

DESIGN OF ENERGY-EFFICIENT APPLICATION-
SPECIFIC INSTRUCTION SET PROCESSORS

This page intentionally left blank

Design of Energy-Efficient
Application-Specific
Instruction Set Processors

by

Tilman Glökler
IBM Deutschland Entwicklung GmbH,
Böblingen, Germany

and

Heinrich Meyr
Integrated Signal Processing Systems,
Aachen University of Technology, Germany

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-2540-8
Print ISBN: 1-4020-7730-0

©2004 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Dordrecht

Contents

Acknowledgments

About the Authors

1 Introduction 1

2 Focus and Related Work 5

2.1 Focus of This Work . 5

2.2 Previous Work . 6

2.2.1 ASIP Design Methodologies 6

2.2.2 ASIP Case Studies 10

2.2.3 Basic Low-Power Design Techniques 11

2.2.4 Verification 14

2.3 Differences to Previous Work 15

3 Efficient Low-Power Hardware Design 17

3.1 Metrics of the Implementation and the Hardware Design
Methodology . 17

3.1.1 Characteristics of the Implementation 18

3.1.2 Characteristics of the Design Methodology . . 20

3.2 Basics of Low-Energy Hardware Design 22

3.2.1 Sources of CMOS Energy Consumption 23

3.2.2 Basic Principles of Lowering the Power Con-
sumption . 26

xi

xii

Foreword

List of Figures

List of Tables

xiii

 xv

 xix

vi Contents

3.2.3 Measuring and Quantifying Energy-Efficiency 28

3.3 Techniques to Reduce the Energy Consumption 32

3.3.1 System and Architecture Level 33

3.3.2 Register Transfer and Logic Level 36

3.3.3 Physical Level 40

3.4 Concluding Remarks 41

4 Application-Specific Processor Architectures 43

4.1 Definitions of ASIP Related Terms 43

4.2 ASIP Applications . 46

4.3 ASIP Design Space . 48

4.3.1 Functional Units 51

4.3.2 Storage elements 52

4.3.3 Pipelining . 53

4.3.4 Interconnection Structure 55

4.3.5 Control Mechanisms 56

4.3.6 Storage Access 58

4.3.7 Instruction Coding and Instruction Fetch Mech-
anisms . 59

4.3.8 Interface Mechanisms 61

4.3.9 Tightly-Coupled ASIP Accelerators 64

4.4 Critical Factors for Energy-Efficient ASIPs 65

4.4.1 Timing and Computational Performance 65

4.4.2 Energy Consumption 68

4.4.3 Implementation Area 73

4.5 Concluding Remarks 74

Contents vii

5 The ASIP Design Flow 75

5.1 Example Applications 76

5.2 Application Profiling and Partitioning 80

5.2.1 Stimulus Generation for Application Profiling . 80

5.2.2 Application Profiling 81

5.2.3 HW/SW Partitioning 87

5.2.4 ASIP Class Selection 89

5.3 Combined ASIP HW/SW Synthesis and Profiling 93

5.3.1 ASIP Interface Definition 94

5.3.2 ASIP ISA Definition 96

5.3.3 Software Implementation and Tools 97

5.3.4 Hardware Implementation and Logic Synthesis 99

5.3.5 Implementation Profiling and Worst Case Run-
time Analysis 100

5.3.6 Iterative ASIP Optimization 102

5.3.7 Definition of a tightly coupled ASIP Accelerator 109

5.4 Verification . 111

5.5 Concluding Remarks 116

6 The ASIP Design Environment 117

6.1 The LISA Language . 117

6.2 The LISA Design Environment 123

6.3 Extensions to the LISA Design Environment 125

6.3.1 Instruction Encoding and Decoder Generation . 125

6.3.1.1 Minimization of the instruction width 127

6.3.1.2 Minimization of the Toggle Activity 131

viii Contents

6.3.2 Semi-Automatic Test Case Generation 138

6.4 Concluding Remarks 143

7 Case Studies 145

7.1 Case Study I: DVB-T Acquisition and Tracking 145

7.1.1 Application Profiling and ASIP Class Selection 147

7.1.2 Iterative Instruction Set Optimization 149

7.1.2.1 Example 1: Saturation 149

7.1.2.2 Example 2: CORDIC 151

7.1.3 Overall Energy Optimization Results 153

7.2 Case Study II: Linear Algebra Kernels and Eigenvalue De-
composition . 156

7.2.1 Implementation I: Optimized ASIP with Accel-
erator . 157

7.2.2 Implementation II: Compiler-Programmed Pa-
rameterizable Core with Accelerator 161

7.2.3 Evaluation Results 163

7.3 Concluding Remarks 165

8 Summary 167

A ASIP Development Using LISA 2.0 171

A.1 The LISA 2.0 Language 171

A.2 Design Space Exploration 173

A.3 Design Implementation 175

A.4 Software Tools Generation 177

A.4.1 Compiler Generation 177

A.4.2 Assembler and Linker Generation 178

Contents ix

A.4.3 Simulator Generation 179

A.4.3.1 Interpretive Simulation 181

A.4.3.2 Compiled Simulation 181

A.4.3.3 Just-In-Time Cache Compiled Simu-
lation (JIT-CCS) 181

A.5 System Integration . 183

A.6 Summary . 184

B Computational Kernels 185

B.1 The CORDIC Algorithm 185

B.2 FIR Filter . 187

B.3 The Fast Fourier Transformation 188

B.4 Vector/Matrix Operations 188

B.5 Complex EVD using a Jacobi-like Algorithm 190

C ICORE Instruction Set Architecture 193

C.1 Processor Resources . 193

C.2 Pipeline Organization 193

C.3 Instruction Summary 198

C.4 Exceptions to the Hidden Pipeline Model 202

C.5 ICORE Memory Organization and I/O Space 203

C.6 Instruction Coding . 203

D Different ICORE Pipeline Organizations 205

E ICORE HDL Description Templates 207

E.1 Generic Register File Entity 207

E.2 Generic Bit-Manipulation Unit 209

x Contents

F Area, Power and Design Time for ICORE 213

G Acronyms 217

Bibliography 221

Foreword It would appear we have reached the limits
of what is possible to achieve with com-
puter technology, although one should be
careful with such statements – they tend to
sound pretty silly in five years.

John von Neumann, 1949.

Application-specific instruction set processors (ASIPs) have the poten-
tial to become a key building block of future integrated circuits for dig-
ital signal processing. ASIPs combine the flexibility and competitive
time-to-market of embedded processors with the computational perfor-
mance and energy-efficiency of dedicated VLSI hardware implementa-
tions. Furthermore, ASIPs can easily be integrated into existing semi-
custom design flows: the ASIP designer has full control of the imple-
mentation and verification. As ASIPs replace commercial embedded
processors, there is no need to pay royalties to third parties.

This book was written for hard- and software design engineers as well
as students with a fundamental knowledge of VLSI logic design. The
benefits of ASIPs can only be exploited by designers with expertise
in the fields of VLSI hardware, computer architecture, and embed-
ded software design. This book provides the essential knowledge in
each of these disciplines and focuses on the practical implementation
of ASIPs for real-world applications. Many examples illustrate the pro-
posed methodology; theoretic discussions are kept to the minimum.

This book constitutes my Ph.D. thesis, which has been performed at the
Institute for Integrated Signal Processing Systems at Aachen University
of Technology (ISS/RWTH Aachen/Germany). My reviewers encour-
aged me to extend my thesis and publish this comprehensive book about
ASIP design.

The first chapter of this book introduces the advantages of ASIPs and
motivates the requirement for an elaborated design methodology. In
Chapter 2, the focus of this work is described in detail and an overview
of related work is given. Chapter 3 introduces and summarizes the
basics of low-energy VLSI design. This chapter is a prerequisite for
the design space definition of ASIPs and the discussion of critical fac-
tors for energy-efficient ASIP architectures in Chapter 4. The proposed
ASIP design flow is presented in Chapter 5 with a special focus on de-
sign tasks to obtain an energy-efficient implementation. The LISA tool

suite, which was developed at the ISS, and enhancements of these tools
triggered by this work are presented in Chapter 6. The described tools
support the generation of critical hardware parts in order to save en-
ergy as well as the verification of the implemented ASIP hard- and soft-
ware. Quantitative results of two case studies are given in Chapter 7,
which prove the applicability of the proposed design flow and the devel-
oped tools. The first case study demonstrates the impressive potential of
ASIP performance and energy optimizations, whereas the second case
study compares the architectural and implementation efficiency of two
different ASIP design approaches.

Acknowledgments
I would like to express my sincere gratitude to Professor Heinrich Meyr,
the coauthor of this book, for supervising my Ph.D. thesis. Frequent
discussions with him added greatly to my work and his guidance and
support have been invaluable to my academic development over the last
five years.

Furthermore, I would like to thank Professor Stefan Heinen for gener-
ously spending his time to advise me and for his valuable contribution
to improve this thesis.

I am expecially grateful to Dr. Stephan Bitterlich for many fruitful dis-
cussions and various good ideas. Moreover, I would like to thank all
my colleagues at the Institute for Integrated Signal Processing Systems
(ISS) for the pleasant five common years. Special recognition is given
to Tim Kogel, Dr. Falco Munsche, Dr. Jens Horstmannshoff, Oliver
Wahlen and Manuel Hohenauer for proof-reading and for many valu-
able proposals to improve this thesis. I also would like to thank Oliver
Schliebusch for updating the LISA appendix. Moreover, I am very
grateful to Dr. Stefan A. Fechtel and the design team of Infineon Tech-
nologies AG for supporting the ICORE DVB-T chip project.

Finally, I would like to thank my parents for their support during my
studies and my girlfriend Eva-Marie for her comprehension and pa-
tience during the writing of this thesis.

Tilman Glökler
October, 2003

xii

About the Authors
T. Glökler received his diploma degree with honors in Electrical
Engineering from Technical University of Stuttgart, Germany, in 1997.
He spent five years working on his Ph.D. thesis at the Institute for
Integrated Signal Processing Systems (ISS) at Aachen University of
Technology (RWTH Aachen). At the ISS he was primarily involved in
ASIP design and low-power hardware design methodology as well as
in the development of EDA tools. He has written about 10 scientific
conference and journal papers. His research interests include advanced
algorithms for design automation and digital signal processing with
a special focus on programmable architectures for efficient HW/SW
codesign. Currently, he is with IBM Deutschland Entwicklung GmbH,
Germany, where he is working on the design and verification of high-
end microprocessors for consumer applications. Tilman Glökler is a
member of the IEEE.

H. Meyr received his M.Sc. and Ph.D. from ETH Zurich, Switzerland.
He spent over 12 years in various research and management positions
in industry before accepting a professorship in Electrical Engineering
at Aachen University of Technology (RWTH Aachen) in 1977. He has
worked extensively in the areas of communication theory, digital signal
processing and CAD tools for system level design for the last thirty
years. His research has been applied to the design of many industrial
products. At RWTH Aachen he is a co-director of the institute for
integrated signal processing system (ISS) involved in the analysis
and design of complex signal processing systems for communication
applications. He was a co-founder of CADIS GmbH (acquired 1993 by
Synopsys, Mountain View, California) a company which commercial-
ized the tool suite COSSAP. In 2001 he has co-founded LISATek Inc.,
a company with breakthrough technology to design application specific
processors. Recently (February 2003) LISATek has been acquired by
CoWare, an acknowledged leader in the area of system level design. At
CoWare Dr. Meyr has accepted the position of Chief Scientist. He also
serves as a member of the board of directors at CoWare and another
large corporation. Dr. Meyr has published numerous IEEE papers and

About the Authors

holds many patents . He is author (together with Dr. G. Ascheid) of
the book ”Synchronization in Digital Communications”, Wiley 1990
and of the book ”Digital Communication Receivers. Synchronization,
Channel Estimation, and Signal Processing” (together with Dr. M.
Moeneclaey and Dr. S. Fechtel), Wiley, October 1997. He has received
two IEEE best paper awards. Dr.Meyr is also the recipient of the
prestigious Vodafone Innovation Prize for the year 2000. The Vodafone
prize is awarded for outstanding contribution to the area of wireless
communication As well as being a Fellow of the IEEE he has served as
Vice President for International Affairs of the IEEE Communications
Society.

xiv

List of Figures
1.1 The Energy-Flexibility Gap (Source: [1] with modifications) 3

3.1 Short-Circuit Current in a CMOS Inverter 24

3.2 Level of Abstraction vs. Possible Savings (Irwin [124]) . 33

3.3 Gated Comparator . 38

3.4 Flattening of Operators and Logic 39

4.1 ASIPs in the context of Processor HW implementation
classes . 45

4.2 Design Space of Parallel Architectures (Sima [227]) . . . 50

4.3 Example RISC Processor Pipeline 54

4.4 Basic Network Topologies 56

4.5 VLIW instruction formats 62

4.6 Principle of Energy Reduction with Optimized ASIP Ar-
chitecture . 71

5.1 Overview of ASIP Design Tasks 77

5.2 Example ASIP Applications 78

5.3 HLL Line Coverage Profile (DVB-T A&T example) . . . 85

5.4 Assembler Line Coverage Profile (DVB-T A&T profiling
impl.) . 86

5.5 Percentage of Runtime used for the CORDIC Subtask . . 87

5.6 Design Space for ASIPs and ASIP Coprocessors 88

5.7 Combined ASIP HW/SW Synthesis and Profiling 95

5.8 Principle of Static Worst Case Cycle Count Analysis . . . 101

5.9 Visualized EVD Assembler Coverage (Intermediate Impl.) 102

5.10 DFG of Critical Loop Kernel 104

5.11 Structure of the CORDIC Accelerator 110

List of Figures

6.1 The LISA Processor Design Environment 124

6.2 Operand Widths of Example Instruction Set 130

6.3 Coding Tree for Example 131

6.4 Final Instruction Coding for Example 131

6.5 Internal Structure of a ROM 132

6.6 ROM Model with Capacitances 133

6.7 Structure of the Automatic Test Case Generator 142

7.1 Digital Part of the DVB-T Receiver 146

7.2 Two Implementations for Programmable Saturation . . . 150

7.3 Implementation Alternatives for CORDIC Loop Body . . 152

7.4 Incremental Power Optimization of ICORE 155

7.5 Eigenvector Matrix Update 158

7.6 Computational Core for Matrix Updates 159

7.7 Schedule for Matrix Updates 160

7.8 Simplified Overview of ICORE-II 160

7.9 Overview of ALICE Architecture 162

7.10 Example ALICE Program in Memory 163

A.1 Extract of the LISA operation tree 172

A.2 Exploration and Implementation based on LISA 174

A.3 LISA operation tree and decoder generation 176

A.4 The simulator and debugger frontend 180

A.5 Achieved simulation speed 180

A.6 Performance of the just-in-time cache compiled simulation 182

C.1 ICORE Architecture . 194

C.2 Abstract ICORE Pipeline Organization 195

C.3 Assembler Input File for ICON 204

xvi

List of Figures

D.1 Different Pipeline Organizations for Design Exploration . 206

F.1 ICORE Area Breakdown 213

F.2 ICORE Power Breakdown for a Typical Operation Scenario 214

F.3 Distribution of ICORE Designtime 215

xvii

This page intentionally left blank

List of Tables and Examples
2.1 ASIP Case Studies . 11

4.1 ASIP Case Studies . 49

5.1 Properties of the Different Selected Example Applications 79

5.2 Design Effort for SW Testbenches (DVB-T A&T) 81

5.3 Comparison of Application Profiling Approaches 82

5.4 Basic Instruction Set for Profiling 84

5.5 Cycle Count of Profiling Implementation vs. Max. Cycle
Constraints . 86

5.6 Percentage of Load/Store Instructions (Profiling Imple-
mentation) . 91

5.7 Percentage of Taken Conditional Branch Instructions
(Prof. Impl.) . 92

5.1 Initial Assembler Loop Implementation of Critical Kernel 105

5.8 One Possible Loop Schedule for the Critical Loop Body . 105

5.9 Lifetime of Virtual Registers for one DFG Iteration . . . 106

5.10 Register Allocation for the Critical Loop Body 106

5.11 Functionality of the Optimized Instructions 107

5.2 Enhanced Loop Implementation Using New Instructions . 108

5.12 Cycle Count Reduction for Critical Loop 108

6.1 Example RESOURCE Section 118

6.2 Example Coding Tree Description for Branch Instructions 120

6.3 Example Description of Coding Root 121

6.4 Example Syntax Description of FADD Instruction 122

6.5 Algorithm for Optimum Opcode Coding Tree Construction 130

6.1 Results of Internal Memory Toggle Rate Optimization . . 135

List of Tables and Examples

6.2 Results of Instruction Bus Toggle Rate Optimization . . . 138

6.6 Extract of a generated VHDL Decoder 139

6.7 Example Rules for Test Generator 141

7.1 Results for Different Pipeline Structures 148

7.2 Results of the Saturation Benchmark 151

7.3 Results of the Different CORDIC Implementations 152

7.4 Results for ICORE with/without coprocessor 156

7.5 Comparison Between ICORE-II And ALICE 165

B.1 CORDIC Implementation for Vectoring Mode 186

B.2 CORDIC Implementation for Rotate Mode 187

B.3 Implementation of 64 tap FIR Filter (including Testbench) 189

B.4 Implementation of an 8192 point FFT 192

C.1 Processor Resources and Abbreviations 195

C.2 Load/Store Instructions 197

C.3 Address Register Instructions 198

C.4 Register-Register Instructions (Part 1/2) 199

C.5 Register-Register Instructions (Part 2/2) 200

C.6 Program Flow Control Instructions 201

C.7 Data Memory Mapping 203

E.1 Package with Definitions for Parameterizable Register File 208

E.1 Area Results for Example Register File Configurations . . 208

E.2 VHDL Description of Parameterizable RF 210

E.3 VHDL Architecture of Bit-Manipulation Unit 1/2 211

E.4 VHDL Architecture of Bit-Manipulation Unit 2/2 212

E.5 VHDL Entity of Bit-Manipulation Unit 212

xx

Chapter 1

Introduction

In the last decade, integrated digital circuits have emerged as the com-
putational core of many digital devices in everyday life. Examples are
mobile phones, organizers, personal computers, networking devices and
embedded systems for automotives and industrial automation. The eco-
nomical importance of digital devices is steadily increasing with an av-
erage annual growth rate in semiconductor sales of about 15% since the
development of the microprocessor [38].

As Moore’s law is expected to be valid for at least the next decade [212],
the capability and complexity of digital devices will continue to grow.
However, the growth in design productivity for digital circuits cannot
keep up with the technological growth [136]. This gap represents a
serious bottleneck for the implementation of new competitive devices.
Especially for embedded digital circuits, a shift from hardware to soft-
ware implementations is a solution to this issue. Increasing the software
part of a design improves the design productivity due to the simplicity
of the software implementation process and due to the increased design
reuse factor. Furthermore, this shift to software in embedded systems
(embedded software) enables more designers to participate in the im-
plementation process.

Moore’s law results in an increasing percentage of software-realizable
implementations for all applications with a constant computational
complexity1 due to the exponential increase in available processing
power. Embedded software typically has to meet tight real-time con-
straints and/or high energy-efficiency requirements, especially for mo-
bile appliances. For these two reasons, specialized embedded proces-
sors like commercial DSPs or microcontrollers are becoming more and
more popular. These embedded processors provide a significantly bet-
ter cost/performance ratio than general purpose processors for desk-
top applications. Nevertheless, embedded processors are still limited

1This is also true for applications with exponentially increasing computational complexity provided that
the exponential increase in computational complexity is smaller than the technological increase.

2 Chapter 1. Introduction

in terms of computational performance, because they use a fixed non-
application-specific instruction set architecture. Furthermore, these
processors typically expose poor energy-efficiency compared to more
application-specific implementations, because they target a broad range
of embedded applications.

Energy-efficiency and flexibility are competing goals for a hardware
implementation. Figure 1.1 depicts this tradeoff for several implemen-
tation paradigms: embedded standard processors, DSPs, FPGAs and
dedicated hardware. The so-called application-specific instruction set
processors (ASIPs) are able to fill the energy-flexibility gap between
dedicated hardware and programmable DSPs for a given application ac-
cording to Figure 1.1. ASIPs take advantage of user-defined instructions
and a user-defined data path optimized for a certain target application.
The result of this optimization is a higher computational performance
than general purpose approaches and a better energy-efficiency. This is
one reason for the current industrial trend to use more and more cus-
tomized processors [23]. This trend can be explained from the perspec-
tive of both hardware and software designers.

From the hardware designers’ point of view, ASIPs considerably facili-
tate the implementation of tasks that require a high degree of flexibility.
This flexibility is needed to track evolving standards and for implemen-
tations that are prone to late design changes. Furthermore, the design
time is decreased especially due to the high reuse factor of software-
based implementations. This fact is particularly important for redesigns
with the goal to implement distinguishing features in an existing product
for competitive reasons. Finally, the ASIP tasks can be modeled with
high level languages, which provide a rapid and methodical approach
to the design of resource shared hardware. Synthesizable ASIPs are
technology-independent and can easily be integrated in any established
semi-custom design flow together with other hardware blocks.

From the software point of view, ASIPs offer a new degree of freedom
for optimization: The design input for ASIPs is both the software im-
plementation in form of a high level language description as well as
the ASIP hardware architecture in form of a hardware description lan-
guage. The new degree of freedom for software designers, the hardware
architecture, removes the traditional upper bound in computational per-
formance of conventional fixed processor architectures by introducing

3

Dedicated
HW

Embedded Processors

Programmable DSPs

ASIPs, FPGAs
Reconf. Logic

E
ne

rg
y

E
ffi

ci
en

cy
(M

O
P

S
/m

W
 o

r
M

IP
S

/m
W

)

Flexibility (Coverage)

0.1

1

10

100

1000

SA110: 0,4MIPS/mW

TMS320C54X: 3MIPS/mW

ICORE ASIP: 35MOPS/mW

Figure 1.1: The Energy-Flexibility Gap (Source: [1] with modifications)

scalability of processor resources. Therefore, oversized and energy-
wasting fixed processor cores can be replaced by energy-efficient ASIPs
to meet the performance constraints of an embedded application.

ASIP design is a complex optimization problem requiring expertise in
VLSI logic, computer architecture and application software design. The
complexity of this design task makes it difficult for the designer to ex-
plore a large number of design alternatives in order to find an optimum
implementation within a competitive design time. Furthermore, ASIP
design for systems with tight energy constraints leads to additional com-
plexity, which aggravates this issue.

This thesis presents a solution to this complexity problem by provid-
ing an optimized design methodology for ASIPs considering the typical
performance and energy constraints of mobile embedded systems. The
feasibility of the proposed design methodology is proven with two case
studies. Furthermore, typical ASIP optimizations are introduced and
evaluated in order to assess the potential of best practice ASIP imple-
mentations over fixed processor architectures.

This page intentionally left blank

Chapter 2

Focus and Related Work

This chapter presents the motivation and the focus of this thesis as
well as the essential differences to existing approaches. Moreover, an
overview of related work concerning ASIP design for low-energy con-
sumption is given.

2.1 Focus of This Work

The focus of this work are application-specific instruction set processors
(ASIPs) for embedded DSP applications with performance and energy
constraints. Energy in this context refers to the energy that is consumed
for a given well-defined computational task. This metric corresponds to
the average power that is consumed for the same task.

The proposed methodology primarily targets (but is not limited to)
semi-custom designs. This design approach enables the use of a high
level of abstraction for design entry, whereas the degrees of freedom for
optimization are moderately decreased compared to full-custom design
due to the constraints imposed by the standard cell library supplier.

This work has the goal to answer the following scientific problems:

• How much can be gained in performance and energy-efficiency
using ASIPs instead of general purpose processors?

• To which extend can energy-driven ASIP optimizations increase
the energy-efficiency?

• How can ASIPs be designed in order to meet the performance,
energy and/or area constraints?

• Does the proposed design methodology enable a competitive time-
to-market?

6 Chapter 2. Focus and Related Work

In order to answer these questions, several case studies have been per-
formed and extensive optimization techniques have been developed and
evaluated. These optimization techniques include general low-power
optimizations for dedicated hardware as well as ASIP-specific tech-
niques.

Furthermore, tool-based methodologies for the instruction encoding and
for the generation of energy-critical ASIP parts as well as enhanced ver-
ification techniques have been developed. This is especially important
to obtain a competitive design time for the ASIP implementation.

2.2 Previous Work

At present, there is no publication covering a design methodology for
ASIPs that enables to jointly optimize the performance, the silicon area
and the power consumption. This fact is also emphasized by Jain [132].
The published work rather focuses on performance optimization, some
publications also cover the tradeoff between performance and silicon
area.

Publications related to low-power ASIP design can be subdivided into
the topics ASIP design methodologies, ASIP case studies, and basic
low-power design techniques for general purpose processors and ded-
icated hardware. Furthermore, ASIP verification (which is a subtopic
of ASIP design methodologies) is of paramount importance to obtain
working silicon and represents a tedious and time-consuming design
task. The following subsections provide an overview of literature cov-
ering these four topics.

2.2.1 ASIP Design Methodologies

This summary of ASIP design methodologies does not discuss in detail
general purpose processor designs and significantly incomplete ASIP
design environments without a path to hardware implementation like
BUILDABONG [242] PARTITA [50], ISPS [22], [34], the work of En-
gel [69] and of Bajot [20]. Furthermore, methodologies with a signifi-
cantly incomplete software design tool chain like READ [145] as well

2.2. Previous Work 7

as various compiler-centric publications on ASIP code generation [102]
[103] [52] [99] [130] [165] [166] [170] [208] [230] [247] [254] are not
explicitly covered.

Existing ASIP design environments can be differentiated according to
the flexibility to support various processor classes. Many design en-
vironments use predefined, largely invariant processor templates and
software design tools, covering a limited ASIP design space. Other en-
vironments provide generic processor description languages, which en-
able the designer to add user-defined structures to an existing processor
or to describe entirely new processor architectures, often at the expense
of the quality of the available software design tools.

Commercial approaches targeting largely fixed processor templates in-
clude the Xtensa core of Tensilica [243] [97], the ManArray architec-
ture of BOPS [31], the ARCtangent processor of ARC [12] [13], the
Jazz processor of Improv [261] [160] and the R.E.A.L. DSP of Philips
[141]. Further work on largely fixed processor classes include Flexware
[202], the research project PICO [211] [2], Satsuki [225], and ASIA
[116] [117].

Xtensa is a moderately parameterizable RISC (reduced instruction set
computer) load/store architecture with variable length instructions (24
or 16 bit), 3 operand instructions, and about 80 base instructions. Pa-
rameters of the processor comprise the choice of a 32 or 64 general pur-
pose register file, the size of caches, the write buffer size, the endianess
and the availability of certain instructions like multiply-accumulate etc.
The automatically generated design tools for each specific processor in-
stance of Xtensa include a C compiler, assembler, linker and debugger.
Furthermore, the user can define new instructions and additional func-
tional units using the TIE1 language.

The ManArray architecture of BOPS uses the concept of a multi-pro-
cessor system, which is optimized for DSP applications like wireless
applications, multimedia and image processing. Each of the processor
elements is a RISC core with a fixed so-called indirect VLIW2 (iVLIW)
architecture, which is implemented by a VLIW-look-up-table and spe-

1Tensilica Instruction Extension
2VLIW is the abbreviation for very long instruction word.

8 Chapter 2. Focus and Related Work

cial 32 bit instructions to execute one of the stored VLIW instructions3.
The instruction set supports typical DSP instruction, subword-level par-
allelism, and also typical micro-controller features like bit manipula-
tion and low-latency interrupts. The focus of the ManArray architec-
ture is the scalability of a parameterizable number of tightly intercon-
nected processing elements for regular algorithms requiring high com-
putational performance.

The ARCtangent-A4 microprocessor of ARC is a unified RISC/DSP
core with a 4 stage pipeline architecture and configurable functional
units, memories and an extensible instruction set. The core is delivered
as a soft-core together with software development tools including a DSP
function library.

The Jazz processor of Improv is a customizable building block em-
bedded into a generic platform (PSA - programmable system architec-
ture) comprising several typically different instances of the processor
together with data/instruction memory and I/O blocks. The Jazz pro-
cessor represents a memory-register VLIW-architecture using a set of
predefined computational units in combination with high bandwidth to
data memory. For the specific instances the user can configure param-
eters like the data width, the depth of the hardware task queue and the
number and kind of computational units within certain constraints. For
the selected architecture configuration, software design tools as well as
synthesizable HDL code can be automatically generated.

The R.E.A.L. DSP of Philips uses a customizable base architecture with
2 multipliers and 4 ALUs in combination with a general purpose reg-
ister file. Instruction formats with 16 and 32 bits as well as so-called
ASI (Application-Specific Instructions), which allow up to 256 VLIW
instructions stored in an internally customizable look-up table4 are sup-
ported. The DSP programmer or the high level language (HLL) com-
piler has to specify the part of the code for parallel execution. The ASI
look-up table can be implemented using a RAM for prototypes or a
ROM/synthesized block for the processor in the final product.

The Flexware environment is an ASIP design environment based on
a simple parameterizable processor template. Configuration parame-

3This concept generalizes the idea of the CLIW (configurable long instruction word) architecture of
CARMEL (Infineon Technologies [232])

4This approach is similar to the above-mentioned iVLIW concept.

2.2. Previous Work 9

ters include the bit width, the number of registers and the number of
ALUs as well as the definition of new instructions. The environment
provides the typical software design tool chain including the code gen-
erator CodeSyn [201] and a hardware description generation back end.
Simulation is performed using the VHDL model of the target processor.

PICO as well as Trimaran [255] are both part of the compiler and ar-
chitecture research group of HP Labs. PICO is an environment that
automatically explores the design space for a heterogeneous processor-
coprocessor system for applications written in C code. A synthesizable
VHDL description for non-programmable processors as well as an op-
timally configured instance of a VLIW processor called HPL-PD [137]
is generated. The approach is limited to this processor type with a fixed
instruction set, but it supports different memory and cache configura-
tions.

Satsuki is a design environment, which uses a moderately parameteriz-
able processor template as target architecture. Parameters of this tem-
plate are data path width, number of registers and instruction and data
memory size. Furthermore, a C compiler for single precision integer
arithmetic is supported.

ASIA is a system that synthesizes instruction set architectures for a
given application, which is available in form of a micro-operation pro-
gram and a coarse pipeline stage structure of the target architecture.
The results of ASIA is the microarchitecture definition of an architec-
ture, which is able to satisfy a given runtime constraint and which uses
a data stationary control model,

Commercial ASIP design environments supporting more flexible target
architectures are currently being designed by TargetCompiler Technolo-
gies [240] and by STMicrolectronics (Flexware2 [199]).

The environment of TargetCompiler Technologies is based on the high
level modeling language nML [84]. The supported retargetable tools
include a C compiler, an instruction set simulator, an assembler and
linker as well as a hardware description generator. The description lan-
guage nML has been extended to support pipelined architectures. Un-
fortunately, there is no list of restrictions available, which describe the
limitations of the supported processor architecture classes.

10 Chapter 2. Focus and Related Work

Flexware2 [199] is the successor of Flexware and is based on the in-
struction set description language IDL [200]. The Flexware2 environ-
ment enables the generation of instruction set simulator, assembler, and
linker. The HLL compiler is based on the COSY framework [3] and
needs a separate processor description. Hardware generation from IDL
is currently not supported.

Scientific ASIP environments targeting flexible processor architectures
comprise PEAS-III [146] [126] and MetaCore [280].

The ASIP design environment PEAS-III uses a textual micro-operation
description and provides a GUI for ASIP modeling. PEAS-III enables
the generation of a synthesizable hardware model [126] and develop-
ment tools like a C Compiler [74]. Unfortunately, there is little infor-
mation available about the supported processor classes and about the
quality of results.

The environment MetaCore uses a predefined parameterizable DSP mi-
croarchitecture supporting an essential set of basic instructions as well
as user-selectable predefined instructions. Furthermore, the designer
can add application-specific instructions. The specification of the tar-
get processor is achieved using a structural (MSL) and a behavioral
(MBL) description language. The generated development tools com-
prise the entire set of typical software design tools including a GCC-
based C compiler, instruction set simulator and profiling tools.

2.2.2 ASIP Case Studies

Over the past few years many ASIPs have been designed in industry and
in academia. Table 2.1 provides an overview of relevant academic and
industrial ASIP designs and case studies. It has to be emphasized that
most of the published ASIP case studies focus on performance rather
than power optimization. An exception is the work of Kuulusa [152],
which evaluates the effect of instruction set modifications on the power
consumption, but without using more extensive architectural optimiza-
tions.

2.2. Previous Work 11

Authors, Affiliation Design Description/Focus
and Reference

Kuulusa, Tampere Univ. [152] configurable DSP core for GSM
B. Kienhuis et al., stream-based data flow arch.
Philips Research [140] [162]
A. Alomary GCC-based [229] primitive
Univ. of Tokyo [8] operations
J. Van Praet, autom. analysis of instruction
IMEC, Leuven [262] bundles, then incremental arch.

optimization
A. Fauth, user specified archicture using
Univ. of Berlin [79][78] nML [84] with HW generation
Ing-Jer Huang, focus on instruction definition
USC [115] for a given architecture
F. Onion, compiler assisted insertion of
UC Irvine [195] instructions using chained ops.
Q. Zhao, static resource model for high-
Eindhoven Univ. [282] level ISA and compiler design
J. Gong, parameterizable VLIW
UC Irvine [96] [95] architecture
M. Arnold, limited interconnections are
Delft Univ. [17] investigated
K. Kücükcakar, only incr. modifications of
Escalade Corp. [150] largely fixed arch.
H. Choi, Korea Inst. case study with PARTITA-
of Sc. and Tech. [49] design environment
J.-H. Yang, Korea Inst. case study with MetaCore
of Sc. and Tech. [70] environment
P. Faraboschi multi-cluster VLIW, case
M. Gschwind study for Prolog and vector
IBM Research Center [101] prefetching
M. Itoh, Y. Takeuchi, HDL generation from a µ-op.
Osaka Univ. [127] descr. (PEAS-III)
R. Camposano, J. Wildberg case study with CASTLE
GMD [41] environment

Table 2.1: ASIP Case Studies

2.2.3 Basic Low-Power Design Techniques

In the following, several low-power design approaches are discussed.
These approaches are applicable to general purpose and application-

12 Chapter 2. Focus and Related Work

specific processors, but also to dedicated hardware designs5. Due to
the fact that a detailed discussion of low-power hardware design tech-
niques is presented in Chapter 3, only the most important approaches
are summarized at this point.

There is a variety of publications concerning low-power hardware de-
sign in general e.g. [177] [44] [45] [66] [104] [221] [251]. Many of
them cover technological issues and also typical full-custom techniques
like voltage scaling in combination with parallelization, which are not
directly applicable to semi-custom chip design. Other publications also
cover algorithmic optimizations like optimized filter coefficients, arith-
metic operator minimization, and optimization of number representa-
tions. High-level optimizations include scheduling techniques in order
to exploit data correlation. Standard circuit optimizations like guard-
ing techniques (which includes clock gating) and precomputation are
also treated. A more detailed review of work on this topic is given in
Section 3.3.

Many other publications [273] [25] [83] exploit the statistical properties
of the encoded values by using redundant additional information or by
optimized non-redundant code assignments. The goal of these encod-
ing techniques is to lower the toggle frequency of heavily loaded nodes
in order to save power. In [264], an approach is presented to reduce
the power in a cache memory-based on physical modifications of the
memory architecture, which avoid the decharge activity of the high ca-
pacitance bit lines. These approaches are related to the idea that has
been used in Section 6.3.1 to reduce the energy consumption in embed-
ded instruction memories.

The following publications focus on architectural and/or instruction set
modifications to decrease the power consumption.

In [131] the number of general purpose registers of an ARM7TDMI
[5] is varied in order to evaluate its effect on power consumption and
runtime. Unfortunately, the power model of this work neglects the re-
duced energy consumption of the changed register file and only takes
into account the energy of the memory accesses.

5For the greater part, only those approaches have been selected which are applicable to semi-custom
ASIP design.

2.2. Previous Work 13

In [231] an architecture tuning methodology is described that uses a
fixed instruction set and tunes the implementation e.g. by adding spe-
cialized registers for frequently addressed memory locations etc. The
paper provides an evaluation of sample modifications with a limited
scope resulting in small power savings.

In [272] an energy-conscious methodology for the exploration of a
processor-accelerator system using an ARM-compatible core and a cus-
tom accelerator is described. The processor instruction set in this case,
however, is not application-specific. Similar work has been performed
in [100].

Several ideas concerning instruction sets with the option to generate
software for low-power consumption are presented in [18]. One idea
is the concept of programmable bypass and forwarding registers, where
the compiler decides whether a bypass or a forwarding register can be
used instead of a real register as data source with the goal to avoid gen-
eral purpose register accesses. This concept can be regarded as expos-
ing the microarchitecture to the SW interface, which is not unusual for
many VLIW architectures. A similar approach has been adopted for the
scalable processor architecture in Section 7.2 of this thesis.

The following publications cover general purpose processor design
techniques. Many of the presented ideas are also applicable to semi-
custom ASIP design.

In [36] a summary of energy and power metrics for general purpose
processor systems is presented together with basic design optimizations
in order to increase efficiency. These optimization techniques include
voltage scaling6 and optimum instruction set design including the num-
ber of registers and the number and kind of functional units and sup-
ported addressing modes. Furthermore, energy-efficient cache design
and energy-aware operating systems are discussed.

The publications of Tiwari [249] [250] cover a wide range of op-
timizations for high performance processors including technological
optimizations (low-power libraries), circuit techniques (transistor siz-
ing, logic optimization on register transfer level) and operating system
power management techniques. Tiwari also introduces a power model

6Voltage scaling is typically not applicable to semi-custom designs due to the lack of characterized
standard cells.

14 Chapter 2. Focus and Related Work

[253] for software optimizations, which results in low-power code gen-
erations strategies [252] e.g. reduction of memory accesses, energy
driven instruction selection, instruction reordering, instruction packing,
operand swapping and SW power management.

A microcontroller explicitly optimized for high energy-efficiency is the
M•Core of Motorola [187]. Various publications [223] [158] [224] de-
scribe the low-power techniques that have been applied for this pro-
cessor core including selective power-down mechanisms, high code
density, rich register set, multiple data sizes support, loop cache, and
branch folding. The publications partially include power evaluations
of these optimizations. Application-specific adaptations have not been
performed for this core since it mainly targets general purpose micro-
controller applications.

2.2.4 Verification

The verification task targeted by the tool in Section 6.3.2 of this thesis
checks the correctness of the ASIP HW description with respect to a
cycle-true instruction set reference model. Even in the case of a auto-
matically generated hardware description, this verification is important
to reduce the design risk due to errors in the hardware generation tool.

Theoretically, this verification task can be realized with a formal veri-
fication approach like in [11], [135], [167], and [277], but this requires
a formal specification of the processor description. In the case of the
LISA environment an appropriate formal description is not available.
Therefore, functional simulation has to be used, which is also applied
by many industrial processor design teams [260] [68] [174].

The task of providing suitable stimuli for this functional simulation is
tedious and time consuming, but can be partially automated [43] [149].
Krüger [149] presents a tool which is targeted for self test program gen-
eration using a structural description of the processor as input to the test
program generator. Chandra [43] discusses a methodology to generate
stimuli for the IBM S/390 processor. Chandra’s methodology includes
techniques like symbolic execution and constraint solving in order to
cover boundary conditions. The described methodology is targeted and
optimized for a single general purpose processor.

2.3. Differences to Previous Work 15

2.3 Differences to Previous Work

As energy consumption is getting more and more important for digi-
tal chip designs, low-energy ASIP design methodologies are of special
scientific interest. All of the previously published ASIP design environ-
ments primarily focus on performance optimization. Some of them are
also able to evaluate the area consumption and enable performance-area
tradeoffs. None of them allows explicit energy optimizations, which can
be performed with the design methodology as proposed in this thesis.

A similar statement can be made about the related ASIP case studies:
none of them systematically evaluates the primary sources of energy
consumption and none of them proposes or performs explicit energy
optimizations.

The differentiation against the basic low-power design techniques
mentioned above is the fact, that this thesis focuses on the special case
of ASIP-typical energy optimizations by exploiting the large ASIP de-
sign space including the user-defined instruction set. Previously pub-
lished energy optimization techniques are used, but also novel ASIP-
specific energy optimizations are developed. In contrast to the related
work, thorough evaluations of these optimizations are performed using
precise gate-level estimations. These techniques have provided essen-
tial concepts for the enhancement of the LISA7 processor design tools
in order to facilitate future low-energy ASIP development.

Verification is an important subtask of complete ASIP design flows
in order to guarantee a fully functional implementation. This topic is
treated in this thesis by explicitly covering a tool that has been devel-
oped for this purpose. The proposed semi-automatic test case generator,
which is described in Section 6.3.2, uses a similar approach as Krüger
[149]. However, instead of a structural processor description, the be-
havioral LISA description is used. Furthermore, speculative execution
on an instruction set simulator together with user-defined rules guaran-
tee that meaningful test scenarios can be generated in a short amount of
time.

7Please refer to Chapter 6 for a description of the LISA tools suite.

This page intentionally left blank

Chapter 3

Efficient Low-Power Hardware
Design

From a hardware perspective, an ASIP represents a complex finite state
machine where the state transitions are triggered by the input data and
the ASIP software. Consequently, all the techniques for efficient low-
power or low-energy hardware design are also applicable to ASIPs. This
fact is emphasized in the case of application-specific hardware acceler-
ators that are tightly coupled to the ASIP core to increase the energy-
efficiency of the implementation. This approach implicitly includes the
ASIP software as being an integral part of the hardware implementation,
which has to be optimized with equal effort. However, plain software
optimization techniques are beyond the scope of this chapter. The basics
of software optimization are briefly treated in in Section 5.3.3.

This chapter defines the critical issues of hardware design that have a
major influence on the final result. The basics of low-power CMOS
hardware design are described including physical effects, metrics to
evaluate different architectures and power estimation techniques. Fi-
nally, specific design techniques to increase the energy-efficiency of
synthesized semi-custom hardware are presented together with refer-
ences to practical applications. This chapter represents a prerequisite
for Chapter 5 where the ASIP typical hardware and software design
issues are treated.

3.1 Metrics of the Implementation and the Hardware
Design Methodology

In the following two subsections the terms architectural efficiency and
design efficiency are defined similar to [263] as principal metrics for the

18 Chapter 3. Efficient Low-Power Hardware Design

quantitative evaluation of different design alternatives. This discussion
refers to hardware design in general as well as ASIP development.

3.1.1 Characteristics of the Implementation

Implementation constraints are qualitative or quantitative boundary
conditions that have to be fulfilled in order to obtain a feasible imple-
mentation for a given signal processing application.

Two classes of constraints can be identified:

• Precise constraints have to be fulfilled accurately, which means
that even a small deviation between constraint and considered pa-
rameter leads to device failure. This type of constraint is obviously
only applicable to qualitative or discrete parameters.

• Minimum (maximum) constraints are typically met by larger
(smaller) or equal values of the considered implementation pa-
rameter. Safety margins of the constraints have to be provided
as a guard against estimation errors. The quantitative difference
between constraint and considered parameter is referred to as
“slack”. Two subtypes of min./max. constraints can be identified
in the case of a feasible implementation with slack≥ 0:

– magnitude of slack is unimportant

– magnitude of slack enhances the implementation and has to
be optimized

In the following, a list of requirements for the ASIP hard- and software
implementation is given. This discussion uses a black box abstraction
that conceptually contains the complete ASIP hard- and software imple-
mentation. The following qualitative or quantitative parameters apply
to this model:

• correct functionality of the implementation with respect to the
specified bit-true behavior (precisely constrained)

• correct timing of interfaces (typ. with min./max. constraints)

3.1. Metrics of the Implementation and the Hardware Design Methodology 19

• performance constraints like computational throughput, bit er-
ror rate, acquisition probability, number of processed data packets
per time unit (with min./max. constraints and a slack that need to
be optimized in order to enhance the performance of the digital
system e.g. to obtain a competitive advantage)

• average and peak power consumption of the module (both with
max. constraints, the average power consumption needs to be min-
imized e.g. for mobile appliances or to reduce the costs of pack-
ages and (active) heatsinks)

• silicon area of the module (with max. constraint and a slack that
needs to be optimized to reduce fabrication costs)

• observability and controllability during operation might be
needed to discover functional errors in the implementation or the
specification (sometimes with a min. constraint)

• the routability of the physical design is determined by the inter-
connection structures of the design and affects the area utilization
(silicon area overhead) as well as the timing closure (not explicitly
constrained by most synthesis tools [194] [215] [60])

• testability and self-testability is an important feature for con-
sumer products to identify chips with fabrication faults at a very
early stage (before bonding) to reduce overall costs (typical with
a min. constraint and a slack that has to be optimized for higher
fault coverage)

• flexibility of an implementation is needed to adapt an implementa-
tion to different applications or evolving standards or to fix design
errors of the implementation (sometimes with a min. constraint
and a slack that needs optimization)

• reusability or IP-reusability refers to the degree of genericity and
flexibility of a design, which enables the reuse of the same design
with minor modifications for similar applications (typ. with an
implicit min. constraint, the reusability needs to be increased in
order to decrease the design effort for similar applications)

The following characteristics apply to the internal ASIP structure and
complement this list of characteristics:

20 Chapter 3. Efficient Low-Power Hardware Design

• the application class (e.g. digital filtering, speech coding, image
transformations etc.) which can be efficiently mapped to the pro-
cessor data-path is strongly correlated with the above-mentioned
flexibility of the implementation (extensions of this application
class increase the flexibility of the ASIP)

• either simplicity of the instruction set architecture is required to
enable hand programmability, if no compiler for the architecture is
available (this parameter strongly affects the software design time)

• or the instruction set class (ref. to Chapter 4 for a classification)
should be selected in order to use an available compiler design
environment e.g. COSY [3], if the ASIP is intended for high level
language programming support (a good fit of the instruction set
class results in a lower effort for compiler retargeting)

For many of the above-mentioned parameters of the implementation the
associated slack between constraint and parameter can be quantitatively
evaluated. For a selected set of N important slack values that are subject
to explicit optimization, it is useful to define a quantitative efficiency
in order to compare architectural alternatives. These slack values Sn

can be associated with application-specific weights wn such that the
application-specific architectural efficiency ηarch for these considered
slack values can be defined as follows:

ηarch =

n=N∏
n=1

1

Sn
wn

(3.1)

The well-known classical efficiency for VLSI circuits η = 1
AT

is a spe-
cial case of the above mentioned architectural efficiency, which con-
siders the equally weighted parameters silicon area and computational
performance (critical path) of an implementation.

3.1.2 Characteristics of the Design Methodology

An ideal design methodology achieves the highest possible architec-
tural efficiency (ref. to Subsection 3.1.1) in zero design time. For prac-

3.1. Metrics of the Implementation and the Hardware Design Methodology 21

tical reasons, a feasible trade-off between these parameters has to be
selected. The following characteristics of a design methodology are the
degrees of freedom to control this trade-off during the design phase:

• The modeling style for a given design task has important effects
on the design time and the ability to reuse and verify a design.

– The level of abstraction has to be reasonably selected in a
hierarchically organized design to reduce the amount of ir-
relevant details for the current design task – this hierarchical
organization can be viewed as a vertical partitioning of design
tasks.

– Modularization or horizontal partitioning of design tasks, on
the other hand, reduces the design time in combination with
concurrent engineering (see below).

• Design automation in combination with abstraction and appropri-
ate tool support both for design and verification enables to reduce
the risk of design errors and to speed up the design process.

• Debugging on all levels of abstraction should be facilitated by a
transparent design methodology and appropriate modeling styles.

• Design reuse is also a means to reduce design time. Design reuse
has to be performed wherever it is possible to take advantage of
encapsulated, verified modules enabling higher abstraction levels
[216].

• Process organization is the mapping of required design tasks to
the available human resources. A vertical specialization of work
according to the level of abstraction in the design flow can be used
together with overlapping execution to reduce the risk of design
flaws and to parallelize and speed up the design flow. On the other
hand, horizontal partitioning of the work results in reduced design
time due to concurrent engineering as well. Typically, a combina-
tion of these two approaches are used depending on the complex-
ity of each design task. However, too fine granular partitioning of
design tasks can lead to inefficiencies due to an overhead in com-
munication.

22 Chapter 3. Efficient Low-Power Hardware Design

• Monitoring of the design process and project management is
mandatory to adaptively control the process organization in order
to meet the deadlines and to identify problems at an early stage.

The design efficiency ηdesign can be defined using the architectural effi-
ciency ηarch of Subsection 3.1.1 together with the overall design effort
Tdesign (in man months) and the weight factor wdesign as follows:

ηdesign =

(
1

Tdesign

)wdesign

ηarch (3.2)

The design efficiency ηdesign can be used to compare different design
approaches and methodologies and detect problems a-posteriori in the
design flow. However, as mentioned before, the number of different
parameters that affect the design efficiency is large and for practical
analysis of design issues, a more thorough investigation of the design
flow and the application is needed.

A different approach to evaluate different design methodologies and im-
plementations could focus on monetary costs of chip design and chip
production. This evaluation model could be easily set up using the costs
for designing, prototyping as well as the production costs per chip and
the market volume. A more thorough investigation of design costs is
given in [121], which focuses on the design of dedicated hardware.

3.2 Basics of Low-Energy Hardware Design

VLSI design for reducing the energy consumption of a device basically
involves two different issues: estimation of power consumption and
techniques to reduce the power or energy consumption. For two differ-
ent reasons, a reduction of power or energy consumption is beneficial:
reduction of the peak power is needed to avoid problems with voltage
drops and ground bouncing within a chip. On the other hand, reduction
of the average power is mostly driven by mobile systems to increase the
battery lifetime, but also for consumer applications, where device costs

3.2. Basics of Low-Energy Hardware Design 23

due to expensive packages, heat sinks and power supplies are of signifi-
cance. Furthermore, environmental concerns have triggered low-power
initiatives like the Energy Star program [259]. Finally, the reliability
of a system is increased by lowering the average power due to reduced
thermal stress and reduced electromigration [191].

In the following subsections the sources for digital CMOS energy con-
sumption, the energy estimation approaches and techniques to reduce
the energy and power consumption are discussed.

3.2.1 Sources of CMOS Energy Consumption

The total power consumption Ptotal of a CMOS circuit with the supply
voltage Vdd can be described by the following equation:

Ptotal = IstandbyVdd + IleakageVdd + IscVdd + αavgClV
2
ddfclk(3.3)

= Pstandby + Pleakage + Pshort circuit + Pcapacitive

The standby current Istandby is typically completely avoided by a
proper CMOS circuit style and can usually be neglected. However for
certain circuit styles (pseudo NMOS, NMOS pass transistor logic, and
memory cores) Istandby can be an issue [197].

The leakage current Ileakage is due to the reverse bias current in the
parasitic diodes of the diffusion zones and the bulk region of the MOS
transistors and also due to the subthreshold current in the case of gate
voltages below the threshold voltage. This effect is an issue in the case
of current and future technologies with significantly reduced power sup-
ply voltages.

The short-circuit power Pshort circuit is due to the hot path in typical
CMOS circuits (like the inverter in Figure 3.1) when both transistors are
on for a short period of time during transitions. This term depends on
the input rise (fall) time (slew rate), the output load and the transistor
sizes (internal capacitances and gain factors).

