	the	stored	data.	In	
many	applications,	a	battery	backup	is	used	to	prevent	data	loss	if	the	main	power	source	
is	turned	off.	However,	since	battery	failure	is	always	a	possibility,	indefinite	retention	of	
the stored data in a SRAM cannot be guaranteed. Because the memory cell in a SRAM is 
basically	a	flip-flop	consisting	of	several	transistors,	the	density	is	relatively	low.

A	flash	memory	is	also	a	READ/WRItE	memory,	but	unlike	the	SRAM	it	is	non-
volatile.	Also,	a	flash	memory	has	a	much	higher	density	than	a	SRAM.

FlaSH vS. draM Dynamic	 random-access	memories	are	volatile	high-density	
READ/	WRItE	devices.	DRAMs	require	not	only	constant	power	to	retain	data	but	also	
that	the	stored	data	must	be	refreshed	frequently.	In	many	applications,	backup	storage	
such	as	hard	disk	must	be	used	with	a	DRAM.

Flash	memories	exhibit	higher	densities	than	DRAMs	because	a	flash	memory	cell	
consists	of	one	transistor	and	does	not	need	refreshing,	whereas	a	DRAM	cell	is	one	tran-
sistor	plus	a	capacitor	that	has	to	be	refreshed.	typically,	a	flash	memory	consumes	much	
less	power	than	an	equivalent	DRAM	and	can	be	used	as	a	hard	disk	replacement	in	many	
applications.

Table 2 provides a comparison of the memory technologies.

table	2	 •	 comparison of types of memories.

 
MeMory tyPe

 
nonvolatile

 
HigH-denSity

one-tranSiStor 
cell

in-SySteM  
Writability

Flash Yes Yes Yes Yes

SRAM No No No Yes

DRAM No Yes Yes Yes

ROM Yes Yes Yes No

EPROM Yes Yes Yes No

EEPROM Yes No No Yes
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uSb Flash drive
A	USB	flash	drive	consists	of	a	flash	memory	connected	to	a	standard	USB	connector	
housed	in	a	small	case	about	the	size	of	a	cigarette	lighter.	the	USB	connector	can	be	
plugged	into	a	port	on	a	personal	computer	and	obtains	power	from	the	computer.	these	
memories	are	usually	rewritable	and	can	have	a	storage	capacity	up	to	256	gB	(a	number	
which	is	constantly	increasing),	with	most	ranging	from	2	gB	to	64	gB.	A	typical	USB	
flash	drive	is	shown	in	Figure	41(a),	and	a	basic	block	diagram	is	shown	in	part	(b).

(a) Typical USB flash drive

USB connector

Mass memory
controller

Crystal
oscillator

Flash memory

+V

Data−
Gnd

Data+

(b) Basic block diagram

Figure 41 the uSb flash drive.

the	USB	flash	drive	uses	a	standard	USB	A-type	connector	for	connection	to	the	
computer,	as	shown	in	Figure	42(a).	Peripherals,	such	as	printers,	use	the	USB	B-type	con-
nector,	which	has	a	different	shape	and	physical	pin	configuration.	the	USB	icon	is	shown	
in part (b).

4 3 2 1

(b) Type A USB connector

Figure 42 

(b) USB icon

 

1. What	types	of	memories	are	nonvolatile?

2. What	is	a	major	advantage	of	a	flash	memory	over	a	SRAM	
or	DRAM?

3. List	the	three	modes	of	operation	of	a	flash	memory.

Section 6 cHecKuP
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Word-length expansion
To increase the word length of a memory, the number of bits in the data bus must be 
increased.	For	example,	an	8-bit	word	length	can	be	achieved	by	using	two	memories,	each	
with	4-bit	words	as	illustrated	in	Figure	43(a).	As	you	can	see	in	part	(b),	the	16-bit	address	
bus is commonly connected to both memories so that the combination memory still has the 
same number of addresses (216

= 65,536)	as	each	 individual	memory.	the	4-bit	data	
buses	 from	the	 two	memories	are	combined	 to	 form	an	8-bit	data	bus.	now	when	an	
address is selected, eight bits are produced on the data bus—four from each memory. 
Example	2	shows	the	details	of	65,536 * 4 to 65,536 * 8 expansion.

7 MeMory exPanSion
available memory can be expanded to increase the word length (number of bits in each address) 
or the word capacity (number of different addresses) or both. Memory expansion is accom-
plished by adding an appropriate number of memory chips to the address, data, and control 
buses. SiMMs and diMMs, which are types of memory expansion modules, are introduced.

after completing this section, you should be able to

•	 Define	word-length expansion

•	 Show	how	to	expand	the	word	length	of	a	memory
•	 Define	word-capacity expansion

•	 Show	how	to	expand	the	word	capacity	of	a	memory

16 bits

16 bits

8 bits

4 bits

4 bits

16 bits

4 bits

4 bits

16 bits

Data
bus

Address
bus

Control
bus

Data
bus

Address
bus

Control
bus

Data
bus

65,536 × 8

(a) Two separate 65,536 × 4 ROMs (b) One 65,536 × 8 ROM from two 65,536 × 4 ROMs

Address
bus

Control
bus

ROM
65,536 × 4

ROM 1

ROM 2ROM
65,536 × 4

fg10_03800

Figure 43 expansion of two 65,536 : 4 roMs into a 65,536 : 8 roM to illustrate word-
length expansion.

Expand the 65,536 * 4 ROM 
(64k * 4)	in	Figure	44	to	form	a	
64k * 8	ROM.	note	that	“64k”	
is the accepted shorthand for 
65,536.	Why	not	“65k”?	Maybe	
it’s	because	64	is	also	a	power-
of-two.

S o l u t i o n

two	 64k * 4 ROMs are con-
nected	 as	 shown	 in	 Figure	 45.	

AAddress

A0

A15

E0

E1

ROM
64k × 4

&
EN

O0
O1
O2
O3

Data
output

Enable

0

65,535

fg10_03900

Figure 44 a 64k : 4 roM.

e x a M P l e  2
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A

A

0

65,535

0

65,535

Address
bus

A0

A15

ROM 1

&
EN

O0
O1
O2
O3

Data
bus

Control
bus

ROM 2

&
ENE

O4
O5
O6
O7

fg10_04000

Figure 45 

notice	that	a	specific	address	is	accessed	in	ROM	1	and	ROM	2	at	the	same	time.	
The four bits from a selected address in ROM 1 and the four bits from the corre-
sponding	address	in	ROM	2	go	out	in	parallel	to	form	an	8-bit	word	on	the	data	
bus.	Also	notice	that	a	LOW	on	the	enable	line,	E,	which	forms	a	simple	control	
bus, enables both memories.

r e l a t e d  P r o b l e M

Describe	how	you	would	expand	a	64k * 1 ROM to a 64k * 8 ROM.

e x a M P l e  3

Use	the	memories	in	Example	2	to	form	a	64k * 16 ROM.

S o l u t i o n

In	this	case	you	need	a	memory	that	stores	65,536	16-bit	words.	Four	64k * 4 ROMs are required to do the job, 
as	shown	in	Figure	46.

16 bits 16 bits 16 bits 16 bits

Data
bus

A0

A15

Control
bus

(enable)

Address bus

ROM 1
64k × 4

&
EN

ROM 2
64k × 4

&
EN

ROM 3
64k × 4

&
EN

ROM 4
64k × 4

EN
&

16 bits

16 bits

4 bits 4 bits 4 bits 4 bits

fg10_04100

Figure 46 

r e l a t e d  P r o b l e M

How	many	64k * 1	ROMs	would	be	required	to	implement	the	memory	shown	in	Figure	46?
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A ROM has only data outputs, but a RAM has both data inputs and data outputs. For 
word-length	expansion	in	a	RAM	(SRAM	or	DRAM),	the	data	inputs	and data outputs 
form the data bus. Because the same lines are used for data input and data output, tristate 
buffers	are	required.	Most	RAMs	provide	internal	tristate	circuitry.	Figure	47	illustrates	
RAM	expansion	to	increase	the	data	word	length.

m bits

m bits
Address

bus

m bits

2n bits

Control
bus

Data bus

RAM 2m × 2n

Data
in/out

RAM 2
2m × n

RAM 1
2m × n

Data
in/out

∆∆

n bits n bits

fg10_04200

Figure 47 illustration of 
word-length expansion with 
two 2m : n raMs forming a 
2m : 2n raM.

e x a M P l e  4

Use	1M * 4 SRAMs to create a 1M * 8 SRAM.

S o l u t i o n

two	1M * 4	SRAMs	are	connected	as	shown	in	the	simplified	block	diagram	of	Figure	48.

Data
bus

R/W
E

A19

A0
Address

bus

0

19

SRAM 1 0

19

SRAM 2

∆
∆
∆
∆

∆
∆
∆
∆

Control
bus

A 0
1,048,575

A 0
1,048,575

Data
I/O

Data
I/O

fg10_04300
Figure 48 
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Word-capacity expansion
When	memories	are	expanded	to	increase	the	word capacity, the number of addresses 
is increased. To achieve this increase, the number of address bits must be increased, 
as	illustrated	in	Figure	49,	(where	two	1M * 8 RAMs are expanded to form a 2M * 8 
memory).

Data
bus

ROM 2M × 8

Address
bus

21 bits

Control
bus

20 bits

20 bits

20 bits

EN

EN

RAM 2
1M × 8

RAM 1
1M × 8

(a) Individual memories each store 1,048,576
8-bit words

(b) Memories expanded to form a 2M × 8 RAM requiring a 
21-bit address bus

8 bits

8 bits

8 bits

RAM
1M × 8

RAM
1M × 8

Address
bus

Address
bus

Data
bus

8 bits

Data
bus

8 bits

Control
bus

Control
bus

20 bits

fg10_04400
Figure 49 illustration of word-capacity expansion.

Each	individual	memory	has	20	address	bits	 to	select	 its	1,048,576	addresses,	as	
shown	in	part	(a).	the	expanded	memory	has	2,097,152	addresses	and	therefore	requires	
21	address	bits,	as	shown	in	part	(b).	the	twenty-first	address	bit	is	used	to	enable	the	
appropriate	memory	chip.	the	data	bus	for	the	expanded	memory	remains	eight	bits	wide.	
Details	of	this	expansion	are	illustrated	in	Example	5.

e x a M P l e  5

Use	512k * 4 RAMs to implement a 1M * 4 memory.

S o l u t i o n

The expanded addressing is achieved by connecting the enable (E0)	input	to	the	twentieth	address	bit	(A19), as 
shown	in	Figure	50.	Input	E1	is	used	as	an	enable	input	common	to	both	memories.	When	the	twentieth	address	
bit (A19)	is	LOW,	RAM	1	is	selected	(RAM	2	is	disabled),	and	the	nineteen	lower-order	address	bits	(A0 - A18) 
access	each	of	the	addresses	in	RAM	1.	When	the	twentieth	address	bit	(A19)	is	HIgH,	RAM	2	is	enabled	by	a	
LOW	on	the	inverter	output	(RAM	1	is	disabled),	and	the	nineteen	lower-order	address	bits	(A0 - A18) access 
each of the RAM 2 addresses.

r e l a t e d  P r o b l e M

Use	1M * 8 SRAMs to create a 1M * 16 SRAM.
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Memory Modules
SDRAMs	are	available	in	modules	consisting	of	multiple	memory	ICs	arranged	on	a	
printed	circuit	board.	the	most	common	type	of	SDRAM	memory	module	is	called	a	
diMM	(dual	in-line	memory	module).	Another	version	of	the	DIMM	is	the	SODIMM	
(small-outline	DIMM).	Another	 type	of	memory	module,	generally	 found	 in	older	
equipment and essentially obsolete, is the SIMM (single in-line memory module). 
Whereas	a	SIMM	has	connection	pins	on	one	side	of	the	pc	board,	a	DIMM	has	con-
nection	pins	on	both	sides	of	the	board.	DIMMs	plug	into	a	socket	on	the	system	moth-
erboard for memory expansion. A generic representation of a memory module is 
shown	 in	Figure	51	with	 the	 system	board	connectors	 into	which	 the	modules	 are	
inserted.

r e l a t e d  P r o b l e M

What	are	the	ranges	of	addresses	in	RAM	1	and	in	RAM	2	in	Figure	50?
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data bus
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A19
DI/O0

&
EN

&
EN

RAM 1

RAM 2

E0

E1

E0

E1

A18

DI/O1
DI/O2
DI/O3

∆
∆
∆
∆

A
1,048,575

A 0

524,287

∆
∆
∆
∆

524,288

fg10_04500

Figure 50 

fg10_04700

Figure 51 a memory module with connectors.

h a n d s  o n  t i p
Memory components are 
extremely sensitive to static 
electricity.	Use	the	following	
precautions	when	handling	
memory chips or modules such 
as	DIMMs:

•	 	Before	handling,	discharge	
your body’s static charge by 
touching a grounded surface 
or	wear	a	grounding	wrist	
strap containing a high-value 
resistor if available. A 
convenient, reliable ground 
is the ac outlet ground.

•	 	Do	not	remove	components	
from their antistatic bags until 
you are ready to install them.

•	 	Do	not	lay	parts	on	the	
antistatic bags because only 
the inside is antistatic.

•	 	When	handling	DIMMs,	
hold by the edges or the 
metal	mounting	bracket.	Do	
not touch components on the 
boards or the edge connector 
pins.

•	 	never	slide	any	part	over	any	
type of surface.

•	 	Avoid	plastic,	vinyl,	styrofoam,	
and	nylon	in	the	work	area.

continued
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DIMMs	generally	contain	DDR	SDRAM	memory	chips.	A	DDR	SDRAM	transfers	
two	blocks	of	data	for	each	clock	cycle	rather	than	one	like	a	standard	SDRAM.	there	are	
currently	three	basic	types	of	modules:	DDR,	DDR2	and	DDR3	as	follows:

•	 DDR	modules	have	184	pins	and	require	a	2.5	voltage	source.

•	 DDR2	modules	have	240	pins	and	require	a	1.8	voltage	source.

•	 DDR3	modules	have	240	pins	and	require	a	1.5	voltage	source.

the	DDR,	DDR2,	and	DDR3	have	transfer	data	rates	of	1600	MBps,	3200	MBps,	and	
6400	MBps,	respectively.

When	installing	DIMMs,	follow	
these	steps:

1.  Line up the notches on the 
DIMM	board	with	the	notches	
in	the	memory	socket.

2.	 	Push	firmly	on	the	module	
until it is securely seated in 
the	socket.

3.	 	generally,	the	latches	on	
both	sides	of	the	socket	will	
snap	into	place	when	the	
module is completely 
inserted. These latches also 
release the module, so it can 
be	removed	from	the	socket.

1. How	many	16k * 1 RAMs are required to achieve a memory 
with	a	word	capacity	of	16k	and	a	word	length	of	eight	bits?

2. To expand the 16k * 8 memory in question 1 to a 32k * 8 
organization,	how	many	more	16k * 1	RAMs	are	required?

3. What	does	DIMM	stand	for?

4. What	does	DDR	mean?

Section 7 cHecKuP

8 SPecial tyPeS oF MeMorieS
In	this	section,	the	first	in–first	out	(FIFO)	memory,	the	last	in–first	out	(LIFO)	memory,	the	
memory stack, and the charge-coupled device memory are covered.

after completing this section, you should be able to

•	 Describe	a	FIFO	memory
•	 Describe	a	LIFO	memory
•	 Discuss	memory	stacks
•	 Explain	how	to	use	a	portion	of	RAM	as	a	memory	stack
•	 Describe	a	basic	CCD	memory

First	In–First	Out	(FIFO)	Memories
This type of memory is formed by an arrangement of shift registers. The term FiFo refers 
to	the	basic	operation	of	this	type	of	memory,	in	which	the	first	data	bit	written	into	the	
memory	is	the	first	to	be	read	out.

One	important	difference	between	a	conventional	shift	register	and	a	FIFO	register	is	
illustrated in Figure 52. In a conventional register, a data bit moves through the register 
only	as	new	data	bits	are	entered;	in	a	FIFO	register,	a	data	bit	immediately	goes	through	
the register to the right-most bit location that is empty.

Figure	53	is	a	block	diagram	of	a	FIFO	serial	memory.	this	particular	memory	has	
four	serial	64-bit	data	registers	and	a	64-bit	control	register	(marker	register).	When	data	are	
entered	by	a	shift-in	pulse,	they	move	automatically	under	control	of	the	marker	register	to	
the	empty	location	closest	to	the	output.	Data	cannot	advance	into	occupied	positions.	How-
ever,	when	a	data	bit	is	shifted	out	by	a	shift-out	pulse,	the	data	bits	remaining	in	the	regis-
ters	automatically	move	to	the	next	position	toward	the	output.	In	an	asynchronous	FIFO,	
data	are	shifted	out	independent	of	data	entry,	with	the	use	of	two	separate	clocks.
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FiFo applications
One	important	application	area	for	the	FIFO	register	is	the	case	in	which	two	systems	of	
differing	data	rates	must	communicate.	Data	can	be	entered	into	a	FIFO	register	at	one	rate	
and	taken	out	at	another	rate.	Figure	54	illustrates	how	a	FIFO	register	might	be	used	in	
these situations.

     = empty positions.
In a FIFO shift register, data “fall” through (go right).

X = unknown data bits.
In a conventional shift register, data stay to the left until “forced”
through by additional data.

0

1

1

0

0

1

1

0

X

0

1

1

X

X

0

1

X

X

X

1

0

1

1

0 0

1

1

1
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1
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Figure 52 comparison of conventional and FiFo register operation.

64-bit shift register

64-bit shift register

64-bit shift register

64-bit shift register

Input
buffers

Output
buffer

Marker register
and controls

Input
control
logic

Output
control
logic

Data
input

I0
I1
I2
I3

Input ready (IR)

Shift in (SI)

Output ready (OR)

Shift out (SO)

O0
O1
O2
O3

Data
output

Memory array stores
64  4-bit data words

Control lines Control lines

fg10_04900

Figure 53 block 
diagram of a typical FiFo 
serial memory.

FIFO register

(a) Irregular telemetry data can be stored and retransmitted at a constant rate.

(b) Data input at a slow keyboard rate can be stored and then transferred at a higher rate for processing.

(c) Data input at a constant rate can be stored and then output in bursts.

(d) Data in bursts can be stored and reformatted into a constant-rate output.

Irregular-rate data Constant-rate data

FIFO registerLower-rate data Higher-rate data

FIFO registerConstant-rate data Burst data

FIFO registerBurst data Constant-rate data

fg10_05000

Figure 54 examples of the 
FiFo register in data-rate 
buffering applications.
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Last	In–First	Out	(LIFO)	Memories
The liFo	(last	in–first	out)	memory	is	found	in	applications	involving	micropro-
cessors	and	other	computing	systems.	It	allows	data	to	be	stored	and	then	recalled	
in	reverse	order;	that	is,	the	last	data	byte	to	be	stored	is	the	first	data	byte	to	be	
retrieved.

regiSter StacKS A LIFO memory is commonly referred to as a push-
down	stack.	In	some	systems,	it	is	implemented	with	a	group	of	registers	as	shown	
in	Figure	55.	A	stack	can	consist	of	any	number	of	registers,	but	the	register	at	the	
top is called the top-of-stack.

To illustrate the principle, a byte of data is loaded in parallel onto the top of 
the	stack.	Each	successive	byte	pushes	the	previous	one	down	into	the	next	register.	
this	process	is	illustrated	in	Figure	56.	notice	that	the	new	data	byte	is	always	
loaded into the top register and the previously stored bytes are pushed deeper into 
the	stack.	the	name	push-down stack comes from this characteristic.

Top-of-stack1

2

3

nth register
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Figure 55 register stack.

1 1 1 0 0 0 01

1 0 0 0 0 1 11

First data byte pushed onto stack
1 0 0 1 0 0 1 1

Second data byte pushed onto stack
1 1 1 1 0 0 0 0

Third data byte pushed onto stack
0 1 0 1 0 1 0 1

1 0 0 0 0 1 11 0 1 0 0 1 0 11

1 1 1 0 0 0 01

1 0 0 0 0 1 11
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Figure 56 Simplified	illustration	of	pushing	data	onto	the	stack.

1 0 0 0 0 1 111 1 1 0 0 0 01

1 0 0 0 0 1 11

0 1 0 0 1 0 11

1 1 1 0 0 0 01

1 0 0 0 0 1 11

1 1 1 1 0 0 0 0

Initially storing 3 data bytes.
The last byte in is at top-of-
stack.

0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1

After third byte is pulled
from stack, the second byte
that was stored pops up to
the top-of-stack.

After second byte is pulled
from stack, the first byte
that was stored pops up to
the top-of-stack.
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Figure 57 Simplified	illustration	of	pulling	data	from	the	stack.

Data	bytes	are	retrieved	in	the	reverse	order.	the	last	byte	entered	is	always	at	the	top	
of	the	stack,	so	when	it	is	pulled	from	the	stack,	the	other	bytes	pop	up	into	the	next	higher	
locations.	this	process	is	illustrated	in	Figure	57.
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raM StacK Another approach to LIFO memory used in microprocessor-based 
systems	is	the	allocation	of	a	section	of	RAM	as	the	stack	rather	than	the	use	of	a	dedi-
cated	set	of	registers.	As	you	have	seen,	for	a	register	stack	the	data	moves	up	or	down	
from	one	location	to	the	next.	In	a	RAM	stack,	the	data	itself	does	not	move	but	the	top-
of-stack	moves	under	control	of	a	register	called	the	stack	pointer.

Consider	a	random-access	memory	that	is	byte	organized—that	is,	one	in	which	
each address contains eight bits—as illustrated in Figure 58. The binary address 
0000000000001111,	 for	 example,	 can	be	written	 as	000F	 in	hexadecimal.	A	16-bit	
address can have a minimum hexadecimal value of 000016 and a maximum value of 
FFFF16.	With	this	notation,	a	64	kB	memory	array	can	be	represented	as	shown	in	Figure	
58.	the	lowest	memory	address	is	000016 and the highest memory address is FFFF16.

now,	consider	a	section	of	RAM	set	aside	for	use	as	a	stack.	A	special	separate	
register,	the	stack	pointer,	contains	the	address	of	the	top	of	the	stack,	as	illustrated	in	
Figure	59.	A	4-digit	hexadecimal	representation	is	used	for	the	binary	addresses.	In	the	
figure,	the	addresses	are	chosen	for	purposes	of	illustration.

now	let’s	see	how	data	are	pushed	onto	the	stack.	the	stack	pointer	is	initially	at	
address FFEE16,	which	is	the	top	of	the	stack	as	shown	in	Figure	59(a).	the	stack	pointer	
is	then	decremented	(decreased)	by	two	to	FFEC16.	this	moves	the	top	of	the	stack	to	a	
lower	memory	address,	as	shown	in	Figure	59(b).	notice	that	the	top	of	the	stack	is	not	

stationary	as	in	the	fixed	register	stack	but	moves	downward	(to	lower	addresses)	in	the	
RAM	as	data	words	are	stored.	Figure	59(b)	shows	that	two	bytes	(one	data	word)	are	then	
pushed	onto	the	stack.	After	the	data	word	is	stored,	the	top	of	the	stack	is	at	FFEC16.
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0000
0001
0002
0003
0004
0005
0006
0007

FFF9
FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

16-bit address
(hexadecimal)

Figure 58 representation 
of a 64 kb memory with the 
16-bit addresses expressed in 
hexadecimal.
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Small
section
of RAM

FFEE Top-of-stack

(a) The stack pointer is initially at FFEE before the data word
     0001001000110100 (1234) is pushed onto the stack.

Stack pointer
Top-of-stack

(b) The stack pointer is decremented by two and the data
     word 0001001000110100 is placed in the two locations
     prior to the original stack pointer location.

FFECFFEE

Stack pointer

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0

Figure 59 illustration of the PuSH operation for a raM stack.

Figure	60	illustrates	the	POP	operation	for	the	RAM	stack.	the	last	data	word	stored	 
in	the	stack	is	read	first.	the	stack	pointer	that	is	at	FFEC	is	incremented	(increased)	by	 
two	to	address	FFEE16	and	a	POP	operation	is	performed	as	shown	in	part	(b).	Keep	in	

fg10_05600

0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 0

FFEC

Top-of-stack

copied (popped) from the stack.

FFEE Top-of-stack

data word stored is copied (popped) from the stack.

Stack pointer Stack pointer
0 0 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0

(a) The stack pointer is at FFEC before the data word is (b) The stack pointer is incremented by two and the last

Figure 60 illustration of the PoP operation for the raM stack.
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mind	that	RAMs	are	nondestructive	when	read,	so	the	data	word	still	remains	in	the	memory	
after	a	POP	operation.	A	data	word	is	destroyed	only	when	a	new	word	is	written	over	it.

A	RAM	stack	can	be	of	any	depth,	depending	on	the	number	of	continuous	memory	
addresses assigned for that purpose.

ccd Memories
The ccd	(charge-coupled	device)	memory	stores	data	as	charges	on	capacitors.	Unlike	
the	DRAM,	however,	the	storage	cell	does	not	include	a	transistor.	High	density	is	the	
main	advantage	of	CCDs,	and	these	devices	are	widely	used	in	digital	imaging.

the	CCD	memory	consists	of	long	rows	of	semiconductor	capacitors,	called	chan-
nels.	Data	are	entered	into	a	channel	serially	by	depositing	a	small	charge	for	a	0	and	a	
large	charge	for	a	1	on	the	capacitors.	these	charge	packets	are	then	shifted	along	the	
channel	by	clock	signals	as	more	data	are	entered.

