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Preface

Debugging becomes more and more the bottleneck to chip design productiv-
ity, especially while developing modern complex and heterogenous integrated
circuits and systems at the Electronic System  Level (ESL). Today, debugging is
still an unsystematic and lengthy process. Here, a simple reporting of a failure
is not enough, anymore. Rather, it becomes more and more important not only
to find many errors early during development but also to provide efficient
methods for their isolation. In this book the state-of-the-art of modeling and
verification of ESL designs is reviewed. There, a particular focus is taken
onto SystemC. Then, a reasoning hierarchy is introduced. The hierarchy
combines well-known debugging techniques with whole new techniques to
improve the verification efficiency at ESL. The proposed systematic debug-
ging approach is supported amongst others by static code analysis, debug
patterns, dynamic program slicing, design visualization, property generation,
and automatic failure isolation. All techniques were empirically evaluated
using real-world industrial designs. Summarized, the introduced approach
enables a systematic search for errors in ESL designs. Here, the debugging
techniques improve and accelerate error detection, observation, and isolation
as well as design understanding.
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Chapter 1

Introduction

Modern integrated circuits and systems consist of many different func-
tional blocks comprising multiple heterogeneous processor cores, dedicated
analog/mixed signal components, various on-chip busses and memories,
(third-party) Intellectual Property (IP), and most notably more and more
embedded software. Following “Moore’s Law”, the available chip capacity
grows exponentially. Currently, high-end processor designs reaches up to
2 billion transistors. A complete system can be integrated onto a single chip
which is then called System-on-a-Chip (SoC). The increasing design com-
plexity and scale of SoC designs combined with non-functional requirements
and constraints on the final product, e.g. low power, robustness, reliability,
and low cost, make the verification of the design correctness a complex and
crucial task. Functional errors are still the most important cause of design re-
spins. According to a study from Collett International Research [Cir04] nearly
40% of all chip designs require at least one re-spin. There, 75% of these
designs contain functional or logical bugs. The increasing amount of embedded
software implemented in integrated circuits further complicates verification.
Studies, e.g. [Hum04], implicate that software still contains about 10 to 20
defects per 1,000 lines of code after compiling and testing is done. Remark-
ably, software companies have to spend nearly the same cost and time efforts
on quality assurance like hardware manufacturers have to invest [Tas02].

Today, integrated circuits are mainly designed starting at the Register
Transfer Level (RTL) using classical Hardware Description Languages (HDL)
such as Verilog or VHDL. Studies have shown that up to 80% of the overall
design costs are caused by verification when designing at RTL. The discrep-
ancy between integrable design sizes and the actual verification productivity
causes the so called “verification gap”. This gap increases expo-nentially due
to more and more complex and heterogeneous designs, which cannot be
designed and verified efficiently at RTL anymore. Hence, today the Electronic
Design Automation community is faced with an insufficient and inefficient
approach for the design and the verification of SoCs. 

One possible solution is a raising of the abstraction level towards the Elec-
tronic System Level (ESL). The ESL design paradigm has been developed
by the academic and research community over the last years providing new
design methodologies, proper tools, and special system design languages. 

F. Rogin and R. Drechsler, Debugging at the Electronic System Level, 
DOI 10.1007/978-90-481-9255-7_1, © Springer Science+Business Media B.V. 2010 
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Designing complex systems at ESL gets an increasing attention and applica-
tion in industry, especially driven and supported by system providers such as
ARM, or STMicroelectronics. At ESL the often textual specification of a SoC
is coded into an executable specification in terms of a system model providing
a virtual prototype. The system model enables an early system exploration
and verification, and the parallel development of hardware and (embedded)
software. Moreover, it acts as the common communication platform between
system architects, embedded software developers, and hardware engineers
along the value chain. Later, the system model is used as a golden reference
model for upcoming design stages. Transaction-Level Modeling (TLM) is a
promising modeling approach for ESL design. A TLM-based system model
consists of several blocks that are connected by communication channels. The
entire communication is described by function calls in terms of transactions.
A transaction delivers arbitrary data between two blocks where only the
needed functionality and the requested abstraction level (from untimed, pure
functional descriptions up to cycle-accurate, mixed structural and behavioral
descriptions) is implemented. A TLM description is accurate and fast enough
to execute production software on it. Thus, it enables an early exploration and
verification of the modeled system and its functionality.

Creating correct and reliable system models is an essential requirement for
successful ESL design and all subsequent design steps. Although design con-
cepts like object-orientation, borrowed from software development, and TLM
boost the design productivity, the verification productivity falls behind. How-
ever, a simple reporting of a failure is not enough, anymore. In fact, detecting
the failure-causing bug is an unsystematic and lengthy process that is increas-
ingly becoming a bottleneck to chip design productivity. The challenge for
successful ESL design is not only to find many errors during development
early but also to provide methods to debug designed systems efficiently. 

1 GENERAL OBJECTIVE OF THE BOOK

In this book, we develop a systematic debugging approach that enables a
methodic search for errors while verifying ESL designs. Using this approach,
errors can be detected and located efficiently at the different development
stages of the system model. The proposed debugging techniques accompany
each development stage starting as soon as first modules are available and
continuing with subsystems until the entire system design is completed. In
contrast to ESL verification flows, that predominantly focus on a late system
level simulation, the presented approach allows to detect an error faster.
Figure 1.1 shows the link between the proposed techniques and the different
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development stages of the system model in a simplified ESL design flow.
Static analysis starts as soon as first (non-simulatable) modules of the devel-
oped system are available. Removing an error in early development stages is
cheaper and can be done easier. During the ongoing integration of subsystems
to the system model, different simulation-centered dynamic analysis tech-
niques facilitate debugging. They accelerate error search by improving
controllability, observability, and evaluation of the simulation and the simula-
tion results. So, the time between the insertion of an error and its correction is
minimized, finally resulting in a reduced debugging time.

The systematic debugging approach supports the designer in a better utili-
zation of the available debug capacity. To illustrate this fact, Figure 1.2
sketches the ratio between the bug-rate and the available debug capacity in a
verification flow using only a late system level simulation. In contrast,
Figure 1.3 depicts the improved utilization of the available debug capacity if
static and dynamic analysis techniques are used during development, as pro-
posed in this book.

The proposed debugging approach is applicable to any system level design
language, such as SystemC [OSCI] or SpecC [GDPG01], and is independent
of the level of abstraction on which the system model is described. That
means that untimed as well as timed design descriptions could be used. How-
ever, some of the debugging techniques are better suited to a specific level

Figure 1.1:  Debugging techniques in a simplified ESL design flow
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than others. A further focus has been placed on the industrial adaptability of
the proposed techniques in terms of processible design sizes and complexities.

Figure 1.2:  Verification efficiency using only late system level simulation
(chart trend according to [Fos06])

Figure 1.3:  Improved verification efficiency using static and dynamic analysis techniques
(chart trend according to [Fos06])
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2 SUMMARY OF CONTRIBUTIONS

Figure 1.4 correlates the introduced debugging techniques forming a hier-
archy of co-ordinated reasoning techniques. The techniques accompany the
development stages of a system model starting with deduction, i.e. early error
detection, followed by observation, i.e. high-level debugging and exploration,
next followed by induction, i.e. learning about the design, and closing with
experimentation, i.e. isolating failure causes. The diagram in Figure 1.4 sys-
temizes the utilization of each technique according to a set of defined
preconditions for their application. These preconditions focus on the imple-
mentation progress while developing the system model. In contrast, the
applicability of a particular debugging technique does not depend on the tar-
get architecture (e.g. processor, microcontroller), the communication design
(e.g. bus, protocol, memory-mapped), the system level design language (e.g.
SystemC, SpecC), or the abstraction level (e.g. untimed, timed). The imple-
mentation progress is judged by three classification criteria, i.e. the reached

Figure 1.4:  Hierarchy of proposed debugging techniques
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realization level, the number of needed simulation runs, and the achieved
coding level:

Realization level. This level describes the degree of model complete-
ness that distinguishes between modules, subsystems, and the inte-
grated system.
Simulation runs. A different number of simulation runs allows to
apply different debugging techniques.
Coding level. The coding level defines whether a simulation and
which type of simulation (uncontrolled vs. controlled) is needed to
use a particular debugging technique.

Using the presented diagram in Figure 1.4, the system designer can deter-
mine which techniques are applicable at the current modeling state. At the
beginning of the development, static analysis can be applied to first syntacti-
cal correct design modules. There, a module does not necessarily have to be
executable and thus simulatable. Bit by bit, the realization level increases and
the system model becomes more complex and complete. Modules are integra-
ted to subsystems, and finally the model is completed at the actual abstraction
level. Once, first components of the model can be simulated, dynamic analysis
techniques enhance the analysis capabilities to locate and fix bugs that cannot
be found statically, otherwise.

Early error detection. An analysis framework, called REGATTA, facil-
itates the flexible and fast generation of tools that statically analyze
source code of arbitrary formal languages. The code quality is ensured
by coding standards. Design flaws can be detected using more sophis-
ticated analysis features, e.g. by using dataflow analysis techniques.
Parts of this work were presented in [RF04], [RFSH05]. Based upon

Example 1. We assume the designer has coded an simulatable subsystem of
the system model and wants to simulate (execute) it for the first time. Accord-
ing to Figure 1.4, two techniques, i.e. ‘early error detection’ and ‘high-level
debugging and exploration’, are applicable.

The proposed debugging techniques contribute to a systematic verification
process of ESL designs. Each technique is prototypically realized in a 

demonstrates the particularities and strengths of each technique:

SystemC-based design flow and is (mostly) evaluated in the field using 
industrial examples. Moreover, an example, that is used throughout the book, 
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the REGATTA framework a static analyzer for SystemC, called SDAS,
implements an industrial set of coding guidelines.
High-level debugging and exploration. A debug flow guides the
designer in debugging and exploration of system models at a higher
abstraction level. Based upon open source tools and standards, an
integrated debugging environment, called SHIELD, is proposed. It
allows to debug arbitrary SystemC designs systematically. The papers
[RFHO07], [RF+07], [RGDR08] are closely related to this chapter.
Learning about the design. A new methodology automatically gener-
ates complex design properties for a simulatable system model using
simulation traces. A prototypical tool, called DIANOSIS, deduces such
properties. Complex properties improve design understanding, can be
used as a starting point for formal verification, help to identify gaps in
the test suite, and ease error detection. In [RK+08], [RK+09] parts of
this chapter were published.
Isolating failure causes. Using a series of controlled simulation runs
allows to isolate the failure-inducing cause automatically in an erro-
neous system model. A prototype tool, called ISOC, adapts this auto-
mated debugging technique to SystemC, in order to narrow down
failure causes in process schedules. A further application is the isola-
tion of the minimal failure-causing difference in the simulation input.
The paper [RDR09] is closely related to this chapter.

This book proposes an integrated approach that assists the designer in a
systematic verification at the ESL. It combines and adapts existing and new
debugging techniques. The techniques improve and accelerate error detection,
observation, and isolation as well as design understanding. Hence, their con-
tinued application minimizes the number of errors that escape to the next
development stage.

3 BOOK OUTLINE 

This book is structured as follows: 
In Chapter 2, the state-of-the-art of ESL modeling and verification is

reviewed. Moreover, the system description language SystemC and a Sys-
temC TLM2 example design, that is used throughout the book, are introduced.

The rest of the book discusses each of the debugging techniques in a sepa-
rate chapter. Each chapter starts with the classification of the respective
technique followed by a summary of the related work in the particular field.
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The main part details the specific technique in general and their specific real-
ization in a SystemC-based design flow. Each chapter closes with a demon-
stration of the particularities and strengths of the introduced techniques and is
followed by an experimental evaluation using industrial designs.

Chapter 3 introduces static analysis as a deductive reasoning technique for
error detection and code quality assurance of yet incomplete and non-simulat-
able system models. For this purpose, a static analysis framework is described
which is subsequently extended to create a full static analyzer for SystemC.

For the simulation of first completed subsystems, Chapter 4 puts forward
an observational reasoning technique which allows a systematic debugging
and exploration of system models at a higher level. An integrated debugging
environment is presented. This environment facilitates and accelerates error
search by using debug patterns, a debugger being aware of the used Specifica-
tion and Description Language (SDL), and a visualization component.

Multiple simulation runs form the basis for the introduction of an induc-
tive reasoning technique in Chapter 5. Hence, different aspects and properties
can be learned about the developed system model. Based upon a new method-
ology for automatic property generation, a practical implementation is shown.
Property generation has been applied successfully to different industrial
designs.

In Chapter 6 an experimental reasoning technique is proposed. This tech-
nique automatically isolates failure causes in system models using the delta
debugging algorithm. It is applied to narrow down the failure-inducing differ-
ence in process schedules. Moreover, it is used to report the minimal
difference in the simulation input that causes a SystemC simulation to fail.

Finally, Chapter 7 concludes and summarizes the contributions of this
book.



Chapter 2

ESL Design and Verification

First, the state-of-the-art of modeling and verification at the ESL is briefly
summarized in this chapter. As SystemC has been developed as a de-facto
standard for system level design over the past few years, it is used for practical
demonstration purposes in this book. Next, the introduced ESL methodolo-
gies and techniques are discussed under the SystemC perspective. Finally, our
systematic debugging approach for ESL designs is described.

1 ESL DESIGN

The rising “design gap” demands for continuous improvements of the
design productivity. One of the most critical issues is, how the available chip

have to develop even more complex integrated circuits and systems under
fixed time-to-market and quality constraints. According to the ITRS report
[ITRS07], a designer has a productivity of 125k gates per design-year using a
state-of-the-art RTL-centered design and verification methodology. Here,
designers describe an integrated circuit with an HDL (e.g. Verilog or VHDL)
at RTL. There, the design is (almost) automatically synthesized down to circuit

tool suites are applied using techniques such as tracking and reporting infor-
mation about the code coverage, or performing a constraint random simulation. 

Now, we naively assume that a 10 million gates circuit shall be created
from scratch. If the above mentioned design productivity of 125k gates is
taken into account, 80 designers have to work for one year to complete the
integrated circuit. Even more complex systems would require an unacceptable
high number of designers or an improper long design time. Moreover, time-
to-market, and rising cost and quality constraints demand for a new modeling
and verification methodology.

Two basic approaches could help to improve the design productivity: The
first one lifts the design level to a higher more abstract level above RTL. The
second approach introduces a design reuse methodology by means of (third-
party) IP components. Modern flows combine both approaches to maximize
benefits.

F. Rogin and R. Drechsler, Debugging at the Electronic System Level, 9
DOI 10.1007/978-90-481-9255-7_2, © Springer Science+Business Media B.V. 2010 

capacity, following Moore’ s Law, can be utilized by the chip designers. They

layout ready for fabrication. On the verification side, sophisticated verification
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Designing above RTL is called ESL design. Generally, abstraction aims at
the reduction of the effort to specify a desired functionality whereas unneces-
sary information is omitted. At the ESL designs are described by using higher
level concepts such as communicating processes exchanging more abstract
information. Here, the accurate timing or the parallelization of system func-
tionality is not initially taken into account. In fact, the designer starts to
specify the general function of the system and successively refines the specifi-
cation until the concrete system, consisting of hardware and software, is fully
implemented. Today, ESL design is supported by different SDLs where
C/C++-based programming languages play a major role.

IP reuse is an important opportunity to improve the design productivity.
The number of blocks to be defined from scratch becomes smaller if the
designer can reuse existing IP components. IP blocks are taken either from
former development projects or by using external IP providers. IP shall fulfill
a number of requirements to enable a successful reuse. First, they should be of
high-quality in terms of correctness and completeness. Second, the IP compo-
nent interfaces have to be clearly defined and documented. Third, IP blocks
should separate communication from behavioral parts to ease the integration
into an existing design architecture.

1.1 ESL Design Flow
Currently, in the literature no universal design and verification flow for

ESL design is documented. Rather, many different flow variants are stated.
They are geared by customer and product requirements. The flow variants dis-
tinguish among each other by means of the introduced abstraction levels, use
cases, and later application fields. The following section gives a short over-
view about important work that deal with the ESL design methodology.
Baileys et al. [BMP07] give a comprehensive summary.

According to Gajski et al. [GV+94] the general ESL flow can be described
by the three main steps: specifying, exploring, and refining. First of all, a
functional specification of the desired system is developed. During the subse-
quent exploration phase, different design alternatives are compared in order to
meet various requirements, e.g. performance, power consumption, or configu-
rability. In the refinement phase more and more functional behavior is
mapped onto a structural description consisting of hardware and software
components. Subsequent refinement steps repeat exploration and refinement
phases until the whole system is structurally specified. All other mentioned
approaches adhere to this general procedure.

Kogel [Kog06] refers to use cases in terms of views to overcome the diffi-
culties to specify an ESL flow at the level of abstractions. ESL modeling
gears to many different domains, e.g. communication, time, structure, or
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behavior. Each domain can be described at particular levels of abstraction,
e.g. the communication behavior can be modeled as transactions, bus func-
tional models, or pin-accurate descriptions. Kogel concentrates on the
purpose of the model by defining use cases. The Functional View (FV) use
case is intended to create an executable specification of the application. The
Architects View (AV) use case targets to the architectural exploration of the
developed system to meet the desired requirements such as performance,
power, or maintainability. The Programmers View (PV) use case provides a
virtual prototype platform which could be applied for early embedded soft-
ware development in parallel to the hardware design. Finally, the Verification
View (VV) use case targets at cycle-accurate system modeling. So, an accu-
rate performance evaluation prior to the design implementation or a TLM-
RTL co-verification can be performed.

Teich and Haubelt [TH07] introduce an approach which summarizes
important abstraction levels and views. These levels and views are passed
during embedded system design. This approach distinguishes between archi-
tecture and logic abstraction levels in case of hardware designs. The block and
module levels describe abstraction levels in the software development
domain. Beside the classification of system models according to their levels
of abstraction, two orthogonal views are defined. The behavioral view takes
only the functionality of the system into account while the structural view
details the communication between hardware and software components. 

The SystemC TLM2 standard [TLM2] does not focus on abstraction
levels. In fact, the standard mentions particular use cases, such as software
development, software performance analysis, or hardware architecture analy-
sis. These use cases are supported by two different coding styles, i.e. loosely-
timed, and approximately-timed. Coding styles guide the designer in model
writing using particular programming interfaces. 

Fujita et al. [FGP07] document a design flow for system level designs
based on C/C++-based system level languages. Starting with a textual specifi-
cation an executable specification, mostly in terms of a program, is created.
The resulting functional system model describes the general application and is
mainly used to explore different functional design alternatives. During the
architecture design phase, also known as hardware/software partitioning, the
designer decides which functionality is implemented either into dedicated
hardware components or software programs. Software plays an important role
to allow for reusability, i.e. easy reuse of software components in terms of IP,
maintainability, i.e. easy bug fixing and feature extension in the application
field, and flexibility, i.e. easy replacement of software components. The exact
communication between partitioned components, including processing order
and parallelism, is detailed in the subsequent communication design phase
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resulting in the communication model. The software is usually implemented
using a standard software development process. However, the functions that
are assigned to hardware parts are further decomposed into structural units to
take the target hardware platform into account. Finally, within the implemen-
tation design phase, the hardware parts of the communication model are
synthesized into an RTL design using high-level ESL synthesis techniques.
Several tools automate this step. Nevertheless, in practice it is usually still a
manual or at most a semiautomatic step. Finally, the RTL design is imple-
mented which comprises well automated steps such as logic or layout
synthesis. The developed software descriptions can be directly extracted from
the communication model and are compiled into executable machine code.

Bailey et al. [BMP07] published one of the first books that summarizes
state-of-the-art in ESL design and verification methodology. One important
contribution is the definition of a taxonomy for the ESL design space and the
definition of common terms used in this domain. The proposed ESL taxon-
omy contains the five axes concurrency, communication, configurability,
temporal, and data. This taxonomy spans a space for the definition and classi-
fication of ESL specification languages, design flows, and tools. Bailey et al.
divides the ESL design flow into six main development steps: specification
and modeling, pre-partitioning analysis, partitioning, post-partitioning anal-
ysis and debug, post-partitioning verification, and HW/SW implementation. In
the specification and modeling step the designer translates the initial informal
specification document successively into various executable models. During
the pre-partitioning analysis step, the algorithmic design space is explored
taking different constraints into account, e.g. time, space, power, complexity,
or time-to-market. The partitioning process defines which parts of the func-
tionality are implemented either in software or hardware. The effect of
hardware/software partitioning is explored in the post-partitioning analysis
and debug step. If necessary, a re-partitioning takes place to better meet the
requirements. Then, the following post-partitioning verification step ensures
that the originally intended behavior of partitioned software and hardware
components is preserved. Finally, the HW/SW implementation step creates
synthesizable RTL models as well as the productive software that shall run on
the target hardware.

Summarized, all aforementioned work can be mapped more or less to the
idealized ESL design flow sketched in Figure 2.1. Rather than this idealized
and simplified linear top-down flow, a real flow is a mixture of bottom-up and
top-down procedures. Moreover, the development of an integrated system
consists of many refinement steps and backtracking paths that shall be not fur-
ther detailed here. In reality, parts of the model are usually implemented at
different abstraction levels at the same time. So, some parts could be specified
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at a more structural level while other parts are initially described at the behav-
ioral level. The model can also contain loosely-timed specified components as
well as cycle-accurate blocks in parallel. Nevertheless, a designed system
always passes different levels of abstraction starting from the most abstract
specification. Then, this specification is successively refined to the lowest
most accurate level. 

Figure 2.2 illustrates the design levels while implementing the hardware
parts of a SoC design. It shows an idealized top-down procedure following a
SystemC TLM oriented design methodology:

Starting with a textual specification, the algorithmic design is specified.
Thus, the basic functionality of the developed system is explored while the
distinction between hardware and software components as well as the timing
is not yet taken into account.

 Based upon the algorithmic specification, the design is refined to a TLM-
based system model. The model consists of different blocks that are con-
nected by communicating channels. Channels are used to exchange data
between these blocks in terms of transactions. During development, the sys-
tem is normally refined using different timing levels. At the loosely-timed
level, the system model consists of functionally accurate components describ-
ing the system platform. Synchronization between components is only sup-
ported at a coarse-grained synchronization level specifying the general sched-
uling procedure, e.g. the correct order between produced and consumed data.

Figure 2.1:  Idealized ESL design flow (taken from [BMP07])
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Moreover, communication channels are used for synchronization purposes,
e.g. to handle interrupt signals. The loosely-timed abstraction level is the basis
for early embedded software development and debugging where unnecessary
implementation details are left out. The aforementioned PV use case relates to
models at this level. At the next level, i.e. approximately-timed, the timing is
refined which enables a preliminary performance estimation and a coarse
power analysis. A model at this level is available earlier than the RTL model
and can facilitate reasonable design decisions for the later RTL design. This
abstraction level corresponds to the PV plus Timing use case. A cycle-accurate
model describes the design behavior at the level of clock cycles. This abstrac-
tion level is used e.g. for final HW/SW partitioning, HW/SW co-verification,
or a TLM-RTL co-simulation.

Transferring a system model into an RTL design is accompanied by a
change of the design language. While system models are described using an
SDL such as SystemC or SpecC, RTL designs are usually implemented using
HDLs such as VHDL or Verilog. An RTL design contains all details of the
hardware components and can be automatically and efficiently synthesized.
Hardware synthesis comprises the design implementation, such as logic or
layout synthesis, and is well supported by state-of-the-art tools and design
flows. Detailed information to hardware design and synthesis can be found for
instance in [Ash06], [Pal03].

Figure 2.2:  Designing the hardware part of an SoC
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1.2 System Level Language SystemC
C/C++-based languages have been playing a major role in embedded soft-

ware development for a long time. So, it was apparent to use the same or some
similar language to specify the hardware parts of an ESL design and to write
test benches, as well. However, C/C++ do not provide constructs to deal with
concurrency, communication, or timing necessary for designing hardware.
Several extensions were proposed over the past few years to make C/C++
ready to be used in ESL design. Today, two C/C++-based SDLs are mainly
used: SystemC and SpecC. Both languages provide similar language con-
structs for hardware design. The major difference is the underlying language.
While SpecC bases upon C, SystemC is a C++ class library. Hence, SystemC
has an object-oriented nature which facilitates the implementation of abstract,
modular, and reusable system models. SpecC as well as SystemC are freely
available which ease their application and distribution. Additionally, IEEE
approved SystemC as a standard in 2005 [IE+06] which has increased the
acceptance of this language in industry. The standardization process has been
significantly driven by the OSCI. In this book, SystemC is used for demon-
stration purposes. However, the proposed debugging technique are applicable
to any other system level language.

SystemC extends C++ by notions of modules, concurrent processes, simu-
lation time, and communication mechanisms. These features support ESL
design while comprising the full power of C++. A SystemC design is created
by a hierarchy of (nested) modules which are instances of the class sc_module.
Modules communicate through ports, interfaces, and channels. An interface
provides several methods to access a channel whereas the methods are called
through a port. A channel separates communication and computation. SystemC
provides a number of predefined channel types ranging from simple wires to
more complex communication mechanisms like FIFOs. Furthermore, design-
ers can derive their own channel types. The main elements of computation are
represented by concurrent processes that are either method (SC_METHOD) or
thread processes (SC_THREAD). A process has to be specified inside a mod-
ule. A thread process terminates never and suspends its computation by
calling a wait statement. In contrast, a method process completely executes
in zero time, every time it is triggered.

An integral part of the SystemC library is the event-driven simulation ker-
nel which implements a cooperative multitasking approach and divides in two
main phases:

Elaboration. Execution starts at the sc_main function. First, all
modules are instantiated and bound together. After this phase a fur-
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ther change of the model structure is not possible. Then, the call of
sc_start launches the simulation.
Simulation. During simulation the SystemC kernel executes each run-
nable process one by one in a non-preemptive fashion. A process sus-
pends again either when it was completely processed (method
process) or the process calls a time consuming statement (thread pro-
cess). There, the SystemC simulation kernel works like an HDL sim-
ulator using the notion of delta cycles. A delta cycle is orthogonal to
the simulation time where the time is only advanced, when no more
processes are runnable at the current time step, i.e. at the current delta
cycle. The use of delta cycles emulates the parallel execution of pro-
cesses. A process, running at the current delta cycle, can wake up
other processes through an immediate event. Another variant is a sig-
nal update which will be executed during the next delta cycle. Again,
these processes can trigger further ones at the subsequent delta cycle.

A detailed introduction into SystemC is given in the SystemC Language
Reference Manual [IE+06] or can be found in [BDBK08].

1.3 Transaction Level Modeling in SystemC
With the publication of the OSCI TLM2 standard in 2008 [TLM2], Sys-

temC took a major step forward to facilitate early system exploration, co-
design of hardware and software, and platform-based design and verification.
Moreover, a TLM modeling style improves the reusability of IP components
between different IP providers. A standardized Application Programming
Interface (API) allows the separation of computation inside components from
the communication among components. The communication is modeled by
channels where a transaction is released by calling interface methods of the
channel. Unwanted communication details are hidden in the channels that are
iteratively refined during modeling. Hence, system design starts with an
abstract TLM description which enables a faster simulation as a comparable
but more detailed RTL model. A predefined TLM interface is implemented by
a high-level communication model initially describing only the exchange of
messages or data between components. During development, the same inter-
face can be implemented by a cycle-accurate Bus Functional Model (BFM)
specifying the behavior of each pin later implemented in hardware. A BFM
enables the designer to write test cases in terms of abstract method calls at
TLM level. Then, the BFM translates the method call into particular input
stimuli at the RTL site.
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The SystemC TLM2 standard distinguishes between coding styles and
interfaces instead of defining abstraction levels for each particular use case. A
use case can be for instance software development, software performance
analysis, or hardware verification. The coding styles guide the designer in
system modeling where the interfaces define low-level programming mecha-
nisms. The TLM2 standard defines two coding styles: loosely-timed, and
approximately-timed that are supported by particular blocking and non-block-
ing transport interfaces. Figure 2.3 documents an exemplary TLM design.
A module can act in three different ways:

Initiator. This module type creates new transactions and passes them
to the channel by calling a predefined interface method.
Target. A module of this type receives transactions and executes them
according to the target module task.
Interconnect. This component type forwards a transaction and possi-
bly modifies it. So it acts as initiator and target at the same time.

The transportation path of a transaction that is going from an initiator to a
target, is also called the forward path. The opposite direction is named the
backward path. Over the backward path, the target informs the initiator about
the transportation state. Either the modified transaction object is returned or a
specific backward method is called explicitly. Two socket types encapsulate
the connection between components. The initiator socket enables interface
calls on the forward path by a port and on the backward path by an export.
The target socket offers the same mechanism in case of a backward path. For
a complete documentation of the TLM2 standard refer to [TLM2]. A compre-
hensive overview about the state-of-the-art of TLM design in SystemC can be
also found in [Ghe06]. 

Figure 2.3:  TLM notion in an example (taken from [TLM2])
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2 ESL VERIFICATION

Verification of functional design correctness has become the dominating
cost and time factor in electronic system design, today. The correctness of a
system has to be checked at each design step to identify errors as early as pos-
sible during system development. The later an error is detected, the more the
costs for its correction increase. To cope with the rising verification complex-
ity, a wide range of advanced techniques is used such as static analysis,
debugging techniques, formal verification, assertion-based verification, con-
straint-random simulation, automatic test pattern generation, or model-based
specification approaches. As already discussed on page 9, each abstraction
level provides a defined degree of detail to fulfill a certain modeling or verifi-
cation task, e.g. to measure the software performance or to explore different
architectural choices. Starting with a system model, the model is refined step-
by-step until the system is completed in the final software and hardware. An
efficient abstraction mechanism for ESL design is provided by the introduc-
tion of SDLs together with a TLM design methodology. TLM facilitates the

design parts independently of each other (see Section 1.3 on page 16).
It is promising to extensively check higher level, less complex, descrip-

tions before refining them. So, the detection and correction of an error is more
efficient. A system design passes many refinement steps where in case of an
error the design has to be fixed. Sometimes taken refinements are backtracked
starting at a previous step, again. Equivalence checking ensures the equiva-
lence between the current implementation and the specification. Does the
implementation satisfy the specification, it will become the specification for
the following design step. Writing the initial specification is a time-consum-
ing and error-prone process. An imperfect specification increases the
probability for false positives, i.e. pointing out non-bugs as bugs, or false neg-
atives, i.e. failing to find real bugs. So, it is crucial to start with a correct and
preferably complete specification which describes all important and desired
aspects of the system.

The availability of an ESL design flow does not only allow the modeling
of complex hardware. Moreover, the system model enables the designer to
develop and to verify embedded software in parallel with the hardware.
There, the hardware blocks can be exercised from the software programmers
perspective. So, many functional errors can be found before the actual hard-
ware is available. A system model has a further advantage. During develop-
ment, parts of the system are replaced by their particular implementation (in
hardware) whereas the rest becomes the verification environment. Thus, the
hardware designer can be relieved from any additional writing of the verifica-

separation of computation and communication and allows to refine different 
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tion environment. Such a verification approach is applicable to find system-
wide problems instead of verifying the correct function of a particular hard-
ware block. It is also known as golden reference model verification where the
system model defines the specification for the hardware components.

System correctness can be ensured by two different approaches: dynamic
techniques, i.e. simulation, and static techniques, i.e. formal verification. In
between, there is a third approach, that combines simulation and formal veri-
fication using assertions. It is called semi-formal verification. Moreover, there
are further verification techniques, such as prototyping or emulation, but these
techniques shall not be discussed in this book.

2.1 Simulation
Simulation is still the predominant verification technique in system and

hardware design. It is easy to use, scales very well with arbitrary complex
designs, and detects many functional errors very efficiently. As soon as an
executable specification is available, it can be simulated easily. Besides the
check of functional correctness, simulation is used to identify performance
problems, inconsistencies, or specification holes. Apart from these advan-
tages, the complexity of current designs prevents an exhaustive simulation to
prove system correctness in a limited time [ARL00], [ITRS07]. Here, an
increasing number of state variables let exponentially rise the number of input
patterns, and thus the number of required simulation runs. So, the quality of
simulation-based approaches highly depends on the quality of available input
patterns to gain a satisfying coverage of the design functionality. Due to its
incompleteness simulation is also named validation.

2.2 Formal Verification
To overcome the limitations of simulation, formal verification techniques

were developed [Kro99]. Formal verification proves the correctness of a sys-
tem using a mathematical model of the system behavior. This technique is
exhaustive, and thus ensures correctness. Three different approaches are used
in formal verification: theorem proving [WOLB92], equivalence checking
[KPKG02], and model checking, also called property checking [CGP00]. 

In theorem proving the verified system (the implementation) and the spec-
ification are described in a higher-order logic. With the help of axioms and
inference rules, a theorem prover supports the designer in reasoning that the
implementation implies the specification. Since higher-order logics are gener-
ally undecidable, a fully automated proving is not possible. The required
manual intervention has prevented a widespread application of theorem prov-
ing in the industrial field, so far.
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Equivalence checking verifies the equivalence between implementation
and specification. Normally, this technique verifies the correctness of (auto-
matic) synthesis steps, e.g. by proving the equivalence between an RTL
design and the synthesized gate level description. A common approach uses a
miter circuit where two automata representations, one for the implementation
and one for the specification, are combined. Then, the outputs are checked for
equivalence while feeding in the same input data [Bra83]. The equivalence
checking problem can be solved by transforming the miter circuit into a SAT
instance. Today, equivalence checking enjoys a wide distribution in semicon-
ductor industry especially due to its good automation and easy handling.

Model checking bases upon a finite state space model of the verified sys-
tem, e.g. a labeled transition system or a finite state machine. The specifica-
tion is formulated in terms of a set of properties in some temporal logic. Then,
a model checker formally proves the validity of each (possibly unbounded)
property on the model. Bounded Model Checking (BMC) limits the number of
time frames a property is checked. Since a system usually responds after a
finite time limit, BMC is quite efficient. It is successfully applied in the semi-
conductor industry, e.g. [BB+07]. A restriction of model checking is the
limitation of a straightforward model translation (design abstraction) for large
designs due to the so called state space explosion problem. Assuming that an
example design consists of many thousand lines of code and for instance
5,000 32 bit integer variables. In that case, a Boolean reasoning technique has
to handle 5,000 * 32 = 160,000 Boolean signals over many thousand program
states. This is a potentially infeasible number to be currently handled by for-
mal verification tools. Hence, classical model checking cannot verify arbitrary
complex systems. New approaches try to use sophisticated abstraction tech-
niques to handle the state explosion problem. Satisfiability Modulo Theories
(SMT) solvers [NOT06] process word-level information directly. Another
problem of model checking results from verifying only an abstracted model of
the design. Hence, an erroneous abstraction process can produce false nega-
tives as well as false positives. Moreover, a wrong specification could show
that the system works as specified, but not as primarily intended. Finally,
there are problematic structures, such as multipliers, that cannot be formally
verified easily.

