
Preface 

Aims This book aims to provide an insight into the basic principles of control 
engineering and how these can be used to model the behaviour of such 
systems. The intention is to provide a book which considers in every-day 
language the principles involved with control systems without excessive 
emphasis on mathematics; familiarity with calculus notation and 
algebraic dexterity has, however, been assumed. As such, the book is 
ideal for higher level vocational courses and first studies of the topic at 
degree level. 

The content has been carefully matched to cover the latest UK syllabuses, 
in particular the new specifications for BTEC Higher National in 
Engineering from Edexcel for the unit Control Systems and Automation. 

Structure of the book The book has been designed to give a clear exposition and guide readers 
through the principles of control engineering, reviewing background 
principles where necessary. Each chapter includes worked examples and 
problems. Answers are supplied to all tile problems. The mathematics is 
introduced in the chapters as tools with a discussion of the principles of 
the mathematics relegated to two Appendices at the end of the book. 

Content The following is a brief overview of the content of the chapters in tile 
book: 

Chapter 1 
This provides a non-mathematical overview of control systems, 
reviewing the concept of systems and their representation by block 
diagrams, how block diagrams can be used to represent open-loop 
and closed-loop control systems, examples of the measurement, 
signal processing and correction elements used in such systems and 
finally it is all brought together in a discussion of the structures of a 
wide range of examples of control systems. 

Chapter 2 
This introduces the development of models to represent systems and 
their representation by transfer functions. 

Chapter 3 
Tiffs follows on from Chapter 2 and uses the models to determine 
the responses of first-order and second-order systems. 
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Chapter 4 
This is a continuation of Chapter 3 and looks at the parameters used 
to describe the performance of systems and the factors affecting 
stability. 

Chapter 5 
Following a review of the representation of sinusoidal signals by 
phasors, this chapter considers the response of systems to sinusoidal 
inputs, the frequency response function and the representation of the 
frequency response of systems by means of Bode diagrams. Stability 
and relative stability is discussed in relation to Bode diagrams. 

Chapter 6 
Tiffs chapter presents another method of considering the frequency 
response of systems, namely Nyquist diagrams. 

Chapter 7 
This chapter is a discussion of the controller and includes a 
consideration of on-off control by mechanical switching devices 
such as bimetallic strips and electronic switching by thyristors and 
transistor circuits, a descriptive and a mathematical consideration of 
PID control and tuning to obtain the optimum settings, concluding 
with a brief consideration of digital control systems. 

Mathematics requirements The following are the mathematics requirements for the various 
chapters: 

Chapter 1 
No mathematics is used in this chapter. 

Chapter 2 
Tiffs chapter uses calculus notation and shows how first and 
second-order differential equation models can be developed for 
systems. The differential equations have solutions given, the 
derivation of them being in an Appendix. The Laplace transform is 
introduced but used purely as a tool without any derivations from 
first principles. It is just used, following basic rules, as a means of 
transforming differential equations into algebraic equations. 

Chapter 3 
This uses a table of Laplace transforms and partial fractions, the 
roles for using them being given, to derive the outputs from systems. 
Essentially this chapter involves just algebraic manipulation. 

Chapter 4 
This requires algebraic dexterity in order to derive system 
parameters for first- and second-order systems. 

Chapter 5 
This uses, after introducing the principles, complex notation for 
phasors. Algebraic dexterity with equations involving j is then used 
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to determine the frequency response of systems. The properties of 
the logarithm is assumed for the Bode plots. 

Chapter 6 
This introduces the polar graph and again requires algebraic 
manipulation of equations involving j. 

Chapter 7 
Very little mathematics is involved in this chapter, only in the 
section concerning controller mathematics is any mathematics 
involved and that is essentially just calculus notation. 

W. Bolton 



1 Control systems 

1.1 Introduction The term automation is used to describe the automatic operation or 
control of a process. In modem manufacturing there is an ever 
increasing use of automation, e.g. automatically operating machinery, 
perhaps in a production line with robots, which can be used to produce 
components with virtually no human intervention. Also, in appliances 
around the home and in the office there is an ever increasing use of 
automation. Automation involves carrying out operations in the required 
sequence and controlling outputs to required values. 

The following are some of the key historical points in the development 
of automation, the first three being concerned with developments in the 
organisation of manufacturing which permitted the development of 
automated production: 

Modern manufacturing began in England in the 18th century when 
the use of water wheels and steam engines meant that it became 
more efficient to organise work to take place in factories, rather than 
it occurring in the home of a multitude of small workshops. The 
impetus was thus provided for the development of machinery. 

The development of powered machinery in the early 1900s meant 
improved accuracy in the production of components so that instead 
of making each individual component to fit a particular product, 
components were fabricated in identical batches with an accuracy 
wlfich ensured that they could fit any one of a batch of a product. 
Think of the problem of a nut and bolt if each nut has to be 
individually made so that it fitted the bolt and the advantages that 
are gained by the accuracy of manufacturing nuts and bolts being 
high enough for any of a batch of a nuts to fit a bolt. 

The idea of production lines followed from this with Henry Ford, in 
1909, developing them for the production of motor cars. In such a 
line, the production process is broken up into a sequence of set tasks 
with the potential for automating tasks and so developing an 
automated production line. 

In the 1920s developments occurred in the theoretical principles of 
control systems and the use of feedback for exercising control. A 
particular task of concern was the development of control systems to 
steer ships and aircraft automatically. 
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In the 1940s, during the Second World War, developments occurred 
in the application of control systems to military tasks, e.g. radar 
tracking and gun control. 

The development of the analysis and design of feedback amplifiers, 
e.g. the paper by Bode in 1945 on Network Analysis and Feedback 
Amplifier design, was instrumental in further developing control 
system theory. 

Numerical control was developed in 1952 whereby tool positioning 
was achieved by a sequence of instructions provided by a program of 
punched paper tape, these directing the motion of the motors driving 
the axes of the machine tool. There was no feedback of positional 
data in these early control systems to indicate whether the tool was 
in the correct position, the system being open-loop control. 

The invention of the transistor in 1948 in the United States led to 
the development of integrated circuits, and, in the 1970s, 
microprocessors and computers which enabled control systems to be 
developed which were cheap and able to be used to control a wide 
range of processes. As a consequence, automation has spread to 
common everyday processes such as the domestic washing machine 
and the automatic focusing, automatic exposure, camera. 

This book is an introduction to the basic ideas involved in designing 
control systems with this chapter being an introduction to the basic idea 
of a control system and the elements used. 

1.2 Systems 
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Figure 1.1 Systems: (a) a 
gear box, (b) an amplifier, 
(c) the formal picture defining 
a system 

A car gear box can be thought of as a system with an input shaft and an 
output shaft (Figure 1. l(a)). We supply a rotation to the input shaft and 
the system then provides a rotation of the output shaft with the rotational 
speed of the output shaft being related in some way to the rotational 
speed of the input shaft. Likewise we can think of an amplifier as a 
system to which we can supply an input signal and from which we can 
obtain an output signal which is related in some way to the input signal 
(Figure 1.1(b)). Thus, we can think of a system as being like a closed 
box in which the workings of the system are enclosed and to which we 
can apply an input, or inputs, and obtain an output, or outputs, with the 
output being related to the input. 

A system can be defined as an arrangement of  parts within some 
boundary which work together to provide some form of  output from a 
specified input or inputs (Figure 1.1(c)). The boundary divides the 
system from the environment and the system interacts with the 
environment by means of signals crossing the boundary from the 
environment to the system, i.e. inputs, and signals crossing the boundary 
from the system to the environment, i.e. outputs. 

With an engineering system an engineer is more interested in tile 
inputs and outputs of a system than the internal workings of the 
component elements of that system. By considering devices as systems 
we can concentrate on what they do rather than their internal workings. 
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Thus if we know the relationship between the output and the input of a 
system we can work out how it will behave whether it be a mechanical, 
pneumatic, hydraulic, electrical or electronic system. We can see the 
overall picture without becoming bogged down by internal detail. An 
operational amplifier is an example of this approach. We can design 
circuits involving operational amplifiers by making use of the known 
relationship between input and output without knowing what is going on 
inside it. 

In tiffs book we are concerned with control systems. Control systems 
are systems that are used to maintain a desired result or value (Fig. 1.2). 
For example, driving a car along a road involves the brain of the driver 
as a controller comparing the actual position of the car on the road with 
the desired position and making adjustments to correct any error between 
the desired and actual position. A room thermostat is another example of 
a controller, it controlling the heating system to give the required room 
temperature by switching the heater on or off to reduce the error between 
the actual temperature and the required temperature. 

With a systems approach to control we express the physical system in 
terms of a model with the various physical components described as 
system blocks with inputs and outputs and the relationship between the 
inputs and outputs expressed by means of a mathematical equation. 

1.2.1 Block diagrams 

A useful way of representing a system is as a block diagram: within the 
boundary described by the box outline is the system and inputs to the 
system are shown by arrows entering the box and outputs by arrows 
leaving the box. Figure 1.3(a) illustrates this for an electric motor 
system; there is an input of electrical energy and an output of mechanical 
energy in the form of the rotation of the motor shaft. We can think of the 
system in the box operating on the input to produce the output. 

While we can represent a control system as a single block with an 
input and an output, it is generally more useful to consider the system as 
a series of interconnected system elements with each system element 
being represented by a block having a particular function. Thus, in the 
case of the driver of a car steering the car along a road we can consider 
the overall control system to have the elements of:- the driver with an 
input of the actual position he/she sees of the car on the road and also 
his/her thoughts on where the car should be in relation to the road giving 
an output of the hands turning the steering wheel; the car steering unit 
with the input of the steering wheel position and the output of the front 
wheel positions and hence the positioning of the car on the road. Figure 
1.3(b) shows how we might represent these elements. 

In drawing formal block diagram models we use a number of 
conventions to represent the elements and connections: 

System element 
A system element is shown as a box with an input shown as an 
inward directed arrow and an output as an outward directed arrow 
(Figure 1.4(a)). 
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Information flows 
A control system will be made up of a number of interconnected 
systems and we can draw a model of such a system as a series of 
interconnected blocks. Thus we can have one box giving an output 
which then becomes the input for another box (Figure 1.4(b)). We 
draw a line to connect the boxes and indicate a flow of information 
in the direction indicated by the arrow; the lines does not necessarily 
represent a physical connection or the form of a physical connection. 

Summing junction 
We often have situations with control systems where two signals are 
perhaps added together or one subtracted from another and the result 
of such operations then fed on to some system element. This is 
represented by a circle with the inputs to quadrants of the circle 
given + o r -  signs to indicate whether we are summing two positive 
quantities or summing a positive quantity and a negative quantity 
and so subtracting signals (Figure 1.4(c)). 

Take-off point 
In the case of the car driving system shown in Fig. 1.3(b), the 
overall output is the actual position of the car on the road. But this 
signal is also tapped off to become an input to the car driver so that 
he or she can compare the actual position with the required position 
to adjust the steering wheel accordingly. As another illustration, in 
the case of a central heating system the overall output is the 
temperature of a room. But this temperature signal is also tapped off 
to become an input to the thermostat system where it is compared 
with the required temperature signal. Such a 'tapping-off' point in 
the system is represented as shown in Figure 1.4(d). 

As an illustration of file use of the above elements in drawing a block 
diagram model for a control system, consider a central heating control 
system with its input the temperature required in the house and as its 
output the house at that temperature. Figure 1.5 shows how we can 
represent such a system with a block diagram. 
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Fig. 1.5 Block diagram for a central heating system employing 
negative feedback 
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The required temperature is set on the thermostat and this element 
gives an output signal which is used to switch on or off the heating 
furnace and so produce an output affecting the variable which is the 
room temperature. The room temperature provides a signal which is fed 
back to the thermostat. This responds to the difference between the 
required temperature signal and the actual temperature signal. 

1.3 Cont ro l  s y s t e m s  m o d e l s  

Input J Heating Output ,... 

of the '7 process of the 
switched room 
select ion tem peratu re 

Figure 1.6 Open-loop system 
with no feedback of output to 
modify the input if there are any 
extraneous disturbances 
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Input of between required 
required and actual values 
value + 

Feedback of output 

Figure 1.7 Closed-loop system 
with feedback of output to modify 
the input and so adjust for any 
extraneous disturbances 

There are two basic types of control systems: 

Open-loop 
In an open-loop control system the output from the system has no 
effect on the input signal to the plant or process. The output is 
determined solely by the initial setting. Open-loop systems have the 
advantage of being relatively simple and consequently cheap with 
generally good reliability. However, they are often inaccurate since 
there is no correction for errors in the output which might result 
from extraneous disturbances. 

As an illustration of an open-loop system, consider the heating of a 
room to some required temperature using an electric fire which has a 
selection switch which allows a 1 kW or a 2 kW heating element to 
be selected. The decision might be made, as a result of experience, 
that to obtain the required temperature it is only necessary to switch 
on the 1 kW element. The room will heat up and reach a 
temperature which is determined by the fact the 1 kW element is 
switched on. The temperature of the room is thus controlled by an 
initial decision and no further adjustments are made. Figure 1.6 
illustrates tiffs. If there are changes in the conditions, perhaps 
someone opening a window, no adjustments are made to the heat 
output from the fire to compensate for the change. There is no 
information fed back to the fire to adjust it and maintain a constant 
temperature. 

Open-loop control is often used with processes that require the 
sequencing of events by on-off signals, e.g. washing machines 
which require the water to be switched on and then, after a suitable 
time, switched off followed by the heater being switched on and 
then, after a suitable time, switched off. 

Closed-loop 
In a closed-loop control system a signal indicating the state of the 
output of the system is fed back to the input where it is compared 
with what was required and the difference used to modify the output 
of the system so that it maintains the output at the required value 
(Figure 1.7). The term closed-loop refers to the loop created by the 
feedback path. Closed-loop systems have the advantage of being 
relatively accurate in matching the actual to the required values. 
They are, however, more complex and so more costly with a greater 
chance of breakdown as a consequence of the greater number of 
components. 
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As an illustration, consider modifications of the open-loop heating 
system described above to give a closed-loop system. To obtain the 
required temperature, a person stands in the room with a 
thermometer and switches the 1 kW and 2 kW elements on or off, 
according to the difference between the actual room temperature and 
the required temperature in order to maintain the temperature of the 
room at the required temperature. In this situation there is feedback, 
information being fed back from the output to modify the input to 
the system. Thus if a window is opened and there is a sudden cold 
blast of air, the feedback signal changes because the room 
temperature changes and is fed back to modify the input to the 
system. The input to the heating process depends on the deviation of 
the actual temperature fed back from the output of the system from 
the required temperature initially set. Figure 1.8 illustrates this 
system with the comparison element represented by the summing 
symbol with a + opposite the set value input and a - opposite the 
feedback signal to give the sum as + set value - feedback value = 
error. This error signal is then used to control the process. Because 
the feedback signal is subtracted from the set value signal, the 
system is said to have negative feedback. 

Comparison Correction 
element element 

Input + Output 

of the of the required 
set room 

value - Temperature L temperature 

measurement r 

Feedback of temperature information 

Figure 1.8 Closed-loop system with feedback being used to modify the 
input to the controller and so enable the control system to adjust when 
there are extraneous disturbances 

1.3.1 Basic elements of an open-loop control system 

The term open-loop control system is used for a system where an input 
to a system is chosen on the basis of previous experience as likely to give 
the output required. Figure 1.9 shows the basic form of such a system. 

value value 

Figure 1.9 Basic elements of an open-loop control system 
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The system has three basic elements: control, correction and the 
process of which a variable is being controlled. 

1 Control element 
Tiffs determines the action to be taken as a result of the input to the 
system. 

2 Correction element 
This has an input from the controller and gives an output of some 
action designed to change the variable being controlled. 

3 Process 
This is the process of which a variable is being controlled. 

There is no changing of the control action to account for any 
disturbances which change the output variable. 

1.3.2 Basic elements of a closed-loop system 

Figure 1.10 shows the general form of a basic closed-loop system. 
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Figure 1.10 Basic elements of  a closed-loop control system 

The following are the functions of the constituent elements: 

Comparison element 
This element compares the required value of the variable being con- 
trolled with the measured value of what is being achieved and 
produces an error signal: 

error = reference value signal - measured actual value signal 

Thus if the output is the required value then there is no error and so 
no signal is fed to initiate control. Only when there is a difference 
between the required value and the actual values of the variable will 
there be an error signal and so control action initiated. 

Control law implementation element 
The control law element determines what action to take when an 
error signal is received. The control law used by the element may be 
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just to supply a signal which switches on or off when there is an 
error, as in a room thermostat, or perhaps a signal which is 
proportional to the size of the error. With a proportional control law 
implementation, if the error is small a small control signal is 
produced and if the error is large a large control signal is produced. 
Other control laws include integral mode where a control signal is 
produced that continues to increase as long as there is an error and 
derivative mode where the control signal is proportional to the rate 
at which the error is changing. These are discussed in Chapter 7. 

The term control unit or controller is often used for the 
combination of the comparison element, i.e. the error detector, and 
the control law implementation element. An example of such an 
element is a differential amplifier which has two inputs, one the set 
value and one the feedback signal, and any difference between the 
two is amplified to give the error signal. When there is no difference 
there is no resulting error signal. 

Correction element 
The correction element or, as it is often called, the final control 
element, produces a change in the process which aims to correct or 
change the controlled condition. The term actuator is used for the 
element of a correction unit that provides the power to carry out the 
control action. An example is a motor, with an input of a voltage to 
its armature coils and an output of a rotating shaft which, via 
possibly a screw, rotates and corrects the position of a workpiece 
(Figure 1.11(a)). Another example is a hydraulic or pneumatic 
cylinder (Figure 1.11(b)). The cylinder has a piston which can be 
moved along the cylinder depending on a pressure signal from the 
controller. 

Process 
The process is the system in which there is a variable that is being 
controlled, e.g. it might be a room in a house with its temperature 
being controlled. 

Measurement element 
The measurement element produces a signal related to the variable 
condition of the process that is being controlled. For example, it 
might be a temperature sensor with suitable signal processing. 

The following are terms used to describe the various paths through the 
system taken by signals: 

Feedback path 
Feedback is a means whereby a signal related to the actual condition 
being achieved is fed back to modify the input signal to a process. 
The feedback is said to be negative when the signal which is fed 
back subtracts from the input value. It is negative feedback that is 
required to control a system. Positive feedback occurs when the 
signal fed back adds to the input signal. 



Control systems 9 

On-off Controller 
inputs, 

On-off output 

Full ":":: 
signal 

Empty, i 
signal :':'::':": 

Figure 1.12 Discrete-event 
control with the controller 
switching the valve open when 
empty signal received and 
closed when the full signal 

Forward path 
The term forward path is used for the path from the error signal to 
the output. In Figure 1.10 these forward path elements are the 
control law element, the correction element and the process element. 

1.3.3 Discrete event control 

This is often described as sequential control and describes control 
systems where control actions are determined in response to observed 
time-critical events. For example, the filling of a container with water 
might have a sensor at the bottom which registers when the container is 
empty and so gives an input to the controller to switch the water flow on 
and a sensor at the top which registers when the container is full and so 
gives an input to the controller to switch off the flow of water. This is a 
form of closed-loop system since the controller is receiving feedback 
from the two sensors regarding the state of the variable (Figure 1.12). 

1.4 M e a s u r e m e n t  e l e m e n t s  

Output a measure 
the position of 
the slider contact 

Ou  u', V0 

Figure 1.13 Potentiometer as 
a sensor ofposition 

Lead l i I 

\ 

i Lead 

,Paper 
backing 

",Gauge 
(a) wire 

Displacement 

~Strain gauges 
(b) 

Figure 1.14 (a) Strain gauge, 
(b) example o f  use on a cantilever 
to provide a displacement sensor 

The following are examples of sensors that are commonly used with the 
measurement systems of control systems. 

1.4.1 Potentiometer 

A potentiometer consists of a resistance element with a sliding contact 
which can be moved over the length of the element and connected as 
shown in Figure 1.13. With a constant supply voltage V,, the output 
voltage Vo between terminals 1 and 2 is a fraction of the input voltage, 
the fraction depending on the ratio of the resistance R~2 between 
terminals 1 and 2 compared with the total resistance R of the entire 
length of the track across which the supply voltage is connected. Thus 
Vo/V~ = RlJR. If the track has a constant resistance per unit length, the 
output is proportional to the displacement of the slider from position 1. A 
rotary potentiometer consists of a coil of wire wrapped round into a 
circular track or a circular film of conductive plastic over which a 
rotatable sliding contact can be rotated, hence an angular displacement 
can be converted into a potential difference. Linear tracks can be used for 
linear displacements. 

1.4.2 Strain-gauged element 

Figure 1.14(a) shows the basic form of an electrical resistance strain 
gauge. Strain gauges consist of a fiat length of metal wire, metal foil 
strip, or a strip of semiconductor material which can be stuck onto 
surfaces like a postage stamp. When the wire, foil, strip or 
semiconductor is stretched, its resistance R changes. The fractional 
change in resistance AR/R is proportional to the strain e, i.e." 

AR - G t  
R 

where G, the constant of proportionality, is termed the gauge factor. 
Metal strain gauges typically have gauge factors of the order of 2.0. 
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When such a strain gauge is stretched its resistance increases, when 
compressed its resistance decreases. A displacement sensor might be 
constructed by attaching strain gauges to a cantilever (Figure 1.14(b)), 
the free end of the cantilever being moved as a result of the linear 
displacement being monitored. When the cantilever is bent, the electrical 
resistance strain gauges mounted on the element are strained and so give 
a resistance change which can be monitored and which is a measure of 
the displacement. With strain gauges mounted as shown in Figure 1.14, 
when the cantilever is deflected downwards the gauge on the upper 
surface is stretched and the gauge on the lower surface compressed. Thus 
the gauge on the upper surface increases in resistance while that on the 
lower surface decreases. 
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1.4.3 Linear variable differential transformer 

The linear variable differential transformer, generally referred to by the 
abbreviation LVDT, is a transformer with a primary coil and two 
secondary coils. Figure 1.15 shows the arrangement, there being three 
coils symmetrically spaced along an insulated tube. The central coil is 
the primary coil and the other two are identical secondary coils which 
are connected in series in such a way that their outputs oppose each 
other. A magnetic core is moved through the central tube as a result of 
the displacement being monitored. When there is an alternating voltage 
input to the primary coil, alternating e.m.f.s are induced in the secondary 
coils. With the magnetic core in a central position, the amount of 
magnetic material in each of the secondary coils is the same and so the 
e.m.f.s induced in each coil are the same. Since they are so connected 
that their outputs oppose each other, the net result is zero output. 
However, when the core is displaced from the central position there is a 
greater amount of magnetic core in one coil than the other. The result is 
that a greater e.m.f, is induced in one coil than the other and then there 
is a net output from the two coils. The bigger the displacement the more 
of the core there is in one coil than the other, thus the difference between 
the two e.m.f.s increases the greater the displacement of the core. 
Typically, LVDTs have operating ranges from about +2 mm to +400 mm 
and are very widely used for monitoring displacements. 