As	with	the	DRAM,	the	charges	must	be	refreshed	periodically.	this	process	is	done	
by	shifting	the	charge	packets	serially	through	a	refresh	circuit.	Figure	61	shows	the	basic	
concept	of	a	CCD	channel.	Because	data	are	shifted	serially	through	the	channels,	the	
CCD	memory	has	a	relatively	long	access	time.	CCD	arrays	are	used	in	some	modern	
cameras to capture video images in the form of light-induced charge.

Charge
movement

Substrate

fg10_05700
Figure 61 a ccd (charge-coupled device) channel.

1. What	is	a	FIFO	memory?

2. What	is	a	LIFO	memory?

3. Explain	the	PUSH	operation	in	a	memory	stack.

4. Explain	the	POP	operation	in	a	memory	stack.

5. What	does	the	term	CCD	stand	for?

Section 8 cHecKuP

9 Magnetic and oPtical Storage
in this section, the basics of magnetic disks, magnetic tape, magneto-optical disks, and optical 
disks are introduced. these storage media are important, particularly in computer applica-
tions, where they are used for mass nonvolatile storage of data and programs.

after completing this section, you should be able to

•	 Describe	a	magnetic	hard	disk
•	 Discuss	removable	hard	disks
•	 Explain	the	principle	of	magneto-optical	disks
•	 Discuss	the	CD-ROM,	CD-R,	and	CD-RW	disks
•	 Describe	the	WORM
•	 Discuss	the	DVD-ROM
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Magnetic Storage
Magnetic Hard diSKS Computers	use	hard	disks	as	the	internal	mass	storage	
media. Hard disks	are	rigid	“platters”	made	of	aluminum	alloy	or	a	mixture	of	glass	and	
ceramic	covered	with	a	magnetic	coating.	Hard	disk	drives	mainly	come	in	three	diameter	
sizes,	3.5	in.,	2.5	in.,	and	1.8	in.	Older	formats	of	8	in.	and	5.25	in.	are	considered	obsolete.	
A	hard	disk	drive	is	hermetically	sealed	to	keep	the	disks	dust-free.

typically,	two	or	more	platters	are	stacked	on	top	of	each	other	on	a	common	shaft	
or	spindle	that	turns	the	assembly	at	several	thousand	rpm.	A	separation	between	each	disk	
allows	for	a	magnetic	read/write	head	that	is	mounted	on	the	end	of	an	actuator	arm,	as	
shown	in	Figure	62.	there	is	a	read/write	head	for	both	sides	of	each	disk	since	data	are	
recorded	on	both	sides	of	the	disk	surface.	the	drive	actuator	arm	synchronizes	all	the	
read/write	heads	to	keep	them	in	perfect	alignment	as	they	“fly”	across	the	disk	surface	
with	a	separation	of	only	a	fraction	of	a	millimeter	from	the	disk.	A	small	dust	particle	
could	cause	a	head	to	“crash,”	causing	damage	to	the	disk	surface.

Spindle

Platters

Actuator
arms

Read/Write
heads

Case

fg10_05800

Figure 62 a hard disk drive.

baSic read/Write Head PrinciPleS The hard 
drive is a random-access device because it can retrieve stored 
data	anywhere	on	the	disk	in	any	order.	A	simplified	diagram	of	
the	magnetic	surface	read/write	operation	is	shown	in	Figure	63.	
the	direction	or	polarization	of	 the	magnetic	domains	on	 the	
disk	surface	is	controlled	by	the	direction	of	the	magnetic	flux	
lines	(magnetic	field)	produced	by	the	write	head	according	to	
the	direction	of	a	current	pulse	in	the	winding.	this	magnetic	
flux	magnetizes	a	small	spot	on	the	disk	surface	in	the	direction	
of	the	magnetic	field.	A	magnetized	spot	of	one	polarity	repre-
sents a binary 1, and one of the opposite polarity represents a 
binary	 0.	 Once	 a	 spot	 on	 the	 disk	 surface	 is	 magnetized,	 it	
remains	until	written	over	with	an	opposite	magnetic	field.

N
S

N
N SS N S

Magnetic
surface

Track

Read
head

Write
head

+

Write
current

Voltage
pulse

fg10_05900Figure 63 Simplified	read/write	head	operation.

Data	are	stored	on	a	hard	drive	in	the	form	of	files.	Keeping	track	of	the	location	of	files	is	the	
job of the device driver that manages the hard drive (sometimes referred to as hard drive 
BIOS).	the	device	driver	and	the	computer’s	operating	system	can	access	two	tables	to	keep	
track	of	files	and	file	names.	the	first	table	is	called	the	FAt	(File	Allocation	table).	the	FAt	
shows	what	is	assigned	to	specific	files	and	keeps	a	record	of	open	sectors	and	bad	sectors.	the	
second	table	is	the	Root	Directory	which	has	file	names,	type	of	file,	time	and	date	of	creation,	
starting	cluster	number,	and	other	information	about	the	file.	Other	types	of	tables	include	
ntFS	(new	technology	File	System)	and	HFS	(Hierarchical	File	System).

S y S t e M  n o t e
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When	the	magnetic	surface	passes	a	read	head,	the	magnetized	spots	produce	mag-
netic	fields	in	the	read	head,	which	induce	voltage	pulses	in	the	winding.	the	polarity	of	
these	pulses	depends	on	the	direction	of	the	magnetized	spot	and	indicates	whether	the	
stored	bit	is	a	1	or	a	0.	the	read	and	write	heads	are	usually	combined	in	a	single	unit.

Hard diSK ForMat A	hard	disk	is	organized	or	formatted	into	tracks	and	sec-
tors,	as	shown	in	Figure	64(a).	Each	track	is	divided	into	a	number	of	sectors,	and	each	
track	and	sector	has	a	physical	address	that	is	used	by	the	operating	system	to	locate	a	
particular	data	record.	Hard	disks	typically	have	from	a	few	hundred	to	thousands	of	
tracks	and	are	available	with	storage	capacities	of	up	to	1	tB	or	more.	As	you	can	see	in	
the	figure,	there	is	a	constant	number	of	tracks/sector,	with	outer	sectors	using	more	sur-
face	area	than	the	inner	sectors.	the	arrangement	of	tracks	and	sectors	on	a	disk	is	known	
as the format.

Track 1

Track 2
Track 3

Track n

Sector

(a) (b)

Corresponding tracks (blue)
make a cylinder

fg10_06000

Figure 64 Hard	disk	organization	and	formatting.

A	hard	disk	stack	is	illustrated	in	Figure	64(b).	Hard	disk	drives	differ	in	the	number	
of	platters	in	a	stack,	but	there	is	always	a	minimum	of	two.	All	of	the	same	corresponding	
tracks	on	each	platter	are	collectively	known	as	a	cylinder,	as	indicated.

Hard diSK PerForMance Several basic parameters determine the perform-
ance	of	a	given	hard	disk	drive.	A	seek	operation	is	the	movement	of	the	read/write	head	to	
the	desired	track.	the	seek time is the average time for this operation to be performed. 
typically,	hard	disk	drives	have	an	average	seek	time	of	several	milliseconds,	depending	
on the particular drive.

The latency period	is	the	time	it	takes	for	the	desired	sector	to	spin	under	the	head	
once	the	head	is	positioned	over	the	desired	track.	A	worst	case	is	when	the	desired	sector	
is	just	past	the	head	position	and	spinning	away	from	it.	the	sector	must	rotate	almost	a	
full	revolution	back	to	the	head	position.	Average latency period	assumes	that	the	disk	
must	make	half	of	a	revolution.	Obviously,	the	latency	period	depends	on	the	constant	
rotational	speed	of	the	disk.	Disk	rotation	speeds	are	different	for	different	disk	drives	but	
typically	are	from	4200	rpm	to	15,000	rpm.	Some	disk	drives	rotate	at	10,033	rpm	and	
have an average latency period of less than 3 ms.

the	sum	of	the	average	seek	time	and	the	average	latency	period	is	the	access time 
for	the	disk	drive.
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reMovable Hard diSK Removable	hard	disk	drives	with	capacities	of	1	tB	
are	available.	Keep	in	mind	that	the	technology	is	changing	so	rapidly	that	there	most	
likely	will	be	further	advancements	at	the	time	you	are	reading	this.

Magnetic taPe tape	is	used	for	backup	data	from	mass	storage	devices	and	
typically	is	slower	than	disks	because	data	on	tape	is	accessed	serially	rather	than	ran-
domly.	there	are	several	types	that	are	available,	including	QIC,	DAt,	8	mm,	and	DLt.

tape	is	a	viable	alternative	to	disk	due	to	its	lower	cost	per	bit.	though	the	density	is	lower	than	
for	a	disk	drive,	the	available	surface	on	a	tape	is	far	greater.	the	highest-capacity	tape	media	
are	generally	on	the	same	order	as	the	largest	available	disk	drive	(about	1	tB—a	terabyte	is	
one	trillion	bytes.)	tape	has	historically	offered	enough	advantage	in	cost	over	disk	storage	to	
make	it	a	viable	product,	particularly	for	backup,	where	media	removability	is	also	important.

S y S t e M  n o t e

Qic	is	an	abbreviation	for	quarter-inch	cartridge	and	looks	much	like	audio	tape	cas-
settes	with	two	reels	inside.	Various	QIC	standards	have	from	28	to	72	tracks	that	can	store	
from	80	MB	to	1.2	gB.	More	recent	innovations	under	the	travan	standard	have	length-
ened	the	tape	and	increased	its	width	allowing	storage	capacities	up	to	4	gB.	QIC	tape	
drives	use	read/write	heads	that	have	a	single	write	head	with	a	read	head	on	each	side.	
this	allows	the	tape	drive	to	verify	data	just	written	when	the	tape	is	running	in	either	
direction.	In	the	record	mode,	the	tape	moves	past	the	read/write	heads	at	approximately	
100	inches/second,	as	indicated	in	Figure	65.

Read head

Write head Write head

Head assembly

Track 1
Track 2

Track nMagnetic tape
(moving past head)

0.25 in. 100 in./s

fg10_06200

Figure 65 Qic tape.

dat,	which	is	an	abbreviation	for	digital	audio	tape,	uses	a	technique	called	helical	
scan	recording.	DAts	offer	storage	capacities	ranging	up	to	160	gB	but	is	more	expensive	
than	QIC.

8 mm,	a	third	type	of	tape	format,	was	originally	designed	for	the	video	industry	but	
has	been	adopted	by	the	computer	industry	as	a	reliable	way	to	store	large	amounts	of	
computer	data.	8	mm	is	similar	to	DAt	but	offers	storage	capacities	up	to	about	80	gB.

dlt	is	an	abbreviation	for	digital	linear	tape.	DLt	is	a	half-inch	wide	tape,	which	is	
60%	wider	than	8	mm	and,	of	course,	twice	as	wide	as	standard	QIC.	Basically,	DLt	dif-
fers	in	the	way	the	tape-drive	mechanism	works	to	minimize	tape	wear	compared	to	other	
systems.	DLt	offers	storage	capacities	up	to	110	gB.

Magneto-optical Storage
As the name implies, magneto-optical (MO) storage devices use a combination of mag-
netic and optical (laser) technologies. A magneto-optical disk	is	formatted	into	tracks	and	
sectors	similar	to	magnetic	disks.
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the	basic	difference	between	a	purely	magnetic	disk	and	an	MO	disk	is	that	the	mag-
netic	coating	used	on	the	MO	disk	requires	heat	to	alter	the	magnetic	polarization.	there-
fore,	the	MO	is	extremely	stable	at	ambient	temperature,	making	data	unchangeable.	to	
write	a	data	bit,	a	high-power	laser	beam	is	focused	on	a	tiny	spot	on	the	disk,	and	the	
temperature of that tiny spot is raised above a temperature level called the Curie point 
(about 200 °C). Once heated, the magnetic particles at that spot can easily have their direc-
tion	(polarization)	changed	by	a	magnetic	field	generated	by	the	write	head.	Information	is	
read	from	the	disk	with	a	less-powerful	laser	than	used	for	writing,	making	use	of	the	Kerr	
effect	where	the	polarity	of	the	reflected	laser	light	is	altered	depending	on	the	orientation	
of the magnetic particles. Magnetic spots of one polarity represent 0s and magnetic spots 
of	the	opposite	polarity	represent	1s.	Basic	MO	operation	is	shown	in	Figure	66,	which	
represents	a	small	cross-sectional	area	of	a	disk.
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Electromagnet

(a) Unrecorded disk

Disk
rotation

Magnetic
spot

Magnetic spot is heated
by laser and magnetized
by electromagnetic field.

Write
current

(b) Writing: A high-power laser beam heats the spot, causing the
magnetic particles to align with the electromagnetic field.

High-power
laser beam

+

–

Erase
current

(d) Erasing: The electromagnetic field is reversed as the high-
power laser beam heats the spot, causing the magnetic particles
to be restored to the original polarity.

High-power
laser beam

–

+

Lens

(c) Reading: Alow-power laser beam reflects off of the reversed-
polarity magnetic particles and its polarization shifts. If the particles
are not reversed, the polarization of the reflected beam is unchanged.

Low-power
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Reflected beam
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Figure 66 basic principle of a magneto-optical disk.

optical Storage
cd-roM the	basic	Compact	Disk–Read-Only	Memory	is	a	120	mm	diameter	disk	
with	a	sandwich	of	three	coatings:	a	polycarbonate	plastic	on	the	bottom,	a	thin	aluminum	
sheet	for	reflectivity,	and	a	top	coating	of	lacquer	for	protection.	the	cd-roM	disk	is	
formatted	in	a	single	spiral	track	with	sequential	2	kB	sectors	and	has	a	capacity	of	680	MB.	
Data	are	prerecorded	at	the	factory	in	the	form	of	minute	indentations	called	pits and the 
flat	area	surrounding	the	pits	called	lands. The pits are stamped into the plastic layer and 
cannot be erased.
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A	CD	player	 reads	data	 from	 the	 spiral	 track	with	a	 low-power	
infrared	laser,	as	illustrated	in	Figure	67.	the	data	are	in	the	form	of	pits	
and	lands	as	shown.	Laser	light	reflected	from	a	pit	is	180°	out-of-phase	
with	the	light	reflected	from	the	lands.	As	the	disk	rotates,	 the	narrow	
laser	beam	strikes	the	series	of	pits	and	lands	of	varying	lengths,	and	a	
photodiode	detects	the	difference	in	the	reflected	light.	the	result	 is	a	
series	of	1s	and	0s	corresponding	to	the	configuration	of	pits	and	lands	
along	the	track.

WorM Write	Once/Read	Many	(WorM) is a type of optical storage 
that	can	be	written	onto	one	time	after	which	the	data	cannot	be	erased	but	
can	be	read	many	times.	to	write	data,	a	low-power	laser	is	used	to	burn	
microscopic	pits	on	 the	disk	surface.	1s	and	0s	are	represented	by	the	
burned and nonburned areas.

cd-r this	is	essentially	a	type	of	WORM.	the	difference	is	that	the	
CD-Recordable	allows	multiple	write	sessions	to	different	areas	of	the	
disk.	the	cd-r	disk	has	a	spiral	track	like	the	CD-ROM,	but	instead	of	
mechanically	pressing	 indentations	on	 the	disk	 to	 represent	data,	 the	
CD-R	uses	a	laser	to	burn	microscopic	spots	into	an	organic	dye	surface.	
When	heated	beyond	a	critical	temperature	with	a	laser	during	read,	the	
burned	 spots	 change	 color	 and	 reflect	 less	 light	 than	 the	 nonburned	

areas.	therefore,	1s	and	0s	are	represented	on	a	CD-R	by	burned	and	nonburned	areas,	
whereas	on	a	CD-ROM	they	are	represented	by	pits	and	lands.	Like	the	CD-ROM,	the	
data	cannot	be	erased	once	it	is	written.

cd-rW the	CD-Rewritable	disk	can	be	used	to	read	and	write	data.	Instead	of	the	
dye-based	recording	layer	in	the	CD-R,	the	cd-rW commonly uses a crystalline com-
pound	with	a	special	property.	When	it	is	heated	to	a	certain	temperature,	it	becomes	crys-
talline	when	it	cools;	but	if	it	is	heated	to	a	certain	higher	temperature,	it	melts	and	becomes	
amorphous	when	it	cools.	to	write	data,	the	focused	laser	beam	heats	the	material	to	the	
melting	temperature	resulting	in	an	amorphous	state.	the	resulting	amorphous	areas	reflect	
less	light	than	the	crystalline	areas,	allowing	the	read	operation	to	detect	1s	and	0s.	the	
data	can	be	erased	or	overwritten	by	heating	 the	amorphous	areas	 to	a	 temperature	
above	the	crystallization	temperature	but	lower	than	the	melting	temperature	that	causes	
the amorphous material to revert to a crystalline state.

dvd-roM Originally	DVD	was	an	abbreviation	for	Digital	Video	Disk	but	eventu-
ally came to represent Digital Versatile Disk.	Like	the	CD-ROM,	dvd-roM data are 
prestored	on	the	disk.	However,	the	pit	size	is	smaller	than	for	the	CD-ROM,	allowing	
more	data	to	be	stored	on	a	track.	the	major	difference	between	CD-ROM	and	DVD-
ROM	is	that	the	CD	is	single-sided,	while	the	DVD	has	data	on	both	sides.	Also,	in	addi-
tion	to	double-sided	DVD	disks,	there	are	also	multiple-layer	disks	that	use	semitransparent	
data layers placed over the main data layers, providing storage capacities of tens of giga-
bytes. To access all the layers, the laser beam requires refocusing going from one layer to 
the other.

Pit
Land Lens

Lens

Prism

Laser

Photoelectric
cell

Disk

fg10_06400
Figure 67 basic 
operation of reading data from 
a cd-roM.

1. List the major types of magnetic storage.

2. generally,	how	is	a	magnetic	disk	organized?

3. How	are	data	written	on	and	read	from	a	magneto-optical	disk?

4. List the types of optical storage.

Section 9 cHecKuP
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roM testing
Since	ROMs	contain	known	data,	they	can	be	checked	for	the	correct-
ness	of	the	stored	data	by	reading	each	data	word	from	the	memory	and	
comparing	it	with	a	data	word	that	is	known	to	be	correct.	One	way	of	
doing this is illustrated in Figure 68. This process requires a reference 
ROM that contains the same data as the ROM to be tested. A special test 
instrument is programmed to read each address in both ROMs simultane-
ously	and	to	compare	the	contents.	A	flowchart	in	Figure	69	illustrates	
the basic sequence.

because memories can contain large numbers of storage cells, testing each cell can be a lengthy 
and frustrating process. Fortunately, memory testing is usually an automated process per-
formed with a programmable test instrument or with the aid of software for in-system testing. 
Most microprocessor-based systems provide automatic memory testing as part of their system 
software.

after completing this section, you should be able to

•	 Discuss	the	checksum	method	of	testing	ROMs
•	 Discuss	the	checkerboard	pattern	method	of	testing	RAMs

10 troubleSHooting

ROM ROM

EN EN

Enable Data Ref. Data

Address
ROM tester

ROM
under
test

Reference
ROM

fg10_06500

Figure 68 block diagram for a complete con-
tents check of a roM.
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Figure 69 Flowchart for a complete contents check of a 
roM.
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cHecKSuM MetHod Although	the	previous	method	checks	each	ROM	address	
for correct data, it has the disadvantage of requiring a reference ROM for each different 
ROM to be tested. Also, a failure in the reference ROM can produce a fault indication.

In	the	checksum	method	a	number,	the	sum	of	the	contents	of	all	the	ROM	
addresses,	is	stored	in	a	designated	ROM	address	when	the	ROM	is	programmed.	
to	test	 the	ROM,	the	contents	of	all	 the	addresses	except	 the	checksum	are	
added,	and	the	result	is	compared	with	the	checksum	stored	in	the	ROM.	If	there	
is	a	difference,	there	is	definitely	a	fault.	If	the	checksums	agree,	the	ROM	is	
most	likely	good.	However,	there	is	a	remote	possibility	that	a	combination	of	
bad	memory	cells	could	cause	the	checksums	to	agree.

this	process	is	illustrated	in	Figure	70	with	a	simple	example.	the	check-
sum	in	this	case	is	produced	by	taking	the	sum	of	each	column	of	data	bits	and	
discarding	the	carries.	this	is	actually	an	XOR	sum	of	each	column.	the	flow-
chart	in	Figure	71	illustrates	the	basic	checksum	test.

ROM

⊕Data

1 0 0 1 1 0 1 0
1 0 1 0 0 1 1 1
0 0 0 1 1 0 1 0
0 0 1 0 1 1 0 0
1 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 1

fg10_06700

Figure 70 Simplified	illustration	of	a	
programmed roM with the checksum 
stored at a designated address.
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Last
data address

?

Next
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XOR contents
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with previous
sum. Update
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Figure 71 Flowchart for a basic checksum test.

the	checksum	test	can	be	implemented	with	a	special	test	instrument,	or	it	can	be	
incorporated	as	a	test	routine	in	the	built-in	(system)	software	or	microprocessor-based	
systems. In that case, the ROM test routine is automatically run on system start-up.

raM testing
to	test	a	RAM	for	its	ability	to	store	both	0s	and	1s	in	each	cell,	first	0s	are	written	into	all	
the	cells	in	each	address	and	then	read	out	and	checked.	next,	1s	are	written	into	all	the	
cells	in	each	address	and	then	read	out	and	checked.	this	basic	test	will	detect	a	cell	that	is	
stuck	in	either	a	1	state	or	a	0	state.

Some	memory	faults	cannot	be	detected	with	the	all-0s–all-1s	test.	For	example,	if	
two	adjacent	memory	cells	are	shorted,	they	will	always	be	in	the	same	state,	both	0s	or	both	1s.	
Also, the all-0s–all-1s test is ineffective if there are internal noise problems such that the 
contents of one or more addresses are altered by a change in the contents of another address.

tHe cHecKerboard Pattern teSt One	way	to	more	fully	test	a	RAM	
is	by	using	a	checkerboard	pattern	of	1s	and	0s,	as	illustrated	in	Figure	72.	notice	that	 
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all	 adjacent	cells	have	opposite	bits.	this	pattern	checks	 for	a	
short	between	two	adjacent	cells;	if	there	is	a	short,	both	cells	will	
be in the same state.

After	the	RAM	is	checked	with	the	pattern	in	Figure	72(a),	the	
pattern	is	reversed,	as	shown	in	part	(b).	this	reversal	checks	the	
ability of all cells to store both 1s and 0s.

A further test is to alternate the pattern one address at a time 
and	check	all	the	other	addresses	for	the	proper	pattern.	this	test	
will	 catch	 a	 problem	 in	 which	 the	 contents	 of	 an	 address	 are	
dynamically	altered	when	the	contents	of	another	address	change.

A	basic	procedure	for	the	checkerboard	test	is	illustrated	by	
the	flowchart	 in	Figure	73.	the	procedure	can	be	implemented	
with	the	system	software	in	microprocessor-based	systems	so	that	
either	the	tests	are	automatic	when	the	system	is	powered	up	or	
they	can	be	initiated	from	the	keyboard.

(a) (b)

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0
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Figure 72 the raM checkerboard test pattern.
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Figure 73 Flowchart for basic raM checkerboard test.

1. Describe	the	checksum	method	of	ROM	testing.

2. Why	can	the	checksum	method	not	be	applied	to	RAM	testing?

3. List	the	three	basic	faults	that	the	checkerboard	pattern	test	
can detect in a RAM.

Section 10 cHecKuP

533



MEMORy	AnD	StORAgE

SuMMary
•	 Memory	hierarchy:

Processor

Registers

Caches

Main memory

Hard disk

Auxiliary storage

Static

DRAM

Dynamic

MASK PROM UV PROM

Ultraviolet
EPROM

EPROM

ErasableProgram-
mable
ROM

Program-
mable
ROM

EEPROM

Electrically
Erasable
PROM

FLASH
Read/write

&
Random
access

FIFO

Serial
access

LIFO

Serial
access

CCD

Serial
access

SRAM

RAM

Random-
Access

Memory

ROM

Read-
Only

Memory

Also
Random
access

Asynchronous

BEDO DRAM
Burst EDO

Asynchronous

Synchronous

EDO DRAM
Extended Data

Output

Synchronized
with system clock.
Burst addressing

Synchronous
SRAM with
burst featureNot synchronized

with
system clock

Faster than DRAM.
Smaller capacity
than DRAM.
Often used as
cache memory.

Asynchronous
SRAM

SDRAM

SDRADDR M

Asynchronous

Slower than SRAM.
Larger capacity
than SRAM.
Used as main
memory.

FPM DRAM
Fast Page Mode

Capacitor storage
cells. Must be
refreshed.