2.3 Semi-Formal Verification
Semi-formal verification combines simulation (see Section 2.1 on page 19)

and formal verification (see Section 2.2 on page 19) and is also known as
Assertion-Based Verification (ABV) [FKL03]. Assertions are temporal prop-
erties that concisely capture design intent. They are dynamically monitored
during simulation. Two languages gain importance for applying ABV tech-
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niques and allow the exact description of temporal-logic expressions:
SystemVerilog Assertions (SVA) [IE+05a] and the Property Specification
Language (PSL) [IE+05b]. To enable a fast and easy creation of an ABV test
suite, the Open Verification Library (OVL) [OVL] captures typical design
behavior in terms of assertion checkers.

ABV does not prove the specified property like in formal verification. For
this reason, ABV can be applied to arbitrary complex designs. Additionally,
assertions improve design observability, and thus facilitate the debugging pro-
cess. In case of an error, an assertion directly points to the location the
problem was recognized. This approach is also called white-box verification
instead of the simulation oriented black-box approach. In simulation the
response of a system is checked for correctness only at the output interfaces.

2.4 Verifying SystemC Models
SystemC only supports simulation natively while formal and semi-formal

verification approaches are subject to current research. The following section
summarizes important work in the particular fields.

2.4.1 Simulation in SystemC
The simulation-based validation is inherently supported by SystemC.

Every standard C++ compiler, e.g. the GNU C++ compiler, is able to compile
an arbitrary SystemC description into an executable program. Such a program
can be directly simulated since the simulation kernel is an integral part of the
SystemC library. 

The processing of a SystemC simulation is particularly influenced by the
style of coding. Several coding styles allow a different modeling of communi-
cation and synchronization between concurrent processes. SystemC FIFOs
and semaphores introduce communication and synchronization points into the
application. This style is formalized by Communicating Sequential Processes
and Kahn Process Networks. It permits a completely untimed modeling style
without the need for advancing the time during simulation. A coding style
where each process yields control at a certain point in time is called timed.
There, different timing levels can be distinguished such as loosely-timed,
approximately timed, or cycle-accurate. A timed coding style is supported in
SystemC by explicit synchronization statements.

Simulation uses directed or randomized tests to compare the expected
results with the observed system behavior. A directed test validates only a
very certain functionality by using an explicitly specified stimulus pattern.
Usually, it is manually written by the designer which is a time-consuming and
erroneous task. A major improvement in test bench automation was achieved
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by the introduction of constraint-based random simulation [YPA06]. Based
on a set of user-defined constraints, stimulus patterns are generated automati-
cally. Hence, in a short time many more scenarios can be created and tested if
compared to directed tests especially in case of corner cases. Constraint ran-
dom simulation is supported in SystemC by the SystemC Verification Library
(SCV) [SCV]. Moreover, this library provides other sophisticated verification
features such as transaction recording and monitoring, or data introspection
capabilities for arbitrary data types. Some work extents the SCV library.
Große et al. [GED07] add bit operators and improve the integrated constraint
solver to guarantee a uniform distribution of constraint solutions. Another
work [GWSD08] introduces an approach that resolves contradictions between
constraints automatically.

 Based upon the SCV, various work propose verification frameworks or
methodologies which allow for an easy, fast, and reusable simulation-cen-
tered functional verification of SystemC designs, e.g. [SMA04], [PC05].
These frameworks provide a unique verification infrastructure. They facilitate
test bench creation and adaptation to a new design under verification, supply
sophisticated coverage mechanisms, or integrate a constraint-random stimulus
generator.

Functional code coverage techniques allow the designer to control simula-
tion effort. Here, metrics provide a basis for decision in order to determine
whether a SystemC design was simulated sufficiently. Various metrics mea-
sure code coverage using branch, statement, or condition coverage for
instance. Traditional software metric tools for C++, such as gcov [GCOV],
can be also applied to SystemC. The drawbacks of these tools are amongst
others that coverage analysis also includes the SystemC kernel library rou-
tines. Furthermore, a C++ coverage tool does not know the SystemC
semantics which requires a manual and tedious extraction of interesting cov-
erage data. Große et al. [GPKD08] propose an approach that measures the
quality of SystemC test benches in terms of a control flow metric. Therefore,
an instrumented SystemC description collects coverage information during
simulation. Subsequently, coverage information are analyzed whether the
defined coverage goal has been already reached.

2.4.2 Semi-Formal Verification in SystemC
Since the SystemC standard does not define a native support for ABV,

various approaches propose an integration of assertions into SystemC. 
One of the first approaches was introduced by Ruf et al. [RHKR01]. It

uses finite linear temporal logic to specify properties. These properties are trans-
lated into a special kind of finite-state machine, i.e. a monitor, in a preprocessing
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phase. During simulation a monitor dynamically checks simulation behavior
and reports each violation immediately.

The integration of SVA into SystemC is proposed by Habibi and Tahar
[HT04]. An SVA expression is translated into an external SystemC module.
This module acts as a monitor to all signals involved in the formulated asser-
tion. Using the symbol table of a compiled SystemC design allows to connect
the external monitor component with the design automatically. A so called
design updater modifies the SystemC code in order to link design code and
assertion monitor. During simulation, all SVA expressions are checked on-
the-fly. A subsequent work [HT06] presents a model-driven design approach.
Here, properties are modeled by extending UML sequence diagrams in order
to check transaction properties of a SystemC TLM design. Therefore, the
UML model of a PSL property is translated to an Abstract State Machine
(ASM) description. Then, the ASM description is checked against the Sys-
temC model which has to be available as an ASM model, as well. Both
models are further translated to SystemC code where the property is compiled
into a C# monitor.

Große and Drechsler [GD04a] present a method where a property (asser-
tion) is translated into a synthesizable SystemC checker. The checker is
embedded into the original SystemC description. Due to the synthesizable
characteristics of checkers, they can be also evaluated after fabrication of the
system.

Bombieri et al. [BFF05] evaluate the adoption of PSL to a SystemC-based
TLM verification flow. They distinguish between two techniques, “properties
re-use” and “properties refinement”. Properties re-use is utilized to ensure the
functional equivalence of two different SoC descriptions. Properties refine-
ment denotes the process of translating a PSL property, written for a more
abstract design block, to the refined block. There, the PSL to SystemC
checker translation is based upon the approach described in [DG+05].

Niemann and Haubelt [NH06] allow the concise formulation of assertions
for TLM designs by using SVA expressions and interpret transactions as
Boolean signals. To prevent a modification of the original source code, an
aspect-oriented programming technique is used. Hence, transaction recording
statements are weaved into the original SystemC design applying the
AspectC++ compiler presented in [SLU05]. Then, the instrumented code is
compiled and simulated. Transaction activity is written into a Value Change
Dump (VCD) trace file. Subsequently, the VCD file is translated into a Ver-
ilog module which is simulated together with the formulated set of SVA
assertions in a classical HDL simulator.

Kasuya and Tesfaye [KT07] introduce a native assertion mechanism for
SystemC called NSCa. The designer creates assertions by using cycle-level
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temporal primitives comparable with assertions written in SVA or PSL. NSCa
assertions are written either as a separate file or they are embedded into the
SystemC design. Moreover, the provided temporal primitives are applicable
for higher levels of design abstraction, i.e. at the algorithmic or the TLM level
using events and a simple queue model. 

The largest problem for a widespread application of ABV techniques in
SystemC is the missing standardization. The application of the introduced
approaches

is limited to a subset of SystemC, e.g. synthesizable descriptions
[GD04a], 
introduces a new proprietary assertion language [KT07],
integrates assertions only indirectly using additional tools [NH06],
[RHKR01], [BFF05], [HT04], or
does not completely support the underlying assertion language
[HT06].

2.4.3 Formal Verification in SystemC
Formal verification gets a rising interest in SystemC design. Apart from

the object-oriented nature of SystemC and its event-driven simulation seman-
tics, the integration of software and hardware modules in the same system
model makes the formal verification of SystemC designs a challenging task.
Various approaches provide a formal simulation semantic for SystemC, e.g.
[MR+01], [HT05], [Sal03]. However, a full formal semantics does not yet
exist which complicates the development of formal techniques.

In [DG02] Drechsler and Große propose a reachability algorithm for
sequential circuits described in SystemC. The algorithm bases upon Binary
Decision Diagrams (BDD). Due to the limitations to synchronous sequential
circuits, more abstract system descriptions are not supported by this approach.
Based on the presented symbolic reachability algorithm, an approach for the
formal verification of properties specified in Linear Temporal Logic (LTL) is
given in [GD03].

Kröning and Sharygina [KS05] introduce a technique that automatically
partitions a system model into a synchronous hardware part and an asynchro-
nous software part. Partitioning is performed by a syntactical distinction of
thread types (combinational vs. clocked threads). Labeled Kripke structures
formalize the semantics of SystemC. Due to the partitioning step, the verified
model contains fewer transitions, and thus is more efficiently verifiable. 

Habibi and Tahar translate SystemC models into an intermediate represen-
tation using Abstract State Machines Language (AsmL) in order to support
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model checking [HT06]. Using AsmL, the complexity of a SystemC design
can be radically reduced which enables the verification of complex designs
such as a PCI bus [OHT04]. The correct mapping between SystemC and
AsmL is proven in [HT05].

Moy et al. enable the verification of SoCs described at transactional level.
In [MMM05a] they introduce their toolbox LusSy that translates a SystemC
design into a set of parallel automata that rely on a proprietary intermediate
representation called HPIOM. HPIOM defines an executable formal seman-
tics for TLM-based SystemC descriptions. Furthermore, it is connected to
various formal tools such as the symbolic model checker LESAR. The trans-
lation rules are integrated into the GNU C++ compiler front end.

Herber et al. [HFG08] present an approach that defines the semantics of
SystemC by a mapping from SystemC descriptions into Uppaal timed autom-
ata. These automata enables model checking in order to verify properties such
as liveness, deadlock freedom or compliance with timing constraints.

The weakness of all formal verification approaches is their limitation in
handling arbitrary complex SystemC designs. A missing formal semantics for
the full language restricts the application of formal techniques in an industrial
context. Mostly, the presented approaches support only a subset of SystemC
features. Especially the use of object-oriented software concepts and the
crucial pointer semantic cause the same problems model checking of C++
programs has. Although formal verification approaches promise to prove the
correctness of system designs, particularly the complexity combined with a
rising ratio of software prevent their widespread and straightforward usage.
So, classical simulation still remains the means of choice. Nevertheless, new
techniques, such as ABV, bridge the gap between simulation and formal veri-
fication, and try to combine the benefits of both worlds.

3 OUR DEBUGGING APPROACH

At first, this section defines common terms used in the context of debugging
in this book. Next, the general debugging process is sketched. Afterwards, our
debugging approach, consisting of various debugging techniques, is described.
Finally, an example which is used throughout the book is introduced.

3.1 Terms
Debugging is the process of detecting and fixing a defect that has caused

an observed failure. To clarify the different terms used in this context, i.e.
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defect and failure, we want to define them in the same way as Zeller has done
in [Zel05]: 

A defect, also known as bug or fault, is a faulty location in the pro-
gram code that can cause an infection.
An infection is an error in the program state that can cause a failure if
this state is propagated.
A failure is an externally visible situation in the program behavior
that differs from the expected behavior.

It should be noted that a failure can be produced by a combination of
defects where only the combination leads to an infection. Simultaneously, the
same defect can produce many different failures.

3.2 General Debug Process
Debugging in the hardware as well as in the software domain can be

mapped to the following general procedure:

1. Exactly describe the observed problem. Sometime, you can already
catch the problem cause while revising the erroneous situation in
detail.

2. Ask the question whether the problem could be a software failure?

a. If yes
reproduce the failure by simplifying and automating the failure-
causing test case,
locate the failure-causing bug, e.g. constitute a hypothesis and
test it, observe the program state, isolate the correlation between
cause and effect, and fix the bug.

b. If no,
Find the problem cause and fix it. The defect could be for
instance a hardware problem, a bug in the used compiler, or a
simple misunderstanding in handling the software.

3. Verify the effectiveness of the bug fix.

a. Could the entire problem be solved?
b. Are there new, formerly unknown problems?
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3.3 Hierarchy of Debugging Techniques
The main objective of the book is the development of a systematic debug-

ging approach that enables a methodic search for errors while verifying ESL
designs. So, errors can be detected and located efficiently at the different
development stages of the system model. As a result, the approach contributes
to an improvement of the overall verification productivity. It starts with first
testable modules. Here, static analysis identifies coding flaws and potential
failure causes. At the end, a controlled dynamic analysis automates debugging
of the completed system model. The application of one of the debugging tech-
niques does not depend on the current used abstraction level (see Figure 1.4).
So, static analysis can be utilized on untimed as well as cycle-accurate model
descriptions. Rather, the classification of the techniques is made by the num-
ber of needed simulation runs, the reached realization level, and the achieved
coding level (see Figure 1.4). The debugging techniques form a reasoning
hierarchy as proposed by Zeller [Zel05]. Zeller introduces a hierarchy of pro-
gram analysis techniques to provide a classification of debugging techniques
especially used for software programs. This hierarchy shall help the program-
mer to systemize the overall debugging process:

Deduction. Deduction denotes the reasoning from the statically ana-
lyzed program code to the concrete program run. Generally, it means
the reasoning from the general to the particular. This reasoning tech-
nique bases upon an abstraction of the program that is used to deduce
particular properties.
Observation. Observation is the first dynamic analysis technique.
There, a particular program run is used to explore arbitrary program
aspects. In contrast to deduction, this technique observes the results
of a single program run and tries to find approximations based on that
run.
Induction. In general, induction tries to infer from particular observa-
tions to the general program behavior. Actually this means, that many
program runs are merged to a general abstraction which holds for all
runs.
Experimentation. Experiments are used to search for the cause of an
observed failure systematically. A series of experiments is created
that tests a hypothesis with the goal to reject or confirm it. As a result,
a precise diagnosis shall be isolated using a number of controlled pro-
gram runs.
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In this book, the reasoning hierarchy shall be adapted to the specific
requirements and conditions of debugging ESL designs in terms of SystemC
model descriptions:

Deduction. As soon as the designer has written syntactical correct
source code, hypotheses can be deduced from the code without the
need for simulating the model. A static analyzer for SystemC, which
is based on a generic static analysis framework, performs different
analyses, This concerns an analysis of coding standards and the check
for functional errors.
Observation. The observation of a particular simulation run of the
developed system model is supported by a high-level debug flow.
Various sophisticated debugging and exploration features support the
designer in exploring the actual simulation state. A SystemC debug-
ger, debug patterns, and visualization features allow a fast error
detection, location, and correction.
Induction. Multiple simulation runs generate a set of simulation
traces. The traces are used to deduce from a number of concrete runs
general abstractions by means of design properties. Properties, that
are generated on the golden reference model, can be later used to
check the functional correctness of more refined design models, e.g.
the hardware part at RTL.

Figure 2.4 illustrates the classification of the introduced debugging tech-
niques in an ESL design flow (see Figure 2.1). There, a technique shall be
used as soon as the preconditions for its usage are given (see Figure 1.4). Each
technique is implemented by a prototypical tool for SystemC to demonstrate
its effectiveness and efficiency. Generally, the techniques aim at a fast and
easy location of errors in the system model.

3.4 SIMD Data Transfer Example
An example, that is used throughout the book, shall demonstrate the par-

ticularities and strengths of each introduced debugging technique. The
example models the simplified data transfer between the cache of a Processor
Unit and a global Shared Memory of an Single Instruction Multiple Data
(SIMD) processor design. Figure 2.5 shows the general architecture of the

Experimentation. Using a set of controlled simulation runs allows

to SystemC to automate debugging of design descriptions.

to isolate failure-inducing causes in a system model. The delta
debugging algorithm of Zeller and Hildebrandt [ZH02] is adapted
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SIMD data transfer example. Here, only a single processor core of the entire
processor design is considered. The synchronization mechanisms between the
different cores are omitted for simplification reasons. The data transfer is rep-
resented by generic payload transactions conforming to the SystemC TLM2
standard [TLM2]. The memory access is handled by a Load/Store Controller
attached to the particular processor unit. Here, an integrated arbiter controls
and handles the read and write transfers from/to the shared memory. Data are
either read or written, i.e. there is a mutual exclusion between read and write
accesses due to a specified single port cache structure. An internal buffer in
the load/store controller decouples memory and cache. The external Monitor
component supports debugging tasks. It records the transaction activities and
writes them into a VCD dump file.

Figure 2.6 depicts an example read/write data transfer between the proces-
sor cache and the shared memory. Each data transfer starts with a read

Figure 2.4:  Reasoning hierarchy in a simplified ESL design flow
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Figure 2.5:  General architecture of the SIMD data transfer example

Figure 2.6:  Example of a read/write data transfer sequence
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cache. Each block consists of a multiple of an integer word (4 bytes) for dem-
onstration purposes. The load/store controller takes the read transaction and
generates a number of burst transactions. Each burst transmits a single data
word out of the data block from the memory. This behavior models the lim-
ited band width of the memory bus. The band width prevents a transfer of the
data block as a whole. Every burst transaction is modeled by the TLM2 base
protocol in the approximately-timed coding style using the four standard
phases, i.e. BEGIN_REQ, END_REQ, BEGIN_RESP, and END_RESP
(see Figure 2.6). Hence, a “real” data transfer, using handshake signaling, can
be described close to reality. In the real-world design, the cached data are sub-
sequently processed by a loaded SIMD program. As soon as processed data
are available, they are written back into memory. For the sake of simplicity,
the test bench initiates the write transfer after a random time and writes the
cached data to a specified (random) memory address. Write transfers are
equally handled like read transfers. Due to the specified single port cache, it is
not possible to handle bursts in parallel. So, data transfers take place in a
mutual exclusive fashion which ensures fairness. Thus the overall processing
time is optimized.

transaction using the TLM2 blocking transport interface. It initiates the read-
ing of a data block from a specified (random) address in the memory into the





Chapter 3

Early Error Detection

At an early stage errors and coding flaws in a system model can be effi-
ciently detected by deduction techniques that are presented in this chapter.
Figure 3.1 illustrates the necessary preconditions to apply these techniques in
the proposed flow. Besides the syntactical correctness of a design description,
the smallest design unit, i.e. a module, shall be available. So, a single method
or function can be already analyzed. However, the expressiveness of analysis
results is limited due to incompletely described functionality. Since a simulat-
able description is not yet available, Static Analysis methods are used to check
particular correctness aspects of the system model. In general, hypotheses are
deduced from the program code to the concrete simulation run.

Static analysis, i.e. the analysis of a program without its simultaneous exe-
cution, provides important contributions to ensure the source code quality and
to detect easy-to-find errors. Code quality is guaranteed by coding standards
that prevent common pitfalls and careless mistakes. Such standards usually
have a language-specific structure and can be checked automatically by lint-
ing the source code. The analysis of the program code helps the designer to
debug a syntactic correct program before it is executable the very first time.
So, many potentially troublesome errors can be found. Static analysis is effi-
cient, can be used with little effort, has a high degree of automation, and is
applicable to arbitrary complex design descriptions. In spite of these advan-
tages, the largest problem of static analysis is the limited precision due to the
conservative approximations of reachable program states. This often results in
many false warnings.

The first part of this chapter summarizes some theoretical foundations of
static analysis and introduces the analysis framework REGATTA (REtarGetable
FrAmework for TranslaTors and Analyzers). The framework allows the flexi-
ble and easy generation of static analyzer tools for arbitrary programming and
description languages, especially for code quality assurance tasks. Generic
framework components facilitate the creation of analyzer tools. A common
configuration interface is based upon state machines. It allows the easy for-
mulation of arbitrary analyses as well as the configuration of the different
generic framework components.

Based upon REGATTA, the SystemC analyzer SDAS (SystemC Design Anal-
ysis System) is introduced in the second part of this chapter. Its analysis
capabilities are investigated with respect to ensure the code quality of a real-

F. Rogin and R. Drechsler, Debugging at the Electronic System Level, 33
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world industrial SystemC verification environment. The SIMD data transfer
example shows how static analysis finds a serious error prior to simulation.

1 DEDUCTION TECHNIQUES IN A NUTSHELL

Static analysis is a promising method to cope with arbitrary complex for-
mal descriptions. It enables the designer to find many easy-to-find errors very
early in the development flow. At first, this section shortly summarizes some
notions as used in this work. Many data structures and algorithms have their
origin in the classical compiler construction. A comprehensive discussion of
static analysis and its foundations can be found in [ASU03], [WM96],
[Mor98], or [Muc97]. Finally, related work, especially to check SystemC
design descriptions statically, is discussed.

1.1 Preliminaries
To perform a static analysis, a compiler front-end is needed as shown in

Figure 3.2. At first, the scanner performs the Lexical Analysis. It scans the
Input String (the program code) and splits it into blocks of text by means of a
set of regular expressions and gives them a meaning. This process is also
called tokenization. In contrast to a compiler front-end, documentation and
code formatting are important information while checking coding standards,
e.g. the correct documentation style. Such information is not described by a

Figure 3.1:  Early error detection in system models

Figure 3.2:  Structure of a front-end for static analysis
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context-free grammar. Thus, it is usually filtered by the lexical analysis step.
However, static analysis, as used in this book, distinguishes two token classes:

Meaningful tokens. Tokens of this class correspond to terminal sym-
bols of a context-free grammar.
Meaningless tokens. Those tokens summarize characters used for
code formatting and documentation issues. 

During Syntactical Analysis, the parser checks if the stream of meaningful
tokens is a valid expression by means of the given context-free grammar. If a
valid derivation is found, a suitable intermediate representation is created, i.e.
a syntax tree.

Definition 1. A 4-tuple  with a finite set V of non-terminals
and terminals, a finite set of terminals  with , a finite set of grammar
rules , and the start symbol  is called a context-
free grammar.

Definition 2. Let  be a context-free grammar. Unique parse
points  are added to the right-hand side of each grammar rule in R as fol-
lows: If  is the first ‘A-rule’ in R, so the rule with annotated
parse points is given by . 
denotes the set of all parse points for .

Definition 3. Let  be a context-free grammar and  the set
of parse points for . So, the tuple  is called the analysis alpha-
bet of .

To process meaningless tokens during subsequent analysis steps, they are
forwarded to the parser and a so called extended syntax tree is created.

Definition 4. Let  be a context-free grammar. A concrete
syntax tree is an Extended Syntax Tree (EST),

– If the leaves of the tree, labeled with symbols from , are
additionally labeled with meaningless token. So, the concatenation of
the leaves from left to right completely gives the parsed code includ-
ing all printable characters.

– If location information (row, column, filename) are attached at each
token node.

– If an arbitrary inner tree node is marked with A and all its child nodes
are marked from left to right with , so 

Γ V Σ R S, , ,( )=
Σ Σ V⊂

R V Σ–( ) V∗×⊆ S V Σ–( )∈

Γ V Σ R S, , ,( )=
⊥i

A N1N2 ... Nk→
A ⊥A11 N1⊥A12 N2⊥A13 ... ⊥A1k Nk⊥A1k+1→ Π

Γ

Γ V Σ R S, , ,( )= Π
Γ Α V Π,( )=

Γ

Γ V Σ R S, , ,( )=

Σ ε{ }∪

N1 N2 ... Nk, , A N1N2 ... Nk→
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is a grammar rule in R. A is annotated according to Definition 2. For
each parse point a tree node is created and labeled accordingly.

An EST stores all parsed information for a later analysis. Here, the use of
parse points eases the formulation of analyses.

Example 2. A grammar  for the context-free language 
is defined as follows: . A
word of L is for instance “aa_bb_\n”. The characters ‘_’ and ‘\n’ represent
code formatting information (spaces, linefeed) that are not processed nor-
mally. According to Definition 4, Figure 3.3 depicts the corresponding EST.

Most methods for syntactical analysis distinguish between two parsing
techniques: top-down parsing and bottom-up parsing. Both parsing tech-
niques read the input (tokens) from left to right. Since the manual creation of a
parser could be expensive, specific language classes allow to create a parser
by using a parser generator automatically. Therefore, the user has to provide
only an appropriate context-free grammar. Several tools generate a parser for
LL(k) and LALR(1) grammars [ASU03]. These classes of grammars recog-
nize most programming and description languages.

Given an EST, a large number of lexic- and syntax-driven analyses can be
already implemented. However, semantic analyses are based upon processed
data structures. A common data structure is the symbol table. It holds a set of
attributes for each recognized identifier, e.g. the point of declaration, the type,

Figure 3.3:  EST for the word “aa_bb_\n”

Γ L anbn  n 1≥,{ }=
Γ S a b, ,{ } a b,{ } S aSb→ S ab→,{ } S, , ,{ }=
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or scope level. A further set of analyses is based on control and data flow
information of the analyzed program. 

Definition 5. A basic block B in a program is a sequence of consecutive state-
ments with unique entry and exit points. That means, there is exactly one way
to enter and leave the block.

Definition 6. A 4-tuple  with N a finite set of nodes,
 a finite set of directed edges, a start node , and an end node

 is called Control Flow Graph (CFG). An additional labeling function
 assigns each node a part of the program. Φ denotes the set of

fragments of the created syntax tree.

Each basic block becomes a node in G. The edges define the flow of con-
trol between blocks. A CFG defines all possible execution paths in the
analyzed program. An annotation function  assigns a particular
data flow information F to each node in G, e.g. variable accesses. Based on
this information, a Data Flow Analysis (DFA) can determine which data reach
a particular program point.

To facilitate the generation of tools for static analysis, an object-oriented
software framework could define core architecture and basic functionality of
such tools.

Definition 7. Johnson defines a software framework as “a skeleton of an
application that can be customized by an application developer” [Joh97].

According to Definition 7, a software framework is a semi-finished soft-
ware component. It facilitates the development of a software product by
providing an API and pre-fabricated problem solutions for a particular appli-
cation domain and certain use cases. A framework summarizes the commons
of such a domain. It defines important design decisions for the software archi-
tecture of applications based on it. The development of a framework requires
a solid and in-depth analysis of the application domain to anticipate many
future use cases. In contrast to a library, especially the design decisions of the
framework architecture are reused. The principle of the inversion of control is
a distinctive important characteristic of a software framework. This design
principle is also known as the Hollywood-Principle “don’t call us, we will call
you”. Here, the control remains at the framework side where generic code
controls the execution of problem-specific code extensions.

G N E s e, , ,( )=
E N N×⊆ s N∈
e N∈
fL : N Φ→

fA : N F→
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1.2 Related Work
In [HR06] static code analysis is used to calculate classical SW-oriented

structural metrics of SystemC designs, e.g. the depth of the class hierarchy. A
set of HW-based functional metrics is also calculated, e.g. to estimate hard-
ware implementation decisions by considering the average execution time.
Agosta et al. [ABS03] present a similar approach. Here, metrics are computed
on basis of a formalized, abstract TLM description. Both work extract metrics
especially to support design exploration. The generic functionality and con-
figurability of our analysis framework REGATTA would enable the easy
implementation of similar analyses.

Several work statically analyze SystemC descriptions. Siebenborn et al.
[SBR02] determine temporal system properties by a timing analysis of paral-
lel communicating processes, e.g. the worst-case response time. Blanc et al.
[BKS08] generate a static scheduler from an extracted formal model. The
characteristic of most approaches is the usage of static analysis to create a for-
mal model of a SystemC description to support formal verification. In fact,
the generation of meaningful and detailed formal models is restricted to a sub-
set of SystemC. So, the tools have limits to handle arbitrary complex SystemC
designs (see Section 2.4 on page 21). Rather, our flexible framework approach
supports the easy generation of tools for an analysis of corporate coding
standards.

Due to the nature of SystemC being a C++ class library, any verification
tool developed for C/C++ static program analysis is applicable. In this domain
many powerful tools and approaches have been published over the years. In
the following some representative work are detailed.

The Saturn program analysis system [AB+07] translates a C program into
a set of relations. Saturn uses constraints and a logic programming language
to express analysis algorithms. A similar approach is proposed by Lam et al.
[LW+05]. The presented analysis framework stores all program information
as relations in a deductive database. This database uses BDDs for storing
while the database query language Datalog [Ull89] is used to formulate analy-
ses. BDDs allow to handle the large set of program contexts very efficiently.
Further tools use BDDs as analysis back-ends such as [BNL05]. SLAM is a
toolkit [BR02] that statically analyzes a C program determining whether or
not it follows defined API usage rules. SLAM validates program behavior and
detects errors performing a reachability analysis of a generated Boolean pro-
gram abstraction. Beyer et al. [BHJM07] introduce the model checker
BLAST for C programs. It checks temporal safety properties of C program
based on a lazy predicate abstraction and interpolation-based predicate dis-
covery of the program state space. Godefroid [God97] presents the VeriSoft
tool. This tool systematically searches the state space of a concurrent C/C++
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program to verify defined properties. In contrast to the aforementioned model
checkers, VeriSoft does not rely on any additional abstraction. Its focus lies
on finding bugs rather than to prove program correctness. A pragmatic
approach to find many serious bugs in C/C++ programs is proposed by
Hallem et al. [HCXE02]. The user writes compiler extensions using the pro-
vided language metal. These extensions are executed by an analysis engine
using a context-sensitive, interprocedural analysis. There, the analysis applies
each extension to a constructed CFG. A similar project is ESP [DLS02] which
also provides a state machine language to formulate analyses. Other
approaches base upon user annotations, e.g. [Det96], [FTA02]. Generally,
annotations pose a significant drawback due to the additional effort for inva-
sive code modifications.

Apart from a few approaches, e.g. [HCXE02], [DLS02], [AB+07], many
tools, e.g. [BHJM07], [God97], [LW+05], do not scale very well for large
systems due to the used underlying data structures or approaches. Program
sizes are usually limited to several 10 K lines of code. However, actual tools
produce sound and reasonably precise analysis results [AB+07], [LW+05],
[BHJM07]. In contrast, practical experiments have proven the feasibility of
our SystemC analyzer SDAS to analyze large code bases very fast. The disad-
vantage of SDAS is the missing precision due to the lack of a pointer alias
analysis and an interprocedural DFA. On the other hand, the underlying
REGATTA framework was mainly developed to ensure code quality which
includes simple lexical as well as advanced semantic checks. Especially, the
processing of meaningless tokens is a unique feature of all REGATTA-based
tools. The analysis configuration and specification approach in REGATTA is
similar to metal [HCXE02] and ESP [DLS02] where state machines are used
to describe analyses. Abstraction-based model checkers, such as BLAST,
SLAM, or Saturn, are working on a previously computed abstraction of the
state space of a program. This abstraction process is usually connected with a
loss of precision. SDAS performs many analyses on-the-fly, i.e. during parsing
the input, and relies on an exhaustive search of the concrete state space only
for DFA-based checks. The drawback of C/C++ tools is the missing support
to process SystemC statements directly. Hence, SystemC-specific analyses
can be realized only with difficulty.

The concept of a framework providing generic analysis functionality is
proposed by various work. Fechete et al. [FKB08] introduce a framework that
creates CFGs for arbitrary Ada programs. Indus is a framework for the analy-
sis and slicing of concurrent Java programs which provides a scripting
interface to access collected analysis information [RH06]. The AJANA
framework analyzes AspectJ programs to provide a dataflow representation
that is the basis for an interprocedural dataflow analyses [XR08]. This work
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focuses on specific analysis problems introduced by aspect-oriented language
features. The difference between these approaches and REGATTA is the limita-
tion to a single programming language although the tools sometimes enable
more sophisticated analyses. Moreover, REGATTA was the basis for various
framework-based tools applied on different languages such as Verilog
[HR08], VHDL-AMS [RFSH05], or even SystemC. The analyzer generator
PAG [Mar98] shares with REGATTA the general objective of providing a
generic framework for analyses of various programming languages. PAG
bases on abstract interpretation and the specification of data flow analyses
using a high-level functional input language. There, it relies on CFG construc-
tion by a third-party compiler front-end. In contrast, REGATTA integrates its
own front-end and performs analyses using a concrete syntax tree. So, it sup-
ports the analysis of coding standards very well whereas PAG is restricted to
dataflow-based checks.

There exist several (commercial) SystemC design and verification envi-
ronments. They provide various analysis, debugging, and visualization

Design Environment for SystemC Vista [Summit]. All these environments are
adapted to a specific application domain [CoWare], or base upon an extended
and partially proprietary simulation kernel [CoWare], [Summit]. In spite of
the comprehensive tool features, quality assurance by static code is only par-
tially or not supported. There, only AccurateC [Actis] directly checks the
code quality of SystemC descriptions.

Summarized, static analysis techniques are state-of-the-art in software
engineering and hardware design but in system design their application is still
limited yet, especially in the SystemC domain.

2 STATIC ANALYSIS FRAMEWORK

First, this section summarizes important requirements for the development
of a framework for static analysis. Subsequently, the general architecture of
the REGATTA framework and the pre-defined generic components are
detailed. Next, a flexible configuration approach is introduced. This approach
eases the adaptation of generic framework components to a concrete analyzed
language. Moreover, this approach is flexible enough to formulate arbitrary
analyses. Finally, a rating of the developed framework is given.

capabilities such as CoWare’s Platform Architect [CoWare], or Summit’s
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2.1 Requirements
To facilitate the generation of arbitrary static analyzer tools, the develop-

ment of the REGATTA framework is based on certain requirements.

Flexibility. A suitable front-end for lexical and syntactical analysis
should be created easily and automatically. Therefore, a LR(k) or a
LL(k) grammar for the desired language is needed. Hence, the
approach shall not depend on existing compiler front-ends. To obtain
the required flexibility, language processing (front-end) and analysis
functionality (back-end) should be decoupled from each other.
Adaptability. The framework architecture should permit an easy
adjustment of REGATTA to various languages and analyses. An user-
friendly and powerful standardized configuration interface shall allow
the user to formulate new analyses and to adapt predefined generic
framework functionality.
Integration. The framework shall be able to supplement existing
(commercial) analysis tools. Proper framework components should
support the particular integration, e.g. by generating analysis results
in a specific output format.

The REGATTA framework should support various use cases:

Ensuring coding standards. The most important use case is the analy-
sis of a particular coding standard. Possible analyses concern for
instance the compliance check of naming conventions, the check of a
correct code documentation, or dataflow analyses.
Structural analysis. REGATTA shall permit a structural analysis of the
source code. Structural analysis can be used for instance to measure
the design or code quality of the analyzed description. 
Processing of analysis data. Apart from code analyses, the frame-
work should allow the further processing of collected and analyzed
data, e.g. to generate an HTML documentation from a given design
description.

2.2 General Architecture
Figure 3.4 illustrates the general architecture of REGATTA. The Analysis

Manager is the central controlling unit. It evaluates the user input, creates and
initializes all framework components, and contains the main control loop for
the analysis flow. The Front-end divides into a Scanner and a Parser per-
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forming the lexical and the syntactical analysis. A concrete front-end is
generated by a parser generator automatically. Therefore, the user has to sup-
ply a proper context-free grammar of the target language. REGATTA supports
two generator toolsets which maximize the framework flexibility in support-
ing a wide range of programming and description languages:

Lex/Yacc [LMB92] or flex/bison [Don92] creates for a given context-
free LALR(1) grammar an LALR(1) parser and a corresponding
table-driven scanner.
ANTLR [Parr07] generates parser and scanner using a provided
LL(k) grammar.