The capacitive power Pcapacitive depends on the average switching
probability αavg, the clock frequency fclk and the switched capacitance

24 Chapter 3. Efficient Low-Power Hardware Design

Vin outV

Vin

outV

dd
V

V
dd

0

Iout

In

sc|I ||I | = ||I | −|I ||sc nout

VDD

VSS

Figure 3.1: Short-Circuit Current in a CMOS Inverter

Cl. It is caused by the power needed to charge and discharge (in most
cases parasitic) capacitances on the chip. The switching probability
αnode (also referred to as toggle activity or as toggle probability) of a
single node is defined as the ratio of the number of transitions of the
considered logic node to the number of clock transitions within the
simulation interval. For strictly synchronous design style using posi-
tive (negative) clock edge triggered flip-flops, a logic node transition
can only occur after the rising (falling) edge of the clock, thus, the max-
imum transition probability for a logic node without glitches is α = 1

2
.

The transition probability of the clock itself is α = 1. The capacitance
Cl in Equation 3.4 is the sum of all node capacitances in the considered
circuit whereas the αavg is the equivalent average transition probability
of Cl according to the following equation:

αavg =

i=N∑
i=1

αnode,iCnode,i

i=N∑
i=1

Cnode,i

=

i=N∑
i=1

αnode,iCnode,i

Cl
(3.4)

where αnode,i and Cnode,i are the transition probabilities and the capaci-
tances respectively of node i.

3.2. Basics of Low-Energy Hardware Design 25

The term static power consumption refers to the sum of Pstandby and
Pleakage which typically represent negligible constants for the majority
of current CMOS designs.

The sum of Pshort circuit and Pcapacitive is referred to as dynamic power
which represents the most significant part of the overall power bud-
get for state-of-the-art CMOS designs. For practical purposes it is
useful to replace the short-circuit current Isc with an equivalent short-
circuit capacitance Cnode,sc, because the amount of short-circuit power
Pshort circuit is also proportional to the switching activity of the circuit
nodes. If Cnode,sc is chosen according to the following equation

Cnode,sc =
Inode,sc

αnodeVddfCLK
(3.5)

then the effective dynamic capacitance Cdyn node,i of a node i is can be
expressed as follows:

Cdyn node,i = Cnode,i + Cnode,sc,i (3.6)

Together with

Cdyn =

i=N∑
i=1

Cdyn node,i (3.7)

and

αavg dyn =

i=N∑
i=1

αnode,iCdyn node,i

Cdyn
(3.8)

Equation 3.4 can be simplified to

26 Chapter 3. Efficient Low-Power Hardware Design

Ptotal = IstandbyVdd + IleakageVdd + αavg dynCdynV
2
ddfclk (3.9)

= Pstandby + Pleakage + Pdynamic

which states more clearly the significant physical effect of the average
dynamic toggle probability αavg dyn on power consumption.

3.2.2 Basic Principles of Lowering the Power Consumption

The following considerations directly refer to the total CMOS power
consumption as a goal for minimization. As mentioned before, for
current CMOS technologies the major part of CMOS power in Equa-
tion 3.10 is the dynamic power consumption:

Pdynamic = αavg dynCdynV 2
ddfclk (3.10)

The dynamic power consumption can obviously be decreased by

• reducing the supply voltage Vdd which results in a quadratic de-
crease of Pdynamic

• reducing the clock frequency fclk

• reducing the effective switched capacitance Cdyn (which includes
the physical node capacitance and the equivalent short-circuit ca-
pacitance)

• reducing the switching probability αavg dyn.

A reduction of the supply voltage Vdd increases the combinational cir-
cuit delay Tprop (not the interconnection delay) according to

Tprop ∝ Vdd

(Vdd − Vt)α
with α ∈ [1.0, 2.0] (3.11)

3.2. Basics of Low-Energy Hardware Design 27

which has to be compensated for systems with high throughput e.g. by
using parallelized or pipelined processing units. Unfortunately, repli-
cation results in a higher power consumption, too, but the quadratic
decrease of power consumption due to voltage scaling outweighs this
increase in many practical cases like in [45]. A different approach is
presented in [71], where the design is partitioned into critical regions
with a small timing slack and uncritical regions with a high timing slack
respectively using a dual supply voltage without affecting the critical
path. For very short feature sizes the exponent α in Equation 3.11 ap-
proaches 1.0 and for Vdd >> Vt the delay is nearly a constant, which is
very favorable for voltage scaling.

However, voltage scaling is limited by technological parameters such as
subthreshold leakage current, leakage power and reliability issues due
to signal integrity [204] [72].

A reduction of the clock frequency fclk without further changes obvi-
ously results in a proportional reduction of the computational perfor-
mance for synchronous circuits as well as in a proportional reduction of
power consumption. This reduction is limited by the minimum compu-
tational performance required by an application. The total energy to
perform a given computational task is unaffected by a reduction of fclk,
if no additional changes are applied.

A reduction of the effective switched capacitance Cdyn potentially re-
sults in a higher computational performance because of reduced inter-
connection and transition delays. Typically, this reduction has to be
achieved using different hardware architectures or technologies. How-
ever, the minimization of Cdyn is limited by architectural bounds (due
to the minimum required interconnection structure) and technologi-
cal bounds (due to high interconnection capacitances and unavoidable
short-circuit currents). Nevertheless, the logic designer can reduce Cdyn

on the architectural level by using local instead of global interconnec-
tions e.g. with systolic arrays or clustered arithmetic using segmented
communication buses.

A reduction of the toggle activity αavg dyn is typically also achieved
with optimized hardware architectures. This reduction is especially
effective if applied to logic nodes with a high node capacitance
Cdyn node,i, e.g. highly loaded chip pads, interconnection buses etc.

28 Chapter 3. Efficient Low-Power Hardware Design

However, this reduction is limited by information theoretical bounds
(due to the minimum needed communication resulting in toggle activity
as a function of the signal entropies [258] [226]). It is actually possi-
ble to exploit data redundancy (e.g. data correlation, non-uniform data
distribution etc.) to reduce the toggle activity on certain nodes.

For power and energy critical applications like embedded µ-processors
all of the above mentioned parameters are optimized for state of the
art devices as described in [14]. However, for semi-custom devices
the pressure for low-power design techniques is obviously not yet as
critical. Typically, the supply voltage for semi- custom technologies is
restricted to a certain range [Vmin, Vmax]. Only for predefined working
conditions, which include defined sets of values for the supply voltage,
the operating temperature and the quality of the fabrication process, the
relevant electrical parameters, the power consumption and the delay for
cells and interconnection of the target technology are available. Be-
yond these working conditions, correct functionality of the chip is not
guaranteed by the foundry. This makes it impossible for a conservative
designer to use voltage scaling beyond Vmin. Nevertheless, for aggres-
sive low-power applications, the usable voltage range might be extended
below Vmin.

For semi-custom design, the remaining degrees of freedom, namely
clock frequency, switching activity and capacitance reduction have to
be simultaneously optimized to maximize the power savings.

3.2.3 Measuring and Quantifying Energy-Efficiency

In order to obtain precise values of the power or energy consumption,
appropriate analysis techniques are necessary. Power analysis tech-
niques for semi-custom chips can take advantage of the different lev-
els of abstractions, namely, the circuit level, the cell and the RTL level.
The layout extraction of each standard cell performed by the technology
vendor results in an equivalent schematic using resistors, capacitors, in-
ductors and current/voltage sources. This schematic or parameterized
model can then be simulated with SPICE [182] or similar analysis tools
using transient analysis to obtain precise estimates for the switching
power of the cell. These simulations have to be performed for all the

3.2. Basics of Low-Energy Hardware Design 29

defined working conditions and are often calibrated with measurement
data from actual test chips. After this process, the simulated and mea-
sured values can be used as library data for power analysis steps at the
cell level.

At the cell level, so-called gate-level simulations of the synthesized
netlist of standard cells can be performed. In order to get more pre-
cise estimations for the interconnection capacitances, extracted values
of the design layout can be used. If these are unavailable, wire-load
models that represent worst case scenarios for synthesis have to replace
extraced capacitance values [93].

The gate-level simulations have to use a sufficient number of input stim-
uli in order to get meaningful estimations. This leads to a considerable
simulation effort for larger designs.

A complementary approach to cell level analysis are probabilistic power
estimation techniques, which use statistical properties to describe the
behavior of signals. There are several approaches for a statistical de-
scription of logic signals:

• using static probabilities for the state logic zero (one)

• using the transition probability under the assumption of a memo-
ryless logic signal

• using two different transition probabilities as a function of the cur-
rent state of the signal (which can be associated to a memory of
length one) which is referred to as lag-one signal model [281]

• using a lag-N signal model

• using the static probability together with a lag-zero, lag-one or a
lag-N signal model (with increasing computational complexity)

A signal that is described by one of the statistical properties mentioned
above can be used to propagate the statistical properties of the inputs
through combinational logic yielding the statistical properties of the
output(s).

Given a Boolean function y = f(x1, x2, ..., xn) and the static probability
(for logic 1 without loss of generality) P (Xi) as well as the (lag-zero)

30 Chapter 3. Efficient Low-Power Hardware Design

transition density D(xi) the statistical properties of y can be calculated
using Shannon’s decomposition of the function f which is

y = xif(xi = 1) + x̄if(xi = 0) (3.12)

The static probability of this decomposed representation yields

P (y) = P (xi)P (f(xi = 1)) + (1 − P (xi))P (f(xi = 0)) (3.13)

This decomposition can be recursively evaluated until the function f is
completely decomposed.

A similar approach can be made for the transition density D(y): a tran-
sition of y as a response to a change of xi occurs, if f(xi = 0) �= f(xi =
1). This condition which is also called the Boolean Difference of y w. r.
t. xi can be expressed as an exclusive-OR of the two functions:

dy

dxi
= f(xi = 1) ⊕ f(xi = 0) = 1 (3.14)

The probability of a transition of y due to a transition of xi is given by
the product of the static probability for which 3.14 is valid and the tran-
sition probability of D(xi). Iterative application of this formula yields

D(y) =

N∑
i=1

P

(
dy

dxi

)
D (xi) (3.15)

This propagation of statistical signal properties is used e.g. by commer-
cial tools like Synopsys’ DesignCompiler [235] for internal nodes that
have not been annotated with static probability and switching activity.

3.2. Basics of Low-Energy Hardware Design 31

The purpose of low-power or low-energy design techniques is to find an
architecture for a given application or a set of applications that repre-
sents the optimum concerning the “power or energy consumption”. For
a reasonable comparison of different architectures concerning power or
energy consumption, several metrics can be used:

• plain power in mW to describe e.g. the average or peak power of
an architecture

• plain energy in mWs or mJ which describes the (average) energy
consumption of a given architecture to perform a given application

An additional metric which is often used for (circuit-level) VLSI de-
sign is the power delay product. This metric can be viewed as energy
per computation, which expresses the energy-efficiency of an imple-
mentation for a given task. The result of the considered computation is
available after the delay, which is part of this metric, and the total en-
ergy of this computation is the average power times the delay. Another
interpretation of this metric makes sense, if voltage scaling or other
techniques are used that have an impact on power and delay: reduced
voltage reduces the power quadratically whereas the delay is typically
(nonlinearly, refer to Equation 3.11) increased. This metric compen-
sates the effect of the power decrease with the effect of the delay in-
crease to get an equal weight both for power and delay. A non-equal
weight is included in the energy delay product [114], which is equal to
a ’power-delay-delay’ product; this metric is useful for applications that
favor processing speed over energy consumption.

Various other metrics have been proposed and are used for different pur-
poses, specifically for µ-processors, where the application is not fixed:

• Mega Instructions per mW (MIPS/mW) can be used to compare
different µ-processor implementations that have the same or a very
similar instruction set with a typical benchmark application

• other metrics use operations instead of instructions e.g. [37] uses
power per throughput (in mW per operations per second) and en-
ergy per throughput for fixed throughput and maximum through-
put operation as well as a metric, which normalizes total energy
consumption to the maximum throughput scenario

32 Chapter 3. Efficient Low-Power Hardware Design

The choice of the power metric strongly depends on the optimization
goal. For many portable applications with fixed processing rates (which
corresponds to fixed throughput) constrained by the application (e.g.
speech, mobile reception/transmission etc.) the metric simply has to
maximize the battery lifetime. In such a case a metric energy per com-
putational task or energy per typical set of operations is suitable, which
has to be interpreted as the above-mentioned energy per operation for a
given benchmark. For many non-battery operated appliances, the metric
average power is often sufficient in order to keep package and cooling
costs under control. However, a reduction of the average consumed
energy leads to a reduction of the average power and vice versa. There-
fore, these distinct metrics can be indirectly optimized simultaneously
by just considering the average energy per computational task. In the
following discussions and also in Chapter 7 the metric average energy
per computational task is used as optimization goal and the terms power
and energy optimization are used as synonyms.

3.3 Techniques to Reduce the Energy Consumption

The focus of this section is to characterize techniques to optimize the
energy per computational task starting with a high level behavioral im-
plementation of the algorithm and ending with a synthesized netlist of
standard cells. Figure 3.2 depicts the different levels of abstraction: the
impact of power saving techniques decreases with increasing level of
implementation detail, whereas the accuracy of power estimation in-
creases. This is an issue that makes it difficult to predict the effect of
e.g. algorithmic changes on the power consumption.

It has to be mentioned, that the following classification into sys-
tem/architecure level, logic and physical level is not orthogonal for all
low-power techniques: there are techniques which affect more than one
level in this hierarchy. This fact emphasizes the importance of joint
power optimization on all levels of abstraction.

Furthermore, the techniques described in this section are typically re-
stricted to semi-custom design flows – special circuit techniques en-
abled by full-custom design are not covered. An exception is the im-
portant technique of voltage scaling, which is not commonly used for

3.3. Techniques to Reduce the Energy Consumption 33

System

Gate

Circuit

Physical Design

Architecture

Algorithm
Most

Least Most

Least

Best

Worst

Abstraction
Level Resources Accuracy

Analysis Analysis

Savings
Power
Achievable

Figure 3.2: Level of Abstraction vs. Possible Savings (Irwin [124])

current semi-custom design flows. However, this technique might be-
come important in the future and is therefore included in the following
discussion.

3.3.1 System and Architecture Level

Given a certain application, the first choice in the design flow is the se-
lection of an optimum algorithm with respect to the cost function of the
design. The term cost depends on the application and typically includes
the number of operations (additions, multiplications, logic operations
etc.), the number of memory accesses as well as the memory size. The
decisions on this level of abstraction typically have a large impact on the
design efficiency. Unfortunately, the estimations on this level of abstrac-
tions tend to be significantly inaccurate unless a complete implementa-
tion in a high level language is available and a complete floating point to
fixed point conversion has been done. After this design step (which has
to be performed for all considered algorithms) more precise values for
the complexity of memories, arithmetic, and logical operators can be
estimated. The traditional purpose of this algorithm optimization is the
reduction of operations, memory accesses and memory size in order
to reduce the area and to increase the computational throughput of an

34 Chapter 3. Efficient Low-Power Hardware Design

implementation. Obviously, this optimization also significantly reduces
the energy consumption of the final implementation. The scheduling
of operations also has an impact on the power consumption. In [44]
an example is presented, which exploits the associativity and commu-
tativity of addition by reordering the data flow graph and adding the
smaller operands first. For this example a saving of about 30% in power
consumption is reported.

After the algorithm optimization and selection is finished, the partition-
ing into building blocks – dedicated hardware, configurable HW blocks,
or programmable devices – has to take place. This partitioning must find
a feasible solution with respect to processing power and data rates (for
case studies refer to e.g. [29] or [148]). Excessive flexibility has to be
restricted to the required minimum in order to avoid an unnecessary in-
crease in power consumption [1] [92]. Thus, it is important to identify,
whether the amount of required flexibility of a building block can be
satisfied with (coarse-grain configurable) dedicated hardware. An im-
portant parameter for this partitioning is obviously the computational
performance of the considered task. Moreover, parameters like area
efficiency for low data-rate tasks and flexibility requirements for error-
prone and quickly changing control tasks have to be taken into account
[91].

It is possible for some algorithms to use adaptive implementations,
where the number of operations that are needed for this task can be
scaled to reduce energy. This typically also affects the algorithmic per-
formance (e.g. bit error rate, mean square error etc.). However, if the
application permits a certain algorithmic degradation under some cir-
cumstances, it might be advantageous to detect this condition and scale
the algorithm accordingly. Theoretically, any iterative algorithm is a
candidate for this saving technique provided that the overhead of esti-
mating the scaling criterion is small compared to the expected savings.
One application for such a technique are the adaptive filters in [172]
[144], where the signal-to-noise ratio is estimated and used to adapt the
filter length of the FIR filter. Another example monitors and controls the
progress of iterative matrix diagonalization by low overhead techniques
[147].

An often-used technique for lowering the power consumption is volt-
age scaling typically in combination with parallelization of hardware

3.3. Techniques to Reduce the Energy Consumption 35

units. This techniques has already been raised in Section 3.2.2. If the
initial algorithm is easily parallelizable or pipelinable, this technique is
straightforward. However, many algorithms are inherently sequential
due to data dependencies, which makes parallelization more difficult if
not impossible. In such a case it might be worth changing the algo-
rithm to an approximation that exhibits higher parallelism like in the
well-known case of Turbo decoders [173]. On the other hand, the se-
quential description of an algorithm can be modified without changing
the output behavior of the algorithm in order to exploit more parallel
operations e.g. by loop unrolling [45].

Another approach for tasks with low or non-existent throughput con-
straints is the reduction of the supply voltage without a change in im-
plementation tolerating a certain degradation of computational perfor-
mance. This technique has been used in [206] to scale the voltage
dynamically for a microprocessor system by using a power-conscious
operating system. However, for many DSP applications with fixed
throughput requirements this approach is infeasible.

Memory accesses are expensive in terms of energy consumption, be-
cause heavily loaded internal bit- and word-lines have to be switched.
The average energy consumption of a memory (read or write) access in-
creases with the memory size. To make matters worse, external memory
accesses require switching even higher pad and external capacitances.
Therefore, algorithmic transformations in order to reduce the number
of memory accesses and/or to reduce the memory size are also effective
power saving techniques on the system level (cf. [85], [181] and [42] for
examples). Accesses to large memories should be reduced by using an
appropriate memory hierarchy: starting with registers as the lowest level
of hierarchy, this hierarchy ends with large on-chip or external memory
banks. Accesses to registers are obviously much less power consuming
(and typically also much faster) than accesses to larger memory blocks.
Favoring local over global communication in this example, enables to
decrease the power consumption.

A well-known technique for many µ-processors is applicable for any
kind of low-power hardware: power management, which shuts down
inactive parts of the chip. This can be done on different levels e.g.
by gating the clock for unused parts of the circuit (which is automated
by Logic Synthesis Tools like the DesignCompiler [235]) or even by

36 Chapter 3. Efficient Low-Power Hardware Design

entirely shutting down the clock generation unit in the phase-locked
loop like in [73]. Power management for complete modules on the chip
requires either software support e.g. provided by a power-conscious
operating system or a dedicated hardware controller.

For programmable architectures, the overhead in terms of instruction
fetching, instruction decoding, data routing etc. can be reduced by in-
creasing the number of useful operations per time unit without increas-
ing the overhead energy. In [37] it is stated that VLIW architectures
are the best candidate for this optimization because they exploit instruc-
tion level parallelism (ILP). However, real VLIW implementations tend
to increase the overhead energy significantly due to larger instruction
memories and decoders. This disadvantage can be partially reduced
by instruction compression techniques to reduce the instruction mem-
ory width by avoiding the explicit coding op no-operations opcodes in
the instruction. Furthermore, more elaborate compression schemes re-
duce the redundancy of programs by exploiting statistical properties.
Examples for instruction compression techniques are the simple fetch
scheme of the commercially available TMS320C62xx [246] and also
more elaborate techniques used in academia like in [163]. The simple
scheme of the TMS320C62xx, however, results in several power con-
suming decoding stages, which are needed to decode and route instruc-
tions to functional units. On the other hand, more elaborate compres-
sion schemes result in typically significant hardware effort and energy to
decompress the code due to large look-up tables. A completely orthog-
onal technique has been used in the case study of Chapter 7.1, where
application-specific instructions have been implemented to increase the
number of parallel operations per instruction without a significant im-
pact on the overhead energy.

3.3.2 Register Transfer and Logic Level

Low-power techniques on the register transfer (RTL) and on the logic
level can be subdivided into techniques for lowering the capacitance and
the switched voltage as well as into techniques to reduce the toggle rate
of nodes with a high relative capacitance. Furthermore, toggle activity
for un-useful calculations should be reduced to a minimum. Reduc-
tion of the switched voltage is beyond the scope of this thesis, because

3.3. Techniques to Reduce the Energy Consumption 37

it requires special circuit techniques that are (so far) not applicable to
semi-custom design flows.

Lowering the capacitance can be achieved by reducing or avoiding
global communication as far as possible because global communica-
tion implicitly requires switching long interconnections with high ca-
pacitance. However, for heterogeneous systems using different layout
blocks on a single chip it is often unavoidable to use long interconnec-
tions. In such a case the interconnection network has to be reduced
to a minimum and the topology should favor point-to-point or nearest-
neighbor connections [1]. For the same reason, external communication
should be reduced to a minimum e.g. by using internal cache mem-
ories. Much effort of lowering capacitances is used by the synthesis
tool, which implicitly reduces the switched capacitance by logic opti-
mization targeting minimum area and in many cases also if targeting
maximum speed. Advanced techniques to explicitly reduce power by
optimum technology mapping are reported in [248].

If the capacitances can not be further reduced, the orthogonal approach
is to reduce the switching activity of interconnections with high ca-
pacitances. Various approaches have been described in the technical
literature. The most popular technique – clock gating – can be classi-
fied as a so-called guarding technique. Clock gating means to shut
down the clocking for a certain group of registers under a certain guard
condition. An obvious example for this technique is to shut down the
clocking of pipelined functional units in a microprocessor e.g. in [223].
Clock gating techniques on a more fine-granular level are possible like
in Figure 3.3 [45], where the input of a comparator is guarded against
the trivial condition that the MSBs are different to avoid the evaluation
of the full input word lengths in this case. This special guarding logic
together with the MSB comparator is also called precomputation logic,
because the result can be quickly precomputed using a subset of the cir-
cuit inputs. Furthermore, guarding techniques to avoid propagation of
data values into functional units that are connected to a common bus
[91] [251] are extremely efficient, because they can typically be im-
plemented with minor overhead in area and design effort. So-called ex-
tended guarding techniques [251] comprise conventional guarding logic
as well as additional logic that can be viewed as precomputation logic.
Guarding techniques involve several issues with common standard cell

38 Chapter 3. Efficient Low-Power Hardware Design

Combinational
Logic
Block

A[N−2 downto 0]

B[N−2 downto 0]

A[N−1]

B[N−1]

CLK

CLK
Gating
Latch

CLK

MSB
Comparator

Comparator
for

B[N−2 downto 0]

A[N−2 downto 0]
>

Gated

A>B?

Q

Q’

D

Q

Q’

D

Q

Q’

D

Figure 3.3: Gated Comparator

design flows: Firstly, the use of latches is typically prohibited due to
testability issues. Secondly, the efficiency of guarding techniques typ-
ically depends on the timing constraint that the guarding condition is
stable before the signals that have to be guarded are stable. The latter
relative timing constraint makes timing verification and physical design
significantly more complicated.

Pipelining of combinational logic has several effects: firstly, the critical
path of the (synchronous) implementation is shortened, which enables
savings due to voltage scaling or due to slower implementations of arith-
metic operations with a higher energy-efficiency (a comparison of arith-
metic implementations is given in [40]). Secondly, glitches (also called
spurious transitions) within the combinational logic due to unbalanced
signal propagation are reduced, which also results in lower energy. Un-
fortunately, pipeline registers in semi-custom technology are typically
extremely costly in terms of area (with an implicit increase of capaci-
tances due to higher distances on the chip) and, to make matters worse,
increase the clock power (in the clock tree as well as in the register
circuits). This negative effect on power consumption has to be compen-
sated with clock gating, wherever this is possible. Retiming can also be
used to reduce the area penalty of pipelining to a certain extent as well
as to reduce the switching activity of logic nodes [197].

3.3. Techniques to Reduce the Energy Consumption 39

+
+

+

+

+
+

B
A

C

D

C
A

B
A

D

Flattening

Figure 3.4: Flattening of Operators and Logic

Further reduction of switching activity on highly capacitive nodes due
to glitching can be achieved by reorganization of logic gates and op-
erators [45] [142] like in the examples of Figure 3.4. Reorganization
of operators has to be typically performed manually but reorganization
of logic cells and also reordering of equivalent inputs [281] can be auto-
matically performed by commercial synthesis tools [64]. The optimiza-
tion tasks of the logic synthesis tool can be subdivided into combina-
tional optimizations like

• don’t care optimization [214]

• path balancing

• factorization

as well as sequential optimization like

• state encoding

• retiming

The data representation itself also has an impact on the switching ac-
tivity: in [45] the transition probability for each bit of 16 bit audio data

40 Chapter 3. Efficient Low-Power Hardware Design

represented by 2’s complement and by sign-magnitude numbers is com-
pared. The results (which are obviously data dependent) indicate, that
due to the signal correlation of audio signals the switching probabil-
ity of the higher weighted bits can be significantly reduced by a sign-
magnitude number representation. This is interesting for signals which
have to be transferred over high capacitive system buses. In general,
multiplexing of uncorrelated data over high capacitive buses tends to
consume more power than using parallel buses with correlated signals
[45]. This obviously represents an area-energy tradeoff. Similar state-
ments have been made about using resource sharing with uncorrelated
data streams. In [83] different encoding techniques for address and data
buses have been evaluated. It has been shown that these techniques
heavily depend on the statistical properties of the transmitted data.

Other approaches try to minimize the memory power consumption by
using runtime compression techniques in combination with intelligent
memories [185].

In Chapter 7.1.3 the effect of minimizing the internal power of an in-
struction memory by reducing the number of discharging events in the
instruction ROM is described. This minimization has been performed
automatically using instruction-frequency-driven maximum weight en-
coding1. The tools that have been developed for this optimization (refer
to Subsection 6.3.1 for details) can also reduce the switching activity of
the (external) instruction bus, if this is desired. A more limited approach
is described in [273] where the don’t care bits in a microprogrammed
control unit are optimally assigned using trace driven activity evalua-
tions.

3.3.3 Physical Level

On this level of abstraction the number of manually guided optimiza-
tions is quite limited because the semi-custom design flow uses auto-
matic place and route tools in order to transform the netlist of standard
cells into a chip layout. The place and route tools automatically mini-
mize the wire length (and wire capacitances) according to the time con-
straints. However, this does not necessarily represent the optimum con-

1This technique has been developed and published in [129] [90].

3.4. Concluding Remarks 41

cerning power consumption, because the switching activity is typically
not taken into account. Automatic gate sizing using in-place optimiza-
tion (IPO) with area and I/O standardized buffer cells can be used to
optimize the transition times of logic as well as clock nodes after an
initial place and route pass has been performed.

There are some design tasks which can nevertheless be exploited to save
power on this level of abstraction: partitioning and back-annotating of
layout information to the synthesis tool.

Partitioning and floorplanning for low-power can be done taking into
account the interconnections between the layout blocks, which are typi-
cally defined earlier in the design process (normally during architecture
design). The length of interconnections with high switching frequency
should obviously be minimized which corresponds to a minimization
of the distance between the associated layout blocks. The I/O ports of
physical blocks may have to be manually defined in order to achieve
optimum interconnections.

Back-annotating of layout capacitances together with the switching ac-
tivity information from gate level simulation to the synthesis tool can
enable efficient reoptimization of logic for low-power. This technique
has already been described in the previous subsection.

3.4 Concluding Remarks

This chapter summarizes the metrics for efficient hardware implemen-
tation and efficient hardware design. Furthermore, the sources of en-
ergy consumption of state-of-the-art CMOS technology are described.
Moreover, a concise summary of low-power design principles as well
as specific design techniques in order to lower the power or energy con-
sumption is given. Many of these techniques are used in the ASIP de-
sign flow described in Chapter 5.

This page intentionally left blank

Chapter 4

Application-Specific Processor
Architectures

The ASIP design space classification presented in this chapter identi-
fies the degrees of freedom in the ASIP design process. This discussion
neglects low-level hardware implementation details, which have been
treated in the previous chapter; it rather uses the abstraction of word
level hardware operators like addition, muliplication, etc. The design
decisions on this level of abstraction significantly affect the resulting
architectural efficiency as well as the overall design efficiency. As a
consequence, this chapter is a prerequisite for the ASIP design flow
presented in Chapter 5. Furthermore, this classification enables to de-
cide, if a certain architecture can be supported by an available high level
language compiler design environment or a retargetable HLL compiler
to enable high level language support. Finally, this chapter treats the
important relation between high level design decisions and critical low
level implementation characteristics. This relation has to be well under-
stood in order to obtain optimum design results.

This chapter starts by defining important terms in the context of ASIP
design and embedded signal processing architectures. Afterwards, sev-
eral important fields of ASIP applications are discussed together with
references to ASIP case studies. Finally, the design space of ASIPs is
defined and the impact of high level design decisions on performance,
energy and area consumption is described.

4.1 Definitions of ASIP Related Terms

The technical literature uses the acronym ASIP to describe two different
kinds of integrated digital circuits:

44 Chapter 4. Application-Specific Processor Architectures

• Application-Specific Integrated Processor: This term represents
any kind of application-specific digital integrated circuit used for
data processing and does not imply any kind of instruction set ori-
ented or programmable data processing [209].

• Application-Specific Instruction Set Processor or Application-
Specific Instruction Processor1: This term represents a pro-
grammable application-specific processor using the concept of an
instruction set architecture for data processing.

In this thesis, the term ASIP exclusively refers to an instruction set ori-
ented processor with application-specific optimizations including op-
tional tightly-coupled hardware accelerators.

Figure 4.1 depicts typical classes of hardware implementation
paradigms, which are bounded by pure ASICs on the left side and by
general purpose processors on the right side. ASIPs can be viewed as a
tradeoff between non-programmable application-specific integrated cir-
cuits (ASICs) and domain specific signal processors (DSSPs). ASIPs
are optimized for just one signal processing application. DSSPs are in-
struction set oriented processors targeting a complete domain of signal
processing applications (e.g. a network processor optimized for a class
of different network processing tasks). Conventional off-the-shelf DSPs
are less application-specific and target an even broader range of signal
processing applications.

The term instruction set architecture (ISA) defines the part of a pro-
cessor that is visible to the programmer or compiler writer [107].

The term processor architecture (PA) extends the scope of an ISA by
adding implementation characteristics that are hidden to the software:
this chapter discusses PAs on the abstraction level of word parallel hard-
ware operators. A PA contains a description of the processor resources
(functional units and storage elements), of the interconnections between
those resources and of the encoding/behavior of the supported instruc-
tions. The instruction behavior determines the processor’s state transi-
tions and the resource utilization of functional units.

1In the technical literature the term Application-Specific Programmable Processor (ASPP) is a synonym
for an ASIP in this sense, cf. [143]

4.1. Definitions of ASIP Related Terms 45

Flexibility highlow

ASIP GPPDSP

Computational Performance lowhigh

high low

DSSP

Energy Efficiency

dedicated
HW

Figure 4.1: ASIPs in the context of Processor HW implementation classes

Each PA contains a data path, which comprises the functional units
and storage elements for data processing. The architecture’s remaining
parts constitute the control units, which control the data path like the
instruction decoder or the interrupt control logic. This distinction is not
applicable to units that exhibit data- as well as instruction-dependent
behavior, such as the branch prediction unit.

A pipelined processor uses pipeline registers to subdivide computa-
tional tasks into a sequence of overlapping, subsequently performed
subtasks. Each subtask is executed using the combinational resources of
a a so-called pipeline stage. Dependencies between subsequent instruc-
tions and resource conflicts result in pipeline hazards. Pipeline hazards
are due to the dependence between instructions that are close enough so
that the overlapping execution in the pipeline leads to a different access
sequence of resources or data than in the case of non-overlapping exe-
cution. Hennessy and Patterson [107] classify these pipeline hazards as
follows:

• data hazards: data dependencies between two instructions which
would result in an incorrect behavior, if not properly resolved

– read after write: instruction (i+n) tries to read a data value be-
fore instruction (i) writes it, which results in the wrong order

46 Chapter 4. Application-Specific Processor Architectures

of write and read access (instruction (i+n) reads the outdated
value).

– write after write: instruction (i+n) writes a data value before
instruction (i) which results in the wrong order of the two
write accesses (the earlier instructions wins this race).

– write after read: instruction (i+n) writes a data value before
instruction (i) reads it which also results in the wrong order
of read and write accesses (instruction (i) reads the incorrect
new data value).

• control hazards: this is due to branch instructions resulting in a
non-sequential program flow which has to be taken care of by in-
serting pipeline bubbles (insertion of “no operation” into a stage)
or by using the so-called “branch delay” slot(s). Branch delay slots
are instructions after the actual branch instruction that are always
executed, regardless if the branch was taken or not.

• structural hazards: are due to resource conflicts of functional units
or of the memory and typically result in pipeline bubbles as well.

4.2 ASIP Applications

Typical applications of ASIPs can be subdivided into the classical do-
mains, where traditional µ-controllers and programmable digital signal
processors (DSPs) in combination with dedicated hardware are used.
In the last few years, a trend towards multi-threaded network processor
(NPs) architectures optimized for network routing and switching appli-
cations can be observed.

Application classes for ASIPs can be subdivided into

• control-dominated systems which react to (typically non-
periodical) external events often with real-time constraints on the
response time

• data-dominated systems where complex transformation of data are
performed using

4.2. ASIP Applications 47

– cyclostationary processing of data streams (operation se-
quence is largely defined at compile time)

– non-cyclostationary processing (operation sequence is
strongly data dependent)

• a mixture of control- and data-dominated systems

Examples for control-dominated systems are the above-mentioned net-
work processors whereas typical cyclostationary processing of data
streams can be found in many digital processing algorithms e.g. for
filtering and equalizing data or for channel decoding [48]. Non-
cyclostationary data processing is typically also a part of digital signal
processing systems and can be found e.g. in digital receiver structures
[179] that make use of different channel acquisition and tracking algo-
rithms.

From an ASIP centric point of view, the historical development of tradi-
tional fixed DSPs can be regarded as the continuous attempt to find the
optimum fit between the feasible hardware effort and the cost of a DSP
on one hand, and the demands of quickly changing, popular applications
on the other hand. This slowly developing process of DSP evolution has
produced ASIP-like features in general purpose DSPs like e.g.

• single cycle multiply-accumulate using the data bus and the pro-
gram bus as sources for the multiplier (TMS320C2x [244])

• bit-reverse addressing mode e.g. for FFT-butterfly addressing
(TMS-320C2x and C54x [245] and many others)

• subword parallelism (corresponding to a SIMD extension) using
two 16 bit numbers within a 32 bit word in order to perform 2
multiply-accumulate operations in one cycle (Lucent 16000 [27]
and others)

• computation of a parallelized 2-unfolded FIR or IIR using a delay
register (Lode DSP [28])

• Viterbi extension for Add-Compare-Select in combination with
dedicated storage for the survivor path (TMS320C54x [245])

• software pipelined Viterbi execution using two specialized Viterbi
instructions (StarCore [186])

48 Chapter 4. Application-Specific Processor Architectures

• further SIMD extensions for filtering purposes (cf. TMS320C62x,
TMS320C67x [246] and TigerSharc [10])

For a limited number of algorithms e.g. FIR/IIR-filters, FFT, distance
calculations or even matrix operations it is obviously possible to opti-
mize a fixed DSP instruction set architecture prior to fabrication. How-
ever, if quickly evolving applications call for significantly different
algorithms, these “optimized” DSPs might expose poor performance.
In the worst case, an application might need an optimum implemen-
tation for a mixed control- and data-dominated task, which calls for
a mixed implementation using features of µ-controllers together with
application-specific DSP features like in [189]. In such a case, a reason-
ably designed ASIP that is solely optimized for the underlying applica-
tion will certainly outperform available fixed DSPs and µ-controllers.

In Table 4.1 some commercial and academic ASIP case studies are
listed as examples for typical ASIP applications. However, ASIP de-
sign has been common in the industry for a longer period of time in the
form of in-house DSPs, which are intended for a specific application
domain [201].

4.3 ASIP Design Space

The following classification of processors focuses on architectural fea-
tures that are relevant for the implementation of ASIP processor archi-
tectures.

Flynn’s classification [82] is the most popular and lucid processor clas-
sification based upon the number of instruction and data streams that
can be simultaneously processed. The processor categories are:

• SISD (Single Instruction, Single Data), which is the the classical
definition of a scalar uniprocessor.

• SIMD (Single Instruction, Multiple Data), which defines the class
of vector/array processor.

• MISD (Multiple Instruction, Single Data) is often considered irrel-
evant in practice. Nevertheless, instruction level parallel architec-

4.3. ASIP Design Space 49

Application Authors, Affiliation Design
and Reference Environment

MPEG-I P. Plöger, J. Wildberg CASTLE
decoding GMD [207]
MPEG-II enc., S. Balakrishnan et al. SYMPHONY
LMS Adaptive Univ. of Twente [21]
Filtering
UNIX ”crypt” V. Zivkovic et al. MOVE

[283]
Java Processor Serfio Akira Ito et al. -

UFRGS - Brazil [125]
ATM cell S. Virtanen et al. TACO
processing TUCS Finland [265]
Vector M. Gschwind -
Processing IBM Research Center [101]
MD5 encryption P. Faraboschi et al. Lx platform
SHA HP Lab. and STM

Cambridge (MA) [77]
JPEG2000 D. Chuang Improv Design
among others Improv Systems Inc. [51] Platform
FIR, JPEG, R. E. Gonzales XTENSA Proc.
Viterbi, Motion Tensilica Inc. [97] Design Platform
Detection, DES
RISC+DSP ARC Cores Ltd. [12] [13] ARC ARCtangent-
applications A4 DSP

Table 4.1: ASIP Case Studies

tures (like VLIW or superscalar architectures) with a non-parallel
load/store unit and a single I/O port are part of this class.

• MIMD (Multiple Instructions, Multiple Data), which covers
the range of many instruction level processors and multi-
processor/computer systems.

Flynn’s classification is a good starting point for the following design
space definition to differentiate between the non-parallel SISD architec-
tures and the parallel SIMD and MIMD architectures. In Figure 4.2 a
classification of parallel architectures (similar to [227] with minor mod-
ifications) is depicted.

50 Chapter 4. Application-Specific Processor Architectures

Parallel Architectures
(PAs)

Data-Level PAs Function-Level PAs

Instruction Level
PAs

Thread Level
PAs

Process Level
PAs

VLIW Superscalar
Distributed Memory

(multi-computer)
Shared Memory

(multi-processor)

Vector
Architectures

SIMD
Architectures

Systolic
Architectures

Figure 4.2: Design Space of Parallel Architectures (Sima [227])

According to this classification, typical DSP applications like FIR, vec-
tor or matrix computations obviously represent a good match with data-
level parallel architectures. In fact, efficient hardware implementations
of these algorithms use dedicated hardware structures, which resem-
ble the data paths of these instruction set architecture classes (mostly
with further application-specific optimization like in [48]). The SIMD
principle is also used by some commercially available DSPs (e.g. the
C6X DSP from Texas Instruments [246] or the Trimedia Processor from
Philips [205]) by implementing SIMD instructions to support multiple
parallel operations on register subwords. For high level languages the
compiler has to “vectorize” the code in order to target these architec-
tures efficiently. This vectorization is difficult for high level languages
like C and C++ without explicit support of vector and matrix opera-
tions. This is one reason, why VLIW architectures, which avoid this
issue, have become popular both for general purpose (e.g. for Intel’s
EPIC architecture [157]) and digital signal processing applications. A
good overview of this topic is given in [122].

On the other hand, superscalar processors tend to have significantly
more complex hardware, which is needed to exploit instruction level
parallelism during program runtime. This extra hardware also needs

4.3. ASIP Design Space 51

significantly more silicon area and energy consumption, which is pro-
hibitive for energy critical, embedded digital signal processing applica-
tions.

Multi-threaded processors are used in particular in the area of network
processors. Multi-threading can be generally applied to utilize the func-
tional units of a processor more efficiently. This concept typically is
beneficial to hide memory latencies in order to increase the proces-
sor’s throughput without affecting the computational latency for a single
thread. For tasks with regular data access patterns in time critical tasks,
however, conventional DSPs with optimized memory organization are
often more suitable.

Process-level parallel architectures and systems are common for em-
bedded systems in order to balance the workload of one processor.
Typically, a combination of distributed memory with shared memory
or dedicated inter-processor communication resources is used to avoid
communication bottlenecks for number crunching algorithms [213].

The taxonomy in Figure 4.2 still lacks many important architectural de-
tails, which are of practical relevance for ASIPs. The following sub-
sections classify the ASIP design space with respect to important archi-
tectural features. Each subsection describes one group of related, but
orthogonal design parameters.

4.3.1 Functional Units

The functional units represent the data paths’s elements of a processor.
The following characteristics and parameters can be identified for the
functional units:

• granularity: bit serial, word serial or word parallel operation

• word width, number of parallel words etc.

• arithmetic: fixed point, block floating point or floating point

• operation(s): e.g. integer arithmetic, complex arithmetic, boolean
operations, Galois field operations, etc.

52 Chapter 4. Application-Specific Processor Architectures

• configurability: fixed operation (e.g. signed multiplier) or config-
urable operation (signed and unsigned multiplier)

• single vs. multi-cycle operation

These characteristics are sufficient to span the design space for the be-
havior of the functional units. Further aspects like control and pipelin-
ing of these units are covered later on.

4.3.2 Storage elements

Storage elements in a processor system (including data and instruction
memories) are used to temporarily store data and control information.
The following list of characteristics determines the organization of stor-
age elements for an ASIP:

• word width and number of addressable words in the storage ele-
ment

• register organization: orthogonal register file, split register files or
distributed registers

• location of memory: on-chip memory or external memory

• access time of memory: number of processor cycles to read/write
data

• memory organization: one memory for instructions and data (von
Neumann architecture [192]) or different memories for instruc-
tions and data (Harvard architecture) [55]

• memory hierarchy: flat instruction memory or hierarchical organi-
zation (using caches)

• data memory organization:

– single or dual ported memories

– single memory bank or several data memory banks for simul-
taneous access

• instruction memory parallelism: sequential read of instruction or
parallel fetch of several instructions

4.3. ASIP Design Space 53

• instruction memory type: synthesized or hard-macro ROM, boot-
loadable RAM or a combination of ROM and RAM

This classification includes the well-known register-register architec-
tures (which use a data register file) as well as the register-memory and
the memory-memory architectures (typically with distributed internal
data registers).

An orthogonal aspect of storage elements is how the processor accesses
them. For register, which are connected to just one functional unit,
this access is straightforward, because it is determined by the dedicated
connection of this register. General purpose register files offer a limited
number of read and write ports and are often connected to data/address
buses or multiplexer structures. Data memory accesses are typically
controlled by special load/store units. Depending on the data memory
organization, one or several simultaneous read/write operations can be
performed. Accesses to the same memory bank have to be restricted by
the load/store unit to just one access (two accesses) per cycle for single
(dual) port memories.

4.3.3 Pipelining

The concept of pipelining in a processor can be applied to single combi-
national functional units or to subdivide groups of functional units into
different stages for instruction execution. The concept of pipelining
is not orthogonal to the organization of storage elements in the previ-
ous subsection, because it introduces additional storage elements to the
architecture. The purpose of additional pipeline register is not primar-
ily to store data rather than to increase the computational performance
(sometimes also to increase the energy-efficiency like in Section 7.1).

Pipelining of single combinational functional units increases the maxi-
mum clock frequency of this unit and, thus, increases the possible com-
putational throughput. This is especially useful, if the same computa-
tion has to be performed for a series of input data. Pipelining is also a
technique to utilize functional units more efficiently, because a compu-
tation is partitioned into subcomputations that are executed in parallel
for a series of input data in analogy to the concept of an industrial as-
sembly line.

54 Chapter 4. Application-Specific Processor Architectures

Pipelining can also be used on a coarser grain of abstraction to sep-
arate different groups of functional or control units from each other.
A typical pipeline organization of a RISC processor uses the pipeline
stages instruction fetch, instruction decode, read operand, execute and
write-back operand (cf. Figure 4.3). Pipelining enables higher oper-
ating frequencies. On the other hand, data and resource dependencies
of different stages lead to pipeline hazards, which effectively reduce
the utilization of the pipeline stages. For a more detailed discussion of
pipeline hazards refer to Section 4.1 and [107].

1 2 3 4 5 6 7 8

Cycle Number

In
st

ru
ct

io
n

N
um

be
r

8

7

6

5

4

3

2

1 IF ID

IF ID RD

IF EX WB

WB

RD EX

ID

IF

WB

EX

RD

WB

ID RD EX

IF ID RD EX

RDIDIF

IF ID

IF

Figure 4.3: Example RISC Processor Pipeline

The total processing time Tpipe to process n instructions with a linear
pipeline of s stages is

Tpipe = (n + s − 1)Tclk (4.1)

for a clock period of Tclk. In the following ideal consideration, pipelin-
ing overhead due to setup times of real flip-flops is neglected. In the
limiting case of identical critical timing paths Tclk of each pipeline stage
the equivalent unpipelined architecture needs

4.3. ASIP Design Space 55

Tunpipe = nsTclk (4.2)

for the same computation.

As a result the speedup factor of pipelining is

Sp =
Tunpipe

Tpipe

=
ns

(n + s − 1)
(4.3)

If the additional area for the pipeline registers is neglected, pipelining
leads to an increased architectural efficiency (cf. Section 3.1.1):

ηarch,pipe = s ηarch,no pipe (4.4)

4.3.4 Interconnection Structure

The interconnection between functional units and storage elements de-
termines the flexibility of a data path, which is the most important dis-
tinguishing feature between more dedicated and general purpose data
paths.

Basically, there are two options for the interconnection between two
nodes: unidirectional or bidirectional interconnection. Unidirectional
interconnection is implemented using a simple wire between the output
of the consuming and the input of producing node. Bidirectional in-
terconnection are more complicated, because the designer has to make
sure that the required bidirectional drivers are not simultaneously driv-
ing the bus with different logic values, which would result in short cir-
cuits. This problem can be avoided by using separate input and output
ports for each node together with separate unidirectional interconnec-
tions between these ports. However, this approach needs more silicon
area, which would be a significant drawback for system buses.

There is a large variety of possible different interconnection networks
e.g. using binary trees, stars, meshes or systolic arrays [120]. How-
ever, all these interconnection networks can be constructed using two
fundamental topologies:

56 Chapter 4. Application-Specific Processor Architectures

• one output producing information for one or several inputs

• one or several outputs producing information for one input

In Figure 4.4 the hardware implementation for these two options is de-
picted. It is obvious that the left implementation does not require any
additional combinational hardware, whereas the right implementation
needs a multiplexer or tristate output drivers (with additional control
units). The overhead due to interconnections (especially in the case of
non-tristate buses) can be significant for a highly configurable target
architecture due to excessive relative interconnection silicon area and
delays of deep sub micron technologies with respect to combinational
logic [19]. For that reason, the interconnection network should be care-
fully dimensioned preferring local over costly global communication
and minimizing the interconnection flexibility as far as possible for the
target application.

. .
 . . .
 .

. .
 . M

U
X

Dataflow

Graph

. .
 .

Hardware
Implementation

. .
 .

unidirectional bus
tri−state bus

. .
 .

A
rb

ite
r

Figure 4.4: Basic Network Topologies

4.3.5 Control Mechanisms

There are two different mechanisms to control the data path of an in-
struction set oriented processor

4.3. ASIP Design Space 57

• time-stationary coding: the instruction controls exactly one state
transition of the complete data path

• data-stationary coding: the instruction travels together with the as-
sociated data in the pipeline and controls the sequence of opera-
tion(s) performed on these data in each pipeline stage

As reported in [98], many ASIPs use time-stationary coding, because
the programming and verification of these architectures is facilitated.
However, for more deeply pipelined architectures pure time-stationary
coding is inefficient due to a large number of redundant configuration
bits needed for the instruction. For these architectures data-stationary
coding is obviously more suitable (cf. [91] for an example).

The design of pipelined data paths using data-stationary coding requires
the following design decisions:

• open pipeline: The pipeline is fully visible to the programmer and
the programmer has to take care in order to avoid structural and
data hazards (which both would lead to incorrect program behav-
ior). The same is valid for control hazards: the programmer has
to fill the delay slot(s) with valid instructions after each control
instruction.

• interlocked pipeline: The pipeline is not visible to the programmer,
because the hardware takes care of structural, data and control haz-
ards by using

– pipeline interlocking (stalling of previous pipeline stages) in
order to resolve these dependencies

– forwarding and register/memory bypassing to avoid stall cy-
cles by smarter data routing

For the processing of program loops, special hardware support for zero-
overhead loop processing can be implemented. This hardware replaces
the instructions at the end of the loop (increment/decrement of loop
counter, compare with end value, branch on this condition) and avoids
the associated branch penalty. This kind of hardware loop support has
been implemented in many DSPs and ASIPs e.g. [186] [97] and [89].

58 Chapter 4. Application-Specific Processor Architectures

In the last few years, conditional instruction execution has become pop-
ular for deeply pipelined processor architectures. Conditional or predi-
cated execution means that the execution depends on a special condition
or predicate register. This condition/predicate bit can be set by e.g. a
comparison instruction to implement a HLL statement like “if (...) then
... else ...” without using conditional branches. Consequently, control
hazards have been avoided using this approach.

Residual control of functional units is sometimes applied to configure
e.g. the saturation/overflow mode of an ALU. This mechanism uses a
dedicated control register and is especially beneficial, if changes of this
residual configuration (which can be modified by a processor instruc-
tion) are rare.

Distributed or centralized control can be used for processors with dis-
tributed functional units and split registers or for multi-processor sys-
tems. As typical ASIPs mostly use simple structures with local func-
tional units, a more thorough investigation of distributed architectures
clearly is beyond the scope of this thesis.

4.3.6 Storage Access

The access methods for the storage elements of a processor can be sub-
divided into register access and memory access .

Register access for dedicated registers that are connected to just one
functional unit are simply controlled by the instruction type (e.g. ALU-
or multiply-instruction). Access to a data register file with multiple
internal registers and with multiple read/write ports typically has to be
controlled by special operand fields (“register” fields) of a processor
instruction. The input data for a register write operation typically are
produced by either a functional unit, by the memory or are extracted
from an immediate field of the instruction.

Memory accesses often use more elaborate addressing schemes:

• direct or absolute addressing: the address is directly extracted from
the instruction “direct address” field

4.3. ASIP Design Space 59

• indirect or register deferred addressing: the address is taken from
a (data or address) register

• indirect with displacement: same as indirect but with an additional
displacement extracted from the instruction

• indexed addressing: the address is calculated using two (data or
address) registers (often the effective address is just the sum of the
two registers values)

Furthermore additional so called “post-”operations are often associ-
ated with the above-mentioned addressing modes. The most simple
post-operation is post-increment/decrement, which is used to incre-
ment/decrement the associated address register by a constant in order
to make it point to the next data address in memory. More sophisticated
post-operations include the popular addition with reversed-carry chain
propagation, which is used for FFTs.

