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Preface

Our detailed research work on the design and optimization of high-performance
MOS current mode logic (MCML) circuits at the Microelectronic Systems Lab-
oratory (LSM) of EPFL started more than a decade ago. In the beginning, our
main motivation was the reduction of power supply noise and substrate noise
generated by high-speed logic units that have to operate in very close proximity
to sensitive analog building blocks. While the fundamental concepts used in the
design of MCML circuits were fairly well understood, relatively little work was
available at that time to guide systematic analysis and especially design automation
of such circuits. Our early research in this domain has led to the development
of differential logic cell optimization techniques under arbitrary load conditions,
as well as fully differential logic synthesis, and placement-and-routing (P&R)
strategies that enable straightforward design automation of logic functions based
on conventional hardware description languages such as VHDL and Verilog. Such
logic units distinguish themselves with their capability of operating at multi-GHz
frequencies while producing extremely low levels of supply noise. Nowadays,
MCML-based circuit solutions are commonly used in various applications where
high-performance operation is the primary objective.

In addition to high-speed operation, the fully differential nature of the MCML
circuit style lends itself to implementation of logic blocks in which the power
supply signature associated with the logic operations can be effectively suppressed.
This property results in highly efficient implementation of various cryptographic
functions with a remarkable immunity to differential power analysis (DPA) attacks.
The fully differential current-mode operation principle of MCML circuits has
also paved the way for the development of a completely new class of ultralow-
power logic circuits called sub-threshold source-coupled logic (ST-SCL) which can
achieve impressive energy efficiency operating with very low tail current levels
(down to a few pA) while producing several hundreds of mV output voltage swing—
a feature that is simply not possible in conventional CMOS logic circuits operating
in sub-threshold regime. Our extensive work in this particular direction has already
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been published in the form of a separate volume from Springer, entitled Extreme
Low-Power Mixed Signal IC Design coauthored by A. Tajalli and Y. Leblebici
(ISBN 978-1-4419-6477-9).

This volume covers systematic, in-depth analysis of MCML circuits in Part I
(Chaps. 2 and 3), followed by the principles of design automation for MCML
in Part II (Chaps. 4 and 5), addressing fully differential logic synthesis, standard
cell design, pin assignment, and placement-and-routing strategies. The last four
chapters (Part III) of the book are dedicated to specific design examples for high-
speed design as well as cryptographic circuit applications, such as the DPA-resistant
implementations of Grain-128 stream cipher and AES engines. The topics covered
in this book would be beneficial to graduate students specializing in high-speed
circuit design, as well as engineering professionals designing systems for high
performance and DPA immunity.

The authors are truly indebted to many individuals who have contributed to this
work. Our graduate students, as well as our colleagues, have consistently helped
us with their generous assistance along the way. In particular, we acknowledge
the valuable support provided over the years by Dr. Ilhan Hatirnaz, Dr. Francesco
Regazzoni, Dr. Armin Tajalli, Ms. Tugba Demirci, and Mr. Michael Schwander.
This work would not have been possible without their contributions.

Lausanne, Switzerland Stéphane Badel

Rüschlikon, Switzerland Alessandro Cevrero
Lausanne, Switzerland Yusuf Leblebici
14 May 2018

Lausanne, Switzerland Can Baltaci
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Chapter 1
Introduction

Over the past decades, integrated circuits have evolved from circuits combining
thousands of transistors to multi-billion devices in today’s advanced technologies.
The continuous scaling of device dimensions in VLSI is enabling the integration
of complete systems on a single die, which may include a combination of RF
transceivers, analog processing, A/D and D/A conversion as well as complex digital
functions and memory on a single chip.

Combining all these elements on a single chip has many advantages, including
reduced cost, higher speed, and lower overall power dissipation. It does not come,
however, without its very own problems, not the least of which is the increase in
noise coupled from the digital functions to the analog parts.

1.1 Noise in Integrated Circuits

When sensitive analog parts are combined with complex digital blocks operating at
very high switching frequencies, the noise generated by the digital parts is inevitably
transmitted to the analog blocks, predominantly through the common substrate,
resulting in a reduction of the dynamic range, or reduction of the accuracy of the
analog circuits.

Noise in digital CMOS circuits is mainly generated by the rapid voltage
variations caused by the switching of logic states, and the related charge-up / charge-
down currents. In a conventional CMOS logic gate, the rapid change of voltage in
internal nodes is coupled to the substrate through junction or wiring capacitances,
causing charges to be injected into the substrate. Eventually, these substrate currents
cause voltage drops that can perturb analog circuits through capacitive coupling and
through variation of the threshold voltage due to body effect [8, 11].

Additionally, the high instantaneous currents needed to rapidly charge or dis-
charge parasitic capacitances add up a large current spikes in the supply and ground

© Springer International Publishing AG, part of Springer Nature 2019
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P+ N+ N+ P+ P+ N+

P− Substrate N− Well

VDDGND SIGNAL

Fig. 1.1 Schematic cross-section of a typical N-well CMOS process illustrating the different
mechanisms of noise coupling between power and signal nets and the substrate

distribution networks, a phenomenon known an simultaneous switching noise
(SSN). These current spikes cause voltage noise primarily through the inductance
of off-chip bond-wires and on-chip power-supply rails. Ground supply networks are
usually directly connected to the substrate, resulting in a direct coupling of the noise,
and power networks are typically connected to very large N-well areas resulting in
a consequently very large parasitic coupling capacitance to the substrate. Therefore,
power and ground distribution networks are very noisy in CMOS circuits, and at the
same time ideal mediums for the noise coupling to the substrate. Signal nets can
also couple to the substrate, through diffusion and wiring capacitances, and signals
with high energy and switching activity are thus critical from a noise perspective.
This is the case especially for clock networks, which are the most active signals and
dissipate large amounts of power (Fig. 1.1).

1.2 Low-Noise CMOS Logic Families

Two effective techniques to reduce the noise generation in digital circuits are the
reduction of the voltage swings, and the cancellation of transient currents during
switching events. In the past few years, several new logic families have been
proposed, that generate less noise than classical CMOS logic, and are thus suitable
for integration in mixed-mode environment as a replacement or a complement of
CMOS logic.

These new logic families can broadly be categorized into two classes:

• single-ended families, including Current Steering Logic (CSL) [9] and Current-
Balanced Logic (CBL) [1], which are based on regular CMOS operation with
the addition of a circuitry to limit or cancel the current transients,

• differential families, including Complementary Current Balanced Logic (C-
CBL) [2], Folded Source-Coupled Logic (FSCL) [4], and MOS Current-Mode
Logic (MCML) [12], where each transition is canceled by an equal and opposite
complementary signal.

Experimental studies have shown that single-ended families achieve only
marginal improvement over regular CMOS in terms of noise [3]. While differential
logic families are the most promising candidates that offer improved noise reduction



References 3

[2], traditional automation tools and design flows fail to accommodate many aspects
associated with their differential nature. For this reason, large-scale implementation
of digital circuits with low-noise differential logic families remains a difficult task,
and few results have been reported yet.

Even for very specific targets such as the construction and routing of a fully
differential clock distribution network, most of the design tasks have to be carried
out manually—which inevitably limits the usability of differential techniques.

1.3 MOS Current-Mode Logic

MOS Current-Mode Logic (MCML) has been introduced in [12] as a new design
style for high-speed logic circuit. The operation of MCML circuits is based
on the principle of re-directing (or switching) the current of a constant current
source through a fully differential network of input transistors, and utilizing the
reduced-swing voltage drop on a pair of complementary load devices as the
output. Therefore, MCML logic style simultaneously offers reduced voltage swings
and differential operation, two key characteristics in reducing the generation of
switching noise. In addition, MCML allows high-speed operation, and dissipates
a constant power independently of the switching frequency.

Due to these advantageous characteristics, MCML gates have been implemented
in various demanding applications such as high speed ring oscillators, frequency
dividers, phase detectors, etc. [5–7, 10]. However, until now the design style
has remained largely case-specific, where transistor sizing and biasing are chosen
to satisfy the particular constraints of a demanding design specification, and
standardization of components is not considered in a broader context.

1.4 Organization of the Book

This book addresses the practical aspects and issues related to the implementation
of MCML-based logic circuits with a standard-cell methodology. The first part
concentrates on the analysis and design of MCML circuits at the transistor-level.
The second part focuses on higher-level aspects, including the design of standard-
cell libraries and the design automation. The third part presents practical design
examples with emphasis on low-noise and high-speed operation.
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Chapter 2
Analysis of MOS Current-Mode Logic
Circuits

2.1 The EKV MOSFET Transistor Model

Throughout this chapter, we use a simple version of the EKV MOSFET transistor
model [8]. The EKV model is a fully analytical, charge-based model and provides
a simple yet accurate model for hand calculations, and a transregional modeling
approach where the MOS transistor is first modeled in asymptotic modes, i.e. weak
and strong inversion, and an analytical transregional expression is derived through
a continuous interpolation function.

2.1.1 Strong Inversion Regime

In strong inversion, the drain current in the EKV model (without accounting for the
body effect) is given in linear regime by

ID = n · β ·
[
VG − VT

n
− VD + VS

2

]
· (VD − VS) (2.1)

where VG, VS , and VD are the gate, source, and drain voltages, respectively, VT is
the threshold voltage, n is the subthreshold slope parameter, and β is the current
factor defined as

β = μ · εox

tox

· W

L
(2.2)

with μ the carrier mobility, εox and tox the dielectric constant and thickness of the
gate dielectric, and W and L the width and length of the gate. In saturation regime,
when n · VD > VG − VT , the drain current has the expression
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ID = 1

2
· n · β

(
VG − VT

n
− VS

)2

(2.3)

The transconductance in strong inversion and saturation regime is given by

gm = ∂ID

∂VG

=
√

2 · β · ID

n
(2.4)

2.1.2 Weak Inversion Regime

In weak inversion, the drain current in the EKV model (without accounting for the
body effect) is given by

ID = IS · e
VG−VT

n·UT ·
[

e
−VS
UT − e

VD
UT

]
(2.5)

where IS is the specific current given by

IS = 2 · n · β · U2
T (2.6)

and UT = k · T/q is the thermal voltage. In the saturation regime, i.e. when VD �
VS , the expression reduces to

ID = IS · e
VG−VT −n·VS

n·UT (2.7)

The transconductance in weak inversion saturation is given by

gm = ∂ID

∂VG

= ID

n · UT

(2.8)

2.1.3 Moderate Inversion Regime

In the moderate inversion regime, i.e. when the gate-to-source voltage is close to
VT , neither of the above expressions is accurate.

In the EKV model, the approach to model the transistor in moderate inversion
involves selection of a smooth, continuous interpolation function F that consoli-
dates the weak and strong inversion models into a single expression and provides a
smooth transition between the two asymptotical regimes. The interpolation function
must be chosen such that it becomes equal to (2.7) and (2.3) in deep weak and strong
inversion, respectively.



2.2 The MOS Differential Pair 9

The interpolation can be done on the drain current or on the transconductance,
with the second method preferred over the first. In the latest version of the EKV
model, version 3.0 described in [6], the interpolation function is defined as

gm = ID

n · UT

· 1

1
2 +

√
1
4 + ID

IS

(2.9)

2.2 The MOS Differential Pair

The MOS differential pair is the primary building block of MCML logic gates. Here,
contrary to most analog applications where it is used in its linear operating region,
the differential pair is used as an all-or-nothing, or binary, current switch. Just as
the combination of MOS transistors used as voltage switches in CMOS or pass-
transistor logic styles enables the realization of logic functions, logic functions are
realized in MCML by combining current switches into specific networks.

Analytical models of the MOS differential pair will now be derived in strong
and weak inversion. These well-known models are accurate enough for small-signal
modeling, and prove useful for getting an insight into the operation of the differential
pair. However they do not allow to model the differential pair over a wide range of
current as required for the modeling of MCML circuits. Therefore a transregional
model will be presented next that accurately models the large-signal behavior of the
differential pair.

2.2.1 Strong Inversion Operation

An MOS differential pair is depicted in Fig. 2.1. It is composed of two identical
MOS transistors M1 and M2, with a common source connection S. A current source
keeps a constant current ISS flowing from the S node, therefore the sum of the drain
currents of M1 and M2 is kept constant

Fig. 2.1 A (N)MOS
differential pair

V1
S

Iss

M1 M2

I1 I2

V2
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I1 + I2 = ISS (2.10)

By summing the voltages around the loop V1 − V2, we obtain a second equation

V1 − V2 = VG1 − VG2 (2.11)

Substituting the expression of the gate voltage as given by the strong inversion EKV
model into Eq. (2.11) yields

V1 − V2 = (VT 1 − VT 2) +
√

2nI1

β1
−
√

2nI2

β2
(2.12)

Defining Vid = (V1 − V2), the differential voltage at the input, and ΔI = (I1 − I2),
the differential output current, using relation (2.10) then rearranging, we obtain

Vid =
√

nISS

β

(√
1 + ΔI

ISS

−
√

1 − ΔI

ISS

)
(2.13)

where it was assumed that β1 = β2 = β, and VT 1 = VT 2, that is, both transistors
are identical. This expression can be inverted to give the ΔI − Vid relationship

ΔI

ISS

=
√

β

nISS

Vid

√
1 − 1

4

β

nISS

V 2
id (2.14)

This relationship expresses the DC transfer curve for the circuit. It is important to
notice that this equation relates the output differential current to the input differential
voltage. The individual values of V1 and V2 do not appear—only their difference.
Similarly, a differential current is produced as output; the average current, or
common-mode current, is defined by the tail current ISS .

Because the sum of I1and I2 must be equal to ISS , it is clear that the maximum
and minimum values of ΔI are limited to ±ISS . This happens when the tail current
is entirely switched onto one of the two transistors, and the other is turned off. The
value of Vid needed to accomplish this can be found by substituting ΔI = ±ISS in

Eq. (2.13), yielding VT s = ±
√

2nISS

β
, where VT s denotes the switching threshold of

the current switch.
The value of VT s reflects the ability of the paired transistors to drive the current.

The larger β, the smaller Vid needs to be to switch an equal amount of current.
This value is linked to the transconductance of the transistors, which reflects their
current driving ability. Let us define the differential transconductance gmd , defined
as the small-signal increase in output current caused by an increase in input voltage

gmd = ∂ΔI

∂Vid

=
(

∂Vid

∂ΔI

)−1
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=
⎡
⎣
√

nISS

β
· 1

ISS

·
⎛
⎝ 1

2
√

1 + ΔI
ISS

+ 1

2
√

1 − ΔI
ISS

⎞
⎠
⎤
⎦

−1

= 2gmd,0(
1 + ΔI

ISS

)− 1
2 +

(
1 − ΔI

ISS

)− 1
2

where

gmd,0 = gmd |ΔI=0 =
√

βISS

n
= ISS

√
2

VT s

(2.15)

is the differential transconductance at equilibrium (Vid = 0), and is equal to the
transconductance of a single transistor biased at ID = ISS/2. Rewriting (2.14) in
terms of gmd,0, we obtain

ΔI

ISS

= gmd,0

ISS

Vid

√
1 − 1

4

(
gmd,0

ISS

Vid

)2

(2.16)

The influence of transistor parameters is now explicit: their transconductance
directly defines the slope of the ΔI −Vid curve and the whole transfer characteristic.
It is therefore very practical, to normalize Vid to

(
gmd,0/ISS

)−1 and ΔI to ISS , as it
is done in Fig. 2.2 which displays a plot of expression (2.16).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Vid · (gmd,0/ISS)

−1.0

−0.5

0.0

0.5

1.0

Δ
I
/
I s

s

Fig. 2.2 DC transfer curve of the MOS differential pair in strong inversion
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2.2.2 Subthreshold Operation

As we have seen previously, the gain in the differential pair is proportional
to the transconductance of the transistors biased at ISS/2. As we increase the
transistor sizes in order to increase the gain, they will eventually enter subthreshold
regime. When both transistors are in subthreshold regime, their drain currents grow
exponentially with the gate-to-source voltage, according to the EKV model

ID = ISe
VG−VT −n·VS

n·UT

Following the same steps as for Eqs. (2.10)–(2.16), the Vid−ΔI relationship is found
to be expressed as

Vid = nUT

[
ln

(
1 + ΔI

ISS

)
− ln

(
1 + ΔI

ISS

)]

The equation can be reversed to express ΔI
ISS

, yielding

ΔI

ISS

= e
Vid
nUT − 1

e
Vid
nUT − 1

= tanh

(
1

2

Vid

nUT

)
(2.17)

In this regime, the transconductance has a different expression

gmd = gmd,0

cosh2
(

Vid

2nUT

)

where gmd,0 = ISS/ (2 · nUT ) is the differential transconductance at equilibrium,
and is here also equal to the transconductance of a single transistor biased at ISS/2.
Therefore, (2.17) can be normalized as

ΔI

ISS

= tanh

(
Vid

gmd,0

ISS

)

A few observations can be made regarding the operation of the differential pair
in subthreshold region. First, the ratio of gmd,0 over ISS is independent of transistor
size. This means that the shape of the transfer curve (Fig. 2.3) cannot be changed
by design. Moreover, gmd,0 is strongly dependent on the temperature. Therefore,
in order to maintain a constant transconductance, the tail current should be varied
proportionally to the temperature. Second, according to the model, the current will
never be entirely switched: the differential pair is an imperfect current switch. In
order to switch a given fraction of the current, the input differential voltage should
be as large as 2nUT tanh−1 (ΔI/ISS), which is about 5.3 times the thermal voltage
(138 mV at room temperature) for a 99% switching.
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Vid · (gmd,0/ISS)
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−0.5

0.0

0.5

1.0

Δ
I
/
I s

s

Fig. 2.3 Transfer curve of the differential pair in subthreshold regime

2.2.3 Transregional Model

So far, we have presented models of the differential pair both in strong and weak
inversion. Both models give simple expressions to predict the shape of the transfer
characteristic, which is a desirable property. However, they are both based on
the strong assumption that both transistors operate in the same regime, and this
assumption can only hold over a limited range.

In most of the cases, the large-signal operation of the differential pair cannot be
analyzed accurately by considering a single mode of operation for the transistors—
the exception being when it is operated in deep weak-inversion, over a range of
currents where the subthreshold exponential ID − VG relationship holds with good
accuracy. When biased in strong (or moderate) inversion, the strong-inversion model
will remain valid only as long as the gate-to-source voltages of both transistors
remain large enough compared to VT , or equivalently as long as the current remains
high enough in both branches. This is the reason why a strong-inversion model can
correctly predict the behavior of the differential pair in the central region of the
transfer characteristic, which is close to linear, but fails to accurately model the
regions where the curve is bending.

Therefore, in order to produce an accurate large-signal model valid over the
whole operating range of the differential pair, both regimes should be considered.
This is supported by observing the poor matching of strong- and weak-inversion
models to the actual simulated transfer curves of differential pairs, as plotted in
Fig. 2.4. As it can be concluded from the observation of these curves, the models
are accurate for small-signal operation, when both transistors operate in the same
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Fig. 2.4 Transfer curve of a differential pair in 90 nm CMOS at different current levels and the
ideal strong- and weak-inversion models (L = Lmin,W = 5 × L)

regime, however as Vid is increased, the real characteristics deviate from the
expected ones and neither model offers acceptable accuracy. The actual value of ΔI

lies somewhere between the strong inversion and the weak inversion expressions.
In order to model the large-signal behavior of the differential pair over a wide

range of input voltages, we can adopt the interpolation approach of the EKV
model. However, the interpolation function (2.9) is too complex to yield tractable
expressions for hand analysis. Therefore, we will use the simpler expression

gm (ID) = gsgw

gs + gw

(2.18)

where gs and gw are the expressions of the transconductance in strong and
weak inversion, respectively. This interpolation is valid under the assumptions that
gw/gs → ∞ when ID → ∞, and gw/gs → 0 when ID → 0, which hold for
MOSFETs. This is graphically represented in Fig. 2.5.

Then, since gm = dID/dVG, we can obtain VG by integrating 1/gm as follows:

VG =
∫

∂VG

∂ID

dID + C =
∫

1

gm

dID + C =
∫ (

1

gs

+ 1

gw

)
dID + C

= VG(strong) (ID) + VG(weak) (ID) + C (2.19)

Now let us calculate the Vid − ΔI relationship for the differential pair using this
expression of VG
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Fig. 2.5 Continuous interpolation of the transconductance from weak to strong inversion accord-
ing to (2.18)

Vid = VG (I1) − VG (I2)

= [VG(strong) (I1) − VG(strong) (I2)
]+ [VG(weak) (I1) − VG(weak) (I2)

]
= Vid(strong)(ΔI) + Vid(weak)(ΔI) (2.20)

where Vid(strong) and Vid(weak) are the Vid − ΔI transfer curves for the differ-
ential pair in strong and weak inversion, respectively. Inserting (2.16) and (2.17)
into (2.20) and rearranging, we obtain

Vid

2nUT

=
√

ISS

2IS

·
(√

1 + ΔI

ISS

−
√

1 − ΔI

ISS

)
+ tanh−1

(
ΔI

ISS

)
(2.21)

where the quantity ISS/(2IS) in this expression is equal to the inversion factor
at ID = ISS/2 as defined in the EKV model. The small-signal differential
transconductance at equilibrium is given by

gmd,0 = ISS

2nUT

· 1

1 +
√

ISS

2IS

(2.22)

Note that the maximum transconductance is equal to the value in weak inversion,
i.e. ISS/(2nUT ).

The good accuracy of this model can be assessed on the data plotted in
Fig. 2.6, where the model is plotted against the same data as in Fig. 2.4 obtained
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Fig. 2.6 Transfer curve of a differential pair in 90 nm CMOS at different current levels and the
transregional model (L = Lmin,W = 5 × L)

by simulation in a 90 nm CMOS process. For each current level, the differential
transconductance gmd,0 has been extracted from the simulated data, by measuring
the slope of the transfer curve in the linear region, and the resulting value used to
calculate the IS parameter in order to construct the analytical curves.

2.3 Single-Level MCML Logic Gate

The simplest MCML gate is built with a single level of differential pairs in the logic
network. Only a single gate can be realized with one level, which is illustrated in
Fig. 2.7. This gate realizes the function of a buffer or—since logically inverting a
differential signal is done simply by swapping the two polarities—a logic inverter
as well. It is composed of a single differential pair, producing a differential current
from a differential input voltage. This differential current is converted into a
differential output voltage, by means of load resistors, and the resulting differential
voltage can be fed to the next logic stage. In this section, its operation will be studied
in detail.
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Fig. 2.7 MOS current-mode
logic inverter/buffer

RL

Vid
S

VDD

Vod

Iss

M1 M2

RL

+-

+

-

2.3.1 Implementation of Load Devices

Practically, the pull-up devices in an MCML gate can be implemented either as
passive or active devices. In the first case, various flavors exist in modern VLSI
technologies:

• diffused resistors are implemented by the parasitic resistance of low-doped
silicon. Depending on the doping, they can offer sheet resistances as high as
1 k�/square, however they suffer from high parasitic capacitance due to the
reverse biased pn-junction.

• polysilicon resistors are implemented with unsalicided strips of polysilicon. Typi-
cally, polysilicon resistors offer sheet resistances in the range 200–500 �/square,
and up to 1 k�/square in processes offering high-resistive polysilicon. This type
of resistance is more linear than diffused resistors and suffers less parasitic
capacitance.

Passive resistors are inherently subject to process variations, due to doping,
lithography, and etching. The tolerance on the absolute value of passive devices
is typically as large as 20–30% of the nominal value.

Active resistors can be implemented with MOS devices operating in the linear
region. They can offer an acceptable linearity if their VGS is high and the voltage
swing is small. Active resistors are naturally adjustable, by varying the bias voltage,
so on-chip biasing can be implemented to compensate the process variations, and
obtain very precise absolute values. Typical values for such passive resistors are in
the range of 10–50 k�/square of channel dimensions (Fig. 2.8).

For very low current levels, active resistors with bulk biasing can be implemented
to increase the resistivity, allowing up to several hundred of M�/square. This
technique is explained in detail in [17, 18], and can be used for circuits biased
in weak inversion, with very low current levels.

The choice of a type of device largely depends on the range of resistor values that
are needed. For high values, passive components are growing up to unacceptable
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sizes, while for low resistance values their dimensions and parasitics make them
more efficient than active devices. Adjustment of the total resistance with passive
devices can be achieved by circuit techniques, for example by combining active and
passive devices in parallel, resulting in smaller overall dimensions than the use of
an active device (Fig. 2.9).

In this work, we are focusing on MCML design with application to standard-cell
type of circuits, which implies that the device sizes that we are considering are in the
range of the technology minimum, and that the devices should be biased in strong
or moderate inversion to allow high speed operation. For this type of application,
active loads offer the best compromise, and in the remaining of this text we will
assume that load devices are realized with PMOS transistors biased in the linear
region, unless explicitly stated otherwise.

2.3.2 DC Transfer Characteristic

In order to obtain an accurate large-signal model for the Vod −Vid relationship of the
circuit in Fig. 2.7, we use the transregional model proposed in the previous sections
for the transfer function of the differential pair.

Derivation The differential voltage Vod at the output of this circuit is given by

Vod = (VDD − RLI2) − (VDD − RLI1)

= RL (I1 − I2) = RLΔI (2.23)

Substituting ΔI as given by (2.21), we obtain the expression of the voltage transfer
characteristic (VTC) as
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Vid

2nUT

=
√

ISS

2IS

·
(√

1 + Vod

Vsw

−
√

1 − Vod

Vsw

)
+ tanh−1

(
Vod

Vsw

)
(2.24)

where the voltage swing Vsw = RLISS is equal to the maximum voltage drop across
the individual load resistors (when ±ΔI = ISS). For this circuit, the small-signal
differential voltage gain is given by

Avd = gmd,0 · RL = Vsw

2nUT

· 1

1 +
√

ISS

2IS

(2.25)

using (2.22). This quantity can conveniently be substituted in the various expres-
sions, with the desirable property of being directly measurable on the VTC as the
slope at the origin. However, it encapsulates a dependency on Vsw, ISS , and β which
we regard as a fundamental design parameters. It is preferable when dealing with
design problems to reason in terms of these parameters, that can be directly adjusted
on the circuit and thus provide more useful insight into the tradeoffs. Therefore,
we will exchangeably formulate the expressions in terms of measurable quantities
when a comparison is required with experimental data, and in terms of adjustable
parameters when discussing design decisions.

Approximation Expression (2.24) is a linear combination of two terms, corre-
sponding, respectively, to the strong and weak inversion regimes. Because the weak
inversion term accounts for most of the nonlinearity in the overall characteristic,
the strong inversion term can be approximated by linearization with little loss of
accuracy. This leads to the following simpler expression

Vid

2nUT

=
√

ISS

2IS

· Vod

Vsw

+ tanh−1
(

Vod

Vsw

)
(2.26)

Validation Expressions (2.24) and (2.26) are plotted in Fig. 2.10 together with
simulation results in a 90 nm CMOS technology. The simulation results are obtained
with two different sizes for the transistors in the differential pair, at ISS = 10µA,
Vsw = 400 mV, T = 300 K and with pure resistive loads. In addition, the curves
resulting from simple weak and strong inversion models are included, highlighting
the benefits of using a transregional model.

2.3.3 Noise Margin

The noise margin is an important parameter of any logic gate, characterizing its
robustness to external perturbations, or equivalently its ability to provide a correct
output in the presence of noise. The problem of quantifying the noise robustness
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Fig. 2.10 Simulated transfer function of an MCML buffer in 90 nm CMOS technology, and the
analytical model. Parameters are: VDD = 1.2 V, ISS = 10µA, Vsw = 400 mV, T = 300 K

of a circuit is quite complicated, especially when considering a dynamic operation
where the effect of noise is function of the duration and shape of the noise signals.
For this reason, the most widely used criterion for quantifying noise robustness is
the worst-case static noise margin. Worst-case static noise margins are evaluated
by considering a quasi-static situation, where the duration of the noise is very long
compared to the response time of the gates, and a worst case scenario where an
equal amount of noise is applied at the input of each logic gate along an infinitely
long chain. The noise margins are then defined as the maximum noise amplitude
that does not perturb the logic state of the circuit.

As discussed in [10], the noise margin can be represented graphically by drawing
the voltage transfer curve (VTC) of a gate, mirroring it along the y = x line and
drawing the maximum-sized square that fits in the area between the two curves
(Fig. 2.11). Furthermore, as pointed out in [11], the VIH , VOH , VIL, and VOL points
as defined in the figure are the coordinates of the points where the derivative of the
VTC is equal to one.

Derivation Differentiating (2.26) implicitly with respect to Vod , we can express the
derivative of the VTC for an MCML buffer as

∂Vid

∂Vod

= 2nUT

Vsw

·
⎡
⎢⎣
√

ISS

2IS

+ 1

1 −
(

Vod

Vsw

)2

⎤
⎥⎦ (2.27)

Equating to unity and solving, we obtain VOH
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VOH = Vsw ·
√√√√1 − 1

Vsw
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−
√
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2IS

(2.28)

Replacing back into (2.26), we obtain VIH .

VIH =2nUT ·
⎡
⎢⎣
√

ISS

2IS

·
√√√√1 − 1

Vsw

2nUT
−
√

ISS

2IS

+ tanh−1

⎛
⎜⎝
√√√√1− 1

2nUT

Vsw
−
√

ISS

2IS

⎞
⎟⎠
⎤
⎥⎦

(2.29)

Next, NMH is given by |VOH − VIH |. By symmetry, we find that NMH = NML =
NM , therefore

NM =
(

Vsw − 2nUT ·
√

ISS

2IS

)√√√√1 − 1
Vsw

2nUT
−
√

ISS

2IS

−2nUT · tanh−1

⎛
⎜⎝
√√√√1 − 1

Vsw

2nUT
−
√

ISS

2IS

⎞
⎟⎠ (2.30)

Approximation This expression is not convenient as it cannot be reversed in order
to express design parameters as a function of the noise margin. Let us rewrite it as
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NM

2nUT

= ξ

√
1 − 1

ξ
− tanh−1

√
1 − 1

ξ
(2.31)

where

ξ = Vsw

2nUT

−
√

ISS

2IS

= 1 + Vsw

2nUT

(
1 − 1

Avd

)
(2.32)

Expression (2.31) can be well approximated over the range of interest by the
following formula

NM

2nUT

≈ ξ ·
(

1 − 1

ξ

)2

(2.33)

Validation Figure 2.12 plots the resulting expression against the values obtained
by simulation using a 90 nm CMOS technology. As it can be seen, the analytical
formula agrees well with the simulated data. It tends to slightly overestimate the
noise margin when the pair is strongly inverted, i.e. for low values of Avd and
large values of Vsw, because of the linear approximation of the strong inversion
characteristic. For larger values of Vsw, the transistors may enter linear region
when their drain voltage is low—that is, when Vid is large—effectively reducing
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Fig. 2.12 Simulated noise margin of an MCML buffer in 90 nm CMOS for different values of
the voltage swing, together with the analytical expression (2.30) and the approximation (2.33).
Simulation parameters are: VDD = 1.2 V, ISS = 10µA, T = 300 K
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their transconductance and thus flattening the transfer curve. This has the effect of
reducing the noise margin, and is also not taken into account in the analysis.

Expression (2.33), also displayed in Fig. 2.12, gives a very good approximation
over a broad range of operating points. Several more simple expressions can be
found, by considering only the weak or strong inversion behavior, however these
expressions are poorly accurate, or accurate only within a limited range of operating
points.

The weak-inversion limit is found by setting IS � ISS in the previous expression,
yielding

NMw

Vsw

=
√

1 − 1

Avd

− 1

Avd

· tanh−1

√
1 − 1

Avd

(2.34)

Conversely, the noise margin considering only the strong-inversion behavior is
found by setting IS � ISS , yielding

NMs,1

Vsw

= 1 − 1

Avd

(2.35)

corresponding to a velocity saturation index [14, 15] of α = 1, because this
assumption was made to derive the initial formula (by linearizing the strong
inversion characteristic). The expression for the case where α = 2 can be found
by following the same approach as previously, and was first calculated in [5] as

NMs,2

Vsw

=

√
4A2

vd − 1 −
√

8A2
vd + 1

A2
vd

√
2

⎛
⎜⎜⎝

√
4A2

vd + 1 +
√

8A2
vd + 1

2
√

2
− 1

⎞
⎟⎟⎠

(2.36)

As suggested in [2], this expression can be approximated by assuming VOH =
Vsw and Avd � 1/

√
8, yielding a simpler formula

NMs,3

Vsw

= 1 −
√

2

Avd

√
1 − 1

Avd

√
2

(2.37)

or, by approximating even further

NMs,4

Vsw

= 1 −
√

2

Avd

(2.38)

The latter expression is found to be of the same form as (2.35), and by extension
the authors in [1] proposed to express the noise margin for arbitrary values of α as
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Fig. 2.13 Comparison of different noise margin formulas. The symbols denote simulation results
from Fig. 2.12, at three different Vsw . The bold lines show the theoretical noise margin values from
expression (2.30). The different thin lines show the resulting values from expressions (2.34)–(2.39)

NMα

Vsw

= 1 − γ

Avd

(2.39)

where γ is a constant between 1 and
√

2, reflecting the effect of velocity saturation.
In order to compare all these different expressions, verify their accuracy and

assess their range of validity, they are all displayed on the same graph in Fig. 2.13
together with the simulated data from Fig. 2.12.

By inspecting the matching of the different curves to the simulated data in
Fig. 2.13, it appears that all approximations (2.34)–(2.39) suffer from an impor-
tant degradation in accuracy, compared to expression (2.30). The weak-inversion
approximation (2.34) is accurate at lower values of Vsw. Using the long-channel
strong-inversion expression (2.36) is reasonable for small values of Avd , however
this expression is not simple enough to be used in calculations. For larger values
(Avd > 2) the approximations (2.38) and (2.39) are actually closer to the simulated
data, but they have the undesirable drawback of altering the x-axis intercept at
Avd = 1. Those three expressions are nevertheless preferable over (2.35), (2.37)
which are rather inaccurate.

2.3.4 Logic Levels

When considering a chain of (identical) logic gates, the voltage levels will tend to
stabilize along the chain to the values which satisfy the relation Vin = Vout . There
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should be two such values for binary logic, one for each logic level, and these values
are termed the stable logic levels, denoted VH and VL.

Derivation In the case of an MCML buffer with a transfer characteristic given
by (2.24), symmetry implies that VH = −VL = VHL, and the logic levels must
satisfy

VHL

2nUT

=
√

ISS

2IS

·
(√

1 + VHL

Vsw

−
√

1 − VHL

Vsw

)
+ tanh−1

(
VHL

Vsw

)
(2.40)

Unfortunately, this transcendental equation cannot be solved analytically. How-
ever, it can be reversed to obtain parameter values that result in a given logic level
specification. Defining VHL/Vsw = α, we can write

ξ = Vsw

2nUT

(
1 − α√

1 + α − √
1 − α

)
+ tanh−1(α)√

1 + α − √
1 − α

(2.41)

where ξ has the definition given in (2.32)

ξ = Vsw

2nUT

−
√

ISS

2IS

(2.42)

Validation The relationship between the stable logic levels and the ξ value is
plotted in Fig. 2.14 from simulations results in 90 nm CMOS technology at different
voltage swings, ranging from 100 to 500 mV, and various device sizes for the
transistors in the differential pair. On the same graph, the theoretical value as given
by (2.42) is plotted with dotted lines.