The Back-end comprises all components to analyze the given input
description by means of a created EST (Definition 4). Each analysis task can
be split into a Data Collection and a subsequent Data Analysis phase. Either
data are collected globally for various analyses or they are gathered task-spe-
cific locally. The subsequent data analysis phase evaluates the collected data
according to the desired analysis and writes possible results into the database.
Two analysis types are distinguished: The first one performs an on-line analy-
sis that means executes the whole check during tree walking the EST. The
second analysis type, also Post Analysis, is performed after tree walking is
done. It works directly on data that have been collected into the database

Figure 3.4:  General architecture of REGATTA
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before. The framework distinguishes two types of databases, i.e. the Analysis
Database (DBA) and the Report Database (DBR):

The DBA stores all analysis-specific data either globally for many dif-
ferent analyses, or locally for specific checks.
The DBR holds all results of performed analyses such as error reports
in case of violated checks or common logging messages from frame-
work components.

To reach the demanded framework flexibility, front-end and back-end are
separated by a Coupling Interface. This interface facilitates the transparent
adaptation of the framework core according to the concrete formal language
(front-end) and the desired analyses (back-end). Framework configurability is
enabled by application-specific extension points. Such a point is provided by
using object-oriented design-patterns [GHJV95] or the common configuration
approach by using FSM-Described Configuration (FDC) specifications (see
Section 2.4 on page 51).

2.3 Generic Framework Components
Generic framework components ease the adaptation of REGATTA to vari-

ous analyses. The generic symbol table accelerates the implementation of a
concrete symbol table. The DFA component supports the development of
dataflow-based analyses, e.g. to detect dataflow anomalies. Thus, potentially
troublesome errors can be found very easily. Finally, the structural analysis
component facilitates the detection of structural patterns in an analyzed
description. Structural analysis allows to estimate the code quality in terms of
maintainability and extensibility for instance.

2.3.1 Generic Symbol Table
Many advanced analyses base upon the processing of symbols such as

variables, functions, or classes. Possible questions in case of an analysis of
coding standards could be for instance:

– Does a module name contain the name of its top module?
– Does a specific method lay inside each class?
– Does the depth of the class inheritance tree exceed a maximum value?

To answer such questions, a symbol table is used. The symbol table saves
information about the symbols defined in a program, e.g. the validity of a
variable in the current scope, the required memory of a symbol type, or the



Debugging at the ESL44

number and types of arguments of a method. A compiler creates a symbol
table for semantical analyses and to generate target code.

REGATTA supports symbol processing by providing a generic symbol table
component that has to be configured according to the analyzed language.
Important requirements of REGATTA are the adaptability and the inherent lan-
guage independent character (see Section 2.1 on page 41). This is also reflected
by the design requirements used to implement the generic symbol table:

Hierarchical design. If the analyzed language supports the creation of
multiple scopes that can be interleaved, the symbol table shall be able
to model this fact.
Distinction between symbols and types. In a typed language, each
symbol is of a defined type. According to the language, there are pre-
defined and eventually user-defined types available.
Language independence. The symbol table should provide generic
data types that hold common information about symbols and types of
typical programming and description languages.
Configurability. An interface shall allow the configuration of the
generic symbol table according to the analyzed language.
Extensibility. Unsupported symbols or types shall be added easily into
the existing design structure. Moreover, language-specific scope rules
should be efficiently integrated.
Efficiency. Retrieving a symbol and its attributes shall be possible
very efficiently to allow fast symbol access, and thus a fast analysis.

REGATTA implements a generic symbol table by following the aforemen-
tioned requirements. Figure 3.5 depicts the class hierarchy:

Hierarchical design. Each symbol table holds a pointer to its super
table which is the table of the enclosing father scope. Hence, a scope
hierarchy can be created and traversed easily. The symbol table pro-
vides three predefined data types that open a new scope, i.e.
DBI_Subtype, DBI_GroupType, and DBI_MethodType.
Distinction between symbols and types. The symbol table stores sym-
bol table objects (class DBI_SymTabObj) which is a common base
class for all symbols and types. A symbol (class DBI_Symbol)
denotes a parsed identifier that is of a specific type. A type (class
DBI_Type) encapsulates all type-relevant attributes of a symbol. Sep-
arating symbols and types enables the reusability of the same type
object for different symbols.
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Language independence. As shown in Figure 3.5, REGATTA pre-
defines several symbol and type classes. These classes provide sym-
bol handling for a wide range of languages. The focus lies especially
in the support of programming and specification languages such as
SystemC, C/C++, or Java. However, the symbol table architecture
can be also mapped to HDLs such as Verilog or VHDL.
Configurability. FDC specifications (see Section 2.4 on page 51) con-
trol the various construction steps for a specific symbol or type object.
Hence, a single and unique configuration interface for symbol table
construction is provided.
Extensibility. The common base for symbols and types (class
DBI_SymTabObj) makes it easy to extend the symbol hierarchy. The
particular scope rules of the analyzed language define the visibility of
symbols. To adapt the corresponding symbol lookup algorithm, the
Strategy design pattern is used [GHJV95]. This pattern eases the
implementation of new lookup strategies.
Efficiency. Symbol table objects are stored in the related symbol table
object using a hash map. Hence, insertion and retrieval of object is
possible in constant time, i.e. O(1).

2.3.2 Generic Dataflow Analysis
Dataflow-based analyses have their origin in the classical compiler con-

struction. They are used for code optimization and error checking, e.g.
reporting unused variables, or the correct call of a method. REGATTA applies

Figure 3.5:  Extract of the generic symbol table class hierarchy
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such analyses to detect data flow anomalies. There, an anomaly is a deviation
of a property from its specified behavior. The generic DFA component
divides into two parts:

CFG construction. This part includes the construction of a CFG G
(Definition 6), and its subsequent annotation with data flow informa-
tion using the annotation function .
DFA algorithms. By means of an annotated CFG G, DFA algorithms
solve data flow equations in order to locate errors in the code.

During the first step a CFG is constructed for each recognized syntactical
block, e.g. a function which allows to perform an intraprocedural analysis.
Since REGATTA is aimed to be language independent, data structures have to
fit for many different but typical language constructs. For that case, so called
control flow patterns are proposed. These patterns support CFG construction
(see Figure 3.6):

Sequence. A sequence is just a sequence of two blocks. This pattern is
an intermediate step to model all other structures. After construction
of the CFG, there should be no sequence pattern anymore.
Fork. A fork marks a point in the control flow where several (at least
two) ways (branches) are possible in the control flow. In contrast to a
breakable fork, no more than one branch of the fork can be used dur-
ing program execution. An example for such a fork is the if-then-
else statement in SystemC.
Breakable fork. A breakable fork allows to break the execution of a
branch and to switch to another branch of the same fork. The
branches are executed in sequence as long as no command for break-
ing up the actual fork is found. An example for this kind of fork is the
switch statement in SystemC where the break statement controls
branch execution.
Loop. A loop is a point in the control flow where a set of basic blocks
is possibly executed several times. The loop is introduced by a start
block, including the loop-condition, a set of looping blocks, repre-
senting the control flow within the loop, and an end block. There, the
end block points to the first position after the loop. A further loop
variant executes the loop body at least one time and checks the loop-

fA
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condition at the end. Examples for both loop variants are the for and
the do-while statements in SystemC.
Jump. A jump connects a block to another block somewhere else. It
can be a backward or a forward jump. Throughout the local creation
of a CFG, a jump target could not yet be known during parsing. So, after
parsing, all jumps are “connected” to the appropriate target blocks.
There, it is assumed that the jump target can be deterministically
located. An example for a jump is a method call in SystemC.

The control flow patterns are implemented using abstract FDC specifica-
tions that are tailored to the concrete analyzed language (see Section 2.4 on
page 51). In parallel to the creation of a CFG G, the annotation function 
assigns each node in G, i.e. each basic block, a particular data flow informa-
tion. Here, variable accesses are annotated where four access classes are distin-
guished, i.e. read (also referenced), written (also defined), used (also defined),
and declared. A particularity is the used access. Sometimes, it is undecidable
whether a variable is read or written, e.g. the (indirect) modification of a vari-
able content using pointer arithmetic. Here, a sound analysis has to assume a
read as well as a write access.

Figure 3.6:  Control flow patterns recognized in REGATTA
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The solution of DFA problems is facilitated by an implementation frame. This
frame helps the programmer to solve data flow equations as described by
Aho et al. [ASU03]. The basis of these equations are variable definitions that
reach a program point. There, it is assumed that each path in G can be a real
execution path (conservative approximation). A program point can generate
and kill variable definitions. The definition of a variable v, that reaches the
end of a basic block B, is generated by this block (see Figure 3.7). Simultane-
ously, this definition kills all other (previous) definitions of v (see Figure 3.8).
Using the algorithms shown in Figures 3.7 and 3.8, gen and kill sets of every
basic block in G are calculated.

Example 3. Figure 3.9 shows for a CFG on the left side the corresponding
gen and kill sets. In  variable c gets a new value for instance which kills
the definition of c in  simultaneously.

After calculating gen and kill sets for each basic block, the reaching defini-
tions in terms of in and out sets for a blocks B can be calculated. The in[B] set
contains all definitions that reach the beginning of B. The set out[B] contains
the definitions which leave B. Figure 3.10 illustrates an algorithm that calcu-
lates all definitions that reach the basic blocks of a created CFG, similar to the
procedure presented by Aho et al. [ASU03]. The implementation of this algo-
rithm can be used as a template to add further dataflow anomaly analyses. The
main difference to the algorithm, as given by Aho et al., is the calculation of

Figure 3.7:  Algorithm to determine the gen sets for each basic block

Figure 3.8:  Algorithm to determine the kill sets for each basic block

1: for each basic block B in G do begin
2: for all definitions D of variable v in B do begin
3: put the last definition D of v into gen[B]
4: end
5: end

1: for each basic block B in G do begin
2: for all definitions D of variable v in gen[B] do begin
3: get all (global) definitions of v
4: put all (global) definitions except D into kill[B]
5: end
6: end

B2
B1
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definitions that reach B (line 6). A compiler optimization must be safe. So, the
set in[B] is calculated by using the union over all out sets of all direct prede-
cessor blocks. Hence, no variable definition is missed (conservative
approximation). However, static code analysis checks whether there is at least
one path a variable is not defined, so that the intersection is calculated instead.

2.3.3 Generic Structural Analysis
REGATTA supports a structural analysis of design descriptions using the

open source tool CrocoPat from Beyer et al. [BNL05]. CrocoPat is a tool for
the efficient manipulation of relations of arbitrary arity. It was developed to

Figure 3.9:  gen and kill sets in an example graph

Figure 3.10:  Algorithm to detect undefined variables (according to Aho et al. [ASU03])
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1: for each basic block B in G do out[B] = gen[B]
2: change = true
3: while change do begin
4: change = false
5: for each block B do begin
6:

7: oldout[B] = out[B]
8:
9: if out[B] != oldout[B] then change = true
10: end
11: end

in B[ ] out P[ ]   
P pre B( )∈
∩= // pre(B): set of predecessors of B

out B[ ] gen B[ ] in B[ ] kill B[ ]–( )∪=
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find structural patterns in graph models of software systems which includes
different use cases:

detection of particular structural design patterns, e.g. as presented in
[GHJV95],
extraction of scenarios from the source code, e.g. specific function
call sequences,
detection of potential design problems, or
study of the impact of code changes in software systems.

To use CrocoPat, a REGATTA component is able to generate user-defined,
arbitrary relations. These relations describe dependencies between different
elements in the analyzed description, e.g. classes, variables, methods. Based
on a set of generated relations, a CrocoPat query implements an analysis.
This procedure includes several benefits:

Ease of adaptation. CrocoPat-based checks are evaluated before the
analysis process starts. Hence, a change of the check does not require
a recompilation of any source code.
Ease of use. The CrocoPat programming language bases upon first-
order predicate calculus which is well known, reasonably simple, pre-
cise, and powerful. So, check implementation is a fairly simple task.
Efficiency. CrocoPat handles relations of arbitrary arity which allows
to perform complex analyses.

Structural analysis in REGATTA is composed of two phases:

Initialization. Before the input sources are parsed, all selected
CrocoPat queries are read into the DBA. There, the XML configura-
tion interface of REGATTA is used. A query is introduced by the XML
tag Query.
Analysis. After the input program is analyzed, processed and the
demanded relations are generated, CrocoPat evaluates the queries.
An input relation consists of the relation name and an arbitrary num-
ber of elements describing the desired information. Finally, analysis
results are written into the DBR.

Figure 3.11(b) presents a CrocoPat query that counts the number of Com-
posite design pattern instances [GHJV95] found in the analyzed description.
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The basis for that query are three relation types that describe typical relations
in object-oriented programming languages:

– INHERIT A B means type A inherits from type B
– CONTAIN A B means type A contains type B, and
– CALL A B means type A calls type B.

2.4 Configuration and Adaptation
Practical experiences with different REGATTA-based analyzers have iden-

tified a large number of always recurring analysis problems, e.g. the check of
the same coding guideline, or the construction of the symbol table. Hence, a
simple, reusable, adaptable, and language-independent approach for the spec-
ification of analyses in REGATTA should be available. The approach shall met
the following requirements:

Implementation of analyses. A single point in the framework allows
for an abstract, concise, and easy specification of analyses.
Tailoring to the analyzed language. An abstract analysis specification
should be tailored to the analyzed language without any need for
implementation changes.

2.4.1 Implementation of Analyses
Finite-State Machines (FSM) are a suitable and flexible abstraction to pro-

vide a concise, easy to use, and familiar specification facility. Hence, code ana-
lyses as well as generic framework components can be described (see Section 2.3
on page 43). The notation of an FSM-based specification approach in terms of
FDCs is geared to the syntax of the State Machine Compiler [Rapp08].

(a) Structure of Composite pattern (b) CrocoPat query

Figure 3.11:  Detection of the Composite design pattern using CrocoPat 
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Composite(Component, Composite, Leaf) :=
INHERIT(Composite, Component) &
CONTAIN(Composite, Component) &
INHERIT(Leaf, Component) &
!CONTAIN(Leaf, Component);

IF (#(Composite(Component,_,_)) > 0) {
PRINT “#“, #(Composite(Component,_,_));

}
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Definition 8. Let  be a context-free grammar and Α the
analysis alphabet of . An FDC specification is a 12-tuple

 with

– Q: the finite number of states representing the analysis steps,
– : the input alphabet defined over Α,
– : the finite set of functions describing actions,
– E: the finite set of C++ Boolean expressions to guard transitions,
– : the transition function 
– : the output function ,
– : the finite set of entry functions ,
– : the finite set of exit functions ,
– : the function  assigning each state in Q an

entry function,
– : the function  assigning each state in Q an exit

function,
– : the initial start state , and 
– : the finite set of error states .

A coding standard is ensured by a set of coding checks implementing par-
ticular coding guidelines. The outcome of an FDC-based check is defined by
two different path types.

Definition 9. Let  be
an FDC specification. A sequence  of states is a valid path
from  to  in Z, if for a sequence  with , 
with ,  applies.  is the set of all valid paths.

Definition 10. Let 
be an FDC specification. A sequence  of states is an
invalid path from  to  in Z, if for a sequence  with ,

 with ,  applies.  is the set of all
invalid paths.

A coding guideline is violated if there is a sequence  of program state-
ments, so that Definition 10 applies. The analyzed program satisfies the
coding guideline if no path  for the program exists, so that

. FDC specifications are also used to describe generic
framework components. In that case, there is no explicit error state in Z, i.e.

Γ V Σ R S, , ,( )=
Γ

Z Q Σ Fact E δ λ Fentry Fexit γentry γexit q Qerr, , , , , , , , , , ,( )=

Σ
Fact

δ δ : Q Σ× E Q→×
λ λ : Q Σ× E Faction→×
Fentry Fentry Fentry ε{ }∪=
Fexit Fexit Fexit ε{ }∪=
γentry γentry : Q Fentry→

γexit γexit : Q Fexit→

q q Q∈
Qerr Qerr Q⊂

Z Q Σ Fact E δ λ Fentry Fexit γentry γexit q Qerr, , , , , , , , , , ,( )=
πvalid q ... qend, ,=

q qend ω ω Σ∗∈ δ̂ q ω E1, ,( ) qend=
E1 E⊆ qend Qerr∉ Πvalid

Z Q Σ Fact E δ λ Fentry Fexit γentry γexit q Qerr, , , , , , , , , , ,( )=
πinvalid q ... qend, ,=

q qend ω ω Σ∗∈
δ̂ q ω E1, ,( ) qend= E1 E⊆ qend Qerr∈ Πinvalid

ω

q ... qend, ,( )
q ... qend, ,( ) Πinvalid∈
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. Rather, the FDC automaton is reset to  in case of an erroneous
situation.

2.4.2 Tailoring to the Analyzed Language
To create an abstract FDC specification, all language-specific information

have to be removed. Mainly, this concerns the symbols in  which are
replaced by so called proxy symbols. In case of a concrete analyzer, these
proxy symbols are assigned elements from the analysis alphabet Α of the par-
ticular given grammar. The check functionality is abstracted by using special
imported variables. Variable values are set by the designer accordingly to the
concrete analysis, e.g. to define the maximum limit for the number of allowed
function arguments. Practical experiences have shown that the primitive types
bool, string, integer, and double are sufficient to support a large set of
analyses.

To tailor an abstract FDC specification to a concrete language such as Sys-
temC, an XML configuration interface is provided. This interface is generated
automatically when an FDC specification is compiled. It provides XML tags
for each proxy symbol and the defined imported variables. The configuration
interface facilitates an easy and quick adaptation of abstractly formulated
analyses.

 Based upon Definition 8, Figure 3.12 specifies the syntax of FDC specifi-
cations in Extended Backus Naur Form (EBNF) [ASU03]. The action code of

, , and  have to be correct C++ code where the framework

Figure 3.12:  EBNF syntax of the FDC language
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Σ

Fact Fentry Fexit
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enables the full access to the REGATTA API. Appendix A gives an informal
semantics of the FDC language.

Example 4. Figure 3.13 shows an abstract FDC specification named
“ComponentCnt” that counts the number of a user-defined language element.
If a maximum count is reached the check creates an error message (function
“create_msg”). The user has to configure the count limit “max_cnt” and a
regular expression “pat” that constrains the analysis to particular files (func-
tion “check_file”). Moreover, the user has to assign the proxy symbols ele-
ments from the analysis alphabet Α of the given grammar. The transition
“Start-Counting” initiates the analysis. It will be released by symbols from Α
which are defined for the proxy symbol PK_INIT. Each occurrence of a lan-
guage element is counted provided that a matching file is examined. The
counted language element is notified by further symbols from Α assigned to
the symbol PK_CNT. If the current count exceeds the maximum count (guard
condition), an error message is created and the state machine enters the
“Error” state. In this state subsequent violations are reported, as well. Two
reset transitions restart the check.

Figure 3.13:  Abstract FDC specification counting arbitrary language elements
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2.5 Approach Rating
The following section summarizes the benefits and limitations of static

analysis techniques in general and especially regarding the REGATTA frame-
work.

2.5.1 General Benefits
A static analysis of program code has a number of advantages:

Scalability. Static analysis usually scales very well with complex
design descriptions, where it detects many (easy-to-find) errors.
Development costs. The overall development costs are reduced due to
an early detection of errors just before runtime.
Objectivity. The automated analysis allows an objective estimation of
code quality. Static analysis supports code reviews in highlighting
confusing or problematic constructs.
Ease of use. Appropriate analysis tools can be used with little effort,
require only few user interaction, and are usually fully automated.
Moreover, these tools directly point to the fault location which ease
debugging.
Code quality. The validation of a corporate coding standard raises

code readability, maintainability, reusability, and portability are
enhanced.

Several work evaluate the effectiveness and accuracy of static analysis
mainly in the software domain, e.g. [NW+04], [NB05], [ZW+06], [AP+07].
The efficiency of a tool-supported approach that helps the developer in pre-
paring a manual code review is explored by Nagappan et al. in [NW+04].
Nagappan and Ball [NB05] show that defect density of static analysis predicts
the pre-release defect density for the Windows Server 2003 sources at a statis-
tically significant level. Zheng et al. show in [ZW+06] that the defect removal
yield of static analysis nearly match that of manual inspection. However, soft-
ware tests have a three times higher yield rate. That means, static analysis
cannot replace functional testing but it reaches a good efficiency in improving
the code quality and in detecting errors. Moreover, it is a complementary
technique to testing that helps the designer to locate bugs as early as possible
during development. Ayewah et al. [AP+07] determine that each detected
warning does not have a real impact on software functionality. Especially the

designer’s awareness for typical mistakes and pitfalls. Moreover,
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costs to remove such a warning should be kept low. Therefore, a structured
process of defect handling should be established.

2.5.2 General Limitations and Risks
The biggest problem of static analysis arises from the conservative

approximations made during analysis. It is caused by the undecidability of a
static computation of the dynamic runtime behavior. Hence, approximations
result in more dependencies than in practise necessary. Concretely, impreci-
sion is caused by a number of language constructs that obviate the precise
computation of data dependencies, e.g. the usage of pointers, object orienta-
tion, method overloading, or concurrency. Thus, the analysis does not falsely
omit any existing dependency but it results in a high rate of reported false
warnings. This fact could negatively bias user acceptance, especially in the
industrial field.

Example 5. A typical example that requires a conservative approximation is
the access to an array using an index variable, e.g. a[i]. To compute precise
dependencies statically, all possible values of ‘i’ have to be known at the point
of access. This could be difficult if ‘i’ is determined at runtime and depends
for instance on user input.

Besides the imprecision of analysis caused by a conservative approxima-
tion, static analysis has a few more flaws:

Divergent sources. The user has to ensure that the statically analyzed
source code is always the same that is used later to create the execut-
able. Otherwise, unexplainable and undefined behavior could compli-
cate error search.
Abstraction difficulties. Usually, failure search assumes that the cor-
responding defect is located only at the source code level. However, a
failure could be also caused by the environment, e.g. the compiler, the
operating system, or third-party libraries, which should be kept in
mind.
Analysis power. Most static analyzers find inconsistent or deviant
code instead ensuring the functional correctness of the implemented
specification. However, inconsistent or flawed code does not neces-
sarily result in critical misbehavior of the program.

2.5.3 Benefits of REGATTA

The general benefits of static analysis also apply to REGATTA. Addition-
ally, some more advantages exist because of the framework character. In
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general, these advantages relate to the requirements mentioned on page 41.
Especially, FDC specifications have a number of advantages. The underlying
FSM provides an easy to learn and familiar concept for most programmers.
The strict partition of language-specific settings from the abstract specifica-
tion supports the creation of a generic code analysis library with a number of
advantages:

Quick solutions. For standard analysis problems check implementa-
tion speeds up in a significant way.
Proven implementation. A library contains proven solutions of stan-
dard analysis problems. Thus, the user has to focus only onto the
adaptation to the analyzed language.
Subsequent extension. The abstract level of modeling allows a subse-
quent extension or change of an FDC specification with little effort.

2.5.4 Limitations of REGATTA

The general limitations and risks of static analysis also apply to REGATTA.
In addition, some more limitations exist:

Limited application. A universal and flexible framework solution for
all possible static analysis problems is not possible. REGATTA sup-
ports only a certain set of use cases (see Section 2.1 on page 41). 
Learning curve. If the user wants to implement an analysis, he has to
understand the general framework architecture. Furthermore, he has
to know the provided framework API. This requires a comprehensive
framework documentation and some learning effort.

3 SYSTEMC DESIGN ANALYSIS SYSTEM

Based upon REGATTA, the SystemC static analyzer SDAS was created. It
applies the most important framework use case “ensuring coding standards”
(see Section 2.1 on page 41). The analyzer implements 18 coding guidelines of
a proprietary industrial coding standard. The guidelines range from simple
formatting and naming convention rules, applicable to C++ programs, to
SystemC specific checks.
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3.1 Implementation Effort
The analyzed code is parsed by a yacc compatible C++ LALR(1) grammar

from Willink [Wil01]. This grammar was extended to recognize SystemC
constructs. The lex/yacc front-end generator of REGATTA creates the scanner
and the parser. A direct recognition of SystemC language constructs enables
the easy check of SystemC specific coding guidelines such as the report of
obsolete SystemC 2.0 constructs.

At the back-end side the generic symbol table and the DFA components
were configured using the provided FDC XML configuration interface. The
particular coding guideline checks were implemented using the provided
framework API.

Table 3.1 compares various characteristics concerning the implementation
effort of the REGATTA framework and the SystemC analyzer SDAS. Using the
framework, 1117 lines of C++ code (LOC), i.e. only 1.82% of the amount of
framework code, are required to create a working back-end for SystemC anal-
ysis. In addition, there is a number of approximately 3,700 lines of grammar
description to specify the front-end. The major amount of code in SDAS (7,460
lines) represents guideline checks. Remarkable is the small number of 213
XML lines to configure the generic symbol table and the DFA component to
SystemC. It shows that only a few lines of configuration code are required to
adapt generic framework functionality to a concrete language.

3.2 Configuration and Adaption
The generic framework components (see Section 2.3 on page 43) are adapted

using the FDC XML configuration interface. The FDC specifications are tai-
lored to SystemC using the analysis alphabet  defined over the given
SystemC grammar.

Table 3.1:  Comparison of REGATTA and SDAS

Criteria REGATTA SDAS

C++ LOC (code + comments) 
... generic components
... (pre-defined) guideline checks

61,646
61,304

342

8,577
1,117
7,460

LOC of LALR(1) SystemC grammar (code + comment)
... scanner specification
... parser specification

-
-

570
3,128

lines of FDC XML configuration 
... symbol table
... DFA

-
-

189
124

ΑSC
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Example 6. Figure 3.14 shows the configuration of the abstract FDC
“ComponentCnt” from Figure 3.13. The concrete check shall verify that only
one class or SystemC module definition is defined per header file in an ana-
lyzed SystemC design. To do that, the user has to specify the imported vari-
ables, i.e. sets the count limit to ‘1’ and the filename pattern to ‘.*\.h$’.
Moreover, the proxy symbol PK_CNT is assigned two symbols from 
which introduce the definition of a new class or SystemC module. The symbols
PK_LOCALPRE and PK_LOCALPOST are implicitly given by REGATTA.
These symbols indicate start and end of the analysis of a new file, i.e. are used
to initialize and to reset the check. The other XML tags specify particular
information that are output in case of a found coding violation, e.g. the error
description.

Similar to Figure 3.14, the generic symbol table and the DFA component
are tailored to SystemC. The following examples illustrate some analysis
results of SDAS.

Example 7. Figure 3.15(a) shows a small C++ function which calculates the
sum of the first “num” naturals. Figure 3.15(b) depicts a dump of the corre-
sponding SDAS symbol table after analyzing the function. The dump describes
the function “sum”, at first. Within this function the local integer variable “s”
is declared. Next, an unnamed block opens the scope of the for-loop body.

Example 8. Figure 3.16 illustrates the CFG with annotated variable accesses
for the “sum” function presented in Figure 3.15(a). The annotated CFG is
created by the tailored DFA component. Since REGATTA currently does not
support an interprocedural DFA, nothing can be assumed about the value of
the function argument. So, the function argument “num” in line 1 is only
labeled as declared, i.e.‘(D)’.

Figure 3.14:  Configuration of the FDC “ComponentCnt”

��<;��	9
����<)�95�=<>)�9
����<2�����9?(<>2�����9
����<)���@"9,ABC00�����	��0��<>)���@"9
����<2	�	���"9D<>2	�	���"9
����<C	���������9C	
��	����"���	�2"��	�0������	>0����������	���	��	��
��	<>C	���������9
����<BC00
&9
������<)���������	�E��%���E9F<>)�����9
������<)���������	�E���E9G�HG�I<>)�����9
������<34	"����	�E340(5E9;420J?CA*:C:0*,;,5)?(F.';40*,2223:0)B):;F.<>34	"9
������<34	"����	�E34)()5E9;4*?0,*3;:<>34	"9
������<34	"����	�E34;:2:5E9;4*?0,*3?25<>34	"9
����<>BC00
&9
��<>;��	9

ΑSC



Debugging at the ESL60

Example 9. The check for undefined variables (see Figure 3.10) on the
“sum” function from Figure 3.15(a) reports two violations. They are caused
by reading the variable “num” at rows 4 and 8. These two errors are found
due to the intraprocedural DFA which cannot determine whether the function
argument is assigned a valid value at the call side of the “sum” function.
Figure 3.17(a) shows the REGATTA analysis report while Figure 3.17(b)
depicts the annotated CFG.

Example 10. The consistent usage of design patterns in a SystemC design is a
good indicator for more reusable, maintainable, and better readable code. A
pattern which can be structurally detected, is the Composite design pattern
[GHJV95]. In Figure 3.11 the proper CrocoPat query is already sketched.
Figure 3.18 presents an example of three created relations after parsing the
given SystemC design.

Figure 3.15:  Symbol analysis in SystemC

Figure 3.16:  CFG with annotated variable accesses
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3.3 Example Analysis Flow
Figure 3.19 sketches an exemplary analysis flow while running a concrete

SystemC analysis. Generally, the flow divides into three main phases: process
the input, perform activated analyses, and output the obtained results:

1. Process input. The front-end parses the input sources consisting of a
single file or a collection of files. As defined in Definition 4, an EST
is created by the front-end in case a valid derivation could be found
for the input.

2. Perform analysis. Before static analysis is started, each analysis task
registers at the front-end for the actual needed data. There, the analy-
sis alphabet  defined over the given SystemC grammar is used.
The grey colored tree nodes in Figure 3.19 shall sketch registered
data. The parse points in the analysis alphabet have a special mean-
ing. They are used to control the analysis process and allow to collect
context-sensitive information. Figure 3.20 presents an example. Here,
the parse point RK_SC_METHOD_1_2 denotes that the following
meaningful token contains the name of an SC_METHOD process
declaration and initiates its collection.

(a) Analysis report (b) Annotated CFG with violated paths

Figure 3.17:  Detecting undefined variable accesses

(a) SystemC example design (b) Created relations for the example

Figure 3.18:  Created relations in a SystemC design as used by CrocoPat 
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After the input is completely parsed, the EST is walked in a depth-
first search. Thereby, only registered nodes are forwarded for analyses.
If all required data are available, they are checked. In consequence
of a coding violation, a detailed error report is stored into the report
database DBR. A report consists of position information (row, column,
filename), a unique error code, and a user-defined field. This field can

Figure 3.19:  REGATTA exemplary analysis flow
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hold additional information to describe the detected violation in more
detail.

3. Output results. After finishing all analyses, the results are read from
the DBR and written into various output formats. REGATTA supports
amongst others plain text, XML, and a specific report format for the
XEmacs editor.

4 EXPERIMENTAL RESULTS

The following section considers two experiments. The first one demon-
strates the strengths of dataflow anomaly analyses while detecting a serious
functional error in the SIMD data transfer example (see page 28). The second
experiment applies SDAS to the particular development stages of an industrial
SystemC-based verification environment over a period of four years.

4.1 SIMD Data Transfer Example Continued
According to Figure 3.1, static analysis is applicable as soon as first syn-

tactical correct blocks of code have been written. Now, we assume that the
designer has coded the processor unit as one of the first SystemC modules of
the SIMD data transfer example. For test purposes, the address to access data
in the memory is calculated at random using the local function
proc_unit::get_addr(). The random address value is assigned to the
private class attribute proc_unit::addr. Then, this address is transmitted
as generic payload attribute of a read or write transaction. Figure 3.21 shows a
code snippet which creates a correct write transaction. This transaction writes
data into the memory.

Now, we want to assume that the designer has forgotten to request a new
address, i.e. line 94 has not been coded. Provided that the read transaction
receives a correct address, the processor unit would always write data to the
address the last data were read from memory because the variable addr is a

Figure 3.20:  Collect names of found SC_METHOD processes
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shared class attribute. Obviously, this could produce a serious misbehavior if
the model is simulated during later development stages.

SDAS reports this coding error by performing a dataflow anomaly analysis
that points to potentially undefined variable accesses. Figure 3.22 documents
the analysis outcome which had identified two problematic read accesses. The
first read access sets the address as generic payload attribute (line 100 in
Figure 3.21). The second one corresponds to a debug output of the address
value in line 109.1 The error message supports debugging by reporting the
possible execution path through the program on which the variable is
undefined.

Figure 3.21:  Create a write transaction in the SIMD processor unit

Figure 3.22:  SDAS error report indicating an undefined address in case of write transactions

1. This line is left out in Figure 3.21 due to space limitations.

..   
84 // ------------------------------------------------
85 void proc_unit::write_data()
86 {
..

95
96 // set write transaction parameters
97 tlm::tlm_command cmd =
98  static_cast<tlm::tlm_command>(tlm::TLM_WRITE_COMMAND);
99 w_trans.set_command(cmd);
100 w_trans.set_address(addr);
...

Analysis started at 15:59:52 on 3.9.2009
 2 file(s) to analyse
  analysing file r2c_undef/proc_unit.h
  analysing file r2c_undef/proc_unit.cpp
  ...
  3-1 Variable >addr< undef in basic block 23 on path: 

23 ->21 ->20 r2c_undef/proc_unit.cpp 100 24 100 28
  3-1 Variable >addr< undef in basic block 23 on path: 

23 ->21 ->20 r2c_undef/proc_unit.cpp 109 50 109 54

  Analysis finished at 15:59:52 on 3.9.2009

addr = get_addr();94 
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4.2 Industrial SystemC Verification Environment
SDAS was used to evaluate the quality of an industrial SystemC-based ver-

ification environment in terms of a set of 18 company-specific coding
guidelines. The verification environment consists of a number of core compo-
nents encapsulating base verification functionality and several concrete test
benches. It has been developed to verify hardware designs using a co-simula-
tion between the RTL design and the SystemC test bench. A proprietary TLM
approach together with monitor components, BFM, transaction generators,
reference models, and check transaction dispatchers define a general verifica-
tion infrastructure. This infrastructure facilitates the efficient development of
SystemC-based test benches.

The coding guideline set was published in August 2003. A stable version
of SDAS was available in November 2003. The usage of SDAS was integrated
into the development flow on a voluntary basis. For experimental evaluation
CVS snapshots of the SystemC verification environment were analyzed. Each
snapshot was extracted at the first of the month over a period of four years
starting in June 2003 until June 2007. This period embraces a major part of
the development time of the verification environment. As can be seen in
Figures 3.23 and 3.24, much code was written starting from 15,781 lines of
code (including comments) distributed over 174 files in June 2003 to 316,709
lines of code and 2,118 files in June 2007.