4.3.7 Instruction Coding and Instruction Fetch Mechanisms

Instruction coding determines two important aspects of an ASIP im-
plementation: the program memory size1 and the implementation flex-
ibility. A decrease of the instruction width obviously reduces the in-
struction memory width, but it also reduces the flexibility of the en-
coded instructions. For instance, a RISC instruction format with three
register operand fields enables operations like (R3 = R1 + R2)instr1

using just one instruction. A two operand instruction format has to
use two instructions for the same operation (R3 = R2)instr1; (R3 =
R3 + R1)instr2. Even for this simple example, the effect on overall in-
struction memory size depends on the application program. This fact
is exploited by application-specific processors, where the processor de-
signer can optimize the instruction encoding within the following two
bounds (which represent extremes w.r.t. instruction width and flexibil-
ity):

• micro-coded instructions, which offer the highest possible flexibil-
ity and need the widest instruction memory (an elaborate instruc-
tion decoder is unnecessary in this case)

1The size of the program memory also has a considerable impact on energy consumption

60 Chapter 4. Application-Specific Processor Architectures

• application-specific compressed instruction encoding obtained by
enumeration and binary coding of all different instructions in a
given program (this heavily restricts the flexibility of the sup-
ported instruction to the set of instructions, for which the encoding
has been performed but yields the minimum possible instruction
width)

For many practically relevant cases, an instruction coding that encodes
the available operations using a fixed length instruction field is used.
Furthermore, the operation’s operands like register or memory operands
typically have to be programmable, thus, requiring associated operand
fields in the instruction. For less orthogonal instruction set architectures
these operand fields can be partially omitted using partially hard coded
operands for one or more instructions. This reduces the memory foot-
print, which can be exploited by ASIPs [91], provided that the decrease
in flexibility of the ISA is acceptable.

Typically, it is a challenging task for a given application to find the
optimum instruction coding that represents a feasible tradeoff between
flexibility and code size.

The instruction coding also has an impact on the memory organization
and on the instruction fetch stage. Instruction fetch mechanisms de-
scribe the way instructions are routed from the instruction memory to
the instruction decoder. For scalar architectures with a single instruc-
tion fetch per cycle this mechanism is trivial. However, for VLIW or
superscalar architectures with parallel instruction fetch, an efficient and
more complex fetch mechanism is essential to keep the parallel data
path busy.

Basically, there are two popular, commercially used coding schemes for
VLIW processors, which impact the instruction fetch stage:

• uncompressed VLIW encoding

• various compressed encoding schemes

Figure 4.5 depicts the principle of these two different schemes. The un-
compressed VLIW encoding typically uses one bit field that controls the
operation of each functional unit of the data path. This results in a sig-

4.3. ASIP Design Space 61

nificant waste of instructions bits for the case of non-parallelizable in-
struction execution, where unused bit fields have to be explicitely filled
with horizontal “no operation” patterns [76]. The example for a com-
pressed VLIW encoding in Figure 4.5 is similar to the scheme in [153]
or [246] where the “P”-bit in each instruction is used to indicate that
the following instruction can be issued in parallel. The disadvantage of
compressed VLIW schemes is the additional hardware effort to decom-
press the instructions, to allocate the associated processor resources (if
a specific resource is not defined by the instruction e.g. in the case of
identical, replicated functional units) and to dispatch the instructions to
the desired location. This decompression step can conceptually be seen
as a mapping of the compressed instruction stream to a normal uncom-
pressed VLIW representation as depicted in Figure 4.5.

More elaborate compression schemes use compile time compression,
which reduce the code redundancy by using statistical methods [164]
[278] [139]. These schemes require runtime decompression by hard- or
software resulting in a potential performance degradation. Furthermore,
the effort for architecture design and verification might increase signif-
icantly, because runtime decompression introduces several issues e.g.
more complicated branch processing, which results in an unorthogonal
architecture.

For embedded applications like the DVB-T receiver of [88] the instruc-
tion memory resides on-chip as a ROM. For field reprogrammable ap-
plications, however, the instruction memory is either implemented as an
on-chip RAM or external memory is used. One constraint of the cod-
ing width in case of external memories is the bit width, which is often
restricted to a multiple of 8 or 16 bits for off-the-shelf external memory
elements.

4.3.8 Interface Mechanisms

Input and output (I/O) mechanisms for data and control information
both affect the ASIP hardware as well as the ASIP software. Commu-
nication can be performed between the ASIP and other on- or off-chip
devices like processors, dedicated hardware or analog components (like
e.g. AD/DA converters). The following taxonomy describes the inter-

62 Chapter 4. Application-Specific Processor Architectures

Uncompressed VLIW Format

Memory Unit ALU2ALU1

Load/Store Field ALU1 Field ALU2 Field Multiplier Field

...Instruction 1 Instruction 2 Instruction 3 Instruction NPPP

Memory Unit ALU2ALU1

ALU1 Field ALU2 Field Multiplier FieldLoad/Store Field

Example for Compressed VLIW Format

internal VLIW format

Resource Allocator

and X−Bar Switch

Instruction Decompressor,

P

Figure 4.5: VLIW instruction formats

face mechanisms from the ASIP perspective: ASIP-external implemen-
tation characteristics of interfaces which use e.g. dedicated connections
or shared system buses are not covered.

Depending on characteristics like the data rate and the number of trans-
ferred data or control samples per iteration of an algorithm (in the case

4.3. ASIP Design Space 63

of cyclostationary data processing) different I/O mechanisms can be
used:

• Memory-based I/O: Data is exchanged with a shared memory.
This concept is typically suitable for a larger amount of data words
per iteration, which enables high data rates due to a low overhead
per sample.

• Register-based I/O: either dedicated (ASIP internally read-
/writeable) registers or memory-mapped registers that can be ac-
cessed similar to ordinary memory storage locations are used for
data transfers. This concept is typically suitable for a smaller
amount of data words per iteration, because of the large silicon
area consumption of semi-custom registers. The data rate in this
case is typically smaller than for the shared memory approach due
to a considerable overhead per sample, which is needed to syn-
chronize the data.

• Dedicated control channels, which typically affect the program
flow for synchronization purposes (using e.g. synchronous reset
signals, interrupt vectors, start-stop and/or resume-suspend signals
for certain tasks including above-mentioned data transfers).

These I/O mechanisms have to be supported by appropriate hardware:
e.g. in the case of shared memory, a memory arbiter has to be imple-
mented, whereas in the case of dedicated control channels, some sort of
direct memory access (DMA) controller functionality is needed like in
[30]. In the case of communication based on dedicated registers, spe-
cial instructions have to be implemented to access them. For memory
mapped registers either a reserved I/O address space has to be used in
combination with conventional load/store instructions or, alternatively,
an orthogonal I/O address space together with additional I/O instruc-
tions is needed. Finally, dedicated I/O ports like in conventional ASIC
hardware blocks have to be used e.g. for handshake, start and stop sig-
nals. This interface mechanism can be supported by special instructions
and/or by some kind of program flow or program interrupt controller.

64 Chapter 4. Application-Specific Processor Architectures

4.3.9 Tightly-Coupled ASIP Accelerators

Accelerators are optimized dedicated hardware structures, which are
typically able to perform a very limited set of computational tasks.
Tightly-coupled ASIP accelerators can be viewed as elaborate func-
tional units in the ASIP, which are integrated in the instruction set archi-
tecture. This integration is reflected by the interface and control mech-
anisms that are typically used. The interface between the ASIP core
and the accelerator are either realized using specialized internal reg-
isters or simply the general purpose register file. On the other hand,
the control of accelerators can be performed by using specialized ASIP
instructions like in [15] and/or specialized registers similar to residual
functional control like in [180]. The difference between a tightly cou-
pled ASIP accelerator and an ordinary functional unit in the ASIP is the
fact, that accelerators typically implement more complex sequences of
operations. This requires a more complex internal structure often with
an ASIP-independent controller.

Accelerators are typically used, if at least one of the following condi-
tions is fulfilled:

• extremely high computational performance is required, which can
not be satisfied by modification of ordinary functional units

• extremely high energy-efficiency is needed

In addition to the implementation of the already mentioned interface
and control mechanisms of ASIP accelerators, the designer has the same
degrees of freedom for their internal implementation than for dedicated
hardware blocks: The most important decision is based on the trade-
off between additional area consumption (which corresponds to the de-
gree of parallelism in the accelerator implementation) and the additional
computational performance. However, there are further important deci-
sions that affect the overall implementation flexibility: Ideally, ASIP
accelerators should only be used for tasks with a very low probability
of late design changes. This strategy minimizes the risk of a chip re-
design due to late design changes.

4.4. Critical Factors for Energy-Efficient ASIPs 65

4.4 Critical Factors for Energy-Efficient ASIPs

The question arises, which of the design axes of Section 4.3 are most
important in order to implement computationally optimized, energy-
efficient ASIPs. The issue behind that question is, that there is no single
ASIP application that represents all possible applications in the world2.
This in turn makes it hard to deduce common properties and propose
common guidelines. Each ASIP application has its own characteristics
concerning typical operations, typical data transfer schemes, data rates
and additional constraints. Obviously, the right question to ask is, how
the designer can find the critical parameters and how to tune them in
order to achieve a certain application-specific design goal. These ques-
tions related to the design flow will be answered in Chapter 5. Prior to
tuning parameters it is important to understand the principal effects of
important design decisions. This is the focus of the following subsec-
tions starting with the typically most important timing and performance
constraints. Afterwards, the impact of ASIP modifications on energy
and area consumption is discussed.

4.4.1 Timing and Computational Performance

Many high level ASIP design approaches like [17] or [70] use the ab-
straction of machine cycles as a metric to evaluate the result of a design
modification. This approach does not consider the impact on low level
timing (critical path Tcrit) of synchronous logic using edge-triggered
flip-flops [67]. The critical path Tcrit of such a circuit determines the
maximum operating clock frequency fmax = 1/Tcrit.

The change of Tcrit can be significant in some cases e.g. in [101], where
the dramatic effect of small, incremental modifications of functional
units, the control logic and the memory units on the maximum clock
frequency is evaluated. An increase of up to 30% in the case of small
changes in the ALU and an increase of up to 60% in the case of a modi-
fication in the branch unit emphasize the importance for early low level
hardware estimations.

2This issue is in analogy to “the Ultimate Question of Life, the Universe and Everything. All we know
about it is that the answer is 0b101010” [4].

66 Chapter 4. Application-Specific Processor Architectures

Two design approaches are possible:

• the critical path Tcrit is constrained by the ASIP system environ-
ment (typical low-end embedded application scenario)

• the ASIP is running (nearly) at the maximum speed fmax and the
minimization of the total runtime Trun,min = TcritNcyc of a task
(which requires Ncyc processor cycles) is the optimization goal
(high end application scenario)

In the first case, the critical path of the ASIP optimization is upper-
bounded by the system clock frequency. During ASIP design, it has to
be guaranteed that this constraint is not violated by any ASIP modifica-
tion. This means that after each major or minor hardware modification,
the hardware estimation design flow (refer to Section 5.3) has to be re-
peated in order to check this constraint. This methodology is in analogy
to conventional HDL-based hardware design, where automatic synthe-
sis has to be regularly performed after design modification to check low
level constraints. In order to obtain a moderate design time, while ex-
ploring a sufficiently high number of different ASIP implementations,
it is mandatory that this hardware design flow should be automated to a
large extent.

In the second case, incremental ASIP changes are performed with the
goal to minimize the total runtime Trun,min of a task. This might be
useful in the case of programmable accelerator chips (e. g. for high-end
graphics applications like [58] or [106]), where high data throughput
is a competitive advantage. In order to achieve this goal, the prod-
uct TcritNcyc has to be reduced. As previously mentioned, even small
changes to the ASIP architecture that reduce Ncyc can lead to a signif-
icant increase in Tcrit. To make matters worse, the reduction in Ncyc

is typically strongly application-specific, thus, late design changes of
the application might lead to suboptimal performance. An example for
such a worst case is the scenario shown in [77], where the instruction set
has been (over-) optimized for MD5 (message digest) encryption, which
was actually harmful for a different algorithm (SHA - Secure Hash Al-
gorithm [220]). Such a worst case represents the bound of flexibility
and the risk of over-specialization of an ASIP implementation.

4.4. Critical Factors for Energy-Efficient ASIPs 67

However, properly designed ASIPs typically take advantage of changes
in the data path, without significantly affecting the critical path. This
can be achieved by parallelization of computations using parallel func-
tional units supported either by replicated decoders with an additional
dispatcher like in Chapter 7.2 or by specialized instructions. The in-
terconnection structure of a parallelized data path has to be designed
carefully to avoid communication bottlenecks in large general purpose
registers or large power and area consuming switch matrices like in [81].
On the other hand, approaches that emphasize the chaining of opera-
tions [262] risk to increase the critical path. If the increase of Tcrit can
be tolerated (e.g. because it does not violate the clock constraint of the
system environment), it has to be (over-) compensated by a correspond-
ing decrease of Ncyc in order to achieve a benefit for the total execution
time. However, if the increase of Tcrit can not be tolerated, retiming
of logic can be performed and/or additional pipeline registers/multi-
cycle operations can be introduced. Retiming (cf. Subsection 3.3.2),
which can be manually or automatically performed, has the goal to bal-
ance the delays of combinational logic in different stages. Retiming is
only possible, if the critical cyclic graph of logic contains at least two
registers. Multi-cycle operations mixed with single cycle operations are
obviously feasible, but they make the implementation less orthogonal
and increase the verification effort. Introduction of additional pipeline
stages also tends to increase the penalty for taken branch instructions
and increases in turn Ncyc (refer to Section 7.1 for an example, where
this has happened).

If the above-mentioned approaches to ASIP performance optimization
fail to meet the constraints of an application, the implementation of a
tightly-coupled ASIP accelerator is an option. This implementation,
however, corresponds to a shift of the ASIP implementation towards
more dedicated hardware, which has to be carefully considered in order
to avoid an unnecessary decrease in the overall implementation flexi-
bility. In many cases it is possible to use the accelerator for a limited
subset of a runtime-critical task (e.g. a loop body like in [222]) which
actually does not require a significant amount of flexibility.

If the application exposes a significant amount of data parallelism, it
might be advantageous to implement parts of the ASIP as data parallel
architecture. In this case, appropriately high memory bandwidth has to

68 Chapter 4. Application-Specific Processor Architectures

be provided in order to keep the functional units busy. One of the most
important advantages of processing elements and memories on a single
chip is the fact, that memory bandwidth is (theoretically) only bounded
by the exploitable data parallelism of the application and the available
silicon area (both for memories and functional units). For off-chip com-
munication the chip pad limits are a major cost factor and obstacle to
implement a high bandwidth interface. This fact naturally leads to a het-
erogeneous, non-hierarchical, but partially parallel memory architecture
with small, fast scratch pad memories for intermediate values and larger
(and possibly slower) main memories. The use of a memory hierarchy
with level one, level two and main memory would also be an option
to increase the bandwidth to main memory. In the case of large off-
chip external main memory, this concept is needed in order to decrease
the memory latency of each access. For typical cyclostationary DSP
kernels with a limited amount of required data storage, however, the
memory access schemes are regular and easily predictable, thus, the in-
troduction of cache memories optimized for irregular (general purpose)
access patterns is typically overhead. This is one of the main differences
between ASIPs and general purpose digital signal processors like TI’s
TMS320C6x [246], which extensively uses such a cache hierarchy at
the expense of a decreased energy-efficiency.

Finally, the data I/O for high performance ASIPs is a critical factor, be-
cause it can decrease the utilization of functional units, if the processor
itself has to take care for it. One solution to this is a high speed DMA
controller with exclusive access to parts of the ASIP memory. An even
more elaborate scheme is the combination of conventional direct mem-
ory access controllers with a suitable double buffering scheme. Double
buffering reserves two parts of the (shared) memory: one part is used
by the DMA controller and the other part by the ASIP. After DMA and
ASIP data processing has finished, a simple control logic exchanges the
two parts of the memory in order to enable DMA access to the second
part and ASIP access to the first part.

4.4.2 Energy Consumption

The effects of architectural changes on the energy consumption for
a given computational task are more complicated than the above-

4.4. Critical Factors for Energy-Efficient ASIPs 69

mentioned effects on computational performance. This is mostly due
to the statistical nature of power consumption, which is affected by data
correlation of subsequent binary values on the nodes. This fact requires
detailed tool-supported power analysis for the relevant operation sce-
narios.

The following discussion uses the abstraction of word-level hardware
operators, which is the natural level of abstraction for HDL-based hard-
ware design. In analogy to [54] where the term intrinsic computational
efficiency of silicon has been introduced the following terms are defined
for simplification purposes:

• In case of a full match between application and architecture, each
hardware operator (like e.g. an adder or multiplier) is contributing
a useful calculation to the overall computational task. For a large
set of stimuli, the average energy consumption of this ideal archi-
tecture can be calculated, which shall be called Intrinsic Com-
putational Energy Ei. In the case of an adder this energy is a
function of the technology, the operating conditions (like supply
voltage and temperature) and of the adder implementation (energy
evaluations of different adder implementations can be found in e.g.
[190] or [196]).

• The difference between the overall energy Etot of a synchronous,
instruction set oriented processor (including all the memories that
are needed to process the task under consideration) and the in-
trinsic computational energy Ei is called Overhead Energy Eovhd

is needed for control logic (including the program memory), data
memories, data transfers between processor units (routing energy),
additional spurious transitions (other than those that are already
included in the intrinsic energy of the operators), and the energy
consumed in the clock tree and in the registers.

The intrinsic energy Ei is the lower bound in energy consumption that
is needed by an ideal (dedicated) hardware data path without any ad-
ditional overhead energy due to glitches or clock networks. Even opti-
mized real hardware needs either energy for a clock network and regis-
ters or - in the case of a pure combinational network - it needs additional
energy for unavoidable spurious transitions (glitches) due to the signal
timing slack of intermediate results.

70 Chapter 4. Application-Specific Processor Architectures

The percentage of overhead energy to overall energy can be significant:
[223] reports an overhead energy of at least 64% and [231] and [249]
estimate overhead energies of at least 79% and 70% respectively. In
[124] a range between at least 61% for embedded processors and at
least 72% for high end processors is reported. The fact that the overhead
energy for a processor is of this order, agrees with the results of the case
study in Section 7.1 of this thesis.

ASIP optimization in order to lower the energy consumption has to de-
crease the overhead energy. One solution to achieve this, is to decrease
the runtime of the given task by application-specific data path optimiza-
tions and/or by an optimized software implementation. Figure 4.6 il-
lustrates this effect, which relies on the assumption that the overhead
power is (nearly) unaffected by the optimization. Obviously, not all of
the architectural changes that have been described in the previous sub-
section are able to meet this assumption:

• Parallel functional units or ASIP accelerators that represent a
close match to the application’s control data flow graph are a typi-
cal example for efficient low-power data path optimization. The
principle of this technique is to increase the rate of operations
without increasing the rate of instructions. This implicitly requires
dedicated application-specific instructions to support the increased
parallelism in the data path. This optimization leads to architec-
tures that are beyond the typical SIMD class of processors, because
the data path is not restricted to perform the same computations on
a set of data. A single highly optimized ASIP instruction can rather
trigger a number of arbitrary data processing operations.

• If chaining of operations is possible without violating the time
constraints and without introducing additional registers, this mod-
ification also tends to increase the energy-efficiency. It also typi-
cally requires adding one or more instruction to the ASIP instruc-
tion set, which leaves the overhead energy nearly unchanged (at
least in a simple single issue processor). Unfortunately, if new
interconnections between e.g. the general purpose register and
the chained operators have to be introduced, the size of the inter-
connection networks increases, which in turn increases the overall
data routing energy for any data transfer on the modified intercon-

4.4. Critical Factors for Energy-Efficient ASIPs 71

t

P(t)

Tunopt.

Overhead Energy Eovhd., unopt.

Intrinsic Energy EI

Povhd.

Ptotal,unopt.

t

P(t)

Topt.

Overhead Energy Eovhd., opt.

Intrinsic Energy EI

Povhd.

Ptotal, opt.

reduced overhead
energy

ASIP Optimization

Figure 4.6: Principle of Energy Reduction with Optimized ASIP Architecture

nections. The overall effect of this modification has to be thor-
oughly evaluated in each case in order to find out, if the modifica-
tion was successful.

• Additional pipeline registers to increase the pipeline depth have
several effects: Firstly, pipeline register reduce the spurious activ-
ity by resetting the signal slack (the difference between the earliest
and the latest signal arrival event) to nearly zero. Secondly, addi-
tional pipeline registers need a larger clock tree and the registers
themselves require additional energy due to clock activity. Finally,
additional pipelines possibly result in larger branch penalties and
more complicated logic to detect and resolve hazards. The case

72 Chapter 4. Application-Specific Processor Architectures

study in Section 7.1 evaluates several pipeline depths in order to
find out, which effect dominates.

• Similar effects occur in the case of multi-cycle operations de-
pending on the fact, whether additional pipeline registers or ad-
ditional control logic has been used. If the multi-cycle operation
is associated to one processor instruction that replaces a sufficient
number of simple instructions, this optimization also reduces the
energy of the instruction memory and of the decoder.

• If retiming is used to decrease the critical path of an implementa-
tion and enables the synthesis tool to take advantage of the in-
creased degrees of freedom for low-power logic reorganization
[45]. It also enables the use of slower, more power efficient op-
erator implementations if available. According to [161] and [183]
retiming can also be used to decrease the switching power of se-
quential circuits. Precise knowledge of the switching activities and
the capacitances of the circuit is needed for this optimization.

• Sufficiently high data and instruction memory bandwidth as well
as sufficiently high I/O rates have to ensure an optimum proces-
sor resource utilization, which is also a means of decreasing the
overhead energy. In case of unavoidable no-operation cycles of
functional units due to memory wait states, the processor’s over-
head energy should be reduced as far as possible (e.g. by clock
gating and sleep modes).

Apart from reducing the overhead energy by reducing the runtime of a
task, the overhead power Povhd can be reduced directly e.g. by optimiz-
ing one of the following:

• high coding density reducing the size and the energy consumption
of the instruction memory (this corresponds to a high average ra-
tio of executed operations per instruction bit – this metric is also
implicitly optimized by SIMD extensions, operator chaining and
ASIP accelerators)

• optimized instruction encoding (refer to Subsection 7.1.3) reduc-
ing the energy consumption within the instruction memory or al-
ternatively, the switching energy of an external instruction bus

4.4. Critical Factors for Energy-Efficient ASIPs 73

• reduced data memory accesses by software optimization together
with a sufficiently high number of local registers

• optimized data encoding for high capacitive nodes

• application-specific (limited) interconnections between functional
units or within an ASIP accelerator to decrease the data routing
energy by decreasing the effective switched capacitances

• guard logic to reduce/avoid spurious transitions in combinational
logic (refer to Subsection 3.3.2 for further explanations)

• clock gating in order to shut down idle parts of the clock tree and
to reduce the energy needed in the connected flip-flops

All of these direct optimizations lead to a more energy-efficient imple-
mentation typically without a negative impact on computational perfor-
mance or silicon area.

If the ASIC technology vendors were going to support characterized
cell libraries for a larger voltage range than today, this would also en-
able the designer to reduce power by taking advantage of a reduction
in clock frequency for less computationally demanding tasks together
with aggressive voltage scaling.

4.4.3 Implementation Area

Due to the fact that technology scaling continues to follow Moore’s
law [184] so far without a perceptible deceleration, area consumption is
gradually getting less important. Nevertheless, area is currently still a
costly resource, which affects the unit price of an ASIC and has to be
minimized in order to increase the profit margin for high volumes.

Area consumption can also be an issue due to the following reason-
ing: an increase in area increases the average length of interconnections
(which can be estimated from wire load models [93] [256] used for syn-
thesis), which in turn decreases the maximum clock frequency. Thus,
excessive area increase has to be avoided in order to avoid performance
degradation. To make matters worse, an increase of the average inter-
connection length also increases the interconnection capacitance result-
ing in a higher switching power. Long interconnection delays can be

74 Chapter 4. Application-Specific Processor Architectures

avoided by using local communication rather than global communica-
tion. This means, that the interconnections between hardware blocks
should be reduced to a minimum in order to save area and energy and
to enable high computational performance. Properly designed ASIPs
follow that guideline and use local communication between adjacent
functional units.

It should be emphasized that ASIPs are inherently saving area, because
they represent resource shared architectures3 compared to typical ded-
icated hardware, which often exposes more parallel processing struc-
tures. From a hardware perspective, ASIP design can be viewed as a
design methodology in order to implement resource sharing by extract-
ing and implementing common operation patterns from a given control
data flow graph representation of an application.

4.5 Concluding Remarks

This chapter has defined important terms for ASIP design as well as
typical ASIP applications. Furthermore, the design space for ASIPs
has been characterized with the goal to provide well-defined degrees of
freedom for the ASIP designer. This characterization enables both the
ASIP designers together with the compiler designers to decide, whether
specific architectural features of an ASIP are needed and if compiler
support for these features is possible. This design process is an impor-
tant aspect for the design efficiency of ASIPs and is commonly referred
to as compiler/processor co-design [284]. Finally, this chapter has qual-
itatively discussed the effects of high level ASIP design decisions on
the computational performance, the energy consumption and the imple-
mentation area. This knowledge is needed in order to successfully apply
the design methodology described in the following chapter to real world
applications.

3Area can however be an issue for massively data or instruction parallel architectures or for ASIPs with
parallelized accelerator extensions.

Chapter 5

The ASIP Design Flow

The design of ASIPs represents a hardware/software codesign task, be-
cause hardware and software related expertise is needed in order to get
optimum results. This codesign problem can be considered as a com-
plex optimization problem in the multi-dimensional ASIP design space,
which has been defined in Chapter 4 and, additionally, also as a soft-
ware optimization problem. It is the primary goal of most ASIPs design
to find a programmable architecture that meets the performance con-
straints of an application and that consumes a minimum in area and
energy consumption. Moreover, this architecture should be sufficiently
flexible to cope with late design changes due to evolving standards or
incorrect specifications.

This chapter provides a complete description of the proposed ASIP de-
sign flow1, which starts with a behavioral description of the algorithm
and ends with the optimized ASIP hard- and software implementation
including design tools and documentation. One important feature of the
proposed ASIP design flow is the fact, that the ASIP hard- and software
is in the iteration loop. This enables the designer to jointly optimize
performance, silicon area and energy in order to get a feasible imple-
mentation in a short amount of design time.

An overview of the entire ASIP design flow is depicted in Figure 5.1
starting with the behavioral high level language (HLL) specification of
the application. The ASIP design tasks in Figure 5.1 represent a top-
down design approach, which enables the designer to cope with com-
plexity by using several abstractions. During the initial application pro-
filing, the abstraction of high level language statements and operators
is used in order to collect execution statistics of the application. For
the initial instruction set architecture definition, the designer can use a
cycle-true description of the instruction behavior, which neglects details

1The examples in this chapter focus on ASIP performance enhancements rather than energy optimiza-
tions, which simplifies the discussion. Chapter 7 extends this focus by covering the energy consumption
and the design time of ASIPs using two real-world examples.

76 Chapter 5. The ASIP Design Flow

of the low-level hardware implementation in the first place. Afterwards,
the implementation of the hardware RTL description uses the same high
level operators, neglecting the specific logic implementation, which is
added later on either by explicit definition or by logic synthesis2. These
abstractions imply, that precise low level estimations can lead to iter-
ations in the design flow resulting in changes of higher level design
decisions.

The design flow in Figure 5.1 starts with an arbitrary application, which
might contain parts suitable for an ASIP software implementation and
other parts suitable for a more dedicated hardware implementation. In
order to identify this partitioning and perform the mapping to hard- and
software, several design tasks are needed that are beyond the definition
of an instruction set architecture. Nevertheless, these design tasks are
important in order to realize an optimum implementation in any case.

The described ASIP design flow is adaptable to the needs of typical
applications, which is demonstrated by examples. The examples in this
chapter should not be regarded as complete case studies, but rather serve
as vehicles in order to illustrate important design decisions. The se-
lected example applications have been chosen as a representative subset
of possible ASIP applications in order to cover relevant DSP applica-
tions.

This chapter is organized as follows: In Section 5.1 the example appli-
cations and example kernels are briefly introduced. Section 5.2 depicts
the application profiling and partitioning tasks, which are needed prior
to the actual ASIP design tasks described in Section 5.3. The examples
in Section 5.2 and Section 5.3 are made standing out using serif font.

5.1 Example Applications

In this section the ASIP applications are presented that will be used as
examples in the next section. These examples have been selected in or-
der to cover a reasonably large part of the ASIP design space concerning

2Alternatively, for high speed arithmetic either custom designs or tools like Synopsys’ Module Compiler
[236] can be used.

5.1. Example Applications 77

Application
(with time

constraints)

Documentation

Documented ASIP
Hard- and Software

no

yes

unsuccessful

successful

ASIPno ASIP

Stimulus-Generation
and Application

Profiling

Instruction Set
Architecture

Definition

Software
Implementation

ASIP
Coprocessor

Dedicated
Hardware

Flow

Partitioning and
Selection of HW

Class

Combined ASIP HW/SW Synthesis and Profiling

ASIP
Coprocessor
Definition and

Implementation

Constraints
met?

no

Verification

Selection of ASIP
Class

Hardware
Generation and
Logic Synthesis

Architecture
Profiling

Application Profiling and Partitioning

Figure 5.1: Overview of ASIP Design Tasks

• complexity of the task (in code lines of a high level language
(HLL) description)

• control flow vs. data flow orientation

• cyclostationary vs. non-cyclostationary data processing

• high vs. low data locality

• high vs. low data rate and computational requirements

• different operator granularity

78 Chapter 5. The ASIP Design Flow

Figure 5.2 classifies the selected applications by complexity using the
domains of system level applications, complex subtasks, and compu-
tational kernels. The focus of this thesis is the implementation and
design methodology for complex subtasks and computational kernels
rather than the design of complete systems.

Eigenvector
Decomposition

System
Level
Applications

Complex
Subtask

Computational
Kernel

 DVB-T

Acquisition
& Tracking

CORDIC

Smart Antenna Systems

FFT FIR

C
om

pl
ex

ity

low

high

Vector/
Matrix
Ops.

Figure 5.2: Example ASIP Applications

The two subtasks which are considered in the following are acquisi-
tion and tracking for a terrestrial digital video broadcasting receiver
(DVB-T A&T application, for details refer to Section 7.1) and eigen-
value decomposition (EVD application3) of a complex hermitian matrix
which is needed e. g. for direction of arrival estimation [203] and for
subspace-based channel estimation [26].

The DVB-T A&T task initially uses several parameter acquisition
phases that expose non-cyclostationary processing and finally enters a
theoretically continuous parameter tracking which is largely cyclosta-
tionary. Due to the huge number of control parameters of the DVB-T
A&T tasks, this application represents a mixed control/data flow ori-
ented application. On the other hand, the EVD uses cyclostationary
processing, because it represents a data flow oriented architecture that is
based on the granularity of matrix block processing. Parts of the DVB-
T A&T task require very high computational performance, which are
directly determined by the DVB-T transmission time frames, whereas
other parts only affect the acquisition time of the system. On the other
hand, the EVD for a direction-of-arrival (DOA) estimation requires high

3The EVD for the example applications use a matrix size of 10x10.

5.1. Example Applications 79

computational performance, because this impacts the number of sup-
ported mobile users for a mobile base station.

The different computational kernels that have been selected for illus-
tration purposes are finite impulse response filters (FIR), fast fourier
transformation (FFT), and coordinate rotation digital computer compu-
tations (CORDIC). Descriptions and listings of the high level language
implementations4 which have been used as behavioral descriptions for
these kernels can be found in Appendix B.

The properties of the selected applications are described in Table 5.1.
Examples for constraints concerning the data rate are given later on in
this chapter. It has to be mentioned that several properties in Table 5.1
depend on the software implementation. For instance, the data locality
of the FIR depends on the implementation of the delay line for the input
samples: If this delay line is realized with explicit memory move oper-
ations, the data locality is medium, whereas if a circular buffer is used,
the data locality is high. Another example is the SW implementation
dependent granularity of operators, which can be refined for any appli-
cation to the granularity of standard word-level or bit-level operators.

Data Granularity Complexity Control/ Cyclo-
Locality of Operators (code lines, Data Flow stationary

states) Domination Processing

FFT low complex medium data yes
scalar

FIR medium real scalar medium data yes
to high

CORDIC high real scalar medium mixed yes
EVD medium complex medium/ mixed largely

scal./vect. high contr./data
DVB- high real scalar high mixed during
A&T contr./data tracking

Table 5.1: Properties of the Different Selected Example Applications

4The key parameters for these kernels are: 64 taps for the FIR, 8192 point for FFT, and 24 iterations for
the CORDIC task.

80 Chapter 5. The ASIP Design Flow

5.2 Application Profiling and Partitioning

The proposed design flow of Figure 5.1 starts with a HLL description
of the algorithm, which has to be profiled in order to identify critical
parts. Criticality on this level of abstraction refers to parts of the algo-
rithm that require high computational performance and/or high memory
bandwidth. With these results, the partitioning into parts of the appli-
cation that will later on be mapped to ASIPs, ASIP coprocessors or
dedicated hardware can be performed.

5.2.1 Stimulus Generation for Application Profiling

This subsection describes the requirements and issues of stimulus gen-
eration for application profiling. Typically, either stimulus generation
from scratch or stimulus reuse and extraction of already available
stimuli by the system simulations is required to expose the performance
critical parts of an application. This profiling stimulus generation design
task does not have to provide full simulation coverage of all arithmetic
and logical functionalities of the reference and of all internal states (like
the stimulus generation for verification); it rather has to produce the
worst case runtime5 of the application to obtain realistic profiling re-
sults for real-time applications6. A comparable stimulus generation task
has to be performed after an initial ASIP implementation is available in
order to generate worst case stimuli for architecture profiling.

Example: Due to the complexity and configurability of the DVB-T A&T ap-
plication, profiling stimuli could not be generated by the system simulation.
Table 5.2 depicts the complexity of all the different DVB-T A&T tasks in num-
ber of C code lines and number of I/O parameters as well as the complexity of
the SW testbenches. Each of the tasks Pre-FFT-, Post-FFT-Acquisition, and
Post-FFT-Tracking has about 100 internal state variables: The control flow in
the application is a function of a smaller subset of these state variables. This
subset of state variables has been identified and suitable testbenches have
been manually written in order to execute the critical path in the software for
worst case runtime. For this complex application with many boundary cases7,

5Worst case runtime can be excited by requiring the maximum number of operations/data transfers per
time unit of a latter implementation.

6For non-real-time applications, the typical runtime can also be used as a metric for this design task.
7These application typically use deeply nested HLL control statements like e.g. if or switch.

5.2. Application Profiling and Partitioning 81

a divide and conquer approach has been used, which partitions the application
and the testbench into smaller pieces, that can be independently profiled8.

The initial effort to create these software testbenches adds up to more than
two man weeks for the DVB-T A&T application, which corresponds to more
than 5% of the total design time. These testbenches in modified form have
been reused later on in the design flow for architecture profiling and for the
verification between the software running on the instruction set simulator and
the reference software.

Task Behavioral # of I/O Testbench SW Testbench
Description Parameters (# of C Design Time
(# of C Code (# of Man
Code Lines) Lines) Days)

Reset 44 - 5 < 0.1
Pre-FFT- 359 10/3 275 5
Acqu.
Post-FFT- 330 10/2 283 4
Acqu.
Post-FFT- 397 4/3 278 7
Tracking
PEQ 60 3/1 (incl. in -
Estimation Tracking)

Table 5.2: Design Effort for SW Testbenches (DVB-T A&T)

5.2.2 Application Profiling

The purpose of application profiling is to locate the performance crit-
ical parts within an application using profiling stimuli for worst case
scenarios. Application profiling ideally should be target-architecture-
independent: Profiling at the abstraction level of operators and memory
accesses with a certain user-defined data granularity should be preferred
over measuring the instruction count of a real implementation. Obvi-
ously, for HLL-code-based applications, it makes sense to use typical
HLL code operators for profilingand measure the memory accesses to
primitive data structures (like e.g. one integer element in an integer
array).

8For this purpose, the application has been temporarily modified to enhance the controllability.

82 Chapter 5. The ASIP Design Flow

In order to perform this profiling task (or an approximation of this task),
two basic approaches are possible: operator-based profiling or HLL
line-based profiling. Table 5.3 shows a comparison of these approaches.

Approach HLL Operator- HLL Line-
Based Based

Tool/Methodology instrumented e. g. gcov
HLL code [56] [229]

Design Effort high low
Execution Speed lower high
Precision of high low
Results

Table 5.3: Comparison of Application Profiling Approaches

The line-based approach can be readily performed with a coverage tool
like e.g. gcov [229] with virtually no additional design effort. Actually,
a coverage tool gcov is supposed to evaluate line coverage information,
but the output of this tool can obviously also be used for profiling pur-
poses. This approach enables the designer to obtain an overview of
critical loops in the application within a very short amount of time. Un-
fortunately, the accuracy of the results is poor, because the number of
high level language operators and memory accesses on each HLL line
varies.

On the other hand, true operator-based profiling using an instrumented
HLL code requires to add additional profiling statements in the code,
which leads to a significant increase in design time. More advanced
techniques for this design task use overloaded operator instances, which
update the profiling information as a side effect. For this thesis, how-
ever, a different application profiling approach is proposed. This pro-
posed profiling methodology uses the concept of a so-called profiling
processor as a virtual target architecture together with an optimizing
HLL compiler. The HLL application is mapped to this profiling proces-
sor and the instruction/operator count as well as the memory accesses
are evaluated by an instruction set simulator. It may be argued that this
concept violates the target architecture independence of the application
profiling task, because a real instruction set architecture is used as a tar-
get for profiling. This objection is partially true, but the advantages of
the proposed methodology outweigh the demerits:

5.2. Application Profiling and Partitioning 83

• the profiling processor can be taken out of a processor template
library (PTL9) (together with the HLL compiler and the simula-
tion tools), which enables a complete automation of the applica-
tion profiling task

• additional information (apart from operator count and memory ac-
cesses) can be obtained by this approach, like data locality, branch
frequency etc.

• the results are accurate, in the sense, that the measured instruction
count on this profiling processor could be implemented with a real
instance of this processor

• exactly the same methodology can be used later on for architecture
profiling by taking the processor template (out of the PTL) for the
processor class (cf. Subsection 5.2.4) that optimally matches the
application and by using this processor template as a starting point
for design space exploration

The most simple profiling processor implements a so-called basic in-
struction set with two operand instructions (register/register or imme-
diate/register), which has been described in [91] and which is reprinted
in Table 5.4. Two separate flat address spaces for I/O and data memory
can be accessed by register indirect addressing with displacement.

This instruction set is only a subset of typical HLL operators, because
operators like division and modulo operations are usually very expen-
sive in terms of either silicon area, energy or latency and, consequently,
have been omitted in this instruction set. Obviously, these or other op-
erators can be added, if an application extensively needs them. Further-
more, explicit I/O instructions have been provided in order to profile the
input/output behavior of the algorithm10.

This profiling processor uses a one stage pipeline organization, which
avoids forwarding paths and corresponds to an instruction true abstrac-
tion from a real pipelined implementation. The architecture does not
support instruction level parallelism, but rather provides a scalable gen-
eral purpose register file optionally with a cache memory hierarchy in

9Implementations of the software tools and the hardware for different processor classes (processor
classes can include the examples of Subsection 5.2.4 or the classes defined in Section 4.3) can also be
stored in this PTL to provide a starting point for the design space exploration and implementation.

10These I/O instructions can be supported by compiler-known-functions.

84 Chapter 5. The ASIP Design Flow

Type of Instruction Description
Instruction Mnemonic

Load/Store RDIO read I/O data
WRIO write I/O data
RDM read data memory
WRM write data memory

arithmetic ABS absolute value
ADD/ADDI addition
MOV/MOVI data move
MULU/MULS signed/unsigned multiplication
SHL/SHLI arith./logic. shift left
SRA/SRAI arith. shift right
SUB/SUBI subtraction

logic AND/ANDI bitwise AND
OR/ORI bitwise OR
SRL/SRLI logic. shift right
XOR/XORI bitwise XOR

control CMP/CMPI compare/set status
BRA uncond. branch
BSR branch to subroutine
BEQ/BNE branch if equal/not equal
BLT/BLE branch if less than/less or equal
BGT/BGE branch if greater than/

greater or equal
END exception/transition to idle mode
RTS return from subroutine

Table 5.4: Basic Instruction Set for Profiling

order to measure the data locality of data flow intensive algorithms. The
HLL compiler for this profiling processor has been implemented with
the COSY Compiler Development System [3].

Example: Figure 5.3 shows the result of HLL line-based profiling for the DVB-
T A&T application, where loop kernels with a significant number of iterations
can be clearly identified. This profiling run uses realistic stimuli, which reflect
the different states of the processor, namely a relative short period for the ac-
quisition of different parameters and afterwards the (theoretically continuous)
tracking operation. The large range in execution frequency is the reason that
a logarithmic scale on the vertical axis in Figure 5.3 has been chosen.

5.2. Application Profiling and Partitioning 85

0 100 200 300 400 500 600 700 800 900
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Line in HLL Program

N
um

be
r

of
 E

xe
cu

tio
ns

Figure 5.3: HLL Line Coverage Profile (DVB-T A&T example)

The above described profiling methodology using the profiling processor has
also been applied to the DVB-T A&T application. Figure 5.4 shows the profil-
ing results for the assembler implementation with the same stimuli that have
been used for Figure 5.3. The similarity of the two visualized profiling graphs
is obvious, which is due to a close match between the compiler generated as-
sembly implementation and the reference HLL implementation. However, the
scale of the horizontal axis clearly shows, that several assembly instructions
per line of HLL code have been executed. Provided that it is possible to imple-
ment a profiling processor that achieves one instruction execution per cycle
for a given clock period constraint, the vertical axis in Figure 5.4 corresponds
to clock cycles in the system. In this case, the (non-logarithmic) area under
the graph for a certain address range in the program memory is proportional
to the runtime which is spend in this part of the program.

In order to assess the performance criticality of the application, quantitative
data are needed, namely the ratio between worst case runtime of the profil-
ing implementation and the maximum runtime constraint of the application.
Obviously, this ratio should be smaller than 1.0 in order to obtain a feasible
implementation. Table 5.5 depicts the performance evaluation results for the
example applications under the assumption that the profiling processor has

86 Chapter 5. The ASIP Design Flow

0 500 1000 1500 2000 2500 3000 3500
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Address of ASM−Instruction

N
um

be
r

of
 E

xe
cu

tio
ns

CORDIC
subroutine

Figure 5.4: Assembler Line Coverage Profile (DVB-T A&T profiling impl.)

32 general purpose registers and is running at the system clock frequency of
the DVB-T system. The cycle constraints of all the computational tasks are
violated in Table 5.5, which motivates optimizations of the processor architec-
ture implementation.

Application Worst Case Cycle Count Ratio
Cycle Count Nwc Constraint Nwc

Nmax

(on Profiling Nmax

Processor)

Pre-FFT-Acquisition 7077 4096 1.73
Post-FFT-Acquisition 5661 4096 1.38
Post-FFT-Tracking 6208 1024 6.06
PEQ Phase Estimation 1353 192 7.05

Table 5.5: Cycle Count of Profiling Implementation vs. Max. Cycle Constraints

For the sake of conciseness we limit the following discussion to the most criti-
cal DVB-T A&T tasks. After further examination of the Post-FFT-Tracking and
PEQ Phase Estimation task, it was found, that these tasks make intensive use

5.2. Application Profiling and Partitioning 87

of a common CORDIC subroutine, which has been marked in Figure 5.4. Fig-
ure 5.5 illustrates the significant runtime, which is consumed in the CORDIC
subtask with respect to the total runtime in each case. Consequently, opti-
mization of the CORDIC subtask (possibly among other tasks) is needed in
order to meet the cycle constraints for these critical computational tasks.

96%

4%
CORDIC Subprogram
PEQ Caller

Complete PEQ Phase Estimation Task

60%

40%

CORDIC Subprogram
Post−FFT−Trk.−Caller

Complete Post−FFT−Tracking Task

Figure 5.5: Percentage of Runtime used for the CORDIC Subtask

5.2.3 HW/SW Partitioning

HW/SW partitioning is a prerequisite to the actual ASIP design flow,
which has to make sure that an instruction set oriented ASIP is a rea-
sonable implementation for a given application or whether parts of the
application are better mapped to coprocessors or dedicated hardware
blocks. This decision is important for the energy-efficiency of the sys-
tem, because the flexibility of ASIPs implies a higher energy consump-
tion as demonstrated in Section 7.1. The logical consequence of this
fact is that the high flexibility of ASIPs should only be used for tasks
that require and take advantage of it. On the other hand, tasks with high
computational requirements that do not need much flexibility should
rather be mapped to a dedicated structure in order to take advantage of
the higher energy-efficiency.

Partitioning of the application into blocks of a reasonable size is fol-
lowed by the selection of the hardware class which maps each of these
blocks to either a software implementation (e.g. ASIP, microcontroller,
general purpose processor), to a tightly coupled ASIP coprocessor or

88 Chapter 5. The ASIP Design Flow

to dedicated hardware. This selection task is primarily controlled by
the estimated performance of the target hardware. For many tasks with
sufficiently low time constraints, however, both hardware and software
implementations are possible. In such a case, additional parameters like
energy-efficiency and flexibility have to be considered for this selection,
which is illustrated in Figure 5.611.

The difficulty of this task is the fact that the estimates on this level
of abstraction tend to be significantly imprecise, because the details of
the target implementation are still unknown. For instance, in case of
an ASIP implementation, the designer might have a coarse idea of the
ASIP instruction count and the coarse ASIP structure, however, he is
unaware of the critical path, the area and the power consumption of the
implementation. This issue calls for a design methodology that provides
a short path to implementation.

ASIP Tetrahedron ASIP + ASIP Coprocessor Hexahedron

Figure 5.6: Design Space for ASIPs and ASIP Coprocessors

Example:For the above-mentioned CORDIC subroutine of the DVB-T A&T
application, the selection of a hardware or a software implementation is not
straightforward. On the one hand, the CORDIC requires high computational
performance, which could be efficiently mapped to an energy-efficient ASIP
coprocessor [86]. On the other hand, this coprocessor needs additional hard-
ware resources, like shifters, adders and memories if implemented as a sep-
arate entity. Most of these resources are needed in the ASIP anyway and can
therefore be resource shared. Furthermore, in the case of late design changes
after silicon fabrication, the dedicated coprocessor needs a full redesign of the
chip, whereas a software implementation typically needs only a redesign of the

11The remaining tetrahedron of the cube which is omitted in Figure 5.6 is the design space of dedicated
hardware

5.2. Application Profiling and Partitioning 89

program12. For the sake of increased flexibility, the CORDIC task in the DVB-T
A&T application has been mapped to an optimized software implementation.
Finally, in case of the EVD which requires higher computational performance
than the DVB-T A&T application the CORDIC has been mapped to an ASIP
accelerator.

5.2.4 ASIP Class Selection

The design space for ASIPs has already been described in Chapter 4.
HLL support for complex applications is typically indispensable to
avoid error-prone and tedious assembler coding. Provided that a HLL
compiler or a compiler design environment (e.g. Cosy [3], Chess [156]
or RECORD [165]) is required and available during the ASIP design,
the compiler-supported subset of ASIP classes within this large design
space has to be identified as a starting point for the following selection.
Alternatively, in the absence of a compiler, the ASIP class has to be
selected in order to facilitate manual assembler programming. Never-
theless, this is only possible for less complex applications in order to
avoid tedious and error prone programming design tasks.

The task of finding the processor instruction set architecture (ISA) class
that represents the best match to the application is of paramount impor-
tance for the design efficiency. This selection also affects the verifica-
tion effort of the final hard- and software, which represents a major part
of the overall design time according to Appendix F.

In the following discussion, several examples serve as illustration for
the selection of important parameters for a suitable processor class. This
discussion is not yet a complete commitment to a specific ISA. It rather
determines a good starting point for the following ASIP optimization
tasks.

Non-Parallel vs. Instruction/Data Level Parallel ASIP: A certain
task can be implemented using a scalar (single instruction issue)
ASIP, provided that the cycle count of the software implemen-
tation for the profiling processor in Subsection 5.2.2 is smaller

12In case of the DVB-T A&T application, this redesign of the program requires a redesign of the in-
struction ROM masks for the chip fabrication at reduced costs compared to a full chip redesign. For other
applications, which use on-chip RAMs as instruction memories, a redesign of the ASIP software does not
affect the chip fabrication costs.

90 Chapter 5. The ASIP Design Flow

than the cycle constraint with a certain cycle safety margin that
accounts for the overhead of a real processor implementation.
If this condition is not fulfilled, there are two options: either
the ASIP has to be implemented as a classical data or instruc-
tion level parallel architecture e.g. using a SIMD or a VLIW
implementation. Alternatively, the designer has to optimize the
scalar ASIP instruction set by implementing additional optimized
instructions that are able to perform several frequently needed
operations in parallel during one clock cycle, which results in a
cycle count reduction. This kind of optimization is a typical ASIP
optimization, which also enhances the energy-efficiency of the
implementation (refer to Section 7.1 for details).

Example: The choice between VLIW ASIP or optimized non-parallel
ASIP significantly affects the design time and the area/energy-efficiency
of the implementation. For the DVB-T A&T application, a scalar, single
issue processor implementation has been chosen, in order to reduce the
design time and to obtain the best possible energy- and area-efficiency.
This choice requires optimization of the implementation using special-
ized instructions according to the results of application profiling. For the
EVD an architecture that represents a mixture between a pure scalar
and a SIMD architecture has been selected in order to speed up the
processing of vector and matrix operations.

Organization/Access of Storage Elements: The memory and ASIP-
internal register structure has to be organized in order to speed
up the common and critical tasks of the application. This re-
quires small and fast scratch-pad memories together with reason-
ably sized internal registers and register files. For applications
with a high ratio Rl/s of load/store-operations Nl/s to the total
number of executed operations Ntot the use of a pure load/store
architecture with a central register file is disadvantageous. In
such a case a memory-memory architecture or a heterogeneous
architecture (which uses memory-memory instructions together
with load/store instructions) is better in order to reduce the num-
ber of explicit load/store instructions, which need energy in the
fetch/decode stage and result in a large footprint in the instruction
memory. Furthermore, the significant energy overhead of writing
and reading the general purpose register can be avoided.

Example: Table 5.6 shows the frequency of load/store instructions of the
profiling implementation for the considered example applications. The

5.2. Application Profiling and Partitioning 91

DVB-T A&T application can be readily implemented using a reasonably
small, flat data memory in combination with a load/store architecture due
to the small ratio Rl/s. However, the FFT has a large ratio Rl/s, which
suggests a memory-memory architecture or alternatively, a heteroge-
neous architecture with optimized memory-memory instructions like in
[138]. A more detailed application analysis for the EVD reveals, that it
is indeed possible to take advantage of a large general purpose register
file together with additional address registers in order to exploit data lo-
cality, which also suggest a load/store architecture. For the current FIR
implementation, a memory-memory architecture is one option. However,
a small change in the FIR high level description13 using a circular buffer
for the delay line can avoid about 50% of the memory accesses, which
makes a load/store architecture also a feasible alternative.

Application Percentage14of
Load/Store Operations
(Rl/s · 100%)

DVB-T A&T 3.5%
CORDIC 4.8%
EVD 17.4%
FIR 28.7%
FFT 36.8%

Table 5.6: Percentage of Load/Store Instructions (Profiling Implementation)

Pipeline: Depending on the clock period constraint of the system, the
depth of the pipeline has to be chosen in order to meet this con-
straint. For a high operating frequency a long pipeline is neces-
sary. On the other hand, a longer pipeline tends to expose a larger
branch penalty for taken branches15. This is especially disadvan-
tageous for tasks with a large ratio Rbranch of taken branch opera-
tions Nbranch to the total number of executed operations Ntot.

