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Foreword

Mainstream electronic systems typically assume that transistors and interconnects
operate correctly over their useful lifetime. With enormous complexity and sig-
nificantly increased vulnerability to failures compared to the past, future system
designs cannot rely on such assumptions. Robust design is now required to ensure
that such systems perform correctly despite rising complexity and increasing
disturbances.

The coming generations of silicon technologies have remarkably small circuit
geometries. Consequently, several causes of hardware failures, largely benign in
the past, are becoming significant at the system level. Factors such as transient
errors, device degradation, and variability induced by manufacturing and operating
conditions are becoming much more important. Even if error rates stay constant on
a per bit basis, total chip-level error rates grow with the scale of integration.
Furthermore, several emerging nanotechnologies are inherently highly subject to
imperfections.

Approaches exist for building electronic systems that can tolerate hardware
failures, but the associated costs are too high for many applications. For example,
expensive redundancy techniques have been used in space electronics and high-
end mainframes. The most significant challenge is to design future electronic
systems that can tolerate errors in their underlying hardware at very low (power,
performance, area) costs—much lower than traditional redundancy. It will be
impossible to meet this challenge unless we address the following issues:

1. Understand the characteristics of various failure mechanisms at the circuit
level.

2. Analyze their effects on system behavior.
3. Create very low-cost methods to handle a wide range of failure mechanisms.
4. Optimize an overall design to achieve the required levels of reliability at the

lowest cost.
5. Validate actual hardware prototypes to ensure that the designs function

correctly.
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This book by Dr. Smita Krishnaswamy, Prof. Igor Markov, and Prof. John P.
Hayes introduces powerful analysis frameworks that will enable designers to
address the above issues. Their formalisms are flexible because they are able to
represent a variety of erroneous behaviors. Their systematic methods for reasoning
about reliability allow designers to incorporate efficient error protection techniques
into their designs. Also, their testing techniques provide insights into effective
design of experiments for validating error protection techniques using hardware
prototypes. Overall, the techniques presented here will enable Electronic Design
Automation tool developers to create new design analysis and optimization tools
that have reliability as a primary design objective together with power, perfor-
mance and area.

Of course, there are numerous open questions in this area. This book introduces
researchers and practitioners to some of these open questions as well. I hope it will
inspire its readers to further advance the state of the art. I am excited about this
book, and I hope that you will be as well!

Stanford, CA, April 2011 Subhasish Mitra
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Preface

Integrated circuits (ICs) are becoming increasingly susceptible to uncertainty
caused by soft errors, inherently probabilistic devices, and manufacturing vari-
ability. As device technologies scale, these effects can be detrimental to circuit
reliability. In order to address this issue, we develop methods for analyzing,
designing, and testing circuits subject to probabilistic effects. The main contri-
butions of this work are: (1) a matrix-based reliability analysis framework that can
capture probabilistic behavior at the logic level, (2) test generation and test
compaction methods aimed at probabilistic faults in logic circuits, (3) a fast, soft-
error rate (SER) analyzer that uses functional-simulation signatures to capture
error effects, and (4) novel design techniques that improve reliability using little
area and performance overhead.

First, we develop a formalism to represent faulty gate behavior by means of
stochastic matrices called probabilistic transfer matrices (PTMs). PTM algebra
provides a stochastic alternative to the deterministic role played by Boolean
algebra. To improve computational efficiency, PTMs are, in turn, compressed into
algebraic decision diagrams (ADDs), and ADD algorithms are developed for the
corresponding matrix operations.

We propose new algorithms for circuit testing under probabilistic faults. This
context requires a reformulation of existing techniques for circuit testing. For
instance, a given fault may remain undetected by a given test vector, unless the test
vector is repeated sufficiently many times. Also, since different vectors detect the
same fault with different probabilities, the number of repetitions required is a key
issue in probabilistic testing. We develop test generation methods that account for
these differences, and linear programming (LP) formulations to optimize test sets
for various objectives.

Next, we propose simulation-based methods to approximately compute reli-
ability under probabilistic faults in practical settings. We observe that the proba-
bility of an error being logically masked is closely related to node testability. We
use functional-simulation signatures, i.e., partial truth tables, to efficiently compute
testability measures (signal probability and observability). To account for timing
masking, we compute error-latching windows from timing analysis information.
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Electrical masking is incorporated into our estimates through derating factors for
gate error probabilities. The SER of a circuit is computed by combining the effects
of all three masking mechanisms within a SER analyzer called AnSER.

Based on AnSER, we develop several low-overhead techniques that increase
reliability, including: (1) a design method called SiDeR to enhance circuit
reliability using partial redundancy already present within the circuit, (2) a guided
local rewriting technique to resynthesize small windows of logic to improve area
and reliability simultaneously, and (3) a post-placement gate-relocation technique
that increases timing masking by decreasing the error-latching window of each
gate, and (4) ILP algorithms to retime sequential circuits for increased reliability
and testability.

Smita Krishnaswamy
Igor L. Markov

John P. Hayes
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Chapter 1
Introduction

Digital computers have always been vulnerable to a variety of manufacturing and
wear-out defects. Integrated circuit (IC) chips, which lie at the heart of modern
computers, are subject to silicon-surface imperfections, contaminants, wire shorts,
etc. Due to the prevalence of such defects, various forms of fault tolerance have been
built into digital systems since the 1960s. For example, the first computers NASA
sent to space were equipped with triple-modular redundancy (TMR) [1] to protect
their internal logic from defects.

Over time, IC technology scaling has brought forth heightened device sensitiv-
ity to a different kind of error, known as a soft, or transient, error. Soft errors are
caused by external noise or radiation that temporarily affects circuit behavior without
permanently damaging the hardware. They first became problematic in the 1970s,
when scientists at Intel noticed that DRAM cells experienced spontaneous bit-flips
that could not be replicated. May and Woods [2] discovered that these errors were a
result of α-particles emitted by trace amounts of radioactive material in ceramic chip
packaging. Although the α-particle problem was eliminated for a period of time by
using plastic packaging material, other sources of soft error soon became apparent.
Later that year, Ziegler et al. [3] at IBM, showed that neutrons produced by cosmic
rays from outer space, could also cause errors. The neutrons could strike the p-n
junctions of transistors and create enough electron–hole pairs for current to flow
through the junctions.

With the advent of nanoscale computing, soft errors are beginning to affect not
only memory but also combinational logic. Unlike errors in memory, errors in com-
binational logic cannot be easily corrected and can lead to system failures, with
potentially disastrous results in error-critical systems such as pacemakers, space-
craft, and servers.

New device technologies such as carbon nanotubes (CNTs), resonant tunneling
diodes (RTDs), and quantum computers exhibit inherently probabilistic behavior
due to various nanoscale and quantum–mechanical effects. Resilience under these
sources of uncertainty is vital for technology and performance improvements. Due
to the cost and high power consumption of modern ICs, the widespread addition of
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redundancy is not a practical option for curtailing error rates. Instead, careful circuit
analysis and low-cost methods of improving reliability are necessary. Further, circuits
must be tested post-manufacture for their vulnerability to transient faults as well as
to manufacturing defects.

In the remainder of this chapter, we review technology trends that lead to increased
uncertainty in circuit behavior. We also survey previous work on soft-error rate (SER)
analysis, fault-tolerant design, SER testing, and probabilistic-circuit analysis. After
stating the goals of our research, we outline the remaining chapters.

1.1 Background and Motivation

Soft errors are one of the main causes of uncertainty and failure in logic circuits
[4]. Current trends in circuit technology exacerbate the frequency and impact of soft
errors. In this section, we describe soft errors and how they affect circuit behavior.
We also survey technology trends, from current CMOS ICs to quantum devices.

1.1.1 Soft Errors

A soft error is a transient signal with an incorrect logic value. Soft errors can be caused
by cosmic rays including α-particles, and even thermal noise. Cosmic particles can
originate from supernovas or solar flares, and enter the Earth’s atmosphere. They
are estimated to consist of 92 % protons, 6 % α-particles, and 2 % heavy nuclei [5].
When primary cosmic particles enter the atmosphere, they can create a shower of
secondary and tertiary particles, as shown in Fig. 1.1. Some of these particles can
eventually reach the ground and disturb circuit behavior.

While cosmic rays are more problematic at higher altitudes, α-particles can affect
circuits at any altitude. An α-particle (or equivalently, a helium nucleus) consists of
two protons and two neutrons that are bound together. They are emitted by radioactive
elements, such as the uranium or lead isotopes in chip-packaging materials. When
packaging materials were improved in the 1980s, the problem was eliminated to a
large extent; however, as device technologies scale down towards 32 nm, the particle
energy required to upset the state of registers and memory circuits becomes smaller.
Heidel et al. [6] show that even at 1.25 MeV, incident particles can alter the state of
latches, depending on the angle of incidence. As the energy threshold for causing
an error decreases, the number of particles with sufficient energy to cause errors
increases rapidly [7]. For instance, even the lead in solder balls or trace amounts of
radioactive contaminants in tin can affect CMOS circuits at lower energy levels [8].

When a particle actually strikes an integrated semiconductor circuit and lands in
the sensitive area of a logic gate, it can cause an ionized track in silicon, known as
a single-event upset (SEU), as illustrated in Fig. 1.2. An SEU is a transient fault, or
soft fault as opposed to a permanent fault. The effects of an SEU do not propagate if
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the electric charge deposited is below the critical charge Qcrit required to switch the
corresponding transistor on or off [4]. If an SEU deposits enough charge to cause a
spurious signal pulse or glitch in the circuit, it produces a soft error. Error propagation
from the site of fault occurrence to a flip-flop or primary output is stopped if there is
no logically sensitized path for the error to pass through. If a soft error is propagated
to and captured or latched by a flip-flop, then it can persist in a system for several
clock cycles.

A single latched error can also fan out to multiple flip-flops. Unlike errors in
memory, errors in combinational logic cannot be rectified using error-correcting
codes (ECCs) without incurring significant area overhead. Hence, it becomes vital
to find ways to accurately analyze and decrease the SER of a circuit through careful
design. This is especially true of circuits in mission-critical applications, such as
servers, aircraft electronics, and medical devices.
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Fig. 1.3 Moore’s law, show-
ing IC density increase per
year
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1.1.2 Trends in CMOS

As described by Moore’s law in 1965, the number of transistors in an IC tends to
double every two years—a trend that has continued to the present; see Fig. 1.3. In
order to facilitate this growth, chip features like gate dimensions have become smaller,
along with the amount of charge stored and transferred between gates during com-
putation. Consequently, the various sources of uncertainty described in the previous
section can disrupt circuit functionality with greater ease. Other technology trends
affecting the SER include decreasing power supply voltage and increasing operating
frequency.

The power supply voltage has steadily decreased to improve the power-per-
formance of ICs. Additionally, dynamic voltage scaling is now being employed to fur-
ther reduce power consumption. Keyes and Landauer [10] lower bound the energy
required to switch a logic gate by K T ln 2, where K is the Boltzmann constant
and T is the temperature. A more accurate estimate is defined by CV 2, where
V is the supply voltage and C is the capacitance of the gate given by C =
WCout +∑

fanout CinW j +CL . Here, Cin, Cout, and CL are the input, output, and load
capacitance of the gate, respectively, while W is the width of a transistor. Therefore,
as W and V decrease, the switching energy approaches K T ln 2, causing logic gates
to become more susceptible to noise.

Increased operating frequency—another technology trend—can lead to designs
with smaller logic depth, i.e., fewer levels of logic gates. This means that fewer errors
are masked by the intermediate gates between the site of fault occurrence and a flip-
flop. Engineers at IROC Technologies have observed that the SER in logic circuits
increases proportionally with operating frequency [11]. Processors with 40 MHz
operating frequency were tested, and 400 MHz processors were simulated. The results
indicate that at higher frequencies, the SER of logic is only 10 times smaller than
the SER of memories—despite the additional sources of masking present in logic
circuits.
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Fig. 1.4 Minimum-feature size (transistor-gate length) trends in ICs by year. Laser light sources for
lithography listed correspond to the highest-resolution layers, while coarser layers may be produced
by older generation lasers

Finally, technology scaling also makes devices harder to manufacture. Process
variations cause stochastic behavior, in the sense that device parameters are not
accurately known after manufacture. While most process parameters do not change
after manufacture, those that do can often be modeled probabilistically. Figure 1.4
illustrates the lithography associated with smaller IC feature sizes by year. As the gap
between the wavelength and feature sizes continues to widen, it becomes difficult
for IC manufacturers to control gate and wire widths. Neighboring wires can suffer
from crosstalk, the capacitive and inductive coupling that occurs when two adjacent
wires run parallel to each other. Crosstalk can delay or speedup signal transitions, and
sometimes causes glitches that resembles SEUs to appear [12]. Also, as the number
of dopant atoms in transistors decreases, a difference of just a few atoms can lead to
large variations in threshold voltage [13]. These variations cause inherent uncertainty
in circuit behavior.

1.1.3 Technologies Beyond CMOS

As CMOS technologies reach the limits of their scalability, new fundamentally prob-
abilistic computational device technologies and paradigms are arising. Examples of
new device technologies under active investigation include CNTs, RTDs, quantum-
dot cellular automata (QCA), and various quantum computing technologies, like ion
traps that handle quantum bits (qubits). Quantum computing devices are inherently
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Fig. 1.5 Circuit elements implemented as quantum-dot cellular automata: a wire segment; b NOT
gate; and c Majority gate [15]

probabilistic (even during fault-free operation) because qubits exist in superposition
states and collapse to either 0 or 1, with different probabilities upon measurement.

Quantum-dot cellular automata were first proposed by Lent et al. in 1993 [14].
They defined the now well-known model consisting of four quantum dots that occupy
the corners of a square cell with potential barriers between pairs of dots. Within this
cell, two extra electrons are available, and by raising and lowering potential barriers,
the electrons can localize on a dot. Due to Coulombic interactions, the electrons will
occupy “antipodal” or diagonally opposite sites in the square cells. By positioning
cells in different orientations and configurations, universal sets of logic gates can be
constructed. Figure 1.5 shows several circuit elements constructed from quantum-dot
cellular automata.

QCA are thought to have two main sources of error: (1) decay—when electrons
that store information are lost to the environment, and (2) switching error—when the
electrons do not properly switch from one state to another due to background noise
or voltage fluctuations [16, 17]. A key feature of QCAs is that logical components
and wires are both created from the same basic cells. Since quantum-dots are highly
susceptible to thermal noise and other sources of errors, computations performed by
QCA devices may need to be repeated multiple times in order to achieve a desired
level of reliability. Further, errors can combine in complex ways that can be difficult to
analyze. For instance, longer wires or gates utilizing redundant cells may have higher
error propensity. For instance, if each cell in a 3-cell wire segment has probability
of error p, then the probability of an erroneous output is 3p + p3, but the error
of a 4-cell wire would be 4p + (4

3

)
p2 (these formulas account for the cancelation

of paired errors).
Generally, a gate with n cells can experience O(2n) combinations of errors. There-

fore, analyzing QCA devices requires an automated and efficient method to compute
overall error probabilities and error trends under different configurations. Our work
directly addresses this issue by providing a framework for representing error-prone
gates, along with algorithms for computing overall error probabilities for devices
composed of such gates. It has been extensively used to derive reliability informa-
tion about QCA devices [15].
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1.2 Related Work

This section discusses related work on probabilistic circuit analysis, SER analysis,
fault-tolerance techniques, and soft-error testing.

1.2.1 Probabilistic Analysis of Circuits

We have developed a novel probabilistic matrix-based model for logic elements,
which is used with matrix operations and symbolic methods to evaluate error proba-
bilities in general logic circuits [18, 19]. This is covered in detail in Chaps. 2 and 3.
Rejimon et al. [17] proposed capturing errors in nano-domain logic circuits by
Bayesian networks. A Bayesian network is a directed graph with nodes representing
variables and edges representing dependence relations among the variables. If there
is an edge from node a to another node b, then we say that a is a parent of b. If there
are n variables, x1 . . . xn , then the joint-probability distribution for x1 through xn is
represented as the product of the conditional probability distributions

n
�

i=1
P[xi |parents(xi )]

If xi has no parents, its probability distribution is said to be unconditional. In order
to carry out numerical calculations on a Bayesian network, each node xi is labeled
with a probability distribution, conditioned on its parents. Certain nodes such as those
corresponding to primary inputs are given predefined probabilities. The probabilities
of other nodes are then computed using a technique called belief propagation. Joint
probabilities are computed in large Bayesian networks using sampling methods such
as importance sampling. Many software tools [20, 21] exist for Bayesian network
analysis.

Bahar et al. [22] proposed to model and design CNT-based neural networks using
Markov random fields (MRFs). MRFs are similar to Bayesian networks in that they
specify joint probability distributions in terms of local conditional probabilities, but
they can also describe cyclic dependences. In [22], the neural network is described by
an MRF with node values computed by a weighted sum of conditional probabilities
of a neighboring clique of nodes. This formulation of an MRF is known as the Gibbs
formulation and lends itself to optimizing for clique energy, which is translated into
low probabilities of node error in [22]. Related to this, Nepal et al. [23] present a
method for implementing MRF-based circuits in CMOS, and Bhadhuri et al. [24]
describe a software tool Nanolab, which uses the algorithm from [22] to automate
the design of fault-tolerant architectures like CTMR in nanotechnologies.

http://dx.doi.org/10.1007/978-90-481-9644-9_2
http://dx.doi.org/10.1007/978-90-481-9644-9_3
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1.2.2 Soft-Error Rate Analysis

This section focuses on techniques developed for the problem of SER estimation. We
first introduce the problem and then discuss solutions that appear in the literature,
often alongside our work. Here, we aim to reveal the intuition behind SER analysis
methods and to motivate techniques introduced in later chapters.

There are several factors to consider in determining the SER of a logic circuit.
Figure 1.6 illustrates the three main conditions that are required for an SEU to be
latched, and these conditions are explained below.

• The SEU must exercise sufficient energy to change a logic value and propagate it
through subsequent gates. If not, the fault is electrically masked.

• The change in a signal’s value must propagate through the logic circuit and affect
a primary output. If not, the fault is logically masked.

• The fault must reach a flip-flop during the sensitive portion of a clock cycle, known
as the latching window. If not, the fault is temporally masked.

The probability of electrically masking a fault depends on the electrical character-
istics of the gates it encounters on its way to a primary output, i.e., it is path-dependent.
Similarly, the propagation delay of the SEU before reaching a latch or a primary out-
put depends on the gate and interconnect delays along the path it takes. Any path
the SEU takes has to have non-controlling values on side inputs. Therefore, different
input vectors can sensitize different sets of paths.

Assuming a single particle strike per clock cycle, the SER can be computed using
the brute-force algorithm given in Fig. 1.7. In this algorithm, Perr is the probability
of an error on a gate. It is computed using the following variables.

• P(i), the probability of vector i being applied to the input,
• Pstrike(n), the probability of a fault at location n,
• Pattenuate(path(p)), the probability of attenuation along path p, and
• Platch(p, o), the probability of an error signal or glitch arriving on path p at output

o during a latching phase of a clock cycle.

Neglecting to model any of these probabilities can lead to overestimation of the SER.
Figure 1.8 shows an example of an SEU in the ISCAS-85 circuit C17, along with
paths logically sensitized by a specific input vector.
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Fig. 1.7 Basic SER
computation algorithm
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The algorithm of Fig. 1.7 is only practical for the smallest of circuits. The number
of possible input vectors is exponential in the number of circuit inputs, and the number
of sensitized paths can grow exponentially with the circuit size [25]. Therefore, even
determining the probability of logical masking is as difficult as counting the number
of solutions to a SAT instance—a problem in the �P-hard complexity class.

Several software tools have been recently constructed to approximate the SER
for combinational circuits. Below, we describe three of these tools and their SER
computation techniques [26–28]. Of the three algorithms, SERA is closest to that of
Fig. 1.7. The SERA algorithm, which is outlined in Fig. 1.9a, relies on user-specified
input patterns and analyzes each input vector individually. For each gate, SERA finds
all the paths from the gate to an output. Then, SEU-induced glitches are simulated on
inverter chains of the same lengths as the paths in order to determine the probability
of electrical masking. In general, there can be many paths of the same length, but only
one representative inverter chain of each length is simulated. Since the number of
paths can be exponential in the size of the circuit, this algorithm runs in exponential
time in the worst case. However, the average runtime is much smaller since SERA
only simulates paths of unique length.

Unlike SERA, the FASER tool [27], whose algorithm is shown in Fig. 1.9b, uses
binary decision diagrams (BDDs) to enumerate all possible input vectors. A BDD is
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(a)

(b)

(c)

Fig. 1.9 Algorithms for SER computation used by a SERA, b FASER, and c SET

created for each gate in a circuit—a static BDD for gates outside the fanout cone of
the glitch location, and duration and amplitude BDDs for gates in the fanout cone
of the glitch location. Then, these BDDs are merged in topological order. During
the process of merging, the width and amplitude of glitches at inputs are decreased
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Table 1.1 Summary of differences between three SER evaluation tools

Attribute SERA FASER SET

Logic masking Vector simulation BDD-based analysis Vector simulation
Timing masking SER derating No details given SER derating
Electrical masking Inverter-chain simulation Gate characterization Gate characterization
Fault assumptions Single Single Multiple

according to FASER’s estimation of electrical masking. Due to its complete input-
vector enumeration, FASER’s BDD representations can require a lot of memory for
practical circuits, especially multipliers. FASER attempts to lessen the amount of
memory used by partitioning the circuit into smaller subcircuits and then treating the
inputs to these subcircuits as pseudo-primary inputs.

SET’s algorithm [28], shown in Fig. 1.9c, proceeds in topological order and con-
siders each gate only once. For each gate, SET encodes the probability and shape of
a glitch as a Weibull probability-density function. This distribution over the Weibull
parameters is known as an SER descriptor (SERD). The SERD for a gate is com-
bined with those of its inputs, to produce the output SERD. The Weibull parameters
are slightly changed at each gate to account for electrical attenuation, and the new
output SERDs are passed onto their successor gates. The SET algorithm is similar to
static timing analysis (STA) and does not consider false paths. The authors of SET do
provide another vector-driven mode that computes SER vector-by-vector to account
for input-pattern dependence.

Table 1.1 summarizes the main characteristics of the tools described above, as
well as their methods for incorporating masking mechanisms. These tools have vastly
different methods of computing SER, and their different assumptions can yield very
different SER values for the same circuit. Therefore, depending on the degree of
validity of the assumptions made in particular situations, they can vary greatly in the
accuracy of their SER estimates.

Our work aims to build SER analysis tools that are scalable, accurate, and can
be used early, i.e., during logic design [29–31]. In addition, they allow for various
assumptions when evaluating SER. For instance, they can be used to analyze SER
under multiple or single fault assumptions based on the context in which the SER
estimate is being made. Due to our emphasis on reliability-driven logic design, we
focus on modeling logical masking accurately and efficiently. We then use our tools
to guide several design techniques to improve circuit resilience against soft errors.

1.2.3 Fault-Tolerant Design

Techniques for transient fault-tolerance have been developed for use at nearly all
stages of the design flow. Generally, these techniques rely on enhancing masking
mechanisms to mitigate error propagation. Below, we discuss several of the tech-
niques and highlight their masking mechanisms.
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Faults can be detected at the architectural level via some form of redundancy
and can be corrected by rolling back to a checkpoint to replay instructions from that
checkpoint. Redundant multi-threading (RMT) [32, 33] is a common method of error
detection at the architectural level. RMT refers to running multiple threads of the
same program and comparing the results. The first or leading thread often executes
ahead of other threads to allow time for transient glitches to dissipate.

The DIVA method [34, 35] advocates the use of a functional checker to augment
detect-and-replay by recomputing results before they are committed. Since the data
fetch is assumed to be error-free (and memory is assumed to be protected by ECC),
the functional checkers simply rerun computations on pre-fetched data. Other meth-
ods attempt to detect errors using symptoms that are unusual behaviors for specific
programs. An example is an instruction that accesses data spatially far from previous
executions of the same instruction. Another example is a branch predictor that mis-
speculates with unusually high frequency [36, 37]. The main masking mechanism in
all these techniques is functional masking. Components are selected for the addition
of fault tolerance using a metric called the architectural vulnerability factor (AVF) of
the component in question, which is usually computed by statistical fault injection
or other forms of performance analysis [38].

At the logic level, designers have complete information about the function of a
circuit and its decomposition into gates or other low-level functional modules. At this
level, one can assess logic masking in more detail. Traditionally, logic masking has
been increased by adding gate-level redundancy to the circuit. John von Neumann
[39], in his classic paper on reliability, showed that it is possible to build reliable
circuits with unreliable components, using schemes like cascaded triple modular
redundancy (CTMR) and NAND multiplexing which are illustrated in Figs. 1.10 and
1.11 respectively. CTMR contains TMR units that are, in turn, replicated thrice, and
this process is repeated until the required reliability is reached.

In NAND multiplexing, which is depicted in Fig. 1.11, each unreliable signal is
replicated N times. Then, a set of NAND gates, each of which takes two of the
N redundant signals as inputs, implements a simple majority function. Some of
these NANDs may produce incorrect outputs due to an unfortunate combination of
inputs; however, such instances are rare since a random permutation changes the
gate-pairs between stages of multiplexers. von Neumann concluded that as long as
component error probabilities are below a certain threshold, redundancy can increase
the reliability of a system to any required degree.

Techniques that involve replicating an entire circuit increase chip area signifi-
cantly, and therefore decrease chip yield. Mohanram and Touba [40] proposed to
partially triplicate logic by selecting regions of the circuit that are especially suscep-
tible to soft errors. Such regions are determined by simulating faults with random test
vectors. Dominant-value reduction [40] is also used to duplicate, rather than triplicate,
selected logic. This technique mitigates the soft errors that cause only one of the erro-
neous transitions 0–1 or 1–0, depending on which is more common. More recently,
Almukhaizim et al. [41] used a design modification technique called rewiring to
increase reliability. In the spirit of [41], our work focuses on lightweight modifica-
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Fig. 1.10 The cascaded TMR
scheme; M denotes a Majority
gate [39]
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tions to the circuit that increase reliability without requiring significant amounts of
redundancy. These types of modifications will be discussed further in Chap. 6.

At the transistor level, gates can be characterized in electrical terms and electrical
masking can be used as an error-mitigation mechanism. Gate sizing is a common
way to increase electrical masking. Increasing the area of a gate increases its internal
capacitance and therefore the critical charge Qcrit necessary for a particle strike to
alter a signal. However, this technique adds to overall circuit area and can also increase
critical path delay. Therefore, gates are usually selected for hardening according to
their susceptibility to error, which requires error-susceptibility analysis at the logic
level.