Figures 3.25 and 3.26 document the number of coding violations found in
each monthly CVS snapshot. Figure 3.25 selects typical representative coding
guidelines each taken from another error severity class, namely critical,
major, minor, warning, and information. The error severity helps the user to
plan bug fixing according to the significance of a violation. As can be

Figure 3.23:  Number of analyzed files
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seen, the number of detected violations constantly increase over time except
for guideline 1-2.2 Remarkably, there exist some reductions of the number of
violations in case of specific guidelines, e.g. guideline 1-183 between May
2004 (68) and July 2004 (55), or guideline 2-24 between June 2003 (34) and
September 2003 (11). A review of the CVS logs revealed manual code
reviews as cause of reduction. In this reviews crucial source code part were

Figure 3.24:  Number of analyzed lines of code

Figure 3.25:  Number of violations per month for selected coding checks

2.  Guideline 1-2. Name file like containing class declaration.
3.  Guideline 1-18. Reconvergent inheritance is not allowed.
4.  Guideline 2-2. Do not use obsolete SystemC 2.0 constructs.
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identified for bug fixing. Other project priorities mostly prevented a more
thorough fixing. A comparable picture gives Figure 3.26. It presents the num-
ber of violations per code line by summarizing guidelines by severity classes.
Except for the critical severity, the number of violations in all other severity
classes rises constantly over development time. Critical coding violations
decrease because only coding guideline 2-2 is classified as critical and the
reported violations are small and hardly increase during development
(see Figure 3.25).

The verification environment was under development over the considered
period of time. Thus, it was subject of different architectural changes and
refactoring steps, e.g. renaming or deletions of files, functions, or methods.
So, the aforementioned reduction in the number of coding violations could be
also caused by a simple deletion of files which would not represent a real fix.
Figure 3.27 shows all violations found in the 166 files that exist over the
whole considered period of time. These files mainly describe core functional-
ity of the verification environment. As can be seen in the figure, only three
coding checks, i.e. guideline 1-11,5 1-18, and 2-2, report violations. During
the first months many of them have been fixed. This was the time the general
architecture of the environment was specified and implemented. After this
phase, fixing occurred only sporadically.

Summarized, more coding violation than primarily expected were found.
SDAS detects 31,349 coding violations in 31 s over 316,709 lines of code on
the June 2007 snapshot.6 There, the majority of violations (25,214) is

Figure 3.26:  Violations per line of code for all coding checks

5.  Guideline 1-11: Each typedef should reference a distinct type.
6. Test system: OS Linux, CPU 2.4 GHz AMD OpteronTM 180, 4 GB RAM.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

Jul 03 Jan 04 Jul 04 Jan 05 Jul 05 Jan 06 Jul 06 Jan 07

N
um

be
r 

of
 C

od
in

g 
V

io
la

ti
on

s 
/ 
L

in
es

 o
f 
C

od
e

Snapshot Date (month)

information
warning

minor error
major error

critical error



Debugging at the ESL68

caused only by three minor important guidelines which primarily ensure code
formatting. Even though most violations are easy to fix, the developers often
spend little time for fixing. The reasons are complex such as moved project
priorities, or too narrow deadlines. Of great importance is also the precision of
analysis results. If the developer is faced with a, personally felt, too high num-
ber of false positives, he will reject any further tool usage very fast.

5 SUMMARY AND FUTURE WORK

Improving the verification efficiency by static code analysis has been
shown in this chapter. Static analysis finds functional errors and ensures the
code quality of SystemC modules long before the system model gets simulat-
able the first time. The introduced analysis framework REGATTA assists the
generation of tools for static analysis. FDC specifications provide an easy to
use and powerful configuration approach that facilitates the implementation
of analyses and generic framework components. There is no other analysis
framework known that has been used for so many languages and analyses,
e.g. to ensure coding standards for Verilog, e [Rog02], SystemC, to generate
library documentation for VHDL-AMS models [RFSH05], or to translate
Verilog designs [HR08].

The usability of static analysis techniques is demonstrated by using the
SystemC analyzer SDAS. SDAS has been applied onto the SIMD data transfer
example. Hence, functional errors in (parts of) a system model can be detected
without any need for simulation. Moreover, SDAS implements a proprietary

Figure 3.27:  Number of coding violations existing from the beginning
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industry SystemC coding standard whose compliance has been checked on a
complex real-world SystemC verification environment. 

Summarized, static analysis makes important contributions to facilitate
debugging. In general, related tools scale very well to large design descrip-
tions, i.e. several million lines of code. For instance, SDAS analyzes over
300,000 lines of code in several seconds. The found coding violations sim-
plify manual code reviews, help the developer to follow a corporate coding
standard, and point to typical pitfalls and coding flaws. The efficiency of
static analysis has been documented by several empirical studies. It is nearly
as effective as manual inspection [ZW+06] while 60% of defects in software
programs can be caught by peer reviews [Shu02]. A study from
Bloor Research [PC95] comes to similar results where 60% of software
defects found in released software products could have been detected by
means of static analysis. So, static analysis is an efficient debugging tech-
nique. However, its successful application needs an integration into the
development flow. This comprises fixed timeslices in the project schedule as
well as coding standards that will be supported by the majority of the
developers.

Possible future work could embrace the development of an FDC-based
generic code analysis library that provides proven implementations for many
standard analysis problems.





Chapter 4

High-Level Debugging and Exploration

Up to now, the designer has checked code quality and particular functional
correctness aspects of the system model using static analysis. Now, the first
executable version of the model can be compiled and simulated. This version
may only comprise a subsystem of the final system. In place of static tests
dynamic analysis in terms of observation techniques support the designer in
debugging the simulatable design description. If the simulation produces an
erroneous outcome the simulation state is observed at interesting moments in
time. Therefore, a debugging and exploration approach at a higher abstraction
level is proposed (see Figure 4.1).

Generally, there are several observation techniques that allow to examine
program runs in order to find program errors. Logging, a powerful but simple
technique, is supported by many programming and description languages.
Here, the designer manually inserts proper logging statements into the source
code. Then, these statements write interesting program facts to some output
devices.

The second observation technique uses a debugger. This external tool
observes the program state without the need for any code modifications. A
debugger hooks into the code and accompanies the program execution while
dynamically monitoring user-defined, arbitrary program facts.

In case of complex programs a usual textual representation of the program
state could be insufficient. Especially, the architecture of the program and the
relationship between different components and subsystems cannot be easily
surveyed. Hence, advanced visualization techniques improve system explora-
tion and accelerate the debugging process.

The first part of the chapter introduces state-of-the-art observation tech-
niques used for arbitrary programming languages in general. Furthermore,
their support in the SystemC context is discussed. On that basis, various
requirements for an integrated system-level debugging environment are
defined. Next, a debug flow is presented that guides debugging and explora-
tion of system models.

F. Rogin and R. Drechsler, Debugging at the Electronic System Level, 71
DOI 10.1007/978-90-481-9255-7_4, © Springer Science+Business Media B.V. 2010 

The second part of the chapter describes SHIELD (Systematic HIgh-levEL
SystemC Debugging) – an integrated debugging environment for SystemC. So
called debug patterns provide particular debug strategies. A strategy, by
means of a debug pattern, presents a formalized procedure to fix a bug that is
notified by an always recurring failure symptom. Using a non-intrusive
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1 OBSERVATION TECHNIQUES IN A NUTSHELL

First, this section gives a short overview about general observation tech-
niques and their specific SystemC support. A detailed summary of observa-
tion techniques is given for instance by Zeller [Zel05]. Finally, the section
closes with a discussion of related work.

1.1 Overview
In contrast to deduction techniques such as static analysis (see Chapter 3),

observation is a dynamic technique that explores concrete program runs. In
case of a failing run, it is observed what has been actually happened. Subse-
quently, the user tries to determine what has caused the failure. This process
of cause analysis is also called diagnosis. 

Figure 4.1:  Debugging and exploration of system models at a higher level
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This comprises debugging not only at the algorithmic, untimed level but also
at the system level, e.g. to handle loosely-timed, or approximately-timed
design descriptions. The debugger explicitly supports SystemC concepts and
the SystemC simulation semantics. As result, the designer gets quick and con-
cise insight into the static structure and the dynamic behavior of the design
without the burden of gaining a detailed knowledge of the underlying Sys-
temC simulation kernel. Visualization and exploration techniques facilitate
the debugging process of complex designs.

SystemC debugger enables the developer to debug arbitrary, unaltered designs.
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1.1.1 Logging
Logging is the simplest and most widespread observation technique. This

technique provides a set of (specialized) logging statements that are manually
inserted into the program code. So, logging statements write user-defined
facts about the concrete program state to some output device such as the text
console or a log file. The drawbacks of this technique are for instance clut-
tered code, huge log reports mixed with the ordinary output, or a performance
loss. To encounter these drawbacks logging should follow several rules. This
includes the output in standard formats that ease filtering and searching of log
information. An optional on/off switch can avoid effects on the performance.
Moreover, a variable granularity supports the designer to focus logging on
dedicated components or verbosity levels.

Logging facilities are already supported by SystemC built-in trace and
report mechanisms, i.e. sc_trace and sc_report statements. Here, the
designer manually inserts logging statements into the particular SystemC
modules.

1.1.2 Debugging
Debuggers are well-known and widespread tools that hook into the execu-

tion of a program without the need for any code modifications. In contrast to
logging, an interactive debugger can dynamically observe arbitrary facts of
the inspected program. Nearly each debugger provides the following main
features: execute and stop the debugged program (on specified conditions) at
any program point, observe and change the program state. In addition to an
interactive debugger, a postmortem debugger reads in memory dump files that
were created in case a program had crashed. The backtrace of such a dump
gives valuable hints what was the system state at the time of the crash. One of
the most powerful debuggers is the GNU debugger GDB [GDB]. GDB sup-
ports many different languages such as C, C++, Pascal, Fortran, or Ada.

Debugging can be supported by program slicing that was originally intro-
duced by Weiser [Wei84]. Often during debugging a variable v at some
execution position q holds an incorrect value. So, it comes in handy to know
which parts of the program are relevant to search for the error. The program
slice with respect to v at execution position q encompasses all statements of
the program that might affect the value of v. Precisely speaking, this is the
definition of a backward slice  where  is called the slicing cri-
terion. In contrast, a forward slice  encompasses all statements of
the program that could ever be affected with respect to v at execution position
q. Korel and Laski [KL88] introduced dynamic program slicing – the dynamic
counterpart of static slicing. There, only those statements are part of a slice
that really affected the value of a variable at some statement. Hence, a

S B
s v q,( ) v q,( )

S F
s v q,( )
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dynamic slice is small as compared to the respective static slice. Conse-
quently, a dynamic slice is valid only for a given program input x, i.e. a
concrete program run. So, the slicing criterion for the dynamic backward slice

 and the forward slice  is .

Example 11. Figure 4.2 contrasts static and dynamic slicing in case of vari-
able p being output at line 14. The static backward slice  com-
prises the entire program. The dynamic backward slice applies to a program
run that sets n=3 and g=0, i.e. . Here, over 33% of all
statements do not influence the value of p. So, these statements do not need to
be considered during debugging.

Currently, SystemC does not comprise sophisticated debugging features.
Rather, standard C++ debuggers are usually used to analyze the simulation
state during an erroneous simulation run. Unfortunately, a C++ debugger
operates on a very low abstraction level, usually the algorithmic level
(see Figure 2.2). It does not understand specific SystemC constructs nor their
semantics. Another point is that with the parallel development of SW and
HW, also design sizes and complexities tend to increase. Thus, it becomes
less obvious where to start and which blocks to observe in a debugging pro-
cess. Moreover, language features such as multi-threading and event-based
communication increase the program complexity and introduce nondetermin-
ism in the system behavior. Consequently, debugging SystemC designs is
very challenging and should be specially supported.

(a) Static slice for p at line 14 (b) Dynamic slice for p at line 14

Figure 4.2:  Static vs. dynamic slicing
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1 p = 0;
2 i = 1;
3 c = 1;
4 n = read();
5 g = read();
6 if (g = 1) 
7 c = 10;
8 while (i <= n) {
9 p = p + i;
10 if (c > 1) 
11 p = p * c;
12 i = i + 1;
13 }
14 write(p);

1 p = 0;
2 i = 1;
3 c = 1;
4 n = read(); // 3
5 g = read(); // 0
6 if (g = 1) 
7 c = 10;
8 while (i <= n) {
9 p = p + i;
10 if (c > 1)
11 p = p * c;
12 i = i + 1;
13 }
14 write(p);
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1.1.3 Visualization
Classical debugging approaches often rely on a textual output of the pro-

gram state at particular points in time. Visualization could help the developer
to keep track of complex data structures, the architecture of the program, or
the relationships between different components. Some debuggers provide a
graphical front-end such as the GNU Data Display Debugger for GDB. In
hardware design, visualization assists the designer in getting insight into the
structural design hierarchy, or the connectivity of components. Currently,
SystemC does not integrate any direct visualization support.

1.2 Related Work
Observing a concrete SystemC simulation run requires hybrid techniques

that grant a quick access to design components but also allow to evaluate ordi-
nary C++ code. Unfortunately, C++ fragments cannot be reached by using
SystemC data introspection techniques. Even though there are several com-
mercial and academical tools supporting SystemC debugging, only few of
them offer an advanced visual interface to the designer.

RealView Debugger Suite [ARM] comprises a complete integrated devel-
opment suite that allows to implement, to simulate, to debug, and to analyze
SystemC/C++ designs. It addresses architectural analysis as well as SystemC
component debugging at algorithmic up to the transactional level. Especially
the debugging of embedded applications (running on remote targets such as
ARM processors) is supported. The Platform Architect development environ-
ment [CoWare] targets system level design and verification based on the
Eclipse framework. It utilizes a native simulation environment which is spe-
cially adopted to fit SystemC needs. The integrated debugger offers specific
commands supporting source and system level breakpoints as well as thread
debugging. Additionally, the user can initiate a graphical tracing of SystemC
events, threads, and transactions. Contrary to our debugging environment
SHIELD, both commercial solutions come with their own vendor-specific Sys-
temC kernel. This fact prevents the easy integration into an already existing
design flow. Moreover, debugging is not supported by a debug flow as imple-
mented by SHIELD that guides a systematic debug procedure.

The GRACE++ system [WD+05] uses SystemC simulation results to cre-
ate Message Sequence Charts in order to visualize and analyze inter-process
communication. Various filters help to reduce information complexity. The
approach presented in [CRAB01] applies the observer pattern [GHJV95] to
connect the external evaluation software to the SystemC simulation kernel.
This general method facilitates loose coupling but requires possibly undesired
modifications of the kernel. 
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One of the first approaches that accomplishes SystemC design visualiza-
tion has been introduced in [GDLA03]. The implementation uses the
SystemC kernel to analyze models during execution. An interactive graphical
back-end facilitates the design visualization. Even though models can be
specified using C++ features, analysis and visualization are limited to Sys-
temC objects. There, only the data flow can be viewed where behavioral
information is not available. Since this approach has to execute the model
without further information about declarations, it is not aware of detailed
positional information regarding the instantiated objects. Hence, crossprobing
facilities are very restricted.

Another approach that facilitates designers in visualizing SystemC models
is presented in [EAH05]. Since it is based on data introspection too, it shares
many restrictions with [GDLA03]. One major difference to [GDLA03] is the
usage of a graphical user interface that has been especially designed for this
approach. However, the visualization interface does not support features like
crossprobing for path fragment navigation. Contrary to the aforementioned
work, SystemCXML [BP+05] and LusSy [MMM05a] do not use data intro-
spection for the purpose of analysis. While the extraction of the hierarchy in
SystemCXML is done via Doxygen, LusSy uses PINAPA [MMM05b]. The
visualization is realized as graph structures generating control or data flow
graphs.

Several work propose methodologies that are similar to our concept of
debug patterns. The debugging environment MAD [KSF99] is based on event
graphs that are constructed from recorded event traces of parallel program
runs. A subsequent graph analysis detects errors and anomalies automatically.
MAD allows to specify communication patterns which define the expected
behavior of the program. These patterns are checked against the event graph
and the results help the user to focus his attention on the most critical parts in
the graph. A quite similar approach of pattern-oriented debugging was pro-
posed by the TAU programming analysis environment [SC+96] which uses
the event-based debugger Ariadne [CF+93]. Ariadne matches user-specified
models of intended program behavior against the actual program behavior
captured in event traces. 

MAD and TAU focus on the interprocess communication of massively
parallel programs operating on monitored traces. There, the entire debugging
process is done in a post-processing step. In contrast, SHIELD does not moni-
tor and evaluate traces but provides debugging support directly at runtime
especially tailored to SystemC needs. While both approaches rely upon pro-
prietary debug tools, our solution is implemented on top of the GNU debugger
GDB.
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An early work [DE88] underlines the importance of having knowledge of
likely defects to ease debugging. The authors introduce the notion of a stereo-
typed bug which describes the fact that the same couple “symptom(s) + bug”
has appeared several times. A symptom can be an I/O discrepancy, a trace
content, or a specific program state. SHIELD uses similar symptoms to propose
a proper debug pattern. In [DE88] different tools are mentioned that perform a
recognition of stereotyped bugs by defining appropriate debug procedures.
Most of these tools are aimed at logic programming systems where the
applied techniques cannot be adopted directly to an imperative language like
SystemC.

The authors in [KP99] present some loose hints and generally accepted
approaches to find defects faster. Examples are the divide-and-conquer
approach to isolate the point of failure or the evaluation of logged trace data.
Instead, our debug patterns are presented in a formalized way especially aim-
ing at the SystemC debugging needs. The debugging environment guides the
user through the debug process and supports him by partially suggesting
applicable patterns.

Summarized, none of the listed tools and approaches work with the OSCI
SystemC reference kernel implementation, an unpatched GDB, support a
high-level debugging interface, and additionally offer a sophisticated visual-
ization of SystemC designs. Hence, the mentioned tools and approaches do
not fit seamlessly into an existing design flow. Furthermore, a systematic
debug flow as provided in SHIELD is missing.

2 SYSTEM-LEVEL DEBUGGING

First, this section itemizes several requirements that should be followed to
develop a debugging environment for ESL designs. Second, a methodology is
proposed that results in a systematic error search at the system level.

2.1 Requirements
The development of a debugging solution for the system level is driven by

user demands, the conditions of use, and the features expected from a
debugger.

Non-intrusiveness. The solution should work with an unmodified ver-
sion of the used SDL. It shall avoid any changes to present designs or
(third-party) IP blocks. Such a non-intrusive approach fits seamlessly
into any existing design flow which reduces maintenance and cus-
tomization. On the tool side, a powerful and popular debugger such as
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GDB can form a solid development basis which should be extended
without any need for patching its sources. Advantages are an intuitive
and unchanged debugging flow combined with a minimal learning
curve for users who are already familiar with particular debugger
tools.
System-level debugging information. Information at system level
should be retrievable fast and easily. According to [DSG03], three
information categories are of interest: (i) Static simulation informa-
tion describe the structure of the system architecture such as existing
modules, subsystems, processing units, signals, I/O interfaces, or the
communication architecture. (ii) Dynamic simulation information
include amongst others the trigger conditions and the sensitivity lists
of processing units, available synchronization events, or the values of
signals logged over a period of time. (iii) Debugging callbacks allow
to add callbacks from the simulation environment to break simulation
on certain events such as process activations, value changes on sig-
nals, or the ongoing simulation time. To support debugging of com-
plex system designs sophisticated visualization and exploration
features should be supplied, as well.
Debugging features. The debugging solution should provide specific
system-level debugging commands that directly build up on the syn-
tax and the semantic of the used SDL. Thus, debugging commands
become language-aware. Different command classes shall facilitate
an efficient debugging. (i) Examination commands retrieve either
static or dynamic simulation information. So, in case of a failure the
user gets a fast insight into the relevant design parts and their relation-
ship. There, a number of commands allow to interactively control the
visualization of the design and its simulation state. (ii) Controlling
commands provide stop and step functionality at system level that
means to halt and continue the simulation at specific conditions.

2.2 Methodology
This section details the proposed debugging methodology. The available

debug levels are introduced at first. These levels form the basis for a strategy
that is presented at next. Finally, dynamic program slicing for simplified
debugging is discussed.

2.2.1 Debug Levels
Three debug levels are the basis for the proposed debug flow. These levels

are supported by dedicated methods to locate and correct defects in a system
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design. Figure 4.3 shows the hierarchy of debug levels. Debug levels should
not be mixed up with abstraction levels introduced for ESL design (see Section
1.1 on page 10).

Strategy level. At the strategy level, debug patterns define a strategy
to guide the overall debugging process. In case of the occurrence of a
familiar failure symptom the user gets some help in form of a guid-
ance how to locate and fix the failure-causing defect. Such a failure
symptom could be for instance an infinitely looping simulation or the
output of unexpected simulation values. A particular pattern is based
on the debugging functionality provided at system level. 
System level. At system level, the debugging environment enables the
user to debug a design at the ESL. This level is additionally supported
by a visualization of the design components. Here, the architecture
and/or the interaction between design parts are responsible for fail-
ures such as an erroneous communication or the faulty integration of
an IP block. The environment supplies system-level information
including static and dynamic simulation information. As result, it
offers various sophisticated SDL-aware debugging features. If the
error turns out to lie at the algorithmic level, this level will be entered
and standard debugging commands are used.
Algorithmic level. At the algorithmic level, standard debugging fea-
tures are applied. Hence, the algorithmic implementation is analyzed
during a concrete simulation run such as algorithms or data structures.
Standard debuggers supply different capabilities to investigate low-

Figure 4.3:  Hierarchy of debug levels

��������	
���

�������	

���

�����	
���

����	�	�����������

�
��������	
���

�
	��	�����������

�����������	�����
���	���
	����
���
���
����	������	
	�������	
���

��������
��������������������� ���	
����
�������������	��!	
���� �	
���

������������������������� ���	���	���������
�������������



Debugging at the ESL80

level program details which usually include setting breakpoints,
examining the call stack, inspecting variables, and stepping or stop-
ping the program execution.

2.2.2 Debug Flow
Based on the hierarchy of debug levels, a three-level strategy for error

detection in system designs is proposed. This approach leads to a debug flow
as presented in Figure 4.4 which guides the designer to a systematic debug
procedure. At the beginning, there is always a flawed simulation which is rep-
resented by several failure symptoms such as

– a crashed simulation,
– an abnormal long running simulation, 
– a waveform mismatch in case of a co-simulation with a hardware

design, 
– an unexpected debug message, or
– a self-detected error through generated monitors or assertions.

As proposed in [DE88], these failure symptoms could be used to initially
guide the debugging process. After a detailed manual analysis of the occurred

debugging environment partially suggests matching debug patterns or auto-
mates some actions in order to find the probable cause of an observed
symptom more quickly. Otherwise, the designer manually chooses a particu-
lar debug pattern. The pattern describes a procedure by means of a sequence
of system-level debugging commands to locate the defect initially causing the
failure symptom. For an exact detection of algorithmic misbehavior, standard
debugger commands are applied subsequently. If the defect is successfully
identified, the design is fixed and the simulation is restarted. Otherwise
another suitable debug pattern is chosen. If the observed failure symptom
does not match any debug pattern, the designer continues working directly at
system and algorithmic level, respectively. At these levels, visualization fea-
tures allow a fast and easy exploration of the debugged system design that
help to focus the designer on relevant design parts.

symptom, the designer looks for a suitable debug strategy. If possible, the
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The utilization of a systematic debug flow provides comprehensive debug-
ging support. Hence, the user can focus his attention to a higher design level
(while ignoring irrelevant design parts) through

– a systematic process suggesting applicable debug patterns, 
– a formalized procedure to fix already known defects, and 
– an improved usability becoming faster familiar with the provided

debugging features.

The introduction of such a flow simplifies and accelerates debugging of
system designs. Especially the novice user can exclude and fix defects using
debug patterns before he has to consult an expert. A further advantage is the
intuitive partially automated flow resulting in a defined proceeding. The
designer can focus on the underlying failure cause instead of concentrating on
the correct debugger usage. A disadvantage of debug patterns is that only pat-
terns for always recurring failure symptoms most probably caused by the

Figure 4.4:  Debug flow to guide debugging at the ESL
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same defect or class of defects are available. Consequently each problem, in
particular the rare and tricky failures, cannot be simply solved using a pattern.
Sometimes, it only marks the starting point for an advanced diagnosis. Here,
the language-aware debugger and sophisticated visualization features improve
the error search over the usage of a standard debugger.

2.2.3 Debugging Support
Dynamic program slicing is a useful technique to reduce debugging effort.

The designer can focus on the subsets of the system model only relevant for
the observed error (see Section 1.1.2 on page 73). But how can we compute
dynamic slices? Most algorithms base upon backward analysis using data and
control dependencies. The program is instrumented and a trace is recorded for
a concrete run. The trace contains all variables that were written and read for
each statement. Moreover, for each control statement a control predicate vari-
able is created. The control statement writes this predicate variable while for
all controlled statements a read access is recorded. We want to compute the
dynamic backward slice  for a variable v at execution position q
on program input x. Therefore, the algorithm goes backward through the
trace. It searches for the statement, v was last written and put it into the
dynamic slice. If the value of v is calculated using some variables , the algo-
rithm recursively proceeds for each  until no more calculated variable
references could be found.

Example 12. Let us compute the dynamic backward slice for variable c in line
7 of the example program from Figure 4.2 using the corresponding (partial)
trace:

Trace Read Write
-------------------------------
1 p = 0; p
2 i = 1; i
3 c = 1; c
4 n = read(); n
5 g = read(); g
6 if (g = 1) g p6
7 c = 10; p6 c
...

This statement is controlled by the predicate variable in line 6, and thus
the statement is put into the slice. In line 6 variable g is read and last written
in line 5. So, the dynamic slice is .

S B
d v q x, ,( )

vi
vi
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3 HIGH-LEVEL SYSTEMC DEBUGGING

The integrated debugging environment SHIELD implements the debug flow
as presented in Figure 4.4. There, the flow is adapted to the specific needs of
debugging SystemC designs. First, this section presents the general architec-
ture of SHIELD. Next, the introduced debug levels and the associated com-
ponents are detailed. Finally, important implementation issues are discussed.

3.1 General Architecture
Figure 4.5 shows the general architecture of SHIELD. To enable debugging,

the original SystemC description is compiled using a standard C++ compiler
and the actual OSCI SystemC kernel library. Then, the created executable can
be simulated inside the debugging environment. SHIELD consists of three
major components.

The SystemC Visualizer cares for the visualization of SystemC designs. It
statically analyzes the design and generates an intermediate representation. If
a debug session is started, this representation is used to render the model
inside the graphical front-end. The tool RTLVisionTM from Concept Engi-
neering is used for this purpose, exemplarily. Through the Command API the

Figure 4.5:  General architecture of SHIELD
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visualizer communicates with the debugger kernel where the exchange of data
is done using a proprietary protocol based on socket communication.

The SystemC Debugger bases upon the Open Source debugger GDB and
extends the functionality of GDB in a non-intrusive fashion (see Section 2.1
on page 77). That means, the solution works with any GDB , the
OSCI SystemC kernel reference implementation  [OSCI], and
avoids any changes of debugged design code. To start debugging, the created
executable is read into SHIELD and the simulation is started. After passing the
SystemC elaboration phase successfully the debugger waits for user com-
mands to debug the current design. Moreover, the debugger controls and
alters the design visualization. The SystemC debugger has a layered architec-
ture to ease the integration of new debugging functionality into GDB without
the need for patching its sources.

The Pattern Support component is closely linked with the actual debug-
ger. Therefore, the Debug Pattern Control unit monitors a concrete simulation
run. If a specific failure symptom has been occurred during simulation, poten-
tial applicable debug patterns will be proposed. Otherwise, the designer
manually chooses a pattern that is taken form the Pattern Database.

3.2 Debug Pattern Support
The strategy level (see Figure 4.3) is supported by the Pattern Support

component (see Figure 4.5). Goals of the implementation are a simplified
usage and a widely automated debugging process in order to relieve the user
from standard debugging tasks. First, this section describes two important fea-
tures. Next, a catalog of debug patterns is introduced.

3.2.1 Scenario-Based Guidance
Each debug pattern is represented by specific sequences of debugging

commands forming a so called scenario. A call of the pattern name initiates a
new pattern execution. The user is guided through the scenario by calling the
command nps (next-pattern-step) which proposes a particular debug action to
be done at next depending on the current situation. The eps (end-of-pattern)
command finishes pattern guidance. Simultaneously to the text-based control,
a flow chart documents the advance while executing the debug pattern. The
scenario-based guidance significantly enhances the usability of patterns and
enables the efficient application of the provided system-level debugging fea-
tures with minimal learning effort.

version 6.3≥
version 2.0.1≥
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3.2.2 Partially Automated Process
Sometimes, the currently occurred failure symptom allows SHIELD to

automatically propose matching debug patterns. For this purpose, different
information sources can be used:

– a reached simulation or debugger state,
– a formerly performed user action, or
– a processed history log of released events or triggered processes.

Aborting the current simulation run by pressing Ctrl-C since the debugger
seems to hang in one of its processes is a typical situation asking for debug-
ging support. Here, the environment suggests to use one of the LOCK patterns
to find the defect causing the process to hang (see Section 3.2.3 on page 86).
Another failure symptom is indicated by an event which triggers multiple pro-
cesses in the same delta cycle. Then, the call of a debugging command lets
proceed pattern guidance automatically to the next step.

Example 13. The following GDB terminal log illustrates the scenario-based
guidance in case of the TIMELOCK pattern used on an example SystemC
design. Due to an obviously hanging simulation, the user interrupts it. Now,
SHIELD tries to automatically diagnose the lock situation. Since the debugger
does not report any process ID, the user manually checks for the TIMELOCK
pattern by calling dp_timelock. So, a process is returned that is pending
potentially. Simultaneously, the pattern guidance proposes automatically a
usage of the lst command to examine the source code of the pending process.
The next pattern step suggests to check for faults where a step-wise simulation
could ease debugging:

Program received signal SIGINT, Interrupt.
(gdb) dp_timelock
*** following process seems to hang
top.i_device._rx_tx (thread ID: 4)
*** TIMELOCK debug pattern activated
*** call lst 4 to examine source code of pending process
(gdb) nps
*** Check code for faults and proceed simulation step-wise.
(gdb)
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3.2.3 Supplied Debug Patterns
Currently, the debug pattern catalog consists of seven patterns. These pat-

terns were developed in close co-operation with SystemC designers. Each
pattern represents a typical debug situation often occurred in daily work:

COMPETITION. This pattern guides the user in the detection of
competitive situations caused by nondeterministic process execution
potentially resulting in erroneous behavior.
TIMELOCK. The TIMELOCK pattern helps the user to find defects
resulting from infinitely looping processes that cause no advance in
simulation time (simulation freeze).
DEADLOCK. When two or more processes are waiting for another,
e.g. to release a shared resource, this pattern proposes a procedure to
find the deadlock problem.
LIVELOCK. This pattern provides a scenario to handle problems
where two or more processes are working together, constantly chang-
ing their states but never coming to an end.
OVERFLOW. A thread stack overflow causes a simulation crash.
This pattern helps to identify the threads where such an overflow has
occurred.
LOSTEVENT. The LOSTEVENT pattern provides a debug proce-
dure to detect events that were missed because of multiple overwrit-
ing notify calls.
PERFORMANCE. This pattern suggests a procedure to determine the
bottleneck probably caused by often released events or multiple acti-
vated processes in design blocks.

Each pattern guides the user step-by-step to identify a defect that could
have caused the observed failure symptom. Appendix B details the COMPE-
TITION and the TIMELOCK patterns as two representatives of the pattern
catalog. 

3.3 SystemC Debugger
Debugging a SystemC design is characterized by several recurring actions.

Each action describes a sequence of particular steps in the GDB debugger to
acquire needed high-level information at system level. Based upon such
actions, SystemC-specific system-level debugging commands have been
defined and implemented as a non-intrusive extension of GDB. According to
the requirements presented on page 77, two types of commands are provided,
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i.e. examining and controlling commands. Currently, SHIELD provides 31
commands that support an efficient and easy error search at system level.
Table 4.1 gives a selection of typical representatives.

As already shown in Figure 4.5, the SystemC debugger has a layered
architecture. Due to the demand for a non-intrusive extension of GDB, all
new system-level debugging commands are implemented on top of it. Recur-
ring actions are encapsulated into user-defined commands composing the so
called macro instruction set at the user layer. A macro instruction implements
a desired functionality by using built-in GDB commands, e.g. examining the
symbol table or the backtrace, and a set of auxiliary functions provided by the
API layer. Auxiliary functions are C++ or script helpers that evaluate and pro-
cess information supplied by the debug data pool representing the data layer.
The data pool obtains data from three sources:

– redirected output of GDB commands, i.e. temporarily created log
files, 

– direct access to internal data structures of SystemC kernel classes, or
– a database holding preprocessed system-level debugging information

collected during set up of a debug session.

Table 4.1:  Selection of system-level debugging commands

Examining commands

Static simulation information

lsm list all modules in the given hierarchy

lse output all events instantiated in the design

lsb list all bindings of the specified channel

Dynamic simulation information 

lpt_rx list all trigger events of the given process w.r.t. a specific time stamp

lst output the code line a given process is currently pending 

lsp output all [c]thread and method processes

Controlling commands

ebreak break on next invocation of any process that is sensitive to the specified event

pstep break on next invocation of the given process

tstep break on processes which will be active at the next simulation time stamp
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3.3.1 User Layer
The user layer provides the interface to all SystemC-specific debugging

features in terms of macro instructions. It comprises the macro instruction set
that is implemented by particular GDB script files. Moreover, this layer con-
tains GDB helper scripts to setup and initialize SHIELD.

Example 14. The lsb command (see Table 4.1) presents the common imple-
mentation frame at the user layer as used for all new system-level debugging
commands.

define lsb
if ($hd_elaborated)

echo ---lsb: list all bound ports---\n
  call hd::list_bound_ports($arg0)

else
  echo not elaborated yet\n

end
end

3.3.2 API Layer
The API layer supports the implementation of new debugging commands

at the user layer. It is divided into an auxiliary function API and a database
API. The auxiliary function API comprises in addition to awk/shell scripts,
particularly C++ functions which realize more sophisticated helper function-
ality. Scripts are normally used to straightforward process temporary log files.
The database API supplies interface functionality to store data into and to
retrieve data from the debug database.

Example 15. Figure 4.6 illustrates the actions to implement the lsb command
by using a UML sequence diagram. A call of this command invokes the func-
tion hd::list_bound_ports(const char*) provided by the auxiliary function
API. This function retrieves the corresponding sc_interface instance (a chan-
nel) using the SystemC method sc_core::sc_find_object (using the OSCI
SystemC 2.2.0 reference kernel implementation). If the specified channel
could be found, hd::list_binding(sc_interface*) is called. This database API
function fetches the static binding information from the debug database and
formats them accordingly for output. 

3.3.3 Data Layer
Three sources compose the data pool at the data layer supplying either

static or dynamic simulation information.
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Temporary log files will be created by redirecting the output of GDB com-
mands, e.g. to get the ID of the current thread the simulation has stopped, or
the actual backtrace. These log files provide dynamic simulation information
only accessible at debugger side. 