Example: In Table 5.7 the percentage of taken branch operations dur-
ing program execution of the example applications is depicted. For the
CORDIC, the FFT and the EVD this percentage is negligible, because
a more thorough investigation of these applications reveals, that these
branches are mostly used to implement loops which can be replaced
by zero-overhead loop instructions. On the other hand, for the DVB-T

13The current description has been taken from the DSPstone kernel collection [285]
14For this analysis a general purpose register file with 32 general purpose registers has been used.
15This penalty model assumes a predict-untaken branch execution scheme [107] without executing in-

structions in the branch delay slots.

92 Chapter 5. The ASIP Design Flow

A&T application the significant number of taken branches reflects the
property of a typical mixed control/data flow application. This high per-
centage motivates the use of a short pipeline in order to mitigate the
overall branch penalty.

Granularity of Functional Units: For a good match between architec-
ture and application, the granularity of the data that are processed
in the functional units of an ASIP should reflect the data types in
the application.

Example: The DVB-T A&T application mostly uses scalar data with a
word length between 16 and 32 bit. Consequently, most of the functional
units of the core use 32 bit operations. On the other hand, the FFT as
well as the EVD use complex data of different bit widths requiring com-
plex arithmetic operations (additions, subtractions, multiplications and
shifts) in the functional units, which have to be designed for the maxi-
mum needed bit widths in each case.

Application Percentage of Note on branch
Taken Branch characteristics
Operations (Rbranch · 100%)

DVB-T A&T 9.3% mostly data dependent
CORDIC 10.7% mostly needed for loops

with data indep.
iteration count16

FIR 7.1% same as above16

EVD 4.1% same as above16

FFT 2.1% same as above16

Table 5.7: Percentage of Taken Conditional Branch Instructions (Prof. Impl.)

The bottom line of this section is that according to the above-mentioned
quantitative properties of an application (instruction level parallelism,
locality, control vs. data flow dominance, granularity), the task of ASIP
class selection can be formalized for many different applications. This
facilitates and speeds up this important design task increasing the design
efficiency.

An orthogonal issue to the aspects mentioned above is verifiability of
the processor hard- and software. The verification tasks and the im-

16The majority of these branches can be realized by zero-overhead loop control instructions which re-
duces the overall branch penalty to less than 2% in all these cases.

5.3. Combined ASIP HW/SW Synthesis and Profiling 93

pact of architectural decisions on the verification effort is discussed in
Section 5.4.

5.3 Combined ASIP HW/SW Synthesis and Profiling

The selection of the processor class in the previous subsection does not
define an accurate point in the multi-dimensional ASIP design space.
It rather provides a starting point for further optimizations using con-
straints imposed by the application and the programmability. Thus,
there are still many open design issues, which need to be explored and
optimized like

• organization and number of internal registers as well as memories

• behavior/coding of instructions, addressing modes etc.

• detailed pipeline organization (e.g. forwarding and bypassing) and
mapping of operators to pipeline stages and functional units

• control of core operation (e.g. for startup, reset and IRQ process-
ing)

• pipeline control policy (e.g. for branches and wait states)

• interface implementation

• optionally: coprocessor structure and implementation

Figure 5.7 shows the proposed design flow, which covers all the above-
mentioned issues in order to find a feasible instruction set architecture
and implementation. The main difference between the proposed design
flow and previously published ASIP design approaches is that the hard-
ware implementation in the proposed flow is in the iteration loop. This
has significant consequences: On the one hand, this requires the de-
signer to maintain several consistent descriptions of the ASIP instruc-
tion set architecture17 (and the interfaces and coprocessors) namely for
the instruction set simulator (or the system simulator, which includes

17This issue will be solved in Chapter 6 by a processor description language and advanced design tools
which require only a single description of the ASIP.

94 Chapter 5. The ASIP Design Flow

interfaces and coprocessors), the software design tools and for the hard-
ware implementation in form of a HDL. On the other hand, this method-
ology makes sure that the actual implementation is really able to meet
the application constraints for cycle time, area and energy. In other
words, this methodology enables the designer to optimize high level pa-
rameters like the cycle or instruction count of an implementation, while
being able to track the effect of high level optimizations on the low
level parameters cycle time, area and energy consumption. This results
in less iterations and in a faster design time, provided that this design
flow can be automated to a large extent.

In the following, the different subtasks of Figure 5.7 will be described
with a focus on the ISA definition and on the iterative ISA optimiza-
tion. This discussion also defines the requirements for the design tools
of Chapter 6, which are needed to support and automate the proposed
design flow of this thesis.

5.3.1 ASIP Interface Definition

Off-the-shelf processors in form of packaged chips or hard-macros are
unable to adapt their interfaces to the external world. Synthesizable
ASIPs, however, can easily be integrated into a system-on-a-chip, that
requires a proprietary interface behavior. From a system perspective,
a black box that is implemented by an ASIP can be regarded as an or-
dinary hardware block with typical hardware interface characteristics.
Thus, the required ASIP interface mechanisms have to be negotiated
between different designers or design teams. As a conventional pro-
cessor is not able to handle fast streams of input data efficiently due to
task switching overhead and instruction overhead in order to read the
data from the input port and to store them, either specialized instruc-
tions or dedicated I/O coprocessors have to be used. For performance
critical tasks with little runtime headroom for I/O operations, a DMA
controller with double buffering is an option, which enables the ASIP
core to focus on computations rather than on I/O activity. The detailed
interface implementation can be subject to iterative refinement during
the ASIP design flow in Figure 5.7.

Example: For the DVB-T A&T application a dedicated I/O processor together
with instructions to support synchronization channels is needed in order to

5.3. Combined ASIP HW/SW Synthesis and Profiling 95

Design Iteration Needed

ASIP
Coprocessor

Definition

ASIP
Interface
Definition

ASIP
ISA

Definition

Generation/
Implementation of
SW Design Tools

(Compiler, Assembler,
Linker, Simulator)

SW
Implementation

Application

no

yes

from higher level design tasks (cf. Figure 5.1)

cycle count,
instruction profiles

critical
path, area,

energy consumption

continue with verification and
documentation

Design Iteration Needed

Constraints
met?

Implementation
Profiling/

Worst-Case
Analysis

Generation/
Implementation

 of HW
Description,

Logic Synthesis and
Power Evaluation

no

Figure 5.7: Combined ASIP HW/SW Synthesis and Profiling

96 Chapter 5. The ASIP Design Flow

meet the interface constraints of the system environment. This implementation
enables simultaneous I/O operations together with normal data processing in
the ASIP core, effectively decreasing the cycle count for critical tasks. For the
EVD, double-buffering is advantageous, because of the larger amount of data
that have to be transferred for each iteration.

5.3.2 ASIP ISA Definition

The task of defining the instruction set architecture can be subdivided
into at first the definition of the processor architecture and afterwards
the definition of the processor instructions (ISA). This distinction is
common in the technical literature [132].

Due to significant mutual dependencies between the processor archi-
tecture and the supported instructions, this thesis advocates to combine
these definition tasks in one design step. The complexity of this task can
be handled using a so-called iterative design technique [113] yielding
a highly flexible and reusable instruction set18. This iterative technique
uses an initial architecture as a starting point which has to be either

• defined from scratch by the designer (which obviously requires
significant additional design time)

• or taken out of a processor template library (PTL) of predefined
ASIPs (which needs virtually no additional design time19)

The library-based approach is able to increase the design productivity
and it has the additional merit of being able to provide predefined, ver-
ified, and well-optimized software design tools (e.g. HLL compilers)
and reference design descriptions (e.g. low-power HDL descriptions).
These tools and descriptions can be directly used for non-critical ap-
plications in order to obtain production quality results in a very short
amount of time.

The optimization of a given library-based ASIP in order to meet the con-
straints of an application has to be based on the results of a worst case

18In contrast to so-called constructive techniques, which instantiate only the minimum needed amount of
resources and instructions and, thus, provide a less flexible implementation.

19Apart from the design time which has to be spend on the design of library ASIP templates and tools
by an EDA company. A similar concept is implemented in commercial logic synthesis tools like Synopsys’
DesignCompiler with the DesignWare library for word-level arithmetic and logic units.

5.3. Combined ASIP HW/SW Synthesis and Profiling 97

runtime analysis using the estimated low-level parameters after logic
synthesis. As a function of the violated constraint(s), one or several of
the techniques that have been proposed in Section 4.4 have to be applied
in order to optimize the application.

5.3.3 Software Implementation and Tools

The implementation of the ASIP software requires programming tools
like HLL compiler, assembler, linker as well as instruction set simu-
lator. The implementation of these software design tools is a tedious
and error-prone design task, because they have to be consistent with
the ISA, coprocessor and interface definitions. In order to efficiently
explore a large design space, the iteration time for the design loop in
Figure 5.7 should be reasonably small. The design environment [109]
that has been developed at the Institute for Integrated Signal Processing
Systems, which is briefly reviewed in Chapter 6, automates the genera-
tion of these design tools.

Provided that these tools are available for a certain ASIP architecture,
the software design flow is straightforward and partially comparable
to commercial software design flows for off-the-shelf processors. Dif-
ferences to commercial environments are due to application-specific
instruction set features, accelerators and specialized interfaces, which
have to be supported by the programming tools. Furthermore, typical
ASIPs are used in embedded systems-on-chip that require a combina-
tion of high computational performance together with a high energy-
efficiency. These design goals can only be reached, if the ASIP archi-
tecture and the ASIP software are jointly optimized.

Optimization of runtime of the ASIP software has to take care to fully
exploit the application-specific features of the ASIP, which have been
implemented to match the performance critical parts of an application.
These critical software parts may have to be iteratively hand-optimized
to make efficient use of gradually more specialized hardware until the
performance constraints are met. The remaining part of the software
that is often less performance critical should nevertheless exhibit excel-
lent code quality in order to avoid unnecessary deterioration in overall

98 Chapter 5. The ASIP Design Flow

runtime. Typical optimizations of runtime include (but are not limited
to):

• avoiding redundant operations e.g. by constant propagation, com-
mon subtree removal etc.

• using dedicated instructions in order to speed up loop processing
[159]

• reducing memory accesses e.g. by optimally using the available
registers, register pipelining [230]

• implementing function calls by exchanging values in registers
rather than using the (memory) stack

• avoiding poor schedules by considering dynamic profile data (e.g.
in the case of mutually exclusive “case” selections in C code, the
selection with the highest probability should be evaluated first)

Optimization of energy consumption is achieved by using optimized
hardware architectures together with a software implementation that ef-
ficiently uses the hardware. In Section 4.4 the term intrinsic energy and
the term overhead energy have been defined. Provided that the intrinsic
energy of a task is significantly smaller than the overhead energy of a
processor (which is a typical case for processors), any kind of software
optimization that reduces the runtime (without increasing the overhead
energy) is also lowering the energy consumption of the processor. Soft-
ware performance optimization corresponds to processor energy opti-
mization for many typical scenarios, which completely agrees to the
results of Tiwari [249].

Optimization of energy consumption can be generally achieved by e.g.

• using specialized instructions that enable multiple operations per
instruction

• exploiting doze/sleep modes, which disable/switch off the clock
distribution/generation

• exploiting memory hierarchy e.g. by using small, low-power
scratch pad memories [175]

5.3. Combined ASIP HW/SW Synthesis and Profiling 99

• replacement of power greedy operations like multiplications, di-
visions and modulo operations for constant R-values of a power
of two with more simple shift and logic operations (this strength
reduction typically results only in small benefits (if any) due to the
high amount of overhead power associated with each instruction)

• instruction selection based on the average energy consumed by an
instruction pattern [252] [171] (with typically a very small benefit
for the same reason than above)

• using a coprocessor

The above mentioned techniques can be partially integrated in the HLL
compiler, but they are also useful for manual optimizations.

5.3.4 Hardware Implementation and Logic Synthesis

Estimation of low-level hardware parameters like the maximum clock
speed is needed in order to guarantee the feasibility of an ASIP archi-
tecture w.r.t. the given application constraints as well as to track the
effect of high level decisions during ASIP optimization. Thus, the de-
signer has to maintain the consistency of yet another even more detailed
description of the ASIP in form a HDL.

In Chapter 5.7 a tool which partially automates the generation of this
ASIP HDL description is presented. This tool is able to generate a de-
tailed hardware description of the decoder from an abstract operator-
based instruction set implementation, which results in a significant
speed up in design time. Further work on hardware description gen-
eration has been published in [218].

For a complete discussion of the critical factors concerning ASIP hard-
ware implementations refer to Section 4.4.

Example: The following examples illustrate the necessity to obtain precise es-
timates for the hardware implementation during ASIP optimization. Logic syn-
thesis of an initial 2 stage processor pipeline implementation for the DVB-T
A&T application has indicated a maximum operating frequency that has vio-
lated the constraints. A complete redesign of the hardware implementation
using a 3 stage pipeline has solved this problem. Another issue was the im-
plementation of the general purpose register file, which initially has produced

100 Chapter 5. The ASIP Design Flow

an excessive area consumption in combination with an unacceptable synthe-
sis time. A redesign of the register file using a more structural hand-optimized
HDL description (cf. Appendix E.1) has solved this problem reducing the com-
binational register file area by about 50%. Several times a redesign of op-
timized instructions using operator chaining has been necessary in order to
meet the required operating frequency. There are many other examples for
iterations that have been triggered by low level constraint violations. This de-
sign methodology is in analogy to best practice ASIC design flows [48], which
regularly reiterate logic synthesis for estimation purposes.

5.3.5 Implementation Profiling and Worst Case Runtime Analysis

This task profiles the current HW/SW implementation considering the
ASIP SW, the ASIP instruction set, the coprocessor and the interface
behavior. The result of this implementation profiling is – in analogy
to application profiling – the cycle count for entire tasks including I/O
cycles, which has to be compared to the given constraints. After this
step, the designer is aware of the critical tasks for the current imple-
mentation. Similar to the methodology used for application profiling,
the critical kernels in the application have to be identified as a prerequi-
site for subsequent optimization.

Profiling of an implementation has to determine the worst case cycle
count in order to provide an upper bound, which has to be compared to
the cycle constraints of the application. This worst case cycle count can
be determined either by

• simulation using stimuli, which yield this worst case condition

• (either manual or tool supported) static analysis of the code, which
is especially difficult in case of many control instructions and/or
computed branches

The principle of static cycle count analysis of assembler code is illus-
trated in Figure 5.8, which depicts the assembler implementation of a
simple conditional if-instruction. The worst case cycle count for the
implementation is given by the longest path through the assembler pro-
gram which is in this case

Cif else,wc = max(C1+Cbt+CIF +Cb, C1+Cbf +CELSE+Cb) (5.1)

5.3. Combined ASIP HW/SW Synthesis and Profiling 101

PROG_start:
if (conditional_expression) {
 IF_block:
 statement_I1;
 statement_I2;
 ...
 statement_In;
}
else {
 ELSE_block:
 statement_E1;
 statement_E2;
 ...
 statement_En;
}
CONT_block:
...

PROG_start::

Assembler Code for
"conditional_expression"

IF_block:

Assembler Code for
"IF_block"

ELSE_block::

Assembler Code for
"ELSE_block"

Branch(if_cond_true)
to IF_Block

Branch(if_cond_false) to
ELSE_Block

C1

Cbt Cbf

CIF CELSE

HLL implementation Assembler implementation

Cx denotes a cylce count of cycleswhere

CONT_block:
...

Cb Cb

Cx

Figure 5.8: Principle of Static Worst Case Cycle Count Analysis

In the case of uncorrelated forward branches this analysis is trivial. In
contrast, if (conditional) backward branches are present e.g. in order to
implement HLL loop statements like while or for, this analysis is more
complicated. In these cases, the designer has to determine the maximum
possible number of loop iterations20, which have to be annotated to the
backward branch(es) for a worst case cycle analysis. For correlations
between forward branches, the analysis in Figure 5.8 yields a possibly
pessimistic upper bound in runtime. This issue is covered in more depth
by Boriello [32] and Li [169].

Example for the application of the two analysis methodologies: In case of the
DVB-T A&T application, simulation of typical operating scenarios has been
used in the first place, in order to determine typical cycle counts. Moreover,
a subsequent static cycle count analysis of this highly branch-intensive appli-
cation has been manually performed to guarantee that maximum cycle con-
straints are met in any case. This static analysis guarantees that each path
through the assembler program is covered, which is difficult to make sure with

20This maximum number of loop iterations can usually be derived from the HLL specification.

102 Chapter 5. The ASIP Design Flow

simulation. This task is typically less difficult for applications that are more
data flow oriented like the EVD.

Example for profiling results: The profiling of an intermediate ASIP implemen-
tation for the EVD application yields a worst case cycle count of about 64 000
machine cycles. Figure 5.9 depicts the visualized assembler code coverage
for this intermediate implementation. The basic blocks with the highest execu-
tion frequency contributes 31,6% to the overall runtime and has been denoted
as Critical Block in Figure 5.9. This critical kernel will be optimized in the next
example in order to reduce the overall runtime.

0 50 100 150 200 250
0

2

4

6

8

10

12
x 10

4

Address of ASM−Instruction

N
um

be
r

of
 E

xe
cu

tio
ns

Critical
Block

Figure 5.9: Visualized EVD Assembler Coverage (Intermediate Impl.)

5.3.6 Iterative ASIP Optimization

This optimization task primarily focuses on enhancements of the com-
putational performance of a given ASIP architecture. However, archi-
tectural optimization can also be used in order to lower the energy con-
sumption of an ASIP, which is demonstrated in Section 7.1.

5.3. Combined ASIP HW/SW Synthesis and Profiling 103

According to Section 4.4.1 there are several options in order to increase
the computational performance for critical tasks.

• chaining of operators

• parallelization of operators

which are controlled by either

• a multi-issue architecture

• or specialized instructions in a single-issue architecture each of
them with the ability to control several parallel operations with
just one instruction

Example (cont’d): A closer look at the critical computational loop in Figure 5.9
reveals, that the data flow graph (DFG) depicted in Figure 5.10 is executed
with each loop iteration. Each of the circles in Figure 5.10 denotes an op-
eration on complex data. The load and store operations have already been
optimized by implementing a dedicated address generation, which enables
the access of row- and column-indexed matrix data. The row- and column
values are updated by the zero-overhead loop control logic. The assembler
implementation of this kernel for the considered single-issue ASIP architec-
ture is given in Listing 5.1. This software implementation uses 12 assembler
instructions in the loop kernel corresponding to 12 machine cycles per loop
iteration. The instruction at the beginning of this loop (LPINI) is used to enable
zero-overhead loop control for the innermost loop by incrementing a special
register after each loop iteration. Afterwards, if the end value of this loop is not
yet reached, a branch back to the loop start without a delay cycle is performed.

For the DFG of Figure 5.10 optimized instructions are defined in the follow-
ing in order to speed up the loop processing. In this case, these specialized
instructions have to meet additional constraints of the implementation:

• only one memory port is available (which enables only one memory read
or alternatively, one memory write of complex word per cycle)

• chaining of operators is impossible due to the maximum required oper-
ating frequency

• the number of operator instances and registers for temporary storage
has to be minimized

This task of scheduling loop operations can be solved with software pipelin-
ing [155] e.g. using a technique like modulo-scheduling [210]. For this simple

104 Chapter 5. The ASIP Design Flow

Memory
Load

Memory
Load

UL LL UR LR

X X

+

X X

+

Memory
Store

Memory
Store

complex registers with constant values for the entire loop

Memory
Store
(Load) =

Base
Address

Matrix
Dimension

Matrix
Row

Matrix
Column

X +

+

Data to Mem.

(Data From Mem.) Memory

scalar address and index registers

Memory
Address

M1 M2 M3 M4

A2A1

VR1 VR2

VR3 VR4

VR5

VR6 VR7

VR8

L1 L2

S1 S2

Figure 5.10: DFG of Critical Loop Kernel

example an optimum schedule and register assignment can be manually de-
termined.

The fact that only one memory access per cycle is possible, results in a lower
bound of 4 instructions for the loop body. Table 5.8 shows a possible schedule
for the operations M1 to M4, A1, A2, L1, L2, S1 and S2 of Figure 5.10, which
reaches this lower bound. The argument (n) refers to the processing of data

5.3. Combined ASIP HW/SW Synthesis and Profiling 105

.define EVRLOOP_CNTR R3
...
LPINI(EVRLOOP_START_LB,EVRLOOP_END_LB,EVRLOOP_CNTR,N_1,3);

EVRLOOP_START_LB:
.undef N_1 R5
.define L_FREG FR4
.define R_FREG FR5

// load left and right columns
FRRLD(EV_M,EVRLOOP_CNTR,ODRLOOP_CNTR,N,L_FREG);
FRRLD(EV_M,EVRLOOP_CNTR,ODCLOOP_CNTR,N,R_FREG);

// calculate and update left EV column
.define TMP_LEFT_COL_FREG FR6

FMOV(L_FREG,2,TMP_LEFT_COL_FREG,2);
// TMP_LEFT_COL_FREG = ul*EV[r][piv_row]
FMUL(UL_FREG,TMP_LEFT_COL_FREG);

.define TMP2_FREG FR7
FMOV(R_FREG,2,TMP2_FREG,2);
FMUL(LL_FREG,TMP2_FREG);
// TMP_LEFT_COL_FREG += ll*EV[r][piv_col]
FADD(TMP2_FREG,TMP_LEFT_COL_FREG);

.undef TMP2_FREG FR7
FRRST(EV_M,EVRLOOP_CNTR,ODRLOOP_CNTR,N,TMP_LEFT_COL_FREG);

.undef TMP_LEFT_COL_FREG FR6

// calculate and update right EV column
FMUL(UR_FREG,L_FREG);

.undef R_FREG R5

.define TMP_RIGHT_COL_FREG FR5
// TMP_RIGHT_COL_FREG = lr*EV[r][piv_col]
FMUL(LR_FREG,TMP_RIGHT_COL_FREG);
// TMP_RIGHT_COL_FREG += ur*EV[r][piv_row]
FADD(L_FREG,TMP_RIGHT_COL_FREG);
FRRST(EV_M,EVRLOOP_CNTR,ODCLOOP_CNTR,N,TMP_RIGHT_COL_FREG);

.undef TMP_RIGHT_COL_FREG FR5

.undef L_FREG FR4
EVRLOOP_END_LB:

...

Listing 5.1: Initial Assembler Loop Implementation of Critical Kernel

in DFG iteration n, whereas the argument (n+1) means, that already data for
the next DFG iteration are processed.

Cycle Loop Multiplier Adder Memory
Instruction

0 PAR INSN1 M3(n) A1(n) L1(n+1)
1 PAR INSN2 M4(n) - S1(n)
2 PAR INSN3 M1(n+1) A2(n) L2(n+1)
3 PAR INSN4 M2(n+1) - S2(n)

Table 5.8: One Possible Loop Schedule for the Critical Loop Body

106 Chapter 5. The ASIP Design Flow

In analogy to the methodology used by HLL compilers [53] the edges in Fig-
ure 5.10 correspond to virtual registers which reflect the lifetime of these val-
ues in real registers. Table 5.9 depicts the lifetime of these virtual registers for
the data values which are associated with the iteration number n of the DFG.
It can clearly be observed from Table 5.9, that the processing for one DFG
iteration is pipelined, with a latency of 8 cycles and a throughput21 of 4 cycles.

Loop Loop VR1 VR2 VR3 VR4 VR5 VR6 VR7 VR8
Counter Cycle

n 0
n 1 X
n 2 X
n 3 X X X
n+1 0 X X X X
n+1 1 X X X
n+1 2 X X
n+1 3 X

Table 5.9: Lifetime of Virtual Registers for one DFG Iteration

These virtual registers have to be assigned to real registers. Table 5.10 shows
a possible register assignment using 8 data registers.

Register Nr. 0 1 2 3 4 5 6 7
Cycle 0 UL LL UR LR *VR1 *VR2 *VR3 *VR4
Cycle 1 UL LL UR LR VR1 VR2 VR5 VR6
Cycle 2 UL LL UR LR VR1 - VR7 VR6
Cycle 3 UL LL UR LR VR1 VR2 VR3 VR8

Table 5.10: Register Allocation for the Critical Loop Body

Note that the virtual registers VR1 to VR4 that have a ’*’-prefix in Figure 5.10
are not produced in the actual but in the previous instruction loop iteration22.
This implies that for the first loop iteration these values have to be precalcu-
lated and moved into the required real registers, which corresponds to the
pipeline prologue for software pipelined VLIW-machines [7]. Also note that
after the last DFG iteration two loads L1(n+1) and L2(n+1) as well as two mul-
tiplications M1(n+1) and M2(n+1) are superfluous, because they belong to the

21In this case, the throughput is the important aspect that has to be optimized in order to reduce the
runtime. The result of 4 cycles per iteration has been obtained by neglecting the overhead due to prologue
and epilogue, as well as the overhead for the loop initialization. This overhead is certainly small, because
the number of iterations is large.

22Here, the term instruction loop iteration refers to one iteration of the loop that uses the optimized
instructions

5.3. Combined ASIP HW/SW Synthesis and Profiling 107

non-existent next iteration of the DFG. Alternatively, if this behavior of execut-
ing superfluous loads and multiplications can not be tolerated, a loop epilogue
has to be implemented and the loop end count value for the optimized loop
has to be decremented.

The Tables 5.8 and 5.10 implicitly define the functionality of the new opti-
mized loop instructions PAR INSN1 to PAR INSN4. This new functionality
is more clearly described in Table 5.11. Note that in the unoptimized im-
plementation, the FRRST/FRRLD instructions use the loop counter in order
to calculate the effective memory address according to Figure 5.10. Due to
the fact that the optimized implementation uses a pipelined processing with a
latency that is larger than the number of loop instructions, the FRRST instruc-
tions need to calculate the effective address using a decremented value of the
loop counter23. This fact is considered in Table 5.11 by the notation adr(CNT)
and adr(CNT-1). Obviously, the instructions in Table 5.11 have to use many
operand fields in order to implement the same functionality than the original
instructions. This would lead to an unacceptable instruction coding width. In
this case, these operands can be omitted using an optimized hardwired control
logic due to the fact, that the reusability of these instructions is limited and that
these optimized instructions do not really need the flexibility of programmable
operands.

Optimized replaces the following
Instruction more simple instructions:

PAR INSN0 FMUL FR2, FR4, FR7 ‖ FADD FR6, FR7, FR6 ‖
FRRLD (adr(CNT)), FR4

PAR INSN1 FMUL FR3, FR5, FR6 ‖ FRRST FR5, (adr(CNT-1))

PAR INSN2 FMUL FR0, FR4, FR6 ‖ FADD FR6, FR7, FR7
‖ FRRLD (adr(CNT)), FR5

PAR INSN3 FMUL FR1, FR5, FR7 ‖ FRRST FR7, (adr(CNT-1))

Table 5.11: Functionality of the Optimized Instructions

With these optimized instructions the enhanced software implementation of
the loop is given in Listing 5.2 together with the loop prologue. This opti-
mization has reduced the cycle count for this critical loop by 55.7% which
translates in a cycle reduction of 17.6% for the overall EVD task according
to Table 5.12. The moderate reduction in overall cycle count is due to Am-
dahl’s law [9]: The critical loop which has been optimized contributes to only
31.6% and not to 100% of the total runtime. If further cycle count reduction

23This decremented value of the loop counter corresponds to the value of the loop counter in the previous
loop iteration of the optimized implementation.

108 Chapter 5. The ASIP Design Flow

is needed, the above-described concept has to be applied to different critical
blocks in the EVD task. Alternatively, the constraints that have been used for
the above-mentioned example optimization have to be relaxed by increasing
the hardware effort for the implementation. In any case, the feasibility of the
optimized implementation has to be checked by adding the optimized instruc-
tions to the hardware description of the ASIP and by logic synthesis. Although
the example optimizations have not used operator chaining in the data path,
there is the risk of getting an increased critical path due to a higher number
of area intensive read and write ports of the general purpose register (see
Appendix E.1 for synthesis results).

.define EVRLOOP_CNTR R3
...
// loop prologue
MOVI(0,EVRLOOP_CNTR); // load values for 0-th iteration
FRRLD(EV_M,EVRLOOP_CNTR,ODRLOOP_CNTR,N,FR4); // L1(0)
FRRLD(EV_M,EVRLOOP_CNTR,ODCLOOP_CNTR,N,FR5); // L2(0)
MOVI(1,EVRLOOP_CNTR); // start loop with iteration 1
FMOV FR4, FR6; // copy
FMUL FR0, FR6; // M1 operation
FMOV FR5, FR7; // copy
FMUL FR1, FR7; // M2 operation
// start of loop
LPINI(EVRLOOP_START_LB,EVRLOOP_END_LB,EVRLOOP_CNTR,N_1,3);

EVRLOOP_START_LB:
PAR_INSN1;
PAR_INSN2;
PAR_INSN3;
PAR_INSN4;

EVRLOOP_END_LB:
// here: no epilogue
...

Listing 5.2: Enhanced Loop Implementation Using New Instructions

Unoptimized Optimized
Implementation Implementation

Loop Cycle Count 17685 7830
Norm. Loop Cycle Count 100% 44.3%
Overall Cycle Count 63680 52475
Norm. Overall Cycle Count 100% 82.4%

Table 5.12: Cycle Count Reduction for Critical Loop

5.3. Combined ASIP HW/SW Synthesis and Profiling 109

5.3.7 Definition of a tightly coupled ASIP Accelerator

The above-mentioned ISA optimization exposes limited scalability for
applications that require a very large number of parallel operations.
This fact is due to bottlenecks in the ASIP architecture caused by area-
intensive general purpose registers or centralized data memories each of
them with a limited amount of read and write ports. Furthermore, there
are also applications with a significantly larger amount of operations in
the critical loop bodies, which results in a large amount of optimized
instructions. This in turn requires more complex decoder structures,
which reduce the overall efficiency of the implementation and can lead
to clock constraint violations.

For the case that an ISA optimization fails to deliver the needed compu-
tational performance or energy-efficiency, a more dedicated ASIP co-
processor can be implemented. This tightly coupled ASIP accelerator
can be viewed as a computationally powerful functional unit that sup-
ports either pipelined or unpipelined computations. Typically, the la-
tency of such an accelerator is significantly larger than the latency of
1 or 2 cycles of ordinary functional units like adders and multipliers.
For this reason, additional control mechanisms are needed in order to
start the accelerator and to synchronize the accelerator results with the
program flow of the ASIP.

Example: The EVD of an NxN hermitian matrix needs O(N2) CORDIC eval-
uations using the angular and the rotate mode. For a 10x10 matrix this cor-
responds to at least 270 angle calculations and 270 vector rotations for the
desired precision. An optimized software implementation of the two CORDIC
modes results in about 118000 cycles for the 10x10 EVD. By using an ASIP
accelerator, this cycle count can be reduced by more than 50% to about
50000 cycles.

An important aspect for this decision is the required flexibility of a task, be-
cause a dedicated accelerator architecture is much less flexible and pro-
grammable than a pure software implementation. In case of the CORDIC
subtasks for the EVD, the required flexibility is sufficiently low due to the fact
that the CORDIC algorithm is a well-tested algorithm, which is not prone to
late design changes and design errors.

The CORDIC algorithm (see Appendix B.1 for implementation details) uses
iterative conditional additions and subtractions in order to cancel either the
angle z (rotate mode) or the ordinate y (vectoring mode) of a two dimensional
vector. The control data flow graph of these algorithms can be extracted and

110 Chapter 5. The ASIP Design Flow

mapped to dedicated hardware. In case of the EVD, the hardware structure
that is depicted in Figure 5.11 has been implemented, which supports both
the vectoring and the rotate mode of the CORDIC.

map to right half-plane and set a flag
if modification was needed

x_in y_in z_in

MUX MUX MUX

x y z

+/- +/-+/-

ShifterShifter
atan-
Table

x x +

MUX

-1 +1 -K +K

MUX

-1 +1 -K +K

MUX

00

x_out y_out z_out

1800

Figure 5.11: Structure of the CORDIC Accelerator

5.4. Verification 111

5.4 Verification

Correctness of a chip implementation prior to chip fabrication is of
paramount importance due to the high prototype costs of fabrication.
According to [121] the prototype costs for relative small chips between
20 sq. mm and 36 sq. mm are in the range between 600k and 900k US$.
This is mostly due to the expensive production of mask sets and due to
the low initial volumes for these prototypes. As a consequence, the risk
of an implementation error should be minimized. This has been a mat-
ter of course for the design of dedicated hardware since many years, but
this is also valid for embedded software on a chip: In the case of the
DVB-T receiver described in Section 7.1 the ASIP software is stored in
an on-chip ROM. In case of a software malfunction, the software in the
ROM needs to be modified, which necessitates to restart the fabrication
process of the chip (at slightly reduced costs) using a different mask set
for the ROM information. Of course, the program information could
have been stored in an internal RAM, but this would have increased the
implementation power consumption and silicon area. Moreover, this
would have required a more complicated bootload process for the chip,
which is supposed to operate as easy to use stand-alone solution.

The term verification is often confused with the term testing. How-
ever, from a hardware perspective, testing only refers to post-silicon
fabrication tests which guard against faults in the physical fabrication
process. Verification rather means the process of checking, if all the
design constraints (refer to Subsection 3.1.1) are met. This includes to
check the behavioral equivalence of two descriptions on different lev-
els of abstraction as well as to verify the algorithmic correctness and
computational performance of an implementation.

Verification of the ASIP hard- and software w.r.t. a behavioral reference
and additional time and interface constraints can be subdivided into the
following three subtasks:

• Verification of the ASIP software and the ASIP instruction set sim-
ulator (ISS): Behavioral equivalence check of the ASIP SW run-
ning on an ASIP ISS for all possible input patterns. This verifica-
tion task has to use a cycle-true instruction set simulator in order

112 Chapter 5. The ASIP Design Flow

to determine the cycle count of the implementation, which has to
meet the cycle constraints of the application24.

After succesful completion of this task, the instance of the cycle-
true ISS that has been used for this verification has also been quali-
fied as a golden reference for the following verification of the ASIP
hardware

• Verification of the ASIP hardware (processor core): Equivalence
check between the behavior of the ASIP instruction set simula-
tor (which is used as a golden reference) and the ASIP hardware
implementation

• Verification of the ASIP hardware in the system environment (in-
terfaces): The check, if the ASIP hardware interfaces comply with
the specification. For this step, a model of the ASIP environment
is needed, which allows to integrate the ASIP hard- and software
in the system environment

Theoretically, the ASIP software can be verified together with the ASIP
hardware, using a cosimulation between the ASIP simulated using an
HDL simulator and the reference software implementation. However,
due to the slow simulation speed of HDL simulators, this approach leads
to excessive simulation runtime, which is prohibitive, if many modes of
operations have to be simulated. The proposed approach separates the
ASIP hardware verification and the ASIP software verification, which
significantly reduces the total simulation effort. Furthermore, with this
methodology it is guaranteed, that the ASIP hardware fully corresponds
to the ASIP specification, which enables the designer to apply late (pos-
sibly post-silicon) design changes to the ASIP software, without having
to worry about errors in the ASIP hardware.

The ASIP software verification process can (theoretically) be solved
by exhaustive cosimulation between the behavioral reference imple-
mentation and the ASIP software running on a fast ASIP instruction
set simulator. For complex applications with a large number of differ-
ent operation modes and a large number of internal program states this
simulation leads to prohibitive long simulation runtimes. In such a case,

24This verification step has to be performed in combination with a worst case cycle analysis of the final
implementation according to Subsection 5.3.5.

5.4. Verification 113

a divide and conquer approach can be used, in order to verify small, in-
dependent parts of the application code25. An alternative would be to
use a formal description as a reference implementation like in [198], but
this would necessitate additional design effort (and possibly introduce
additional mistakes in the formal specification), which is prohibitive to
get a fast time to market. The use of a thoroughly verified, high level
language compiler can significantly accelerate this verification step, be-
cause this corresponds to a correct by construction design approach.
However, even in this case extensive functional simulations are needed
in order to verify the correct behavior of the instruction set simulator,
which is supposed to be used as a reference for the next verification
task.

In this thesis the simulation-based verification approach is advocated,
because this approach does not introduce the overhead of additional
descriptions. Furthermore, the stimuli for application profiling can be
reused as a basis to obtain a good application code coverage. It is also
worth mentioning, that a library-based ASIP design approach signifi-
cantly facilitates this design task, because the designer only needs to
verify the application-specific parts of the program and the application-
specific modifications of the ISS rather than the complete program26

and the complete ISS.

Example: The verification of the software and the instruction set simulator for
the DVB A&T application has been achieved using exhaustive simulation of
all operating modes together with manually generated stimuli for data inputs
in order to reach all relevant internal states. The instruction coverage of the
software has been verified with a coverage tool, whereas the internal state
coverage has been manually verified using generated histograms. In addition
to these simulation scenarios, pseudo-random data inputs have been used in
order to increase the level of confidence in the implementation. This verifica-
tion task has required about 28% of the total design time.

The hardware verification of the ASIP processor core is needed to
check for implementation errors in the ASIP hardware implementations
w.r.t. the reference instruction set simulator. The purpose of test pro-
grams in this context is to stimulate the hardware description of the
processor in order to achieve a certain coverage goal for implementa-
tion errors. Due to the high abstraction level of a RTL-based hardware

25In some cases, the ASIP software has to be modified in order to support this approach.
26Provided that the optimizing compiler for the base architecture is 100% error free.

114 Chapter 5. The ASIP Design Flow

description, this verification task is much simpler and needs much less
stimuli than test vector generation for post-fabrication chip testing. On
the RT-level of abstraction, the functionalities of operators like adders,
shifters and multipliers are correct by definition (because they are syn-
thesized using automatic logic synthesis27) and do not need to be veri-
fied exhaustively. However, the scheduling and the interconnection of
all these RTL-operators and all the storage units as well as the func-
tionality of all implicitly and explicitly described finite state machines
have to be verified. Furthermore, manually designed optimized opera-
tors have to be exhaustively28 verified.

The metric that implicitly covers parts of this error model is the code
line coverage of a simulation. However, unlike the case of software ver-
ification, a full coverage of the HDL code for hardware is only a min-
imum requirement for verification. There are additional requirements
like

a) toggle coverage: each binary node in the RTL-description has to
switch from 0 to 1 or vice versa at least once during simulation
- this metric can also extended to groups of nodes, which are re-
quired to switch to any (possible) binary combination (this metric
also includes the state coverage of finite state machines)

b) for finite state machines the so called state, transition and limited
path coverage has to verify the possible state transitions and check
whether don’t-care inputs can trigger wrong state transitions

c) functional coverage exercises a set of error-prone execution
scenarios in order to check for critical events like pipeline-
interlocking, data-forwarding or interrupts

Furthermore, the stimuli and the observation points for the cosimulation
have to be chosen in order to maximize the effective observability-based
statement coverage which was first defined in [65]. This means for in-
stance, that test vectors that are suppressing the propagation of internal

27Implementation errors of the synthesis tool itself are obviously possible, but they can not be verified at
this level of abstraction. In this case it is rather necessary to take advantage of formal verification between
the RTL description and the synthesized netlist of a design by using commercial equivalence checkers like
Synopsys’ Formality [237] or CVE [33] which is an in-house tool of Infineon Tech. AG.

28For many manually designed operators, (nearly) exhaustive verification is in fact possible, due to the
low complexity of these operators.

5.4. Verification 115

incorrect values to the observation points should be avoided. A good
overview of verification issues is given in [241].

The approach that is advocated in this thesis for the RTL design ver-
ification is based on the work that the author has published in [87].
Starting from an instruction set architecture definition and a set of user-
defined rules, constraints, and test biases, a test case generator (TCG)
is used to generate the test programs that satisfy the above-mentioned
constraints. The selected approach enables the support of significantly
different architectures29, because the user has direct control over the test
case generation process. A detailed description of the TCG tool is given
in Subsection 6.3.2.

Example: For the DVB-T A&T application automatic test program generation
has been used in order to verify the behavior of the HDL description for bound-
ary conditions. Furthermore, functional cosimulation using a subset of the al-
ready available stimuli for software verification has been performed in order to
simulate the typical behavior of the implementation. These test programs and
test stimuli have been added to a regression test suite to verify the functional-
ity of the implementation after design changes.
It has to be emphasized that the DVB-T A&T implementation has been de-
signed in order to ease verification. This has been achieved by a largely
orthogonal base implementation complemented by application-specific func-
tional units. The orthogonal base architecture and the application-specific
functional units have been verified separately. Unorthogonal features like
multi-cycle, multi-word instructions, and complicated internal state machines
have been avoided. This significantly eases the debugging process for the
hardware implementation during cosimulation with the bit- and cycle-true in-
struction set simulator. This hardware verification task has required about 11%
of the total design time.

The last verification task, namely the verification of the ASIP hard-
ware interfaces is needed to check, if the ASIP interfaces comply with
the constraints of the system environment. The different verification
tasks concerning these interfaces are

• the interface protocol constraints

• the low level timing constraints of the final synthesized, placed and
routed design

• correct interconnections
29This methodology has been succesfully applied to a TMS320C25 DSP clone in [87] (accumulator based

architecture) and to the DVB-T A&T processor of the case study in Section 7.1 (load/store architecture).

116 Chapter 5. The ASIP Design Flow

The low level timing constraints have to be checked after synthesis of
the complete system and/or after place and route. The interconnections
between the ASIP and the system environment as well as the correct
implementation of the interface protocols require a simulation of the
ASIP hardware description (running the ASIP application software) in
a model of the system environment. This model of the system can either
be a monolithic RTL-based hardware description or a heterogeneous set
of behavioral or RTL-based hardware blocks, which can be simulated
within a commercial system simulation environment like e.g. Synop-
sys’ CoCentric System Studio [238] or Cadence’s VCC [39].

Example: For the simulation of the complete DVB-T system including all digital
parts of the DVB-T receiver, RTL-VHDL simulation on a high end workstation
with multiple parallel CPUs has been used. This verification task has required
about 6% of the total design time.
For even more complex systems in the future, however, this methodology
might become difficult due to excessive simulation runtime. Models that use a
higher level of abstraction and enable faster simulation might be a solution for
this issue.

5.5 Concluding Remarks

This chapter has introduced the proposed ASIP design flow of this the-
sis. In contrast to previous ASIP design approaches, the ASIP hard-
and software is in the main design iteration loop of the proposed design
methodology. This implies that many of the tedious ASIP design tasks
have to be automated to a large extent in order to obtain a short time-to-
market. The next chapter briefly describes the LISA tool suite, which
is able to meet this requirement. A special focus of the next chapter are
new concepts for hardware generation and verification, that have been
triggered by this thesis.

Chapter 6

The ASIP Design Environment

This section starts by giving an overview of the LISA1 processor de-
scription language and the tools that can be generated by the LISA
design environment2. The focus of this chapter are the concepts and
tools for ASIP-specific extensions to this former design environment
that have been developed in this thesis. The features of the latest LISA
tool suite (status of october, 2003) are summarized in Appendix A.

6.1 The LISA Language

The LISA language is based on two different language constructs,
namely

• resources, which declare storage units like data and address regis-
ters, pipeline registers etc. as well as the memory organization

• operations, which define the instruction syntax, the instruction
coding and the state transitions that are performed by instruction
execution

The RESOURCE section is a straightforward description of the proces-
sor resources, using a syntax which resembles the definitions of vari-
ables in the high level language C. Listing 6.1 shows an excerpt of a
RESOURCE section for the scalar part of the ICORE-II architecture
described in Section 7.2.

Listing 6.1 demonstrates the usage of data types for fixed point arith-
metic with arbitrary bit width (the bit data type), which is one important
feature of LISA for ASIP design. The bit width is one key parameter

1Language for Instruction Set Architecture Description [286]
2This summary refers to the LISA tools as available, when this thesis was started. In the meantime,

many enhancements proposed by this thesis have been implemented in the production version of the LISA
tools.

118 Chapter 6. The ASIP Design Environment

RESOURCE // EVD-PAST-Processor
{

MEMORY_MAP
{

0x0000 -> 0x0200, BYTES(3) : prog_mem[0x0000..NUM_PROGMEM_WORDS-1],
BYTES(3);

0x0000 -> 0x0100, BYTES(4) : data_mem_r[0x0000..NUM_DATAMEM_WORDS-1],
BYTES(4);

0x0000 -> 0x0100, BYTES(4) : data_mem_i[0x0000..NUM_DATAMEM_WORDS-1],
BYTES(4);

}

PROGRAM_MEMORY long prog_mem[0x0000..NUM_PROGMEM_WORDS-1];
DATA_MEMORY signed bit[MEM_WL] data_mem_r[0x0000..NUM_DATAMEM_WORDS

-1];
DATA_MEMORY signed bit[MEM_WL] data_mem_i[0x0000..NUM_DATAMEM_WORDS

-1];

PROGRAM_COUNTER unsigned int PC; // normal PC
REGISTER unsigned int BPC; // PC for Branch Processing
REGISTER unsigned int OPC;
REGISTER bool BPC_valid;

REGISTER signed bit[DP_WL] FR_r[0..NUM_FREGISTERS-1];
REGISTER signed bit[DP_WL] FR_i[0..NUM_FREGISTERS-1];
REGISTER signed bit[ld_NUM_MEM_WORDS] R[0..NUM_IREGISTERS-1];

PIPELINE pipe = { FE; DE; EX };
PIPELINE_REGISTER IN pipe {

long instr1, instr2, instr3, instr4; /* 24 bit words */
int pc;

};

long cycle, instruction_counter;

/* zero overhead loop support */
int ZOLP_active[0..NUM_NESTED_ZOLP-1];
int ZOLP_start_addr[0..NUM_NESTED_ZOLP-1];
int ZOLP_end_addr[0..NUM_NESTED_ZOLP-1];
int ZOLP_R_end_value[0..NUM_NESTED_ZOLP-1];
int ZOLP_increment_flag[0..NUM_NESTED_ZOLP-1];

...
}

Listing 6.1: Example RESOURCE Section

that has to be tailored to an application in order to reduce the hardware
overhead. Furthermore, the RESOURCE section supports constants,
which can be included from a standard C header file in order to param-
eterize the implementation. This helps the designer to keep the descrip-
tion consistent, which has been proved to be useful in hardware descrip-
tion languages like VHDL (the GENERIC parameters) and Verilog (the
parameter values). In case of multiple operations per pipeline stage the

6.1. The LISA Language 119

keyword REGISTER used together with a compiler flag enables cycle
accurate behavior of clocked resources. This feature is needed in or-
der to obtain an unambiguous result regardless of the order of executed
operations3

The OPERATION section in LISA is used to describe the state tran-
sitions of the resources by specifying the properties of the processor
instructions. For this purpose, the OPERATION section has several sub-
sections:

• a DECLARATION section, which declares instances or groups in
order to construct a complete tree of operations for one processor
instruction

• a CODING section, which defines the coding for the actual oper-
ation resulting in a coding tree for the complete instruction set of
the processor

• a SYNTAX section, which defines the assembler syntax of the ac-
tual operation resulting in the complete syntax definition for the
instruction set

• a BEHAVIOR section, which defines the state transitions per-
formed by an operation

• an ACTIVATION section, which triggers the behavior of other op-
erations

• an EXPRESSION section, which returns values to parent4 opera-
tions

• a SEMANTIC section, which will be used for future compiler sup-
port in order to provide additional information to a future compiler
generator

3Without this flag and under certain conditions, LISA is prone to race conditions, which result in an
incorrect result of clocked resources. A simple example is a flag that is modified by one operation in a
pipe stage and that is read by another operation in the same pipe stage. Without the clocked behavior, the
updated (and wrong) value is read (if the modified operation has been executed first), whereas in case of
clocked behavior the old registered (correct) value is read in any case. This feature is analogous to race
conditions in Verilog, which have to be avoided by the designer.

4The parent of an operation refers to the tree which represents the hierarchy of operations. This tree can
be seen as a decomposition of an instruction into smaller parts e.g. register fields associated to register read
operations, memory fields associated to memory accesses etc.

120 Chapter 6. The ASIP Design Environment

Listing 6.2 shows an extract for the description of a coding subtree,
which is used to describe the branch instructions of the processor in
Section 7.2. In this listing the operation insn branch is the parent of the
operations insn branch cond and insn branch uncond.

OPERATION insn_branch IN pipe.EX
{

DECLARE
{ GROUP insn = { insn_branch_cond || insn_branch_uncond };
GROUP adr = { address_op }; }

CODING { 0b00 0bx[1] insn adr }
SYNTAX { insn adr ")" }

BEHAVIOR
{
adr(); // perform address calculation before instr. execution!
insn(); // (addresses are temporarily stored in global variables)

}
}

OPERATION insn_branch_cond IN pipe.EX
{

DECLARE
{ GROUP insn = { FBZ || FBARGE }; }
// cond. branch
// if register zero (FBZ)
// if abs(real(register1)>=register2

CODING { 0b1 0bx[3] insn }
SYNTAX { insn }
BEHAVIOR { insn(); }

}

OPERATION insn_branch_uncond IN pipe.EX
{

DECLARE
{ GROUP insn = { B || LPINI }; } // uncond. branch/init. zero ovhd. loop
CODING { 0b0 0bx[3] insn }
SYNTAX { insn }
BEHAVIOR { insn(); }

}

OPERATION FBZ IN pipe.EX
{

DECLARE
{ INSTANCE freg; }
CODING { 0b0 freg 0bx[3] }
SYNTAX { "FBZ" "(" freg "," }
BEHAVIOR { if ((FR_r[freg].ExtractToLong(0,LONGBITS)==0) &&

(FR_r[freg].ExtractToLong(0,LONGBITS)==0)) {
BPC_valid = 1; BPC = address_tmp_var;
PIPELINE_REGISTER(pipe, FE/DE).flush();
PIPELINE_REGISTER(pipe, DE/EX).flush();}

}
}
...

Listing 6.2: Example Coding Tree Description for Branch Instructions

6.1. The LISA Language 121

In Listing 6.3 the coding root for the same processor is described, which
supports 24/48 bit instruction word widths. The root of the coding tree is
defined by the keywords CODING AT. The SWITCH statements decides
as a function of one bit in the coding, whether a one or a two word
instruction is selected (insn 1word or insn 2word).

OPERATION decode IN pipe.DE
{ DECLARE { ENUM InsnType = { type_1word, type_2word};

GROUP Insn_grp_1word = { insn_1word };
GROUP Insn_grp_2word = { insn_2word }; }

SWITCH (InsnType)
{
CASE type_1word:
{

CODING AT (OPC) {
PIPELINE_REGISTER(pipe, FE/DE).instr1 == Insn_grp_1word}

SYNTAX { Insn_grp_1word }
ACTIVATION { Insn_grp_1word }

}
CASE type_2word:
{

CODING AT (OPC) {
(PIPELINE_REGISTER(pipe, FE/DE).instr1 == Insn_grp_2word=[24..47])

&& (PIPELINE_REGISTER(pipe, FE/DE).instr2 == Insn_grp_2word=[0..23])}
SYNTAX { Insn_grp_2word }
ACTIVATION { Insn_grp_2word }

}
}

}

OPERATION insn_1word IN pipe.DE
{

DECLARE
{ GROUP insn = { insn_branch || insn_one_cycle ||

insn_multi_cycle ...}; }
CODING { 0b0 insn }
...

}

OPERATION insn_2word IN pipe.DE
{

DECLARE
{ GROUP insn = { FSI_VEC || FMMMUL_VEC || FMADD_VEC ||

FMSUB_VEC ... };}
CODING { 0b1 0b00 insn }
SYNTAX { insn }
BEHAVIOR { PC = PC + 1; OPC = OPC +1;
// insn(); /* replaces the following activation in this case */

}
ACTIVATION { insn }

}

Listing 6.3: Example Description of Coding Root

122 Chapter 6. The ASIP Design Environment

The LISA language has the ability to describe pipelined architectures.
A specific operation can be assigned to a certain pipeline stage using
the keyword IN together with a declaration of the stage names in the
RESOURCE section (see Listing 6.1). The operations in Listing 6.2 are
executed in the pipeline stage EX, whereas the operations in Listing 6.3
are executed in stage DE.