Synchronous

DRAMFlip-flop
storage cells

SRAM

•	 types	of	semiconductor	memories:

•	 types	of	SRAMs	(Static	RAMs)	and	DRAMs	(Dynamic	RAMs):
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•	 types	of	magnetic	storage:

Random access

Removable
 disk

Hard disk

Serial access

QIC DAT

8 mm DLT

TapeMagnetic
disk

Magneto-
Optical

Disk

Cross between
magnetic and
optical

Prerecorded at
factory

CD-ROM CD-R

Recordable

CD-RW

Rewritable

WORM

Write once read
many

DVD-ROM

Digital versatile
disk

•	 types	of	optical	(laser)	storage:

Key terMS
address The location of a given storage cell or group of cells in a memory.

bus One	or	more	interconnections	that	interface	one	or	more	devices	based	on	a	standardized	
specification.

byte A group of eight bits.

capacity the	total	number	of	data	units	(bits,	nibbles,	bytes,	words)	that	a	memory	can	store.

cell A single storage element in a memory.

ddr Double	data	rate.

draM Dynamic	random-access	memory;	a	type	of	semiconductor	memory	that	uses	capacitors	as	
the	storage	elements	and	is	a	volatile,	read/write	memory.

eProM Erasable programmable read-only memory; a type of semiconductor memory device that 
typically uses ultraviolet light to erase data.

FiFo First	in–first	out	memory.

Flash memory A	nonvolatile	read/write	random-access	semiconductor	memory	in	which	data	are	
stored	as	charge	on	the	floating	gate	of	a	certain	type	of	FEt.

Hard disk A	magnetic	storage	device;	typically,	a	stack	of	two	or	more	rigid	disks	enclosed	in	a	
sealed housing.

liFo Last	in–first	out	memory;	a	memory	stack.

Memory The portion of a computer or other system that stores binary data.

Memory hierarchy the	arrangement	of	various	memory	elements	to	maximize	speed	and	mini-
mize	cost.
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ProM Programmable read-only memory; a type of semiconductor memory.

raM Random-access	memory;	a	volatile	read/write	semiconductor	memory.

read The process of retrieving data from a memory.

roM Read-only memory; a nonvolatile random-access semiconductor memory.

SraM Static	random-access	memory;	a	type	of	volatile	read/write	semiconductor	memory.

Word A group of bits or bytes that acts as a single entity that can be stored in one memory loca-
tion;	two	bytes.

Write The process of storing data in a memory.

true/FalSe Quiz
Answers are at the end of the chapter.

 1. A data byte consists of eight bits.

 2. A memory cell can store a byte of data.

 3. the	write	operation	stores	data	in	memory.

 4. the	read	operation	always	erases	the	data	byte.

 5. RAM is a random address memory.

 6. Stored	data	is	lost	if	power	is	removed	from	a	static	RAM.

 7. Cache is a type of memory used for intermediate or temporary storage of data.

 8. Dynamic	RAMs	must	be	periodically	refreshed	to	retain	data.

 9. ROM is a random output memory.

 10. A	flash	memory	uses	a	flashing	beam	of	light	to	store	data.

SelF-teSt
Answers are at the end of the chapter.

 1. Memory hierarchy determines

(a) storage capacity  (b) processing speed
(c) access time    (d) both (b) and (c)

 2. the	bit	capacity	of	a	memory	that	has	1024	addresses	and	can	store	8	bits	at	each	address	is

(a) 1024	 	 (b) 8192  (c) 8  (d) 4096

 3. A	32-bit	data	word	consists	of

(a) 2 bytes  (b) 4	nibbles
(c) 4	bytes	 	 (d) 3 bytes and 1 nibble

 4. Data	are	stored	in	a	random-access	memory	(RAM)	during	the

(a) read operation (b) enable operation
(c) write	operation	 (d) addressing operation

 5. Data	that	are	stored	at	a	given	address	in	a	random-access	memory	(RAM)	is	lost	when

(a) power	goes	off
(b) the data are read from the address
(c) new	data	are	written	at	the	address
(d) answers	(a)	and	(c)

 6. A ROM is a

(a) nonvolatile memory (b) volatile memory
(c) read/write	memory	 (d) byte-organized	memory
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 7. A	memory	with	256	addresses	has

(a) 256 address lines (b) 6 address lines
(c) 1 address line (d) 8 address lines

 8. A	byte-organized	memory	has

(a) 1 data output line (b) 4	data	output	lines
(c) 8 data output lines (d) 16 data output lines

 9. The storage cell in a SRAM is

(a) a	flip-flop	 	 (b) a capacitor
(c) a fuse    (d) a magnetic domain

 10. A	DRAM	must	be

(a) replaced periodically  (b) refreshed periodically
(c) always	enabled	 	 		 	 (d) programmed before each use

 11. A	flash	memory	is

(a) volatile (b) a read-only memory
(c) a	read/write	memory	 (d) nonvolatile
(e) answers	(a)	and	(c)	 (f) answers	(c)	and	(d)

 12. Optical storage devices employ

(a) ultraviolet light (b) electromagnetic	fields
(c) optical couplers (d) lasers

ProbleMS
Answers to odd-numbered problems are at the end of the chapter.

Section 1 Memory System Hierarchy 

 1. What	is	a	cache	in	memory	terminology	and	where	is	it	generally	located	in	a	system?

 2. What	does	main	memory	consist	of?

 3. What	part	of	a	memory	system	has	the	highest	latency?

 4. A	certain	optical	jukebox	can	store	150	PB.	Express	this	in	terms	of	bytes.

 5. Assume	the	cache	in	Figure	3	has	a	latency	of	30	ns	and	the	main	memory	a	latency	of	75	ns.	
Determine	the	time	required	for	the	processor	to	acquire	a	block	of	data	for	a	cache	hit	and	for	
a	cache	miss	as	illustrated	in	the	figure.

 6. Define	the	terms	temporal locality and spatial locality.

Section 2 Semiconductor Memory basics 

 7. Identify	the	ROM	and	the	RAM	in	Figure	74.
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Figure 74 
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 8. Explain	why	RAMs	and	ROMs	are	both	random-access	memories.

 9. Explain the purposes of the address bus and the data bus.

 10. What	memory	address	(0	through	256)	is	represented	by	each	of	the	following	hexadecimal	
numbers:
(a) 0A16  (b) 3F16  (c) CD16

Section 3 the random-access Memory (raM) 

 11. A	static	memory	array	with	four	rows	similar	to	the	one	in	Figure	13	is	initially	storing	all	0s.	
What	is	its	content	after	the	following	conditions?	Assume	a	1	selects	a	row.

 Row 0 = 1, Data in (Bit 0) = 1

 Row 1 = 0, Data in (Bit 1) = 1

 Row 2 = 1, Data in (Bit 2) = 1

 Row 3 = 0, Data in (Bit 3) = 0

 12. Draw	 a	 basic	 logic	 diagram	 for	 a	 512 * 8-bit	 static	 RAM,	 showing	 all	 the	 inputs	 and	
 outputs.

 13. Assuming that a 64k * 8 SRAM has a structure similar to that of the SRAM in Figure 15, 
determine	the	number	of	rows	and	8-bit	columns	in	its	memory	cell	array.

 14. Redraw	the	block	diagram	in	Figure	15	for	a	64k * 8 memory.

 15. Explain	the	difference	between	a	SRAM	and	a	DRAM.

 16. What	is	the	capacity	of	a	DRAM	that	has	twelve	address	lines?

Section 4 the read-only Memory (roM) 

 17. For	the	ROM	array	in	Figure	75,	determine	the	outputs	for	all	possible	input	combinations,	and	
summarize	them	in	tabular	form	(Blue	cell	is	a	1,	gray	cell	is	a	0).

A0

A1

O3 O2 O1 O0

0 1
Address
decoder

0

1

2

3

Figure 75 

 18. Determine	the	truth	table	for	the	ROM	in	Figure	76.

 19. Using	a	procedure	similar	to	that	in	Example	1,	show	a	ROM	for	conversion	of	single-digit	
BCD	to	excess-3	code.

 20. What	is	the	total	bit	capacity	of	a	ROM	that	has	14	address	lines	and	8	data	outputs?

Section 5 Programmable roMs 

 21. Assuming	that	the	PROM	matrix	in	Figure	77	is	programmed	by	blowing	a	fuse	link	to	create	a	
0,	indicate	the	links	to	be	blown	to	program	an	X3	look-up	table,	where	X is a number from 0 
through	7.
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Address
decoder

0 1

A0

A1

O3 O2 O1 O0

A2

0

1

2

3

4

5

6

7

Figure 76 

28 27 26 25 24 23 22 21 20

X3

0

1

2

3

4

5

6

7

1

2

4

X

1 2 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

+V

3

fg10_07800

Figure 77 

 22. Determine	 the	addresses	 that	are	programmed	and	 the	contents	of	each	address	after	 the	
programming	sequence	in	Figure	78	has	been	applied	to	an	EPROM	like	the	one	shown	in	
Figure	34.
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Section 7 Memory expansion 

 23. Use	16k * 4	DRAMs	to	build	a	64k * 8	DRAM.	Show	the	logic	diagram.

 24. Using	 a	 block	 diagram,	 show	 how	 64k * 1 dynamic RAMs can be expanded to build a 
256k * 4 RAM.

 25. What	is	the	word	length	and	the	word	capacity	of	the	memory	of	Problem	23?	Problem	24?

Section 8 Special types of Memories 

 26. Complete	the	timing	diagram	in	Figure	79	by	showing	the	output	waveforms	that	are	initially	
all	LOW	for	a	FIFO	serial	memory	like	that	shown	in	Figure	53.
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Figure 79 
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 27. Consider a 4096 * 8	RAM	in	which	the	last	64	addresses	are	used	as	a	LIFO	stack.	If	the	first	
address in the RAM is 00016,	designate	the	64	addresses	used	for	the	stack.

 28. In	the	memory	of	Problem	27,	sixteen	bytes	are	pushed	into	the	stack.	At	what	address	is	the	
first	byte	in	located?	At	what	address	is	the	last	byte	in	located?

Section 9 Magnetic and optical Storage 

 29. Describe	the	general	format	of	a	hard	disk.

 30. Explain	seek	time	and	latency	period	in	a	hard	disk	drive.

 31. Why	does	magnetic	tape	require	a	much	longer	access	time	than	does	a	disk?

 32. Explain	the	differences	in	a	magneto-optical	disk,	a	CD-ROM,	and	a	WORM.

Section 10 troubleshooting 

 33. Determine	if	the	contents	of	the	ROM	in	Figure	80	are	correct.
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 34. A 128 * 8	ROM	is	implemented	as	shown	in	Figure	81.	the	decoder	decodes	the	two	most	
significant	address	bits	to	enable	the	ROMs	one	at	a	time,	depending	on	the	address	selected.
(a) Express	the	lowest	address	and	the	highest	address	of	each	ROM	as	hexadecimal	numbers.
(b) Assume	that	a	single	checksum	is	used	for	the	entire	memory	and	it	is	stored	at	the	highest	

address.	Develop	a	flowchart	for	testing	the	complete	memory	system.
(c) Assume	that	each	ROM	has	a	checksum	stored	at	its	highest	address.	Modify	the	flowchart	

developed in part (b) to accommodate this change.
(d) What	is	the	disadvantage	of	using	a	single	checksum	for	the	entire	memory	rather	than	a	

checksum	for	each	individual	ROM?
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 35. Suppose	that	a	checksum	test	is	run	on	the	memory	in	Figure	81	and	each	individual	ROM	has	
a	checksum	at	its	highest	address.	What	IC	or	ICs	will	you	replace	for	each	of	the	following	
error	messages	that	appear	on	the	system’s	video	monitor?
(a) ADDRESSES	40–5F	FAULty
(b) ADDRESSES	20–3F	FAULty
(c) ADDRESSES	00–7F	FAULty
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anSWerS to Section cHecKuPS
Section 1 Memory System Hierarchy
 1. the	purpose	of	memory	hierarchy	is	to	obtain	the	fastest	access	time	at	the	lowest	cost.

 2. Access	time	is	the	time	it	takes	a	processor	to	retrieve	(read)	or	write	a	block	of	data	stored	in	
the	memory?

 3. generally,	the	higher	the	capacity	the	lower	the	cost	per	bit.

 4. Yes

 5. A	hit	is	when	the	processor	finds	the	requested	data	at	the	first	place	it	looks.	A	miss	is	when	the	
processor	fails	to	find	the	requested	data	and	has	to	go	to	another	level	of	memory	to	find	it.

 6. The hit rate

Section 2 Semiconductor Memory basics
 1. Bit is the smallest unit of data.

 2. 256	bytes	is	2048	bits.

 3. A	write	operation	stores	data	in	memory.

 4. A	read	operation	takes	a	copy	of	data	from	memory.

 5. A unit of data is located by its address.

 6. A	RAM	is	volatile	and	has	read/write	capability.	A	ROM	is	nonvolatile	and	has	only	read	capability.

Section 3 the random-access Memory (raM)
 1. Asynchronous	and	synchronous	with	burst	feature

 2. A	small	fast	temporary	memory	between	the	CPU	and	main	memory

 3. SRAMs	have	latch	storage	cells	that	can	retain	data	indefinitely	while	power	is	applied.	DRAMs	
have capacitive storage cells that must be periodically refreshed.

 4. The refresh operation prevents data from being lost because of capacitive discharge. A stored 
bit is restored periodically by recharging the capacitor to its nominal level.

 5. FPM,	EDO,	BEDO,	Synchronous

Section 4 the read-only Memory (roM)
 1. 512 * 8	equals	4096	bits.

 2. Mask	ROM,	PROM,	EPROM,	UV	EPROM,	EEPROM

 3. Eight bits of address are required for 256 byte locations (28
= 256).

Section 5 Programmable roMs
 1. PROMs	are	field-programmable;	ROMs	are	not.

 2. 1s are left after EPROM erasure.

 3. Read is the normal mode of operation for a PROM.

Section 6 the Flash Memory
 1. Flash, ROM, EPROM, and EEPROM are nonvolatile.

 2. Flash	is	nonvolatile;	SRAM	and	DRAM	are	volatile.

 3. Programming, read, erase

Section 7 Memory expansion
 1. Eight RAMs

 2. Eight RAMs

 3. DIMM:	Dual	in-line	memory	module

 4. DDR:	double	data	rate

Section 8 Special types of Memories
 1. In a FIFO memory the first	bit	(or	word)	in is the first	bit	(or	word)	out.

 2. In a LIFO memory the last	bit	(or	word)	in is the first	bit	(or	word)	out.	A	stack	is	a	LIFO.
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 3. the	PUSH	operation	or	instruction	adds	data	to	the	memory	stack.

 4. the	POP	operation	or	instruction	removes	data	from	the	memory	stack.

 5. CCD	is	a	charge-coupled	device.

Section 9 Magnetic and optical Storage
 1. Magnetic	storage:	hard	disk,	tape,	and	magneto-optical	disk.

 2. A	magnetic	disk	is	organized	in	tracks	and	sectors.

 3. A	magneto-optical	disk	uses	a	laser	beam	and	an	electromagnet.

 4. Optical	storage:	CD-ROM,	CD-R,	CD-RW,	DVD-ROM,	WORM

Section 10 troubleshooting
 1. the	contents	of	the	ROM	are	added	and	compared	with	a	prestored	checksum.

 2. Checksum	cannot	be	used	because	the	contents	of	a	RAM	are	not	fixed.

 3. (1)	 a	 short	 between	 adjacent	 cells;	 (2)	 an	 inability	of	 some	cells	 to	 store	both	1s	 and	0s;	
(3)	dynamic	altering	of	the	contents	of	one	address	when	the	contents	of	another	address	change.

anSWerS to related ProbleMS  
For exaMPleS
 1 G3G2G1G0 = 1110

 2 Connect eight 64k * 1 ROMs in parallel to form a 64k * 8 ROM.

 3 Sixteen 64k * 1 ROMs

 4 See Figure 82.

G
R/W

E1
E2

I/O8

I/O15

    0    ––––––––
    1,048,575

…A0

A19

A     0    ––––––––
    1,048,575A

I/O0

I/O7

fg10_08300
Figure 82 

 5 ROM	1:	0	to	524,287;	ROM	2:	524,288	to	1,048,575

anSWerS to true/FalSe Quiz
 1. T 2. F 3. T 4. F 5. F

 6. T 7. T 8. T 9. F 10. F

anSWerS to SelF-teSt
 1. (d) 2. (b) 3. (c) 4. (c) 5. (d) 6. (a)

 7. (d) 8. (c) 9. (a) 10. (b) 11. (f) 12. (d)
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anSWerS to odd-nuMbered ProbleMS
 1. Cache is a small area of fast memory used by the central processing unit. The L1 cache is 

located in the processor, and the L2 cache is outside of the processor.

 3. Hard	disk	has	the	highest	latency.

 5. Cache	hit:	30	ns;	cache	miss:	105	ns.

 7. (a) ROM  

  (b) RAM

 9. Address bus provides for transfer of address code to memory for accessing any memory 
location	in	any	order	for	a	read	or	write	operation.	Data bus provides for transfer of data 
between	the	microprocessor	and	the	memory	or	I/O.

 11. bit 0 bit 1 bit 2 bit 3

Row	0 1 0 0 0

Row	1 0 0 0 0

Row	2 0 0 1 0

Row	3 0 0 0 0

 13. 512	rows	* 128 8-bit columns

 15. A	SRAM	stores	bits	in	flip-flops	indefinitely	as	long	as	power	is	applied.	A	DRAM	stores	bits	
in capacitors that must be refreshed periodically to retain the data.

 17. See Table P–13.

TABLE	P–13	 	

inPutS outPutS

a1 a0 o3 o2 o1 o0

0 0 0 1 0 1

0 1 1 0 0 1

1 0 1 1 1 0

1 1 0 0 1 0

 19. See	Figure	P–73.
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D1

D2
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E3 E2 E1 E0

fgp_08600
FIGURE	P–73	
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 21. Blown	links:	1–17,	19–23,	25–31,	34,	37,	38,	40–47,	53,	55,	58,	61,	62,	63,	65,	67,	69

 23. Use	eight	16k	*	4	DRAMs	with	sixteen	address	lines.	two	of	the	address	lines	are	decoded	to	
enable the selected memory chips. Four data lines go to each chip.

 25. 8	bits,	64k	words;	4	bits,	256k	words

 27. lowest	address:	FC016

	 	 highest	address:	FFF16

 29. A	hard	disk	is	formatted	into	tracks	and	sectors.	Each	track	is	divided	into	a	number	of	sectors	
with	each	sector	of	a	track	having	a	physical	address.	Hard	disks	typically	have	from	a	few	
hundred	to	a	few	thousand	tracks.

 31. Magnetic	tape	has	a	longer	access	time	than	disk	because	data	must	be	accessed	sequen-
tially rather than randomly.

 33. Checksum	content	is	in	error.

 35. (a) ROM 2  (b) ROM 1  (c) All ROMs
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Conversions
DeCimal BCD(8421) OCtal Binary DeCimal BCD(8421) OCtal Binary DeCimal BCD(8421) OCtal Binary

 0     0000  0      0 34 00110100  42  100010 68 01101000 104 1000100

 1     0001  1      1 35 00110101  43  100011 69 01101001 105 1000101

 2     0010  2     10 36 00110110  44  100100 70 01110000 106 1000110

 3     0011  3     11 37 00110111  45  100101 71 01110001 107 1000111

 4     0100  4    100 38 00111000  46  100110 72 01110010 110 1001000

 5     0101  5    101 39 00111001  47  100111 73 01110011 111 1001001

 6     0110  6    110 40 01000000  50  101000 74 01110100 112 1001010

 7     0111  7    111 41 01000001  51  101001 75 01110101 113 1001011

 8     1000 10   1000 42 01000010  52  101010 76 01110110 114 1001100

 9     1001 11   1001 43 01000011  53  101011 77 01110111 115 1001101

10 00010000 12   1010 44 01000100  54  101100 78 01111000 116 1001110

11 00010001 13   1011 45 01000101  55  101101 79 01111001 117 1001111

12 00010010 14   1100 46 01000110  56  101110 80 10000000 120 1010000

13 00010011 15   1101 47 01000111  57  101111 81 10000001 121 1010001

14 00010100 16   1110 48 01001000  60  110000 82 10000010 122 1010010

15 00010101 17   1111 49 01001001  61  110001 83 10000011 123 1010011

16 00010110 20  10000 50 01010000  62  110010 84 10000100 124 1010100

17 00010111 21  10001 51 01010001  63  110011 85 10000101 125 1010101

18 00011000 22  10010 52 01010010  64  110100 86 10000110 126 1010110

19 00011001 23  10011 53 01010011  65  110101 87 10000111 127 1010111

20 00100000 24  10100 54 01010100  66  110110 88 10001000 130 1011000

21 00100001 25  10101 55 01010101  67  110111 89 10001001 131 1011001

22 00100010 26  10110 56 01010110  70  111000 90 10010000 132 1011010

23 00100011 27  10111 57 01010111  71  111001 91 10010001 133 1011011

24 00100100 30  11000 58 01011000  72  111010 92 10010010 134 1011100

25 00100101 31  11001 59 01011001  73  111011 93 10010011 135 1011101

26 00100110 32  11010 60 01100000  74  111100 94 10010100 136 1011110

27 00100111 33  11011 61 01100001  75  111101 95 10010101 137 1011111

28 00101000 34  11100 62 01100010  76  111110 96 10010110 140 1100000

29 00101001 35  11101 63 01100011  77  111111 97 10010111 141 1100001

30 00110000 36  11110 64 01100100 100 1000000 98 10011000 142 1100010

31 00110001 37  11111 65 01100101 101 1000001 99 10011001 143 1100011

32 00110010 40 100000 66 01100110 102 1000010

33 00110011 41 100001 67 01100111 103 1000011

From Appendix A of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved. 547



ConvErsIons

1
2
4

1
2
4
9

18
36
73

147
295
590
180
361
722

1
2
4
9

18
36
72

144
288
576
152
305
611
223
446
893
786
573
147
295
591
183
366

1
2
4
8

17
35
70

140
281
562
125
251
503
007
014
028
057
115
230
460
921
843
686
372
744
488
976
952
905
810
620
241
482

1
2
4
8

17
34
68

137
274
549
099
199
398
796
592
184
368
737
474
949
899
799
599
199
398
797
594
188
376
752
504
009
018
036
073
147
294
589
179
358
717
434
869

1
2
4
8

16
33
67

134
268
536
073
147
294
589
179
359
719
438
877
755
511
023
046
093
186
372
744
488
976
953
906
813
627
254
509
018
037
075
151
303
606
213
427
854
709
419
838
676
352
705
411
822
645

1
2
4
8

16
32
65

131
262
524
048
097
194
388
777
554
108
217
435
870
741
483
967
934
869
738
476
953
906
813
627
255
511
022
044
088
177
355
710
421
842
685
370
740
481
963
927
855
711
423
846
693
387
775
551
103
206
412
825
651
303
606
213

2n

1
2
4
8

16
32
64

128
256
512
024
048
096
192
384
768
536
072
144
288
576
152
304
608
216
432
864
728
456
912
824
648
296
592
184
368
736
472
944
888
776
552
104
208
416
832
664
328
656
312
624
248
496
992
984
968
936
872
744
488
976
952
904
808
616
232
464
928
856
712
424
848
696

n
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

2�n

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

5
25
625
812
906
953
976
488
244
122
061
030
015
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

5
25
125
562
281
140
070
035
517
258
629
814
907
953
476
238
119
059
029
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

5
25
625
312
156
578
789
394
697
348
674
837
418
209
604
802
901
450
725
862
931
465
232
116
058
029
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

5
25
125
062
531
265
632
316
158
579
289
644
322
161
580
290
645
322
661
830
415
207
103
551
275
637
818
909
454
227
113
056
028
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

5
25
625
812
406
203
101
550
775
387
193
596
298
149
574
287
643
321
660
830
915
957
978
989
494
747
373
686
843
421
210
105
552
776
888
444
222
111
055
027
013
006
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000

5
25
125
562
781
390
695
847
923
461
230
615
307
653
826
913
456
228
614
807
403
701
350
675
837
418
709
854
427
713
356
178
089
044
022
511
755
877
938
469
734
867
433
216
108
054
027
013
006
003
001
000
000
000

5
25
625
312
656
828
914
957
478
739
869
934
467
733
366
183
091
545
772
886
443
721
860
430
715
357
678
839
419
209
604
302
151
575
787
893
446
723
361
680
840
420
210
105
552
776
388
694
847
423
211

5
25
125
062
031
515
257
628
814
407
703
851
425
712
856
928
464
232
616
808
404
202
601
800
400
700
850
925
462
231
615
807
903
951
475
737
868
434
217
108
054
527
263
131
065
032
516
758

5
25
625
812
906
453
226
613
806
903
951
475
237
118
059
029
014
007
003
001
500
250
125
062
031
515
257
628
814
907
953
976
988
994
497
248
624
312
156
578
789
894
947
473
236

5
25
125
562
281
640
320
660
830
915
957
478
739
869
434
717
858
929
464
232
616
308
654
827
913
456
228
614
807
403
201
100
550
275
137
088
034
017
508
254
627
813

5
25
625
312
156
078
039
519
759
379
689
844
422
711
355
677
338
169
084
042
021
510
755
377
188
094
547
773
886
443
221
610
805
402
201
600
300
150
575

5
25
125
062
531
765
882
941
970
485
242
621
810
905
452
726
363
181
590
295
647
823
411
205
602
801
400
700
850
425
712
356
678
339
169
084

5
25
625
812
406
703
351
675
337
668
334
667
333
166
583
791
395
697
848
924
962
981
490
745
372
186
093
546
273
136
068
534
767

5
25
125
562
781
890
945
472
236
618
809
404
702
851
925
962
481
240
120
560
280
640
320
160
580
290
645
322
161
080