1.4.4 Optical encoders 

An encoder is a device that provides a digital output as a result of an 
angular or linear displacement. Position encoders can be grouped into 
two categories: incremental encoders, which detect changes in 
displacement from some datum position, and absolute encoders, which 
give the actual position. 

Figure 1.16 shows tile basic form of an incremental encoder for the 
measurement of angular displacement of a shaft. It consists of a disc 

Figure 1.16 Incremental encoder: which rotates along with the shaft. In the form shown, the rotatable disc 
angular displacement results in has a number of windows through which a beam of light can pass and be 
pulses being detected, the number detected by a suitable light sensor. When the shaft and disc rotates, a 
ofpulses being proportional to pulsed output is produced by the sensor with the number of pulses being 
the angular displacement proportional to the angle through which the disc rotates. The angular 
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displacement of the disc, and hence the shaft rotating it, can thus be 
determined by the number of pulses produced in the angular 
displacement from some datum position. Typically the number of 
windows on the disc varies from 60 to over a thousand with multi-tracks 
having slightly offset slots in each track. With 60 slots occurring with 1 
revolution then, since 1 revolution is a rotation of 360 ~ the minimum 
angular displacement, i.e. the resolution, that can be detected is 360/60 = 
6 ~ . The resolution typically varies from about 6 ~ to 0.3 ~ or better. 

With the incremental encoder, the number of pulses counted gives the 
angular displacement, a displacement of, say, 50 ~ giving the same 
number of pulses whatever angular position the shaft starts its rotation 
from. However, the absolute encoder gives an output in the form of a 
binary number of several digits, each such number representing a 
particular angular position. Figure 1.17 shows the basic form of an 
absolute encoder for the measurement of angular position. With the one 
shown in the figure, the rotating disc has four concentric circles of slots 
and four sensors to detect the light pulses. The slots are arranged in such 
a way that the sequential output from the sensors is a number in the 
binary code, each such number corresponding to a particular angular 
position. A number of forms of binary code are used. Typical encoders 
tend to have up to 10 or 12 tracks. The number of bits in the binary 
number will be equal to the number of tracks. Thus with 10 tracks there 
will be 10 bits and so the number of positions that can be detected is 21~ 
i.e. 1024, a resolution of 360/1024 = 0.35 ~ 
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Figure 1.17 The rotating wheel of  the absolute encoder: the binary word 
output indicates the angular position 

1.4.5 Switches 

There are many situations where a sensor is required to detect the 
presence of some object. The sensor used in such situations can be a 
mechanical switch, giving an on-off output when the switch contacts are 
opened or closed by the presence of an object. Figure 1.18 illustrates the 
forms of a number of such switches. An example of switch application is 
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where a work piece closes the switch by pushing against it when it 
reaches the correct position on a work table, such a switch being referred 
to as a limit switch. The switch might then be used to switch on a 
machine tool to carry out some operation on the work piece. 

1.4.6 Tachogenerator 

The basic tachogenerator consists of a coil mounted in a magnetic field 
(Figure 1.19). When the coil rotates electromagnetic induction results in 
an alternating e.m.f, being induced in the coil. The faster the coil rotates 
the greater the size of the alternating e.m.f. Thus the size of the 
alternating e.m.f, is a measure of the angular speed. 

1.4.7 P r e s s u r e  sensors  

The movement of the centre of a circular diaphragm as a result of a 
pressure difference between its two sides is the basis of a pressure gauge 
(Figure 1.20(a)). For the measurement of the absolute pressure, the 
opposite side of the diaphragm is a vacuum, for the measurement of 
pressure difference the pressures are connected to each side of the 
diaphragm, for the gauge pressure, i.e. the pressure relative to the 
atmospheric pressure, the opposite side of the diaphragm is open to the 
atmosphere. The amount of movement with a plane diaphragm is fairly 
limited; greater movement can, however, be produced with a diaphragm 
with corrugations (Figure 1.20(b)). 

The movement of the centre of a diaphragm can be monitored by some 
form of displacement sensor. Figure 1.21 shows the form that might be 
taken when strain gauges are used to monitor the displacement, the 
strain gauges being stuck to the diaphragm and changing resistance as a 
result of the diaphragm movement. Typically such sensors are used for 
pressures over the range 100 kPa to 100 MPa, with an accuracy up to 
about +0.1%. Another form of diaphragm pressure gauge uses strain 
gauge elements integrated within a silicon diaphragm and supplied, 
together with a resistive network for signal processing, on a single 
silicon chip as the Motorola MPX pressure sensor. With a voltage supply 
connected to the sensor, it gives an output voltage directly proportional 
to the pressure. Such sensors are available for use for the measurement of 
absolute pressure, differential pressure or gauge pressure, e.g. MPX2100 
has a pressure range of 100 kPa and with a supply voltage of 16 V d.c. 
gives a voltage output over the full range of 40 mV. 

When certain crystals are stretched or compressed, charges appear on 
their surfaces. Tiffs effect is called piezo-electricity. Examples of such 
crystals are quartz, tourmaline, and zirconate-titanate. A piezoelectric 
pressure gauge consists essentially of a diaphragm which presses against 
a piezoelectric crystal (Figure 1.22). Movement of the diaphragm causes 
the crystal to be compressed and so charges produced on its surface. The 
crystal can be considered to be a capacitor which becomes charged as a 
result of the diaphragm movement and so a potential difference appears 
across it. If the pressure keeps the diaphragm at a particular displace- 
ment, the resulting electrical charge is not maintained but leaks away. 
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Thus the sensor is not suitable for static pressure measurements. 
Typically such a sensor can be used for pressures up to about 1000 MPa. 

1.4.8 Fluid flow 

The traditional methods used for the measurement of fluid flow involve 
devices based on Bernoulli's equation. When a restriction occurs in the 
path of a flowing fluid, a pressure drop is produced with the flow rate 
being proportional to the square root of the pressure drop. Hence, a 
measurement of the pressure difference can be used to give a measure of 
the rate of flow. There are many devices based on this principle. The 
Venturi tube is a tube which gradually tapers from the full pipe diameter 
to the constricted diameter. Figure 1.23 shows the typical form of such a 
tube. The pressure difference is measured between the flow prior to the 
constriction and at the constriction, a diaphragm pressure cell generally 
being used. The orifice plate (Figure 1.24) is simply a disc, with 
generally a central hole. The orifice plate is placed in the tube through 
which the fluid is flowing and the pressure difference measured between 
a point equal to the diameter of the tube upstream and a point equal to 
half the diameter downstream. Because of the way the fluid flows 
through the orifice plate, such measurements are equivalent to those 
taken with fl~e Venturi tube. 

The turbine flowmeter (Figure 1.25) consists of a multi-bladed rotor 
that is supported centrally in the pipe along which the flow occurs. The 
rotor rotates as a result of the fluid flow, the angular velocity being 
approximately proportional to the flow rate. The rate of revolution of the 
rotor can be determined by attaching a small permanent magnet to one of 
the blades and using a pick-up coil. An induced e.m.f, pulse is produced 
in the coil every time the magnet passes it. The pulses are counted and so 
the number of revolutions of the rotor can be determined. The meter is 
expensive, with an accuracy of typically about +0.1%. 

1.4.9 Liquid level 

A co~mnonly used method to measure the level of liquid in a vessel is a 
float whose position is directly related to the liquid level. Figure 1.26 
shows a simple float system. The float is at one end of a pivoted rod with 
the other end connected to the slider of a potentiometer. Changes in level 
cause the float to move and hence move the slider over the potentiometer 
resistance track and so give a potential difference output related to the 
liquid level. 

1.4.10 Temperature sensors 

The expansion or contraction of solids, liquids or gases, the change in 
electrical resistance of conductors and semiconductors, thermoelectric 
e.m.f.s and tile change in the current across the junction of semi- 
conductor diodes and transistors are all examples of properties that 
change when the temperature changes and can be used as basis of 
temperature sensors. 
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The bimetallic strip device consists of two different metal strips of the 
same length bonded together 0~igure 1.27). Because the metals have 
different coefficients of expansion, when the temperature increases the 
composite strip bends into a curved strip, with the higher coefficient 
metal on the outside of the curve. The amount by which the strip curves 
depends on file two metals used, the length of the composite strip and the 
change in temperature. If one end of a bimetallic strip is fixed, the 
amount by which the free end moves is a measure of the temperature. 
This movement may be used to open or close electric circuits, as in the 
simple thermostat commonly used with domestic heating systems. 
Bimetallic strip devices are robust, relatively cheap, have an accuracy of 
the order of • and are fairly slow reacting to changes in temperature. 

Resistance temperature detectors (RTDs) are simple resistive 
elements in the form of coils of wire of such metals as platinum, nickel 
or copper alloys, file resistance varying as the temperature changes with 
the change in resistance being reasonably proportional to the change in 
temperature. Detectors using platinum have high linearity, good 
repeatability, high long term stability, can give an accuracy of • or 
better, a range of about-200~ to +850~ can be used in a wide range 
of environments without deterioration, but are more expensive than the 
other metals. They are, however, very widely used. Nickel and copper 
alloys are cheaper but have less stability, are more prone to interaction 
with the environment and cannot be used over such large temperature 
ranges. 

Thermistors are semiconductor temperature sensors made from 
mixtures of metal oxides, such as those of chromium, cobalt, iron, 
manganese and nickel. The resistance of thermistors decreases in a very 
non-linear manner with an increase in temperature, Figure 1.28 
illustrating this. The change in resistance per degree change in 
temperature is considerably larger than that which occurs with metals. 
For example, a thermistor might have a resistance of 29 kf2 at -20~ 
9.8 kf2 at 0~ 3.75 k.Q at 20~ 1.6 k.O at 40~ 0.75 lcQ at 60~ The 
material is formed into various forms of element, such as beads, discs 
and rods (Figure 1.29). Thermistors are rugged and can be very small, so 
enabling temperatures to be monitored at virtually a point. Because of 
their small size they have small thermal capacity and so respond very 
rapidly to changes in temperature. The temperature range over which 
they can be used will depend on the thermistor concerned, ranges within 
about -100~ to +300~ being possible. They give very large changes in 
resistance per degree change in temperature and so are capable, over a 
small range, of being calibrated to give an accuracy of the order of 0. I~ 
or better. However, their characteristics tend to drift with time. Their 
main disadvantage is their non-linearity. 

When two different metals are joined together, a potential difference 
occurs across file junction. The potential difference depends on the two 
metals used and the temperature of the junction. A thermocouple 
involves two such junctions, as illustrated in Figure 1.30. If both 
junctions are at the same temperature, the potential differences across the 
two junctions cancel each other out and there is no net e.m.f. If, however, 
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there is a difference in temperature between the two junctions, there is an 
e.m.f. The value of this e.m.f. E depends on the two metals concerned 
and the temperatures t of both junctions. Usually one junction is held at 
0~ and then, to a reasonable extent, the following relationship holds: 

E= at + bt 2 

where a and b are constants for the metals concerned. Figure 1.31 shows 
how the e.m.f, varies with temperature for a number of commonly used 
pairs of metals. Standard tables giving the e.m.f.s at different 
temperatures are available for the metals usually used for thermocouples. 
Commonly used thermocouples are listed in Table 2.1, with the 
temperature ranges over which they are generally used and typical 
sensitivities. These commonly used thermocouples are given reference 
letters. The base-metal thermocouples, E, J, K and T, have accuracies 
about +1 to 3%, are relatively cheap but deteriorate with age. Noble- 
metal thermocouples, e.g. 1L have accuracies of about + 1% or better, are 
more expensive but more stable with longer life. Thermocouples are 
generally mounted in a sheath to give them mechanical and chemical 
protection. The response time of an unsheathed thermocouple is very 
fast. With a sheath tlfis may be increased to as much as a few seconds if 
a large sheath is used. 

Table 1.1 Thermocouples 

Type Materials Range ~ Sensitivity 
~tV/~ 

E Chromel-constantan 0 to 980 63 
J Iron-constantan -180 to 760 53 
K Chromel-alumel -180 to 1260 41 
R Platinum-platinum/rhodium 13% 0 to 1750 8 
T Copper-constantan -180 to 370 43 

To maintain one junction of a thermocouple at 0~ it needs to be 
immersed in a mixture of ice and water. This, however, is often not 
convenient. A compensation circuit (Figure 1.32) can, however, be used 
to provide an e.m.f, wlfich varies with the temperature of the cold 
junction in such a way that when it is added to the thermocouple e.m.f, it 
generates a combined e.m.f, which is the same as would have been 
generated if the cold junction had been at 0~ 

There is a change in the current across the junction of semiconductor 
diodes and transistors when the temperature changes. For use as 
temperature sensors they are supplied, together with the necessary signal 
processing circuitry, as integrated circuits. An integrated circuit 
temperature sensor using transistors is LM35. This gives an output, 
which is a linear function of temperature, of 10 mV/~ when the supply 
voltage is 5 V. Figure 1.33(a) shows the connections for the range 12~ 
to 110 ~ and (b) for -400 to 110 ~ 
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The output signal from the sensor of a measurement system or the signal 
from the control unit might have to be processed in some way to make it 
suitable to operate the next element in the control system. For example, 
the signal may be too small and have to be amplified, be analogue and 
have to be made digital, be digital and have to be made analogue, be a 
resistance change and have to be made into a current change, be a 
voltage change and have to be made into a suitable size current change, 
be a pressure change and have to be made into a current change, etc. All 
these changes can be referred to as signal processing. For example, the 
output from a thermocouple is a very small voltage, a few millivolts. A 
signal processing module might then be used to convert this into a larger 
voltage and provide cold junction compensation (i.e. allow for the cold 
junction not being at 0~ 

The following are some examples of signal processing commonly 
encountered in control systems. 

1.5.1 Resistance to voltage converter 

Consider how the resistance change produced by a thermistor when 
subject to a temperature change can be converted into a voltage change. 
Figure 1.34 shows how a potential divider circuit can be used. A 
constant voltage, of perhaps 6 V, is applied across the thermistor and 
another resistor in series. With a thermistor with a resistance of 4.7 k~, 
the series resistor might be 10 k~. The output signal is the voltage across 
the 10 k.O resistor. When the resistance of the thermistor changes, the 
fraction of the 6 V across the 10 k~ resistor changes. 

The output voltage is proportional to the fraction of the total resistance 
which is between the output terminals. Thus: 

R V output- R +Rt 

where V is the total voltage applied, in Figure 1.34 this is shown as 6 V, 
R the value of the resistance between the output terminals (10 k~) and Rt 
the resistance of the thermistor at the temperature concerned. The 
potential divider circuit is thus an example of a simple resistance to 
voltage converter. Another example of such a converter is the 
Wheatstone bridge. 

1.5.2 Protection 

An important element that is often required with signal processing is 
protection against high currents or high voltages. A high current can be 
protected against by the incorporation in the input line of a series resistor 
to limit the current to an acceptable level and a fuse to break if the 
current does exceed a safe level (Figure 1.35). 

It is often so vital that lfigh currents or high voltages are not 
transmitted from the sensor to a microprocessor that it may be necessary 
to completely isolate circuits so there are no electrical connections 
between them. Tiffs can be done using an optoisolator (Figure 1.36). 
Such a device converts an electrical signal into an optical signal, 
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transmits it to a detector which then converts it back into an electrical 
signal. The input signal passes through an infrared light-emitting diode 
(LED) and so produces a beam of infrared radiation which is detected by 
a phototransistor. 

1.5.3 Analogue to digital conversion 

The electrical output from sensors such as thermocouples, resistance 
elements used for temperature measurement, strain gauges, diaphragm 
pressure gauges, LVDTs, etc. is in analogue form. An analogue signal 
(Figure 1.37(a)) is one that is continuously variable, changing smoothly 
over a range of values. The signal is an analogue, i.e. a scaled version, of 
the quantity it represents. A digital signal increases in jumps, being a 
sequence of pulses, often just on-off signals (Figure 1.37(b)). The value 
of the quantity instead of being represented by the height of the signal, as 
with analogue, is represented by the sequence of on-off signals. 

Microprocessors require digital inputs. Thus, where a microprocessor 
is used as part of a control system, the analogue output from a sensor has 
to be converted into a digital form before it can be used as an input to the 
microprocessor. Thus there is a need for an analogue-to-digital 
converter (ADC). Analogue-to-digital conversion involves a number of 
stages. The first stage is to take samples of the analogue signal (Figure 
1.38(a)). A clock supplies regular time signal pulses (Figure 1.38(b)) to 
the analogue-to-digital converter and every time it receives a pulse it 
samples the analogue signal. The result is a series of narrow pulses with 
heights which vary in accord with the variation of the analogue signal 
(Figure 1.38(c)). This sequence of pulses is changed into the signal form 
shown in Figure 1.38(d) by each sampled value being held until the next 
pulse occurs. This holding is necessary to allow time for the conversion 
to take place at an analogue-to-digital converter. This converts each 
sample into a sequence of pulses representing the value. For example, 
the first sampled value might be represented by 101, the next sample by 
011, etc. The 1 represents an 'on' or 'high' signal, the 0 an 'off' or 'low' 
signal. Analogue-to-digital conversion thus involves a sample and hold 
unit followed by an analogue- to-digital converter (Figure 1.39). 

Analogue 
input 

v 

In form 
shown in 
Figure 1.38(a) 

Sample and 
hold 

Analogue-to- 
digital converter 

Signal in form 
shown in Figure 1.38(d) 

Figure 1.39 Analogue-to-digital conversion 
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To illustrate the action of the analogue-to-digital converter, consider 
one that gives an output restricted to three bits. The binary digits of 0 
and 1, i.e. the 'low' and 'lfigh' signals, are referred to as bits. A group of 
bits is called a word. Thus the three bits give the word length for this 
particular analogue-to-digital converter. The word is what represents the 
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digital version of the analogue voltage. With three bits in a word we have 
the possible words of: 

000 001 010 011 100 101 110 111 

There are eight possible words which can be used to represent the 
analogue input; the number of possible words with a word length of n 
bits is 2". Thus we divide the maximum analogue voltage into eight parts 
and one of the digital words corresponds to each. Each rise in the 
analogue voltage of (1/8) of the maximum analogue input then results in 
a further bit being generated. Thus for word 000 we have 0 V input. To 
generate the next digital word of 001 the input has to rise to 1/8 of the 
maximum voltage. To generate the next word of 010 the input has to rise 
to 2/8 of the maximum voltage. Figure 1.40 illustrates this conversion of 
the sampled and held input voltage to a digital output. 

Thus if we had a sampled analogue input of 8 V, the digital output 
would be 000 for a 0 V input and would remain at that output until the 
analogue voltage had risen to 1 V, i.e. 1/8 of the maximum analogue 
input. It would then remain at 001 until the analogue input had risen to 
2 V. This value of 001 would continue until the analogue input had risen 
to 3 V. The smallest change in the analogue voltage that would result in 
a change in the digital output is thus 1 V. This is termed the resolution 
of the converter. 

The word length possible with an analogue-to-digital converter 
determines its resolution. With a word length of n bits the maximum, or 
full scale, analogue input VFS is divided into 2 n pieces. The minimum 
change in input that can be detected, i.e. the resolution, is thus VFS /2". 
With an analogue-to-digital converter having a word length of 10 bits 
and the maximum analogue signal input range 10 V, then the maximum 
analogue voltage is divided into 2 ~~ = 1024 pieces and the resolution is 
10/1024 = 9.8 mV. 

There are a number of forms of analogue-to-digital converter; the 
most commonly used being successive approximations, dual-slope and 
flash. Successive approximations converters are probably the most 
widely used; dual slope converters have the advantage of excellent noise 
rejection and flash converters give the highest conversion rates. 

1.5.4 Digital to analogue conversion 
The output from a microprocessor is digital. Most control elements 
require an analogue input and so the digital output from a 
microprocessor has to be converted into an analogue form before it can 
be used by them. The input to a digital-to-analogue converter is a binary 
word and the output its equivalent analogue value. For example, if we 
have a full scale output of 7 V then a digital input of 000 will give 0 V, 
001 give 1 V . . . .  and 111 the full scale value of 7 V. Figure 1.41 
illustrates this. 
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1.5.5 Amplifiers 
The operational amplifier is the basis of many signal processing 
elements, the basic amplifier being supplied as an integrated circuit on a 
silicon chip. It has two inputs, termed the inverting input (-) and the 
non-inverting input (+) and is a high gain d.c. amplifier, the gain 
typically being of the order of 100 000 or more. Figure 1.42 shows the 
pin connections for a 741 operational amplifier with the symbol for the 
operational amplifier. Pins 4 and 7 are for the connections to the supply 
voltage for the amplifier, pin 2 for the inverting input, pin 3 for the 
non-inverting input. The output is taken from pin 6. Pins 1 and 5 are for 
the offset null. These are to enable circuits to be connected to enable 
corrections to be made for the non-ideal behaviour of the amplifier. 

Consider the amplifier when used as an inverting amplifier (Figure 
1.43), i.e. an amplifier which gives an output which is out-of-phase with 
respect to the input. For the circuit shown in Figure 1.43, the 
connections for the power supply and the offset null have been omitted. 
The input is connected to the inverting input, the non-inverting input 
being connected to earth. A feedback loop is connected, via the resistor 
R2, to the inverting input. The output voltage of such an amplifier is 
limited to about • V and thus, since the gain is about 100 000, the 
input voltage to the inverting input at X, Vx, must be between about 
+0.0001 V and-0.0001 V. This is virtually zero and so point X is at 
virtually earth potential. For this reason it is called a virtual earth. The 
potential difference across the input resistance Rl is (Vm - Vx) and thus 
(Vm - Vx) = l~Rl. But Vx is virtually zero and so we can write: 

V'm = llR1 

Operational amplifiers have very high resistance between their input 
terminals, e.g. the resistance with the 741 operational amplifier is about 
2 M.q. Thus virtually no current flows from point X through the 
inverting input and so to earth. Thus the current 11 that flows through Rl 
must be essentially the current flowing through R2. The potential 
difference across R2 is (Vx -//out). Thus we can write (Vx - Vout) = 1~R2. 
But as Vx is effectively zero, we can write: 

--gout-" IzR2 

Eliminating 11 from these two simultaneous equations gives: 

Vout R 2 
gain of circuit - V i a - - R - T  

The negative sign indicates that the output is 180 ~ out-of-phase with 
the input. The gain is determined solely by the values of the two 
resistors. A non-inverting amplifier can likewise be produced by taking 
the input to the non-inverting input instead of the inverting input. 

As an illustration of the use of an operational amplifier, consider 
Figure 1.44 which shows how it can be used as a differential amplifier to 
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amplify the difference between two input voltages. Since there is 
virtually no current through the high resistance in the operational 
amplifier between the two input terminals, both the inputs X will be at 
the same potential. The voltage V2 is across resistors R~ and R2 in series. 
Thus the potential Vx at X is: 

Vx R2 
V2 - Rl +R2 

Since the operational amplifier has a very high input resistance, the 
current through the feedback resistance will be equal to that from VI 
through R~. Hence we have: 

Vl-Vx Vx-Vo= 
R1 R2 

and so" 

[/rout 
- 

Hence substituting for Vx using the earlier equation, gives: 

R2( 
Vo= = R~- ~ V2-V~) 

The output is a measure of the difference between the two input voltages. 