Some important conclusions can be drawn from the inspection of this graph.
Firstly, note that a given value of ξ corresponds to a unique value of NM , as given
by (2.31). Therefore, at a given noise margin, gates with a lower voltage swing
exhibit better logic levels. This is easily understood when considering that, for lower
voltage swings, a differential pair with larger transconductance (resulting in a larger
voltage gain) need to be used in order to compensate for the loss in noise margin.
Secondly, the graph shows that good logic levels cannot be obtained at very low
voltage swings. In fact, for a given value of Vsw, there is a maximum value of ξ

given by

ξmax = Vsw

2nUT

obtained when IS � ISS , i.e. when the transistor sizes in the differential pair grow
to infinity. Therefore, for a specified value of α, one can deduce a lower bound on
the voltage swing through (2.42), resulting in



26 2 Analysis of MOS Current-Mode Logic Circuits

1 2 3 4 5
ξ

0.0

0.2

0.4

0.6

0.8

1.0

V
H

L
/
V

s
w

Theoretical
Vsw =100mV

Vsw =200mV

Vsw =300mV

Vsw =400mV

Vsw =500mV

Fig. 2.14 Stable logic levels in an MCML gate. Symbols denote simulation results in a 90 nm
CMOS process, for voltage swings ranging from 100 to 500 mV; bold lines represent the theoretical
value given in Eq. (2.42)

Vsw,min = 2nUT · tanh−1(α)

α
(2.43)

According to this result, the minimum allowable voltage swing to obtain a relative
logic level of 99% is ∼170 mV at room temperature, and rises to ∼220 mV at T =
400 K. In practice, unless ISS is extremely low, the transistors need to be biased
in moderate inversion in order to keep reasonable transistor sizes. This will further
increase the minimum voltage swing to higher values.

2.3.5 Dynamic Operation

In order to achieve efficient design of MCML gates, it is important to understand
their dynamic operation, that is, how they behave during switching events and how
this behavior depends on their parameters. During the switching in an MCML gate,
the two complementary outputs undergo an opposite change in voltage—one output
being pulled low through the tail current of the differential pair while the second is
pulled up to the supply voltage through the load resistor. Due to time constants in the
system, these processes are not instantaneous and cause transition delay from input
to output. But delay is not the only reason of analyzing the dynamic operation of
a gate, for during the switching, multiple transient current paths can exist between
supply and ground which may sum up as current spikes in the supply.

Figure 2.15 depicts an MCML buffer gate with the relevant parasitic capacitances
at the input and output nodes. Assuming that the circuit is symmetrical by design and
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Fig. 2.15 Parasitic
capacitances in an MCML
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by layout, the capacitance contributions are equal on both sides. The time constant
at the output nodes is determined by the parasitics of the transistors (Cdb, the drain
to bulk diffusion capacitance, and Cgd , the gate-to-drain capacitance), the parasitics
due to the pull-up load device denoted here by CP , and the external parasitics Co

and Cc due to wiring and input capacitance of the driven gates. All together, and
taking into account the Miller effect, the total load capacitance can be estimated as

Ctot = 2Cgd + Cdb + CP + Co + 2CC

By writing Kirschoff’s current law at both output nodes, we obtain the following
differential equations

τ · dVo1,2 (t)

dt
+ Vo1,2 (t) −

[
VDD − RL

ISS ± ΔI (t)

2

]
= 0 (2.44)

Subtracting one from the other, the differential equation governing the output
differential voltage is found as

τ · dVod (t)

dt
+ Vod (t) − RLΔI (t) = 0 (2.45)

where τ is the time constant of the first-order system and is equal to τ = RLCtot .
After taking the Laplace transform and inverting, we get

Vod (s) = RL · ΔI (s)

1 + τ · s
(2.46)
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2.3.5.1 Step Response

The step response is found by considering that, during full switching, ΔI varies
from −ISS to +ISS or vice versa. Therefore, using ΔI (s) = (±2ISS) /s, and taking
the inverse Laplace transform, we find the step response as

Vod (t) − Vod (0) = ±2Vsw

(
1 − e−t/τ

)
(2.47)

The propagation delay in this scenario is therefore equal to the well-known value
for a first-order system

td = τ · ln (2) ≈ 0.69RLCtot (2.48)

2.3.5.2 Ramp Response

A step input is only valid in limit case where the input signal is changing very
fast compared to the output signal. In real situations, the input and input slopes
are usually of the same order of magnitude, and the propagation delay depends on
the shape of the input signal. To model this effect, we can approximate the input
waveform as a linear ramp. Because the transfer characteristic of the differential
pair is fairly linear over a broad range of input voltage, we can approximate it with
a linear relationship as

ΔI

ISS

=
{

gmd,0Vid if
∣∣∣ Vid

Vsw

∣∣∣ < 1
Avd

±1 otherwise
(2.49)

where the current saturates at ±ISS when the input is large enough to switch the
entire tail current. Instead of modeling the saturation of the transfer characteristic,
it is simpler to clip the input waveform. Therefore, we will consider an input wave
described as

Vid (t) − Vid(0) = 2
Vsw

Avd

· 1

τ ′
i

· (t · ε (t) − (t − τ ′
i

) · ε
(
t − τ ′

i

))
(2.50)

where τ ′
i is the time needed for the input to rise from −Vsw/Avd to +Vsw/Avd .

Note that the time needed for the real input to rise from −Vsw to +Vsw is larger by a
factor Avd , therefore τ ′

i = τi/Avd (Fig. 2.16). The output waveform is then given by

Vod (t) − Vod(0) = ε (t)

{
2
Vsw

τ ′
i

[
t + τ

(
e−t/τ − 1

)]}

−ε
(
t − τ ′

i

) {
2
Vsw

τ ′
i

[(
t − τ ′

i

)+ τ
(
e−(t−τ ′

i )/τ − 1
)]}

(2.51)
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Fig. 2.16 Ramp response of an MCML buffer. Symbols denote simulation results with a 90 nm
CMOS technology (ISS = 30µA, AV = 2)

By calculating the time point where Vod(t) − Vod(0) = Vsw, and subtracting
τ ′
i /2, the expression for the delay is found. The resulting formula depends whether

the output reaches the mid-point before or after the input saturates, which is function
of the ratio τi/τ

td

τ
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 · τ ′

i

τ
− ln

(
1
2 · τ ′

i /τ

1−e
−τ ′

i
/τ

)
if

τ ′
i

τ
< 1.59362

1 + W

⎡
⎣−e

−
(

1+ 1
2 · τ ′

i
τ

)⎤
⎦ otherwise

where W is known as Lambert’s W function [3, 4, 7], and the constant 1.59362 is the
approximate numeric value of 2 + W

(
2e−2

)
. Note that, for τ ′

i � τ , the delay tends
towards τ ln (2), which is the value obtained with a step input, while for τ ′

i � τ it
tends towards τ . Thus, the delay increase due to a very slowly changing input is at
the most of about 30%, which is rather low (Fig. 2.17).

2.3.5.3 Power Supply Noise

During the event of switching, the current drawn from the power supply can vary
due to the transient current paths charging and discharging the load capacitances.
By summing the currents in both load devices, we get the total supply current as
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Fig. 2.17 Propagation delay of an MCML buffer as a function of the input rise time. Symbols
denote simulation results with a 90 nm CMOS technology

Isupply = ISS + CL

d

dt
[Vo1 (t) + Vo2 (t)] (2.52)

Therefore, power supply noise can result if the common-mode output voltage
Vcm = (Vo1 + Vo2) /2 varies during the switching. By summing the differential
equations for Vo1 and Vo2 as given by (2.44), then dividing by 2, we obtain Vcm as

τ · dVcm (t)

dt
+ Vcm (t) = VDD − Vsw

2

where both RL · ΔI component have cancelled out. Obviously, the common mode
is thus constant and equal to the supply voltage minus half of the voltage swing.
Therefore, the generated supply noise is null; it is important to realize, though, that
this is possible only because the transient components on both output nodes cancel
each other perfectly, and that any asymmetry will invalidate this condition and result
in switching noise.

2.4 Multi-Level MCML Logic Gates

Complex logic functions are realized in MCML by stacking differential pair stages
to build logic networks. Depending on the state of inputs applied to such a network,
the tail current of the gate will be steered to one output node or the other, producing
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Fig. 2.18 (a) 2-Input AND/OR. (b) 2-to-1 multiplexer

a voltage drop at this node and effectively establishing the polarity of the differential
output. Examples of logic networks are given in Fig. 2.18a, b.

The logic network implemented in Fig. 2.18a works as follows: when both inputs
are in such a polarity that the differential pairs are steering current to their left
branch, the current flows to the left output node, effectively pulling it low while
the right output node is pulled high. In all other cases, the current is steered to the
right output node. Polarities for inputs and output are intentionally not written on
the picture, since all can be inverted at no cost, effectively realizing a logic inversion
of an input or output: the same logic network will then be able to realize all possible
variants obtained by inverting one or more of the inputs and/or output, without any
change. Deciding on a polarity for inputs such that M1 and M3 are conducting when
VA and VB are at the logic ‘1’ state, and for the output such that it is at logic ‘1’
state when M5 is pulling low, we can write the following truth-table

VA VB Vout

0 0 0
0 1 0
1 0 0
1 1 1

and therefore, the gate with the chosen polarities implements the 2-input AND
function. By switching polarities of both inputs and the output, the 2-input OR
function can be realized. All other combinations, including NAND and NOR, are
also possible with the same gate.

Similar analysis for the gate depicted in Fig. 2.18b reveals that the resulting logic
function is Y = S ·D1+S ·D0, corresponding to the 2-to-1 multiplexer. By assigning
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D0 = D1, the 2-input XOR function is obtained. Again, all combinations of input
and output inversion are possible by simply switching the signal polarities.

The problem of determining what logic networks can be built and which
functions can be realized will be one of the subjects of Chap. 4, while in the
following sections we will study the transistor-level operation of MCML logic
networks.

2.4.1 DC Operation

Let us use as a case the 2-input AND network from Fig. 2.19, with the defined
currents and voltages. We consider the transfer function from each input to the
output, in the case where the other input is constant. Furthermore, we will assume
that each differential pair is working in the saturation region, so that they follow the
transfer characteristic given by (2.24). For the constant inputs, we finally assume
that the pairs behave as ideal current switches, switching only a fraction γ of their
tail current, where γ is related to the stable logic levels as defined in Sect. 2.3.4
through

γ = 1 + α

2
(2.53)

Considering input A, we assume that VB is positive, so that I3 = α · I1 and
I2 = (1 − α) · I1. The output voltage is given by

Fig. 2.19 DC voltages and
currents in the AND2 logic
network
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Vod = RL · (I5 − I6)

= RL · [I3 − (I4 + I2)]

= RL · [γ · I1 − ((1 − γ ) · I1 + I2)]

= RL · [2γ · I1 − ISS]

Normalizing by dividing both sides by RL · ISS , we obtain

Vod

Vsw

= (γ − 1) + γ
ΔI12

ISS

= 1 + α

2
· ΔI12

ISS

+
(

1 + α

2
− 1

)
(2.54)

where

ΔI12 = I1 − I2 (2.55)

is the transfer function of the single differential pair as given by (2.21). We can make
the following observations:

1. The transfer function is offset vertically by a factor (1 + α)/2 − 1
2. The transfer function is scaled by a factor (1 + α)/2
3. The logic levels are asymmetric

These effects are due to the imperfect current switching in the M3–M4 pair, and
imply that the logic levels—and thus, the noise margin—are degraded in the
multi-level gates when compared to a single-level gate with identical transistor
dimensions.

When the transfer function is sufficiently flat at the crossing points, that is, for
large enough values of α, the logic levels approximately scale according to (2.54).
Substituting ΔI12 = α results in

α2 ≈ (1 + α) · 1 + α

2
− 1 (2.56)

Now, considering input B, similar calculations show that the transfer character-
istic is affected in the same way. More generally, considering a gate with N levels
of stacked differential pairs, in the worst case, the transfer function will be scaled
by a factor of γ N−1 and offset by a factor γ N−1 − 1, resulting in a worst-case logic
level of

αN ≈ (1 + α) ·
(

1 + α

2

)N−1

− 1 (2.57)
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Fig. 2.20 Logic level degradation in multi-level MCML gates. The plain lines represent for-
mula (2.57) for N = 1, 2, 3. The dotted lines denote simulation results obtained in a 90 nm CMOS
technology, for AND gates with 1–3 inputs, with ISS = 100µA, at various voltage swings and
transistor sizes

Though this analysis is very simplistic, it allows to understand the effects
involved. This is validated by the simulation results presented in Fig. 2.20. In this
figure, expression (2.57) is plotted in plain lines for a gate with N = 1, 2, 3 levels
of stacked differential pairs. The dotted lines represent simulation results, where the
logic level corresponding to the N different inputs of each gate and four different
values of Vsw are all superimposed. The results show that, for large values of α, the
resulting logic level tends toward the curve given by (2.57).

The conclusion that can be drawn from these considerations is that, in order to
design robust multi-level gates, the differential pairs should be able to efficiently
switch the tail current. Moreover, with a higher number of levels, the current
switching is less efficient and therefore the differential pairs should be sized larger.
In practice, this implies that each additional level of stacked logic incurs additional
costs in terms of area and speed.

As a final remark, it should be noted that it was assumed that all differential pairs
are operating in saturation. In practice, this is possible only if the inputs to pairs at
the different levels are level-shifted accordingly; this is discussed in more detail in
the next section.
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2.4.2 Common-Mode Input Level and Level Shifting

In a multi-level MCML network, differential pairs that are located on the highest
level have their drain connected to the output nodes and the load devices, and
their source, when no switching is occurring on lower level inputs, is driven by a
constant current. Therefore, they operate exactly as if they were single-level, and
their characteristics are the same as that of a buffer as analyzed in the previous
section.

The same is not true, however, for a pair located on a lower level. In the network
of Fig. 2.19, the M1 transistor has its drain voltage equal to the source voltage of the
M3–M4 differential pair. In a static condition, assuming that one of M3 or M4 has
a gate voltage of VDD and is conducting all the current, the source voltage VB can
be written as VB = (VDD − VT ) /n − Vov (I1), where Vov is the overdrive voltage
required to drive I1. Therefore, the condition for M1 being saturated is written as

VDD − VT

n
− Vov (I1) − V1 − VT

n
≥ 0

or

V1 ≤ VDD − Vov (I1) (2.58)

Obviously, for this condition to remain true at all times, the input common mode-
level of the M1–M2 input pair must be lowered by an amount equal to Vov (ISS).
This can be achieved by inserting source–followers at the inputs as depicted in
Fig. 2.21a. In this configuration, both inputs V1 and V2 are shifted down by an
amount equal to VT + Vov , depending on the size of the transistors in the level
shifters and their tail current. Another option is to insert source followers at the
output of the gates, as displayed in Fig. 2.21b. The advantage of this configuration
is that a single source–follower can provide a level-shifted signal to multiple gate
inputs.

However, using level shifting has a number of important drawbacks:

Vin

VDD VDD

Vout,shifted

Va b DD

Vout

RL RL

Fig. 2.21 (a) Level shifting at the inputs of an MCML gate. (b) Level shifting at the output of an
MCML gate
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• each source–follower stage creates an additional delay, of the same order of
magnitude as the gate delay, thus resulting in a consequent speed penalty,

• inserting the level-shifters at the input of the gate results in a very high number
of source–followers, resulting in a prohibitive cost in terms of area and power
consumption

• inserting the level-shifters at the output of the gates is incompatible with an
automated approach, since the load of each output (unshifted and shifted) cannot
be determined a-priori, making it impossible to estimate the delay

• source–followers create an important amount of noise during switching

Not shifting the level of the input signals implies allowing the transistors in the
differential pair to leave saturation region for a range of input voltages, as given
in (2.58). Depending on the value of Vov , this range of voltage may be limited to
a small range when V1 ≈ VDD , or extend so much as to keep M1 from saturating
most of the time.

One of the consequences of this is that, because the transconductance of the
transistors in the differential pair is dependent on their drain voltage when they are
not saturated, the transfer characteristic will become asymmetrical unless the drain
voltages of both transistors are equal. In the case of the gate of Fig. 2.19, the drain
voltages of M1 and M2 are very different, resulting in the transfer function displayed
in Fig. 2.22a, which plots simulation results for the AND2 network of Fig. 2.19,
together with the transfer function of a buffer with identical parameters. As it can be
seen, the transfer curve of the asymmetrical network is shifted horizontally, resulting
in an important decrease of the noise margin.

Though this decrease can be compensated by an increase in transistor sizes, the
asymmetry of the network can also be compensated for, by balancing the network
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Fig. 2.22 (a) Transfer functions of the asymmetric and balanced AND2 logic networks. (b)
Balancing the AND2 logic network by adding transistor M7
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as depicted on Fig. 2.22b, by adding transistor M7 to lower the drain voltage of
M2 to a value close to the drain voltage of M1. In order to achieve balancing, M7
should have the same size as M3 and M4, so that their gate-to-source voltage will be
equal at equal drain current. The resulting transfer curve for the balanced network
is also displayed in Fig. 2.22a. In this example, the initial noise margin of 100 mV
for the buffer drops to 35 mV for the asymmetrical network, while after balancing it
restored to 60 mV.

There is another consequence of the transistors not being saturated: when the
transistor leaves the saturation region, its transconductance drops—slowly in the
beginning, and more sharply when entering deeper in the linear region. If the
differential gain of the pair is larger than one when it enters linear region, the noise
margin will be affected. This loss in noise margin can be compensated in two ways:
by increasing the size of the transistors in the M1 − M2 differential pair, and by
reducing the overdrive voltage of the M3 − M4 differential pair. In any case, it
implies increasing transistor sizes, therefore reducing speed and increasing area.

In Fig. 2.23, simulation results are displayed for a balanced AND2 logic network.
These plots show the noise margin of the AND2 gate with respect to input A, which
drives the differential pair at the lower level of the network, as a function of transistor
sizes. The effect of resizing the M1 − M2 and M3 − M4 pairs both independently
and simultaneously is considered. As it can be seen, resizing a single pair has a
limited effect on the noise margin, which increases with transistor size but quickly
saturates. As the plots show, a good compromise is found when increasing both
pairs simultaneously. This is confirmed by the simulation results in Fig. 2.24, where
the sizes of both differential pairs are swept, and the level curves at constant noise
margin are extracted, together with a figure of merit for the area (A = 2·W12+3·W34
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Fig. 2.23 Noise margin compensation in an AND2 logic network without level shifting. The loss
in noise margin is compensated by increasing transistor sizes of M1 − M2 and M3 − M4(−M7)

independently and simultaneously
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Fig. 2.24 Optimization of AND2 logic network transistor sizes. Simulations were performed with
a 90 nm CMOS technology on the balanced AND2 network of Fig. 2.22b

for the AND2 logic network). As predicted, the minimum area is consistently very
close to the point where W12 = W34.

2.4.3 Dynamic Operation

The dynamic operation of multi-level MCML logic networks can be analyzed as
it was done for the single-stage network in the previous section, by linearizing the
differential pair transfer function.

Considering the balanced AND2 logic network of Fig. 2.22b, let us first observe
that, when input B is switching, the M1 − M2 pair is largely unaffected and thus
can be approximated by a constant current source. The dynamic behavior is thus
exactly the same as for a single-stage network, except for additional parasitics due
to increased transistor sizes, and additional connections to the output nodes. The
same remains true for any logic network, when considering the switching of an
input pair located on the top-most level of the network.

Considering the A input, the behavior is slightly different. In order to linearize
the M3 − M4 differential pair, as well as the M7 transistor, we observe that their
drain current during a switching event is varying between (1 − γ ) · ISS and γ · ISS ,
where γ denotes the effective switched fraction of the tail current, as their gate
voltage stays constant and their source voltage is changing. Therefore, they can
be approximated by a linear current source of transconductance gms = ISS/ΔVS ,
where ΔVS denotes the variation in source voltage during a switching event. The
variation in source voltage can be calculated from (2.19) as
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Fig. 2.25 Linear equivalent
circuit of a two-level MCML
logic network

gmVid CS

gmsVS
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CL RL

Vpd

ΔVS

UT

= 2
√

2

√
ISS

2IS

(√
γ −√1 − γ

)
+ ln

(
γ

1 − γ

)
(2.59)

Substituting (2.42), (2.32), and (2.53), this expression reduces to

ΔVS = α

n
Vsw (2.60)

suggesting that ΔVS is close to Vsw for practical values of α. This provides a good
approximation, therefore we will assume gms = 1/RL. Writing the differential
equations for Vo1 and Vo2, and subtracting we get the differential equation for
Vod , and the linear equivalent circuit of Fig. 2.25 can be constructed. The transfer
function for this circuit is found as

Vod

Vid

= AV

(1 + s · τL) (1 + s · τS)
(2.61)

where τL = RL · CL and τS = CS/gms . The resulting circuit is of second order,
with an additional pole due to the second stage. When τL � τS , which is true in
most cases due to external load capacitance, the second-order system behavior can
be approximated by a first-order system with a time constant equal to

τ = τL + τS = (CL + CS)
Vsw

ISS

(2.62)

The same analysis can be performed for logic networks with n levels, yielding
an nth-order system, with a pole for each level. Therefore, the intrinsic propagation
delay of a multi-level network will increase for each level of logic, starting from the
top, by a constant factor. This is illustrated in Fig. 2.26, where intrinsic delays are
plotted for the different inputs of AND gates up to four levels.

2.5 Effect of Nonlinearities

In our previous analyses, we have relied on the linearity of certain elements,
and willingly approximated others as linear in order to simplify the calculations.
Linearity is a very convenient property, but it is an idealization: in practice, none
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Fig. 2.26 Simulated delays
for multi-level logic
networks. Simulations were
carried in 90 nm CMOS
technology with balanced
ANDn networks. Parameters
are Vsw = 400 mV,
NM = 100 mV
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of the real-world devices is linear. Since nonlinearities will cause deviations from
the ideal linear behaviors, it is interesting to examine their sources and their effects.
Nonlinearities arise from various sources in integrated circuits in general; in MOS
current-mode logic circuits in particular, there are three main sources: load devices,
differential pairs and junction capacitances.

2.5.1 Load Devices

Ideally, load devices should be perfectly linear resistors. In practice, their linearity
depends on their implementation: passive components, such as polysilicon resistors,
can be highly linear; active devices, on the other hand, are inherently strongly
nonlinear and the amount of nonlinearity greatly depends on the biasing and
signal swings. In the previous discussions, the load devices have always been
approximated by ideal linear resistors. Nonlinearity in the load devices will affect
the DC characteristics as well as the transient behavior.

A PMOS device biased in the linear region obeys the following I–V characteris-
tic, as given by the EKV model

ID,lin = β · n ·
(

VDD − VG − VT

n
− VDD + VS + VD

2

)
· (VD − VS) (2.63)

A load device has its source connected to the supply voltage and its gate biased at
a fixed value, produced by a bias generator circuit to adjust the equivalent resistance.
The drain voltage varies between VDD and VDD − Vsw, which defines the region
of interest. In order to approximate the real device by a linear equivalent, one can
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Fig. 2.27 Approximation of nonlinear load device

choose to equate both characteristics at both ends of the region of interest, that is, at
VDS = 0 and VDS = −Vsw. With this definition, the equivalent resistance is given
by

Req = Vsw

ID (VDS = −Vsw)
= 1

β · n ·
(

VDD−VG−VT

n
− Vsw

2

) (2.64)

This definition allows to keep the Vsw parameter unchanged. Figure 2.27
illustrates the linear approximation of the load device; as it can be seen, the real
resistance is always lower than the equivalent resistance over the region of interest.

The real resistance value is given by R = |VDS/ID|, and the error in resistance
due to the linear approximation is

ΔR(Vds) = Req − R

=
[
β · n ·

(
VDD − VG − VT

n
− 1

2
Vsw

)]−1

−
[
β · n ·

(
VDD − VG − VT

n
− 1

2
|VDS |

)]−1

(2.65)

The average error over the region of interest is

ΔR = 1

Vsw

∫ Vsw

0
ΔR(VDS)dVDS = w

1 − 1
2 · w

+ ln

∣∣∣∣1 − 1

2
· w

∣∣∣∣



42 2 Analysis of MOS Current-Mode Logic Circuits

Fig. 2.28 RC network with
nonlinear resistance
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R

Vo

VDD

IR=f(Vo)

where w = n · Vsw

VDD − VG − VT

(2.66)

Clearly, the error is an increasing function of w. In order to minimize the error, the
numerator can be decreased, or the denominator can be increased. In practice, this
means using a smaller voltage swing, and using a gate voltage as low as possible,
with a supply voltage as high as possible.

The consequences of nonlinearity in the load devices are twofold. First, because
the actual resistance is always lower than the approximated linear value, the
transfer characteristic of an MCML gate will be flattened, causing a decrease of
the noise margin relative to the value calculated with linear load devices. Second,
the nonlinearity will cause asymmetrical transient behavior at the rising and falling
output nodes, which results in variation of the supply current during switching
events. To understand this, let us calculate the step response of a RC network with
nonlinear resistance, as shown in Fig. 2.28, where the current through the resistance
is voltage-dependent and expressed as

IR(Vo) = β · n · VDD − VG − VT

n
· (VDD − Vo) − 1

2
· β · n · (VDD − Vo)

2

= A · (VDD − Vo) − A

2B
· (VDD − Vo)

2 (2.67)

Such a network obeys the differential equation

CL

d

dt
(VDD − Vo) = ISS − A · (VDD − Vo) + A

2B
· (VDD − Vo)

2 (2.68)

which is a particular instance of the Riccatti equation, with constant coefficients.
Solving the differential equation with the initial condition for the rising and falling
transitions, we get

Vo(rise) = VDD − Vsw · 1 − tanh (t/τr )

1 +
(

1 − Vsw

VP

)
· tanh (t/τr )

(2.69)
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Fig. 2.29 Supply noise caused by the nonlinearity of the load devices

Vo(f all) = VDD − VP

1 −
(

1 − Vsw

VP

)2

1 +
(

1 − Vsw

VP

)
· coth

(
t/τf

) (2.70)

where

VP = VDD − VG − VT

n

τr

Req · CL

= VP

Vsw

[
1 −

(
1 − Vsw

VP

)2
]

τf = τr/

(
1 − Vsw

VP

)

The resulting values of Vo(rise) and Vo(f all) can be inserted back into (2.67) and
added to obtain the total current flowing to the supply node as a function of time.
Clearly, the resulting current is not a constant, and therefore an amount of current
noise is generated due to the nonlinearity of the load devices. The shape of the
current waveform depends on the ratio Vsw/VP , and sample curves are plotted in
Fig. 2.29. As it can be guessed, the supply noise increases with increasing Vsw/VP

ratio, i.e. as the load devices become more nonlinear. For a typical value of Vsw/VP

of 1/2, the amplitude of the current spike is about 10% of ISS .
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2.5.2 Differential Pairs

Differential pairs are inherently nonlinear. As for the nonlinearity in the load
devices, the nonlinearity of the differential pairs will cause mismatches between
the rising and falling behaviors during transitions, which sum up as current spikes.
There are two types of switching events regarding the differential pairs: the
switching of the differential input voltage, and the turning on and off of the tail
current happening in multi-level logic networks.

The first type of switching event is illustrated in Fig. 2.30: the gates of the
transistors undergo an equal and opposite voltage variation. The study of the
differential pair in steady-state conditions tells us that the sum of currents is
always equal to ISS , by Kirshoff’s law of currents at the source node. In transient
conditions however, an additional current component goes to charge or discharge
the capacitance at the source node. The sum of currents is therefore equal to

I1 + I2 = ISS + CS

dVS

dt
(2.71)

Note that, if the transistors behaved perfectly linearly with respect to their gate
voltage, the source voltage VS would be constant during a transition. However,
as it was shown earlier, the source voltage varies during transitions as given by
formula (2.60). The variation of the source voltage can be written as

dVS

dt
= dVS

dVid

· dVid

dt
(2.72)

Therefore, the peak of current strongly depends on the rise time of the input
signal. Essentially, this noise component will grow with the voltage swing, the
capacitance at the node S (which consists of a constant part and a part proportional
to transistor sizes, due to their source diffusion), and the speed of the input signal.

The second type of switching event in a differential pair is when the differential
input voltage is constant and the tail current is switched on or off. This happens in
gates with multiple levels of stacked differential pair, when a pair at a lower level
is switching. Typically, such a switching event will involve simultaneously turning
one pair on and another one off; because of the nonlinear behavior of the devices,

Fig. 2.30 Noise generated by
the switching of a differential
pair input
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Fig. 2.31 Noise generation
during the turning on/off of a
differential pair tail current
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the two current waveforms will not compensate each other and sum up as current
spikes. This type of switching event is illustrated in Fig. 2.31.

In this process, if we assume that the switching is instantaneous and reduce
the transistor model to its strong inversion behavior, we can write the differential
equation at node S as

ID = n · β

2
(VP − VS)2 = CS · dVS

dt
+ ISS (2.73)

The solution of this differential equation is different when the pair is turning on
and when it is turning off,

ID(t) =

⎧⎪⎨
⎪⎩

ISS(
1+ ISS

CS

√
n·β

2ISS
·t
)2 when turning OFF

ISS · tanh2
(

ISS

CS

√
n·β
2ISS

· t
)

when turning ON

Clearly, the sum of those two currents cannot be null, and the resulting spikes
depend on the value of CS here also.

2.5.3 Junction Capacitances

The capacitance of the p–n junctions that form the drains and sources of the
transistors typically accounts for a significant part of the internal parasitics. The
capacitance of a p–n junction is nonlinear because the depletion region width
changes with the bias voltage. An expression for the C–V relationship is found
in [9]

Cj = Cj0(
1 + VR

Vbi

)m (2.74)
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where VR is the (reverse) bias voltage across the junction, Vbi is the built-in voltage,
Cj0 is the junction capacitance at zero bias, and m is an exponent depending on the
doping profile. Typical values of Vbi are in the range of 0.5–1 V, and values of m

range from 1/3 to 1/2.
Note that the capacitance becomes more linear as the bias voltage increases.

Since in MCML circuits the voltage swings are small and all nodes have a DC bias of
at least several hundreds of millivolts, the effect of nonlinear junction capacitances
is negligible for all practical purposes.

2.5.4 Overall Noise Performance

The different nonlinear effects that have been discussed separately are in practice
all happening together, and affecting each other. It is hardly possible to predict
accurately the result of simultaneous effects; some might tend to add up, while
others might tend to cancel. It is thus interesting to construct an overall picture of
the noise performance of MCML gates by simulations, with respect to the various
design parameters.

Of all the contributions, the load device nonlinearity is probably the most
important, because all other contributions depend on internal capacitances or time
constants, and are filtered by the external load before reaching the supply. Since
the load at the output nodes is typically much larger than at any internal node, all
the internal current spikes tend to vanish at least partly in real situations. The spike
of current due to the nonlinear loads, on the other hand, has a constant amplitude
regardless of the switching speed of the output nodes.

Since as we have seen, the phenomena that cause the current spikes are transient,
and depend on the signal rise times and shape, it is not meaningful to test a circuit
in an ideal environment. In order to obtain pertinent results, a common test setup is
to construct a ring oscillator out of the device to be tested. In this way, the device
is functioning at a speed which is realistic, and all the signals in the circuit are real
gate outputs and thus have a realistic shape.

Figure 2.32 plots the peak-to-peak current ripple on the supply obtained by
simulation of ring oscillators for different gates sized for different voltage swings
and loading conditions. As it can be seen, the global noise decreases when the
voltage swing is increased. This is due to the decrease of internal parasitics due
to the smaller transistor sizes. Also, it is clear that the noise produced by multi-level
logic networks is more important, especially during the switching of differential
pairs located at the lower levels of the network.
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Fig. 2.32 Supply noise in an MCML ring oscillator as a function of the design parameters.
Simulation carried with 90 nm CMOS technology, at ISS = 100µA and NM = 100 mV

2.6 Random Effects

Environmental variations will inevitably affect the operation of MCML circuits.
These include variations in the device characteristics, due to process variations and
mismatch, as well as operating supply voltage and temperature variations. MCML
circuits are rather tolerant to environmental fluctuations since key performance
parameters—speed and power dissipation of individual gates—are adjusted through
bias voltages. An on-chip bias generation circuit should provide these voltages to
ideally keep the voltage swing and tail current well-defined and constant. Though,
strictly speaking, it is not necessary to use a bias generator, it is frequently used to
counterbalance process variations.

Variations may appear at different levels, causing deviations from the expected
characteristics:

• Process and environmental variations: variations affecting all devices equally.
These variations include process variations due to the manufacturing, global
supply voltage variations, and global temperature variations. In a closed loop
approach involving a bias generator circuit, global variations are cancelled by
adjusting the different parameters to the external references. However, these
references may have a certain amount of uncertainty. In addition, imperfections
in the bias generator (or absence thereof) will cause the adjusted parameters to
vary.

• On-chip variations: environmental differences between the reference circuit
used to generate the bias voltages and the circuit receiving the bias voltages,



48 2 Analysis of MOS Current-Mode Logic Circuits

causing the latter circuit to behave differently than the former. These include on-
chip variations of the device parameters and local voltage drop in the power and
ground distribution networks.

• Local mismatch: mismatch between two components assumed to be identical,
within a single cell. This type of mismatch can affect the load devices and the
differential pairs.

In the study of random effects, we are ultimately interested in determining the
resulting variation in several parameters:

• Operating speed, in order to construct timing-correct circuits,
• Power dissipation, in order to determine the worst-case power consumption, and

appropriately dimension power distribution networks, and
• Noise margin, which must remain positive in the worst-case.

2.6.1 Process Variations

Process variations, also called chip-to-chip variations, describe the fluctuation of
the mean value of device characteristics. This kind of variation globally affects all
devices on the chip.

As it has been stated, the use of a regulation circuit (bias generator) is frequent to
cancel the process variations. In the absence of some form of regulation, it is hardly
possible to keep the voltage swing under control, within a safe operating range.

Typically, a replica scheme is used, as illustrated in Fig. 2.33, where a circuit
block receives bias voltages from an on-chip bias control block, which generates
the bias voltages based on a reference voltage and a reference current. The bias

Bias generator

Ref. Voltage
Ref. Current

Ref. gate

B
ia

s 
Vo

lta
ge

s

Standard Cells

VP

VN

VDD

VP

VN

Vref Iref

Mismatch

Mismatch

Fig. 2.33 MCML circuit with biasing and on-chip parameter variations
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Table 2.1 Summary of
sensitivities to process
variations

ISS Vsw td P NM

VT N − − − − −
βN + + + + +

VT P + + +

βP − − −
VDD − − + −

voltages are adjusted to tune the performance parameters of a reference gate to the
desired values. The generated bias voltages are distributed to all the standard cells
in the circuit, in order to match their parameters to the parameters of the reference
gate.

Implementing such a closed-loop regulation allows to cancel process variations
nearly perfectly, with the drawback that it necessitates external current and voltage
references. When using simpler schemes, that cancel process variations to a limited
extent, or when using no regulation at all, a classical corner analysis approach can
be adopted. In such an approach, the circuit performance is evaluated for extreme
(maximum and minimum) values of the process parameters, in order to obtain best-
case and worst-case performance.

Typically, two corner cases are defined for each type of device: fast and slow.
The fast corner is when β is large and VT is small, and vice versa. Table 2.1
summarizes the sensitivities of the main performance parameters of MCML circuits
to the various device and environmental parameters, in the case where no regulation
is used. The sign of the sensitivity denotes whether a variation in a parameter
is causing a variation of the same (+) or opposite (–) sign of the corresponding
quantity. As this table shows, the worst case for noise margin is the slow-NMOS,
fast-PMOS, high-VDD case. Regarding speed, the worst case is the fast-NMOS,
slow-PMOS, low-VDD case. For power, the worst case is the fast-NMOS, high-VDD

case and is independent of the characteristics of PMOS devices. It is to be noted that
these sensitivities can be different when using on-chip regulation, depending on the
specific implementation of the bias generator.