5
25
625
312
656
328
164
082
541
270
135
567
783
391
695
347
173
086
043
021
010
005
002
001
500
250
625

5
25
125
062
031
015
507
253
626
813
906
953
976
988
994
497
748
874
437
718
359
679
339
169

5
25
625
812
906
953
476
738
369
684
342
171
085
542
271
135
567
283
641
820
910

5
25
125
562
281
140
570
285
142
571
785
392
696
848
924
962
981
490

5
25
625
312
156
578
289
644
822
411
205
102
051
025
512

5
25
125
062
531
265
132
566
783
391
695
847

5
25
625
812
406
203
601
800
900

5
25
125
562
781
390

5
25
625

Powers of Two
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Programs for Security System Components

library ieee;
use ieee.std_logic_1164.all;

entity BCDEncoder is
port(D: in std_logic_vector(0 to 9);
         Q: out std_logic_vector(0 to 3));
end entity BCDEncoder;

architecture BCDBehavior of BCDEncoder is 
begin
     Q(0) 6= D(9) or D(7) or D(5) or D(3) or D(1);
     Q(1) 6= D(7) or D(6) or D(3) or D(2);
     Q(2) 6= D(7) or D(6) or D(5) or D(4);
     Q(3) 6= D(9) or D(8);
end architecture BCDBehavior;

BCDEncoder–VHDL

library ieee;
use ieee.std_logic_1164.all;

entity CodeSelection is
port(ShiftIn, Clk: in std_logic;
         Bout: out std_logic_vector(1 to 4));
end entity CodeSelection;

architecture CodeSelectionBehavior of CodeSelection is
component FourBitShiftReg is
port(R_L, Clk: in std_logic;
         D0, D1, D2, D3: in std_logic;
         Q0, Q1, Q2, Q3: buffer std_logic);
end component FourBitShiftReg;

signal A: std_logic_vector(0 to 3);
signal B: std_logic_vector(0 to 3);
signal C: std_logic_vector(0 to 3);
signal D: std_logic_vector(0 to 3);
signal Q: std_logic_vector(0 to 3);
signal Code1: std_logic_vector(0 to 3);
signal Code2: std_logic_vector(0 to 3);
signal Code3: std_logic_vector(0 to 3);
signal Code4: std_logic_vector(0 to 3);

begin
    Code16= “0001”;
    Code26= “1001”;
    Code36= “1001”;
    Code46= “0001”;
    A(0)6= Q(0) and Code1(0); B(0)6= Q(1) and Code2(0); 
    C(0)6= Q(2) and Code3(0); D(0)6= Q(3) and Code4(0);
    A(1)6= Q(0) and Code1(1); B(1)6= Q(1) and Code2(1); 
    C(1)6= Q(2) and Code3(1); D(1)6= Q(3) and Code4(1);
    A(2)6= Q(0) and Code1(2); B(2)6= Q(1) and Code2(2); 
    C(2)6= Q(2) and Code3(2); D(2)6= Q(3) and Code4(2);
    A(3)6= Q(0) and Code1(3); B(3)6= Q(1) and Code2(3);
    C(3)6= Q(2) and Code3(3); D(3)6= Q(3) and Code4(3);
    Bout(1) 6= D(0) or C(0) or B(0) or A(0);
    Bout(2) 6= D(1) or C(1) or B(1) or A(1);
    Bout(3) 6= D(2) or C(2) or B(2) or A(2);
    Bout(4) 6= D(3) or C(3) or B(3) or A(3);

ShiftReg: FourBitShiftReg 
port map(R_L=7ShiftIn, Clk=7Clk,D0=7‘1’,D1=7‘0’,D2=7‘0’,
                   D3=7‘0’,Q0=7Q(0),Q1=7Q(1),Q2=7Q(2),
                   Q3=7Q(3));
end architecture CodeSelectionBehavior;    

CodeSelection–VHDL

library ieee;
use ieee.std_logic_1164.all;

entity EightBitShiftReg is
port(R_L, Clk: in std_logic;
         D: in std_logic_vector(0 to 7);
         Q: buffer std_logic);
end entity EightBitShiftReg;

architecture  EightBitBehavior of EightBitShiftReg is
component dff is
  port(D,Clk: in std_logic;
           Q: out std_logic);
end component dff;

signal D0, D1, D2, D3, D4, D5, D6, D7: std_logic;
signal Q0, Q1, Q2, Q3, Q4, Q5, Q6: std_logic;

begin
    D0 6= (not R_L and D(0));
    D1 6= (Q0 and R_L) or (not R_L and D(1));
    D2 6= (Q1 and R_L) or (not R_L and D(2));
    D3 6= (Q2 and R_L) or (not R_L and D(3));
    D4 6= (Q3 and R_L) or (not R_L and D(4));
    D5 6= (Q4 and R_L) or (not R_L and D(5));
    D6 6= (Q5 and R_L) or (not R_L and D(6));
    D7 6= (Q6 and R_L) or (not R_L and D(7));

DFF0: dff port map(D =7 D0, Clk =7 Clk, Q =7 Q0);  
DFF1: dff port map(D =7 D1, Clk =7 Clk, Q =7 Q1);  
DFF2: dff port map(D =7 D2, Clk =7 Clk, Q =7 Q2);  
DFF3: dff port map(D =7 D3, Clk =7 Clk, Q =7 Q3);  
DFF4: dff port map(D =7 D4, Clk =7 Clk, Q =7 Q4);  
DFF5: dff port map(D =7 D5, Clk =7 Clk, Q =7 Q5);  
DFF6: dff port map(D =7 D6, Clk =7 Clk, Q =7 Q6);  
DFF7: dff port map(D =7 D7, Clk =7 Clk, Q =7 Q);  
end architecture EightBitBehavior;

EightBitShiftReg–VHDL

library ieee;
use ieee.std_logic_1164.all;

entity FourBitParSftReg is
port(D: in  std_logic_vector(0 to 3);
         Clk: in std_logic;
         Q: out std_logic_vector(0 to 3));
end entity FourBitParSftReg;

architecture  FourBitBehavior of FourBitParSftReg is
component dff is
  port(D,Clk: in std_logic;
           Q: out std_logic);
end component dff;

begin
DFF0: dff port map(D =7 D(0), Clk =7 Clk, Q =7 Q(0));  
DFF1: dff port map(D =7 D(1), Clk =7 Clk, Q =7 Q(1));  
DFF2: dff port map(D =7 D(2), Clk =7 Clk, Q =7 Q(2));  
DFF3: dff port map(D =7 D(3), Clk =7 Clk, Q =7 Q(3));  
end architecture FourBitBehavior;

FourBitParSftReg–VHDL

From Appendix B of Digital Fundamentals: A Systems Approach, First Edition. Thomas L. Floyd. Copyright © 2013 by Pearson Education, 
Inc. All rights reserved.
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module CodeSelection(ShiftIn, Clk, Bout);
input ShiftIn;
input Clk;
output [4:1]Bout;

    wire[3:0] A;
    wire[3:0] B;
    wire[3:0] C;
    wire[3:0] D;
    wire[3:0] Q;
    wire[3:0] Code1;
    wire[3:0] Code2;
    wire[3:0] Code3;
    wire[3:0] Code4;

    assign Code1 = 4’b1001;
    assign Code2 = 4’b1000;
    assign Code3 = 4’b1000;
    assign Code4 = 4’b1001;
    assign A[0]=Q[0] && Code1[0];assign B[0]=Q[1] && Code2[0]
    assign C[0]=Q[2] && Code3[0];assign D[0]=Q[3] && Code4[0];
    assign A[1]=Q[0] && Code1[1];assign B[1]=Q[1] && Code2[1];
    assign C[1]=Q[2] && Code3[1];assign D[1]=Q[3] && Code4[1];
    assign A[2]=Q[0] && Code1[2];assign B[2]=Q[1] && Code2[2];
    assign C[2]=Q[2] && Code3[2];assign D[2]=Q[3] && Code4[2];
    assign A[3]=Q[0] && Code1[3];assign B[3]=Q[1] && Code2[3];
    assign C[3]=Q[2] && Code3[3];assign D[3]=Q[3] && Code4[3];

    assign Bout[1] = D[0] ‘ C[0] ‘ B[0] ‘ A[0];
    assign Bout[2] = D[1] ‘ C[1] ‘ B[1] ‘ A[1];
    assign Bout[3] = D[2] ‘ C[2] ‘ B[2] ‘ A[2];
    assign Bout[4] = D[3] ‘ C[3] ‘ B[3] ‘ A[3];

  FourBitShiftReg ShiftReg(.S_L(ShiftIn), 
      .Clk(Clk),.D0(1),.D1(0),.D2(0),.D3(0),
      .Q0(Q[0]),.Q1(Q[1]),.Q2(Q[2]),.Q3(Q[3]));
endmodule;    

CodeSelection–Verilog

module BCDEncoder(D, Q);
input  [9:0] D;
output [3:0] Q;

     assign Q[0] = D[9] ‘ D[7] ‘ D[5] ‘ D[3] ‘ D[1];
     assign Q[1] = D[7] ‘ D[6] ‘ D[3] ‘ D[2];
     assign Q[2] = D[7] ‘ D[6] ‘ D[5] ‘ D[4];
     assign Q[3] = D[9]  ‘ D[8];
endmodule

BCDEncoder–Verilog

library ieee;
use ieee.std_logic_1164.all;

entity oneShot is  
port(Enable, Clk: in std_logic;
         Qout: buffer std_logic);
end entity oneShot;

architecture oneShotBehavior of oneShot is
begin
  process(Enable, Clk)
  variable Flag    : boolean := true;
  variable Cnt     : integer range 0 to 255;
  variable SetCount : integer range 0 to 255;
  begin
       SetCount := 2;
       if (Clk’EVEnT and Clk = ‘1’) then
            if Enable = ‘0’ then
                 Flag := true;
            end if;
  
            if Enable = ‘1’ and Flag then
                Cnt := 1;  
                Flag :=False;
            end if;

            if cnt = SetCount then
               Qout 6= ‘0’;
               Cnt := 0; 
               Flag := false;
            else
                if Cnt 7 0 then
                   Cnt := Cnt + 1;
                   if Cnt 7 1 then
                      Qout 6= ‘1’; 
                   end if;  
                end if;
             end if;
         end if;
     end process;
end architecture oneShotBehavior;

OneShot–VHDL

module FourBitParSftReg(D, Clk, Q);
input [3:0] D;
input  Clk;
output [3:0]Q;

dff DFF0(.d(D[0]), .Clk(Clk), .Q(Q[0]));
dff DFF1(.d(D[1]), .Clk(Clk), .Q(Q[1]));
dff DFF2(.d(D[2]), .Clk(Clk), .Q(Q[2]));
dff DFF3(.d(D[3]), .Clk(Clk), .Q(Q[3]));
endmodule

FourBitParSftReg–Verilog

module EightBitShiftReg(S_L, Clk, D, Q);
input  S_L; 
input  Clk; 
input [7:0] D;
output Q;

wire D0, D1, D2, D3, D4, D5, D6, D7;
wire Q0, Q1, Q2, Q3, Q4, Q5, Q6; 

     assign D0 = (!S_L && D[0]);
     assign D1 = (Q0 && S_L) ‘ (!S_L ‘ && D[1]);
     assign D2 = (Q1 && S_L) ‘ (!S_L ‘ && D[2]);
     assign D3 = (Q2 && S_L) ‘ (!S_L ‘ && D[3]);
     assign D4 = (Q3 && S_L) ‘ (!S_L ‘ && D[4]);
     assign D5 = (Q4 && S_L) ‘ (!S_L ‘ && D[5]);
     assign D6 = (Q5 && S_L) ‘ (!S_L ‘ && D[6]);
     assign D7 = (Q6 && S_L) ‘ (!S_L ‘ && D[7]);

dff DFF0(.d(D0), .Clk(Clk), .q(Q0));
dff DFF1(.d(D1), .Clk(Clk), .q(Q1));
dff DFF2(.d(D2), .Clk(Clk), .q(Q2));
dff DFF3(.d(D3), .Clk(Clk), .q(Q3));
dff DFF4(.d(D4), .Clk(Clk), .q(Q4));
dff DFF5(.d(D5), .Clk(Clk), .q(Q5));
dff DFF6(.d(D6), .Clk(Clk), .q(Q6));
dff DFF7(.d(D7), .Clk(Clk), .q(Q));  
endmodule    

EightBitShiftReg–Verilog

library ieee;
use ieee.std_logic_1164.all;

entity ComparatorFourBit is
port(A, B: in std_logic_vector(0 to 3);
         EQ: out std_logic);
end entity ComparatorFourBit;

architecture ComparatorBehavior of 
                        ComparatorFourBit is

begin
   process (A,B)
   begin
        if (A = B) and not (A = “0000”) then 
             EQ 6= ‘1’;
        else
             EQ 6= ‘0’;
        end if;  
  end process;
end architecture ComparatorBehavior;

ComparatorFourBit–VHDL
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module oneShot(Enable, Clk, Qout);
input Enable;
input Clk;
output Qout;

 integer  SetCount = 2;
 integer  Cnt = 0 ;
 reg[0:0] Flag;
 reg Qout;

 initial Flag = 1’b1;
 always @(posedge Clk)
 begin
    if (Enable == 0)
    begin
       Flag = 1;
    end 
    else  
    begin  
         if ((Enable == 1) && (Flag == 1)) 
         begin
             Cnt = 1;  
             Flag = 0;  
         end     end 
     if (Cnt == SetCount)
     begin
         Qout = 0;
         Cnt  = 0; 
         Flag = 0;
     end 
     else
        begin
        if (Cnt 7 0) 
        begin
            Cnt = Cnt + 1;
            if (Cnt 7 1)
            begin
                Qout = 1; 
            end 
         end
    send 
end
endmodule

OneShot–Verilog

module ComparatorFourBit(A, B, EQ);
input [3:0] A;
input [3:0] B;
output EQ;

reg out;

     always @(A , B)
         if ((A == B) && !(A == 0)) 
         begin
              out = 1’b1;
         end 
         else
         begin
             out = 1’b0;
         end
     assign EQ = out;
endmodule   

ComparatorFourBit–Verilog
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acceptor A receiving device on a bus.

access time The time from the application of a valid memory 
address to the appearance of valid output data.

addend In addition, the number that is added to another number 
called the augend.

adder A logic circuit used to add two binary numbers.

address The location of a given storage cell or group of cells in 
a memory; a unique memory location containing one byte.

address bus A one-way group of conductors from the micro-
processor to a memory, or other external device, on which the 
address code is sent.

adjacency Characteristic of cells in a Karnaugh map in which 
there is a single-variable change from one cell to another cell 
next to it on any of its four sides.

AGP Accelerated graphic port.

aliasing The effect created when a signal is sampled at less than 
twice the signal frequency. Aliasing creates unwanted frequen-
cies that interfere with the signal frequency.

alphanumeric Consisting of numerals, letters, and other 
characters.

ALU Arithmetic logic unit; the key processing element of a 
microprocessor that performs arithmetic and logic operations.

amplitude In a pulse waveform, the height or maximum value 
of the pulse as measured from its low level.

analog Being continuous or having continuous values, as 
opposed to having a set of discrete values.

analog system A system that processes data in analog form 
only.

analog-to-digital (A/D) conversion The process of converting 
an analog signal to digital form.

analog-to-digital converter (ADC) A device used to convert 
an analog signal to a sequence of digital codes.

AND A basic logic operation in which a true (HIGH) output 
occurs only when all the input conditions are true (HIGH).

AND array An array of AND gates consisting of a matrix of 
programmable interconnections.

AND gate A logic gate that produces a HIGH output only when 
all of the inputs are HIGH.

ANSI American National Standards Institute.

antifuse A type of PLD nonvolatile programmable link that can 
be left open or can be shorted once as directed by the program.

architecture The VHDL unit that describes the internal opera-
tion of a logic function; the internal functional arrangement of the 
elements that give a device its particular operating characteristics.

array In a PLD, a matrix formed by rows of product-term lines 
and columns of input lines with a programmable cell at each 
junction. In VHDL, an array is an ordered set of individual items 
called elements with a single identifier name.

ASCII American Standard Code for Information Interchange; 
the most widely used alphanumeric code.

ASK Amplitude shift keying; a form of modulation in which a 
digital signal modulates the amplitude of a higher frequency sine 
wave.

assembler A program that converts English-like mnemonics 
into machine code.

assembly language A programming language that uses English-
like words and has a one-to-one correspondence to machine 
language.

associative law In addition (ORing) and multiplication (AND-
ing) of three or more variables, the order in which the variables 
are grouped makes no difference.

astable Having no stable state. An astable multivibrator oscil-
lates between two quasi-stable states.

asynchronous Having no fixed time relationship; a condition in 
which signals or systems are not aligned or synchronized in 
terms of timed events.

asynchronous counter A type of counter in which each stage is 
clocked from the output of the preceding stage.

attenuation The loss of energy as a signal propagates through a 
medium.

augend In addition, the number to which the addend is added.

backside bus A bus that connects the CPU to the cache to 
provide faster access to RAM.

bank A section of memory within a single memory array (chip).

base One of the three regions in a bipolar junction transistor.

base address The beginning address of a segment of memory.

baud The number of symbols per second in a data transmission.

BCD Binary coded decimal; a digital code in which each of the 
decimal digits, 0 through 9, is represented by a group of four bits.

BEDO DRAM Burst extended data output dynamic random-
access memory.

bed-of-nails A method for the automated testing of printed 
circuit boards in which the board is mounted on a fixture that 
resembles a bed of nails that makes contact with test points.

BiCMOS A family of logic circuits that combines CMOS and 
bipolar logic.

bidirectional Having two directions. In a bidirectional shift 
register, the stored data can be shifted right or left.

binary Having two values or states; describes a number system 
that has a base of two and utilizes 1 and 0 as its digits.

BIOS Basic input/output system; a set of programs in ROM 
that interfaces the I/O devices in a computer system.

bipolar A class of integrated logic circuits implemented with 
bipolar transistors; also known as TTL.

bistable Having two stable states. Flip-flops and latches are 
bistable multivibrators.

bit A binary digit, which can be either a 1 or 0.

bit rate The number of bits per second in a data transmission.
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bitstream A series of bits describing a final design that is sent 
to the target device during programming.

bit time The interval of time occupied by a single bit in a 
sequence of bits; the period of the clock.

BIU Bus interface unit; the portion of the CPU that interfaces 
with the system buses and fetches instructions, reads operands, 
and writes results.

BJT Bipolar junction transistor; a semiconductor device used 
for switching or amplification. A BJT has two junctions, the 
base-emitter junction and the base-collector junction.

Boolean addition In Boolean algebra, the OR operation.

Boolean algebra The mathematics of logic circuits.

Boolean expression An expression of variables and operators 
used to express the operation of a logic circuit.

Boolean multiplication In Boolean algebra, the AND operation.

boundary scan A method for internally testing a PLD based on 
the JTAG standard (IEEE Std. 1149.1).

break point A flag placed within a program source code to stop 
a program for investigation.

buffer A circuit that prevents loading of an input or output.

bus One or more interconnections that interface one or more 
devices based on a standardized specification.

bus arbitration The process that prevents two sources from 
using a bus at the same time.

bus bandwidth The number of bytes per clock cycle times the 
number of clock cycles per second.

bus bridge A device that interfaces two buses, usually a faster 
bus with a slower bus.

bus contention An adverse condition that could occur if two or 
more devices try to communicate at the same time on a bus.

bus frequency The clock frequency at which the bus can operate.

bus master Any device that can control and manage the system 
buses in a computer system.

bus network topology A type of physical network layout in 
which all devices are connected to a single common bus.

bus protocol A set of rules that allow two or more devices to 
communicate through a bus.

bus transfer speed The number of bytes per clock cycle.

bus width The number of bits that a bus can transmit at one time.

byte A group of eight bits.

cache memory A relatively small, high-speed memory that 
stores the most recently used instructions or data from the larger 
but slower main memory.

caching The process of copying frequently accessed program 
instructions from main memory into faster memory to increase 
processing speed.

CAN Controller area network; a bus standard used in automo-
tive and other applications.

capacity The total number of data units (bits, nibbles, bytes, 
words) that a memory can store.

carry The digit generated when the sum of two binary digits 
exceeds 1.

carry generation The process of producing an output carry in a 
full-adder when both input bits are 1s.

carry propagation The process of rippling an input carry to 
become the output carry in a full-adder when either or both of 
the input bits are 1s and the input carry is a 1.

cascade To connect “end-to-end” as when several counters are 
connected from the terminal count output of one counter to the 
enable input of the next counter.

cascading Connecting two or more similar devices in a manner 
that expands the capability of one device.

CCD Charge-coupled device; a type of semiconductor memory 
that stores data in the form of charge packets and is serially 
accessed.

CD-R CD-Recordable; an optical disk storage device on which 
data can be stored once.

CD-ROM An optical disk storage device on which data are 
prestored and can only be read.

CD-RW CD-Rewritable; an optical disk storage on which data 
can be written and overwritten many times.

cell A single storage element in a memory; a fused cross point 
of a row and column in a PLD.

character A symbol, letter, or numeral.

circuit An arrangement of electrical and/or electronic compo-
nents interconnected in such a way as to perform a specified 
function.

CLB Configurable logic block; a unit of logic in an FPGA that 
is made up of multiple smaller logic modules and a local pro-
grammable interconntect that is used to connect logic modules 
within the CLB.

clear An input used to reset a flip-flop (make the Q output 0); 
to place a register or counter in the state in which it contains 
all 0s.

client/server A networking application architecture that han-
dles tasks between service providers called servers and service 
requesters called clients.

clock The basic timing signal in a digital system; a periodic 
waveform used to synchronize operation.

CMOS Complementary metal oxide semiconductor; a class of 
integrated logic circuits that is implemented with a type of field-
effect transistor.

coaxial cable A type of data transmission media in which a 
shielded conductor is used to minimize EMI.

code A set of bits arranged in a unique pattern and used to rep-
resent such information as numbers, letters, and other symbols; 
in VHDL, program statements.

codec A combined coder and decoder.

collector One of the three regions in a bipolar transistor.

combinational logic A combination of logic gates intercon-
nected to produce a specified Boolean function with no storage 
or memory capability; sometimes called combinatorial logic.

commutative law In addition (ORing) and multiplication 
(ANDing) of two variables, the order in which the variables are 
ORed or ANDed makes no difference.

comparator A digital circuit that compares the magnitudes of 
two quantities and produces an output indicating the relationship 
of the quantities.

compiler An application program in development software 
packages that controls the design flow process and translates 
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source code into object code in a format that can be logically 
tested or downloaded to a target device.

complement The inverse or opposite of a number; in Boolean 
algebra, the inverse function, expressed with a bar over the  
variable. The complement of a 1 is a 0, and vice versa.

component A VHDL feature that can be used to predefine the 
logic function for multiple use throughout a program or programs.

contiguous Joined together.

control bus A set of conductive paths that connects the CPU 
to other parts of the computer to coordinate its operations and to 
communicate with external devices.

controller An instrument that can specify each of the other 
instruments on the bus as either a talker or a listener for the  
purpose of data transfer.

control unit The portion within the microprocessor that pro-
vides the timing and control signals for getting data into and out 
of the microprocessor and for synchronizing the execution of 
instructions.

counter A digital circuit capable of counting electronic events, 
such as pulses, by progressing through a sequence of binary 
states.

CPLD A complex programmable logic device that consists 
basically of multiple SPLD arrays with programmable  
interconnections.

CPU Central processing unit; the main part of a computer 
responsible for control and processing of data; the core of a DSP 
that processes the program instructions.

cross-assembler A program that translates an assembly lan-
guage program for one type of microprocessor to an assembly 
language for another type of microprocessor.

current sinking The action of a circuit in which it accepts 
current into its output from a load.

current sourcing The action of a circuit in which it sends 
current out of its output and into a load.

cyclic redundancy check (CRC) A type of error detection code.

DAT Digital audio tape; a type of magnetic tape format.

data Information in numeric, alphabetic, or other form.

data bus A bidirectional set of conductive paths on which data 
or instruction codes are transferred into a microprocessor or  
on which the result of an operation is sent out from the  
microprocessor.

data selector A circuit that selects data from several inputs one 
at a time in a sequence and places them on the output; also 
called a multiplexer.

data sheet A document that specifies parameter values and 
operating conditions for an integrated circuit or other device.

DCE Data communications equipment.

DDR Double data rate.

decade Characterized by ten states or values.

decade counter A digital counter having ten states.

decimal Describes a number system with a base of ten.

decode A stage of the DSP pipeline operation in which instruc-
tions are assigned to functional units and are decoded.

decoder A digital circuit (device) that converts coded informa-
tion into another (familiar) or noncoded form.

decrement To decrease the binary state of a counter by one.

delta modulation A method of analog-to-digital conversion 
using a 1-bit quantization process.

design flow The process or sequence of operations carried out 
to program a target device.

D flip-flop A type of bistable multivibrator in which the output 
assumes the state of the D input on the triggering edge of a clock 
pulse.

demultiplexer (demux) A circuit (digital device) that switches 
digital data from one input line to several output lines in a speci-
fied time sequence.

dependency notation A notational system for logic symbols 
that specifies input and output relationships, thus fully defining a 
given function; an integral part of ANSI/IEEE Std. 91-1984.

difference The result of a subtraction.

differential operation A bus operation that uses two wires for 
data (one for data and one for the complement of the data) and 
one wire for ground.

digit A symbol used to express a quantity.

digital Related to digits or discrete quantities; having a set of 
discrete values as opposed to continuous values.

digital system An arrangement of the individual logic functions 
connected to perform a specified operation or produce a defined 
output.

digital-to-analog (D/A) conversion The process of converting 
a sequence of digital codes to an analog form.

digital-to-analog converter (DAC) A device in which infor-
mation in digital form is converted to analog form.