The SystemC kernel provides some basic introspection capabilities useful
for retrieving design and runtime information. Various global classes allow to
query static simulation information, such as port, module, channel, or Sys-
temC object registries.

Example 16. The object hierarchy of a SystemC design can be browsed using
the following loop.

sc_simcontext* c = sc_get_curr_simcontext();
sc_object* o = c->first_object();
while (o) {

if(!strcmp(o->kind(),"sc_module")) {
// module specific actions

}
else if(!strcmp(o->kind(),"sc_signal")) {

// signal specific actions
}
...
o = c->next_object();

}

The simulation control, implemented by the kernel class sc_simcontext,
encapsulates the simulation state. This class offers many valuable information
such as runnable processes at the next delta cycle, or the delta event queue.

Figure 4.6:  lsb command at the API layer
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During setup of a new debug session, static simulation information are
logged and stored into the debug database using GDB. Here, particularly the
ability of a debugger to fetch private class data is utilized. Otherwise, private
data cannot be accessed due to missing public methods. Supplied debug func-
tionality is based on four main information classes: event, binding, method
and thread process information. Each class is represented by its own data type
holding preprocessed, kernel-private, or special debug session data. Figure 4.7
depicts the UML class diagram of the debug database sketching the four
information classes in the database class hierarchy.

Example 17. The following lsb call retrieves the binding information for the
channel ‘i0_count_hier.count_sig’ applied on an example application. There,
the flow as sketched in Figure 4.6 is performed.

(gdb) lsb "i0_count_hier.count_sig"
---lsb: list all bound ports---
bindings of channel i0_count_hier.count_sig
Driver: 

i0_count_hier.i_counter.outp   <sc_out>
Drivee: 

i0_count_hier.i_signal2fifo.inp   <sc_in>

Figure 4.7:  Class hierarchy of the debug database

hd_db_item

hd_db_container

−elems:hash_map<>

hd_db_sc_event

−e:sc_event*
−ident:string

*

has

hd_db_sc_thread

−handle:sc_thread_handle
−gdb_tid:int
−cthread:bool

hd_db_sc_method

−handle:sc_method_handle

hd_database

−db_root:hd_db_container

has

hd_db_sc_process

−entry_fn:string
−runnable:bool&
−event_count:int&
−timeout_event:sc_event*
−trigger_type:int&

hd_db_bindinfo

−c:sc_object*
−in:list<sc_port_base*>
−out:list<sc_port_base*>



Chapter 4   High-Level Debugging and Exploration 91

3.4 SystemC Visualizer
To facilitate debugging of (complex) designs, SHIELD provides visualiza-

tion capabilities based on the tool RTLVisionTM from Concept Engineering.
The visualization engine generates different views of the debugged design,
supporting crossprobing and annotations of the visualized context. During a
debug session the user has various possibilities to explore static and dynamic
design information. A number of system-level debugging commands influence
the graphical view (see Table 4.2). These commands are directly propagated
to the SystemC visualizer. Being aware of the model structure, the visualizer
assembles commands and maps SystemC components to the appropriate gra-
phical symbols. Thus, RTLVisionTM can be instructed to switch to specific
parts of the design and to update signal values during execution. The follow-
ing visualization features are available:

– annotating SystemC object names and values to signals and ports,
– hierarchical visualization of the module hierarchy,
– crossprobing between the graphical view and the source code,
– path fragment navigation, 
– visualization of dynamic slices in the source code view, and
– module exploration with a highlighting of signals, modules, or ports.

The visualizer provides different views that allow to explore a SystemC
design at arbitrary levels of detail. The schematic view shows modules as
functional blocks that can be collapsed and expanded. Interconnecting wires
represent some kind of interrelation between modules such as signals
exchanging values between modules, synchronization dependencies between

Table 4.2:  Selection of visualization debugging commands

Command Description

vlsb visualize the specified channel or event and all bounded components

vlsio_rx highlight I/O ports of the specified module matching the given regular expression

vtrace trace the given channel or port, record its value at each simulation time step until 
the specified time is reached and annotate the traced values as component label

vtrace_at trace the given channel or port and record its value at the specified time steps, the 
recorded values are annotated as component label

vslice visualize for the given slicing criterion each statement in the source code view 
that is part of the dynamic slice
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different processes using events (notify/wait pairs), or transaction channels
connecting sockets of TLM modules. The cone view limits the set of currently
displayed objects to a specific path. Cone and schematic view are bidirection-
ally connected to the particular code lines in the source code view. The design
hierarchy is represented as a compact tree-like structure which allows their
fast browsing. Static and dynamic debugging information are shown by dif-
ferent colorings, info boxes, and labels, or output in the debugger console. 

Dynamic slicing helps the designer to reduce debugging effort. Therefore,
SHIELD instruments the code of the system model using a tool based on the
REGATTA analysis framework (see Section 2 on page 40). This tool utilizes
the dataflow analysis capabilities of REGATTA to extract read and write
accesses of all variable occurrences. In case of an erroneous simulation run, a
trace is created by the instrumented system model. The designer navigates in
the source code view to the variable occurrence of interest. Then, based on the
recorded trace the dynamic slice is computed. The slice is visualized by high-
lighting all statements that belong to that slice.

Example 18. Figure 4.8 shows the dynamic slice for the variable pl in line 165
of the load/store controller implementation of the SIMD design example (see
Section 3.4 on page 29). All statements that belongs to that slice are marked.

Figure 4.8:  Dynamic slice for variable pl (code of the SIMD example)



Chapter 4   High-Level Debugging and Exploration 93

Subsequently, the RISC-CPU design is used for further demonstration
purposes of visualization capabilities. The CPU design is part of the OSCI
SystemC v2.0.1 library package [OSCI].

Example 19. Monitoring dedicated values during simulation is very helpful
when the user does not exactly know what is going wrong and when the defect
infection has occurred. In this situation, the vtrace_at command (see Table 4.2)
helps the designer to trace the channel or port of particular interest. Figure 4.9
illustrates the tracing of the top-level signal ‘addr’ in the RISC-CPU design
at three time stamps to check whether the right addresses are forwarded to the
RAM. The concluding vlsb command displays the signal and its connection
together with the annotated traced values:

(gdb) vtrace_at "addr" 42000
(gdb) vtrace_at "addr" 46000
(gdb) vtrace_at "addr" 50000
(gdb) c
...
(gdb) vlsb "addr"

Example 20. In case of a failure related to a specific channel, the user wants
to get a quick overview about all channel connections. Here, the vlsb com-
mand (see Table 4.2) helps the designer to focus error search on the relevant
modules. Figure 4.10 sketches the visualization output after calling vlsb with
two top-level signals of the RISC-CPU design in order to check the right port
binding:

(gdb) vlsb "ram_cs"
(gdb) vlsb "next_pc"

3.5 Implementation Issues
An important requirement for twhe implementation of SHIELD was the

demand for a non-intrusive solution. Hence, patches of the SystemC kernel,
the GDB debugger, and the code should be avoided (see Section 2.1 on page 77).

Figure 4.9:  Visualization debugging command vtrace_at 
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A first implementation approach collected the required system-level debug-
ging information using a pure non-intrusive procedure. Here, hidden break-
points in the SystemC kernel register and trigger particular data collection
actions, e.g. to collect created SystemC processes. Experiments with complex
real-world designs have shown that especially the setup phase of the extended
GDB took an unacceptable long time. Here, the frequent calls of data assem-
bly breakpoints have downgraded the simulation performance.

So, an improved, more relaxed non-intrusive, approach was developed.
The idea is to reduce the number of data assembly breakpoints while moving
their functionality into the kernel methods where the breakpoints were for-
merly set. Normally, one has to patch the particular methods to create
callbacks forwarding required debugging information to SHIELD. To remain
kernel patch-free, library interposition was used instead. A preloaded shared
library contains the overwritten SystemC kernel methods. Additionally, the
original implementation is extended by a callback into the debugging environ-
ment. A specific environment setting instructs the dynamic linker to use the
preloaded library before any other when it searches for dynamically loaded
functions. Figure 4.11 illustrates this principle in case of the method
create_thread_process of the class sc_simcontext. A callback
forwards all information about a created thread to SHIELD. Since preloading
works only for non-inlined class methods, minor transparent changes to the
SystemC kernel source code were necessary. So, some inlined methods were
moved from header to implementation files such as the constructor of the

Figure 4.10:  Visualization debugging command vlsb 

Figure 4.11:  Preloading a SystemC kernel method
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sc_event class. Using the new relaxed non-intrusive approach has sped the
debug session setup times up to 62.4 times compared to the pure non-intrusive
variant (see Table 4.3).

4 EXPERIMENTAL RESULTS

This section summarizes different results obtained with SHIELD while
debugging flawed simulation runs of different SystemC designs. The first
experiment shows an exemplary debug session of the SIMD data transfer
example (see Section 3.4 on page 29). It demonstrates how the proposed debug
flow together with the supplied debugging features help the designer in a sys-
tematic error search. The second part considers some experimental results that
were obtained while debugging different industrial designs.

4.1 SIMD Data Transfer Example Continued
Initially, the modules of the SIMD design have been checked by static

analysis (see Chapter 3). Now, the example is compiled and simulated the
first time. To verify the correctness of data transfer operations, simple logging
statements are used. The evaluation of the logs has shown that read and write
data transfers wrongly start at the same time. So, the data transfer operations
compete for the access to the data bus. Obviously, a failure is found and a
SHIELD debug session is started to find the failure-causing defect. The
observed failure symptom matches the symptom which is described by the
COMPETITION debug pattern (see Appendix B). According to Figure 4.4,
this pattern is selected and activated to start debugging at the strategy level:

(gdb) dp_competition
*** COMPETITION debug pattern activated
*** detect competitive situation

To get a better insight into the current design structure, the SystemC visu-
alizer component of SHIELD is applied. Using the vlsb command (see Table 4.2),
the internal structure of the processor unit is displayed in the cone view. This
comprises the visualization of three thread processes and their synchronization
dependencies using SystemC events. The thread process core_i.punit.
dispatch is the central control unit. It synchronizes the data transfer pro-
cesses core_i.punit.read_data_block and core_i.punit.
write_data_block using the two SystemC events e_read_grant
and e_write_grant. These processes initiate a new read or write transac-
tion and report the completion by using the acknowledge events e_read_ack
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and e_write_ack. As can be seen in Figure 4.12, the e_write_grant
event does not notify any process. Instead, both data transfer processes seem
to wait for the e_read_grant event. This observation could already cause
the examined failure. To validate this assumption, the COMPETITION pat-
tern is further processed: 

(gdb) nps
*** retrieve the corresponding event 
*** using lse_rx "<signal name>"

As proposed by the nps command, the lse_rx debugging command is used
to retrieve the hierarchical name of the interesting read-grant event. After call-
ing lse_rx, the pattern guidance automatically jumps to the next debugging
step (in the flowchart). Then, this step proposes to apply the dp_sense command
on the event of interest and continue simulation. This particular situation is
shown in the screenshot of Figure 4.12. Now, the dp_sense command is check-
ing continuously whether more than one process is triggered by the read-grant
event, and if so, the simulation would be stopped. As result, dp_sense reports

Figure 4.12:     screenshot of a SIMD debugging sessionSHIELD



Chapter 4   High-Level Debugging and Exploration 97

*** dp_sense 'core_i.punit.e_read_grant'
*** Check competitive situation between sensitive processes
  in module core_i.punit
     core_i.punit.write_data_block  <dynamic>
     core_i.punit.read_data_block  <dynamic>

*** breakpoints in sensitive processes
  breakpoint at thread 4  -> core_i.punit.write_data_block
  breakpoint at thread 5  -> core_i.punit.read_data_block

Due to the detected dynamic sensitivity of both potentially competitive
processes, the debug pattern proposes to use the lst command. This command
checks the correct process sensitivity by investigating the code the process is
currently pending. So, lst 4 depicts the defect in line 91. Here, the process
waits for a read grant signal in the write-data-block. This seems to be a (typi-
cal) copy-paste failure from the read-data-block method:

(gdb) lst 4
---lst: list source a [c]thread/method is currently in---
process core_i.punit.write_data_block is currently
  at proc_unit.cpp:91
  in proc_unit::write_data_block
89        while (true)
90        {
91          wait(e_read_grant);
92
93          // how much data should be written
---------------------------------------------------------

Summarized, the failure-causing defect could be detected by a systematic
procedure at the strategy level. Using the COMPETITION debug pattern in
connection with three system-level debugging commands is sufficient for
defect analysis. The visualization of the relevant design parts further eases
debugging. So, the visualized process dependencies have been early pointed
out the faulty implementation.

4.2 Industrial Examples
This section considers experimental results which were obtained by

exploring different SHIELD features on various industrial SystemC designs.
Furthermore, the debugging features of SHIELD are contrasted with a commer-
cial solution, namely the CoWare SystemC shell.

two sensitive processes becoming active simultaneously. This situation corre-
sponds to the visualized output already shown in Figure 4.12:
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4.2.1 Efficiency Discussion
For a successful deployment in an industrial design flow, the SHIELD envi-

ronment and especially the SystemC debugger should offer a competitive
performance and productivity if compared to a standard C++ debugger.

Table 4.3 presents the setup times, the debugger needs to be ready compar-
ing the non-intrusive implementation variants (see Section 3.5 on page 93). The
relaxed non-intrusive approach combines flexibility and the demand for
unpatched sources with a setup time that competes well with the standard
GDB implementation. Moreover, the table shows the bad performance of the
pure non-intrusive approach that prevents any productive work.

Table 4.4 illustrates the performance of the vtrace debugging command
(see Table 4.2) while tracing a different number of signals on three simulation
runs of the RISC CPU design [OSCI]. So, the observation of 750,000 time
points over 125 signals leads to a slow down of factor 4 compared to a trace-
free simulation. The tracing of 50 signals increases the simulation time only
about 80%. 

Rating the efficiency of the SystemC debugging features is difficult. To
get an idea, Table 4.5 compares the effort the user has to invest if system-level
debugging commands are replicated by a sequence of standard GDB com-
mands. Note that this is impossible for half of the functionality. For the other
half, the user has to have at least a deep understanding and a detailed knowl-
edge of the SystemC simulation kernel. More often, it requires additional
functionality and data collected during a debug session.

Table 4.3:  SystemC debugger setup times

Test Setup time

C++ debugger Pure non-intrusive Relaxed non-intrusive

Design Aa <1 s 2.25 min 1.2 s

Design Bb ~10 s 26 min 25 s

Design Cc ~10 s >40 min 31 s

a. Test system: AMD Opteron™ 248 processor @2200 MHz, 3 GB RAM
Test design: multiple instances of a simple producer/consumer application
Design characteristics: #thread processes – 204, #method processes – 1010, #sc_events objects – 3638

b. Test system: AMD Athlon™ XP processor @1800 MHz, 3 GB RAM
Test design: bus interface controller for various protocol implementations
Design characteristics: #thread processes – 29, #method processes – 56, #sc_events – 306

c. Test system: see b 
Test design: design of a serial interface 
Design characteristics: #thread processes – 31, #method processes – 136, #sc_events – 701
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4.2.2 SHIELD in Practice
In the following, the SHIELD debug flow is compared with a conventional

C++ based debug procedure. Here, a bug should be detected in a SystemC test
bench running a co-simulation between Verilog and SystemC.

4.2.2.1 Debug Problem
During running a test case, an interface bus of the actual design under test

(DUT) had a value contention. It seems that there are two processes concur-
rently driving data onto the bus.

Table 4.4:  Exemplary performance slow down due to tracinga

#Traced signals in the 
RISC CPU design

Slow down over simulation time (#observed time points)

1,000 ns 2,000 ns 3,000 ns

0 1.0 1.0 1.0

5 1.3
(10,000)

1.3
(20,000)

1.4
(30,000)

50 1.8
(100,000)

1.8
(200,000)

1.8
(300,000)

75 2.3
(150,000)

2.6
(300,000)

3.0
(450,000)

100 3.0
(200,000)

3.2
(400,000)

3.6
(600,000)

125 3.2
(250,000)

3.9
(500,000)

4.0
(750,000)

a. Test system: Intel Centrino Duo T2400 @1830 MHz, 1 GB RAM
Test design: Design is part of the OSCI SystemC v2.0.1 kernel package
Design characteristics: #thread processes – 9, #method processes - 3, #sc_events – 173

Table 4.5:  Debugging effort in SHIELD and GDB

#HLD 
commands

#GDB commands per 
system-level command

Remarks on equivalent GDB functionality

6 1 to 9 fully automated with canned command sequences, i.e. 
a number of GDB commands

10 dynamically/at least 4 partially automated with manual user intervention, 
needed to handle dynamic information

15 n/a additional functionality required, i.e. helpers to 
retrieve, evaluate, and buffer system-level information
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The first process in the test bench is known. It drives an initialization value
after reset using the thread process tb.bif.fsm._reset(). This thread is sensitive
to the negative edge of the reset signal fsm_rst_l, being a low active input to
the DUT. So, the second yet unknown process shall be detected. Since the sig-
nal event on which the problem occurs is known, a tracing of the
corresponding SystemC event tb.bif.fsm_rst_l.m_negedge_event could help to
isolate the failure cause.

4.2.2.2 SHIELD Debug Procedure
The assumption of two processes that concurrently drive data onto the

interface bus, motivates the application of the COMPETITION debug pattern
(see Appendix B). So, the erroneous test case is rerun in SHIELD. Since the
problem-causing signal is already known, the dp_sense command is called
with the particular signals negative edge event:

(gdb) dp_sense "tb.bif.fsm_rst_l.m_negedge_event"
*** COMPETITION debug pattern activated
*** restart/continue simulation using run/continue
(gdb) cont

On stop of dp_sense, it gives us two thread processes sensitive to it:

*** dp_sense 'tb.bif.fsm_rst_l.m_negedge_event'
*** Check competitive situation between sensitive processes
  in module tb.bif
     tb.bif.if_bfm._update <static>
     tb.bif.fsm._reset <static>

*** breakpoints in sensitive processes
  breakpoint at thread 21 -> tb.bif.fsm._reset
  breakpoint at thread 16 -> tb.bif.if_bfm._update

According to the debugger output, the second sensitive process is
tb.bif.if_bfm._update. Due to the static sensitivity, the COMPETITION pat-
tern proposes to review the process sensitivity list using the lpt_rx debugging
command (see Table 4.1), at next:

(gdb) lpt_rx 16
thread process sensitivity list
-------------------------------
tb.bif.if_bfm._update
  <dynamic> tb.bif.ch_m._update.m_value_changed
  <static> tb.bif.fsm_rst_l.m_negedge_event
  <static> tb.bif.fsm_tx_w.m_posedge_event
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As can be seen, the sensitivity list falsely includes the reset signal, which
is not desired and turns out to be an environment bug. 

While debugging at the strategy level, only three system-level debugging
commands (including the next-pattern-step command) are necessary to figure
out the failure cause. In contrast, a conventional debug procedure is much
more expensive, as sketched in the following.

4.2.2.3 Conventional Debug Procedure
A conventional debug procedure could only use standard GDB debugger

commands. To find the second yet unknown process colliding with the reset
process, a breakpoint would be set into the unique driver function. This break-
point is invoked by every module that wants to stimulate the interface bus. 

At any stop at this breakpoint, the designer had to trace back the invoking
module, e.g. with the up command in GDB. This turns out to be a time con-
suming task, potentially ending in different modules not involved in this
specific issue. The procedure can be simplified if the knowledge about the
problem-causing SystemC signal event is used. Since system-level debugging
commands are not available, a conventional C++ breakpoint has to be set at
the proper SystemC kernel method that is called if an event is triggered. To
stop only at the searched event, a breakpoint condition has to wait for the par-
ticular event object. Subsequently, all processes sensitive to this event are
retrieved and checked whether they are correctly triggered. Again, this proce-
dure is a very time consuming task which needs a lot of user input and also an
intimate knowledge of the SystemC kernel implementation. Usually, this
knowledge cannot be expected to be available by a normal designer.

4.2.3 SHIELD Debugger vs. CoWare SystemC Shell
In the following, the current implementation of SHIELD’s SystemC debug-

ger (see Section 3.3 on page 86) is compared with the commercial CoWare
Platform Architect SystemC development environment (Product Version
V2007.1.1) [CoWare], precisely the SystemC shell scsh. Just like the SHIELD
environment, the scsh tool provides a debugger interface at command line.

Table 4.6 contrasts the most important debugging features in SHIELD with
the corresponding scsh features. As can be seen in the table, both tools pro-
vide comparable debugging features and base upon GDB. One of the main
differences between the environments is the integration of GDB. While
SHIELD extends an arbitrary GDB release in a non-intrusive, patch-free man-
ner, CoWare’s scsh fully integrates a specific GDB version into a Tcl/Tk
scripting engine. Both tools offer breakpoints at system level. However,
SHIELD breakpoints are set on all activated processes that are triggered by a
certain event, e.g. a signal value change, or entering the next delta cycle. 
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simulation whenever the given event has occurred, e.g. an elapsed number of
clock cycles. The different procedures have advantages and disadvantages.

Table 4.6:  Comparing SHIELD debugger and CoWare’s scsh 

Feature description SHIELD scsh

GDB debugger based yes yes

GDB extension use GDB extension concept Tcl/Tk based

SystemC project support no
(only GDB built-ins)

yes
(build and run simulations)

system-level breakpoints

at the initialization phase no yes

at simulation time advance breakpoint at each acti-
vated process

only stop

at delta cycle advance breakpoint at each acti-
vated process

no

on SystemC event/signal/port breakpoint at each acti-
vated process if event has 

occurred

breakpoint at a specific 
location if event has 

occurred

on process yes yes

print/display signals/variables signal tracing feature/built-
in GDB variable value 

printing

specific commands

navigate design hierarchy similar features to list different design information - doc-
ument only differences, subsequently

list whole object hierarchy no yes

list transfers/attributes of no yes

display item information no yes

list process trigger yes no

list all events in the simulation yes no

tracing features signal, port, and 
process trigger tracing

sophisticated tracing of 
arbitrary traceable objects

visualization interface specific commands to alter 
the visualization front-end

no 
(only debug shell, visual-

ization integrated into IDE)

In contrast, in scsh the designer sets a breakpoint at a specified location to stop
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So, SHIELD enables a more communication-centered debugging while scsh
allows to stop simulation at more specific situations. Both tools provide simi-
lar features for a navigation inside the design hierarchy. Here, scsh supports a
more detailed listing of particular SystemC objects while SHIELD assists
debugging through additional dynamic simulation information. The tracing
features are better supported in CoWare’s scsh while SHIELD provides a port
to alter the visualization front-end from the console.

5 SUMMARY AND FUTURE WORK

A debug flow that supports systematic debugging of ESL designs has been
introduced in this chapter. A three level strategy allows an efficient observa-
tion of simulated system models. It guides the designer in a fast, easy, and
simplified debug procedure. The SHIELD debugging environment implements
the proposed debug flow for SystemC. It assists designers in simulating,
debugging, and visualizing their SystemC models. Thus, the designer gets a
quick and concise insight into the static structure and the dynamic behavior of
the model without the burden of gaining detailed knowledge of the underlying
SystemC simulation kernel. A special feature of SHIELD over all other avail-
able approaches and tools is its non-intrusive implementation that avoids any
patches of the used debugger. Only minor transparent changes to the OSCI
SystemC reference kernel implementation are required, especially to enhance
debugging performance. Hence, SHIELD can be easily integrated into an exist-
ing industrial design flow. Providing concrete debug strategies in terms of
debug patterns help the user to focus on a higher level of abstraction joined
with a minimal learning effort. So, common sources of typical SystemC errors
can be systematically debugged using a particular debug pattern. Especially
the novice user can exclude and fix many defects without the need to consult
an expert. The experienced user who does not need pattern guidance anymore
has the benefit of a comprehensive support. Here, the partially automated
detection of erroneous situations can accelerate the debug process.

Practical experiments have demonstrated the efficiency of SHIELD while
debugging various industrial SystemC designs. SHIELD has shown a setup
time which is only three times slower at the maximum, and thus competes
with the original GDB implementation. GDB is a de-facto standard debugger
for C and C++ that has proven its feasibility to handle very complex software
programs, e.g. as default part of the Eclipse CDT plug-in [CDT]. Moreover,
SHIELD supplies system-level debugging commands whereas 50% of these
commands do not have a direct correlation to standard GDB features. The
other half of commands needs four GDB commands on the average to repli-
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cate the corresponding debugging functionality at system level. So, a defect in
the SIMD data transfer example could be found in a few steps using a debug
strategy combined with a dedicated visualization of the corresponding mod-
ule. Consequently, it could be assumed that SHIELD enables a more efficient
debugging of SystemC descriptions than using a standard C++ debugger.

Future work will improve the provided debugging and exploration func-
tionality especially regarding an explicit TLM support. One of the main goals
is to fit the debugging environment to the specific needs of the application
being developed, e.g. CPU design.



Chapter 5

Learning about the Design

A single simulation run can be a valuable source of information to detect
many errors in the system model. However, summarizing multiple runs to get
a general abstraction that holds for all concrete runs offers completely new
debugging opportunities. So, new and different aspects about the design can
be extracted. Such an induction technique is introduced in this chapter
(see Figure 5.1). In general, two main approaches can be distinguished.

The first approach uses multiple program runs to detect abnormal behav-
ior, i.e. behavior that deviates from the average whereas these abnormalities,
also anomalies, help to locate errors. Although, abnormal behavior does not
necessarily indicate a defect as in case of incorrect behavior, it is usually a
very good indicator to start your debug session. Anomalies are represented by
certain properties that can be inferred from erroneous program runs.

The second approach uses multiple program runs over passing tests to
infer likely specifications that hold for all runs. These inferred properties (also
invariants) can be converted for instance into assertions that check for abnor-
mal program behavior during subsequent program runs.

In the first part of this chapter a general overview about induction tech-
niques is given. These techniques are used to determine a general abstraction
of the analyzed program or the design description. Subsequently, a new meth-
odology is described that generates complex properties over multiple simulation
runs of a system model.

The second part of the chapter introduces DIANOSIS (Dynamic Invariant
ANalysis On SImulation TraceS) – a methodology and tool that infers complex
properties from a given simulation trace using two analysis phases. In the first
phase, a set of predefined properties is hypothesized over the trace. During the
subsequent second phase the previously found properties are combined to
new, more complex candidates. These candidates are checked on the simula-
tion trace once again. “Surviving” property candidates are recombined until
no more valid properties can be created. Then, the extracted functional behav-
ior of the design is presented to the verification engineer for manual inspection
and subsequent use.

F. Rogin and R. Drechsler, Debugging at the Electronic System Level, 105
DOI 10.1007/978-90-481-9255-7_5, © Springer Science+Business Media B.V. 2010 
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1 INDUCTION TECHNIQUES IN A NUTSHELL

In this section induction techniques and their role to learn different aspects
about a system are discussed, at first. Next, an overview about related work is
given.

1.1 Overview
The increasing computing power has made dynamic analysis a promising

approach in system design and software program verification. Different auto-
mated induction techniques infer abstractions in terms of properties using
multiple program runs. Such properties could help the designer to learn
important design characteristics or to detect erroneous behavior. Hence, two
fields of application can be distinguished:

Inferring a likely characteristic. Here, a (large) set of passing pro-
gram runs is used to abstract behavior that is common for nearly all
runs. Examples are a specific call order of API functions of a software
package or the correct locking/unlocking of shared resources in multi-
threaded applications. So, this approach tries to infer commonalities

Figure 5.1:  Learning about the design using an induction technique

�����
������	
�
����

�����
�
�
	
���������������������

�
������
��������
�	
���

��������	

��
�

	��
�
�����

���������	

���������������� �
��������

����������������	����




�

�

��
������
�	�����



Chapter 5   Learning about the Design 107

between multiple program runs that generally hold. The more runs are
analyzed the more precise are the obtained results. The found com-
mon behavior can be converted into run-time checks (also assertions)
to detect anomalies during later program runs. A flagged assertion
indicates a situation where the program characteristic deviates from
the “usual” behavior, seen so far. There, the user has to interactively
decide whether this anomaly is a new, not previously observed cor-
rect fact or a failure.
Detecting abnormal behavior. In contrast to inferred likely program
characteristics, abstractions extracted from failing runs describe erro-
neous behavior. An example is a missing mutex unlock of a shared
resource in a multithreaded application that causes a program dead-
lock. Comparing correct and wrong abstractions can help the user to
locate defects that had caused the observed failure.

Both approaches need a suitable database storing data of multiple program
runs for analysis. Moreover, the analyzed program must be extended to collect
the required data. Data collection can be provided by automated instrumenta-
tion techniques. An instrumented program logs data that allow to keep track
of executed program statements, or all values a variable holds during run
time. To ease instrumentation, different frameworks and tools especially in
the software domain are supplied such as Valgrind or Log4J for Java. In spite
of the framework support, the collection of specific information often needs
some programming expense. Instrumentation tools for C++ can be also used
to instrument SystemC code. However, these tools cannot collect data specific
for SystemC. SystemC provides a built-in concept that was taken over from
hardware design. The designer can initiate a tracing of specific signal values
to create a simulation trace in the VCD standard format to be visualized in a
waveform viewer, later.

The larger the amount of data is, the higher the precision of the induced
abstraction can be. A promising approach is the collection of data under real
operating conditions, instead of generating a large set of synthesized random
runs. Running a program under real-world conditions produces a high number
of runs with a large variety of real-life scenarios. Nonetheless, collecting data
in the field is problematic:

– A collection of arbitrary data could violate the privacy of the user.
– A collection of a large amount of data could negatively impact the

performance of the application. This impact is critical for real-time
applications.
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In general, induction techniques require a suitable instrumentation
approach and a large set of test cases creating a sufficient dataset. There, the
ever increasing computing power and ongoing research progress improve the
precision and potential of these techniques.

1.2 Related Work
The automatic generation of properties or specifications in the hardware as

well as in the software domain is subject of numerous works.
The dynamic invariant detector Daikon [PE04] reports likely invariants

found in programs for instance written in Java, C/C++, or Perl. Daikon
searches a preset catalog of mainly algebraic invariants from program execu-
tions. It validates hypotheses against each execution trace of the instrumented
program and thus relies on high-quality traces. Csallner and Smaragdakis
[CS06] propose an algorithm that supports interface and method overriding in
the context of Daikon. A method comparable to Daikon is presented in
[HCNC05] for the hardware domain. Here, a small number of predefined
properties (e.g. one-hot coded buses, different handshake patterns) is inferred
over a simulation trace whereas the properties are especially adapted to the
specific needs of microprocessor designs. Found properties can be introduced
in subsequent verification tasks. In contrast to the solutions presented above,
the approach proposed in this book is not restricted to a predefined set of
properties. Instead, the approach reuses already generated properties to infer
more complex ones. Hence, more abstract information about the analyzed
design can be obtained.

The principle of “least astonishment” is utilized by the approach presented
by Isaksen and Bertacco [IB06]. The method extracts common behavior by
means of transaction activity at any user-defined component interface of a
digital hardware design. The results are presented to the verification engineer
by protocol or transaction diagrams. Any design anomaly is reported as a dif-
ference to the common behavior constituted in a learning phase. A disadvantage
of this approach is the limitation to control signals to gain usable information
instead of generating properties over all possible signals as our solution does.
Due to this limitation, for example, no statements about data-oriented behav-
ior can be made. Moreover, the presented experimental results show that the
obtained transaction diagrams can quickly reach a complexity that hampers its
comprehension and validation. In contrast, substantial effort was made in our
approach to improve the readability of generated properties and to limit their
number. 

In the software verification domain Engler et al. [EC+01] propose a com-
parable approach to the approach of Isaksen and Bertacco [IB06]. Engler et al.
compare common behavior with the current observed behavior using a set of
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predefined templates. Hence, the programmer can infer likely faults by
inspecting behavior which deviates from the norm. Our generation methodol-
ogy shares this observation where expected but unseen properties can point to
an erroneous design or test bench implementation. The main difference to this
work is that Engler et al. use static program analysis. So, this approach cannot
be applied to programs where the source code is not available. Our approach
only relies on simulation traces that are created by a simulation run.

Arts and Fredlund [AF02] presented a work to improve design understand-
ing of Erlang programs by an automatic analysis of program traces. Thus,
program models from execution traces are obtained that are used for visual-
ization and model checking purposes. Due to the regular nature of Erlang
programs, design patterns (e.g. finite-state machines, client–server communi-
cation, event handling) can be searched on the trace. As a result, abstract state
graphs can be created from the traced component. Our work has some similar-
ities with this approach, especially in the case of searching recurring patterns
on a trace. While [AF02] is limited to Erlang programs, our methodology
works on arbitrary simulation traces that are provided in a common industry
standard data format.

The principle of “specification mining” is discussed in many different
work. A mined specification is typically a finite-state machine describing
valid scenarios by means of instruction sequences in a software program. In
[ABL02] a machine learning technique is used to mine specifications for
application programming interfaces and abstract data types. First, so called
scenarios are extracted from a program execution trace. Then, these scenarios
are fed to a probabilistic finite automaton learner. Erroneous traces are han-
dled with the help of human experts who have to decide whether a violation is
a real bug or not. More recent work extend specification mining to handle lon-
ger real-world execution traces [YE04], more realistic imperfect traces
[YE+06], or to achieve more precise results [WN05]. All approaches are set-
tled in the software domain typically analyzing temporal properties such as
execution sequences of functions at the interface border of program compo-
nents. In contrast, our approach is able to deal with arbitrary signals of
hardware designs and searches for recurring patterns between them. There,
not only temporal relations are extracted. Nevertheless, several mining tech-
niques and features can help to improve our methodology.

Anomaly detection is performed by the tool DIDUCE [HL02]. It reports
violations for relatively simple invariants (e.g. read/write specific values)
detected in Java programs. In [DF04], [FD04] a methodology is introduced
that extracts arbitrary properties on a simulation trace of a hardware design.
Different time relations between a selected set of signals are considered, rated,
and formulated as a property using pattern matching techniques combined
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with a heuristic. Besides the choice of correlated signals, a time window in
which properties will be searched has to be defined by the user. However, this
normally limited window length prevents an efficient search for properties,
especially in case of communication protocols where large window sizes are
common. A number of work detect design patterns in software programs to
improve program understanding. Pattern detection works either by analyzing
structural aspects of patterns, e.g. [NS+02], [SO06], [Vok06], or behavioral
aspects, e.g. [SO06], [Wen03].

Compared to our approach, recovered design patterns mainly give state-
ments about the code quality in terms of maintainability, documentation, or
extensibility, and support reverse engineering tasks. The recognition of spe-
cific software defects, such as race conditions or deadlocks, are examined by
various approaches, e.g. [PS03], [SB+97], [YRC05]. The characteristic of all
work is their particular adaptation to the particular needs of the checked prop-
erties. Hence, their application in other contexts is very limited.