2.6.2 On-Chip Variations and Mismatch

On-chip variations (OCV) describe the fluctuations of parameters around their mean
value, for devices on the same chip. The consequence of these variations is that
different circuits on the same chip, with the same nominal parameters, will behave
differently. In particular, when a closed-loop approach is adopted to cancel process
variations, mismatch in parameters between the devices in the bias generator and
other devices in the circuit will cause the speed, power, and noise margin to vary
across the chip. In addition to pure device parameters, local voltage drops on the
power and ground distribution networks and local heating will cause additional
variations.
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Classically, on-chip variations are described statistically by gaussian distribu-
tions. Each parameter Pi is characterized by its standard deviation σ(Pi). The
classical model for MOSFET parameter variation expresses the standard deviation
of the difference in threshold voltage and current factor between two devices of
channel dimensions W , L and separated by a distance D as [13]

σ 2(ΔVT ) = A2
VT

W · L
+ S2

VT
· D2 (2.75)

σ 2(Δβ)

β2 = A2
β

W · L
+ S2

β · D2 (2.76)

where A is the area proportionality constant, and S the spacing proportionality
constant. The influence of spacing is typically very small and can be neglected [16].
Note that this describes the difference of parameter values between two identical
devices; the parameter variations for individual devices are thus given by

σ(Pi) = σ(ΔPi)√
2

(2.77)

Provided that the variations are small enough so that a quantity Q(P1, . . . ,

Pi, . . . , PN) can be well approximated by linearization around the nominal value
of the parameters, the standard deviation in Q caused by variations in Pi can be
approximated by

σPi
(Q) ≈ ∂Q

∂Pi

· σ(Pi) (2.78)

where ∂Q/∂Pi is sensitivity of Q to Pi The total variation in Q caused by the
simultaneous random variations of all N parameters P1, . . . , PN , provided they are
statistically independent, is given by

σ(Q) ≈
√

σ 2
P1

+ · · · + σ 2
Pi

+ · · · + σ 2
PN

(2.79)

Random parameters β and VT can be accounted for using this statistical
approach. Using the resulting value of σ(Q), a worst-case value can be chosen,
typically as ±3σ . However, other parameters like the local voltage drop on the
supply can hardly be characterized by a statistical distribution; for these parameters,
an additional margin can be added to the worst-case statistical value, that can be
calculated using the derivatives as

max(ΔQ) ≈
∣∣∣∣ ∂Q

∂VDD

∣∣∣∣max(ΔVDD) +
∣∣∣∣ ∂Q

∂VGND

∣∣∣∣max(ΔVGND) (2.80)
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Table 2.2 Sensitivities of ISS

Device Parameter Sensitivity

Tail current source VT N ,−VN, VGND σ(ISS)

ISS

= 2
σ(VT N , VN , VGND)

VN − VT N

Tail current source βN σ(ISS)

ISS

= σ(βN)

βN

Table 2.3 Sensitivities of Vsw

Device Parameter Sensitivity

PMOS load device VT P , VP ,−VDD σ(Vsw)

Vsw

= σ(VT P , VP , VDD)

VDD − VP − VT P − nVsw

PMOS load device βP σ(Vsw)

Vsw

= −VDD − VP − VT P − n
2 Vsw

VDD − VP − VT P − nVsw

· σ(βP )

βP

Tail current source ISS σ (Vsw)

Vsw

= VDD − VP − VT P − n
2 Vsw

VDD − VP − VT P − nVsw

· σ(ISS)

ISS

Tail Current and Voltage Swing Using the expressions developed in the previous
sections, we can calculate the expressions for the sensitivities of the tail current
and voltage swing with respect to these various parameters. These expressions are
summarized in Tables 2.2 and 2.3.

Note that, in the case where a regulation scheme is used, the parameter variations
σ(ΔPi) describe the differences of a device’s parameter values with respect to the
reference device. If no regulation is used, these variations should be replaced by that
of individual devices.

Note also that, in the case of the voltage swing, the presence of on-chip variations
will cause the complementary outputs of each gate to display two different,
independent voltage swings. This is important to consider when analyzing the effect
of variations on the delay and noise margin.

Delay To calculate the variation in the delay, we should consider the asymmetry in
the voltage swings caused by on-chip variations. This results in two different time
constants for the two output nodes, which can be expressed by

Δτ

τ
= ΔRL

RL

(2.81)

where

τ = τ1 + τ2

2
and Δτ = τ1 − τ2 (2.82)
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The step response given by (2.47) in the absence of mismatch is now given by

Vo,d

Vsw

=
(

1 − 1

2

ΔRL

RL

)
·
[
1 − e

− t
τ2

]
−
(

1 + 1

2

ΔRL

RL

)
· e

− t
τ1 (2.83)

With the definitions of τ and Δτ , we can write

t

τ1,2
= t

τ ± Δτ
= t · τ ∓ Δτ

τ 2 − (Δτ)2 ≈ t

τ
·
(

1 ∓ Δτ

τ

)
(2.84)

where it was assumed that Δτ/τ is small enough so that (Δτ/τ)2 ≈ 0. With this
simplification, (2.83) can be rewritten as

Vo,d

Vsw

≈ 1−2e− t
τ ·cosh

(
1

2

t

τ

Δτ

τ

)
± 1

2

Δτ

τ

[
1 − e− t

τ · sinh

(
1

2

t

τ

Δτ

τ

)]
(2.85)

which can be further approximated as

± Vo,d

Vsw

≈ 1 − 2e− t
τ ± 1

2

Δτ

τ
(2.86)

resulting in a delay of

td ≈ −τ · ln

(
1

2
± 1

4

Δτ

τ

)
≈ τ · ln (2) ± 1

2
Δτ (2.87)

where the ± sign indicates that there are different delays for the rising and falling
transitions. Note that there are two components, one depending on the average value
of the time constants, and one depending on their difference.

The variations for each individual time constant can be calculated from the
sensitivities summarized in Table 2.4. In order to calculate the statistics of their
average value τ = (τ1 + τ2)/2 and difference Δτ = τ1 − τ2, we must not overlook
the fact that, though variations in the load device parameters are independent for the
two output nodes, the variation in the tail current affects both time constants in the
same way. Therefore, the tail current does not contribute to the difference of time
constants.

σ 2(Δτ) = σ 2(τ1 − τ2) ≈ 2

(
∂τ1,2

∂VT P

)2

σ 2(VT P ) + 2

(
∂τ1,2

∂βP

)2

σ 2(βP ) (2.88)

Statistically speaking, this is expressed as a correlation between the two values. The
statistical correlation factor ρ can be calculated as

ρτ = 1 − σ 2(Δτ)

2σ 2(τ )
(2.89)
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Table 2.4 Sensitivities of τ1,2

Device Parameter Sensitivity

PMOS load device VT P , VP ,−VDD σ(τ1,2)

τ
= σ(VT P , VP , VDD)

VDD − VP − VT P − nVsw

PMOS load device βP σ(τ1,2)

td
= −VDD − VP − VT P − n

2 Vsw

VDD − VP − VT P − nVsw

· σ(βP )

βP

Tail current source ISS σ (τ1,2)

td
= 1

2

nVsw

VDD − VP − VT P − nVsw

· σ(ISS)

ISS

Table 2.5 Sensitivities of td Device Parameter Sensitivity

Multiple devices τ σ (td )

td
= σ(τ)

τ

Multiple devices Δτ σ(td )

td
= − σ(Δτ)

2τ ln(2)

so that the variance of the average time constant is given by

σ(τ) = √
2σ(τ1,2)

√
1 + ρτ (2.90)

The sensitivities of the delay td are summarized in Table 2.5.

Noise Margin To assess the effect of parameter variation on the noise margin,
we must again consider the effect of asymmetry. The differential pair transfer
characteristic (2.21) can be written, in the presence of mismatch, as

Vid

2nUT

= ΔVT N

2nUT

+
√

ISS

2IS

·
⎛
⎝
√√√√ 1 + ΔI

ISS

1 + ΔβN

2βN

−
√√√√ 1 − ΔI

ISS

1 − ΔβN

2βN

⎞
⎠

+ tanh−1
(

ΔI

ISS

)
− tanh−1

(
Δβ

2β

)
(2.91)

The variation in noise margin due to variations in the load device due to VT P and
βP , tail current ISS and average current factor βN of the differential pair transistors
can be deduced by obtaining the sensitivities from (2.21). However, as suggested
by (2.91), additional variations are due to the mismatch in threshold voltage and
current factors in the differential pair. To a first approximation, this results in an
horizontal shift of the transfer characteristic, which directly subtracts to the noise
margin. The amount of shifting can be found by setting ΔI = 0 in (2.91) and
solving for Vid , resulting in

ΔNM ≈ ΔVT − nUT ·
[

1 +
√

ISS

2IS

]
· Δβ

β
(2.92)

The resulting sensitivities are summarized in Table 2.6.
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Table 2.6 Sensitivities of NMH,L

Device Parameter Sensitivity

PMOS load device VT P , VP ,−VDD σ(NMH,L)√
1 − 1/ξ

= Vsw · σ(VT P , VP , VDD)

VDD − VP − VT P − nVsw

PMOS load device βP σ(NMH,L)√
1 − 1/ξ

= Vsw · VDD − VP − VT P − n
2 Vsw

VDD − VP − VT P − nVsw

· σ(βP )

βP

Tail current source ISS σ (NMH,L)√
1 − 1/ξ

=
[
Vsw · VDD − VP − VT P − n

2 Vsw

VDD − VP − VT P − nVsw

−nUT

√
ISS

2IS

]
σ(ISS )

ISS

Differential pair βN σ(NMH,L)√
1 − 1/ξ

= nUT

√
ISS

2IS

· σ(βN)

βN

Differential pair ΔβN
σ(NMH,L) = −nUT

[
1 +

√
ISS

2IS

]
· σ(ΔβN)

βN

Differential pair ΔVT N σ(NMH,L) = σ(ΔVT N)

We must note here also that the two noise margin NMH and NML are not
statistically independent. Variations in load device parameters are independent,
whereas variations in the tail current ISS and the average current factor βN of
the differential pair affect both noise margins equally. Moreover, variations due
to mismatch in the current factors and threshold voltage in the differential pair
affect both noise margin opposedly. Therefore, the difference of the noise margins
is characterized by

σ 2(ΔNM) = σ 2(NMH − NML)

≈ 2

(
∂NMH,L

∂VT P

)2

σ 2(VT P ) + 2

(
∂NMH,L

∂βP

)2

σ 2(βP )

+4 ·
(

∂NMH,L

∂ΔβN

)2

σ 2(ΔβN) + 4 ·
(

∂NMH,L

∂ΔVT N

)2

σ 2(ΔVT N)

(2.93)

and there is a correlation factor given by

ρNM = σ 2(ΔNM)

2σ 2(NM)
(2.94)

The effective noise margin is defined as NM = min(NMH ,NML). An
expression for the mean and variance of the minimum of two gaussian random
variables is found in [12] as

μ(NM) = μ [min(NMH ,NML)] = μ(NMH,L) − σ(NMH,L)

√
1 − ρNM

π
(2.95)



2.6 Random Effects 55

σ(NM) = σ [min(NMH ,NML)] = σ(NMH,L)

√
1 − 1 − ρNM

π
(2.96)

2.6.3 Numerical Example

In order to verify the models presented previously, and to get a representative idea
of the magnitude of random effects, a numerical example is presented hereafter.
In this example, a simple MCML buffer is analyzed with the technological data
from a 90 nm CMOS process. The gate is designed for a nominal supply voltage of
VDD = 1 V, tail current of ISS = 30µA, voltage swing of Vsw = 400 mV, and
noise margin of NM = 100 mV. The process mismatch data gives AVT

and Aβ

allowing to calculate the variations in threshold voltage and current factor for each
transistor as follows:

σ(ΔP) = AP√
W · L

σ(P ) = σ(ΔP)√
2

The resulting transistor sizes and parameter variations are summarized in
Table 2.7.

Using a replica bias generator, the circuit is simulated across process corners.
The results are given in Table 2.8.

Monte-Carlo sampling is then performed to simulate the effect of parameter
variations. The results are summarized in Table 2.9, with the calculated numerical
values for the sake of comparison. The simulation was performed at nominal process
corner, and the calculations performed with the values of VT and β obtained from
the DC operating point. Note that the replica bias circuit generates VN as

VN = VT N +
√

2nISS

βN

(2.97)

Table 2.7 MCML buffer transistor sizes and parameter variation

Device Type Width Length σ(VT ) σ (β)/β

PMOS load device LVTa 0.42µm 0.24µm 6.26 mV 1.87%

Tail current source LVTa 0.42µm 0.24µm 10.5 mV 2.78%

Differential pair RVTb 0.48µm 0.08µm 11.3 mV 3.52%
a Low-VT
b Regular-VT
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Table 2.8 MCML buffer parameters across process corners

Parameter Corner

TTa SSb FFc SNFPd FNSPe

VN [mV] 498 597 416 534 464

VP [mV] 285 18 509 336 226

ISS [µA] 30 30 30 30 30

Vsw [mV] 407 411 405 408 406

NM [mV] 111 98 126 109 113

td [ps] (CL = 5 fF) 58.2 62.5 54.1 57.9 58.1

P [µW] 30.1 27.1 33.0 30.0 30.1
a Typical NMOS − typical PMOS − 27 ◦C −VDD = 1.0 V
b Slow NMOS − slow PMOS − 85 ◦C −VDD = 0.9 V
c Fast NMOS − fast PMOS − 40 ◦C −VDD = 1.1 V
d Slow NMOS − fast PMOS −27 ◦C −VDD = 1.0 V
e Fast NMOS − slow PMOS − 27 ◦C −VDD = 1.0 V

Table 2.9 Numerical results
for OCV

Parameter Calculated Monte-Carlo

σ(VN) [mV] 4.03 4.62

σ(VP ) [mV] 3.55 4.45

σ(ISS) [µA] 2.27 2.06

σ(Vsw) [mV] 60.3 60.5

σ(τ) [ps] 6.93 5.60

σ(Δτ) [ps] 5.74 5.28

ρτ [–] 0.71

σ(td ) [ps] 5.60 3.88

σ(NMH,L) [mV] 33.6 38.1

μ(NM) [mV] 91.3 98.2

σ(NM) [mV] 35.3 32.2

σ(ΔNM) [mV] 40.2 40.5

ρNM [–] 0.28

σ(NM) [mV] 35.3 33.6

and VP as

VP = VT N +
√

2nISS

βN

(2.98)

The sensitivities are deduced from these equations. Furthermore, devices are
replicated eight times in parallel in the bias generator, so that their variations average
out, reducing the spread of VN and VP . The resulting parameter variations are
given by

σ ′(P ) = σ(P )√
8
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Chapter 3
Design of MOS Current-Mode Logic
Cells

3.1 Design Methodology for MCML Logic Gates

The design of MCML gates involves primarily the choice of a number of parameters,
such as voltage swing and bias current, constrained by minimum noise margin
specifications, resulting in values for transistor sizes. The quality of a design point
can be quantified by a number of different metrics, most importantly delay and
power dissipation.

The first step in solving the problem of optimally designing MCML gates
consists in establishing the relationship between the design parameters and the
quantities that we are trying to optimize.

3.1.1 Trade-Offs

As analyzed in Sect. 2.3.5, the delay of an MCML gate is essentially proportional
to the time constant τ , which is the product of the equivalent load resistance by the
total capacitance at the output nodes.

td

ln 2
= τ = RL · Ctot = Vsw

ISS

Ctot (3.1)

The total capacitance at the output is the sum of the parasitics due to the differential
pair transistors, the parasitics due to the pull-up device, and any external load
capacitance.

Ctot = 2Cgd + Cdb + CP + CL (3.2)
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The gate-to-drain and drain-to-bulk capacitances of an MOS transistor may be, to a
first approximation, considered as proportional to the transistor’s width

2Cgd + Cdb ∝ WN (3.3)

Note that, in multi-level gates, the parasitics associated with internal nodes are
due for the most part to the junction capacitances of the NMOS transistors in the
logic network. Therefore, (3.3) still holds for multi-level gates, with a different
proportionality factor.

The parasitics associated with the load device (if implemented with a PMOS
transistor biased in the linear region) are mainly due to gate-to-drain and drain-to-
bulk capacitances, as in the case of the NMOS devices. From (2.64), we calculate
βP as

βP = ISS

Vsw · (VDD − VP − VT P − n
2 Vsw

)

≈ ISS

Vsw · (VDD − VP − VT P )
(3.4)

The parasitics contributed by the load devices may also be approximated as
proportional to their width, therefore

CP ∝ 1

RL

= ISS

Vsw

(3.5)

A remark can be made at this point, concerning the implementation of load
devices. Though we are assuming in this discussion that load devices are imple-
mented as PMOS transistors, for large values of ISS the use of passive resistors may
be more effective as discussed in Sect. 2.3.1. In that event, the parasitics associated
with the load devices would have a different relationship to the effective resistance.
In a passive resistor, the total parasitic capacitance is proportional to the device area,
while the effective resistance is proportional to the L/W ratio. Therefore, the CP

component is proportional to Vsw/ISS in this case, resulting in different tradeoffs.
Regarding transistors in the differential pairs, their sizes are dictated by noise

margin requirements. Due to increasing subthreshold conduction reducing the
switching efficiency of the differential pairs, the worst case noise margin occurs at
the highest operating temperature. Therefore, by reversing (2.33), this corresponds
to a ξ value of

ξ = 1 + NM

4nUT (max)

·
(

1 +
√

1 + 8nUT (max)

NM

)
(3.6)
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where UT (max) is the thermal voltage at the highest operating temperature.
Through (2.32), we obtain

WN ∝ IS = ISS

2
(

Vsw

2nUT (max)
− ξ
)2 (3.7)

Replacing back these results, we can calculate the gate delay as a function of the tail
current, voltage swing, and load capacitance as

td

ln 2
= AN · Vsw(

Vsw

2nUT (max)
− ξ
)2 + AP + CL

ISS

Vsw (3.8)

where AN and AP are technology-dependent proportionality constants, relating the
parasitics to the transistor sizes. The propagation delay is therefore the sum of
several components:

• a constant component due to load devices,
• a component due to external loading, that increases proportionally to Vsw, and
• a component due to the differential pair devices, that decreases with Vsw.

According to this formula, the intrinsic delay of an MCML gate (i.e., when
considering an unloaded gate, that is, CL = 0) is independent of the tail current.
This is because, both the differential pair and the pull-up devices have to be sized
proportionally to ISS in order to keep the gain (and thus the noise margin, at constant
voltage swing) constant; therefore, all parasitics scale proportionally to ISS , while
the resistance RL scales in inverse proportion and the time constant does not change.
The voltage swing, however, has a strong impact on the delay: as the voltage swing
is decreased, the gain needs to be increased to keep the noise margin constant.
The increase in transistor size is faster than the decrease in voltage swing, thereby
increasing the time constant.

Formula (3.8) is compared against simulation results in Fig. 3.1. In this figure,
the simulated delay of MCML buffers sized for different noise margins (50 and
100 mV), voltage swings (ranging from 140 to 500 mV), and load capacitances
appears with symbols, and the different curves represent the delay given by
expression (3.8) for the same parameters. The parameters AN and AP are obtained
by fitting, but are the same for all the curves displayed on this graph. The graphs
show a good agreement between the theoretical and simulation results.

An observation can be made regarding the relationship between noise margin
and voltage swing. It is clear from (2.32) that the theoretical maximum value for ξ

is Vsw/(2nUT ). Therefore, the maximum noise margin is

NMmax = Vsw ·
√

1 − 2nUT

Vsw

− 2nUT tanh−1

√
1 − 2nUT

Vsw

(3.9)
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Fig. 3.1 Simulated propagation delay of an MCML buffer as a function of the noise margin,
voltage swing, and load capacitance. Symbols denote simulation results obtained with 90 nm
CMOS technology, with ISS = 50µA, VDD=1.2 V. Values of AN and AP obtained by fitting
are 88 ps mV and 15.3 ps, respectively

which is, obviously, always smaller than Vsw. This explains why the voltage swing
appears in the denominator in (3.8): for a given noise margin specification, there is
an absolute minimum voltage swing and the transconductance (hence, transistor
sizes) must increase towards infinity when the voltage swing approaches this
minimum value. Interestingly also, NMmax is null when Vsw = 2nUT , which
implies that the voltage swing must always be larger than the value 2nUT to have a
positive noise margin.

When the gate is loaded (CL �= 0), the portion of the delay due to the external
load is proportional to Vsw/ISS . Therefore, the overall delay is the sum of an
intrinsic component which decreases with Vsw, and an extrinsic component which
increases with Vsw. There is an optimum value which depends on CL/ISS . When
CL/ISS is large, the relative importance of the external load is large, and the
optimum Vsw will be lower. At the limit, when CL/ISS → ∞, the optimum voltage
swing will be the minimum value given by (3.9). Conversely, when CL/ISS → 0,
the optimum voltage swing will be the largest possible value.

3.1.2 Practical Limits of the Voltage Swing

As it has been discussed, for a heavily loaded gate the optimum voltage swing
tends to decrease. For a given noise margin specification, there is an absolute lower
limit for the voltage swing according to Eq. (3.9). Using approximation (2.33), the
minimum voltage swing can be expressed as
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Vsw(min) ≈ 2nUT (max) + NM

2

(
1 +

√
1 + 8nUT (max)

NM

)
≈ NM + 4nUT (max)

(3.10)
This is a limit value which allows to achieve the given noise margin when the

transistor size is increased to infinity. The optimum voltage swing will always be
larger than this value, for any realistic loading condition. Practically, the available
area will also limit the voltage swing to a value higher than Vsw(min).

On the other hand, when considering a lightly loaded gate, the optimum voltage
swing tends to increase. The maximum voltage swing is limited by two main factors.

First, the relationship (3.7) holds when the differential pair is operating in
saturation. In order for the pair to be saturated at all times, the voltage swing must
be smaller than the threshold voltage of the NMOS transistors

Vsw(max) = VT N,min (3.11)

Beyond that value, the gate delay, that was decreasing with increasing voltage swing,
tends to saturate. In practice, it is still useful to increase the voltage swing somewhat
further, until the noise margin starts to degrade. From this point of view, it might
be beneficial to use NMOS transistors with large threshold voltage when further
increase of the maximum voltage swing is desired.

The second limiter for the voltage swing is the pull-up device characteristic.
When the pull-up devices are implemented as PMOS transistor biased in the linear
region, as we are assuming in this discussion, the voltage swing has to be low enough
to avoid the device entering saturation. Practically, this means that the maximum
voltage swing must satisfy

Vsw < Vds,sat = (VDD − VP ) − VT P

n
(3.12)

Practically, transistor sizes must be chosen so that VP ≥ 0 in the worst-case case
conditions, i.e.

(
W

L

)
P

= ISS

k′
P(min)Vsw

[
VDD(min) − VT P(max) − n

2 Vsw

] (3.13)

where k′
P = μP Cox . However, the smallest drain-source saturation voltage occurs

when VP is the largest, that is, when VT P is minimum and k′
P maximum

VP(max) = VDD − VT P(min) − n

2
Vsw − ISS

k′
P(max)

(
W
L

)
P

Vsw

(3.14)
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Combining (3.13) and (3.14), we get the maximum value of Vsw as

Vsw(max) = Vds,sat (min) = VDD(min) − VT P(max)

n
· 2

k′
P(min)/k′

P(max)

1 +
[
k′
P(min)/k′

P(max)

]

(3.15)

In practice however, biasing the load devices at the limit of saturation makes the
voltage swing very sensitive to variations in the effective tail current, as observed
in Sect. 2.6. For this reason, it is desirable to limit the voltage swing to value even
lower than given by (3.15).

From these considerations, it follows that the use of a lower threshold voltage
for the PMOS load devices is beneficial, allowing to increase the maximum voltage
swing and/or to reduce their dimensions so as to decrease the gate delays. The use
of a higher supply voltage provides the same benefits; however at the expense of
power dissipation.

3.2 MCML Latches and Flip-Flops

3.2.1 MCML Memory Element

The basic static memory element is a positive feedback loop. Because MCML logic
can be non-inverting as well as inverting, by the choice of differential signal polarity,
a memory element can be realized with a single buffer gate with the output fed back
to the input in a non-inverting fashion, as depicted in Fig. 3.2a.
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Fig. 3.2 Basic MCML static memory element (a) circuit schematic (b) operation
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The operation of this circuit can be understood by noticing that the output of the
buffer is also the input to itself, therefore stable operation can only be achieved when
Vin = Vout , which defines three points on the transfer curve: Vin = Vout = ±VHL,
and Vin = Vout = 0, as shown in Fig. 3.2b. In the normal operating state, the origin
Vin = Vout = 0 is an unstable operating point. This is because the gain at this point
is larger than one (a necessary condition to have positive noise margin), therefore,
should the gate settle at this operating point, any perturbation would be amplified by
the positive feedback and drive the circuit to either one of the two stable operating
points. As shown in Fig. 3.2b with arrows, the path corresponding to successive
approximations of the transfer function, the circuit is led to settle to +VHL for any
positive initial differential voltage; conversely, any negative initial condition will
drive the circuit to the −VHL operating point.

The memory effect is thus obtained by the presence of two stable operating
points. The storing of a value in the element is achieved by one of two means:

• cut the feedback, change the value of the storage nodes, and then re-enable the
feedback

• perturb the circuit to suppress one stable operating point, forcing the circuit to
settle at the other operating point

3.2.2 MCML Latch

The MCML latch is constructed based on the first mode of writing into the memory
element: a memory element will be selectively turned on when retention of the logic
state is desired. As depicted in Fig. 3.3a, the circuit is equivalent to a buffer (driven
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Fig. 3.3 (a) Circuit schematic of an MCML multiplexer-based latch. (b) Equivalent circuit
representations
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by VD) and a memory element connected in parallel, with only one of the two active
at a given time due to the presence of a single tail current switched by the VEN signal
into one of the two pairs. Therefore, when EN is positive, the buffer will be active
and the output will be equal to D: the circuit is transparent. On the other hand, when
EN switches to a negative value, the feedback memory element is activated and the
output will settle and rest at one of the two stable states.

This circuit is formally a latch, because it is level-sensitive—it is either transpar-
ent to the input or in latch state, depending on the level of the EN signal.

3.2.2.1 Dynamic Operation

The dynamics of the latch circuit depend on the particular input transitions. Usually,
one is interested in the delay from input to output—this delay in a latch can arise
from two different transitions:

• VD is changing while the latch is in transparent state: the delay tD→Q is from D

to Q.
• VD changes while the latch is opaque, but VQ changes only later when the latch

is switching to transparent state: the delay tEN→Q is from EN to Q.

In both cases, assuming that the voltage at the Q node is sufficiently stable when the
switching occurs, the delay will by all means be equal to the corresponding delay
of the multi-stage logic network. Therefore, the EN -to-Q delay will be slightly
higher than the D-to-Q delay, and both will be slightly higher than in a MUX2 gate
because of the additional loading at the output due to the gate capacitances of the
cross-coupled transistors M5 and M6.

3.2.2.2 Setup and Hold Times

The switching of the latch from transparent into latch state deserves particular
attention. When the memory element is activated and the feedback restored, the
final output state will depend on the initial input state—that is, whether the Q node
is positive or negative at the instant of the transition. Therefore, the D input must
switch no later than one tD→Q delay time before the EN input, in order to allow the
Q node to change polarity before being latched. This defines the setup time tsetup of
the latch. Because of this effect, the data to be latched can effectively be removed
earlier than the EN transition, since the Q node is retaining the correct value for an
amount of time equal to tD→Q. This defines the hold time thold of the latch, which
is therefore negative, and we obviously have thold = −tsetup (Fig. 3.4).

These definitions of setup and hold time are based on functional operation, that
is, the conditions under which the circuit will or will not be able to produce the
expected output. In practice, setup and hold times are defined based on timing
considerations. This is because, when inputs are switched at short interval, even
though the circuit might eventually produce correct output, the delays can increase
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Fig. 3.4 Timing diagram for a latch. The switching of the D inputs causes an output transition
when the latch is transparent; the switching of the EN input causes an output transition when the
data has changed during the latch period
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Fig. 3.5 Simulated tD→Q delay for an MCML latch. The increase in delay for low tD→EN defines
the setup time of the latch for this transition. Simulations carried on 180 nm CMOS technology
with parameters: Vsw = 400 mV, ISS = 50µA, NM = 120 mV

considerably (see Fig. 3.5). Therefore, the common definition for setup and hold
times (as well as other timing metrics for sequential circuits) is: minimum time
interval between two events that does not cause an increase in delay larger than a
defined value—usually, a percentage of the nominal delay, measured when the time
interval is very large.

Figure 3.5 displays simulated delay tD→Q of an MCML latch, with respect to the
relative time tD→EN between the switching of the D and EN signals. As expected,
for large values of tD→EN , the delays are constant, while they increase for smaller
values. In this case, the feedback element is being activated in a state too close to
the unstable state, causing a metastable behavior which can last for an extremely
long period of time until it finally settles to a stable operating point.

Note that, in the latch circuit as shown in Fig. 3.3a, the setup and hold times are
dependent on the settling of the Q node, and therefore depend on the loading of this
node. For this reason, latches should have their output buffered, in order to decouple
the Q node from external parasitics.
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Fig. 3.6 (a) MCML multiplexer-based latch with asynchronous reset input. (b) MCML
multiplexer-based latch with asynchronous set and reset inputs

3.2.2.3 Asynchronous Inputs

Asynchronous inputs are a common feature integrated in latches and flip-flops. They
are transparent inputs, that bypass both the EN and D states and directly affect the
memorized value. Typically, such inputs are used for clear and preset, when a circuit
must be initialized to a known state at startup or reset.

Implementation of an asynchronous set and reset signals in an MCML latch is
illustrated in Fig. 3.6a, b. The circuit in Fig. 3.6a implements asynchronous reset,
by diverting the tail current to the positive output node—effectively pulling the
output low—when reset is active. Note that, because the R differential pair is located
below the EN in the logic network, it has priority over it and thus the R input
is asynchronous. By doing the opposite, that is, effectively replacing the buffer
function at the D input by a logic function of multiple inputs, one obtains additional
synchronous inputs. In Fig. 3.6b, another input is added to implement asynchronous
preset. In this configuration, if both S and R are asserted simultaneously, S takes
precedence because it is located at the lowest level of the logic network. Note that
the clear or preset behavior of an input can be inverted if the data input and outputs
are also inverted. By this transformation, the same circuit can realize asynchronous
set or reset depending on the configuration.

3.2.3 Master–Slave MCML Latch

A master–slave latch (MSL) is obtained by cascading two latches with different
polarities of the EN signal (Fig. 3.7). The purpose of combining to latches in a
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Fig. 3.7 Master–slave latch
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master–slave fashion is to eliminate the transparency window existing in the latch
operation, in order to obtain an edge-triggered memory element.

The MSL operates as follows:

• during the negative phase of the clock, the master latch L1 is transparent while
the slave latch L2 is opaque. The value of D is transferred to the input of L2.

• during the positive phase of the clock, the master latch L1 captures the last value
that D had in the previous phase, while the slave latch L2 becomes transparent
and transfers that value to the output.

Effectively, the value of D is transferred from the input to the output of the master–
slave latch at the rising edge of the clock. It should be noted, though, that the
operation is level-sensitive, based on the two phases of the clock signal. This
property makes the master–slave latch a very tolerant circuit with respect to the
rise and fall times of the clock signal; practically, as long as the data is stable, the
MSL will capture the correct value even with an extremely slowly switching clock
signal. However, due to the presence of two latch circuits, it is also a power- and
area-hungry circuit.

3.2.3.1 Setup and Hold Times

The timing behavior of the master–slave latch is dictated by the operation of the
latch circuit. At the positive edge of the clock, the master latch L1 is switching from
transparent into latch mode, and the data input must satisfy a corresponding setup
time constraint. At the same moment, the latch L2 is becoming transparent, and the
data is transferred to the output with a delay tCLK→Q relative to the clock edge.
Since the input to the second latch does not change during the next clock period,
there is no constraint at the falling edge of the clock. Note that the clock-to-Q delay
is caused by a combination of tD→Q of L1 and tEN→Q of L2; however as it was
noted previously, the transition of the second latch is hardly sensitive to the setup
time, which is dominated by the first latch. The relative size of both latches will
therefore determine a tradeoff between setup and delay times: a larger L2 device
will have more drive capability, but present more load to the previous stage and
hence increase its setup time.

Note that, when the latches are used in a master–slave configuration, the first latch
has its output decoupled from external parasitics by the second latch; therefore, its
setup time is not dependent on the loading, and no buffering is needed. The second
latch, however, stores the data at node Q at the falling edge of the clock, and setup
constraint applies between Q and the falling edge of CLK . This is a consequence
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of the fact that the circuit is level-sensitive : though from the outside, the circuit
behaves as being triggered by the positive edge of the clock, it is also reacting to
the negative edge. Therefore, to avoid the metastability or latching of wrong data at
the falling edge of the clock for any loading conditions, the MSL output should be
buffered. Note that, since the data at the input of the second latch is always stable
long before the falling edge of the clock (since it is being held stable by the first
latch), the stability is guaranteed for any clock-to-Q delay smaller than about one
half of the clock period. In practice, a situation where the delay is larger than half
of the clock period is extremely unlikely to arise, and it is acceptable not to buffer
the output if proper care is taken.

3.2.3.2 Asynchronous Inputs

In a master slave latch, asynchronous inputs must affect the output value until the
next rising edge of the clock. Because of this, both master and slave latches must
react to the asynchronous inputs. To understand this, consider the situation where a
pulse is applied on an asynchronous input, during either the positive or the negative
phase of the clock:

• during the negative phase of the clock, the slave latch L2 is opaque. Therefore,
for the output to be affected, the asynchronous input needs to be applied to the
slave latch.

• during the positive phase of the clock, L2 is transparent. If the asynchronous
input affects L2 only, the output is affected only as long as the asynchronous
input is active; as soon as it is released, the output switches back to the previous
value stored in the master latch L1. Therefore, the asynchronous input must also
be applied to the master latch.

3.2.4 MCML Flip-Flop

A flip-flop is an edge-sensitive circuit. It is different from a master–slave latch in that
it is composed of a single memory element, and a pulse-generating unit that reacts
to the transition of the clock and captures the input data during a very short window
of time. As opposed to the master–slave latch which is level-sensitive, the flip-flop
is really sensitive to the edge of the clock signal. The presence of only a single latch
circuit may allow a flip-flop to have a simpler implementation than a MSL, at the
expense of an increased sensitivity to the clock rise and fall times (Fig. 3.8).

Fig. 3.8 Logic
representation of a flip-flop
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CLK
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Fig. 3.9 Pulse generator-based MCML flip-flop

An implementation of a flip-flop circuit in MCML is depicted in Fig. 3.9. It
is composed of a memory element, a pulse generator, and a buffer. The pulse
generation is done by a logical AND between the clock signal and a delayed version
of itself. This provides a short pulse of current to the differential pair driven by the
D input, at the instant of clock transition. This pair being connected to the memory
element, it will force the latched value to the value of D. The buffer isolates the
memory element from external parasitics, in order to have a well-defined load and
guarantee that the latch will be able to switch.

In this type of circuits, the clock-to-Q delay is typically larger than for a master–
slave latch, because the path from clock to output goes through two stages: the
core flip-flop and the buffer. However, since the transparency window is open for a
short time after the clock transition, such a flip-flop usually has a smaller setup time,
which compensates for the increased delay. This is illustrated with simulation results
in Fig. 3.10, where the clock-to-output and data-to-output delays of both master–
slave latch and flip-flop are displayed as a function of the data-to-clock delay (setup
time). As it can be seen, the delay is lower for the master–slave latch, however it
increases dramatically for setup times lower than about 100 ps. The flip-flop can
tolerate much lower setup times, with a relatively smaller increase in delay. The
resulting data-to-output delay, tD→Q = tD→CLK + tCLK→Q, can be lower with a
flip-flop circuit, allowing a shorter clock period in a pipeline stage.
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Fig. 3.10 Clock-to-Q delay of master–slave latch and flip-flop. Simulations carried in 180 nm
CMOS technology, with Vsw = 400 mV, ISS = 100µA, Cload = 50 fF

Fig. 3.11 Simplified MCML
flip-flop circuit
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In order to save the power dissipation and area cost of the delay elements, the
basic flip-flop circuit can be modified as shown in Fig. 3.11. In this variant, the
current pulse needed to toggle the stored value is generated by charging/discharging
of internal parasitics. The circuit operates as follows: when the clock signal toggles
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from negative to positive, the voltage at node A rises by one overdrive voltage. Since
the clock is high, the charging current goes through the D differential pair, enabling
the transparency of the circuit. At the same time, node B has to be pulled low, and
this discharging current is subtracted from the latch current, partially disabling the
latching process, which eases the toggling of the output. The value of the capacitor
can be tuned to adjust the duration of the transparency window.