DIMM Dual in-line memory module.

diode A semiconductor device that conducts current in only one 
direction.

DIP Dual in-line package; a type of IC package whose leads 
must pass through holes to the other side of a PC board.

distortion The change in shape or other parameters of a signal 
waveform due to characteristics and imperfections in the trans-
mission media.

distributive law The law that states that ORing several varia-
bles and then ANDing the result with a single variable is equiva-
lent to ANDing the single variable with each of the several 
variables and then ORing the product.

dividend In a division operation, the quantity that is being 
divided.

divisor In a division operation, the quantity that is divided into 
the dividend.

DLT Digital linear tape; a type of magnetic tape format.

DMA Direct memory access; a method to directly interface a 
peripheral device to memory without using the CPU for control.

domain All of the variables in a Boolean expression.

“Don’t care” A combination of input literals that cannot occur 
and can be used as a 1 or a 0 for simplification.

downloading A design flow process in which the logic design 
is transferred from software to hardware.

drain One of the terminals of a field-effect transistor.

DRAM Dynamic random-access memory; a type of semicon-
ductor memory that uses capacitors as the storage elements and 
is a volatile, read/write memory.
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DSP Digital signal processor; a special type of microprocessor 
that processes data in real time.

DSP core The central processing unit of a digital system pro-
cessor.

DTE Data terminal equipment.

duty cycle The ratio of pulse width to period expressed as a 
percentage.

DVD-ROM Digital versatile disk-ROM; also known as digital 
video disk-ROM; a type of optical storage device on which data 
is prestored with a much higher capacity than a CD-ROM.

dynamic memory A type of semiconductor memory having 
capacitive storage cells that lose stored data over a period of 
time and, therefore, must be refreshed.

ECL Emitter-coupled logic; a class of integrated logic circuits 
that are implemented with nonsaturating bipolar junction  
transistors.

E2CMOS Electrically erasable CMOS (EECMOS); the circuit 
technology used for the reprogrammable cells in a PLD.

edge-triggered flip-flop A type of flip-flop in which the data 
are entered and appear on the output on the same clock edge.

EDIF Electronic design interchange format; a standard form of 
netlist.

EDO DRAM Extended data output dynamic random-access 
memory.

EEPROM Electrically erasable programmable read-only mem-
ory; a type of nonvolatile PLD reprogrammable link based on 
electrically-erasable programmable read-only memory cells and 
can be turned on or off repeatedly by programming.

EIA-232 Also known as RS-232.

8 mm A type of magnetic tape format.

electromagnetic waves Related to the electromagnetic spec-
trum, which includes radio waves, microwaves, infrared, visible, 
ultraviolet, X-rays, and gamma rays.

embedded system Generally, a single-purpose system, such as 
a processor, built into a larger system for the purpose of control-
ling the system.

EMI Electromagnetic interference.

emitter One of the three regions in a bipolar junction transistor.

encoder A digital circuit (device) that converts information to a 
coded form.

entity The VHDL unit that describes the inputs and outputs of a 
logic function.

EPROM Erasable programmable read-only memory; A type of 
PLD nonvolatile programmable link based on electrically pro-
grammable read-only memory cells and can be turned either on 
or off once with programming.

error detection The process of detecting bit errors in a digital 
code.

Ethernet A widely used standard local area network (LAN) 
technology or protocol; also known as IEEE-802.3.

EU Execution unit; the portion of a CPU that executes instruc-
tions; it contains the arithmetic logic unit (ALU), the general 
registers, and the flags.

even parity The condition of having an even number of 1s in 
every group of bits.

exception Any software event that requires special handling by 
the processor.

exclusive-NOR (XNOR)gate A logic gate that produces a 
LOW only when the two inputs are at opposite levels.

exclusive-OR (XOR) A basic logic operation in which a HIGH 
occurs when the two inputs are at opposite levels.

exclusive-OR (XOR) gate A logic gate that produces a HIGH 
only when the two inputs are at opposite levels.

execute A CPU process in which an instruction is carried out; a 
stage of the DSP pipeline operation in which the decoded 
instructions are carried out.

exponent The part of a floating-point number that represents 
the number of places that the decimal point (or binary point) is 
to be moved.

fall time The time interval between the 90% point and the 10% 
point on the negative-going edge of a pulse.

fan-out The number of equivalent gate inputs of the same fam-
ily series that a logic gate can drive.

FDM Frequency division multiplexing; a broadband technique 
in which the total bandwidth available to a system is divided 
into frequency sub-bands and information is sent in analog form.

feedback The output voltage or a portion of it that is connected 
back to the input of a circuit.

FET Field-effect transistor.

fetch A CPU process in which an instruction is obtained from 
the memory; a stage of the DSP pipeline operation in which an 
instruction is obtained from the program memory.

FIFO First in–first out memory.

FireWire A high-speed external serial bus standard developed 
by Apple Inc. and used in high-speed communications and real-
time data transfer, also known as IEEE-1394.

firmware Small fixed programs and/or data structures that inter-
nally control various electronic devices; usually stored in ROM.

fixed-function logic A category of digital integrated circuits 
having functions that cannot be altered.

flag A bit that indicates the result of an arithmetic or logic 
operation or is used to alter an operation.

flash A type of PLD nonvolatile reprogrammable link technol-
ogy based on a single transistor cell.

flash ADC A simultaneous analog-to-digital converter.

flash memory A nonvolatile read/write random-access 
semiconductor memory in which data is stored as charge on  
the floating gate of a certain FET.

flip-flop A basic storage circuit that can store only one bit at a 
time; a synchronous bistable device.

floating-point number A number representation based on sci-
entific notation in which the number consists of an exponent and 
a mantissa.

flying probe A method for the automated testing of printed cir-
cuit boards, in which a probe or probes move from place to place 
to contact test points.

forward bias A voltage polarity condition that allows a semi-
conductor pn junction in a transistor or diode to conduct current.

FPGA Field-programmable gate array; a programmable logic 
device that uses the LUT as the basic logic elements and gener-
ally employs either antifuse or SRAM-based process technology.
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FPM DRAM Fast page mode dynamic random-access memory.

frequency (f ) The number of pulses in one second for a 
periodic waveform. The unit of frequency is the hertz.

frontside bus A system bus that connects the major 
components of a computer system.

FSK Frequency shift keying; a form of modulation in which a 
digital signal modulates the frequency of a higher frequency sine 
wave.

full-adder A digital circuit that adds two bits and an input carry 
to produce a sum and an output carry.

full-duplex A connection in which the data flows both ways 
simultaneously in the same channel.

functional simulation A software process that tests the logical 
or functional operation of a design.

fuse A type of PLD nonvolatile programmable link that can be 
left shorted or can be opened once as directed by the program; 
also called a fusible link.

GAL Generic array logic; a reprogrammable type of SPLD that 
is similar to a PAL except that it uses a reprogrammable process 
technology, such as EEPROM (E2 CMOS), instead of fuses.

gate A logic circuit that performs a basic logic operation, such as 
AND or OR; one of the three terminals of a field-effect transistor.

gateway A network point that provides access to another 
network.

glitch A voltage or current spike of short duration, usually unin-
tentionally produced and unwanted.

graphic (schematic) entry A method of entering a logic design 
into software by graphically creating a logic diagram (sche-
matic) on a design screen.

GPIB General-purpose interface bus based on the IEEE 488 
standard.

Gray code An unweighted digital code characterized by a sin-
gle bit change between adjacent code numbers in a sequence.

half-adder A digital circuit that adds two bits and produces a 
sum and an output carry. It cannot handle input carries.

half-duplex A connection in which the data flows both ways 
but not at the same time in the same channel.

handshake A routine by which two devices initiate and com-
plete a bus transfer.

handshaking The process of signal interchange by which two 
digital devices or systems jointly establish communication.

hard core A fixed portion of logic in an FPGA that is put in by 
the manufacturer to provide a specific function.

hard disk A magnetic disk storage device; typically, a stack of 
two or more rigid disks enclosed in a sealed housing.

hardware The circuitry and physical components of a compu-
ter system (as opposed to the directions called software).

HDL Hardware description language; a language used for 
describing a logic design using software.

hexadecimal Describes a number system with a base of 16.

high-level language A type of computer language closest to 
human language that is a level above assembly language.

high-Z The high-impedance state of a tristate circuit in which 
the output is effectively disconnected from the rest of the circuit.

hit A successful attempt to read or write a block of data in a 
given level of memory.

hit rate The percentage of memory accesses that find the 
requested data in the given level of memory.

hold time The time interval required for the control levels to 
remain on the inputs to a flip-flop after the triggering edge of the 
clock in order to reliably activate the device.

HPIB Hewlett-Packard interface bus; same as GPIB (general-
purpose interface bus).

hub A common connection point containing multiple ports for 
devices in a computer or network.

hysteresis A characteristic of a threshold-triggered circuit, 
such as the Schmitt trigger, where the device turns on and off  
at different input levels.

IEEE Institute of Electrical and Electronics Engineers.

IEEE 488 bus Same as GPIB (general-purpose interface bus); a 
standard parallel bus used widely for test and measurement 
interfacing.

IEEE 1394 A serial bus for high-speed data transfer; also 
known as FireWire.

I2L Integrated injection logic; an IC technology.

implementation The software process where the logic struc-
tures described by the netlist are mapped into the structure of the 
target device.

increment To increase the binary state of a counter by one.

input The signal or line going into a circuit; a signal that 
controls the operation of a circuit.

input/output (I/O) A terminal of a device that can be used as 
either an input or as an output.

instruction One step in a computer program; a unit of 
information that tells the CPU what to do.

instruction pairing The process of combining certain inde-
pendent instructions so that they can be executed simultaneously 
by two separate execution units.

In-system programming (ISP) A method for programming 
SPLDs after they are installed on a printed circuit board and 
operating in a system.

integer A whole number.

integrated circuit (IC) A type of circuit in which all of the 
components are integrated on a single chip of semiconductive 
material of very small size.

intellectual property (IP) Designs owned by the manufacturer 
of programmable logic devices.

interfacing The process of making two or more electronic 
devices or systems operationally compatible with each other so 
that they function properly together.

interrupt Any hardware event that requires special handling by 
the processor; an event that causes the current process to be tem-
porarily stopped while a service routine is run.

inversion The conversion of a HIGH level to a LOW level or 
vice versa; also called complementation.

inverter A NOT circuit; a circuit that changes a HIGH to a 
LOW or vice versa.

I/O port Input/output port; the interface between an internal 
bus and a peripheral.
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IP Instruction pointer; a special register within the CPU that 
holds the offset address of the next instruction to be executed.

IP address Internet protocol address; an address assigned to 
each device in a network that uses the Internet protocol and 
serves to identify the network and the location of the device 
within the network.

I2C Inter-integrated circuit bus; an internal serial bus primarily 
for connecting ICs on a PC board.

ISA bus Industry standard architecture bus; an internal parallel 
bus standard.

J-K flip-flop A type of flip-flop that can operate in the SET, 
RESET, no-change, and toggle modes.

Johnson counter A type of register in which a specific 
prestored pattern of 1s and 0s is shifted through the stages, creat-
ing a unique sequence of bit patterns.

JTAG Joint test action group; the IEEE Std. 1149.1 standard 
interface for in-system programming.

junction The boundary between an n region and a p region in a 
BJT.

Karnaugh map An arrangement of cells representing the 
 combinations of literals in a Boolean expression and used for a 
systematic simplification of the expression.

LAB Logic array block; an SPLD array in a CPLD.

LAN Local area network.

latch A bistable digital circuit used for storing a bit.

latency period The time it takes for the desired sector to spin 
under the head once the head is positioned over the desired track 
of a magnetic hard disk.

LCC Leadless ceramic chip; an SMT package that has metallic 
contacts molded into its body.

LCD Liquid crystal display.

leading edge The first transition of a pulse.

least significant bit (LSB) Generally, the right-most bit in a 
binary whole number or code.

LED Light-emitting diode.

LIFO Last in–first out memory, memory stack.

listener An instrument capable of receiving data on a GPIB 
(general-purpose interface bus) when it is addressed by the  
computer.

literal A constant value assigned to a variable or the complement 
of a variable.

load To enter data into a shift register.

loading The effect of the multiple inputs degrading the voltage 
or timing specifications of an output.

local bus The internal bus of a computer system which includes 
the system bus, the PCI bus, and the ISA bus, among others.

local interconnect A set of lines that allows interconnections 
among the eight logic elements in a logic array block without 
using the row and column interconnects.

logic In digital electronics, the decision-making capability of 
gate circuits, in which a HIGH represents a true statement and a 
LOW represents a false one.

logical network topology The description of how devices in a net-
work interact in order to send and receive data based on protocols.

logic array block (LAB) A group of macrocells that can be 
interconnected with other LABs or to other I/Os using a pro-
grammable interconnect array; also called a function block.

logic element The smallest section of logic in an FPGA that 
typically contains an LUT, associated logic, and a flip-flop.

look-ahead carry A method of binary addition whereby carries 
from preceding adder stages are anticipated, thus eliminating 
carry propagation delays.

LSI Large-scale integration; a level of fixed-function IC com-
plexity in which there are from more than 100 to 10,000 equiva-
lent gates per chip.

LUT Look-up table; a type of memory that can be programmed 
to produce SOP functions.

machine code The basic binary instructions understood by the 
processor.

machine language Computer instructions written in binary 
code that are understood by a computer; the lowest level of  
programming language.

macrocell An SOP logic array with combinational and regis-
tered outputs; part of a PAL or GAL that generally consists of 
one OR gate and some associated output logic. Multiple inter-
connected macrocells form a CPLD.

magneto-optical disk A storage device that uses electro-
magnetism and a laser beam to read and write data.

magnitude The size or value of a quantity.

main memory Memory used by computer systems to store the 
bulk of programs and associated data.

MAN Metropolitan area network.

Manchester encoding A method of encoding called biphase in 
which a 1 is represented by a positive-going transition and a 0 is 
represented by a negative-going transition.

mantissa The magnitude of a floating-point number.

Mealy state machine A state machine in which the outputs 
depend on both the internal present state and on the inputs.

memory The portion of a computer or other system that stores 
binary data.

memory array An array of memory cells arranged in rows and 
columns.

memory hierarchy The arrangement of various memory 
elements to maximize speed and minimize cost.

memory latency The time required to access a memory.

mesh network topology A type of physical network layout 
in which each device connects to all other devices providing  
multiple routes for data.

MFLOPS Million floating-point operations per second.

microcontroller A semiconductor device that combines a 
microprocessor, memory, and various hardware peripherals on a 
single IC.

microprocessor A large-scale digital integrated circuit that can 
be programmed to perform arithmetic, logic, or other operations; 
the CPU of a computer.

minuend The number from which another number is subtracted.

MIPS Million instructions per second.

miss A failed attempt by the processor to read or write a block 
or data in a given level of memory.
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MMACS Million multiply/accumulates per second.

MMU Memory management unit; a device responsible for han-
dling accesses to memory requested by the CPU.

mnemonic An English-like instruction that is converted by an 
assembler into a machine code for use by a processor.

modem A modulator/demodulator for interfacing digital 
devices to analog transmission systems such as telephone lines.

module A Verilog code block that defines inputs, outputs, and 
logic structure or function.

modulus The number of unique states through which a counter 
will sequence.

monostable Having only one stable state. A monostable multi-
vibrator, commonly called a one-shot, produces a single pulse in 
response to a triggering input.

monotonic The characteristic of a DAC defined by the absence 
of any incorrect step reversals; one type of digital-to-analog  
linearity.

Moore state machine A state machine in which the outputs 
depend only on the internal present state.

MOS Metal-oxide semiconductor; a type of transistor technology.

MOSFET Metal-oxide semiconductor field-effect transistor.

most significant bit (MSB) The left-most bit in a binary whole 
number or code.

MSI Medium-scale integration; a level of fixed-function IC 
complexity in which there are from 10 to 100 equivalent gates 
per chip.

multicore processor A microprocessor chip with more than 
one processor.

multimode The characteristic of an optical fiber in which the 
light is propagated in multiple rays.

multiplexer (mux) A circuit (digital device) that switches dig-
ital data from several input lines onto a single output line in a 
specified time sequence.

multiplicand The number that is being multiplied by another 
number.

multiplier The number that multiplies the multiplicand.

multiprocessing A data-processing technique that uses more 
than one processor.

multitasking A technique by which a processor runs multiple 
programs concurrently.

multithreading The process of executing different parts of a 
program, called threads, simultaneously.

multivibrator A class of digital circuits in which the output is 
connected back to the input (an arrangement called feedback) to 
produce either two stable states, one stable state, or no stable 
states, depending on the configuration.

NAND gate A logic circuit in which a LOW output occurs only 
if all the inputs are HIGH.

negative-AND An equivalent NOR gate operation in which the 
HIGH is the active input when all inputs are LOW.

negative-OR An equivalent NAND gate operation in which the 
HIGH is the active input when one or more of the inputs are LOW.

netlist A detailed listing of information necessary to describe a 
circuit, such as types of elements, inputs, and outputs, and all 
interconnections.

network A set of computers and associated devices that are 
interconnected in a specified way in order to communicate to 
share information and resources.

network topology The physical and logical arrangement of 
devices in a network.

nibble A group of four bits.

NMOS An n-channel metal-oxide semiconductor.

node A common connection point in a circuit in which a gate 
output is connected to one or more gate inputs.

noise The unwanted electrical disturbance caused by both natu-
ral and man-made sources.

noise immunity The ability of a circuit to reject unwanted signals.

noise margin The amount by which the actual signal level 
exceeds the minimum acceptable level for an error-free  
transmission.

nonvolatile A term that describes a memory that can retain 
stored data when the power is removed.

NOR gate A logic gate in which the output is LOW when any 
or all of the inputs are HIGH.

Northbridge A bridge that serves as an interface generally to 
the AGP and RAM.

NOT A basic logic operation that performs inversions.

NRZ Nonreturn to zero; a type of data format in which the 
signal level does not return to zero during a bit time after a  
high-level (1) data bit occurs.

numeric Related to numbers.

Nyquist frequency The highest signal frequency that can be 
sampled at a specified sampling frequency; a frequency equal to 
or less than half the sampling frequency.

object program A machine language translation of a high-level 
source program.

octal Describes a number system with a base of eight.

odd parity The condition of having an odd number of 1s in 
every group of bits.

offset address The distance in number of bytes of a physical 
address from the base address.

OLMC Output logic macrocell; the part of a GAL that can be 
programmed for either combinational or registered outputs; a 
block of logic in a GAL that contains a fixed OR gate and other 
logic for handling inputs and/or outputs.

one-shot A monostable multivibrator.

op code Operation code; the code representing a particular 
microprocessor instruction; a mnemonic.

open-collector A type of output in a logic circuit in which the 
collector of the output transistor is left disconnected from any 
internal circuitry and is available for external connection; nor-
mally used for driving higher-current or higher-voltage loads.

operand The object to be manipulated by the instruction.

operating system The software that controls the computer 
system and oversees the execution of application software.

operational amplifier (op-amp) A device with two differential 
inputs that has very high gain, very high input impedance, and 
very low output impedance.

optical fiber A type of data transmission media used for trans-
mitting light signals.
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optical jukebox A type of auxiliary storage for very large 
amounts of data.

OR A basic logic operation in which a true (HIGH) output 
occurs when one or more of the input conditions are true (HIGH).

OR gate A logic gate that produces a HIGH output when one or 
more inputs are HIGH.

oscillator An electronic circuit that is based on the principle of 
regenerative feedback and produces a repetitive output wave-
form; a signal source.

OSI Open systems interconnection; a model in which all proto-
col operations and specifications for communicating on a net-
work are broken down into seven parts called layers.

OTP One-time programmable.

output The signal or line coming out of a circuit.

overflow The condition that occurs when the number of bits in 
a sum exceeds the number of bits in each of the numbers added.

packet A formatted block of digital data.

PAL Programmable array logic; a type of one-programmable 
SPLD that consists of a programmable array of AND gates that 
connects to a fixed array of OR gates.

PAM Pulse amplitude modulation; a method of modulation in 
which the height or amplitude of the pulses are varied according 
to the modulating analog signal, and each pulse represents a 
value of amplitude of the analog signal.

parallel In digital systems, data occurring simultaneously on sev-
eral lines; the transfer or processing of several bits simultaneously.

parallel bus A bus that consists of multiple conductors and car-
ries several data bits simultaneously, one on each conductor.

parallel data Data that is represented by pulses sent simultane-
ously over multiple channels.

parity In relation to binary codes, the condition of evenness or 
oddness of the number of 1s in a code group.

parity bit A bit attached to each group of information bits to 
make the total number of 1s odd or even for every group of bits.

PCI Peripheral component interconnect.

PCI bus An internal synchronous bus for interconnecting chips, 
expansion boards, and processor/memory subsystems.

PCI-Express Also designated as PCIe or PCI-E. This bus dif-
fers from the PCI and PCI-X buses in that it does not use a 
shared bus.

PCI-X A high-performance enhancement of the PCI bus that is 
backward compatible with PCI.

PCM Pulse code modulation; A method of modulation that 
involves sampling of an analog signal amplitude at regular inter-
vals and converting the sampled values to a digital code.

period (T) The time required for a periodic waveform to repeat 
itself.

periodic Describes a waveform that repeats itself at a fixed 
interval.

peripheral A device or instrument that provides communica-
tion with a computer or provides auxiliary services or functions 
for the computer.

physical address The actual location of a data unit in memory.

PIC Programable interrupt controller; handles the interrupts on 
a priority basis.

pipeline As applied to memories, an implementation that allows 
a read or write operation to be initiated before the previous 
 operation is completed; part of the DSP architecture that allows 
multiple instructions to be processed simultaneously.

pipelining A technique where the processor begins executing the 
next instruction before the previous instruction has been completed.

PLA Programmable logic array; an SPLD with programmable 
AND and OR arrays.

platform FPGA An FPGA that contains either or both hard 
core and soft core embedded processors and other functions.

PLCC Plastic leaded chip carrier; an SMT package whose leads 
are turned up under its body in a J-type shape.

PLD Programmable logic device; an integrated circuit that can 
be programmed with any specified logic function.

PMOS A p-channel metal-oxide semiconductor.

pointer The contents of a register (or registers) that contain an 
address.

polling The process of checking a series of peripheral devices 
to determine if any require service from the CPU.

port A physical interface on a computer through which data are 
passed to or from peripherals.

POS Product-of-sums; a form of Boolean expression that is 
basically the ANDing of ORed terms.

positive logic The system of representing a binary 1 with a 
HIGH and a binary 0 with a LOW.

power dissipation The product of the dc supply voltage and the 
dc supply current in an electronic circuit; the amount of power 
required by a circuit.

PPM Pulse position modulation; a method of modulation in 
which the position of each pulse relative to a reference or timing 
signal is varied proportional to the amplitude of the modulating 
signal waveform.

prefetching The process of executing instructions at the same 
time as other instructions are “fetched,” eliminating idle time; 
also called pipelining.

preset An asynchronous input used to set a flip-flop (make the 
Q output 1).

priority encoder An encoder in which only the highest value 
input digit is encoded and any other active input is ignored.

probe An accessory used to connect a voltage to the input of an 
oscilloscope or other instrument.

processes Instances of a computer program that are being 
executed.

product The result of a multiplication.

product term The Boolean product of two or more literals 
equivalent to an AND operation.

program A sequential set of computer instructions designed to 
accomplish a given task(s).

programmable interconnect array (PIA) An array consisting 
of conductors that run throughout the CPLD chip and to which 
connections from the macrocells in each LAB can be made.

programmable logic A category of digital integrated circuits 
capable of being programmed to perform specified functions.

programmable logic device (PLD) A type of integrated circuit 
(IC) that starts as a “blank slate” and into which a logic design is 
programmed.
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PROM Programmable read-only semiconductor memory; an 
SPLD with a fixed AND array and programmable OR array; used 
as a memory device and normally not as a logic circuit device.

propagation delay time The time interval between the occur-
rence of an input transition and the occurrence of the corre-
sponding output transition in a logic circuit.

pseudo-operation An instruction to the assembler (as opposed 
to a processor).

PSK Phase shift keying; a form of modulation in which a digital 
signal modulates the phase of a higher frequency sine wave.

pull-up resistor A resistor with one end connected to the dc 
supply voltage used to keep a given point in a circuit HIGH 
when in the inactive state.

pulse A sudden change from one level to another, followed 
after a time, called the pulse width, by a sudden change back to 
the original level.

pulse width (tPW) The time interval between the 50% points of 
the leading and trailing edges of the pulse; the duration of the 
pulse.

PWM Pulse width modulation; a method of modulation in 
which the width or duration of the pulses and duty cycle are  
varied according to the modulating analog signal, and each pulse 
width represents an amplitude value of the analog signal.

QAM Quadrature amplitude modulation; a form of modulation 
that uses a combination of PSK and amplitude modulation to 
send information.