Another transistor-level technique for soft-error mitigation is the dual-port design
style proposed by Baze et al. [42], and later by Zhang et al. [43]. Dual-port gates
decrease charge-collection efficiency by using two extra transistors placed in a sep-
arate well from the original transistors.

In the 1990s, Nicolaidis proposed multiple-sampling as a method of increasing
electrical masking [44]. Three latches sample a signal with small delays between
them, and a voter decides the correct value of the signal. Since stray glitches tend to
have short duration, the erroneous value induced by a glitch is likely to be sampled by
only one of the three latches. RAZOR [45] uses this idea for dynamic voltage scaling,
sampling signals twice, and when an error is found, restoring program correctness

http://dx.doi.org/10.1007/978-90-481-9644-9_6
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Fig. 1.11 The NAND-multiplexing scheme [39]
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Fig. 1.12 The error-correcting BISER flip-flop design with a C-element and a keeper circuit [46]

via a detect-and-playback scheme. The BISER [46] architecture duplicates flip-flops
and feeds the outputs to a C-element and a keeper circuit. At each clock cycle, if
the new flip-flop values are the same, the C-element forwards the new value to the
primary outputs; otherwise, the C-element retains the value from the previous cycle.
Figure 1.12 shows BISER’s flip-flop design.

After the placement and routing of a circuit are completed, gate and interconnect
delays can be determined. In earlier IC technologies, timing was usually analyzed
at the gate level since wire delay contributed only a small (often negligible) fraction
of the critical path delay. However, wire delay currently dominates gate delay and
must be incorporated into any accurate timing analyzer. Once we can analyze the
timing, we can also obtain information about timing masking [4, 47]. To date, few
techniques that decrease timing masking have been proposed.

In summary, faults can be mitigated at several levels of abstraction including the
architecture, logic, transistor (electrical), and physical levels. Solutions at the logic
and transistor levels tend to be more general and do not depend on the function
of the circuit. Our work shows that such fine-grained, accurate SER analysis is
computationally feasible and decreases overhead [29–31]. Table 1.2 summarizes the
fault-tolerance techniques and masking mechanisms discussed in this section.
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Table 1.2 Error-masking and fault-tolerance at several levels of abstraction

Level Masking mechanism Fault-tolerance techniques

Architecture/RTL Functional masking Multithreading, functional checkers, replay
Logic Logic masking TMR, NAND-mux, partial replication, rewiring
Transistor Electrical masking Gate hardening, dual-port gates, dual sampling
Physical Timing masking No known techniques

1.2.4 Soft-Error Testing

Chip manufacturers including IBM, Intel, and Toshiba, as well as medical equipment
manufacturers like Medtronics, routinely test their chips for SER [2, 5, 48, 49]. SER
testing is normally done in one of two ways: field testing or accelerated testing.
In field testing, a large number of devices are connected to testers and evaluated for
several months under normal operating conditions. In accelerated testing [3], devices
are irradiated with neutron or α-particle beams, thus shortening the test time to a
few hours. Accelerated tests can be further sped up by reducing the power-supply
voltage, which changes the Qcrit of transistors.

It is difficult, however, to translate the SER figures obtained by accelerated testing
into that of field testing [48]. For instance, the SER may vary over time due to solar
activity, which can be difficult to replicate in a laboratory setting. Also, intense radi-
ation beams can cause multiple simultaneous errors, triggering system failures more
often than normal. Therefore, it is necessary to field-test some devices to calibrate
the accelerated tests.

Since field testing requires a large number of devices, and dedicated testers for
each device, Hayes et al. [50] have proposed a non-concurrent built-in self-test (BIST)
approach to online testing. They define the impact of various soft faults on a circuit
in terms of frequency, observability and severity. For instance, more frequent and
observable faults are considered more impactful than rare faults. With this fault
characterization, integer linear programming (ILP) is used to generate tests that
satisfy various objectives, such as ensuring a minimum fault-detection probability.

Other researchers have sought to accelerate testing by selecting test patterns that
sensitize faults. Conceptually, the main difference between testing for hard rather
than soft errors is that soft errors are only present for a fraction of the testing time.
Therefore, test vectors must be repeated to detect soft faults and they must be selected
to sensitize the most frequent faults. Sanyal et al. [51] accelerate testing by selecting a
set of error-critical nodes and deriving test sets that, using ILP, sensitize the maximum
number of these faults. In work that preceded [51], we developed a way of identify-
ing error-sensitive test vectors for multiple faults, which can include other masking
mechanisms like electrical masking, and we devised algorithms for generating test
sets to accelerate SER testing [52, 53].
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1.3 Organization

This book focuses on probabilistic circuit analysis, testing for probabilistic faults, and
fault-tolerant logic design. We first develop methods to model inherently probabilistic
methods in logic circuits and to test circuits for determining their reliability after
manufacture. We carefully study various error-masking mechanisms inherent in logic
circuits in order to design circuits with better reliability. Our main goals are:

• To develop general and accurate methods for modeling and reasoning about prob-
abilistic behavior in logic circuits.

• To develop test methods that accurately and efficiently measure soft-error suscep-
tibility in manufactured circuits.

• To develop scalable and accurate methods of SER and susceptibility analysis,
usable during the CAD flow at the gate level.

• To devise methods that improve the resilience of logic desigs against soft errors.

The remainder of this book is organized as follows. Chapter 2 presents a general
matrix-based reliability analysis technique, the probabilistic transfer matrix (PTM)
framework, to model faulty gate and circuit behavior. PTMs form an algebra for
reasoning about uncertain behavior in logic circuits. This algebra defines several
specific types of matrices to describe gates and wires, along with matrix operations
that can be used symbolically or numerically to combine the matrices. Several new
matrix operations that are useful in modifying and combining PTMs are then used
to derive information about circuit reliability and output error probabilities under
various types of faults.

Chapter 3 develops decision diagram-based methods for compressing and com-
puting with PTMs. Several heuristics are presented for improving the scalability
of PTM-based computations, including dynamic evaluation ordering, partitioning,
hierarchical computation, and sampling.

Chapter 4 introduces a new method to test for probabilistic faults. We discuss the
differences among traditional testing methods geared towards identifying structural
defects and assessing circuit susceptibility to probabilistic faults. We also present
algorithms for compacting a test-vector set.

Chapter 5 presents an efficient way to analyze SER at the logic level. Here, we
derive probabilistic fault models from the standard stuck-at model used in the testing
literature. We propose ways to account for the three basic masking mechanisms
via probabilistic reasoning and functional simulation. We also present techniques
in the spirit of static-timing analysis to estimate timing masking, and use derating
factors to account for electrical masking. These analysis methods are also extended
to sequential circuits.

Chapter 6 applies the analysis techniques from the previous chapter to the design
of reliable circuits. The methods employed include logic rewriting, gate hardening,
and a novel technique we call SiDeR. This technique exploits functional relation-
ships among signals to partially replicate areas of logic with low redundancy. We
also present a gate relocation technique that targets timing masking, a factor which

http://dx.doi.org/10.1007/978-90-481-9644-9_2
http://dx.doi.org/10.1007/978-90-481-9644-9_3
http://dx.doi.org/10.1007/978-90-481-9644-9_4
http://dx.doi.org/10.1007/978-90-481-9644-9_5
http://dx.doi.org/10.1007/978-90-481-9644-9_6
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has often been overlooked in fault-tolerant design. This technique entails no area
overhead and negligible performance overhead. For sequential circuits, we derive
integer linear programs for retiming, which move latches to positions where they are
less likely to propagate errors to primary outputs. Chapter 7 summarizes the book
and discusses some possible directions for future research.
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Chapter 2
Probabilistic Transfer Matrices

In this chapter, we present a general framework for reliability analysis that treats
circuits entirely probabilistically. While this is useful for analyzing soft errors, it is
also useful for analyzing devices that periodically fail or behave probabilistically
during regular operation. Quantum dot cellular automata (QCA), where gates and
wires are made from “quantum dots”, are examples of such devices; see Fig. 1.5.
Each dot consists of a pair of electrons that can be configured in two different ways
to represent a single bit of information. In QCA, both gates and wires are created from
planar arrangements of dots. QCA have an inherent propensity for faults because the
electrons can easily be absorbed into the atmosphere or arrange themselves in an
ambiguous configuration [1, 2]. Other examples of inherently probabilistic devices
include probabilistic CMOS, molecular logic circuits, and quantum computers.

Historically, the probabilistic analysis of circuits has centered around signal-
probability estimation, which was motivated by random-pattern testability concerns
[3–5]. In short, the probability of a signal being a 0 or 1 gives some indication of the
difficulty in controlling (and therefore testing) the signal. In this chapter, we treat
circuits probabilistically to analyze circuit reliability. As opposed to signal proba-
bility estimation, reliability analysis deals with complex probabilistic failure modes
and error propagation conditions.

In general, accurate reliability analysis involves computing not just a single output
distribution but, rather, the output error probability for each input pattern. In cases
where each gate experiences input-pattern dependent errors—even if the input distri-
bution is fixed—simply computing the output distribution does not give the overall
circuit error probability. For instance, if an XOR gate experiences an output bit-flip
error, then the output distribution is unaffected, but the wrong output is paired with
each input. Therefore, we need to separately compute the error associated with each
input vector.

Consider the circuit in Fig. 2.1. Given that each gate experiences an error with
probability p = 0.1, the circuit’s output error probability for the input combination
000 is 0.244. The input combination 111 leads to an output error probability of 0.205.
The overall error rate of the circuit is the sum of the error probabilities, weighted by
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the input combination probabilities. The probability of error for the circuit in Fig. 2.1,
given the uniform input distribution, is therefore 0.225. Note that joint probabilities
of input combinations, rather than individual input probabilities, are necessary to
capture correlations among inputs.

We analyze circuit reliability and other aspects of non-deterministic behavior,
using a representation called a probabilistic transfer matrix (PTM). A PTM for a
gate (or a circuit) gives the probability of each output combination, conditioned upon
the input combinations. PTMs can model gates exhibiting varying input-dependent
error probabilities. PTMs form an algebra—a set closed under specific operations—
where the operations in question are matrix multiplication and tensor products. These
operations may be used to compute overall circuit behavior by combining gate PTMs
to form circuit PTMs. Matrix products capture serial connections, and tensor products
capture parallel connections.

For those familiar with Bayesian inference, a PTM for a gate is essentially a condi-
tional probability table and reliability analysis is a specific, although, complex form
of Bayesian inference. Our aim is to compute the joint probability of the primary out-
puts given joint probabilities of primary inputs. Circuits offer a very natural way of
decomposing the joint probability distribution because essentially, the output proba-
bility of a gate only depends on its immediate input probability. Therefore, each gate
can be represented by a conditional probability table. However, unlike traditional
Bayesian analysis, in this chapter we discuss operations necessary to combine these
probability distributions to form a joint probability distribution utilizing algebraic
analysis. In the next chapter, we show how to scale this computation to simple cir-
cuits using decision-diagram-based compression. Most of the concepts and results
described in this chapter also appear in [6, 7].

2.1 PTM Algebra

This section describes the PTM algebra and some key operations for manipulating
PTMs. First, we discuss the basic operations needed to represent circuits and to
compute circuit PTMs from gate PTMs. Next, we define additional operations to
extract reliability information, eliminate variables, and handle fan-out efficiently.

Consider a circuit C with n inputs and m outputs. We order the inputs for
the purposes of PTM representation and label them in0, . . . inn−1; similarly, the
m outputs are labeled out0, . . . outm−1. The circuit C can be represented by a
2n × 2m PTM M . The rows of M are indexed by an n-bit vector whose values
range from 000 . . . 0︸ ︷︷ ︸

n

to 111 . . . 1︸ ︷︷ ︸
n

. The row indices correspond to input vectors, i.e.

0/1 truth assignments of the circuit’s input signals. Therefore, if i = i0i1 . . . in−1
is an n-bit input vector, then row M(i) gives the output probability distribution
for n input values in0 = i0, in1 = i1 . . . inn−1 = in−1. Similarly, column
indices correspond to truth assignments of the circuit’s m output signals. If j is
an m-bit vector, then entry M(i, j) is the conditional probability that the out-
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F2 F2 I I swap NOTp I NAND2p NAND2p I XOR3p

w

x

y

z

Fig. 2.1 Sample logic circuit and its symbolic PTM formula

Fig. 2.2 a ITM for the circuit
in Fig. 2.1; b circuit PTM
where each gate experiences
error with probability p = 0.1
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0 1
000
001
010
011
100
101
110

0.756 0.244
0.244 0.756
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0.244 0.756
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0.705 0.295
0.295 0.705

111 0.705 0.295

(a) (b)

puts have values out0 = j0, out1 = j1 . . . outm−1 = jm−1 given input val-
ues in0 = i0, in1 = i1 . . . inn−1 = in−1, i.e, P[outputs = j|inputs = i].
Therefore, each entry in M gives the conditional probability that a certain output
combination occurs given a certain input combination.

Definition 2.1 Given a circuit C with n inputs and m outputs, the PTM for C is a
2n × 2m matrix M whose entries are conditional probabilities of the form shown
here: M(i, j) = P[outputs = j|inputs = i].
Definition 2.2 A fault-free circuit has a PTM called an ideal transfer matrix (ITM)
in which the correct logic value of each output occurs with probability 1.

The PTM for a circuit represents its functional behavior for all input and output
combinations. An input vector for an n-input circuit is a row vector with dimensions
2n × 1. Entry v(i) of an input vector v represents the probability that the input values
in0 = i0, in1 = i1 . . . inn−1 = in−1 occur. When an input vector is right-multiplied
by the PTM, the result is an output vector of size 1 × 2m . The output vector gives the
resulting output distribution. Examples of an ITM and PTM are shown in Fig. 2.2.

2.1.1 Basic Operations

PTMs can be defined for all the gates of a logic circuit by taking into account errors
affecting the gates. A PTM for the entire circuit can then be derived from the PTMs
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of the gates and their interconnections. The basic operations needed to compute the
circuit PTM from component PTMs are the matrix and tensor products.

Consider the circuit C formed by connecting two gates g1 and g2 in series,
i.e., the outputs of g1 are connected to the inputs of g2. Suppose these gates have
PTMs M1 and M2; then the entry M(i, j) of the resulting PTM M for C repre-
sents the probability that g2 produces output j , given g1 has input i . This probabil-
ity is computed by summing over all values of intermediate signals (outputs of g1
which are also inputs of g2) for input i of g1 and output j of g2. Therefore, each
entry M(i, j) = ∑

all h M1(i, h)M2(h, j). This operation corresponds to the ordinary
matrix product M1 M2 of the two component PTMs.

Now suppose that circuit C is formed by two parallel gates g1 and g2 with PTMs
M1 and M2. An entry in the resulting matrix M should represent the joint conditional
probability of a pair of input–output values from g1 and a pair of input–output
values from g2. Each such entry is therefore a product of independent conditional
probabilities from M1 and M2, respectively. These joint probabilities are given by
the tensor product operation.

Definition 2.3 Given two matrices M1 and M2, with dimensions 2k ×2l and 2m ×2n ,
respectively, the tensor product M = M1 ⊗ M2 of M1 and M2 is a 2km × 2ln matrix
whose entries are:

M(i0 . . . ik+m−1, j0 . . . jl+n−1) = M1(i0 . . . ik−1, i0 . . . jl−1)

× M2(ik . . . ik+m−1, jl . . . jl+n−1)

Figure 2.3 shows the tensor product of an AND ITM with an OR ITM. Note that the
OR ITM appears once for each occurrence of a 1 in the AND ITM; this is a basic
feature of the tensor product.

Besides the usual logic gates (AND, OR, NOT, etc.), it is useful to define three
special gates for circuit PTM computation. These are (i) the n-input identity gate
with ITM denoted In ; (ii) the n-output fan-out gate Fn ; and (iii) the swap gate swap.
These wiring PTMs are shown in Fig. 2.4 .

An n-input identity gate simply outputs its input values with probability 1. It
corresponds to a set of independent wires or buffers and has the 2×2 identity matrix as
its ITM. Larger identity ITMs can be formed by the tensor product of smaller identity
ITMs. For instance, the ITM for a 2-input, 2-output identity gate is I2 = I ⊗ I . More
generally, Im+n = Im ⊗ In . An n-output fan-out gate, Fn , copies an input signal to
its n outputs. The ITM of a 2-output fan-out gate, shown in Fig. 2.4b, has entries of
the form F2(i0, j0 j1) = 1, where i0 = j0 = j1 and all other entries are 0. Therefore,
the 5-output fan-out ITM, F5, has entries F5(0, 00000) = F5(1, 11111) = 1, with
all other entries 0. Wire permutations such as crossing wires are represented by swap
gates. The ITM for an adjacent-wire swap (a simple two-wire crossover) is shown
in Fig. 2.4c. Any permutation of wires can be modeled by a network of swap gates.
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Fig. 2.3 Illustration of the tensor product operation: a circuit with parallel AND and OR gates;
b circuit ITM formed by the tensor product of the AND and OR ITMs

Fig. 2.4 Wiring PTMs: a
identity gate I ; b 2-output
fan-out gate F2; c wire-swap
gate denoted swap
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Example 2.1 Consider the circuit in Fig. 2.5—this is the circuit of Fig. 2.1 with its
wiring gates made explicit. The PTMs for the gates with error probability p are as
follows:

⎡

⎢
⎢
⎣

p 1 − p
p 1 − p
p 1 − p

1 − p p

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − p p
p 1 − p
p 1 − p

1 − p p
p 1 − p

1 − p p
1 − p p

p 1 − p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
p 1 − p

1 − p p

]

NAND2p XOR3p NOTp

The corresponding circuit PTM is expressed symbolically by the formula in Fig. 2.5.
Each parenthesized term in this formula corresponds to a level in the circuit. The
advantage of evaluating the circuit PTM using such an expression is that the error
probabilities for the entire circuit can be extracted from it.
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Fig. 2.5 Circuit to illustrate PTM calculation; vertical lines separate levels of the circuit; the
parenthetical subexpressions correspond to logic levels

2.1.2 Additional Operations

In addition to the basic operations of matrix multiplication and tensor product, we
introduce the following three operations to increase the scope and efficiency of PTM-
based computation:

• fidelity. This operation measures the similarity between an ITM and a correspond-
ing PTM. It is used to evaluate the reliability of a circuit.

• eliminate_variables. This operation computes the PTM of a subset of inputs or
outputs, starting from a given PTM. It can also be used to compute the probability
of error of individual outputs.

• eliminate_redundant_variables. This operation eliminates redundant input vari-
ables that result from tensoring matrices of gates that are in different fan-out
branches of the same signal

We now formally define and describe these operations in more detail. First, we
define the element-wise product used in computing fidelity.

Definition 2.4 The element-wise product of two matrices A and B, both of dimen-
sion n × m, is denoted A. ∗ B = M and defined by M(i, j) = A(i, j) × B(i, j).

To obtain the fidelity, the element-wise product of the ITM and the PTM is multi-
plied on the left by the input vector, and the norm of the resulting matrix is computed.
In the definition below, ‖v‖=�i‖vi‖ denotes the l1 norm of vector v.

Definition 2.5 Given a circuit C with PTM M , ITM J , and input vector v, the fidelity
of M is defined as
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fidelity(v, M, J ) = ||v(M. ∗ J )||

The fidelity of a circuit is a measure of its reliability against transient errors.
Fig. 2.6 illustrates the fidelity computation on the circuit of Fig. 2.1.

Example 2.2 Consider the circuit C from Fig. 2.1, with inputs {w, x, y} and output
{z}. The ITM is denoted J , and the PTM, shown in Fig. 2.2b, is denoted M . The
circuit PTM is calculated using the PTMs from Example 2.1, with probability of
error p = 0.1 at each gate, on all inputs. Fig. 2.6 shows intermediate matrices needed
for this computation. The quantity fidelity(v, M, J ) is found by first element-wise
multiplying J and M , then left-multiplying by an input vector v. The l1 norm of the
resulting matrix is fidelity(v, M, J ) = (0.3716+0.3716) = 0.7432. The probability
of error is 1 − 0.7432 = 0.2560.

The eliminate_variables operation is used to compute the “sub-PTM” of a
smaller set of input and output variables. We formally define it for 1-variable elimi-
nation as follows.

Definition 2.6 Given a PTM matrix M that represents a circuit C with inputs
in0, . . . , inn−1, eliminate_variables(M, ink) is the matrix M ′ with n − 1 input
variables in0, . . . , ink−1, ink+1, . . . , inn−1 whose rows are

M ′(i0 . . . ik−1ik+1 . . . in−2, j) = M(i0 . . . ik−1 0 ik+1 . . . in−2, j)

+ M(i0 . . . ik−1 1 ik+1 . . . in−2, j)

The eliminate_variables operation is similarly defined for output variables.1

The elimination of two variables can be achieved by eliminating each of the vari-
ables individually in arbitrary order. Fig. 2.7 demonstrates the elimination of column
variables from a subcircuit C ′ of the circuit in Fig. 2.5, formed by the logic between
inputs w, x and outputs g, h. The PTM for C ′ with probability of error p = 0.1 on
all its gates is given by:

(F2 ⊗ F2)(swap ⊗ N OTp)(N AN D2p ⊗ N AN D2p)

If we eliminate output h, then we can isolate the conditional probability distribution
of output g, and vice versa. Output h corresponds to the second column variable
of the PTM in Fig. 2.7b. To eliminate this variable, columns with indices 00 and
01 of Fig. 2.7b are added, and the result is stored in the column 0 of the resultant
matrix (Fig. 2.7c). Columns 10 and 11 of M are also added, and the result is stored in
column 1 of the resultant matrix. The final PTM gives the probability distribution of
output variable g in terms of the inputs w and x . A similar process is undertaken for

1 The eliminate_variables operation is analogs to the existential abstraction of a set of variables
x in a Boolean function f [8], given by the sum of the positive and negative cofactors of f , with
respect to x : ∃x f = fx + fx . The eliminate_variables operation for PTMs relies on arithmetic
addition of matrix entries instead of the Boolean disjunction of cofactors.
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Fig. 2.6 Matrices used to compute fidelity for the circuit in Fig. 2.1: a input vector; b result of
element-wise product of its ITM and PTM; c result of left-multiplication by the input vector
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0 0 0 1
0 0 0 1
0 0 1 0
0 1 0 0

00 01 10 11
0.010 0.090 0.090 0.810
0.010 0.090 0.090 0.810
0.082 0.018 0.738 0.162
0.162 0.738 0.018 0.082

(a) (b)

0 1
0.010 + 0.090 0.090 + 0.810
0.010 + 0.090 0.090 + 0.810
0.082 + 0.018 0.738 + 0.162
0.162 + 0.738 0.018 + 0.082

0 1
0.010 + 0.090 0.090 + 0.810
0.010 + 0.090 0.090 + 0.810
0.082 + 0.738 0.018 + 0.162
0.162 + 0.018 0.738 + 0.082

(c) (d)

Fig. 2.7 Example of the eliminate_variables operation: a ITM of subcircuit C ′ from Fig. 2.5;
b PTM of C ′; c output variable h eliminated; d output variable g eliminated

elimination of g in the PTM of Fig. 2.7d. However, this time the first column variable
is eliminated.

Often, parallel gates have common inputs, due to fan-out at an earlier level of logic.
An example of this appears in level L3 of Fig. 2.5 due to fan-out at level L1. The
fan-out gate was introduced to handle such situations; therefore, the PTM for
level L1 in Example 2.1 is composed of two copies of the fan-out PTM F2 ten-
sored with an identity PTM I . However, this method of handling fan-out can
be computationally inefficient because it requires numerous matrix multiplica-
tions. Therefore, in either inputs or outputs we introduce a new operation called
eliminate_redundant_variables to remove redundant signals that are due to fan-
out or other causes. This operation is more efficient than matrix multiplication
because it is linear in PTM size, whereas matrix multiplication is cubic.

Definition 2.7 Given a circuit C with n inputs in0, . . . inn−1 and PTM M , let ink

and inl be two inputs that are identified with (connected to) each other. Then
eliminate_redundant_variables(M, ink, inl) = M ′, where M ′ is a matrix with
n − 1 input variables whose rows are
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Fig. 2.8 Signal forwarding using eliminate_redundant_variables: a circuit with signal b fan-
ning out to two different levels; b AND ⊗ I , adding b as an input and output; c final ITM for circuit
computed by removing rows in boldface

M ′(i1 . . . ik . . . il−1 il+1 . . . in−1, j) = M(i1 . . . ik . . . il−1 ik il+1 . . . in−1, j)

The definition of eliminate_redundant_variables can be extended to a set of input
variables that are redundant. Fig. 2.8 shows an example of this operation.

PTMs yield correct output probabilities despite reconvergent fan-out because the
joint probabilities of signals on different fan-out branches are computed correctly
using the tensor product and eliminate_redundant_variables operations. Suppose
two signals on different fan-out branches reconverge at the same gate in a subsequent
circuit level. Since the joint probability distribution of these two signals is computed
correctly, the serial composition of the fan-out branches with the subsequent gate
is also correct, by the properties of matrix multiplication. On the other hand, if
the individual signal probabilities are computed separately, then these probabilities
cannot be recombined into the joint probability without some loss of accuracy.

The eliminate_redundant_variables operation can efficiently handle fan-out
to different levels by “signal forwarding,” as seen in Fig. 2.8. Signal b is required
at a later level in the circuit; therefore, b is added to the ITM as an output variable
by tensoring the AND ITM with an identity matrix. However, tensoring with the
identity ITM adds both an input and output to the level. Hence, the additional input
is redundant with respect to the second input of the AND gate and is removed
using eliminate_redundant_variables. Note that the removed rows correspond to
assigning contradictory values on identical signals.

2.1.3 Handling Correlations

There are many cases of errors where input and output values cannot be separated
and combinations of these values must be taken into account. For example, using
the eliminate_variables operation, the conditional probabilities of the inputs or
outputs cannot always be stored separately in different matrices. While such storage
can alleviate the input-space explosion inherent in storing all possible combinations
of inputs and outputs, it may not capture correlations within the circuit.
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0 0 0 1
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0.75 0.25
0.25 0.75
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0.752 0.75 0.25 0.25 0.75 0.252

0.252 0.75 0.25 0.25 0.75 0.752

0 0 0 1

(a) (b) (c)

Fig. 2.9 Example of output inseparability: a PTM for a probabilistic wire-swap; b PTM for each
individual output after applying eliminate_variables; c incorrect result from tensoring two copies
of the PTM from part b and applying eliminate_redundant_variables

Example 2.3 Suppose two wires have a 0.25 probability of swapping. The matrix
corresponding to this error is given in Fig. 2.9a. If we try to separate the probability
of each output, using eliminate_variables, the output probabilities both have the
PTM of Fig. 2.9b. If these outputs are tensored (with redundant inputs eliminated),
they result in the erroneous combined matrix of Fig. 2.9c. This demonstrates that
these two outputs cannot be correctly separated; their joint conditional distributions
are, in fact, inseparable.