2 AUTOMATIC GENERATION OF PROPERTIES

In this section a methodology for the generation of properties based on
simulation traces is proposed, at first. The methodology is suited to infer a
likely specification and to detect abnormal design behavior. Then, the genera-
tion algorithm is illustrated in detail. Finally, the extension of a system design
flow incorporating the introduced property generation methodology is
discussed.

2.1 Generation Methodology
The proposed property generation methodology bases upon simulation

traces. Hence, it shares similarities with the work presented in [GD04b],
[HCNC05], [IB06]. The design description is manually instrumented by the
designer to create traces in the industrial VCD standard format. There, the
design description can be written in any language and at each abstraction
level. The only precondition is a support of the VCD format as provided by
system level descriptions written in SystemC, or RTL descriptions written in
Verilog.

The key contribution of the presented methodology is the generation of
complex properties by combining already found properties to new ones. In the
first phase, a set of predefined properties is hypothesized over the design
behavior which is described by a given simulation trace. During the subse-
quent second phase the previously found properties are combined to new,
more complex candidates. These candidates are checked on the simulation
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trace once again. Surviving property candidates are recombined until no more
valid properties can be created. Then, the extracted functional behavior is pre-
sented to the designer for manual inspection. The advantages of a methodology
that automatically derives (complex) properties are as follows:

Improved design understanding. Inferred properties gain a new
insight into the abstract design behavior. So, properties that deviates
from the average can point to a defect and are a good starting point
for debugging.
Tool support for the formulation of properties. Derived properties are
a starting point for formal verification, e.g. by converting them into
assertions.
Identification of gaps in the test suite. If an inferred property is not a
general abstraction that holds for all simulation runs, it unveils behav-
ior not exercised by the test suite.
Enhanced efficiency of the overall verification process. The applica-
tion of such a methodology improves quality and efficiency of the
overall verification process.

2.2 Generation Algorithm
First, this section introduces some basic notions to achieve self-contain-

ment. Then, the general property generation algorithm is described. Finally,
termination and complexity of the algorithm is discussed in short.

2.2.1 Preliminaries
A simulation trace T has a vector S of n signals  consisting

of inputs, internal signals, and outputs. The algorithm searches for properties
over all given signals independent of their directions. So, adding information
about the directions of signals is not necessary which saves configuration
effort and improves process automation. Moreover, the search space for prop-
erties is enlarged to any feasible signal dependency. So, for example, a back
coupling from an output to an input can be identified. The value of a signal 
at time t is denoted by . Since, hardware signals can be low- or high-
active, a heuristic h is defined that estimates the polarity of a signal  at time
t. Similar to the work presented in [HCNC05], the heuristic assumes that the
signal value found in a smaller number of clock cycles is the active polarity:

(5.1)

S s1 ... sn, ,( )=

si
si t[ ]

si

h si t[ ]( )
1 if si t[ ] active at t=

0 if si t[ ] inactive at t=⎩
⎨
⎧

=
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Hence, the heuristic presumes that a digital circuit is a longer time inactive
than active when considering its overall lifetime. This assumption implies that
the used simulation trace also reflects the real-world behavior. Otherwise, if a
signal is more often active than inactive its polarity would be wrongly
derived. Consequently, wrong design behavior could be inferred. Using the
heuristic h a signal state  at time t is encoded into a signal activity .

Definition 11. A simulation trace T of length  is given by a tuple
 with

–  is a vector of n signals, and
–  gives the activities of these signals at time

t.

2.2.2 Algorithm Description
Figure 5.2 presents the property generation algorithm. The algorithm starts

from

– a simulation trace T,
– a regular expression string rx which restricts the number of examined

signals in  to an interesting subset,
– a set of user-defined basic and complex checkers verifying the corre-

sponding properties with , and
– information about reset- and clock-signals, i.e. their names , ,

and the reset phase finish time .

As a result the algorithm delivers a set P containing all valid basic and
complex properties found on T. Additionally, several parameters are gathered
during the generation process which specify each found property. A property
parameter is for instance the maximum clock cycle between a request and an
acknowledge signal in case of a signal handshake. A valid property confirms
the checked “characteristics of the participating signal(s)” such as the hand-
shake pattern between two signals. Using this information and the collected
parameters, an expression in a particular property language is given to the
user, e.g. in terms of an SVA, or a PSL expression.

The algorithm is composed of two phases. During the first phase
(lines 1 to 9) predefined basic properties are inferred over the simulation
trace. In a first step, a set of property candidates  (line 2) for all signals
and their combinations over all requested basic checker types  is cre-
ated. Then, the validity of basic property candidates is checked at each time

si t[ ] asi
t[ ]

tcyc
S v 1[ ]  ... , v tcyc[ ],( ),( )

S s1 ... sn, ,( )=
v t[ ] as1

t[ ]  ... , asn
t[ ]( , )=

S

C Cbasic Ccomplex∪=
srst sclk

trst

Pcand
Cbasic
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step t (lines 3 to 9). The falsification of a candidate leads to its removal from
 (line 6). After the loop ends, only property candidates are left in 

that are valid on T. To obtain high-quality properties it is necessary that the
used trace has got a high functional coverage. Otherwise, a large number of
properties are incorrectly inferred and do not hold on the design. There, the
approach is independent of how the simulation data are obtained, e.g. by a
conventional simulation using directed tests, or a constraint-based random
simulation. After the first phase, the set P receives all valid basic properties (line
10). Additionally, each property is detailed by a set of extracted parameters.

The subsequent second phase (lines 11 to 22) examines the temporal
dependencies between already found properties in P. At first, new candidates
of complex properties are created and stored in the set  (line 13). Valid
properties are combined to property candidates using the requested temporal

Figure 5.2:  General property generation algorithm

Require: 
Ensure: P with  is valid on T
1 {phase 1 - infer basic properties}
2
3 for all time steps  do
4 for all  do
5 if  then
6
7 end if
8 end for
9 end for
10
11 {phase 2 - infer complex properties}
12 repeat
13
14 for all time steps  do
15 for all  do
16 if  then
17
18 end if
19 end for
20 end for
21
22 until 

T S v 1[ ]  ... , v tcyc[ ],( ),( )= rx[ ] C srst trst sclk, , , , ,
p P∈

Pcand create_basic_cand S Cbasic srst sclk rx, , , ,( )=
trst t tcyc≤ ≤

p Pcand∈
checkp v t[ ]( ) false=

Pcand Pcand \ p=

P Pcand=

Pcand create_complex_cand P Ccomplex,( )=
trst t tcyc≤ ≤

p Pcand∈
checkp v t[ ]( ) false=

Pcand Pcand \ p=

P P Pcand∪=
Pcand ∅=

Pcand Pcand

Pcand
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dependencies that are indicated by dedicated checker types in . The
next step checks the validity of each candidate on the trace and removes it
from the candidate set if it has been falsified (lines 14 to 20). Valid properties
extend P (line 21). Repeating this procedure, temporal dependencies between
already found and newly generated properties are examined. So, even more
complex expressions are generated and checked on the simulation trace. The
algorithm loops as long as further candidates could be proven. Finally, P con-
tains all basic and complex properties that are valid on T.

2.2.3 Complexity and Termination
The complexity of the generation algorithm (see Figure 5.2) composes of

the complexity of the first and the second generation phase. 
During the first phase the simulation trace T is processed one time (line 3).

So, the complexity is linear to the number of clock cycles  stored in the
trace, i.e. . At each time step t, all instantiated property candidates in

 are checked for validity. The concrete number of created candidates
(line 2) is . That
means, the number of basic candidates increases cubically in the worst case,
i.e.  while a constant number of selected checker types in

 is assumed. So, .
The second phase runs as long as new candidates of complex properties

could be validated at each of n iterations where the simulation trace is always
completely processed. In that case, the complexity is  for both outer
loops (line 12 and 14). Assuming that only binary temporal dependencies
are examined, the number of complex property candidates is

 (line 13), i.e.  if a constant num-
ber of checker types is assumed. Hence, the complexity of the second phase is

 resulting in a complexity of
the overall algorithm: .
Generally, the generation algorithm does not reach the upper bound as later
demonstrated by the experiments starting on page 128.

The termination of the algorithm can be shown as follows. During the first
phase each basic property candidate p of the finite set  is checked at
each time step t of the given simulation trace with  clock cycles. Assum-
ing that the functions create_basic_cand (line 2) and  (line 5)
terminate, the first phase terminates, too. The same loop is part of the sec-
ond phase (lines 14 to 20) where it is assumed that the functions
create_complex_cand (line 13) and  (line 16) terminate. To let the

Ccomplex

tcyc
O tcyc( )

Pcand
Pcand Cunary/bus S Cbinary S 2 Cternary S 3⋅+⋅+⋅=

Pcand O S 3( )=
Cbasic phase1 O tcyc( ) O S 3( ) O tcyc S 3⋅( )=⋅=

O n t⋅ cyc( )

Pcand Ccomplex P 2⋅= Pcand O P 2( )=

phase2 O n t⋅ cyc( ) O P 2( ) O n t⋅ cyc P 2⋅( )=⋅=
O phase1( ) O phase2( )+ O max phase1 phase2{ , }( )=

Pcand
tcyc

checkp

checkp
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outer loop terminate (lines 12 to 22), two additional assumptions are made for
the function create_complex_cand in line 13:

1. Only new property candidates are created at each iteration. 
2. A complex property candidate is only admitted, if it characterizes a

larger part of the simulation trace.

According to assumption 2, two cases are distinguished: First, the new
candidate embraces one more signal. So, after a finite number of iterations all
signals in S would be part of a possibly valid complex property. Second, the
new candidate does not embrace a new signal but covers more clock cycles.
Both cases lead to a point, where a new complex candidate cannot be created
and the algorithm terminates.

2.3 Design Flow Integration
The integration of the property generation methodology while designing

the hardware part of an SoC is shown in Figure 5.3. As soon as the system
model or the RTL design can be simulated, a trace is created and used to
hypothesize complex properties. These inferred properties abstract important
design behavior. Moreover, the properties help the designer to learn new
aspects about the simulated design. Since generated properties can represent
incomplete or wrong behavior, due to an insufficient database, the designer
has to check their correctness with respect to the design intent and the specifi-
cation. This interactive but time-consuming process improves design
understanding. Furthermore, it allows to detect inconsistencies in the specifi-
cation, gaps in the test suite, or errors in the simulated design. If properties

Figure 5.3:  Property generation in the design flow from Figure 2.2
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turn out to be correct, they can be used as another kind of design specification.
Properties can be used as a starting point for formal verification approaches
by converting them into assertions or temporal logic expressions. This proce-
dure reduces the effort of property writing and simultaneously increases the
acceptance of formal techniques. Another valuable approach is given by a
comparison between properties inferred over passing simulation runs and the
ones found on failing runs. Here, missing or additionally detected properties
can be a good indicator of defects.

3 DYNAMIC INVARIANT ANALYSIS ON 
SIMULATION TRACES

This section sketches the implementation of the proposed generation
methodology. Based on the algorithm presented in Figure 5.2, the DIANOSIS
tool was developed. Figure 5.4 depicts the DIANOSIS property generation
flow. First of all, a simulation trace in the VCD format is created by simulat-
ing the desired design. Then, the generation process is configured that
comprises choosing a set of checkers, defining reset and clock scheme, and

Figure 5.4:  DIANOSIS property generation flow
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optionally specifying a regular expression to restrict property generation to
certain signals. During the first generation phase, basic properties are inferred

plete simulation trace are defined as valid properties. Subsequently, each
generated property runs an automatic filter to filter out likely wrong design
assumptions (see Section 3.3 on page 122). Accepted properties are encoded
and added to the property database. The encoding phase defines new virtual
signals which enable an equal handling of properties and signals (see Section
3.4 on page 123). Then, complex properties are iteratively inferred over the
already found properties (see Section 3.5 on page 123). These complex prop-
erties are filtered, encoded, and added to the property database, again. In
contrast to this automatic mode, the user manually selects the generated and
optionally proven properties for the (next) combination phase running the
manual mode (see Section 3.6 on page 126). If no new complex properties
could be inferred the generation process ends and the user selects the correct
properties out of the generated set. Before, the different generation phases are
detailed, the general architecture of DIANOSIS is described.

3.1 General Architecture
DIANOSIS has a layered architecture that is depicted in Figure 5.5. Each of

the three tiers Front-end, Data Storage, and Back-end communicates with the
next tier using defined interfaces. This eases maintenance and facilitates
extension with further functionality. The provided VCD simulation trace is
read in by the VCD Parser. Using the VCD format, properties can be gener-
ated independently of the simulator tool, the abstraction level and the design
language. Signal states are stored in the VCD Dump component. There, only
signal changes are saved which limits memory consumption (see Section 3.7
on page 128). The design hierarchy is analyzed in parallel and stored in the
Design Hierarchy component. With this, property generation can be limited
to specific modules. The Checker Controller implements the generation algo-
rithm from Figure 5.2. Each property type is validated by an appropriate
checker. Unary, Binary, and Ternary Checkers analyze scalar signals whereas
Bus Checkers process multi-bit signals. On request the Checker Factory cre-
ates a checker instance for each property candidate. If a property candidate is
valid over the whole simulation trace, it is stored into the Property Database.
Hence, it is available to be combined to more complex expressions in the next
iteration. Finally, the resulting properties can be converted into different for-
mats suitable for advanced verification tasks such as SVA, or PSL expressions.

(see Section 3.2 on page 118). Properties that have “survived” over the com-
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3.2 Basic Property Generation

Figure 5.5:  DIANOSIS general architecture
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To generate valuable properties, the availability of a large set of basic
properties that can be combined is essential. Moreover, mainly typical design
behavior shall be searched. Several libraries and different work [OVL],
[DAC99], [Vera] encapsulate common design behavior, reusable verification
IP or property specification patterns. Using these components the designer
can quickly create complete verification environments. As a practical starting
point, the OVL is selected as a template to search for typical behavior in
designs. Currently, the library provides a set of 51 configurable assertion-
based checkers. The functionality ranges from simple checks such as the test
for one-hot coded buses to complex checkers that validate a user-specified
arbitration scheme. Due to the generality of OVL in validating basic design
behavior, a couple of assertion checkers is chosen. Therefore, proper search
algorithms in terms of checkers are implemented in DIANOSIS. Beyond this,

were realized, as well. Currently,
 implements 16 basic property checkers having an arity of 1 – 3 signals.

Table 5.1 gives a selection of typical representatives. There are further basic
checkers imaginable that are not yet implemented. Such checkers could be for
instance a state checker that records all states and transitions of a state vari-
able, or some checkers to characterize data transmitted on a bus.

a number of user-defined checker types 
DIANOSIS
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Definition 12. Each property checker c with , regardless of checking
basic or complex properties, is a 7-tuple FSM 
with

– : the input alphabet representing a tuple of
signal activities of each participating signal  at time t with

 and n = 1 for unary and bus, n = 2 for binary, and n = 3
for ternary checker types,

– : the output alphabet representing the outcome of the checker i.e.
either a valid property candidate with a set of extracted property
parameters or a falsified one,

– Z: the finite set of states representing the different analysis steps to
validate the property candidate,

– : the initial state  in which each property candidate is
assumed to be valid,

– : the state-transition function ,

Table 5.1:  Selection of basic property checkers

Checker Type Checks for ...

Const_Signal Unary (User) a constant signal

Bus_Trigger Binary (User) a scalar signal that always triggers the same value 
on a bus

OVL_Handshake Binary (OVL) signal pairs that follow the OVL handshake pattern

Req_N_Grant Binary (User) signal pairs where one signal changes the state 
whenever a second (trigger) signal remains active

Req_Grant_K Binary (User) a signal that triggers a second signal K-times

Req_Grant1_Grant2 Ternary (User) a signal that triggers two other signals that may not 
be active together

Bus_Mutex Bus (User) specific values that are mutually exclusive on two 
busses

FIFO_Transfer Bus (User) values on two busses that are transferred from the 
source to the target bus following a FIFO behavior

OVL_Increment Bus (OVL) an incrementing counter

OVL_OneHot Bus (OVL) a one-hot coded bus

Shifter Bus (User) a shifting behavior on a bus

c C∈
c Σ Λ Z, zinit δ λ F, , ,, ,( )=

Σ as1
t[ ]  ... , asn

t[ ]( , )=
si

trst t t≤ ≤ rst

Λ

zinit zinit Z∈

δ δ:Z Σ Z→×
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– : the output function , and
– : the set of final states . There,  denotes an

error state identifying the falsification of the property candidate and
 denotes its acceptance.

If the FSM reaches the error state , the checked property candidate is
deleted from the candidate set . The FSM accepts the candidate
(state ) only when the specified behavior has been seen at least once, the
trace was read completely (t = ), and the FSM is in state , again.
Otherwise, the property could not be fully recognized and the candidate is dis-
carded, as well.

Example 21. Figure 5.6 depicts the checker that determines mutual exclusive
activation of two signals ,  in terms of their activities  and 
at each time stamp t. If the mutex behavior is falsified, the FSM goes into the
error state  and the property candidate is removed. If only one of the two
signals is active, the checker has recognized a new mutual exclusion activity
(state ) which does not end until both signals are inactive again (leaving
state ). The variable k counts each recognition of a mutual exclusion
activity. After the simulation trace is completely processed, the FSM checks
whether at least one mutex behavior has been detected (k > 0) and if so,
marks the property candidate as valid on the trace (state ).

Before basic properties are inferred, the simulation trace is read. There,
DIANOSIS performs various actions:

Add user-defined clock and reset signals to .
Estimate signal polarity by using the signal activity heuristic from
Equation (5.1).

Figure 5.6:  Finite-state machine of the mutual exclusion checker
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Check for constant signals and add them to the set of excluded signals
 with . Signals in  are excluded from any property

generation.
Determine all scalar and multi-bit signals contained in the trace that
matches the user-specified regular expression rx and add them to the
set of matching signals  with .
Analyze the design hierarchy to generate properties module-wise. So,
the generation process is tailored to related design parts which mini-
mizes the probability to analyze unrelated signal pairs.

In the next step, over all signals in  basic property candidates are cre-
ated over all selected checker types, i.e. accordant checkers are instantiated.
The number of basic checkers can quickly become large where their number
is of cubical order (see Section 2.2 on page 111). Hence, the creation of candi-
dates is subject to several restrictions:

Discard binary and ternary property candidates over combinations of
a signal with itself.
Exclude candidates over signals that are contained in .
Treat only one combination of a symmetric property, i.e. a property
where the signal order is irrelevant.

Furthermore, the given restrictions increase the likelihood of inferring rea-
sonable properties. If the simulation trace contains a large number of signals,
the generation process should be tailored to interesting signals using the pro-
vided regular expression rx. Here, especially the compliance of signal names
to specific naming conventions could facilitate the choice of (related) signals.
Static analysis, as described in Chapter 3, could ensure such naming conven-
tions by means of coding standards.

During an update step the current activities of all signals participating in
still valid property candidates are passed to the appropriate checker instances.
To speed up the execution, a checker is only invoked when the observed sig-
nal values have changed. After that, the simulation time is shifted to the next
value changes. As already mentioned, each checker type is individually
implemented as a FSM. Depending on the complexity of the analyzed prop-
erty the checker comprises up to several hundreds of lines of C++ code.
Encapsulating each property checker into its own FSM allows us to switch on
or off checks for particular properties very easily. Moreover, this procedure
eases the handling of an arbitrary number of signals and property checkers. 

SEX SEX S⊂ SEX

SM SM S⊆

SM

SEX
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The first generation phase terminates when no more candidates are left or
the end of the simulation trace is reached.

3.3 Property Filtering
Each generated basic or complex property is automatically filtered. The

user specifies a confidence level defining the minimum number of occur-
rences a property has to be seen on the trace. So, properties can be rejected
that reflect only a random observation of the design behavior caused by an
incomplete simulation trace. Hence, the generation process is sped up by fur-
ther considering only the most promising properties. Finding the “right”
confidence level could be an interactive process. Its value is important for the
number of created complex property candidates, and thus the number of algo-
rithm iterations (see Section 2.2 on page 111). A too loose confidence level
allows too many properties, possibly describing random behavior, to reach the
next combination phase. In contrast, a too strict level possibly does not leave
any property for a further combination. Accepted properties are encoded (see
Section 3.4 on page 123) and added to the property suite.

There are two ways to handle the encoded properties either using an auto-
matic mode or a manual mode. Within the automatic mode, DIANOSIS runs
without any user interaction until the algorithm terminates. Then, the inferred
properties are optionally passed to an external proof engine where the result is
presented to the designer for manual inspection the first and only time. To
support different proof engines, DIANOSIS has to output the properties in the
particular input language. The automatic mode is faster but needs more effort
in reviewing a larger set of, potentially wrong, properties.

In the manual mode, the user selects only correct properties for the (next)
combination phase which accelerates the generation process. The proof
engine can be optionally used again to filter out wrong properties. In case a
property cannot be proven, it is either a random observation or it only
describes the expected behavior, incompletely. For illustration, assume that
DIANOSIS infers the “Incrementer property” on a data bus (see Table 5.1). The
counting behavior is created by the test bench writing incremented values
onto the bus. Now, the proof engine would not be able to verify such a bus
behavior. A further advantage of a proof engine is given by the reported coun-
ter example. Herewith, an incomplete property can be completed. For
instance, it should be assumed that the maximum acknowledge cycle of a
handshake is not detected correctly due to missing corner-case tests. The
proof engine shows this by a counter-example which allows to fix the cycle
number.
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3.4 Property Encoding
After properties have been inferred and filtered, all occurrences of behav-

ior corresponding to a certain property is composed in a single transaction.
The goal of this composition is a similar, and thus simplified handling of
found properties and given signals during subsequent combination iterations.
A transaction describes the property activity in terms of the activity of each
participating signal. During property generation a variable k counts how often
the property behavior has been seen (e.g. variable k in Example 21). Each
time a property is inferred from the trace, the start time of the property behav-
ior and its end time are recorded. The interval  relates to the kth

occurrence of the property. This is used to define the activity  of a prop-
erty  based on the activity of the considered signals  at each time stamp t:

(5.2)

In case of unary and bus properties the original signal activities are treated
as a single transaction. As a result of the encoding phase m new activities

 for the found binary and ternary properties extend the simu-
lation trace T. With this, the design state at time t is augmented:

.

3.5 Complex Property Generation
Next, complex properties are combined over already found properties.

Several experiments have shown that property combination can be also done
using a simple string pattern matching over signal names, e.g. particular hand-
shakes that always follow on each other. So, the actual combination algorithm
is introduced by a preprocessing step that currently implements four different
operations:

Handshake_Sequence. If a handshake acknowledge signal requests a
further handshake (see Table 5.1), both handshakes are connected.
This operation is repeated until no new handshake can be connected
to an existing sequence.
Bus_Trigger_Join. Bus_Trigger properties (see Table 5.1) triggered
by the same signal are composed into a joined Bus_Trigger property.
Based on that trigger signal always the same values are seen on each
bus.

t k
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Req_N_Grant_Join. Req_N_Grant properties (see Table 5.1) having
the same trigger signal are combined into a joined Req_N_Grant
where the common request signal releases all triggered grants.
Handshake_Cluster. All handshake properties having the same trig-
ger event are subsumed into a common cluster. Such a cluster
replaces the contained handshakes in the set of already found proper-
ties. So, without loose of expressiveness the temporal relations
Response and Equal_State can be explored.

After the preprocessing step, the actual property combination starts. This
process exploits so called “temporal dependencies”. In fact, temporal depen-
dencies reflect specific design knowledge. Exemplarily, this knowledge was
obtained by intensive discussions with the SIMD designers (see Section 4.2
on page 131). Here, especially the examination of the found basic properties
and their temporal relationships gave valuable hints for reasonable combina-
tion operations. Dwyer et al. [DAC99] present so called property patterns that
can act as a second source for the definition of valuable temporal dependen-
cies. To combine properties  and  to a new property , the following
dependencies are checked:

Mutual_Exclusion. The properties  and  may not be active at the
same time:

(5.3)

Response. Property  always follows property :

(5.4)

Equal_Activity. The properties  and  are always active at the
same time:

(5.5)

Equal_State. Property  describes a multi-bit signal which has
always the same state when property  becomes active:

(5.6)

 indicates the first time  becomes active
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In addition to the restrictions applied for the creation of basic candidates,
property combination is further limited:

Do not consider combinations that produce meaningless results, e.g.
the check for a mutual exclusion between two counter signals.
Create only new candidates. Hence, each iteration always generates
more complex properties.
A complex property candidate is only admitted if it characterizes a
larger part of the simulation trace.

Composed property candidates are analyzed over the simulation trace in
the same manner as basic properties. So, “surviving” candidates are filtered,
encoded and inserted into the property database to analyze their temporal
dependencies in the next iteration. The algorithm terminates if the current iter-
ation does not find a new property. 

In a postprocessing step, DIANOSIS subsumes all inferred properties into
property clusters to improve readability. Starting with a handshake cluster, a
property is added to that cluster if all its signals already affiliate to one of the
handshakes contained in the cluster. Hence, behavior that belongs together is
summarized in a cluster which helps the designer to easily interpret interre-
lated behavior.

Example 22. Figure 5.7 depicts property generation in case of four signals
req, ack, en, and rdy. In the first phase, two handshake properties are found
between req and ack, and en and rdy (see Figure 5.7(a)). Then, the hand-
shakes are encoded to describe the property activity (see Figure 5.7(b)). So,
each (req, ack) pair is composed into a transaction where a transaction starts
when the req-signal becomes active and ends when the corresponding ack-
signal gets inactive again. To limit memory consumption, the property activity
is characterized only by value changes at the particular time stamps. Accord-
ing to Equation (5.2), the following encoded sequence is reported: 

Last, both basic properties are checked to be mutually exclusive
(see Figure 5.7(c)). Assuming that the mutex candidate “survives” over the
simulation trace, DIANOSIS reports the SVA property expression: not((req
##[2:3] ack) and (en ##[2:3] rdy))1.
1. To keep this, and all following, property examples as simple as possible, the found handshake properties 

are given as property sequences. In reality, DIANOSIS reports a full OVL_Handshake property.

...
 = (0, 1, 0, 1, 0, ...)

ap1
0[ ] ap1

1[ ] ap1
4[ ] ap1

14[ ] ap1
18[ ]

ap1
areq ack→=
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3.6 Property Selection
DIANOSIS offers various features to interpret generated properties and to

support the selection of correct ones. A log file contains all falsified property
candidates. This file helps the user to evaluate why an expected property
could not be detected which assists debugging of the design. The following
log sketches an example showing the property type, a short error description,
the participating signals, and the falsification time for three disproved prop-
erty candidates:

PROPERTY DESCRIPTION SIGNALS TIME
Req_N_Grant [no grant on req] en_o, ack_i @66ns
Req_Rep_Grant [request underrun] req_sc, ack_i @69ns
Req_Grant_Rep [grant count = 1] grd_o, ack_i @69ns

In addition to the data describing each found property, its occurrence in
the simulation trace is counted and stored as well. Thus, properties can be
ranked to present the most frequent, and thus most likely ones first. Moreover,
the most complex properties are reported at first. Hence, the designer can
select properties that describe the design behavior more comprehensive than
others. To present inferred properties in an easy to read representation, prop-

Figure 5.7:  Property generation example
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erty descriptions were converted into an HTML report. An example is shown
in Figure 5.8. Each table column can be sorted according to the contained data
type. The ID and the Type column provide filters to restrict the output to spe-
cific properties as well as property types. The property itself is displayed as a
compact and unambiguous SVA or OVL expression. For the sake of readabil-
ity complex properties are presented as a tree that can be collapsed or
expanded. Thus, uninteresting parts can be explicitly hidden and the designer
gets a fast overview about the generation results.

Figure 5.8:  Example for a property generation report
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3.7 Implementation Issues
To allow processing of industrial simulation traces that commonly consist

of many hundred megabytes, the memory management of simulation data was
optimized in DIANOSIS.

Due to efficiency reasons, DIANOSIS completely reads the trace data into
the memory. There, it is sufficient to store only changes of signal values
which is comparable to a run-length encoding. For each time stamp t a single-
linked list holds the signal numbers sorted by one of the following signal
states ‘0’, ‘1’, ‘x’, or ‘z’. A unique separator introduces all signals with a par-
ticular signal state at t. Figure 5.9 sketches the implementation which allows
to efficiently store a large amount of simulation data. At the considered time
stamp t the signals  and  change to ‘0’ while  and  change to ‘1’. 

To further reduce memory consumption, the single-linked list holding the
signal values was adapted to the particular target architecture. An identifier
(ID) for a signal is stored as a short integer (16 bit) which corresponds to
65,536 signals and separators. If only one ID is stored in a list node, 48 pad-
ding bits would be inserted in case the application is compiled at a 64-bit

4 EXPERIMENTAL RESULTS

The following section presents results obtained by DIANOSIS on different
designs. In the first part, DIANOSIS is applied to the SIMD data transfer exam-
ple (see Section 3.4 on page 28). This example illustrates how property gene-
ration could help the designer to improve design understanding as well as to

Figure 5.9:  Efficient storage of signal values
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architecture. Hence, the correct addressing of the next list node is ensured (see
Figure 5.10(a)). However, the padding bits in each list node have room for three
more IDs which yields an optimal memory utilization (see Figure 5.10(b)).
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isolate a hard to find defect. The second part documents promising results
while applying property generation on different industrial RTL hardware
designs.

4.1 SIMD Data Transfer Example Continued
To enable property generation on the SIMD data transfer example, the

design is extended by a monitor component. This component observes the
communication behavior and writes particular events in terms of transaction
activities into a VCD file. Since a correct communication between the proces-
sor cache and the shared memory is a crucial design part, the transaction
activity is analyzed by DIANOSIS. There, the missing cycle-accurate timing in
the example only allows to infer the general functional behavior.

To keep the SIMD example simple, it models only the communication
between the processor unit and the shared memory. Specific load and store
instructions initiate a data transfer while all other SIMD instructions are not
evaluated especially. Due to this simplified behavior, random, not necessarily
meaningful but correct programs can be generated using the instruction set of
the SIMD processor. The randomization process reproduces typical programs
reflecting a similar distribution of instruction usage as in real SIMD pro-
grams. Then, these randomly created programs are simulated on the SIMD
example design to generate many different simulation traces. Subsequently,
these traces are analyzed. 1,009 random programs were generated and simu-
lated. The resulting 1,009 simulation traces are fed into DIANOSIS to generate
1,009 property sets. In the following, two use cases are discussed: improve
design understanding by inferring correct functional design behavior and
detect abnormal behavior that could indicate a defect. 

Figure 5.10:  Optimization of the workload
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4.1.1 Improve Design Understanding
DIANOSIS infers 10 correct properties – 7 basic and 3 complex properties

over all 1,009 property sets. They describe the general communication behav-
ior between the processor unit and the shared memory. Here, one complex
property is of special interest. It is composed of the two basic handshake
properties:

arb.ld_req ##[1:$] arb.ld_ack
arb.st_req ##[1:$] arb.st_ack

The handshakes represent the transfer of a single data word from the
shared memory to the processor cache and vice versa. During property combi-
nation, DIANOSIS detects a mutual exclusion between both handshakes and
creates the following complex property:

not( (arb.ld_req ##[1:$] arb.ld_ack) and 
(arb.st_req ##[1:$] arb.st_ack) )

This property states that load and store transfers never happen at the same
time. This finding proves the proper working of the arbiter in the load/store
controller unit. Since this functional behavior is an important design require-
ment, it must be also followed in the final hardware design. So, the above
complex property is formulated as an assertion and proved during following
development steps, continuously. When the abstraction level is changed from
ESL to RTL, the generated ESL assertion and the inferred property at RTL are
checked for equality. A mapping mechanism between the ESL design and the
proper RTL components enables the equality check. Therefore, the particular
SIMD hardware block has been also analyzed by DIANOSIS (see Section 4.2
on page 131) where a similar complex property was detected. Again, this
property describes the arbitration scheme of the arbiter hardware component
which is part of the load/store controller unit. Due to the cycle-accurate
description at RTL, the correct timing is additionally inferred:

ESL: not((arb.ld_req ##[1:$] arb.ld_ack) and 
 (arb.st_req ##[1:$] arb.st_ack) )

RTL: not((grant_lc ##[2:18] ack_lc) and 
 (grant_sc ##[2:18] ack_sc))

The two generated, functionally equivalent, properties show that the
underlying design requirement has been kept during development. Summa-
rized, property generation improves design understanding and helps to learn
important design behavior that must remain valid during the design stages.
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4.1.2 Detect Abnormal Behavior
A detailed analysis of the generated property sets shows a difference from

the usual number of inferred properties in case of 13 sets (1.29 % of all sets).
A comparison with an assumed correct property set indicates the absence of
the basic handshake property core.ld_req ##[1:$] core.st_req
and two complex properties which had recombined this property. So, an
anomaly is found possibly indicating a defect. To analyze the abnormal
behavior, the generated log files could help to explore why the particular
handshake was falsified (see Section 3.6 on page 126). All 13 files, which
have logged the abnormal generation process, contain a similar entry for the
falsified handshake:

OVL_HANDSHAKE [ack before req] core.ld_req,core.st_req @<time>

This log message indicates that the write data transfer does not start after
the read data transfer at the specified time. In a waveform viewer the parallel
beginning of read and write transfers can be traced. Counting the transfer
blocks in the waveform viewer allows to find the matching source code block
that initiates the erroneous data transfer. To isolate the error, the particular
block and its instructions are further examined. A manual comparison
between all erroneous transfer blocks in the 13 files shows a sharing of a cer-
tain instruction sequence. If a combined multiply–subtraction instruction is
followed by a maximum calculation directly before data are written back into
memory, write and read transfers are started simultaneously. A look into the
model description indicates an erroneous synchronization of the data transfer
in case of that specific and rare instruction sequence. Instead to the tedious
and manual comparison procedure, in Chapter 6 an approach is presented that
detects the failure-inducing instruction sequence, automatically.

Investigating abnormal design behavior has denoted a defect that would be
detected otherwise only with difficulty especially because of its rare appear-
ance. So, the use of property generation helps the designer to systematically
explore anomalies and to process erroneous designs faster. 

4.2 Industrial Hardware Designs
To evaluate the introduced approach in an industrial context, DIANOSIS is

applied to several blocks of different RTL hardware designs: an 8-bit RISC
CPU controlling the traffic lights on a street crossing [Syn] and three real-
world industrial hardware designs, i.e. a SIMD multiprocessor design
(SIMD MP), a SATA FIFO interface and a DRAM controller interface.
Table 5.2 summarizes the design characteristics, i.e. the number of studied
blocks with their gate count, the signals per block used to generate properties,
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the number of clock cycles in the input trace for DIANOSIS, and the number of
analyzed simulation traces. The trace lengths vary from a few KB to approxi-
mately 1 GB.