QIC Quarter-inch cassette; a type of magnetic tape.

quantization The process whereby a binary code is assigned to 
each sampled value during analog-to-digital conversion.

queue A high-speed memory that stores instructions or data.

quotient The result of a division.

race A condition in a logic network in which the difference in 
propagation times through two or more signal paths in the net-
work can produce an erroneous output.

RAM Random-access memory; a volatile read/write semi-
conductor memory.

rank A group of chips that make up a memory module that 
stores data in units such as words or bytes.

read The process of retrieving data from a memory.

real mode Operation of an Intel processor in a manner to emu-
late the 8086’s 1 MB of memory.

recycle To undergo transition (as in a counter) from the final or 
terminal state back to the initial state.

refresh To renew the contents of a dynamic memory by 
recharging the capacitor storage cells.

register A digital circuit capable of storing and shifting binary 
information; typically used as a temporary storage device.

register array A set of temporary storage locations within the 
microprocessor for keeping data and addresses that need to be 
accessed quickly by the program.

registered A CPLD macrocell output configuration where the 
output comes from a flip-flop.

relocatable code A program that can be moved anywhere 
within the memory space without changing the basic code.

remainder The amount left over after a division.

RESET The state of a flip-flop or latch when the output is 0; 
the action of producing a RESET state.

resolution The number of bits used in an ADC.

reverse bias A voltage polarity condition that prevents a pn 
junction of a transistor or diode from conducting current.

ring counter A register in which a certain pattern of 1s and 0s 
is continuously recirculated.

ring network topology A type of physical network layout in 
which the devices are daisy-chained and each device communi-
cates only with its two neighboring devices.

ripple carry A method of binary addition in which the output 
carry from each adder becomes the input carry of the next 
higher-order adder.

ripple counter An asynchronous counter.

rise time The time required for the positive-going edge of a 
pulse to go from 10% of its full value to 90% of its full value.

ROM Read-only semiconductor memory, accessed randomly; 
also referred to as mask-ROM.

router A device that routes a data packet to the correct destina-
tion based on the IP address.

RS-232 A bus standard, also known as EIA-232, used in 
industrial and telecommunication applications as well as scien-
tific instrumentation, but largely replaced by USB in computer 
applications.

RS-422 A bus standard for differential data transmission.

RS-423 A bus standard for single-ended data transmission.

RS-485 A bus standard for differential data transmission.

RZ Return to zero; a type of data format in which the signal 
level goes to or remains at zero after each data bit.

sampling The process of taking a sufficient number of discrete 
values at points on a waveform that will define the shape of the 
waveform.

schematic (graphic) entry A method of placing a logic design 
into software using schematic symbols.

Schottky A specific type of transistor-transistor logic circuit 
technology.

SCSI Small computer system interface; an external parallel bus 
standard.

SDRAM Synchronous dynamic random-access memory.

seek time The time for the read/write head in a hard drive to 
position itself over the desired track for a read operation.

segment A 64k block of memory.

serial Having one element following another, as in a serial 
transfer of bits; occurring, as pulses, in sequence rather than 
simultaneously.

serial bus A bus that carries data bits sequentially one at a time 
on a single conductor.

serial data Data that is represented by pulses sent one at a time 
over a single channel.

SET The state of a flip-flop or latch when the output is 1; the 
action of producing a SET state.

set-up time The time interval required for the control levels to 
be on the inputs to a digital circuit, such as a flip-flop, prior to 
the triggering edge of clock pulse.
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shared bus A bus, such as PCI, that is shared by multiple devices.

shared media topology A type of logical network topology 
where all devices can access the physical network at any time as 
long as no other devices are attempting access.

signal A type of VHDL object that holds data.

signal-to-noise ratio (SNR) A measure of the signal strength 
relative to background noise, usually expressed in decibels (dB).

signal tracing A troubleshooting technique in which waveforms 
are observed in a step-by-step manner beginning at the input and 
working toward the output or vice versa. At each point the observed 
waveform is compared with the correct signal for that point.

sign bit The left-most bit of a binary number that designates 
whether the number is positive (0) or negative (1).

simplex A connection in which data flows in only one direction 
from the sender (transmitter) to the receiver.

single-ended operation A bus operation that uses one wire for 
data and one wire for ground.

single mode The characteristic of an optical fiber in which the 
light tends to propagate in a single beam or ray.

SMT Surface-mount technology; an IC package technique in 
which the packages are smaller than DIPs and are mounted on 
the printed surface of the PC board.

soft core A portion of logic in an FPGA; similar to hard core 
except it has some programmable features.

software Computer programs; programs that instruct a compu-
ter what to do in order to carry out a given set of tasks.

software interrupt An instruction that invokes an interrupt 
service routine.

SOIC Small-outline integrated circuit; an SMT package that 
resembles a small DIP but has its leads bent out in a “gull-wing” 
shape.

SOP Sum-of-products; a form of Boolean expression that is 
basically the ORing of ANDed terms.

source A sending device.

source program A program written in either assembly or 
high-level language.

Southbridge A bridge that handles all I/O functions.

speed-power product A performance parameter that is the 
product of the propagation delay time and the power dissipation 
in a digital circuit.

SPI Serial-to-peripheral interface bus; a synchronous serial 
communications bus that uses four wires for communication 
between a “master” device and a “slave” device.

SPLD Simple programmable logic device; an array of AND 
gates and OR gates that can be programmed to achieve specified 
logic functions. Four types are PROM, PLA, PAL, and GAL.

SRAM Static random-access memory; a type of PLD volatile 
reprogrammable link based on static random-access memory 
cells and can be turned on or off repeatedly with programming.

SSI Small-scale integration; a level of fixed-function IC com-
plexity in which there are up to 10 equivalent gates per chip.

SSOP Shrink small-outline package.

stage One storage element (flip-flop) in a register.

star network topology A type of physical network layout con-
taining a central connection point or hub, and all devices are 
connected through the hub with individual cables.

state diagram A graphic depiction of a sequence of states or values.

state machine A logic system exhibiting a sequence of states 
conditioned by internal logic and external inputs; any sequential 
circuit exhibiting a specified sequence of states.

static memory A volatile semiconductor memory that uses flip-
flops as the storage cells and is capable of retaining data without 
refreshing.

storage The capability of a digital device to retain bits; the 
process of retaining digital data for later use.

STP Shielded twisted pair; a type of transmission media.

string A contiguous sequence of bytes or words.

strobing A process of using a pulse to sample the occurrence of 
an event at a specified time in relation to the event.

subroutine A series of instructions that can be assembled together 
and used repeatedly by a program but programmed only once.

subtracter A logic circuit used to subtract two binary numbers.

subtrahend The number that is being subtracted from the 
minuend.

sum The result when two or more numbers are added together.

sum term The Boolean sum of two or more literals equivalent 
to an OR operation.

synchronous A condition that describes signals or systems that 
are aligned or synchronized with each other in terms of timed 
events, two or more systems that have the same timing signal.

synchronous counter A type of counter in which each stage is 
clocked by the same pulse.

synthesis The software process where the design is translated 
into a netlist.

system bus The interconnecting paths in a computer system 
including the address bus, data bus and control bus.

talker A device capable of sending data over the GPIB.

tape library A type of auxiliary storage for very large amounts 
of data.

target device A PLD mounted on a programming fixture or 
development board into which a software logic design is to be 
downloaded; the programmable logic device that is being pro-
grammed.

TCP/IP Transmission Control Protocol/Internet Protocol; the 
communication protocol for the Internet.

TDM Time division multiplexing; a technique in which data 
from several sources are interleaved on a time basis and sent on 
a single communication channel or data link.

terminal count The final state in a counter’s sequence.

terminated The condition of a bus connection in which the 
signal is prevented from reflecting back when it reaches the end 
of the bus or transmission line. The condition when a resistor is 
connected from the bus to ground.

text entry A method of entering a logic design into software 
using a hardware description language (HDL).

throughput The average speed with which a program is executed.

timer A circuit that can be used as a one-shot or as an oscilla-
tor; a circuit that produces a fixed time interval output.

timing diagram A graph of digital waveforms showing the 
proper time relationship of two or more waveforms and how 
each waveform changes in relation to the others.
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timing simulation A software process that uses information on 
propagation delays and netlist data to test both the logical opera-
tion and the worst-case timing of a design.

toggle The action of a flip-flop when it changes state on each 
clock pulse.

token-based topology A type of logical network topology 
where a code, called a token, travels around the network allowing 
a device to send data only if it attached the data packet to a token.

totem-pole A type of output in TTL circuits.

trailing edge The second transition of a pulse.

transistor A semiconductor device exhibiting current and/or 
voltage gain. When used as a switching device, it approximates 
an open or closed switch.

tree topology A type of physical network layout which is a 
hybrid combining bus topology and star topology.

trigger A pulse used to initiate a change in the state of a logic 
circuit.

tristate A type of output in logic circuits that exhibits three 
states: HIGH, LOW, and high-Z; also known as 3-state.

tristate buffer A circuit used to interface one device to another 
to prevent loading.

troubleshooting The technique of systematically identifying, 
isolating, and correcting a fault in a circuit or system.

truth table A table showing the inputs and corresponding out-
put level of a logic circuit.

TTL Transistor-transistor logic; a class of integrated logic cir-
cuit that uses bipolar junction transistors. Also called bipolar.

ULSI Ultra large-scale integration; a level of IC complexity in 
which there are more than 100,000 equivalent gates per chip.

unit load A measure of fan-out. One gate input represents a 
unit load to the output of a gate within the same IC family.

universal gate Either a NAND gate or a NOR gate. The term 
universal refers to the property of a gate that permits any logic 
function to be implemented by that gate or by a combination of 
gates of that kind.

up/down counter A counter that can progress in either direc-
tion through a certain sequence.

USB Universal serial bus; a widely used standard serial bus for 
connecting peripherals to a computer.

UTP Unshielded twisted pair; a type of transmission media.

UV EPROM Ultraviolet erasable programmable ROM.

variable symbol used to represent an action, a condition, or 
data that can have a value of 1 or 0, usually designated by an 
italic letter or word.

Verilog A standard hardware description language that uses a 
module structure to describe a function.

VHDL A standard hardware description language that 
describes a function with an entity/architecture structure;  
IEEE Std. 1076–1993.

VLSI Very large-scale integration; a level of IC complexity in 
which there are from more than 10,000 to 100,000 equivalent 
gates per chip.

volatile The characteristic of a programmable logic device that 
loses programmed data when power is turned off.

wait state A system bus delay equal to one processor clock 
cycle. Wait states are used to ensure that the system bus timing 
satisfies the address, data, and control timing specifications of a 
system.

WAN Wide area network.

weight The value of a digit in a number based on its position in 
the number.

word A group of bits or bytes that acts as a single entity that 
can be stored in one memory location; two bytes.

word capacity The number of words that a memory can store.

word length The number of bits in a word.

WORM Write once-read many; a type of optical storage device.

write The process of storing data in a memory.

zero suppression The process of blanking out leading or 
trailing zeros in a digital display.

563



564



Index

Index
Page references followed by "f" indicate illustrated
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A
Acceptor, 553
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accuracy, 3, 345, 486
Addend, 69, 553
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561
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ripple carry, 241, 252, 256-257, 294, 297, 561
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Amplification, 6, 554
Amplifier, 6-7, 498-499, 559
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op-amp, 559
operational, 559
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463, 553, 560-561
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466, 553, 555-556, 559-561
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Analog signal, 553, 560-561
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Analog-to-digital converter, 7, 207, 210, 553, 556
Analog-to-digital converter (ADC), 7, 553

AND array, 21, 113, 149, 151-152, 163, 553, 561
AND gate, 15, 113, 115-116, 123-126, 129, 134, 154,
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195-197, 203-204, 218, 224, 228, 412,
444-445, 447, 466, 472, 478, 553
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Anode, 279
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497, 502-503, 514, 522-523, 525, 554, 561
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288-290, 296, 348-349, 351-356, 407-408,
411, 461-462, 483, 507, 549-550, 553-554,
558, 560, 563

Arithmetic logic unit (ALU), 187, 556
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Assembler, 114, 271, 553, 555, 559, 561
Assembly language, 486, 553, 555, 557
Associative laws, 116
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371, 375, 553
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375, 553
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491-495, 503, 521, 534, 542, 553, 560-561
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467-468, 553, 561

Asynchronous SRAM, 492, 495, 534
Attenuation, 33, 553
Audio, 3-4, 6-7, 25, 447, 473, 528, 555
Augend, 69, 553
Avalanche-induced migration, 509
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553-555, 557, 559
numbers, 43, 48, 76, 83-84, 102, 553-554, 557,

559
time, 9, 32, 38, 43, 50, 292, 497, 553-555, 557, 559

Base address, 497, 553, 559
Base-collector junction, 554
Base-emitter junction, 554
batteries, 340
Battery, 226, 514
BCD (binary coded decimal), 86
BEDO DRAM, 492, 502-503, 534, 553
Bed-of-nails testing, 363
Bias, 67, 416, 556, 561

diode, 556, 561
emitter, 556
forward, 556
reverse, 416, 561
zero, 561

Biased exponent, 67-68
BiCMOS, 27, 38, 553
Bidirectional counter, 449
Binary, 1, 4-5, 7-8, 10-13, 16-20, 28-29, 35, 38-41, 43,

47-48, 50-74, 76-79, 81, 83-87, 89-93, 96,
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504-506, 524, 526, 535, 547, 553-562

adder, 16-17, 28-29, 62-63, 72, 74, 145, 241-243,
246, 250-251, 253-255, 259, 273, 289,
294-296, 302, 305, 311, 553-554,
557-558, 561

arithmetic, 16-17, 20, 38, 47-48, 57, 60, 63, 69, 87,
90, 102, 105-106, 108, 114, 553, 556,
558

data, 1, 4-5, 7, 12-13, 16-19, 28, 35, 38-41, 43, 76,
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241-242, 244, 246, 260, 265, 276, 278,
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524, 553-555, 560

division, 17, 19, 54, 56-57, 59, 74, 79, 84, 87, 98,
101-102, 105-106, 455, 555-556, 561-562

fraction, 53-54, 56, 67, 101, 105, 526
information, 7, 10-12, 17-19, 35, 39, 47, 62, 92,

102-103, 276, 283, 286, 294-295, 486,
488, 497, 526, 553-557, 559-561

multiplication, 17, 54, 56-57, 59, 71-73, 87, 101,
105, 114-115, 123, 191, 553-554, 560

number, 5, 7, 11-12, 16-20, 28-29, 35, 38, 40,
47-48, 50-74, 76-79, 81, 83-87, 89-93,
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286, 291, 449-450, 463, 471, 554,
556-559, 561-562

sequence, 4-5, 10-11, 13, 18-20, 29, 35, 39, 41, 43,
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243-244, 278, 283, 286, 294-295,
299-300, 305, 311, 335-336, 374, 430,
432, 436-437, 439-440, 442-447,
449-450, 455-457, 467-468, 470-471,
497, 553-555, 557-559, 561-562

subtraction, 16, 50, 57-58, 63, 70-72, 74, 81, 87,
98, 102, 105-106, 108, 555

system, 1, 4-5, 7-8, 11-13, 16-17, 28-29, 35, 38-39,
43, 47-48, 50-51, 66, 68, 76-78, 83-84,
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Binary coded decimal, 47, 86, 103, 106, 109, 553
BIOS, 507, 526, 553
Bipolar, 27, 38, 146-148, 162, 164, 339-340, 374, 504,

553-554, 556, 563
Bistable multivibrator, 366, 555
Bit, 1, 4, 7-8, 10-13, 18-19, 36, 38-43, 50-55, 57, 60,

62-74, 76-78, 84-93, 96-99, 101-103, 105,
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513-514, 516-517, 519-522, 524, 527-529,
536, 538, 541-542, 544, 553-562

Bit time, 10-11, 301, 370, 554, 559
Bitstream, 24, 45, 554
Boolean algebra, 113-114, 116-117, 163, 166, 172,

554-555
associative laws, 116
commutative laws, 116
distributive law, 116, 555
domain, 555
expressions, 117
laws, 113-114, 116-117
rules, 113-114, 117, 554
simplification, 555

Borrow, 16-17, 58-59
Boundary scan, 365, 376, 554
Breadboard, 357
Breakdown, 187
bubbles, 137, 268, 332
Buffer, 35, 210, 279, 349, 351, 353, 356, 408, 411,

462, 498-499, 522, 549-550, 554, 563
Burst, 98, 364, 491-492, 495-497, 502-503, 522, 534,

542, 553
Bus, 12, 19, 35, 265, 277, 291, 326, 395, 398, 482,

486, 489-490, 493, 496, 498, 516-520, 535,
538, 541, 544, 553-558, 560-563

address, 265, 482, 489-490, 493, 496, 498,
516-520, 535, 538, 541, 544, 553, 558,
560-563

control, 35, 326, 493, 496, 516-520, 554-557,
561-563

EIA-232, 556, 561
external, 265, 326, 398, 496, 553, 555-556,

561-562
FireWire, 556-557
IEEE-1394, 556
internal, 19, 498, 518, 553, 557-558, 560, 562
ISA, 558
local, 554, 556, 558
PCI, 558, 560, 562
RS-422, 561
RS-423, 561
USB, 12, 395, 561, 563

Bus arbitration, 554
Bus contention, 554
Byte, 47, 66, 100-102, 125, 133, 265, 398, 415,

447-448, 482, 486-490, 494-495, 523-524,
531, 535-537, 541-542, 553-554

C
Cache memory, 497, 534, 554
Capacitance, 9, 33, 327, 343

input, 33, 327, 343
output, 33, 327, 343
stray, 9
transition, 9, 327

Capacitor, 291, 341-342, 344-346, 367, 371, 381,
498-499, 502, 514, 534, 537, 542, 561

charging, 344-346
decoupling, 291, 344-345
fixed, 561
variable, 291

capacitors, 25, 36, 291, 491, 525, 535, 544, 555
types, 25, 36, 291, 491, 535

Capacity, 28, 341, 371, 374, 387, 391, 416, 482-489,
491, 494, 497-498, 504, 508, 511, 515-516,
519, 521, 528-529, 534-536, 538, 540, 542,
554, 556, 563

Carrier, 4, 6, 25-26, 560
Carry, 11, 16-17, 47, 56-57, 62, 69-71, 80-83, 87-89,

115, 145, 241, 246-259, 262, 265, 286,
288-289, 293-295, 297, 304, 311, 391, 554,
557-558, 561-562

propagation, 256-257, 294, 297, 554, 558, 561-562
Cascade, 430, 452-453, 467, 554
Cascaded counter, 453-455, 463-464
Cascading, 241, 253, 259, 293, 393, 452-453, 455,

554
Cathode, 30, 267-269, 279, 304
CCD (charge-coupled device), 525
CD-ROM, 19, 484, 525, 529-530, 535, 541, 543, 554,

556
CD-RW, 484, 525, 530, 535, 543, 554
Cell, 25, 152, 163, 327, 365, 482, 487, 491-494,

498-499, 503-505, 507-509, 511-514, 525,
530-532, 535-538, 553-554, 556

cells, 151, 163, 327, 365, 487, 491-492, 498, 504,
511-514, 531-535, 542-543, 553, 556, 558,
561-562

secondary, 498
Channel, 25, 30-33, 35-36, 169, 214, 525, 557,

559-562
Channel count, 35
Charge, 341, 346, 473, 498-499, 502, 509-513,

520-521, 525, 535, 543, 554, 556
Checkerboard pattern, 532-533
Checksum, 98, 531-533, 541, 543, 545
Chip, 21, 23, 25-27, 39, 42, 44, 219, 264, 284, 463,

487-488, 492-499, 507-508, 510-511, 519,
545, 553, 557-560, 562-563

Chips, 488, 494, 497, 516, 520-521, 545, 560-561
Clear, 78, 125, 316, 332-333, 339-340, 366-367, 389,

396, 398, 418-419, 426, 432, 439, 463,
469-470, 554

Clock, 1, 5, 11-13, 35, 39, 41, 43, 45, 155, 159, 166,
316, 319-321, 326-340, 345, 348-357, 361,
365-372, 374-375, 385-387, 389-394, 396,
398-401, 403-407, 409, 411-412, 415-417,
419-423, 427, 430-438, 441-442, 444-450,
452-456, 458-459, 463-464, 466-477, 493,
495-498, 503, 521, 525, 534, 554-557, 561,
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Clock generator, 320
CMOS, 8, 27, 38, 146-148, 151, 158, 162, 164, 173,

254-255, 261, 339-340, 553-554, 556-557
Coarse-grained, 23
Coaxial cable, 554
Code converter, 28-29, 242-245, 506

BCD-to-binary, 244
Codec, 554
Codes, 4-5, 7-8, 17, 20, 36, 47-49, 51-53, 55-68,

70-75, 77-93, 95-112, 210, 263, 266, 273,
279, 285, 288, 296, 298, 305, 319, 354, 385,
407, 506, 553, 555, 560

Collector, 141, 554, 559
Combinational logic, 5, 181-192, 194, 196-240, 241,

270, 273, 280, 317, 319-320, 350-351, 354,
358, 433-434, 476, 554

Common, 4, 9, 25-27, 30-31, 38, 41, 66, 72, 81, 86,
92, 117, 129, 171, 212, 216-217, 228, 241,
267-269, 276, 279-280, 304, 400, 431, 435,
439, 442, 487, 498-499, 502, 519-520, 526,
554, 557, 559

Communications, 2, 241, 398, 555-556, 562
Commutative laws, 116
Comparator, 16, 20, 28, 40, 43, 45, 241-242, 244-246,

259-261, 294-295, 297-298, 304, 385-387,
406-408, 410, 422, 513, 554

Compensation, 33
Compiler, 1, 24, 39, 444, 554
Complement, 47, 60-66, 68-71, 73-76, 81-83,

102-103, 105-106, 113-114, 118-119, 123,
161, 163, 185, 193, 195, 217, 272, 278, 280,
296, 304, 328, 331, 400, 555, 558

Component instantiation, 204, 206, 218, 228
Component, VHDL, 203, 206, 218, 228
computers, 2, 4, 7, 27, 47-48, 50, 52, 57, 60, 63,

66-67, 69-70, 72-74, 76, 83, 87, 92, 96, 98,
124-125, 246, 250, 265, 296, 327, 345,
396-397, 447, 482, 486-489, 497, 499, 502,
511, 513, 526, 559

conductors, 26, 150, 286, 398, 553, 560
Control bus, 516-520, 555, 562
Control unit, 555
Controller, 5, 207, 265, 362, 497-498, 515, 554-555,

560
Conversion, 16-17, 38, 47, 53-54, 56, 77-80, 84-86,

90-91, 102, 105, 108, 192, 273, 275, 396,
398, 421, 439, 447, 505, 538, 553, 555, 557,
561

binary-to-decimal, 53
binary-to-hexadecimal, 77
binary-to-octal, 85, 102
decimal-to-binary, 47, 54, 79, 105, 108
decimal-to-hexadecimal, 79
decimal-to-octal, 84
hexadecimal-to-binary, 77
hexadecimal-to-decimal, 78
octal-to-binary, 84-85, 102
octal-to-decimal, 84

conversions, 50, 56, 192, 273, 275, 397, 503-504,
547-548

Converter, 7, 17, 28-31, 185, 192, 207, 209-210,
242-245, 275, 296, 302, 304, 384, 395-396,
409, 412-413, 421, 473, 506, 553, 555-556

Converters, 241-242, 273, 299, 304
Coprocessor, 67
Core, 555-557, 560, 562

Counter, 19-20, 28-29, 42-44, 50-52, 127, 129, 171,
242-243, 245, 291, 321, 336-337, 384, 396,
400-405, 412, 414-416, 420-422, 427,
430-478, 480, 497, 500, 502, 553-555,
557-559, 561-563

asynchronous, 430, 435-442, 449, 453, 458, 460,
467-470, 472, 474, 553, 561
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553-555, 557-559, 561-562
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446-447, 452-456, 458-460, 462-463,
467-476, 480, 555

ripple, 431, 435-438, 453, 458, 468-469, 561
synchronous, 415, 430-432, 442-446, 449-450,

453, 455-458, 460-461, 463, 467-472,
474, 497, 502, 561-562

up/down, 430, 449-452, 455, 468, 471, 474-475,
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Counter decoding, 430, 457, 471, 474
Coupling, 32-33, 214, 412
Cross-assembler, 555
Crystal, 345, 515, 558
Crystal oscillator, 515
Curie point, 529
current, 7-8, 29, 36, 129, 136, 141, 147-148, 150, 170,

173, 243, 262, 291, 294, 340-341, 364, 371,
379, 407, 489, 493, 502, 509, 511-513, 526,
529, 555-557, 559-561, 563

bias, 556, 561
constant, 341
induced, 509
load, 141, 148, 513, 555, 563
probe, 36, 556, 560
source, 36, 340, 371, 509, 511-513, 555, 559-560
switching, 29, 243, 291, 563

Current sinking, 555
Current sourcing, 555
Cycle, 1, 7, 10, 30, 34, 38-41, 44, 127, 147, 160, 166,

280, 346-347, 351-352, 371, 375, 430, 434,
437, 444, 454, 456, 478, 494-495, 499-502,
508, 510, 521, 554, 556, 561, 563

D
D flip-flop, 316, 327-329, 333, 337-338, 340, 348-349,

354, 366-367, 369, 375, 387, 555
D latch, 316, 325-326, 338, 366-367, 492
Data, 1, 3-7, 12-13, 16-19, 24, 28, 30-31, 35-36,