Just as some errors cannot be separated, some faults affect multiple gates simul-
taneously. In this case, the combined PTM cannot be built from individual PTMs,
and the joint probabilities must be obtained (or the exact correlation determined).
This same effect can occur with input vectors that cannot always be separated into
probabilities of individual inputs. An example is given below.

00 01 10 11
[

0.5 0 0 0.5
]T

PTMs have the advantage that, at every level, they can represent and manipulate
joint probabilities from the inputs to the outputs. If necessary, individual output
distributions can be obtained using the eliminate_variables operation.

So far, we have introduced the PTM representations of gate and wire constructs,
and the operations needed to combine them into circuit PTMs. In the next section,
we give examples of the various kinds of faults that PTMs can capture, as well as
the application of PTMs to soft-error analysis and error-threshold computation.

2.2 Applications

In this section, we discuss applications of PTMs to various fault types as well as in
determining the error-transfer behavior of logic circuits.
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Fig. 2.10 PTMs for various types of gate faults: a a fault-free ideal 2-1 MUX gate (select line is the
3rd input); b first input signal stuck-at 1; c first two input signals swapped; d probabilistic output
bit-flip with p = 0.05; e wrong gate: MUX replaced by 3-input XOR gate.

2.2.1 Fault Modeling

The PTM model can represent a wide variety of faulty circuit behaviors, including
both hard and soft physical faults, and design errors. The fact that there are sepa-
rate probabilities for each input and output, and the fact that they are propagated
simultaneously make this possible. Fig. 2.10 lists some fault/error types that can be
represented by PTMs.

Figure 2.10a shows the ITM for a fault-free ideal 2-1 multiplexer (MUX).
Fig. 2.10b shows the first data input signal of the MUX stuck-at 1, i.e., row 000
is replaced with row 100 of the ITM, row 010 with row 111, and so forth. Fig. 2.10c
shows an example where the first two wires have been swapped; this is captured by
permuting the rows of the ITM, accordingly. Fig. 2.10d shows the first example of
a probabilistic error, an output bit-flip where the wrong value occurs with probabil-
ity p = 0.05 in each row. Fig. 2.10e shows a design error where a MUX has been
replaced by a 3-input XOR gate. As these examples indicate, PTMs can capture both
gate and wiring errors.

PTMs can also represent faults that are likely to occur in nanoscale circuits. For
instance, in QCA, the wires themselves are made of “quantum dots,” and so, like
gates, wires can experience bit-flips. Such bit-flips on wires can be represented by
the 1-input identity gate I , with probabilities as shown below.

[
1 − p p

1 1 − q

]

2.2.2 Modeling Glitch Attenuation

Thus far, signals have been described by their logic value, with each signal repre-
sented by a 1×2 vector that indicates the probability of it being 0 or 1. While retaining
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the discreteness of our model, we now expand signal representation to incorporate
some necessary electrical characteristics.

For instance, we can differentiate between signals of long and short duration,
just as we differentiate between signals with high and low amplitude by their logic
value. We can represent a signal by a vector w which has four entries instead of two,
w = [p0s p0l p1s p1l ]. The second bit of the row index represents short (“s”) or long
(“l”) duration, so p0s is the probability of a logic 0 with short duration. Extraneous
glitches, such as those induced by SEUs, are likely to have short duration, while
driven logic signals are likely to have relatively long duration.

Each gate in a circuit has a probability of an SEU strike that depends upon various
environmental factors, such as neutron flux and temperature. We call this the proba-
bility of occurrence for a gate (or node) g, and denote it by poccur(g). However, SEU
strikes create glitches which can be differentiated by a combination of shape and
amplitude. These distinctions are important for the propagation of a glitch through
circuit gates. Therefore, we utilize a modified identity matrix denoted I1,n(poccur) to
represent a probability distribution on a glitch induced by an SEU strike.

We use the glitch-propagation model from [9] to determine which signal char-
acteristics to capture; a different model might require other characteristics to be
represented. In [9], glitches are classified into three types depending on their dura-
tion D and amplitude A, relative to the gate propagation delay Tp, as well as the
threshold voltage Vt . Glitches are assumed to change only logic 0 to logic 1 when
they occur, but they can be inverted later.

• Glitches of type 1 have amplitude A > Vt and duration D > 2Tp. Glitches of this
type are propagated without attenuation.

• Glitches of type 2 have amplitude A > Vt and duration 2Tp > D > Tp. Glitches
of this type are propagated with an attenuated amplitude of A′ < A.

• Glitches of type 3 have A < Vt . Glitches of this type are not propagated, i.e., they
are electrically masked.

Since amplitude is already indicated by the logic value, an additional bit is used
to indicate whether the duration is larger or smaller than the propagation delay of
the gate (when the amplitude is higher than the threshold voltage). The duration is
irrelevant for glitches with amplitude lower than the threshold voltage, since these
are likely to be attenuated. Fig. 2.11a shows the probability distribution of an SEU
strike when the correct logic value is 0. Glitches of type 1 are indicated by row labels
11, glitches of types 2 are indicated by labels 10, and glitches of type 3 are indicated
by 01. In particular, Fig. 2.11a assumes uniform distribution with respect to glitches.

Once an SEU strikes a gate g and induces a glitch, the electrical characteristics
of the circuit gates determine whether the glitch is propagated. Glitches with long
duration and high energy relative to the gate propagation delay and threshold voltage
are generally propagated; other glitches are normally quickly attenuated. We call the
probability that a glitch is propagated pprop(g). The glitch-transfer characteristics of
a logic gate are described by a modified gate PTM that represents relevant charac-
teristics of the glitch. For instance, Fig. 2.11b shows a modified AND PTM, denoted
AND2,2(pprop).
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Fig. 2.11 PTMs for SEU modeling where the row labels indicate input signal type: a I2,2(poccur)

describes a probability distribution on the energy of an SEU strike at a gate output, b AND2,2(pprop)

describes SEU-induced glitch propagation for a 2-input AND gate. The type-2 glitches become
attenuated to type 3 with a probability 1 − pprop
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Fig. 2.12 Circuit with ITM and PTMs describing an SEU strike and the resultant glitch propagation
with multi-bit signal representations

In the selected glitch model [9], attenuation acts by transforming sensitized
glitches of type 2 with a certain probability, into glitches of type 3. All other signals
retain their original output values given by the logic function of the gate. This transfer
function can be described by the PTM of Fig. 2.11b. This PTM shows an AND gate
which propagates an input glitch (only if the other input has a non-controlling value),
with certainty if the glitch is of type 1 (in which case it is indistinguishable from a
driven logic value) or with probability pprop if the glitch is of type 2.

When using 2-bit signal representations, the probability of a logic 1 value for
a signal is computed by marginalizing, or summing-out, over the second bit. For
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Fig. 2.13 Circuit used in
Example 2.4 to illustrate the
incorporation of electrical
masking into PTMs

Fig. 2.14 PTM incorporating
electrical properties of gates
for the circuit in Example 2.4
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instance, if a signal has 2-bit distribution [0.2 0.1 0.3 0.4], since the second bit
indicates duration, the probability of a logic 0 is 0.2 + 0.1 and the probability of a
logic 1 is 0.3 + 0.4. Fig. 2.12 shows a circuit with the corresponding ITM and PTMs
with multi-bit signal representations.

Example 2.4 For the circuit in Fig. 2.13, suppose an SEU strike produces a glitch at
input b. By inspection, we see that this glitch will only propagate to primary output
e for the primary input combination 101. In other words, the glitch propagates if the
input sensitizes the appropriate path to d and then e. If we let poccur = 0.001 and
pprop = 0.5, and AND2,2(pprop) is as shown in Fig. 2.11, then the circuit PTM is
given by:
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Table 2.1 Polynomial approximations of circuit and residual errors. The fitted polynomials are of
the form e(x) ≈ a0 + a1x + a2x2 + a3x3 . . .

Circuit Error Polynomial coefficients
a0 a1 a2 a3 a4 a5 a6

Majority 2.5 E−7 0.2080 0.1589 0 0 0 0 0
MUX 6.6 E−6 0.0019 1.9608 −2.8934 1.9278 0 0 0
Parity 0.0040 0.0452 5.4892 −21.4938 31.9141 −4.2115 −30.3778 19.5795
tcon 0.0019 0.0152 6.2227 −13.5288 7.1523 9.2174 −9.0851 0
9symml 0.0010 0.0250 2.4599 −3.7485 1.5843 0 0 0
XOR5 0.0043 0.0716 5.9433 −26.4666 51.1168 −44.6143 14.4246 0

(I2 ⊗ I2,2(poccur) ⊗ I2)(AND2,2(pprop) ⊗ I2)(AND2,2(pprop))

The corresponding PTM and fidelity are given in Fig. 2.14.

2.2.3 Error Transfer Functions

In this section, we analyze circuit reliability as a function of gate reliability. Using data
points for various gate error values, we derive low-degree polynomial approximations
for the error transfer functions of some benchmark circuits. Such functions can be
used to derive upper bounds for tolerable levels of gate error.

Definition 2.8 The error transfer function e(x) on 0 ≤ x ≤ 1 of a circuit C is the
fidelity of C with output-error probability x on all gates.

Figure 2.15 illustrates the error-transfer functions for several standard benchmark
circuits, determined by introducing varying amounts of error into gates and then cal-
culating the circuit fidelity according to Definition 2.5. Generally, such error transfer
curves can be described by polynomials. If two gates experience errors with prob-
ability p > 0, then their serial and parallel compositions experience errors with
probability O(p2). If a circuit has n gates, each with error p, then its fidelity is
a polynomial in p of degree n. Realistically, only gate error values under 0.5 are
useful since the gate can simply be viewed as its negated version for higher error
values. However, Fig. 2.15 uses probabilities of gate error up to 1 to emphasize the
polynomial nature of the curves.

Table 2.1 gives low-degree polynomials that estimate error transfer functions with
high accuracy. Such functional approximations are useful in determining the upper
bounds on gate error probability necessary to achieve acceptable levels of circuit
error. For instance, it has been shown that replication techniques such as TMR or
NAND-multiplexing only decrease circuit error if the gate error is strictly less than
0.5 [10]. However, Fig. 2.15 suggests that for most circuits, replicating the entire
circuit at gate errors of 0.20 or more will only increase circuit error.



36 2 Probabilistic Transfer Matrices

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
irc

ui
t E

rr
or

 P
ro

ba
bi

lit
y

Gate Error Probability

TCON
Z4ML
MUX

MAJORITY
PARITY

XOR5
9SYMML

Fig. 2.15 Circuit error probability under various gate error probabilities
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Chapter 3
Computing with Probabilistic Transfer
Matrices

Circuit PTMs have exponential space complexity in the worst case, because they
contain information about all possible input vectors. This makes numerical compu-
tation with PTMs impractical for circuits with more than 10–15 inputs. To address
this, we develop an implementation of the PTM framework that uses algebraic deci-
sion diagrams (ADDs) to represent ADDs in compressed form. We further derive
ADD algorithms to combine PTMs directly in their compressed forms.

Figure 3.1 gives a PTM for the circuit in Fig. 2.1 along with the corresponding
ADD for the case where all gates experience output bit-flips with probability p =
0.1. It can be seen that the terminal nodes at the bottom of the ADD comprise all
distinct entries of the PTM. As explained later, the ADD contains exactly the same
information about input–output error probabilities as the PTM. However, an ADD
often has far fewer nodes than the number of entries in the PTM, and so requires
much less storage space and processing time.

Developing efficient ADD algorithms for PTM operations is a significant techni-
cal challenge that we address in this chapter. We first adapt previous ADD algorithms
from [1, 2] for tensor and matrix products. The original versions of these algorithms
handle only square matrices, while PTMs are generally rectangular. In addition, we
develop ADD algorithms for the new operations defined in Chap. 2. These oper-
ations are necessary for computing marginal probability distributions, reconciling
dimensions, and estimating overall circuit-error probabilities.

In the second part of this chapter, we develop several methods to further improve
the scalability of PTM-based analysis. These methods employ the following tech-
niques: partitioning and hierarchical computation, dynamic evaluation ordering, and
input-vector sampling. Most of the techniques and results described in this chapter
also appear in [3, 4].

3.1 Compressing Matrices with Decision Diagrams

This section discusses the compression of PTMs using algebraic decision diagrams
ADDs, and develops a procedure for computing circuit PTMs from gate PTMs.

S. Krishnaswamy et al., Design, Analysis and Test of Logic Circuits Under Uncertainty, 37
Lecture Notes in Electrical Engineering 115, DOI: 10.1007/978-90-481-9644-9_3,
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Fig. 3.1 a PTM for the circuit
in Fig. 2.1 where each gate has
error probability p = 0.1; b
the corresponding ADD
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Recall [5, 6] that a binary decision diagram (BDD) is a directed acyclic graph
representing a Boolean function f (x0, x1, x2, . . . , xn) with root node x0. The sub-
graph formed by the outgoing edge labeled 0 represents the negative cofactor
fx ′

0
(x1, . . . , xn), or the else BDD. The subgraph formed by the outgoing edge labeled

1 represents the positive cofactor fx0(x1, . . . , xn), or the then BDD. Boolean con-
stants are represented by terminal nodes that are labeled 0 or 1. ADDs are variants
of BDDs in which terminal nodes can take on any real numerical values. When used
to represent a PTM, the terminal nodes are labeled with the probability values that
appear as entries in the PTM, as the following example illustrates.

Example 3.1 Consider the 8 × 2 PTM in Fig. 3.1a, which represents a certain faulty
circuit (Fig. 2.1) with three inputs w, x and y, and a single output z. This particular
PTM assumes that every gate has an error probability p = 0.1. It explicitly gives the
probability of each possible output value of z for every possible input combination
wxy. For example, if wxy = 010, the probability of z = 1 is P{z(0, 1, 0) = 1} =
0.244, as defined by the entry in the third row and second column of the PTM.
The same information can be extracted from the ADD of Fig. 3.1b by tracing a path
defined by the given wxy values from the top (root) node of the ADD to the bottom,
where the terminal node gives the probability of z = 1. In the present instance
with wxy = 010, the path starts at ADD node w, follows the 0-branch to x , then
follows the 1-branch from x to y, and finally takes the 0-branch from y to a terminal
node, which is labeled 0.244, the correct value of P{z(0, 1, 0) = 1}. The value of
P{z(0, 1, 0) = 0} is implicitly given by 1− P{z(0, 1, 0) = 1} = 1−0.244 = 0.756.
Note that the number of terminal nodes is the same as the number of distinct entries
of the PTM, which is four in the case of Fig. 3.1a. Hence, the more repeated entries
in the PTM (an indication of its regularity), the smaller the corresponding ADD.
Any top-to-bottom ordering of the variables can be used in the ADD, but the size
and structure of the resulting graph will vary. Thus, Fig. 3.1b is just one of the many
possible ADD representations of the given PTM.

Bahar et al. [1] present a method of encoding a real-valued matrix using an ADD.
The ADD encoding of a matrix M is a rooted directed acyclic graph whose entries
depend on the interleaved row- and column-index variables (r0, c0, r1, c1, . . . , rn, cn)

of M ; branches of the ADDs correspond to portions of the matrix. The root of the
ADD is the node labeled r0. The subgraph formed by the outgoing edge labeled 0

http://dx.doi.org/10.1007/978-90-481-9644-9_2
http://dx.doi.org/10.1007/978-90-481-9644-9_2
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Fig. 3.2 PTMs with identical
ADDs without zero padding:
a matrix with only one column
variable; b matrix without
dependency on the second
column variable
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(a) (b)

represents the top half of M , i.e., the half corresponding to r0 = 0. The subgraph
formed by the outgoing edge labeled 1 represents the bottom half of M , which has
r0 = 1. As in BDDs, the same path can encode several entries if variables are skipped.
The input variables are queried in a predefined order and facilitate reductions, through
the use of a single subgraph for identical submatrices.

We use the QuIDDPro library [2] to encode PTMs as ADDs. We also added
functions to this library for performing operations on PTMs. QuIDDPro includes
the CUDD library [7] and uses interleaved row and column variable ordering, which
facilitates fast tensor products and matrix multiplications—key operations in the
quantum–mechanical simulations for which QuIDDPro was designed. The basic
ADD functions used in PTM computations are as follows:

• topvar(Q): returns the root node of an ADD Q
• then(Q): returns the 1 branch
• else(Q): returns the 0 branch
• i te(Q, T, E): refers to the i f -then-else operation, which takes a node Q corre-

sponding to the root and two ADDs, T and E , corresponding to the then and else
branches, and combines them into a larger ADD.

All matrix algorithms for ADDs that we are aware of, assume square matrices
but can represent non-square matrices using zero padding [1, 8]. Zero padding is
necessary in ADDs to distinguish between missing row or column variables and
those that do not exist because of matrix dimensions—a non-square matrix has fewer
row variables than column variables, or vice versa. Recall that ADD variables are
ordered, and nodes are levelized by decision variables. Any variable missing from
the ADD can be wrongly interpreted as marking replicated matrix entries; Fig. 3.2
illustrates a situation in which missing variables can create ambiguity.

Figure 3.3 describes an algorithm for padding matrices with zeros. This algorithm
assumes that there are more row variables than column variables, but can easily be
modified to handle cases with more column variables than row variables. Suppose
a PTM with ADD A has 2m+1 rows and 2m columns. The zero padding of A is
done by introducing a new node, q, with then(q) pointing to the original ADD and
else(q) pointing to the zero terminal. In Fig. 3.3, the function shi f t_col_var_labels,
by shifting the column variable number up to facilitate the introduction of missing
variables into the ADD, renames nodes representing column variables.

The introduction of zero padding is sufficient to implement the matrix multipli-
cation operation. However, the tensor products of zero-padded PTMs are generally
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Fig. 3.3 Algorithm to pad
matrices with zeros

Fig. 3.4 a NOT gate ITM;
b zero-padded NAND gate
ITM; c their tensor product
with incorrect placement of
all-zero columns 0 1
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incorrect. Fig 3.4 shows an example of an ideal NOT gate tensored with an ideal
zero-padded NAND gate that yields an incorrect resultant PTM. Columns 3 and 4 of
this matrix erroneously consist entirely of zeros carried over from the zero padding
of the NAND PTM.

To reconcile tensor products with zero padding, we add dummy outputs to a gate
PTM to equalize the number of inputs and outputs. In order to add a dummy output
to a gate matrix, we can simply forward one of its input signals to the output, as is
done in Fig. 2.8. Dummy outputs can be subsequently removed by eliminating the
corresponding column variable. Since eliminate_variables removes a variable, it
may be necessary to re-pad the matrix with zeros. In such cases, the zero padding is
restored using the algorithm given in Fig. 3.3.

http://dx.doi.org/10.1007/978-90-481-9644-9_2
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Fig. 3.5 Algorithm to compute the ADD representation of a circuit PTM. The gate structure stores
a gate’s functional information, including its PTM, input names, output names, and ADD

3.1.1 Computing Circuit PTMs

We present an algorithm for computing the ADD of a circuit PTM in Fig. 3.5,
following the method illustrated in Example 2.1 of Chap. 2. First, a gate library
is specified in the form of a set of gate PTMs. The circuit (in BLIF format) is read
into a data structure that stores its individual gates and wiring structure. The gates are
reverse-topologically sorted, from primary outputs to primary inputs, and the subse-
quent computation proceeds by topological level. Next, the gate PTMs are converted
into ADDs. The ADDs for gates at each level are tensored together, zero padding is
performed, and finally, the eliminate_redundant_variables operation is applied
to eliminate dummy outputs. The ADD representing each level, called levelADD in
Fig. 3.5, is multiplied with the accumulated circuit ADD computed thus far, which
is called circuitADD. After all levels are multiplied together, the computation of the
circuitADD is complete. An added subtlety is that the signals of adjacent levels have
to be properly aligned, i.e., the outputs of current level have to match with the inputs
of the previous level in order for the multiplication to be performed correctly. This
can be done by appropriately permuting the row and column variables of the ADDs.

http://dx.doi.org/10.1007/978-90-481-9644-9_2
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Fig. 3.6 Algorithm to eliminate redundant variables

A detail not shown in Fig. 3.5 is that when a circuit has fanout branches to multiple
levels, the gate is placed at the first level at which it is needed, and its output is
forwarded to other levels using the method shown in Fig. 2.8. The intermediate-level
ADDs are discarded after they are multiplied with the circuitADD. This is important
for the scalability of the implementation because levelADDs are the tensor products
of several gate ADDs and can have large memory complexity.

In place of fanout gates, we use the eliminate_redundant_variables operation
(Definition 2.7), whose ADD implementation is given in Fig. 3.6. By removing each
duplicated (due to fanout) input signal, the number of levels decreases and multipli-
cations are saved. Previously computed partial results of the eliminate_redundant_
variables operation are stored in a common hash table, which is searched first to
avoid traversing common paths or recomputing existing results.

http://dx.doi.org/10.1007/978-90-481-9644-9_2
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Fig. 3.7 Algorithm to com-
pute fidelity

In Fig. 3.6, capitalized variables refer to ADDs, and lower case variables refer to
nodes. This algorithm searches the ADD, starting from the root, for the first of two
redundant variables v1, v2 with v1 < v2 in the ADD node ordering. Whenever v1 is
found on a path, it traverses down then(v1) until v2 is found. It eliminates the v2
node and points the preceding node to then(v2). Next, it traverses down else(v1) and
searches for v2; this time it eliminates v2 and points the preceding node to else(v2).
This process can be repeated in cases where there are more redundant variables.
Both eliminate_variables and eliminate_redundant_variables are operations
that can disturb the equality between row and column variables, since they both
remove variables. Therefore, it may be necessary to introduce zero padding (Fig. 3.3).

Once the ADDs for the PTM and ITM of a circuit are known, we can compute the
f ideli t y of the circuit to extract reliability information; see Fig. 3.7. The f ideli t y
algorithm first takes the element-wise product of the ADD for the ITM with the
ADD for the PTM, and then performs a depth-first traversal to sum probabilities of
correctness. The traversal of the ADD sums the terminal values while keeping track
of skipped nodes. A skipped node in an ADD is an indication that the terminal value
is repeated for 2x times, where x depends on the skipped variable’s ordering. Note
that the ADD implementations of eliminate_redundant_variables, f ideli t y, and
eliminate_variables run in linear time in the size of the ADD arguments.



44 3 Computing with Probabilistic Transfer Matrices

Table 3.1 Statistics on various small benchmarks

Circuit Size Reliability, p = 0.05 Number of p = 0 p = 0.05
Number Circuit Two-way One-way ADD Memory Time Memory Time
of gates width nodes (MB) (s) (MB) (s)

C17 6 5 0.846 0.880 2.00E3 1.090 0.002 0.071 0.313
mux 6 23 0.907 0.939 1.35E4 26.13 3.109 8.341 2.113
z4ml 8 20 0.670 0.817 7.01E3 6.594 1.113 3.030 0.8400
x2 12 23 0.150 0.099 2.85E4 11.015 2.344 237.9 10.52
parity 15 23 0.602 0.731 1.96E3 1.060 0.113 0.337 0.262
pcle 16 16 0.573 0.657 5.46E5 28.59 6.160 4.196E1 4.300
decod 18 13 0.000 0.000 2.76E4 30.15 1.020 5.690E2 11.80
cu 23 23 0.461 0.579 1.06E5 13.39 2.176 2.155E1 3.430
pm1 24 27 0.375 0.596 4.55E5 77.66 5.031 2.155E2 13.34
9symml 44 37 0.327 0.534 1.05E7 4445 552.7 5.341E3 696.2
xor5 47 19 0.067 0.071 4.67E4 46.72 3.539 10.556E3 19.58

Results from the calculation of circuit ITMs, PTMs, and f ideli t y are listed in
Table 3.1. We used the smaller LGSynth 91 and LGSynth 93 benchmarks with
uniform input distributions. These simulations were conducted on a Linux worksta-
tion with a 2 GHz Pentium 4 processor. In these experiments, CPU time was limited
to 24 h. The runtimes and memory requirements are sensitive to the width of a circuit,
i.e., the largest number of signals at any level. Empirically, circuits with widths of
around 40 signals can be evaluated. In these experiments, we calculate entire circuit
PTMs, i.e., output probabilities for all input combinations. If we separated output
cones and calculated individual output probabilities, the results would scale much
further. However, as discussed before, individual output probabilities cannot always
be accurately combined to obtain the overall error probability of a circuit. The num-
ber of ADD nodes required for the f ideli t y computation is also listed in Table 3.1,
including intermediate computations.

Table 3.1 gives the overall probability of correctness for circuits with gate error
probabilities of 0.05 and also for one-way gate errors with probability 0.05. In CMOS
gates, an erroneous output value 0 is more likely than an erroneous value 1 because
SEUs typically short-circuit power to ground. PTMs can easily encode this bias
since error probabilities can be different for different input combinations. Relevant
empirical results are given in the “one-way” column of Table 3.1. Circuits with a
high output-to-input ratio, such as sdecod, tend to magnify gate errors at fanout stems
and, therefore, have higher error probabilities.

PTM computation for p = 0.05 requires more memory and longer runtime
because less compression is possible. Ideal transfer matrices have large blocks of
0 s, which lend themselves to greater compression. When gate PTMs with error
probabilities are composed in various ways, PTMs with a greater number of distinct
entries are created, thus yielding less compression. Compare the values in the ITM
and PTM shown in Example 2.2. Our results indicate that, while exact and complete
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circuit-PTM computation cannot be used to evaluate industry-sized circuits, it can
be used to calibrate or validate other reliability evaluation tools.

3.2 Improving Scalability

We have presented ADD algorithms for PTM-based computation, but their scalabil-
ity appears limited due to the possibility of combinatorial explosion in PTM size.
Scalability can be improved in a variety of different ways. In this section, we cover
several techniques, starting from methods of speeding up exact PTM computation
and moving to heuristic methods that approximate the circuit’s error probability.

In Sect. 3.2.1, we propose to improve the efficiency of PTM computation by pre-
scheduling an evaluation order for combining gate PTMs into circuit PTMs. While
the evaluation order does not affect the final result, it can decrease the sizes of
intermediate matrices. Good evaluation orders compute PTMs for clusters of gates
with a small number of inputs and outputs in between the clusters. In effect, such an
ordering would enclose fanout branches and reconvergences within the clusters.

In Sect. 3.2.2, we use exact PTM computations for partitions in a circuit (instead of
the whole circuit) and propagate signal and error probabilities between the partitions.
This method allows exact computations to be maximally used while approximating
the overall error rate. In Sect. 3.2.3, we briefly discuss methods of sampling, i.e.,
computing the average error probability of a randomly generated set of input vectors
to estimate the true error probability.