(a) 

1.6 Cor rec t ion  e lements  

(b) 

Figure 1.45 (a) Two position, 

(b) three position valves 

1 

7 -  
I 

(a) (b) (c) 

Figure 1.46 (a) Flow path, 

(b) shut-off, (c) initial 

connections 

The following are examples of correction elements that are commonly 
encountered in control systems. 

1.6.1 Directional control valves 

A directional control valve on the receipt of some external signal, which 
might be mechanical, electrical or a pressure signal, change the direction 
of, or stop, or start the flow of fluid in some part of the pneumatic/ 
hydraulic circuit. Thus, it might be used to control the direction of fluid 
flow to a cylinder and so use the movement of its piston to carry out 
actuation. 

The basic symbol for a control valve is a square. With a directional 
control valve two or more squares are used, with each square 
representing the positions to which the valve can be switched. Thus, 
Figure 1.45(a) represents a valve with two switching positions, Figure 
1.45(b) a valve with three switching positions. Lines in the boxes are 
used to show the flow paths with arrows indicating the direction of flow 
(Figure 1.46(a)) and shut-off positions indicated by terminated lines 
(Figure 1.46(b)). The pipe connections, i.e. the inlet and outlet ports of 
the valve, are indicated by lines drawn on the outside of the box and are 
drawn for just the 'rest/initial/neutral position', i.e. when the valve is not 
actuated (Figure 1.46(c)). You can imagine each of the position boxes to 
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be moved by the action of some actuator so that it connects up with the 
pipe positions to give the different connections between the ports. 
Directional control valves are described by the number of ports and the 
number of positions. Thus, a 2/2 valve has 2 ports and 2 positions, a 3/2 
valve 3 ports and 2 positions, a 4/2 valve 4 ports and 2 positions, a 5/3 
valve 5 ports and 3 positions. Figure 1.47 shows some commonly used 
examples and their switching options and Figure 1.48 the means by 
which valves can be switched between positions. 

As an illustration, Figure 1.49 shows the symbol for a 3/2 valve with 
solenoid activation and return by means of a spring. Thus, when the 
solenoid is not activated by a current through it, the signal port 2 is 
connected to the exhaust 3 and so is at atmospheric pressure. When the 
solenoid is activated, the pressure supply P is connected to the signal port 
2 and thus the output is pressurised. 

2(A) 

T' T 
l(P) 

(a) 2/2 valve 
Initially no flow 1 to 
2, switched to flow 
from 1 to 2 

1. 

T ,, 

i' 2(A) 

I(P) 

(b) 2/2 valve 
Initially flow from 1 
to 2, switched to 
no flow from 1 to 2 

) 2 ) 4(A)~,.. 2(B) 

I I 
I(P) 3(R) I(P) 3(R) I(P) 3(R) 

(c) 3/2 valve (d) 3/2 valve (e) 4/2 valve 
Initially no flow from Initially flow from 1 to Initially flow from 1 to 
1 to 2, but flow from 2 and 3 closed. 4 and from 2 to 3. 
2 to 3. Switched to Switched to no flow Switched to flow 
flow from 1 to 2 and from 1 and flow from 4 to 3 and 
3 closed from 2 to 3 from 1 to 2 

4 2(B) 

5(R) I(P) 3(S) 

(f) 5/2 valve 
Initially flow from 1 to 
4 and from 2 to 3, 5 
closed. Switched to 
flow from 1 to 2 and 
from 4 to 5, 3 closed 

4( ) 

I I I 
5(R) I(P) 3(S) 

(g) 5/3 valve 
Initially flow from 1 to 2 and 4, 
5 and 3 closed. Switched to 
flow from 1 to 4, 2 to 3, 5 
closed for one position. Switched 
to flow from 1 to 2, 4 to 5, 3 
closed for other position 

I I I  
5(a) l(PI 3(s) 

(h) 5/3 valve 
Initially all ports closed. 
Switched to 1 to 4, 2 to 3, 
5 closed for one position. 
Switched to flow from 1 to 2, 
4 to 5, 3 closed for other 
position 

Figure 1.47 Commonly used direction valves: P or I indicates the pressure supply ports, R and S or 3 and 5 
the exhaust ports, A and B or 2 and 4 the signal output ports 
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Figure 1.48 Examples o f  valve actuation methods 

By pneumatic 

pressure 
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I (P) 3(R) 

Figure 1.49 Symbol for a 

solenoid-activated valve with 
return spring 

Figure 1.50 shows how such a valve might be used to cause the piston 
in a single-acting cylinder to move; the term single-acting is used when a 
pressure signal is applied to only one side of the piston. When the switch 
is closed and a current passes through the solenoid, the valve switches 
position and pressure is applied to extend the piston in the cylinder. 

Figure 1.51 shows how a double-solenoid activated valve can be used 
to control a double-acting cylinder. Momentary closing switch S 1 causes 
a current to flow through the solenoid at the left-hand end of the valve 
and so result in the piston extending. On opening S 1 the valve remains 
in this extended position until a signal is received by the closure of 
switch $2 to activate the fight-hand solenoid and return the piston. 

l ' v v l  

12V 
d.:. T- 

(b) 

[ A 4[ 
I~/~1 

IV v 

12V 

I I T 0 

Symbol for 
exhaust to 
atmosphere 

( ~  Symbol for 
pressure 
supply 

Figure 1.50 Control of a single-acting cylinder: (a) before solenoid activated, (b) when solenoid activated 
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[ 
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i 

Figure 1.52 Flow controlled 
by movement of a plug 

,~r I r  

1 

Yo 
S' 

o 12V 
o d.c. 

Figure 1.51 Control of a double-acting cylinder 

1.6.2 Flow control valves 

In many control systems the rate of flow of a fluid along a pipe is 
controlled by a valve which uses pneumatic action to move the valve 
stem and hence a plug in the flow path (Figure 1.52), so altering the size 
of the gap through which the fluid can flow. The movement of the stem 
results from the use of a diaphragm moving against a spring and 
controlled by air pressure (Figure 1.53). The air pressure from the 
controller exerts a force on one side of the diaphragm, the other side of 
the diaphragm being at atmospheric pressure, which is opposed by the 
force due to the spring on the other side. When the air pressure changes 
then the diaphragm moves until there is equilibrium between the forces 
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i,[signal inp at 

iaphragm 
~ l  "~ Spring 

I 
Valve stem (a) 
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I 
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------] Spring 
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Valve stem 

Figure 1.53 (a) Direct action, 
(Io) reverse action 
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Figure 1.55 
on flow 

Effect of  plug shape 

resulting from the pressure and those from the spring. Thus the pressure 
signals from the controller result in the movement of the stem of the 
valve. Tile difference between the direct and reverse forms in Figure 1.53 
is the position of the spring. 

There are many forms of valve body and plug. The selection of the 
form of body and plug determine the characteristic of the control valve, 
i.e. the relationship between the valve stem position and the flow rate 
through it. For example, Figure 1.54 shows how the selection of plug can 
be used to determine whether the valve closes when the controller air 
pressure increases or opens when it increases and Figure 1.55 shows how 
the shape of the plug determines how the rate of flow is related to the 
displacement of the valve stem: linear plug - change in flow rate 
proportional to the change in valve stem displacement; quick-opening 
p lug -  a large change in flow rate occurs for a small movement of the 
valve stem; equal percentage p lug -  the amount by which the flow rate 
changes is proportional to the value of the flow rate when the change 
occurs. 

I Air pressure 
i~iignal input 

) Di 
< 

> 
< 

> 
< 

Diaphragm 

Spring 

< 

J 
Valve stem 

Air pressure 
l; 'ignal input 

> 

~ iaphragm 
< 
< < ~ ~*~ Spring 

I Valve stem 

-A___ t - "  
r'----.. Valve plug Valve plug 

Figure 1.54 Direct action: (a) air pressure increase to close, (b) air 
pressure increase to open 

1.6.3 D.c. motors 

D.c. motors are widely used with control systems. In the d.c. motor, coils 
of wire are mounted in slots on a cylinder of magnetic material called the 
armature. The armature is mounted on beatings and is free to rotate. It is 
mounted in the magnetic field produced by f ield poles. This magnetic 
field might be produced by permanent magnets or an electromagnet with 
its magnetism produced by a current passing through the, so-termed, 
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Figure 1.56 (a) Series, (b) 
shunt, (c) compound, (d) 
separately wound 

o I-- nt 

Series ~ ,  

Angular speed 

Figure 1.57 Torque-speed 
characteristics of  d.c. motors 

field coils. Whether permanent magnet or electromagnet, these generally 
form the outer casing of the motor and are termed the stator. 

For a d.c. motor with the field provided by a permanent magnet, the 
direction of rotation of the motor can be changed by reversing the current 
in the armature coil. The speed of rotation of such a motor can be 
changed by changing the size of the current to the armature coil. 

D.c. motors with field coils are classified as series, shunt, compound 
and separately excited according to how the field windings and armature 
windings are connected. With the series-wound motor the armature and 
fields coils are in series (Figure 1.56(a)). Such a motor exerts the highest 
starting torque and has the greatest no-load speed. However, with light 
loads there is a danger that a series-wound motor might run at too high a 
speed. Reversing the polarity of the supply to the coils has no effect on 
the direction of rotation of the motor, since both the current in the 
armature and the field coils are reversed. With the shunt-wound motor 
(Figure 1.56(b)) the armature and field coils are in parallel. It provides 
the lowest starting torque, a much lower no-load speed and has good 
speed regulation. It gives almost constant speed regardless of load and 
thus shunt wound motors are very widely used. To reverse the direction 
of rotation, either the armature or field current can be reversed. The 
compound motor (Figure 1.56(c)) has two field windings, one in series 
with the armature and one in parallel. Compound-wound motors aim to 
get the best features of the series and shunt-wound motors, namely a 
high starting torque and good speed regulation. The separately excited 
motor (Figure 1.56(d)) has separate control of the armature and field 
currents. The direction of rotation of the motor can be obtained by 
reversing either the armature or the field current. Figure 1.57 indicates 
the general form of the torque-speed characteristics of the above motors. 
The separately excited motor has a torque-speed characteristic similar to 
the shunt wound motor. The speed of such d.c. motors can be changed by 
either changing the armature current or the field current. Generally it is 
the armature current that is varied. 

The choice of d.c. motor will depend on what it is to be used for. 
Thus, for example, with a robot manipulator the robot wrist might use a 
series-wound motor because the speed decreases as the load increases. A 
shunt-wound motor might be used if a constant speed was required, 
regardless of the load. 

1.6.4 Stepper motor 

The stepper or stepping motor produces rotation through equal angles, 
the so-called steps, for each digital pulse supplied to its input. For 
example, if with such a motor 1 input pulse produces a rotation of 1.8 ~ 
then 20 input pulses will produce a rotation through 36.0 ~ , 200 input 
pulses a rotation through one complete revolution of 360 ~ It can thus be 
used for accurate angular positioning. By using the motor to drive a 
continuous belt, the angular rotation of the motor is transformed into 
linear motion of the belt and so accurate linear positioning can be 
achieved. Such a motor is used with computer printers, x-y plotters, 
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robots, machine tools and a wide variety of instruments for accurate 
positioning. 

There are two basic forms of stepper motor, the permanent magnet 
type with a permanent magnet rotor and the variable reluctance type 
with a soft steel rotor. Both form of stepper motor have a stator with a 
number of diametrically opposite pairs of poles, each wound with a coil. 
Figure 1.58 shows the permanent magnet type with two pairs of stator 
poles. Each pole is activated by a current being passed through tile 
appropriate field winding, the coils being such that opposite poles are 
produced on opposite coils. The current is supplied from a d.c. source to 
the windings through switches. With the currents switched through the 
coils such that the poles are as shown in Figure 1.58, the rotor will move 
to line up with the next pair of poles and stop there. This would be, for 
Figure 1.58, an angle of 45 ~ . If the current is then switched so that the 
polarities are reversed, the rotor will move a step to line up with the next 
pair of poles, at angle 135 ~ and stop there. The polarities associated with 
each step are: 

Step Pole 1 Pole 2 Pole 3 Pole 4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 North South North South 

2 South North North South 

3 South North South North 

4 North South South North 

5 Repeat of steps 1 to 4 

There are thus, in this case, four possible rotor positions" 45 ~ , 135 ~ , 225 ~ 
and 315 ~ Note that the term phase is used for the number of independent 
windings on the stator. 

Po,  

Pole 4 

,,,~le 3 

ole 2 

Figure 1.58 The basic principles of the permanent magnet stepper motor 
(2-phase) with a rotor giving 90 ~ steps 
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energised by current 
being switched to them 

Figure 1.59 Basic principles of  a 
3-phase variable reluctance 
stepper motor 

Figure 1.59 shows the basic form of the variable reluctance type of 
stepper motor. With this form the rotor is made of soft steel and is not a 
permanent magnet. The rotor has a number of teeth, the number being 
less than the number of poles on the stator. When an opposite pair of 
windings on stator poles has current switched to them, a magnetic field 
is produced with lines of force which pass from the stator poles through 
the nearest set of teeth on the rotor. Since lines of force can be 
considered to be rather like elastic thread and always trying to shorten 
themselves, the rotor will move until the rotor teeth and stator poles line 
up. This is termed the position of minimum reluctance. Thus by 
switching the current to successive pairs of stator poles, the rotor can be 
made to rotate in steps. With the number of poles and rotor teeth shown 
in Figure 1.59, the angle between each successive step will be 30 ~ . The 
angle can be made smaller by increasing the number of teeth on the 
rotor. 

To drive a stepper motor, so that it proceeds step-by-step to provide 
rotation, requires each pair of stator coils to be switched on and off in the 
required sequence when the input is a sequence of pulses. Driver circuits 
are available to give the correct sequencing and Figure 1.60 shows an 
example. The stepper motor will rotate through one step each time the 
trigger input goes from low to high. The motor runs clock~se when the 
rotation input is low and anticlock~se when high. When the set pin is 
made low the output resets. In a control system, these input pulses might 
be supplied by a microprocessor. 

Trigger 
y 

Rotation 

Set 

Supply voltage +12 V 
G , l h  - . .  A 

15 14 4 13 6 

8 
3 SAA1027 9 

2 11 
5 12 

I Brown 

I Black 

I Green 
,,, ] Yellow 

A 

A 

Stepper motor with 
its four stator coils 

Red l 

Red T 

Figure 1.60 Driver circuit SAA 1027for a 12 V 4-phase stepper motor 

1.7 C o n t r o l  s y s t e m s  The following are examples of closed-loop control systems to illustrate 
how, despite the different forms of control being exercised, the systems 
all have the same basic structural elements. 
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1.7.1 Control of the speed of rotation of a motor shaft 

Consider the motor system shown in Figure 1.61 for the control of the 
speed of rotation of the motor shaft and its block diagram representation 
in Figure 1.62. The input of the required speed value is by means of the 
setting of the position of the movable contact of the potentiometer. This 
determines what voltage is supplied to the comparison element, i.e. the 
differential amplifier, as indicative of the required speed of rotation. The 
differential amplifier produces an amplified output which is proportional 
to the difference between its two inputs. When there is no difference then 
the output is zero. The differential amplifier is thus used to both compare 
and implement the control law. The resulting control signal is then fed to 
a motor which adjusts the speed of the rotating shaft according to the 
size of the control signal. The speed of the rotating shaft is measured 
using a tachogenerator, this being connected to the rotating shaft by 
means of a pair of bevel gears. The signal from the tachogenerator gives 
the feedback signal which is then fed back to the differential amplifier. 

Comparison and signal processing 
to give control signal proportional Control 
to error ~ signal 

to motor 
Potentiometer 
to give a 

voltage signal Differential 
for the set T ! amplifier 
value of 
speed ~ , 

Feedbac 

Motor as the 
Bevel correction gear, to 

element hive_ 
Output of the system: 
the rotating shaft 
m 

__0 

Tachogenerator for 
measurement of speed 
of rotation of shaft; 
it gives an output voltage 
proportional to the speed 

Figure 1.61 Control of the speed of rotation of a shaft 
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potentiomete~" ............................................................... 
setting 
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Figure 1.62 Control of  the speed of rotation of a shaft 
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Figure 1.63 Position control system 

Belt drive 

() 

~ Tool 

Potentiometer for 
position measurement 

Controller: microprocessor + ADC for signal processing 

} Comparison ii I 

' n p u t + ~ ~  E~  Control t~~l ~ 
Set value law 

by the i~ rror i 
potentiometer ........................................................ 
setting 

Feedback 

Correction element 

Driver ~ '  

Tool 

'"1 Stepper t Output + belt -----Ib Process ,,~ 
Position 
of 
workpiece 

Measurement [~' 
r Potentiometer 

Figure 1.64 Position control system 

1.7.2 Control of the position of a tool 
Figure 1.63 shows a position control system using a belt driven by a 
stepper motor to control the position of a tool and Figure 1.64 its block 
diagram representation. The inputs to the controller are the required 
position voltage and a voltage giving a measure of the position of the 
workpiece, this being provided by a potentiometer being used as a 
position sensor. Because a microprocessor is used as the controller, these 
signals have to be processed to be digital. The output from the controller 
is an electrical signal which depends on the error between the required 
and actual positions and is used, via a drive unit, to operate a stepper 
motor. Input to the stepper motor causes it to rotate its shaft in steps, so 
rotating the belt and moving the tool. 

1.7.3 Power steering 
Control systems are used to not only maintain some variable constant at 
a required value but also to control a variable so that it follows the 
changes required by a variable input signal. An example of such a 
control system is the power steering system used with a car. Tiffs comes 
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into operation whenever fl~e resistance to turning the steering wheel 
exceeds a predetermined amount and enables the movement of the 
wheels to follow the dictates of the angular motion of the steering wheel. 
The input to the system is the angular position of the steering wheel. 
This mechanical signal is scaled down by gearing and has subtracted 
from it a feedback signal representing the actual position of the wheels. 
This feedback is via a mechanical linkage. Thus when the steering wheel 
is rotated and there is a difference between its position and the required 
position of the wheels, there is an error signal. The error signal is used to 
operate a hydraulic valve and so provide a hydraulic signal to operate a 
cylinder. The output from the cylinder is then used, via a linkage, to 
change the position of the wheels. Figure 1.65 shows a block diagram of 
the system. 

Controller Correction elements Process 
. , ,  

Ang ular~lnput ~ Gear ContrOlvalve --~ Cylinder ~ Linkage--~ Wheels - -  

position 
of steering Feedback 
wheel Negative feedback linkage Measurement 

Output 

Angular 
position 
of wheels 

Figure 1.65 Power assisted steering 

1.7.4 Control of fuel pressure 

The modem car involves many control systems. For example, there is the 
engine management system aimed at controlling the amount of fuel 
injected into each cylinder and the time at which to fire the spark for 
ignition. Part of such a system is concerned with delivering a constant 
pressure of fuel to the ignition system. Figure 1.66(a) shows the elements 
involved in such a system. The fuel from the fuel tank is pumped 
through a filter to the injectors, the pressure in the fuel line being 
controlled to be 2.5 bar ( 2.5 x 0.1 MPa) above the manifold pressure by 
a regulator valve. Figure 1.66(b) shows the principles of such a valve. It 
consists of a diaphragm which presses a ball plug into the flow path of 
tile fuel. The diaphragm has the fuel pressure acting on one side of it and 
on the other side is the manifold pressure and a spring. If the pressure is 
too high, the diaphragm moves and opens up tile return path to the fuel 
tank for the excess fuel, so adjusting the fuel pressure to bring it back to 
the required value. 

The pressure control system can be considered to be represented by the 
closed loop system shown in Figure 1.67. The set value for the pressure 
is determined by the spring tension. The comparator and control law is 
given by the diaphragm and spring. The correction element is the ball in 
its seating and the measurement is given by the diaphragm. 
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Figure 1.66 (a) Fuel supply system, (b) fuel pressure regulator 
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Figure 1.67 Fuel supply control system 
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1.7.5 Antilock brakes 

Another example of a control system used with a car is the antilock 
brake system (ABS). If one or more of the vehicle's wheels lock, i.e. 
begins to skid, during braking, then braking distance increases, steering 
control is lost and tyre wear increases. Antilock brakes are designed to 
eliminate such locking. The system is essentially a control system which 
adjusts the pressure applied to the brakes so that locking does not occur. 
This requires continuous monitoring of the wheels and adjustments to 
the pressure to ensure that, under the conditions prevailing, locking does 
not occur. Figure 1.68 shows the principles of such a system. 

The two valves used to control the pressure are solenoid-operated 
valves, generally both valves being combined in a component termed the 
modulator. When the driver presses the brake pedal, a piston moves in a 
master cylinder and pressurises the hydraulic fluid. This pressure causes 
the brake calliper to operate and the brakes to be applied. The speed of 
the wheel is monitored by means of a sensor. When the wheel locks, its 
speed changes abruptly and so the feedback signal from tile sensor 
changes. This feedback signal is fed into the controller where it is 
compared with what signal might be expected on the basis of data stored 
in the controller memory. The controller can then supply output signals 
which operate the valves and so adjust the pressure applied to the brake. 
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Figure 1.68 Antilock brakes: (a) schematic diagram, (b) block form of the control system 

1.7.6 Thickness control 

As an illustration of a process control system, Figure 1.69 shows the type 
of system that might be used to control the thickness of sheet produced 
by rollers, Figure 1.70 showing the block diagram description of the 
system. The thickness of the sheet is monitored by a sensor such as a 
linear variable differential transformer (LVDT). The position of the 
LVDT probe is set so that when the required thickness sheet is produced, 
there is no output from the LVDT. The LVDT produces an alternating 
current output, the amplitude of which is proportional to the error. This 
is then converted to a d.c. error signal which is fed to an amplifier. The 
amplified signal is then used to control the speed of a d.c. motor, 
generally being used to vary the armature current. The rotation of the 
shaft of the motor is likely to be geared down and then used to rotate a 
screw which alters the position of the upper roll, hence changing the 
thickness of the sheet produced. 