38-41, 43-44, 76, 95, 98-101, 107-108, 114,
125, 133, 141, 147, 152, 155, 163, 173, 185,
200-201, 203, 205-206, 210, 217-218, 224,
228, 237, 241-242, 244, 246, 252, 256, 260,
265, 271, 276-289, 293-296, 300, 303, 305,
310-311, 313, 325-327, 329, 332, 339-340,
343, 359, 363, 366, 370-373, 375, 384-385,
387-400, 404, 406-407, 411-422, 424-427,
433, 447-448, 452, 456, 464, 467, 473,
482-505, 507-511, 513-532, 534-538,
541-545, 553-563

Data acquisition, 35
Data bus, 265, 398, 489-490, 493, 498, 516-520, 538,

541, 544, 555, 562
Data pattern generator, 36
Data register, 398, 489-490
Data selector, 276-278, 280-282, 294, 500, 555
Data sheet, 339, 371, 555
Data storage, 40, 286-287, 372-373, 387, 415, 483,

491
Data transfer, 12, 555-557
Data transmission, 185, 286-287, 395, 553-554, 559,

561
Data transmission system, 185, 286-287
dB, 486, 562
DC power supply, 37, 159
DC supply, 146-147, 340-341, 371, 379, 560-561
DC supply voltage, 146-147, 379, 560-561
Decade, 430, 432-433, 435, 439-440, 442, 446-447,

452-456, 458-460, 462-463, 467-476, 480,
555

Decade counter, 430, 432-433, 439-440, 446-447,
458-460, 462, 467-468, 471, 476, 555

decibels (dB), 562
Decimal numbers, 48-49, 54-55, 59, 69, 73, 75, 80,

86, 89, 104, 106, 255
Decoder, 18, 28-29, 40, 52, 129, 241-246, 254-255,

566



261-270, 279-280, 283-284, 290-296, 299,
302, 304-305, 312-313, 319-321, 337, 351,
354-355, 358, 374, 376, 381, 432-433,
440-441, 458-460, 472, 489-490, 494-496,
500, 502, 505-507, 538-539, 541, 554-555

4-line-to-10-line, 266, 295
4-line-to-16-line, 263, 283-284

Decoupling, 291, 344-345
De-emphasis network, 6
Delta modulation, 555
Demodulator, 559
Demultiplexer (DEMUX), 241, 283, 293, 555
Dependency notation, 280, 555
Design entry, 24, 42, 44, 153-154
Design flow, 23, 554-555
Detector, 91-92, 348-349, 529
Development board, 23, 153, 363, 562
Development software, 362-363, 410, 412, 554
Difference, 2, 7, 17, 25, 37, 41-42, 63, 70-71, 82-83,

103, 108, 116, 142, 151, 168, 210, 247, 256,
316-317, 321-322, 326, 338, 347, 350, 357,
368, 376, 391, 412, 430, 435, 454, 456, 482,
491, 495, 499, 502, 508, 521, 529-530, 532,
538, 553-555, 561

Digital, 1-15, 17-45, 47-48, 50-51, 57, 60, 62, 76,
86-87, 89, 98, 102, 107, 109, 113-114, 122,
129, 181, 207, 210, 212, 214, 241, 246, 254,
261, 276, 283, 285-286, 291, 293-295, 315,
317, 335, 340-342, 363, 366, 371, 383-384,
387, 395, 412, 429-431, 443, 466, 469, 473,
481, 513, 525, 528, 530, 535, 547, 549,
553-563

Digital clock, 431
Digital codes, 47, 89, 107, 109, 285, 553, 555
Digital electronics, 2, 48, 513, 558
Digital multimeter, 36
Digital multimeter (DMM), 36
Digital oscilloscope, 30-32
Digital waveform, 4, 10
Digital-to-analog (D/A) conversion, 555
DIMM, 520-521, 542, 555
Diode, 6, 136, 427, 509, 555-556, 558, 561

laser, 6, 558
light-emitting, 136, 558
optical, 6, 556, 558
pn junction, 556, 561
Schottky, 561
symbol, 136, 509, 555

diodes, 25, 36, 405, 416, 422
characteristics, 25, 36
silicon, 25

Direct addition, 72
Directional, 343
discharging, 344, 346
Discriminator, 6
Disk, 6-7, 19, 265, 482-485, 498, 507, 511, 514,

525-530, 534-535, 541, 543-545, 554,
556-558

Dissipation, 113, 146-148, 162, 170, 316, 339-341,
366, 371, 560, 562

Distortion, 33, 555
Distributive law, 116, 119-120, 555
Dividend, 74-75, 555
Division, 17, 19, 32, 34, 44, 54, 56-57, 59, 74-75,

79-80, 84, 87, 98, 101-102, 105-106, 142,
333-334, 345, 454-455, 555-556, 561-562

Divisor, 74-75, 79, 447, 555
DMM, 30, 36-37, 166
Domain, 186, 537, 555
Download, 24, 42, 44
Drain, 208, 511-512, 555
Droop, 9
DSP core, 556
duty cycle, 1, 10, 38-39, 44, 346-347, 352, 375, 556,

561
Dynamic input indicator, 326-327

E
earth ground, 158
Edge-triggered flip-flop, 316, 326-327, 329-330, 366,

556
EDO DRAM, 492, 502, 534, 556
EEPROM, 113, 151-153, 162-163, 166, 173, 504,

510-511, 514, 534, 542, 556-557
efficiency, 486
Electrical noise, 285
Electromagnet, 529, 543
Electromagnetic field, 529
electromagnetism, 558

Electron, 30
Electronic, 2, 8, 18, 25, 44, 92, 341, 359, 554-557, 560
electrons, 151, 510-513
Element, 39, 121, 134, 138, 195-196, 261, 289, 327,

388, 414, 483, 487, 535, 553-554, 558,
561-562

Emitter, 91-92, 554, 556
Encoder, 17, 28-29, 40, 91, 226, 241-243, 270-273,

294-295, 299, 301-302, 311, 384-386,
404-409, 416, 421-422, 427, 556, 560

keyboard, 241, 272, 302, 384, 404-405, 416, 421
priority, 241, 270-273, 294, 299, 404, 560

Energy, 147, 553
Enhancement, 560
ENIAC, 8
Entity, 155-157, 163, 173, 178-179, 200-206, 210, 224,

228-229, 236-239, 288-290, 296, 348-349,
351, 353-356, 407, 411, 461-462, 486, 536,
549-550, 556, 563

Enumeration, 96
Envelope, 4
EPROM, 113, 151-153, 162-163, 166, 173, 482, 504,

508-511, 514, 534-535, 539, 542, 556, 563
Equality, 193, 259-260
Equivalency, 134, 193
Erase, 511-513, 529, 535, 542
Error, 47, 90, 92, 96-99, 101-102, 104, 107-109, 112,

185-186, 285-288, 303, 305, 359, 426, 478,
541, 545, 555-556, 559

Error detection, 47, 96-97, 102, 107, 109, 185,
285-287, 555-556

Ethernet, 556
Even parity, 97-98, 101, 107, 185, 285-288, 303, 305,

556
Event, 302, 352, 550, 556-557, 562
Exclusive-NOR, 113, 142-144, 156, 162-163, 169,

173, 181-182, 185-186, 198, 200, 217, 228,
259, 556

Exclusive-OR, 113, 142-145, 162-165, 169, 173,
181-182, 184-186, 200, 210, 217-218, 228,
247-248, 273, 275, 285, 304, 306, 497, 556

Exponent, 66-68, 102, 108, 556
Extended ASCII, 96

F
Factoring, 117, 119-120
fall time, 9, 40-41, 556
Fast page mode DRAM, 492
Feedback, 321-322, 400, 414, 556, 559-560

negative, 322, 556, 559
positive, 560

Fiber, 559, 562
Field, 20, 22, 27, 38-39, 41, 43, 45, 155, 162, 363,

365, 508, 526, 529, 542, 555-557, 559
Fine-grained, 23
Fitting, 24, 45, 212
Fixed-function logic, 1, 25, 39, 42, 44, 164, 294, 414,

467, 556
Flag, 391, 550-551, 554, 556
Flash ADC, 556
Flash memory, 482, 511, 513, 515, 535, 542, 556
Flicker, 280, 302
Flip-flop, 19, 40, 316-317, 326-341, 348-349, 354,

366-372, 374-375, 387-388, 393, 396-397,
399-400, 402-403, 412-413, 415-417,
420-422, 427, 431-433, 435-436, 438,
441-442, 446, 450, 456, 466, 469-470, 472,
474, 476, 478, 514, 537, 554-558, 560-563

D, 40, 316, 326-338, 340, 348-349, 354, 366-370,
372, 374-375, 387-388, 393, 396-397,
399-400, 402-403, 413, 415-417,
420-421, 427, 432, 438, 441-442, 456,
466, 469, 472, 474, 476, 478, 537, 555

J-K, 316, 326-327, 329-330, 332-335, 338,
348-349, 366-367, 369-370, 374-375,
478, 558

S-R, 316, 326, 348, 367-368, 372, 375
Flip-flop transition table, 337
Floating gate, 511-513, 556
Floating level, 380
Floating-point number, 47, 66, 102, 556, 558
flux, 526
Flying probe testing, 363, 365
FM receiver, 6

block diagram, 6
Forward bias, 556
FPM DRAM, 492, 502, 534, 557
Fractional number, 52-53, 268
frequencies, 340, 447, 454, 471, 553

Frequency, 1, 3-4, 6-7, 9-13, 30, 33-34, 36, 38-43,
129, 146-148, 166, 170-171, 175, 214, 280,
283, 316, 333-335, 339-341, 343, 345-347,
351-352, 355, 371, 392-393, 396, 416, 431,
438, 447, 452, 454-455, 463-465, 467-469,
471, 473, 553-554, 556-557, 559, 561

break, 554
carrier, 4, 6
difference, 7, 41-42, 316, 347, 454, 553-554, 561
intermediate, 454
Nyquist, 559
oscillation, 345-346
radio, 556
side, 351
sum, 12, 166, 280, 346, 554, 557

Frequency division, 333-334, 556
Full-adder, 241, 246-251, 254-259, 288-289, 293-296,

301, 303, 554, 557
Full-duplex, 557
Full-modulus cascading, 455
Function, 1-2, 16-21, 24-25, 27-28, 36-40, 42-45, 95,

114-115, 123, 128-129, 133-134, 138, 149,
157, 163-164, 181, 185, 188, 193, 195-196,
200-204, 206, 210-211, 217-218, 228-229,
241-242, 246-248, 252, 257, 259, 262-264,
266, 268, 270-271, 276, 278, 280-283, 285,
288, 290, 294-295, 301, 303, 317, 326, 338,
346, 348, 364, 370, 392, 398, 414, 447, 457,
467, 483, 504, 553-560, 562-563

Function generator, 36, 241, 280-282, 364
Function table, 285, 301
Functional simulation, 24, 44, 557
Fuse, 113, 150, 152-153, 162-163, 166, 173, 365, 509,

537-538, 557
fuses, 150, 157, 509, 557
Fusible link, 509, 557

G
Gain, 385, 559, 563
Gate, 1, 14-15, 20, 22, 27, 38-41, 43, 45, 113-180,

181-184, 186-189, 192-193, 195-197,
203-206, 210, 212-219, 223-228, 235,
237-239, 247-248, 258-262, 277-278,
283-287, 296, 322, 372, 374-375, 385-387,
406-407, 409, 412, 421-422, 427, 432-433,
439-441, 444-447, 451-452, 457, 466,
472-475, 478, 494, 504, 509-513, 535, 553,
556-560, 563

Gated latch, 324
Gateway, 557
Generator, 30, 36-38, 44, 99-101, 104, 108, 127,

159-160, 166, 185, 217, 241, 276, 280-282,
285-287, 294, 301, 317, 320, 342, 364, 396,
412-413, 421, 427

pulse, 30, 36-38, 159-160, 166, 317, 342, 364, 396,
421, 427

signal, 30, 36-37, 44, 159, 217, 286, 317, 320, 412
Glass, 526
Glitch, 241, 291-294, 305, 363, 440-441, 458-459,

478, 557
GPIB (general-purpose interface bus), 557-558
Gray code, 5, 89-90, 92, 275, 299-300, 318-321, 336,

338, 350, 353-358, 380-381, 478, 506, 557
Ground, 32-33, 151, 158, 179-180, 212, 214, 216,

226, 228, 240, 253-255, 261, 268, 272,
280-281, 291, 302, 311, 313, 360-361, 372,
380, 412, 427, 463, 472, 475, 478, 480, 520,
555, 562

grounding, 158, 520

H
Half-adder, 241, 246-250, 293-295, 557
Half-splitting, 157-159, 163, 171, 173, 179
Handshaking, 557
Hard core, 557, 560, 562
Hard disk, 482-485, 526-528, 534-535, 557-558
Hardware, 20, 24, 45, 114, 153, 155, 157, 162-163,

288, 332, 345, 348, 357-358, 363, 366,
409-410, 412, 555, 557-558, 562-563

Hardware description language (HDL), 288, 348, 562
heat, 158, 509, 529
Hertz, 9, 557
Hexadecimal addition, 80
Hexadecimal numbers, 47, 76, 78-83, 106, 109
Hexadecimal subtraction, 81
High-level language, 557, 562
Hit, 484-486, 537, 542, 544, 557
Hold, 316, 339-341, 366, 375, 495, 498, 510, 520, 557
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Hold time, 316, 339-341, 366, 375, 495, 557
Hole, 25-26, 38
Hyper page mode DRAM, 502
hysteresis, 557

I
IC, 1, 20, 25-27, 38-40, 42, 44, 114, 141, 146, 148,

163-164, 170, 203, 214-216, 242, 260, 340,
343-344, 347, 372, 453, 463, 465-466, 504,
506-507, 541, 555, 557-560, 562-563

IC package, 555, 562
IEEE, 67, 113-114, 121, 124, 130, 134, 138, 153, 155,

162-163, 173, 201, 280, 289, 349, 351,
353-356, 365, 407, 411, 461-462, 549-550,
554-558, 563

IEEE 1394, 557
IEEE std, 121, 124, 130, 134, 138, 554-555, 558, 563
IEEE std. 1076-1993, 563
If statement, 352
Impedance, 557, 559
impedances, 148

maximum, 148
Implementation, 24, 44, 117, 153, 181-182, 188, 210,

217, 242, 247, 266, 277-278, 282, 303, 350,
358, 384, 401, 406, 409, 432, 446, 450, 454,
557, 560

Inequality, 259-261
Infrared, 530, 556
Input, 1, 5-6, 8, 14-18, 20, 22-23, 25, 28-29, 32-36,

38-40, 42-43, 62, 83, 98, 102, 107, 114,
116-119, 121-151, 155-156, 158-165,
167-169, 171-174, 180, 181-184, 186-191,
195-198, 200-205, 207-208, 210-217, 219,
222-229, 235, 237-238, 240, 242-243,
247-259, 261-268, 270-273, 276-302,
304-305, 310-311, 313, 319, 321-334,
336-337, 339-345, 348-357, 361, 363,
365-369, 372, 374-375, 380-381, 386-387,
389-401, 404, 406-407, 409, 412-414,
416-419, 421-422, 427, 431, 433-435,
437-438, 442, 444, 446, 450, 452-454, 456,
461-467, 469-472, 474-475, 478, 480,
492-496, 498-500, 504-508, 510, 518-519,
522, 538, 550-551, 553-557, 559-563

Input buffer, 35, 498-499
Input impedance, 559
Input/output (I/O) port, 265
Instance, 17, 77, 80, 83, 90, 97, 133, 204, 270-271,

273, 403, 449, 457
Instruction, 35-36, 50, 76, 87, 262, 271, 389, 391, 447,

485, 543, 555-562
Instruction pairing, 557
Instruction pointer, 558
instrumentation, 2, 561
Instruments, 1, 30-31, 33, 36, 38, 43-44, 171, 359,

363-364, 376, 555
In-system programming (ISP), 151, 154, 557
Integer, 62-63, 66, 68, 96, 250, 351-353, 550-551, 557
Integrated circuit, 1, 20, 25-27, 39, 555, 557-558, 560,

562
Integrated circuit (IC), 1, 20, 25, 39, 557, 560
integration, 27, 38, 44, 558-559, 562-563
Intellectual property (IP), 557
Interfacing, 2, 12, 153, 173, 397, 557, 559
Internal noise, 532
Internet, 558, 562
Interrupt, 557, 560, 562
Intrusion detection, 133
Inversion, 32, 121, 138, 165, 557
Inverter, 1, 15, 39-40, 43, 113, 121-123, 134, 138, 146,

148, 155, 161-165, 167, 172, 187, 195-196,
214-216, 218, 227, 238-239, 464, 466, 475,
519, 557

ISA bus, 558

J
J-K flip-flop, 316, 329-330, 332, 348-349, 366, 558
Johnson counter, 400, 402, 558
JTAG, 24, 113, 155, 157, 162-163, 166, 173, 365, 554,

558
Jump, 271
Junction, 27, 162, 504, 509, 553-554, 556, 558, 561,

563

K
Karnaugh map, 337, 553, 558
Key, 1-2, 38, 47-48, 93, 95, 102, 113-114, 163, 181,

217, 226, 241-242, 247, 272, 293, 316, 318,

327, 366, 384-385, 387, 404-410, 414, 416,
421, 423-424, 426-427, 430-431, 467,
482-484, 502, 535, 553

Keyboard encoder, 272, 302, 404-405
Keying, 553, 557, 561
Keyword, VHDL, 203-204

L
Lamp test, 268
Lands, 7, 529-530
Language, 24, 40, 45, 76, 87, 93, 114, 155, 157, 163,

288, 348, 486, 553, 555, 557-559, 562-563
Laser, 6, 19, 528-530, 535, 543, 558
Lasers, 537
Latch, 316, 321-326, 338, 348, 363, 366-368, 372,

375, 415, 452, 492, 498, 542, 558, 561
Latency, 483-485, 527, 537, 541, 544, 558
Latency period, 527, 558
LCD, 31, 558
Leading edge, 8-10, 200, 339, 558
LEDs, 141
Level indicator, 183
Level sensor, 136, 183, 225
Library, 23-24, 201, 203, 289, 349, 351, 353-356, 407,

411, 461-462, 484, 549-550, 562
Light-emitting diode, 136, 558
Light-emitting diode (LED), 136
Limiter, 6
Linear, 6-7, 528, 555
Linearity, 559
Listener, 555, 558
Literal, 114, 558
Load, 113, 141, 146, 148, 163, 212-215, 384, 387,

393-398, 404-405, 412-415, 418-419,
421-423, 425-427, 432-433, 455-456,
463-465, 467, 479, 513, 555, 558, 563

Loading, 19, 33, 148, 456, 554, 558, 563
Local bus, 558
Local interconnect, 558
Local oscillator, 6
Logic, 1-2, 5, 7-8, 14-25, 27-28, 30, 34-45, 51, 99,

113-180, 181-240, 241-249, 251-313,
316-327, 332, 336-338, 340-342, 345,
348-351, 353-358, 360-361, 363-365,
367-368, 371-372, 374-375, 380-381,
384-387, 391, 393-395, 398-399, 403,
406-414, 416, 420-422, 430-434, 446-447,
450, 452, 455, 457, 461-463, 467, 471,
475-476, 480, 493, 496-497, 499, 504,
506-510, 522, 538, 540, 549-550, 553-563

Logic analyzer, 34-36, 214, 225, 363-364, 412-413
Logic array block, 558
Logic array block (LAB), 558
Logic block, 22, 353-354, 554
Logic diagram, 182-184, 186, 210, 219, 226, 247,

258-259, 268, 271, 275, 277, 324-325,
337-338, 348-349, 386-387, 394-395, 421,
431-432, 447, 452, 455, 493, 557

Logic function, 123, 181, 188, 193, 195-196, 200-204,
206, 217-218, 228, 280-282, 288, 295, 348,
504, 553, 555-556, 560, 563

Logic function generator, 280-282
Logic gates, 113, 155, 181, 187-189, 216, 258, 457,

554
Logic level, 8, 121, 261, 280, 340, 412
Logic operations, 1, 14, 42-43, 187, 332, 553
Logic probe, 30, 37
Logic pulser, 30, 37
Logic signal source, 36
Look-ahead carry adder, 256-258, 297

M
Machine language, 76, 553, 558-559
Magnetic disk, 19, 483, 557
Magnetic storage, 526, 530
Magnetic tape, 483-484, 525, 528, 555-556, 561
Magneto-optical disk, 528-529, 558
Magnitude, 16, 47-48, 62-64, 66, 68-70, 72-73, 105,

108, 110, 241, 259, 294-295, 386, 406-408,
422, 558

Mantissa, 66-68, 102, 108, 556, 558
Mark, 4, 27, 359
Mask ROM, 504
Matrix, 23, 149-150, 163, 165, 404, 422, 507, 538, 553
Mean, 13, 72, 86, 157, 291, 340, 434, 441, 521
Memory, 5, 12, 19-20, 23-24, 31, 35-36, 52, 77, 124,

151-152, 155, 163, 260, 262, 277, 327, 363,
365, 387, 405, 410, 416, 433-434, 481-545,

553-563
cache, 260, 483-485, 491, 497-498, 503, 534,

536-537, 544, 553-554
CCD, 521, 525, 534, 543, 554
dynamic, 327, 482, 491-492, 497-498, 514,

534-536, 540, 543, 553, 555-557, 561
magnetic, 19, 482-484, 525-530, 535, 537, 541,

543, 545, 555-558, 561
magneto-optical, 19, 482, 525, 528-530, 541, 543,

558
nonvolatile, 151-152, 155, 163, 484, 491, 503, 511,

514-515, 525, 535-537, 542, 553,
556-557, 559

random access, 534-535
random-access, 19, 151, 163, 482, 484, 487, 491,

514, 524, 526, 535-536, 538, 542,
555-557, 561-562

read-only, 19, 151, 155, 163, 405, 482, 484, 491,
503-504, 508, 514, 529, 535-538, 542,
556, 561

static, 151, 163, 327, 482, 491-492, 514, 520, 534,
536, 538, 562

volatile, 24, 152, 155, 163, 327, 484, 491-492, 514,
535-537, 542, 555, 561-563

Memory access time, 485
Memory address, 487-488, 490, 524, 553
Memory array, 487, 489-490, 494, 496, 500, 507, 510,

513, 522, 553, 558
Memory cell, 492-494, 498-499, 507, 511, 514, 536
Memory depth, 35
Memory expansion, 482, 516, 520, 540, 542
Memory modules, 486, 520
Memory testing, 531
MFLOPS, 558
Microcontroller, 1, 24-25, 28, 39, 44-45, 558
Microphone, 6
Microprocessor, 11, 17, 19, 35, 69, 76, 93, 114, 124,

155, 187, 271, 277, 286, 397-398, 482, 486,
493, 495, 497-498, 503, 524, 531-533, 544,
553, 555-556, 558-559, 561

Minuend, 70-71, 558, 562
MIPS, 558
Mixer, 6
MMACS, 559
Mnemonic, 271, 559
Modem, 4-5, 12, 265, 559
Modulation, 2, 4-5, 553, 555, 557, 560-561

amplitude, 4, 553, 560-561
Modulator, 559
Modulo-2 addition, 98, 108
Modulus, 401, 415-416, 420, 430, 433-435, 439-441,

447, 452-456, 463-465, 467-468, 471,
473-474, 478, 559

Monostable, 316-317, 341, 344-345, 347, 365-367,
375, 559

Monostable multivibrator, 317, 341, 347, 366-367, 375,
559

Multimeter, 30, 36, 38
Multiplexer, 18, 28, 40, 45, 241, 244, 276-283, 286,

294-295, 300, 305, 313, 447-448, 555, 559
Multiplexer (mux), 241, 276, 294, 559
Multiplicand, 71-73, 559
Multiplication, 17, 54, 56-57, 59, 71-73, 87, 101, 105,

114-116, 123, 142, 165, 183-184, 191,
553-554, 560

Multiplier, 17, 45, 71-73, 559
Multisim, 116-117, 119-120, 122, 127-128, 135, 139,

143-144, 172, 182, 184-185, 189-190, 192,
195-196, 209, 227-228, 246-248, 250, 259,
263, 267, 274-275, 277, 304, 322, 333, 347,
357-362, 375-376, 390, 394, 399, 403,
409-412, 421, 435, 437, 439, 443, 446, 450,
457-458, 474

Multitasking, 559
Multithreading, 559
Multivibrator, 316-317, 320-321, 341, 344-345, 347,

366-367, 371, 375, 553, 555, 559
Music, 3, 6-7, 447

N
NAND gate, 113, 134-136, 138, 148, 156, 163, 165,

168, 172, 195-197, 205-206, 217-218, 227,
322, 439, 441, 475, 559, 563

Natural, 40, 559
Negation indicator, 121
Negative logic, 8
Negative-AND, 138, 140-142, 162, 169, 173, 193,

217-218, 239, 284, 559
negative-going pulse, 9
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Negative-OR, 134, 136-138, 162, 168-169, 172, 193,
205, 215, 217-218, 278, 322, 427, 559

Netlist, 24, 44-45, 556-557, 559, 562-563
Nibble, 251, 487, 492, 536, 559
NMOS, 164, 559
Node, 181, 212-214, 217, 559
Noise immunity, 559
Noise margin, 559
Noise ratio, 562
Nondestructive read, 490-491
Nonperiodic, 9, 41
Nonvolatile memory, 514, 536
NOR gate, 113, 138-140, 143, 156, 163-164, 169, 172,