3.2.1 Dynamic Ordering of Evaluation

The ADD-based multiplication algorithm used in our PTM algebra implementation
[1] has a major impact on the efficiency of PTM computations. The worst-case time
and memory complexity of the multiplication operation is O((|A||B|)2), for two
ADDs A and B. The PTM evaluation algorithm described in Fig. 3.5 first tensors
gates for each level to form level PTMs and then multiplies the level PTMs, thereby
creating relatively large multiplication instances. Smaller instances can be created
by rescheduling the order of evaluation and delaying the tensor product as long as
possible.

Example 3.2 Consider the tree of AND gates in Fig. 3.8. Suppose we wish to com-
pute its circuit PTM. The algorithm of Fig. 3.5 requires topologically sorting the gates,
calculating the PTM for each level, and multiplying together the levels in order. The
levels are L4 = {G15}, L3 = {G14, G13}, L2 = {G12, G11, G10, G9}, L1 =
{G8, G7, G6, G5, G4, G3, G2, G1}. The corresponding level PTMs have dimen-
sions 22 × 2, 24 × 22, 28 × 24, and 216 × 28, respectively. We denote the Li PTM as
Mi . First, we compute M3 × M4, which is of dimension 24 ×2; next, M2 is multiplied
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Fig. 3.8 Tree of AND gates
used in Example 3.2 to illus-
trate the effect of evaluation
ordering on computational
efficiency

by M3×M4, yielding a matrix of size 28×2; and so on. The dimensions of the matrix
product instances are as follows: (22×2, 24×22), (24×2, 28×24), (28×2, 216×28).
In the worst case, when ADD sizes are close to matrix sizes (in general, they are
smaller, as ADDs provide compression), the total memory complexity of the multi-
plications is 250 + 234 + 218. On the other hand, separating the gates (not tensoring)
for as long as possible, starting from the primary inputs, yields the matrix multipli-
cation instances of the following sizes: 4(24 × 22, 22 × 2), 2(24 × 2, 22 × 2), and
(28×2,22×2). Here, the total memory complexity is only 220 + 227 + 242. Therefore,
carefully scheduling matrix multiplication leads to a more efficient PTM computation
algorithm.

If the output of a source gate is connected to more than one sink gate, there
are two possibilities for evaluation ordering: the first is to tensor gates PTMs and
eliminate the redundant variables; the second possibility is to process gates and logic
cones separately until they need to be tensored at a different level to facilitate a
multiplication. We choose the latter approach, which exchanges multiplications for
tensor products. This is advantageous, as the tensor product has lower complexity than
multiplication. Determining the optimal order to multiply levels is similar to solving
the matrix chain multiplication problem [9], which can be solved by a dynamic
programming algorithm in O(n3) time. Our application can use the same algorithm;
the cost of multiplying two matrices is estimated based on their dimensions, without
taking ADD compression into account.

The results of applying the improved ordering for multiplication of levels are
given in Table 3.2. The data in this table were produced on a Pentium 4 processor
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Table 3.2 Runtimes and memory usage for levelized and dynamic evaluation orderings

Circuit Improved ordering Levelized ordering
Time (s) Memory (MB) Time (s) Memory (MB)

C17 0.212 0.000 1.090 0.004
mux 18.052 2.051 26.314 3.109
z4ml 3.849 1.004 6.594 1.113
x2 11.015 2.344 193.115 12.078
parity 1.060 0.113 1.07 0.133
pcle 28.810 3.309 98.586 6.160
decod 5.132 1.020 30.147 24.969
cu 23.700 2.215 13.385 2.176
pm1 72.384 3.734 77.661 5.031
cc 57.400 4.839 1434.370 155.660
9symml 89.145 6.668 4445.670 552.668
xor5 3.589 0.227 46.721 3.539
b9 9259.680 165.617 23164.900 295.984
c8 35559.500 930.023 mem-out mem-out

running at 2 GHz. In general, this ordering method uses less memory, with only a
modest increase in runtime. The runtime increase seen in Table 3.2 is partially due
to the overhead of the dynamic programming. However, this tradeoff is acceptable
since memory was the main bottleneck.

3.2.2 Hierarchical Reliability Estimation

In this section, we extend PTM analysis hierarchically to estimate the reliability of
larger circuits partitioned into subcircuits. This allows for the use of exact PTM
computation for smaller partitions, and provides a way of estimating the error on
the entire circuit. The techniques in this section are similar to belief propagation
techniques used in Bayesian inference.

First, the ITMs and PTMs of all subcircuits are calculated. Then, in topological
order, we calculate the fidelities and output probabilities on each subcircuit output
individually. We call the individual fidelity of an output bit its bit-fidelity. Since
evaluation proceeds in topological order, input bit-fidelities are already calculated
for the previously processed subcircuits.

In order to formally define bit-fidelity, we introduce the abstract operation for
notational convenience.

Definition 3.1 For a PTM M and an output variable ok , M ′ = abstract (M, k) is the
matrix that results from the elimination of all variables except ok from M . Therefore,
M ′ = eliminate_variables(M, 0, 1, 2, . . . , k − 1, k + 1, . . . , m).
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Fig. 3.9 Circuit used in Example 3.3 to illustrate hierarchical reliability estimation

Definition 3.2 The bit-fidelity of output ok of circuit C , with ITM J , PTM M , and
input distribution v, is the probability of error of the kth output bit. It is given by
bit_fidelity(k, v, J, M) = fidelity(vk, Jk, Mk), where Jk = abstract(J, k), Mk =
abstract (M, k), and vk = abstract(v, k)

Suppose the input bit-fidelities for the inputs of a particular subcircuit are
p1, p2, p3, . . . , pn . Then, in order to account for input error, the subcircuit PTM

is multiplied by Ip1 ⊗ Ip2 , . . . , Ipn , where Ip has the form

[
p 1 − p

1 − p p

]

.

The probability distribution of each signal is also calculated by multiplying the input
distribution of each subcircuit by its ITM and then abstracting each of the output
probabilities. The algorithm details are given in Fig. 3.10, where SubCircArray is
the topologically sorted array of subcircuits, PIs is the list of primary inputs, POs
is the list of primary outputs, Distro stores the separated probability distribution of
intermediate variables, and the Bfid array contains the bit-fidelities of previously
processed signals. At each iteration, Bfid is updated with output bit-fidelities of the
current subcircuit. At the termination of the algorithm, Bfid contains the bit-fidelities
of the primary outputs.

This algorithm has several interesting features. First, it only calculates PTMs of
subcircuits and thus avoids the state-space explosion associated with directly com-
puting the entire circuit’s PTM. For instance, if a circuit with n inputs and m outputs
is partitioned into two subcircuits each with n/2 inputs and m/2 outputs, the PTMs
of the two subcircuits together are of size 2(2(n+m)/2), which is significantly smaller
than the circuit PTM, which has size 2n+m . Second, the algorithm approximates
joint probability distributions, using marginal probability distributions, and averages
local error probabilities at each subcircuit. Any loss of accuracy is a result of the
abstract operation and the averaging effect which occurs in bit-fidelity calculations.
Therefore, the estimation technique will be very accurate in cases where there is no
reconvergent fanout between the subcircuits. In fact, the error probabilities are exact
when each output bit has the same error on all input combinations because, in such
cases, averaging does not cause a loss of information. In other cases, the accuracy
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Fig. 3.10 The Bit_ f ideli t y
estimation algorithm

will depend on the amount of correlation between signals and the variation in signal
errors.

Example 3.3 We apply the algorithm of Fig. 3.10 to the circuit in Fig. 3.9. Assume
that each of the AND gates in Fig. 3.9 has the following PTM and ITM:

AND20.1 =

⎡

⎢
⎢
⎣

0.9000 0.1000
0.9000 0.1000
0.9000 0.1000
0.1000 0.9000

⎤

⎥
⎥
⎦ AND2 =

⎡

⎢
⎢
⎣

1 0
1 0
1 0
0 1

⎤

⎥
⎥
⎦

Suppose that primary inputs are uniformly distributed and have no errors. Initialize
Bfid[a] = Bfid[b] = Bfid[c] = Bfid[d] = BFid[e] = Bfid[f ] = 1 and Distro[a] =
Distro[b] = Distro[c] = Distro[d] = Distro[e] = Distro[f ] = [0.5 0.5]. The input
vector for subcircuit 1 is given by:

vin1 = [0.0625 0.0625 .0625 0.0625 . . . 0.0625]

The PTM and ITM for subcircuit 1 are calculated as follows:

ITM1 = AND2 ⊗ AND2

PTM1 = AND20.1 ⊗ AND20.1
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ITM1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PTM1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.09 0.01 0.81 0.09
0.09 0.01 0.81 0.09
0.09 0.01 0.81 0.09
0.01 0.09 0.09 0.81

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The fidelity and probability distribution for each output of subcircuit 1 are calcu-
lated as follows:

vout1 = vin1 ∗ ITM1 = [0.5625 0.1875 0.1875 0.0625]

Distro[g] = abstract (vout1, g) = [0.75 0.25]

Distro[h] = abstract (vout1, h) = [0.75 0.25]

PTM1′ = (I (1) ⊗ I (1) ⊗ I (1) ⊗ I ) ∗ PTM1 = PTM1

Bfid[g] = bit_ f ideli t y(g, Distro[g], PTM1′, ITM1) = 0.9

B f id[h] = 0.9

Similarly for subcircuit 2:

ITM2 = (I ⊗ AND2 ⊗ I )(I ⊗ F2 ⊗ I )(AND2 ⊗ AND2)(AND2)

PTM2 = (I ⊗ AND20.1 ⊗ I )(I ⊗ F2 ⊗ I )(AND20.1 ⊗ AND20.1)(AND20.1)

PTM2′ = (I ⊗ I0.9 ⊗ I0.9 ⊗ I )(PTM2)

vin2 = [0.5 0.5] ⊗ [0.75 0.25] ⊗ [0.75 0.25] ⊗ [0.5 0.5]
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ITM2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PTM2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8920 0.1080
0.8856 0.1144
0.8920 0.1080
0.8856 0.1144
0.8920 0.1080
0.8856 0.1144
0.8920 0.108
0.8344 0.1656
0.8856 0.1144
0.8280 0.1720
0.8856 0.1144
0.8280 0.1720
0.8856 0.1144
0.8280 0.1720
0.8344 0.1656
0.3160 0.6840

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PTM2′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8920 0.1080
0.8851 0.1149
0.8920 0.1080
0.8810 0.1190
0.8920 0.1080
0.8810 0.1190
0.8920 0.1080
0.8441 0.1559
0.8851 0.1149
0.8229 0.1771
0.8810 0.1190
0.7819 0.2181
0.8810 0.1190
0.7819 0.2181
0.8441 0.1559
0.4133 0.5867

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

vout2 = [0.9922 0.0078]

Distro[l] = [0.9922 0.0078]

BFid[l] = bit_ f ideli t y(l, Distro[l], PTM2′, ITM2) = 0.869

Alternatively, using the circuit PTM to calculate the fidelity gives fidelity = 0.862.
This has an error of only 0.003 for gate errors in the range 0.1.

The fidelity of the entire circuit (rather than just its output bits) can be further
estimated by using the binomial probability distribution to calculate the probability
that any output signal has an error. This once again assumes that output signals are
independent.

3.2.3 Approximation by Sampling

Reliability estimation requires computing the circuit error associated with each input
combination. Like SER analysis, reliability analysis can also be approximated by
sampling input vectors. This sampling can be done in several ways. We briefly discuss
two methods of sampling which yield estimates of the overall circuit error probability.

The first method is to sample input and output vectors without computing circuit
or component PTMs. This method is akin to replacing the TSA/TMSA fault models
of Chap. 5 with a more general PTM-based fault model (where the error probabilities
depend on the input values) and then using the same methods of bit-parallel sampling.
This provides a link between signature-based approximate analysis and PTM-based
exact analysis. The algorithm from Fig. 5.6 can be used to compute the error proba-
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52 3 Computing with Probabilistic Transfer Matrices

bility, with a slight modification. Instead of flipping bits of signatures with constant
probabilities at each gate, we can flip signatures with probabilities conditioned on
the input values (as indicated by the appropriate row of the gate PTM).

A second method of sampling involves computing the exact output distribution
for each input vector, but generating the set of input vectors to sample randomly.
Computing the exact output vector for an input vector is fairly complicated in and of
itself. However, it does scale to much larger circuits than circuit PTM computation.
The algorithm for computing the output vector for a given input vector using vector-
PTM multiplication and tensoring is described in Chap. 4.
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Chapter 4
Testing Logic Circuits for Probabilistic Faults

After integrated circuits are manufactured, it is important to ensure that they do not
have unusually high sensitivity to soft errors. While the SER of a circuit can be
analyzed during or after design, the error rate can be significantly increased because
of variability in the manufacturing process. Therefore, circuits have to be tested in
order to ensure that their soft error rates do not exceed an acceptable threshold. To
estimate the expected soft error rate in the field, chips are typically tested while
being exposed to intense beams of protons or neutrons, and the resulting error rate
is measured. However, these types of tests often take a long time to conduct because
random patterns may not be sensitive to vulnerabilities in the circuit. In this chapter,
we develop methods of selecting test vectors to minimize test application time.

Generating tests for probabilistic faults is fundamentally different from estab-
lished testing techniques. Traditionally, the goal of testing has been to detect the
presence of defects. A set of test vectors is normally applied to the inputs of a circuit
and the resultant outputs are compared to correct pre-computed outputs to deter-
mine whether a fault is present. In contrast, the goal of probabilistic testing is the
estimation of error probability. Probabilistic testing requires a multiset (a set with
repetitions) of test patterns, since a given fault is only present for a fraction of the
computational cycles. Another difference is that some test vectors detect transient
faults with higher probability than others due to path-dependent effects like electrical
masking. Therefore, one can consider the likelihood of detection, or the sensitivity,
of a test vector to a fault. Table 4.1 summarizes these differences.

In Sect. 4.1, we define and provide computation methods for determining test-
vector sensitivity to faults. Section 4.2 provides integer linear programming (ILP)
formulations for generating a compact set of test vectors for probabilistic faults.
Most of the concepts and results in this chapter also appear in [1, 2].
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Table 4.1 Key differences between deterministic and probabilistic testing

Attribute Deterministic testing Probabilistic testing

Fault type Deterministic Transient or intermittent
Fault model Stuck-at, bridging, etc. Probabilistic generalization
Test inputs Set of input vectors Multiset of input vectors
Coverage Faults detected with certainty Faults detected with varying probabilities
Goal Detect fault presence Estimate fault probability

Fig. 4.1 Circuit to illustrate
test-vector sensitivity compu-
tation

b

c Z

F2
AND2(p)

e

d
Y

a

I1

I1 AND2(p)

4.1 Test-Vector Sensitivity

In this section, we discuss the sensitivity of test vectors to transient faults. We begin
with an example and then present a PTM-based algorithm for test-vector sensitivity
computation.

Example 4.1 Consider the circuit in Fig. 4.1. If an SEU occurs with a certain proba-
bility at input b, then the test vectors that propagate the induced error to the outputs
are: tY = 100 (to output Y ), tZ = 001 (to output Z ), and tY Z = 101 (to both
Y and Z ).

In deterministic testing, any test vector that detects a fault can be chosen. However,
error attenuation along sensitized paths affects the propagation of probabilistic faults.
If the propagation probability is pprop at each gate, then t1 has probability pt1 = pprop,
t2 has probability pt2 = pprop, and t3 has probability pt3 = 2pprop − p2

prop. For a fault
that occurs with probability p f , a vector ti has to be repeated �1/(pti ∗ p f )� times
for one expected detection. Therefore, test application time will be shortest for test
vector t1. Vector t3 is said to be the most sensitive to the transient fault in question.

Since PTMs can encode a wide variety of faults, including faults with path-
based effects, test-vector sensitivity computed with PTMs can take these effects
into account. There are two ways to compute the sensitivity of a test vector. The first
is by circuit-PTM computation, which is explained in Chap. 2. Here, the gate PTMs
are combined to form a circuit PTM, and the most sensitive test vectors correspond
to the PTM rows with the lowest probability of correctness.

We can formally define the sensitivity of a test vector to faults in the circuit using
PTMs. The sensitivity of a test vector t to a multi-fault set F = { f1, f2, . . . , fn}

http://dx.doi.org/10.1007/978-90-481-9644-9_2
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Fig. 4.2 Sensitivity computa-
tion on the circuit of Fig. 4.1

vt × MF = vt ×

0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.81 0.09 0.09 0.01
0.81 0.09 0.09 0.01
0.09 0.01 0.81 0.09
0.01 0.09 0.09 0.81

=

0.81
0.0900

0.09
0.01

T

vt × M = vt ×

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

= 1 0 0 0

sens(F, t) = 1 − 1 0 0 0 . * 0.81 0.09 0.09 0.01

= 1 − 0.81 0 0 0 = 1 − (.81) = 0.9

which occurs with probability P = {p1, p2, . . . , pn} in circuit C with PTM MF

and ITM M is defined as the total probability that the output under t is erroneous,
given that faults F exist with probability P . A test vector t can be represented by the
vector vt , with 0’s in all but the index corresponding to t’s input assignments. For
instance, if a test vector t assigns 0’s to all input signals and C has 3 inputs, then
vt = [1 0 0 0 0 0 0 0]. The sensitivity of t is the probability that the ideal and faulty
outputs are different, and this is computed by taking the norm of the element-wise
product (Definition 2.4) of the correct and faulty output vectors. This operation is
similar to the fidelity operation of Chap. 2, defined for vectors rather than matrices.

sens(F, t) = 1 − ||(vt M f ). ∗ (vt M)||l1 (4.1)

The sensitivity of test vector

vt = [1 0 0 0 0 0 0 0]

for the circuit in Fig. 4.1, with the probability of error p = 0.1, can be computed
from the circuit’s ITM M , and PTM MF , as shown in Fig. 4.2. Here, both the correct
and faulty output vectors are computed and the results are compared to obtain the
sensitivity.

Note that vt M f and vt M need to be marginalized if there is a multi-bit signal
representation. For instance, in the case of the SEU model of Chap. 2, the second bit
needs to be summed out for both of the vectors to obtain the correct sensitivity.

The second method of sensitivity computation is through output vector computa-
tion for a particular test vector. Here, we begin with a pre-selected complete set of
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test vectors for the permanent stuck-at faults corresponding to those in F . For each
test vector in this set, we compute the faulty output at each gate using vector-PTM
multiplication through intermediate gates. We also compute the ideal output at each
gate. The ideal output is vt M , and the faulty output vector is vt M f . The advantage of
this method is that we do not have to explicitly compute the circuit PTM and ITM,
processes which are computationally expensive. We then use Eq. 4.1 to compute the
sensitivity.

A caveat in output vector computation is that fanout branches result in insepara-
ble probability distribution of the branch signals. If these signals are marginalized
or treated as separate, then inaccuracies can occur in the output probabilities. A
simple method of handling this problem is to jointly store the probabilities of these
signals and then enlarge any gate PTM the signals encounter. We accomplish gate
enlarging by adding inputs to the gate that pass through unchanged, i.e., tensoring
the gate matrix with an identity matrix I . The example below shows the processing,
in topological order, of input vectors through the circuit to obtain intermediate and
output vectors. At each step, we compute the appropriate joint input probability dis-
tribution for the next gate in topological order. However, due to inseparable signal
distributions, gates often have to be enlarged with identities.

Example 4.2 Consider the circuit in Fig. 4.1. Suppose the primary input vectors are
va, vb, vc, and the 2-input AND gates have PTM AND2(p). The faulty output vector
is obtained as follows.

vd,e = vb × F2

enlarged AND2(p) = (AND2(p) ⊗ I1)

va,d,e = (va ⊗ vd,e)

vY,e = va,d,e × enlarged AND2(p)

vd,e,c = (vd,e ⊗ vc)

vd,Z = vd,e,c × enlarged AND2(p)

Additionally, note that signal probabilities incorporate the effects of fanouts. How-
ever, storing joint probability distributions can be computationally expensive; there-
fore, in some cases a loss of accuracy may be traded in favor of memory complexity
reduction.

An algorithm for computing the output of a test vector under probabilistic faults
(encoded in gate PTMs) is shown in Fig. 4.3. The primary input values, determined by
the given test vectors, are converted into input vectors. Then, in topological order, the
inputs for each gate are tensored together to form the input vector for the gate. If any of
the input signals are stored jointly with other signals, the gate in question is enlarged
by the number of additional signals. The gate PTM is multiplied by the input vector to
obtain the output vector. In the case of a multiple-output gate such as a fanout gate, the
output vector stays as a joint probability distribution. In practice, output distributions
can become very large, through the accumulation of correlated signals. However, the
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Table 4.2 Runtime and memory usage for sensitivity computation for benchmark circuits; faulty
gates have error probability 0.05 for all inputs

Circuit Characteristics Ideal circuits Erroneous circuits
Inputs Outputs Gates Time (s) Memory (MB) Time (s) Memory (MB)

C432 36 7 160 0.28 0.7 0.73 0.8
C499 41 32 202 0.30 0.2 0.36 1.2
C880 60 26 383 0.47 0.4 52.50 124.0
C1355 41 32 546 1.44 0.1 0.22 0.6
C1908 33 25 880 0.76 1.1 11.70 42.2
C3540 50 22 1669 1.48 2.2 131.50 547.1
C6288 32 32 2416 2.12 3.3 50.90 44.8

Fig. 4.3 Algorithm for output-vector computation

joint signals can be separated by using the eliminate_variables operation, which
may entail some loss of accuracy.

This process can be repeated with gate ITMs (or functional simulation) to obtain
the ideal output vector. Finally, test vector sensitivity is computed according to
Eq. 4.1, using the fidelity algorithm of Fig. 3.7 applied to the ideal and faulty primary-
output vectors. Table 4.2 shows average runtime and memory usage statistics for
test vector sensitivity computation for various input vectors on standard benchmark
circuits from the ISCAS-85 suite. These simulations were conducted on a Linux
workstation with an Intel Xeon CPU 2.0 GHz processor and cache size 512 KB.
Here, the faulty circuit consisted of gates with output bit-flip probabilities of 0.05.

4.2 Test Generation

Next, we use the test-vector sensitivity information computed in the previous section
to generate compact multisets of test vectors for transient-fault detection. Test-set
compaction is closely related to the standard set cover problem [3]. The goal of

http://dx.doi.org/10.1007/978-90-481-9644-9_3
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set cover is to find a minimal set of subsets {t1, t2, . . . , tn} of a given set S such
that every member of S belongs to at least one of the chosen subsets. In the context
of test generation, S is the set of all possible faults and each test vector ti represents a
subset of faults, namely the subset of faults that it detects. When testing for transient
faults (soft errors), tests may have to be repeated to increase the probability of fault
detection, therefore multisets of tests are selected.

This connection between set cover and test compaction allows us to modify
algorithms designed for set cover and introduce related ILP formulations whose
LP relaxations can be solved in polynomial time. Modifying the test-multiset objec-
tive simply amounts to altering the ILP objective function. We first describe the
simgle-fault case and then extend our arguments to incorporate two multiple-fault
assumptions often used in the literature. Then, we give algorithms for multiset test
generation that achieve high probabilities of fault detection and resolution.

Suppose a single fault f in a circuit C has an estimated probability p of occurrence.
We confirm its probability as follows:

1. Derive a test vector t with high sensitivity sens( f, t).
2. Apply t to C k = �1/sens( f, t)� times for one expected detection.
3. If we have d( f ) � 1 detections, we can conclude that the actual probability of f

is higher and reject the estimated probability. We can estimate the probability that
there are d( f ) detections in k trials using the binomial theorem. If the probability
of d( f ) detections is low, then it is likely that the actual sensitivity sens( f, t) is
higher than the estimate.

4. If sens( f, t) exceeds estimates, we update the estimates and repeat this process.

To extend the above method to multiple faults, we distinguish two cases:

• Assumption 1: There are several probabilistic faults, yet the circuit experiences
only a single fault in any given clock cycle. This is the standard single-fault assump-
tion, which is justified by the rarity of particle strikes.

• Assumption 2: Each circuit component (gate) has an independent fault probability,
i.e., multiple faults at different locations can occur in the same clock cycle. This
assumption is applicable to nanotechnologies where random device behavior can
lead to multiple faults in different locations of the circuit. Here, the probability of
two faults is given by the product of individual fault probabilities.

Our goal in either case is to pick a multiset of vectors T ′ taken from T =
{t1, t2, . . . tm} such that |T ′| is minimal. Recall that each test vector ti represents
a subset of F , i.e., each test vector detects a subset of faults. Under Assumption 1,
we minimize the size of the multiset by using test vectors that are either especially
sensitive to one fault or somewhat sensitive to many faults. Therefore, to obtain a
detection probability of pth we need n tests, where n satisfies (1 − p)n ≤ 1 − pth.
Fig. 4.4 gives a greedy algorithm for generating such a multiset of test vectors, starting
from a compacted set of test vectors.

Intuitively, compacted test sets are likely to contain many sensitive test vectors
since each test vector must detect multiple faults. However, better results can be
obtained if we start with a larger set of test vectors, such as the union of different
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Fig. 4.4 Greedy minimization of the number of test vectors (with repetition)

compact test sets. The set U F used in the algorithm stores the uncovered faults in
any iteration, i.e., faults not detected with a probability of pth. As before, T is the
set of tests {t1, t2 . . . tn}, and F is the set of faults.

Kleinberg and Tardos [3] prove that a similar algorithm for set cover produces
covers that have size within O(log(|testmultiset |)) of the minimum size. Note that
the runtime is lower bounded by the size of the multiset, as this is the number of
iterations through the while loop.