The assembler syntax for one instruction is described by the ensemble
of all operations that describe the behavior and coding of this instruc-
tion. As an example, Listing 6.4 describes the syntax of the instruction
FADD: A legal instance of this instruction is e.g. FADD (FR1, FR7).

OPERATION insn_2freg IN pipe.EX
{

DECLARE
{

GROUP fregs1, fregd1 = { freg };
GROUP insn = { FADD || FSUB || FMUL };

}
CODING { 0b001 0bx[4] insn fregs1 fregd1 }
SYNTAX { insn "(" fregs1 "," fregd1 ")" }
ACTIVATION { insn }

}

OPERATION freg IN pipe.EX
{

DECLARE { LABEL index; }
CODING { index=0bx[3] }
SYNTAX { "FR" ˜index=#U }
EXPRESSION { index }

}

OPERATION FADD IN pipe.EX
{

DECLARE
{

REFERENCE fregs1, fregd1;
}
CODING { 0b000 0bx[4] }
SYNTAX { "FADD" }
BEHAVIOR { FR_r[fregd1] = FR_r[fregd1] + FR_r[fregs1];

FR_i[fregd1] = FR_i[fregd1] + FR_i[fregs1]; }
}
...

Listing 6.4: Example Syntax Description of FADD Instruction

Listing 6.4 is also an example for the usage of an EXPRESSION section,
which returns the numeric value of the 3 bit register field freg to the
operation insn2 freg in this case. These values are not directly needed

6.2. The LISA Design Environment 123

in operation insn2 freg, but rather referenced (keyword REFERENCE)
and used by the operation FADD in order to perform the actual complex
addition.

Listing 6.3 depicts an example for the ACTIVATION section, which is
used in order to trigger the execution of further instructions that are
declared after the GROUP keyword. In this case the ACTIVATION
section in Listing 6.3 can be replaced by an explicit call to insn() in the
BEHAVIOR section in this example. The order of execution of ACTI-
VATION and BEHAVIOR section depends on a LISA compiler switch.
For the current example, this switch is set to execute the BEHAVIOR
section first.

6.2 The LISA Design Environment

Development tools for software and hardware are of paramount impor-
tance for ASIP designs in order to efficiently profile the applications
and architectures and to obtain error-free implementations. The appli-
cation and architecture profiling methodology in Chapter 5 requires a
retargetable compiler as well as a simulator with profiling capabilities.
Furthermore, hardware generation using a high level architecture de-
scription is beneficial to reduce the design time.

The LISA ASIP design environment uses a single LISA description in
order to generate the following software design tools: assembler, linker
and simulator with API as well as debugger, debugger GUI, profiler
and cosimulation interfaces. Figure 6.1 provides an overview of this
design environment: The LISA processor compiler5 is the heart of this
environment and generates the design tools automatically according to
Figure 6.1.

The generated tools support a large part of the software development
process for ASIPs, currently with the exception of a HLL compiler,
which is subject to ongoing research.

5The name LISA Processor Compiler does not refer to a high level language compiler, which generates
assembly code for a processor. The LISA processor compiler is rather responsible to generate the above-
mentioned software design tools.

124 Chapter 6. The ASIP Design Environment

Assembler

Linker

Simulator

Debugger

Model Debugger

Profiler

HDL-Model

Cosimulation

Interface
Disassembler

LISA

Processor

Model

LISA- IDE

LISA

Processor

Compiler

Figure 6.1: The LISA Processor Design Environment

A significant part of the overall design time according to Appendix F
is needed for the hardware description and verification of an ASIP. Re-
cently6, the hardware generation task has been fully automated by the
LISA HDL generator, which has been developed at the Institute for In-
tegrated Signal Processing Systems [218].

This HDL generator uses the pipeline description in the LISA RE-
SOURCE section to automatically generate the ASIP pipeline registers
as well as a coarse structure of the ASIP. Furthermore, the decoder is
generated using the information of the CODING sections. Empty wrap-
pers for the functional units can be automatically obtained, whereas the
generation of the internal structure of these functional units is currently
being developed. In order to achieve this additional functionality, the

6When I wrote the first version of this thesis, this LISA task was still only partially automated. Currently,
a large part of the enhancements for HDL generation described in the following sections are already fully
functional in the LISA production tools.

6.3. Extensions to the LISA Design Environment 125

LISA keyword UNIT has been introduced in order to bind operations to
functional units.

The LISA processor design methodology as available, when this thesis
has been started, had two considerable disadvantages:

• the designer had to provide full and consistent CODING informa-
tion even during design exploration, which often required changes
in the complete coding tree, especially if additional instructions
were inserted

• tedious verification of the complete ASIP description, consisting
of automatically generated and hand-written parts

Enhancements to this design methodology are presented in the follow-
ing section, which remove these disadvantages and enable to obtain op-
timum results within a significantly reduced design time.

6.3 Extensions to the LISA Design Environment

In this section, two extensions to the LISA design environment are de-
scribed that have been developed in this thesis: An instruction encoding
and decoder generator, as well as a semi-automatic test pattern genera-
tor. Apart from the speed up in design time for both approaches, the in-
struction encoding generator automatically produces instruction encod-
ings with an optimum coding density to reduce the instruction memory
size. Furthermore, significant energy savings for a given program will
be demonstrated by using encoding optimization that takes into account
the profiling information of the program.

6.3.1 Instruction Encoding and Decoder Generation

Initially7, the LISA language required the user to specify the detailed
coding of each instruction right from the beginning of a design space

7The current version of the LISA tools includes a fully functional automatic coding capability as sug-
gested by this thesis.

126 Chapter 6. The ASIP Design Environment

exploration. This had the consequence of tedious manual modifications
in complete coding subtrees, if new instructions were inserted.

Automatic coding generation is useful in order to speed up this process:
The user only has to specify the instruction operands, whereas the in-
struction opcode field can be omitted. The detailed instruction coding
is generated automatically exploiting the information of used operands
that is provided by the DECLARE section. After this process is fin-
ished, the LISA compiler can generate the software programming tools
as usual. Furthermore, the hardware description of the decoder can eas-
ily be generated. For this thesis, an experimental EDA tool for this task
has been implemented, which is referred to as ICON8 in the following
discussion.

The percentage of the instruction memory power of an ASIP can be sig-
nificant according to the results of the case study in Appendix F. For
applications with larger instruction memories (or instruction caches im-
plemented by RAMs) this percentage is obviously even higher. The
ASIP instruction coding directly affects the size and the energy con-
sumption of the instruction memory. For this reason, an additional au-
tomatic optimization step to instruction coding has been developed.

The instruction coding affects the silicon area for the program memory
as well as the energy consumption for the following reasons:

• the power consumption and the area of the instruction memory are
approximately proportional to the instruction width, provided that
the access schemes and the toggle activity are constant

• a large part of the energy consumed in the instruction memory
depends on the toggle activity of the internal bit lines (refer to
Figure 6.5), which represent large capacitances

• in case of external instruction memory, the instruction bus is even
more heavily loaded by pad and external capacitances leading to a
considerable power contribution

As a consequence, ICON has two different optimization tasks:

• minimization of the instruction width
8Instruction COding geNerator

6.3. Extensions to the LISA Design Environment 127

• minimization of either the

– internal memory toggle activity or the

– toggle activity on the instruction bus

The following definitions of important terms w. r. t. instruction coding
are used in this discussion:

• the term instruction (or instruction instance) represents the idea
of one specific ASIP instruction with an associated behavior e.g.
MOVI #3, R5 (move the value 3 to register 5)

• instruction operand refers to the operands of an instruction like
e.g. #3 or R5 in the above example

• the term instruction word or instruction code word refers to the
coded representation of one instruction e.g. “000111001010...”

• the term instruction type is the generic term for the set of possible
instructions with the same behavior and the same operand types
like e.g. addition of an immediate to a register value (represented
by the mnemonic MOVI)

• the term operation code or opcode refers to the part of the instruc-
tion code word, which determines the instruction type

• the instruction format determines the position of the opcode and
the operand fields within the instruction word for each instruction
type

For the sake of simplicity and due to the fact that many ASIPs use sim-
ple fetch and decoding units, only constant length instruction words are
covered in the following.

6.3.1.1 Minimization of the instruction width

This task can be performed with or without a reduction in flexibility of
the instruction set. The lower bound of the instruction word width is
given by the width of the binary word which is needed to enumerate all
the different instruction instances that are used in a given program. If

128 Chapter 6. The ASIP Design Environment

we count Nused instructions different instructions in a given program this
results in the minimum width of

Winstr,min = �ld(Nused instructions)� (6.1)

This minimum instruction word width has the demerit of massively re-
ducing the flexibility and reusability of the instruction set, because pro-
gram changes requiring new instructions with different operand values
are impossible. Furthermore, this methodology necessitates a signifi-
cant effort for decoding, which is prohibitive for logic synthesis in case
of many different supported instructions.

On the other hand, a reasonable upper bound9 for the instruction word
width can be obtained by including all the different operand fields each
of width Woperand,i and the opcode field of width Wopcode for each in-
struction type into the instruction code word and performing the maxi-
mum operation, which results in a width of

Winstr,max = max
∀opcode types

(Wopcode +
∑

i

Woperand,i)

= max
∀opcode types

(Wopcode + Woperand fields) (6.2)

The opcodes that are assigned to the Ninstr types different instruction
types can use e.g.

• one-hot encoding [46] which yields (the upper bound of the op-
code width of)

Wopcode,one hot = Ninstr types (6.3)

• constant width encoding by simple enumeration resulting in

Wopcode,enum = �ld(Ninstr types)� (6.4)

• prefix encoding using code words of different widths (similar to
the concept of a Huffman-code [119], resulting in the lower bound
for the opcode width as demonstrated later on)

9More coding bits would represent a waste, but are obviously possible.

6.3. Extensions to the LISA Design Environment 129

The one-hot encoding approach is only useful in order to get an ex-
tremely simple decoder in hardware, which is irrelevant to the consid-
ered decoder complexities in the context of ASIPs with a reasonable
amount of different instruction types (typ. < 100 instruction types).
For practical implementations either the prefix or the constant width en-
coding approach is favorable in order to minimize the instruction word
width.

After the ASIP designer has determined the useful instruction
operands10, the tool ICON optimizes the instruction opcode assign-
ments. For the prefix code, ICON uses an algorithm similar to the
one for constructing a Huffman code (cf. Cormen [59], pp. 339-341).
Instead of the symbol probability of the Huffman approach, the total
width of the operand fields Woperand fields,j of each instruction j is used
to build the Huffman tree. Consequently, the annotation of the new node
has to be performed using the modified update function for the so-called
merge operation

w(z) = max(w(x), w(y)) + 1 (6.5)

instead of the simple addition of probabilities in the original Huffman
tree construction algorithm. This new update function reflects the fact,
that the new subtree has the coding width of the maximum of the sub-
trees incremented by one for an additional decision bit between the
right and the left subtree. Listing 6.5 depicts the resulting algorithm,
which constructs an optimum opcode assignment. The optimality fol-
lows from the optimality of the greedy algorithm for the original Huff-
man coding problem [59].

For instruction sets with differences between the sum of the used
operand field widths Woperand fields for different instruction types, this
methodology typically yields a shorter overall coding width Winstr than
the constant opcode width approach. Otherwise, the width is equal to
the constant opcode width encoding approach.

Example: Consider the instructions, which are depicted in Figure 6.2. They
have the operand field widths Woperand fields,i=0···7 = (6, 19, 13, 3, 9, 0, 9, 9) (the
empty fields represent unassigned bits in the instruction word).

10Omissions of operand-fields for certain instructions are possible, but reduce the flexibility and orthog-
onality of the instruction set. This critical decision should be left to the ASIP designer.

130 Chapter 6. The ASIP Design Environment

/* C is a set of n different instruction types with
associated operand widths */

MOD_HUFFMAN (C)
1 n = |C|
2 Q = C // Q is a prority queue
3 FOR i=1 TO n-1
4 DO z = ALLOCATE_NODE // -create new node instance
5 x = left(z) = EXTRACT_MIN(Q) // -extract the two min. nodes
6 y = right(z) = EXTRACT_MIN(Q) // operand widths from Q
7 w(z) = max(w(x),w(y))+1 // -new update function
8 INSERT(Q,z) // -insert new subtree in Q
9 RETURN EXTRACT_MIN(Q) // -return root of Huffman tree

Listing 6.5: Algorithm for Optimum Opcode Coding Tree Construction

0: MOV Rs, Rd

1: MOVI #imm, Rd

2: R (ARn,$offset), Rd

3: CLR Rd

4: MUL Rs1, Rs2, Rd

5: SLEEP

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RdRs

Rdimm

RdARnoffset

Rd

RdRs2Rs1

6: ADD Rs1, Rs2, Rd RdRs2Rs1

7: SUB Rs1, Rs2, Rd RdRs2Rs1

Figure 6.2: Operand Widths of Example Instruction Set

A constant width encoding approach requires 3 bits in the opcode field to
code the 8 different instruction types, which results in an overall instruction
width of 19+3=22 bits (19 bits are needed for the operands of instruction 1).
The proposed algorithm for prefix encoding requires only 20 bits according to
Figure 6.3. The final instruction coding for this prefix encoding approach is
depicted in Figure 6.4. Here, it is obvious that the instruction 1 determines the
overall instruction width due to the long intermediate field.

For the real-world instruction set in Appendix C this coding assignment
optimization also yields a 10% reduction in coding width. It has to be
emphasized, that this optimization does not impair the flexibility and
reusability of the instruction set.

6.3. Extensions to the LISA Design Environment 131

F:0 D:3

40 1 A:6

70 1 E:9

100 1

110 1

G:9 H:9

0 110

C:13

140 1 B:19

200 1

Figure 6.3: Coding Tree for Example

A: MOV Rs, Rd

B: MOVI #imm, Rd

C: R (ARn,$offset), Rd

D: CLR Rd

E: MUL Rs1, Rs2, Rd

F: SLEEP

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RdRsdon't care

Rdimm1

RdARnoffset

Rddon't care

RdRs2don't care

don't care

don't care

Rs1

G: ADD Rs1, Rs2, Rd RdRs2don't care Rs1

H: SUB Rs1, Rs2, Rd RdRs2don't care Rs1

0 0 0 0 1

0 1

0 0 0 0 0 1

0 0 0 1

0 0 0 0 0 0

0 0 1

0 0 1 1

0

Figure 6.4: Final Instruction Coding for Example

6.3.1.2 Minimization of the Toggle Activity

The first toggle activity optimization that is described here is the opti-
mization of the toggle activity for on-chip instruction memories. In
Figure 6.5 the internal structure of a read-only memory is depicted11

11The depicted ROM uses NMOS-bit cells. RAMs use a comparable structure with different memory
cells.

132 Chapter 6. The ASIP Design Environment

6.3. Extensions to the LISA Design Environment 133

Typical NMOS-ROMs use a two-phase access scheme, which starts by
precharging the bit lines to logic 1 in the first phase. The access to a
row of bit cells is performed in the second phase by the row decoder
which asserts one word line. If a specific bit cell contains a logic 0,
the associated bit line is decharged. Otherwise, no decharging activity
occurs and the bit line remains in the charged state. Figure 6.6 shows
a model of the ROM with the relevant internal capacitances using ideal
switches for the bit cells. This ROM model has been used for the power
evaluations in this thesis. According to the case study in [47] 70% of
the total energy consumption of an SRAM is required for the bit lines,
the associated sense amplifiers and the bit cells themselves12. In the fol-
lowing, we assume 30% to 60% for the percentage of power consumed
by the bit line toggle activity of a ROM.

12This figure strongly depends on the organization of the memory: shorter bit lines can be traded-off for
longer word lines. Furthermore, divided bit and word lines or multi-block partitioning can be used [257].

134 Chapter 6. The ASIP Design Environment

The proposed algorithm to find an optimum instruction encoding takes
advantage of the fact that from an energy perspective the 0 bits in the
memory are more expensive than the 1 bits. A straightforward conclu-
sion is to assign 1s to each don’t care bit in each instruction. Further
degrees of freedom for this code assignment are:

• use of non-inverted or inverted operand fields as a function of the
specific instruction type

• use of a redundant operand representation with one additional in-
vert bit, which indicates, that the stored value has been bit inverted

• assignment of maximum weight first opcode codings, in case of
constant width encoding, or swapping of the binary decision bits
in the Huffman tree (ref. to Figure 6.3) in the case of prefix coding

The strategy to take one of the above-mentioned decisions is based on
instruction trace files13, which yield the frequency of each instruction
and histograms for the used operand fields. Typical ROM implementa-
tions store several memory words in one memory row according to Fig-
ure 6.5. Each access to one row results in toggle activity caused by all
the stored words in this row. This fact requires redefining the instruction
frequency as a basis for the above-mentioned optimization: An access
to one specific memory row results in an access to several instructions
in this model, thus, the access count of all the instructions residing in
this row has to be incremented. In case of divided word line or split bit
line memory implementations [176], this fact can readily be taken into
account, by redefining the above-mentioned instruction frequency.

The decision, if it is worth storing a certain operand field (e.g. the im-
mediate field of a MOVI instruction) using bit inversion, is based on the
frequency of 1 bits and 0 bits in this field. If the frequency of 0 bits is
higher than the frequency of 1 bits, this immediate field is inverted14.

The decision, if an additional invert bit is to be used for a certain
operand field, potentially increases the total instruction coding width. If
the sum of the operand fields Woperand fields of one instruction does not

13These instruction trace files need to be generated with the instruction set simulator.
14The value which is actually stored in the memory is the bit-inverted value of the original value. The

original value has to be restored by bit-inversion in the ASIP decoder, based on the specific decoded in-
struction or based on the additional invert bit.

6.3. Extensions to the LISA Design Environment 135

fully exploit the necessary instruction word length Winstr, this option
is an alternative to the above-mentioned static bit inverted representa-
tion. Otherwise, this decision is left to the designer to trade-off toggle
activity for instruction word width.

The opcode assignment is based on a maximum weight sorted set of all
possible opcode instances assigned to the set of instruction types that
are sorted according to the frequency in the instruction traces. A similar
consideration applies to the swap operation of binary bits within the
Huffman tree. The decision bits in the tree are swapped, if the 1 bit is
in the branch with the lower frequency. The result of this optimization
process is optimum for the given degrees of freedom, because of the
optimality of the individual assignments, which individually maximize
the number of 1 bits for each field.

Example: For the real-world ASIP of Section 7.1 the tool ICON has been
applied in order to perform the above mentioned coding optimization. Table 6.1
depicts the results of this optimization. The unoptimized binary coding is an
ad hoc-coding using prefix opcodes and logic 0s in the don’t-care positions. A
significant reduction of the toggle count can be achieved using ICON, which
yields about 70% reduction of the internal bit line toggle activity. Depending
on the percentage which is consumed by the toggle activity of the bit lines15

overall power savings of 10% to 20% are achieved for the case study.

encoding bit line savings
technique toggles (BL toggle

count)

unopt.
binary 2.93M -
optimized
encoding 0.829M 71,7%

Table 6.1: Results of Internal Memory Toggle Rate Optimization

In case of off-chip instruction memory, the optimization of the in-
struction coding is even more important, because of the impact on the
toggle activity of the chip pad and external capacitances. The optimiza-
tion problem in this case is different, because instead of maximizing the
static number of 1 bits, the number of 0 → 1 and 1 → 0 transitions has
to be minimized. The optimization problem can be expressed as

15Unfortunately, this percentage is unknown for the implemented memory of the case study in Sec-
tion 7.1. In this case, we assume a percentage between 30% and 60% as mentioned above.

136 Chapter 6. The ASIP Design Environment

argIT min

j=Winstr−1∑
j=0

i=Ntrace length−1∑
i=1

ITi,j ⊕ ITi−1,j (6.6)

where ITi,j represents the j-th bit of the instruction i in the instruc-
tion trace of length Ntrace length. The exclusive-or relation can also be
rewritten as

argIT min

j=Winstr−1∑
j=0

i=Ntrace length−1∑
i=1

ITi,j + ITi−1,j − 2ITi,jITi−1,j

(6.7)

The instruction coding for Equation 6.7 obviously has to meet addi-
tional constraints like unambiguous opcode and operand field assign-
ments, which have to be respected during the optimization process.

The degrees of freedom for this optimization are

• assignment of don’t care bits

• use of non-inverted or inverted operand fields or redundant repre-
sentation with invert bit

• assignment of opcode codings

• position of operand fields for each instruction type16

This optimization is difficult to handle, because of the huge problem
complexity and the unavoidable overlap of different instruction fields.
For this reason, the tool ICON uses a heuristic optimization technique,
which is motivated in the following. Consider the case of a constant
width opcode field, which occupies a certain bit range in the instruction.
Without a loss in generality, we assume that this range occupies the bit
positions 0 to Wopcode,enum − 1. Thus the task of optimizing the opcode
assignment for this case has to minimize the expression

j=Wopcode,enum−1∑
j=0

i=Ntrace length∑
i=2

ITi,j + ITi−1,j − 2ITi,jITi−1,j (6.8)

16The position of the opcode field itself has to start at a fixed location in order to enable the decode
operation. This is equally true for split opcode fields, which are not explicitly covered in this discussion.

6.3. Extensions to the LISA Design Environment 137

which is only a function of the actual opcode field assignment. The
transition matrix for these opcode fields Topcode(i, j) is defined as the
number of transitions between instruction type i and instruction type j,
where i, j ∈ {0, Ninstr types − 1}. This matrix can easily be computed
using the relevant information of the instruction trace. The heuristic
of opcode assignment starts by finding a maximum value17 in the off-
diagonal elements of matrix Topcode, which yields two instruction types
i and j with the highest transition frequency. Two codings of width
Wopcode,enum with a Hammming distance of one are assigned to these
instruction types i and j. The maximum value in matrix Topcode is
marked assigned and the heuristic continues by finding the next unas-
signed maximum value in the off-diagonal fields and assigns a coding
with minimum Hamming distance18. If several assignments are possi-
ble, the tool selects the coding that minimizes the incremental toggle
count considering a parameterizable number of other already assigned
instruction types.

This Greedy algorithm continues until all instructions are assigned. The
degrees of freedom in this algorithm are chosen randomly in order to
prune the complexity of the algorithm19. This approach allows to reit-
erate this algorithm several times in order to find better solutions.

Similar heuristics have been used to optimize the remaining assignment
problems, which are more complicated, due to the fact that the different
operand fields and the opcode field with prefix coding have overlap-
ping bit ranges. Furthermore, the position of operand fields for each
instruction type introduces an additional degree of freedom20. Heuris-
tics for the opcodes and the operand assignments are used as a basis
for a genetic optimization algorithm. The reproduction function of this
algorithm uses code exchanges both within one code assignments and
between several instances of code assignments. Table 6.2 shows the op-
timization results for a real-world case study using the above-mentioned

17Generally, there is no single maximum value in matrix Topcode.
18If one instruction type which is associated to this maximum is already assigned, the heuristic assigns a

coding to the other instruction types with minimum Hamming distance.
19Exhaustive optimization for a relevant problem size is impossible due to the algorithmic complexity.

Optimization approaches, which take into account several degrees of freedom (and use significantly more
runtime), have not been able to yield significantly better results.

20Commercial processors often use fixed positions for operand fields which occur in several instruction
types. This methodology saves multiplexers in the decoder. On the other hand, the area and power con-
tribution of this part of the decoder in our case studies in Appendix F clearly shows that this additional
complexity for the considered word widths is negligible.

138 Chapter 6. The ASIP Design Environment

toggle optimization. If we assume a load capacitance between 1pF and
10pF of the external instruction bus, this optimization saves between 1.8
and 9mW in total system power for a 100MHz system clock. Compared
to the power consumption of the ASIP in Appendix F, which is in the
order of 20mW, this saving is significant.

encoding absolute savings
technique toggles/1E3

adhoc assignment 521 0%
optimized 241 53.7%

Table 6.2: Results of Instruction Bus Toggle Rate Optimization

Once the code assignments of all the instructions is finished, the task of
generating the actual hardware decoder is straightforward. Currently,
ICON uses VHDL as target description language. Listing 6.6 depicts
extracts of the ICON-generated decoder description for a MIPS instruc-
tion set without coding optimizations. This decoder generation takes
advantage of the capabilities of VHDL to use structured data types like
records and enumeration types. This eases the development and the
debugging of the code, because the instruction mnemonics instead of
the instruction binary codes are shown in the waveform viewer during
simulation .

6.3.2 Semi-Automatic Test Case Generation

In Section 5.4 the importance of hardware verification has been moti-
vated. The proposed verification task can be facilitated using a test case
generation (TCG) tool to automate the generation of test programs and
test stimuli. This TCG tool has been conceived in order to provide stim-
uli for the cosimulation between a golden reference (which is typically a
high level instruction set processor21) and a given hardware description.
This simulation-based approach is comparable with the methodology
typically used for commercial processor designs (cf. e.g. [68] [118]
[149] [168] [174]) in order to cover typical fault models of the imple-
mentation.

21In [87] the equivalence between a VHDL implementation and a physical instance of the commercially
available TMS320C25 processor has been verified.

6.3. Extensions to the LISA Design Environment 139

entity score_predecoder is
port(clk, rstq: in std_logic;
insert_nop, insert_idle: in std_logic;
predecode_input: in std_logic_vector (22 downto 0);
predecode_output: out compl_operation_t);

end score_predecoder;

architecture predecode of score_predecoder is
signal predecoder_register: std_logic_vector (22 downto 0);
begin
process (predecoder_input)
begin

-- opcodes
case predecode_input (22 downto 19) is
when "0000" =>
predecode_output.opcode <= addi_op;
when "0001" =>
predecode_output.opcode <= andi_op;

...
when others =>

case predecode_input (22 downto 15) is
when "11100000" =>
predecode_output.opcode <= add_op;
when "11110000" =>
predecode_output.opcode <= sub_op;

...
-- operands

case predecode_input (22 downto 19) is
when "0000" | "0001" | "0010" | "0011" | "0100" | "0101" |

"0110" | "0111" | "1000" | "1001" | "1010" | "1011" |
"1100" | "1101" =>

predecode_output.reg0 <= conv_unsigned (0, 5);
predecode_output.reg1 <= unsigned (predecode_input (18 downto 14));
predecode_output.reg2 <= unsigned (predecode_input (13 downto 9));
predecode_output.imm <= signed (predecode_input (8 downto 1));
predecode_output.addr <= conv_unsigned (0, 8);
predecode_output.raddr <= conv_signed (0, 8);
when others =>

case predecode_input (22 downto 15) is
when "11100000" | "11100001" | "11100010" | "11100011" |

"11100100" | "11100101" | "11100110" | "11100111" |
...

end case;
end case;
end process;
end predecode;

Listing 6.6: Extract of a generated VHDL Decoder

If the abstraction level of operator-based RTL hardware design is used,
the fault model for this verification task does not have to cover the oper-
ator implementations themselves22. The fault model for this verification

22This statement does not cover custom designed operator implementations but is rather valid, if operator
implementations are taken from a synthetic operator library like the DesignWare library of Synopsys [233].

140 Chapter 6. The ASIP Design Environment

task rather focuses on the correct interconnections and the scheduling
of the instanciated high level operators as well as on custom designed
operators and on finite state machines.

Custom designed operators should be verified in a first verification step
by e.g. exhaustive simulation or formal techniques. Exhaustive or
nearly exhaustive simulation of these operators is very often possible,
due to the limited amount of inputs for these operators. This verifi-
cation task corresponds to the use of a divide-and-conquer verification
methodology and helps to reduce the total amount of simulation vectors
in order to obtain a certain coverage of the implementation.

The proposed TCG tool needs the user to evaluate the coverage of a
given test program23 suite and to define the basic structures of new
test programs that enable a higher simulation coverage. Theoretically,
this step can also be automated using an approach similar to [260] or
[108]. Unfortunately, these approaches require a formal description of
the hardware behavior and are restricted to simple architectures.

According to the results of this thesis that have already been published
in [87], test case generation using pseudo-random test vectors typically
achieves a remarkable percentage of state and execution coverage. This
statement agrees with the results in [260]. The uncovered part of the
design represent typically less than 5% to 10% percent and have to be
covered using manual interaction.

The proposed TCG tool of this thesis is able to generate pseudo-random
test programs and test I/O stimuli. Furthermore, the user can control
this test vector generation with so-called rules to obtain a certain struc-
ture in the test program. By using these rules the user can describe
e.g. program loops with a defined exit condition or similar conditional
constructs. An example for these rules is given in Listing 6.7. These
rules use a C-like description style in order to call a predefined ASIP-
specific function (gen instr) to generate an instruction. Instructions
(e.g. RPTK INSN for the C25 repeat instruction RPTK) and instruction
groups (e.g. ANY REPEATABLE INSN) can be selected as argument
for the function gen instr. Furthermore, the arguments of these instruc-
tions can be constrained using e.g. the random function RND. The next

23Note that the term test program refers to the program which is actually used to verify the hardware
description and not for hardware testing.

6.3. Extensions to the LISA Design Environment 141

step is to speculatively simulate the generated instruction(s) and insert
them - after successful simulation - in the test program (using the func-
tion simulate and commit). Other functions are able to generate labels
(gen label) and to generate random values that can be retrieved later on
(clear arr, ST RND and RE VAL).

/* rule to use a C25 repeat immediate instr. */
RPTK_RULE:
gen_instr(RPTK_INSN,RND(3,20)); // generate RPTI instr.
gen_instr(ANY_REPEATABLE_INSN); // generate repeated instr.
simulate_and_commit(30); // speculative execution of max.

// 30 cycles and commitement in
// case of successful simulation

/* rule to generate a loop with constant iteration count (ICORE) */
LOOP_RULE:
gen_instr(LPINI_INSN,RND(2,10),PC+6); // random repeat count
for(int i=0; i<=5; i++) // generate 5 random arith.

gen_instr(ANY_ARITH_INSN); // instructions with rand. operands
simulate_and_commit(60); // speculative execution of max.

// 60 cycles and commitement in
// case of successful simulation

/* rule to check, if BEQ works (ICORE) */
BEQ_RULE:
clear_arr();
gen_instr(MOVI_INSN,ST_RND(-128,127),"R"ST_RND(0,7));

// generate MOVI instr. and
// remember the operand values

gen_instr(CMPI_INSN,RE_VAL(0),"R"RE_VAL(1));
// generate CMPI instr. using the
// remembered operand values

gen_instr(BEQ_INSN,"BEQ_OK_LB"); // generate BEQ instruction
gen_instr(HALT_INSN); // halt on error
gen_label("BEQ_OK_LB’’); // generate unique label

// BEQ_LB_#xyz#
simulate_and_commit(10); // speculative execution of max.

// 10 cycles and commitement in
// case of successful simulation

Listing 6.7: Example Rules for Test Generator

According to these rules, the TCG tool can generate specialized in-
struction sequences that are necessary to produce valid DSP assembler
code24 even for unorthogonal architectures. Furthermore, the test case
generator has to meet constraints of the target architecture in order to
generate valid code. Examples for these constraints are register file and
stack sizes, valid memory spaces or restricted parameter ranges for cer-

24For the TMS320C25 specialized instruction sequences are needed to verify the RPT-instruction and
some arithmetic instructions like SUBC.

142 Chapter 6. The ASIP Design Environment

tain arithmetic instructions. The degrees of freedom for the instruc-
tion generation that are not restricted by the generation rules and the
constraints are determined using a pseudo-random generator. So-called
biases using non-uniform probability functions increase the portion of
the generated code that stresses error-prone corner cases. Examples for
these corner cases are compare results equal/unequal to zero and arith-
metic overflows.

Rule Based
Code Generator

Core

Generator for
Events and Data

Inputs

Instruction Set
Simulator for
Speculative
Execution

Generated Instructions ok?

yes/no

IRQ-Routines,
 Constraints for Input
Data and Channels

Rules, Constraints,
Biases

Hardware
Konfiguration

Automatic Test Case Generator

Coverage
Monitor

Feedback of Coverage Information to User

Instruction Set
Definition

Figure 6.7: Structure of the Automatic Test Case Generator

Figure 6.7 depicts the structure of this test case generator. Due to the
fact that the rules can leave many degrees of freedom to the pseudo-
random code generator, it is not guaranteed that the initially generated
code meets the constraints of the target architecture. In order to solve
this problem, the generated instructions and instructions sequences are
speculatively simulated with an instruction set simulator to check the
validity of these instructions (e.g. to avoid memory access violations,
incorrect operand values etc.). If a certain instruction/instruction se-
quence is valid, it is appended to the final test program and the next
instruction/instruction sequence is generated. This concept enables the
test program generator to assess the state coverage of the generated test
program and immediately provide feedback to the user, who can modify
the rules and biases in order to enhance the coverage. The test generator

6.4. Concluding Remarks 143

is also able to generate stimuli for the input channels of the processor
as well as external events like IRQs, suspend and resume signals. Af-
ter a suite of test programs and stimuli have been generated, the HDL
description of the processor has to be cosimulated with the golden ref-
erence. In order to debug the HDL description either a cosimulation
interface or generated trace files can be used, which trace the results of
program tasks or the complete program flow with all relevant states.

6.4 Concluding Remarks

This chapter has briefly introduced the concept of the LISA language
and the important software and hardware design development tools that
can be generated using this description. ASIP-specific extensions to
this tool suite have been introduced covering the optimization of the
instruction encoding in order to save energy and the generation of the
hardware decoder. With this methodology significant savings in energy
and design time have been achieved for the real-world ASIP case study
in Section 7.1.

Furthermore, a test case generator (TCG) to support and facilitate the
generation of ASIP test programs and test stimuli has been presented.
This tool partially automates the tedious process of generating test pro-
grams and helps to reduce the design time while enabling a higher simu-
lation coverage. This TCG provides a transparent C-like script language
as user interface in order to generate meaningful programs to stimulate
error-prone parts of the design.

In order to transform the LISA ASIP design environment into a design
platform for ASIPs a comprehensive library of processor templates and
example processor designs for various application domains has to be
implemented. These library elements should include LISA descriptions
and optimized HLL compilers as well as fully verified hardware de-
scriptions. The availability of these templates and examples will be a
key factor to speed up iterative instruction set optimization for many
applications.

This page intentionally left blank

Chapter 7

Case Studies

In this chapter the results of two case studies are presented to prove the
feasibility of the proposed design flow. The first case study is about an
acquisition and tracking control processor for terrestrial digital video
broadcasting (DVB-T) and demonstrates the impact of ASIP optimiza-
tions on energy-efficiency. The second case study covers an ASIP for
linear algebra kernels with a special focus on eigenvalue decomposition
of hermitian matrices. This case study also compares the design and
implementation efficiency of an optimized ASIP implementation with a
general purpose processor core.

7.1 Case Study I: DVB-T Acquisition and Tracking

This case study is about the design of an ASIP that controls the ac-
quisition and tracking process in a DVB-T receiver. Figure 7.1 depicts
the simplified structure of this receiver. The DVB-T standard [75] uses
coded orthogonal frequency division multiplex (COFDM) as a trans-
mission technique. The term coded in this context means, that the
transmitted data are protected against transmission errors by using con-
volutional and block codes. Orthogonal frequency division multiplex
on the other hand means, that the transmission channel in the frequency
domain is subdivided into equidistant subchannels. This principle can
be viewed as a modulation of many equidistant carriers with a corre-
sponding data sequence. The realization of this transmission technique
uses the inverse discrete fourier transformation (IDFT – implemented
by the inverse fast fourier transformation) for modulation and the dis-
crete fourier transformation (DFT) for demodulation. In order to avoid
inter-symbol interference (ISI) of two consecutive OFDM symbols, a
guard interval is inserted that has to be longer than the duration of the
channel impulse response. Frame synchronization in the receiver with
respect to the position of the guard interval is needed to reduce the ef-

146 Chapter 7. Case Studies

fective inter-symbol interference. Frequency synchronization before the
DFT in the receiver mitigates the effect of a sampling frequency offset
between the transmitter and receiver. The signal after the DFT in the
receiver corresponds to the original signal before the IDFT multiplied
with the DFT of the channel, provided that the frame synchronization
and the frequency synchronization in the receiver are perfect. For DVB-
T, phase correction after the DFT is performed with pilot carriers, be-
cause each subchannel uses a QAM modulated carrier which is sensitive
to phase errors.

The underlying application of this section computes the acquisition of
the FFT window position (timing synchronization), the sampling clock
synchronization (interpolation/decimation control) and the carrier fre-
quency offset estimation (frequency synchronization) [89]. Further-
more, after the acquisition is finished, the common phase error, the
frequency error and the sampling error are continuously tracked. This
lock condition is permanently monitored and automatic reacquisition is
performed if needed.

The implementation for this DVB-T acquisition and tracking (DVB-T
A&T) application has been named ICORE1. The final ICORE imple-
mentation including the hard- and software is integrated as one design
module into a commercial single chip. This system-on-a-chip solution
for DVB-T supports enhanced algorithms and features compared to the
previous receiver generation [123].

I/Q
conversion

Interpol./
Decimation

FFT
from
ADC

Equalizer,
Softbitgen.

Symbol/Bit
De-

interleaver
FEC

transport
stream

TPS, Channel Estimation, Interference Detection

Carrier/Sampling Frequency and Timing Synchronization ICORE

Figure 7.1: Digital Part of the DVB-T Receiver

1ICORE is the abbreviation for ISS-Core.

7.1. Case Study I: DVB-T Acquisition and Tracking 147

7.1.1 Application Profiling and ASIP Class Selection

The results of application profiling are briefly summarized in this sub-
section. For a more detailed description of this design task refer to Sub-
section 5.2.2, where the DVB-T A&T application is used as a vehicle to
illustrate the profiling methodology.

Application profiling reveals the following results:

• cycle count violations of the profiling software implementation

• high data locality

• many data dependent branches (which are difficult to predict)

• many bit-oriented operations and arithmetic saturation operations

• insignificant part of regular DSP operations like e.g. FIR filters

• long idle intervals

• the time critical tasks frequently need arctan-computations

These application profiling results are used in order to determine a suit-
able ASIP class as a starting-point for further optimization. The high
data locality of the application suggests a typical load/store architecture
with a general purpose register file. A short processor pipeline is ad-
vantageous, in order to decrease the penalty of stall cycles due to the
high number of branches. Generally, simplicity of the hardware is pre-
ferred over complexity to reduce the design and verification effort. This
approach also enhances the maintainability and reusability of this de-
sign, which are two of the primary design goals together with a high
energy-efficiency.

In order to find the optimum pipeline organization, several implemen-
tations with a different pipeline length and organization have been im-
plemented for the DVB-T A&T application2. A detailed overview of
the pipeline organization for the different alternatives is given in Ap-
pendix D. Table 7.1 depicts the results of this design space exploration
for the DVB-T A&T application benchmark. The silicon area displayed

2These implementations have been separately optimized for runtime and in order to obtain a minimum
in energy consumption.

148 Chapter 7. Case Studies

in Table 7.1 increases and the critical path decreases with an increas-
ing number of pipeline stages, as expected. For the overall runtime,
the number of cycles has been multiplied with the critical path of the
implementation. Due to data and control hazards reducing the average
resource utilization in the ASIP pipeline, the change in absolute run-
time is less than proportional to the change in the critical path for an in-
creasing number of pipeline stages. Interestingly, a minimum in energy
consumption is observed for the three-stage pipeline implementation.

Further investigations reveal that the two-stage implementation needs
more energy due to logic glitches caused by a significant signal slack.
The three-stage implementation reduces this effect by retiming of un-
balanced signal arrival times in the additional pipeline stage. More-
over, slower and smaller arithmetic operator implementation are in-
stanciated in the three-stage implementation due to the more relaxed
timing constraints. The four-stage implementation needs more energy
than the three-stage implementation in the clock circuitry and the flip-
flops for the pipeline registers as well as in the hazard detection and
resolution logic. For the three- and four-stage implementations, which
use a predict-untaken branch scheme, taken branches result in a branch
penalty of 2 and 3 cycles resp. This branch penalty results in a higher
energy consumption of the four-stage implementation due to redundant
additional fetch and decode operations.

For the DVB-T receiver system, the two stage implementation violates
the given clock cycle constraint of the system environment. Further-
more, the four stage architecture requires higher effort for verification
and design due to the hazard detection and resolution logic. The flat
minimum in energy consumption is another reason, that the three-stage
implementation has been the final architecture of choice for the DVB-T
A&T application.

of pipeline stages 2 3 4
norm. area 100% 103% 120%
norm. crit. path 100% 83% 72%
norm. benchmark runtime 100% 92% 86%
norm. energy 100% 85% 106%

Table 7.1: Results for Different Pipeline Structures

7.1. Case Study I: DVB-T Acquisition and Tracking 149

It has to be pointed out, that the comparison in Table 7.1 uses the
best implementations w.r.t. energy consumption including all possible
power optimizations of the next subsections for each case. For the sake
of conciseness, the discussion of these optimizations in the following is
restricted to the three-stage implementation.

7.1.2 Iterative Instruction Set Optimization

The purpose of typical ASIP instruction set optimizations is to enhance
the computational performance. If the performance goals are reached,
additional optimizations can be applied in order to increase the energy-
efficiency of an application. The following two examples illustrate the
effect of these instruction set optimizations. The first example is an
optimized instruction performing the saturation of an integer value to
the number range of a 2’s complement number with programmable bit
width. The second example is a CORDIC computation in vectoring
mode, which uses several highly optimized instructions.

7.1.2.1 Example 1: Saturation

In the instruction traces of the profiling implementation more than 12%
of the total executed instructions are used for saturation to a power of 2.
This kind of saturation is defined by the following simple relation

sat(n, m) =

2n − 1 if m > 2n − 1
−2n if m < −2n

m else

Many commercially available DSPs offer a so-called saturation mode.
This mode is usually restricted to saturate accumulator values with a
long bit width to the shorter data path width of the DSP. However, the
above-mentioned saturation task, saturates to any valid bit width from
1 bit to the full data path width. This property is required by the given
DVB-T A&T algorithm in order to guarantee, that a certain range for
critical output and intermediate values is not exceeded and malfunctions
due to wrap-around are avoided.

150 Chapter 7. Case Studies

Two implementation alternatives are considered for this task (cf. Fig-
ure 7.2):

• a pure software implementation3 that uses the basic profiling in-
struction set of Table 5.4

• a specialized instruction SAT(bw,Rn), which saturates the register
Rn with a dedicated functional unit in hardware to the minimum
and maximum values of a 2’s complement number with bit width
bw

SATURATE(15,R3);

 MOV(R3,R2);
 MOVI(#15,R0);
 BSR(SATURATION);
 MOV(R2,R3);

SATURATION: (expects exponent in R0 and value for sat. in R2)
 MOV(POS_VAL_TABLE+R0,AR0);
 RDM(AR0,R1);
 CMP(R1,R2);
 BLE(SAT_L1);
 MOV(R1,R2);
 RTS;
SAT_L1:
 MOV(NEG_VAL_M+R0,AR0);
 RDM(AR0,R1);
 CMP(R1,R2);
 BGE(SAT_L2);
 MOV(R1,R2);
SAT_L2:
 RTS;

Subroutine
Call

Optimized SW Implementation SW Implementation with Profiling Instruction Set

Figure 7.2: Two Implementations for Programmable Saturation

The specialized SAT instruction is executed in a single instruction cycle
without increasing the critical path of the implementation, whereas the
conventional solution needs an average of 14.9 cycles in the benchmark

The result of the power and energy evaluation is given in table 7.2. The
average power of the profiling implementation is about the same as the
power of the optimized one. However, the results clearly show that
the optimized implementation is far superior in energy-efficiency and

3For this implementation, a subroutine has been used in order to save program memory. Furthermore,
in order to avoid the computation of the limits, a look-up-table is needed for this implementation.

7.1. Case Study I: DVB-T Acquisition and Tracking 151

Implementation Unoptimized ISA with
Profiling ISA specialized SAT

instruction
avg. cycles per
saturation 14.9 1
avg. power [mW]
(only sat.) 9.8 10.9
avg. Energy [nJ]
per saturation 1.83 0.136
Relative avg.
energy per
saturation 100% 7.4%

Table 7.2: Results of the Saturation Benchmark

performance, because of the significant cycle count reduction. If ad-
ditional spill code had been necessary to avoid overwriting of register
values by the subroutine, the energy consumption of the unoptimized
version would even have been increased due to more instructions and
several RAM accesses.

Other implementations of the saturation task are also possible e.g. in-
lining of the code using constants for the limits, calculation of the
max/min-values on the fly etc. However, all of these implementations
require more program memory and more instructions than the optimized
implementation resulting in a significantly lower energy-efficiency.

7.1.2.2 Example 2: CORDIC

The DVB-T A&T application require the CORDIC algorithm in vector-
ing mode to calculate the angle between a 2-dimensional vector (x, y)
and the x-axis (atan(x/y)). This CORDIC task requires a significant
amount of runtime in the time critical tasks of the profiling implemen-
tation, and, therefore, is a candidate for thorough optimization.

The time and power consuming CORDIC loop body has been imple-
mented with differently specialized instructions according to Figure 7.3:

152 Chapter 7. Case Studies

• hand-programmed implementation with the profiling instruction
set (denoted Implementation 1 in Figure 7.3 and Table 7.3) without
zero-overhead-loop instruction

• specialized instructions (including zero-overhead loop support)
using special purpose hardware units like shift-and-round4, con-
ditional addition/subtraction etc. (Implementation 2)

• even more specialized instructions and a second
addition/subtraction-unit in the core (Implementation 3)

In
st

ru
ct

io
n

M
em

or
y

A
dd

re
ss Preprocessing

CORDIC
Loop
Body

Postprocessing

ADDSUB0(da,a);
MOV(dy_tmp,dy);
ADDSUBSH0(dx,x,dy_tmp);
R(p++,da);
ADDSUBSH1(dy,y,dx);

COR0;
COR1;

Hardware Effort:
 1 Shifter same as 1 Shifter

1 Adder/Subtractors implementation 1 2 Adder/Subtractor
1 Atan-Table 1 Atan-Table

Implementation 2 Implementation 3

...
CMP(#0,R1); //addsubsh0
BGE(ge_label);
SUB(dx,x);
B(sh_label);
ge_label:
ADD(dx,x);
sh_label:
MOV(x,dy_tmp)
SRA(HWLPCNT,dy_tmp);
...

Implementation 1
(partially reproduced)

Figure 7.3: Implementation Alternatives for CORDIC Loop Body

In table 7.3 results of the CORDIC task evaluation are depicted. The
average energy consumption of this task is normalized to the profiling
ISA implementation.

Implementation Impl. 1 Impl. 2 Impl. 3
avg. cycles per
CORDIC call 663.3 154.8 82.4
relative avg. power 100% 115% 127%
relative avg. energy
per CORDIC call 100% 18.8% 15.8%

Table 7.3: Results of the Different CORDIC Implementations

4The CORDIC task for implementation uses rounding of the LSB after shifting. An alternative to this
algorithm is to use at least one additional fractional bit.

7.1. Case Study I: DVB-T Acquisition and Tracking 153

Table 7.3 clearly shows the effect of instruction set specialization on the
average power consumption: Due to the parallel execution of operations
in the more specialized implementations, the average power increases.
However, the decrease in runtime of the CORDIC task overcompensates
this increase and results in significant energy savings. Table 7.3 shows,
that the best optimized version of the CORDIC consumes about 6.7
times less energy than Implementation 1 (profiling instruction set).

7.1.3 Overall Energy Optimization Results

Instruction set optimizations typically decrease the runtime of the pro-
cessor for a given task. In order to continue increasing the energy-
efficiency of an implementation, additional instruction set optimizations
can be applied, even if the runtime constraints of a given application are
already met. Apart from ISA optimizations, additional architectural op-
timizations can be used that have been described in Section 3.3.

This subsection summarizes the energy optimization results of the
ICORE three-stage implementation. The numbers in Figure 7.4 are re-
lated to the effect of incremental optimizations beginning with an im-
plementation using the profiling instruction set of Section 5.2.2. These
optimizations are sorted starting with the least effective optimization
(logic restructuring) and ending with the most effective ones (clock gat-
ing and instruction set optimization). It is important, that clock gating
has to be introduced before instruction set optimization, otherwise, the
benefit of a longer processor sleep period due to faster processing is
significantly reduced.

Reorganization of logic gates and operators5 is the least efficient op-
timization yielding about 10% in energy reduction, but without signif-
icant increase in design time. Blocking gates6 reduce the energy by
roughly another 10% while increasing the area by less than 1%. The
reduction of the internal instruction ROM toggle activity yields about
20% in energy reduction using automatic optimized encoding6 without
affecting area or design time. This saving depends on the size and or-
ganization of the instruction memory. Application-specific instruction

5Refer to Subsection 3.3.2 for a description of this energy saving technique.
6This technique has been developed and published in [129] [90] and is based on the tool which is

described in Subsection 6.3.1

154 Chapter 7. Case Studies

set optimization7 cuts energy consumption by another 50%, while in-
creasing the design effort significantly due to manual optimization. The
applicability of this optimization strongly depends on the computational
tasks of the application. The benefit of clock gating in combination
with the sleep mode of the core yields a factor of about four in energy
reduction, because the processor for the DVB-T A&T application has
long idle intervals. This value strongly depends on the workload of the
ASIP. It might be argued that the processing power of ICORE is signifi-
cantly over-dimensioned for the given application. This is not the case:
The runtime constraints of the application rather represent tight bounds
for the ICORE tasks that have to be met by this implementation.

The overall power reduction for the three-stage ICORE implementation
with all the above-mentioned optimizations is about 92%. It has to be
pointed out that all these optimizations do not compromise the flexi-
bility and maintainability of this building block for late design changes
that require the implementation of additional software programmable
tasks.

In the following discussion, the implementation of an ASIP accelerator
for the computationally intensive CORDIC task is explored. This im-
plementation is similar to the example of Subsection 5.3.7, but in this
case stripped down to a CORDIC for vectoring mode. This coproces-
sor has been implemented and connected to the ASIP core. Table 7.4
shows the area and energy consumption for the different implementa-
tions (ASIP with/without coprocessor) for the CORDIC task and, addi-
tionally, for the overall DVB-T A&T benchmark tasks (which include
several CORDIC evaluations). The overall savings for the complete
tracking tasks are about 38%.

Nevertheless, the implementation of an accelerator breaks the design
paradigm of an instruction set oriented ASIP and introduces more het-
erogeneity into the implementation. Maintainability and reusability of
this building block become more complicated, which outweighs the ad-
ditional gain in energy-efficiency for the DVB-T system. Consequently,
the final ICORE has been implemented using the above-described soft-
ware CORDIC implementation.

7Refer to the previous subsection for an example.

7.1. Case Study I: DVB-T Acquisition and Tracking 155

0

10

20

30

40

50

60

70

80

90

100
no

rm
. a

ve
ra

ge
 e

ne
rg

y
(a

ll
IC

O
R

E
 ta

sk
s)

in
iti

al
 v

er
si

on

+
 lo

gi
c

re
or

ga
ni

za
tio

n

+
 b

lo
ck

in
g

lo
gi

c

+
 o

pt
. i

ns
tr

uc
tio

n
en

co
di

ng

+
 c

lo
ck

 g
at

in
g

+
 I

S
op

tim
iz

at
io

n

Incremental Reduction by about
x0.9 x0.9 x0.8 x0.25 x0.5

Figure 7.4: Incremental Power Optimization of ICORE

Generally, it can be observed that the energy-efficiency of an implemen-
tation increases, if specialization for a given application is introduced.
The above-mentioned instruction set optimization and the implementa-
tion of accelerators represent an incremental modification resulting in
increased energy-efficiency. At the same time the overall flexibility and
reusability of the processor for unexpected tasks with low to medium
required computational performance is preserved. For the performance
critical computational tasks like the CORDIC computation mentioned

156 Chapter 7. Case Studies

ASIP without . with
accelerator accelerator

area (ND2 equ.) 52k 56k
norm. energy
(only CORDIC) 100% 7.8%
norm. energy
(overall) 100% 62%

Table 7.4: Results for ICORE with/without coprocessor

above, specialization with additional instructions or a coprocessor re-
duces the flexibility of the implementation: A change of the underlying
algorithm requires a redesign of the hardware in this case. The latter
case is a typical example for the tradeoff between energy-efficiency and
flexibility.