195-197, 216-219, 239, 559, 563
NOT operation, 14
NOT-AND, 134
NOT-OR, 138
Null, 93, 95
Nyquist frequency, 559

O
Object code, 555
Object program, 559
Octal numbers, 47, 76, 83, 85-86, 106, 109
Odd parity, 97, 107, 285, 288, 559
Offset address, 558-559
Ohmmeter, 37
Op-amp, 559
Open input, 212-213, 463, 465
Open output, 212-213, 216
Open systems interconnection, 560
Operand, 250, 262, 559
Operational amplifier, 559
Operational amplifier (op-amp), 559
Optical storage, 482-483, 525, 528-530, 537, 541,

543, 556, 563
OR array, 21, 561
OR gate, 15, 113, 130-131, 133, 142, 144, 156,

163-165, 168, 172, 182-184, 186-189, 192,
195-197, 203-204, 210, 217-218, 227, 235,
239, 385-386, 406, 409, 558-560

OR gates, 133, 142, 185, 192-193, 195, 210, 215,
217-219, 394, 560, 562

Oscillation, 345-346
Oscillator, 6, 317, 320-321, 344-345, 347, 351,

358-361, 366-367, 515, 560, 562
feedback, 321, 560

Oscilloscope, 30-35, 37-38, 40, 43, 127, 158, 160,
166, 169, 212, 214, 291, 342, 358, 363-364,
374, 412, 466, 560

analog, 30-31, 37-38, 40, 43, 466, 560
digital, 30-35, 37-38, 40, 43, 212, 214, 291, 342,

363, 412, 466, 560
oscilloscopes, 30-31, 34, 292
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461-476, 478-480, 492-496, 498-500, 502,
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534, 536-537, 540, 550-551, 553-563

Output impedance, 559
Overflow, 69-70, 102, 560
Overshoot, 9, 34

P
Package, 21, 23, 25-27, 40, 44, 114, 152, 162, 203,

412, 510, 555, 558, 560, 562
Packets, 525, 554
Page, 95, 219, 221, 492, 500-502, 534, 557
Page mode, 492, 500-502, 534, 557
Parallel adder, 250-255, 289, 295, 297
Parallel-to-serial conversion, 447
Parity, 47-48, 96-98, 101-102, 104, 107, 185-186, 217,

241-242, 285-288, 294, 296, 300-301, 303,
305, 396, 556, 559-560

Parity generator/checker, 285, 294
Partial decoding, 439
Partial product, 72-73
PCI bus, 558, 560
Period, 1-2, 7, 9-11, 13, 19, 28, 30, 33-34, 38-41, 43,

160, 166, 242, 244, 305, 342, 346, 364, 393,

438, 473, 498, 502, 504, 527, 541, 554, 556,
558, 560

Periodic, 9-11, 38-39, 41, 333, 367, 554, 557, 560
Phase, 530, 561
Phase shift, 561
Photodiode, 530
Physical address, 559-560
Pin numbering, 26-27
Pins, 21, 23, 25-26, 45, 155, 212, 363, 412, 520-521
Pipeline, 555-556, 560
Pipelining, 262, 560
Pits, 7, 529-530
Place-and-route, 42, 45
Platform FPGA, 560
PLD programming, 40
PMOS, 560
Pointer, 524, 558, 560
Polarity indicator, 134, 138
Polarization, 526, 529
Pole, 365, 563
Polling, 560
Pop operation, 524
Port, 155-156, 173, 178-179, 200-206, 210, 224, 229,

237-239, 265, 271, 288-290, 348-349, 351,
353-356, 407-408, 411, 461-462, 515,
549-550, 553, 557, 560

Port map, 204, 206, 229, 237-239, 289, 353-354, 356,
408, 411, 461-462, 549

Positive logic, 8, 560
positive-going pulse, 8-9
Power, 6, 8, 24-25, 30, 37-38, 52, 67, 84, 101, 104,

113, 140, 146-148, 152, 155, 157-160, 162,
165, 170, 173, 212, 219, 316, 327, 339-341,
345, 366, 371, 389, 404-405, 412, 421, 463,
472, 484, 487, 491-492, 503, 510-512,
514-515, 529-530, 536, 542, 544, 559-560,
562-563

ratio, 38, 463, 562
true, 38, 366, 412, 536, 560

Power amplifiers, 6
Power dissipation, 113, 146-147, 316, 339-341, 366,

371, 560, 562
Power of ten, 104
power supplies, 37
Power supply, 30, 37, 159
powers of ten, 49
Precision, 37, 67-68, 103, 105
Prefetching, 560
Preset, 29, 44, 242-243, 304, 316, 332-333, 339-340,

366-367, 385, 387, 403-404, 420, 433, 452,
456, 464-465, 473-475, 478, 560

Printed circuit board, 215, 291, 557
Priority encoder, 241, 271, 294, 560
Probe, 30-31, 33, 36-38, 158, 166, 214, 358-361, 363,

365, 376, 410-411, 556, 560
Probe compensation, 33
Procedure, 55-56, 59, 77, 79, 85, 88, 157-158,

160-161, 190, 214, 260, 302-303, 372, 387,
409, 412, 421, 444, 477, 533, 538
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Product, 17, 56, 59, 71-73, 75, 108, 113-115, 117, 121,

146-148, 154, 162-163, 165-166, 170,
182-184, 187-190, 193, 199, 217, 341, 453,
455, 467, 528, 553, 555, 560, 562
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Program, 24, 36, 39-40, 44, 76, 93, 114, 149-150, 163,

165, 187, 200, 203-206, 210-211, 217-218,
224, 228, 271, 290, 301, 303, 348, 351-355,
357-358, 372, 376, 406-407, 409, 463,
484-485, 509-510, 538, 553-557, 559-562

Programmable array, 152, 560
Programmable interconnect array (PIA), 560
Programmable link, 149-150, 553, 556-557
Programmable logic, 1, 20-21, 23, 39-40, 42-43, 45,

113, 149, 153, 170, 173, 242, 365, 508,
555-557, 560, 562-563

Programmable logic device (PLD), 20, 560
Programmer, 24, 87, 150-151, 153, 162, 359, 510
Programming, 20, 23-25, 40, 42, 78, 133, 149-155,

157, 162-163, 166, 173, 203, 288, 348,
350-351, 363, 372, 406, 412, 444, 484, 505,
508-514, 539, 542, 553-554, 556-558, 562

Programming fixture, 562
PROM, 155, 166, 482, 503-504, 508-511, 534, 536,

538, 542, 561-562
Propagation delay time, 113, 146, 163, 187-188, 316,

322, 339, 366, 416, 561-562
Protocols, 558
Pseudo-operation, 561

Public address system, 6
Pull-up resistor, 272, 561
Pulse, 1, 4-5, 7-10, 13, 28-30, 32-34, 36-43, 122-123,

125, 129, 131-132, 135, 139, 144, 146, 148,
159-160, 165-166, 171-172, 181, 197, 200,
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316-317, 326-335, 337, 339-349, 359, 361,
364-367, 370-372, 374-375, 381, 385, 387,
389-394, 396, 399-401, 403-404, 415, 417,
419, 421-422, 427, 431-438, 441-442,
444-447, 449-450, 452-456, 463, 466,
469-470, 474, 495-496, 503, 510, 521, 526,
553, 555-556, 558-563

Pulse transition detector, 349
Pulse waveform, 144, 181, 197, 222, 228, 553
Pulse width, 9, 223, 341-342, 345, 347, 367, 381, 556,

561
Pulse width modulation, 561
Pulse-code modulation, 4-5
Pulser, 30, 37-38, 166
Push operation, 524

Q
Q, 83, 95, 212, 235, 322-335, 337-339, 341-343,

348-349, 352-354, 366-373, 375-379, 381,
386-406, 408-427, 431-432, 435-453, 455,
457-463, 466-473, 475-480, 497, 549-550,
554, 560

Quadrature, 561
Quality, 154, 157
Quantization, 3, 555, 561

error, 555
noise, 3

Queue, 561
Quotient, 17, 54-55, 74-75, 79-80, 84, 104, 108, 561

R
Race, 561
Radar, 2
RAM stack, 524
Ranging, 20, 22, 66, 515, 528
RC circuit, 9, 365
Read, 19, 76, 86, 102, 114-115, 123, 151, 155, 163,

262, 286, 405, 426, 482, 484-486, 488-496,
498, 500-504, 508, 510-514, 521, 524-532,
534-538, 542, 544, 554-558, 560-561, 563

Read/write head, 526, 561
Real mode, 561
Real number, 66
Real time, 358-359, 556
Receiver, 6, 98-99, 185, 397-398, 562
Rectangular outline symbol, 182-183, 219
Recycle, 380, 430, 432-434, 436, 439-441, 444, 447,

467-468, 474-475, 561
Redundancy, 47, 96, 98, 102-104, 109, 143, 555
Refresh, 498-500, 502-503, 525, 542, 561
Register, 19, 28-29, 40, 42-43, 45, 129, 242-246, 250,

296, 304, 308, 373, 384-400, 404-424,
426-427, 483, 489-490, 496-497, 499-500,
521-524, 553-554, 558, 560-562

Register array, 561
Register stack, 523
Regulation, 340
Relocatable code, 561
Remainder, 17, 54-55, 74-75, 79-80, 84, 98-101, 104,

110, 112, 561
Removable storage, 484
Repeated division-by-2 method, 54, 57
Reset, 24, 29, 42, 44, 129, 159-161, 171, 179, 242,

246, 316, 321-325, 327-333, 335, 344-345,
347, 352, 366-368, 371, 379, 388-389, 393,
396, 407, 412, 420, 427, 432-434, 436,
440-442, 469, 476, 554, 558, 561

Resistance, 9, 33, 36-37, 150, 343, 371
Resistor, 136, 158, 272, 341, 343-344, 367, 371, 381,

504, 520, 561-562
chip, 562

Resolution, 92, 561
ADC, 561

Reverse bias, 561
Ring, 91, 384, 400, 402-405, 414-416, 420, 427, 561
Ring counter, 400, 402-405, 420, 427, 561
Ringing, 9
Ripple blanking, 268
Ripple counter, 453, 561
rise time, 9, 40-41, 561
Rising edge, 228, 396
RMS, 37
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ROM access time, 508
Router, 561
RS-232, 556, 561
RS-485, 561

S
Sample, 35, 413, 562
Sampling, 4, 30, 35, 363, 559-561
Sawtooth, 30
Schematic, 24, 137, 153-154, 162, 372, 557, 561
Schmitt trigger, 557
scientific notation, 556
SCSI, 561
Seat belt alarm, 129
Sector, 91-92, 527, 545, 558
Security system, 384-385, 406-407, 409, 549-551
Seek time, 527, 561
Segment, 18, 40, 52, 87, 241-244, 254-255, 261,

267-269, 279-280, 283, 294-296, 299,
302-303, 305, 311, 473, 553, 561

Semiconductor, 19, 27, 43, 327, 410, 482-483, 486,
491, 503, 509, 525, 534-537, 542, 554-556,
558-563

Semiconductor memory, 410, 482, 486, 535-537, 542,
554-556, 561-562

Sensitivity, 412
Sensor, 5, 25, 28-29, 51, 136-137, 140-141, 159-160,

171, 183, 206-207, 209, 225, 243, 245, 319,
321, 350-351, 353-354, 356-357, 451-452,
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Sequence control, 18, 29, 243
Sequential timer, 343-344
Serial data, 244, 283, 370, 389, 393-400, 411-412,

417-418, 421, 447-448, 473, 561
Set, 2, 14, 17, 24-25, 27, 30, 36-39, 43, 51-52, 54, 77,

96, 133, 158, 160, 168, 212, 214, 242, 249,
265, 280, 296, 298, 311, 316, 321-323, 325,
327-333, 339-344, 347, 351, 353, 361, 364,
366-367, 371, 375, 384-385, 387-389, 393,
398, 406-407, 412, 420-421, 427, 432-433,
443, 447, 474, 480, 489, 492, 496-497, 524,
532-533, 553-555, 558-562

Set-up time, 316, 339-341, 366, 375, 561
Seven-segment display, 268
Shift register, 384-392, 394-395, 398-400, 406-412,

414-416, 418-424, 426, 522, 553, 558
parallel in/parallel out, 388, 395
parallel in/serial out, 388, 394, 398
serial in/parallel out, 388, 391, 398, 414
serial in/serial out, 388-389, 391-392

Shock, 158
Shorted input, 212, 214
Shorted junction, 509
Shorted output, 212, 214
Sign bit, 63-68, 73, 103, 562
Signal, 3-7, 30, 32-33, 36-37, 39, 44, 129, 155,

157-159, 163, 171, 173, 179, 181, 203-205,
212, 214-215, 217-218, 237-239, 242, 286,
289, 291, 316-320, 336, 339, 345, 349-351,
353-358, 360, 362-363, 365-367, 369,
371-372, 374, 376, 380-381, 404, 406-408,
411-412, 422, 431, 454, 461-462, 466-467,
469, 471, 473, 495, 502, 549, 553-557,
559-562

periodic, 39, 367, 554, 557, 560
Signal tracing, 181, 212, 214-215, 217, 562
Signal, VHDL, 203
Signal-to-noise ratio, 562
Signed binary numbers, 65, 69, 72-73
Sign-magnitude, 47, 62-64, 68, 105, 108, 110
Silicon, 25, 44, 509-510
SIMM, 520
Simulation, 24, 42, 44, 209, 274, 357-363, 366, 376,

410-412, 557, 563
Simulation time, 358
Sine wave, 4, 553, 557, 561
Single-ended, 561-562
SODIMM, 520
Soft core, 560, 562
Software, 1, 20, 23-24, 44, 93, 128, 151, 153, 155,

159, 162-163, 166, 271, 332, 357-363, 366,
376, 389, 409-410, 412, 531-533, 554-557,
559, 561-563

software packages, 554
Source, 24, 27, 32, 35-36, 39, 158-159, 244, 250, 295,

326, 340, 345, 354-355, 371-372, 387, 509,
511-514, 521, 554-555, 559-560, 562

Source code, 554-555
Source program, 354, 559, 562

Space, 20, 26, 93, 473, 484, 561
Speaker, 6-7
Spectrum, 556
Speed-power product, 113, 146-147, 562
Square wave, 9, 280, 333, 345
S-R latch, 322-324, 348
SSOP, 26-27, 562
Stability, 345
Stack, 521, 523-525, 527, 535, 541-543, 557-558
Stack pointer, 524
Stage, 158, 252, 256-258, 384, 387, 391-392, 394,

399, 401, 403, 414-415, 421, 427, 445, 452,
469, 472, 478-479, 553, 555-556, 562

Start bit, 396-397, 427
State diagram, 317-319, 361, 374, 434-435, 562
State machine, 430, 433-434, 467, 474, 558-559, 562
Static, 151, 163, 261, 327, 482, 491-492, 514, 520,

534, 536, 538, 562
Static charge, 520
static electricity, 520
Static memory, 492, 562
Std_logic, 201, 289, 349, 351, 353-356, 407-408, 411,

461-462, 549-550
Step, 4-5, 24-25, 49, 51, 56, 73-75, 79-80, 84, 87,

160-161, 191, 214-215, 217, 414, 421, 557,
559, 562

Stop bit, 396
Storage, 3, 5, 16, 19-20, 28-29, 38, 40, 98, 136-137,

181, 183, 203, 206, 243, 272, 286-287, 317,
321, 327, 342, 372-373, 384-385, 387-388,
414-416, 421, 481-515, 517-545, 553-558,
560-563

Storage tank system, 206
String, 70, 562
Strobing, 291, 293, 457, 459-460, 562
Subroutine, 562
Substrate, 525, 529
Subtracter, 16, 562
Subtraction, 16, 50, 57-58, 63, 70-72, 74, 81, 87,

98-99, 102, 105-106, 108, 142, 555
Subtrahend, 70-71, 562
Sum, 12, 16-17, 28-29, 49, 53-54, 56-57, 62, 69-73,

78, 80, 87-89, 98, 101-103, 105, 109,
113-115, 121, 145, 163, 166, 182-184,
187-188, 193, 217, 242-256, 280, 285,
288-289, 293-297, 310-311, 346, 527, 532,
554, 557, 560, 562

Sum term, 113, 115, 163, 187, 562
Superheterodyne, 6
Supply voltage, 146-147, 344, 367, 379, 560-561
Surface-mount, 25-26, 44, 562
Switch, 14, 18, 37, 129-130, 140-141, 151, 171, 219,

226, 239, 254, 343, 358, 360-361, 374, 405,
410, 421-422, 427, 498, 563

Switching speed, 146
Synchronizing, 555
Synchronous, 316, 326-327, 329, 332-333, 365-366,

415, 430-432, 442-446, 449-450, 453,
455-458, 460-461, 463, 467-472, 474,
491-492, 495-497, 502-503, 534, 542, 556,
560-562

Synchronous burst SRAM, 502
Synchronous counter, 430, 442-443, 449-450, 457,

468, 562
Synchronous DRAM, 492
Syntax, 157
System software, 531

T
T3, 9, 12, 18, 126, 131, 144, 267
T4, 12, 126, 131, 144, 267
Talker, 555, 562
Tape, 19, 483-484, 525, 528, 541, 543, 545, 555-556,

561-562
Target device, 113, 153, 163, 554-555, 557, 562
Telecommunications, 4
Telemetry, 522
television, 2, 25
Temperature controller, 207
Terminal count, 432, 453-457, 464, 468, 554, 562
Terminated, 562
Testing, 30, 35, 37-38, 155, 158, 162, 214, 302-303,

357-358, 360, 363-366, 409-410, 412, 473,
482, 531-533, 541, 553-554, 556

Text editor, 362
Text entry, 153, 562
Threshold, 344-345, 367, 512, 557
Threshold voltage, 367
Throughput, 562

time constant, 341-342, 344, 358
Time delay, 392, 415
Time division multiplexing, 19, 562
Timer, 5, 130, 159, 316, 318-321, 341, 343-345, 347,

350-356, 358-361, 366-367, 371, 376, 381,
408-409, 562

Timing diagram, 1, 11, 39, 113, 122, 126, 131-132,
137, 139-141, 160, 163, 168-169, 174,
197-198, 200, 214, 266, 278, 284, 287, 297,
300, 335, 370-371, 396, 412, 418, 436-440,
443, 445-447, 450-451, 453, 457, 459,
471-472, 501, 508, 510, 562

Timing simulation, 24, 44, 563
Tip, 141, 200, 212, 214, 261, 291, 342, 363, 412, 466
Toggle, 316, 329-330, 333, 366-367, 375, 381,

436-437, 442-445, 450, 466, 558, 563
Topology, 554, 558-559, 561-563

star, 562-563
Track, 28, 526-530, 545, 558, 561
Tracking, 158
Traffic light, 5, 317, 319, 350, 353
Traffic signal control system, 316-319, 336, 350-351,

355-358, 360, 362-363, 365, 367, 372, 376
Trailing edge, 8-9, 326, 452, 563
Transducer, 207
Transient, 30
Transistor, 27, 38, 151-152, 163, 344-346, 498-499,

504, 509, 511-514, 525, 553-557, 559, 561,
563

bipolar junction, 553-554, 556, 563
Transition table, 337
Transmission line, 287, 447, 562
Transmitter, 185, 397-398, 562
Trigger, 5, 30-32, 34-35, 159, 319-320, 341-345,

350-352, 354-358, 360, 364, 367, 375, 379,
381, 416, 436, 466, 557, 563

Trigger voltage, 345
Troubleshooting, 1, 30, 34, 37-39, 113-114, 157-161,

163, 171-173, 179, 181, 212, 214, 217, 225,
227-228, 241, 291, 301, 304-305, 316, 357,
359, 365, 372, 375-376, 384, 409, 420-422,
430, 443, 463, 472, 474-475, 482, 531, 541,
543, 562-563

comparator, 241, 304, 422
Truncated sequence, 380, 432, 439, 455, 464
Truth table, 98, 113, 122, 124, 131, 135, 139, 143-144,

163, 181-184, 186, 188-192, 197, 201-202,
207-209, 217, 219-221, 224, 226, 247-248,
252, 263, 280, 322, 327-328, 330, 563

U
Unicode, 89, 96
Unit load, 113, 146, 163, 563
Units, 273, 302, 432, 476, 486-489, 535, 554-555,

557, 561
Univariate polynomial, 98
Universal gate, 134, 138, 181, 195, 217, 563
Universal shift register, 395, 415
Unshielded twisted pair, 563
Up/down counter, 449, 452, 471, 563
UV EPROM, 504, 510, 563

V
Variable, 8, 113-114, 116-119, 123, 128-129, 133, 138,

149, 151, 163, 165, 170, 186, 191, 194, 218,
228, 262, 280-282, 288, 291, 318, 348, 351,
355, 434, 550, 553, 555, 558, 563

Vector, 289-290, 305, 406-408, 549-550
Verilog, 1, 24, 113, 149, 153-157, 163, 171, 173, 181,

200-202, 206, 210-211, 224, 228-229,
237-238, 241-242, 288-291, 295-296, 301,
305, 316-317, 348-355, 357, 362-363, 366,
371-372, 375-376, 380, 384, 406-407,
409-410, 412, 420, 422, 430, 460-463, 472,
475, 478, 550-551, 559, 563

VHDL, 1, 24, 40, 42, 113, 149, 153-157, 163-164, 171,
173, 181, 200-206, 210, 217-218, 224,
228-229, 236-237, 241-242, 288-291,
295-296, 301, 303, 305, 316-317, 348-357,
362-363, 366, 371-372, 375-376, 380, 384,
406-407, 409-410, 412, 420, 422, 430,
460-463, 472, 475, 478, 549-550, 553-556,
562-563

Boolean, 113, 163-164, 181, 201-202, 205,
217-218, 224, 288, 353-355, 371, 376,
422, 550, 554-555, 562

buffer, 210, 349, 351, 353, 356, 462, 549-550, 554,
563

570



data flow approach, 205-206, 210, 224, 237
function, 1, 24, 40, 42, 149, 157, 163-164, 181,

200-204, 206, 210, 217-218, 228-229,
241-242, 288, 290, 295, 301, 303, 317,
348, 553-556, 562-563

identifier, 204, 289-290, 351, 353, 371, 380, 553
if statement, 352
integer, 351-353, 550
keywords, 157
library, 24, 201, 203, 289, 349, 351, 353-356, 407,

461-462, 549-550, 562
package, 40, 203, 412, 555, 562
std_logic, 201, 289, 349, 351, 353-356, 407,

461-462, 549-550
structural approach, 181, 203, 205-206, 224, 228

Voice, 3-4
Volatile memory, 327, 536
voltage, 1, 3-4, 6-8, 30, 33, 36-37, 44, 125, 136-137,

140, 146-148, 150, 158, 170-171, 173, 179,
183, 291, 294, 305, 341, 344-345, 363-364,
367, 379, 431, 458, 493, 498, 509-513, 521,
526-527, 556-561, 563

applied, 6, 8, 37, 137, 140, 146, 148, 158, 341,
344, 493, 498, 510-513, 560

generators, 36, 305
phase, 561
supply, 30, 37, 146-148, 170, 173, 179, 341, 344,

367, 379, 560-561
terminal, 556-557, 561

Voltage gain, 563
Voltage spike, 305
Volume, 6, 136-137, 206
Voting system, 254

W
Waveform, 1, 3-4, 7-11, 13, 24, 30-44, 122, 125-127,

129, 131-132, 135-137, 139-141, 144,
166-169, 171, 174, 181, 197-199, 212,
214-217, 222-223, 225-226, 228, 277-278,
283, 292, 297-298, 300, 317, 323-325, 328,
330, 333-334, 338, 342, 346, 363, 368-370,
394, 396, 399-400, 403-404, 409, 413-414,
417-420, 431, 438, 440, 443, 451, 455, 466,
471-472, 478, 553-555, 557, 560-562

Waveform editor, 24, 363
waveforms, 1, 7-12, 30, 32-33, 35-36, 38-41, 43-44,

51-52, 114, 122-123, 125-127, 130-132,
134-136, 138-139, 141-142, 144-145,
160-161, 163, 167-168, 197-198, 200, 212,
214-217, 222-223, 225-226, 266, 277-278,
283-284, 291-293, 297-301, 317, 323-324,
328, 330-331, 333-336, 338, 345, 363, 366,
368, 390, 392, 394, 417-420, 436, 450, 457,
466, 469-472, 540, 562

alternating, 283
Weight, 48-50, 52-54, 56, 65-66, 78, 84, 89, 101, 104,

108, 273-274, 563
Winding, 526-527
Wire, 157, 203, 289, 310, 353-354, 357, 365, 380,

395, 409, 461-462, 550, 555, 562
Word, 3, 90-91, 114, 127, 163, 482, 486-488, 507,

516-519, 521, 524-525, 531, 536, 540, 542,
563

Word-capacity expansion, 516, 519
Word-length expansion, 516, 518
Write, 61, 64, 76, 82-83, 86-87, 107, 123, 130, 134,

138, 142, 149, 152, 157, 166, 181, 188,
201-206, 219-221, 224, 241, 274, 301, 303,
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XNOR, 143-145, 156, 173, 225, 259, 556
X-rays, 556

Z
Zero suppression, 268-269, 563
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