Our ILP formulation for generating a minimal test multiset is shown in Fig. 4.5a.
The challenge in adapting the ILP solution algorithms for set cover or set mul-
ticover is that there is no notion of a probabilistic cover. In our case, each test
detects each fault with a different probability sens( f j , ti ). If we were to require
a minimum detection probability pth, as in Fig. 4.4, the constraint that for all f j ,∏

j (1 − sens( fi , t j )) < 1 − pth would not be linear. We therefore alter this con-
straint and linearize it by observing that the number of repetitions of each test ti is
an independent identically distributed binomial random variable for each fault f j .
Therefore, if a test is repeated xi times, the expected number of detections for a
fault f j is xi × sens( f j , ti ), i.e., the expected value of a binomial random variable
with parameters (xi , sens( f j , ti )). Since the expectation is linear, we can add the
contributions of all test vectors for each fault f j as

∑
i (xi × sens( f j , ti )), leading

to the constraint in Line 3 of Fig. 4.5a. It can be shown that this ILP formulation
reduces to multiset- multicover, a variant of the set-cover problem previously
discussed. The LP-relaxation, along with randomized rounding, gives a solution of
this problem, which is within a log factor of optimal [4]. In randomized rounding,
each xi is rounded up, with a probability equal to the fractional part of xi .
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(a) (b)

Fig. 4.5 ILP formulations for test-set generation with a fixed number of expected detections: a to
minimize the number of test vectors, and b to maximize fault resolution (minimize overlap)

Table 4.3 Number of repetitions required for random vectors versus maximally sensitive test
vectors

Circuit Random vectors Best vectors % improvement
Average Number Maximum Number
sensitivity repetitions sensitivity repetitions

9symml 3.99E−5 2.51E+4 7.99E−5 1.25E+4 50.0
alu4 5.78E−4 1.73E+03 1.82E−3 549 68.2
i1 6.65E−5 1.50E+04 9.99E−5 1.00E+04 33.4
b9 7.70E−5 1.30E+04 1.10E−4 9.09E+03 30.0
C880 5.38E−4 1.86E+03 9.39E−4 1.07E+03 42.7
C1355 1.03E−3 970 1.27E−2 78 91.8
C499 2.76E−4 3.62E+03 1.27E−3 787 78.27
x2 3.39E−5 2.95E+04 4.99E−5 2.00E+04 32.1
Average 53.3

Assumption 2 generalizes the single-fault case described above. We can treat the
set of faults as a single fault with multiple locations and introduce fault probabilities
into all gate PTMs simultaneously; we denote this fault by F ′. Then, we can simply
pick the test vector t that is most sensitive to the combination of simultaneous faults,
using methods from the previous section. We can repeat t a total of k/sens(F ′, t)
times for k expected detections. In Table 4.3, we consider a situation in which
each gate in the circuit has a small probability of error p = 10−5. The most sensitive
test vector requires 53.3 % fewer repetitions than a random vector, on average. This
implies a proportional decrease in test-application time.

We can additionally diagnose the probabilistic faults under Assumption 1. In
other words, we can select test vectors such that ambiguity about which fault is
detected is minimized. For this purpose, we modify the objective to that of Fig. 4.5b.
Intuitively, once the required detection probability is achieved, we minimize the total
number of extra detections. This is equivalent to minimizing the overlap in the subsets
represented by the test vectors. In contrast to the previous formulation, this problem
is related to multiset exact multicover, and the approximation is also within a
log factor of optimal.

In practice, the number of test vectors needed is often quite small because testers
are likely to be primarily concerned with the faults that occur the most. The number
of repetitions of a test vector for n expected detections is n/p f , where p f is the fault
probability. Therefore, the multiset decreases with the expected fault probability.
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Table 4.4 Number of test vectors required to detect input signal faults with various threshold
probabilities pth

Circuit pth = 0.05 pth = 0.75 pth = 0.85 pth = 0.95 pth = 0.99
Rand Our Rand Our Rand Our Rand Our Rand Our

c6288 377 56 782 112 1034 148 1266 236 1998 360
c432 731 462 1415 924 1771 1221 2696 1947 3797 2970
c499 1643 518 2723 1036 3085 1369 4448 2183 8157 3330
c3540 907 411 1665 817 2256 1078 3589 1716 4975 2615
c5315 2669 854 4691 1708 6531 2557 8961 3599 13359 5490
c7552 3729 1680 6824 3364 8352 4445 12210 7082 18314 10805
c2670 3650 884 5699 1770 7755 2339 11104 3729 15961 5682
% improvement 64.5 59.7 57.26 53.71 53.05

Rand is the average number of test vectors selected during random test generation

Additionally, if application time is limited, we can select test vectors to maximize
the expected detection rate. Here, we use a binary search for the largest value of n
which can be achieved with m test vectors. Since the program in Fig. 4.5a attempts
to minimize the number of test sets selected, it also maximizes the number of faults
covered by each test.

In summary, test generation for probabilistic faults requires the following steps:

• Generate a set of tests T for the corresponding deterministic faults in F .
• Evaluate the sensitivity of each test in T with respect to each fault in F .
• Execute the greedy algorithm in Fig. 4.4 or solve the ILP shown in Fig. 4.5.

Table 4.4 shows the number of test vectors required to detect probabilistic stuck-
at faults using the method of Fig. 4.4, and assuming probability p f = 0.05. These
results show that our algorithm requires 53–64 % fewer test vectors than random
selection, even with a small complete test vector set (generated by ATALANTA)
used as a base set.

Once a multiset of test vectors is generated, the actual probability of error can be
estimated using Bayesian learning. This well-established AI technique uses observa-
tion (data) and prior domain knowledge to predict future events [5]. In our case, the
prior domain knowledge is the expected or modeled fault probabilities in a circuit,
and the data come from testing.
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Chapter 5
Signature-Based Reliability Analysis

Soft errors are increasingly common in logic circuits, making soft-error rate (SER)
prediction important in all phases of design. As discussed in Sect. 1.2, the SER
depends not only on noise effects, but also on the logical, electrical, and timing-
masking characteristics of the circuit. Each of these types of masking can be predicted
with a fair amount of accuracy after certain phases of the design process—logic
masking after logic design, electrical masking after technology mapping, and timing
masking after physical design—and generally stays in effect through the rest of
the design flow. However, reliability analysis should not become a bottleneck in the
design process due to modern compressed design schedules. Therefore, it is important
to efficiently and accurately analyze the SER during the actual design process.

This chapter describes an SER analysis tool called AnSER. It employs a functional
simulation technique based on bit-parallel signal representations called signatures.
These provide an efficient way of computing testability measures like signal prob-
ability and observability, which are closely connected to the probability of error
propagation. More specifically, the probability of logic-fault propagation is the same
as the testability of the fault. The testability of a fault is the likelihood that a random
input vector sensitizes a fault. In other words, it is a measure of how easy it is to test
the fault. Enumerating test vectors for a particular fault is known to be a problem
with �P-hard complexity. In other words, it has the same complexity as counting the
number of solutions to a SAT instance. Since exact analysis is impractical for all
but the smallest of circuits, we estimate testability using a new, high-performance
signature-based algorithm.

The remainder of this chapter is organized as follows. Section 5.1 develops our
method for computing the SER of logic circuits by accounting for logic masking.
Section 5.2 extends this methodology to sequential circuits. Finally, Sect. 5.3 incor-
porates timing and electrical masking into SER estimates. Most of the techniques
and results presented in this chapter also appear in [1–4].

S. Krishnaswamy et al., Design, Analysis and Test of Logic Circuits Under Uncertainty, 63
Lecture Notes in Electrical Engineering 115, DOI: 10.1007/978-90-481-9644-9_5,
© Springer Science+Business Media Dordrecht 2013

http://dx.doi.org/10.1007/978-90-481-9644-9_1


64 5 Signature-Based Reliability Analysis

5.1 SER in Combinational Logic

This section presents an SER analysis method for combinational logic. We first
develop fault models for soft errors, and provide background on functional-simulation
signatures, which are used extensively in AnSER. We then derive SER algorithms
under both single- and multiple-fault assumptions using signal probability and
observability measures that are computed from signatures. Finally, we show how
to account for electrical and timing masking.

5.1.1 Fault Models for Soft Errors

In earlier chapters, we encoded all probabilistic behavior in logic gates, including
probabilistic faults, as a probabilistic transfer matrix (PTM). In this section, we
restrict our analysis to particular types of faults that model single-event upsets as
probabilistic flips of logic values in circuits. Such simpler fault models enable more
efficient computation of soft-error rates for the purposes of evaluation during design.

In general, fault models are abstract, logic-level representations of defects and
are usually employed in automatic test-pattern generation (ATPG) algorithms. Fault
models for soft errors, as we showed in Chap. 4, can be useful for testing. However,
here their primary use is in SER analysis; the close connections between testability
and SER facilitate this use.

Recall that we model external noise (such as an SEU) by transient faults. The
main difference between a permanent fault and a transient fault is its persistence,
which we model as a probability of error per clock cycle. Each circuit node g can
potentially experience a transient single stuck-at-1 (TSA-1) fault with probability
Perr1(g), and a transient single stuck-at-0 (TSA-0) fault with probability Perr0(g).

Definition 5.1 A transient stuck-at fault (TSA) is a triple, (g, v, Perr(g)) where g
is a node in the circuit, v ∈ {0, 1} indicates a stuck-at value, and Perr(g) is the
probability of a stuck-at fault when the node has correct value v.

The advantage of basing a fault model on the stuck-at model is that test vectors
for TSA faults can be derived in the same way as for SA faults. Therefore, the same
ATPG tools can be used for TSA faults as well. The TSA fault model, in particular,
assumes that at most one fault will occur in any clock cycle. This assumption is
common in much of SER research because for most technologies, the intrinsic error
rate (due to neutron flux, for instance) is fairly low. Using the single-error assumption,
SER can be computed as the sum of gate/component contributions. The contribution
of each gate to the SER depends on the SEU rate of the particular gate, as captured
by Perr(g), and on the observability of the error.

In the case of multiple faults, we have to consider the possible sets of gates that
experience faults in the same cycle and the possibility that these faults interfere with
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each other. The TSA model can be extended to two types of multiple faults called
transient multiple correlated stuck-at faults, and transient multiple stuck-at faults.

Faults, considered as random events, can be independent or correlated. Multiple-
bit upsets, where a single particle strike causes multiple upsets in nearby gates, are
an example of spatially correlated faults.

Definition 5.2 A transient multiple-correlated stuck-at fault (TMCSA) is the triple
(G, V, Perr) where G is a set of nodes {g1, g2, . . . gn}, V is a set of binary values
{v1, v2, v3 . . . vn} that correspond to the stuck-at values of nodes in G, and Perr is
the joint-fault probability of nodes in G.

Transient multiple stuck-at faults apply to circuits with independent probabilities
of gate or node failure.

Definition 5.3 A transient multiple stuck-at fault (TMSA) is represented by
(G, V, P) where G is a set of nodes {g1, g2, . . . gn}, V is the set of corresponding
binary stuck-at values {v1, v2, . . . vn} and P is the corresponding vector of indepen-
dent error probabilities {p1, p2, . . . pn}.

Unlike TSA and TMCSA faults, a circuit may contain only one TMSA fault of
interest—the fault with G containing all the nodes in the circuit. TMSA faults may
be used to model independent device failure probabilities rather than SEU effects.

In the next two sections, we utilize the TSA fault model to compute the SER
of logic circuits. It is sometimes convenient to measure the SER in terms of the
probability of error per cycle. The results can easily be converted into units of FIT, or
failures per 109 s. If the soft-error probability per cycle is p, then the expected number
of failures per 109 s is simply p × freq × 109, where freq is the clock frequency.
Assuming only one error occurs in each cycle, Perr0(g) is the probability that only
gate g experiences an error. Therefore, gate SER in units of FITs can also be used in
a similar fashion.

5.1.2 Signatures and Observability Don’t-Cares

In this work, we systematically use functional-simulation signatures for three pur-
poses: (1) to compute the SER, (2) to identify error-sensitive areas of a circuit, and
(3) to identify redundant nodes for resynthesis. A circuit node g can be labeled by a
signature as defined below.

Definition 5.4 A signature sig(g) = Fg(X1)Fg(X2) . . . Fg(X K ) is the sequence of
logic values observed at circuit node g in response to applying a sequence of K input
vectors X1, X2, . . . , X K to the circuit.

Here, Fg(Xi ) ∈ {0, 1} indicates the value appearing at g in response to Xi .
The signature sig(g) thus partially specifies the Boolean function Fg realized by g.
Applying all possible input vectors (exhaustive simulation) generates a signature
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Fig. 5.1 Basic algorithm
for computing functional-
simulation signatures

that corresponds to a full truth table. In general, sig(g) can be seen as a kind of
“supersignal” appearing on g. It is composed of individual binary signals that are
defined by some current set of vectors. Like the individual signals, sig(g) can be
processed by EDA tools such as simulators and synthesizers as a single entity. It can
be propagated through a sequence of logic gates and combined with other signatures
via Boolean operations. This processing can take advantage of bitwise operations
available in CPUs to speed up the overall computation compared to processing the
signals that compose sig(g) one at a time.

Signatures with thousands of bits can be useful in pruning non-equivalent nodes
during equivalence checking [5, 6]. A related speedup technique is also the basis
for “parallel” fault simulation [7]. The basic algorithm for computing signatures is
shown for reference in Fig. 5.1. Here, Op〈g〉 refers to the logic operation performed
by gate g. This operation is applied to the signatures of the input nodes of gate g,
denoted inputsigs(g).

Figure 5.2 shows a 5-input circuit where each of the 10 nodes is labeled by an
8-bit signature computed with eight input vectors. These vectors are randomly gen-
erated, and conventional functional simulation propagates signatures to the internal
and output nodes. In a typical implementation such as ours, signatures are stored as
logical words and manipulated with 64-bit logical operations, ensuring high simula-
tion throughput. Therefore, 64 vectors are simulated in parallel, with each signature
processed. Generating K -bit signatures in an N -node circuit takes O(N K ) time.

The observability don’t cares (ODCs) for a node g are the input vectors which
produce a logic value at g that does not affect the primary outputs. For example, in
the circuit AND(a, OR(a, b)), the output of the OR gate is inconsequential when
a = 0. Hence, input vectors 00 and 01 are ODCs for b.

Definition 5.5 Corresponding to the K -bit signature sig(g), the ODC mask of g,
denoted O DCmask(g), is the K -bit sequence whose ith bit is 0 if input vector Xi

is in the don’t-care set of g; otherwise the i th bit is 1, i.e., O DCmask(g) = X1 �∈
O DC(Fg)X2 �∈ O DC(Fg) . . . X K �∈ O DC(Fg).

The ODC mask is computed by bitwise inverting sig(g) and resimulating through
the fan-out cone of g to check if the changes are propagated to any of the primary
outputs. This algorithm is shown as compute_odc_exact in Fig. 5.3a and has com-
plexity O(N 2) for a circuit with N gates. It can be sped up by recomputing signatures
only as long as changes propagate.
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Fig. 5.2 Signatures, ODC masks, and testability information associated with circuit nodes

We found the heuristic algorithm for ODC mask computation presented in [6],
which has only O(N ) complexity, particularly convenient to use. This algorithm,
shown in Fig. 5.3b, traverses the circuit in reverse topological order and, for each
node, computes a local ODC mask for its immediate downstream gates. The local
ODC mask is derived by inverting the signature in question and checking if the sig-
nature at the gate output changes. The local ODC mask is then bitwise-ANDed with
the respective global ODC mask at the output of the gate to produce the ODC mask
of the gate for a particular fan-out branch. The ODC masks for all fan-out branches
are then ORed to produce the final ODC mask for the node. The ORing takes into
account the fact that a node is observable for an input vector if it is observable along
any of its fan-out branches. Reconvergent fan-out can eventually lead to incorrect
values. The masks can then be corrected by performing exact simulation downstream
from the converging nodes. This step is not strictly necessary for SER evaluation, as
we show later.

Example 5.1 Fig. 5.2 shows a sample 8-bit signature and the accompanying ODC
mask for each node of a 10-node circuit. The ODC mask at c, for instance, is derived
by computing ODC masks for paths through nodes f and g, respectively, and then
ORing the two. The local ODC mask of c for the gate through f is 01110101. When
this is ANDed with the ODC mask of f , we find the global ODC mask 01110001 of
c on paths through f . Similarly, the local ODC mask of c for the gate with output g
is 11101100, and the global ODC mask for paths through g is 01000100. We get the
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Fig. 5.3 a Exact and
b approximate ODC mask
computation algorithms

(a)

(b)

ODC mask of c by ORing the ODC masks for paths through f and g, which yields
01110101.

5.1.3 SER Evaluation

We compute the SER by counting the number of test vectors that propagate the
effects of a transient fault to the circuit outputs. Test-vector counting was also used
in [8] to compute SER, although the algorithm there uses BDD-based techniques.
Intuitively, if many test vectors are applied at the inputs, then faults are propagated to
the outputs often. SER computation is inherently more difficult than test generation.
Testing involves generating vectors that sensitize the error signal on a node and
propagate the signal’s value to the output. SER evaluation involves counting the
number of vectors that detect faulty signals.

Next, we describe how to compute signatures and ODC masks to derive several
metrics that are necessary for our SER computation algorithm. These metrics are
based on the signal probability (controllability), observability and testability para-
meters commonly used in ATPG [7].
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Fig. 5.4 Computing SER
under the TSA fault model

Figure 5.4 summarizes our algorithm for SER computation. It involves two topo-
logical traversals of the target circuit: one to propagate signatures forward and another
to propagate ODC masks backwards. The fraction of 1s in a node’s signature, known
as its ones count, provides an estimate of its signal probability, while the relative
proportion of 1s in an ODC mask indicates observability. These two measures are
combined to obtain a testability figure-of-merit for each node of interest, which is
then multiplied by the probability of the associated TSA to obtain the SER for the
node. This SER for the node captures the probability that an error occurs at the node,
combined with the probability that the error is logically propagated to the output.
Our estimate can be contrasted with technology-dependent SER estimates, which
include timing and electrical masking.

We estimate the probability of signal g having logic value 1, denoted P[g = 1], by
the fraction of 1s in the signature sig(g). This is sometimes called the controllability
of the signal.

Definition 5.6 The controllability of a signal g, denoted P[g = 1], is the probability
that g has logic value 1.

P[g = 1] = ones
(
sig(g)

)
/K (5.1)

Definition 5.7 The observability of a signal g, denoted P[obs(g)] is the probability
that a change in the signals value changes the value of a primary output.

The observability of a node is approximated by the number of 1s in its ODC mask,
i.e., the ODC mask’s ones count.

P[obs(g)] = ones
(
O DCmask(g)

)
/K (5.2)

This observability metric is an estimate of the probability that g’s value is propagated
to a primary output. The 1-testability of g, denoted P[test1(g)] = P[obs(g), g = 1],
is the number of bit positions where g’s ODC mask and signature both are 1.
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Definition 5.8 The 1-testability of a node g is the probability that the node’s correct
value is 1 and that it is observable.

P[test1(g)] = ones
(
sig(g)&ODCmask(g)

)
/K (5.3)

Similarly, if the number of positions where the ODC mask is 1 and the signature
is 0. In other words, 0-testability is an estimate of the number of vectors that test for
stuck-at-0 faults.

Example 5.2 Consider again the circuit in Fig. 5.2. The signature for node g is given
by sig(g) = 01011011 and ODC mask ODCmask(g) = 01000100. Hence, P[g =
1] = ones(sig(g)) = 5/8, P[g = 0] = 3/8, P[obs(g)] = 2/8, P[test0(g)] = 1/8
and P[test1(g)] = 1/8.

Suppose each node g in a circuit C has fault probabilities Perr0(g) and Perr1(g)

for TSA-0 and TSA-1 faults, respectively, then the SER of C is the sum of SER
contributions from each gate g in the circuit. Here, we weight gate error probabilities
by the testability of the gate for the particular TSA.

Perr(C) =
∑

g∈C

P[test1(g)]Perr0(g) + P[test0(g)]Perr1(g) (5.4)

Example 5.3 The test0 and test1 measures for each gate in the circuit are given
in Fig. 5.2. If each gate has TSA-1 probability Perr0 = p and TSA-0 probability
Perr1 = q, then the SER is given by Perr(C) = 2p + (13/8)q, this is obtained by
summing the testabilities of all of the gates.

The metrics test0 and test1 implicitly incorporate error sensitization and propaga-
tion conditions. Hence, Eq. 5.4 accounts for the possibility of an error being logically
masked. Note that Perr1(g) refers to the 1-controllability of g and so is weighted
by the 0-testability, similarly for Perr1(g).

5.1.4 Multiple-Fault Analysis

In this section, we discuss SER computation for the two multiple-fault models intro-
duced previously: the TMSCA model for multiple correlated faults, and the TMSA
model for multiple independent faults.

The SER for TSA faults requires the computation of signatures and ODC masks
for each node in the circuit. Each node represents the location of a potential TSA fault,
and its ODC mask contains information about the probability of the corresponding
fault being observed. The same process can be generally followed for TMSCA faults.
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However, ODC masks must then be applied to a set of nodes rather than a single
node.

Recall that the exact ODC computation of Fig. 5.3a requires resimulation of the
entire fan-out cone of the fault location, while the algorithm from [6], shown in
Fig. 5.3b, only resimulates through the immediate successor gate(s). These tech-
niques represent two extremes in error-propagation analysis. Between these extremes,
it is possible to resimulate the fan-out cone partially. In fact, the farther through the
fan-out cone we resimulate, the more accurate our ODC masks become. For TMSCA
faults, we resimulate through the subcircuit consisting of gates in the set of interest
G. We then bitwise invert the signatures of all the nodes in this subcircuit and resim-
ulate to either the boundary of the subcircuit (for approximate ODC computation) or
through the entire fan-out cone of the subcircuit (for exact ODC computation). This
algorithm is shown in Fig. 5.5. In this algorithm, the nodes in the set G are topolog-
ically sorted and resimulated by flipping the signature of each node sig(g), to the
value V [g]. This requires the use of a bit mask called valsig(g) that contains V [g]
in every bit position. After the resimulation is completed through G, we check for
differences that are propagated to the immediate outputs of G (locally) and combine
them with the global ODCs computed at the outputs of G using the bitwise AND
operation.

For TMSA faults, each of the gates in G has an independent probability of error.
Thus, the difference between computing SER for TMSCA faults and TMSA faults is
that the signatures of nodes within G are flipped with independent probabilities. In
order to represent this situation, we only flip a fraction of the bits in each signature
randomly. The rest of the algorithm remains the same. Since usually a single TMSA
fault is of interest, we can compute the exact error propagation probability of a TMSA
fault by resimulating through the entire circuit in only linear time. The algorithm
for SER computation using a TMSA fault is given in Fig. 5.6. Here, the circuit is
resimulated by selectively flipping the bits in the signatures of gates in G. The bits
are flipped randomly based on the probability of error P[g] and the value V [g] for
each node g. The resimulation is done all the way to the primary outputs, then the
primary outputs are checked for any differences that have been propagated.

In practice, random bits of the signature can be bitwise XORed by a mask with
p/K ones where p is the probability of error. Such a mask can be created by forming
a bit vector with p/K ones that are permuted randomly. Then, when the signature is
bitwise XORed with the mask, p/K of the bits are flipped, corresponding to a fault
that occurs with probability p.

5.2 SER Analysis in Sequential Logic

Next, we extend our SER analysis to handle sequential circuits, which have memory
elements (D flip-flops) in addition to primary inputs and outputs. Recall that the values
stored in the flip-flops collectively form the state of the circuit. The combinational
logic computes state information and primary outputs as a function of the current
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Fig. 5.5 Computing SER under the TMCSA fault model

Fig. 5.6 Computing SER under the TMSA fault model

state and primary inputs. Below, we list three factors to consider while analyzing
sequential-circuit reliability.

1. Steady-state probability distribution: It has been shown that under normal oper-
ation most sequential circuits converge to particular state distributions [9]. Dis-
covering the steady-state probability is useful for accurately computing the SER.

2. State reachability: Some states cannot be reached from a given initial state,
therefore only the reachable part of the state space should account for the SER.

3. Sequential observability: Errors in sequential circuits can persist past a single
cycle if captured by a flip-flop. A single error may be captured by multiple flip-
flops and result in a multiple-bit error in subsequent cycles. Such errors can then
be masked by logic.

The following two sections develop a simulation-based framework to address these
issues.
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5.2.1 Steady-State and Reachability Analysis

Usually, the primary input distribution is assumed to be uniform, or is explicitly given
by the user, while the state distribution has to be derived. In [10], it is shown that
most ISCAS-89 and other benchmark circuits reach steady-state because they are
synchronizable; in other words, they can be taken to a reset state starting from any
state, using a specific fixed-length input sequence. This indicates that the circuits are
aperiodic (otherwise, different-length sequences would have to be used from each
state) and strongly connected (otherwise some states could not be taken to the reset
state).

In order to approximate the steady-state distribution, we perform sequential sim-
ulation, using signatures. Assume that a circuit with m flip-flops L = {l1, l2 . . . lm}
is in state SL = {s0, s1, s2 . . . sm}, where each si ∈ {0, 1}. Our method starts in
state S0 for each simulation run (sets of 64 states are processed in parallel in our
implementation). Then, we simulate the circuit for n cycles. Each cycle propagates
signatures through the combinational logic and stops when flip-flops are reached.
Primary input values are generated randomly from a given fixed probability distrib-
ution. At the end of each simulation cycle, flip-flop inputs are transferred to flip-flop
outputs, which are, in turn, fed into combinational logic for the subsequent cycle. All
other intermediate signatures are erased before the next simulation cycle starts. The
K -bit signatures of the flip-flops, at the end of n simulations cycles, define K states.
We claim that for a large enough n, these states are sampled from the steady-state
probability distribution. Empirical results suggest that most ISCAS-89 benchmarks
reach steady-state in 10 cycles or fewer, under the above operating conditions [11].

Additionally, our signature-based SER analysis methods can handle systems that
are decomposable. Such systems pass through some transient states and are then
confined to a set of strongly connected closed (SCC) states. That is, the system
can be partitioned into transient states and sets of SCC states. For such systems,
the steady-state distribution strongly depends on the initial states. We address this
implicitly by performing reachability analysis starting in a reset state. Thus, each
bit of the signature corresponds to a simulation that (1) starts from a reset state and
propagates through the combinational logic, (2) moves to adjacent reachable states,
and (3) for a large enough n, reaches steady-state within the partition.

Figure 5.7 summarizes our simulation algorithm for sequential circuits. Using this
algorithm, simulating a circuit with g gates for n simulation cycles and with K -bit
signatures takes time O(K ng). Note that it does not require matrix-based analysis,
which is often the bottleneck in other methods [9, 11]. For example, Markov transition
matrices encode state-transition probabilities explicitly, and therefore, can be large
due to the problem of state-space explosion [9, 11].

Figure 5.8 shows an example of sequential simulation with 3-bit signatures. The
flip-flops with outputs x and y are initialized to 000 in cycle 0, T0. Then the combi-
national logic is simulated. For cycle T1, the inputs of x and y are transferred to their
outputs, and the process continues. At the conclusion of the simulation, the values
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Fig. 5.7 Multi-cycle
sequential-circuit simulation

for x and y at T3 are saved for sequential-error analysis, which is explained in the
next section.

Although, we only considered aperiodic systems, we observe that for a periodic
system the SER would need to be analyzed for the maximum period D, since the
state distribution oscillates over that period. If the FSM is periodic with period D,
then we can average over the SER for D or more simulation cycles. Generally, since
probabilistic behavior in a sequential circuit can be modeled by a Markov chain, any
circuit whose transition matrix is ergodic reaches steady state.