D.C. motor 

with armature 

current 

controlled 

A.C to D.C. converter 

~ o  Amplifie~.~r ~ 
ear reducer 

Col~ntr~ ~ [ ~ ~  

' ~  Fixed roll 

Figure 1.69 Sheet thickness control system 
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Sheet 
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Figure 1.70 Sheet thickness control system 

1.7.7 Control of liquid level 

Figure 1.71 shows a control system used to control the level of liquid in a 
tank using a float-operated pneumatic controller, Figure 1.72 showing a 
block diagram of the system. When the level of the liquid in the tank is 
at tile required level and the inflow and outflows are equal, then the 
controller valves are both closed. If there is a decrease in the outflow of 
liquid from the tank, the level rises and so the float rises. This causes 
point P to move upwards. When this happens, the valve connected to the 
air supply opens and the air pressure in the system increases. This causes 
a downward movement of the diaphragm in the flow control valve and 
hence a downward movement of the valve stem and the valve plug. This 
then results in the inflow of liquid into the tank being reduced. The 
increase in the air pressure in the controller chamber causes the bellows 
to become compressed and move that end of the linkage downwards. 
This eventually closes off the valve so that the flow control valve is held 
at the new pressure and hence the new flow rate. 

t Air supply Air vent 

i ....... 
Bellows 

Diaphragm 

 ,ow 
control 
w ve 

---1 .... __.~1 
Inflow Outflow 

Figure 1.71 Level control system 
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Figure 1.72 Level control system 

If there is an increase in the outflow of liquid from the tank, the level 
falls and so the float falls. This causes point P to move downwards. 
When this happens, the valve connected to the vent opens and the air 
pressure in the system decreases. This causes an upward movement of 
the diaphragm in the flow control valve and hence an upward movement 
of the valve stem and the valve plug. This then results in the inflow of 
liquid into the tank being increased. The bellows react to this new air 
pressure by moving its end of the linkage, eventually closing off the 
exhaust and so holding the air pressure at the new value and the flow 
control valve at its new flow rate setting. 

Pivot 

Spring 

Figure 1.73 
gripper 

An example of a 

1.7.8 Robot gripper 

The term robot is used for a machine which is a reprogrammable 
multi-function manipulator designed to move tools, parts, materials, etc. 
through variable programmed motions in order to carry out specified 
tasks. Here just one aspect will be considered, the gripper used by a robot 
at the end of its ann to grip objects. A common form of gripper is a 
device which has 'fingers' or 'jaws'. The gripping action then involves 
these clamping on the object. Figure 1.73 shows one form such a gripper 
can take if two gripper fingers are to close on a parallel sided object. 
When the input rod moves towards the fingers they pivot about their 
pivots and move closer together. When the rod moves outwards, the 
fingers move further apart. Such motion needs to be controlled so that 
the grip exerted by the fingers on an object is just sufficient to grip it, too 
little grip and the object will fall out of the grasp of the gripper and too 
great might result in the object being crushed or otherwise deformed. 
Thus there needs to be feedback of the forces involved at contact between 
the gripper and the object. Figure 1.74 shows the type of closed-loop 
control system involved. 
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Controller ~-~ Amplifier ~ Servovalve ~-[ 'Gripper- 
load system 

Force 
measurement 
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Object 
picked up 
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contact forces 

Figure 1.74 Gripper control system 
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The drive system used to operate the gripper can be electrical, 
pneumatic or hydraulic. Pneumatic drives are very widely used for 
grippers because they are cheap to install, the system is easily maintained 
and the air supply is easily linked to the gripper. Where larger loads are 
involved, hydraulic drives can be used. Sensors that might be used for 
measurement of the forces involved are piezoelectric sensors or strain 
gauges. Thus when strain gauges are stuck to the surface of the gripper 
and forces applied to a gripper, the strain gauges will be subject to strain 
and give a resistance change related to the forces experienced by the 
gripper when in contact with the object being picked up. 

The robot arm with gripper is also likely to have further control loops 
to indicate when it is in the fight position to grip an object. Thus the 
gripper might have a control loop to indicate when it is in contact with 
the object being picked up; the gripper can then be actuated and the force 
control system can come into operation to control the grasp. The sensor 
used for such a control loop might be a microswitch which is actuated by 
a lever, roller or probe coming into contact with the object. 

1.7.9 Machine tool control 

Machine tool control systems are used to control the position of a tool or 
workpiece and the operation of the tool during a machining operation. 
Figure 1.75 shows a block diagram of tile basic elements of a closed-loop 
system involving tile continuous monitoring of the movement and 
position of tile work tables on which tools are mounted while the 
workpiece is being machined. The amount and direction of movement 
required in order to produce tile required size and form of workpiece is 
the input to the system, this being a program of instructions fed into a 
memory which then supplies the information as required. The sequence 
of steps involved is then: 

1 An input signal is fed from the memory store. 

2 The error between this input and the actual movement and position 
of the work table is the error signal which is used to apply the 
correction. This may be an electric motor to control file movement of 
the work table. The work table then moves to reduce the error so that 
the actual position equals the required position. 

3 The next input signal is fed from the memory store. 

4 Step 2 is then repeated. 

5 The next input signal is fed from the memory store and so on. 

Input ,~ Memory 
of program t ..... 
of instructions 
regarding 
required positions 

~ Controller drive tool system 

Measurement of 
work table position 

Figure 1.75 Closed loop machine tool control system 

Output 

Correctly 
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1.7.10 An automatic drill 

As an illustration of the type of control that might be used with a 
machine consider the system for a drill which is required to 
automatically drill a hole in a workpiece when it is placed on the work 
table (Figure 1.76). A switch sensor can be used to detect when the 
workpiece is on the work table. This then gives an on input signal to the 
controller and it then gives an output signal to actuate a motor to lower 
the drill head and commence drilling. When the drill reaches the full 
extent of its movement in the workpiece, the drill head triggers another 
switch sensor. This provides an on input to the controller and it then 
reverse the direction of rotation of the drill head motor and the drill 
retracts. This is an example of closed-loop discrete-event control 

1.7.11 Microprocessor-controlled systems 

The control system used in many modem consumer products, e.g. in a 
modem motor car or a modem washing machine, to exercise control is 
likely to be a microprocessor-based system. The controller is then 
basically as shown in Figure 1.77. It compares the input from a sensor 
with what is required and then, using a control law determined by the 
program stored in its memory, gives an output to a correction element. 

Inputs 
from 

measurement 
sensors 

!i In ut Micro- Output �9 ii P i---I~ to correction 
!i circuits processor circuits ~ elements 

. 

[ Power supply ] i 

Figure 1.77 Microprocessor-based controller 

P r o b l e m s  1 Consider the following as systems and indicate the input and output 
from each when considered as an entity: (a) a calculator, (b) a 
loudspeaker, (c) a radio. 

2 Explain the difference between open- and closed-loop control 
systems. 

3 Identify the basic functional elements that might be used in the 
closed-loop control systems involved in: 
(a) A temperature-controlled water bath. 
(b) A speed-controlled electric motor. 
(c) Rollers in a steel strip mill being used to maintain a constant 
thickness of strip steel. 

4 Draw a block diagram of a domestic central heating system which 
has the following elements: 
(a) A thermostat which has a dial which is set to the required 
temperature and has an input of the actual temperature in the house 
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Figure 1.82 Problem 9 

and which operates as a switch and gives an output electrical signal 
which is either on or off. 
(b) A solenoid valve which has the input of the electrical signal from 
the thermostat and controls the flow of oil to the central heating 
fumace. 
(c) A heating furnace where the input is the flow of oil and the 
output is heat to the rooms via water flowing through radiators in 
the house. 
(d) The rooms in the house where the input is the heat from the 
radiators and the output is the temperature in the rooms. 

5 Figure 1.78 shows a temperature control system and Figure 1.79 a 
water level control system. Identify the basic functional elements of 
the systems. 

6 What will be the relationship between the output and the inputs for 
the summing elements represented in Figure 1.807 

x + Output x ~ + . ~ u t p u t  x + ~  + ~ O u t p u t  

(b) + ' Y  ( c ~ : ) ~  

Figure 1.80 Problem 6 

7 Suggest sensors that could be used with control systems to give 
measures of (a) tile temperature of a liquid, (b) whether a workpiece 
is on the work table, (c) the varying thickness of a sheet of metal, (d) 
the rotational speed of a motor shaft. 

8 For each of the valve symbols in Figure 1.81, state the method and 
outcomes of actuation. 

2(A) 

I(P) 3(R) (a) 

Figure 1.81 Problem 8 

2(A) 

(b) 1 (P) 3(R) 

9 State the outcomes of the pressing and then releasing of the 
push-buttons with regard to valves shown in Figure 1.82. 

10 Draw a block diagram for a negative-feedback system that might be 
used to control the level of light in a room to a constant value. 

11 Draw block diagrams which can be used to present the operation of 
a toaster when it is (a) an open-loop system, (b) a closed-loop 
system. 

12 Explain how a ball valve is used to control the level of water in a 
cistern. 
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2.1 Introduction 
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Figure 2.2 (a) The spring 
system with a constant load 
applied at some instant of time, 
(b) the step showing how the 
input varies with time, (c) the 
output showing how it varies 
with time for the step input 

Suppose we have a control system for the temperature in a room. How 
will the temperature react when the thermostat has its set value increased 
from, say, 20~ to 22~ In order to determine how the output of a 
control system will react to different inputs, we need a mathematical 
model of the system so that we have an equation describing how the 
output of the system is related to its input. 

Thus, in the case of an amplifier system (Figure 2.1) we might be able 
to use the simple relationship that the output is always 10 times the 
input. If we have an input of a 1 V signal we can calculate that the 
output will be 10 V. This is a simple model of a system where the input 
is just multiplied by a gain of 10 in order to give the output. This chapter 
starts off with a discussion of this simple model of a system. 

However, if we consider a system representing a spring balance with 
an input of a load signal and an output of a deflection (Figure 2.2) then, 
when we have an input to the system and put a fixed load on the balance 
(this type of input is known as a step input because the input variation 
with time looks like a step), it is likely that it will not instantaneously 
give the weight but the pointer on the spring balance will oscillate for a 
little time before settling down to the weight value. Thus we cannot just 
state, for an input of some constant load, that the output is just the input 
multiplied by some constant number but need some way of describing an 
output which varies with time. With an electrical system of a circuit with 
capacitance and resistance, when the voltage to such a circuit is switched 
on, i.e. there is a constant voltage input to the system, then the current 
changes with time before eventually settling down to a steady value. 
With a temperature control system, such as that used for the central 
heating system for a house, when the thermostat is changed from 20~ to 
22~ the output does not immediately become 22~ but there is a change 
with time and eventually it may become 22~ In general, the 
mathematical model describing the relationship between input and 
output for a system is likely to involve terms which give values which 
change with time and are described by a differential equation (see 
Appendix A). In this chapter we look at how such differential equation 
relationships arise. 

In order to make life simple, what we need is a simple relationship 
between input and output for a system, even when the output varies with 
time. It is nice and simple to say that the output is just ten times the 
input and so describe the system by gain = 10. There is a way we can 
have such a simple form of relationship where the relationslfip involves 
time but it involves writing inputs and outputs in a different form. It is 
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called the Laplace transform. In this chapter we will consider how we 
can carry out such transformations, but not the mathematics to justify 
why we can do it; the aim is to enable you to use the transform as a tool 
to carry out tasks. Appendix B gives an explanation of the mathematics 
behind the transform and the way it is used. 

2.2 Gain 

LG1 

(a) 

(b) 

Figure 2.3 (a) Two systems 
in series, (b) the equivalent 
system with a gain equal to 
the product of the gains of 
the two constituent systems 

In the case of an amplifier system we might have the output directly 
proportional to the input and, with a gain of 10, if we have an input of a 
1 V signal we can calculate that the output will be ten times greater and 
so 10 V. In general, for such a system where the output is directly 
proportional to the input, we can write: 

output = G x input 

with G being the gain. 

Example 

A motor has an output speed which is directly proportional to the 
voltage applied to its armature. If the output is 5 rev/s when the 
input voltage is 2 V, what is the system gain? 

With output = G x input, then G = 5/2 = 2.5 (rev/s)/V. 

2.2.1 Gain of systems in series 

Consider two systems, e.g. amplifiers, in series with the first having a 
gain Gt and the second a gain G2 (Figure 2.3(a)). The first system has an 
input of x~ and an output of y2 and thus: 

yl = G~xl 

The second system has an input of y~ and an output of y2 and thus: 

y2 = G~y~ = G2 x G~x~ 

The overall system has an input of x~ and an output of y2 and thus, if we 
represent the overall system as having a gain of G: 

y2 --- axl 

and so: 

G = Gl x G2 

Thus: 

For series-connected systems, the overall gain is the product of the 
gains of the constituent systems. 
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Example 

A system consists of an amplifier with a gain of 10 providing the 
armature voltage for a motor which gives an output speed which is 
proportional to the armature voltage, the constant of proportionality 
being 5 (rev/s)/V. What is the relationship between the input voltage 
to the system and the output motor speed? 

The overall gain G = G~ x G2 = 10 x 5 = 50 (rev/s)N. 

2.2.2 Feedback loops 

Consider a system with negative feedback (Figure 2.4). The output of the 
system is fed back via a measurement system with a gain H to subtract 
from the input to a system with gain G. 

The input to the feedback system is y and thus its output, i.e. the 
feedback signal, is Hy. The error is x - Hy. Hence, the input to the G 
system is x - Hy and its output y. Thus: 

y = G(x - Hy) 

and so: 

(1 + GH)y = Gx 

The overall input of the system is y for an input x and so the overall gain 
G of the system is y/x. Hence: 

system gain Y G 
- x -  I+GH 

For a system with a negative feedback, the overall gain is the 
forward path gain divided by one plus the product of  the forward 
path and feedback path gains. 

For a system with positive feedback (Figure 2.5), i.e. the fed back 
signal adds to the input signal, the feedback signal is Hy and thus the 
input to the G system is x + Hy. Hence: 

y = G(x + Hy) 

and so: 

(1 - GH)y = Gx 

system gain Y G 
- x -  1 - G H  

For a system with a positive feedback, the overall gain is the 
forward path gain divided by one minus the product o f  the forward 
path and feedback path gains. 
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Example 

A negative feedback system has a forward path gain of 12 and a 
feedback path gain of 0.1. What is the overall gain of the system? 

G 12 = 5.45 System gain = 1 + GH = 1 + 0.1 x 12 

2.2.3 The feedback amplifier 

Figure 2.6 shows the circuit of a basic feedback amplifier. It consists of 
an operational amplifier with a potential divider of two resistors R~ and 
R2 connected across its output. The output from this potential divider is 
fed back to the inverting input of the amplifier. The input to the 
amplifier is via its non-inverting input. Thus the sum of the inverted 
feedback input and the non-inverted input is the error signal. The op 
amp has a very high voltage gain G. Thus GH, H being the gain of the 
feedback loop, is very large compared with 1 and so the overall system 
gain is: 

G G 1 
system gain = 1 + GH - GH - H 

Since the gain G of the op amp can be affected by changes in 
temperature, ageing, etc. and thus can vary, the use of the op amp with a 
feedback loop means that, since H is just made up of resistances which 
are likely to be more stable, a more stable amplifier system is produced. 
The feedback loop gain H is the fraction of the output signal fed back 
and so is RI/(R~ + R2). Hence, the overall gain of the system is: 

system gain = R2 + R~ 
R1 

Example 

What is the overall gain of a non-inverting feedback op amp, 
connected as in Figure 2.6, if the op amp has a voltage gain of 
200 000, R~ = 1 k~ and R2 = 49 k~? 

The overall system gain is independent of the voltage gain of the op 
amp and is given by (R~ + R2)/R~ = 50/1 = 50. 

2.3 Dynamic systems The following describes how we can arrive at the input-output 
relationships for systems by representing them by simple models 
obtained by considering them to be composed of just a few simple basic 
elements. 

2.3.1 Mechanical systems 

Mechanical systems, however complex, have stiffness (or springiness), 
damping and inertia and can be considered to be composed of basic 
elements which can be represented by springs, dashpots and masses. 
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Spring 
The 'springiness' or 'stiffness' of a system can be represented by a 
spring. For a linear spring (Figure 2.7(a)), the extension y is 
proportional to the applied extending force F and we have: 

F=@ 

where k is a constant termed the stiffness. 

Dash pot 
The 'damping' of a mechanical system can be represented by a 
dashpot. This is a piston moving in a viscous medium in a cylinder 
(Figure 2.7(b)). Movement of tile piston inwards requires the 
trapped fluid to flow out past edges of the piston; movement 
outwards requires fluid to flow past the piston and into the enclosed 
space. The resistive force F which has to be overcome is 
proportional to the velocity of the piston and hence the rate of 
change of displacement y with time, i.e. dy/dt. Thus: 

F=cd-~ 

where c is a constant. 

Mass 
The 'inertia' of a system, i.e. how much it resists being accelerated 
can be represented by mass. For a mass m (Figure 2.7(c)), the 
relationship between the applied force F and its acceleration a is 
given by Newton's second law as F = ma. But acceleration is the rate 
of change of velocity v with time t, i.e. a = dv/dt, and velocity is the 
rate of change of displacement y with time, i.e. v = dy/dt. Thus a = 
d(dy/dt)/dt and so we can write: 

F=m dt 2 

The following example illustrates how we can arrive at a model for a 
mechanical system. 

Example 
Derive a model for the mechanical system given in Figure 2.8(a). 
The input to the system is the force F and the output is the 
displacement y. 

To obtain the system model we draw free-body diagrams, these 
being diagrams of masses showing just the external forces acting on 
each mass. For the system in Figure 2.8(a) we have just one mass 
and so just one free-body diagram and that is shown in Figure 
2.8(b). As the free-body diagram indicates, the net force acting on 
the mass is the applied force minus the forces exerted by the spring 
and by the dashpot: 
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Figure 2.9 Rotational system 
elements: (a) torsional spring, 
(b) rotational dashpot, (c) 
moment of  inertia 

net force = F -  ky-  c--~t 

Then applying Newton's second law, this force must be equal to ma, 
where a is the acceleration, and so: 

m---~T = F -  k y -  c - ~  

The relationship between the input F to the system and the output y 
is thus described by the second-order differential equation: 

dZy dy 
m--d-ff + c---~ + ky = F 

The term second-order is used because the equation includes as its 
highest derivative d2y/dt 2. 

2.3.2 Rotational systems 

For rotational systems the basic building blocks are a torsion spring, a 
rotary damper and the moment of inertia (Figure 2.9). 

Torsional spring 
The 'springiness' or 'stiffness' of a rotational spring is represented 
by a torsional spring. For a torsional spring, the angle 0 rotated is 
proportional to the torque T: 

T = kO 

where k is a measure of the stiffness of the spring. 

Rotational dashpot 
The damping inherent in rotational motion is represented by a 
rotational dashpot. For a rotational dashpot, i.e. effectively a disk 
rotating in a fluid, the resistive torque T is proportional to the 
angular velocity co and thus: 

T= coo = c~t0 

where c is the damping constant. 

lnertia 
The inertia of a rotational system is represented by the moment of 
inertia of a mass. A torque T applied to a mass with a moment of 
inertia I results in an angular acceleration a and thus, since angular 
acceleration is the rate of change of angular velocity co with time, 
i.e. dco/dt, and angular velocity co is the rate of change of angle with 
time, i.e. d0/dt, then the angular acceleration is d(dO/dt)/dt and so: 

dZO 
T= Ia = I d t  2 
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The following example illustrates how we can arrive at a model for a 
rotational system. 

(a) 

(b) 

Figure 2.10 Example 
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Figure 2.11 Electrical 
system building blocks 

Example 

Develop a model for the system shown in Figure 2.10(a) of the 
rotation of a disk as a result of twisting a shaft. 

Figure 2.10(b) shows the free-body diagram for the system. The 
torques acting on the disk are the applied torque T, the spring torque 
kO and the damping torque coo. Hence: 

--•  d20 
T -  kO - c = I dt 2 

We thus have the second-order differential equation relating the 
input of the torque to the output of the angle of twist: 

I d20 - ~  
dt 2 + c + kO = T 

2.3.3 Electrical systems 

The basic elements of electrical systems are the resistor, inductor and 
capacitor (Figure 2.11). 

Resistor 
For a resistor, resistance R, the potential difference v across it when 
there is a current i through it is given by: 

v = Ri 

Inductor 
For an inductor, inductance L, the potential difference v across it at 
any instant depends on the rate of change of current i and is" 

v=Ld--~ 

Capacitor 
For a capacitor, the potential difference v across it depends on the 
charge q on the capacitor plates with v = q/C, where C is the 
capacitance. Thus: 

v = -~ q 

d__yv _ i d_.q.q 
d t -  C dt 

Since current i is the rate of movement of charge: 
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dv 1 dq 1. 
d t -  C dt - C t 

and so we can write: 

d v  i = C ~  

To develop the models for electrical circuits we use Kirchhoff's laws. 
These can be stated as: 

Kirchhoff's current law 
The total current flowing into any circuit junction is equal to the 
total current leaving that junction, i.e. the algebraic sum of the 
currents at a junction is zero. 

Kirchhoff's voltage law 
In a closed circuit path, termed a loop, the algebraic sum of the 
voltages across the elements that make up the loop is zero. This is 
the same as saying that for a loop containing a source of e.m.f., the 
sum of the potential drops across each circuit element is equal to the 
sum of the applied e.m.f.'s, provided we take account of their 
directions. 

The following examples illustrate the development of models for 
electrical systems. 

vc 

Figure 2.12 Electrical system 
with resistance and capacitance 

V R V 

t ~ T v vc 

Figure 2.13 Electrical system 
with resistance, inductance and 
capacitance 

Example 

Develop a model for the electrical system described by the circuit 
shown in Figure 2.12. The input is the voltage v when the switch is 
closed and the output is the voltage vc across the capacitor. 

Using Kirchhoff's voltage law gives: 

V = VR + VC 

and, since VR = Ri and i = C(dvc/dt) we obtain the equation: 

d v c  
v = R C - -  d -  +vc 

The relationship between an input v and the output Vc is a first order 
differential equation. The term first-order is used because it includes 
as its lfighest derivative dvc/dt. 

Example 

Develop a model for the circuit shown in Figure 2.13 when we have 
an input voltage v when the switch is closed and take an output as 
the voltage Vc across the capacitor. 
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Figure 2.14 (a) Thermal 
resistance, (b) thermal 
capacitance 

Applying Kirchhoff's voltage law gives: 

V= VR+VL+VC 

and so: 

v = Ri + L--~ + vc 

Since i = C(dvc/dO, then d//dt = C(d2vc/dt 2) and thus we can write: 

-dvc  d2vc 
v = R C ~  +LC dt 2 +VC 

The relationship between an input v and output Vc is described by a 
second order differential equation. 

2.3.4 Thermal systems 

Thermal systems have two basic building blocks, resistance and 
capacitance (Figure 2.14). 

Thermal resistance 
The thermal resistance R is the resistance offered to the rate of flow 
of heat q (Figure 2.14(a)) and is defined by: 

Tl - T2 
q=  R 

where T~ - T2 is the temperature difference through which the heat 
flows. 