3.2.4.1 Asynchronous Inputs

Asynchronous inputs can be added to an MCML flip-flop by the same modifications
as in the latch circuit. Note that, compared to a master–slave latch, a flip-flop
incurs less overhead for the addition of asynchronous inputs since only a single
stage needs to be modified. However, the basic flip-flip circuit already needs three
levels of stacked differential pairs in the core flip-flop; adding asynchronous inputs
requires increasing the number of levels, and as it has been discussed with multi-
stage logic networks, this implies an increase of transistor sizes and thus speed and
area penalties.

Alternative realizations of the MCML flip-flop allow to move the memory
element out of the pulse-generating tree, suppressing the need to increase transistor
sizes. A possible implementation is shown in Fig. 3.12. In this circuit, the memory
element is separated from the pulse-generation circuitry. This circuit is as fast as a
regular flip-flop, and the area penalty is minimal; however, the need for an additional
current source results in increased power consumption.

Fig. 3.12 MCML flip-flop
with asynchronous set/reset
inputs
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3.2.5 Dual Edge-Triggered Elements

Dual edge-triggering is one technique allowing to decrease the clock frequency in
a circuit, relaxing the constraints on the clock distribution network. Dual edge-
triggered elements store data at both rising and falling edges of the clock signal,
therefore allowing the clock frequency to be scaled by a factor of 2 with the same
data throughput, with the drawback that the operation becomes sensitive to the duty
cycle of the clock signal.

Both latch and flip-flop circuits can be modified for dual-edge triggering.
Implementations with MCML elements are pictured in Fig. 3.13a, b. For the latch
implementation, two latches have their outputs time-multiplexed, so that each one
is transparent during a different half of the clock period, while the multiplexer
transfers at the output the value stored in the other latch, captured at the previous
clock transition. For the flip-flop, due to the circuit’s symmetrical behavior, it can
with very little modification be made sensitive to both clock edges, by merely
replacing the logical AND between the clock signal and the delayed version of itself,
providing the capturing pulse, by a logical XOR.

Interestingly, flip-flop circuits provide very efficient implementations of dual-
edge triggered elements. In both cases, the overheads are rather low for turning
single-edge triggered circuits into dual-edge triggered counterparts: for the flip-flop,
the overhead is of one or two transistors, depending on the original implementation;
for the latch circuit, a single mutliplexer has to be added. However, the latch circuit
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Fig. 3.13 (a) Dual edge-triggered MCML flip-flop: modification of the pulse-based circuit. (b)
Dual edge-triggered MCML flip-flop: dual latch implementation
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presents an increased input capacitance to the clock network, which is not the case
for the flip-flop circuit. In terms of timing, the latch circuit incurs an additional delay
in the clock-to-output path, through the multiplexer, which is also not the case in the
flip-flop circuit.

3.3 Tri-State MCML Buffers

In digital logic circuits, it is often necessary to have several gates alternatively
driving the same node. A common example is a bus allowing communication
between several modules in a system. All modules may receive data from the bus
at the same time, but only one may transmit data over the bus at a given time,
thus requiring other modules’s transmitters to disconnect from the bus. The most
common way to achieve this is through the use of tri-state gates. Tri-state gates
can drive the output either high or low—that is, they act as regular gates—when
enabled, and leave their output floating when disabled; they have therefore three
output states which are commonly referred to as 0 (or low), 1 (or high), and Z (high-
impedance). Tri-state gates are easily designed in CMOS logic, because CMOS
gates are implemented as networks of switches connecting the output to either the
positive or the negative supply. Thus, it is easy to turn off the paths connecting
both supplies to the output to drive it into high-impedance state. In contrast, MOS
Current-Mode Logic gates have their outputs constantly connected to the positive
supply via the load devices, which cannot be turned off. Moreover, the reduced
signal swings do not allow to drive MOS switches efficiently.

An effective way to isolate the outputs is to include series MOS switches.
However, MOS switches need a gate-to-source voltage swing that is many times
larger than the threshold voltage in order to be turned on and off efficiently. Since
MCML signal swing is only a few hundreds of millivolts, a circuit to increase the
voltage swing is needed to drive the MOS switches. Such a circuit is presented
in Fig. 3.14a. It is basically a differential amplifier with single-ended output. The
DC characteristic (Fig. 3.14b) shows that the output swing ranges from the supply
voltage to as low as 200 mV, which is sufficient to drive the PMOS switches. One
drawback of using such a circuit is that, because it is unbalanced, it produces current
spikes in the power supply during switching.

A complete tri-state buffer using series PMOS switches is depicted in Fig. 3.15.
It acts as a regular MCML buffer when EN is high, and its outputs are driven into
high-impedance state when EN is low. It features two current sources which can
be of different values, multiples of a unit current ISS . Note that this circuit has
increased parasitics at the output nodes compared to the simple buffer, due to the
PMOS switches. Also, the series resistance of the switches is limiting the current
to charge or discharge external parasitics; however, this resistance is usually very
low compared to the resistance of the load devices and has little effect on the
time constants. In Fig. 3.15b, the Z-mode feedthrough is plotted against frequency
when EN is low. The Z-mode feedthrough is the fraction of the input signal that is
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Fig. 3.14 (a) Driver circuit for MOS switches: the input differential voltage is turned into a single-
ended voltage with increased voltage swing. (b) Sample simulated transfer characteristic of the
switch driver circuit

Fig. 3.15 Circuit schematic of the switch-based MCML tri-state buffer

transferred to the output when the gate is in high-impedance mode, and illustrates
the ability of the circuit to isolate the output from the input. The peak feedthrough
is lower than −50 dB, providing a good isolation (Fig. 3.16).

Another popular circuit that can provide high-impedance state is the switched
voltage follower. A switched voltage follower can be conveniently adapted to
MCML circuits by using a flipped voltage follower (Fig. 3.17a) as introduced in
[5]. In contrast to a conventional source–follower, it makes use of a sinking current
source (for a PMOS-type follower), which is readily available in MCML circuits.
Also, the output of this circuit can be driven into high-impedance state when turning
the current-source off, since the gate of the feedback transistor M2 is driven high
until it eventually turns off. In order to make the voltage levels compatible with
MCML levels, it is needed to include a level shifter at the input, resulting in a
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Fig. 3.16 Simulated Z-mode feedthrough of the switch-based MCML tri-state buffer

Fig. 3.17 (a) Circuit schematic of a flipped voltage follower. (b) Switched flipped voltage follower
circuit. The tail current of the flipped voltage follower is switched by a differential pair. The input
voltage is level-shifted by a conventional source follower

source follower-flipped voltage follower (SF-FVF) cascade. A differential pair is
used to switch the bias current of the flipped voltage follower on and off, as shown
in Fig. 3.17b. Because the gate of M2 in the flipped voltage follower stage is floating,
the circuit displays a poor isolation compared to the switched-based circuit. In order
to improve the isolation, the circuit can be enhanced by mirroring the bias current
diverted from the output stage by the differential pair when the circuit is in high-
impedance state to pull the source of the input source follower stage high. With this
modification, the switched voltage follower circuit achieves a level of isolation as
good as the switched-based circuit. A complete tri-state buffer can be built by using
two switched voltage follower circuits, for each polarity of the differential signal.
Note that this circuit is also somewhat noisy because of the source followers.

Simulations show that, for similar characteristics, the voltage-follower circuit is
more efficient than the switch-based circuit. The results summarized in Table 3.1
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Table 3.1 Comparison of switch-based and voltage follower-based tri-state circuits

Switch-based circuit Voltage follower-based circuit

Power dissipation 564µW Power dissipation 191µW

Power supply noise 122µA Power supply noise 119µA

Input-output delay 332 ps Input-output delay 315 ps

Enable-output delay 517 ps Enable-output delay 491 ps

Simulations carried in 180 nm CMOS technology, with drivers sized to drive a 500µm long bus
line at 1 Gbps data rate

Fig. 3.18 Simulated Z-mode feedthrough of the switched voltage follower tri-state buffer

provide a comparison between the two types of circuits, both were designed for
being able to drive a 500µm long signal line at 1 Gbps data rate, in a 0.18µm
CMOS technology. As it can be seen, the voltage-follower circuit achieves the same
performance dissipating less than one half of the power, while comparing the supply
noise generated by both circuits, the performances are similar (Fig. 3.18).

3.4 High-Speed and Low-Power Techniques

3.4.1 Speed Enhancement with Peaking Techniques

Peaking is a technique used in high-frequency circuits to improve the time-domain
response. The idea is to introduce a pole-zero couple in the transfer function, which
can be achieved by various means. Passive elements usually offer the highest quality
factor, hence the higher increase in performance, at the cost of high area occupation,
which can be alleviated with active realizations.
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Fig. 3.19 Inductive peaking
in an MCML gate
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3.4.1.1 Passive Inductors

Peaking can be achieved through the insertion of an inductance at the output nodes
[3, 4], as illustrated in Fig. 3.19. As it was done in the previous chapter to analyze the
MCML buffer circuit, we can approximate the differential pair with a linear circuit
and analyze the small-signal equivalent. Calculations yield the following transfer
function

Vout

Vin

= Av · 1 + s · L
R

1 + s · RC + s2 · LC
(3.16)

The resulting system is of second order, with a zero at s = −L/R = −(L ·
ISS)/Vsw. As for any second-order system, we can define a natural frequency ωn

and a damping ratio ξ

ωn = 1√
L · C

and ξ = 1

2
R

√
C

L
(3.17)

The circuit is critically damped for ξ = 1, corresponding to L = R2C/4. In that
case, the gate delay can be approximated as td = 0.573 · RC, which is already a
17% improvement over the first-order case. For values of L smaller than R2C/4, the
circuit will be overdamped and the delay will increase towards the limit value td =
0.693 · RC of the first-order system. For larger values of L, the circuit will become
underdamped and the delay will drop, while the response will exhibit an increasing
overshoot. The circuit will become undamped (i.e., present sustained oscillations)
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for the limit value L = ∞ and the delay will approach a minimum value of 0.5RC,
corresponding to a 27% decrease of the propagation delay. Note that this architecture
is stable for any value of L. It must also be highlighted that this analysis does not
take into account the parasitic capacitance contributed by the inductors, and thus
practical delay values would be larger than those mentioned above.

By substituting s′ = s · R · C in the transfer function, it can be rewritten as

Vout

AV · Vin

= 1 + s′ · Q2

1 + s′ + s′2 · Q2
(3.18)

where

Q = 1

R
·
√

L

C
(3.19)

is the quality factor of the RLC resonator. The step response of the circuit is plotted
in Fig. 3.20 for different Q values.

The main drawback of using passive inductances is that the inductance values
needed to implement inductive peaking, in the range of tens to hundreds of
nH , would require devices whose area is much larger than the gates themselves.
This makes inductive peaking not practically implementable in standard-cell-based
designs, which require a high integration density. Also, note that because the voltage
across the inductor can be negative, the output nodes of the circuit can actually rise
higher than VDD when Q > 1/2 and there is overshoot.
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Fig. 3.20 Step response of the peaked MCML system for different Q values
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Fig. 3.21 Negative
capacitance peaking in an
MCML gate
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3.4.1.2 Negative Capacitance

Instead of using inductors, peaking can be achieved by connecting negative
capacitances in parallel with the load capacitance [1]. The negative capacitance
can be realized by adding cross-coupled NMOS as illustrated in Fig. 3.21. In this
configuration, the source of the cross-coupled NMOS is moving with the gate, which
is moving opposite to the drain due to the cross-coupling. The result is that a positive
and a negative peaks of current will be generated during switching, that will charge
the source capacitances CP ; this differential current pulse will help the transition of
the output nodes.

By performing the small-signal analysis of the circuit of Fig. 3.21, including the
negative capacitance, the transfer function is found as

Vout

Vin

= AV ·
1 + s · Cp

gmp

1 + s ·
[
RL

(
CL − Cp

)+ Cp

gmp

]
+ s2 · RLCL

Cp

gmp

(3.20)

which can be written as

Vout

AV · Vin

= 1 + s′ · α
β

1 + s′ ·
(

1 − α + α
β

)
+ s′2 · α

β

(3.21)

where

α = Cp

CL

, β = RL

1/gmp

= 1

Av

· gmp

gm

and s′ = s

RLCL
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Fig. 3.22 Modes of
operation in the
negative-capacitance peaked
MCML gate
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As in the case of passive inductors, the circuit is of second order with one zero.
However, in this case, there are two parameters, α and β, which control the natural
frequency and damping ratio independently; these are given by

ω′
n = ωn√

RLCL

= β

α
and ξ ′ = ξ

RLCL

= 1

2
·
√

β

α
·
(

1 − α + α

β

)
(3.22)

The circuit will be critically damped for values of α and β satisfying ξ = 1,
which results in

1√
α

− 1√
β

= 1 (3.23)

For high values of α and β, the circuit can become undamped (oscillatory). The
undamped region in the (α,β) plane is bounded by the curve

1

α
+ 1

β
= 1 (3.24)

This defines three regions in the (α,β) plane as illustrated in Fig. 3.22. The
resulting delay and overshoot are dependent on the particular values of α and β

as plotted in Figs. 3.23 and 3.24 as level curves. The region of interest, with α > 1
and β < 1, offers a delay lower than the first-order system by 30–50%, with an
overshoot lower than about 30% for a wide range of α values.

It should be noted that the cross-coupled devices contribute some parasitics at
the output nodes, and therefore practical delay values are higher than the theoretical
values displayed in Fig. 3.23. Also, it is important to outline that the negative
capacitance circuit requires a bias current of 2 · Ip, which results in an increase of
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Fig. 3.23 Relative delay (td/0.69RC) in the negative-capacitance peaked MCML system as a
function of α and β

Fig. 3.24 Overshoot (Vout,max) in the negative-capacitance peaked MCML system as a function
of α and β
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Fig. 3.25 Typical delay versus load curves of classical and peaked MCML gates

the overall power dissipation. In practice, for a total current of ISS , the core MCML
gate in a peaked circuit will have a tail current of ISS − 2 · Ip, while 2 · Ip are
allocated to the negative capacitance circuit. At equal power dissipation, a peaked
gate can have an intrinsic delay smaller than a classical gate thanks to a reduction of
the devices sizes and therefore of the input and output capacitances. However, since
the output resistance is higher for the peaked gate by a factor of 1/(1 − 2Ip/ISS), it
will be more sensitive to external parasitics, and its use will only be beneficial over
a limited range of loading conditions (Fig. 3.25). Thus, peaking in MCML gates can
be used for very specific applications, such as ring oscillators or very high-speed
datapaths, where the gates are operated in this region.

3.4.2 Triple-Rail MCML

As we have seen previously, the speed of MCML circuits is, to a first approximation,
independent of the supply voltage VDD . The delay of an MCML gate is related
to Vsw/ISS , the output resistance that appears in the time constant; both Vsw and
ISS are design parameters that can be adjusted independently of VDD . Therefore,
VDD can be lowered in order to reduce power dissipation, without any speed
penalty. Ultimately, VDD will be limited by the tail current source, which should
stay in saturation in order to deliver a constant current and provide common-mode
rejection. If fact, the drain voltage of the tail current source is always defined by
the source voltage of the differential pair at the lowest level. This voltage can
vary during switchings as described in Eq. (2.60), and the minimum value, which
is always reached at Vid = 0 during the switching, depends on the common-
mode voltage at the inputs Vcm = VDD − Vsw/2, the threshold voltage, and the
size of the transistors which is a function of the voltage swing and noise margin.
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Fig. 3.26 Minimum voltage
across the tail current source
transistor as a function of
NM and Vsw at VDD = 1.2 V
in 90 nm CMOS technology
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This voltage is plotted in Fig. 3.26 as a function of the voltage swing, for different
noise margin specifications. Depending on the size of the tail current transistors, the
minimum drain voltage can be as low as a few hundreds of mV. As it is clear from
Fig. 3.26, where the supply voltage is at the nominal value of 1.2 V for the 90 nm
CMOS technology, there is an amount of headroom which allows to reduce the
supply voltage in order to save power. In practice however, when load devices are
implemented with PMOS transistors biased in the linear region, reducing the supply
voltage also reduces the maximum gate-source bias voltage for those devices. The
consequences of this are twofold:

• with reduced bias voltage, the devices have to be enlarged to keep their equivalent
resistance constant. This implies an increase of parasitics at the output nodes,
which tends to degrade the intrinsic switching speed of the gates.

• as it was discussed in the previous chapter, the reduction of the gate to source
voltage of PMOS devices implies an increased nonlinearity in their characteris-
tics, which in turns implies an increase of the power supply noise.

These effects are the sole consequence of reducing the gate to source voltage of
the PMOS load devices. Therefore, if a negative supply voltage is available, this
decrease can be avoided [2]; in such a configuration, the gate voltage of the PMOS
devices is biased at a voltage lower than ground, as illustrated schematically in
Fig. 3.27.

In triple-rail MCML, the supply voltage can be scaled without any impact on the
transistor sizes, since the gate to source voltage of PMOS devices is kept constant;
in fact, the reduction of the body effect in NMOS transistors even has a positive
impact. Sample simulation results are displayed in Fig. 3.28b, where it can clearly
be seen that the delay in triple-rail MCML is not affected by the scaling of the
supply voltage, leading to a reduction of the power-delay product, while the delay
of classical MCML is increasing at reduced VDD .
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Fig. 3.27 Negative biasing of PMOS load devices in triple-rail MCML

Fig. 3.28 (a) Supply voltage scaling in classical MCML. (b) Supply voltage scaling in triple-rail
MCML
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Table 3.2 Power, Delay, and PDP for 15-stages ring oscillators in 0.13µm technology
(TR = triple-rail)

VDD = 1.2 V VDD = 0.8 V

MCML CMOS MCML TR-MCML CMOS

Delay (ns) 42.5 40.1 64.2 45.0 72.6

Power (µW) 14.9 94.2 10.0 10.0 24.8

PDP 636 3776 640 448 1799

The bold values identifies the solution with the lowest power-delay-product (PDP)

Table 3.3 Comparison of
supply noise (current ripple
on the supply line in µA) for
15-stages ring oscillators

MCML TR-MCML CMOS

(a) Nominal VDD

0.25µm 0.27 0.27 53.6

0.18µm 0.25 0.25 56.8

0.13µm 0.03 0.03 29.7

(b) Minimum VDD

0.25µm 0.32 0.24 29.5

0.18µm 0.35 0.20 35.6

0.13µm 0.05 0.03 14.7

Tables 3.2 and 3.3 show results of using triple-rail MCML to lower the supply
voltage in different technologies. The results are compared with regular MCML and
CMOS.

Triple-rail MCML can achieve this power savings at the cost of an additional
negative power supply. It is interesting to notice that this additional power supply
has to deliver an extremely low power, since it is used for biasing the gates of PMOS
devices, and the DC current is due to gate leakage only (in addition to any power
required by the biasing circuitry itself). Such a negative voltage can be generated on
chip with high power efficiency and relatively low area cost by using a charge pump
circuit, for example.
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Part II
Design Automation for Differential Circuits



Chapter 4
Design Methodology for MCML
Standard Cells

4.1 Standard Cells and Semi-custom Design

Application-specific integrated circuit (ASIC) design processes are usually clas-
sified into either the full-custom or the semi-custom categories. A full-custom
approach is one where components in the system are all custom-tailored at
transistor-level, and the system is optimized as a whole; this approach can yield
very efficient results but the development costs are extremely high for complex
circuits. In the semi-custom approach, a set of custom standard cells is created and
optimized, and these cells are used as primitive blocks for implementing the system
with the aid of specific automation tools. Sometimes, both approaches are combined,
with, for example, a full-custom design of critical elements such as very high-speed
datapaths, and semi-custom design of less demanding parts of the system.

4.1.1 Semi-custom Flow Overview

In a typical semi-custom design flow, roughly described, the circuit is architected at
the behavioral level with a hardware description language (HDL) such as VHDL or
Verilog. The resulting circuit behavior is then validated against the specification with
RTL simulations. Next, the circuit is mapped to a network of primitive components
(netlist) by using a logic synthesis tool, which generates a circuit composed of
standard cells whose behavior is equivalent to the HDL description, and optimizes
the resulting implementation based on design constraints and characteristics of the
standard cells. At this stage, a first estimation of the different performance metrics
(power dissipation, circuit speed, silicon area occupation) is available. The next step
is the physical implementation of the circuit, using the placement and routing (P&R)
tool. The P&R tool usually proceeds in two steps: first, the cells are placed in the
available area with the objective of minimizing interconnection length; then, the
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Fig. 4.1 Semi-custom design flow

interconnections are physically routed. After the physical implementation, the final
numbers for the performance metrics can be extracted by using accurate (sign-off)
extraction of parasitics, timing, and power analysis. If the final numbers meet the
specifications, the final layout can be extracted for tape-out; otherwise, turnarounds
will be required by reoptimizing the synthesized netlist or maybe even the RTL
architecture (Fig. 4.1).

4.1.2 Standard Cells

Physically, a semi-custom circuit is typically composed of standard cells placed in
rows, as illustrated in Fig. 4.2. Standard cells are designed to be abutted horizontally,
and can have varying widths but all must have the same height.

On the top and bottom of each cell is drawn a rectangle of metal extending
from the left edge to right edge of the cell, that eventually connects to neighboring
cells, resulting in power rails that cross the entire circuit horizontally; these rails
are usually connected to power rings around the circuit. In order to save area, it is
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Fig. 4.2 Physical view of a semi-custom circuit and standard cells

common to share the power rail between two adjacent rows, by flipping every other
row, resulting in a power-ground-power-ground pattern.

The interconnections are routed on a regular grid and connect to I/O pins in
the standard cells; these pins should be placed on the routing grid to allow easy
connection by the router. To guarantee this, routing grids are defined for each
routing layer, according to the technology design rules, which can be different for
different layers. Usually, each routing layer is also assigned a routing direction,
either horizontal or vertical, which the router will use preferentially in order to
maximize the availability of routing tracks. The pitch of the routing grid is typically
made as small as possible, in order to maximize the routing resources, and limited
by the minimum spacing rule. As shown in Fig. 4.3b, when vias require a larger
metal width than the wire width, the pitch can be chosen according to three different
situations:

• via-to-via, commonly used, allows two vias to be placed on adjacent tracks
without violating design rules

• via-to-line is a tighter routing pitch, which allows a wire to run next to a via to
be placed on an adjacent line, but two vias cannot be placed adjacently
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Fig. 4.3 (a) Definition of
routing pitch and offset. (b)
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• line-to-line is the smallest possible pitch, where a wire cannot run next to a via.
Practically, this results in every via blocking adjacent routing tracks, and is not
commonly used.

Note that modern technologies often have relaxed design rules for vias, which allows
the metal wire not to be extended when placing a via; this basically makes all three
spacings equal.

Standard cells are also placed on a regular grid—namely the placement grid—
whose pitch is an integer multiple of the routing grid pitch; this way, pins inside
the placed cells will always be located on the routing grid. In order to guarantee the
placement of pins for all layers, the placement pitch should be a common multiple of
all different routing pitches; practically, standard cell pins are always on the bottom
layers (first, sometimes second metal) and the placement grid is typically derived
from the grids of the first two routing layer.

To allow the placement and routing engine a maximum of flexibility in optimiz-
ing the physical implementation, standard cells should be made so that it is possible
to flip them horizontally. In order for the pin sites to remain on the grid when a cell
is flipped horizontally, its width should be an integer multiple of the placement grid.
Similarly, the height should be a multiple of the placement grid in order to allow
flipping the cells vertically.
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In order to maximize the number of possible pin placement sites inside the cells,
the routing grid can be shifted with respect to the placement grid; this defines the
routing offset (Fig. 4.3). The amount of shifting should be equal to exactly one half
of the pitch in order to preserve the grid when a cell is flipped horizontally.

All of these requirements are as much design parameters as they are constraints
on the design (essentially, layout) of standard cells. They have to be chosen carefully
in order to maximize the overall performance of the library.

4.2 Logic Gates Synthesis

One of the essential questions that must be addressed in order to develop a library
of cells is the synthesis of logic functions—that is, given a logic function to be
implemented, how can we construct an MCML circuit that realizes it. This naturally
yields to the reverse question: what are all the logic functions that can possibly
be realized by MCML logic networks, given that the complexity of the network is
limited in some way. With these information, it will be possible to select a number
of functions for a standard-cell library and implement them.

Before answering these questions, it is useful to introduce some formalism
establishing a bidirectional relationship between physical MCML logic networks
and the logic function that they perform. This can be achieved through the notion of
binary decision diagrams.

4.2.1 Binary Decision Diagrams

Binary decision diagrams are one of the multiple ways of representing a logic
function. Binary decision diagrams are popular because of their compactness and
their easy manipulation through graph algorithms, and as we will see, they naturally
have a one-to-one correspondence with MCML logic networks, which makes them
a tool of choice.

A binary decision diagram is a directed graph representing a logic function,
where leaf nodes give the result of the function, each internal node represents one
variable and each edge (weighted 0 or 1) represents a value assigned to the variable
corresponding to the node from where it is originating. As an example, Fig. 4.4
illustrates the binary decision diagram for the logic function F(A,B) = A + B. In
the BDD, any line of the truth table can be evaluated by following the path defined
by the edges with weight corresponding to the value of their associated variable in
this line of the truth table. For example, in the third line of the truth table, we have
A = 1 and B = 0; starting from the root node (A) in the BDD, following the branch
A = 1 leads to the B node, then following the branch B = 0 leads to the 1 node,
which is the value of the function for this set of inputs. A BDD is said to be ordered,
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A B F(A,B)
0 0 1
0 1 1
1 0 1
1 1 0

A B F(A,B)
0 ? 1
1 0 1
1 1 0

(a) (b) (c)

Fig. 4.4 Binary decision diagram and truth table for the function F(A,B) = A + B (a) BDD (b)
truth table (c) simplified truth table

if the variables always appear in the same order as one walks the tree from the root
to the leaves. An ordered BDD is usually called an OBDD.

In an MCML logic network, the basic processing element is the MOS differential
pair, which acts as a current switch. The differential pair receives current from the
source node and outputs it to one of the drain nodes, depending on the input voltage.
The input voltage is differential, and after defining one polarity representing the
logic one state and the opposite polarity defining the logic zero state, and labeling
each drain node as ‘0’ or ‘1’ accordingly, the function of the differential pair can
be interpreted as a binary function: when the input is one, the current is steered to
the ‘1’ node; when it is zero, the current is steered to the ‘0’ node. By applying
this methodology to all the differential pairs in an MCML network, one is able
to trace the path of the current from the tail current source to either one of the
complementary outputs, for each possible set of input values. Defining a polarity for
the output as well, we note that when the current is steered to the positive output, it
is pulled low and thus logically the value of the output signal is zero; therefore, the
positive output can be labeled 0 indicating that when the traced path leads to this
node, the result is a logic ’0’—the opposite is true for the negative output node.

As illustrated in Fig. 4.5, the analogy between MCML logic networks is imme-
diate: each differential pair corresponds to a node in the BDD, each interconnection
corresponds to an edge, and the output nodes correspond to the ‘0’ and ‘1’ leaf
nodes of the BDD. The root of the BDD—the node which has no incoming edge—
corresponds to the bottom-most differential pair in the MCML network, which has
its source connected to the drain of the current source. Thus, there is a one-to-
one correspondence between MCML logic networks and binary decision diagrams;
moreover, the BDD can capture not only the logical function of the network, but
also its physical properties: the number of transistors and their interconnections.
Therefore, in order to produce an MCML network that realizes a given function,
one can generate the corresponding BDD and map it to a physical network;
additionally, optimization of MCML networks can be realized by manipulation of
the corresponding BDD.
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Fig. 4.5 Analogy between a
BDD and the corresponding
MCML logic network
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4.2.2 Analysis of BDDs and MCML Networks

The analysis of a BDD is the task of extracting information from a given structure.
The extracted information can be related to the logic function performed by the
BDD and its properties, and in the present context, it can pertain to properties of the
equivalent MCML network.

Given a BDD, as we have seen, one can evaluate the result of the logic function
for a given set of input values by tracing the path corresponding to the set of input
variable values, starting from the root and ending at either one of the leaf nodes.
Therefore, each path in the BDD starting from the root and ending at the 1 leaf
defines an implicant of the function—that is, a product term implying a true value
of the function. Thus, by tracing all paths starting from the root and ending at the
1 leaf, it is possible to find all implicants, defining the on-set of the function; the

function can then be written as the sum of these implicants. Conversely, writing the
sum of cubes corresponding to paths ending at the 0 results in an expression of the
complemented function.

As an example, considering the BDD of Fig. 4.5a, there are two paths from the
root to the 1 node: A → 1 and A → B → 1 . The function is thus F(A,B) =
A + AB = A + B. Conversely, there is a single path to the 0 node, which is

A → B → 0 , and the inverted function can be written as F(A,B) = AB.
Regarding the properties of the corresponding MCML network, as we have seen,

each node corresponds physically to a differential pair. The number of levels of the
network, i.e. the number of stacked differential pairs, is given by the length of the
longest path. As it was seen in Chap. 2, this number has a strong influence on the
performance of the gate: the higher the number of levels, the larger all transistors
must be sized to preserve the noise margin, therefore the larger the speed and area
penalties. Also, for a given node in the network, its position is given by the longest
path starting from this node. As it was seen, the delay from a given input to output
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increases for inputs located at lower levels in the network, due to the increased
parasitics between the input and the output. In the BDD of Fig. 4.5, the A input is at
level 2, since the longest path goes through B and two edges, and the B input is at
level 1.

4.2.3 Synthesis of BDDs and MCML Networks

Synthesizing a BDD is the process of creating a BDD that implements a given
function. Given a function, a BDD can easily be constructed by cofactor expansion.
Cofactor expansion is the process of recursively applying the identity

F(x0, . . . , xi , . . . , xn) = xi · F(x0, . . . , 1, . . . , xn) + xi · F(x0, . . . , 0, . . . , xn)

= xi · Fxi
+ xi · Fxi

where Fxi
and Fxi

are the cofactors of F with respect to xi , until eventually the
resulting cofactors are all equal to either 1 or 0. In the BDD, one such operation
corresponds to creating one node xi , expanding the cofactors Fxi

and Fxi
into two

subtrees, and creating two edges weighted ‘1’ and ‘0’ from the xi node to the root
node of each of these subtrees. Indeed, taking any node xi in a BDD, this node is
the root of a subtree of the entire BDD, which is a BDD in itself and represents a
boolean function G. Evaluating the function for xi = 0 or 1 means following one
of the outgoing edges, each leading to a new node which is the root of a subtree;
these two subtrees by definition represent the value of G for xi = 0 and xi = 1,
respectively, which are the cofactors of G with respect to xi , proving the validity
of this method of construction. Note that the cofactor expansion naturally yields an
OBDD if the variables are completely expanded in order.

As an example, the expansion of the function F(A,B) = A + B from Fig. 4.5b
into cofactors and the construction of the BDD is illustrated in Table 4.1. Note that
the third step is unnecessary in this particular case: since FA = 1, an edge could

have been drawn directly between A and 1 , resulting in the BDD of Fig. 4.5a.
Nevertheless, it is included for the sake of clarity in illustrating the process of
synthesizing the BDD. Besides, this highlights the fact that two different BDDs
can be structurally different but logically equivalent. In the coming paragraphs, we
will show how to reduce a BDD to a minimal and canonical form.

4.2.4 Reduction of BDDs

When a BDD is synthesized by fully expanding the cofactors in all variables
in order, an n-input function will always result in a BDD with 2N − 1 nodes.
This is easily deduced by considering that the first variable will generate the root
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Table 4.1 Synthesis of BDD by cofactor expansion

Step Expansion BDD

F F(A,B) = A ·B+A ·1
= A ·FA+A ·FA

FA FA = B
= B ·0+B ·1

FA
FA = 1

= B ·1+B ·1

3 F(A,B) = A · [B ·0+B ·1]+A ·1

Fig. 4.6 BDD reduction by
merging isomorphic
subgraphs

node, and that subsequent variables will each generate two subtrees. Clearly, this
representation is far from optimal in most of the cases, because the resulting tree is
redundant.

Redundancy is present when the BDD contains unnecessary nodes or parts that
are identical. It corresponds to terms that can be eliminated or factored out. For
example, consider the function F(A,B,C) = (A + B) · C. Cofactor expansions in
the order A − B − C result in the BDD of Fig. 4.6a. Note that C was factored out
in the initial expression of F ; in the BDD, there are two C nodes whose outgoing
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Fig. 4.7 BDD reduction by
eliminating trivial factors.
(a) before reduction. (b) after
reduction

edges point to the same nodes: they are redundant. They can be merged as illustrated
in Fig. 4.6b. Formally, a rule can be formulated as

Reduction Rule 1 Two nodes can be merged in a BDD if they are the root
of equivalent (isomorphic) subgraphs. One of the subgraphs is then deleted,
and all edges incoming to its root node are redirected to the root of the other
subgraph.

Terms can be eliminated when the function is independent of a variable. This
gives cofactors in the form of xi · F + xi · F which can clearly be simplified to F .
Since in the BDD, both subgraphs of the nodes are identical, they can be merged by
rule 1. After merging, node xi will have both outgoing edges pointing to the same
node, which implies a xi +xi = 1 term and the node can be eliminated as illustrated
in Fig. 4.7. Formally, this can be stated as a rule

Reduction Rule 2 A node can be deleted in a BDD if both of its outgoing
edges point to the same node. All incoming branches are redirected to the
latter node.

Note that the reduction process preserves the order of variables, hence an OBDD
remains ordered after reduction; such a BDD is called a reduced ordered BDD or
ROBDD. In an ROBDD, though the variables appear in the same order for all paths,
it may happen that some paths do not contain all the variables.

4.2.5 Variable Ordering and Optimum Implementation

Interestingly, it can be shown that, when recursively applying rules 1 and 2 to reduce
an ordered BDD until no further reduction is possible, the OBDD is reduced to a
canonical form. This means that two OBDDs with the same variable ordering will
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Fig. 4.8 Influence on the
variable ordering on the result
of cofactor expansion of the
MUX2 function. (a)
S − D0 − D1 ordering. (b)
D1 − D0 − S ordering

always be identical after reduction. Note that this canonical form depends on the
initial ordering of the variables: the variables expanded first will always be located
at lower levels in the resulting OBDD. In fact, different variable orderings can
produce very different results. For example, consider the 2-to-1 multiplexer function
F(D1,D0, S) = S · D1 + S · D0: two different results of cofactor expansion are
illustrated in Fig. 4.8, with the expansion performed in the order S − D0 − D1 and
D0 − D1 − S. In the first case, the resulting BDD has only two levels and three
nodes; in the second case, it has three levels and five nodes.

From a logical point of view, these two BDDs are equivalent, i.e. they represent
the same function, and the BDD in (a) is obviously more compact than the BDD in
(b). From an electrical point of view, however, the two networks present different
characteristics. Specifically, the network in (b) will most likely result in a smaller
delay from input S to output, since that input is located on the highest level of the
network, while inputs D0 and D1 will be slower than in network (a). The input
capacitances, on the other hand, will be lower in network (a) since there is only
one differential pair per input, and the transistors are smaller. In terms of area,
the (a) network is obviously advantageous. Nevertheless, if a gate with a low S-
to-output delay is desired, implementation (b) may be preferred; this highlights the
fact that the compactness of the network can not be a criterion to rule out variants
implementing the same function, and, depending on the requirements, any input
ordering may result in an implementation which is “optimal.”