5.2.2 Error Persistence and Sequential Observability

In order to assess the impact of soft faults on sequential circuits, we analyze several
cycles through which faults persist, using time-frame expansion. This involves mak-
ing n copies of the circuit, C0, C1 . . . Cn−1, thereby converting a sequential circuit
into a pseudo-combinational one. In the expanded circuit, flip-flops are modeled as
buffers. The outputs from the flip-flops of the k-th frame are connected to the pri-
mary inputs of frame k + 1 (as appropriate) for 0 < k < n − 1. Flip-flop outputs that
feed into the first frame (k = 0) are treated as primary inputs, and flip-flop inputs
of frame n are treated as primary outputs. Fig. 5.9 shows a three-time-frame circuit
that corresponds to Fig. 5.8. Here, the primary inputs and outputs of each frame are
marked by their frame numbers. Further, new primary inputs and outputs are created,
corresponding to the inputs from flip-flops for frame 0 and outputs of flip-flops for
frame 3. Intermediate flip-flops are represented by buffers.

Observability is analyzed by considering all n frames together as a single combina-
tional circuit, thus allowing the single-fault SER analysis described in the previous
section to be applied to sequential circuits. Other useful information, such as the
average number of cycles during which faults persist, can also be determined using
time-frame expansion.

After the sequential simulation described in the previous section, we store the
signatures of the flip-flops and use signatures to stimulate the newly created primary
inputs (corresponding to frame-0 flip-flops) in the time-frame expanded circuit. For
instance, the x0 and y0 inputs of the circuit in Fig. 5.9 are simulated with the corre-
sponding signatures, marked T3 (the final signature after multi-cycle simulation is
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Fig. 5.9 Illustration of time-frame expansion into three frames C0, C1 and C2

finished), from Fig. 5.8. Randomly generated signatures are used for primary inputs
not corresponding to flip-flops, such as a0 and b0 in Fig. 5.9.

Following simulation, we perform ODC analysis, starting from the primary out-
puts and flip-flop inputs of the n-th frame and moving all the way to the inputs of the
0-th frame. In other words, errors in primary outputs and flip-flops are considered
to be observable. Fig. 5.10 gives our algorithm for sequential SER computation. The
value of n can be varied until the SER stabilizes, i.e., it does not change appreciably
from an n-frame analysis to an (n + 1)-frame analysis.

The n-frame ODC-analysis can lead to different gates being seen as critical for
SER. For instance, the designer can deem errors that persist longer than n cycles as
more critical than errors that are quickly flushed at primary outputs. In this case, the
ODC analysis only considers the fan-in cones of the primary outputs of Cn . We denote
the ones count of ODCmask(g, f, n) as seqobs(g, f, n). The testability is computed
using the signature and ODC mask after n simulations and f frames of unrolling.

P[test0(g, f, n)] = zeros(sig(g, f, n)&ODCmask(g, f, n))/K (5.5)

P[seqobs(g, f, n)] = ones
(
ODCmask(g, f, n)

)
/K (5.6)

Perr(C0, f, n) =
∑

gi ∈C0

P[test1(gi , f, n)]Perr0(gi ) + P[test0(gi , f, n)]Perr1(gi )

(5.7)
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Fig. 5.10 Computing SER in sequential circuits under TSA faults

The SER algorithm in Fig. 5.10 still runs in linear time with respect to the size
of the circuit, since each simulation is linear and ODC analysis (even with n time
frames) runs in linear time as well.

5.3 Additional Masking Mechanisms

Recall that researchers have identified three mechanisms by which soft errors are
mitigated in combinational circuits: logic masking, electrical masking and timing
masking [12]. In previous sections, we estimated logic masking using simulation
signatures and ODC masks. In this section, we extend this framework to include
timing and electrical masking in a modular, and accurate manner.

We propose linear-time algorithms in the spirit of static timing analysis (STA) for
computing the error latching window (ELW) and attenuation factor of each gate in
a circuit. The ELW of a gate in comparison to the clock cycle is used to derive the
probability of errors that strike the gate and are capable of latching. The electrical
derating factor is an indicator of the probability of propagation of the error without
attenuation to a primary output or latch. We also show how to incorporate input-vector
dependency into our estimates using logic simulation. This essentially renders our
method statistical rather than static.

5.3.1 Incorporating Timing Masking into SER Estimation

This section presents a method for computing ELWs for a sequential circuit with
edge-triggered flip-flops separated by combinational logic blocks. The timing con-
straints associated with each edge-triggered D flip-flop are as follows:
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• The data (D) input has to receive all data before the setup time Ts preceding the
latching clock edge.

• The data input must be held steady for the duration of the hold time Th following
the latching clock edge.

Soft errors are usually characterized by a transient glitch of duration d that results
from a particle strike. If such a glitch is present at the data or clock inputs of a flip-flop
during the interval [Ts, Th], it can result in an incorrect value being latched. If the
glitch is present during the setup or hold time, it can prevent a correct value from
being latched. Therefore, the ELW of the D-flip flop is simply [Ts, Th].

The ELW for a gate is computed by (1) translating the ELWs of each of its fanout
gates backwards by appropriate path delays, and (2) taking the union of the resulting
ELWs. In contrast, during STA we compute only the minimum required time at each
gate even though a similar backwards traversal is used. Fig. 5.12 shows the algorithm
that computes the union of such intervals. The union of two intervals can result in
two separate intervals if the respective intervals are disjoint, or one if the intervals
overlap. In general, the latching window for a gate g is defined by a sequence of
intervals ELW(g)[0], ELW(g)[1] . . ., where ELW(g)[i] refers to the ith interval in
the latching window. Each interval ELW(g)[i] is itself described by its start and end
times [Sgi , Egi ]. Hence, we can write

ELW(g) = ([
Sg1, Eg1

]
,
[
Sg2, Eg2

]
, . . .

[
Sgn, Egn

])

An algorithm to compute the ELWs for each gate in a circuit is shown in Fig. 5.11,
while Fig. 5.12 shows how two ELWs can be combined.

Example 5.4 A typical ELW computation is illustrated by the circuit in Fig. 5.13.
Each wire is marked with a delay and each gate i is assumed to have delay d(i). The
corresponding ELWs are:

ELW(F1) = E LW (F2) = [Ts, Th]
ELW(i) = [Ts − d2, Th − d2]
ELW(g) = [Ts − d2 − d(i) − d4, Th − d2 − d(i) − d4]
ELW(h) = [Ts − d1, Th − d1]
ELW( f ) = [Ts − d2 − d(i) − d4 − d(g) − d5, Th − d1 − d(h) − d3]

Note that f has a larger ELW than other gates because its two output paths have
different delays.

We define the timing masking factor as the ratio of the ELW to the clock cycle
time C . For a node f , the timing masking factor is computed as follows:

T mask( f ) =
n∑

i=1

(E f i − S f i )/C
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Fig. 5.11 Computing the
error-latching windows
(ELW) of a circuit

Fig. 5.12 Computing the
union of two ELWs

Taking timing masking into account, the SER contribution of each gate is computed
by scaling the testability and error probability by Tmask.

SER(C) =
∑

g∈C

(
test1(g)gerr0(g) + test0(g)gerr1(g)

)
T mask(g) (5.8)

The latching-windows computation method described above can be seen a type
of static analysis. Therefore, some intervals (or portions of intervals) correspond to
paths that are not traversed frequently. Our aim is to weight each interval in the ELW
by the probability that an error occurring within the interval gets latched. In order to
compute such a probability, we use bit-parallel logic simulation. Recall that the ones
count of the signature of a signal is used as a measure of signal probability and the
ones count of the ODC mask is used as a measure of signal observability. Together
these measures give an estimate of the testability of the associated stuck-at fault.

We extend this test-vector counting method to account for path faults, i.e., those in
which an entire path rather than a single stuck-at signal is sensitized. For our purpose,
we consider sets of paths associated with each ELW interval, rather than a single
path. Therefore, we associate an interval ODC-mask O DC( f, i) with each interval
i in an E LW ( f ). Note that the ODC mask of a particular gate f , (not associated
with an interval) is denoted O DC( f ). The fraction of 1s in the interval ODC-mask,
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Fig. 5.13 Illustration of error-latching window computation

Fig. 5.14 Computing interval
ODCs and electrical derating
factors along with ELWs

denoted ones(O DC( f, i)), is the interval weight. As shown in Fig. 5.14, we proceed
in reverse topological order by initially considering gates that feed primary outputs.
For such gates, all ODC-masks for intervals are simply equal to their ODC-masks
(all 1s). For subsequent gates, ELWs are computed by translating and merging the
ELWs of sink gates. Here, each interval ODC associated with a sink gate is masked
by the ODC of the gate in question to form the interval ODC for the current gate.
Intuitively, the interval ODC mask keeps track of the observability of a signal through
specific paths. Therefore, masking the ODC corresponding to a path by the ODC
of the additional gate simply adds that gate to the path. Note that the runtime of
the algorithm remains linear in the size of the circuit even when computing interval
weights.

When intervals from two fanout cones are merged, the interval ODC masks are
combined using the bitwise OR operation. This ORing results in some lack of accu-
racy for the weighting algorithm because it averages the weight for both intervals in
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Fig. 5.15 Computing the union of two ELWs along with interval ODCs and derating factors

the merged interval. However, this operation is necessary for scalability, since each
gate can be subject to exponentially many intervals and the loss of accuracy is small.

Consider a gate f with fanouts g and h. Assume that during ELW computation,
intervals ELW(g)[i] and ELW(h)[ j] are merged to form ELW( f )[k]. In this case,

ODC( f, k) = (ODC(g, i) + ODC(h, j))&ODC( f )

The SER computation from interval weights is simply the sum of observabilities
corresponding to each interval, weighted by the length of the interval in question.

T mask( f, i) = (E f i − S f i )/C

SER(C) =
∑

f ∈C

∑

i∈ELW( f )

(
ODC( f, i) × gerr1( f )

)
T mask( f, i) (5.9)

5.3.2 Electrical Attenuation

Recall from Sect. 2.2.2 that we use the glitch-propagation model of [13] to determine
which signal characteristics to capture; a different model might require different
characteristics to be represented. Glitches are classified into three types depending
on their duration D and amplitude A relative to the gate propagation delay Tp and
the logic threshold voltage Vs .

http://dx.doi.org/10.1007/978-90-481-9644-9_2
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• Type 1: If D > 2Tp, the glitch passes through un-attenuated because there is
sufficient energy to propagate it. The output amplitude A′ in this case is Vdd .

• Type 2: If 2Tp > D > Tp, the glitch propagates with its amplitude A diminished
by attenuation to A′ = Vdd/(V T1 −V T2)∗ A(Vdd/2−V T1), where V T1 and V T2
are threshold functions defined in [13]. If A′ < Vs , then this glitch no longer has
the energy to cause a logical error; such type-2 glitches are effectively electrically
masked.

• Type 3: If Tp > D, the glitch will not propagate at all. Hence, in this case A′ = 0.

Equivalently, according to [13], the minimum output voltage Vmin of a gate can be
expressed as a linear function of the input glitch amplitude A. Then, when the output
voltage has a high logic value Vdd and a glitch affects the input, the minimum output
voltage can be written as:

Vmin =

⎧
⎪⎪⎨

⎪⎪⎩

Vdd if A
Vs

< V T1
−Vdd

V T2 − V T2

A

Vs
+ Vdd V T1V T1

V T2 − V T2
if V T1 < A

Vs
< V T2

0 if V T1 < A
Vs

Again, Vs is the fan-out gate logic threshold which is generally close to Vdd/2. The
thresholds V T1 and V T2 are entirely functions of glitch duration and propagation
delay.

In order to map the foregoing equations into a probabilistic model, we need
to derive the probabilities of glitches being of type 1, 2 or 3 for particular gates.
Researchers have measured the spectrum of cosmic ray energies in the atmosphere;
see Fig. 5.16. The data imply an exponential flux distribution of the form Flux =
1.5F(ln(E)), where E is the energy of the particle in MeV , and F(ln(E)) is a third
degree polynomial in E [14]. The amount of energy that is transferred from a particle
strike is known as the linear energy transfer (LET), and is proportional to the particle
energy scaled by a factor that depends on the density of the material being struck.
It has been estimated that an ionizing particle has a charge of about 10.8 f c per
MeV of LET, for every micron of its track in silicon. Tracks are normally about 2
microns long. Therefore, the charge collected and current produced can be estimated
as follows [15]:

Qcol = 2 × 10.8 f C × LET

I (t) = (exp−t/τa − exp−t/τb )
Qcol

τa − τb

Here, τa and τb are charge-collection time constants that depend on process parame-
ters. Therefore, we believe that it is possible to obtain duration-probability ranges
directly from the cosmic-ray energy spectrum. From now on, we will assume that
each gate g can be characterized to obtain the probability that it experiences glitches
of types 1, 2 or 3, denoted by pR1(g), pR2(g), pR3(g), respectively.
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Fig. 5.16 Cosmic ray energy
spectrum, as shown in [14]

For a particular gate g, the ELW and the associated interval ODCs can provide
an estimate of the probability of a glitch at g being latched. This estimate, however,
does not directly take into account the possibility of the error being attenuated on its
way to the latch. Therefore, we will explain how to account for that possibility by
means of attenuation factors applied to the ELW.

As shown in Fig. 5.15, electrical derating can be computed in a manner similar
to the ELW, because it too is a factor that accumulates as the signal passes through
a sensitized path. In the ELW case, the window is moved according to the delays
it encounters along its path to a latch. Similarly, a derating factor scales down as it
passes through gates along a path with the ability to attenuate the errors resulting
from particle strikes.

Formally, an attenuation factor att (g, k) gives the probability that an SEU occurs
at a gate g during ELW interval k and is electrically attenuated out of existence (not
propagated). Assuming g has multiple fanouts f1, f2, . . . fm , the attenuation factor
is computed recursively based on the following assumptions:

• Glitches of type 1 which occur with probability pR1 are immediately eliminated.
• Glitches of type 3 occur with probability pR3 and are never attenuated and always

propagated.
• Glitches of type 2 are propagated with some attenuation, depending on their dura-

tion. Some fraction df(g)of these glitches are small enough that their amplitude
goes below the threshold voltage of Vs and becomes a logic 0. The remaining
glitches, constituting 1 − d f (g) of the type-2 glitches, are propagated with some
attenuation, but their amplitude remains above the threshold voltage. However,
those glitches may be eliminated by downstream gates—this is the recursive part
of the computation.
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att (g, k) = pR1(g) + pR2(g)d f (g) + pR2(1 − dg(g))

(1 − prop2(g, k))

prop2(g, k) =
∑

1< j<m

prop2(g, fm, im)

prop2(g, fm, im) = trans( fm, g, 2)prop2( fm, im)d f (g) + trans( fm, g, 1)

The variables used in these equations are as follows:

• prop2(g, k) is the probability that a glitch of type 2 on g is propagated to a primary
output or a latch. This says nothing about the probability with which type-2 glitches
2 actually occur at g.

• prop2(g, f, im) is the probability that a glitch of type 2 on g is propagated through
f to the primary outputs.

• d f (g) is the derating factor, which corresponds to the amount by which glitch
amplitudes are reduced by g before being passed onto f .

• trans( f, g, 1), trans( f, g, 2) and trans( f, g, 3) are the fractions of type-2
glitches on g that are type-1, -2 or -3 glitches on f .

In the case of a gate adjacent to a latch or primary output.

att (g, k) = pR1(g) + pR2(g)d f (g)

We have discussed how to derive attenuation factors for each ELW interval and
have shown earlier how to compute interval ODCs that estimate logic masking during
each interval. We now combine the two. As before, suppose that a gate g has multiple
fanouts f1, f2, . . . fm with E LW ( f1, i1), E LW ( f2, i2) . . . E LW ( fm, im) merged
to form E LW (g, k). The logically sensitized path goes through g − f j during a
particular interval k only when ODC(g, k)&ODC( f j , i j ) = 1. Note that this may
double-count some vectors. But such vectors can propagate through at least two
path, which justifies double-counting. Therefore, the modified factor prop2(g, k)

weights different paths g, f j by the fraction of sensitized paths that go through them.
The algorithm to compute the union of two ELWs and derating factors is shown in
Fig. 5.15.

att (g, k) = pR1(g) + pR2(g)d f (g) + pR2(1 − dg(g))(1 − prop2(g, k))

prop2(g, k) =
∑

1< j<m

prop2(g, fm, im) ×
(

ones(ODC(g, k)&ODC( f j , i j ))

ones(ODC(g, k))

)

prop2(g, fm, im) = trans( fm, g, 2)prop2( fm, im)d f (g) + trans( fm, g, 1)

The total probability of logically and electrically propagating an upset which
latches at a sequential element is given by:
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Fig. 5.17 SER evaluation framework including logic, timing and electrical masking

SE R(C) =
∑

f ∈C

∑

i∈E LW ( f )

(
O DC( f, i) × gerr1( f ) × (1 − att ( f, i))

)
T mask( f, i)

(5.10)

5.3.3 An Overall SER Evaluation Framework

AnSER is a scalable, lightweight method for guiding logic and physical synthesis
flows towards increased reliability. It can also be used to simply check the impact
of logic and physical synthesis techniques on reliability, possibly rejecting logic
transformations or physical relocations whose impact on reliability is unacceptable.
The scalability is in large part due to the efficient linear-time algorithms that are used
to compute the impact of logic masking.

Figure 5.17 shows how to incorporate our method into a typical RTL-to-GDSII
design flow. After each change to the netlist or placement, AnSER can be invoked
incrementally. Physical changes only require the ELWs and signatures of fanin cones
to be updated; logic changes can require both input and output cone signatures
and ODCs to be updated. Since reliability is expressed as a sum of values in both
cases, incremental evaluation involves regenerating signatures and ELWs for each
gate in question. Unlike other reliability evaluators which often require a lot of
circuit information, the amount of information processed and output by AnSER can
be adjusted according to the needs of the user. For instance, if the user wishes to
study the impact on reliability of only the timing optimizations steps, then she can
use only timing computations in static mode. If a designer is only looking at logic
transformations, then the logic-only mode may be used. Therefore, the amount of
coupling between the masking mechanisms can also be adjusted. AnSER can be
connected to any external timing engine, not necessarily the one used in our work.
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Table 5.1 Comparison of SER (FIT) data for AnSER and ATALANTA

Circuit Number
of gates

ATALANTA AnSER % Error AnSER
Exact-
ODC

% Error

c17 13 6.96E-7 6.96E-7 0.01 6.96E-7 0.01
majority 21 6.25E-6 6.63E-6 6.05 6.57E-6 4.87
decod 25 2.60E-5 2.62E-5 0.83 2.60E-5 0.83
b1 25 1.28E-5 1.31E-5 2.81 1.27E-5 0.78
pm1 68 2.86E-5 3.00E-5 4.70 2.97E-5 3.5
tcon 80 5.30E-5 5.39E-5 1.67 5.35E-5 0.94
×2 86 3.78E-5 3.87E-5 2.38 3.93E-5 3.97
z4ml 92 5.29E-5 5.37E-5 1.50 5.41 E-5 2.20
parity 111 7.60E-5 7.69E-5 1.24 7.71E-5 1.45
pcle 115 5.38E-5 5.34E-5 0.75 5.35E-5 0.56
pcler8 140 7.06E-5 7.24E-5 2.52 7.23E-5 2.41
mux 188 1.58E-5 1.38E-5 12.54 1.63E-5 3.16
Ave. 3.06 2.65

5.4 Empirical Validation

We now report empirical results for SER analysis using AnSER and our two SER-
aware synthesis techniques. The experiments were conducted on a 2.4 GHz AMD
Athlon 4000+ workstation with 2GB of RAM. The algorithms were implemented
in C++.

For validation purposes, we compare AnSER with complete test-vector enumera-
tion using the ATPG tool ATALANTA [16]. We provided ATALANTA with a list all
of possible stuck-at (SA) faults in the circuit to generate tests in “diagnostic mode,”
which calculates all test vectors for each fault. We used an intrinsic gate-fault value
of gerr0 = gerr1 = 1 × 106 on all faults. Since TSA faults are SA faults that last
only one cycle, the probability of a TSA fault causing an output error is equal to
the number of test vectors for the corresponding SA fault, weighted by their fre-
quency. Assuming a uniform input distribution, the fraction of vectors that detect a
fault provides an exact measure of its testability. Then, we computed the SER by
weighting the testability with a small gate fault probability, as in Eq. 5.4. While the
exact computation can be performed only for small circuits, Table 5.1 suggests that
our algorithm is accurate to about 3 % for 2,048 simulation vectors. More test vectors
can be used if desired.

We isolate the effects of the two possible sources of inaccuracy: (1) sampling
inaccuracy, and (2) inaccuracy due to approximate ODC computation. Sampling
inaccuracy is due to the incomplete enumeration of the input space. Approximate
ODCs computed using the algorithm from [6] incur inaccuracy due to mutual mask-
ing. When an error is propagated through two reconvergent paths, the errors may
cancel each other. However, the results in Table 5.1 indicate that most of the inac-
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Fig. 5.18 Comparison of SER trends on inverter chains produced by SERD [18] and AnSER

curacy is due to sampling, not approximate ODCs. The last two columns of Table
5.1, corresponding to exact ODC computation, show an average error of 2.65 %.
Therefore, only 0.41 % of the error is due to the approximate ODC computation. On
the other hand, while enumerating the entire input space is intractable, our use of
bit-parallel computation enables significantly more vectors to be sampled than other
techniques [17–19] given the same computation time.

To characterize the gates in the circuits accurately, we adapted data from [18],
where several gate types are analyzed in a 130 nm, 1.2VDD technology via SPICE
simulations. We use an average SER value of gerr0 = gerr1 = 8 × 10−5 for all
gates. However, the SER analyzers from [17, 18, 20] report error rates that differ by
orders of magnitude. SERA tends to report error rates on the order of 10−3 for 180 nm
technology nodes, and FASER reports error rates on the order of 10−5 for 100 nm.
Furthermore, although our focus is logic masking, we also approximate electrical
masking by scaling our fault probabilities at nodes by a small derating factor to obtain
trends similar to those of [18]. In Fig. 5.18, we compare AnSER and SERD when
computing SER for inverter chains of varying lengths. Since there is only one path
that is always sensitized in this circuit, it helps us estimate the derating factor.

Table 5.2 compares AnSER with the previous work on ISCAS 85 benchmarks,
using similar or identical host CPUs. While the runtimes in [21] include 50 runs,
the runtimes in [18] are reported per input vector. Thus, we multiply data from [18]
by the number of vectors (2,048) used there; our runtimes appear better by several
orders of magnitude. We believe that this is due to the use of bit-parallel functional
simulation to determine logic masking, which has a strong input-vector dependency.
Most other work uses fault simulation or symbolic methods.

Table 5.3 shows SER and runtime results for the IWLS 2005 benchmark suite [22],
which were evaluated when we implemented AnSER within the OAGear package.
Note that our algorithm scales linearly in the size of the circuit, unlike the majority
of prior algorithms. We assume a uniform input distribution in these experiments,
although AnSER is not limited to any particular input distribution. An input distrib-
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Table 5.2 Runtime comparisons of four SER analyzers

Circuit Number Time (s)
of gates AnSER SERD [18] FASER [20] [21]

c432 246 <0.01 10 22 —
c880 591 < 0.01 10 — —
c1355 746 0.014 20 40 2.09
c1908 760 0.015 20 66 0.781
c3540 1951 <0.01 60 149 5m42s
c6280 4836 1.00 120 278 —

Table 5.3 SER (in FITs) and runtime for AnSER on the IWLS 2005 benchmarks

Circuit Number
of gates

SER
(FIT)

Time
(s)

pci_conf_cyc_addr_dec 97 4.89E-3 0.23
steppermotordrive 226 8.00E-3 0.27
ss_pcm 470 1.68E-2 0.3
usb_phy 546 1.53E-2 0.28
sasc 549 2.10E-2 0.26
simple_spi 821 2.50E-2 0.3
i2c 1142 2.7E-2 0.34
pci_spoci_ctrl 1267 0.029 0.342
des_area 3132 0.019 0.782
spi 3227 0.118 0.68
systemcdes 3322 0.127 0.55
tv80 7161 0.104 0.91
systemcaes 7959 0.267 0.97
mem_ctrl 11440 0.494 1.36
ac97_ctrl 11855 0.409 1.38
usb_funct 12808 0.390 1.42
pci_bridge32 16816 0.656 1.78
aes_core 20795 0.550 2.1
wb_conmax 29034 1.030 4.18
ethernet 46771 1.480 5.77
des_perf 98341 3.620 9.34
vga_lcd 124031 4.800 11.7

ution supplied by a user, a sequential gate-level simulator, or a Verilog simulator can
be used directly, even if it includes repeated vectors. SER and runtime results with
exact and approximate ODCs are shown for the ISCAS-85 benchmarks in Table 5.4.
Again, the results show that approximate ODCs are sufficient for most benchmark
circuits, since the loss of accuracy due to ODC approximation is negligible.

Table 5.5 compares the multi-cycle simulation runtimes of AnSER with those of
MARS-S, the sequential circuit SER analyzer from [11]. MARS-S employs symbolic
simulations, using a BDD/ADD-based method to compute steady-state probability
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Table 5.4 SER evaluation of various benchmarks with exact and approximate ODCs

Number
of gates

SER
(FIT)

Time (s) SER (s) Time (s)

alu4 740 1.13E-2 0.227 1.19E-2 0.004
b9 14 4.67E-3 0.007 4.69E-3 0.005
b1 114 6.79E-3 0.050 6.69E-3 0.000
C1355 536 1.93E-2 2.010 1.93E-3 0.034
C3540 1055 3.06E-2 0.409 3.07E-2 0.080
C432 215 5.70E-3 0.056 5.71E-3 0.016
C499 432 1.75E-2 0.291 1.71E-2 0.260
C880 341 1.50E-2 0.54 1.51E-2 0.23
cordic 84 9.43E-2 0.007 9.43E-2 .004
dalu 1387 2.18E-2 0.535 2.17E-2 0.225
des 4252 2.04E-1 5.283 2.03E-1 4.87
frg2 1228 3.61E-1 0.217 3.65E-1 0.169
i10 2824 1.03E-1 1.063 1.04E-1 0.315
i9 952 5.07E-2 2.237 5.06E-2 2.044

Table 5.5 Comparison of
multi-cycle simulation
runtimes

Circuit Number Number Time (s)
of gates of cycles MARS-S AnSER

s208 112 10 1000 1
s298 133 10 6900 0
s444 181 10 365 4
s526 214 5 551 11
s1196 547 5 68 8
s1238 526 4 70 8

distributions, while we use signature-based bit-parallel functional simulation. The
number of cycles needed to reach steady-state is also listed. Table 5.6 shows the
results of SER analysis on sequential circuits from the ISCAS-89 benchmark suite
under time-frame expansion. The listed runtimes in Table 5.6 are for processing
signatures and ODCs on 10 frames. These results indicate that the SER obtained by
considering only one time frame is 62 % higher than the 2-frame SER. After this
point, increasing the number of frames has little effect on the SER. This indicates
that most faults, if at all propagated, are usually observable at primary outputs in
the current cycle. This result is supported by observations in [8]. In other words,
flip-flops propagate few errors to the outputs in later cycles, due to sequential circuit
masking. The latched errors tend to quickly dissipate after a few cycles. This leaves
the SER for multiple-cycle analysis close to the error rate of the current cycle’s
primary outputs.