For heat conduction through a solid we have the rate of flow of 
heat proportional to the cross-sectional area and the temperature 
gradient. Thus for two points at temperatures T1 and T2 and a 
distance L apart: 

q = Ak  Tl - T2 
L 

with k being the thermal conductivity. Thus with this mode of heat 
transfer, the thermal resistance R is L/Ak. For heat transfer by 
convection between two points, Newton's law of cooling gives: 

q = A h ( T ~  - T , )  

where (7'2- T~) is the temperature difference, h the coefficient of 
heat transfer and A the surface area across which the temperature 
difference is. The thermal resistance with this mode of heat transfer 
is thus 1/Ah. 
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Thermal capacitance 
The thermal capacitance (Figure 2.14(b)) is a measure of the store of 
internal energy in a system. If the rate of flow of heat into a system 
is q, and the rate of flow out q2 then the rate of change of internal 
energy of the system is q~ - q~. An increase in internal energy can 
result in a change in temperature: 

change in internal energy = mc x change in temperature 

where m is the mass and c the specific heat capacity. Thus the rate 
of change of internal energy is equal to mc times the rate of change 
of temperature. Hence: 

dT 
ql - q 2  =mc dt 

This equation can be written as: 

dT 
q l - q 2 = C  dI 

where the capacitance C = mc. 

The following examples illustrates the development of models for 
thermal systems. 

T T L 

Figure 2.15 Example 

Example 
Develop a model for the simple thermal system of a thermometer at 
temperature T being used to measure the temperature of a liquid 
when it suddenly changes to the higher temperature of TL (Figure 
2.15). 

When the temperature changes there is heat flow q from the liquid 
to the thermometer. The thermal resistance to heat flow from the 
liquid to the thermometer is: 

TL - T 
q -  R 

Since there is only a net flow of heat from the liquid to the 
thermometer the thermal capacitance of the thermometer is: 

dT 
q= C-if{ 

Substituting for q gives: 

c d T  TL - T 
d t -  R 

which, when rearranged gives: 
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R c  d-~ + T = TL 

This is a first-order differential equation. 

i r  

Figure 2.16 Example 

Rate of flow q 
\ 
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Pressure Pressure 
Pl P2 
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P2 --~_ ...? .: 
: �9 

Cross-section q 2 " 
areaA 

(b) Capacitance 

Mass of 
liquid m Cross-section 

area A 
(c) Inertance 

Figure 2.17 Hydraulic 
building blocks 

Example 

Determine a model for the temperature of a room (Figure 2.16) 
containing a heater which supplies heat at the rate q~ and the room 
loses heat at the rate q2. 

We will assume that the air in the room is at a uniform temperature 
T. If the air and furniture in the room have a combined thermal 
capacity C, since the energy rate to heat the room is q~ - q2, we have: 

ql -q2  = C  d_TT 
dt 

If the temperature inside the room is T and that outside the room To 
then 

T-T0 
q 2 -  R 

where R is the thermal resistance of the walls. Substituting for q2 
gives: 

T-To _ c d T  
q] R - dt 

Hence: 

Rc-d--~ + T = Rq~ +To 

This is a first-order differential equation. 

2.3.5 Hydraulic systems 

For a fluid system the three building blocks are resistance, capacitance 
and inertance; these are the equivalents of electrical resistance, 
capacitance and inductance. The equivalent of electrical current is the 
volumetric rate of flow and of potential difference is pressure difference. 
Hydraulic fluid systems are assumed to involve an incompressible liquid; 
pneumatic systems, however, involve compressible gases and 
consequently there will be density changes when the pressure changes. 
Here we will just consider the simpler case of hydraulic systems. Figure 
2.17 shows the basic form of building blocks for hydraulic systems. 

Hydraulic resistance 
Hydraulic resistance R is the resistance to flow which occurs when a 
liquid flows from one diameter pipe to another (Figure 2.17(a)) and 
is defined as being given by the hydraulic equivalent of Ohm's law: 



48 Control Systems 

pl - p2 = Rq 

Hydraulic  capacitance 
Hydraulic capacitance C is the term used to describe energy storage 
where the hydraulic liquid is stored in the form of potential energy 
(Figure 2.17(b)). The rate of change of volume V of liquid stored is 
equal to the difference between the volumetric rate at which liquid 
enters the container q~ and the rate at which it leaves q2, i.e. 

dV 
q l - q 2 -  tit 

But V = Ah and so: 

ql -q2  =A--~ 

The pressure difference between the input and output is: 

pl - p2 = p = hpg 

Hence, substituting for h gives: 

Adp 
q l - q 2 -  pg dt 

The hydraulic capacitance C is defined as: 

C A - p g  

and thus we can write: 

q l - q2 = C ~ -  

Hydraulic  inertance 
Hydraulic inertance is the equivalent of inductance in electrical 
systems. To accelerate a fluid a net force is required and this is 
provided by the pressure difference (Figure 2.17(c)). Thus: 

(pl - p 2 ) A  = ma = m - ~  

where a is the acceleration and so the rate of change of velocity v. 
The mass of fluid being accelerated is m = ALp  and the rate of flow 
q = A v  and so: 

(p l - p 2 )A = L P-~t t 

p l - p 2 = I d-~~ 
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-"1• ql 

h 

Figure 2.18 Example 

Cross-section 
areaA 

Valve 

where the inertance I is given by I = Lp/A. 

The following example illustrates the development of a model for a 
hydraulic system. 

Example 

Develop a model for the hydraulic system shown in Figure 2.18 
where there is a liquid entering a container at one rate q~ and 
leaving through a valve at another rate q2. 

We can neglect the inertance since flow rates can be assumed to 
change only very slowly. For the capacitance term we have: 

ql-q2=C--~t - Pg dp 

For the resistance of the valve we have: 

pl -p2 =Rql 

Thus, substituting for q2, and recognising that the pressure 
difference is hpg, gives: 

dh hpg 
q l =A-(t" { + R 

A ~ + P-~ff h = q~ 

This is a first-order differential equation. 

2.4 Differential equations As the previous section indicates, the relationship between the input and 
output for systems is often in the form of a differential equation which 
shows how, when there is some input, the output varies with time. See 
Appendix A for a discussion of differential equations and how the 
outputs can be derived, here we consider only the results. 

2.4 First-order differential equations 

Many systems have input-output relationships which can be described by 
a first-order differential equation and have an output y related to an input 
x by an equation of the form: 

z ~--~Yt +y = kx 

where z and k are constants, z being known as the time constant. 
Consider the response of such a system when subject to a unit step 

input, i.e. an input which suddenly changes from 0 to a constant value of 
1. When we reach the time at which the input x is not changing with 
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Figure 2.19 Behaviour of a 
first order system when subject 
to a unit step input 

time, i.e. we have steady-state conditions, then dx/dt = 0 and so we have 
output y = kx and k is the steady-state gain. Thus, with a unit step input 
the steady-state output is lk. Over time, the output is related to the input 
by an equation of the form: 

y = steady-state value x (1 - e  -'/~) 

Thus, Figure 2.19 shows how first order systems behave when subject to 
a unit step input. After a time of lz the output has reached 0.63k, after 2z 
is 0.86k, after 3z it is 0.95k, after 4z it is 0.98k, and eventually it 
becomes lk. 

Examples of first-order systems are an electrical system having 
capacitance and resistance, an electrical system having inductance and 
resistance and a thermal system of a room with a heat input from an 
electrical heater and an output of the room temperature. 

2 . 4 . 2  S e c o n d - o r d e r  d i f f e r e n t i a l  e q u a t i o n s  

Many systems have input-output relationships which can be described by 
second-order differential equations and have an output y related to an 
input x by an equation of the form: 

dt 2 
+ 2~'con"~[~- + 602y = kco2x 

where k, ( and con are constants for the systems. The constant ( is known 
as tile damping ratio or factor and con as the undamped natural angular 
frequency. 

If the input y is not changing with time, i.e. we have steady-state 
conditions, then d2y/dt 2 = 0 and dy/dt = 0 and so we have output y - kx 
and k is the steady-state gain. Figure 2.20 shows how a second order 
system behaves when subject to a unit step input. 

The general form of the response varies with the damping factor. 
Systems with damping factors less than 1 are said to be underdamped, 
with damping factors greater than 1 as overdamped and for a damping 
factor of 1 as critically damped. 

With no damping, i.e. ( = 0, the system output oscillates with a 
constant amplitude and a frequency of co. (since co. = 27cf., where f .  
is the undamped natural frequency, and f.  - 1/T, where T. is the 
time for one undamped oscillation, then Tn - 2n/co.- 6.3/co.). 

With underdamping i.e. ( < 0, the output oscillates but the closer the 
damping factor is to 1 the faster the amplitude of the oscillations 
diminishes. 

With critical damping, i.e. ( - 1, there are no oscillations and the 
output just gradually approaches the steady-state value. 

With overdamping, i.e. ( >1, the output takes longer than critical 
damping to reach the steady-state value. 
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Figure 2.20 Behaviour of  a second order system with a unit step input. 
With no damping the output is just a continuous oscillation following a 
step input. As the damping increases, so the oscillations become damped 
out and with a damping factor of  1.0 there are no oscillations and the 
output just rises over time to the steady state output value. Further 
increases in damping mean that the output takes longer to reach the 
steady state value. 

A mechanical system which can be modelled by a spring, dash pot and 
mass is an example of a second order system. When we apply a load to 
the system then oscillations occur which have amplitudes which die 
away with time. This was illustrated in the opening section and Figure 
2.2. Likewise with the second order system of an electrical circuit having 
resistance, inductance and capacitance; when there is a step voltage 
input, i.e. a switch is closed and applies a constant voltage to the circuit, 
then the voltage across the capacitor will be described by a second order 
differential equation and so can oscillate with amplitudes which die away 
with time. 

The differential equations describe the input/output relationship when 
we consider the input and output to be functions of time. We can use the 
model building techniques described in the previous section to arrive at 
differential equations, alternatively we can find the response of a system 
to, say, a step input and by examining the response determine the form of 
the differential equation which described its behaviour. In Chapter 6 we 
consider the response of systems to sinusoidal inputs and use the 
response to determine the form of differential equation which describes 
its behaviour. 
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Example 

An electrical system has an output v related to the input V by the 
differential equation: 

RC--~ +v= V 

What are the time constant and the steady state gain of the system? 

This equation is of the form: 

z-~t +y = kx 

and hence has a time constant of RC and a steady state gain of 1. 

Example 

A mechanical system has an output of a rotation through an angle 0 
related to an input torque T by the differential equation: 

i d 2 0  dO + c---d~ + kO = T 

What are the natural angular frequency and the damping constant of 
the system? 

The equation can be put into the form" 

d t  2 
- -  + 2 ( c o . ~  + o~v =/m#x 

as: 

1 
dt-----7-+7 + O= T 

Hence, comparing the terms in front of y and 0 gives w. = ~(k/1). 
Comparing the terms in front of dy/dt and d0/dt gives 2(co, = c/1 
and hence, since COn = ~[(k/1), gives ( = c/[ 2"q(kl) ]. 

2.5 Transfer function In general, when we consider inputs and outputs of systems as functions 
of time then the relationship between the output and input is given by a 
differential equation. If we have a system composed of two elements in 
series with each having its input-output relationships described by a 
differential equation, it is not easy to see how the output of the system as 
a whole is related to its input. There is a way we can overcome this 
problem and that is to transform the differential equations into a more 
convenient form by using the Laplace transform (see Appendix B for 
mathematical details). This form is a much more convenient way of 
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describing the relationship than a differential equation since it can be 
easily manipulated by the basic rules of algebra. 

To carry out the transformation we follow the following rules: 

A variable which is a function of time, e.g. the input or output 
voltage v in a circuit (to emphasise that v is a function of time it 
might be written as v(t) - note that this does not mean that v is 
multiplied by t), becomes a function of s. A voltage is thus written as 
V(s); note that upper case letters are used for the variables when 
written as functions of s and that this does not mean that V is 
multiplied by s. 

A constant k wkich does not vary with time remains a constant. 
Thus kv, where v is a function of time, becomes kV(s) .  For example, 
the voltage 3v written as an s function is 3 V(s). 

ff the initial value of the variable v is zero at time t = 0, the first 
derivative of a function of time dv /d t  becomes sV(s)  and  k d v / d t  

becomes ksV(s) .  For example, with no initial values 4dv /d t  as an s 
function is 4sV(s).  

Note that if there is an initial value v0 at t = 0 then the first 
derivative of a function of time dv /d t  becomes sV(s)  - Vo, i.e. we 
subtract any initial value, and kdv /d t  becomes k[sV(s)  - v0]. For 
example, if we have v0 = 2 at t = 0 then dv /d t  becomes sV(s)  - 2. 

If the initial value of the variable v and dv /d t  is zero at time t = 0, 
the second derivative of a function of time dZv/dt 2 becomes s2V(s) 

and kdZv/dt  2 becomes ks2V(s). For example, with no initial values 
4d2v/dt ~ as an s function is 4s2V(s). 

Note that ff there are initial values v0 and (dv/dt)o then the second 
derivative of a function of time d2v/dt 2 becomes s~V(s) - svo - (dv/d00 
and kd2v/dt  2 becomes k[s2V(s) - SVo - (dv/dt)0]. For example, with 
initial values of Vo = 2 and (dv/dt)o = 3 at time t = 0, then 4d2v/dt  2 as 
an s function is 4s2V(s) - 2 s -  3. 

5 With an integral of a function of time: 

t 
~o v dt becomes 1 V(s) 

t 
J'o kv dt becomes l k V ( s )  

Note that, when derivatives are involved, we need to know the initial 
conditions of a system output prior to the input being applied before we 
can transform a time function into an s function. 

Example 
Determine the Laplace transform for the following equation where 
we have v and vc as functions of time and no initial values. 

d v c  
v = RC--Tr-, + vc  

Ul 
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Figure 2.21 Transfer function 
as the factor that multiplies the 
input to give the output 

The Laplace transform is: 

V(s) = RCsVc(s) + Vc(s) 

Thus V(s) is the Laplace transform of the input voltage v and Vc(s) is 
the Laplace transform of the output voltage Vc. Rearranging gives: 

vc(s) 1 
V(s) - RCs + 1 

The above equation thus describes the relationship between the input 
and output of the system when described as s functions. 

2.5.1 Transfer function 

In section 2.2 we used the term gain to relate the input and output of a 
system with gain G = output/input. When we are working with inputs 
and outputs described as functions of s we define the transfer function 
G(s) as [output Y(s)]/input X(s)] when all initial conditions before we 
apply the input are zero: 

r(s) 
G(s) -  X(s) 

A transfer function can be represented as a block diagram (Figure 
2.21) with X(s) the input, Y(s) the output and the transfer function G(s) 
as the operator in the box that converts the input to the output. The block 
represents a multiplication for the input. Thus, by using the Laplace 
transform of inputs and outputs, we can use the transfer function as a 
simple multiplication factor, like the gain discussed in Section 2.2. 

Example 

Determine the transfer function for an electrical system for which 
we have the relationship (this equation was derived in the example 
in the preceding section): 

Vc(s) 1 
V(s) - RCs + 1 

The transfer function G(s) is thus: 

Vc(s) 1 
G(s)-  V(s) - RCs+l  

To get the output Vc(s) we multiply the input V(s) by II(RCs + 1). 

Example 

Determine the transfer function for the mechanical system, having 
mass, stiffness and damping, and input F and output y and described 
by the differential equation (as in Section 2.3.1): 
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d2y dy 
F =  m-d- fi- +c--d- { + ky 

If we now write the equation with the input and output as functions 
of s, with initial conditions zero: 

F(s) = ms~Y(s) + csY(s) + kY(s) 

Hence the transfer function G(s) of the system is: 

r(s) 1 
G(s) - F(s) - ms 2 + cs + k 

2.5.2 Transfer functions of common system elements 

By considering the relationships between the inputs to systems and their 
outputs we can obtain transfer functions for them and hence describe a 
control system as a series of interconnected blocks, each having its 
input--output characteristics defined by a transfer function. The following 
are transfer functions which are typical of commonly encountered system 
elements: 

Gear train 

For the relationship between the input speed and output speed with a 
gear train having a gear ratio N: 

transfer function = N 

Amplif ier 
For the relationship between the output voltage and the input voltage 
with G as the constant gain: 

transfer function = G 

Potentiometer 
For the potentiometer acting as a simple potential divider circuit the 
relationship between the output voltage and the input voltage is the 
ratio of tile resistance across which the output is tapped to the total 
resistance across which the supply voltage is applied and so is a 
constant and hence the transfer function is a constant K: 

transfer function = K 

Armature-controlled d.c. motor 

For the relationship between the drive shaft speed and the input 
voltage to the armature is: 

transfer function - 1 
sL +R 
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where L represents the inductance of the armature circuit and R its 
resistance. 

This was derived by considering armature circuit as effectively 
inductance in series with resistance and hence: 

di 
v = L--~i + Ri 

and so, with no initial conditions: 

(I0(s) = sLl(s) + Rl(s) 

and, since the output torque is proportional to the armature current 
we have a transfer function of the form 1/(sL + R). 

Valve controlled hydraulic actuator 
The output displacement of the hydraulic cylinder is related to the 
input displacement of the valve shaft by a transfer function of the 
form: 

transfer function = K1 
s(K2s + K3 ) 

where K~, K2 and K3 are constants. 

Heating system 
The relationship between the resulting temperature and the input to 
a heating element is typically of the form: 

transfer function = 1 
sC + 1/R 

where C is a constant representing the thermal capacity of the 
system and R a constant representing its thermal resistance. 

Tachogenerator 
The relationship between the output voltage and the input rotational 
speed is likely to be a constant K and so represented by: 

transfer function - K 

Displacement and rotation 
For a system where the input is the rotation of a shaft and the 
output, as perhaps the result of the rotation of a screw, a 
displacement, since speed is the rate of displacement we have v = 
dy/dt and so V(s) = sY(s) and the transfer function is: 

1 transfer function - s 

Height o f  liquid level in a container 
The height of liquid in a container depends on the rate at which 
liquid enters the container and the rate at which it is leaving. The 



System models 57 

relationship between the input of the rate of liquid entering and the 
height of liquid in the container is of the form: 

transfer function = sA + pglR 

where A is the constant cross-sectional area of the container, p the 
density of the liquid, g the acceleration due to gravity and R the 
hydraulic resistance offered by the pipe through which the liquid 
leaves the container. 

2.5.3 Transfer functions and systems 

Consider a speed control system involving a differential amplifier to 
amplify the error signal and drive a motor, this then driving a shaft via a 
gear system. Feedback of the rotation of the shaft is via a tachogenerator. 

The differential amplifier might be assumed to give an output 
directly proportional to the error signal input and so be represented 
by a constant transfer function K, i.e. a gain K which does not 
change with time. 

The error signal is an input to the armature circuit of the motor and 
results in the motor giving an output torque which is proportional to 
the armature current. The armature circuit can be assumed to be a 
circuit having inductance L and resistance R and so a transfer 
function of 1/(sL + R). 

The torque output of the motor is transformed to rotation of the drive 
shaft by a gear system and we might assume that the rotational 
speed is proportional to the input torque and so represent the 
transfer function of the gear system by a constant transfer function 
N, i.e. the gear ratio. 

The feedback is via a tachogenerator and we might make the 
assumption that the output of the generator is directly proportional 
to its input and so represent it by a constant transfer function H. 

The block diagram of the control system might thus be like that in Figure 
2.22. 

Input Amplifier Motor Gears Output 

+ " N il ] co r- I 

H 

Tachogenerator 

Figure 2.22 Block diagram for the control system for speed of  a shaft 
with the terms in the boxes being the transfer functions for the elements 
concerned 
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2.6 System transfer functions 

Input [ Output 
--~1~[ GI(S ) ~ G2(s ) 
X(s) l V(s) Vl(s) 

Figure 2.23 Systems in series 

Consider the overall transfer functions of systems involving series- 
connected elements and systems with feedback loops. 

2.6.1 Systems in series 

Consider a system of two subsystems in series (Figure 2.23). The first 
subsystem has an input of X(s) and an output of Y~(s); thus, G~(s) = 
Y~(s)/X(s). The second subsystem has an input of Y~(s) and an output of 
Y(s); thus, G2(s) = Y(s)/Y~(s). We thus have: 

Y(s) = G2(s)Y~(s) = G2(s)Gl(s)X(s) 

The overall transfer function G(s) of the system is Y(s)/X(s) and so: 

Gov=~a(s) = G~(s)G2(s) 

Thus, in general: 

The overall transfer function for a system composed o f  elements in 
series is the product o f  the transfer functions of  the individual series 
elements. 

Feedback 

Figure 2.24 System with 
negative feedback 

Example 

Determine the overall transfer function for a system which consists 
of two elements in series, one having a transfer function of 1/(s + 1) 
and the other 1/(s + 2). 

The overall transfer function is thus: 

1 1 1 
Goverali(S) = s + 1 x s +-----2 = (s + 1)(s + 2) 

2.6.2 Systems with feedback 

For systems with a negative feedback loop we can have the situation 
shown in Figure 2.24 where the output is fed back via a system with a 
transfer function H(s) to subtract from the input to the system G(s). The 
feedback system has an input of Y(s) and thus an output of H(s)Y(s). 
Thus the feedback signal is H(s)Y(s). The error is the difference between 
the system input signal X(s) and the feedback signal and is thus: 

Error (s) = X(s) - H(s) Y(s) 

This error signal is the input to the G(s) system and gives an output of 
Y(s). Thus: 

Y(s) 
G(s) = X(s )  - H(s)Y(s)  

and so: 
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I ~  G ~ Output 
X(s) y , (s) ]J--~s) 

Feedback H (s ) ~ 

Figure 2.25 System with 
positive feedback 

[ 1 + G(s)H(s)l Y(s) = G(s)X(s) 

which can be rearranged to give" 

overall transfer function - 
Y(s) G(s) 

X ( s )  - 1 + G(s)H(s)  

For a system with a negative feedback, the overall transfer function 
is the forward path transfer function divided by one plus the product 
of  the forward path and feedback path transfer functions. 

For a system with positive feedback (Figure 2.25), the feedback signal 
is H(s)Y(s) and thus the input to the G(s) system is X(s) + H(s)Y(s). 
Hence: 

r(s) 
G(s) = X(s) + H(s)Y(s) 

and so: 

[1 - G(s)H(s) ] Y(s) = G(s)X(s) 

This can be rearranged to give: 

Y(s) G(s) 
overall transfer function - X(s) - 1 - G(s)H(s) 

For a system with a positive feedback, the overall transfer function 
is the forward path transfer function divided by one minus the 
product of the forward path and feedback path transfer functions. 

Input ~ , ,,, -, Output 

Figure 2.26 Example 

Input.* ~ ~ , Output 
2 

X(s) + . s + 2 Y(s) 

Figure 2.27 Example 

Example 

Determine the overall transfer function for a control system (Figure 
2.26) which has a negative feedback loop with a transfer function 4 
and a forward path transfer function of 2/(s + 2). 

The overall transfer function of the system is: 

Goverall (s) = 

2 
s + 2  2 

2 - s + 1 0  l + 4 x ~  s + 2  

Example 

Determine the overall transfer function for a system (Figure 2.27) 
which has a positive feedback loop with a transfer function 4 and a 
forward path transfer function of 2/(s + 2). 