These considerations suggest that, in order to find an optimal implementation
for a given function, it is sufficient to synthesize and reduce the OBDDs for all
possible variable orderings, which yields N ! possibilities, and to select the most
efficient. However, it should not be forgotten that the process of building a BDD
is recursive. Starting with a selected variable xi , one will first expand the function
F into cofactors with respect to xi as F = xi · Fxi

+ xi · Fxi
. Next, a second

variable will be chosen to expand Fxi
and Fxi

. In order to yield an ordered BDD,
both should be expanded with the same variable ordering; however, if it is not
necessary to obtain an ordered BDD, Fxi

and Fxi
can be expanded with different

orderings. Clearly, Fxi
and Fxi

cannot always be synthesized optimally with the
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Fig. 4.9 Optimum implementation with free variable ordering

same variable ordering; therefore, suppressing the ordering restriction may yield
more efficient implementations. This is illustrated in Fig. 4.9, with the expansion
of the function F(A,B,C,D, S) = S · [C · A + C · B] + S · [B · C + B · D].
Schematically, this function can be represented with multiplexers as depicted in
Fig. 4.9a. Clearly, if S is expanded first, both subtrees will be multiplexers and, as
seen with the example of Fig. 4.8, the multiplexer implementation is sensitive on the
variable ordering. Therefore, if we constrain the variable orderings to be the same
for both subtrees, they can not be realized both with a two-level implementation, as
illustrated in Fig. 4.9b, resulting in a four-level implementation for F . If we relax
this constraint, we can implement both subtrees with two levels only, resulting in a
more compact, three-level implementation as shown in Fig. 4.9c.

When relaxing the ordering constraint, the resulting BDD might not be ordered,
in the sense that the definition given previously implies (i.e., that the variables
appear in the same order for any path). A BDD with free variable ordering is called
a free BDD or FBDD. An FBDD can be reduced according to the same rules as
presented previously for OBDDs. Note that the reduction of an FBDD will be
canonical too, since an FBDD can always be partitioned into a set of OBDDs, which
reduce to canonical forms; only, there are many more possible variable orderings in
an FBDD than in an OBDD. In an FBDD, the number of possible variable orderings
can be deduced by recursion as follows.

Let us denote by xN the number of variable orderings for a function of N

variables. Let us then partition the graph by separating the root node and its two
child subgraphs. The root node can be any of the N variables, and each subgraph
can use a different ordering of the N − 1 remaining variables. Therefore, there are
(xN−1)

2 possible ways of combining different orderings for the two subgraphs, and
we can write xN = N · (xN−1)

2. Obviously, we have x1 = 1, and by recursion one
can calculate xN for any value of N .
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Usually, a constraint is imposed in the definition of the FBDD, that no path can
contain the same variable more than once. This constraint is automatically satisfied
when building the BDD from cofactor expansion, because after one variable is
expanded, the resulting cofactors are independent of that variable and there is no
reason to expand this variable anymore. In the general case, if a path contains the
same variable more than once, then all paths going through the ‘1’ edge of the
second xi node will contain terms in the form of xi · xi , while paths going through
the ‘0’ edge will contain terms in the form of xi ·xi . In the first case, the term reduces
to xi , and in the second case it is not satisfiable. Therefore, the second xi node can
be deleted according to the following rule

Reduction Rule 3 In a BDD, when a path contains two nodes with the same
variable, then the second node (when tracing the path from the root) can be
deleted. Edges incoming to that node are redirected to the node pointed to by
its active edge (‘1’ or ‘0’, depending on the active polarity of the variable in
this path), and the subgraph rooted at the node pointed to by its inactive edge
is deleted.

In practice, given an arbitrary BDD, care should be taken when deleting the
subgraph if part of it is shared by other paths which do not pass through the deleted
redundant node. The subgraph can be processed by recursion as follows: delete the
root and its two outgoing edges, then for each subgraph, repeat only if the root does
not have any incoming edges anymore.

4.2.6 Multi-Stage Decomposition

When implementing BDDs into MCML networks, it can become impractical when
the BDDs have too many levels, since each additional level results in an overall
increase of the delays and transistor sizes in the resulting network. Besides, there
is a practical limit in the maximum number of levels dictated by supply voltage
requirements.

When a BDD exceeds the practical maximum number of levels, it can be
decomposed into multiple stages. The decomposition involves selecting subtrees in
the original BDD, and taking them out as separate networks. Each of these subtrees
will be replaced by a single node, whose variable value is the result of the subtree it
replaces. The subtrees should not have outgoing edges, except at the highest level,
and all outgoing edges should end at no more than two different nodes. Similarly,
the subtree should only have incoming edges at the root node.

This is illustrated in Fig. 4.10 where a three-level network is decomposed into
two two-level networks. Note that this means that physically, the function will
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Fig. 4.10 Decomposition of BDDs into multiple stages. (a) before reduction. (b) after reduction

be implemented using multiple gates; this implies a multiplication of the power
dissipation, and additional gate delays.

4.3 Template Approach for MCML Standard-Cell Library

In order to allow efficient optimization by the synthesis tools, a standard-cell
library should include a large variety of functions, and these functions should be
implemented as efficiently as possible.

In the previous section, it was shown how to produce MCML networks that
perform given functions, and how to produce efficient implementation by testing
with different variable orderings. An approach for building a standard-cell library
could thus involve selection of a number of function to implement, and then
searching for and implementing efficient MCML gates for those functions.

However, as it was highlighted, searching for optimal implementations is a time-
consuming task, especially with free variable ordering. As an example, searching for
an optimal implementation of a 4-to-1 multiplexer, which is a function of six inputs,
involves testing more than 1013 possible BDDs, which is clearly not tractable.
Moreover, given a function, there is no guarantee that this process will result in
a feasible implementation.

Selecting a subset of functions which is known to be implementable efficiently
results in a suboptimal utilization of the capabilities offered by the logic style.
In fact, certain classes of functions can be realized very efficiently in MCML,
but these could easily be overlooked since they are “exotic” for the mainstream
CMOS logic style. In CMOS logic style, efficient implementations are found for
functions written as sum of products, where variables appear either complemented
or not complemented, but not both. Each term is implemented as NMOS switches
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connected in series, and all series switches are connected in parallel; the PMOS
network is complementary to the NMOS network. A CMOS cell library essentially
contains gates realizing NAND and NOR, And-OR-Invert, and Or-And-Invert
efficiently; Exclusive-NOR and Multiplexer are commonly found but much less
efficient since they require inverting one or more variables.

In contrast, MCML cells can handle functions which require both inverted and
non-inverted inputs efficiently, since the inversion of differential signals is costless.
Multiplexers and Exclusive-OR are easily realized with a single stage of logic.
However, an MCML logic network cannot have fewer levels than the maximum
number of variables in one of its implicants, which limits the efficient realizations to
classes of functions where product terms contain only a limited number of variables.

Given that the efficiency of logic function implementations is very different in
MCML and CMOS, it would probably not be effective to select a typical set of
functions and implement them. Instead, the reverse approach can be taken: searching
for functions that can be implemented efficiently, granted that the search space is
limited; this is the idea underlying the template approach.

4.3.1 MCML Footprints

In MCML circuits, a practical limitation is given by the number of levels in the
logic network, as the performance degrades quickly when increasing the number of
levels, due to the larger transistor sizes that are required to keep the noise margin
large enough, and to keep the total voltage drop below the minimum required for
the tail current source to stay saturated under worst-case supply voltage conditions.
Therefore, when searching for implementable functions, the search space can be
limited to functions that can be realized with a network of at most N levels. The
maximum number of levels essentially depends on the supply voltage and threshold
voltage of the transistors. In Fig. 2.26, simulation results are plotted for AND gates
with 2 up to 4 inputs; as it can be seen, the delay of the slowest input in the AND4
gates is larger than the equivalent delay of two AND2 gates. Such a gate would
only very rarely be used by a synthesizer. Based on these considerations, we limit
ourselves to networks of up to three levels in the rest of this work, which already
cover a wide range of functions. Nevertheless, the methods presented are valid in
the general case.

The most complex network than can be built with N levels is a network where
each node has two children which are not children of any other node (except for the
leaf nodes). Such a network has exactly 2N − 1 nodes; therefore, it cannot realize
any function of more than 2N − 1 inputs, which gives a limitation of the search
space. However, with three levels this results in functions of up to 7 inputs, which is
still an unpractical number.

In order to further reduce the search space, we can search for all possible BDD
topologies that have at most N levels. Consider the following process of building a
N -level BDD:
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1. create the leaf nodes 0 and 1
2. create a string of N nodes, and connect them with one edge between each pair of

adjacent nodes.
3. for the topmost node, create two outgoing edges; these edges must point to the

leaf nodes, otherwise the network would have one additional level. Moreover,
each edge must point to a different node, or it would result in a subgraph that can
be reduced by rule 2. Therefore, the top node has two edges, one pointing to 0

and one pointing to 1 .
4. process the highest remaining node that has less than two outgoing edges. if this

node is at the highest level, proceed as step 3. Otherwise, for each edge to be
created, either direct it to an existing node at a higher level (including leaf nodes)
or direct it to a new node created at any level above the current level.

5. repeat step 4 until all nodes are processed

Note that in this process, whenever a node is created, it is assigned a unique variable
name. However, the weights are assigned randomly; in fact, inverting the weight of
the edges is always possible by inverting the variable of the node from which they
are originating.

Exploring all possible outcomes of this algorithm is a tractable problem for
practical number of levels, and will result in all possible N -level BDDs topologies,
that we will call footprints hereafter. For networks of one up to three levels, it results
in 19 unique footprints. Each of these footprints corresponds to a different physical
network.

Each N -level footprint has a number of nodes comprised between N and 2N −
1. In the search process, we have assigned a different variable name to each of
the nodes, corresponding to the function with the maximum number of inputs that
can be realized with this network. Functions with less inputs (down to N ) can be
realized by assigning some variables to more than one node. By testing all possible
variable assignments, it is possible to deduce all functions that can be realized by a
particular footprint. Assigning a set of inputs to the nodes of a footprint will result
in one particular specialization of this footprint; we will call such a specialization a
template. In doing this, many redundant functions will be encountered, which should
be ruled out. Functions can be redundant because they are equivalent to another
function by permutation or inversion of the inputs or outputs. In order to identify
them, it is useful to introduce some notions on the equivalency and classification of
boolean functions.

4.3.2 Classification of Boolean Functions

A boolean function of N variables F(x1, x2, . . . , xN) is a function from the set
{0, 1}N to the set {0, 1}, i.e. for every set of input values, where each input can be
either 0 or 1, the function associates a value of either 0 or 1. There are 2N possible
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combinations of input values, and for each of these the function can associate one
of two values, therefore there are 22N

different functions of N variables.
Amongst these functions of N variables, some will be independent of one or

more of the variables; i.e. they will also be included one or more sets of functions
of M variables, with M < N . The number of functions that involve N and exactly
N variables can be calculated by subtracting all functions of less than N variables
from the number 22N

, which by recursion leads to
∑N

i=0 (−1)N · CN
i · 22N−i

where

C
j
i denotes a binomial coefficient.

This number grows rapidly with N . The number of function of 1 up to 7 variables
are indicated in the table below

N # of functions Functions

0 2 0 1

1 2 A A

2 10 AB AB AB AB

A + B A + B A + B A + B

A ⊕ B A ⊕ B

3 218 . . .

4 64,594 . . .

5 4.2946 · 109 . . .

6 1.8447 · 1019 . . .

Amongst the 22N
functions of N variables, some functions can be classified as

equivalent according to a given transformation. Two functions are equivalent under
a transformation if one can be turned into the other by applying that transformation.
The set of functions that are equivalent under a certain transformation form an
equivalence class.

In logic applications, one important transformation is the permutation of inputs.
Two functions are said to be P-equivalent if one can be transformed into the other
by a permutation of its inputs. In most of the cases, and specifically in the case of
standard-cell design, the choice of freely assigning the inputs of a gate is always
available. Therefore, it is redundant to implement more than a single function from
the same set of P-equivalent functions.

An extension to this transformation is to allow the negation of inputs and output.
Two functions are said to be NPN-equivalent if one can be transformed into the other
by a permutation of its inputs, and the negation of zero or more inputs or output. In
MCML logic circuits, because the signals are differential, inputs and outputs can be
freely inverted. Therefore, any gate can not only implement a set of P-equivalent
functions, but more generally a set of NPN-equivalent functions.

Therefore, in MCML circuits, it is sufficient to implement one function from each
class of NPN-equivalent functions of N variables to be able to realize all functions
of N variables with a single gate. Formulas are given in [2] to calculate the number
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of P- and NPN-classes of functions of N variables, these numbers are summarized
in the table below

N P-classes NPN-classes

2 8 2

3 68 10

4 3904 208

5 37,329,264 615,904

6 25,626,412,300,941,060 200,253,951,911,058

4.3.3 MCML Templates

Previously, we have derived the possible unique implementations of MCML
networks with up to N levels, which we call footprints. We stated that an N -level
footprint has a number of nodes M comprised between N and 2N − 1, and that by
connecting multiple inputs together, a set of functions of N up to M variables can
be realized. In the following, we will establish a procedure to derive those functions,
and by applying it to all footprints we will derive the complete, non-redundant set
of functions implementable with MCML logic networks up to N levels.

Because a single MCML network is able to realize a complete NPN-class of
functions, we shall extract only a single function per class. We will call the resulting
gate, produced by assigning specific inputs to a footprint, a template. Each template
generates an NPN-class of function by permutation of inputs and inversion of
inputs/output.

Let us consider an N -level footprint with M nodes. In order to produce a function
of P variables, Pε[N,M], a set of inputs {x1, x2, . . . , xP } has to be mapped onto
the M nodes of the network. Moreover, each node can receive a variable either
complemented or not, and the output can be inverted. Labelling the M nodes as
{a0, a1, . . . , aM }, this defines a function from {xi}i=1...P to {ai}i=1...M , with the
following constraints:

1. each node should be assigned a variable
2. each variable should be mapped to at least one node
3. no variable may appear more than once in a path of the BDD

Moreover, we wish to identify all functions that are NPN-equivalent in this process.
Considering the assignment of the variables or their complements to the nodes of

the BDD, there are M nodes and P variables which can be complemented, therefore
(2P)M possible assignments. From this number, we must deduce the assignments
that contain less than P variables. There are CP

P−1 ways of choosing a set of
P − 1 variables, therefore the number of assignments μM

P of exactly P variables
on a M nodes network satisfies μM

P = (2P)M − CP
P−1 · μM

P−1. This results in

μP =∑P
i=1(−1)P−i · CP

i · (2 · i)M .
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Table 4.2 Number of
possible variable assignments
of P variables on an M-nodes
network with N levels

N M P νM
P

1 1 1 1
2 2 2 1

3 2 12

3 1
3 3 3 1

4 3 20

4 1
5 3 260

4 30

5 1
6 3 2800

4 560

5 42

6 1
7 3 27,216

4 8400

5 1064

6 56

7 1

Amongst these assignments, we wish to rule out assignments that are equivalent
by permutation of variables. Since there are P ! ways of permuting P variables, we
should divide the result by P ! Moreover, we also wish to rule out all assignments
that are equivalent by inversion of variables. There are 2P possible inversions of
zero or more of the variables, therefore the final number of assignments that should
be tested is

νM
P =

∑P
i=1(−1)P−i · CP

i · (2 · i)M

2P · P ! (4.1)

Values of νM
P are summarized in Table 4.2 for MCML footprints with one up to

three levels. This number is much smaller than (2P)M , allowing to considerably
reduce the search space. When applying these input assignment to a footprint,
it can be verified that rule 3 is satisfied. If rule 3 is satisfied, then the resulting
function is validated, as well as the function resulting from inverting the output. In
this process, functions will still be generated that are P- or NPN-equivalent due to
symmetries in the network. In order to identify these functions, we need to test them
for equivalence with previously validated functions.

P- and NPN-equivalence can be tested very easily using the concept of signature.
A signature is defined as a value that can be calculated, that is characteristic of
a certain property. An example of defining a signature for a boolean function is
to write its truth table, then interpreting the right-most column (which gives the
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function result) as a binary number. A function of N variables having a truth table
of 2N lines, this results in a binary number with 2N digits which is different for
each function. This number can be calculated and stored, then for each function to
be tested, its signature can be compared to the stored signature. In order to check for
P- or NPN-equivalence, one can calculate the signatures for all P- or NPN-variations
of the function and store them; then, to test a function for equivalence, its signature
is calculated and compared to all the P- or NPN-signature collected.

The usage of signatures for equivalency testing is not very efficient, and other
methods exist such as the one described in [1], nevertheless it is a simple approach
that is sufficient for testing the functions that we are considering here for networks
of up to three levels.

4.3.4 Proposed Set of Standard Cells

Applying the methodology described previously for MCML networks of up to
three levels results in 19 unique footprints, which implement 108 templates. Each
template implements a class of NPN-equivalent functions of 1 up to 7 inputs. The
19 footprints are presented in Figs. 4.11, 4.12, and 4.13, each accompanied by a few
representative templates that they implement. For a detailed description of the 108
templates, please refer to Appendix B.

Note that, amongst those 108 templates, only 65 are unique from a logical point
of view. The remaining 43 implement functions already existing in the set of unique
functions, but are physically implemented with a different network, and hence have

Fig. 4.11 One-level
templates

Fig. 4.12 Two-level
templates
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Fig. 4.13 Three-levels templates
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different electrical properties. The different implementations of a same function
are called variations and denoted with a Vx suffix, where x is a number uniquely
identifying the specific variation.

4.3.5 Automatic Template Generation

Since each footprint can implement a number of different templates, with the
same physical network, the different templates can be generated from a generic
footprint by applying a particular input assignment. Obviously, this approach is not
optimal: specific properties of each template cannot be used to optimize each cell
independently. However, the process of building a standard-cell library is extremely
time-consuming, requiring the manual design of hundreds of different cells. In this
process, it is very valuable to have an insight of which cells are critical for obtaining
efficient synthesized designs, allowing to prioritize the design of these cells and to
quickly obtain an efficient cell library.

The design of a cell library can thus be performed by steps, as illustrated in
Fig. 4.14. In a first step, a number of footprints will be created. For each footprint,
templates will then be generated by applying the different input assignments,
resulting in a rich cell library with only a very limited set of physical cells. The
library can then be benchmarked by synthesizing reference designs, and information

Fig. 4.14 Cell library
optimization with automatic
template generation
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can be extracted regarding the frequency of utilization of each cell. In further steps,
sets of cells can be selected to be optimized, resulting in a new, refined library,
including optimized cells complemented by automatically generated templates.

4.4 Standard-Cell Design

It is clear that the final performance of semi-custom designs will heavily depend
on the quality of the cell library. Ideally, standard cells should be fast, allowing to
satisfy demanding timing requirements, dissipate little power and require as few
silicon area as possible, and at the same time be robust and immune to process,
temperature and supply voltage variations in order to provide a high yield, a long
lifetime and operate reliably. In practice, some of these objectives are somehow
convergent, but most are contradictory; all have weighted importance that are
very application-specific, and formulating generic design rules that encompass all
objectives is unfortunately not possible.

4.4.1 Design Parameters

Semi-custom designs are usually characterized by a high density of cells and
interconnects. In modern technologies, interconnects account for a large part of
the parasitics, and it is not sufficient to optimize cells independently, without
considering their environment. In fact, the physical size of cells in a library will
have a direct impact on the overall wire length; therefore, when cells are sized up,
the increase in drive strength will be counterbalanced by an increase in parasitics
due to the increased wire lengths.

Typically, and this is true in particular for MCML, each cell has an intrinsic delay
due to its internal parasitics that is independent of the cell size, because the internal
parasitics grow proportionally to the drive strength. In terms of area, transistor sizes
are proportional to the drive strength as well, and cell area increases accordingly.
The drive strength of a cell is characterized by the inverse of the slope of its delay-
load characteristic, which is its equivalent output resistance, and the delay of a cell
for a given load condition can be expressed as

td = td,i ·
(

1 + CL

Ci

)
where td,i = Ro · Ci (4.2)

where Ci represents the internal parasitics of the gate.
When cells are sized up, the ratio of CL over Ci is decreased, and cells operate

at a speed which is closer to their intrinsic speed limit. However as we said, sizing
up cells also implies an increase of CL. The load capacitance is composed of two
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parts: CFO, the parasitics due to the input capacitances of driven gates (fanout), and
Cw, the parasitics due to wiring. Fanout load increases proportionally to the drive
strength, and when this component is dominating the overall load, sizing up cells
hardly has any effect on the resulting circuit speed and results in waste of power. On
the other hand, wire length does not increase proportionally to the area of a circuit,
but rather at the pace of the half perimeter of the circuit, i.e. proportionally to the
square root of the area. Therefore, when wiring dominates the overall load, sizing
up cells allows to reduce the ratio CL/Ci , and thus to increase circuit speed.

Therefore, we can write an expression for the delay as a function of the drive
strength as

td (D) = td,i ·
(

1 + kFO + ka√
D

)
(4.3)

where D denotes the drive strength, kFO and ka are factors characterizing cell input
capacitance and area per unit of drive strength, respectively. The power dissipation
in MCML cells is proportional to their drive strength,

P (D) = kP · D (4.4)

The efficiency of a cell family can be characterized by the different k factors,
and by the intrinsic speed of the cells. Cells with low intrinsic delay kFO and ka will
require lower drive strength to operate at a given speed, while cells with low kP will
dissipate less power at a given drive strength.

In MCML circuits, kP is proportional to the voltage swing, since cells with
lower voltage swings have lower output resistance. However, lowering the voltage
swing implies increasing transistor sizes at a rate approximately proportional to
(Vsw)−2, as it was seen in Chap. 2. This affects not only the area of the cells—
and thus the wire load—and their input capacitances, but also the intrinsic delays.
Therefore, cells with higher voltage swings will be more performant in standard-cell
applications.

4.4.2 Cell Layout

As it was highlighted throughout this discussion, designing compact cells is critical
to achieve high speeds as well as low power dissipation. In MCML circuits, each
cell is composed of three parts: the load devices, the tail current source, and the
logic network. A cell library will be composed of cells that all have the same height,
containing very different logic networks. Naturally, load devices can be placed close
to the power rail, and current sources close to the ground rail, leaving space in the
middle area for laying out the logic network (Fig. 4.15). MCML cells need two
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Fig. 4.15 Generic layout
template of an MCML
standard cell
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additional rail for the bias voltages of load devices and current sources. These rails
can be placed at the top and bottom edges of the cells, and accessed via polysilicon
routing under the power and ground rails. In this way, a single metal layer is needed
and the access to power and ground rails from the core with first metal is possible.

The load devices, as well as the current sources, should be composed of identical
unit devices connected in parallel, in order to ensure a good matching. Therefore,
the size of these areas will be identical for all cells sharing the same drive strength.
However, different cells will have different logic network to implement, whose size
can range from just a single pair of transistor to 14 transistors for the most complex
three-level network. When the cell width has to be increased to accommodate a
larger network, area stays unoccupied in the top and bottom of the cell.

A challenging aspect of MCML standard cell layout is to produce efficient
layouts for this wide variety of cells. There are several practices that help ensuring
a uniform layout for all types of cells, as far as this is possible:

• Select identical horizontal size for the unit load and current source devices. This
way, when devices are repeated in parallel to produce higher drive strengths, the
overall size of the load and current source areas will remain identical, avoiding
unused silicon area.

• Lay out load devices in two rows, and current sources in a single row. Since each
gate contains two times more load devices than current sources, this will result
in equal width for both areas.

• For cells with a small logic network, when free area in the middle part of the cell
allows it, load devices and current sources can be folded into multiple rows to
save area (Fig. 4.16).



116 4 Design Methodology for MCML Standard Cells

Fig. 4.16 Layout of load
devices and current sources
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4.4.3 Unit Cell Sizing

The size of the unit cell is an important parameter. A unit cell is a cell whose tail
current is provided by a single transistor, as well as each of the two load devices.
Cells with higher drive strength will all have tail currents that are integer multiple
of the unit tail current.

Practically, a unit cell should be as small as possible, and the minimum size
is essentially limited by design rules and matching requirements. The unit current
source and load device should be sized several times larger than the minimum, both
in width and length, in order to provide a reasonable matching. According to the
selected values, the tail current should be chosen as large as possible, in order to
increase the drive strength/area ratio. Then, the logic networks of the different cells
can be sized, and the cell height chosen accordingly.
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Chapter 5
Design Automation for Differential
Circuits

5.1 Overview

When design flow was briefly introduced in the previous chapter, RTL simulation,
synthesis, and P&R tools were mentioned. In fact, many more are required, each
dealing with a specific aspect of the design process, and a more complete list could
be

• Cell library characterization
• Event-driven simulation

– register-transfer level (RTL)
– gate-level with parasitics back-annotation (post-layout, SDF)

• Logic synthesis
• Static timing analysis (STA)
• Noise analysis
• Placement & Routing
• Layout parasitics extraction
• Power grid analysis
• Transistor-level simulation

Currently, design automation tools are tailored for the usage of CMOS cell libraries,
and the adoption of a different logic style is often problematic due to the lack of
specific design automation tools.

In particular, with MCML circuits, most automation tools fail to accommodate
to the differential nature of the cells. In order to successfully use existing tools,
a number of problems must be solved, that will be discussed in this chapter. The
approach that will be described involve the usage of two different “views” of signals
in the circuit. Signals in MCML circuits are differential, which means that the
information is carried in the difference of two floating voltages. Thus, there is only
a single signal, physically carried by two complementary voltages.
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Fig. 5.1 Design flow for differential circuits

When considering a circuit from a logical point of view, the knowledge that
physically one signal has two complementary supports is unnecessary; therefore,
from a logical point of view, all signals can be reduced to the information that they
carry, and represented as a single entity. However, when dealing with physical tasks,
it is obviously necessary to take it into account. Thus it will be necessary to switch
between the two views of the circuit in design process, depending on the task to be
executed. This is illustrated in Fig. 5.1 as a flowchart, with dotted lines representing
the boundary between the different realms: physical, logical, and independent. Each
arrow crossing the boundary between logical and physical areas requires to modify
the view of the circuit.
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5.2 Logic Synthesis

During logic synthesis, a behavioral description of a circuit is translated into a netlist
of cells picked from a target library. From a functional point of view, all a synthesizer
needs to know about the cells is what function they perform. Synthesis tools also
perform optimizations of the timing, area, and power dissipation based on user-
defined constraints; for this task they require detailed information about the cells.
The extraction of these information is performed during library characterization; in
this section, we will focus on issues specific to synthesis of MCML circuits.

5.2.1 Synthesis with Differential Cells

From a logical point of view, a library of MCML cells is no different from any other
library: it contains a set of cells which perform certain functions, and circuits are
built by interconnecting cells according to their functional description. However,
the cells operate on differential signals, and one immediate question is how the
synthesizer can handle this differential nature.

In the synthesis process, the cells are considered as functional units, i.e. process-
ing elements that produce output signals from input signals. Making known to a
synthesizer details about the physical representation of those signals is unnecessary,
and it is only natural to merge the two polarities of a differential pair into a single
logical signal (Fig. 5.2). This raises one issue: differential signals can be inverted
freely, by inverting the two polarities, but a synthesizer has no knowledge of this.

In order to let the synthesizer invert signals freely, a possible approach could
simply be to include inverters in the cell library. However, this approach is not
efficient since it will result in an unnecessary waste of power and area, in addition
to inserting additional delays in the signal paths. To avoid that, the inverters could
be removed after synthesis, but this would invalidate all timing paths through the
inverter and jeopardize the timing integrity of the resulting circuit.

A better approach is to provide the synthesizer with different variant of each cell,
where inputs and output are inverted in all possible combinations. In this way, the
synthesizer will not have to explicitly invert signals, since it will always be able to
select a gate with inverted output, or one or more inverted inputs, depending on the
needs. The drawback of this approach is that it dramatically increases the number
of cells in the synthesis library, since for a cell with N input and M outputs, there
are 2N+M possible combinations of inverting the inputs and outputs.

Fig. 5.2 Physical and logical
views of an AND2 cell

AND2
AH
AL

BL

BH

YH

YL
AND2

A

B
Y

physical logical



120 5 Design Automation for Differential Circuits

This does not require to create more physical cells; indeed, the variants of a
same cell with inverted pins should all be replaced by the same physical cell
during physical implementation, and only the connections to both polarities of the
differential pins should be modified as required by the particular variant.

Such a variant can be thought of as a higher-level cell, which encapsulates
the master cell and the connection to its pins. Indeed, this is particularly helpful,
since it can be applied throughout all the different steps of the flow, ensuring
consistency. For example, a variant of a cell can be described in verilog structurally
by instantiating a master cell and rearranging the connections. Thus, there is
absolutely no post-processing to do on the synthesized netlist before simulating
it. Similarly, transistor-level netlists can be generated in the same fashion for each
variant, as well as P&R abstracts, allowing a complete consistency and ease of use
throughout the complete flow. As we shall see later on, the resulting netlist can also
be used for placement and routing without any modification.

When generating variants for the different cells in the library, it is necessary to
assign to each a meaningful name, that identifies the unique signal assignment which
it implements. Not only does this allow to immediately identify the function of each
cell, but this enforces the consistency throughout all the different views of the cell
library through the definition of a naming convention. Any naming convention that
uniquely identifies an assignment is valid for this purpose; in this work, we propose
to sort all the pins of a cell according to their direction and alphabetical order, and
to assign to each a bit number in order. In the resulting bitmask, each bit is set to 1 if
the corresponding pin is inverted, and to 0 otherwise. The resulting binary number
can be translated to a decimal number, which is then appended to the master cell
name.

As an example, the AND2 cell of Fig. 5.3 has two input pins A and B, and one
output pin Y . Sorting these three pins alphabetically, then placing the outputs first,
followed by the inputs results in the bitmask Y,B,A. Therefore, A corresponds to
bit 0, B to bit, 1 and Y to bit 2. A variant with input A and output Y inverted results
in the bitmask 101, and the variant is thus named AND2_5 (Figs. 5.4 and 5.5).
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Fig. 5.3 The eight variants of an AND2 cell
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// 2-Input AND
// Master cell
module AND2(Y,A,B);
output Y;
input A,B;
and I0 (Y,A,B);
endmodule

// AND2 with inverted A
module AND2_1(Y,A,B);
output Y;
input A,B;
not I0 (NA,A);
AND2 I1 (Y,NA,B);
endmodule

Fig. 5.4 Description of a logical variant as a high-level cell: schematic view and verilog HDL
description

tnairavretsam

AND2
AH
AL

BL

BH

YH

YL

AND2
AH
AL

BL

BH

YH

YL

AND2_1

.SUBCKT AND2
+Y_H Y_L A_H A_L B_H B_L
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Fig. 5.5 Description of a physical variant as a high-level cell: schematic view and SPICE netlist

5.2.2 Bias Generator and Level Converters in the Synthesis
Process

Another specificity of MCML circuit is the fact that they require a bias generator
block. This block should physically be included in the circuit in order to provide as
good a matching as possible, allowing to cancel process variations.

Additionally, in some cases the differential signals used by MCML circuits are
not suitable to interface with external circuitry. This can be the case if an MCML
block is integrated along with conventional CMOS logic. Also, when signals need
to be received or driven off-chip, it is not convenient to interface differential signals
that require twice the number of bonding pads, whose number is strictly limited by
area limitations and bonding capability. Interfacing signals requires including level
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1 ## find bias circuit master cell
2 set master [get_lib_cell -q "BIAS_CIRCUIT"]
3 set num_pins [get_attribute -q $master number_of_pins]
4 ## create instance
5 set bias_master [get_attribute $master name]
6 create_cell $bias_inst $master
7 set_dont_touch [get_cells $bias_inst] true
8 ## create and connect pins on toplevel
9 foreach_in_collection pin [get_lib_pins -of $master] {

10 set port_name [get_attribute $pin name]
11 set port_dir [get_attribute $pin pin_direction]
12 create_port -direction $port_dir $port_name
13 create_net $port_name
14 connect_net [get_net $port_name] [get_port $port_name]
15 connect_net [get_net $port_name] [get_pin $bias_inst/

$port_name]
16 set_dont_touch [get_net $port_name] true
17 }

Fig. 5.6 Design compiler script to add bias circuit block

converters at the circuit boundary, that transform the signals to and from MCML-
compatible differential voltages.

The inclusion of a bias generator and level converters will require area and
contribute additional power dissipation. Additionally, in the case of level converters,
it is important that the synthesizer includes them in the timing analysis in order to
ensure timing integrity. For these reasons, these cells should be inserted into the
circuit before the synthesis process.

In one approach, these cells can be explicitly inserted in the RTL description of
the circuit, as this is possible in Verilog as well as VHDL. However, this makes the
RTL code technology-dependent, which designers usually try to avoid. In another
approach, they can be inserted during the synthesis process, before the actual
synthesis process takes place. For example, in the design compiler synthesizer, a
few commands to be inserted in the synthesis script are sufficient to automatically
insert the technology-specific cells. Example scripts are given in Figs. 5.6 and 5.7.
In this way, the process is transparent to the user, and the bias generator and the level
converters are taken into account during synthesis, allowing maximum accuracy.

5.3 Placement and Routing

After synthesis, the resulting netlist will be forwarded to the place and route tool.
In the approach described above, the synthesized netlist is composed of library cells
which are logical (i.e., with single-ended pins) variants of a master cell.
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1 ## find all toplevel input ports
2 set ports [get_ports [all_inputs]]
3

4 ## find level converter cell
5 set master [get_lib_cell -q "LEVEL_CONV_IN"]
6 set num_pins [get_attribute -q $master number_of_pins]
7

8 ## search pins in converter cell master
9 set iso_master [get_attribute $master name]

10 set iso_out_pin [get_attribute [get_lib_pins -of $master
-f "pin_direction == out"] name]

11 set iso_in_pin [get_attribute [get_lib_pins -of $master
-f "pin_direction == in"] name]

12

13 ## process all ports
14 foreach_in_collection port $ports {
15

16 ## process all nets to be isolated
17 set net_to_isolate [get_nets -of_objects $port]
18 foreach_in_collection net $net_to_isolate {
19

20 ## create new objects
21 set net_name [get_attribute $net name]
22 set iso_inst "[regsub {(.*)\[([\d]+)\]$} [get_attribute

$net name] {\1_\2}]_conv"
23 set iso_net [regsub {(.*)(\[[\d]+\])?$} [get_attribute

$net name] {\1_d\2}]
24 create_cell $iso_inst $master
25 set_size_only [get_cell $iso_inst] true
26 create_net $iso_net
27

28 ## connect objects
29 set connections [remove_from_collection [all_connected

$net] $port]
30 disconnect_net $net $connections
31 set direction [get_attribute -q $port port_direction]
32 if { $direction == "out" } {
33 connect_net $net $iso_inst/$iso_out_pin
34 connect_net $iso_net $iso_inst/$iso_in_pin
35 } else {
36 connect_net $net $iso_inst/$iso_in_pin
37 connect_net $iso_net $iso_inst/$iso_out_pin
38 }
39 connect_net $iso_net $connections
40 set_dont_touch [get_net $net] true
41 }
42 }

Fig. 5.7 Design compiler script to add level converter cells at the each input port. The script can
be modified to process output ports
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After placement and routing, the resulting circuit must contain physical cells and
physical (i.e., differential) interconnections. The two main issues to be solved are
thus:

• routing of differential nets
• replacement of variant cells by their master with correct input/output connections

5.3.1 Routing of Differential Nets

Any P&R tool can process differential signals natively; as far as the tool is
concerned, both signals in a pair are just two independent signals, which connect
to pins inside standard cells. Therefore, by converting the logical synthesized
netlist into a physical equivalent (replacing each signal by a corresponding pair),
a differential circuit can be placed and routed as is.

However, there are several problems associated with this approach. First, it
multiplies the number of nets to be processed by a factor of 2, which results in larger
runtimes. Second, since the router has no knowledge of the relationship between
the two complementary signals in a pair, they are both routed independently and
can have very different resulting physical implementations. This is detrimental to
the signal integrity, since both the noise robustness and the low noise generation
features of differential signals rely on the fact that they are physically located close
to each other.

The third issue is related to the timing analysis of the circuit. During the
whole process of placement and routing, the circuit timing is analyzed and the
results drive the tool into generating a physical circuit that satisfies the user-defined
timing constraints. In MCML circuits, switching events are triggered by differential
voltages at the inputs, but each output node operates its transition independently.
Therefore, in the general case, the two output nodes of a gate can have different
delays if their loading is different, but both delays are relative to the zero-crossing
point of the differential input signal. A complete timing model of an MCML gate
should define the output differential signal as a function of the input differential
signal, and the individual loading conditions of each output node.