Table 5.7 shows SER results under the TMSA model, which represents single-
event multiple-bit upsets. In this experiment, we included as TMSA faults, sets of
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Table 5.6 Change in SER for sequential circuits with increasing number of time frames

Circuit Number Time SER for n time frames
of gates (s) n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

s208 112 9 2.40E-3 2.34E-3 2.34E-3 2.33E-3 2.32E-3 2.33E-3
s298 133 9 2.97E-3 2.75E-3 2.69E-3 2.67E-3 2.65E-3 2.62E-3
s400 180 14 4.24E-3 3.00E-3 2.38E-3 2.23E-3 2.23E-3 2.05E-3
s444 181 14 4.69E-3 3.06E-3 2.43E-3 2.18E-3 2.02E-3 1.98E-3
s526 214 9 3.87E-3 2.97E-3 2.65E-3 2.52E-3 2.46E-3 2.44E-3
s1196 547 18 6.35E-3 3.87E-3 3.71E-3 3.68E-3 4.05E-3 3.89E-3
s1238 526 14 6.09E-3 3.54E-3 3.42E-3 3.47E-3 3.72E-3 3.62E-3
s1488 659 5 1.02E-1 1.11E-2 1.03E-2 1.06E-2 1.15E-2 1.07E-2
s1423 731 47 1.43E-2 8.48E-3 5.08E-3 3.47E-3 2.78E-3 2.54E-3
s9234 746 4 1.31E-2 1.24E-2 1.22E-2 1.18E-2 1.07E-2 9.78E-2
s13207 1090 15 3.07E-2 2.66E-2 3.14E-2 3.62E-2 3.61E-2 4.39E-2

Table 5.7 SER under
single-event multiple-bit
upsets

Circuits Exact time
(s)

Exact
SER (FIT)

Approx
SER (FIT)

alu4 0.492 2.56e-2 1.00e-2
b1 0.001 2.56e-4 4.62e-4
b9 0.008 2.72e-3 3.30e-3
C1355 0.843 1.82e-2 1.44e-2
C3540 0.992 3.95e-2 2.29e-2
C432 0.129 7.93e-3 6.24e-3
C499 0.589 1.45e-2 1.45e-2
C880 0.087 7.79e-3 7.30e-3
cordic 0.014 2.30e-3 1.25e-3
dalu 0.857 3.89e-3 1.76e-3
des 1.201 0.113e-3 0.139e-3
frg2 0.332 2.75e-2 3.26e-3
i10 0.212 8.07e-2 7.83e-2
i9 0.496 1.87e-3 2.57e-3

topologically adjacent gates 2–3 levels away from a central gate. The results under
exact SER are obtained by resimulating the entire fan-out cone. The results under
approximate ODC computations, given in Fig. 5.3b, are shown with analysis of 10
levels of logic. The runtime is shown for the exact algorithm.

To evaluate our algorithms involving timing masking, we use the IWLS bench-
marks, with design utilization set to 70 % to match recent practice in industry. Our
wire and gate characterizations are based on a 65 nm technology library. We perform
STA using the D2M delay metric [23] on rectilinear steiner minimal trees (RSMTs)
produced by FLUTE [24]. These designs are placed using Capo version 10.2 [25, 26],
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Table 5.8 SER evaluation with logic and timing masking

Circuit Number Clock Logic Time Timing Time Potential
of gates period (s) SER (s) SER (s) improve

(FIT) (FIT) ment

aes_core 20265 5.68E-07 0.1654 6 9.33E-05 3 37.57
spi 2998 3.19E-07 0.05722 1 4.23E-05 1 15.28
s35932 5545 6.18E-07 0.1363 2 6.03E-05 1 26.73
s38417 6714 3.56E-07 0.1360 2 1.22E-04 1 37.83
tv80 6802 6.79E-07 0.05602 2 2.64E-05 1 37.50
mem_ctrl 11062 6.44E-07 0.2185 2 8.45E-05 3 19.64
ethernet 36227 1.46E-06 0.7010 9 1.31E-04 9 91.68
usb_funct 10357 5.06E-07 0.1852 3 8.79E-4 3 36.59

and relocations are legalized, i.e., gates are moved to the nearest empty or legal loca-
tions, using the legalizer provided by GSRC Bookshelf [26].

Table 5.8 shows changes in SER when timing masking is considered. Incorporat-
ing timing masking into SER can be useful in guiding physical synthesis operations,
while only considering logic masking is sufficient for technology-independent logic
synthesis steps in the design flow. Table 5.8 also shows the potential for improvement
in timing masking, i.e., the improvement in reliability when the ELW of each gate
is made as small as possible (equal to the ELW of a latch). This shows that SER can
be significantly decreased by manipulating timing masking.
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Chapter 6
Design for Robustness

At the gate level, soft errors have been traditionally eliminated from logic circuits
through the use of time or space redundancy. The cascaded-TMR scheme illustrated
in Fig. 1.10 [1] is an example. Here, the circuit is replicated three times, and the
majority value is taken as the result. To protect against faults in the majority voter, this
entire circuit ensemble is replicated three times, a process which can be recursively
applied until a desired level of fault tolerance is reached. In this chapter, we show
how to improve reliability without resorting to explicit or massive redundancy.

Section 6.1 is concerned with increasing the reliability of combinational circuits.
It presents a signature-based method to identify partial redundancy and a metric
for selecting error-sensitive gates. It also describes a gate relocation technique to
improve timing masking. Section 6.2 presents a sequential optimization technique
to retime circuits by moving registers, so that fewer latched errors are propagated.
Linear programming (LP) is applied to the sequential retiming problem in Sect. 6.3.
Finally, Sect. 6.4 offers empirical validation of these techniques. Most of the methods
and results described in this chapter also appear in [2–4].

6.1 Improving the Reliability of Combinational Logic

In combinational circuits, an SEU only affects the primary outputs if it is propa-
gated through the intermediate gates. Recall that this phenomenon is known as logic
masking. A basic way that designers can improve a circuit’s reliability is to ensure
that faults are logically masked with high probability. We target logic and timing
masking to obtain soft-error-resistant circuits in the following ways: (1) by identify-
ing and using partial redundancy already present within the circuit, to mask errors;
(2) by selecting error-sensitive areas of the circuit for replication or hardening; (3)
by generating a large number of candidate rewrites for each subcircuit and select-
ing among them for improvements in area and SER; and (4) by increasing timing
masking during physical design.

S. Krishnaswamy et al., Design, Analysis and Test of Logic Circuits Under Uncertainty, 93
Lecture Notes in Electrical Engineering 115, DOI: 10.1007/978-90-481-9644-9_6,
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6.1.1 Signature-Based Design

We next present a technique called signature-based design for reliability (SiDeR).
Using functional simulation, SiDeR identifies redundancy already present in the cir-
cuit and utilizes it to increase logic masking. As discussed in Chap. 5, signatures
provide partial information about the Boolean function of a node. Therefore, candi-
date nodes with similar functionality can be identified by matching signatures.

SiDeR takes advantage of the fact that nodes need not implement identical Boolean
functions to bolster reliability. Any node that provides predictable information about
another can be used to mask errors. For instance, if two internal nodes x and y
satisfy the property (y = 1) ⇒ (x = 1), where ⇒ denotes “implies”, then y gives
information about x whenever y = 1. More generally, if f (x0, x1, x2, . . . , xn) = x ,
then x can be replaced by f to logically mask errors that are propagated through x .
However, errors at x are only masked in cases where x does not control f . The
probability that x controls f can be determined by reevaluating the SER, with the
modified node in place.

Additionally, we can increase the number of potential candidates that can repli-
cate x by taking ODCs into account. Instead of searching for candidates where
f (x0, x1, x2, . . . , xn) = x , we search for those such that f (x0, x1, x2, . . . , xn) &
care (x) = x&care(x). Here, care(x) is the function representing the care-set of x ,
i.e., the set of all input vectors that generate a required 0 or 1 value for x . In terms of
signatures, this corresponds to bitwise ANDing sig( f ) and sig(x) by ODCmask(x)

to check for the following relation:

sig( f )&ODCmask(x) = sig(x)&ODCmask(x)

Figure 6.1a shows an example of replicated logic for node a, derived by utilizing
don’t-care values and signatures.

In order to limit area overhead, the function f must be efficiently constructed
from x0, x1, . . . , xn . Therefore, we only consider cases where f is implemented by
a single AND or OR gate. We add redundant logic by transforming node x into
OR(x, y). This means that either (y = 1) ⇒ (x = 1) or (x = 1) ⇒ (y = 1), which
makes candidate pairs x and y easy to identify.

When OR(x, y) = x , it follows that sig(x)> sig(y) in lexicographic order; oth-
erwise, sig(y) is 1 in a position where sig(x) is not. Therefore, lexicographically
sorting the signatures can narrow the search for candidate signals y. Also, sig(x)

must contain more 1s than sig(y), i.e., |sig(x)| > |sig(y)|, where |sig(x)| is the size
of the signature. Thus, maintaining an additional list of size-sorted signatures and
intersecting the two lists can prune the search. Multiple lexicographical sorts and
multiple size sorts of signatures starting from different bit positions can further nar-
row the search. For instance, if we sort the signatures lexicographically from the
i th bit, sig(x) must still occur before sig(y), for the same reason. As a result of
these properties, signature-based redundancy identification can efficiently perform
logic-implication analysis.

http://dx.doi.org/10.1007/978-90-481-9644-9_5
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Fig. 6.1 a Rewriting a subcircuit to improve area. b Finding a candidate cover for node a

Generally, several candidates satisfy implication relations for each node x . Among
the candidates, we choose a node y that (1) most often controls the output of the
added OR/AND gate, and (2) whose fanin cone is maximally disjoint from that of x .
Errors in the mutual fanin cone can be propagated both through x and y. Hence, the
additional OR or AND gate would not stop propagation in these cases. However,
in order to decide exactly between candidates, it is necessary to evaluate the SER
for each potential modification. The high speed of our linear-time SER computation
algorithm allows for this, in most cases.

Once we find candidates for resynthesis, a SAT solver can be used to verify the
implication relation. The basic process of verifying circuit optimizations with SAT
is as follows [5]. Two copies of the circuit are constructed, the original C and the
modified version C ′. To check if C = C ′, each output of C and corresponding output
of C ′ are connected to a so-called miter (actually an XOR gate). The outputs of all the
miters are fed into an OR gate. This entire ensemble (containing C , C ′, the miters,
and the OR gate) is converted into a SAT instance. A SAT engine then checks if the
output of the OR gate is ever 1 (satisfied). If it is, the two circuits cannot be equivalent.
In our case, the modified circuit contains f (x, y) in place of x . ODCs are taken into
account by feeding the primary outputs (rather than earlier signals) into the miters.
In this case, only those differences between C and C ′ that are observable from the
primary outputs result in a 1 at the output of the miters. However, it is possible to
decrease the size of the SAT instance by using cuts that are closer to f and x as the
inputs of the miters. In [6], verification is done incrementally, starting from f and x ,
and moving closer to the primary outputs if the relation is unverified.
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Fig. 6.2 Algorithm to approx-
imate impact

6.1.2 Impact Analysis and Gate Selection

Gate selection is important in many optimization methods to improve SER. For
instance, gate selection is used by SiDeR to limit the area overhead, and the same
is true of techniques that harden gates [7]. Gate hardening refers to the use of larger
gates with higher critical charge Qcrit in order to electrically mask more errors. When
a gate is hardened, it does not just change the SER contribution of that particular
gate but can also mask errors propagated from its fanin cone. For instance, if a gate
f is hardened, and a gate f ′ ∈ fan-in( f ) is smaller than f , then errors occurring
in f ′ can also be stopped by f . Therefore, in deciding which gates to harden, it is
important also to account for the error probability of gates in the fanin cone. In the
case of multiple faults, hardening a gate can affect the whole circuit. For instance, if
f masks certain errors, they can alter the propagation of other errors in the fanin of
the fanout cone of f .

We define the improvement in SER, when a subcircuit c (possibly consisting of a
single gate) is changed to a subcircuit c′, as the impact of c with respect to the change
(c, c′). Formally, impact(c, (c, c′)) = Perr(C ′

c)− Perr(Cc), i.e., the difference in the
SER of the entire circuit C when c is replaced by c′. However, this is not an efficient
method for practically identifying high-impact gates. For instance, evaluating the
impact of each gate with respect to replication takes time O(n2) for a circuit with
n gates. Therefore, we provide an approximate algorithm to assess the impact of
gates. Our algorithm, given in Fig. 6.2, runs in linear time and employs a notion of
the observability of one node g relative to another node f .

relODCmask(g, f ) = ODCmask(g)&ODCmask( f ) (6.1)

The algorithm works by keeping a running signature called impactsig( f ) at each
node f , which is an indication of the faults propagated to f through paths from its
fanout cone.

In general, nodes closer to the primary outputs are more observable than those
closer to the primary inputs. However, a node g in the fanin cone F of node f
may be more observable than f , due to fanout in F . For the circuit in Fig. 5.2,
relODCmask(g, h) = 01000100&01110110 = 01000100. If Perr = p, then when
including faults on h itself, the impact of h is 5p/8 + 2p/8 = 7p/8. In cases where
some gates have higher intrinsic-error probabilities than others, an average value of

http://dx.doi.org/10.1007/978-90-481-9644-9_5
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Fig. 6.3 Two different realizations of an 8-input AND

p can be used. For gate hardening, this measure can also be modified by weighting
each node f with the width of its ELW, as in Eq. 5.9.

6.1.3 Local Logic Rewriting

Rewriting is a general technique that optimizes small subcircuits to obtain overall
area improvements [8]. We optimize circuits for SER and area simultaneously by
using AnSER to accept or reject rewrites. This technique relies on the fact that
different irredundant circuits corresponding to the same Boolean function can exhibit
different SER characteristics. For instance, the balanced AND tree in Fig. 6.3a is
more error-tolerant than the imbalanced one of Fig. 6.3b, if the input vectors are
distributed uniformly. However, when P[a = 0] = 0.8, the imbalanced tree actually
has lower SER. Due to this dependence on signal probability, choosing such cases is
difficult—this is precisely where AnSER’s speed can aid in deciding between certain
optimizations for a particular subcircuit.

We use the implementation of rewriting reported in [8, 9], which first derives a
4-input cut for a selected node, defining a one-output subcircuit. Next, replacement
candidates are looked-up in hash tables that store several alternative implementations
of each function. We rewrite 4-input subcircuits to both improve area and reliability.

http://dx.doi.org/10.1007/978-90-481-9644-9_5
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To ensure global reliability improvement, we resimulate the circuit and update SER
estimates. Computational efficiency is achieved through fast incremental updates
by AnSER. As shown in Fig. 6.1a, the original subcircuit with three gates can be
rewritten with two gates. New nodal equivalences for the rewritten circuit can quickly
be identified using structural hashing to further reduce area.

6.1.4 Gate Relocation

Here, we consider ways to enhance timing masking, rather than logic or electrical
masking. The timing-masking characteristics of a circuit can be improved by reducing
the width of gate ELWs. Gates with many different-length paths to outputs have the
largest latching windows, due to uneven path delay. Therefore, timing masking can
be improved if some fanout paths are eliminated or if the paths are modified such
that the ELWs from the paths have greater overlap.

Embedding an SER analyzer within a placement tool or closely coupling a place-
ment algorithm with reliability goals is one way of tackling this problem. However,
in order to be compatible with all placement algorithms, we take a less intrusive
approach, by making local changes to pre-placed designs. Specifically, we relocate
nodes within the bounding box defined by their adjacent gates; global characteristics
of the placement are maintained in this way.

If a gate f has two fanout branches g and h, then ELW( f ) can be translated
by adding or subtracting delay from the g-to- f path and the g-to-h path in such a
way that the overlap is maximized when ELW(g) and ELW(h) are merged to form
ELW( f ). The problem of computing a locally optimal position for a gate f , i.e.,
an (x, y) position such that the ELWs of its successor gates maximally overlap, is
a nonlinear constrained optimization problem that can be difficult to solve for even
one gate. We conjecture that the best location is likely to be near the center of gravity
of the sources and sinks of the gate; neighboring locations should be tried as well.
We move in reverse-topological order because the latching windows of gates near
primary outputs affect the latching windows of earlier gates, but not vice versa. Our
results suggest that these gate relocations can improve reliability while maintaining
delay. When interconnect delay forms a large portion of circuit delay, we expect this
technique to decrease SER even more.

Figure 6.4 illustrates gate relocation. Here, gate h is moved from the position
shown in Fig. 6.4a to the position in Fig. 6.4b to make ELW( f ) smaller. Recall
that ELW( f ) is computed by translating and merging ELW(g) and ELW(h). The
relocation results in the ELW(h) being translated by the new path delay between f
and h, which has greater overlap with ELW(h) when translated and merged.
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6.2 Improving Sequential Circuit Reliability and Testability

Thus far, we have focused on methods to improve circuit reliabiliity by analyzing
combinational logic masking mechanisms. In this section, we utilize sequential SER
analysis to reduce the error vulnerability of sequential elements such as flip-flops
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and registers. These elements have a key role in circuit testing, since they are often
configured as scan chains in testing mode to read out responses to test vectors. Circuit
test is becoming more important because fabrication process parameters are harder to
control in sub-wavelength lithography. Fluctuations in dopant concentrations, tran-
sistor gate length, wire shapes, and via alignments can lead to hard errors in chips
[10]. Therefore, methods that decrease SER without compromising testability are
desirable to identify incorrectly manufactured chips.

Heidel et al. [11] observe that the large number of registers in high-performance
ICs (required for higher operating frequency) is a major contributor to failure rates,
since latched errors are often not subject to electrical or timing masking. Errors in
combinational logic are only becoming problematic now, while errors in registers
are already a problem for critical applications [11]. We aim to reduce the soft-error
susceptibility of registers, while simultaneously improving circuit testability. The
main idea is to design circuits such that even if a register experiences an SEU, its
chances of propagating to a primary output are small. We account for logic masking
in both combinational logic and state elements during sequential operation and use
this information to improve both the overall SER and testability of the design through
retiming. Since we focus on logic masking, our solution is applicable to the various
sources of errors mentioned above.

Retiming is the process of relocating registers to improve some design objec-
tive (usually area or clock period) such that the functionality of the circuit remains
unchanged. An example is shown in Fig. 6.5, where retiming is used to minimize
sequential observability. In this example, the register that is at the output is pushed in
through the AND gate. Although this increases the number of registers in the design,
the observability of these registers is only 2/8 each, as compared to full observability
at a primary output. If the probability of a soft fault on any register is p, then the
probability of obtaining an erroneous output is reduced from p to p/2.

Our approach to retiming exploits the close relations between signal observabil-
ity, soft-error propagation, and random-pattern testability. We also construct linear
programs (LPs) to solve the problem of relocating registers in order to minimize their
sequential observability.

6.2.1 Retiming and Sequential SER

Leiserson and Saxe [12] first developed algorithms for minimum-period and
minimum-area retiming of edge-triggered circuits. For the minimum-area retim-
ing problem, a sequential circuit is usually represented by a graph G(V, E), where
each vertex v ∈ V denotes a combinational gate or node, and each edge (u, v) ∈ E
denotes a wire between a driver u and sink v. An edge is labeled by a weight w(u, v),
indicating the number of registers (flip-flops) between u and v. The objective of
minimum-area retiming is to determine labels r(v) for each vertex v such that the
total sum of edge weights is minimized. Here, r(v) denotes the number of registers
that are moved from the outputs to the inputs of v. The weight of an edge after
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Fig. 6.5 Illustration of observability reduction through retiming

Fig. 6.6 LP for minimum-
area retiming

retiming is given by:
wr (u, v) = w(u, v) − r(u) + r(v)

Therefore, the total number of registers in the retimed circuit can be minimized by
finding a minimum value of the following expression.

∑

(u,v)∈E

w(u, v) − r(u) + r(v)

Additionally, the retiming labels have to meet legality constraints, w(u, v) ≥ r(u)−
r(v), for each edge to enforce the fact that edges cannot have negative weights. A
linear program (LP) formulation of the minimum-area retiming problem is given in
Fig. 6.6. Leiserson and Saxe [12] observe that this program is the dual of a min-cost
network flow problem and can therefore be solved in polynomial time.



102 6 Design for Robustness

It is also possible to constrain the period in minimum-area retiming by ensuring
that every path between two vertices with delay more than the target period P has
weight ≥ 1. In minimum-period retiming, a binary search is conducted for the target
clock period P and the feasibility of each period according to the legality constraints
is checked using the Bellman–Ford algorithm[12].

Aspects of circuit testing have also been improved using retiming. Dey and
Chakradhar [13] aim to reduce the lengths of partial scan chains in order to decrease
testing time. Das and Bhattacharya [14] observe that combinational redundancies
can be converted into sequential redundancies (unobservable changes in the state
diagram) to improve the scan-based testability of circuits. In [15], the authors use the
reverse process to convert sequential redundancies to combinational ones and then
remove this redundancy using combinational optimization techniques. We note that
these works are significantly different in their focus from ours. We aim to reduce the
average observability—in effect the random-pattern observability of registers during
normal operation. However, as most registers are scanned, this retiming improves
their observability during testing.

Retiming can improve circuit reliability by relocating registers so that soft errors
are more likely to be masked. In order to account for error propagation through
multiple stages, we modify the circuit using time-frame expansion. In an n-frame
expansion, n copies of the circuit are made and each register is simply replaced by
a wire. The outputs of the kth frame are fed back into the inputs of the (k + 1)st
frame, as appropriate. Register-inputs in frame 0 are treated as primary inputs, while
register-outputs in frame n are treated as primary outputs.

Recall that sequential observability considers multiple cycles of operation through
time-frame expansion. The primary output of each frame as well as registers of
the n-th frame are considered completely observable. This accounts for errors that
propagate past a single cycle before appearing at a primary output, and for errors
which stay latent in the system past n cycles. It is true that some errors in registers
at the n-th frame may never appear at primary outputs, but this overestimate is slight
since the probability of errors in the n-th frame are small. Experiments reported in
[16, 17]. indicate that the majority of errors are flushed out in 2 or 3 cycles.

Additionally, in order to compute observability from a reasonable set of start
states we obtain a sample of reachable states by simulating the sequential circuit
for 20 cycles starting from a reset state. Experiments have shown that 10–15 cycles
of simulation suffice to reach steady state on most ISCAS-89 benchmarks [17, 18].
We denote this measure by seqobs( f, n), where f is the name of the signal, n is the
number of frames of expansion. The sequential observability is given by the fraction
of ones in the ODC mask of f in the n-frame expanded circuit.

seqobs( f, n) = ones
(
ODC( f, n)

)
/K

The SER of a sequential circuit is therefore:

SER(C, n) =
∑

f ∈C

gerr0( f )seqobs( f, n)
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If we separate the contributions of the registers from the contributions of the
combinational logic to the SER of the sequential circuit, then we obtain:

SER_Comb(C, n) =
∑

f ∈Comb(C)

gerr0( f )seqobs( f, n)

SER_Reg(C, n) =
∑

r∈Reg(C)

gerr0(r)seqobs(r, n)

SER(C) = SER_Reg(C, n) + SER_Comb(C, n)

The SER_Comb(C, n) portion of the error does not change under register relo-
cation, since functionally, registers simply transmit the input signal to the output
unchanged after some delay. Therefore, registers do not logically mask errors when
considering multi-cycle operation and in turn, do not affect the observability of other
nodes in the circuit. However, SER_Reg(C, n), does change with the movement of
registers. For instance, if registers move from the output of a node f to its inputs
then, errors on the registers can be additionally logically masked by f . The sequen-
tial observability of the a register r is generally (with some exceptions) the same as
that of its driving gate; therefore, if a register is moved, its sequential observability
changes. This suggests that registers should be placed in locations such that their
sequential observability is low.

6.2.2 Retiming and Random-Pattern Testability

Since the signature-based framework computes the testability of a circuit based on
random simulation vectors, test1( f ) computes the random-pattern testability of node
f for 0–1 errors, and test0( f ) computes the same for 1–0 errors. In the absence of
registers, the random-pattern testability of the entire circuit can be computed by

Rand_Test(C, n) = 1

|Comb(C)|
∑

f ∈Comb(C)

test1( f, n) + test0( f, n)

In modern logic circuits, most registers are directly scanned out and read in test
mode, i.e., registers can be treated as primary outputs when considering testability.
Therefore, if registers were added to nodes f with low testability, then Rand_Test(C)

would increase. This again leads to the conclusion that registers should be placed in
regions of low observability.

The random-pattern testability of a circuit can be improved iteratively. At iter-
ation 0, we assume that there are no fixed registers in the design. Therefore,
Rand_Test(C, n) is improved by placing registers in locations of low observability—
in our case, through retiming. In iteration 1, the testability is analyzed with respect
to the current register locations. Additional test points are placed at locations that
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have low observability with respect to the circuit of iteration 0, and so on. Hence,
iteration 0 of this process involves the same goal as minimizing SER, i.e., decreasing
the total sequential observability of registers.

Example 6.1 For the circuit in Fig. 6.5, node testabilities are as follows:

test0(e, 1) = 1/8, test1(e, 0) = 1/8

test0( f, 1) = 1/8, test1(e, 0) = 1/8

test0(g, 1) = 7/8, test1(g, 0) = 1/8

The random-pattern testability of this circuit is

Rand_Test(C, n) = (2/8 + 2/8 + 1)(1/3) = (1/2)

Registers should be placed at nodes e and f due to their low observability.

6.3 Retiming by Linear Programs

We now develop LP formulations for retiming, accounting for the sequential observ-
ability of each register location. First, we present the basic retiming formulation
assuming no register sharing, i.e., if a latch driven by a node u has fanouts v and
w. Then we model this as though there was a latch at both (u, v) and (u, w), i.e.,
w(u, v) = w(u, w) = 1. Then, we account for register sharing at fanout branches.