The overall transfer function is: 
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Goverall (S) = S + 2 2 
2 --S--6 l - - 4 X ~  S+2 

2.7 Sensitivity 

I ~  G(s) ~,u t  
X(s) ~ , ,  '~ Y(s) 

Feedback H (s) 
Figure 2.28 System with 
negative feedback 

The sensitivity of a system is the measure of the amount by which the 
overall gain of the system is affected by changes in the gain of system 
elements or particular inputs. In the following, we consider the effects of 
changing the gain of elements and also the effect of disturbances. 

2.7.1 Sensitivity to changes in parameters 

With a control system, the transfer functions of elements may drift with 
time and thus we need to know how such drift will affect the overall 
performance of the system. 

For a closed-loop system with negative feedback (Figure 2.28)" 

overall transfer function = 
G(s) 

1 + G(s)H(s) 

If G(s)H(s) is large then the above equation reduces to: 

overall transfer function --- 
G(s) 1 

~ a  

G(s)H(s) - H(s) 

Thus, in such a situation, the system is relatively insensitive to variations 
in the forward path transfer function but is sensitive to variations in the 
feedback path transfer function. For example, a change in the feedback 
path transfer function of, say, 10%, i.e. from H(s) to 1.1H(s), will result 
in a change in the overall transfer function from 1/H(s) to 1/1.1H(s) or 
about 0.9/H(s) and so a change of about 10%. 

This sensitivity is because the feedback transfer function is for the 
measurement system supplying the signal which is compared with the set 
value signal to determine the error and so variations in the feedback 
transfer function directly affect the computation of the error. 

If the forward path transfer function G(s) changes then the overall 
transfer function Goverm(s) will change. We can define the sensitivity of 
the system to changes in the transfer function of the forward element as 
the fractional change in the overall system transfer function Govo~(s) 
divided by the fractional change in the forward element transfer function 
G(s), i.e. (AGove~/Go~em)/(AG/G) where AGo~er~u is the change in overall 
gain producing a change of AG in the forward element transfer function. 
Thus, the sensitivity can be written as: 

sensitivity = 
aGo~.~n(s) G(s) 

AG(s) Goverall (s) 

If we differentiate the equation given above for the overall transfer 
function we obtain: 
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dG overall (S) 1 

dG(s) [ 1 + G(s)H(s) ]2 

and since Gover~(s)/G(s) = 1/[ 1 + G(s)H(s), the sensitivity is: 

1 
sensitivity = 1 + G(s)H(s) 

Thus the bigger the value of G(s)H(s) the lower the sensitivity of the 
system to changes in the forward path transfer function. The feedback 
amplifier discussed in Section 2.2.3 is an illustration of this, the forward 
path transfer function for the op amp being very large and so giving a 
system with low sensitivity to changes in the op amp gain and hence a 
stable system which can have its gain determined by purely changing the 
feedback loop gain, i.e. the resistors in a potential divider. 

Example 

A closed-loop control system with negative feedback has a feedback 
transfer function of 0.1 and a forward path transfer function of (a) 
50, (b) 5. What will be the effect of a change in the forward path 
transfer function of an increase by 10%? 

(a) We have, before the change: 

overall transfer function = 
G(s) 50 

1 + G(s)H(s) = 1 + 50 • 0.1 = 8.3 

After the change we have: 

overall transfer function = 
G(s) 55 

1 + G(s)H(s) = 1 + 55 x 0.1 = 8.5 

The change is thus about 2%. 
(b) We have, before the change: 

overall transfer function = 
G(s) 5 

1 + G(s)H(s) = 1 + 5 • O. 1 = 3.3 

After the change we have: 

overall transfer function = G(s) 5.5 
1 + G(s)H(s) = 1 + 5.5 • 0.1 = 3.5 

The change is thus about 6%. 
Thus the sensitivity of the system to changes in the forward path 

transfer function is reduced as the gain of the forward path is 
increased. 
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2.7.2 Sensitivity to disturbances 

An important effect of having feedback in a system is the reduction of 
the effects of disturbance signals on the system. A disturbance signal is 
an unwanted signal which affects the output signal of a system, e.g. noise 
in electronic amplifiers or a door being opened in a room with 
temperature controlled by a central heating system. 

Consider the effect of external disturbances on the overall gain of a 
system. Firstly we consider the effect on a open-loop system and then on 
a closed-loop system. 

Consider the two-element open-loop system shown in Figure 2.29 
when there is a disturbance which gives an input between the two 
elements. For an input X(s) to the system, the first element gives an 
output of Gl(s)X(s). To this is added the disturbance D(s) to give an input 
of G,(s)X(s) + D(s). The overall system output will then be 

Y(s) : G2(s)[G,(s)X(s) + D(s)l = G,(s)Gz(s)X(s) + G2(s)D(s) 

Disturbance 
Inpu.~ , +~D(s) ' i  Output 

i Y(s) 

Figure 2.29 Disturbance with an open-loop system 

The signal-to-noise ratio is the ratio of file output due to the signal to 
that produced by the noise and is thus, for the open-loop system, given by 
GI(s)G2(s)J((s)/G2(s)D(s) = Gl(S)~(s)[O(s) .  Thus increasing the gain of 
the element prior to the disturbance increases the signal-to-noise ratio. 

For the system with feedback (Figure 2.30), the input to the first 
forward element Gl(s) is X(s) - H(s)Y(s) and so its output is Gl(s)[X(s) - 
H(s)Y(s)]. The input to G2(s) is G~(s)[X(s) - H(s)Y(s)] + D(s) and so its 
output is X(s) = G2(s){ G~(s)[X(s) - H(s)Y(s)] + D(s)}. Rearranged this 
gives: 

Gl(s)G2(s) 
Y(s) = 1 + G l (s)G2(s)H(s) X(s) + 

G2(s) 
1 + GI (s)G2(s)H(s) D(s) 

Input Disturbance 
X(s) + ' ~  ' I Output G2(s) ? 

_ ' ( s )  

Figure 2.30 Disturbance with closed-loop system 
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Comparing this with the equation for the open-loop system of Y(s) = 
G2(s)[Gl(s)X(s) + D(s)] = Gl(s)G2(s)X(s) + G2(s)D(s) indicates that the 
effect of the disturbance on the output of the system has been reduced by 
a factor of [1 + Gl(s)G~(s)H(s)]. This factor is thus a measure of how 
much file effects of a disturbance are reduced by feedback. 

The signal-to-noise ratio is the ratio of the output due to the signal to 
that produced by the noise and is thus Gl(s)X(s)/D(s) and is the same as 
when there is no feedback. Thus, as with the open-loop system, the effect 
of such a disturbance is reduced as the gain of the G~(s) element is 
increased. 

2.8 Block manipulat ion The following are some of the ways we can reorganise the blocks in a 
block diagram of a system in order to produce simplification and still 
give the same overall transfer function for the system. To simplify the 
diagrams, the (s) has been omitted; it should, however, be assumed for 
all dynamic situations. 

2.8.1 Blocks in series 

As indicated in Section 2.5.1, Figure 2.31 shows the basic rule for 
simplifying blocks in series. 

Equivalent to 

X Y 

~[ G1G2 

Figure 2.31 Blocks in series 

2.8.2 Moving take-off points 

As a means of simplifying block diagrams it is often necessary to move 
takeoff points. The following figures (Figures 2.32 and 2.33) give the 
basic rules for such movements. 

y 

G i r 

Equivalent to 1/G 

Figure 2.32 Moving a takeoff point to beyond a block 

--{-, 
Equivalent to 

J G 

Figure 2.33 Moving a takeoff point to ahead o f  a block 



64 Control Systems 

2.8.3 Moving a summing point 

As a means of simplifying block diagrams it is often necessary to move 
summing points. The following figures (Figures 2.34-2.37) give the 
basic rules for such movements. 

L Equivalent to 

x3 x2 

Figure 2.34 Rearrangement of summing points 

X2 X3 

Equivalent to :!: ~ + 

X3 X2 

Figure 2.35 Interchange of summing points 

Equivalent to 

X + 

Figure 2.36 Moving a summing point ahead of a block 

~ 

Y I - Equivalent to ~1~' 

Figure 2.37 Moving a summing point beyond a block 

2.8.4 Changing feedback and forward paths 

Figures 2.38 and 2.39 show block simplification techniques when 
changing feedforward and feedback paths. 
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Equivalent to 

1 ,+ GH 

Figure 2.38 Removing a block from a feedback path 

§ 

Equivalen 

Figure 2.39 Removing a block from a forward path 

Example 
Use block simplification techniques to simplify the system shown in 
Figure 2.40. 

Figures 2.41-2.46 show the various stages in the simplification. 

G 1 G 2 

Figure 2.40 The circuit to be simplified 

,Ho2 t o3 I 
Figure 2.41 Moving a takeoff point 
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G 3 

t l +I/G 2 
. . . .  

Figure 2.42 Eliminating a feedforward loop 

G1G 2 1 +1/G21-'-- Y 

. . . . .  

Figure 2.43 Simplifying series elements 

G 2 

1 +G1G2G 3 

Figure 2.44 Simplifying a feedback element 

G1G2,.. (1 + 1/G 2) 
1 + G1G 2 G 3 

Y 
v 

Figure 2.45 Simplifying series elements 

._• G1(G1+1) 
1 +GIG2G3 + GI(G1 + 1) 

Y 

Figure 2.46 Simplifying negative feedback 

2.9 Multiple inputs When there is more than one input to a system, the superposition 
principle can be used. This is that the response to several inputs 
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simultaneously applied is the sum of the individual responses to each 
input when applied separately. Thus, the procedure to be adopted for a 
multi-input-single output (MISO) system is: 

1 Set all but one of the inputs to zero. 

2 Determine the output signal due to this one non-zero input. 

3 Repeat the above steps for each input in turn. 

4 The total output of the system is the algebraic sum of the outputs due 
to each of the inputs. 

Example 
Determine the output Y(s) of the system shown in Figure 2.47 when 
there is an input X(s) to the system as a whole and a disturbance 
signal D(s) at the point indicated. 

,~ D(s) 
X(s) Y(s) 

" 

Figure 2.47 System with a disturbance input 

If we set D(s) to zero we have the system shown in Figure 2.48 and 
the output is given by: 

Y(s) 2 
X ( s )  - s ( s  + 3) + 2(s + 1) 

"7 ~'!2 ~s) 

Figure 2.48 System with disturbance put equal to zero 

If we now set X(s) to zero we have the system shown in Figure 
2.49. This is a system with a forward path transfer function of 2/s 
and a positive feedback of (1/s + 3)[-(s + 1)]. This gives an output 
of: 

Y(s) 2(s + 3) 
D(s) - s(s + 3) + 2(s + 1) 
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y(s) 

�9 r" 
Figure 2.49 System with input equal to zero 

The total input is the sum of the outputs due to each of the inputs 
and so: 

2 X(s) + 
Y(s) = s(s + 3) + 2(s + 1) 

2(s + 3) 
s(s + 3) + 2(s + 1) D(s) 

Problems 1 If a system has a gain of 5, what will be the output for an input 
voltage of 2 V? 

2 An open-loop system consists of three elements in series, the 
elements having gains of 2, 5 and 10. What is the overall gain of the 
system? 

3 Derive a differential equation relating the input and output for each 
of the systems shown in Figure 2.50. 

Ouput y c k i~ 

,n u, Ou, u, 

~/////////////,~ 
x (b) 

Flow rate q (a) 
Output 

i 
c 

vT 
(c) o 

Figure 2.50 Problem 3 

Temperature 
0 i 

Lagged 
water 
heater 

(d) 

V V V V  

Water 
density p 
specific heat 
capacity c 

Temperature 
0 

o 

Power input p 

An open loop system consists of three elements in series, the 
elements having transfer functions of 5, 1/s and 1/(s + 1). What is 
the overall transfer function of the system? 

5 What is the overall gain of a closed-loop negative feedback system 
having a forward path gain of 2 and a feedback path gain of 0.1? 



System models 69 

6 What is the overall transfer function of a closed-loop negative 
feedback system having a forward path transfer function of 2/(s + 1) 
and a feedback path transfer function of 0.17 

7 Figure 2.51 shows an electrical circuit and its block diagram 
representation. What is the overall transfer function of the system? 

8 Use block simplification to arrive at the overall transfer function of 
the systems shown in Figure 2.52. 

9 What is the overall transfer function for the systems shown in Figure 
2.52? 

o I I '  
R Input 

v C 

O,, , 

Output 
V C 

Figure 2.51 Problem 7 

(a) 

(c) 

Figure 2.52 Problem 8 

(b) 

(d) 

§ 

I - 

- - "  

(a) 

(c) 

+ 1 
if-Z-2 

2 

41 
I 

Figure 2.53 Problem 9 

(b) s+ 2 
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10 A closed-loop negative feedback system to be used for controlling 
the position of a load has a differential amplifier with transfer 
function K~ operating a motor with transfer function 1/(sL + R). The 
output of the motor operates a gear system with gear ratio N and 
this, in turn, operates a screw with transfer function 1/s to give the 
resulting displacement. The position sensor is a potentiometer and 
this gives a feedback voltage related to the position of the load by the 
transfer function K:. Derive the transfer function for the system as a 
whole, relating the input voltage to the system to the displacement 
output. 

11 A closed-loop negative feedback system for the control of the height 
of liquid in a tank by pumping liquid from a reservoir tank can be 
considered to be a system with a differential amplifier having a 
transfer function of 5, its output operating a pump with a transfer 
function 5/(s + 1). The coupled system of tanks has a transfer 
function, relating height in the tank to the output from the pump, of 
3/(s + 1)(s + 2). The feedback sensor of the height level in the tank 
has a transfer function of 0.1. Determine the overall transfer 
function of the system, relating the input voltage signal to the system 
to the height of liquid in the tank. 

12 For the control system shown in Figure 2.54, determine the output 
Y(s) in terms of the inputs X~(s) and X2(s). 

Xl(S) ' 2  III ~ 1__ I 
I "k<~/  "1 s 1 

1.4t 

Y(s) 

Figure 2.54 Problem 12 

13 For the control system shown in Figure 2.55, determine the output 
Y(s) in tenns of the inputs X~(s) and X2(s). 

I I Y @) 

$ 

4 ! 

Figure 2.55 Problem 13 



3 System response 

3.1 Introduction How will the output from a system change when there is an input to it? 
For example, if we consider a mercury-in-glass thermometer as a system 
with an input of temperature and an output of the level of the mercury in 
the glass capillary, how will the level change when the thermometer is 
suddenly immersed in hot water, i.e. given a step input? As a matter of 
experience we know that the level will increases as a result of the input 
and take a certain amount of time before it reaches its steady state value. 
If we consider a control system employing a motor and feedback to move 
a work piece in an automatic machining operation, how will the output, 
i.e. the displacement of the workpiece, vary with time when the input is 
gradually increased with time with the aim of gradually increasing the 
displacement of the workpiece? This chapter is concerned with a method 
we can use to answer this question and, in general, determine how the 
output of systems changes when there is a change in input. 

In Chapter 2 the method of describing a system by means of a 
transfer function was introduced; the transfer function is the output 
divided by the input when both are written as s functions. In this chapter 
we consider how we can use transfer functions to determine how the 
output of a system will change with time for particular inputs. 

3.2 Inputs 

.e.., 

t - -  

(a) 
Time 

r 
t,.- 

O , .  
r 

0 
(c) 

(b) 0 

J 
Time 

Time 

Figure 3.1 Forms of input: 
(a) step, (b) impulse, (c) ramp 

Inputs to systems conunonly take a number of standard forms (Figure 
3.1). With the step input we have the input suddenly being switched to a 
constant value at some particular time. With the impulse input we have 
the input existing for just a very brief time before dropping back to zero. 
With the ramp input, we have the input starting at some time and then 
increasing at a constant rate. We can write such inputs as s functions in 
the following way: 

A unit step input which starts at a time t = 0 and rises to the 
constant value 1 has a Laplace transform of the input as an s 
function multiplied by 1/s. 

A unit impulse input which starts at a time t = 0 and rises to the 
value 1 has a Laplace transform of the input as an s function 
multiplied by 1. 

A unit ramp input which starts at time t = 0 and rises by 1 each 
second has a Laplace transform of the input as an s function 
multiplied by 1/s 2. 
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In general, if a function of time is multiplied by some constant, then 
the Laplace transform of that function is multiplied by the same constant. 
Thus, if we have a step input of size 5 then the Laplace transform is 5 
times the transform of a unit step and so the input as an s function is 5/s. 

Example 
An electrical system has an input of a voltage of 2 V which is 
suddenly applied by a switch being closed. What is the input as an s 
function? 

Assume the input occurs at time t = 0. The input is a step voltage of 
size 2 V. An input of a unit step voltage as an s function is (l/s) and 
thus for a 2 V step is (2/s) V. 

Example 
A controlled speed motor has a voltage input which is increased at 
the rate of 3 V per second. What is the input as an s function? 

Assume the input starts at time t = 0. The input is a ramp voltage of 
3 V/s. An input of a unit ramp voltage as an s function is (1/s 2) and 
thus for a 3 V/s ramp is (3/s2). 

3.3 Determining outputs The procedure we can use to determine how the output of a system will 
change with time when there is some input to the system is: 

Determine the output as an s function 
In terms of the transfer function G(s) we have: 

Output (s) = G(s) x Input (s) 

We can thus obtain the output of a system as an s function by 
multiplying its transfer function by the input s function. 

Determine the time function corresponding to the output s function 
To obtain the output as a function of time we need to find the time 
function that will give the particular output s function that we have 
obtained. Tables of s functions and their corresponding time 
functions can be used; Table 3.1 is a table of commonly encountered 
functions. Often, however, the s function output has to be rearranged 
to put it into a form given in the table. 

In obtaining the time function corresponding to a particular s function 
we can utilise the following properties of s functions: 

If a Laplace transform is multiplied by some constant then the 
corresponding time function is multiplied by the same constant. For 
example, if we have 3/(s + 1) then the corresponding time function 
is that of 3 times the time function for 1/(s + 1). 
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Table 3.1 Laplace  f u n c t i o n s  and  their corresponding time func t ions  

Time function J(0 Laplace transform F(s) 

1 A unit impulse 

2 A unit step 

3 t, a unit ramp 

4 e -at, exponential decay 

10 

5 1 -  e -at, exponential growth 

6 te  -at 

1 - e -at 7 t -  a 

8 e - a t -  e TM 

9 ( 1 - a t ) e  -at 

b e_at + a e_bt 
1 - b - a  b - a  

11 e -at e TM e -ct 

(b - a)(c  - a) + (c - a) (a  - b) + (a - c)(b - c) 

12 sincot, a sine wave 

13 cos cot, a cosine wave 

14 e -at sin cot, a damped sine wave 

15 e -at cos cot, a damped cosine wave 

16 0) e-~'o~t ~2 4 1 _ (  2 s i n 0 ) J 1 -  t 

17 1 -  1 
~/1 _(2 

~ e-~'tsin(0)~/1- ( 2 t+~b),  cos~b = ( 

1 

1_ 
$ 

1__ 
s 2 

1 
s + a  

a 

s(s + a) 

1 
( s + a )  2 

a 

s~(s + a) 

b - a  
(s + a)(s + b ) 

s 
( s+a)  2 

ab 
s(s + a)(s + b) 

1 
(s + a)(s  + b )(s + c) 

0) 
S 2 + 0)2 

S 
$2 + 0)2 

CO 

(s + a) 2 + co~ 

s + a  

(s + a) 2 +0)2 

0)2 

s 2 + 2(0)s + 092 

0) 2 

s(s2 + 2(~os + co2) 

If we have two separate s terms then the corresponding time 
function is the sum of the time functions corresponding to each of 
the separate s terms. For example, if we have [1/(s + 2)] + [1/(s + 1)] 
then tile time function is tile time function for [1/(s + 2)] plus ~ e  
time function for [ 1/(s + 1)1. 
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Example 

A system gives an output of 1/(s + 5). What is the output as a 
function of time? 

The output is of the form given in Table 3.1 as item 4 with a = 5. 
Hence the time function is e -5' and thus describes an output which 
decays exponentially with time. 

Example 

A system gives an output of 10/[s(s + 5)]. What is the output as a 
function of time? 

The nearest form we have in Table 3.1 to the output is item 5 as 2 x 
a/[s(s + a)] with a = 5. Thus the output, as a function of time, is 
2(1 - e-5'). 

Example 

A system has a transfer function of 1/(s + 2). What will be its output 
as a function of time when it is subject to a step input of 1 V? 

The step input has a Laplace transform of (l/s). Thus: 

Output (s) = G(s) x Input (s) 

1 1 1 
- s + 2  x s - s (s+2)  

The nearest form we have in Table 3.1 to the output is item 5 as �89 x 
2/[s(s + 2)]. Thus the output, as a function of time, is �89 - e -5') V. 

Example 

A system has a transfer function of 4/(s + 2). What will be its output 
as a function of time when subject to a ramp input of 2 V/s? 

The ramp input has a Laplace transform of (2/sa). Thus: 

Output (s) = G(s) x Input (s) 

4 2 8 
S + 2 X S'-- f = $2(S + 2-""'~ 

The nearest form we have in Table 3.1 to the output is item 7 when 
written as 4 x 2/[s2(s + 2)1. Thus the output, as a function of time, is 
4 [ t -  (1 - e-2')/2] = 4 t -  2(1 - e -~') V. 

3.3.1 Partial fractions 

A technique that is often required to put an s function in terms which 
identify with forms, so enabling the corresponding time function to be 



Systems response 75 

obtained in Table 3.1 is partial  fractions.  The term partial fractions is 
used for the process of converting an expression involving a complex 
fraction into a number of simpler fraction terms. This teclmique can be 
used provided the highest power of s in the numerator of the expression 
is less than that in the denominator. When the highest power in the 
numerator is equal to or higher than that of the denominator, the 
denominator must be divided into the numerator until the result is the 
sum of terms with the remainder fractional term having a numerator 
with a lower power than the denominator. 

There are basically three types of partial fractions: 

The numerator is some function of s and the denominator contains 
factors which are only of the form (s + a), (s + b), (s + c ), etc. and 
so is of the form: 

F(s) 
(s + a)(s + b )(s + c) 

and has the partial fractions of 

A__&_ B __C_C 
(s+a) + (~+b) + (~+~) 

There is a partial fraction term for each bracketed term in the 
denominator. Thus, if we have 1/(s + a)(s + b) there will be two 
partial fraction terms. 

There are repeated (s + a) factors in the denominator and the 
expression is of the form: 

F(s) 
(s + a)  n 

and has the partial fractions of: 

A B C N + ~ + ~ + . . . + ~  
(S + a)  1 (s + a)  2 (s + a)  3 (s + a)  n 

A multiple root expression has thus a partial fraction term for each 
power of the factor. Thus, if we have 1/(s + a) 2 there will be two 
partial fraction terms; if we have 1/(s + a) 3 there will be three partial 
fraction terms. 