7.2 Case Study II: Linear Algebra Kernels and Eigen-
value Decomposition

The second case study compares an optimized hand-programmable
ASIP to a compiler-friendly, parameterizable general purpose proces-
sor core, which both use the same application-specific accelerator. It is
obvious, that a compiler-programmed processor enables a much faster
design time at the expense of the performance and implementation
efficiency compared to a hand-programmed ASIP. If this compiler-
programmable processor can be parameterized in order to match the
performance requirements of an application, however, this concept is
useful for many applications.

The target application are linear algebra kernels for communication
applications. These kernels include typical complex matrix and vec-
tor/matrix operations (cf. Appendix B.4). The specific benchmark
for this case study is the eigenvalue/eigenvector decomposition (EVD)
of a hermitian matrix8 using a Givens-like decomposition algorithm
(cf. Appendix B.5). Complex linear algebra and matrix decomposi-

8However, the instruction set of the presented ASIP is not restricted to the EVD but also supports
singular value decomposition of rectangular matrices and the vector-matrix operations mentioned above.

7.2. Case Study II: Linear Algebra Kernels and Eigenvalue Decomposition 157

tion techniques are needed for various communication applications that
use subspace decomposition e.g. direction of arrival (DOA) estimations
[219] [151], beamforming [6], adaptive filter processing [105] and vec-
tor quantization [279].

The two different design approaches that are compared in this chapter
are

• an optimized ASIP tailored to the given application by using spe-
cialized instructions and a specialized data path together with a
dedicated accelerator (“constructive ASIP design methodology”,
which has been described in Section 5.3.6)

• a processor core with a fixed instruction set, but a parameterizable
number of functional units like multipliers, adders and memory
units together with the same dedicated coprocessor as above (“pure
library-based ASIP design methodology”)

Both methodologies take advantage of the concept of a tightly coupled
coprocessor. For this case study, the dedicated CORDIC coprocessor
that has already been described in the example of Subsection 5.3.7 is
used. This coprocessor is able to significantly reduce the computational
load of both processors by mapping a regular computational part of the
overall algorithm to dedicated hardware.

The two implementations are described in detail in the following two
subsections. Afterwards in Subsection 7.2.3, the evaluation of these
implementations is presented using the eigenvector and eigenvalue de-
composition of a 10x10 hermitian matrix as benchmark application.

7.2.1 Implementation I: Optimized ASIP with Accelerator

The algorithm for Givens-like eigenvalue and eigenvector decompo-
sition is described in Appendix B.5. In addition to the trigonometric
functions like sine, cosine, phase and magnitude of a vector, the EVD
requires matrix-matrix-multiplications. These multiplications with the
Givens-matrix Gn are used to iteratively update both the matrix be-
ing diagonalized, An, and the matrix containing the approximate right
(left) eigenvectors, EVr(l),n. Figure 7.5 depicts this matrix-matrix-

158 Chapter 7. Case Studies

multiplication for the right eigenvector matrix update using a 4x4 matrix
with the Pivot element (2, 4) as example

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

1 0 0 0

0 q11 0 q12

0 0 1 0

0 q21 0 q22

=

e11

e21

e31

e41

q11 e12+ q 21 e14 q12 e12+ q 22 e14e13

q11 e22+ q 21 e24 q12 e22+ q 22 e24e13

q11 e32+ q 21 e34 q12 e32+ q 22 e34e13

q11 e42+ q 21 e44 q12 e42+ q 22 e44e13

left column right column

EVn Gn

.

EVn+1

Figure 7.5: Eigenvector Matrix Update

For a real-world implementation, one multiplication in the Equa-
tions B.12 and B.13 is immediately performed, after the Givens-matrix
Gn is available, rather than storing the matrices Gn and postponing this
calculation. Due to the fact that the Givens-matrices Gn represent the
identity matrix with the embedded 2x2 pivot submatrix Qn, the matrix-
matrix-multiplication reduces to a multiplication with the matrix Qn.

In contrast, the update of the matrix An can exploit additional arithmetic
simplifications due to the symmetry of the hermitian matrix An, which
results in a significantly reduced number of arithmetic operations.

A critical issue of high performance signal processing is memory orga-
nization, because memories often represent a bandwidth bottleneck due
to a small number of read and write ports (typ. 1 or 2 write ports are
available). The degree of parallelism in the EVD algorithm is in the or-

7.2. Case Study II: Linear Algebra Kernels and Eigenvalue Decomposition 159

der of the matrix dimension, which theoretically enables a full parallel
solution with distributed parallel memory blocks or even registers. Un-
fortunately, the hardware costs of this solution in terms of silicon area
are proportional to the matrix dimension and do not justify the benefit
in computational performance of this massive parallel approach for the
given application constraints. In the current case study, the structure of
the matrix updates suggests a dual-port RAM as main data memory for
matrix computations, because 2 samples are processed in each compu-
tation step. This design decision represents a trade-off between a full
parallel and a scalar implementation.

X
Memory
Port 1

X
Memory
Port 2

from register file

from register file

+
Memory
Port 2

Memory
Port 1

left column

right column

Figure 7.6: Computational Core for Matrix Updates

A simple computational core that enables the necessary functionality
for the matrix update functionality is depicted in Figure 7.6. This core
needs registers for pipelining and to reduce memory accesses by storing
the frequently needed values in Gn in a register file. The eigenvector
matrix EVn is stored in the dual-port RAM. A schedule for the eigen-
vector matrix update is depicted in Figure 7.7, which demonstrates the
efficient use of the computational resources and the dual-port memory.
An extended version of the computational structure in Figure 7.6 is used
as part of the vector functional units in the final implementation of this
case study.

This final architecture of the ASIP has been named ICORE-II and sup-
ports both scalar and vector instructions that match the properties of
the application. Figure 7.8 depicts a simplified overview of the impor-

160 Chapter 7. Case Studies

tant parts of ICORE-II: The main difference to the scalar ICORE are
the vector functional units and the parallelized data memory. The vec-
tor functional units are tightly coupled to the scalar part of the core by
sharing the general purpose register file in order to save area and for
efficient communication. Furthermore, the decoder generates the paral-
lelized control information by using an additional vector decoder, which
is in turn controlled by a microcode sequencer. This sequencer supports
multi-cycle instructions and controls the processing for vector lengths
that exceed the available parallelism in the hardware.

Memory
Port 1

Memory
Port 2

Register
Read

Read

Read

Multiply-
Accumulate

Left

Left

Right

RightIdle

Write

WriteRead

Read

Left

Left

Right

Right Left Right

Write

WriteRead

Read

Idle

Idle

Left Right Left

Read

Read

Ramp-Up Phase

Write

Write

Left Right

IdleIdle

IdleIdle

Idle Idle

Idle

Ramp-Down Phase

Right

"Left" and "Right" refer to the left and right matrix columns

Figure 7.7: Schedule for Matrix Updates

In
st

ru
ct

io
n

M
em

or
y

Scalar
Decoder

Vector
Decoder

Micro-
Instruction
Sequencer

FE/DE DE/EX

Scalar Data Path

Adress
Generator

Vector
Functional Units

Memory
Lanes

Scalar
Memory

I/O Channel

Memory
UnitAccel.

X

A
dd

r.-
D

ec
od

er

Figure 7.8: Simplified Overview of ICORE-II

ICORE-II supports general vector instructions with a programmable
vector length for scaling, dot-products and matrix-matrix additions and

7.2. Case Study II: Linear Algebra Kernels and Eigenvalue Decomposition 161

multiplications. Additional application-specific instructions and ad-
dressing modes have been implemented both for the scalar and the vec-
tor part of the implementation addressing the EVD application:

• instructions to support the CORDIC coprocessor

• addressing modes to access row- and column-indexed ma-
trix elements residing in the memory address base address +
row register ∗ dim register + col register

• instructions to support the update operation for the matrix A and
the eigenvector matrix EV

7.2.2 Implementation II: Compiler-Programmed Parameteriz-
able Core with Accelerator

The considered parameterizable processor core of this section has been
named ALICE9 [271]. The architecture of this core, which is depicted in
Figure 7.9, uses 5 pipeline stages (FEtch, DEcode1, DEcode2, EXecute
and WriteBack).

In the stage DE2 the general purpose register is read and the register out-
put is routed to the input registers of the functional units in the EX stage.
Due to the fact that the number of functional units is parameterizable,
the necessary bandwidth for the control information has to be provided
by an equally scalable instruction fetch stage. For the ALICE architec-
ture, the number of fetch lanes has to be a power of two in order to en-
able a simple addressing logic. There is one program memory lane and
a lane decoder associated to each fetch lane. Instructions can be fetched
in parallel using the concept of compressed VLIW encoding, which has
been explained in Section 4.3.7. Thus, “no-operation” instructions do
not have to be explicitly coded and the associated program memory
locations can be saved for useful instructions. Figure 7.10 shows an
example program, which takes advantage of the parallelism provided
by ALICE using 4 fetch lanes. The parameters of ALICE that can be
adjusted to the needs of an application are

• the word width of the data path
9Architecture for LISA Compiler Environment

162 Chapter 7. Case Studies

P
ip

el
in

e
R

eg
is

te
rs

Prog.
Mem.

Lane 0

Lane
Decoder

and
Dispatcher

P
ip

el
in

e
R

eg
is

te
rs

FE/DE1 DE1/DE2

Prog.
Mem.

Lane 1

Prog.
Mem.

Lane 2 P-1

G
en

. P
ur

po
se

 R
eg

is
te

rs

DE2/EX

...

...

 ALU
 1...N alu

X
1..N x

P
ip

el
in

e
R

eg
is

te
rs

EX/WB

Branch
Unit

...

Global Flow Control

Accelerator
1...N acc

Memory
Unit 1..N mem

Data
Memory

P
ip

el
in

e
R

eg
is

te
rs

Standard
Coprocessor Inteface

Figure 7.9: Overview of ALICE Architecture

• the number of parallel instruction memory lanes

• the number of general purpose registers and the number of
read/write ports

• the forwarding configuration: enable/disable forwarding from WB
to EX and from WB to DE2

• the number of functional units including arbitrary accelerators and
memory units

• the branch behavior configuration: enable/disable branch delay
slots

The user has to take care to select a reasonable configuration that con-
siders the mutual dependencies between some of the parameters men-
tioned above: e.g. it does not make sense to instanciate several ALUs
without providing sufficient instruction memory bandwidth by increas-
ing the number of instruction memory lanes appropriately.

7.2. Case Study II: Linear Algebra Kernels and Eigenvalue Decomposition 163

Lane 1 Lane 2 Lane 3 Lane 4Mem.-Line

0

1

2

3

ADD SUB LW MUL

SLL SLTI MUL OR

SW BEQ MUL MUL

J ADDI SW ...

Cycle 0

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Figure 7.10: Example ALICE Program in Memory

The question arises, if there is a difference between ALICE and the con-
cept of a general ASIP. Indeed, there is one important distinction: For
the current case study the instructions of ALICE are fixed, which means
that the user does not have to care about micro-architectural details and
optimizations10. As a replacement of ISA optimization, ALICE sup-
ports a wide variety of configuration parameters, in order to scale the
available architectural parallelism. Furthermore, the use of accelerators
with well-defined hardware/software interfaces11 in the core enable to
take advantage of the high efficiency of dedicated hardware for regular
arithmetic computations. Finally, ALICE represents an orthogonal ISA,
which can be efficiently targeted by HLL compilers (cf. [271]) to speed
up the design and verification process.

7.2.3 Evaluation Results

The two processor cores ICORE-II and ALICE have been implemented
in VHDL and synthesized using a typical 0.18µ technology. Power
estimation has been performed with Synopsys’ DesignPower using the
toggle information of gate level simulation. The results for these two

10It is obviously still possible to add optimized applications specific instructions to ALICE later on in the
design flow. However, the primary goal of the current case study is to avoid this optimization for ALICE in
order to evaluate the reduction in design time.

11The software interface is realized with fixed instructions similar to the concept of the ARM [16] or
SPARC [228] instruction set with reusable accelerator move and control instructions.

164 Chapter 7. Case Studies

implementations with the EVD as benchmark application are depicted
in Table 7.5. In this configuration, ALICE uses 4 parallel fetch lanes,
2 ALUs, 2 multipliers and the same CORDIC coprocessor than ICORE-
II as a special purpose unit.

According to Table 7.5 the generic scalability of ALICE significantly
increases the implementation area compared to the application-specific
ICORE-II implementation.

The more general purpose processor like ALICE processor consumes
about one order of magnitude more in energy for the considered bench-
mark applications than the application-specific optimized ICORE-II.
This is due to the larger instruction memories for parallel instruction
fetch, the significantly larger register file, as well as the additional logic
for instruction expansion and instruction dispatch. Furthermore, AL-
ICE is deeply pipelined requiring many power intensive pipeline regis-
ters and forwarding paths. This difference in energy consumption is a
classical example for the tradeoff between energy and flexibility of an
implementation. Furthermore, this represents a tradeoff between the ar-
chitectural efficiency and the design time: The higher design effort for
ICORE-II results in higher performance, lower area and higher energy-
efficiency. However, this design effort can be reduced by better tool
support: Due to the microcode programmability of ICORE-II, the cur-
rent LISA hardware generation capability could not be fully exploited
resulting in an increased design time. For future designs it will be pos-
sible to model the processor differently in order to overcome this draw-
back. This approach would have reduced the design time of ICORE-II
to about 5 weeks.

It is interesting, that the benchmark runtime of the two applications
are similar. This fact makes the library-based ALICE approach attrac-
tive for applications, that require medium to high computational perfor-
mance without tight energy and area constraints.

Despite of the shorter design time of a library-based ASIP design ap-
proach, the application-specific optimized processor results in a signif-
icantly higher architectural and design efficiency. For applications with
tight performance, energy and area constraints, this design approach is
clearly superior to the library-based design methodology.

7.3. Concluding Remarks 165

ICORE-II ALICE

crit. path 6.8ns 4.9ns
max. area (ND2 equ.) A 34.5k 98.2k
avg. power 47.2mW 261mW
avg. benchmark runtime T 0.32ms 0.58ms
benchmark energy E 15.10µJ 151.4µJ
norm. area 35.1% 100%
norm. power 18.1% 100%
norm. benchmark runtime 55.2% 100%
norm. benchmark energy 9.97% 100%
design time Tdesign 8 weeks (cf. text) 3 weeks12

normalized architectural
efficiency 1/(ATE) 100% 1.93%
normalized design
efficiency 1/(ATETdesign) 100% 5.16%

Table 7.5: Comparison Between ICORE-II And ALICE

For higher computational performance requirements, multiple ALICE
or multiple ICORE-II instances can be used in order to compute several
orthogonal EVD tasks in parallel: This resulting design corresponds to
a multi-processor implementation, which has not been further investi-
gated in this thesis.

7.3 Concluding Remarks

The DVB-T A&T case study in Section 7.1 demonstrates the effect of
best-practice ASIP design on the computational performance and the
energy-efficiency of an implementation. The investigated optimization
techniques include the selection of an appropriate ASIP instruction set
class, iterative instruction set optimization and further energy optimiza-
tions using logic reorganization, clock gating and automatic instruction
encoding for energy minimization in the instruction memory. The re-
sults of these optimizations show that an energy-efficiency gain of more
than one order of magnitude can be achieved.

12This design time assumes that ALICE is a predesigned and verified library component with a verified
parameterizable HLL compiler.

166 Chapter 7. Case Studies

The case study in Section 7.2 compares a parameterizable processor
core with a fully optimized ASIP targeting eigenvalue/eigenvector de-
composition of hermitian matrices. The results clearly indicate, that
the optimized ASIP is far superior to the parameterizable core concern-
ing energy-efficiency and implementation area. On the other hand, the
design time of the parameterizable processor with coprocessor outper-
forms the fully hand-optimized ASIP. This decrease in design time can
be achieved, because the parameterizable processor can be taken from
a processor library together with a suitable parameterizable compiler.
Obviously, the optimum design methodology strongly depends on the
constraints of a given application: For design time critical projects the
library-based approach is superior to the constructive ASIP design ap-
proach. For designs requiring a high energy-efficiency the construc-
tively designed ASIP is a much better choice.

This case study emphasizes the importance of the HDL generation capa-
bility of the LISA design environment. In order to exploit these capabil-
ities, the LISA modeling style of complex processor architectures needs
to be optimized using design guidelines in analogy to HLL or HDL
coding guidelines. With such an optimized design style, the design effi-
ciency of the constructive ASIP design approach can be increased using
the LISA processor design environment. Obviously, this approach can
be combined with library-based processor templates, which can be used
as a starting point for optimization. This methodology combines the
advantages of the constructive with the library-based ASIP design ap-
proach.

Chapter 8

Summary
Today’s ever-increasing complexities of embedded systems together
with tightening time-to-market constraints are the primary drivers for
new enabling technologies to enhance the design productivity. State of
the art applications require more and more flexibility and functional-
ity of embedded devices, which favors programmable implementations
over dedicated hardware. For many handheld appliances like mobile
phones and organizers, the battery runtime is almost as important as new
functionalities. In previous publications [1] [92] it was demonstrated
that high flexibility as well as high performance on the one hand, and
high energy-efficiency on the other hand are competing goals. This fact
motivates the exploration of new implementation paradigms that enable
to trade-off these parameters to optimally satisfy the requirements of an
application.

In this thesis, the ability of application-specific instruction set proces-
sors (ASIPs) to smoothly trade-off computational performance and flex-
ibility for energy-efficiency is demonstrated. ASIPs are instruction set
oriented processors with user-defined instructions, a user-defined data
path and, optionally, a more dedicated user-defined accelerator. It is
shown that higher performance and increased energy-efficiency can be
obtained by exploiting application-specific optimization of the user-
defined parts of the ASIP. This specialization removes the upper compu-
tational performance bound of traditional fixed processor architectures
by introducing the architecture as an additional degree of freedom in the
design flow. This enables ASIPs to bridge the performance and energy-
efficiency gap between inflexible dedicated hardware and general pur-
pose processors. The quantitative evaluation of a case study shows an
ASIP ATE-efficiency1 that is more than one order of magnitude better
than the ATE-efficiency of a general purpose processor.

A major obstacle of ASIP design is the larger design space compared
to pure hardware or pure software implementations often resulting in a

1This means the equally weighted efficiency for area, time (delay), and energy.

168 Chapter 8. Summary

considerably longer design time, which is incompatible with short time-
to-market constraints. This issue is the primary motivation of this thesis
to identify the time critical tasks in the ASIP design flow and to develop
a design methodology with the goal to speed up these tasks.

The contribution of this thesis can be subdivided into the following two
tightly related topics:

• enhanced ASIP design flow to obtain a competitive time-to-market
(optimum implementation efficiency)

• ASIP design optimization for performance and low energy con-
sumption
(optimum architectural efficiency)

One important challenge of ASIP design is the huge design space,
which needs to be explored by the designer in order to obtain an op-
timum implementation. This thesis proposes an ASIP design flow that
reduces the design time by using the high level design entry language
LISA. LISA has been developed at the Institute for Signal Processing
Systems (ISS) together with tools to automate the generation of a com-
plete software design tool chain for a given processor architecture. A
LISA description uses a C-based abstraction level concerning the be-
havior of single LISA operations paired with the concept of concurrency
between different operations. This high level description for ASIPs al-
lows design reuse for many product cycles and increases the design pro-
ductivity.

The design approach proposed in this thesis requires a synthesizable
hardware description in the design iteration loop in order to track the
impact of high-level decisions like instruction set modifications on im-
portant low-level implementation parameters. Examples for these low-
level parameters are the critical path, the energy consumption and the
silicon area of the ASIP hardware. For this purpose, automatic hard-
ware description generation is needed in order to reduce the time for
one design iteration. This thesis contributes essential concepts for this
new automatic hardware description generation tool by providing hand-
optimized processor cores as case studies and references. Furthermore,
critical design decisions for performance and energy consumption are
quantitatively identified. Additionally, a concept to ease the develop-

169

ment of ASIPs using tool-based automatic instruction encoding is de-
veloped. Finally, a methodology for the tedious verification of the final
hardware description is presented and a semi-automatic test program
generator supporting this approach is described. The proposed design
approach is quantitatively evaluated with several case studies, and its
efficiency is compared to an alternative library-only-based ASIP design
flow without application-specific optimizations. The results of this case
study clearly demonstrate that the proposed iterative design approach
enables a competitive time-to-market.

Architectural ASIP design optimizations are of paramount impor-
tance in order to satisfy the constraints of an application. In this thesis,
the design space for ASIP architectures is explicitly defined, thus, pro-
viding the basis for any hardware design decision in the ASIP design
flow. Moreover, architectural modifications are classified w.r.t. the im-
pact on performance, energy consumption and silicon area in order to
provide a sound basis for these critical design decisions. The rationale
of increasing the energy-efficiency using typical ASIP specializations is
explained in detail. Additional ASIP-typical energy optimizations are
implemented and integrated in the design methodology, which substan-
tially improve the total energy-efficiency by about one order of magni-
tude.

Certain other topics related to ASIP design methodology are beyond the
scope of this thesis and are interesting for further research. The devel-
opment of additional tools to automate certain ever-recurring ASIP op-
timizations like instruction set specialization is critical to further reduce
the design time for ASIPs. Furthermore, the quality of an automatically
generated hardware description and of automatically generated compil-
ers are essential factors for the efficiency of the final implementation
and the success of this high level design approach.

This page intentionally left blank

Appendix A

ASIP Development Using
LISA 2.0

In this appendix, the language LISA 2.0, which is the basis of a uni-
fied approach for all phases of Application Specific Instruction Set Pro-
cessor (ASIP) design, is presented. These phases include architecture
exploration, architecture implementation, software tools design and ar-
chitecture integration. The work presented is the result of research at
the Institute for Integrated Signal Processing Systems (ISS), Aachen
University of Technology, headed by Prof. Heinrich Meyr, Prof. Gerd
Ascheid and Prof. Rainer Leupers. This appendix reflects the current
research status (October 2003), while major research work is ongoing
in the field of compiler generation, Register Transfer Level (RTL) pro-
cessor synthesis and system integration. The technology developed is
commercialized by CoWare Inc. [61].

A.1 The LISA 2.0 Language

The open language LISA 2.0 [110][109] is aimed at the formalized
description of programmable architectures, their peripherals and in-
terfaces. It was developed to close the gap between purely structure-
oriented languages (VHDL, Verilog) and instruction set languages for
architecture exploration purposes. LISA provides a high flexibility
to describe the instruction set of various processor types, such as
SIMD, MIMD and VLIW-type architectures. Processors with complex
pipelines or multi-threading can easily be modelled, too.
Furthermore, LISA models may cover a wide range of abstraction lev-
els. This comprises all levels starting at a pure functional abstraction
modelling the data path of the architecture, to a model including the
pipeline and functional units. In the domain of timing, the abstrac-
tion can go from an instruction-accurate level to cycle-accurate or even

172 Appendix A. ASIP Development Using LISA 2.0

phase-accurate level. A working set of software tools can be generated
from all levels of abstraction. Moreover, cycle-accurate models can be
used to generate a RTL representation of the architecture.
LISA architecture descriptions are composed of two main components:
the resource definition in the so called RESOURCE section and the LISA
operation tree consisting of several LISA operations. The RESOURCE
section is a unique place to declare the resources of the architecture
such as memories, buses, registers, pipelines and pins. The amount of
information given in the RESOURCE section depends on the level of
abstraction the model is dedicated for. For example, a pipeline is not
specified in an instruction-accurate model.

all instructions

16bit instructions 32bit instructions

load/store
instructions

arithmetic
instructions

opcode condition operandoperand

add sub mul

...

...

instr

...

instr

Figure A.1: Extract of the LISA operation tree

A LISA operation consists of various information and is the atomic
element of the LISA operation tree. There are two main aspects
which must be described explicitly by the LISA operation: the behav-
ior and the instruction set. The behavior is described in the so called
BEHAVIOR and EXPRESSION sections. While the EXPRESSION
section simply returns a particular value, e.g. a register content, the
BEHAVIOR section contains the state transition functions of the pro-
cessor architecture. This state transition is described by writing C code.
An instruction set is defined by its assembly syntax and its binary rep-
resentation. These two pieces of information are described in the LISA
SYNTAX and CODING section, respectively.

A.2. Design Space Exploration 173

Additionally, a LISA operation may contain an ACTIVATION section,
which describes the timing of the architecture by defining a chain of
LISA operations to be executed.
The LISA operations are organized in a tree-like structure. An exam-
ple can be seen in Figure A.1. The behavior, coding and syntax of an
instruction is distributed over several LISA operations. It starts at the
root operation, which contains the basic information for all valid pro-
cessor instructions. In this example, the separation into 16 bit and 32
bit instructions is a first specialization. Each of those operations con-
tains the relevant information for their instruction type. Accordingly,
the operations representing the load/store instructions or arithmetic in-
structions are further specializations of the instructions. The specializa-
tion is the basic principle in developing a LISA model. Moreover, as
can also be seen in Figure A.1, a LISA operation is not only used to
represent a whole instruction but also a part of an instruction, such as
opcode, operand or special condition field. Thus, developing a LISA
model results in creating a LISA operation tree, that unifies the com-
plete description of the behavior, syntax, coding and timing of the target
architecture.
The LISA language allows to describe hierarchical models which guar-
antees modularity and reusability. Architecture models can easily be
modified or adopted to new processors, which is the basis of a success-
ful and fast design space exploration.

A.2 Design Space Exploration

The key factor of designing ASIPs is an efficient design space explo-
ration phase. The LISA language allows to apply changes to the archi-
tecture model quickly as the level of abstraction is higher than RTL. As
shown in Figure A.2 a LISA model of the target architecture is used
to automatically generate software tools such as C-compiler, assembler,
linker and simulator. These software tools are used to profile and mod-
ify both architecture and application. This exploration loop is repeated
until a sufficient cost/performance ratio is reached.

Although the higher level of abstraction is the basic reason for the suc-
cess of Architecture Description Languages (ADLs), the link to the

174 Appendix A. ASIP Development Using LISA 2.0

physical parameters such as chip area, power consumption or clock
speed gets lost. Ignoring physical parameters in the design space ex-
ploration phase leads to suboptimal solutions or long redesign cycles.
The necessity of combining the high level abstraction and physical pa-
rameter evaluation during design space exploration is compelling.

To overcome those limitations, as shown in Figure A.2, a complete hard-
ware model is automatically generated from LISA in order to get a pre-
liminary estimate about the clock speed, area and power consumption.
The LISA processor design platform takes the gate-level synthesis re-
sults into account during the exploration phase. The LISA model is used
to derive a fully synthesizable model on RTL. Compared to other ASIP
development approaches the designer is able to perform this synthesis
flow without being restricted to fixed RTL components.

If the synthesis results of the generated architecture fulfill the given
physical constraints, then the hardware model can even be used for the
final architecture implementation. As the datapath is often highly op-
timized and based on in-house IP, it may be replaced by the designer
manually. This is shown in Figure A.2 on the right hand side.

ImplementationExploration

LISA Description

Evaluation Results

Model Verification
& Evaluation

LISA Compiler

Compiler

Assembler

Linker

Simulator

Evaluation Results

Chip Area, Clock Speed,

Power Consumption

Complete HDL

Model

Gate Level Synthesis

Handwritten

Functional Units

Gate Level Model

Complete Structure,
Decoders, Pipeline

Controller

Gate Level Synthesis

Figure A.2: Exploration and Implementation based on LISA

A.3. Design Implementation 175

A.3 Design Implementation

The LISA model is used to derive the complete target architecture in
form of a Hardware Description Language (HDL) [217][112]. Lan-
guages supported are VHDL, Verilog and SystemC. As described in
Section A.2, the generated model is used for design exploration and
implementation.

The synthesized architecture consists of several entities. The base entity
instantiates one entity which groups all registers, one entity for all mem-
ories and another for the complete pipeline. The pipeline entity again
consists of entities representing every pipeline stage and intermediate
pipeline registers. This entity also contains the automatically generated
pipeline controller. The entities representing each pipeline stage instan-
tiates the final level of hierarchy - the entities for the functional units,
such as ALUs, Address Generation units, etc. Moreover, the generated
decoder is placed inside the pipeline stage entities.

The elements, which constitute the control path, are the instruction de-
coder and the pipeline controller. The decoder may be distributed over
several pipeline stages and sets the control signals to the functional
units, to initiate the execution of those. They also steers the pipeline
controller. The pipeline controller gathers several information, such as
signals from the decoder or the status of the processor, and sends appro-
priate flush and stall signals to the pipeline registers.
The decoder generation requires various information about the target ar-
chitecture. Both, the RESOURCE section as well as the LISA operations
are used to derive the decoder and control-path. In fact, detailed infor-
mation about the instruction coding (CODING section) and the timing
(ACTIVATION section) is extracted from the LISA operation tree.
A single LISA operation is assigned to a dedicated pipeline stage. The
behavior of a software instruction, for example the instruction add,
is distributed over several different LISA operations as shown in Fig-
ure A.3 :

• The operation decode is assigned to the DE stage. This operation
loads the operands from a general purpose register into a pipeline
register.

176 Appendix A. ASIP Development Using LISA 2.0

• The operation addition, which adds the values in the pipeline
registers and writes the result back to another pipeline register.
This operation is assigned to the EX stage

• The operation writeback, which is assigned to the WB stage,
writing the value from the pipeline register to the general purpose
registers.

The operation execution depends on the LISA timing model. As in-
dicated by the arrows on the left side of Figure A.3, LISA operations
activate other LISA operations, which are executed according to their
spatial delay in the pipeline. These activation sequences are translated
to control signals in the HDL model, which are set or reset depending
on the instruction coding of the respective LISA operation.
Decoders are generated in each stage, where activation signals start.
Thus, the timing of the architecture is reproduced in the HDL model
and the designer might influence the resulting hardware directly via the
LISA model. In this example, two decoders are generated, one in the
DE stage and another in the EX stage. If the activation sequence is
changed in such a manner that the decode operation activates all other
LISA operations, only one single decoder in the DE pipeline stage will
be generated.

Figure A.3: LISA operation tree and decoder generation

A.4. Software Tools Generation 177

A.4 Software Tools Generation

The software tools generated from the LISA description are able to
cope with the requirements of complex application development. From
LISA, C-compiler, assembler, linker and simulator are generated. The
automatic C-compiler generation is currently one of the major research
topics.

A.4.1 Compiler Generation

The shift from assembly to the C programming language for application
development is ongoing. This move is driven by the fact that most DSP
algorithms are realized using the C language. Considering the various
configurations of an ASIP, even during design space exploration, the
automatic re-targeting of a compiler is highly desired [267]. For this
reason, the automatic generation of a C-compiler came strongly into fo-
cus recently.
For retargeting a compiler, the architecture specific back-end of a com-
piler must be adjusted or rewritten, whereas the architecture indepen-
dent frontend and most of the optimizations are kept unchanged. There-
fore, a retargetable compiler platform is employed which reads in a set
of description files generated from the LISA description to build the
compiler.
All relevant information for compiler generation are derived from the
LISA model. While some information is explicit in the LISA model
(e.g. via resource declarations), other relevant information (e.g. con-
cerning instruction scheduling) is only implicit and needs to be ex-
tracted by special algorithms. Some further, heavily compiler-specific,
information is not at all present in the LISA model, e.g. C type bit
widths. Thus, compiler information is automatically extracted from
LISA whenever possible, while GUI-based user interaction is employed
for other compiler components. The GUI reads the LISA model and
presents all relevant machine features (e.g. resources and machine op-
erations) for which interaction is required to the user for further refine-
ment.

The compiler backend basically consists of a register allocator, instruc-
tion selector, scheduler and code emitter. Apart from that, the calling

178 Appendix A. ASIP Development Using LISA 2.0

conventions and the stacklayout have to be configured. The GUI guides
the designer through the specification of the different components:

• Purely numerical parameters (such as C type bit widths, type align-
ments, minimum addressable memory unit size) are directly cap-
tured by means of GUI tables.

• Calling conventions (i.e. how arguments are passed/returned
to/from functions) are also captured with GUI tables.

• For the supported stack layout, the designer has to specify the stack
pointer and the frame pointer whereas other configuration items
can be simply selected/deselected.

• Retargeting the register allocator is reduced to the selection of al-
locatable registers out of the set of all available registers in the
LISA model.

• The scheduler and the code emitter is generated fully automati-
cally [270][268][269].

• The code selector rules are specified by means of a convenient
drag-and-drop mechanism: The user can compose these rules from
the compiler operators (e.g. addition). Like in most compilers,
these mapping rules are the basis for the tree pattern matching
based code selector. The link between mapping rules and their ar-
guments on the one hand and LISA operations and their operands
on the other hand is made via drag-and-drop in the GUI.

Once everything is specified the designer can finally build the compiler
within minutes.

A.4.2 Assembler and Linker Generation

The generated assembler [111] processes the assembly application and
produces object code for the target architecture. An automatically gen-
erated assembler is required, as the modelled architecture consists of
a specialized instruction set. Certainly, the common assembler features
are also supported in the generated assembler. For example, many GNU

A.4. Software Tools Generation 179

assembler directives are supported. A comfortable macro assembler ex-
ists to provide more flexibility to the designer.

The different pieces of object code are linked by the automatically gen-
erated linker. With respect to the modelled memory configuration the
object code is used to create the final executable. Various configuration
possibilities are provided to steer the linking process.

A.4.3 Simulator Generation

The generated simulator is separated into backend and frontend. The
debugger frontend and profiler is shown in Figure A.4. It supports ap-
plication debugging, architecture profiling and application profiling ca-
pabilities. The screenshot shows some features such as disassembly
view (1) including loop and execution profiling (2), LISA operation ex-
ecution profiling (3), memory profiling (4) and LISA operation code
coverage (5). Also, the content of memories (6), resources (7) and reg-
isters (8) can be viewed and modified. Thus, the designer is able to
easily debug both the processor model and application. Additionally,
the necessary profiling information for design space exploration is pro-
vided.

The performance of the simulator is strongly dependent on the abstrac-
tion level of the underlying LISA model and the memory model. Fig-
ure A.5 shows the ranges of simulation speed achieved by the simulators
generated from LISA. The results were achieved by using a 2000 MHz
Athlon PC, 768 MB RAM running the Red Hat Linux operating sys-
tem. The simulation speed of a LISA model, written on a high level
of abstraction, both in the domain of timing and architectural features,
reaches up to 15 Million Instructions Per Second (MIPS). After increas-
ing the model accuracy, by changing the memory to a complex memory
subsystem, the simulation speed drops to 8 MIPS. Changing the core
model to a pipelined and thus cycle-accurate version without touching
the memory model, decreases the simulation speed by 10 MIPS. Finally,
simulating a very detailed model close or equal to the real hardware be-
havior, the simulator still achieves a speed of about 0,5 MIPS.

The simulator backend, includes a well defined Application Program-
ming Interface (API), which can be easily used to connect to any other

180 Appendix A. ASIP Development Using LISA 2.0

1

2

3

4

5

6

7

8

Figure A.4: The simulator and debugger frontend

instruction
accurate

cycle accurate

plain
memory

memory
subsystem

memory

15
MIPS

0,5 MIPS

5 MIPS

8 MIPS

architecture

Figure A.5: Achieved simulation speed

simulator frontend. Various simulation techniques [35] are supported,
such as compiled simulation, interpretive simulation and Just-In-Time

A.4. Software Tools Generation 181

Cache Compiled Simulation (JIT-CCS) [193]. These mechanisms are
briefly described below.

A.4.3.1 Interpretive Simulation

The interpretive simulation technique is a software implementation of
the underlying decoder of the architecture. For this reason the inter-
pretive simulation is considered to be a virtual machine performing the
same operations as the hardware does: fetch, decode and execute the in-
struction. All simulation steps are performed at runtime, which provides
the highest possible flexibility. However, the straight-forward mapping
of the hardware behavior into a software simulator is the major dis-
advantage of the interpretive simulation technique. Compared to the
decoding of the real instructions in hardware, the control flow requires
an significant amount of time in software.

A.4.3.2 Compiled Simulation

The compiled simulation uses the locality of code in order to speed up
the execution time of the simulation compared to the interpretive sim-
ulation technique. The task of fetching and decoding an instruction is
performed once before simulation run. The decoding results are stored
and used later on during simulation. Execution time is saved as, during
the following executions of the same instruction, the fetch and decode
steps do not need to be repeated. Thus, the compiled simulation re-
quires the program memory content to be fixed before simulation run-
time. Various scenarios are unsupported by the compiled simulation
technique, such as system simulations with external and thus unknown
memory content and operating systems with changing program memory
content. Additionally, large applications, which require a huge amount
of memory on the target host, are hard to support.

A.4.3.3 Just-In-Time Cache Compiled Simulation (JIT-CCS)

The objective of the JIT-CCS is to combine the advantages of both in-
terpretive and compiled simulation. This new technique provides the

182 Appendix A. ASIP Development Using LISA 2.0

ARM7 - instruction accurate JIT-CCS

jpeg 2000 codec

0,0 0,0

99,9 98,3
95,3

84,4

74,7

58,5

33,1

19,1

8,8

2,9 2,0 1,0 0,4 0,1 0,0

0

1

2

3

4

5

6

7

8

C
om

pi
le
d

In
te

rp
re

tiv
e 2 4 8 16 32 64 12

8
25

6
51

2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

Cache Size [Records]

P
e

rf
o

rm
a

n
c

e
[M

IP
S

]

0

10

20

30

40

50

60

70

80

90

100

C
a
c
h

e
M

is
s

R
a
te

Figure A.6: Performance of the just-in-time cache compiled simulation

full flexibility of the interpretive simulation while reaching the perfor-
mance of the compiled simulation. The underlying principle is to per-
form the compilation, in fact the decoding process, just-in-time at sim-
ulation runtime. Because of that, full flexibility is provided. Moreover,
the decoding results are stored in a cache. In every subsequent simu-
lation step the cache is searched for already existing decoding results.
Due to the locality of code in typical applications, the simulation speed
can be improved using the JIT-CCS. The cache size used in the JIT-CCS
is variable and can be changed in a range from 1 - 32768 lines, where
a line corresponds to one decoded instruction. The maximum amount
of cache lines corresponds to a memory consumption of less than 16
MB on the simulator host. Compared to the traditional compiled sim-
ulation technique, where the complete application is translated before
simulation time, this memory consumption is negligible.

Figure A.6 illustrates the performance of the cache compiled simulation
depending on the cache size. The results were achieved by using an
1200 MHz Athlon PC, 768 MB RAM running the Microsoft Windows
2000 operating system. A cache size of one line means, that the Just-In-
Time cache compiled simulation essentially performs the same way as
the interpretive simulation. Every instruction is decoded and simulated
again, without using the advantage of code locality. With a rising num-

A.5. System Integration 183

ber of cache lines the simulation performance (wide bars) comes closer
to the performance of a compiled simulation and even reaches that per-
formance. The simulation speed increases with decreasing cache miss
rate (narrow bars). As can be seen in the figure, the performance of
the compiled simulation can be reached with a relatively small number
of cache size and thus less memory consumption on the host machine.
Moreover, this memory consumption on the target host is constant rela-
tive to the application size.

A.5 System Integration

Today, typical single chip electronic system implementations combine
a mixture of DSPs, micro-controllers, ASICs and memories. In future,
the number of programmable units in a System-on-Chip (SoC) design
will even increase. To handle the enormous complexity, system level
simulation is absolutely necessary for both performance evaluation as
well as verification in system context. The earlier in the flow design
errors or lack of performance are detected, the less the costs for re-
design cycles get. The automatically generated LISA processor simu-
lators can be integrated into various System Simulation Environments,
such as CoWare ConvergenSC[61] or SYNOPSYS CoCentric System
Studio[234]. Thus, modules provided by different design teams or even
third parties can be combined easily.

The communication of the LISA processors with their system environ-
ment can be modelled on different levels of abstraction. First, LISA
pin resources can directly be mapped to the SoC environment for pin
accurate co-simulation. Alternatively, the LISA bus interface allows
modelling the SoC communication on a higher abstraction level, i.e.,
Transaction Level Modeling (TLM) [239]. By that, accesses to buses
and memories external to the respective processor core are efficiently
mapped to the communication primitives applied in the SoC simulation
world.

For user friendly debugging and online profiling of the embedded SW
and its platform, the user always has the possibility of getting the full
SW centric view of an arbitrary SW block[274] at simulation runtime.
This is done just by dynamically connecting a HUB debugger GUI to

184 Appendix A. ASIP Development Using LISA 2.0

the processor of interest. Thus, only one or two debugger GUIs are suf-
ficient even to debug complex multiprocessor systems. All other SW
blocks, that are currently not considered, still simulate at maximum
speed. The remote debugger frontend instance offers all observabil-
ity and controllability features for multiprocessor simulation as known
from standalone processor simulation. Even resources external to a pro-
cessor module but mapped into its address space like peripheral regis-
ters and external memories can be visualized and modified by the multi-
processor debugger GUI. The SW developer can dynamically connect
to relevant processors, set break/watch points in respective code seg-
ments, disconnect from simulation and automatically re-connect when
a breakpoint is hit.

A.6 Summary

This appendix presents the development of Application Specific In-
struction Set Processors (ASIPs) based on the architecture description
language LISA. This includes the design exploration, implementation,
software tools design and system integration. The LISA model of the
target architecture is used to automatically generate the software tools:
C-compiler, assembler, linker and simulator from the same LISA model.
Given a cycle-accurate LISA model, even the complete hardware model
can be derived both for exploration and implementation purpose. The
generated software tools are powerful enough to be used in complex ap-
plication design as powerful assembler, macro assembler and different
simulation techniques are provided. The highly flexible system integra-
tion allows to connect to any co-simulation environment or customer
specific environments. The current research topics are focusing on the
field of compiler generation, RTL processor synthesis and system inte-
gration.

Appendix B

Computational Kernels

In this chapter, the computational kernels that have been used for il-
lustration purposes in Chapter 5 and as benchmarks in Chapter 7 are
described.

B.1 The CORDIC Algorithm

The CORDIC algorithm1 for the vectoring and rotate mode was first
described by Volder [266]. In the vectoring mode the magnitude and
the angle of a given vector are computed, whereas in the rotate mode a
given vector is rotated by a given angle.

The CORDIC algorithm uses iterative computations according to the
following equations:

Xi+1 = Xi ∓ 2−iYi (B.1)

Yi+1 = Yi ± 2−iXi (B.2)

αi+1 = αi ∓ tan−1(2−i) (B.3)

These iterations are valid for Xi > 0, otherwise, the vector with a nega-
tive Xi has to be rotated by 180°. The pathological case of a zero vector
has to be treated as an exception.

After N iterations the magnitude of the resulting vector (XN , YN) has
been incremented compared to the start vector (X0, Y0) by a factor KN

which can be (pre-)computed using the following equation:

KN =
i=N−1∏

i=0

√
1 + 2−2i (B.4)

1CORDIC stands for COordinate Rotation DIgital Computer.

186 Appendix B. Computational Kernels

If the length of the resulting vector in the rotate mode has to be pre-
served, the scaling factor K−1

N needs to be applied.

The strategy for the choice of the signs in equations B.1 to B.3 has to
be selected according to the operating mode.

• rotate mode: in order to obtain αN → 0 the |αi+1| has to be smaller
than the previous |αi|, therefore, the upper sign is chosen, if αi >
0, else the lower sign.

• vectoring mode: in order to obtain YN → 0 the |Yi+1| has to be
smaller than the previous |Yi|, therefore, the lower sign is chosen,
if Yi > 0, else the upper sign.

Listings B.1 and B.2 are C code implementations of the CORDIC both
for the vectoring and the rotate mode.

void cordic_vect(long *x,long y,long *z, const long N) {
long x_next, y_next, z_next, delta, i, flag;
double K;
*z=0; K=1.0;
if (*x >= 0)

flag = 1;
else {

*x=-(*x); y=-y; flag = -1;
}
for(i=0; i<=N; i++) { /* "Vectoring" mode y->0 */

if (y>=0) delta = -1; else if (y<0) delta = 1;
x_next = (*x)-delta*(y>>i);
y_next = y+delta*((*x)>>i);
z_next = (long) (*z-delta*(long) ((1<<N)

*atan(1.0 / ((float)(1<<i)))+0.5));
*x = x_next; y = y_next; *z = z_next;
K=K*1.0/sqrt(1+pow(2.0, -2.0*i));

}
if(flag == -1)

if (*z < 0) (*z)+=(long) ((1<<N)*M_PI);
else (*z)-=(long) ((1<<N)*M_PI);

x=(long) (K(*x)); /* scaling */
}

Listing B.1: CORDIC Implementation for Vectoring Mode

B.2. FIR Filter 187

void cordic_rot(long *x,long *y,long z, const long N) {

long x_next, y_next, z_next, delta, i, flag;
double K;

K=1.0;
if (z<(long)(-(1<<N)*0.5*M_PI)) {
flag = 1;
z+=(long) ((1<<N)*M_PI);

}
else if(z>(long)((+(1<<N)*0.5*M_PI))) {
flag = 1;
z-=(long) ((1<<N)*M_PI);

}
else
flag = 0;

if ((z<-(1<<N)*0.5*M_PI) || (z>(1<<N)*0.5*M_PI)) {
printf("\n\nError in CORDIC subroutine: z out of range!\n");
printf("z = %ld\n", z);
printf("Bounds: %ld %ld\n", (long) (-(1<<N)*0.5*M_PI),

(long) ((1<<N)*0.5*M_PI));
exit(1);

}

for(i=0; i<=N; i++) { /* "rotate" mode z->0 */

if (z>=0)
delta = 1;

else if (z<0)
delta = -1;

x_next = *x-delta*(*y>>i);
y_next = *y+delta*(*x>>i);
z_next = (long) (z-delta*(long) ((1<<N)

*atan(1.0 / ((float)(1<<i)))+0.5));
*x = x_next;
*y = y_next;
z = z_next;
K=K*1.0/sqrt(1+pow(2.0, -2.0*i));

}

if (flag == 1) {
*x=-(*x);
*y=-(*y);

}

x=(long) (K(*x)); /* scaling */
y=(long) (K(*y));

}

Listing B.2: CORDIC Implementation for Rotate Mode

B.2 FIR Filter

FIR filters are important DSP kernels for a variety of applications. Many
commercial DSPs using multiply-accumulate units are optimized for

188 Appendix B. Computational Kernels

these FIR kernels. The following equation defines the behavior of an
M-tap-FIR filter:

y(n) =

k=M−1∑
k=0

hkx(n − k) (B.5)

where x(m) is the input, hk are the coefficients and y(n) is the output
of the filter. In Listing B.3 a C code implementation for the FIR filter is
given, which has been taken out of the DSPstone benchmark program
suite [285]. This implementation uses explicit memory copy operations
in order to obtain the correct delay for the inputs x(n − k). Provided
that a processor supports modulo addressing [275], this delay line can
also be implemented using a circular buffer in the memory, which ap-
proximately halves the number of memory accesses.

B.3 The Fast Fourier Transformation

The fast fourier transformation [57] is an algorithm to compute the dis-
crete fourier transformation (DFT) at reduced computational costs. The
8192 point radix 2 FFT implementation in Listing B.4 uses the decima-
tion in time algorithm [154]. The complex coefficients are partially pre-
computed, which saves memory bandwidth at the expense of additional
arithmetic computations. The function ReverseBits() in Listing B.4 is
needed to reverse the bit order of an integer for addressing purposes.

B.4 Vector/Matrix Operations

The following vector and vector-matrix operations have been consid-
ered:

• dot product: z =
i=N−1∑

i=0

xiyi

• matrix-vector multiply: Z = �V T X and Z = X�V

• matrix-matrix multiply: Z = XY, Z = XYT and Z = XTY

B.4. Vector/Matrix Operations 189

#define STORAGE_CLASS register
#define TYPE int
#define LENGTH 64

void
pin_down(TYPE * px, TYPE * ph, TYPE y)
{

STORAGE_CLASS TYPE i;
for (i = 1; i <= LENGTH; i++)
{ *px++ = i;

*ph++ = i;
}

}

TYPE main()
{

static TYPE x[LENGTH];
static TYPE h[LENGTH];
static TYPE x0 = 100;
STORAGE_CLASS TYPE i ;
STORAGE_CLASS TYPE *px, *px2 ;
STORAGE_CLASS TYPE *ph ;
STORAGE_CLASS TYPE y;

pin_down(x, h, y);
ph = &h[LENGTH-1] ;
px = &x[LENGTH-1] ;
px2 = &x[LENGTH-2] ;

// START_PROFILING ;
y = 0;
for (i = 0; i < LENGTH - 1; i++)
{ y += *ph-- * *px ;

*px-- = *px2-- ;
}

y += *ph * *px ;
*px = x0 ;

// END_PROFILING ;

pin_down(x, h, y);
return ((TYPE) y);

}

Listing B.3: Implementation of 64 tap FIR Filter (including Testbench)

• basic element-wise arithmetic: Z = X op Y and �z = �x op�y where
“op” is one of +, -, *

• vector load/store operations (these also support the generation of
regular matrices like the identity matrix using programmable stride
lengths)

• load/store operation of element in row n and column m in NxM
matrix

190 Appendix B. Computational Kernels

B.5 Complex EVD using a Jacobi-like Algorithm

According to [134] for the singular value decomposition (SVD) as well
as for the eigenvector/eigenvalue decomposition2 (EVD) there are two
algorithms that are widely used: Jacobi-like [128] algorithms and QR-
factorization-based algorithms [94]. For this case study, a Jacobi-like
algorithm using modified Givens-rotations is used, because of the better
numeric stability and precision compared to the QR methods [63].

In order to decompose a hermitian NxN matrix A = A0 into the (real)
eigenvalues and complex eigenvectors the Givens-rotations are used as
follows: After each multiplication according to the following equation,
a Pivot element ai,j of the hermitian matrix An is canceled:

An+1 = G−1
n AnGn (B.6)

The matrix Gn is the modified Givens-matrix that is computed using a
NxN identity matrix into which a 2x2 pivot submatrix Qi,j is embedded
at the positions (i,i), (i,j), (j,i) and (j,j) as follows (i < j):

Gn =

1
1

qi,i qi,j

1
qj,i qj,j

1

(B.7)

This 2x2 submatrix Qi,j is given by

Qi,j =

(
cos ϕ eiαsin ϕ

−e−iαsin ϕ cos ϕ

)
(B.8)

where
eiα =

ai,j

|ai,j| (B.9)

and

tan 2ϕ =
2|ai,j|

aj,j − ai,i
,

−π

4
≤ ϕ ≤ π

4
(B.10)

2The EVD is a special case of the SVD.

B.5. Complex EVD using a Jacobi-like Algorithm 191

Successive Givens-rotations have to be performed for all off-diagonal
elements of A, which is commonly referred to as one sweep. It is typ-
ically necessary to perform several sweeps in order to reach a given
precision, because the Givens-rotations set Pivot elements that have al-
ready been canceled by a previous rotation back to a value different
from zero3. After a certain precision is reached after M rotations, which
can be monitored by computing the energy of the off-diagonal elements

Eoff diag =

row=N∑
row=1

col=N∑
col=row+1

|arow,col|2 (B.11)

the computed real eigenvalues λi are an approximation of the diagonal
elements of the matrix AM .