Yet, timing analysis tools can only deal with single-ended circuits, where delays
are defined from one signal to another, and it is not possible to express a delay as
a function of a differential signal. Timing analysis can be correct, however, with
logical cells where each signal represents one differential voltage, if we can make
the assumption that both output nodes of each cell are loaded equally. This requires
to work with logical cells during the place and route flow on the one hand, and to
make sure all signal pairs are routed as bundles, so that their parasitics are closely
related.

Executing placement and routing with logical cells implies that each physical
pair of signals will be represented by a single wire. Similarly, a logical abstract
view should be provided for each cell, where each pair of pins is represented by a
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Fig. 5.8 Differential signals routing. (a) Routing of logical design (b) routing converted to
physical

single logical pin. The router will then be able to process the logical design, and in
a next step, the logical wires can be split into pairs of wires, as depicted in Fig. 5.8.
Similarly, cells will be replaced by their physical counterpart, turning each logical
pin into a pair of physical pins.

The connections at the standard cell pins deserve special attention. After a logical
wire is split into a pair, each resulting wire must be assigned a polarity. As we
have seen previously, according to the synthesis flow there will never be any logical
inversion, i.e. each pin will be connected only to pins of same polarity in other
cells. However, no convention can be defined regarding the position of specific pin
polarities in the cells, therefore it is not possible to know a priori to which of two
physical pins a specific wire in pair will be connected to. Therefore, pins should be
designed in a way that guarantees that connection from both wires to both pins is
possible. A possible way to achieve this is to draw physical pins as metal stripes, in
a direction perpendicular to the routing direction of the next routing layer; in this
way, the two connections are always possible as shown in Fig. 5.9.

A dedicated tool could handle the logical-to-physical wire transformation as
well as the positioning of vias, producing a correct physical design from the
routed logical circuit. In a simpler approach, vias can be removed during the wire
splitting step, and the physical design undergoes another routing pass to complete
the connections.

In the logical routing step, the characteristics of the wires and vias should be
defined according to the desired result after splitting. The physical parameters
include the wire width, routing pitch, and different quantities defining the via
geometry, as depicted in Fig. 5.10. According to these parameters, the corresponding
values for logical routing can be deduced.
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Fig. 5.9 Physical pins design allowing the connection to both polarities (a) logical and physical
pins placement (b and c) possible connections
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Fig. 5.10 Physical wire and via parameters. (a) wire parameters. (b) via parameters

In the most general case, the spacing between the two wires in a differential pair
and the spacing between two neighboring pairs could be different. However, if the
physical design is to be routed again to complete the connection as it was proposed,
it is important that a common grid be defined. In this way, wires after splitting will
fall on a regular grid, and can be handled efficiently by the router. This compels
the two spacings mentioned above to be equal (or, at least, multiples). In this case,
logical routing parameters are calculated from the physical parameters as shown in
Table 5.1.
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Table 5.1 Physical and
logical routing parameters

Quantity Physical Logical

Routing parameters

Wire width W W ′ = 2 · P + W

Routing pitch P P ′ = P

Routing offset O O ′ = O + P
2

Via parameters

Via size S S′ = S + P

Via enclosure E E′ = E

Wire extension X X′ = X + P

5.3.2 Variant Cells in the Place and Route Flow

In the place and route flow as described until here, the variant cells used for synthesis
have at no point been replaced by their master cell. This replacement could take
place just before place and route, by processing the synthesized netlist to replace
the cells and correct the connections. However, this additional step can be avoided
by providing abstract views of the variant cells for use by the router.

In this approach, abstract views are created for each master cell. Then, abstracts
are generated for the variants by swapping polarities of the pins, just as it is done
to generate variants for synthesis. In doing this, the physical connections to the pins
will be automatically relocated, as illustrated in Fig. 5.11. When the abstracts are
defined in LEF format, the reference to the master cell can be explicitly made by
specifying it in a FOREIGN statement. This statement specifies which cell should be
referenced in the physical library (typically, GDSII) when exporting the layout from
the place and route tool. This way, the process is completely transparent to the user.

5.3.3 Parasitics Modeling

During the place and route process, parasitics are extracted from the layout in order
to provide accurate data for the timing analysis. Typically, P&R tools rely on fast,
approximate extraction based on the wire geometries and capacitance lookup tables.
In the flow as proposed above, the wire geometries used by the router are different
from the physical wire geometries, therefore it is necessary to adapt the capacitance
tables accordingly.

As an example, the capacitance model used in the Encounter place and route tool
is illustrated in Fig. 5.12. Three types of capacitances are defined:

• area capacitance, corresponding to the coupling between the horizontal side of a
wire and the neighboring routing layer

• coupling capacitance, corresponding to the coupling between vertical sides of
neighboring wires on the same layer
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MACRO AND2
FOREIGN AND2 0 0 ;
...
PIN Y_H
# pin definition

END Y_H
PIN Y_L
# pin definition

END Y_L
...
PIN A_H
# pin definition

END A_H
PIN A_L
# pin definition

END A_L
...
END AND2

MACRO AND2_5
FOREIGN AND2 0 0 ;
...
PIN Y_L
# pin definition

END Y_L
PIN Y_H
# pin definition

END Y_H
...
PIN A_L
# pin definition

END A_L
PIN A_H
# pin definition

END A_H
...
END AND2_5

Fig. 5.11 Abstract view and LEF macro description for AND2 master cell and its variant

• fringe capacitance, corresponding to the coupling between the vertical side of a
wire and the neighboring routing layer

Each of these capacitances is defined per unit length of wire. Typically, capaci-
tance values are extracted from detailed simulations (using a 3-D field solver), and
tabulated as a function of wire width and wire spacing.

To the router, each differential pair will be represented as a single wire, with a
width equal to the sum of both wire width and their spacing. When parasitics are
extracted for such a logical wire, three corrections need to be made:

• the wire width is different from the physical width
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Fig. 5.12 Wire capacitance
modeling for place and route

Ccoupling Ccoupling

CfringeCfringe Carea

CfringeCfringe Carea

Table 5.2 Physical and logical capacitance parameters

Capacitance parameters

Quantity Physical Logical
Area capacitance CA(w) C′

A(w′) = CA(w)

+2 · CC(w, P − W)

+CF (w, P − W)

Coupling capacitance CC(w, s) C′
c(w

′, s)= 1
2 · Cc(w, s)

Fringe capacitance CF (w, s) C′
F (w′, s) = 1

2 · CF (w, s)

w′ = w + P

• the coupling capacitance between the two physical wires of a same pair is not
extracted

• the fringe capacitance due to internal sides of the differential pair wires is not
extracted

In order to fix these issues, and taking into account the Miller effect in the
coupling between wires of a same pair, the capacitances tables can be modified
as shown in Table 5.2. In this transformation, a total capacitance is calculated as the
sum of the capacitances of two wires in the pair—including coupling on both sides
of the logical wire—and the total capacitance is divided by two to yield an average
capacitance per wire. Therefore, the differential pair parasitics is modeled as the
average of the parasitics of its two wires.
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In practice, each wire in a pair can have a different amount of associated
parasitics; the step response of the MCML circuit will then be a sum of two
exponentials with different time constants

Vo,d

2 · Vsw

= 1 −
[
e
− t

τ1 + e
− t

τ2

]
(5.1)

Defining τ = (τ1 + τ2) /2 and Δτ = (τ1 − τ2) /2, we can write

t

τ1,2
= t

τ ± Δτ
= t · τ ∓ Δτ

τ 2 − (Δτ)2 ≈ t

τ
·
(

1 ∓ Δτ

τ

)
(5.2)

where it was assumed that Δτ/τ is small enough so that (Δτ/τ)2 ≈ 0. With this
simplification, (5.1) can be rewritten as

Vo,d

2 · Vsw

≈ 1 − 2 · e− t
τ · cosh

(
t

τ
· Δτ

τ

)
(5.3)

The cosh term is very close to 1 in the time range of interest, for small Δτ/τ , thus
the delay is very close to τ · ln (2). No closed form expression can be written for the
delay in the general case, but this can be verified from the numerical results plotted
in Fig. 5.13.

As it can be seen, the delay variation due to unbalanced loading is less than
10% even for large Δτ/τ . Therefore, using the average time constant gives a very
good approximation. In practice, the routing of true differential pairs as proposed
above results in well-balanced time constants, and the error is limited to less than
1% in most of the cases, which is negligible compared to the accuracy of parasitics
extraction anyway.

0.0 0.2 0.4 0.6 0.8 1.0

t/τ

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

V
o
d

2·Δ
V

Δτ/τ = 0.0
Δτ/τ = 0.1
Δτ/τ = 0.2
Δτ/τ = 0.4

0.000.050.100.150.200.250.300.350.400.450.50

Δτ/τ

1.00

1.02

1.04

1.06

1.08

1.10

t d
τ
·ln

(2
)

(a) (b)

Fig. 5.13 Variation of the delay due to the unbalanced loading in an MCML gate (a) voltage
waveforms according to Eq. (5.3) for different values of Δτ/τ (b) delay variation as a function of
Δτ/τ
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Chapter 6
Design Example I: Low-Noise Encoder
Circuit for A/D Converter

6.1 Circuit Description

The circuit to be implemented is a decoder block for an analog-to-digital converter.
Without disclosing the details of the circuit functionality, it is sufficient to consider
that it receives 23 bits from the core analog-to-digital part, and performs a complex
arithmetical operation to calculate a 12 bits result. Additionally, several control
inputs allow to switch the circuit into various operating modes.

The circuit has to operate at 1 GS/s, and to achieve this speed the original
CMOS circuit implementation includes five parallel interleaved blocks as depicted
in Fig. 6.1. A clock generator block generates five clock signals from the master
1 GHz clock, for each of the five decoder leaves, which trigger the processing of
samples at 200 MS/s in a time-interleaved fashion.

6.2 MCML Cell Library

The MCML cell library implemented for this design and described in this section
targets a 0.18µm CMOS process, with 1.8 V supply voltage. For design-specific
reasons and easier integration, the nominal supply voltage of 1.8 V has been used
for the MCML cells. It should be noted that this does not necessarily give the
best power-performance compromise. Moreover, the design complexity estimated
at about 4k cells and strict area requirements dictated the use of a compact cell set
(Table 6.1).

© Springer International Publishing AG, part of Springer Nature 2019
S. Badel et al., Design Automation for Differential MOS Current-Mode
Logic Circuits, https://doi.org/10.1007/978-3-319-91307-0_6
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Fig. 6.1 5× interleaved encoder block diagram

Table 6.1 Summary of
parameters for the MCML
standard-cell library

Design parameters

Supply voltage 1.8 V

Voltage swing 500 mV

Unit tail current 25µA

Noise margin 100 mV

N bias voltage Nom. 700 mV

P bias voltage Nom. 150 mV

Layout parameters

Cell height 14.4µm

VDD /GND rail width 1.84µm

Load device size 0.68 × 0.82µm

Current source size 0.68 × 0.9µm

Routing pitch 0.96µm

6.2.1 Library Parameters

The choice of the three main design parameters, namely the voltage swing, unit
tail current, and noise margin, has a great impact on the resulting cell performance.
These choices are detailed below.

Voltage Swing As it was pointed out several times, there are many benefits of
increasing the voltage swing. MCML cells with higher voltage swing have lower
intrinsic delays, exhibit smaller area, and produce less supply noise. Therefore, the
voltage swing was chosen as large as practical, limited by the linearity of PMOS
loads under worst-case process conditions.

Unit Tail Current Transistor sizes for the PMOS loads and NMOS current sources
were chosen to be about three times larger than the minimum design rule, both
in width and length, in order to provide sufficient matching. The exact sizes were
adjusted for layout efficiency. According to these device sizes, the unit tail current
was chosen as large as practical, limited by the maximum gate voltage of the NMOS
current sources.
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Table 6.2 Main functions in
the standard-cell library and
their drive strengths

Function Drive strengths

BUF 1, 2, 3, 4, 5, 8, 11, 17, 32, 50, 64

AND2 1, 2, 4, 8, 12, 16

AND3 1, 2, 4, 8

AO21 1, 2, 4, 8

DFF 1, 2, 4, 8

MAJ32 1, 2, 4, 8

MUX2 1, 2, 4, 8, 12, 16

XOR2 1, 2, 4, 8, 12, 16

XOR3 1, 2, 4, 8

Noise Margin The noise margin was chosen to be 100 mV; according to the device
sizes chosen earlier, and the matching characteristics of the process, this value
guarantees a worst-case noise margin of about 50 mV.

6.2.2 Cell Selection

The library is composed primarily of basic functions: BUF, AND2, AND3, AO21,
XOR2, XOR3, MAJ32, and MUX2, in addition to a master–slave latch. Seven
different footprints were needed to implement this basic set of function. Based on
the footprints, optimized layouts were created for the MAJ32, XOR2, and XOR3
functions. Each cell design branches out into 4 to 6 different drive strengths (11 for
the buffer), resulting in 71 cells (Table 6.2).

6.2.3 Cell Characteristics

It is interesting to compare the characteristics of the MCML cells to their CMOS
counterparts. Clearly, the different characteristics of both logic styles and the
independent choice of parameters make it hard to establish a one-to-one comparison
between cells in both libraries. In the plots presented hereafter, cells are compared
with equivalent functionality and drive strength, but it must be highlighted that both
criteria have different expressions in both libraries.

Area Figure 6.2 shows a scatter plot of the area of MCML cells versus the area
of corresponding CMOS cells. It is not surprising that MCML cells are on average
larger than their CMOS counterparts, due to the additional circuitry involved (load
devices, current source). As this plot shows, the area of MCML cells is comprised
between one and three times the area of CMOS cells.
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Fig. 6.2 Comparison of area
of MCML and CMOS
standard cells. Each point’s x-
and y-coordinates are the area
(in µm2) of an equivalent cell
in the CMOS and MCML
libraries, respectively
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Fig. 6.3 Comparison of delay-load characteristics of MCML and CMOS standard cells. Black and
white symbols denote CMOS and MCML cells, respectively; solid and dashed lines denote rising
and falling transitions, respectively

Delay Figure 6.3 compares delay-load capacitance characteristics of equivalent
MCML and CMOS cells. On each graph, the black symbols denote CMOS cells
and the white symbols MCML cells, whereas the solid lines denote rising transition
and the dashed lines denote falling transitions. As it can be seen, the drive strength
of MCML gates is lower than the drive strength of their CMOS counterparts. The
intrinsic delay, though, is in the same order of magnitude. A striking characteristics
of MCML cells is the symmetry of their rise and fall times; even though the AND2
network is not fully symmetrical, the rise and fall times are very well balanced
compared to CMOS cells.

Figure 6.4 compares the delay-input rise (fall) time characteristics of MCML and
CMOS NAND2X1 gates. Here also, a sharp difference can be seen: in MCML gates,
the delay depends very weakly on the slope of the input signal, compared to CMOS
gates.
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Fig. 6.4 Comparison of
delay-input rise time
characteristics of MCML and
CMOS standard cells. Black
and white symbols denote
CMOS and MCML cells,
respectively; solid and dashed
lines denote rising and falling
transitions, respectively

0.0 0.5 1.0 1.5 2.0 2.5

tR [ns]

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

t d
[n
s]

6.2.4 Cell Layout

Example layouts of AND2 cells for the two extreme drive strengths are plotted in
Fig. 6.5. The PMOS load transistors are located at the top of the cells, near the power
rail. Similarly, NMOS current sources are located near the ground rail, at the bottom
of the cell. Above the power rail and below the ground rail are the bias rails; these
rails are of near-minimal size and are shared by two adjacent rows when the cells
are flipped and abutted.

6.2.5 Bias Generator

The bias voltages are generated by two replica generators, based on one external
reference voltage and one external reference current (Fig. 6.6).

6.2.6 Level Converters

The circuit requires level converter to interface it with existing blocks using CMOS
levels, and to save I/O pads for driving the output signals off-chip.

The CMOS-to-MCML converter (Fig. 6.7a) is implemented by a DCVSL buffer
providing complementary input signals to an MCML buffer. The DCVSL gate
allows to keep the common-mode voltage above VDD/2, in order to avoid pulling
the tail current source of the MCML buffer out of saturation during switching.

The MCML-to-CMOS conversion is achieved by an OTA stage followed by a
regular CMOS inverter that restores the rail-to-rail logic levels (Fig. 6.7b).
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Fig. 6.5 Example layouts of AND2 standard cells, for drive strengths ×1 and ×16
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Fig. 6.6 Implemented bias generator (a) replica bias for tail current (b) replica bias for voltage
swing

6.3 Design Flow

A variety of tools needed to be created to implement the design flow are described in
Chap. 5. The front-end part of the flow, illustrated in Fig. 6.8, includes the creation
of the standard cells, and the generation of various data for the back-end tools. In
this part, the custom tools (indicated with shaded rectangles on the figure) were
created to perform the cell characterization (timing and power data extraction), and
to generate the logical views (indicated with dotted borders on the figure) for the
various types of data.
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Fig. 6.7 Implemented level converters (a) CMOS-to-MCML converter (b) MCML-to-CMOS
converter

Fig. 6.8 Front-end flow: cell library creation and data generation

Though it is composed of three distinct parts on the figure, these three parts are
integrated into a common tool written in Perl programming language. In this way,
the consistency is guaranteed amongst the many different output files.

• The input to this tool are the SPICE netlists of the cells, along with a description
of their functionality. The tool generates test benches for cell characterization,
runs the simulator, and collects the results in a database. Based on this data, the
tool can output verilog models of the cell library, and Liberty library for synthesis
and P&R.

• Additionally, the tool can generate logical libraries, including variants of the
cells with inverted input/output pins, in Verilog, SPICE, Liberty and LEF formats
based on the physical data and the cell descriptions.

• For technology data generation, the tool processes the technology LEF and
capacitance table according to user-defined parameters for differential routing
and generates the corresponding files with modified parameters.
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Fig. 6.9 Back-end flow: circuit implementation and verification

In the back-end flow, depicted in Fig. 6.9, custom tools are needed to convert the
logical netlist in verilog format and placed&routed design in DEF format to physical
equivalent.

• The netlist processing tool is written in Perl programming language. The tool
receives the logical netlist, and processes each module, splitting each logical net
into a pair of physical nets, and outputs the result into a new verilog netlist file.

• The DEF processor is written in C, using freely available LEF/DEF parsers from
Si2.org (http://www.openeda.org). The input to this tool are the DEF logical
design, and the technology LEF containing the routing parameters. The tool
processes each net in the design, and transforms it into a differential pair.

Starting from the RTL code, the circuit is synthesized using the logical library data.
The synthesized netlist is then placed and routed, using the logical technology data.
The resulting netlist and DEF design are converted to physical equivalents, and fed
back to the router using the physical technology and library data, to complete the
missing connections.

Additionally, a third back-end tool was created for comparing sign-off parasitics
to the parasitics extracted from the logical layout. This tool processes the parasitics
file in SPEF format extracted from the physical circuit layout, identifies differential
pairs, and calculates the average capacitive load for each pair including Miller effect.
Then, this data is compared to the parasitics extracted from the logical circuit layout,
allowing to adjust the capacitance tables for better correlation with the sign-off
results.

http://www.openeda.org
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6.4 Results

6.4.1 Encoder Redesign

The described circuit was implemented using the standard-cell library, through the
proposed design flow. The resulting circuit layout is shown in Fig. 6.10. Figure 6.11
features a close-up view of the layout, showing the routing.

Post-layout simulations have been performed on the implemented design, con-
firming its correct functionality. The area, power consumption, and power supply
noise of the MCML circuit are compared with the original CMOS implementation
in Table 6.3.

As the results display, the MCML encoder consumes about 9.7 times more power
than the CMOS encoder, due to the static power dissipated in MCML gates. In terms
of area, the MCML circuit is larger by a factor of 2.2, due to the larger sizes of the
gates. Note that the area is not fully utilized in the MCML block, since its size and
the pin positions were fixed in advance, and decrease in area could thus be achieved.
The peak–peak supply noise, obtained by post-layout simulations, is about 30 times
smaller in the MCML circuit than in the CMOS circuit, despite its much higher
power consumption.

Power stripesPower+bias
rings

Power+bias
rails

700µm

70
0µ

m

Bias
generator

Fig. 6.10 Layout view of the implemented MCML encoder
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Fig. 6.11 Close-up view of the MCML encoder layout showing differential routes

Table 6.3 Implementation results of MCML encoder compared to the original CMOS implemen-
tation

CMOS circuit MCML circuit

Clock frequency 1 GHz 1 GHz

Power consumption 30 mW 290 mW

Area 0.22 mm2 0.49 mm2

Peak–peak AC power supply current ~10 mA ~300µA

Peak–peak VDD voltage noise with 1 nH inductance ~80 mV ~650µV

Peak–peak GND voltage noise with 1 nH inductance ~60 mV ~600µV

The gains in noise performance are illustrated in Figs. 6.12 and 6.13. Figure 6.12
plots the total AC supply current of the MCML and CMOS encoder blocks, obtained
by post-layout simulations. Figure 6.13 shows the frequency spectrum of the supply
noise power, where it can be seen that the magnitude of the first harmonic of the
clock frequency is reduced by about three orders of magnitude.

In practice, the varying current on the power supply creates a noise voltage
through the resistance of the power networks and the inductance of package
bondwires. Figures 6.14 and 6.15 show the respective voltage at the VDD and GND

pins when the circuit is simulated with series resistance of 1 nH, a typical value for
bondwire inductance. In these simulations, only the clock is running while the inputs
are stable, minimizing the switching activity. The CMOS circuit exhibits peak–peak
noise voltages of about 80 and 60 mV on the supply and ground pins, which is more
than 100 times larger than the noise exhibited by the MCML circuit, with peak–peak
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Fig. 6.12 Post-layout simulated AC power supply current noise of the MCML and CMOS
encoders, showing a reduction of noise power by about three orders of magnitude at the operating
frequency

Fig. 6.13 Post-layout SPICE simulated AC power supply noise spectrum of the MCML and
CMOS encoders
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Fig. 6.14 SPICE simulated voltage noise on the power supply of the MCML and CMOS encoders
with a 1 nH bondwire inductance

Fig. 6.15 SPICE simulated voltage noise on the ground supply of the MCML and CMOS encoders
with a 1 nH bondwire inductance
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values of 650 and 600µV, respectively. This highlights the benefits of the MCML
circuit style, as well as the role of the clock network in the generation of digital
switching noise.

6.4.2 Architecture Modification

The encoder presented in the previous section was redesigned with the same
architecture as the original CMOS encoder. In CMOS circuits, since the power is
proportional to the switching parallel implementations of circuits running at lower
speed do not dissipate more power, except for the additional circuitry needed to
interleave the parallel circuits. However, in MCML circuits, the power consumption
does not depend on the switching frequency, and to achieve better power efficiency,
gates must be run at the highest possible activity factor.

In practice, this means that pipelined circuits with short pipeline stages will be
more efficient than parallel implementations. To verify this, the encoder circuit RTL
code was modified to parameterize the number of parallel leaves, and the design was
implemented with different number of leaves and different number of pipeline stages
per leaf. The results are shown in Table 6.4. As it can be seen from these results,
the designs using a single leaf and a larger number of pipeline stages have better
area and power performance. In fact, the circuit area can be reduced close to that of
the CMOS implementation through pipelining. The lowest power is achieved with
one parallel leaves and four pipeline stages. Note that the power dissipation of the
MCML implementation can be reduced by a factor of up to 2.6 through pipelining,
without influencing the superior noise performance. In all cases however, the power
consumption is still more than three times larger than the power dissipated by the
CMOS block.

Table 6.4 Implementation results of MCML encoder performance (area and power) for different
architectures that exploit pipelining

Parallel leaves Pipeline stages Areaa (mm) Power (mW)

1 4 0.17 110

1 5 0.20 130

2 2 0.23 155

2 3 0.21 135

3 1 0.37 380

3 2 0.28 160

4 1 0.34 285

4 2 0.31 180

5 1 0.30 290
aUseful area = total area × cell density
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Fig. 6.16 Utilization of the cell variants with inverted inputs/output of the XOR3 and AND2 cells

6.4.3 Design Flow

Some statistics have been extracted from the implemented design in order to
evaluate the efficiency of the design flow. The results are presented in the following
paragraphs.

6.4.3.1 Synthesis

Figure 6.16 illustrates the utilization by the synthesizer of the different variants
with inverted inputs/output for the XOR3 and AND2 cells. The statistics display
a balanced utilization of all the different variants, indicating a very good utilization
of the free inversions by the tool.

6.4.3.2 Differential Routing

In order to evaluate the efficiency of the differential routing, the resulting design
has been compared against the same design implemented with a regular flow,
not enforcing the routing of differential wire pairs. The plots in Fig. 6.17 display
the extracted relative parasitic capacitance mismatch between the two wires in a
differential pair for both approaches. As it can be seen, the differential approach
results in better matched parasitics, with more than 60% of the nets exhibiting
a relative mismatch of less than 10% and about 90% of the nets with parasitics
matched to 10%, which is beneficial both to the timing integrity and the noise
performance. In contrast, the design routed with a conventional flow displays more
spread in the distribution, with a significant amount of nets with mismatch larger
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Fig. 6.17 Statistical distribution of the mismatch in extracted parasitic capacitance between two
wires of a differential pair. Left: design routed with the proposed flow; right: design routed with a
conventional single-ended flow

than 20% and occasionally up to 70%. The very limited mismatch between the
differential wires also results in balanced switching characteristics, and thus reduced
switching noise, which contrasts with the results obtained with conventional routing.

The differential routing efficiency is also illustrated in Fig. 6.18, where the
routing of a portion of a clock net is extracted from the same two designs. In the
design routed with a conventional approach, not enforcing the parallel routing of
differential pairs, the resulting routing displays a large average separation between
the two wires. This results in unbalanced loading, which adversely affects the
switching noise performance. Additionally, this can cause skew between the two
signal polarities, which can cause the differential clock signal to stay at an undefined
logic level for a period of time, resulting in an increase of the setup and hold times.
Finally, this results in a significant increase of the self-inductance due to the large
loop area enclosed by the wire pair [1], which increases the magnetic coupling to
other wires and decreases the crosstalk immunity.

6.4.3.3 Parasitics Modeling

The accuracy of the parasitics estimation is reported in Fig. 6.19, which plots
the estimated parasitic capacitance extracted natively from the P&R tool using
the model described in Chap. 5 against the parasitics extracted from the final
layout using an accurate sign-off parasitics extraction tool. Sign-off parasitics
have been processed by locating the two components of each differential pair
and calculating the average capacitance, with a multiplying factor of two for the
coupling capacitance between the two components modeling the Miller effect. It
can be seen that the extracted values match the modeled values very accurately, in a
vast majority of cases within ±15% of the expected value.
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Fig. 6.18 Screenshots
illustrating the routing of part
of a differential clock net (a)
design routed with the
proposed flow (b) design
routed with a conventional
single-ended flow
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Chapter 7
Design Example II: High-Speed
Multiplexer

7.1 Circuit Description

Due to their lower intrinsic delay when compared to CMOS circuits, MCML
circuit offer fast operating speed when operated at low CL/ISS ratio. In order to
demonstrate this, a relatively simple circuit is implemented. The proposed circuit
is a pipelined 2N -to-1 multiplexer, described by the RTL code featured on Listing
7.1 on page 152. The equivalent circuit schematic, is pictured in Fig. 7.1, consists
of a multiplexer tree with pipeline stages at each level of the tree. Since this circuit
has extremely short pipeline stages, it can run at very high speed. In addition, short
interconnections result in a significant part of the logic delay being due to the gate
internal delays. The speed of such a circuit will therefore be limited mostly by gate
delays and register setup times, as well as clock skew.

Such a simple circuit could clearly be handcrafted for maximum performance.
The use of an automated approach is nevertheless interesting in such a case, in
order to benefit from numerous advantages provided by a semi-custom design flow,
namely:

• the use of digital-specific tools such as static timing analysis, or clock tree
synthesis

• the easy and fast turnaround when design changes are required
• the seamless integration within a digital top-down design flow

7.2 MCML Cell Library

The minimal MCML cell library implemented for this design is optimized for high-
speed operation. The target technology is a 90 nm CMOS process with a metal stack
of nine layers, including six fine-pitch routing layers.
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1 //------------------------------------------------------------------------------
2 // Module : multiplexer
3 //------------------------------------------------------------------------------
4
5 module multiplexer
6 /** Parameters **/
7 #(
8 parameter N = 4 // log2 of the number of input channels
9 )
10 /** I/O Ports **/
11 (
12 // Inputs
13 input clk, // input clock
14 input [2**N-1:0] d_in, // input data (2**N bits)
15 input [N-1:0] sel, // select signal
16 // Outputs
17 output reg d_out // output data (1 bit)
18 );
19
20 // Signals
21 reg [2**N-1:0] d_in_t;
22 reg [2**(N-1)-1:0] d_p [N-2:0]; // data pipeline registers
23 reg [N-1:0] sel_t; // timed select registers
24
25 // Input data sampling
26 always @( posedge clk ) begin
27 d_in_t <= d_in;
28 end
29
30 // Multiplexer tree
31 generate
32 genvar k, l;
33 for( k = 0 ; k <= N-1 ; k=k+1 )
34 begin: mux_stage
35 // select pipeline
36 if ( k > 0 ) begin
37 reg [k-1:0] sel_p;
38 for( l=0; l<=k; l=l+1)
39 begin: sel_unit
40 if( l == 0 ) begin // first stage
41 always @( posedge clk )
42 sel_p[l] <= sel[k];
43 end else if( l < k ) begin // middle stage(s)
44 always @( posedge clk )
45 sel_p[l] <= sel_p[l-1];
46 end else begin // last stage
47 always @( posedge clk )
48 sel_t[k] <= sel_p[l-1];
49 end
50 end
51 end else begin /* k == 0 */
52 always @( posedge clk )
53 sel_t[k] <= sel[k];
54 end
55
56 // multiplexers
57 for( l=0; l<2**((N-1)-k) ; l=l+1 )
58 begin: mux_unit
59 if( k == 0 ) begin // first stage
60 always @( posedge clk )
61 d_p[k][l] <= sel_t[k] ? d_in_t[2*l+1] : d_in_t[2*l];
62 end else if( k < N-1 ) begin // middle stage(s)
63 always @( posedge clk )
64 d_p[k][l] <= sel_t[k] ? d_p[k-1][2*l+1] : d_p[k-1][2*l];
65 end else begin // last stage
66 always @( posedge clk )
67 d_out <= sel_t[k] ? d_p[k-1][2*l+1] : d_p[k-1][2*l];
68 end
69 end
70 end
71 endgenerate
72
73 endmodule /* multiplexer */

Listing 7.1 RTL description of the 2N -to-1 multiplexer
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Fig. 7.1 Equivalent circuit schematic for the 2N -to-1 multiplexer

Table 7.1 Summary of
parameters for the MCML
standard-cell library

Design parameters

Supply voltage 1.0 V

Voltage swing 400 mV

Unit tail current 250µA

Noise margin >20 mV

N bias voltage Nom. 650 mV

P bias voltage Nom. 240 mV

Layout parameters

Cell height 13.44µm

VDD /GND rail width 2.39µm

Load device size 1.8 × 0.08µm

Current source size 4.1 × 0.125µm

Routing pitch 0.28/0.42µm

7.2.1 Library Parameters

The process nominal supply voltage of 1 V has been used for the MCML cells,
resulting is small size for the PMOS load device and high operating speed. The
voltage swing is chosen to be as large as practical, in order to provide the highest
operating speed. In order to operate at low CL/ISS ratio, the unit tail current is
chosen as large as 250µA. Based on these parameters, transistor sizes are adjusted
through Monte-Carlo simulation in order to provide a worst-case noise margin of
about 20 mV. The library parameters are summarized in Table 7.1.
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7.2.2 Cell Selection

Due to the predictable implementation of the target circuit, a minimal set of cells
compose the cell library. These include buffers in three drive strength, mainly for
clock distribution, master–slave latch, and multiplexer in two drive strength. Two-
input AND and XOR gates were also implemented for completeness (Table 7.2).

7.2.3 Cell Characteristics

The resulting cell characteristics are compared with the equivalent cells from
a CMOS standard-cell library. Aiming at high speed operation, we are mostly
interested in the intrinsic gate delays, and setup time of the flip-flops. The respective
values are given in Table 7.3 for equivalent CMOS and MCML gates. Note that the
values given are indicative of the type of gate, while the actual value can vary with
the particular drive strength.

Table 7.2 Main functions in
the standard-cell library and
their drive strengths

Function Drive strengths

BUF 1, 2, 4

AND2 1, 2

DFF 1, 2

XOR2 1, 2

Table 7.3 Comparison of
MCML and CMOS gate
intrinsic delay

Gate Arc CMOS (ps) MCML (ps)

INV I → O 5.6–15.8 5.6

BUF I → O 19.8–50.7 5.6

NAND2
I1 → O 7.1–19.7 9.2

I2 → O 9.6–26.5 20.8

AND2
I1 → O 21.5–56.8 9.5

I2 → O 24.8–65.4 20.8

NOR2
I1 → O 10.8–30.0 9.5

I2 → O 14.1–41.6 20.8

OR2
I1 → O 33.8–88.0 9.5

I2 → O 36.1–96.6 20.8

XNOR2
I1 → O 16.7–44.2 5.8

I2 → O 22.9–65.7 24.7

XOR2
I1 → O 16.9–44.7 5.8

I2 → O 21.0–62.1 24.7

MUX2
D1 → O 44.2–122.6 12.5

D2 → O 42.7–122.8 12.5

SEL → O 44.8–139.4 23.7

DFF
CK → Q 64.7–175.5 31.4

Setup time 49.1–153.9 27.2



7.3 Implementation Results 155

Values for CMOS are given as minimum–maximum couples, based on the corner
cases for the process. The typical value is given for MCML gates, since the variation
of the delay due to process variations is negligible. It should be noted that the delay
of MCML gate can increase due to on-chip variations, and the variability of the
delay will be larger for smaller drive strengths. Monte-Carlo simulation with smaller
drive strength gates gives a relative standard deviation of about 5.2%, corresponding
to a worst-case (3σ ) delay about 16% higher than the nominal delay.

From the number given in Table 7.3, the speed advantage of MCML compared to
CMOS is clear. Gate delays are between one and five times lower for MCML gates
than for their CMOS counterparts, even when some margin is added to account for
the worst-case mismatch. This can be achieved by the use of a large unit bias current,
thus relatively large unit gate size, allowing to minimize the influence of intra-
cell wiring and diffusion parasitics. In addition, the use of low-VT transistors for
the PMOS load devices allows to reduce their size and associated drain parasitics.
Finally, note that the CMOS gates which are non-inverting incur a delay overhead
due to the need to integrate an inverter stage in the gate, which is not necessary with
MCML gates.

7.3 Implementation Results

Figure 7.2 displays the mask layout of the implemented MCML 16-to-1 multiplexer.
The circuit was synthesized from the RTL description, then placed and routed
according to the design flow described in the previous sections. A clock tree has
been synthesized so as to provide a low skew clock to the pipeline register and

Fig. 7.2 Layout view of the
implemented MCML
multiplexer
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Fig. 7.3 Post-layout SPICE-simulated functionality of the MCML encoder circuit. Results of 50
Monte-Carlo iterations (with random process variations and mismatch) are superimposed

Table 7.4 Implementation results of MCML multiplexer compared to the CMOS implementation

CMOS circuit MCML circuit

Supply voltage (V) 1.2 1.0

Max. clock frequency (GHz) 3 6

Power consumption (mW) 8.3 24

Area (mm2) 0.05 0.1

Cell count 106 76

maximize the operating frequency. During the complete flow, derating is used for
static timing analysis to account for delay variability due to on-chip variations. The
resulting circuit occupies a core area of 100 × 100µm2 and operates at a maximum
clock frequency of 6 GHz. The static power dissipation of the 76 gates in the circuit
adds up to 24 mW.