The high number of analyzed simulation traces in the SIMD design corre-
sponds to an available regression test suite that runs various test programs on
the processor. The traffic light controller represents a small design where only
directed tests are part of the design package. In case of the SATA FIFO, a
detailed test bench was provided by the designers that runs many different test
scenarios in a single run. The verification of the DRAM controller was at an
early design phase. So, only two traces could be analyzed. Since the external
design behavior is of interest, it is sufficient to dump only the particular inter-
faces at the top-level blocks. In general, all signals which are contained in the
provided VCD trace files are automatically added to the generation process.
The only exceptions are debug/test signals, and signals where the same func-
tional behavior can be observed, e.g. in case of the equivalent data channels of
the DRAM controller.

4.2.1 Generated Properties
The results of the basic property generation phase are shown in Table 5.3.

DIANOSIS generates a relatively small but relevant set of properties in a com-
paratively short time. There, the numbers in brackets (second column) are
properties describing constant signals or properties with a count below the
specified confidence level of “2”. All other properties were cross checked by

Table 5.2:  Test bench characteristics

Test bench Gates Blocks Signals Max. cycles Analyzed traces

Traffic light control 8,706 1 17a 5,006 1

SIMD MP

Cache arbiter 479 4 48 113,298 32

Address generator 5,876 3 44 990,438 26

Memory read IF 5,260 1 22 990,438 7

Cache controller 7,458 1 13 113,298 9

SATA FIFO 7,466 1 93a 13,763,441 1

DRAM controller 1,020k 1 176a,b 162,912 2

a.  Exclude debug/test signals from analysis

b.  Restrict trace analysis to signals of one data channel only
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the component designers and classified into three categories: correct, incom-
plete, and wrong (columns 3–5). A correct property reflects the implemented
functionality, completely and correctly. In contrast, an incomplete property
only partially characterizes the expected design behavior but correctly
expresses the general functionality. Finally, a wrong property results from a
random observation.

One set of incomplete properties describes necessary but not sufficient
conditions. So, the inferred handshake rb_empty ##[1:$] new_instr
qualifies only a necessity where the buffer must be empty to process a new
instruction. Contrary, an empty buffer does not necessarily yield a new
instruction. The other set of incomplete properties results from a wrong corre-
lation of signal activities in case of Req_Grant1_Grant2 handshakes
(see Table 5.1). One of the grant-signals is triggered only sporadically by the
request-signal but the cause is not the current request at time t but some previ-
ous one at time . The trace analysis cannot figure out such semantical
dependencies. Figure 5.11 illustrates an example where the property req
##[2:3] (grant1 or ##1 grant2) is wrongly inferred. Instead, the
grant2 signal is always triggered by the previous req signal. 

A directed test bench usually covers only a small part of the functionality.
So, a large amount of incomplete properties in the SIMD design were pro-
duced at the beginning. However, these properties could be ruled out using
traces obtained from a regression test suite. So, 39 unbounded properties were
identified and could be declared as correct, because the clock cycles between
cause and effect differ between the various traces. For instance, the formerly
bounded handshake enable_cmd ##[4:58242] done_cmd was

Table 5.3:  Found basic properties

Test bench Properties Correct Incomplete Wrong Analysis timea

Traffic light control 7 (+5) 6 0 1 0.39 s

SIMD MP

Cache arbiter 38 33 2 3 25 s

Address generator 30 (+6) 14 0 16 85.7 s

Memory read IF 28 22 6 0 51.5 s

Cache controller 14 (+1) 12 0 2 6 s

SATA FIFO 39 (+19) 29 8 2 57 m

DRAM controller 23 (+404) 3 9 11 42 m

a. Test system: AMD Opteron™ 248 processor @2200 MHz, 3 GB RAM

t n–
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detected as unbounded and DIANOSIS reports enable_cmd ##[4:$]
done_cmd, instead. This corrected handshake states the different processing
times of a command. The same observation of bounded and unbounded prop-
erties was made for the DRAM controller.

The multitude of wrong properties refers to buses. Especially the
Bus_Mutex and the Bus_Trigger checkers (see Table 5.1) validate a lot of
property candidates that describe only random observations. Hence, these
property types should be used with care. Further random observations pro-
duce several wrong properties especially in the SIMD and the DRAM
controller design. Here, incrementers and shifters have been identified as
cause. The recognized behavior could be traced back to regular signal input
stimuli which were wrongly or incidentally generated by the test bench. How-
ever, these properties only reach a low confidence of 2–3 occurrences on the
simulation traces which facilitates their rejection.

Usually, incomplete or wrong properties indicate an insufficient simula-
tion trace unveiling a bad test bench coverage. By this, these properties supply
valuable information to improve the test suite. The experiments show that
improvements concern among other things insufficient corner-case tests as
well as inadequate randomization of input stimuli in case of directed tests.

Table 5.4 summarizes the results of the property combination phase. This
phase requires only a small fraction of the time needed to infer basic proper-
ties. This fact is justified by the fact that only a small amount of complex
property candidates is hypothesized over the simulation trace. The values in
brackets (second column) are the number of found property and handshake
clusters. Clusters facilitate property interpretation and readability, and thus
are not dedicated as real properties. Note that only a few wrong basic proper-
ties are further combined which prevents the generation of wrong complex
properties. For the DRAM controller no correct complex property is inferred.
However, the three incomplete properties could be ruled out as correct if some
more randomized simulation traces would be available. They describe some
initialization sequences for data transfers with a fixed but unexpected timing.

Comparing the quality of inferred with hand-written properties is difficult.
Some properties show a kind of cause-and-effect chain describing the interac-

Figure 5.11:  Incompletely inferred Req_Grant1_Grant2 property

6 10 11 12 1498754321 716151310 t

req

grant1

grant2



Chapter 5   Learning about the Design 135

tion between multiple components that would not be explicitly written by a
designer in this way. A formal specification for some blocks of the SIMD
design, however, contains some of the generated complex properties. This
observation and the designer feedback suggest that DIANOSIS partially gener-
ates complementary properties compared to those written by a designer.

4.2.2 Generation Statistics
Figure 5.12 exemplarily illustrates the number of valid binary property

candidates over simulation time while analyzing the SATA FIFO design. It
shows that after scanning 28.3  of the simulation trace, which corresponds
to 0.01% of the complete simulation time, already 82.5% of the candidates
were falsified. The step-like appearance of the graph can be traced back to
single signals that are part of a couple of candidates. So, a change of these sig-
nals at a specific time invalidates many candidates at once. Figure 5.13 shows
the number of valid candidates while combining properties for the SATA
FIFO design. The combination phase consists of two iterations. The first one
confirms 18 candidates. The second iteration finishes at 52.94 ms when the
last remaining candidates are falsified.

Table 5.5 documents some statistics about inferred properties, more pre-
cisely the correct, incomplete, and constant ones. Columns 2–6 show the
distribution between the property types, i.e. unary, binary, ternary, bus, and
complex properties. Column 7 mentions the complexity depth that means the
number of iterations used to generate complex properties. The property reuse
rate (column 8) indicates how many properties are reused within more com-

Table 5.4:  Found complex properties

Test bench Properties Correct Incomplete Wrong Analysis timea

Traffic light control 1 (+2) 1 0 0 0.03 s

SIMD MP

Cache arbiter 15 (+18) 13 2 0 4.4 s

Address generator 5 (+7) 4 0 1 12.1 s

Memory read IF 4 (+5) 4 0 0 4.6 s

Cache controller 1 (+7) 1 0 0 2.7 s

SATA FIFO 18 (+6) 12 6 0 7 m

DRAM controller 8 (+1) 0 3 5 18.6 s

a. Test system: AMD Opteron™ 248 processor @2200 MHz, 3 GB RAM

μs
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plex ones. Finally, the last column (column 9) depicts the rate of all signals in
the analyzed design block that participate in properties. The traffic light con-
troller design has a high percentage of reported constant signals (the only
unary checker). Constant signals usually indicate incomplete test benches that
do not trigger all possible design behavior. Thus, a high value is a good indi-
cator to make some effort to improve the test suite. An even higher percentage
of constant signals is found for the DRAM controller. This is expected
because the design was under construction at the analysis time. Thus, the test
bench did not yet reach a very high functional coverage. The table also points
out that binary properties are normally found most frequently where complex

Figure 5.12:  Valid binary property candidates for the SATA FIFO

Figure 5.13:  Valid complex property candidates for the SATA FIFO

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.001  0.01  0.1  1  10  100

V
al

id
 b

in
ar

y 
ca

nd
id

at
es

Simulation Time (ms)

 1

 10

 100

 1000

 0.001  0.01  0.1  1  10  100

V
al

id
 c

om
bi

na
tio

n 
ca

nd
id

at
es

Simulation time (ms)

Iteration 1
Iteration 2



Chapter 5   Learning about the Design 137

properties reach up to 30%. This indicates the usability of the approach com-
bining simpler properties to more complex ones. The fast termination of the
generation algorithm is documented by a small number of iterations. An inter-
esting value is the reuse rate. Especially, in the SIMD design up to 83.3% of
properties are reused. This shows a close correlation between the signals in
the particular block resulting in meaningful statements about the design
behavior (see Section 4.2 on page 131). Moreover, the reuse rate can be a good
indicator to explore the most significant properties first. The last column pres-
ents the number of signals participating in inferred properties. This value can
be used by the designer to estimate the generation coverage that means how
well the design behavior is covered by particular properties. Otherwise, the
coverage depends on the number and types of implemented property check-
ers. Furthermore, it indicates how good the searched behavior matches the
design behavior.

Table 5.5:  Statistical evaluation

Test bench Distribution of correct and incomplete 
properties + constant signals (%)

Complexity 
depth

Property 
reuse rate 

in %

Signal 
coverage 

in %
unary bin. tern. bus comp.

Traffic light 
control

5 
(41.7)

4 
(33.3)

0 2 
(16.7)

1 (8.3) 1 33.3 47.1

SIMD MP

Cache 
arbiter

0 31 
(62.0)

3 (6.0) 1 
(2.0)

15 
(30.0)

3 60.0 80.8

Address 
generator

6 
(25.0)

14 
(58.3)

0 0 4 
(16.7)

2 83.3 56.7

Memory 
read IF

0 13 
(40.6)

15 
(46.9)

0 4 
(12.5)

2 42.9 68.2

Cache 
controller

0 9 
(69.2)

2 
(15.4)

1 
(7.7)

1 (7.7) 1 25.0 84.6

SATA FIFO 19 
(25.7)

14 
(18.9)

23 
(31.1)

0 18 
(24.3)

1 48.6 44.1

DRAM 
controller

68 
(81.9)

12 
(14.5)

0 0 3 (3.6) 1 58.3 47.2
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4.2.3 Case Study: Traffic Light Control
The traffic light control design is a freely available simple 8-bit micropro-

cessor design that is binary code compatible with the Microchip 16C57. In
[Syn] the design is extended by an expansion circuit that switches the traffic
light at a street junction between a highway and a country road. A simulation
trace describes the interface behavior of the expansion design. The two signals
hwy and cntry control the traffic lights at highway and country road: 2 – green,
1 – yellow, and 0 – red. DIANOSIS reports a single interesting complex prop-
erty (see Table 5.4):

Xtraffic && cntry == 0 && hwy == 2 ##[900:21900] hwy = 1 
##[14000:49000] cntry = 2

This property is the result of a Bus_Trigger_Join combination (see Section
3.5 on page 123) of two Bus_Trigger properties. There, the Xtraffic signal
triggers two different events:

P1  Xtraffic && cntry == 0 ##[35900:49900] cntry = 2
P2  Xtraffic && hwy == 2 ##[900:21900] hwy = 1

Normally, the highway has a green signal while the country road has red
light. The activation signal Xtraffic indicates a car reaching the junction
on the country road. This initial assumption is depicted by the left expressions
of properties P1 and P2. Subsequently, the traffic on the highway is stopped
by a yellow light followed by a red light (property P2). The country road is
released by the green light (property P1). Combining both basic properties
into a complex expression shows the correct temporal order and dependency
of the events. Both events are released by the same trigger where the highway
road switches to yellow before the country road gets the green light. The
inferred complex property represents a more compact description of observed
design behavior, and thus helps the designer to understand the design more
quickly.

The other correct basic properties allow a further validation of the circuit
behavior. Two Shifter properties (see Table 5.1) describe the proper switching
sequence of both traffic lights. A partial mutual exclusion behavior between
hwy and cntry bus signals (Bus_Mutex checker, see Table 5.1) denotes an
important security issue. It indicates that except for the red light the traffic
light control for both driving directions may not have the same state at the
same time. The last property describes a FIFO-like data transfer
(FIFO_Transfer, see Table 5.1) from the hwy control signal to the cntry
signal which means that each driving direction is always switched in the same
manner. Summarized, each of the generated properties helps the designer to
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understand abstract and important design behavior of the implemented
system.

4.2.4 Case Study: SIMD MP Design
A number of interesting complex properties is found in the three industrial

designs. Exemplarily, the SIMD MP design shall be chosen to illustrate the
obtained results. The communication inside a SIMD processor unit is often
synchronized by handshake signaling. So, amongst others four simple hand-
shakes (basic properties) are reported by DIANOSIS:

finish_lc ##[15:$] ack_fin_lc
rb_empty ##[1:$] new_instr
req_lc ##[1:$] finish_lc
new_instr ##[1:$] req_lc

Between these handshakes, the Response dependency (see Section 3.5 on
page 123) detects a temporal order and infers the following complex property:

rb_empty ##[1:$] new_instr ##[1:$] req_lc ##[1:$] 
finish_lc ##[15:$] ack_fin_lc

This property is generated using the Handshake_Sequence operation in the
preprocessing step of the complex property generation phase. It depicts the
procedure to load data from the shared RAM into the processor local cache. A
buffer decouples the shared RAM and the cache. If the buffer is empty (signal
rb_empty), a new instruction may be loaded, which is indicated by the
new_instr signal. Subsequently, available buffer data is written into the
cache which is requested by the req_lc signal. Then, the finish_lc sig-
nal denotes that all data is read from the shared RAM into the buffer. Finally,
the ack_fin_lc signal reports that all data is available in the local cache
ready for processing. Thus, the property describes the complex data transfer
behavior. It facilitates design understanding and allows a validation of design
correctness at a higher functional level.

Another interesting property is composed of three basic properties:

grant_lc ##[2:18] ack_lc
grant_sc ##[2:18] ack_sc
phase_sh = $past(phase_sh+1)

The first handshake synchronizes a load operation from the global mem-
ory to the processor local cache while the second handshake controls a store
operation from the cache. Additionally, an incrementer is reported. During the



Debugging at the ESL140

first combination iteration the Mutual_Exclusion dependency check finds a
mutex between both handshakes:

not((grant_lc ##[2:18] ack_lc) and (grant_sc ##[2:18] ack_sc))

This behavior denotes the arbitration scheme of the arbiter and confirms
its correct implementation. As result of the second iteration the Equal_State
check detects a constant value of the phase_sh signal whenever a load or a
store operation occurs:

not((grant_lc ##[2:18] ack_lc) and (grant_sc ##[2:18] ack_sc))
##0 phase_sh = 3

This complex property approves the correct synchronization of load/store
accesses which is an important design requirement. Hence, this complex
property helps the designer to understand and validate the abstract system
behavior.

5 SUMMARY AND FUTURE WORK

In this chapter a new and promising debugging technique has been pro-
posed. It enables the designer to learn certain new aspects about a design.
Therefore, the findings of concrete simulation runs are summarized to general
abstractions that hold for all runs. The proposed methodology automatically
generates complex properties from a given simulation trace in an iterative
manner. Using the standard VCD format for simulation data, the approach is
independent of the simulator tool, the abstraction level of the analyzed design,
and the design language. So, ESL as well as RTL designs can be processed.
Starting from predefined basic properties, more complex ones are iteratively
composed and checked over the trace. So, each iteration further abstracts the
design behavior.

Experimental results, using the prototype tool DIANOSIS, have been shown
that property generation is a valuable approach to enhance test bench cover-
age, to detect errors in the design or the test environment, and to identify holes
or weaknesses in the specification. Properties were generated in a relatively
short time ranging from the fraction of a second (0.42 s) to several minutes
(57 m). Depending on the used simulation trace, 44.1– 84.6% of analyzed sig-
nals participate in inferred properties. These values indicate a good generation
coverage. Correct properties can be used for arbitrary verification tasks and
lower the barrier to successfully apply formal verification techniques. The
interactive process of reviewing and discussing generated properties helps the
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designer to get a new and changed insight into the functional design behavior.
The process of comparing property sets, generated from failing and passing
simulation runs, documents how anomalies can be used while debugging a
design. Summarized, property generation improves design understanding and
supports debugging.

Future work could include the implementation of new basic property
checkers that allow to infer further new properties. Moreover, the methodol-
ogy could be combined with an approach that searches formerly unknown
properties.





Chapter 6

Isolating Failure Causes

The so far introduced deductive, observational, and inductive techniques
already facilitate and accelerate debugging of system models. However, the
automatic determination of actual failure causes is not achieved by these tech-
niques. This chapter proposes an experimentation technique that uses a series
of experiments in terms of multiple controlled simulation runs of the fully
integrated system. There, this debugging technique aims at an automatic and
systematic isolation of failure causes (see Figure 6.1).

Isolating the cause of a failure requires to search for cause–effect relation-
ships. Zeller [Zel05] defines this relationship as follows: “A cause is an event
preceding another event without which the event in question (the effect)
would not have occurred”. Mapped to the debugging context, we could say: A
defect causes a certain failure if the removal of this defect would eliminate the
failure, as well. The idea is to narrow down the failure-inducing actual defect
by comparing two program runs, one run where the effect (the failure) occurs
and another program run where the effect does not occur.

The first part of the chapter gives a general overview about failure causes,
their search, and their isolation. Then, a methodology for an automatic isola-
tion of actual causes in SystemC design descriptions is introduced.

In the second part of the chapter, the ISOC tool (ISolation Of Failure
Causes) is introduced. ISOC automatically narrows down the failure-inducing
cause in SystemC designs using the delta debugging algorithm as proposed by
Zeller and Hildebrandt [ZH02]. The SystemC scheduler is extended by a
record and replay facility to deterministically rerun, formerly recorded, simu-
lation runs. The algorithm is used exemplarily to isolate the minimal
difference between two process schedules, one representing a passing (suc-
cessful) simulation run, and the other resulting in a failing (erroneous) run. A
second experiment uses delta debugging to detect the actual failure cause in
simulation input data.

1 EXPERIMENTATION TECHNIQUES IN A 
NUTSHELL

First, this section summarizes some basics of experimentation techniques
as introduced by Zeller [Zel05]. Next, the related work section discusses
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several approaches that allow to detect typical failure causes in parallel pro-
gramming languages, e.g. deadlocks, livelocks, or data races.

1.1 Overview
The experiment is a popular instrument in science that is used to systemat-

ically reject or confirm a hypothesis. On success, it shows the causality
between a cause and the observed effect. A usual procedure is to set up a fail-
ing world, where the effect occurs, and an alternate passing world, where the
effect does not occur. The experiment tries to find the difference between both
worlds which represents the actual failure cause. In contrast to reality that
does not allow to repeat the history to explore an alternative course of events,
computers facilitate the deterministic replay of an experiment over and over
again. So, the alternate world can be explored to check whether cause and
effect relate to each other.

One of the most important problems of error search is the identification
of the real cause for a failure. So, someone could think that the computer

Figure 6.1:  Automatic isolation of failure causes in system designs
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technology is the overall failure cause because without computers failing
programs could not exist. To eliminate such obviously trivial alternatives,
Zeller proposes the concept of the closest possible world [Zel05]. Here, the
failing and the passing world shall only differ by means of the actual cause.
This principle goes back to Ockham’s Razor, which states that if two theories
equally explain the same fact, the simpler theory should be picked. Relating to
the above example, the unavailability of computers is far away from reality.
On the other hand, there is no need, and sometimes no possibility, for a com-
pletely correct world but it should be possible to find a closest possible world
where the failure does not occur. This difference spawns the search space to
detect the actual cause. Concerning computer programs, the actual failure
cause can be traced back to different sources such as the program input, the
program state, or the program code. The iterative comparison of the closest
possible world and the alternative world isolates the actual cause–effect rela-
tionship. An extracted failure cause does not necessarily point to the actual
bug but gives valuable information where to start debugging. Here, the partic-
ular found cause could suggest a fix.

1.2 Related Work
Delta debugging was originally proposed by Zeller and Hildebrandt

[ZH02]. They used the algorithm to isolate failure causes in the input of pro-
grams, in process schedules of parallel applications, or program code changes.
There, a suitable test function and a decomposition strategy between a passing
and a failing test case is used to narrow down the difference between both test
cases. Misherghi and Su [MS06] suggest an improvement over the general
delta debugging algorithm and call it Hierarchical Delta Debugging. Their
approach considers the semantics and structure of data to early prune irrele-
vant parts of the input and to create simpler outputs. Hence, the search space
is limited, and thus fewer test cases are needed to isolate the minimal differ-
ence between a passing and a failing test case. As result, more complex
problems can be handled compared to the original delta debugging algorithm.
Both works apply delta debugging in the software domain, while our
approach extends the application field to support the debugging of system
designs. To our best knowledge, the presented approach is the first work that
uses this debugging technique in the SystemC context.

Delta debugging is able to isolate arbitrary failure causes. However, there
are specialized approaches to detect or to prevent hard to find errors in parallel
programs. Such problems are often caused by a violation of communication
constraints or the erroneous synchronization between parallel components.

Cheung et al. [CS+06] present an approach that dynamically monitors a
SystemC simulation and reports a deadlock once it has occurred. A dynamic
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synchronization dependency graph is created for this purpose. The vertices
represent process dependencies and the directed edges denote synchronization
dependencies. During simulation vertices and edges are dynamically added
and deleted whenever a process suspends its execution. A recurring loop
detection algorithm searches for cyclic dependencies afterwards. The approach
has to know all processes that can notify a particular event for what static
analysis techniques are used. Due to the nature of static analysis, notifying
processes are approximated conservatively, i.e. the real number is typically
smaller. A similar deadlock detection approach is proposed for the Metropolis
environment [CD+05]. Metropolis is a complete system level design frame-
work with its own model of computation. Both approaches dynamically report
a deadlock once it has occurred. This could indicate the failure situation but
does not suggest a fix. In contrast, delta debugging reports a minimal differ-
ence between a passing and a failing simulation run in a post-mortem
analysis. Moreover, due to the generality of delta debugging, the analysis is
not limited to specific language constructs used for synchronization as in
[CS+06] or [CD+05].

A number of tools, e.g. [SB+97], [PS03], [YRC05], instrument programs
to detect race conditions in software programs. Instrumentation allows to
evaluate the locking discipline on shared variables. Generally, two approaches
are distinguished. Lockset-based tools associate a lock candidate set to record
all locks which are used to protect a shared location. When a thread accesses a
shared resource, the intersection between the thread locks and the particular
location locks may not be empty. A more sophisticated analysis performs a so
called happens-before analysis. The algorithm works with clocks to compare
time stamps when a shared location is accessed. There, each thread holds a
clock and keeps track of all other thread clocks. Moreover, each shared loca-
tion stores the time stamps of the last accessing thread. If a thread gains access
to a shared location, its time stamp must be higher or equal to the time stamp
of previously called threads. Otherwise a race condition has occurred. Modern
tools, such as MultiRace [PS03] and RaceTrack [YRC05], combine both
approaches. The need for an instrumentation prevents an application of these
tools in production systems. Furthermore, dynamic race detectors are not
sound, i.e. they only check code that is actually executed which is similar to
the delta debugging approach. Finally, all tools utilize implementations to
handle the very specific error class of race conditions. On the other hand,
delta debugging is a more general approach.

The verification of particular properties of concurrent systems is often
done by using formal verification techniques, e.g. to show the absence of
deadlocks or data races, e.g. [HJM04], [Sto00], or fairness properties. For this
reason, a suitable high-level abstraction of the system has to be available.
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Either the abstraction is created from the actual system or it is defined directly
from the specification which could be a non-trivial and error-prone task. Such
an abstraction suffers from the state explosion problem. Hence, the technique
does not scale very well in case of complex concurrent systems but if the
algorithm terminates, the results are precise and sound. Our approach is fully
based upon simulation, and thus can handle arbitrary complex, real-world sys-
tem designs.

Several tools use static analysis techniques to detect race conditions or
deadlocks in software programs or system designs, e.g. [EA03], [FF01],
[SBR02]. As already mentioned in Chapter 3, static analysis relies on conser-
vative approximations which result in possibly numerous reported false
positives. To solve this problem, the most sophisticated tools, such as RacerX
[EA03], combine an interprocedural dataflow analysis with heuristics, statisti-
cal analyses, and ranking techniques. So, the analysis reports highly precise
results on large, real-world programs.

2 AUTOMATIC ISOLATION OF FAILURE CAUSES

At first, this section summarizes the requirements for an automated isola-
tion of actual failure causes. Then, the delta debugging approach is described.

2.1 Requirements
The basic idea of the presented debug procedure is a systematic test of each

difference between a failing and a passing test case, and to check whether the
failure still exists. If the failure disappears, the cause for that particular failure,
also the actual cause, is found. An algorithm implementing the described pro-
cedure shall meet the following requirements:

– Narrowing down strategy. A strategy is needed that systematically
narrows down the difference between a passing and a failing test case.

– Rating strategy. An automated test function has to assess a newly cre-
ated alternate test case whether the failure has disappeared.

Especially the automated test function can be difficult to implement since
each class of failure usually requires another test strategy. So, different test
data have to be collected and checked such as executed program statements.
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2.2 Methodology
A simple and often used debug procedure is simplification. Simplification

removes aspects from a failing test case, e.g. lines in the program input, as
long as the observed failure disappears. A more efficient approach is delta
debugging, abbreviated dd, which was proposed by Zeller and Hildebrandt in
[ZH02]. It bases on isolation where the passing as well as the failing test case
are modified in parallel. Figure 6.2 sketches the general delta debugging algo-
rithm. It calculates the minimal difference between a passing and a failing test
case. Whenever a test fails, the failing test case  is “reduced”. Additionally,
whenever a test passes, the passing test case  is “increased”. Hence, the
algorithm iteratively narrows down the minimal difference between a passing
and a failing run. As result, the dd algorithm returns a test case pair ,
where the difference  is 1-minimal. 

Definition 13. A difference between a passing test case  and a failing test
case  is called 1-minimal if this difference is relevant to produce the actual
failure. I.e. adding the difference to the passing test case  would raise the
failure [Zel05].

The efficiency of the dd algorithm is closely related to the result of the test
function. If all test cases return an unresolved test outcome, the number of
tests in dd is quadratic to the difference between the input test cases 
since the algorithm successively increases its granularity. In cases of a defined
result for each iteration, i.e. pass or fail, dd has a logarithmic complexity since
it behaves like a binary search.

Despite the automated procedure to isolate an actual failure cause, a
human user is often more creative during debugging. That means, he possibly
finds the failure cause faster. Nevertheless, an automated process is less error
prone and systematically tests the complete search space. In practice, espe-
cially the writing of a simple but significant test function is a crucial part of
the whole approach. This function has to implement much implicit knowledge
to efficiently find the failure cause.

2.3 Approach Rating
Although an automatic debugging approach sounds promising, there are a

number of limitations and problems:

Define the test function. One of the most crucial parts of the dd algo-
rithm is the definition of a proper test function. This function has to
be especially adapted to the particular analysis task to check for the

cF
cP

c'P c'F,( )
Δ c'F \ c'P=

cP
cF

cP

cF \ cP
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certain failure. There, a too complex implementation could exceed the
effort of a manual debug procedure.
Find passing and failing runs. A successful application of delta
debugging requires two runs, a failing and a passing run. These runs
have to be close enough to be minimized to a single difference. If
both runs are too distinct, the search space can become too large and
the algorithm fails due to complexity reasons. 
Define a suitable decomposition strategy. Every application domain
needs to define a suitable decomposition strategy. The designer has to
find a suitable element to calculate the difference between two simu-
lation runs, e.g. lines of the program input, or thread switching times.
The efficient calculation of the difference has an important impact on
the algorithm performance.

Figure 6.2:  General delta debugging algorithm according to [ZH02]

Require: set of all test cases C, a test function test with
, a failing test case  with

, a passing test case  with 
Ensure:  such that ,

, , and  is 1-minimal

The Delta Debugging algorithm is defined as 

where  with all  pairwise disjoint,
and  holds. The recursion invariant for  is

test: 2C pass fail unresolved, ,{ }→ cF
test cF( ) fail= cP test cP( ) pass=

c'P c'F,( ) dd cP cF,( )= cP c'P c'F cF⊆ ⊆ ⊆
test c'P( ) pass= test c'F( ) fail= Δ c'F \ c'P=

dd cP cF,( ) dd ' cP c, F 2,( )=

c'P c'F,

c'P c'P Δi∪ 2, ,

c'F \ Δi c'F 2, ,

c'P Δi∪ c'F max n 1– 2,( ), ,

c'P c'F \ Δi max n 1– 2,( ), ,

c'P c'F min 2n Δ,( ), ,

c'P c'F,⎝
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

if Δ 1=
if i 1 .. n, ,{ } test c'P Δi∪( )⋅∈∃ fail=

if i 1 .. n, ,{ } test c'F \ Δi( )⋅∈∃ pass=

elsif i 1 .. n, ,{ } test c'P Δi∪( )⋅∈∃ pass=

elsif i 1 .. n, ,{ } test c'P Δi∪( )⋅∈∃ pass=

elsif n Δ≤
otherwise

Δ c'F \ c'P Δ1 Δ2 ... Δn∪ ∪ ∪= = Δi
Δi∀ Δi Δ n⁄≈⋅ dd '

test c'F( ) fail test c'P( ) pass n Δ≤∧=∧=



Debugging at the ESL150

Check the right failure. During the delta debugging process many dif-
ferent failing test cases could be artificially created. Hence, the
observed failure can differ from the searched failing behavior. To
reject these alternate failures, the test function has to evaluate the
found failure, exactly. Such a situation could be for instance the simu-
lation time the failure occurred, or a stack trace called if the program
had crashed.
Locate the defect. Delta debugging reports only the failure-inducing
cause for the observed failure. The algorithm does not point directly
to the actual defect. Rather, the result suggests a fix to make the fail-
ure disappear. To fix the program, debugging is still needed.

Despite these limitations and problems, delta debugging provides an
important aid to automate debugging. It helps the designer to isolate a failure
cause after a finite time. Hence, this technique could be a valuable approach
to locate hard-to-find defects.

3 AUTOMATIC ISOLATION OF FAILURE CAUSES 
IN SYSTEMC

The ISOC tool integrates the delta debugging algorithm into the SHIELD
debugging environment (see Section 3 on page 83). First, ISOC is exemplarily
used for the automatic detection of failure-inducing process schedules. The
second part describes the application of delta debugging to isolate failure-
inducing simulation input in SystemC designs.

3.1 Debugging Process Schedules
Exploiting the range of description capabilities in parallel, multithreaded

SDLs such as SystemC complicates debugging of therewith described system
models. Especially, the nondeterministic SystemC scheduler can cause many
failures that are difficult to debug manually such as deadlocks, or race condi-
tions. A recording of process activations in a process schedule forms one basis
to enable an automatic localization of deadlocks or races in SystemC designs.
Hence, the failure-inducing difference between two schedules can be nar-
rowed down, automatically. Therefore, ISOC provides a set of features:

Deterministic record/replay. By using the non-intrusive implementa-
tion approach of SHIELD (see Section 3.5 on page 93), ISOC extends
the SystemC scheduler by a record and replay facility for simulation
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runs. Hence, process activations in terms of process schedules can
be handled. Here, ISOC provides the debugging command ptrace
(see Table 6.1) which enables schedule recording and deterministic
replaying .
Isolating failure causes. The dd algorithm automatically narrows
down the failure-inducing minimal difference between a passing and
a failing process schedule. The resulting schedule produces a failure
if and only if a particular method or thread process is activated at a
specific point in time during simulation. ISOC starts the dd algorithm
by calling the ldl command (see Table 6.1).
Root-cause analysis. The system design is debugged while replaying
the reported failure-inducing process schedule. Here, the system-level
debugging features of SHIELD assists the designer in locating the fail-
ure-causing defect.

In Figure 6.3 the particular debug process in ISOC is shown. If the user has
detected a failure, SHIELD provides a certain debug strategy in terms of the dd
algorithm. 

First, the simulation is run in the record mode to capture a process sched-
ule that is subsequently tested for pass or fail. As soon as a passing and a
failing schedule are available, ISOC proposes to narrow down the failure-
inducing difference between both schedules using dd. After analysis, the min-
imal difference is reported and the associated process schedule is used to
debug the erroneous simulation. During simulation, all debugging features of
SHIELD are available to locate the failure-causing defect.

Table 6.1:  ISOC debugging commands

Command Options Description

ptrace record enable schedule recording until simulation time  
is reached

replay <file> enable replaying the given schedule file <file>

off turn of replay/record feature

status query the current ptrace state

ldl n/a start delta debugging if a failing and a passing sched-
ule are available

tend tend
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3.1.1 Deterministic Record/Replay Facility
A SystemC design executes all its method and thread processes in a non-

preemptive fashion (see Section 1.2 on page 15). Each process activation is
determined by the execution logic and is represented by a particular point in
time.

Definition 14. Let D be a SystemC design. A tuple  with the simulation
time  with  and the  delta cycle  with  is called an
activation time point. X is the set of all activation time points of D.

Figure 6.3:  Isolation of failure-inducing process schedules

ti δn,( )
ti 0 ti tend≤ ≤ nth δn n 1≥
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Definition 15. Let X be the set of all activation time points of a SystemC
design D. A 4-tuple  is called process schedule of a concrete
simulation run of D with

– I : the finite set of instantiated method and thread processes in D,
– X : the finite set of activation time points of D,
– : a sequence  of activation time points,

and
– f : the function assigning each activation time point a

number of processes to be consecutively activated (process activa-
tions) at this time point.

If the record mode is enabled during simulation, ISOC records a process
schedule until the specified end time  is reached. 

Example 23. Figure 6.4 shows an extract of a process schedule recorded for
the “deadlock” example presented on page 161.

A previously recorded process schedule  is replayed dur-
ing the activated replay mode in five phases:

1. Initialization phase. This phase initializes all processes in I and sets
the simulation time to the first recorded activation time point in ,
i.e.  with  and .

2. Evaluation phase. All processes  are executed in the
recorded order.

3. Update phase. This phase performs needed channel updates to propa-
gate data created by previously activated processes.

Figure 6.4:  Extract of a recorded process schedule

... @ 5500 ps
@ 4 ns 23:
17: C-2 @ 6 ns
17: D 25: C-2
17: B-2 25: A-1
@ 4500 ps 25: C-1
19: 25: B-2
@ 5 ns 25: B-1
21: B-2 @ 6500 ps
21: C-2 ...

Ψ I X π f, , ,( )=

π π t0 δ1,( )= ... tend δend,( ), ,

f : ti δn,( ) I *→

tend

Ψ I X π f, , ,( )=

π
ti δn,( ) i 0= n 1=

x f ti δn,( )∈
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4. Delta notification phase. After delta notifications have been processed,
the next element of  is retrieved. In case, processes become active at

 with , step 2 is called with .
5. Timed notification phase. If processes become active at  with

 and , the timed notifications are processed. Moreover, the
simulation time is advanced. Then, step 2 is called with . The
simulation stops if there is no further element in .