The denominator contains quadratic factors and the quadratic does 
not factorise, being of the form: 

F(s) 
(as 2 + bs + c)(s + d) 

and has the partial fractions of: 

A s + B  C + ~  
as 2 + bs + c s + d 
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The values of the constants A, B, C, etc. can be found by either 
making use of the fact that the equality between the expression and the 
partial fractions must be true for all values of s and so considering 
particular values of s that make calculations easy or that the coefficients 
of s ~ in the expression must equal those of s ~ in the partial fraction 
expansion. 

Example 
Determine the partial fractions of: 

s + 4  
(s + 1)(s + 2) 

The partial fractions are of the form: 

A B 
s + l  s + 2  

Then, for the partial fraction expression to equal the original 
fraction, we must have: 

s + 4  A ( s + 2 ) + B ( s +  1) 
m 

(s + 1 )(s + 2) - (s + 1 )(s + 2) 

and consequently: 

s + 4 = A (s + 2) + B(s  + 1 ) 

This must be true for all values of s. The procedure is then to pick 
values of s that will enable some of the terms involving constants to 
become zero and so enable other constants to be determined. Thus if 
we let s = - 2  then we have 

(-2) +4 =A(-2  + 2) +B(-2  + 1) 

and so B = -2. If we now let s = -1 then 

(-1) +4 =A(-1  + 2) +B(-1  + 1) 

and so A = 3. Thus 

s + 4  3 2 
(s+ 1)(s+2)  - s +  1 - s + 2  

Example 
Determine the partial fractions of: 

3 s + l  
(s + 2) 3 
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This has partial fractions of: 

A B C 
(S+2) + ( s+2 )  - - - - - T  + ( s+2 )  - - - - - - T  

Then, for the partial fraction expression to equal the original 
fraction, we must have: 

3 s + l  A B C 
( s + 2 )  3 - ( s+2 )  + ( s + 2 )  - - ~  + ( s + 2 )  - - - - - - -~ 

and so consequently have: 

3s + 1 = A(s  + 2) 2 + B(s + 2) + C 

= A(~  + 2s + 1) + B(s + 2) + C 

Equating s 2 terms gives 0 = A. Equating s terms gives 3 = 2A + B. 

and so B = 3. Equating the numeric terms gives 1 = A + 2B + C and 
so C = - 5 .  Thus: 

3 s + l  3 5 
m ~ m ~  

(S + 2) 3 - (S + 2) 2 (S + 2) 3 

Example 

Determine the partial fractions of: 

2s+  1 
(s 2 + s + 1)(s + 2) 

This will have partial fractions of: 

A s + B  C 
S 2 + S +  1 + s + 2  

Thus we must have" 

2s+  1 
(s 2 + s + 1)(s + 2) 

A s + B  C 
8 2 + S +  1 + s + 2  

and so: 

2s + 1 = (As + B)(s + 2) + C(~ + s + 1) 

With s = -2  t h e n - 3  = 3C and so C = -1. Equating s a terms gives 0 

= A + C and so A = 1. Equating s terms gives 2 = 2A + B + C and so 
B = 1. As a check, equating numeric terms gives 1 = 2B + C. Thus" 

2s+  1 s +  1 1 
( s2+s+ 1)(s+2) - s 2 + s +  1 s + 2  



78 Control systems 

3.4 First order systems 
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Figure 3.3 Behaviour o f  a 
f irst  order system when subject 
to a unit step input 

A first order system has a differential equation of the form (see Section 
2.3.3): 

3--~ + y = k x  

As a function of s this can be written as: 

,Y(s)  + Y(s) = ld:(s) 

and so a transfer function of the form: 

Y(s) k 
G ( s ) -  Y(s)  - zs + 1 

where k is the gain of the system when there are steady-state conditions 
and x is the time constant of the system. 

When a first-order system is subject to a unit impulse input then X(s)  
= 1 and the output transform Y(s) is: 

k (1/~) 
Y(s) = G(s)X(s) - 3s + 1 • 1 = k s + 1/3 

Hence, since we have the transform in the form 1/(s + a), using item 4 in 
Table 3.1 gives: 

x = k(1/z) e -'/~ 

Figure 3.2 shows how the output varies with time; it is an exponential 
decay. The output rises to its maximum value at time t = 0 and then after 
13 it drops to 0.37 of the initial value, after 2z it is 0.14 of the initial 
value and after 33 it is 0.05 of the initial value. Thus by about a time 
equal to four times the time constant the output is effectively zero. The 
exponential term tends to a zero value as the time t tends to an infinite 
value. 

When a first-order system is subject to a unit step input then X(s)  = 1/s 

and the output transform Y(s) is: 

X(s)  = G(s) r(s)  = k = k (1/~_______L_) 
s(~s + 1) s(s + 1/O 

Hence, since we have the transform in the form a/s(s + a), using item 5 
in Table 3.1 gives: 

x = k(1 -e  -~)  

Figure 3.3 shows how the output varies with time. Initially, at time t = 0, 
the output is zero. It then rises to 0.63 of the steady state value after l z, 
then 0.86 of the steady state value after 23 and 0.95 of the steady state 
value after 3z. After 4z the output is effectively at the steady state value 
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of k, the exponential term in the above equation becoming zero as time t 
tends to infinity. 

Example 

A circuit has a resistance R in series with a capacitance C. The 
differential equation relating the input v and output Vc, i.e. the 
voltage across the capacitor, is: 

dvc 
v = RC---&-- + v c  

Determine the output of the system when there is a 3 V impulse 
input. 

As a function of s the differential equation becomes: 

Z(s)  = R C s V c ( s )  + Vc(s )  

Hence the transfer function is 

G(s) = ,Vc(s) _ 1 
V(s) - R C s  + 1 

The output when there is 2 V impulse input is: 

1 3 / R C  
Vc(s )  = G(s)V(s)  = R C s  +'-------1 x 3 = s + 1 /RC 

Hence, since we have the transform in the form 1/(s + a), using item 
4 in Table 3.1 gives: 

x = (2/RC) e -'/Rc 

Example 

A thermocouple which has a transfer function linking its voltage 
output V and temperature input of: 

30x 10 -6 
G(s)= 10s+l  V/~ 

Determine the response of the system when it is suddenly immersed 
in a water bath at 100~ 

The output as an s function is: 

V(s) = G(s) x input (s) 

The sudden immersion of tile thermometer gives a step input of size 
100~ and so the input as an s function is 100/s. Thus: 
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V(s) = 30 x 10 -6 100 30 x 10 -4 0.1 
lOs  + 1 x s - l Os(s  + 0 .1 )  = 30  x 10 -4 S(S + 0.-'-'-----'~ 

The fraction element is of the form a/s(s + a) and so the output as a 
function of time is: 

V = 30 x 10 -4 (1 - e  -~ V 

3.5 Second order systems The differential equation for a second-order system is of the form: 

dt 2 + 2(COn + (.o~y = kco2n x 

where COn is the natural angular frequency with which the system 
oscillates and ( is the damping ratio. Hence we have: 

s2Y(s) + 2(COnSY(s) + CoZnY(s) = kco~(s )  

and so a transfer function of: 

r ( s )  ko~2. 

G ( s )  - X ( s )  - S 2 + 2~COnS + 09 2 

When a second-order system is subject to a unit step input, i.e. X(s) = 

1/s, then the output transform is: 

kco  
Y(s) = G(s)X(s) = s($2 + 2~O9nS + COn) 

There are three different forms of answer to this equation for the way 
the output varies with time; these depending on the value of the damping 
constant and whether it gives an overdamped, critically damped or 
underdamped system (see Figure 2.13). We can determine the condition 
for these three forms of output by putting the equation in the form: 

Y(s)= kco  
s ( s + p l ) ( s + p 2 )  

where pl and p~ are the roots of the quadratic term: 

S 2 + 2(CONS + (.02 = 0 

Hence, if we use the equation to determine the roots of a quadratic 
equation, we obtain: 

p ~ 

-2(COn + ~/4(2COn 2 - 4COn 2 

and so the two roots are given by: 
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P l  = --(COn + (-On/~'2 _ 1 a n d  P2  = -~'(-/3n - (.On 1/~ "2 - 1 

The important issue in determining the form of the roots is the value of 
the square root term. 

( > 1  
With the damping factor ( greater than 1 the square root term is real 
and will factorise. To find the inverse transform we can either use 
partial fractions to break the expression down into a number of 
simple fractions or use item 10 in Table 3.1. The output is thus: 

kco~ [ p: 
Y = P i p 2  1- p2-Pl ~e-V, t+p2Pl_pl  e-t '~t] 

This describes an output which does not oscillate but dies away with 
time and thus the system is overdamped. As the time t tends to 
infinity then the exponential terms tend to zero and the output 
becomes the steady value of kcon2/(p~p2). Since p~p2 = co. 2, the steady 
value is k. 

( = 1  
With ( = 1 the square root term is zero and so p~ = p~ = --co.; both 
roots are real and both the same. The output equation then becomes: 

r(s)= kO n 
S(S + (_On) 2 

This equation can be expanded by means of partial fractions to give: 

Y ( s )  = - s + "60 n 

C O n ]  
(8 + (.Dn) 2 

Hence: 

y = k[ 1 - e -~ - rant e -~ ] 

This is the critically damped condition and describes an output 
which does not oscillate but dies away with time. As the time t 
tends to infinity then the exponential terms tend to zero and the 
output tends to the steady state value of k. 

( < 1  
With ( < 1 the square root term does not have a real value. Using 
item 17 in Table 3.1 then gives: 

y - k  1- 

where cos ~ = ~'. This is an under-damped oscillation. The angular 
frequency of the damped oscillation is: 
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6o = 6On~/1-~ 2 

Only when the damping is very small does the angular frequency of 
the oscillation become nearly the natural angular frequency COn. AS 
the time t tends to infinity then the exponential term tends to zero 
and so the output tends to the value k. 

E x a m p l e  

What will be the state of damping of a system having the following 
transfer function and subject to a unit step input? 

1 
G(s) = s2 + 8s + 16 

The output Y(s) from such a system is given by: 

r(s)  = G(s)X(s)  

For a unit step input X(s)  = 1/s and so the output is given by: 

1 _ 1 
Y(s) = s(s2 + 8s + 16) - s(s + 4)(s  + 4) 

The roots of s 2 + 8s + 16 are p~ = p2 = -4. Both the roots are real 
and the same and so the system is critically damped. 

E x a m p l e  

A system has an output y related to the input x by the differential 
equation: 

dt--T +5 + 6 y = x  

What will be the output from the system when it is subject to a unit 
step input? Initially both the output and input are zero. 

We can write the Laplace transform of the equation as: 

s2Y(s) + 5sY(s) + 6Y(s) = X(s)  

The transfer function is thus: 

Y(s) 1 
G(s) - Y ( s )  - s 2 + 5s + 6 

For a unit step input the output is given by: 

1 _ 1 
Y(s) = s(s2 + 5s + 6) - s(s + 3)(s + 2) 
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Because the quadratic term has two real roots, the system is 
overdamped. We can directly use one of the standard forms given in 
Table 3.1 or partial fractions to first simplify the expression before 
using Table 3.1. Using partial fractions: 

1 _ A  B C 
s(s + 3)(s + 2) - 'g" + s +3 + ~s+2 

Thus, we have 1 = A(s + 3)(s + 2) + Bs(s + 2) + Cs(s + 3). When s = 
0 then 1 = 6A and so A = 1/6. When s = -3 then 1 = 3B and so B = 
1/3. When s = -2  then 1 = -2C  and so C = -1/2. Hence we can write 
the output in the form: 

-•s 1 1 
Y(s) = + 3(s + 3) - 2(s + 2) 

Hence, using Table 3.1 gives: 

y = 0.17 + 0.33 e -3' - 0.5 e -2t 

Problems 1 A system has an input of a voltage of 3 V which is suddenly applied 
by a switch being closed. What is the input as an s function? 

2 A system has an input of a voltage impulse of 2 V. What is the input 
as an s function? 

3 A system has an input of a voltage of a ramp voltage which 
increases at 5 V per second. What is the input as an s function? 

4 A system gives an output of 1/(s + 5) V(s). What is the output as a 
function of time? 

5 A system has a transfer function of 5/(s + 3). What will be its output 
as a function of time when subject to (a) a unit step input of 1 V, (b) 
a unit impulse input of 1 V? 

6 A system has a transfer function of 2/(s + 1). What will be its output 
as a function of time when subject to (a) a step input of 3 V, (b) an 
impulse input of 3 V? 

7 A system has a transfer function of 1/(s + 2). What will be its output 
as a function of time when subject to (a) a step input of 4 V, (b) a 
ramp input unit impulse of 1 V/s? 

8 Use partial fractions to simplify the following expressions: 

s - 6  s + 5  , (c) 2 s - 1  
(a) ( s -  1)(s-  2) '  (b) s2 + 3s + 2 (s + 1) 2 

9 A system has a transfer function of: 

8(s + 3)(s + 8) 
(s + 2)(s + 4) 

What will be the output as a time function when it is subject to a 
unit step input? Hint: use partial fractions. 
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10 A system has a transfer function of: 

8(s + 1) 
G(s) = (s + 2) 2 

What will be the output from the system when it is subject to a unit 
impulse input? Hint: use partial fractions. 

11 What will be the state of damping of systems having the following 
transfer functions and subject to a unit step input? 

1 1 , (c) 1 
(a) s2 + 2s + 1' 09) s2 + 7s + 12 s 2 + s + 1 

12 The input x and output y of a system are described by the differential 
equation: 

dy 
-&- +2y=x 

Determine how the output will vary with time when there is an input 
which starts at zero time and then increases at the constant rate of 
6 units/s. The initial output is zero. 

13 The input x and output y of a system are described by the differential 
equation: 

dy 
dt--- T + 3--d-/- + 2y = x 

If initially the input and output are zero, what will be the output 
when there is a unit step input? 

14 The input x and output y of a system are described by the differential 
equation: 

dt 2 +4 + 3y= x 

If initially the input and output are zero, what will be the output 
when there is a unit impulse input? 

15 A control system has a forward path transfer function of 2/(s + 2) 
and a negative feedback loop with transfer function 4. What will be 
the response of the system to a unit step input? 

16 A system has a transfer function of 100/(s a + s + 100). What will be 
its natural frequency COn and its damping ratio (? 

17 A system has a transfer function of lOfts 2 + 4s + 9). Is the system 
under-damped, critically damped or over-damped? 

18 A system has a transfer function of 3/(s 2 + 6s + 9). Is the system 
under-damped, critically damped or over-damped? 

19 A system has a forward path transfer function of 10/(s + 3) and a 
negative feedback loop with transfer function 5. What is the time 
constant of the resulting first-order system? 
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4.1 Introduction 
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When a system is subject to, say, a unit step input it may give an output 
which eventually settles down to some steady state response. The 
response that it gives before settling down to this steady state is called its 
transient response. This chapter is about the parameters used to specify 
the transient response of systems and whether the transients lead to 
unstable systems. 

For example, if we have a spring system (Figure 4.1) and suddenly 
apply a load to it, it has a transient response which results in it taking 
some time to reach its steady state value and also it is likely to overshoot 
the steady state value before it finally settles down to the steady state 
value. What factors can we change with the spring system i~ ~rder to get 
it to respond more quickly to an input and also to minimi~ the 
overshooting? These are questions that are often posed for cona'o~ 
systems. As another illustration, consider a control system used with an 
automatic machine to position a workpiece before some machining 
operation, we need to know how fast the system will respond to an input 
signal and position the item in the required position and will the system 
be like the spring system when a load is applied to it and overshooting of 
the required position occur. Overshooting is undesirable in such a 
situation and so, if it occurred in such a control system, we would need to 
consider what steps can be taken to eliminate it. Parameters are used as a 
way of specifying how fast a system will respond to an input and how 
quickly it will settle down to its steady state value. 

With the above spring system, the result of applying a load is that, 
after some oscillations with ever decreasing amplitude, the transients die 
away and the system settles down to a stead state value. The system, is 
said to be stable. If, however, the oscillations had continued with ever 
increasing amplitude, then no steady state value would have been 
reached and the system would be unstable. This chapter takes a brief 
look at the conditions for stability of systems. 

4.2 First order systems A first order system has a transfer function of the form: 

G(s)- k 
zs+ l  

where k is the steady state gain and z the time constant. When a unit step 
input is applied to such a system, the output y is: 

y = k(1 - e -'/~) 
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When the time t = z then we have y = k(1 - e -~) = 0.63k. Thus, the time 
constant z for a first order system when subject to a step input is the time 
taken for the output to reach 0.63, of the steady state value. 

For a first order system, the parameters used to specify fl~e transient 
performance are: 

Delay time 
The delay time td is the time required for the output response to 
reach 50% of its steady state value. Thus, since k is the final value, 
the time taken to reach 50% of this value is given by: 

• k = k(1 - e - td /~ )  
2 

1 = e- td /~ 
2 

In2 td 
- T 

t d = Z l n 2  

Rise time 
The rise time t~ is the time required for the output to rise from 10% 
to 90% of its steady state value. Note that the specification is not 
always in terms of 10% to 90%, sometimes it is 0% to 100%. Since 
k is the steady state value then the time taken to reach 10% of that 
value is: 

10 k = k(1 - e - t l ~  
lOO 

1 _ e_t~o/z 
10 

In 10 tlo 
- -  T 

tto = z In 10 

The time taken to reach 90% of the steady state value is given by: 

90 k = k(1 - e - t 9 ~  
100 

9 _ e_t9o/z 
10 

l n l 0 - 1 n 9  t go 
- -  T 

tgo = z In 1 0 -  z In 9 

Hence the rise time is: 

t~ = tgo- t~o = z In 9 
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Example 

Determine the delay time and the rise time for a first order system 
with the transfer function: 

3 
G(s) - 2s  + 1 

Comparing the transfer function with k / ( z s  + 1) indicates that the 
steady state gain is 3 and the time constant is 2 s. Thus, the delay 
time is: 

tlo = z In 10 = 2 In 10 = 4.6 s 

The rise time is: 

tr = tg0 -- tl0 = Z In 9 = 2 In 9 = 4.4 s 

Example 

A mercury-in-glass thermometer acts as a first order system with an 
input of temperature and an output of the mercury position against a 
scale. The thermometer is initially at 0~ and is then suddenly 
placed in water at 100~ After 80 s the thermometer reads 98~ 
Determine (a) the time constant, (b) the delay time, (c) the rise time. 

(a) For such a system the output 0 is related to the input by the 
equation: 

o = l o o ( 1  - 

Hence: 

98 = 100(1 - e -8~ 

0.2 = e -8~ 

In 0.2 = - ""  T 

Hence, the time constant z is 49.7 s. 
(b) The delay time is: 

t~0 = z In 10 = 49.7 In 10 = 114.4 s 

(c) The rise time is: 

tr = t90- tl0 = Z In 9 = 49.7 In 9 = 109.2 s 

4.3 Second order systems A second order system has a transfer function of the form: 
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Figure 4.2 Step response of an 
under-damped system 

G(s) = s2 + 2~conS + 092 

The form the output takes for a unit step input depends on whether the 
damping factor ( is less than, equal to or greater than 1, the 
corresponding outcomes being underdamped, critically damped and 
overdamped (see Section 3.6). 

For the underdamped oscillations of a system we have the output y 
given by: 

e_(O~,  t 

y=k  1 -  ~/1_(2 ~ sin(co, ~/(1 - (2) t+ ~) ] 

with the damped natural frequency co given by: 

co = con~/(1 _(2) 

We can write the above equation for the output in what is often a more 
convenient form. Since sin (A + B) = sin A cos B + cos A sin B, the sine 
term can be written as: 

sin (cot + ~) = sin cot cos ~ + cos cot sin 

and since ~ is a constant: 

sin (cot + ~) = P sin cot + Q cos cot 

where P and Q are constants. Thus the output can be written as" 

I e_(Co, t ] 
y = k 1 - ~/1 , ( 2  (P sin cot + Q cos cot) 

The performance of an underdamped second order system to a unit 
step input (Figure 4.2) can be specified by: 

Rise time 
The rise time tr is the time taken for the response x to rise from 0 to 
the steady-state value yss. This is the time for the oscillating 
response to complete a quarter of a cycle, i.e. �89 Thus: 

COtr = �89 

We can thus reduce the rise time by increasing the damped natural 
frequency, this value being determined by the undamped natural 
angular frequency and the damping factor, i.e. 

t r  - -  
2con ~/I _r 
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The rise time is sometimes specified as the time taken for the 
response to rise from 10% to 90% of the steady state value. 

Peak time 
The peak time tp is the time taken for the response to rise from 0 to 
the first peak value. This is the time for the oscillating response to 
complete one half-cycle, i.e. n .  Thus: 

cotp = rc 

and so we can write: 

tp -- 

When ( is 1 then the peak time becomes infinite; this indicates that 
at critical damping the steady state value is never reached but only 
approached asymptotically. 

Overshoot 
The overshoot is the maximum amount by which the response 
overshoots the steady state value and is thus the amplitude of the 
first peak. The overshoot is often written as a percentage of the 
steady state value. 

The steady state value is when t tends to infinity and thus yss = k. 
Since y = 0 when t = 0 then, since e ~ = 1, we have: 

1 (O+Q)] 
0 = k  1 -  f f l _ (  2 

and so Q = ~/(1 - ~ ) .  
T h e  o v e r s h o o t  o c c u r s  a t  cot = ~ a n d  thus :  

e_(Co, t 
y - k  1- ~ ( P  sin cot + Q cos cot) ] 

becomes: 

e_(Co.nlco ] 
y = y s s  1 -  ~/I_(--------~(0-Q) 

The overshoot is the difference between the output at that time and 
the steady-state value. Hence: 

e-(Co.n/co 
overshoot = yss ~/1 - (2 Q= yss e -~'~176 

Since co = co,~/(1 - ~2) then we can write: 



90 Control Systems 

Oversh~176 ( -(convr ) c o n ] l - f 2  

-(n ) 
= yss exp ~/1 - ( 2  

Expressed as a percentage of yss: 

_(n ) 
percentage overshoot = exp ]1 - ( ' - - - - -T  x lOO% 

Note that the overshoot does not depend on the natural frequency 
of the system but only on the damping factor. As the damping factor 
approaches 1 so the percentage overshoot approaches zero. Table 4.1 
gives values of the percentage overshoot for particular damping 
ratios. 