6.3.1 Minimum-Observability Retiming

The sequential observability of each edge (u, v) is the same as the output of a
buffer that is placed on edge (u, v). We denote the observability of (u, v) by
seqobs((u, v), n), which is computed using signatures as described in Sect. 5.2.1.
In the case where u only has one fanout, seqobs((u, v), n) = seqobs(u, n); in other
words, the observability is the same as that of its driver. Since registers logically act
as buffers, a register output has the same observability as a register input, and edges
with registers still have the same observability after the registers are moved. The
objective function accounting for total register observability is given by:

∑

(u,v)∈E

wr (u, v)seqobs((u, v), n)

http://dx.doi.org/10.1007/978-90-481-9644-9_5
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Fig. 6.7 Minimum-
observability retiming
formulation

Fig. 6.8 Area- and period-
constrained retiming for
minimum-observability

Additionally, if u is a primary input then r(u) is necessarily 0, and similarly for v.
This ensures that no peripheral retiming is done, and that the overall period of the
circuit does not increase beyond the longest combinational path in the module being
optimized. The modified LP algorithm is shown in Fig. 6.7.

Example 6.2 For the circuit shown in Fig. 6.5 the edges include (a, e), (b, e), (b, f ),
(c, f ), (e, g), ( f, g) and (g, o). Note that input and output wires are also considered
valid edges. However, we only derive retiming labels for the intermediate nodes
e, f, g. The objective function is

wr (a, e)(2/8) + (wr (b, e) + wr (b, f ))(2/8) + wr (c, f )(1/8)

+ wr (e, g)(2/8) + wr ( f, g)(2/8) + wr (g, o)(8/8)

The retimed weight of edge (e, g), for instance, is wr (e, g) = w(e, g)− r(e)+ r(g).

Once the circuit has been retimed, registers can be shared again. For instance,
if edges (u, v) and (u, w) both have registers after retiming, then these are sim-
ply shared. In general, the number of registers required at the output of u is
max(wr (u, f1), wr (u, f2) . . . wr (u, fn)), where f1, f2, . . . fn are fanouts of u.

The formulation in Fig. 6.7 can be modified to constrain area and clock period.
For area constraints, we can perform a binary search for the smallest feasible area M
by including the constraint

∑
(u,v)∈E w(u, v) − r(u) + r(v)< M . The period can be

constrained to a target P by the method of [12]. Here, the D matrix stores the delay
of longest path between the vertices (u, v) in D(u, v) and the W matrix stores the
weight of the said path. These additional constraints are shown in Fig. 6.8.
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6.3.2 Incorporating Register Sharing

The preceding discussion leads to a minimum-observability retiming formulation
that does not account for register sharing. Hence, the optimization takes place on a
version of the circuit with registers cloned at each fanout branch. The difficulty in
incorporating sharing is that observability is a non-linear property of edges.

Example 6.3 Consider again the circuit C of Fig. 6.5. Suppose the retimed weights
of edges (b, e) and (b, f ) are wr (b, e) = 2 and wr (b, f ) = 1. According to
Fig. 6.7, the objective function for this portion of the circuit equals (2/8)wr (b, e) +
(2/8)wr (e, g) = 1/3. Now, the two registers at (b, f ) and (b, e) can be replaced by a
single register with fanouts to both e and f . This register does not have observability
seqobs((b, e), n) + seqobs((b, e), n) = 4/8. Instead, its observability is computed
by counting the fraction of 1 s in its ODC mask. The ODC mask, in turn, is computed
as the bitwise OR of the ODC masks through each fanout, as shown in Fig. 5.3. In
this case, ODC(b) = 2/8.

For each register with driver u and fanouts S = {s1, s2, . . . , sm}, the correct
sequential observability must be computed using the method of Fig. 5.3. This observ-
ability is equivalent to the seqobs of a buffer with input u and outputs S, denoted
seqobs((u, S), n). Here, S is a subset of all n fanout branches Fu = { f1, f2, . . . , fn}
of u. We can compute the total number of registers that can be shared by any subset of
these branches using the edge weights introduced earlier, as follows. The number of
registers that can be shared by all the fanout branches is given by:

wr (u, Fu) = min(wr (u, f1), wr (u, f2) . . . wr (u, fn))

The number of registers shared by a subset S = { f1, f2, . . . , fn−1} of Fu of size
|Fu | − 1 is min(wr (u, f1), wr (u, f2) . . . wr (u, fn−1)) − wr (u, Fu). In general, the
number of registers shared by S is the minimum weight of any edge of the form
(u, si ), si ∈ S, minus the registers that are shared by any larger subset S′ of Fu .
Therefore, the total weight of a subset of fanout branches S, using the principle of
inclusion and exclusion, is given by:

wr (u, S) =
∑

S′:S⊂S′⊆F

(−1)(|S′|−|S|)min(wr (u, s′
1), wr (u, s′

2), . . .), s′
i ∈ S′

Then these register counts, wr (u, S), are weighted by their sequential observability
seqobs((u, S), n). The sum of such quantities over all possible subsets of Fu gives
us the correct total observability of registers driven by u, assuming maximal sharing.
Maximal sharing is desired because a shared register always has observability less
than or equal to that of its cloned registers combined.

totobs(u) =
∑

S:S⊆Fu

wr (u, S) ∗ seqobs((u, S), n) (6.2)

http://dx.doi.org/10.1007/978-90-481-9644-9_5
http://dx.doi.org/10.1007/978-90-481-9644-9_5
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Fig. 6.9 Minimum-
observability retiming
formulation with register
sharing

The function totobs(u) has to be linearized to incorporate it into the LP. This
requires linearizing the min function—the only non-linear element of totobs. Gen-
erally, the function min(a1, a2, . . . an), for any real values ai can be linearized by
introducing a new variable MIN, along with the constraints MIN ≤ a1, MIN ≤
a2, . . . MIN ≤ an . Then, the objective function has to maximize the value of MIN
as LP converges to a solution so that MIN = min(a1, a2 . . . an).

We introduce a variable MINu,S for each function min(wr (u, s1), wr (u, s2),

wr (u, s3) . . .) in totobs(u, Fu). The associated constraints are of the form MINu,S ≤
wr (u, s1), MINu,S ≤ wr (u, s2), etc. Finally, we append −c(MINu,S) to the end of
the objective function for each new variable MINu,S . Here, c is any sufficiently large
constant, i.e., for all S, c 
 ∑

seqobs((u, S), n). Since the retiming linear program
has a minimization objective, the additional terms ensure that the MINu,S variables
are set to their highest (correct) value when the objective is optimized. The remaining
retiming variables will be optimized for low observability as before. This altered LP
incorporating register sharing is given in Fig. 6.9.

While the formulation in Fig. 6.9 correctly captures register sharing, it can become
intractable for nodes with many fanouts. By collecting the coefficients next to the
MIN variables, we can rewrite the totobs function as follows:

totobs(u) =
∑

S⊆Fu

Cu,SMin(u, S),

Cu,S =
∑

S′:S′⊂S⊆Fu

(−1)|S|−|S′|seqobs(u, S′, n)

From this formulation, it is clear that the number of additional terms generated in the
objective function for each node u is on the order of 2|Fu |. However, many practical
circuits have low maximum fanout due to drive-strength limitations of available
standard cells.

6.4 Empirical Validation

We now report empirical results for the various design techniques presented above.
The experiments were conducted on a 2.4GHz AMD Athlon 4000+ workstation with
2 GB of RAM, and the algorithms were implemented in C++.
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Table 6.1 Improvements in SER obtained by SiDeR

Circuit Area With exact covers With approximate covers
% SER % Area % SER % Area
decrease increase decrease increase

cordic 84 1.7 1.2 27.3 45.2
b9 114 18.1 14.9 30.7 31.6
C432 215 37.6 14.0 38.7 14.9
C880 341 9.6 0.9 13.1 2.3
C499 432 1.0 3.2 32.2 20.6
C1908 432 5.9 9.0 32.4 24.1
C1355 536 25.3 9.0 30.7 8.6
alu4 740 55.9 0.9 55.9 1.6
i9 952 65.4 6.6 65.4 6.6
C3540 1055 31.1 2.2 49.4 3.6
dalu 1387 74.3 1.2 74.3 1.2
i10 2824 40.4 5.4 40.4 5.6
des 4252 11.4 2.9 26.7 4.4
Average – 29.1 5.5 39.8 13.1

Table 6.1 shows SER and area overhead improvements obtained by SiDeR. The
first set of results is for exact implication relationships, i.e., not considering ODCs.
The second column shows the use of ODCs to increase the number of candidates.
In both cases, AND/OR gates are added based on the functional relationship to be
satisfied. We see an average 29 % improvement in SER, with only 5 % area overhead
without ODCs. The improvements for the ODC covers are 40 % with area overhead
of 13 %, suggesting a greater gain per additional unit area than the partial TMR
techniques in [19], which achieve a 91 % improvement but increase area by 104 %
on average.

Table 6.2 illustrates the use of AnSER to guide the local rewriting method imple-
mentated in the ABC logic-synthesis package [9]. AnSER calculates the global-SER
impact of each local change to decide whether or not to accept the change. After
checking hundreds of rewriting possibilities, those that improve SER and have lim-
ited area overhead are retained. The data indicate that, on average, SER decreases
by 10.7 %, while area decreases by 2.3 %. For instance, for alu4, a circuit with 740
gates, we achieve 29 % lower SER, while reducing area by 0.5 %. Although area
optimization is often thought to hurt SER, these results show that carefully guided
logic transformations can eliminate this problem.

Table 6.3 shows the results of combining SiDeR and local rewriting. In this experi-
ment, we first used SiDeR, followed by two passes of rewriting (in area-unconstrained
and area-constrained modes) to improve both area and reliability. This particular
combination of the two techniques yields 68 % improvement in SER with 26 % area
overhead.

We evaluated our gate relocation and gate hardening techniques on circuits from
the IWLS 2005 benchmarks, with design utilization set to 70 % to match recent
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Table 6.2 Improvements in SER and area with local rewriting

Circuits Number of Number of % SER % Area Time
gates rewrites decrease decrease (s)

alu4 740 13 29.3 0.5 24.5
b1 14 0 0.0 0.0 0.2
b9 114 8 6.8 0.9 0.3
C1355 536 97 1.2 9.0 37.6
C3540 1055 23 5.8 0.9 51.5
C432 215 68 5.5 1.4 12.1
C499 432 37 0.0 0.5 13.0
C880 341 7 0.2 0.0 5.4
cordic 84 5 1.2 1.2 0.5
dalu 1387 58 24.0 3.2 35.0
des 4252 282 11.2 0.1 12.3
frg2 1228 96 27.9 2.0 8.9
i10 2824 143 5.0 0.6 16.7
i9 952 83 31.4 11.7 35.3
Average – – 10.7 2.3 18.1

Table 6.3 Improvements in SER by a combination of rewriting and SiDeR

Circuit % SER % Area
decrease increase

alu4 95.33 55.41
b1 8.08 14.29
b9 19.88 25.44
C1355 99.49 19.40
C3540 96.02 39.72
C432 96.81 22.79
C499 86.74 14.58
C880 59.58 24.93
cordic 58.34 33.33
dalu 92.68 41.17
des 40.41 −1.69
frg2 46.42 27.85
i10 80.67 2.16
i9 78.05 49.26
Average 68.46 26.33

practice in industry. Our wire and gate characterizations are based on a 65 nm tech-
nology library. We perform static timing analysis using the D2M delay metric [20] on
rectilinear steiner minimal trees (RSMTs) produced by FLUTE [21]; these designs
are placed using Capo version 10.2 [22, 23], and relocations are legalized (i.e., gates
are moved into the nearest empty cells) using the legalizer provided by GSRC Book-
shelf [23].
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Table 6.4 SER improvements through gate hardening

Circuit % New critical SER % SER
gates (FIT) decrease

aes_core 21.86 5.57E-05 40.29
spi 53.51 3.15E-05 25.43
s35932 57.03 3.80E-05 36.92
s38417 87.63 7.34E-05 40.30
tv80 33.67 1.39E-05 47.42
mem_ctrl 64.54 5.80E-05 31.36
ethernet 83.51 8.28E-05 36.67
usb_funct 88.96 8.70E-05 90.11
Average 61.34 43.56

Table 6.4 shows improvements achieved by guiding gate hardening. In partic-
ular, hardening the top 10 % of the most susceptible gates leads to an average of
43 % decrease in SER. Gates were selected using the impact measure discussed in
Sect. 6.1.2. The first column of this table shows the percentage of most-susceptible
gates that were not identified using logic masking alone. This indicates that guiding
hardening with a timing masking model leads to different gates being hardened.

Table 6.5 shows the results of locally relocating gates within the bounding box of
adjacent gates. We only accept changes that affect delay and SER positively. However,
the process of legalization, which moves gates into valid empty slots in the layout,
can later slightly increase delay. Our results indicate a 14 % improvement at the 65 nm
technology node, where average intrinsic gate delay is approximately a 100 times
larger than (unit) interconnect RC delay. The second two columns project results
to smaller technology nodes where wire delay is expected to become comparable to
gate delay. Such trends are indicated in the international roadmap for semiconductors
which reports that at 32 nm and below, wiring contributes >90 % of the circuit delay.

The first set of results indicates a 14 % decrease in SER, while the second set
shows a 41.59 % decrease. Therefore, as technology scales, timing masking can
offer greater potential for improvement in SER.

We now describe experiments to validate our proposed retiming formulation. The
linear programs are solved using the lp problem type on the LP solver program
CPLEX v.10.1 [24]. Since these formulations are duals of min-cost network flow
problems, and because the problem is unimodular with the right hand sides of con-
straints being integer, the linear program is guaranteed to have an integer optimal
solution [12] without explicitly enforcing integer constraints.

Figure 6.10 summarizes the propagation of errors through sequential circuits, as
estimated by bit-parallel functional simulation extended to sequential circuits. The
figure indicates that most errors are apparent at the outputs in the cycles immediately
after their occurrence. The probability of errors at later cycles diminishes rapidly.
Therefore, we only compute observability from the primary outputs over the 10
cycles after an error occurs.
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Table 6.5 Improvements in SER, through gate relocation

Circuit 65 nm <45 nm
% SER % Delay % SER % Delay
decrease increase decrease increase

aes_core 11.83 3.00 21.15 −3.10
spi 18.87 4.8 41.62 −2.90
s35932 10.74 −0.13 44.02 3.40
s38417 10.10 1.38 14.35 −11.57
tv80 4.89 1.45 43.62 17.50
mem_ctrl 7.75 1.14 78.43 −1.70
ethernet 19.07 0.43 75.17 6.04
usb_funct 28.50 −5.26 14.29 −9.09
Average 13.97 0.55 41.59 2.10

Fig. 6.10 Error propagation in sequential circuits through multiple cycles of operation

Table 6.6 shows the results from the ISCAS-89 benchmark circuits with the
minimum-observability retiming formulation. Each edge (u, v) in these is weighted
by a 10-frame sequential observability measure. Using the formulation shown in
Fig. 6.7, the LP was solved in all cases in less than 0.1 s by CPLEX. The observabil-
ity, which is proportional to the SER susceptibility, is decreased by an average of
42 % with only a 7 % overall area increase. Table 6.7 shows an average improvement
of 31 % in the random-pattern testability of nodes in the combinational portion of
the circuit.

Our results indicate an interesting feature of the fault tolerance of logic circuits—
that it is possible to decrease the overall sequential SER while increasing what is
traditionally computed as the SER of a combinational logic circuit, i.e., with reg-
isters treated as primary outputs.This apparent paradox is resolved by the analysis
in the previous section, showing that the combinational SER remains unchanged
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Table 6.6 Decrease in register observability through retiming

Circuit Before After Change
Number of Total Number of Total % Area % Obs
FFs Obs FFs Obs Increase Decrease

s208 8 9.570 10 9.173 1.785 4.147
s298 14 15.579 34 5.059 15.037 67.527
s344 15 12.770 11 8.539 −2.29 33.126
s444 21 14.752 34 4.146 6.435 71.895
s386 6 4.206 4 3.8256 −1.121 9.035
s526 21 15.906 94 3.567 34.112 77.568
s832 5 25.311 30 2.669 8.561 89.3365
s1238 18 2.848 27 2.147 1.711 24.631
s1196 18 2.911 29 2.115 2.010 27.373
s1423 73 25.273 115 20.115 5.753 20.110
s1488 6 5.744 8 3.8256 0.303 42.787
s1494 6 5.746 7 3.248 0.153 43.47
Avgerage – – – – 6.53 42.61

Table 6.7 Improvements in random-pattern scan-testability

Circuit Number of Scan testability
gates Before After % Improved

s208 104 0.494 0.499 1.03
s298 119 0.523 0.699 33.72
s386 159 0.360 0.389 7.77
s444 181 0.474 0.689 45.42
s526 193 0.445 0.614 37.75
s823 287 0.222 0.368 65.28
s1238 508 0.300 0.317 5.78
s1196 529 0.302 0.321 6.45
s1494 647 0.269 0.413 53.69
s1488 653 0.267 0.410 53.57
s1423 657 0.424 0.552 30.08
Avgerage – – – 30.96

through register movements when considering sequential behavior. Therefore, it is
insufficient to solely consider combinational behavior for SER analysis. While com-
binational circuit optimization for SER remains important and generally decreases
overall circuit SER, it is necessary to account for error-propagation behavior at the
sequential level. For instance, combinational circuits can be designed such that they
reduce error propagation to registers with high observability.
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Chapter 7
Summary and Extensions

This chapter summarizes the research presented in the preceding chapters, and sug-
gests some possible ways in which it might be extended further.

7.1 Summary

We have attempted to provide an in-depth analysis of methods for representing and
reasoning about logic circuits subject to uncertainty. We have proposed both exact and
heuristic methods for error probability analysis and applied them to various design
and testing problems. The main ideas presented may be summarized as follows:

• The development of the probabilistic-transfer matrix (PTM) algebra into a practical
computation technique for computer-aided design.

• A reliability analyzer that uses a PTM-based framework to model logic circuits.
• Test-generation methods for probabilistic faults with the goal of estimating fault

probabilities.
• A soft-error rate (SER) analyzer, AnSER, based on functional simulation with

signatures.
• Logic synthesis techniques that improve SER with low area and performance

overhead.

Due to changing device technologies, CMOS scaling affects, and other sources of
noise vulnerability, a deterministic paradigm no longer fully captures circuit behavior.
To this end, we introduced the PTM concept to provide a general framework for
representing uncertainty. We showed that the PTMs can capture a wide variety of
probabilistic effects in logic circuits. We then developed algorithms for efficiently
compressing PTMs by means of arithmetic decision diagrams (ADDs) and operating
directly on the compressed forms. The derivation of the circuit PTMs from gate
PTMs is a form of exact probabilistic inference, which is known to be a very difficult
problem in most settings, and our algorithms scale farther than other methods known
in the literature.

S. Krishnaswamy et al., Design, Analysis and Test of Logic Circuits Under Uncertainty, 115
Lecture Notes in Electrical Engineering 115, DOI: 10.1007/978-90-481-9644-9_7,
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We applied the PTM-based formulation to automatic test pattern generation for
probabilistic faults. The generalization of testing algorithms from a deterministic
setting required a semantic change where the purpose of the testing is to determine a
probability of error under certain conditions, rather than to directly reveal a defect. In
particular, we proposed linear programming formulations to generate test multisets
of minimal cardinality to reduce testing time. This is akin to test acceleration by
pattern selection rather than by artificially induced radiation.

In addition to the exact PTM algorithms that we described, we also explored
heuristic methods that support error-rate analysis in practical settings. An example
is the AnSER method, which is based on the use of bit-parallel sampling methods
and signatures. The latter are snapshots of truth tables from which behavioral prop-
erties like observability and signal probability can be computed. The efficiency and
fast convergence of signature-based methods make it possible to incorporate error
analysis into the design process.

Our development AnSER allowed us to design techniques that improve SER by
enhancing error masking. An accurate SER analyzer can simply be used as a black
box to approve or reject circuit optimizations. However, AnSER can do more than
black-box analysis. Observability and node functionality computations performed
during SER analysis make it possible to identify circuit flexibility and redundancy,
which can be exploited to bolster circuit reliability. Further, error-latching window
computations can guide physical design changes to improve both timing masking
and logic masking.

7.2 Future Directions

There are many ways to extend our work to accommodate emerging issues in mod-
eling stochastic behavior. Two of them are discussed next.

7.2.1 Process Variations and Aging Effects

There are three main sources of variation in circuit behavior that result from
the difficulty of controlling transistor parameters during manufacture. These are:
(1) dopant fluctuations, (2) gate length and wire width variations, and (3) varying
heat flux across the chip [1]. First, the number of dopant atoms in the channel of
a transistor decreases quadratically with transistor size. For instance, at the 1 µm
technology node, transistors have thousands of dopant atoms [2]. At the 32 nm tech-
nology node, however, they only have tens of dopant atoms. Since the dopant level
determines the threshold voltage Vt , even a few extra or missing dopant atoms can
cause Vt to vary widely. Second, sub-wavelength lithography causes variations in
gate length and wire width. Transistors at the 65 nm technology node are being man-
ufactured with a 157 nm lithography wavelength, causing variations of up to 30 % [1].
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Variations in wire widths normally increase delay, but variations in channel width can
also change Vt . Third, changes in the switching activity of a chip can cause varying
heat flux, and the resulting “hot spots” can lead to sudden changes in power-supply
voltage and circuit performance.

While process variations have been analyzed for statistical timing analysis, there
has been little effort in analyzing the impact of these variations on SER. In particular,
changes in Vt alter SEU propagation in several ways. If Vt is increased, fewer SEUs
will propagate, regardless of the cause [3]. If a lower dopant level causes higher Vt ,
it can sometimes lead to a higher rate of SEU occurrence (though lower rates of
propagation), because of increased charge-collection efficiency for particle strikes.
If the gate length is increased, then more chip area is exposed to particle strikes,
causing more SEUs [4]. These effects often counterbalance each other—although
not perfectly. Therefore, it becomes important to model them probabilistically in the
context of SER. Also, delay variability, especially due to dynamic changes in heat
flux, can cause differences in timing masking.

Interestingly, it may be possible to use accelerated SER tests to actually determine
a circuit’s static process parameters such as Vt and gate length. Since variations can
directly affect the SER, irradiated chips can be used to induce changes in SER that
reflect the process parameters. Then, a fault resolution method like that in Chap. 4,
may be able to pinpoint locations with anomalous behavior.

After a device is deployed, wearout effects, such as oxide breakdown, negative
temperature-bias instability, and electromigration can affect device reliability as well.
These effects can eventually lead to hard failures in which a system outputs the wrong
result with probability 1. In this book, we have analyzed the effects of probabilistic
faults as transient phenomenon that can be modeled with static underlying discrete
probability distributions. However, aging and wearout effects can change these dis-
tributions. Therefore, it is desirable to take lifetime reliability effects into account in
forming dynamic models of uncertainty in logic circuits.

One advantage of incorporating both process variation and aging into models of
system behavior is to be able to reason about error-tolerance mechanisms and how
they impact the various sources of unreliable behavior. For instance, hard errors can
often be corrected by reconfiguration using spare parts which are initially disabled.
However, soft errors, as we have seen, may require online redundancy to correct
errors during operation. Further, variability in manufacturing can lead to different
specific errors being prevalent in a system. It may be necessary for future systems to
introspectively decide and take measures to bolster reliability during their operational
lifetime.

7.2.2 Analysis of Biological Systems

Currently, vast research efforts are being directed at modeling and designing
biological systems using genes, transcription factors, and other types of proteins as
computational elements. Biological systems are naturally uncertain and necessitate

http://dx.doi.org/10.1007/978-90-481-9644-9_4
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Fig. 7.1 Sample signaling network depicted as a protein interaction network (left), and a logic
circuit (right) [5]

computational models that incorporate probabilistic behavior. We believe that in
order to analyze biological systems as computational systems, and eventually to
re-design and manipulate such systems, it will be necessary to model them using a
probabilistic logic paradigm.

Biological systems are being modeled computationally in the emerging field of
systems biology. An example of a biological system is a cell signal transduction
network, in which signals are transmitted by particular biological molecules, such
as hormones or cytokines which are sensed by surface receptors on cells. These
signals are then passed through cascades of internal cell proteins that process and
integrate the signals to eventually stimulate or inhibit the expression of specific genes.
Alterations in gene expression amount to a reconfiguration of the system. The signals
are generally passed from protein-to-protein through a specific chemical change
known as phosphorylation. For our purposes, it is enough to think of a phosphorylated
protein as “on” and a de-phosphorylated protein as “off”.

A biological signal is inherently probabilistic in that it is carried by thousands
of protein molecules, whose variations in concentration affect stochastic decisions
made by cells. Since signals are carried by diffusing proteins, these proteins collide
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with their targets with some probability dependent on their concentration. This is
analogs to a relay race in sports where a baton (the signal) is passed between runners.
Therefore, the signaling is both inherently probabilistic and time-varying. Moreover,
it has been found useful to discretize the signals so they can be represented by
Bayesian networks or even by Boolean logic [5, 6].

Figure 7.1 illustrates a simple signal transduction network of the kind found in
many types of tissues. The nodes marked TGFB and TNF are receptors for growth
factor signals, which are carried down to other proteins by means of successive
protein phosphorylations. The topmost nodes marked TGF-a and TNF-a are cell-
surface receptors, and act as primary inputs which sense the external cytokines.
The nodes marked AKT, ERK, and NFKB are transcription factors, which act as
primary outputs and directly affect gene transcription and cell reconfiguration. Since
the actual underlying mechanisms by which a protein A encounters a protein B is
random, the signal transduction itself is inherently probabilistic. Researchers have
used Bayesian networks [6] and approximate logic models to represent this circuitry,
which is internal to cells [5]. Clinical researchers are actively inventing drugs that alter
this circuitry. Cancerous cells, for example, often have an altered signal transduction
network which is repaired or disabled by drugs.

We believe that PTM models are well-suited for this type of representation because
they capture many types of probabilistic behavior and avoid the rigid determinism of
Boolean logic models. PTMs can thus form an intermediate representation between
entirely free-form Bayesian networks and deterministic Boolean logic models. This
can reduce the number of parameters to be learned in cases where gate behavior
is inferred from large datasets, while at the same time faithfully representing the
non-determinism of such systems.

7.3 Concluding Remarks

As we enter a new era of post-CMOS circuit design, computational paradigms must
increasingly incorporate the uncertain behaviors that are displayed by emerging
nano-, quantum-, and biological-device fabrics. A key part of this paradigm shift
will be foregoing the illusion of perfect reliability and learning to tolerate and miti-
gate probabilistic errors.

This work has provided a broad framework for dealing with probabilistic behavior
in logic design. It has also extensively explored ways to construct robust designs and
testing methods in an uncertain world. We believe that the concepts presented here
are extendable to many kinds of systems with vastly different modes of operation and
sources of uncertainty. We hope that the book will inspire further research in the area
of reliable design, and help to enable successful transitions to circuit technologies
that are yet to come.
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