The dd algorithm generates virtual new process schedules without any
knowledge of the SystemC simulation and program semantics. So, the consis-
tency of the generated schedule has to be checked for validity. A schedule is
discarded and marked with an unresolved simulation outcome, if

a process is activated twice at  without becoming runnable in
that delta cycle a second time,
the schedule file specifies the execution of a process at  that
was already activated at  although its execution was sus-
pended by a timed waiting statement, 
the simulation logic determines a process that becomes ready to run at

 through immediate event notifications but the recorded
schedule does not contain a proper activation, or
a process suspends its execution at  and is waiting for a certain
event but the process schedule instructs its activation at 
without the particular event notification has been occurred.

3.1.2 Isolating Failure Causes
The implementation of the dd algorithm as shown in Figure 6.2 is

straightforward. Solely, the calculation of the difference  between a pass-
ing process schedule  and a failing schedule

 needs to be defined. To do this, each process acti-
vation in  and  is assigned a unique slot number . These numbers are
used to calculate the  between the  activation of a process , written

, in both process schedules. Assuming  in  and  in .
The difference between  and  for  is calculated by ,
so that . The reduction step  of the dd algorithm is
implemented by a “reversed delta”  which is calculated by

, so that . To mix both schedules, they have
to be possibly aligned using dummy slots. These slots are filled with virtual,
never executed, process activations balancing the number of activated
processes.

π
ti δm,( ) m n> ti δm,( )

tk δm,( )
k i> m n>

tk δm,( )
π

ti δn,( )

ti δn,( )
ti δn m–,( )

ti δn,( )

ti δn,( )
ti k+ δn m+,( )
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The dd algorithm divides  and  into n disjoint parts with
 and . Hence,

new schedules are iteratively created by  and  where the
new target slot of a process activation is calculated by counting back the par-
ticular slot difference. The activation time point  of a process is taken
from the target schedule, i.e.  in case of  and  in case of

. Due to the partial delta calculation using  or , it could
happen that a calculated target slot is already occupied by an unmoved slot
entry. In that case, a temporary slot is provided. If the actual slot will be freed
due to a further delta calculation, the temporal slot entry becomes the perma-
nent entry. Then, the new schedule is checked for consistency and is
simulated to check for pass or fail. Afterwards, the procedure is started again
and ends if the difference is 1-minimal.

Example 24. Figure 6.5 sketches a simple producer–consumer application.
The producer component creates a stream of data and sends it to the con-
sumer (SC_THREAD p.C). A thread process at the consumer side
(SC_THREAD c.G) receives the data and subsumes them into blocks of a
fixed size. After one block is completed, it is sent to a processing unit. Data
processing is implemented using two levels, i.e. Processing Level A
(SC_THREAD c.A) and Processing Level B (SC_THREAD c.B). A wrong syn-
chronization of the processing threads yields to incompletely processed data
in some cases. So, delta debugging is used to locate the defect. Table 6.2
shows the calculation of  (column 4) for the two recorded passing and fail-
ing process schedules  and  (columns 2 and 3). Both process schedules
are represented by a sequence of activation time points and the assigned pro-
cesses according to Definition 15. Since the failing schedule misses two pro-
cess activations, two dummy slots are added. Using the first delta part 
(column 5) generates a new process schedule (column 7) that is simulated
(column 8). Here, the dummy slots are left out from any simulation. Due to an
erroneous simulation logic the algorithm will proceed with .

Figure 6.5:  Simple producer–consumer application
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Besides the delta calculation, a test function test has to be implemented.
This function corresponds to the particular analysis task, e.g. deadlock detec-
tion or data race isolation. ISOC supplies a test function template that has to be
implemented by the designer according to the design analysis problem.

3.1.3 Root-Cause Analysis
Finally, the reported minimized process schedule is replayed using ISOC.

The system-level debugging features of SHIELD (see Section 3.3 on page 86)
allow to debug the location of the defect that has caused the actual failure.
There, simulation time and delta cycle information in the schedule file pro-
vides valuable information for defect localization.

3.2 Debugging Program Input
Delta debugging can be also used to automatically isolate a certain piece

of SystemC simulation input yielding an erroneous simulation behavior. The
objective is to find the minimal difference between two input data sets. The
minimal difference could be a single character (set), or a particular line of
input. As basis for the realization an existing Python implementation of the dd

Table 6.2:  Illustrating the first steps of the dd algorithm

0 0

1 0

2 1 1

3 –1 –1

4 0

5 0

6 0

7 0

8 1 1

9 –1 –1

10 1 1

11 –1 –1

12 0

sk cP cF ΔF ΔF 1, ΔF 2, cF ΔF 1,∪ cnew

0 1,( ) c.G,( ) 0 1,( ) c.G,( ) 0 1,( ) c.G,( ) 0 1,( ) c.G,( )

0 1,( ) p.C,( ) 0 1,( ) p.C,( ) 0 1,( ) p.C,( ) 0 1,( ) p.C,( )

0 1,( ) c.B,( ) 0 1,( ) c.A,( ) 0 1,( ) c.B,( ) 0 1,( ) c.B,( )

0 1,( ) c.A,( ) 0 1,( ) c.B,( ) 0 1,( ) c.A,( ) 0 1,( ) c.A,( )

0 1,( ) p.C,( ) 0 1,( ) p.C,( ) 0 1,( ) p.C,( ) 0 1,( ) p.C,( )

0 1,( ) c.G,( ) 0 1,( ) c.G,( ) 0 1,( ) c.G,( ) 0 1,( ) c.G,( )

0 1,( ) p.C,( ) 0 1,( ) p.C,( ) 0 1,( ) p.C,( ) 0 1,( ) p.C,( )

0 1,( ) c.G,( ) 0 1,( ) c.G,( ) 0 1,( ) c.G,( ) 0 1,( ) c.G,( )

0 1,( ) c.A,( ) 0 1,( ) c.B,( ) 0 1,( ) c.A,( ) 0 1,( ) c.A,( )

0 1,( ) c.B,( ) 0 1,( ) c.A,( ) 0 1,( ) c.B,( ) 0 1,( ) c.B,( )

0 1,( ) c.A,( ) 20 3,( ) c.B,( ) 20 3,( ) c.B,( ) 20 3,( ) c.B,( )

20 3,( ) c.B,( ) 20 4,( ) c.A,( )[ ] 20 4,( ) c.A,( )[ ]

20 3,( ) c.A,( ) 20 4,( ) c.A,( )[ ] 20 4,( ) c.A,( )[ ]
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algorithm is used [Zel08]. This implementation was modified to determine the
difference between two text files on a line-by-line basis instead of a decompo-
sition of the input into single characters. The test function is implemented by
analyzing properties generated by DIANOSIS (see Section 3 on page 116). Hence,
missing or additional properties make the difference between a passing or a
failing test. Figure 6.6 depicts the described analysis flow.

4 EXPERIMENTAL RESULTS

The following section summarizes the experimental results while applying
the dd algorithm to different SystemC designs. First, delta debugging is used
to automatically detect a failure-inducing instruction sequence in erroneous
SIMD programs. Second, two experiments demonstrate the usage of ISOC to
narrow down failure-inducing process schedules.

4.1 SIMD Data Transfer Example Continued
In Chapter 5 1,009 randomly created programs were simulated on the

SIMD data transfer example to produce 1,009 simulation traces. Thirteen
of these programs have shown a difference in the number of generated
properties. Precisely, the difference concerned the handshake property
core.ld_req |-> core.st_req. As already shown in Chapter 5, this find-
ing has indicated an erroneous handling of the instruction sequence “multiply–
subtraction instruction followed by a maximum calculation”. There, the error
was manually detected by a comparison of the commonalities between all 13
programs. This manual procedure is a very tedious and error-prone. 

Figure 6.6:  Isolating failure-inducing simulation input
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By using delta debugging, the failure-inducing instruction sequence can be
isolated automatically. Here, the analysis flow from Figure 6.6 is applied. The
test function checks whether the missing handshake property could be found
or not. The dd algorithm is started with the failing program while the empty
program is assumed to pass. As result, the algorithm reports the minimal dif-
ference between a passing and a failing SIMD program in terms of a single
instruction. So, either the multiply–subtraction or the maximum calculation
instruction has to be removed to make the failure disappear, e.g.:

Process program tmp/prog_116
Output: Error detected: [(191, 'maxu R15, R15, R1\n')]
Done. See tmp/prog_116.delta.log1 and tmp/prog_116.delta.log2
for details

Process program tmp/prog_204
Output: Error detected: [(21, 'mulsubss R7, R0, R11, R3\n')]
Done. See tmp/prog_204.delta.log1 and tmp/prog_204.delta.log2
for details

Using an automated approach allows a much faster error location. The
interpretation of the analysis output of all 13 programs suggested that either
one of the reported instructions or their combination result in the observed
wrong simulation behavior.

Figure 6.7 depicts the dd algorithm while narrowing down the failure-
inducing program statement in program 433. After 80 tests, 904 initial differ-
ences are reduced to a minimal difference.

Figure 6.7:  Isolate the failure-inducing instruction in program 433
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Table 6.3 summarizes the number of required test runs to isolate the fail-
ure-inducing instruction sequence in each of the 13 erroneous programs. The
dd algorithm requires 27 to 1,198 runs while this number does not correlate
with the length of the input program, i.e. the initial difference. This discrep-
ancy results from the very different number of unresolved tests while
checking new programs. New programs are created by mixing the current fail-
ing and passing program. There, a different quantity of spurious programs is
generated that violate the program logic. The violated program logic produces
an unresolved test outcome. The analysis times, that are reported in Table 6.3,
show the efficiency of an automatic approach. In such a short time a manual
debug procedure would not be possible, in general. After the failure-causing
input is known, the example is debugged using the SHIELD debugging envi-
ronment. As a result, the designer identifies a wrong synchronization of the
data transfer in case of a combination of both instructions.

Table 6.3:  dd algorithm applied on 13 erroneous programs

Program Initial difference
(# program lines)

Overall
test runs

Passed
tests

Failed
tests

Unresolved
tests

Analysis timea

116 329 151 4 6 141 12.5 s

204 406 340 3 21 316 32.4 s

208 400 479 3 47 429 47.0 s

433 904 80 4 3 73 9.3 s

440 391 27 5 2 20 3.9 s

548 623 312 4 9 299 28.0 s

669 726 984 17 103 864 1m 51.8 s

755 329 202 3 13 186 17.2 s

787 281 414 3 37 374 38.9 s

788 752 1,198 19 138 1,041 2 m 22.2 s

856 705 1,076 10 97 969 2 m 3.0 s

861 403 398 3 37 358 36.8 s

981 938 258 3 6 249 24.0 s

a. Test system: AMD Opteron™ 248 processor @2200 MHz, 3 GB RAM
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4.2 Failure Causes in Process Schedules
This section summarizes the experimental results concerning the isolation

of failure-inducing process schedules (see Section 3.1 on page 150). Two
synthetic SystemC designs were analyzed, i.e. a simple producer–consumer
design and a deadlock example. Both examples randomly, but definitely, pro-
duce various erroneous situations.

4.2.1 Producer–Consumer Application
In general, a SystemC design has to be independent of any process execu-

tion order. In the producer–consumer application from Example 24, a wrong
synchronization could lead to wrong simulation results. Hence, transmitted
data are incompletely processed. Here, the nondeterminism at the delta cycle
level causes a serious problem: If the data processing thread c.A is initially
executed before thread c.B, the initial event notification runs into the void
since events are not persistent in SystemC. The wrong simulation outcome is
used to write a proper test function for the dd algorithm. Following the flow in
Figure 6.3, a passing and a failing run are generated at first. After 21 test runs,
the dd algorithm has been isolated the failure-inducing minimal difference
between both recorded process schedules. Figure 6.8 depicts the dd analysis
result. The marker line indicates the (first) difference between both process
schedules. Hence, the user knows that the failure is caused by a changed acti-
vation sequence of the threads c.A and c.B. Using the reported failing
schedule allows to replay and debug the erroneous simulation in ISOC. Debug-
ging shows that the event used for thread communication is sent by thread
c.A but runs into the void since there is no process waiting for it, yet.

Figure 6.8:  dd algorithm analysis result for Example 24

### PASSING RUN ### ### FAILING RUN ###

@ 0 ns 0 ns
1: p.C 1: p.C
1: c.G 1: c.G
... ...
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1: c.A 1: c.B
1: c.B 1: c.A
1: c.A
@ 20 ns @ 20 ns
3: c.B 3: c.B
3: c.A
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4.2.2 Deadlock Example
Figure 6.9 sketches the general architecture of a SystemC design definitely

producing a deadlock after a random time. The example is based on a Sys-
temC Training Course [IIS]. Four types of threads, i.e. A, B, C, and D, try to
acquire four different resource types, i.e. 1 to 4. The design provides two
instances of resource 2 and one instance of all other resources. During simula-
tion each thread instance tries to lock two particular resource instances one
after another to start “working”. If the thread gets the first resource, it tries to
lock a second resource, immediately. In case a lock does not succeed, the
thread waits for a random time and tries a relock. If both resources could be
successfully locked, the thread “works” a random time and releases the
resources afterwards. Since the thread keeps the first resource locked, while it
is waiting for the availability of the second one, a deadlock will randomly
occur.

To isolate the process which causes the observed deadlock, a test function
for the dd algorithm is needed. Here, a resource allocation graph is created
from a generated simulation log. Using the graph, a deadlock can be detected,
whenever a cycle is found. Since the example can produce various deadlock
situations at random, the particular delta cycle and the simulation time of the
actual deadlock is saved. Hence, the test function looks only for that particular
deadlock situation (see Section 2.3 on page 148). However, a simple test
function would recognize any deadlock whenever two threads are waiting for
each other.

For test purposes, the example was run several times to create passing and
failing process schedules over different simulation time lengths. Table 6.4
summarizes the obtained analysis results running the dd algorithm on the
example with a clock period of 1 ns.

The second column shows the initial difference between passing and fail-
ing process schedules. After constructing a virtual new schedule, it is written
into a file and is simulated, afterwards. Either the new schedule results in a

Figure 6.9:  Architecture of the deadlock example
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passing (column 4) or a failing test outcome (column 5). Due to a violated
simulation semantics, unresolved test outcomes (column 6) are produced most
frequently. As can be already seen in Table 6.3, the number of needed simula-
tion runs does not correlate to the initial difference between the input
schedules. In fact, the number of unresolved test outcomes has a major impact
on the performance of the dd algorithm (column 7). In the current implemen-
tation the dd algorithm and the SystemC simulation communicates via files
which hampers an efficient error search for long running design simulations.
Nevertheless, Table 6.4 demonstrates the applicability of the dd algorithm to
isolate failure-inducing process activations in SystemC designs systematically
in a finite and short time. 

5 SUMMARY AND FUTURE WORK

In this chapter an experimentation technique has been proposed that auto-
matically isolates various failure causes in ESL designs written in SystemC.
The delta debugging algorithm narrows down failure causes using a series of
controlled simulation runs. The algorithm reduces a passing and a failing run
to a minimal difference automatically. There, all parts irrelevant for that fail-
ure are removed. The reported difference causes the observed failure and
suggests a fix to make the failure disappear.

Table 6.4:  Running dd on the deadlock example

Simulation 
time in ns

Initial difference
between process

activations

Overall
test runs

Passed
tests

Failed
tests

Unresolved
tests

Analysis timea

50 2,820 48 2 17 29 7 s

100 16,330 158 6 17 135 29 s

200 51,594 335 6 22 307 68 s

300 51,972 218 4 33 181 49 s

400 147,290 825 4 75 746 193 s

500 155,322 858 4 61 793 230 s

1,000 1,071,436 363 4 70 289 204 s

2,000 7,716,550 617 11 202 404 1,803 s

a. Test system: Intel Centrino Duo T2400@1830MHz, 1 GB RAM, SystemC Kernel 2.2.0 compiled with gcc-4.2.4
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Two use cases of delta debugging demonstrate its applicability for ESL
design and emphasize the strength of a combination of different debugging
techniques. The first use case shows the isolation of a failure-inducing simula-
tion input. Therefore, property generation as inductive technique has been
used to write a proper test function. The second use case extends an observa-
tion technique in terms of the SHIELD debugging environment by the ISOC
component. ISOC provides a flow to find the minimal difference between two
process schedules. 

Depending on the application, failures caused by a different execution
order of processes can be automatically found. As a basis, the SystemC sched-
uler was augmented by a deterministic record and replay facility. Herewith,
formerly recorded simulation runs can be replayed. Based on two input sched-
ules, ISOC generates alternate process schedules until a minimal difference
between the input schedules has been found. Subsequently, the debugging
features in SHIELD and the replay facility of ISOC support the designer to
locate the actual defect.

Summarized, the presented approach supports an automatic debugging of
complex system designs especially in cases where the designer has no clue
how to start debugging. An experienced designer sometimes finds the failure
cause in a fewer steps. In contrast, the automated approach, although dump,
completely and systematically tests the search space and will come up with a
result in any case. Three experiments have been documented the efficiency of
the dd algorithm. In all examples the failure-causing minimal difference could
be narrowed down after a relatively short time. So, the designer gets a result
in any case which is (usually) reported in less time than a manual procedure
would take.





Chapter 7

Summary and Conclusion

ESL design promises to overcome the limitations of designing complex
integrated circuits and systems at the RTL. The related system model allows
for an early system exploration and verification. This model is used as a
golden reference for subsequent design stages. So, its correct and reliable cre-
ation is a key issue for successful ESL design. Currently, ESL verification
consists of a large variety of techniques such as simulation, semi-formal veri-
fication, and formal verification. Although formal approaches get an increasing
attention and application, simulation is still the predominant verification tech-
nique to ensure the functional design correctness. Design concepts like object-
orientation, borrowed from software development, and TLM have boosted the
design productivity at the ESL over the last years. In parallel, the verification
productivity falls behind whereas pinpointing the failure-causing bug still
remains an unsystematic and time-consuming process. So, it becomes impor-
tant not only to find many errors early during development. Rather, new
methods and approaches have to be provided that improve and support an
automation of debugging.

In this book, a debugging approach for ESL designs has been proposed.
This approach accompanies the various development stages of the system
model systematically. Particular debugging techniques form a hierarchy of
co-ordinated reasoning techniques that minimizes the number of errors escap-
ing to the next development stage. All techniques were empirically evaluated
in case studies and experiments mostly using real-world industrial designs.
There, a special focus is taken onto SystemC. Additionally, an example, that
is used throughout the book, demonstrates the strengths and particularities of
each technique. Here, especially the integration aspect is highlighted.

As soon as first syntactic correct modules of the system model are avail-
able, static analysis enables an early detection of errors. The code quality is
ensured by checking coding standards statically. Corporate coding standards
are a major issue in distributed development teams and for a higher level IP
reuse process. Moreover, critical coding flaws and typical pitfalls can be iden-
tified and fixed. For static analysis a framework and the framework-based
SystemC analyzer SDAS has been introduced. Using SDAS, the designer can
ensure a high code quality from the very first implemented lines of code. So,
the code contains fewer bugs before a first subsystems become simulatable. If
a design is simulated the first time, there is a great chance to find many new

F. Rogin and R. Drechsler, Debugging at the Electronic System Level, 165
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bugs. A debug flow has been introduced that allows a debugging and explora-
tion of system models at a higher abstraction level. Based on that flow, the
SHIELD debugging environment for SystemC was presented. The SHIELD
environment eases the detection, identification, and location of errors directly
at system level. The aggregation of multiple simulation runs offers new
opportunities to learn various aspects about the design. A new methodology
for an automatic generation of complex design properties has been proposed
and prototypically implemented by the DIANOSIS tool. Inferred properties
help to indicate anomalies that point to gaps in the test suite or errors in the
design description or the specification. However, more important is the con-
tribution of property generation to an improved design understanding through
the interactive designer’s review and discussion of found properties. Hence, a
new and promising approach to check the implemented design against the tex-
tual specification is supplied. Determining the actual failure cause is still a
manual, error-prone, and tedious procedure. So, a technique that automati-
cally narrows down the failure-inducing minimal difference between a
passing and a failing test case in SystemC designs was investigated. The tool
ISOC implements the delta debugging algorithm. This technique extends the
debugging features of the SHIELD environment by an automated approach that
supports the designer in detecting hard to find errors.

Comparing the efficiency of a design flow using the proposed debugging
techniques with a usual design flow without these techniques is difficult. In
summary, the techniques systemize and accelerate error detection, observa-
tion, and isolation as well as design understanding. So, the time between the
insertion of an error and its correction is minimized. Illustrated at the SIMD
data transfer example, that is used throughout the book, this statement is
emphasized by the following facts:

Using static analysis, a functional error in a SIMD design component
was found and fixed long before the system model becomes simulat-
able (see Section 4.1 on page 63). 
While the SIMD example is simulated the first time, a failure was
observed. This failure was quickly traced back to a copy-paste error.
Here, a debug pattern in connection with only three system-level
debugging commands and a proper visualization accelerated error
detection (see Section 4.1 on page 95).
Property generation, applied over multiple simulation runs, has
inferred an important data transfer property in the SIMD design
already at system level. This property must remain valid during all
following design stages up to the final hardware implementation.
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Thus, it is formulated as an assertion and checked during further
development (see Section 4.1 on page 129).
A failure-inducing instruction sequence has been automatically iso-
lated in 13 erroneous SIMD programs within an analysis time of 3.9 s
to 142.2 s performing controlled simulation runs. The achieved run-
times are much smaller than a manual debug procedure would take.
The reported failure cause points to an erroneous handling of a rare
instruction sequence (see Section 4.1 on page 157).

The efficiency of static analysis for error detection has been already shown
by several empirical studies. So, 60% of software defects found in released
products could have been detected by means of static analysis [PC95]. Static
analysis techniques usually scale very well to large code bases of million lines
of code, e.g. [EC+01], or [Das00]. Since a system model description is also
pure code, a static analysis of such descriptions should come to similar
results. The SystemC analyzer SDAS checks about 300,000 lines of code in
several seconds. The found coding violations simplify manual code reviews
and help the designer to follow a corporate coding standard. 

The SHIELD debugging environment uses the GDB debugger which is uti-
lized successfully in many development environments such as Eclipse [CDT],
Real View Debugger Suite [ARM], or Platform Architect [CoWare]. Since a
debugger usually observes a small piece of code at a particular point in time, it
shows a good scalability in terms of large code bases. Moreover, SHIELD pro-
vides system-level debugging commands as well as visualization features.
These features reduce the number of required commands significantly to
reach a point of failure, or a particular simulation state. Lastly, many concepts
of SHIELD have been developed and proven in close co-operation with a large
industrial partner ensuring their industrial applicability.

The generation of complex properties using DIANOSIS provides a whole
new verification methodology. This methodology facilitates property creation
and improves design understanding. The new approach has shown its effec-
tiveness on real-world industrial designs. 

Finally, the usage of the delta debugging algorithm is an important and
new contribution to automate SystemC debugging, especially in case of hard
to find errors. The minimal difference between a passing and a failing test
points to a failure cause that is normally found after a short and finite time.
Moreover, the reported cause is used to find the failure-causing defect, more
quickly. 

Summarized, all introduced debugging techniques have shown their effi-
ciency and scalability in several experiments. The techniques accompany the
overall verification process of a system model from first modules to the final
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model. So, the proposed debugging approach makes important contributions
to a systematic and automatic debugging of ESL designs. Finally, it results in
an improvement of the verification productivity at system level.



Appendix A

FDC Language

The following chapter defines the syntax and the (informal) semantics of
the FDC language. FDC specifications are the common configuration and
implementation approach in the REGATTA analysis framework. They are used
to adapt the generic framework components to a concrete language. More-
over, these specifications allow to define various analyses, e.g. implementing
arbitrary coding checks.

1 FDC SYNTAX

The notation of FDC specifications is geared to the syntax of the State
Machine Compiler [Rapp08]. In Figure A.1 an EBNF of the FDC language is
given. This allows to describe abstract and configurable analysis tasks.

2 FDC SEMANTIC

The informal semantic is specified as follows:

A FDC specification divides into seven sections: 

* The require section contains a list of C++ class header files to be
included.

* The import section contains a list of imported variables.
* The variable section consists of any number of locally used vari-

ables.
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* The priority section specifies the particular priority of the FDC
specification.

* The init function represents the FDC initialization routine.
* The function section defines C-like functions which can be called

from any action code. 
* The FSM section describes the underlying FSM used to control

the analysis steps. 

Each require statement specifies the name of a header file to be
included. It is used if the action code references functionality that is
not included per default by the C++ compiler. Include files are
searched in all REGATTA source code paths and the standard include
paths.
The import statement declares a variable that has to be externally
set in the FDC XML configuration file with respect to a concrete
analysis task.
NOTE: Imported variables are read only in all action code blocks
otherwise the compiler reports an error.
A var statement declares a local variable that can be read or written
in any action code block of the FDC specification. 
Allowed types in an import and var declaration must satisfy C++
syntax for type declarations. 

Figure A.1:  EBNF syntax of the FDC language
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The priority of an FDC can be specified by the priority statement.
This statements defines a call sequence if two FDCs have registered
for the same elements of the created EST (Definition 4). As higher
the given priority value is as later the FDC is called.
The init function is executed just before syntax analysis starts. It
may contain arbitrary initialization code for the FDC using correct
C++ syntax.
A function declaration defines a function with no return value and
an empty argument list. It may contain any correct C++ code and is
called within the transition action code segments like a usual C func-
tion. 
The actual FSM specification consists of any number of states and an
arbitrary number of transition between these states.

* A state specifies any number of transitions that switch the FSM
into a new state. The special state name nil is reserved for a
transition leading back to the current state. A state may have one
entry and one exit function. Code in the entry function is
executed when the state is newly entered. The exit code block
is evaluated when the current state is left. The lexically first state
implicitly represents the initial start state.

* A transition consists of a proxy symbol, a guard, and a target
state. A proxy symbol is a wildcard for elements of the analysis
alphabet of the given context-free grammar. Elements of a proxy
symbol trigger the particular transition. The target state has to be

A conditional transition can be implemented by using an optional
guard. The guard is evaluated during FDC execution and only if it
evaluates to true the transition is triggered. A guard must be a
valid C++ Boolean expression and may contain queries of the
current state of another FDC specification. Such a query has to
meet the following syntax:
// <FDC name>. name of the target FDC
// <queried state>. existing state in the target FDC
<FDC name>->getState() == <queried state>

* An action code block has to contain any correct C++ code. Per
default, the user has the full access to the REGATTA API using
two implicit variables: AM_AnalysisMngr* am which allows
to access any framework components, and FE_Data* data
that refers to the current language-specific EST element. The fol-

the name of another existing state inside the FDC specification.
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lowing example sketches the access to a meaningful token (see
Section 1.1 on page 34):

function check
{

// retrieve the next meaningful token 
FE_Token* tok = data->getNextLRT();
if (!tok) {

 return;
}
std::count << “Token name: “ 

<< tok->getName() << std::endl;
}



Appendix B

Debug Pattern Catalog

At first, this chapter describes the general description format used for the
debug pattern catalog. Subsequently, two debug patterns are introduced,
exemplarily.

1 GENERAL FORMAT

Each debug pattern is described in the following common format. Such a

Pattern name. The format description is introduced by a short and
intuitive name for the debug pattern.
Motivation. The existence of the debug pattern is motivated in this
paragraph. Here, a representative problem is illustrated.
Symptom. This paragraph describes the failure symptom which is typ-
ical for the error the pattern is aimed at.
Assumption. The assumption specifies the problem or certain condi-
tions, i.e. a specific architecture or component composition in the
design, that probably causes the observed symptom.
Participants. All participating system-level debugging commands
and their specific responsibilities in the pattern context are described
in this paragraph.
Debug procedure. The debug procedure is described by a flowchart to
formally document the necessary steps to isolate the error.

oriented design pattern catalog: 
format is already used by Gamma et al. [GHJV95] to describe their object-
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Example. This paragraph sketches a typical situation where the pat-
tern helps the designer to find and correct an error.
Related patterns. Related patterns also match the observed failure
symptom. These patterns should be tried if the failure-causing defect
could not be found using the current pattern.

2 COMPETITION PATTERN

Motivation
A typical SystemC design consists of different communicating processes

that are running in parallel and that are synchronized over simulation time.
The execution order of processes is not determined during a simulation delta
cycle. This introduces nondeterminism into the simulation process and may
lead to unpredictable and wrong design behavior. Examples for such wrong
design behavior are race conditions or deadlocks.

Symptom
The design is simulated (with the same inputs) and unexpectedly produces

different output or erroneous results, possibly in some minor cases. This situ-
ation could be caused by a nondeterministic execution of parallel processes in
the same delta cycle or by an erroneous process synchronization.

Assumption
There are at least two processes concurrently competing for the same

(shared) resource such as a signal or a bus.

Participants

Debug Procedure
Figure B.1 shows the debug procedure of the COMPETITION pattern.

dp_sense return all processes triggered by the same event 

lpt_rx review the sensitivity list of the given process

lst explore the source code of a process

lse_rx get the correct hierarchical event name



Appendix B   Debug Pattern Catalog 175

Example
Problem. Figure B.2 sketches a situation where two thread processes

top.bfm._fsm_update and top.bfm._fsm_rst write to the same signal
top.ctrl_w. Both threads are activated by the ready signal top.rdy_l. Since the
SystemC simulation kernel does not define a deterministic order of thread

top.ctrl_w.

Figure B.1:  COMPETITION pattern flowchart
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activations inside a delta cycle, a race condition can occur on signal
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Debug procedure. Assume that the hierarchical event name of the signal
causing the problem is already known. Thus, dp_sense is called with it and the
simulation is restarted:

(gdb) dp_sense "top.rdy_l.m_negedge_event"
*** COMPETITION debug pattern activated
*** restart/continue simulation using run/continue
(gdb) run

When the simulation stops dp_sense reports two thread processes sensitive
to the observed event. For convenience reasons, the debugging environment
additionally adds breakpoints at the sensitive processes:

*** dp_sense ’top.rdy_l.m_negedge_event’ 
*** Check competitive situation between sensitive processes
  in module top.bfm

  top.bfm._fsm_update  <static>
  top.bfm._fsm_rst  <static>

*** breakpoints in sensitive processes
  breakpoint at top.bfm._fsm_update
  breakpoint at top.bfm._fsm_rst 

Knowing that thread _fsm_update is correctly activated by the ready sig-
nal, the sensitivity list of the statically triggered thread _fsm_rst is
investigated using lpt_rx:

(gdb) lpt_rx "top.bfm._fsm_rst"
process top.bfm._fsm_rst sensitive to 

<static> top.fsm_rst_l.m_negedge_event
<static> top.rdy_l.m_negedge_event
<dynamic> top.write_tx.m_value_changed

Figure B.2:  Exemplary race condition
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The command shows that the sensitivity list falsely includes the ready sig-
nal which turns out to be an environment defect.

Related Patterns
LIVELOCK

3 TIMELOCK PATTERN

Motivation
Event-based communication between concurrent processes can often lead

to a lock condition. Then, a process is caught in an infinite loop and thus
never waits for an event.

Symptom
The simulation infinitely loops or at least appears to do so. Additionally,

the simulation time does not proceed.

Assumption
Due to design specification knowledge, the user suspects one or more pro-

cesses causing the lock.

Participants 

Debug Procedure
Figure B.3 shows the debug procedure of the TIMELOCK pattern.

Example
Problem. Figure B.4 illustrates a system where a device (top.i_device)

communicates with a host (top.i_host) over a bus. Device and host exchange
data using the two signals top.req_data and top.resp_data. Available data
packages are indicated by two ready signals top.req_ready and
top.resp_ready, respectively. The user models the signal interaction in a
faulty way. So, the simulation locks.

dp_timelock manually look for hanging processes

lst explore the source code of a process

dstep proceed simulation step-wise
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Debug procedure. The user aborts the simulation by pressing Ctrl-C. It is
assumed, that the debugger does not report any process ID. Hence, the
dp_timelock command is called to manually check for a hanging process:

Program received signal SIGINT, Interrupt.
(gdb) dp_timelock
*** following process seems to hang
top.i_device._rx_tx
*** TIMELOCK debug pattern activated
*** call lst ’top.i_device._rx_tx’ to examine source code of
pending process

Figure B.3:  TIMELOCK pattern flowchart
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The source code of the hanging process is investigated to find the root
cause of the observed failure:

(gdb) lst ’top.i_device._rx_tx’
--lst: list active source of [c]thread/method---
process top.i_device._rx_tx is currently
 at /home/hld/project/tb/src/device.cpp:254
in device::_rx_tx
254 void device::_rx_tx() { 
255 process_req_data(req_data.read());
256 resp_data.write(gen_resp_data());
257 resp_ready.write(~resp_ready.read());
258

At first glance, no error is found. Thus, the simulation is proceeded in
step-mode using multiple dstep commands:

(gdb) dstep
*** setting breakpoint(s) at next delta cycle 
*** runnable process(es) at delta cycle 3563, @14 ns
   break @ ’host::_rx_tx()’ of ’top.i_host._rx_tx’
*** type <continue> to visit breakpoints
(gdb) cont

After some more dstep commands, the debugger log shows that the pro-
cesses top.i_host._rx_tx and top.i_device._rx_tx become mutually active,
invoking each other without any simulation time progress. A code review of
the affected modules identifies a lack of time-consuming statements within
the thread loop.

Related Patterns
DEADLOCK, LIVELOCK

Figure B.4:  Exemplary TIMELOCK pattern
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List of Acronyms

The following list defines the acronyms used throughout the book:

ABV Assertion-Based Verification  
API Application Programming Interface  
ASM Abstract State Machine  
BDD Binary Decision Diagrams 
BFM Bus Functional Model 
BMC Bounded Model Checking 
CFG Control Flow Graph

 REGATTA analysis database
 REGATTA report database

DFA Data Flow Analysis 
EBNF Extended Backus Naur Form 
ESL Electronic System Level 
EST Extended Syntax Tree 
FDC FSM-Described Configurations 
FSM Finite-State Machine 
HDL Hardware Description Language 
IP Intellectual Property 
OVL Open Verification Library 
PSL Property Specification Language 
RTL Register Transfer Level 
SCV SystemC Verification Library 

DBA
DBR
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SDL Specification and Description Language 
SIMD Single Instruction Multiple Data 
SoC System-on-a-Chip 
SVA SystemVerilog Assertions 
TLM Transaction Level Modeling 
VCD Value Change Dump 



Index of Symbols

activation time point at 
simulation time  and 
delta cycle  of D

  parse point annotated 
to a grammar rule in 

Α analysis alphabet of 
activity of property  at 
time t
activity of signal  at 
time t

B basic block 
C set of property checkers

set of basic property 
checkers 
set of complex property 
checkers
failing test case
passing test case 

 delta (difference) between 
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