The circuit functionality was verified through SPICE simulations. Thanks to
the small size of the circuit, it is possible to run Monte-Carlo simulations with a
reasonably large number of vectors. Figure 7.3 shows the simulated output of the
circuit under 50 Monte-Carlo iterations. The variation in the voltage swing due to
on-chip variations can be observed, but it does not affect the operation of the circuits.

Table 7.4 compares the performance of the MCML multiplexer with that of the
same circuit implemented with a regular CMOS standard-cell library. The CMOS
implementation can only reach a maximum clock frequency of 3 GHz, that is, two
times slower than the MCML circuit (even though the CMOS circuit is operated at
a higher supply voltage of 1.2 V for maximum speed).



Chapter 8
Design Example III: Grain-128a Stream
Cipher

8.1 MCML for Cryptographic Applications

Due to higher and cheaper integration capabilities in semiconductor technologies,
most of the daily life needs started to be solved by electronic systems. The sharp
decrease of the cost of these microelectronic devices made the manufacturers pro-
duce quite attractive products for a large scale of customer segment and for different
markets, like consumer electronics, military, space, etc. This abrupt progression in
the microelectronic world also brought some problems with it. Since many of the
electronic devices (such as mobile phones, RFID tags, wireless payment systems,
etc.) have also the property of communication through common insecure mediums,
the clients started to share many of their personal data after being processed with
some complex security algorithms (encryption/decryption) with other users by using
individual secret keys.

Although the security algorithms are quite secure in the first release and have
strong mathematical proofs, many of them started to be mathematically broken
after some time. For the ones which cannot be mathematically broken for the
time being, physical hacking techniques (such as differential power analysis (DPA),
electromagnetic attack, laser attack, reverse engineering, etc.) are discovered and
used to extract the secure key which is stored inside the chip.

These hacking techniques (especially DPA and EM attacks) showed quite fast
and successful results for the cryptographic circuits which are implemented with
CMOS logic gates. Observation of the current consumption and radiation of the
chips led these techniques show positive results, mainly because of high dynamic
power consumption and high electromagnetic radiation properties of the single
ended CMOS logic.

Due to the fact that CMOS logic circuits cannot hide the signature during the data
process, new techniques and solutions were started to be searched for designing
more robust cryptographic circuits. The fact that the digital circuits which are
implemented with MCML gates have ideally no dynamic current consumption
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makes them interesting for security applications. Another interesting aspect of
MCML is that the radiation due to data transitions is much less due to the closely
coupled differential routing.

Considering the advantages explained above, a well-known cryptographic algo-
rithm called Grain-128a is implemented using the MCML standard cells to see the
differences and advantages on the CMOS implementation in terms of robustness
under attacks. During the implementation, it is also targeted to characterize the
switching noise performance of MCML gates by exploring their analog behaviors.

8.2 Circuit Description

In the digital world, cipher is an algorithm that takes a number of data bits (plain
text), performs encryption and decryption to prevent them to be understood by
anyone. The encryption and decryption are performed with a key which consists
of M bits. There are two different types of ciphers [3] which are Block Ciphers and
Stream Ciphers:

(a) Block Ciphers: A fixed number (N ) of plain text bits are processed (encrypt-
ed/decrypted) in one cycle of the algorithm in a parallel manner (Fig. 8.1a). One
cycle is usually more than one clock period.

(b) Stream Ciphers: The data bits are serially processed (encrypted/decrypted) in
one cycle of the algorithm (Fig. 8.1b). One cycle is usually one clock period.

Grain-128a [1] is actually a new version of Grain-128 [2] with some plug-ins.
The main purpose of Grain-128 and Grain-128a is to generate a bitstream (which is
called keystream) which is pseudo-random. The main components of Grain-128 are
two 128-bit shift registers (Fig. 8.2). The inputs of the shift registers are determined
by some feedback functions. These feedback functions are combinational Boolean
logic functions and their inputs are some specific bits of the shift registers. The
names of the shift registers depend on the fact that whether their feedback functions
are linear or nonlinear. Linear feedback functions are completely composed of XOR
gates. If this is not the case, the feedback function is nonlinear. Therefore, the
registers are called linear FSR (LFSR) and nonlinear FSR (NFSR). The contents
of the LFSR are denoted by si , si+1, . . . , si+127 where the subscript i denotes the
quantization time. In the same manner the contents of the NFSR are denoted by bi ,
bi+1, . . . , si+127.

Block Cipher
Plain 
Text

N

M

Key

Cipher 
Text

N

(a)

Stream Cipher
Plain 

Text Bit

M

Key

Cipher 
Text Bit

(b)

Fig. 8.1 (a) Block cipher, (b) stream cipher
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Fig. 8.2 Block diagram of Grain-128a algorithm

The next input of the LFSR is determined by the f function with the relation
below:

fi = si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96 (8.1)

The next input of the NFSR is determined by the g function with an additional
XOR operation with the relations below:

gi = bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13

+bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

+bi+22bi+24bi+25 + bi+70bi+78bi+82 + bi+88bi+92bi+93bi+95 (8.2)

bi+128 = si + gi (8.3)

Finally, the keystream which is denoted by yi is determined by the h function
and some more XOR operations:

hi = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79si+94 (8.4)

yi = hi + si+93 + bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89 (8.5)

The encryption and decryption are performed simply by applying the plain text
and the keystream to a 2-input XOR logic gate.

ei = mi+ yi Encryption (8.6)

di = ei+ yi Decryption (8.7)
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In Eqs. (8.6) and (8.7) mi is the plain text, ei is the cipher text, and di is the
decrypted data. In case of no error di should be equal to mi .

Before generating the keystream, the contents of LFSR and NFSR should be
loaded and the system should be initialized. The NFSR bits are loaded with 128-bit
key. The first 96 bits of the LFSR are loaded with initialization vector (IV) bits. The
last bit of the LFSR is loaded with 0 and the remaining bits are loaded with 1.

bi = ki for 0 ≤ i ≤ 127 NFSR Load (8.8)

si = IVi for 0 ≤ i ≤ 95

si = 1 for 96 ≤ i ≤ 126 LFSR Load

si = 0 for i = 127 (8.9)

After the content of the LFSR and NFSR are loaded, the system is clocked 256
times. This phase is called initialization and during this phase the content of y is
also XORed with the f and g functions.

Grain-128a algorithm provides two different modes of operation: with and
without authentication. This is determined depending on the first value of the IV;
if it is 1, authentication is performed; if not, it is forbidden.

8.2.1 Authentication

In the authentication case, two 32 bit registers are used. These are called accumu-
lator and shift register. Let’s denote the content of accumulator by a0

i , a1
i , . . . , a31

i

and shift register by ri , ri+1, . . . , ri+31 at time i. These registers are loaded during
the start of the operation, just after initialization. For the first 32 clock cycle,
accumulator is loaded by the content of y and for the next 32 clock cycle, shift
register is loaded by the content of y according to

a
j

0 = yj for 0 ≤ j ≤ 31 Accumulator Load (8.10)

ri = y32+i for 0 ≤ i ≤ 31 Shift Register Load (8.11)

In case of authentication, the accumulator is updated as

a
j

i+1 = a
j
i + miri+j (8.12)

The operation ends with the end of the input message (plain text). The final
content of the accumulator is called tag and it is used for authentication.
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8.2.2 Key Stream Generation

For both of the cases (with and without authentication) the key stream is generated
but with different ways. The cases are shown below:

ki =
{

y64+2i with authentication

yi without authentication
(8.13)

8.2.3 Output Rate

It can be seen from the feedback and output functions that the last 32 bits of LFSR
and NFSR are never used. This is intentionally done to provide more options for
higher data rates (×2, ×4, ×8, ×16 and ×32). It is possible to increase the number
of keystream bits per one cycle by only adding additional feedback functions and
using the same shift registers.

8.3 MCML Cell Library

The ×2 option of Grain-128a block was implemented with the semi-custom design
approach. The implementation is made with 0.18µm bulk CMOS technology. The
desired clock frequency is set to 780 kHz. For having the optimum design at the
given clock frequency, an MCML standard cell library is designed.

8.3.1 Library Parameters

In the beginning of the standard cell design, the tail current for the weakest gate
(with ×1 drive strength) was calculated to be at least 6.25 nA. After the post layout
simulation, it was observed that the minimum current needed for 780 kHz operation
is needed to be 6.8 nA with 9% error. Therefore, the tail current for the weakest gate
(×1) is set to 6.8 nA, and the swing voltage is set to 250 mV. Finally, a minimum
supply voltage of 0.7 V is obtained.

8.3.2 Cell Selection

For decreasing the logic depth and number of the gates, some complex logic
functions are needed in a single gate. For that, a special standard-cell library is
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designed which contains different gates with various functions, D-flip flops, and
latches. Each gate has six different drive strength options ranging from ×1 to ×32
with the multiples of two. The library contains the following logic functions:

• Inverter/Buffer
• AND2
• XOR2
• 2 to 1 Multiplexer
• AND3
• XOR3
• F9 (XOR2 and AND2 together)
• Latch with Reset
• D Flip Flop with Reset

For having six different drive strengths with a unique bias voltage for the current
sources and the loads, it is needed to have six different loads and current sources.
The most reliable way to implement the current sources and the loads for the gates
with strong drive strengths is to provide multiple finger devices. For example, if
the current source in the replica bias circuit has a single device, then the gate with
×32 drive strength option has to have 32 fingers for providing the desired speed.
However, this solution increases the size of the strong gates significantly. Therefore,
it is decided to have two different replica bias circuits where the first one is uniquely
used for the gates with ×1, ×2, ×4 drive strengths and the second one is used for
the ×8, ×16, ×32 options. That way, the size of the three strongest gates (×8, ×16
and ×32) is decreased approximately by 8. Moreover, for the implementation of
these gates, the ×1, ×2 and ×4 drive strength gates are used only by changing their
current source and load bias voltage inputs.

8.3.3 Cell Characteristics

The noise margin histograms, NMH-NML scatter plot, their standard deviation and
mean values are shown for a ×4 buffer/inverter gate in Fig. 8.3a–d. The plotted
values are obtained by performing a Monte Carlo simulation of 1000 runs. The
swing voltage is set to 250 mV and the tail current is equal to 25 nA. It can be seen
from the scatter plot that the worst case noise margin is more than 35 mV. The noise
margin performance can also be examined by plotting the butterfly curve of the
logic gate and measuring the dimension of the maximum size square that can be
placed inside the opening. The butterfly curve for the same logic gate can be seen in
Fig. 8.4 where the family of transfer curves are plotted by performing a Monte Carlo
simulation of 1000 runs. It can be seen that a square with a side length of 6 mV can
be placed inside the openings.
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Fig. 8.3 (a) NMH histogram, (b) NML histogram, (c) NM histogram, (d) NMH-NML scatter plot
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Fig. 8.4 Transfer curves of an inverter to measure the noise margin under variations; 0.18µm
technology, VSW = 250 mV, ISS = 25 nA
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Table 8.1 Sizes of the devices in the gates

Load Diff pair Cascode device Current source

W (µm) 0.6 0.7 0.3 0.7

L (µm) 1.55 0.3 0.2 1.87

Table 8.2 The area [in µm2] (and the number) of the gates that are used for implementing the
functions in Grain-128a

×1, ×8 ×2, ×16 ×4, ×32

BUF 62.4 (4) 78.0 (5) 93.6 (6)

AND2 62.4 (4) 78.0 (5) 109.2 (7)

XOR2 78.0 (5) 78.0 (5) 109.2 (7)

MUX2 93.6 (6) 109.2 (7) 124.8 (8)

AND3 78.0 (5) 93.6 (6) 124.8 (8)

XOR3 93.6 (6) 109.2 (7) 140.4 (9)

F9 93.6 (6) 109.2 (7) 124.8 (8)

Latch 93.6 (6) 109.2 (7) 124.8 (8)

DFF 156.0 (10) 171.5 (11) 187.1 (12)

8.3.4 Cell Layout

The layouts of the MCML standard cells are designed compatible to an already
existing static CMOS standard-cell library where the pitch of the static CMOS
library is used. The height of the MCML cells is set to 13.68µm (three times the
height of the cells in the CMOS standard-cell library) and the routing pitch is set to
1.14µm (two times the routing pitch of the CMOS standard cells). The sizes of the
devices inside the gates are shown in Table 8.1. The area of each cell with different
drive options can be seen in Table 8.2. The number of the horizontal pitches that
are occupied is written inside the parentheses. Some layout examples can be seen in
Figs. 8.5 and 8.6.

8.4 Implementation Results

8.4.1 Comparison of MCML and CMOS

After the optimizations of the combinational logic, the logic depth of Grain-128a is
decreased to 5 for the MCML implementation. The number of the gates used for the
implementations of the feedback functions f , g, the output function h and y can be
observed in Table 8.3.

Table 8.4 shows the number of the gates used to implement the core of the Grain-
128a which includes the blocks shown in Fig. 8.2 and excludes the authentication
part. The gate count summary for the authentication block can be seen in Table 8.5.
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Fig. 8.5 Layouts of AND2 MCML gates for all different drive strengths; 0.18µm technology. (a)
×1 and ×8, (b) ×2 and ×16, (c) ×4 and ×32

Fig. 8.6 Layout of DFF for
×4 or ×32 drive strengths
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Table 8.3 Number of the gates that are used for implementing the functions in MCML Grain-128a

AND2 AND3 XOR2 XOR3 F9 Total

f 2 1 3

g 4 2 1 4 6 17

h and y 1 4 4 9

Total 4 5 1 9 10 29

Table 8.4 Number of the gates that are used for implementing the core block of MCML Grain-
128a

AND2 AND3 XOR2 XOR3 F9 DFF Total

Functions 8 10 2 18 20 58

NFSR 128 128

LFSR 128 128

Other 2 4 4 4

Total comb. 8 10 4 18 24 64
Total seq. 260 260

The overall gate count of the Grain-128a MCML block can be seen in Table 8.6.
The layout of the Grain-128a MCML block can be seen in Fig. 8.7. The area of

the block is 300.3µm × 264.9µm = 79,544.2µm2. The number of the gates can
be seen in Table 8.7.

Grain-128a is also implemented with a static CMOS standard-cell library in
180 nm CMOS technology for comparing the performances of two designs. The
summary of the resource utilization can be seen in Table 8.7.

Table 8.5 Number of the
gates that are used for
implementing the
authentication block

F9 DFF

Shift register 32

Accumulator 32

Logic 32

Total 32 64

Table 8.6 Number of the
gates that are used for
implementing Grain-128a

Logic DFF

Core 64 260

Authentication 32 64

Total 96 324
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Fig. 8.7 Layout of Grain-128a MCML block with the indicated sub-blocks

Table 8.7 Number of the
gates that are used in the
CMOS implementation of
Grain-128a

Core only The rest Total

BUF 17 17

INV 9 68 77

AND2 2 2

OR2 1 1

NAND2 26 32 58

NAND3 6 6

NAND4 2 2

NOR2 1 1

XNOR2 68 2 70

AND2-OR2 32 32

OR2-NAND2 4 4

2OR2-NAND2 31 31

3OR2-NAND3 32 32

DFF 256 68 324

Comb 117 216 333
Seq 256 68 324

The area of the CMOS implementation is 194.5µm ×194.6µm = 37,849.7µm2

and the core density is 81.5%. Figure 8.8 shows both MCML and CMOS imple-
mentation layouts together for comparison and Table 8.8 gives a comparison



168 8 Design Example III: Grain-128a Stream Cipher

Fig. 8.8 Layouts of CMOS (on the right) and MCML (on the left) implementations of Grain-
128a×2

Table 8.8 Performance comparison of the MCML and CMOS implementations of Grain-128a×2

MCML CMOS MCML vs CMOS (%)

Area (µm2) 79,544 37,849 48

Core density 92 81.5 113

Minimum supply voltage (V) 0.7 0.9 129

Current consumption (µA) 28.7 7.73 27

Power consumption (µW) 20.1 6.96 35

Critical path delay (ns) 1250 2.4 0.2

Frequency (kHz) 800 800 100

Power delay product (pJ) 25.13 8.7 35

Area delay product (mm2 ns) 99.43 47.31 48

Number of registers 324 324 100

Number of gates 96 333 347

Glitch (Δ current) (µA) 7.5 18,000 240,000

of the MCML and the CMOS implementation of Grain-128a×2. The rightmost
column shows how better the MCML implementation is with regard to the CMOS
implementation. The area of the MCML implementation is around two times the
CMOS implementation. The greater area in MCML implementation is an expected
result since the MCML gates occupy four to six times greater area than the CMOS
gates. However, the area ratio of the overall implementations is clearly smaller than
the area ratios of the MCML and CMOS gates. This is mainly due to the fact
that complex MCML gates are capable of decreasing the logic depth and the total
number of the gates in an implementation which is a clear result and can also be
seen in Table 8.8.
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Fig. 8.9 The power supply current consumption waveform of the MCML implementation of
Grain-128a×2

Fig. 8.10 The power supply current consumption waveform of the CMOS implementation of
Grain-128a×2

Finally, the power supply current consumption of the MCML and the CMOS
implementations of Grain-128a×2 can be seen in Figs. 8.9 and 8.10. It can be seen
that the difference between the maximum and the minimum points on the current
consumption waveform is around 7.5µA for the MCML implementation. Whereas
in the CMOS implementation, the difference of the peaks is 24 mA. It can seen that
the current variations between MCML and CMOS cases are quite different which
show the superiority of MCML against CMOS in terms of hiding the signature and
the activity of cryptographic circuits.
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Chapter 9
Design Example IV: Advanced
Encryption Standard (AES)

9.1 Circuit Description

MOS Current Mode Logic (MCML) is one of the most promising logic styles to
counteract power analysis attacks as it has been already discussed in the previous
chapter. Unfortunately, the static power consumption of MCML standard cells is
significantly higher compared to equivalent functions implemented using static
CMOS logic. As a result, the use of such a logic style is very limited in portable
devices. Paradoxically, these devices are the most sensitive to physical attacks, thus
the ones which would benefit more from the adoption of MCML. To overcome this
limitation, the static power consumption of MCML-based cryptographic circuits
must be drastically reduced in these devices. Interestingly, very often, cryptographic
functions included in embedded devices are inactive over a long period of time,
hence they can be switched off when there is no activity. Power Gated MCML
(PG-MCML), a technique for implementing MCML standard cells which contain
a sleep transistor in every cell, is an appropriate candidate for implementing low
power consumption cryptographic blocks in MCML. Therefore a cryptographic
block implementation by using a PG-MCML library might provide similar power
consumption performance as CMOS while having a more robust performance in
terms of security.

Some examples of PG-MCML can be found in the literature. An appealing target
for PG-MCML is represented by the DPA-resistant instruction set extension (ISE)
proposed in [6, 7]. In these works, the authors proposed to augment a processor,
realized with conventional standard cell libraries, with additional functional units
(in the form of custom instructions) implemented in a logic style robust against
power analysis attacks. Considering the relevance of such an example, the same
approach is used to evaluate the power consumption of PG-MCML.

During this implementation, a software implementation of the AES algorithm [5]
is used. The OpenRISC 1000 [4] 32-bit embedded processor with a custom
functional unit is designed, sitting in the processor’s pipeline, consisting of four
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identical S-boxes (each S-box is implemented in the form of 8 × 8 look-up-table)
to match the processor’s word size. The new custom instruction is labeled S-box
ISE. Both the processor and the custom instruction are available as RTL code.
The RTL code is synthesized, placed, and routed three different versions of the
considered core. In all cases, the processor was realized using the reference static
CMOS technology, a 90 nm commercial standard cell library, while the protected
instruction was implemented in three different cases which are (1) using the same
conventional CMOS technology, (2) the conventional MCML, and (3) the PG-
MCML, respectively.

The custom functional unit implemented with differential cells was connected to
the processor by means of voltage level converters and it appears in the processor’s
layout as a macro block. The full design was synthesized, placed, and routed
setting 400 MHz as operating frequency (to meet the speed requirement of modern
embedded systems).

9.2 MCML Cell Library

The MCML cell library implemented for this design and described in this section
targets a 90 nm CMOS process, with 1.0 V supply voltage. The library is designed
by including the power gating property to the MCML cells.

9.2.1 Standard Cell Design with Power Gating

Power gating [3] is a technique which reduces the static power consumption
of a digital circuit by inserting power switches (sometimes referred to as sleep
transistors) in the supply path. To implement this technique, two solutions have
been proposed in the past: coarse-grain power gating, in which complete blocks
are disconnected from the power supply and the ground through a common power
switch, and fine-grain power gating, in which every standard cell contains a sleep
transistor internally.

In conventional static CMOS circuits, the use of fine-grain power gating causes
a significant area overhead and negatively affects performance. For this reason,
coarse-grain power gating is the preferred approach for static CMOS. On the
contrary, the insertion of a sleep transistor in each MCML cell introduces negligible
power overhead. Also, the switching speed is not directly affected by the sleep
transistor since it is located outside the signal path. Therefore, in the designed
library, fine-grain power gating is implemented, which suits better the needs of
MCML cells. Moreover, a fine-grain power gating allows to selectively switch
off each standard cells depending on the circuit topology: this step can be easily
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Fig. 9.1 Different power gating techniques for MCML circuits

Table 9.1 Area comparison
between conventional MCML
and PG-MCML standard cells
in 90 nm CMOS technology

Cell MCML (µm2) PG-MCML (µm2)

BUFX1 7.056 7.448

MUX4X1 19.7568 20.8544

AND4X1 16.9344 17.8752

DLX1 8.4672 8.9376

automated during the synthesis process, using an approach similar to automatic
clock gating. However, it should be taken into account that many of the existing
synthesis tools currently do not offer the capabilities of fine-grain power gating.

Different power gating topologies for MCML standard cells are depicted in
Fig. 9.1. The solutions (a) and (b) use a transistor to pull down the bias voltage Vn

to ground during the sleep mode. Solution (c) applies just an ON signal to the gate
of the current source and connects the bulk voltage to the bias voltage Vn. Option
(d) consists of an additional sleep transistor in series with the current source.

Indeed, solution (a) was discarded since it requires the use of a large bandwidth
source follower amplifier to settle the output voltage to Vn within a single clock
cycle. Option (b) slightly improves option (a). However, this solution was discarded
too, since it requires the insertion of two transistors per cell. Solution (c) relies on
the body-biasing principle and modulates the bias current adjusting the threshold
voltage. However, to ensure a correct functionality in all the process corners, the
voltage Vn needs to range from −500 mV to 1 V. Such voltage is difficult to obtain
in practice. In addition, the current source is sitting in a separate well. This solution
leads to a significant area overhead. For all the above reasons, solution (d) is
selected. It can be seen from Fig. 9.1 that the sleep transistor is located on top of the
current source. Thanks to this choice, the sleep transistor has a negative VGS voltage
during power down, decreasing the leakage current. Due to its superiority against
the other solutions, solution (d) is used for implementing the PG-MCML standard
cell library. Table 9.1 shows the silicon area of MCML gates with and without sleep
transistor. On average, the cells with sleep transistor are approximately 6% larger
than conventional MCML gates.
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9.2.2 Cell Selection

The PG-MCML library proposed in this work is based on the standard cell design
methodology explained in the previous chapters. To demonstrate the benefit of
power gating on a real circuit a relatively small library is designed, including 16
cells including the latches and the buffers. Nevertheless, it is worth to mention
that an increased number of cells would positively affect the results because of the
higher flexibility offered during synthesis, placement, and routing. The list of the
implemented logic functions is listed below:

• Inverter/Buffer
• Differential to Single Ended Converter
• 2-Input AND
• 3-Input AND
• 4-Input AND
• 2 to 1 Multiplexer
• 4 to 1 Multiplexer
• 3-Input Majority
• 2-Input XOR
• 3-Input XOR
• 4-Input XOR
• D-Latch
• D Flip Flop
• D Flip Flop with Reset Input
• D Flip Flop with Enable Input
• Full Adder

The internally developed PG-MCML library is specifically optimized for area
and power, and the switching speed of the PG-MCML cells is similar to the one
of their CMOS counterparts implemented on the same technology. As previously
mentioned, the main target application is security, with particular emphasis on
battery operated embedded systems which need to be robust against power analysis
attacks.

The main difference between an MCML standard cell which includes a sleep
transistor and its conventional counterpart is that, in the former, the minimal supply
voltage and the current source are slightly increased. Finally, to minimize the layout
area, the sleep transistor and the current source are sized with the same channel
width to share the same diffusion region.

9.2.3 Cell Characteristics

The PG-MCML library is designed using a 90 nm CMOS process. To improve
timing, area and power each cell is implemented using a combination of low-Vt and
high-Vt transistors. Indeed, high-Vt devices can reduce the leakage current during
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Fig. 9.2 Delay and area delay trade-off for an MCML inverter driving FO1 and FO4 loads

sleep mode without affecting the cell delay, thus high-Vt devices are selected for the
NMOS Boolean network, the current source and the sleep transistor. Low-Vt devices
are used for the PMOS load, since this approach leads to the smallest silicon area.
Furthermore, smaller active loads have less parasitic and thus they lead to higher
speed. To determine the optimal bias current ISS , it is explored how the cell delay
and the power consumption vary in function of the tail current. Figure 9.2a depicts
the delay for an MCML buffer/inverter driving FO1 and FO4 loads. Interestingly,
increasing the bias current above 250µA provides a limited speed improvement
with a large penalty in cell area. Figure 9.2b depicts the power delay product under
different bias conditions. The simulation based evaluation revealed a minimum area
delay product at 50µA.

Table 9.2 shows area and delay for the cells belonging to the PG-MCML library.
An area comparison between equivalent cells in a commercial 90 nm standard cell
library is also provided. PG-MCML cells are 1.6 times larger in average. To the best
of our knowledge, this is the smallest area overhead measured for a power analysis
resistant library so far. Figure 9.3 depicts the schematic and the layout view of a
buffer cell belonging to the PG-MCML library. Both driving strengths one and four
are shown.

The cells are designed to support fine-grain power gating. Theoretically, in
a design, there are several power gating opportunities which could be detected
automatically and exploited during synthesis. However, since modern synthesis
tools are specifically designed for conventional CMOS libraries, they do not support
fine-grain power gating. Due to this limitation, the sleep transistor is manually
connected. For fine-grained power gating applications, each individual sleep input of
all cells in a cluster can be driven collectively, provided that the signal is sufficiently
buffered.

The design flow used for PG-MCML is based on commodity EDA tools for
synthesis, placement, and routing. Synopsys Design Compiler is used for synthesis
and Cadence Encounter Digital Implementation for placement and routing. The
last step exploits the fat-wire approach [1], which ensures that both wires of a
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Table 9.2 Area and delay characteristic of the PG-MCML library

Cell Area (µm2) Delay (ps) MCML area/CMOS area

Buffer 7.448 23.97 2.4

Diff2Single 8.9376 80.41

AND2 8.9376 41.34 1.9

AND3 13.40641 68.74 2.1

AND4 17.8752 99.96 2.8

MUX2 8.9376 43.58 1.2

MUX4 20.8544 87.11 1.2

MAJ32 17.8752 82.32

XOR2 8.9376 44.26 1.1

XOR3 17.8752 84.37 1.1

XOR4 20.8544 109.68 1.1

D-Latch 8.9376 36.32 1.3

DFF 17.8752 53.4 1.3

DFFR 26.8128 69.33 1.8

EDFF 23.8336 63.53

FA 35.7504 84.49 1.4

VDD

VO− VO+

A−A+ TnDIFF1

VP TpL

TnST

TnCS

VSS

Low VT High VT

VN

Sleep

Fig. 9.3 Schematic and layout views of a PG-MCML buffer with drive strength X1 and X4. The
bias transistor is laid out close to the ground rail while PMOS load transistors are placed below
the power rail. The sleep transistor is located next to the bias transistor for minimal silicon area.
Intra-cell routing is limited to Metal-1 to facilitate inter cell routing using upper metal layers

differential signal are routed side by side (to have the same delay and load). In order
to switch off and on the controlled logic in a fraction of the clock cycle (in the order
of few ns), the sleep signal, managing the power gating, should be buffered.
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In practice, to control skew and propagation delay from the root to the individual
sleep input of all cells in a cluster, the sleep signal is routed and buffered as a
balanced tree. Also, single ended clock buffers are used to route it with a controllable
insertion delay. To integrate such cells with the PG-MCML library, static CMOS
buffer/inverters with the same height as the PG-MCML cells are designed and
characterized. The clock tree synthesis (CTS) engine available in the place and route
tool is used to synthesize the buffer tree and route the sleep signal. In this way, it
would be possible to exploit capabilities already existing in digital design tools.

9.3 Implementation Results

Detailed simulations were performed for observing the ability of the implemen-
tations to hide the signature during cryptographic operation. For that, a software
implementing the AES cipher was repeatedly executed 5000 times using a random
plain-text. The full AES algorithm was simulated with a logic simulator (Mentor
Graphics Modelsim) using the post place and route netlist and the delay back
annotation (in SDF format) as input.

For such a benchmark, the S-box ISE under evaluation was active 0.01% of
the whole execution time. The signal triggering the custom instruction’s execution
controls also the sleep signal, so that the protected logic is turned on only during
the custom instruction execution. The sleep signal is shared among all the cells that
compose the custom instruction and its insertion delay is approximately 1 ns. This
allows to turn on the custom instruction in a small fraction of the clock period and to
process the data within the same cycle. The circuit’s functionality has been verified
in simulation.

The custom instruction’s inputs, stored in VCD format, are then used to run
transistor level simulations (using Synopsys Nanosim as fast SPICE simulator) to
monitor the custom instruction’s current consumption. Figure 9.4 depicts the current
waveform of the S-box ISE realized with conventional MCML (dashed line) and the
one realized with the designed PG-MCML library (solid line). The clock and sleep
signals are also depicted. It can be seen how the power gating allows to significantly
decrease the power consumption: the current drawn by the conventional MCML
circuit is always flat (around 30 mA), while the current absorption of the power
gated S-box ISE is almost negligible when encryption is not performed (sleep signal
low).

The overall results are summarized in Table 9.3, which reports the area, the
gate occupation, the delay, and the power consumption for the considered S-box
instruction set extension implemented in three different logic styles. The average
power consumption of PG-MCML is significantly lower compared to the one of
conventional MCML (reduced by a factor or 104). Also, it can be noticed that
PG-MCML consumes four times less power than CMOS. This data should not
suggest that PG-MCML is less power hungry than static CMOS logic, since when
power gating techniques are applied to CMOS, the power consumption of this
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Fig. 9.4 Current waveform for S-box ISE with and without power gating implemented. The sleep
signal waveform for the power gated implementation is also plotted

Table 9.3 Area, delay, and power consumption on the S-box ISE implemented in different logic
styles

CMOS MCML PG-MCML

Cells 3865 2911 3076

Area (µm2) 30,547.52 77,378.97 78,355.21

Delay (ns) 0.630 0.698 0.717

Avg power (W) 207.72×10−6 490.56×10−3 47.77×10−6

technology is significantly reduced. The fact that the power consumed by PG-
MCML is comparable to the one of static CMOS without power gating is still
important, since it proves that when power gating is used, MCML represents an
appealing option. Finally, it can be seen that the area overhead necessary to support
the sleep signal is negligible (the PG-MCML is roughly 1000µm2 larger compared
to conventional MCML).

Considering the specific application field, the robustness against power analysis
attacks of the PG-MCML library is also carefully evaluated. To evaluate the security,
the commonly accepted reduced version of the AES algorithm composed by a key
addition and an S-box look-up-table was synthesized, placed, and routed. Each
implementation was realized using three different technologies: the reference static
CMOS, the conventional MCML, and the PG-MCML. For all of them, SPICE
simulations are performed to extract the instantaneous current of all possible plain-
text secret key pairs, using very high resolution both for current (1µA) and time
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(1 ps). Finally, all the implementations were repeatedly attacked using as power
model the Hamming weight of the S-box output [2]. More in detail, a typical
power analysis attack [2] consists of selecting as target an intermediate key
dependent result, encrypting a certain number of known plain-texts and measuring
the corresponding power consumption, calculating hypothetical intermediate values
based on a key guess and evaluating the guess over the power consumption. The
correlation between the collected power traces and the various key hypothesis will
show a peak in correspondence to the correct key, while for all the other key guesses
it is close to zero.

As expected, all the attacks on the CMOS implementations were successful,
while none of the ones performed on conventional MCML as well as on PG-MCML
were able to reveal the secret key. In fact, as it can be seen from Fig. 9.5, which
reports an example of correlation power attack (CPA) on PG-MCML, the secret
key, plotted in black, is not distinguishable from all the other key guesses plotted
in light gray. The experiments showed that the security level achievable using the
proposed PG-MCML is comparable to the conventional MCML, thus the insertion
of the sleep signal does not introduce a negative effect on robustness against power
analysis attacks.

Fig. 9.5 Correlation power attacks to PG-MCML: the black line, corresponding to the secret key,
is not distinguishable
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Chapter 10
Conclusions

The main goal of this work has been to investigate the implementation of complete
digital blocks in MOS Current-Mode Logic (MCML) with a standard-cell method-
ology, using existing frameworks as much as possible.

Though MCML had been studied previously, one contribution of this work is
a new, extended, analytical model for MCML logic gates that takes into account
the weak-inversion behavior of MOS transistors. This model is shown to be more
accurate than existing models, and fundamental limits of the voltage swing due to
weak-inversion behavior are derived.

In the aim of developing a standard-cell library in MCML, a systematic analysis
of MCML logic gates based on a physical analogy with binary decision diagrams
has been presented, and used to derive an exhaustive list of possible MCML gate
implementation up to three levels of stacked logic stages.

From the library to the implementation, several issues are addressed to adapt
the existing automation tools and design flow to suit the specificities of MCML
circuits. Specifically, the differential nature of the signals is hardly supported by
any existing tools for digital IC implementation, and part of this work is devoted
to bringing solutions to enable to take full advantage of differential signaling in an
automated way. This includes the creation of a number of custom automation tools
to fill the gaps during the library characterization, logic synthesis, and placement
and routing steps. These tools were created with the hope that they could be reused,
thus a particular accent has been put on keeping them as generic and easy-to-use as
possible.

Finally, an implementation of a library of MCML standard cells in a 0.18µm
CMOS technology is presented. Using the proposed design methodology, this
library is used to redesign an existing CMOS digital block devoted to analog-to-
digital applications, a mixed-signal environment where the low-noise properties of
MCML cells potentially represent an important benefit.
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The resulting circuits are compared to the original implementation, and it is
shown that, while the MCML circuit consumes more power, it is able to achieve
the target clock frequency of 1GHz, requiring little more silicon area and reducing
the generated supply noise by more than one order of magnitude.

10.1 Future Work

The higher power consumption of the MCML logic style certainly represents an
obstacle to its use in highly complex logic circuits. The static power consumption
in each gate renders MCML circuits much less power-efficient than conventional
CMOS circuits especially when the activity factor is low.

Several areas could be investigated in order to reduce the power consumption of
MCML circuits. First, the use of lower threshold voltages has been proved to allow
an increase of the speed in MCML circuits. The use of lower threshold voltages
could also enable lowering of the supply voltage, allowing to substantially decrease
the power consumption. One main issue when scaling the supply voltage is the
linearity of the pull-up devices, and investigating new types of load devices could
be an interesting area of research.

Another approach to reduce the power consumption is dynamic power manage-
ment. At the circuit level, dynamic voltage and frequency scaling is an efficient
technique to reduce the power consumption by reducing the operating speed of parts
of a circuit when full-speed operation is not necessary. When the operating speed
is reduced, the power supply voltage can also be reduced, resulting in substantial
power savings. However, in classical circuits, the generation of several supply
voltages necessitates the implementation of costly on-chip voltage regulators. In
contrast, the power-speed tradeoff in MCML circuits is inherently and easily
controllable through the bias voltages: both speed and power vary linearly with the
bias current. With the controllable current consumption, the supply voltage can be
kept constant, eliminating the need for voltage regulation. Thus, the integration of
dynamic power management units in MCML circuits could be an attractive way to
enhance the power efficiency.