The associated right and left eigenvectors are given by the orthogonal
matrices EVr and EVl which have normalized rows and columns ac-
cording to

EVr =
M∏
i=1

Gi (B.12)

and

EVl =

M∏
i=1

G−1
n (B.13)

The computations in Equation B.9 and Equation B.10 can obviously be
implemented with a CORDIC processor, which enables to compute the
phase and magnitude of a vector as well as the sin() and cos() functions
of a given angle.

3However, the magnitude of this value is smaller than the magnitude of the value that has just been
canceled. Therefore, the algorithm converges to a diagonal matrix.

192 Appendix B. Computational Kernels

#define DP 10 // decimal point of fixed point numbers
void fft_ll (

int InverseTransform, long *RealIn, long *ImagIn,
long *RealOut, long *ImagOut)

{
unsigned i, j, k, n;
unsigned BlockSize, BlockEnd;
constant unsigned NumSamples = 8192; /* FFT-length */
constant unsigned NumBits=13; /* No. of bits to store indices */
NumBits = 13;
long tr, ti; /* temp real, temp imaginary */
// delta_angle;
long sm2_arr[13] = {0, 0, -1023, -724, -391, -199, -100, -50,

-25, -12, -6, -3, -1};
long sm2, sm1_arr[13] = {0, -1023, -724, -391, -199, -100, -50, -25,

-12, -6, -3, -1, 0};
long sm1, cm2_arr[13] = {1023, -1023, 0, 724, 946, 1004, 1019, 1022,

1023, 1023, 1023, 1023, 1023};
long cm2, cm1_arr[13] = {-1023, 0, 724, 946, 1004, 1019, 1022, 1023,

1023, 1023, 1023, 1023, 1023};
long cm1, w, ar[3], ai[3], tmp;
int loopcnt;
for (i=0; i < NumSamples; i++) {

j = ReverseBits (i, NumBits);
RealOut[j] = RealIn[i]<<DP;
ImagOut[j] = (ImagIn == NULL) ? 0 : ImagIn[i]<<DP;

}
// START_PROFILING ;
loopcnt=0; BlockEnd = 1;
for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1)
{

sm1 = sm1_arr[loopcnt]; sm2 = sm2_arr[loopcnt];
cm1 = cm1_arr[loopcnt]; cm2 = cm2_arr[loopcnt];
w = (2 * cm1); loopcnt++;
for (i=0; i < NumSamples; i += BlockSize) {

ar[2] = cm2; ar[1] = cm1;
ai[2] = sm2; ai[1] = sm1;
for (j=i, n=0; n < BlockEnd; j++, n++){

ar[0]=(w*ar[1])>>DP-ar[2];ar[2]=ar[1];ar[1]=ar[0];
ai[0]=(w*ai[1])>>DP-ai[2];ai[2]=ai[1];ai[1]=ai[0];
k = j + BlockEnd;
tr = (ar[0]*RealOut[k])>>DP - (ai[0]*ImagOut[k])>>DP;
ti = (ar[0]*ImagOut[k])>>DP + (ai[0]*RealOut[k])>>DP;
RealOut[k]=(RealOut[j]-tr); ImagOut[k]=(ImagOut[j]-ti);
RealOut[j]=(RealOut[j]+tr); ImagOut[j]=(ImagOut[j]+ti);

}
}
BlockEnd = BlockSize;

}
unsigned ReverseBits (unsigned index, unsigned NumBits)
{

unsigned i, rev;
for (i=rev=0; i < NumBits; i++) {

rev = (rev << 1) | (index & 1);
index >>= 1;

}
return rev;

} // END_PROFILING ;
}

Listing B.4: Implementation of an 8192 point FFT

Appendix C

ICORE Instruction Set
Architecture

This chapter is organized as follows: First of all, the ICORE proces-
sor pipeline organization is described and an overview of the important
processor resources is given. Furthermore, the processor instructions
as well as exceptions to the orthogonal instruction execution model are
discussed A description of the memory and I/O organization as well as
the ICORE approach to instruction coding concludes this chapter.

C.1 Processor Resources

The visible processor storage entities for the programmer (cf. Fig-
ure C.1) are the general purpose register file (8x32bit registers), the ad-
dress registers (4x9bit), the status register (with less-than and zero flag)
and the predicate registers (4x1bit, used as storage bits for conditions).
These resources are abbreviated in the following sections according to
table C.1 in order to simplify the notation.

The following instruction descriptions use a C-like notation to specify
the instruction behavior. Example: AREG=IMM means, that the imme-
diate value ”IMM” (which is taken from the instruction word) is loaded
into address register ”AREG”, where ”AREG” denotes one of the ad-
dress registers AR0 to AR3.

C.2 Pipeline Organization

ICORE uses a 3 stage pipeline which is depicted in figure C.2. The
first pipeline stage is the stage, where the instruction word is fetched
from program memory (“FETCH INSTRUCTION”). The address for

194 Appendix C. ICORE Instruction Set Architecture

Instruction
ROM

Flow Control Unit, Test Interface and I2C-Ctrl.

Decoder

Branch Ctrl.

Data
Address

Generator

ZO-
Loop
Ctrl.

General
Purpose
Registers

Shifter

Multiplier

Minmax

ALU

Bitmanip

Addsub

Data Mem.

IF ID RD/EX/WB

Address
Registers

I/O Reg.

Predicate
and

Status
Registers

Figure C.1: ICORE Architecture

the program memory is taken from the program counter PC. The pro-
gram ROM in this stage is clocked by the falling clock edge, whereas
all the other registers are clocked by the rising clock edge. Thus, given
a certain value for the PC (e.g. PC=0x100), the instruction (in this case
the instruction of ROM address 0x100) is stored into the fetch register
during the next rising clock edge. This is convenient, because no addi-
tional pipeline delay is introduced by the ROM itself. In the next stage
(“DECODE INSTRUCTION”) the instruction is decoded and internal
control signals are generated and stored in the decode register. These
signals are propagated to all the functional units of the core and control
the behavior of the decoded instruction.

C.2. Pipeline Organization 195

Resource Abbreviation

REG one general purpose register (R0-R7)
REGS source register (which is read)
REGD destination register (which is written)
AREG one address register (AR0-AR3)

for indirect addressing
IMM immediate value (constant value encoded

in the instruction itself)
FLG one predicate bit (PR0-PR3)
PC program counter
STACK stack for subroutine return address
MEM data memory
IOPORT input/output register space
HWL LOOP CNT internal register used as

loop counter for the zero-overhead loop

Table C.1: Processor Resources and Abbreviations

DECODE

INSTRUCTIONINSTRUCTION

FETCH

Fetch Register

Data
Memory

and
I/O

Program Counter Decode Register

EXECUTE

INSTRUCTION

Processor
States

data read

data write

adress

Figure C.2: Abstract ICORE Pipeline Organization

The EXECUTE INSTRUCTION pipeline stage reads and updates the
registers storing the processor states (general purpose registers, status
register, predicate registers). The most important operations in this
pipeline stage are

• register-register operations, reading a general purpose register, ex-
ecuting an operation, and writing back the result to a general pur-
pose register (Examples: multiply or add instructions)

• memory-register operations (load operations) and register-memo-
ry operations (store operations) used to transfer data between data

196 Appendix C. ICORE Instruction Set Architecture

memory and general purpose registers. The same principle is valid
for I/O-register (input operations) and register-I/O operations (out-
put operations).

The important point for the DSP programmer is the fact, that the update
of the processor state is performed in the same cycle. This means, that
no pipeline delay has to be considered for this kind of instructions.

Example 1:

MOVI 0x2f, R0 /* R0=0x2f */
MOVI 0x0a, R1 /* R1=0x0a */
MOVI 0x0b, R2 /* R1=0x0b */
ADD R1, R2 /* R2=R2+R1 */
MUL R0, R2 /* R2=R2*R0= */

/* (0x0a+0x0b)*0x2f */
/* =0x1432=5170d */

The results of the “MOVI 0x0b, R2” instruction in R2 is available for
the “ADD R1, R2” without delay, furthermore the result of the “ADD
R1, R2” instruction is also available without delay for the multiply in-
struction.

ICORE uses a predict-untaken scheme for conditional branches like the
“BGE L1” instruction in the following example.

Example 2:

CMP R1, R2 /* set status reg. */
BGE L1 /* if R2>=R1 then L1 */
MOVI 0x01, R3 /* R3 = 1 */
MOVI 0x05, R6 /* R3 = 1 */
...

L1:MOVI 0x0, R3 /* R3 = 0 */

In this example the program continues without delay with the instruc-
tions after the branch (“MOVI 0x01, R3” and “MOVI 0x05, R6”), if the
branch is not taken. However, there is a delay after the execution of the
branch and the branch target instruction “MOVI 0x0, R3”, if the branch
is taken. In the case of a taken branch, the pipeline, which has already

C.2. Pipeline Organization 197

loaded and decoded both “MOVI” instructions, is flushed (reset to no-
operation instructions (NOP)). Thus, the delay between the execution of
the taken BGE-instruction and the “MOVI 0x0, R3” is exactly 2 cycles.

In summary, the programmer of ICORE can write functional correct
assembly code without having to worry about pipeline delays, because
ICORE either has no delays (like in the case of example 1) or the delays
slots are hidden from the programmer (like in example 2). This sim-
plifies code development, because the processor behaves according to a
straightforward model. An implementation alternative to avoid pipeline
flushes after branches would have been to execute the branch delay slots
and fill them with useful instructions. The assembly code for this imple-
mentation is much less understandable and, frequently, it is impossible
to fill the delay slot with a useful instruction other than a NOP. For this
reason a very short pipeline for ICORE has been chosen, which implic-
itly minimizes the branch penalty.

Mnemonic Description Behavior

R(AREG,REGD) Read memory at address AREG REGD
and store in register REGD =MEM(AREG)

RPI(AREG,REGD) Like ”R” with post increment REGD
of AREG =MEM(AREG++)

W(REGS,AREG) Save register REGS in memory MEM(AREG)=
at address AREG REGS

WPI(REGS,AREG) Like ”W” but with post MEM(AREG++)
-increment of AREG =REGS

IN(AREG,REGD) Read input ports addressed REGD=
by AREG INPORT(AREG)

INPI(AREG,REGD) Read input ports addressed REGD=
by AREG and increment AREG INPORT(AREG++)

OUT(REGS,AREG) Write output port addressed OUTPORT(AREG)
by AREG =REGS

OUTPI(REGS, Write output port addressed OUTPORT(AREG)
AREG) by AREG and increment AREG =REGS; AREG++

Table C.2: Load/Store Instructions

198 Appendix C. ICORE Instruction Set Architecture

Mnemonic Description Behavior

LAI(CON, AREG) Load address register immediate AREG=CON
LAIR0(CON,AREG) Load address register immediate AREG=CON+R0

with displacement in R0

Table C.3: Address Register Instructions

C.3 Instruction Summary

The ICORE instruction set can be divided into

• 8 load/store instructions (to load (store) data from (to) the data
memory or the I/O registers) explained in detail in table C.2

• 28 register-register instructions (performing operations on the gen-
eral purpose register, using data values from the general purpose
registers or the immediate field of the instructions) described in
table C.4

• 16 program flow control instructions (like branches, loop instruc-
tions and instructions to wait for external events) given in table
C.6

• 2 address register load instructions explained in table C.3

The column “Behavior” in the tables C.2, C.4, C.6 and C.3 contains
a C-like description of the instruction behavior. The meaning of the
operators in this column (e.g. “<<” or “&&”) can be looked up in any
C language manual. Refer to the appropriate footnote on this page for
an explanation of the coding for the “CON”-field of RBIT, WBIT and
WBITI.

C.3. Instruction Summary 199

Mnemonic Description Behavior

ABS(REG,FLG) Abs. value of REG, FLG(REG<0):?FLG=1:
store sign in pred. FLG=0;

ADD(REGS,REGD) Add two registers, REGD=REGD+REGS
store result in REGD

ADDI(CON, REG) Add constant value, REG=REG+CON
ADDSUB0 Cond. add. or sub- ((R1>=0)?(REGD+=REGS)
(REGS,REGD) traction dep. on the :(REGD-=REGS)

sign of R1
ADDSUB1 Same as before, but (R1>=0)?(REGD-=REGS)
(REGS,REGD) with negated condition :(REGD+=REGS)
AND(REGS,REGD) Logical ”AND” REGD = REGD & REGS
ANDI(CON,REGD) Logical ”AND” REGD = REGD & CON

with constant
SAT(CON,REG) Saturate REG to range REG = REG, if in range,

from −2CON to else saturation
2CON − 1

COR01 Special CORDIC (R1>=0)?(R3+=R6):
instruction (R3-=R6);R5=R7;(R1>=0)?
(1. instruction (R2+=R4):(R2-=R4);
for CORDIC loop) (HWL LOOP==-1)?

(R7=R2) :(R7=
(((R2>>HWL LOOP)
+1)>>1));
R6= MEM [AR0];

COR2 Special CORDIC (R1<0)?(R1+=R5)
instruction :(R1-=R5);HWL LOOP==
(2. instruction -1?(R4=R1):(R4=(((R1>>
for CORDIC loop) HWL LOOP)+1)>>1));

CMP(REGS,REGD) Compare registers set status (REGD-REGS)

CMPI(CON,REG) Compare with set status(REG-CON)
immediate value

MOV(REGS,REGD) Move reg. REGD=REGS
MOVI(CON,REG) Move immediate REG=CON
MULS(REGS,REGD) Signed mult. of REGD=

lower 16 bits ((unsigned 16b) REGS
of REGS and REGD * (unsigned 16b) REGD)

MULU(REGS,REGD) Unsigned mult. of REGD=
lower 16 bits ((unsigned 16b) REGS
of REGS and REGD * (unsigned 16b) REGD)

Table C.4: Register-Register Instructions (Part 1/2)

200 Appendix C. ICORE Instruction Set Architecture

Mnemonic Description Behavior

NEG(REG) Negate register REG = -REG
SLA(REGS,REGD) Arith. shift left REGD=REGD<<REGS low5

(shift count in
5 LSBs of REGS)

SLAI(CON,REG) Arith. shift left REG=REG<<CON low5
SRA(REGS,REGD) Arith. shift right REGD=REGD>>REGS low5
SRAI(CON,REG) Arith. shift right REGD=REG>>CON
SRA1(REGS, CORDIC instr.: (HWL COUNT<= -1)?
REGD) (shift by nr+1 bits, (REGD=REGS): (REGD=

where nr=”current (((REGS>>HWL COUNT)+1)
hardware loop cnt.”, >>1)
with rounding)

SRAI1(CON,REG) CORDIC instr. (CON<= -1)?(REG=REG)
for shift and round :(REG=(((REG>>CON)+1)

>>1)
SUB(REGS,REGD) Subtraction REGD=REGD-REGS
SUBI(CON,REG) Subtraction of const. REG=REG-CON
RBIT(CON4,REG) Extract bit field R0=((REG>>CON right)

in REG & ((1<<CON length)-1))
WBIT(CON5,REG) Write bit field in R0 R0=(((R0>>(CON left+1))

<<(CON left+1))+((REG&
((1<<(CON left-CON right
+1))-1))<<CON right)+
+(R0&((1<<CON right)-1)))

WBITI(CON6,REG) Write constant in REG=(((REG>>(CON left+1))
bit field of REG <<(CON left+1))+((31&

CON value&((1<<(CON left
-CON right+1))-1))
<<CON right)+(REG&((1
<<CON right)-1)))

Table C.5: Register-Register Instructions (Part 2/2)

4CON is defined by the relation CON=CON length*8 +CON right, where CON length and CON right
are 3 bit unsigned values

5CON is defined by CON=CON length*8 +CON right, where CON length and CON right are 3 bit
unsigned values; CON left = CON right + CON length -1

6CON is defined by CON=64*CON value+8*CON length+CON right, where CON value is a 5 bit field
and CON length and CON right are 3 bit unsigned values; CON left = CON right + CON length -1

C.3. Instruction Summary 201

Mnemonic Description Behavior

B(CON) Uncond. rel. branch PC=PC+CON+1
BSR(CON) Uncond. rel. branch STACK=PC;

to subroutine PC=PC+CON+1;
BE(CON) Rel. branch if ”=” If(STATUS.Z==1)

cond. in status reg. PC=PC+CON+1;
BNE(CON) Rel. branch if ”!=” if(STATUS.Z==0)

cond. in status reg. PC=PC+CON+1;
BLT(CON) Rel. branch if ”<” if(STATUS.L==1

cond. in status reg. && STATUS.L==0)
PC=PC+CON+1

BLE(CON) Rel. branch if ”<=” if(STATUS.L==1
cond. in status —— STATUS.Z==1)
register PC=PC+CON+1

BGT(CON) Rel. branch if ”>” if(STATUS.L==0
cond. in status && STATUS.Z==0)
register PC=PC+CON+1

BGE(CON) Rel. branch if ”>=” if(STATUS.L==0
cond. in status —— STATUS.Z==0)
register PC=PC+CON+1

BPC(FLG,CON) Rel. branch if pred. if(FLG==0)
bit FLG is clear PC=PC+CON+1

BPS(FLG,CON) Rel. branch if pred. if(FLG==1)
bit FLG is set PC=PC+CON+1

END Enter idle mode -
RTS Return from subrout. PC=STACK
SUSPG Wait until -

guard trig=”1”
SUSPP Wait until -

ppubus en=”1”
LPCNT(CON,REG) Init. loop cnt. reg. lp start count=CON;

lp end count=REG;
LPINI(CON) Init. loop start and -

end addr. (CON)
and activ. loop
processing with
next instr.

Table C.6: Program Flow Control Instructions

202 Appendix C. ICORE Instruction Set Architecture

C.4 Exceptions to the Hidden Pipeline Model

There are some restrictions for the programmer due to the internal
pipeline of ICORE. Restrictions are only present for the zero-overhead-
loop processing, which is implemented by the flow-control unit (cf. Fig-
ure C.1).

• the instruction “lpcnt” has to be executed at least 2 instructions
before the loop starts, when the internal loop counter is needed
within the loop e.g.

LPCNT(1,24);
MOV(R1,R2);
LPINI(COR_LOOPEND);

LABEL(COR_LOOPSTART)
COR01;
COR2;

LABEL(COR_LOOPEND)

is a legal sequence

• the loop body (in the above example the instructions COR01 and
COR2) needs at least 2 instructions. Only one loop instruction in
the loop body is not supported.

• branches to the last loop instruction are illegal e.g. in

LPCNT(1,10);
MOV(R1,R2);
LPINI(LOOPEND);

LABEL(LOOPSTART)
RPI(AR0,R0);
CMP(0,R0);
BNE(END_BODY);
MOVI(1,R0);

LABEL(END_BODY)
WPI(R0,AR1);

LABEL(LOOPEND)

the “BNE (END BODY);” instruction is illegal

C.5. ICORE Memory Organization and I/O Space 203

C.5 ICORE Memory Organization and I/O Space

ICORE uses a Harvard architecture, which means that instruction and
data memory are separated. An instruction ROM of 2048 words with
20 bits is used to store the program.

The data memory is subdivided into a small (synthesized) 24 word
ROM and a 256x32 bit RAM. Table C.7 shows the address mapping
of the data memory. The data memory itself contains about 200 tempo-
rary states and variables which correspond to the states defined in the
DVB-T A&T specification.

Memory Start Address End Address

Synth. ROM 0 23
unused 24 255
RAM 256 511

Table C.7: Data Memory Mapping

The I/O-address space of ICORE is separated from the data and the
instruction memory and uses about 40 different registers for I/O values.

C.6 Instruction Coding

The instruction code word is the representation of operations and
operands in the instruction memory. For instance, the word
“000100DDDIIIIIIIIIII” is the instruction code word for “MOVI #I, D”
where “I” represents an 11-bit immediate value and D is the destina-
tion (general purpose register R0-R7). Thus, the operation “MOVI
011100b, R5” moves the signed binary value 011100b to the register
R5 and has the machine coding “00010010100000011100”.

In order to simplify the design space exploration, which involves fre-
quent changes of the instruction coding, a tool called ICON has been
developed for programming. This tool has been described in Subsec-
tion 6.3.1 in this thesis. ICON is an instruction coding generator, a
hardware generator for the decoder hardware description, and an as-
sembler. ICON uses the assembler program in a line-oriented input file

204 Appendix C. ICORE Instruction Set Architecture

and automatically generates the instruction coding, the instruction de-
coder and the machine code (as COFF file for the ROM). The user has
the freedom to select the preferred coding scheme for the opcodes and
the alignment of operand fields. The remaining degrees of freedom are
optimized to minimize the coding width and the power consumption.
Figure C.3 shows an example input file (“.cri”-file) for ICON, which
contains the assembler program in the following format:

• the first line contains a description of the individual fields of the
file, starting with the opcode and the individual operands. The
second field, for instance, specifies the field “reg0” (first general
purpose register) which is encoded as 3bit unsigned value (“3u”),
the fifth field specifies the 11-bit signed immediate value

• the second line is a blank line

• the following lines specify the actual program to be implemented
starting with the operation e.g. “movi op” and the appropriate
fields e.g. “u3reg0=5” and “s11immediate=28” for the above ex-
ample (“MOVI 011100b, R5”). “x” values indicate don’t care
operand values.

opcode |u3r0 |u3r1 |u2ar |s11imm |u2pr

b_op x x x 6 x
movi_op 0 x x 0 x
lai_op x x 0 32 x
lpc_op 1 x x 1 x
rpi_op 2 x 1 x x
cmp_op 4 2 x x x
end_op x x x x x

Figure C.3: Assembler Input File for ICON

Appendix D

Different ICORE Pipeline
Organizations

Figure D.1 depicts the different pipeline organizations that have been
explored during the design of ICORE. Figure D.1 neglects many details
of the implementation including the status and predicate register file,
the address generator etc. It rather depicts the part of the data path that
is needed for register-register and memory-register instructions. Im-
plementation a) shows a two stage pipeline: the critical path of this
implementation is typically the ID/RD/EX/WB stage. Implementation
b) reduces this critical path by inserting an additional pipeline stage af-
ter the decoder. This also increases the branch penalty by one cycle.
Implementation c), finally, uses a 4-stage pipeline with a data forward-
ing path. This implementation, which is pretty similar to many con-
ventional RISC-processor implementations, needs additional MUXes
in the RD/EX stage to implement the forwarding logic. For the ICORE
benchmark, implementation b) exposed the best energy-efficiency and
was able to meet the given timing constraints.

206 Appendix D. Different ICORE Pipeline Organizations

IF ID/RD/EX/WB

Instruction
Memory Decoder

FU1

FUn

.

.

.

Mem.

I/O, I2C

a)

Flow Control a)

IF ID

Instruction
Memory Decoder

FU1

FUn

.

.

.

Mem.

I/O, I2C

b)

Flow Control b)

RD/EX/WB

IF ID

Instruction
Memory Decoder

FU1

FUn

.

.

.

Mem.

I/O, I2C

c)

Flow Control c)

RD/EX WB

G
en

er
al

 P
ur

po
se

 R
eg

is
te

r
G

en
er

al
 P

ur
po

se
 R

eg
is

te
r

G
en

er
al

 P
ur

po
se

 R
eg

is
te

r

Data Forwarding Path

Figure D.1: Different Pipeline Organizations for Design Exploration

Appendix E

ICORE HDL Description
Templates

In this chapter generic examples for HDL templates that implement reg-
ister file instances and functional units are described. These descriptions
can also be used and parameterized by an automatic HDL generator.

E.1 Generic Register File Entity

The implementation of a processor register like a status or a general pur-
pose register file can be achieved using the template register description
in Listing E.2 together with a parameterization package according to
Listing E.1. This synthesizable register file can be parameterized to
match any register structure that can be described with LISA.

Parameters of this register file template are the bit width of register el-
ements, the number of registers, and the number of individual read and
write ports of the register. If two write ports try to write to the same ad-
dress, this write access conflict is resolved in hardware using a prioriza-
tion scheme (here, write ports with lower number have higher priority).
Optionally, hardware or simulation code to detect this condition can be
added (which has been omitted in Listing E.2 due to a lack of space).

Write and read accesses to such a register file can be implemented by
connecting the inputs of the write ports to the associated data sources
using multiplexers in case of multiple sources. Due to the fact that the
read and write ports have access to all of the available internal reg-
isters, the hardware generator has to find an optimum assignment of
data sources/sinks to register write/read ports. This assignment can be
achieved using a balancing scheme, which minimizes the total multi-
plexer area and delay of the implementation.

208 Appendix E. ICORE HDL Description Templates

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

PACKAGE xy_reg_defs IS
-- GENERAL PURPOSE REGISTERS

CONSTANT xy_reg_width : integer := 32;
CONSTANT xy_ldn_num_registers : integer := 3;

-- modify the following, if no power of 2 is required
CONSTANT xy_num_registers : integer := 2**xy_ldn_num_registers;

-- number of read and write ports of reg. file
CONSTANT xy_num_read_ports : integer := 5;
CONSTANT xy_num_write_ports : integer := 5;

-- XY REGISTERS INTERFACES
SUBTYPE xy_register_t is std_logic_vector(xy_reg_width-1 DOWNTO 0);

-- type to select registers
SUBTYPE reg_nr_t IS unsigned(xy_ldn_num_registers-1 DOWNTO 0);

-- all read ports
TYPE xy_read_port_array_t IS ARRAY(xy_num_read_ports-1 DOWNTO 0)

OF xy_register_t;
-- all write ports

TYPE xy_write_port_array_t IS ARRAY (xy_num_write_ports-1 DOWNTO 0)
OF xy_register_t;

-- selects if write port is active and which register is written
TYPE xy_write_port_enable_array_t IS ARRAY (xy_num_write_ports-1

DOWNTO 0) OF std_logic;
TYPE xy_write_port_nr_array_t IS ARRAY (xy_num_write_ports-1 DOWNTO 0)

OF reg_nr_t;
-- selects which register is read

TYPE xy_read_port_nr_array_t IS ARRAY (xy_num_read_ports-1 DOWNTO 0)
OF reg_nr_t;

-- the register file itself
TYPE xy_register_array_t IS ARRAY (xy_num_registers-1 DOWNTO 0)

OF xy_register_t;
END xy_reg_defs;

Listing E.1: Package with Definitions for Parameterizable Register File

1 Read Port, 1 Write Port
of Registers 2 4 8 16 32
Area (ND2 equ. gates) 0.61k 1.09k 2.10k 3.99k 7.79k

1 Write Port, 8 Registers
of Read Ports 1 2 3 4 5
Area (ND2 equ. gates) 2.10k 2.53k 2.99k 3.44k 3.90k

2 Read Ports, 8 Registers
of Write Ports 1 2 3 4 5
Area (ND2 equ. gates) 2.53k 3.15k 3.28k 3.79k 3.88k

Table E.1: Area Results for Example Register File Configurations

E.2. Generic Bit-Manipulation Unit 209

Table E.1 contains synthesis results for a register file with 32 bit regis-
ters and several example configurations for the register number and the
number of read and write ports. Compared to the area of a functional
unit like a 16x16 bit multiplier, which consumes about 1.9k equivalent
gates (target frequency: 200MHz), the register file area can be signifi-
cant, if many registers are needed. From the power perspective, registers
also consume a significant part of the total power, because they are fre-
quently accessed in a typical load/store architecture (cf. Appendix F).

E.2 Generic Bit-Manipulation Unit

This section describes an application-specific functional unit with the
purpose to read and write short bit fields within a longer (e.g. 32-bit)
word. This so-called bit-manipulation unit is an example for a hand-
optimized VHDL description of a functional unit, because this kind of
operation is not available in the DesignWare-library of Synopsys [233].

As an example for a bit field write operation refer to Section C.3, where
the instructions RBIT, RBITI, WBIT and WBITI are described. For
instance in case of a WBIT instruction, the bit-manipulation unit (cf.
VHDL-Listings E.5, E.3 and E.4) simply replaces the bits CON right
to CON right + CON length − 1 with the CON length LSBs of
op1 in nb.

210 Appendix E. ICORE HDL Description Templates

ENTITY xy_reg_file IS
PORT (

clk_sysd2,rstq : IN std_logic;
xy_write_port_enable : IN xy_write_port_enable_array_t;
xy_write_port_regnr : IN xy_write_port_nr_array_t;
xy_data_in : IN xy_write_port_array_t;
xy_regnr_read : IN xy_read_port_nr_array_t;
xy_data_out : OUT xy_read_port_array_t;
xy_register : OUT xy_register_array_t);

END xy_reg_file;

ARCHITECTURE rtl OF xy_reg_file IS
SIGNAL gpreg : xy_register_array_t;

BEGIN
xy_register <= gpreg;
gp_register_write : PROCESS(rstq, clk_sysd2)
VARIABLE enable_bus : std_logic_vector(xy_num_registers-1

DOWNTO 0);
VARIABLE tmp_gpreg : xy_register_t;

BEGIN
IF (rstq = ’0’) THEN
gpreg <= (OTHERS => (OTHERS => ’0’));

ELSIF (clk_sysd2’event AND clk_sysd2 = ’1’) THEN
enable_bus := (OTHERS => ’0’);
FOR i IN xy_num_write_ports-1 DOWNTO 0 LOOP

IF (xy_write_port_enable(i) = ’1’) THEN
enable_bus(conv_integer(xy_write_port_regnr(i))) := ’1’;

END IF;
END LOOP;
FOR i IN xy_num_registers-1 DOWNTO 0 LOOP

tmp_gpreg := (OTHERS => ’0’);
FOR j IN xy_num_write_ports-1 DOWNTO 0 LOOP

IF (xy_write_port_regnr(j) = i
AND xy_write_port_enable(j) = ’1’) THEN

tmp_gpreg := xy_data_in(j);
END IF;

END LOOP;
IF (enable_bus(i) = ’1’) THEN

gpreg(i) <= tmp_gpreg;
ELSE

gpreg(i) <= gpreg(i);
END IF;

END LOOP;
END IF;

END PROCESS;

gp_register_read : PROCESS(gpreg, xy_regnr_read)
VARIABLE nr_var : integer range 0 to xy_num_registers-1;
BEGIN

xy_data_out <= (OTHERS => (OTHERS => ’0’));
FOR i IN xy_num_read_ports-1 DOWNTO 0 LOOP
nr_var := conv_integer(xy_regnr_read(i));
xy_data_out(i) <= gpreg(nr_var);

END LOOP;
END PROCESS;
-- insert write collision detection here

END rtl;

Listing E.2: Synthesizable VHDL Description of Parameterizable RF

E.2. Generic Bit-Manipulation Unit 211

ARCHITECTURE rtl OF ppu_bitmanip IS
SIGNAL rbit_notwbit : std_logic;
SIGNAL enable_imm : std_logic;
SIGNAL immediate : immediate_value_t;
SIGNAL op0_in : data_path_t;
SIGNAL op1_in : data_path_t;
SUBTYPE mask_t IS unsigned(bitmanip_max_mod_field-1 DOWNTO 0);
TYPE mask_table_t IS ARRAY (bitmanip_max_mod_field-1 DOWNTO 0) OF mask_t;
SIGNAL mask_table : mask_table_t;
SIGNAL dummy : std_logic;

BEGIN
bitmanip_block_proc : PROCESS(enable, rbit_notwbit_nb, enable_imm_nb,

immediate_nb, op0_in_nb, op1_in_nb)
BEGIN
IF (enable = ’0’ AND use_blocked_input = 1) THEN

rbit_notwbit <= ’0’;
enable_imm <= ’0’;
immediate <= (OTHERS => ’0’);
op0_in <= (OTHERS => ’0’);
op1_in <= (OTHERS => ’0’);

ELSE
rbit_notwbit <= rbit_notwbit_nb;
enable_imm <= enable_imm_nb;
immediate <= immediate_nb;
op0_in <= op0_in_nb;
op1_in <= op1_in_nb;

END IF;
END PROCESS;
bitmanip_proc : PROCESS(rbit_notwbit, enable_imm, immediate,

op0_in, op1_in, mask_table)
VARIABLE value_to_insert_v: std_logic_vector(bitmanip_max_mod_field-1

DOWNTO 0);
VARIABLE masked_value_v : data_path_t;
VARIABLE shifted_mask_v : std_logic_vector(bitmanip_max_affected

DOWNTO 0);
VARIABLE shifted_op_v : data_path_t;
VARIABLE length_v : unsigned(bitmanip_len_field_len-1

DOWNTO 0);
VARIABLE right_pos_v : unsigned(bitmanip_rpos_field_len-1

DOWNTO 0);
BEGIN
length_v := conv_unsigned(immediate(imm_value_width-

bitmanip_value_field_le-1 DOWNTO
imm_value_width-bitmanip_value_field_len

-bitmanip_len_field_len),
bitmanip_len_field_len);

right_pos_v := conv_unsigned(immediate(bitmanip_rpos_field_len-1
DOWNTO 0),bitmanip_rpos_field_len);

shifted_mask_v := conv_std_logic_vector(shl(mask_table(
conv_integer(length_v)),
right_pos_v), bitmanip_max_affected+1);

IF (rbit_notwbit = ’0’) THEN
IF (enable_imm = ’1’) THEN -- wbiti

value_to_insert_v := conv_std_logic_vector(conv_unsigned(immediate(
imm_value_width-1 DOWNTO imm_value_width-bitmanip_value_field_len),
bitmanip_value_field_len),bitmanip_max_mod_field);

ELSE -- wbit
value_to_insert_v := op1_in(bitmanip_max_mod_field-1 DOWNTO 0);

END IF;

Listing E.3: Synthesizable VHDL Architecture of Bit-Manipulation Unit 1/2

212 Appendix E. ICORE HDL Description Templates

-- mask significant bits
masked_value_v := (OTHERS => ’0’);
masked_value_v(bitmanip_max_mod_field-1 DOWNTO 0) :=

value_to_insert_v AND
conv_std_logic_vector(mask_table(conv_integer(length_v)),

bitmanip_max_mod_field);
-- shift masked_value_v to the left by right_pos_v bits
masked_value_v := conv_std_logic_vector(shl(UNSIGNED(masked_value_v),

right_pos_v), data_path_width);
-- combine results
result <= (op0_in AND (NOT conv_std_logic_vector(

UNSIGNED(shifted_mask_v),data_path_width)))
OR masked_value_v;

ELSE -- rbit
-- shift right
shifted_op_v := conv_std_logic_vector(shr(UNSIGNED(op0_in),

right_pos_v), data_path_width);
-- mask
result <= shifted_op_v AND

conv_std_logic_vector(mask_table(
conv_integer(length_v)),data_path_width);

END IF;
END PROCESS;

gen_mask_proc : PROCESS(dummy)
BEGIN

mask_table <= (OTHERS => (OTHERS => ’0’));
FOR j IN bitmanip_max_mod_field-2 DOWNTO 0 LOOP
FOR i IN j DOWNTO 0 LOOP

mask_table(j+1)(i) <= ’1’;
END LOOP; -- i

END LOOP; -- j
mask_table(0) <= (OTHERS => ’1’);

END PROCESS;
END rtl;

Listing E.4: Synthesizable VHDL Architecture of Bit-Manipulation Unit 2/2

ENTITY ppu_bitmanip IS
PORT (

enable : IN std_logic;
rbit_notwbit_nb : IN std_logic; -- ’0’ = wbit instruction
enable_imm_nb : IN std_logic; -- for wbiti
immediate_nb : IN immediate_value_t; -- immediate from instruct.
op0_in_nb : IN data_path_t; -- operand from register
op1_in_nb : IN data_path_t; -- "value field" for wbit
result : OUT data_path_t -- update for r0
);

END ppu_bitmanip;

Listing E.5: Synthesizable VHDL Entity of Bit-Manipulation Unit

Appendix F

Area, Power and Design Time
for ICORE

Figure F.1 depicts the area breakdown of the ICORE design module,
which contains the processor core, instruction and data memory as well
as an I/O processor. The total area of this design module is about 0.65
sq. mm.

Data ROM

0,3%

Instruction ROM

9,1%

Multiplier

3,8%

Saturation

0,9%

Bit-

manipulation

0,7%

Shifter

4,0%

ALU

3,1%

Addsub

0,8%

Misc.

5,6%

Decoder

3,1%

Global Controller

3,1%

Processor

Core

54,2%
Data Address Generator

0,9%

General Purpose

Register File

28,1%

Data RAM

17,4%

I/O Processor

19,1%

Figure F.1: ICORE Area Breakdown

A significant amount of the area is consumed by design entities that
require a large amount of area-intensive D-Flipflops like the general
purpose register and the I/O processor. The functional units of the pro-
cessor consume less than 15% of the total area.

214 Appendix F. Area, Power and Design Time for ICORE

In Figure F.2 the power consumption of the ICORE module for all the
design entities as well as the clock tree is shown. The total power of the
complete design module is 18.8mW.

Compared to other processor-based systems, the power consumption in
the clock tree is significantly lower, due to the extensive use of clock
gating. This is especially efficient, because the switching activity of
many register intensive design entities is low: For instance, a large part
of the I/O controller is used in order to store mainly static information
that configures the operating mode of the design. Moreover, it has to
be mentioned that the power consumption of the instruction memory
in Figure F.2 is measured after the optimization process that has been
described in Section 6.3.1. The power in the instruction ROM is still
significant despite of this optimization, because the memory is accessed
in each clock cycle.

Routing MUXes

9,3%

Multiplier

3,1%

Status Register

0,0%

Data Address Generator

0,4%

Bitmanipulation

1,1%

Saturation

0,8%

Global Controller

1,7%

Clock Tree

16,2%

Data ROM

0,1%

Misc.

2,1%

Decoder

3,6%

Addsub

0,1%

ALU

1,7%

Shifter

2,9%

General Purpose Register File

17,9%

Processor

Core

54%

Data RAM

4,9%

IO-Controller

1,7%

Instruction ROM

32,4%

Figure F.2: ICORE Power Breakdown for a Typical Operation Scenario

The total design time of ICORE was 10.5 man months. Figure F.3
shows the percentage of the design time for the different design tasks.
The time for the design space exploration is included in the assembly

215

programming and HW description design tasks. The time for all the ver-
ification tasks in this case study is significant with about 45% of the to-
tal design time. An optimizing (and functionally correct) HLL compiler
would have considerably decreased the time for assembly programming
and SW verification.

Assembly Programming

22%

System Integration

6%

HW Verification

11%

SW Verification

28%

Documentation

11%

HW Description + Synthesis

22%

Figure F.3: Distribution of ICORE Designtime

This page intentionally left blank

Appendix G

Acronyms

A silicon area
AD/DA analog digital / digital analog converter
ALICE here: name of a parameterizable processor ar-

chitecture with compiler support
ALU arithmetic logic unit
API application programming interface
ASI application specific instruction
ASIC application-specific integrated circuit
ASIP application-specific instruction set processor
ASPP application-specific programmable processor
ATM asynchronous transfer mode
BL bit line in a memory array
CDFG control data flow graph
CLIW configurable long instruction word
CMOS complementary metall oxide semiconductor
COFDM coded orthogonal frequency division multiplex
COFF common object file format
CORDIC coordinate rotation digital computer
COSY compiler design system (ACE)
CPU central processing unit
DES data encryption standard
DFG data flow graph
DFT discrete fourier transformation
DMA direct memory access
DOA direction-of-arrival (multi-antenna systems)
DSP digital signal processing or digital signal pro-

cessor
DSSP domain specific signal processors
DVB-T terrestrial digital video broadcasting
E energy

218 Appendix G. Acronyms

EDA electronic design automation
EPIC explicitly parallel instruction computing
EV eigenvector or eigenvalue
EVD eigenvalue/eigenvector decomposition
FFT fast fourier transformation
FIR finite impulse response (filter)
FPGA field-programmable gate array
FSM finite state machine
FU functional unit of a processor
GCC GNU C compiler
GP general purpose
GPR general purpose register
GSM global system for mobile communications
GUI graphical user interface
HDL hardware description language
HLL high level language
HW hardware
ICORE ISS-core (the first ASIP designed at the Institute

for Integrated Signal Processing Systems)
IDFT inverse discrete fourier transformation
IIR infinite impulse response (filter)
ILP instruction level parallelism
IP intellectual property
IPO in-place optimization
IRQ interrupt request
ISA instruction set architecture
ISI inter-symbol interference
ISS instruction set simulator
JPEG joint photographic experts group
LISA language for instruction set architecture de-

scription (ISS)
LMS least mean square
LSB least significant bit/byte
MIMD multiple instruction, multiple data (architec-

ture)
MIPS million instructions per second, commercial

processor architecture
MISD multiple instruction, single data (architecture)

219

MOS metall oxide semiconductor
MPEG motion pictures experts group
MSB most significant bit/byte
ND2 NAND standard cell with two inputs
NMOS metall oxide semiconductor with N-field effect

transistors
NOP no-operation instruction
NP network processor
OFDM orthogonal frequency division multiplexing
PAST projection approximation subspace tracking
PC program counter
PEQ phase equalization
PSA programmable system architecture
PTL processor template library
QAM quadrature amplitude modulation
RAM random access memory
RF register file
RISC reduced instruction set computer
ROM read only memory
RTL register transfer language
SIMD single instruction, multiple data (architecture)
SISD single instruction, single data (architecture)
SM signed magnitude (number representation)
SPARC scalable processor architecture
SPICE simulation program with integrated circuit em-

phasis
SRAM static random access memory
SVD singular value decomposition
T critical path of a synchronous design
TCG test case generator
VHDL VHSIC hardware description language
VHSIC very-high-speed integrated circuits
VLIW very long instruction word
VLSI very large scale integration
XOR exclusive logical OR operation

This page intentionally left blank

Bibliography
[1] Arthur Abnous and Jan Rabaey. Ultra-Low-Power Domain-Specific Multimedia Processors. Pro-

ceedings of the VLSI Signal Processing Workshop, pages 461–470, Oct. 1996.

[2] Santosh Abraham, Bob Rau, Robert Schreiber, Greg Snider, and Michael Schlansker. Efficient De-
sign Space Exploration in PICO. Proc. of the Conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES), pages 71–79, Nov. 2000.

[3] ACE – Associated Compiler Experts bv., http://www.ace.nl. The COSY Compiler Development
System, 2002.

[4] Douglas Adams. The Ultimate Hitchhikers’s Guide – Complete & unabridged. Wings Books, 1996.

[5] Advanced Risc Machines Ltd. ARM7100 Data Sheet, Dec. 1994.

[6] S. Affes, S. Gazor, and Y. Grenier. An Algorithm for Multi-Source Beamforming and Multi-Target
Tracking. IEEE Trans. on Signal Processing, 44(6):1512–1522, 1996.

[7] A. Aiken and A. Nicolau. A Realistic Resource-Constrained Software Pipelining Algorithm. Ad-
vances in Languages and Compilers for Parallel Processing, A. Nicola et al., Pitman/The MIT Press,
London, pages 274–290, 1991.

[8] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi. An ASIP Instruction Set Optimiza-
tion Algorithm with Functional Module Sharing Constraint. Proc. IEEE/ACM, Int. Conference on
Computer Aided Design, Santa Clara, CA, USA, pages 526–532, Nov. 1993.

[9] G. M. Amdahl. Validity of Single-Processor Approach to Achieving Large-Scale Computing Capa-
bility. Proc. AFIPS Conf. Reston, VA, pages 483–485, 1967.

[10] Analog Devices Inc. TigerSHARC Reference Manual, Dec. 2001.

[11] David P. Appenzeller and Andreas Kuehlmann. Formal Verification of a PowerPCTM Microproces-
sor, Report RC (19971). Technical report, IBM T. J. Watson Research Center, Yorktown Heights,
NY 10598, March 1995.

[12] ARC Cores Ltd. ARC Programmers Reference Manual, Dec. 1999.

[13] ARC Cores Ltd. ARCtangent Processor, http://www.arccores.com, 2001.

[14] Simon Segars ARM Inc. Low-Power Design Techniques for Microprocessors. In International Solid
State Circuits Conference, February 4–8, 2001.

[15] ARM Limited, http://www.arm.com. ARM9E-S Technical Reference Manual, 1999.

[16] ARM Ltd., Cambridge, UK. ARM Instruction Set Quick Reference Card, ARM QRC 001D, 1999.

[17] M. Arnold and Henk Corporaal. Designing Domain-Specific Processors. Proc. of the 2001 Int.
Workshop on Hardware/Software Codesign, Copenhagen, Denmark, 2001.

[18] Krste Asanovic, Mark Hampton, Ronny Krashinsky, and Emmet Witchel. Energy-Exposed Instruc-
tion Sets. 1st Chapter of Power Aware Computing, Editors: Robert Graybill and Rami Melhem,
Plenum Publishing, to appear, 2002.

[19] Semiconductor Industry Association. International Technology Roadmap for Semiconductors. Tech-
nical report, http://public.itrs.net/files/1999 SIA Roadmap/Home.htm, 1999.

[20] Y. Bajot and H. Mehrez. A Macro-Block Based Methodology for ASIP Core Design. In Proc. of the
Int. Conf. on Signal Processing Applications and Technology (ICSPAT), Nov. 1999.

[21] S. Balakrishnan and S. K. Nandy. Multithreaded Architectures for Media Processing. 1st Workshop
on Media Processors and DSPs (MP-DSP), Haifa, Israel, Nov. 15, 1999.

[22] M. Barbacci. Instruction Set Processor Specifications (ISPS): The Notation and its Application.
IEEE Transactions on Computers, C-30(1):24–40, Jan. 1981.

[23] Michael J. Bass and Clayton M. Christinsen. The Future of the Microprocessor Business. IEEE
Spectrum, pages 34–39, April 2002.

222 Bibliography

[24] Maurice Bellanger. Digital Processing of Signals - Theory and Practice. John Wiley & Sons Ltd.,
2000.

[25] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano. Asymptotic Zero-Transition Activity
Encoding for Address Busses in Low-Power Microprocessor-Based Systems. Proc. of the 7th Great
Lakes Symposium on VLSI, Urbana, IL, March 13-15, 1997.

[26] S. B. Bensley and B. Aazhang. Subspace-Based Channel Estimation for Code Division Muliple
Access Communication Systems. IEEE Trans. on Communications, 1994.

[27] J. Bier. DSP 16xxx Targets Communications Apps. Technical report, Microprocessor Report, Vol.
11, No. 12, Sept. 15, 1997.

[28] A. Bindra. Two ‘Lode’ up on TCSI’s new DSP core. EE Times, Jan. 1995.

[29] Nguyen Ngoc Binh, Masaharu Imai, Akichika Shiomi, and Nobuyuki Hikichi. A Hardware/Software
Partitioning Algorithm for Designing Pipelined ASIPs with Least Gate Counts. Proceedings of the
Design Automation Conference (DAC 96), Las Vegas, Nevada, USA, pages 527–532, June 1996.

[30] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, and Edward W. Felten. Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer. Proc. of the 21st Annual
International Symposium on Computer Architecture, pages 142–153, April 1994.

[31] BOPS, Inc., www.bops.com. Man Array Architecture, 2000.

[32] G. Boriello. Software Scheduling in the Co-Synthesis of Reactive Real-Time Systems. Proc. of the
31st Design Automation Conference, 1994.

[33] Jörg Bormann, Jörg Lohse, Michael Payer, and Gerd Venzl. Model Checking in Industrial Hardware
Design. Proceedings of the Design Automation Conference (DAC95), San Francisco, CA, June 12–
16, 1995.

[34] D.G. Bradlee, R.E. Henry, and S.J. Eggers. The Marion System for Retargetable Instruction Schedul-
ing. In Proc. of the Int. Conf. on Programming Language Design and Implementation (PLDI), pages
229–240, 1991.

[35] G. Braun, A. Hoffmann, A. Nohl, and H. Meyr. Using Static Scheduling Techniques for the Re-
targeting of High Speed, Compiled Simulators for Embedded Processors from an Abstract Machine
Description. In Proc. of the Int. Symposium on System Synthesis (ISSS), Oct. 2001.

[36] Thomas D. Burd and Robert W. Brodersen. Processor Design for Portable Systems. Journal of VLSI
Signal Processing, 13(2/3):203–222, Aug. 1996.

[37] Thomas D. Burd and Robert. W. Brodersen. Processor Design for Portable Systems. Journal of VLSI
Signal Processing, 13 (2/3), pages 203–222, August 1996.

[38] Klaus-Peter Buss and Volker Wittke. Mikro-Chips für Massenmärkte – Innovationsstrategien der
europäischen und amerikanischen Halbleiterhersteller in den 90er Jahren. Mitteilungen des Soziol-
ogischen Forschungsinstituts (SOFI), Universität Göttingen, July 2000.

[39] Cadence Design Systems, Inc., 2655 Seely Avenue, San Jose, CA 95134, USA. Cadence Virtual
Component Co-Design (VCC), 2002.

[40] T. Callaway and E. Swartzlander. Optimizing Arithmetic Elements for Signal Processing. In IEEE
VLSI Signal Processing Workshop, Oct. 1992.

[41] R. Camposano and J. Wilberg. Embedded System Design. ACM Transactions on Design Automation
for Electronic Systems, 10(1):5–50, 1996.

[42] Francky Catthoor, Frank Franssen, Sven Wuytack, Lode Nachtergaele, and Hugo De Man. Global
Communication and Memory Optimizing Transformations for Low Power Signal Processing Sys-
tems. VLSI Signal Processing Workshop, pages 178–187, Oct. 1994.

[43] A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair, B. Rosen, M. Mullen, J. Yoon, R. Rmoni,
D. Geist, and Y. Wolfsthal. AVPGEN – A Test Generator for Architecture Verification. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 3(2):188–199, 1995.

[44] A. Chandrakasan and R. Brodersen. Minimizing Power Consumption in Digital CMOS Circuits. In
Proc. of the IEEE, volume 83,4, April 1995.

Bibliography 223

[45] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. Brodersen. Optimizing Power Using
Transformations. In IEEE Transactions on Computer Aided Design, volume 14,1, pages 12–31, Jan.
1995.

[46] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design. Kluwer Academic
Publishers, 1995.

[47] Chang. Power-Area Tradeoff in Divided Word Line Memory Arrays. Journal of Circuits, Systems,
Computers, 1(7):49–57, 1997.

[48] D. G. Chinnery, B. Nikolic, and K. Keutzer. Achieving 550 MHz in an ASIC Methodology.
DAC2001, June 18-22, Las Vegas, Nevada, USA 2001.

[49] H. Choi, I.C. Park, S.H. Hwang, and C.M. Kyung. Synthesis of Application Specific Instructions
for Embedded DSP Software. In Proc. of the Int. Conf. on Computer Aided Design (ICCAD), Nov.
1998.

[50] H. Choi, J.H. Yi, J.Y. Kee, I.C. Park, and C.M. Kyung. Exploiting Intellectual Properties in ASIP
Designs for Embedded DSP Software. In Proc. of the Design Automation Conference (DAC), Jun.
1999.

[51] D. Chuang, G. Kamosa, D. Arya, and R. Priebe. JPEG2000: A Scalable and Configurable Multipro-
cessor VLIW Implementation. Mobile Multimedia Conference 2000, Tokyo, Japan, Oct. 2000.

[52] A. Cilio. Efficient Code Generation for ASIPs with Different Word Sizes. Proc. of the 3rd Confer-
ence of the Advanced School for Computing and Imaging, The Netherlands, June 1997.

[53] Andrea G. M. Cilio and Henk Corporaal. Global Program Optimization: Register Allocation of
Static Scalar Objects. Proc. of the 5th Annual Conference of the advanced School for Computing
and Imaging, Delft, pages 52–57, June 1999. ISBN: 90-803086-4-1.

[54] Theo A. C. M. Claasen. High Speed: Not the Only Way to Exploit the Intrinsic Computational Power
of Silicon. Proc. of the 1999 IEEE International Solid-State Circuits Conference, pages 22–25, 1999.

[55] I. Bernhard Cohen. Howard Aiken: Portrait of a Computer Pioneer. MIT Press, March 1999.

[56] Robert Cohn and Mark Vandevoorde. Instrumentation, and Profile Based Optimization. In Tuto-
rial 4 at the International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, http://www.tru64unix.compaq.com/dcpi/publications.htm, 1998.

[57] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Computation of Complex Fourier
Series. Math. Comp., 19:297–301, 1965.

[58] Joel Mc Cormack, Robert Mc Namara, Christopher Gianos, Larry Seiler, Norman P. Jouppi, Ken
Correll, Todd Dutton, and John Zurawski. WRL Research Report 98/1: Neon - A (Big) (Fast)
Single-Chip 3D Workstation Graphics Accelerator. Technical report, COMPAQ, Western Research
Laboratory, Palo Alto, CA, USA, 1998.

[59] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT
Press, ISBN 0-262-03141-8, 1989.

[60] Olivier Coudet. The Quest for Timing Closure. In Tutorial 3, Part 4, ASP-DAC 2001, Yokohama,
Japan, http://cadlab.cd.ucla.edu/ cong/slides/asp-dac01 tutorial/t3 p4 cou.pdf, 2001.

[61] CoWare. http://www.coware.com.

[62] H. Dawid and H. Meyr. The Differential CORDIC Algorithm: Constant Scale Factor Redundant
Implementation without correcting Iterations. IEEE Transactions on Computers, 45(3):307–318,
March 1996.

[63] J. Demmel and K. Veselic. Jacobi’s Method is more accurate than QR. Technical report, Courant
Institute of Mathematical Sciences, Department of Computer Science, New York University, 1989.

[64] S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis. Mc Graw Hill, NY, 1994.

[65] S. Devadas, A. Ghosh, and K. Keutzer. An Observability-Based Code Coverage Metric for Func-
tional Simulation. Proc. of the International Conference on Computer-Aided Design, pages 418–425,
1996.

224 Bibliography

[66] Srinivas Devadas and Sharad Malik. A Survey of Optimization Techniques Targeting Low Power
VLSI Circuits. 32nd Design Automation Conference, 1995.

[67] S. Dey, Y. Gefen, A.C. Parker, and M. Potkonjak. Wiley Encyclopedia of Electrical and Electronics
Engineering: Critical Path Analysis and Minimization in Digital Circuits, volume 4, pages 404–415.
John Wiley & Sons, 2000.

[68] Nathan Dohm, Carl Ramey, Darren Brown, Scot Hildebrandt, James Huggins, Mike Quinn, and
Scott Taylor. Zen and the Art of Alpha Verification. Int. Conference on Computer Design (ICCD98),
Austin, Texas, Oct. 5–7, 1998.

[69] F. Engel, J. Nührenberg, and G.P. Fettweis. A Generic Tool Set for Application Specific Processor
Architectures. In Proc. of the Int. Workshop on Hardware/Software Codesign, Apr. 1999.

[70] J.-H. Yang et al. Metacore: An Application Specific DSP Development System. In Proc. of the
Design Automation Conference (DAC), Jun. 1998.

[71] K. Usami et al. Design Methodology of Ultra Low-Power MPEG4 Codec Core Exploiting Voltage
Scaling Techniques. In Proceedings of the 35th Design Automation Conference, San Francisco, CA,
USA, pages 483–488, 1998.

[72] S. C. Huang et al. RLC Signal Integrity Analysis of High-Speed Global Interconnects. In Interna-
tional Electron Devices Meeting (IEDM), Tech. Digest, 2000.

[73] S. Gary et al. The PowerPC 603 Microprocessor: A Low-Power Design for Portable Applications.
In Proceedings of the 39th IEEE Computer Society International Conference, pages 307–315, March
1994.

[74] S. Kobayashi et al. Compiler Generation in PEAS-III: an ASIP Development System. In Proc. of
the Workshop on Software and Compilers for Embedded Systems (SCOPES), Mar. 2001.

[75] European Telecommunication Standards Institute, Sophia Antipolis, France. ETSI ETS 300744, Dig-
ital Video Broadcasting: Framing Structure, Channel Coding and Modulation for Digital Terrestrial
Television, V1.1.2, 1997.

[76] P. Faraboschi, G. Desoli, and J.A. Fisher. Very Long Instruction Word Architectures for DSP and
Multimedia Applications: The Latest Word in Digital and Media Processing. IEEE Signal Process-
ing Magazine, pages 59–85, Mar. 1998.

[77] Paolo Faraboschi, Geoffrey Brown, Joseph A. Fisher, Giuseppe Desoli, and Fred Homewood. Lx:
A Technology Platform for Customizable VLIW Embedded Processing. Proc. 27th Annual Interna-
tional Symposium on Computer Architecture (ISCA-2000), pages 203–213, June 12–14, 2000.

[78] A. Fauth, M. Freericks, and A. Knoll. Generation of Hardware Machine Models from Instruction
Set Descriptions. In Proc. of the IEEE Workshop on VLSI Signal Processing, 1993.

[79] A. Fauth and A. Knoll. Automatic Generation of DSP Program Development Tools Using a Ma-
chine Description Formalism. In Proc. of the Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 1993.

[80] Jay Fenlason and Richard Stallman. GNU gprof - The GNU Profiler. Free Software Foundation,
Inc., 1997.

[81] Gerhard Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, S. Kobayaschi, and T. Richter.
Breaking New Grounds Over 3000M MAC/s: A Broadband Mobile Multimedia Modem DSP. Proc.
of the Int. Conf. on Signal Processing Applications and Technology (ICSPAT’98), Toronto Canada,
pages 1547–1551, 1998.

[82] M. J. Flynn. Some Computer Organizations and their Effectiveness. IEEE Trans. Computers,
21(9):948–960, September 1972.

[83] W. Fornaciari, D. Sciuto, and C. Silvano. Power Estimation for Architectural Exploration of HW/SW
Communication on System-Level Buses. In Proc. of the Int. Workshop on Hardware/Software Code-
sign (CODES99), Rome, Italy, May 3–5, 1999.

[84] M. Freericks. The nML Machine Description Formalism. Technical Report, Technical University of
Berlin, Department of Computer Science, 1993.

Bibliography 225

[85] C. Ghez, M. Miranda, A. Vandecappelle, F. Catthoor, and D. Verkest. Systematic High-Level Ad-
dress Code Transformations for Piece-Wise Linear Indexing Illustrations: Illustration on a Medical
Algorithm. In Proceedings IEEE Workshop on Signal Processing Systems, Lafayette, LA, USA, Oct.
2000.

[86] T. Glökler, Stefan Bitterlich, and Heinrich Meyr. Power Reduction for ASIPs: A Case Study. IEEE
Workshop on Signal Processing Systems (SIPS), Antwerpen, Belgium, 2001.

[87] Tilman Glökler, Stefan Bitterlich, and Heinrich Meyr. DSP Core Verification Using Automatic Test
Case Generation. IEEE Trans. Acoust., Speech and Signal Processing, June 2000.

[88] Tilman Glökler, Stefan Bitterlich, and Heinrich Meyr. ICORE: A Low-Power Application Specific
Instruction Set Processor for DVB-T Acquisition and Tracking. 13th IEEE workshop on Signal
Processing Systems (ASIC/SOC’2000), September 2000.

[89] Tilman Glökler, Stefan Bitterlich, and Heinrich Meyr. Increasing the Power Efficiency of Applica-
tion Specific Instruction Set Processors using Datapath Optimization. Workshop on Sig. Proc. Syst.
SIPS2000, October 2000.

[90] Tilman Glökler, Stefan Bitterlich, and Heinrich Meyr. Power-Efficient Semi-Automatic Instruction
Encoding for Application Specific Instruction Set Processors. IEEE Trans. Acoust., Speech and
Signal Processing, May 2001.

[91] Tilman Glökler, Andreas Hoffmann, and Heinrich Meyr. Methodical Low-Power ASIP Design Space
Exploration. Kluwer Journal of VLSI Signal Processing (JVSP), Volume 33, Issue 3:229–246, March
2003.

[92] Tilman Glökler and Heinrich Meyr. ASIP Design and the Energy-Flexibility Tradeoff. In Pro-
ceedings of the 10th Aachen Symposium on Signal Theory, ISBN 3-8007-2610-6, Aachen, Germany,
pages 343–348, September 2001.

[93] Steve Golson. Resistance is Futile! Building Better Wireload Models. In Synopsys Users Group
Conference (SNUG99), San Jose, 1999.

[94] G. H. Golub and C. F. Van Loan. Matrix Computations. North Oxford Academic, 1989.

[95] J. Gong, D.D. Gajski, and S. Narayan. Software Estimation Using a Generic-Processor Model. In
Proc. of the European Design and Test Conference (ED&TC), Mar. 1995.

[96] Jie Gong, Daniel D. Gajski, and Alex Nicolau. A Performance Evaluator for Parameterized ASIC
Architectures. Proc. of the European Conference on Design Automation (EDAC), pages 66–71, 1994.

[97] R. Gonzales. Xtensa: A Configurable and Extensible Processor. IEEE Micro, 20(2):60–70, Mar.
2000.

[98] G. Goosens, J. van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and P. G. Paulin. Embedded
Software in Real-Time Signal Processing Systems: Design Technologies. IEEE Proc. Spec. Issue on
Hardware/Software Codesign, 1996.

[99] R. Govindarajan, Erik R. Altman, and Guang R. Gao. A Theory for Software-Hardware Co-
Scheduling for ASIPs and Embedded Processors. Proc. of the Int. Conf. on Application Specific
Systems, Architectures, and Processors (ASAP), Boston, MA, USA, July 10–12, 2000.

[100] B. Grattan, G. Stitt, and F. Vahid. Codesign-Extended Applications. IEEE/ACM International Sym-
posium on Hardware/Software Codesign, Estes Park, May 2002.

[101] M. Gschwind. Instruction Set Selection for ASIP Design. In Proc. of the Int. Workshop on Hard-
ware/Software Codesign, May 1999.

[102] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRESSION: A Language
for Architecture Exploration through Compiler/Simulator Retargetability. In Proc. of the Conference
on Design, Automation & Test in Europe (DATE), Mar. 1999.

[103] S. Hanono, G. Hadjiyiannis, and S. Devadas. Aviv: A Retargetable Code Generator Using ISDL.
Tech Report, SPAM Project, Princeton University, April 1996.

[104] Paul J. Havinga and Gerard J. M. Smit. Design Techniques for Low Power Systems. Journal of
System Architectures, 46(1):1–21, 2000. ISSN: 1383-7621.

226 Bibliography

[105] S. Haykin. Adaptive Filter Theory. Prentice Hall, 1991.

[106] Gerben J. Hekstra and Ed F. Deprettere. A Chip Set For A Ray-Casting Engine. Proc. of the
Workshop on VLSI Signal Processing IX, San Francisco, CA, USA, 1996.

[107] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., 1996. Second Edition.

[108] Richard C. Ho, C. Han Yang, Mark A. Horowitz, and David L. Dill. Architecture Validation for
Processors. Proc. of the International Symposium on Computer Architecture (ISCA), pages 404–
413, 1995.

[109] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, A. Wieferink, and H. Meyr. A Novel
Methodology for the Design of Application Specific Instruction Set Processors (ASIP) Using a Ma-
chine Description Language. IEEE Transactions on Computer-Aided Design, 20(11):1338–1354,
Nov. 2001.

[110] A. Hoffmann, H. Meyr, and R. Leupers. Architecture Exploration for Embedded Processors with
LISA. Kluwer Academic Publishers, 2002.

[111] A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Generating Production Quality Software Devel-
opment Tools Using A Machine Description Language. In Proc. of the Conference on Design,
Automation & Test in Europe (DATE), Mar. 2001.

[112] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr. A Methodology for the
Design of Application Specific Instruction-Set Processors Using the Machine Description Language
LISA. In Proc. of the Int. Conf. on Computer Aided Design (ICCAD), Nov. 2001.

[113] B. Holmer and B. Prangle. Hardware/Software Codesign Using Automated Instruction Set Design
& Processor Synthesis, 1993.

[114] Mark Horowitz. Lecture 24: Power, Low Power Design.
http://www.cs.utexas.edu/users/skeckler/cs384v/ handouts/lecture24 2.pdf, Stanford University,
1999.

[115] I.J. Huang and A.M. Despain. Generating Instruction Sets and Microarchitectures from Applications.
In Proc. of the Int. Conf. on Computer Aided Design (ICCAD), Nov. 1994.

[116] I.J. Huang and A.M. Despain. Synthesis of Instruction Sets for Pipelined Microprocessors. In Proc.
of the Design Automation Conference (DAC), Jun. 1994.

[117] I.J. Huang, B. Holmer, and A.M. Despain. ASIA: Automatic Synthesis of Instruction-Set Architec-
tures. In Proc. of the SASIMI Workshop, Oct. 1993.

[118] G. A. Van Huben. The Role of Two-Cycle Simulation in the S/390 Verification Process. IBM Journal
of Research & Development, 41(4/5), 1997.

[119] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Proc. of the
IRE, 40(9):1098–1101, 1952.

[120] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing. McGraw-Hill International Editions,
1997.

[121] IBS. Analysis of SOC Design Costs, A Custom Study for Synopsys Professional Services. Technical
report, International Business Strategies, Inc., 632 Industrial Way, Los Gatos, CA 95030, USA,
February 2002.

[122] Berkeley Design Technology Inc. VLIW Architectures for DSP: A Two Part Lecture. Proceed-
ings of ICSPAT99, the International Conference on Signal Processing Applications and Technology,
November 1–4, 1999.

[123] INFINEON Technologies AG, Munich, Germany. Product Brief SQC 6100 - Terrestrial Receiver
for DVB-T, 2000. www.infineon.com/products/ics/pdf/sqc 10b.pdf.

[124] M. J. Irwin. Low Power Design for Systems on a Chip (SOCs). Tutorial at the 12th Annual IEEE
ASIC/SOC Conference, September 1999.

Bibliography 227

[125] Sergio Akira Ito, Luigi Carro, and Ricardo Pezzuol Jacobi. System Design Based on Single Lan-
guage and Single-Chip Java ASIP Microcontroller. Proc. of the Conference on Design, Automation
& Test in Europe (DATE), Paris, France, pages 703–707, March 2000.

[126] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi A. Kitajima, and M. Imai. PEAS-III: An ASIP
Design Environment. In Proc. of the Int. Conf. on Computer Design (ICCD), Sep. 2000.

[127] M. Itoh, Y. Takeuchi, M. Imai, and A. Shiomi. Synthesizable HDL Generation for Pipelined Pro-
cessors from a Micro-Operation Description. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E83-A(3), Mar. 2000.

[128] C. G. J. Jacobi. Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden
Gleichungen numerisch aufzulösen. Crelle’s Journal, 30, 1846.

[129] Carsten Jacobi. Evaluation and Implementation of DSP Core Architectures for COFDM. Mas-
ter’s thesis, Supervisor: T. Glökler, D 418, Institute for Integrated Signal Processing Systems (ISS),
RWTH Aachen, Jul. 2000.

[130] Margarida F. Jacome and Gustavo de Veciana. Lower Bound On Latency For VLIW ASIP Datapath.
Proc. of the Int. Conf. on Computer Aided Design (ICCAD99), pages 261–269, November 1999.

[131] Manoj Kumar Jain, Lars Wehmeyer, Peter Marwedel, and M. Balakrishnan. Register File Synthesis
in ASIP Design. Tech. Report No. 747, University of Dortmund, Dept. of CSXII, 2001.

[132] M.K. Jain, M. Balakrishnan, and A. Kumar. ASIP Design Methodologies: Survey and Issues. In Int.
Conf. on VLSI Design, Jan. 2001.

[133] Curtis L. Janssen. VPROF - Programmer’s Manual, 2002.

[134] Poul M. Rands Jensen. On Jacobi-Like Algorithms for Computing the Ordinary Singular Value
Decomposition. Technical Report R 91 - 33, Department of Communication Technology, Institute
for Electronic Systems, Aalborg University, Denmark, Oct. 1991.

[135] Robert B. Jones. Efficient Validity Checking for Processor Verification. IEEE International Confer-
ence on Computer Aided Design (ICCAD), 1995.

[136] Andrew B. Kahng. Design Technology Productivity in the DSM Era. Invited Talk to the Asia South-
Pacific Design Automation Conference, Yokohama, February 2001.

[137] Vinod Kathail, Michael S. Schlansker, and B. Ramakrishna Rau. HPL-PD Architecture Specifica-
tion: Version 1.1. Technical report, Compiler and Architecture Research, HP Laboratories Palo Alto,
Feb. 2000.

[138] Stephan Keil. Untersuchung von Prozessorarchitekturen und generische VHDL-Implementierung
eines skalierbaren digitalen Signalprozessors. Master’s thesis, Supervisor: T. Glökler, D 411Institute
for Integrated Signal Processing Systems (ISS), RWTH Aachen, Dec. 1999.

[139] T. M. Kemp, R. K. Montoye, J.D. Harper, J.D. Palmer, and D. J. Auerbach. A Decompression Core
for PowerPC. IBM Journal of Research and Development, 42(6):807–812, Nov. 1998.

[140] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. The Construction of a Re-
targetable Simulator for an Architecture Template. International Workshop on Hardware/Software
Co-design, IEEE Computer Society, CODES/CASHE’98, Seattle Washington, USA, March 15–18,
1998.

[141] P. Kievits, E. Lambers, C. Moerman, and R. Woudsma. R.E.A.L. DSP Technology for Telecom
Baseband Processing. Proc. of the Int. Conf. on Signal Processing Applications and Technology
(ICSPAT), Toronto, CA, 1998.

[142] K.-W. Kim, T. T. Hwang, C. L. Liu, and S.-M. Kang. Logic Transformation for Low Power Synthe-
sis. In Design, Automation and Test in Europe Conference and Exhibition, Munich, Germany, March
9–12, 1999.

[143] Kyosun Kim, Ramesh Karri, and Miodrag Potkonjak. Synthesis of Application Specific Pro-
grammable Processors. Proc. of the Design Automation Conference (DAC 97), Anaheim, California,
1997.

228 Bibliography

[144] Y.-W. Kim, Y.-M. Yang, J.-T. Yoo, and S.-W. Kim. Low-Power Digital Filtering Using Approximate
Processing with Variable Canonic Signed Digit Coefficients. In IEEE Int. Symposium on Circuits
and Systems, May 28–31, 2000.

[145] Y.G. Kim and T.G. Kim. A Design and Tool Reuse Methodology for Rapid Prototyping of Applica-
tion Specific Instruction Set Processors. In In Proc. of the Workshop on Rapid System Prototyping
(RSP), Apr. 1999.

[146] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, and M. Imai. Effectiveness of the ASIP
Design System PEAS-III in Design of Pipelined Processors. In Proc. of the Asia South Pacific
Design Automation Conference (ASPDAC), Jan. 2001.

[147] S. Klauke and J. Götze. Low Power Algorithms for Signal Processing. ITG Workshop Mikroelek-
tronik für die Informationstechnik, Darmstadt, Germany, 2000.

[148] Peter Voigt Knudsen and Jan Madsen. Aspects of Modelling in Hardware/Software Partitioning. Int.
Workshop on Rapid System Prototyping, Thessaloniki, Greece, June 19–21, 1996.

[149] Gerd Krüger. A Tool for Hierarchical Test Generation. IEEE Transactions on Computer-Aided
Design, 10(4):519–524, April 1991.

[150] Kayan Kücükcakar. An ASIP Design Methodology for Embedded Systems. 7th International Work-
shop on HW/SW Co-Design, Roma, Italy, 1999.

[151] R. Kumaresan and D. W. Tufts. Estimating the Angles of Arrival of Multiple Plane Waves. IEEE
Trans. on Aerospace Electron. Syst., AES-19:134–139, 1983.

[152] M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, and H. Herranen. A Flexible DSP Core for Embedded
Systems. IEEE Design & Test of Computers, 14(4):60–68, 1997.

[153] Young-Jun Kwon, Danny Parker, and Hyuk Jae Lee. TOE: Instruction Set Architecture for Code Size
Reduction and Two Operations Execution. Int. Workshop on Compiler and Architecture Support for
Embedded Systems, Washington D. C., USA, Oct. 1–3, 1999.

[154] L. R. Rabiner and B. G. Gold. Theory and Application of Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1975.

[155] M. Lam. Software Pipelining: An Effective Scheduling Technique For VLIW Machines. Proc. of the
SIGPLAN’88 Conf. On Programming Language and Implementation, Atlanta, GA, pages 318–328,
June 1988.

[156] D. Lanner, J. Van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, and G. Goossens. Chess: Retar-
getable Code Generation for Embedded DSP Processors. In P. Marwedel and G. Goosens, editors,
Code Generation for Embedded Processors. Kluwer Academic Publishers, 1995.

[157] Hsien-Hsin Lee, Youfeng Wu, and Gary Tyson. Accurate Invalidation Profiling for Effective Data
Speculation on EPIC Processors. International Symposium on Performance Analysis of Systems and
Software, Apr. 8–10, 2000.

[158] Lea Hwang Lee, Bill Moyer, and John Arends. Instruction Fetch Energy Reduction Using Loop
Caches for Embedded Applications with Small Tight Loops. IEEE Symp. on Low Power Electronics
and Design, San Diego, CA, Aug. 16–17, 1999.

[159] Lea Hwang Lee, Bill Moyer, and John Arends. Instruction Fetch Energy Reduction Using Loop
Caches For Embedded Applications with Small Tight Loops. IEEE Int. Symposium on Low Power
Electronics and Design, San Diego, CA, August 16–17, 1999.

[160] S.H. Leibson. Jazz Joins VLIW Juggernaut – CMP and Java as an HDL Take System-on-Chip
Design to Parallel Universe. Microprocessor Report, 2000.

[161] C. E. Leierson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry by Retiming. Proc.
3rd Caltech Conference on VLSI, pages 23–36, March 1883.

[162] Jeroen A. J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A. G. Jess. PROPHID:
A Data-Driven Multi-Processor Architecture for High-Performance DSP. Proceedings of the 1997
European Design and Test Conference (ED&TC’97), 1997.

Bibliography 229

[163] H. Lekatsas, J. Henkel, and W. Wolf. Code Compression for Low Power Embedded System Design.
Int. Workshop on Hardware/Software Co-Design, 2000.

[164] H. Lekatsas and W. Wolf. Random Access Decompression using Binary Arithmetic Coding. Proc.
of the 1999 IEEE Data Compression Conference, March 1999.

[165] Rainer Leupers and Peter Marwedel. Retargetable Generation of Code Selectors from HDL Proces-
sor Models. European Design and Test Conference, pages 140–144, 1997.

[166] Rainer Leupers and Peter Marwedel. Retargetable Code Generation Based on Structural Processor
Descriptions. Design Automation for Embedded Systems, 3, Jan. 1998.

[167] Jeremy Levitt and Kunle Olukotun. A Scalable Formal Verification Methodology for Pipelined
Microprocessors. Proceedings of the Design Automation Conference (DAC 96), Las Vegas, Nevada,
1996.

[168] Daniel Lewin, Dean Lorenz, and Shmuel Ur. A Methodology for Processor Implementation Verifica-
tion. First Int. Conf. on Formal Methods in Computer Aided Design, Springer Verlag, 1166:126–142,
1996.

[169] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance Estimation for Embedded Software with Instruction
Cache Modeling. Int. Conf. on Computer-Aided Design (ICCAD), pages 380–387, 1995.

[170] Clifford Liem, Trevor May, and Pierre Paulin. Register Assignment through Resource Classification
for ASIP Microcode Generation. Proc. of the Int. Conference on Computer Aided Design (ICCAD),
Nov. 1994.

[171] Markus Lorenz, Rainer Leupers, and Peter Marwedel. Low-Energy DSP Code Generation Using a
Genetic Algorithm. Int. Conf. on Computer Design (ICCD), Austin, Texas, Sept. 2001.

[172] J. Ludwig, S. Nawab, and A. Chandrakasan. Low-Power Digital Filtering Using Approximate Pro-
cessing. IEEE Journal of Solid-State Circuits, Vol. 31, No. 3, 31(3), March 1996.

[173] F. Maessen, A. Giulietti, B. Bougard, V. Derudder, L. Van der Perre, F. Catthoor, and M.Engels.
Memory Power Reduction for the High-Speed Implementation of Turbo Codes. In IEEE Workshop
on Signal Processing Systems (SIPS), 2001.

[174] Steven T. Mangelsdorf, Raymond P. Gratias, Richard M. Blumberg, and Rohit Bhatia. Functional
Verification of the HP PA 8000 Processor. Hewlett-Packard Journal, Article 3, Aug. 1997.

[175] Peter Marwedel, Stefan Steinke, and Lars Wehmeyer. Compilation Techniques for Energy-, Code-
Size-, and Run-Time-Efficient Embedded Software. Workshop on Advanced Compiler Techniques
for High Performance and Embedded Processors, Bucharest, 2001.

[176] Jean-Marc Masgonty, Stefan Cserveny, and Christian Piguet. Low-power sram and rom memo-
ries. International Workshop-Power And Timing Modeling, Optimization and Simulation (PATMOS
2001), Yverdon-Les-Bains, Switzerland, September 26–28, 2001.

[177] Mahesh Mehendale, Sunil D. Sherlekar, and G. Venkatesh. Low-Power Realization of FIR Filters
on Programmable DSPs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6(4),
Dec. 1998.

[178] H. Meyr and G. Ascheid. Synchronization in Digital Communications, volume 1. John Wiley &
Sons, 1990.

[179] H. Meyr, M. Moeneclaey, and S. A. Fechtel. Digital Communication Receivers. John Wiley & Sons,
Inc., Wiley Series in Telecommunication and Signal Processing edition, 1998.

[180] MIPS Technologies Inc., Mountain View, CA. MIPS32 4Kc Processor Core Datasheet, 1999.

[181] M. Miranda, C. Ghez, C. Kulkarni, F. Catthoor, and D. Verkest. Systematic Speed-Power Memory
Data-Layout Explorations for Cache Controlled Embedded Multimedia Applications. Proceedings
of the International Symposium of System Synthesis (ISSS), Montreal, Quebec, Oct. 1–3, 2001.

[182] F. Monssen. MicroSim PSpice with Circuit Analysis, 2nd Edition. Prentice Hall, Upper Saddle River,
NJ, 1998.

[183] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits for Low Power. Proc. IEEE
International Conference on Computer Aided Design (ICCAD), pages 398–402, Nov. 1993.

230 Bibliography

[184] G. Moore. Cramming more Components onto Integrated Circuits. Electronics magazine, Apr. 1965.

[185] V. Moshnyaga. Adaptive Bit-Width Compression for Low Energy Frame Memory Design. In IEEE
Workshop on Signal Processing Systems (SIPS), 2001.

[186] Motorola. SC110 DSP Core Reference Manual, Apr. 2001.

[187] Motorola Inc. M•Core Reference Manual.

[188] G. J. Myers. The Art of Software Testing. John Wiley & Sons, New York, 1976.

[189] Chetana Nagendra, Robert Michael Owen, and Mary Jane Irwin. Low Power Tradeoffs in Signal
Processing Hardware Primitives. In J. Rabaey and P. M. Chau, editors, VLSI Signal Processing,
volume VII, pages 276–285. IEEE Signal Processing Society Press, 1994.

[190] Chetana Nagendra and Robert Michael Owens. Power-Delay Characteristics of CMOS Adders.
IEEE Transactions on VLSI Systems, 2(3):377–381, Sept. 1994.

[191] F. Najm, I. Haji, and P. Yang. Electromigration Median Time-to-Failure based on Stochastic Current
Waveform. In Proc. of the IEEE International Conference on Computer Design, Nov. 1989.

[192] J. Von Neumann. First draft of a report on the EDVAC. In N. Stern, editor, From ENIAC to Univac:
An Appraisal of the Eckert-Mauchly Computer. Digital Press, Bedford, Massachusetts, 1945.

[193] A. Nohl, G. Braun, O. Schliebusch, A. Hoffmann, R. Leupers, and H. Meyr. A Universal Technique
for Fast and Flexible Instruction-Set Architecture Simulation. In Proc. of the Design Automation
Conference (DAC), 2002.

[194] Tobias G. Noll. The Deep-Submicron Nightmare, Invited Speaker. In Workshop on Embedded
Systems and Applications, Livigno, Italy, March 1996.

[195] F. Onion, A. Nicolau, and N. Dutt. Incorporating Compiler Feedback into the Design of ASIPs.
Proceedings of the 1995 European Design and Test Conference (ED&TC’95), 1995.

[196] Keshab K. Parhi. Fast Low-Energy VLSI Binary Addition. International Conference on Computer
Design, pages 676–684, 1997.

[197] Keshab K. Parhi. VLSI Digital Signal Processing Systems. John Wiley & Sons, 1999.

[198] David Y. W. Park, Jens U. Skakkebaek, Mats P. E. Heimdahl, Barbara J. Czerny, and David L. Dill.
Checking Properties of Safety Critical Specifications Using Efficient Decision Procedures. Proc. of
the 2nd Workshop on Formal Methods in Software Practice (FMSP’98), St. Petersburg, FL, March
1998.

[199] P. Paulin. Design Automation Challenges for Application-Specific Architecture Platforms. Keynote
speech at SCOPES 2001 - Workshop on Software and Compilers for Embedded Systems (SCOPES),
Apr. 2001.

[200] P. Paulin, F. Karim, and P. Bromley. Network Processors: A Perspective on Market Requirements,
Processor Architectures and Embedded SW Tools. In Proc. of the Conference on Design, Automation
& Test in Europe (DATE), Mar. 2001.

[201] P. Paulin, C. Liem, C. May, and S. Sutarwala. CodeSyn: A Retargetable Code Synthesis System. In
Proc. of the Int. Symposium on System Synthesis (ISSS), May 1994.

[202] P. Paulin, C. Liem, T.C. May, and S. Sutarwala. FlexWare: A Flexible Firmware Development
Environment for Embedded Systems. In Code Generation for Embedded Processors, Editors: P.
Marwedel and G. Goossens. Kluwer Academic Publishers, 1995.

[203] A. Paulraj, R. Roy, and T. Kailath. A Subspace Approach to Signal Parameter Estimation. Proceed-
ings of the IEEE, 74:1044-1045, 1986.

[204] Craig Peterson, Tim Elliott, and Naveed Sherwani. Seven Critical Scaling Challenges of ASIC
Design. http://www.intel.com/design/asics/pdf/Micro-ASIC wp.pdf, 2001.

[205] Philips, http://www.semiconductor.philips.com/acrobat/literature/9397/75007159.pdf. Trimedia
Data Book, 2001.

[206] Padmanabhan Pillai and Kang G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Em-
bedded Operating Systems. In 18th ACM Symposium on Operating Systems Principles, 2001.

Bibliography 231

[207] P. Plöger and J. Wildberg. A Design Example Using CASTLE. Workshop on Design Methodology
for Microelectronics, Inst. for Computer Systems, Slovak Academy of Science, Bratislava, Slovakia,
pages 160–167, Sept. 1995.

[208] J. Van Praet, D. Lanneer, G. Goossens, W. Geurts, and H. De Man. A Graph Based Processor Model
for Retargetable Code Generation. Proc. of the European Design & Test Conference, March 1996.

[209] S. Ramanathan, V. Visvanathan, and S. K. Nandy. Synthesis of ASIPs for DSP Algorithms. Integra-
tion, The VLSI Journal, June 1999.

[210] B. Ramakrishna Rau. Iterative Modulo Scheduling. International Journal of Parallel Processing,
24(1), Feb. 1996.

[211] B.R. Rau and M.S. Schlansker. Embedded Computer Architecture and Automation. IEEE Computer,
34(4):75–83, Apr. 2001.

[212] John D. Ruley. The Future of Moore’s Law, Part 2. BYTE Magazine, June 2001.

[213] Y. Saad and M. Schultz. Data Communication in Parallel Architectures. Journal of Parallel and
Distributed Computing, Feb. 1989.

[214] H. Savoj, R. Brayton, and H. Touati. Extracting Local Don’t Care for Network Optimization. Proc.
of the Int. Conf. on Computer Aided Design (ICCAD), pages 514–517, 1991.

[215] Lou Scheffer. Timing Closure Today. In Tutorial 3, Part 2, ASP-DAC 2001, Yokohama, Japan,
http://cadlab.cd.ucla.edu/ cong/slides/asp-dac01 tutorial/t3 p2 lou.pdf, 2001.

[216] U. Schlichtmann. Design Reuse: Experiences at Siemens Semiconductor and Future Directions.
http://www.ecsi.org/ecsi/Doc/OtherDoc/IPreuse/PDF/siemens.pdf, Oct. 10, 1997.

[217] O. Schliebusch, A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Architecture Implementation Using
the Machine Description Language LISA. In Proc. of the ASPDAC/VLSI Design - Bangalore, India,
Jan. 2002.

[218] Oliver Schliebusch, Andreas Hoffmann, Achim Nohl, Gunnar Braun, and Heinrich Meyr. Archi-
tecture implementation using the machine description language lisa. ASP-DAC/VLSI Design 2002,
Bangalore, India, pages 239–244, Jan. 2002.

[219] R. O. Schmidt. A Signal Subspace Approach to Multiple Emitter Location and Spectral Estimation.
PhD thesis, Standord University, Nov. 1981.

[220] B. Schneier. Applied Cryptography (2nd Edition). Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 1996.

[221] Pieter J. Schoenmakers and J. Frans M. Theeuwen. Clock Gating on RT-Level VHDL. Proc. of the
Int. Workshop on Logic Synthesis, Tahoe City, CA, pages 387–391, June 7–10, 1998.

[222] Robert Schreiber, Shail Aditya, Scott Mahlke, and Vinod Kathail. PICO-NPA: High-Level Syn-
thesis of Nonprogrammable Hardware Accelerators. Technical report, Hewlett-Packard Company,
Laboratories, Palo Alto, CA 94304, 2001.

[223] Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer. Designing the Low Power M•Core
Architecture. Power Driven Microarchitecture Workshop at the IEEE Int. Symposium on Circuits
and Systems (ISCAS), Barcelona, Spain, June 1998.

[224] Jeff Scott, Lea Hwang Lee, Bill Moyer, and John Arends. Assembly-Level Optimizations for the
M•CoreTM M3 Processor Core. Int. Workshop on Compiler and Architecture Support for Embed-
ded Systems, Oct. 1999.

[225] B. Shackleford, M. Yasuda, E. Okushi, H. Koizumi, H. Tomiyama, and H. Yasuura. Satsuki: An Inte-
grated Processor Synthesis and Compiler Generation System. In IEICE Transactions on Information
and Systems, pages 1373–1381, 1996.

[226] C. E. Shannon. A Mathematical Theory of Communications. The Bell System Technical Journal,
Vol. 27, pp. 379-423, pp. 623-656, Jul./Oct. 1948.

[227] Deszso Sima, Terence Fountain, and Péter Kacsuk. Advanced Computer Architectures - A Design
Space Approach. Addison-Wesley, 1997.

232 Bibliography

[228] The SPARC Architecture Manual Version V8, 1992.

[229] R.M. Stallman. Using and Porting the GNU Compiler Collection. Free Software Foundation, gcc-
2.95 edition, 1999.

[230] Stefan Steinke, Rüdiger Schwarz, Lars Wehmeyer, and Peter Marwedel. Low Power Code Genera-
tion for a RISC Processor by Register Pipelining. Technical Report #754, Department of Computer
Science, University of Dortmund, 2001.

[231] Greg Stitt, Frank Vahid, Tony Givargis, and Roman Lysecky. A First Step Towards an Architecture
Tuning Methodology for Low Power. Int. Conf. on Compilers, Architectures, and Synthesis for
Embedded Systems (CASES), San Jose, CA, Nov. 2000.

[232] R. Sucher, R. Niggebaum, G. Fettweiss, and A. Rom. CARMEL - A New High Performance DSP
Core using CLIW. http;//www.carmledsp.com, 1999.

[233] Synopsys. DesignWare Foundation Library Databook, Volume 1-3, Release 2001.08, August 2001.

[234] Synopsys. CoCentric System Studio
http://www.synopsys.com/products/cocentric studio/cocentric studio.html, 2001.

[235] Synopsys, Inc. Design Compiler User Guide, Version 2001.08, August 2001.

[236] Synopsys, Inc., http://www.synopsys.com. Module Compiler User Guide, Version 2001.08, August
2001.

[237] Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043, USA. Formality User’s
Guide, Version 2001.06-FM1, 2001.

[238] Synopsys, Inc., 700 East Middlefield Road, Mountain View, CA 94043, USA. CoCentric System
Studio Data Sheet, 2002.

[239] G. Martin S. Swan T. Grötker, S. Liao. System Design with SystemC. Kluwer Academic Publishers,
2002.

[240] Target Compiler Technologies. CHESS/CHECKERS/BRIDGE/DARTS/GO
http://www.retarget.com, 2001.

[241] Serdar Tasiran and Kurt Keutzer. Coverage Metrics for Functional Verification of Hardware Designs.
IEEE Design & Test of Computers, pages 2–11, July/August 2001.

[242] J. Teich, R. Weper, D. Fischer, and S. Trinkert. BUILDABONG: A Rapid Prototyping Environment
for ASIPs. In Proc. of the DSP Germany (DSPD), Oct. 2000.

[243] Tensilica. Xtensa
http://www.tensilica.com, 2001.

[244] Texas Instruments. TMS320C2x User’s Guide, Jan. 1993.

[245] Texas Instruments. TMS320C54x CPU and Instruction Set Reference Guide, Oct. 1996.

[246] Texas Instruments. TMS320C62x/C67x CPU and Instruction Set Reference Guide, Mar. 1998.

[247] Adwin H. Timmer, Marino T. J. Srik, Jef L. Van Meerbergen, and Jochen A. G. Jess. Conflict
Modelling and Instruction Scheduling in Code Generation for In-House DSP Cores. Proc. of the
32nd Design Automation Conference, San Francisco, CA, pages 593–598, 1995.

[248] V. Tiwari, P. Ashar, and S.Malik. Technology Mapping for Low Power. In Proceedings of the Design
Automation Conference, pages 74–79, 1993.

[249] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing Power in High-
Performance Microprocessors. Design Automation Conference (DAC98), pages 732–737, 1998.

[250] Vivek Tiwari and Mike Tien-Chien Lee. Power Analysis of a 32-bit Embedded Microcontroller.
VLSI Design Journal, 7(3), 1998.

[251] Vivek Tiwari, Sharad Malik, and Pranav Ashar. Guarded Evaluation: Pushing Power Managment to
Logic Synthesis/Design. In International Symposium on Low Power Design, Dana Point, CA, April
1995.

Bibliography 233

[252] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation Techniques for Low Energy: An
Overview. Symposium on Low-Power Electronics, San Diego, CA, Oct. 1994.

[253] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Instruction Level Analysis and Optimization of
Software. Journal of VLSI Signal Processing, 13(2), 1996.

[254] Hiroyuki Tomiyama, Tohrue Ishihara, Akihiko Inoue, and Hiroto Yasuura. Instruction Scheduling for
Power Reduction in Processor-Based System Design. Proc. of the Conference on Design, Automation
& Test in Europe (DATE), Feb. 1998.

[255] Trimaran. http://www.trimaran.org, 2001. An Infrastructure for Research in Instruction-Level Par-
allelism.

[256] Barbara Tuck. Linking Logical and Physical Design. Electronic Systems, 38(1):58–64, 1999.

[257] A. Turier, L. Ben Ammar, and A. Amara. An Accurate Power and Timing Modeling Technique Ap-
plied To A Low-Power ROM Compiler. Proc. of the Int. Workshop on Power, and Timing Modeling,
Optimization and Simulation (PATMOS), Lyngby, Technical University of Denmark, Oct. 7–9, 1998.

[258] A. Tyagi. Energy-Time Trade-offs in VLSI Computation. In Proc. of the 9th Conference on the Foun-
dations of Software Technology and Theoretical Computer Science, LNCS series. Springer Verlag,
1989.

[259] Jul. 1994 United States Environmental Protection Agency, EPA 430-K-94-006. Purchasing An En-
ergy Star Computer.

[260] Shmuel Ur and Yoav Yadin. Micro Architecture Coverage Directed Generation of Test Programs.
Proceedings of the Design Automation Conference (DAC99), New Orleans, LA, pages 175–180, June
1999.

[261] Cary Ussery. Configurable Processing Platforms: Redefining SoC. http://www.improvsys.com, 2001.

[262] J. van Praet, G. Goossens, D. Lanner, and H. De Man. Instruction Set Definition and Instruction
Selection for ASIPs. In Proc. of the Int. Symposium on System Synthesis (ISSS), Oct. 1994.

[263] Martin Vaupel. Effizienter Entwurf eines DVB-Satelliten-Empfängers. PhD thesis, Institute for Inte-
grated Signal Processing Systems, RWTH Aachen, Shaker Verlag, ISBN 3-8265-6676-9, 1999.

[264] Luis Villa, Michael Zhang, and Krste Asanovic. Dyamic Zero Compression for Cache Energy Re-
duction. 33rd Int. Symp. on Microarchitecture, Monterey, CA, Dec. 2000.

[265] S. Virtanen, J. Lilius, and T. Westerlund. A Processor Architecture for the TACO Protocol Processor
Platform. Proceedings of the 18th IEEE NorChip Conference, Turku, Finland, Nov. 6–7, 2000.

[266] J.E. Volder. The CORDIC Trigonometric Computing Technique. IRE Transactions on Electronic
Computers, Volume EC-8(no.3):330–334, Sept. 1959.

[267] O. Wahlen, T. Glökler, A. Nohl, A. Hoffmann, R. Leupers, and H. Meyr. Application Specific
Compiler/Architecture Codesign: A Case Study. In Proc. of the Joint Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES) and Software and Compilers for Embedded
Systems (SCOPES), Jun. 2002.

[268] O. Wahlen, M. Hohenauer, R. Leupers, and H. Meyr. Using Virtual Resources for Generating Instruc-
tion Schedulers. In Proc. of IEEE/ACM International Workshop on Application Specific Processors
(WASP’02), Nov. 2002.

[269] O. Wahlen, M. Hohenauer, R. Leupers, and H. Meyr. Instruction scheduler generation for retar-
getable compilation. In IEEE Design & Test of Computers, Jan. 2003.

[270] O. Wahlen, M.Hohenauer, G. Braun, R. Leupers, G. Ascheid, H. Meyr, and Xiaoningg Nie. Extrac-
tion of Efficient Instruction Schedulers from Cycle-True Processor Models. In Proc. of the Confer-
ence on Sofware and Compilers for Embedded Systems (SCOPES), Sep. 2003.

[271] Oliver Wahlen and Tilman Glökler et al. Application Specific Architecture/Compiler Codesign: A
Case Study. SCOPES Workshop 2002, Berlin, Germany, June 19–21, 2002.

[272] Marlene Wan, Yuji Ichikawa, David Lidsky, and Jan Rabaey. An Energy Conscious Methodology
for Early Design Exploration of Heterogeneous DSPs. Proc. of the Custom Integrated Circuits
Conference, Santa Clara, CA, May 1998.

234 Bibliography

[273] C.-Y. Wang and K. Roy. An Activity-Driven Encoding Scheme for Power Optimization in Micro-
programmed Control Unit. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
7(1):130–134, March 1999.

[274] A. Wieferink, T. Kogel, A. Nohl, A. Hoffmann R. Leupers, and H. Meyr. A Generic Toolset for SoC
Multiprocessor Debugging and Synchronisation. In ”IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP)”, June 2003.

[275] M. Willems, H. Keding, and V. Živojnović. Modulo-Addressing Utilization in Automatic Software
Synthesis for Digital Signal Processors. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 287–290, München, Apr. 1997.

[276] M. Willems and V. Živojnović. DSP-Compiler: Product Quality for Control-Dominated Applica-
tions? In Proc. of the Int. Conf. on Signal Processing Applications and Technology (ICSPAT), Oct.
1996.

[277] Phillip J. Windley. Formal Modeling and Verification of Microprocessors. IEEE Transactions on
Computers, 44(1):54–72, 1995.

[278] A. Wolfe and A. Chanin. Executing Compressed Programs on an Embedded RISC Architecture.
Proc. 25th Annual International Symposium on Micro-Architectures, Portland, OR, USA, pages 81–
91, Dec. 1992.

[279] B. Yang. Projection Approximation Subspace Tracking. IEEE Trans. on Signal Processing,
43(1):95–107, Jan. 1995.

[280] J.-H. Yang, B.-W. Kim, S.-J. Nam, Y.-S. Kwon, D.-H. Lee, J.-Y. Lee, C.-S. Hwang, Y.-H. Lee,
S.-H. Hwang, I.-C. Park, and C.-M. Kyung. MetaCore: An Application-Specific Programmable
DSP Development System. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
8(2):173–183, Apr. 2000.

[281] Gary Yeap. Practical Low Power Digital VLSI Design. Kluwer Academic Publishers, 1998.

[282] Qin Zhao, Bart Mesmann, and Twan Basten. Practical Instruction Set Design and Compiler Retar-
getability Using Static Resource Models. Proceedings of the IEEE Design Automation and Test in
Europe, DATE 2002, Paris, France, March 2002.

[283] V. A. Zivkovic, R. J. W. T. Tangelder, and H. G. Kerkhoff. Design and Test Space Exploration of
Transport-Triggered Architectures. Proc. of the Conference on Design, Automation & Test in Europe
(DATE), Paris, France, pages 146–151, March 27, 2000.

[284] V. Živojnović, S. Pees, Ch. Schläger, M. Willems, R. Schoenen, and H. Meyr. DSP Proces-
sor/Compiler Co-Design: A Quantitative Approach. In Proc. of the IEEE Symposium on System
Synthesis - La Jolla, Nov. 1996.

[285] V. Živojnović, H. Schraut, M. Willems, and R. Schoenen. DSPs, GPPs, and Multimedia Applica-
tions: An Evaluation using DSPstone. In Proc. Int. Conf. on Signal Processing Application and
Technology (ICSPAT), Boston, Oct. 1995.

[286] V. Živojnović, S. Tjiang, and H. Meyr. Compiled Simulation of Programmable DSP Architectures.
In Proc. of the IEEE Workshop on VLSI Signal Processing, Oct. 1995.

	Design of Energy-Efficient Application-Specific Instruction Set Processors
	Cover

	Contents
	Acknowledgments
	About the Authors
	Foreword
	List of Figures
	List of Tables
	1 Introduction
	2 Focus and Related Work
	2.1 Focus of This Work
	2.2 Previous Work
	2.2.1 ASIP Design Methodologies
	2.2.2 ASIP Case Studies
	2.2.3 Basic Low-Power Design Techniques
	2.2.4 Veri.cation

	2.3 Differences to Previous Work

	3 Ef.cient Low-Power Hardware Design
	3.1 Metrics of the Implementation and the Hardware Design Methodology
	3.1.1 Characteristics of the Implementation
	3.1.2 Characteristics of the Design Methodology

	3.2 Basics of Low-Energy Hardware Design
	3.2.1 Sources of CMOS Energy Consumption
	3.2.2 Basic Principles of Lowering the Power Consumption
	3.2.3 Measuring and Quantifying Energy-Ef.ciency

	3.3 Techniques to Reduce the Energy Consumption
	3.3.1 System and Architecture Level
	3.3.2 Register Transfer and Logic Level
	3.3.3 Physical Level

	3.4 Concluding Remarks

	4 Application-Speci.c Processor Architectures
	4.1 De.nitions of ASIP Related Terms
	4.2 ASIP Applications
	4.3 ASIP Design Space
	4.3.1 Functional Units
	4.3.2 Storage elements
	4.3.3 Pipelining
	4.3.4 Interconnection Structure
	4.3.5 Control Mechanisms
	4.3.6 Storage Access
	4.3.7 Instruction Coding and Instruction Fetch Mechanisms
	4.3.8 Interface Mechanisms
	4.3.9 Tightly-Coupled ASIP Accelerators

	4.4 Critical Factors for Energy-Ef.cient ASIPs
	4.4.1 Timing and Computational Performance
	4.4.2 Energy Consumption
	4.4.3 Implementation Area

	4.5 Concluding Remarks

	5 The ASIP Design Flow
	5.1 Example Applications
	5.2 Application Pro.ling and Partitioning
	5.2.1 Stimulus Generation for Application Pro.ling
	5.2.2 Application Pro.ling
	5.2.3 HW/SW Partitioning
	5.2.4 ASIP Class Selection

	5.3 Combined ASIP HW/SW Synthesis and Pro.ling
	5.3.1 ASIP Interface De.nition
	5.3.2 ASIP ISA De.nition
	5.3.3 Software Implementation and Tools
	5.3.4 Hardware Implementation and Logic Synthesis
	5.3.5 Implementation Pro.ling and Worst Case Runtime Analysis
	5.3.6 Iterative ASIP Optimization
	5.3.7 De.nition of a tightly coupled ASIP Accelerator

	5.4 Veri.cation
	5.5 Concluding Remarks

	6 The ASIP Design Environment
	6.1 The LISA Language
	6.2 The LISA Design Environment
	6.3 Extensions to the LISA Design Environment
	6.3.1 Instruction Encoding and Decoder Generation
	6.3.1.1 Minimization of the instruction width
	6.3.1.2 Minimization of the Toggle Activity

	6.3.2 Semi-Automatic Test Case Generation

	6.4 Concluding Remarks

	7 Case Studies
	7.1 Case Study I: DVB-T Acquisition and Tracking
	7.1.1 Application Pro.ling and ASIP Class Selection
	7.1.2 Iterative Instruction Set Optimization
	7.1.2.1 Example 1: Saturation
	7.1.2.2 Example 2: CORDIC

	7.1.3 Overall Energy Optimization Results

	7.2 Case Study II: Linear Algebra Kernels and Eigenvalue Decomposition
	7.2.1 Implementation I: Optimized ASIP with Accelerator
	7.2.2 Implementation II: Compiler-Programmed Parameterizable Core with Accelerator
	7.2.3 Evaluation Results

	7.3 Concluding Remarks

	8 Summary
	A ASIP Development Using LISA 2.0
	A.1 The LISA 2.0 Language
	A.2 Design Space Exploration
	A.3 Design Implementation
	A.4 Software Tools Generation
	A.4.1 Compiler Generation
	A.4.2 Assembler and Linker Generation
	A.4.3 Simulator Generation
	A.4.3.1 Interpretive Simulation
	A.4.3.2 Compiled Simulation
	A.4.3.3 Just-In-Time Cache Compiled Simulation (JIT-CCS)

	A.5 System Integration
	A.6 Summary

	B Computational Kernels
	B.1 The CORDIC Algorithm
	B.2 FIR Filter
	B.3 The Fast Fourier Transformation
	B.4 Vector/Matrix Operations
	B.5 Complex EVD using a Jacobi-like Algorithm

	C ICORE Instruction Set Architecture
	C.1 Processor Resources
	C.2 Pipeline Organization
	C.3 Instruction Summary
	C.4 Exceptions to the Hidden Pipeline Model
	C.5 ICORE Memory Organization and I/O Space
	C.6 Instruction Coding

	D Different ICORE Pipeline Organizations
	E ICORE HDL Description Templates
	E.1 Generic Register File Entity
	E.2 Generic Bit-Manipulation Unit

	F Area, Power and Design Time for ICORE
	G Acronyms
	Bibliography