Another interesting area of application for MCML is cryptographic circuits.
Differential power attack (DPA) is an efficient way to discover secret information in
secure circuits, and thanks to their superior noise performance, MCML gates inher-
ently leak few information about the state of the circuit through the power supply.
Yet, MCML circuits could certainly be made more secure by a deeper understanding
of the noise production mechanisms and appropriate counter-measures.



Appendix A
Large-Signal Transitional Model of the
MOS Differential Pair

In most of the cases, the large-signal operation of the differential pair cannot be
analyzed accurately by considering a single mode of operation for the transistors—
the exception being when it is operated in deep weak-inversion, over a range of
currents where the subthreshold exponential ID − VG relationship holds with good
accuracy. When biased in strong (or moderate) inversion, the strong-inversion model
will only remain valid as long as the gate-to-source voltages of both transistors
remain large enough compared to VT , or equivalently as long as the current remains
high enough in both branches. This is the reason why a strong-inversion model can
correctly predict the behavior of the differential pair in the central region of the
transfer characteristic, which is close to linear, but fails to accurately model the
regions where the curve is bending.

Modern transistor models provide continuous, transregional equations for the
drain currents. In particular, in the EKV MOSFET model, the weak- and strong-
inversion regimes are considered separately, and a continuous expression is derived
by defining an inversion coefficient, which reflects the operating state of the device,
and using a smooth interpolation function of this coefficient which asymptotically
tends towards the weak- and strong-inversion expressions, respectively, when
ID −→ 0 and when ID −→ ∞. We will use the same approach to bridge two
expressions in weak- and strong-inversion.

Let us assume that, using a given model for a transistor in strong inversion, the
transconductances can be expressed as a function of the drain current as gm(strong) =
gs (ID). Furthermore, let us assume that, in weak inversion, the transconductance is
given by gm(weak) = gw (ID). Now let us build a continuous expression for the
transconductance which asymptotically tends toward gw when ID → 0, and to gs

when ID → ∞, which is shown by (2.18). This interpolation is valid under the
assumptions that gw/gs → ∞ when ID → ∞, and gw/gs → 0 when ID → 0,
which hold for MOSFETS. This is graphically represented on Fig. 2.5.

Then, since gm = dID/dVG, we can obtain VG by integrating 1/gm according
to (2.19). Now let us calculate the Vid − ΔI relationship for the differential pair
using this expression of VG
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Vid = VG (I1) − VG (I2)

= [VG(strong) (I1) − VG(strong) (I2)
]+ [VG(weak) (I1) − VG(weak) (I2)

]
= Vid(strong)(ΔI) + Vid(weak)(ΔI) (A.1)

where Vid(strong) and Vid(weak) are the Vid − ΔI transfer curves for the differential
pair in strong and weak inversion, respectively. The overall transconductance gmd is
therefore given by

gmd =
(

∂Vid

∂ΔI

)−1

=
(

1

gmd(strong)

+ 1

gmd(weak)

)−1

= gmd(weak) · gmd(strong)

gmd(weak) + gmd(strong)

(A.2)

At equilibrium,

gmd,0 = 1
1

gmd,0(weak)
+ 1

gmd,0(strong)

(A.3)

With this definition, we can normalize the relationship

Vid

gmd,0

ISS

= (1 − δ) ·
[
Vid(strong)

gmd,0(strong)

ISS

]
+ δ ·

[
Vid(weak)

gmd,0(weak)

ISS

]

(A.4)

where

δ = gmd,0(strong)

gmd,0(weak) + gmd,0(strong)

= gmd,0

gmd,0(weak)

(A.5)

Note
The constant C in (2.19) is chosen for an arbitrary couple of values (VG,ID). In

particular, if we choose the point where the gate voltages are equal in strong and
weak inversion, then C = −VT − nVS and

VG − VT

n
− VS =

[
VG − VT

n
− VS

]
(strong)

+
[
VG − VT

n
− VS

]
(weak)

(A.6)
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Example
Let us build a continuous model using the results from Sects. 2.2.1 and 2.2.2, that

is, assuming an ideal strong-inversion behavior. In strong inversion,

[
Vid

gmd,0

ISS

]
(strong)

=
√

1 + ΔI

ISS

−
√

1 − ΔI

ISS

[
gmd,0

]
(strong)

=
√

βISS

n

Similarly, in weak inversion

[
Vid

gmd,0

ISS

]
(weak)

= tanh−1
(

ΔI

ISS

)

[
gmd,0

]
(weak)

= ISS/ (2 · nUT )

Therefore,

gmd,0 = ISS

2nUT

1

1 +
√

ISS/2
2nβU2

T

δ = 1

1 +
√

ISS/2
2nβU2

T

And the transitional formula is given by

Vid

gmd,0

ISS

= (1 − δ) ·
(√

1 + ΔI

ISS

−
√

1 − ΔI

ISS

)
+ δ · tanh−1

(
ΔI

ISS

)



Appendix B
List of MCML Templates up to Three
Levels

In the following pages, an exhaustive list of MCML gate topologies with up to
three levels of stacked differential pairs is presented. The topologies listed here are
sufficient for efficiently implementing a large class of circuits.

This represents a practical reference for designers to select the proper topology
in order to implement a given logic function. In this guide, each different physical
topology (footprint) is presented on a separate page. The BDD representation of the
footprint is displayed, with generic signal names A0 − AN assigned to each node.
Then, a table lists the templates (implementing an NPN class of logic functions) that
can be realized by different mappings of signals onto the differential pair inputs.

We have tried to identify common functions such as AND and XOR, as well
as their combinations, in order to provide meaningful names and descriptions for
the various templates. Whenever this wasn’t possible, an automatic name such as
T 4_11 has been assigned, where the first number represents the number of inputs to
the logic function, and the second number is incremented to produce a unique name.

© Springer International Publishing AG, part of Springer Nature 2019
S. Badel et al., Design Automation for Differential MOS Current-Mode
Logic Circuits, https://doi.org/10.1007/978-3-319-91307-0
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Footprint F1

Template BUF

Description: Buffer

Function: Y = A

Variants: None

Inputs Output

A ⇒ A0 Y
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Footprint F2

Template AND2

Description: 2-Input AND Gate

Function: Y = A · B

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 Y
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Footprint F3

Template XOR2

Description: 2-Input Exclusive-OR Gate

Function: Y = A ⊕ B

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 Y

Template MUX2V1

Description: 2-to-1 Multiplexer

Function: Y = S · D1 + S · D0

Variants: MUX2V2, MUX2V3

Inputs Output

D0 ⇒ A1 D1 ⇒ A2 S ⇒ A0 Y
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Footprint F4

Template AND3

Description: 3-Input AND Gate

Function: Y = A · B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 Y
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Footprint F5

Template AO21V1

Description: 2-Input AND into 2-Input OR Gate

Function: Y = A · B + C

Variants: AO21V2, AO21V3

Inputs Output

A ⇒ A1 B ⇒ A2 C ⇒ A0 Y
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Footprint F6

Template XA21V1

Description: 2-Input Exclusive-OR into 2-Input AND Gate

Function: Y = (A ⊕ B) · C

Variants: XA21V2, XA21V3

Inputs Output

A ⇒ A1 B ⇒ A2 B ⇒ A3 C ⇒ A0 Y

Template MA21V1

Description: 2-to-1 Multiplexer into 2-Input AND Gate

Function: Y = A · (S · D1 + S · D0)

Variants: MA21V2, MA21V3, MA21V4, MA21V5

Inputs Output

A ⇒ A0 D0 ⇒ A2 D1 ⇒ A3 S ⇒ A1 Y



194 Appendix B List of MCML Templates up to Three Levels

Footprint F7

Template AXO210V1

Description: 2-Input AND and 2-Input XOR into 2-Input OR Gate

Function: Y = A · B + A ⊕ C

Variants: AXO210V2, AXO210V3

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 Y

Template AO21V2

Description: 2-Input AND into 2-Input OR Gate

Function: Y = A · B + C

Variants: AO21V1, AO21V3

Inputs Output

A ⇒ A0 B ⇒ A3 C ⇒ A1 C ⇒ A2 Y

Template AM21V1

Description: 2-to-1 Multiplexer with one AND2 Data Input

Function: Y = S · D0A · D0B + S · D1

Variants: AM21V1, AM21V2, AM21V3, AM21V4, AM21V5

Inputs Output

D0A ⇒ A1 D0B ⇒ A3 D1 ⇒ A2 S ⇒ A0 Y
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Footprint F8

Template AO21V3

Description: 2-Input AND into 2-Input OR Gate

Function: Y = A · B + C

Variants: AO21V1, AO21V2

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 Y
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Footprint F9

Template AX21V1

Description: 2-Input AND into 2-Input XOR Gate

Function: Y = A · B ⊕ C

Variants: AX21V2, AX21V3

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 Y

Template AM22V1

Description: 2-to-1 Multiplexer with AND2 Select Input

Function: Y = SA · SB · D1 + SA · SB · D0

Variants: AM22V2, AM22V3

Inputs Output

D0 ⇒ A2 D1 ⇒ A3 SA ⇒ A0 SB ⇒ A1 Y
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Footprint F10

Template AX21V2

Description: 2-Input AND into 2-Input XOR Gate

Function: Y = A · B ⊕ C

Variants: AX21V1, AX21V3

Inputs Output

A ⇒ A0 B ⇒ A3 B ⇒ A4 C ⇒ A1 C ⇒ A2 Y

Template XM21V1

Description: 2-to-1 Multiplexer with one XOR2 Data Input

Function: Y = S · (D0A ⊕ D0B) + S · D1

Variants: XM21V1, XM21V2, XM21V3

Inputs Output

D0A ⇒ A1 D0B ⇒ A3 D0B ⇒ A4 D1 ⇒ A2 S ⇒ A0 Y
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Template T4_4

Description:

Function: Y = A · B · C + A · C + A · C · D + A · B · D

Variants: T4_4, T4_41, T4_32, T4_37

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A4 D ⇒ A3 Y

Template T4_6

Description:

Function: Y = A · B + A · B · C + B · D

Variants: T4_10, T4_17

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 Y

Template MUX3DV1

Description: 3-to-1 Multiplexer (Data overrange output)

Function: Y = S1 · S0 · D3 + S1 · S0 · D3 + S1 · S0 · D1 + S1 · S0 · D0

Variants: MUX3DV2, MUX3DV3, MUX3DV4

Inputs Output

D0 ⇒ A3 D1 ⇒ A4 D3 ⇒ A2 S0 ⇒ A1 S1 ⇒ A0 Y

Template MUX3DV2

Description: 3-to-1 Multiplexer (Data overrange output)

Function: Y = S1 · S0 · D3 + S1 · S0 · D3 + S1 · S0 · D1 + S1 · S0 · D0

Variants: MUX3DV1, MUX3DV3, MUX3DV4

Inputs Output

D0 ⇒ A3 D1 ⇒ A4 D3 ⇒ A2 S0 ⇒ A1 S1 ⇒ A0 Y
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Footprint F11

Template CMP3

Description: 3-Input Comparator

Function: Y = A · B · C + A · B · C
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 C ⇒ A4 Y

Template XA21V2

Description: 2-Input Exclusive-OR into 2-Input AND Gate

Function: Y = (A ⊕ B) · C

Variants: XA21V1, XA21V3

Inputs Output

A ⇒ A0 B ⇒ A3 B ⇒ A4 C ⇒ A1 C ⇒ A2 Y
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Template T4_7

Description:

Function: Y = A · C · D + A · B · D

Variants: T4_16

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 D ⇒ A4 Y

Template MA21V2

Description: 2-to-1 Multiplexer into 2-Input AND Gate

Function: Y = A · (S · D1 + S · D0)

Variants: MA21V1, MA21V3, MA21V4, MA21V5

Inputs Output

A ⇒ A2 A ⇒ A3 D0 ⇒ A1 D1 ⇒ A4 S ⇒ A0 Y

Template AM21V2

Description: 2-to-1 Multiplexer with one AND2 Data Input

Function: Y = S · D0A · D0B + S · D1

Variants: AM21V1, AM21V3, AM21V4, AM21V5

Inputs Output

D0A ⇒ A2 D0B ⇒ A4 D1 ⇒ A1 D1 ⇒ A3 S ⇒ A0 Y

Template AAM220

Description: 2-to-1 Multiplexer with AND2 Data Inputs

Function: Y = S · D1A · D1B + S · D0A · D0B

Variants: None

Inputs Output

D0A ⇒ A1 D0B ⇒ A3 D1A ⇒ A2 D1B ⇒ A4 S ⇒ A0 Y
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Footprint F12

Template XA21V3

Description: 2-Input Exclusive-OR into 2-Input AND Gate

Function: Y = (A ⊕ B) · C

Variants: XA21V1, XA21V2

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 Y

Template MA21V3

Description: 2-to-1 Multiplexer into 2-Input AND Gate

Function: Y = A · (S · D1 + S · D0)

Variants: MA21V1, MA21V2, MA21V4, MA21V5

Inputs Output

A ⇒ A3 D0 ⇒ A1 D1 ⇒ A2 S ⇒ A0 Y
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Footprint F13

Template MUX2V2

Description: 2-to-1 Multiplexer

Function: Y = S · D1 + S · D0

Variants: MUX2V1, MUX2V3

Inputs Output

D0 ⇒ A0 D1 ⇒ A1 D1 ⇒ A2 S ⇒ A3 S ⇒ A4 Y

Template AX21V3

Description: 2-Input AND into 2-Input XOR Gate

Function: Y = A · B ⊕ C

Variants: AX21V1, AX21V2

Inputs Output

A ⇒ A1 A ⇒ A2 B ⇒ A3 B ⇒ A4 C ⇒ A0 Y
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Template AXO210V2

Description: 2-Input AND and 2-Input XOR into 2-Input OR Gate

Function: Y = A · B + A ⊕ C

Variants: AXO210V1, AXO210V3

Inputs Output

A ⇒ A0 B ⇒ A3 C ⇒ A1 C ⇒ A2 C ⇒ A4 Y

Template T4_10

Description:

Function: Y = A · B + A · C · D + A · D

Variants: T4_6, T4_17

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 D ⇒ A4 Y

Template T4_12

Description:

Function: Y = A · B + A · C + C · D

Variants: T4_11, T4_22

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 D ⇒ A4 Y

Template AOM220

Description: 2-to-1 Multiplexer with one AND2 and one OR2 Data Inputs

Function: Y = S · (D1A + D1B) + S · D0A · D0B

Variants: None

Inputs Output

D0A ⇒ A1 D0B ⇒ A3 D1A ⇒ A2 D1B ⇒ A4 S ⇒ A0 Y
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Footprint F14

Template MAJ32

Description: 2-out-of-3 Majority Gate

Function: Y = A · B + A · C + B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 Y

Template MUX2V3

Description: 2-to-1 Multiplexer

Function: Y = S · D1 + S · D0

Variants: MUX2V1, MUX2V2

Inputs Output

D0 ⇒ A0 D1 ⇒ A3 S ⇒ A1 S ⇒ A2 Y

Template T4_11

Description:

Function: Y = A · B + A · D + C · D

Variants: T4_12, T4_22

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 Y
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Footprint F15

Template T3_18

Description:

Function: Y = A · B · C + A · B · C + A · B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 C ⇒ A4 Y

Template AXO210V3

Description: 2-Input AND and 2-Input XOR into 2-Input OR Gate

Function: Y = A · B + A ⊕ C

Variants: AXO210V1, AXO210V2

Inputs Output

A ⇒ A1 A ⇒ A2 B ⇒ A0 C ⇒ A3 C ⇒ A4 Y
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Template T4_13

Description:

Function: Y = A · B · D + A · B · D + A · C · D

Variants: T4_18, T4_31

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 D ⇒ A4 Y

Template T4_20

Description:

Function: Y = A · B · C + A · C · D + A · C · D + A · B · D
Variants: T4_15, T4_43

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A4 D ⇒ A3 Y

Template T4_21

Description:

Function: Y = A · B · C + A · B · D + C · D

Variants: T4_48

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A4 D ⇒ A3 Y

Template T4_22

Description:

Function: Y = A · B + B · C + A · D

Variants: T4_12, T4_11

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A3 C ⇒ A2 D ⇒ A4 Y
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Template MA21V4

Description: 2-to-1 Multiplexer into 2-Input AND Gate

Function: Y = A · (S · D1 + S · D0)

Variants: MA21V1, MA21V2, MA21V3, MA21V5

Inputs Output

A ⇒ A1 A ⇒ A3 D0 ⇒ A2 D1 ⇒ A4 S ⇒ A0 Y

Template AM21V3

Description: 2-to-1 Multiplexer with one AND2 Data Input

Function: Y = S · D0A · D0B + S · D1

Variants: AM21V1, AM21V2, AM21V4, AM21V5

Inputs Output

D0A ⇒ A0 D0B ⇒ A4 D1 ⇒ A3 S ⇒ A1 S ⇒ A2 Y

Template T4_25

Description:

Function: Y = A · B · C + A · B · D + A · B · D

Variants: T4_28, T4_50

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A4 D ⇒ A3 Y

Template T5_5

Description:

Function: Y = A · B · D + A · B · E + A · C · E
Variants: T5_7, T5_20

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A4 E ⇒ A3 Y
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Footprint F16

Template XOR3

Description: 3-Input Exclusive-OR Gate

Function: Y = (A ⊕ B) ⊕ C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 C ⇒ A4 Y

Template MX21V1

Description: 2-to-1 Multiplexer into 2-Input XOR Gate

Function: Y = A ⊕ (S · D1 + S · D0)

Variants: MX21V2

Inputs Output

A ⇒ A3 A ⇒ A4 D0 ⇒ A1 D1 ⇒ A2 S ⇒ A0 Y
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Template T4_48

Description:

Function: Y = B · C + A · B + A · D + C · D

Variants: T4_21

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 C ⇒ A2 D ⇒ A3 Y

Template XM22

Description: 2-to-1 Multiplexer with XOR2 Select Input

Function: Y = (SA ⊕ SB) · D1 + SA ⊕ SB · D0

Variants: None

Inputs Output

D0 ⇒ A3 D1 ⇒ A4 SA ⇒ A0 SB ⇒ A1 SB ⇒ A2 Y

Template MM22

Description: 2-to-1 Multiplexer with MUX2 Select Input

Function: Y = (S · S1 + S · S0) · D1 + S · S1 + S · S0 · D0

Variants: None

Inputs Output

D0 ⇒ A3 D1 ⇒ A4 S ⇒ A0 S0 ⇒ A1 S1 ⇒ A2 Y
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Footprint F17

Template T4_14

Description:

Function: Y = A · B · C + A · C · D + A · B · D

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y

Template T4_15

Description:

Function: Y = A · C · D + A · B · D + B · C · D + A · B · C

Variants: T4_20, T4_43

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y
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Template T4_16

Description:

Function: Y = A · B · C + A · B · D
Variants: T4_7

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 B ⇒ A5 C ⇒ A2 D ⇒ A3 Y

Template T4_17

Description:

Function: Y = A · B + A · B · C + A · D

Variants: T4_6, T4_10

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 B ⇒ A5 C ⇒ A2 D ⇒ A3 Y

Template T4_18

Description:

Function: Y = A · B · D + A · B · C + A · B · D

Variants: T4_13, T4_31

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y

Template T4_19

Description:

Function: Y = A · B · D + A · B · D + B · C · D + A · B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y
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Template AM21V4

Description: 2-to-1 Multiplexer with one AND2 Data Input

Function: Y = S · D0A · D0B + S · D1

Variants: AM21V1, AM21V2, AM21V3, AM21V5

Inputs Output

D0A ⇒ A0 D0B ⇒ A3 D1 ⇒ A2 D1 ⇒ A4 S ⇒ A1 S ⇒ A5 Y

Template T4_28

Description:

Function: Y = A · B · C + A · B · C + A · B · D

Variants: T4_25, T4_50

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 C ⇒ A2 C ⇒ A4 D ⇒ A3 Y

Template XM21V2

Description: 2-to-1 Multiplexer with one XOR2 Data Input

Function: Y = S · (D0A ⊕ D0B) + S · D1

Variants: XM21V1, XM21V3

Inputs Output

D0A ⇒ A1 D0B ⇒ A3 D0B ⇒ A4 D1 ⇒ A2 D1 ⇒ A5 S ⇒ A0 Y

Template MA21V5

Description: 2-to-1 Multiplexer into 2-Input AND Gate

Function: Y = A · (S · D1 + S · D0)

Variants: MA21V1, MA21V2, MA21V3, MA21V4

Inputs Output

A ⇒ A0 D0 ⇒ A2 D0 ⇒ A4 D0 ⇒ A5 D1 ⇒ A3 S ⇒ A1 Y
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Template AM22V2

Description: 2-to-1 Multiplexer with AND2 Select Input

Function: Y = SA · SB · D1 + SA · SB · D0

Variants: AM22V1, AM22V3

Inputs Output

D0 ⇒ A2 D0 ⇒ A4 D1 ⇒ A3 SA ⇒ A1 SB ⇒ A0 SB ⇒ A5 Y

Template T4_41

Description:

Function: Y = A · B + A · B · C + B · C · D + A · B · D

Variants: T4_4, T4_32, T4_37

Inputs Output

A ⇒ A0 B ⇒ A2 B ⇒ A4 B ⇒ A5 C ⇒ A1 D ⇒ A3 Y

Template T5_4

Description:

Function: Y = A · C · E + A · B · D + A · B · E
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 E ⇒ A4 E ⇒ A5 Y

Template AXM220

Description: 2-to-1 Multiplexer with one AND2 and one XOR2 Data Inputs

Function: Y = S · (D1A ⊕ D1B) + S · D0A · D0B

Variants: None

Inputs Output

D0A ⇒ A2 D0B ⇒ A5 D1A ⇒ A1 D1B ⇒ A3 D1B ⇒ A4 S ⇒ A0 Y
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Template T5_7

Description:

Function: Y = A · B · C + A · B · D + A · C · E

Variants: T5_5, T5_20

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A4 D ⇒ A3 E ⇒ A5 Y

Template MUX3N

Description: 3-to-1 Multiplexer (Zero overrange output)

Function: Y = S1 · S0 · D3 + S1 · S0 · D1 + S1 · S0 · D0

Variants: None

Inputs Output

D0 ⇒ A4 D1 ⇒ A2 D3 ⇒ A3 S0 ⇒ A0 S1 ⇒ A1 S1 ⇒ A5 Y

Template MUX3DV3

Description: 3-to-1 Multiplexer (Data overrange output)

Function: Y = S1 · S0 · D3 + S1 · S0 · D3 + S1 · S0 · D1 + S1 · S0 · D0

Variants: MUX3DV1, MUX3DV2, MUX3DV4

Inputs Output

D0 ⇒ A3 D1 ⇒ A4 D3 ⇒ A2 D3 ⇒ A5 S0 ⇒ A1 S1 ⇒ A0 Y

Template AMM220

Description: 2-to-1 Multiplexer with one AND2 and one MUX2 Data Inputs

Function: Y = S · (D1S · D11 + D1S · D10) + S · D0A · D0B

Variants: None

Inputs Output

D0A ⇒ A2 D0B ⇒ A5 D10 ⇒ A3 D11 ⇒ A4 D1S ⇒ A1 S ⇒ A0 Y
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Footprint F18

Template T4_30

Description:

Function: Y = A · C · D + A · C · D + A · B · C + A · C · D + A · B · D

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y

Template T4_31

Description:

Function: Y = A · B · C + A · B · C + A · B · D

Variants: T4_13, T4_18

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 B ⇒ A5 C ⇒ A2 D ⇒ A3 Y

Template T4_32

Description:

Function: Y = A · B · D + B · D + B · C · D + A · B · C

Variants: T4_4, T4_41, T4_37

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y
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Template T4_33

Description:

Function: Y = A · B · D + A · B · C + A · B · D + A · B · D
Variants: T4_38

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 Y

Template AM22V3

Description: 2-to-1 Multiplexer with AND2 Select Input

Function: Y = SA · SB · D1 + SA · SB · D0

Variants: AM22V1, AM22V2

Inputs Output

D0 ⇒ A4 D0 ⇒ A5 D1 ⇒ A3 SA ⇒ A1 SB ⇒ A0 SB ⇒ A2 Y

Template T4_43

Description:

Function: Y = A · C · D + A · B · D + A · B · C

Variants: T4_20, T4_15

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 C ⇒ A2 D ⇒ A3 D ⇒ A5 Y

Template T4_44

Description:

Function: Y = A · B · D + A · B · D + B · C · D + A · B · C + A · B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A4 D ⇒ A3 D ⇒ A5 Y
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Template XM21V3

Description: 2-to-1 Multiplexer with one XOR2 Data Input

Function: Y = S · (D0A ⊕ D0B) + S · D1

Variants: XM21V1, XM21V2

Inputs Output

D0A ⇒ A0 D0B ⇒ A3 D0B ⇒ A5 D1 ⇒ A4 S ⇒ A1 S ⇒ A2 Y

Template T4_50

Description:

Function: Y = B · C + A · C + A · B + A · C · D

Variants: T4_25, T4_28

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 C ⇒ A2 C ⇒ A3 D ⇒ A5 Y

Template AM21V5

Description: 2-to-1 Multiplexer with one AND2 Data Input

Function: Y = S · D0A · D0B + S · D1

Variants: AM21V1, AM21V2, AM21V3, AM21V4

Inputs Output

D0A ⇒ A0 D0B ⇒ A5 D1 ⇒ A1 D1 ⇒ A4 S ⇒ A2 S ⇒ A3 Y

Template T4_52

Description:

Function: Y = A · B · C + A · B · C + C · D + B · D
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 C ⇒ A2 C ⇒ A3 D ⇒ A4 Y
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Template T4_53

Description:

Function: Y = A · B · C + A · B · C + C · D + A · B · D

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 C ⇒ A2 C ⇒ A3 D ⇒ A4 Y

Template T5_9

Description:

Function: Y = A · C · E + A · B · D + A · B · E + A · C · E

Variants: T5_11

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 E ⇒ A4 E ⇒ A5 Y

Template T5_15

Description:

Function: Y = A · C · E + A · B · E + B · D · E + A · C · D + A · B · D
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A4 E ⇒ A3 E ⇒ A5 Y

Template T5_19

Description:

Function: Y = A · B · C + C · D + A · B · D + A · C · E

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 D ⇒ A4 E ⇒ A5 Y
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Template T5_20

Description:

Function: Y = B · C + A · B + A · D + A · C · E

Variants: T5_5, T5_7

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A4 C ⇒ A2 D ⇒ A3 E ⇒ A5 Y

Template T5_21

Description:

Function: Y = A · B · C + A · B · D + A · B · D + A · B · E
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 E ⇒ A5 Y

Template MUX3DV4

Description: 3-to-1 Multiplexer (Data overrange output)

Function: Y = S1 · S0 · D3 + S1 · S0 · D3 + S1 · S0 · D1 + S1 · S0 · D0

Variants: MUX3DV1, MUX3DV2, MUX3DV3

Inputs Output

D0 ⇒ A3 D1 ⇒ A5 D3 ⇒ A4 S0 ⇒ A0 S1 ⇒ A1 S1 ⇒ A2 Y

Template T6_4

Description:

Function: Y = A · B · D + A · C · E + A · B · E + A · C · F

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 E ⇒ A4 F ⇒ A5 Y
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Footprint F19

Template MX21V2

Description: 2-to-1 Multiplexer into 2-Input XOR Gate

Function: Y = A ⊕ (S · D1 + S · D0)

Variants: MX21V1

Inputs Output

A ⇒ A2 A ⇒ A3 A ⇒ A4 D0 ⇒ A1 D1 ⇒ A5 D1 ⇒ A6 S ⇒
A0

Y

Template T4_37

Description:

Function: Y = B · C + A · B · C + A · C · D + A · B · D

Variants: T4_4, T4_41, T4_32

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 B ⇒ A6 C ⇒ A2 C ⇒ A4 D ⇒ A3 Y
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Template T4_38

Description:

Function: Y = A · B · C + A · B · C + A · B · C + A · B · D

Variants: T4_33

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 B ⇒ A6 C ⇒ A2 C ⇒ A4 D ⇒ A3 Y

Template T4_42

Description:

Function: Y = A · B · D + B · C · D + B · C · D + A · B · C + A · C · D + A · B · D

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 C ⇒ A6 D ⇒ A4 D ⇒ A5 Y

Template T4_46

Description:

Function: Y = A · B · C + A · C · D + A · B · C + A · C · D + A · B · D

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 C ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A6 Y

Template T4_47

Description:

Function: Y = A · C · D + A · B · D + A · B · C + A · B · C
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 C ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A6 Y
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Template XXM220

Description: 2-to-1 Multiplexer with XOR2 Data Inputs

Function: Y = S · (D1A ⊕ D1B) + S · (D0A ⊕ D0B)

Variants: None

Inputs Output

D0A ⇒ A1 D0B ⇒ A3 D0B ⇒ A4 D1A ⇒ A2 D1B ⇒ A5 D1B ⇒
A6 S ⇒ A0

Y

Template T5_11

Description:

Function: Y = A · C · E + A · B · D + A · B · C + A · C · E
Variants: T5_9

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A4 D ⇒ A3 E ⇒ A5 E ⇒ A6 Y

Template T5_12

Description:

Function: Y = A · B · C + A · B · C + A · B · D + A · B · E

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A5 B ⇒ A6 C ⇒ A2 D ⇒ A3 E ⇒ A4 Y

Template T5_14

Description:

Function: Y = A · C · E + A · B · D + A · B · E + A · C · D

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 D ⇒ A5 E ⇒ A4 E ⇒ A6 Y
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Template T5_16

Description:

Function: Y = A · C · D + A · B · D + A · C · E + A · B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A6 E ⇒ A5 Y

Template T5_17

Description:

Function: Y = A · B · D + A · B · D + B · C · D + A · D · E + A · B · E + A · B · C

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A2 C ⇒ A3 D ⇒ A4 D ⇒ A5 E ⇒ A6 Y

Template T5_24

Description:

Function: Y = B · C + A · B · D + A · C · E

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A6 C ⇒ A2 C ⇒ A4 D ⇒ A3 E ⇒ A5 Y

Template T5_25

Description:

Function: Y = A · B · C + A · B · C + A · B · D + A · C · E

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 B ⇒ A6 C ⇒ A2 C ⇒ A4 D ⇒ A3 E ⇒ A5 Y
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Template XMM220

Description: 2-to-1 Multiplexer with one XOR2 and one MUX2 Data Inputs

Function: Y = S · (D1S · D11 + D1S · D10) + S · (D0A ⊕ D0B)

Variants: None

Inputs Output

D0A ⇒ A2 D0B ⇒ A5 D0B ⇒ A6 D10 ⇒ A3 D11 ⇒ A4 D1S ⇒
A1 S ⇒ A0

Y

Template T6_3

Description:

Function: Y = A · C · E + A · B · D + A · B · E + A · C · F

Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 D ⇒ A3 E ⇒ A4 E ⇒ A6 F ⇒ A5 Y

Template T6_5

Description:

Function: Y = A · B · C + A · B · D + A · C · E + A · C · F
Variants: None

Inputs Output

A ⇒ A0 B ⇒ A1 C ⇒ A2 C ⇒ A4 D ⇒ A3 E ⇒ A5 F ⇒ A6 Y

Template MUX4

Description: 4-to-1 Multiplexer

Function: Y = S1 · (S0 · D3 + S0 · D2) + S1 · (S0 · D1 + S0 · D0)

Variants: None

Inputs Output

D0 ⇒ A4 D1 ⇒ A3 D2 ⇒ A6 D3 ⇒ A5 S0 ⇒ A1 S0 ⇒
A2 S1 ⇒ A0

Y
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Template MMM220

Description: 2-to-1 Multiplexer with MUX2 Data Inputs

Function: Y = S · (D1S · D11 + D1S · D10) + S · (D0S · D01 + D0S · D00)

Variants: None

Inputs Output

D00 ⇒ A3 D01 ⇒ A4 D0S ⇒ A1 D10 ⇒ A5 D11 ⇒ A6 D1S ⇒
A2 S ⇒ A0

Y
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high-speed multiplexer

cell characteristics, 154–155
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library parameters, 153
2N -to-1 multiplexer, 152, 153

latches and flip-flops
asynchronous inputs, 68
dual edge-triggered elements, 74–75
dynamic operation, 66
MCML flip-flop, 70–73
memory element, 64–65
MSL, 68–70
setup and hold times, 66–67

logic circuits, 182
lower threshold voltages, 182
MOS differential pair

strong inversion operation, 9–11
subthreshold operation, 12–13
transregional model, 13–16

multi-level MCML logic gates
common-mode input level and level

shifting, 35–38
DC operation, 32–34
dynamic operation, 38–39

nonlinearities, effect of
differential pairs, 44–45
junction capacitances, 45–46
load devices, 40–43
overall noise performance, 46–47

NPN-equivalent functions, 110, 187
one to three level templates, 110–112,

187–225
random effects

numerical example, 55–56
OCV and mismatch, 49–55
process variations, 48–49

single-level MCML logic gate
DC transfer characteristic, 18–19
dynamic operation, 26–30
load devices, implementation of, 17–18
logic inverter/buffer, 16, 17
logic levels, 24–26
noise margin, 19–24

supply voltage, 182
tri-state MCML buffers, 75–78
weak-inversion behavior, 181

MSL, see Master–slave latch (MSL)
Multi-level MCML logic gates

common-mode input level and level
shifting, 35–38

DC operation, 32–34
dynamic operation, 38–39

N
Netlist processing tool, 140
Noise coupling mechanisms, 2
Nonlinearities, effect of

differential pairs, 44–45
junction capacitances, 45–46
load devices, 40–43
overall noise performance, 46–47

O
On-chip variations (OCV), mismatch and

closed-loop approach, 49
delay, 51–53
gaussian distributions, 50
noise margin, 53–55
sensitivities, 51
statistical distribution, 50
tail current and voltage swing, 51

Ordered BDD, 98–102
See also Binary decision diagrams (BDDs)

P
Parasitics modeling, 147–148
Passive resistors, 17
Perl programming language, 139, 140
Placement and routing (P&R) tool, 91

differential nets, routing of, 124–127
parasitics modeling, 127–130
synthesized netlist, 122
variant cells, 127

Polysilicon resistors, 17
Power Gated MOS Current Mode Logic

(PG-MCML) technique
area and delay characteristic of, 176
buffer cell, drive strength X1 and X4, 176
CPA, 179
design flow, 175
See also MOS Current-Mode Logic

(MCML)

R
Reduced ordered BDD, 100

See also Binary decision diagrams (BDDs)
Register-transfer level (RTL), 91, 92, 122, 140,

155, 172
Reverse engineering, 157
Riccatti equation, 42

S
Shift register, 160
Sign-off parasitics extraction tool, 147
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Simultaneous switching noise (SSN), 2
Single-level MCML logic gate
DC transfer characteristic, 18–19

approximation, 19
derivation, 18–19
transregional model, 18
validation, 19

dynamic operation
Kirschoff’s current law, 27
Laplace transform, 27
Miller effect, 27
parasitic capacitances, 26, 27
power supply noise, 29–30
propagation delay, 28
ramp response, 28–29
step response, 28
switching events, 26
transition delay, 26

load devices, implementation of, 17–18
logic inverter/buffer, 16, 17
logic levels

derivation, 25
validation, 25–26

noise margin
approximation, 21–22
derivation, 20–21
validation, 22–24
worst-case static noise margin, 20

Source follower-flipped voltage follower
(SF-FVF) cascade, 77

SPICE netlists, 139
SPICE simulated voltage noise

ground supply of the MCML and CMOS
encoders, 144

power supply, MCML and CMOS
encoders, 144

Stream ciphers, see Grain-128a stream cipher
Switched-based circuit, 77, 78
Synopsys Nanosim, 177

T
Tag, 160
Timing analysis tools, 124

V
Verilog, 91, 122, 139
Very large scale integration (VLSI), 1, 17
Voltage-follower circuit, 77, 78
Voltage transfer characteristic (VTC), 18–20

W
Wire capacitance modeling, place and route,
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