Table 4.1 Percentage peak overshoot 

Damping ratio Percentage overshoot 

0.2 52.7 
0.3 37.2 
0.4 25.4 
0.5 16.3 
0.6 9.5 
0.7 4.6 
0.8 1.5 
0.9 0.2 

Subsidence ratio 
An indication of how fast oscillations decay is provided by the 
subsidence ratio or decrement. This is the amplitude of the second 
overshoot divided by the amplitude of the first overshoot. The first 
overshoot occurs when we have cot = zc and so: 

) first overshoot = yss exp ] 1 - (2 

The second overshoot occurs when cot = 3zr and so: 

second overshoot = yss exp ~/1 - (2 

Thus the subsidence ratio is given by: 
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subsidence ratio = second overshoot = exp( 1 
first overshoot ~/1 - (2 

Settling time 
The settling time ts is used as a measure of the time taken for the 
oscillations to die away. It is the time taken for the response to fall 
within and remain within some specified percentage of the 
steady-state value (see Figure 4.1). Thus for the 2% settling time, 
the amplitude of the oscillation should fall to be less than 2% ofyss. 
We have: 

I e_(tOn t 
y = k  1 -  ~ i _ (  2 ~ ( P  sin cot + Q cos 090 ] 

with yss = k, 09 = co~/(1 - (2) and, as derived earlier in item 3, Q = 
~/(1 - (2). The amplitude of the oscillation is (y - yss) when y is a 
maximum value. The maximum values occur when ~ot is some 
multiple of rc and thus we have cos cot = 1 and sin cot = 0. For the 
2% settling time, the settling time ts is when the maximum 
amplitude is 2% of yss, i.e. 0.02yss. Thus: 

0.02yss = yss e -(c~ 

Taking logaritluns gives In 0.02 = " - ( con t s  and since In 0.02 = -3.9 or 
approximately 4 then: 

4 
t~ -  (COn 

The above is the value of the settling time if the specified percentage 
is 2%. If the specified percentage is 5% the equation becomes 

3 
t~ -  (con 

Number of  oscillations to settling time 
The time taken to complete one cycle, i.e. the periodic time, is l/f, 
where f is the frequency, and since 09 = 2nf then the time to 
complete one cycle is 2n/f. In a settling time of ts the number of 
oscillations that occur is: 

number of oscillations = 
settling time 
periodic time 

and thus for a settling time defined for 2% of the steady-state value: 

number of oscillations - 
4/(COn 
2n/co 

Since 09 = COn~/(1 -- (2), then: 
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number of oscillations = 2c~ 2 [.~2_i 

In designing a system the following are the typical points that are 
considered: 

For a rapid response, i.e. small rise time, the natural frequency must 
be large. Figure 4.3 shows the types of response obtained to a unit 
step input to systems having the same damping factor of 0.2 but 
different natural angular frequencies. The response time with the 
natural angular frequency of 10 tad/s, damped frequency 9.7 tad/s, 
is much higher than that with a natural angular frequency of 1 tad/s, 
damped frequency 0.97 rad/s. 

/ Natural freq. 1.5 L 

1.0 . . . . . . . . . . . . . . .  

0.5 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Time in seconds 

Figure 4.3 Response of  a unit gain second order system to a unit 
step input, the damping factor being the same for both responses 

The damping factor is typically in the range 0.4 to 0.8 since smaller 
values give an excessive overshoot and a large number of 
oscillations before the system settles down. Larger values render the 
system sluggish since they increase the response time. Though, in 
some systems where no overshoot can be tolerated, a high value of 
damping factor may have to be used. Figure 4.4 shows the effect on 
the response of a second order system of a change of damping factor 
when the natural angular frequency remains unchanged. 
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Figure 4.4 Response of  a unit gain second order system to a unit 
step input, the natural angular frequency being the same for both 
responses 
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Example 
A second order system has a natural angular frequency of 2.0 rad/s 
and a damped frequency of 1.8 rad/s. What are its (a) damping 
factor, (b) 100% rise time, (c) percentage overshoot, (c) 2% settling 
time, and (d) the number of oscillations within the 2% settling time? 

(a) Since co = o9.~/(1 - ~), then the damping factor is given by: 

1.8 = 2 .0~/1- (  2 

and ( = 0.44. 
(b) Since ogtr = �89 then the 100% rise time is given by 

x 0.87 s tr= 2 x l . 8  = 

(c) The percentage overshoot is given by: 

% overshoot = exp ( ~/ 
m 

/ x 100% 1 _~2 J 

-0.44n )x100%=21% 
= exp ~/1-0.44 ~ 

(d) The 2% settling time is given by: 

4 4 =4 .5s  
t s -  (o9. - 0.44 x2.0 

(e) The number of oscillations occurring within the 2% settling time 
is given by: 

number of oscillations = 2 7 ~ 2 -  1 2 7 1 0.449. - 1  =1.3 

Figure 4.5 Example 

Example 
The feedback system shown in Figure 4.5 has the transfer function 
of the forward path as K/[s(s + a)] and the transfer function of the 
feedback path as 1. What will be the effect on the system response of 
changing the gain K?. 

The transfer function of the closed loop system is: 

K/[s(s  + a)] K K 
G(s) = 1 + K][s(s + a)] = s(s  + a) + K = s 2 + as  + K 

By comparison with the standard form of the transfer function for a 
second order system, we have COn = ~/K and ( = al2~/K. Thus the rise 
time is given by cot, = lag, with co = COnX/(1 - (2), and so is: 
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t r  - -  
2v/-K ~/1 (a2/4K) 

The rise time thus decreases as K increases. Thus, increasing the 
gain decreases the rise time and so increases the speed of response of 
the system. 

The percentage overshoot is given by: 

-(n ) 
% overshoot = exp ~/1 - ~'2 x 100% 

( -(a/2 v/-K)n ) 
=exp  ~ / l - ( a  2/4K) x 1 0 0 %  

an  ) x 100% 
= exp ~/4K- a 2 

Thus, increasing K results in an increase in the percentage 
overshoot. 

The 2% settling time is given by: 

4 4 8 
t ~ -  (COn - a/2 - a 

Thus, the settling time is independent of the gain K. 

4.4 Stability We can define a system as being a s table  s y s t em  if, when given an input 
or a change in input, it has transients which die away with time and 
leave the system in a steady state condition. The system would be 
uns tab le  if the transients did not die away with time but grew with time 
and so steady state conditions were never reached. 

Consider a second order system with the transfer function: 

1 
G(s) = (s + 1)(s + 2) 

The values of s which make the transfer function infinite are termed the 
p o l e s  of the system. Thus, the above system has the poles s = -1 and s = 
-2. A unit step input to such a system gives an output Y(s): 

1 1 1 1 
Y(s) = s(s  + 1)(s + 2) - 2s - s + 1 + 2(s + 2) 

This varies with time as" 

y = �89 - e-' + �89 -2t 

Each of the poles gives rise to a transient tenn. Both the resulting 
exponential terms die away with time to give a steady state value of 0.5, 
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the more negative the value of s for a pole the more rapidly the 
corresponding term dies away. Thus, the system is stable. 

Now consider a second order system with the transfer function: 

1 
G(s)= ( s -  1)(s-2)  

This system has the poles s = + 1 and s = +2. A unit step input to such a 
system gives an output Y(s): 

1 1 1 1 
Y(s) = s ( s -  1)(s-2)  - 2s - s -  1 + 2 ( s -2 )  

This varies with time as: 

y = � 8 9  e +t + �89 +2, 

Each of the positive poles gives rise to exponential terms which grow 
with time, the larger the value of s for a pole the more rapidly the 
correspondiong term grows. Thus, the transients do not die away but 
increase and so the system is unstable. 

In general, if a system has a transfer function with a pole which is 
negative then it gives rise to a transient which dies away with time, 
whereas if it has a pole which is positive then the transient grows with 
time. Thus, if a transfer function has a pole which is positive then it is 
unstable. 

In general, for a second order system we have the transfer function 
(see Section 3.5): 

G(s) = s2 + 2((DnS + 0) 2 = (S + p l ) ( S  +p2) 

The roots of the quadratic denominator, i.e. the poles, are given by: 

Pl = --(COn + COn ~/(2 _ 1 

P2 = -(COn - COn ~/(2 _ 1 

With ( > 1 we have real roots then the square root is of a positive 
quantity and thus the overall root can be written as a real number, as in 
the examples given above when we had s = +1, s = +2, s = -1 and s = -2. 
With ( < 1 then the square root is of a negative quantity. If we write j for 
the square root of minus 1 then the roots can be written as" 

P l = -(con + jcon ~/I - (2 

p2 =- (COn- j~ .  ]1 _~'2 

We can thus write the values of the roots, and so poles, in the form a + 
jb; the jb part of the value is known as an imaginary number. Such 
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Figure 4.9 Poles at + I + j l .  73 
for  an unstable system 

values give rise to oscillatory transients. However, the same rule applies 
for stability, namely that ff the a term is negative then the system is 
stable and ff it is positive it is unstable. 

4.4.1 The s plane 

We can plot the positions of the poles on a graph with the real part of the 
pole value as the x-axis and the imaginary part as the y-axis. The 
resulting graph describes what is termed the s-plane. 

As an illustration, Figure 4.6 shows the s-plane for the transfer 
function: 

1 
G(s) = (s + 1)(s + 2) 

with s = -1 and s = -2, there being no imaginary terms. This describes 
an overdamped system. Figure 4.7 shows the s-plane for the transfer 
function: 

1 
G(s)= ( s -  1)(s-2)  

with s = + 1 and s = +2, there being no imaginary terms. For the transfer 
function: 

1 
G(s) = $2 + 2s + 4 

we have the roots of the quadratic given by: 

-2  + ,/4 16 
s=  2 = - 1  • 

Figure 4.8 shows tile s-plane for this transfer function, this describing an 
underdamped system. For the transfer function" 

1 
G(s) = s2 _ 2s + 4 

we have the roots of the quadratic given by: 

2 + _ , / 4 - 1 6  
s=  2 =+1 +jl .73 

Figure 4.9 shows tile s-plane for this transfer function. For the transfer 
function: 

1 
G(s)= (s+ 1) 2 

we have the roots s = -1 and s = -1. This is critical damping. Figure 
4.10 shows the s-plane for this transfer function. 

In general we can state (Figure 4.11): 
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at-1 for critical damping 
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Figure 4.11 The s-plane: stability 
when poles are in the left half 

A system is stable i f  all the system poles lie in the left half of  the 
s-plane. 

The relationship between the location of a pole and the form of transient 
is shown in Figure. 4.12. The more negative the real part of the pole the 
more rapidly the transient dies away. The larger the imaginary part of 
the pole the higher the frequency of the oscillation. A system having a 
pole which has a positive real part is unstable. 

• • 

k_/ 

• • 

v • 
f ~  

Imag. hf 

• 
Real 

Figure 4.12 Relationship between pole location and the resulting 
transient: each oscillatory transient arises from a pair of  roots a + jb 
with only one of  them shown in the figure 

Example 
Which of the following systems are stable: (a) G(s) = 1/(s 2 + s + 1), 
(b) G(s) = 1/(s 2 - 5s + 4), (c) G(s) = 1/(s 2 - 2s + 3)? 

(a) This has poles of" 

- 1 + 4 1 - 4  
s = 2 =-0 .5  •  

The poles will lie in the left half of the s-plane and so the system is 
stable. 
(b) This has poles of s = +4 and s = +1 and so the poles lie in the 
fight half of the s-plane and the system is unstable. 
(c) This has poles of: 

2 •  
s = 2 = +1 • 
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The poles will lie in the fight half of the s-plane and so the system is 
unstable. 

Problems 

~- s(s + 2) 

Figure 4.13 Problem 6 
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Imag. 
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Figure 4.14 
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Problem 7 

X 

Real 
X 

Figure 4.15 Problem 9 

1 Determine the delay time and the rise time for the following first 
order systems: (a) G(s) = 1/(4s + 1), (b) G(s) = 5/(s + 1), (c) G(s) = 
2/(s + 3). 

2 A first order system has a time constant of 30 s. What will be its 
delay time and rise time when subject to a unit step input? 

3 A first order system when subject to a unit step input rises to 90% of 
its steady state value in 20 s. Determine its time constant, delay time 
and rise time? 

4 Determine the natural angular frequency, the damping factor, the 
rise time, percentage overshoot and 2% settling time for systems 
with the following transfer functions: (a) 100/(s ~ + 4s + 100), (b) 
49/(s ~ + 4s + 49). 

5 Determine the natural angular frequency, the damping factor, the 
rise time, percentage overshoot and 2% settling time for a system 
where the output y is related to the input x by the differential 
equation: 

dy 
dt---T + 5--~- + 16y = 16x 

6 For the feedback system shown in Figure 4.13, what gain K should 
be used to give a rise time of 2 s? 

7 For the poles shown on the s-planes in Figure 4.14, which will give 
rise to stable transients and which to oscillating transients? 

8 Are the systems with the following transfer functions stable? 

1 1 1 
(a) s2 + 2s + 1' (b) s2 _ 2s + 10' (c) (s + 1)(s-  3) 

9 Figure 4.15 shows a feedback control system with unity feedback. 
Will the system be stable when (a) K = 1, G(s) = 1/[s(s + 1)], (b) K = 
3, G(s) = 1/[s + 4) (s -  1)], (c) K = 5, G(s) = 1/[s + 4) (s -  1)]? 

10 State if the following systems are stable, the relationship between 
input x and output y being described by the differential equations : 

dy dy 
(a) ~ +3--~ +2y =x, (b) ~ +--~- - 6y = x 



5 Frequency response 

5.1 Introduction In earlier chapters we have considered the outputs that arise from 
systems when subject to step, impulse and ramp inputs. In this chapter 
we consider the steady state output responses of systems when the inputs 
are sinusoidal signals. This leads to powerful methods of analysing 
systems in considering how the amplitude and phase of the output signal 
varies as the frequency of the input sinusoidal signal is changed. This 
variation is termed the frequency response of the system and can be 
described by, what are termed, Bode diagrams. 

The derivation of a transfer function for system involves making 
assumptions about the physical model, e.g. springs, masses and 
damping, that can be used to represent the system. We can derive the 
frequency response of systems from a knowledge of their transfer 
functions. Thus the validity of the resulting transfer function can be 
tested by experiment using sinusoidal inputs and comparing the 
experimental frequency response with that which is predicted by the 
transfer function. Conversely, we can determine the frequency response 
for a system and then use it to predict the form of the transfer function. 

Thus, this chapter shows how frequency response information can be 
obtained from the transfer function and how it can be presented 
graphically by means of a Bode diagram. The use of experimentally 
determined Bode plots to estimate the transfer functions of systems is 
then discussed. The chapter concludes with a discussion of the 
parameters used to describe the stability of systems and their 
determination from Bode plots, also compensation techniques which can 
be used to enhance the stability of systems. 

5.2 Phasors In discussing sinusoidal signals, a convenient way of representing such 
signals is by phasors. We imagine a sinusoidal signal y = Y sin cot, i.e. 
amplitude Y and angular frequency co, being produced by a radial line of 
length Y rotating with a constant angular velocity co (Figure 5.1) and 
taking the vertical projection y of the line at any instant of time to 
represent the value of the sinusoidal signal. If we have another sinusoidal 
signal of different amplitude then the radial line will be of a different 
length. If we have a sinusoidal signal with a different phase then it will 
start with a different value at time t = 0 and so the radial line will start at 
t = 0 at some angle, termed the phase angle, to the reference axis. The 
reference axis is usually taken as the horizontal axis. Such lines are 
termed phasors and the representation is said to be in the frequency- 
domain. 
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Figure 5.1 Sinusoidal signals represented by rotating lines, i.e. phasors: (a) y = Y sin cot, (b) y = Y sin(cot + 6) 

L -  

E 
r 

t ~  t -  

t ~  

E ...,. 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Z 

a 

Real number 

Figure 5.2 Representing a 
complex number by a line 
on an Argand diagram 

t _  

r 

E 
D r 

t -  
~  

_.E 0 
(a) 

L -  

. .O 

E 
t,-- 

e -  
~  

_E o 
(b) 

L -  

E 
e -  

B' 
r  

~  

_E o 
(c) 

IYl.. 
v 

Real number 

Real number 

o 

Real number 

Figure 5.3 Representing 
phasors by lines on an Argand 
diagram: (a) no phase angle, 
(b) phase O, (c) phase 90 ~ 

When we use a phasor to describe a sinusoidal signal all we need 
specify is its magnitude and phase angle. 

In order to clearly indicate when we are talking of the magnitude of a 
sinusoidal signal we often write IYI for the magnitude of the sinusoidal 
signal represented by the phasor and bold, non-italic, letters for the 
symbols for phasors, e .g .Y.  Thus, Y implies a phasor with both 
magnitude and phase. 

A complex number z = a + jb can be represented on an Argand 
diagram, i.e. a graph of imaginary part plotted against real part, by a line 
(Figure 5.2) of length Izl at an angle 0. The magnitude lzl of a complex 
number z and its angle 0 is thus given by: 

Izl- J a  z + b = 

0= tan-I ( b )  

We can describe a phasor used to represent a sinusoidal quantity by a 
complex number. Thus, if we have y = Y sin cot then this is described by 
a phasor (Figure 5.3(a)) consisting of just a real number. Thus, a unit 
magnitude phasor with phase angle 0 ~ is represented by 1 + j0. However, 
for y = Y sin (cot + 0) we have a phasor (Figure 5.3(b)) which has, in 
general, both a real and imaginary part and so is represented by a + jb. If 
the phase 0 is 90 ~ then for y = sin (cot + 90 ~ = cos cot the phasor (Figure 
5.3(c)) has only an imaginary part. Thus, such a unit magnitude phasor 
is represented by 0 + j 1. 

If we have a phasor of length 1 and phase angle 0 ~ (Figure 5.4(a)) 
then it will have a complex representation of 1 + j0. The same length 
phasor with a phase angle of 90 ~ (Figure 5.4(b)) will have a complex 
representation of 0 + j l; rotation of a phasor anticlockwise by 90 ~ 
corresponds to multiplication of the phasor by j since j(1 + j0) = 0 + j 1. If 
we now rotate tiffs phasor by a further 90 ~ (Figure 5.4(c)), then as j(0 
+j l) = 0 + j21 we have the original phasor multiplied by j2. As tiffs 
phasor is just the original phasor in the opposite direction, it is just the 
original phasor multiplied b y - 1  and so j2 = - 1  and hence j = ~/(-1). 
Rotation of the original phasor through a total of 270 ~ i.e. 3 x 90 ~ is 
equivalent to multiplying the original phasor by j3 = j(j2) = _j. 



Frequency response 101 

Imag. Imag, 

v 

0 Real Real 

(a) (b) (c) 

Imag. 

0 

Imag[ 

Real Real 

(d) 

Figure 5.4 Phasor rotated by (a) 0 ~ (b) 90 ~ (c) 180 ~ (d) 270 ~ 

Example 

What magnitude and phase is given the phasors described as (a) j3, 
(b) 1 + j2? 

(a) The magnitude is 3 units and, since we only have an imaginary 
component, the phase is 90 ~ . 
(b) The magnitude is ~](a 2 + b 2) = ~/(1 + 4) - 2.2 units and the phase 
is given by tan 0 = b/a = 2/1 and 0 = 63.4 ~ 

5.3 S inuso ida l  inputs  

ta.  fa. 

o 

,4 E,ectr,ca, 
Sinusoidal t system I Sinusoidal 
signal signal 

Figure 5.5 An electrical 
system with a sinusoidal input 

If we consider an electrical system, such as an electric circuit involving a 
resistor in series with a capacitor (Figure 5.5), then when we have a 
sinusoidal signal input we obtain a steady state output, e.g. the potential 
difference across the capacitor in Figure 5.1, which is also sinusoidal and 
has the same frequency as the input. The output can, however, have a 
different amplitude to the input and be shifted in phase from it. For 
Figure 5.1, the p.d. across the capacitor leads the input by a phase angle 

given by tan ~ = Xc/R; the capacitive reactance Xc = coC. The 
amplitude of the output Vc = LVc, where I is the amplitude of the circuit 
current. The amplitude and phase depend on the frequency of the input. 

This type of relationship between the steady state output and a 
sinusoidal input applies to all forms of system. Thus, in general we can 
describe systems in the way shown in Figure 5.6 and so: 

The frequency response of  a system is the steady state response of  
the system to a sinusoidal input signal The steady state output is a 
sinusoidal signal of  the same frequency as the input signal differing 
only in amplitude and phase angle. 

5.3.1 Frequency response function 

In order to arrive at the principle of file frequency response function we 
will consider a simple system with a sinusoidal input and steady-state 
sinusoidal output and recognise that our conclusions can be applied in a 
more general way to all systems. 

Consider a system where the input x is related to the output by y = kx. 
If we have an input of a sinusoidal signal x = sin cot then the output is 
y = k sin cot and so a sinusoidal signal with the same frequency but a 



102 Control Systems 

Input Output 
r System ~ 

A sin co B sin (cot+~) 

o Time 

"5 0 
0 

Figure 5.6 The frequency 
response of  a system 

different amplitude. Thus, if we represent the sinusoidal signals by 
phasors: 

Output phasor Y 
Input phasor X = k 

Now consider a system where the input x is related to the output y by 
the differential equation: 

T ~-~Yt +y = kx 

Thus, since the frequency does not change we can take x = sin cot and 
y = sin cot and so, since dy/dt = 09 cos cot = co sin (cot + 90~ the equation 
can be written as: 

zco sin (cot + 90 ~ + sin cot = k sin cot 

We can represent sinusoidal signals by phasors and describe them by 
complex numbers. Thus, the above equation can be written in terms of 
phasors as: 

jzcoY + Y = kX 

Hence, we can write: 

output phasor Y k 
input phasor X - 1 + jcoT 

This leads to a definition of a frequency response function as the output 
phasor divided by the input phasor. 

We can compare this with the different equation written in the 
s-domain as" 

TsY(s) + Y(s)= ICe(s) 

and the resulting transfer function" 

Y(s) k 
G(s) - X(s) - 1 + zs 

The frequency response function equation is of the same form as the 
transfer function if we replace s by jco. Hence the frequency response 
function is denoted by G(jog). In general we can state: 

The frequency response function is obtained from the transfer 
function by replacing s byjca. 
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Example 

Determine the frequency response function for a system having a 
transfer function of G(s) = 5/(2 + s). 

Replacing s by jco gives the frequency response function of G0co) = 
5/(2 + jco). 

5.3.2 Frequency response for first-order systems 

Consider a first-order system and the determination, from the frequency 
response function, of the magnitude and phase of the steady-state output 
when it is subject to a sinusoidal input. For example, we might have a 
system which can be represented as a capacitor in series with a resistor 
and consider the output p.d. across the capacitor when there is a 
sinusoidal voltage input. 

In general, a first-order system has a transfer function of the form: 

G(s) = 1 1 zS 

where z is the time constant of the system. The frequency response 
function Gfjco) can be obtained by replacing s by jco. Hence: 

1 
G(jco) = 1 +jco~ 

We can put this into the form a + jb by multiplying the top and bottom of 
the expression by (1 -jcoz) to give: 

1 1 -jcoz 1 -jcoz 
G(jco) = 1 +jcoz x 1-jco-----~ = 1 +j2(,02z2 

But j2 = -1, thus we can write this equation as: 

1 o)~ 
G(jco) = 1 + (,02l -2 - -  j 1 + 602"/.2 

The frequency response function has thus a real element of 1/(1 + 092z :) 
and an imaginary element of--~z/(1 + ~021:2). Since G(jco) is the output 
phasor divided by the input phasor, then the output phasor has a 
magnitude bigger than that of the input phasor by a factor IG0co)l given 
by 4(a 2 + b 2) as: 

IG(Jm)l = 1 + (.02z 2 + 1 + c02z 2 

~/1 +O)2Z 2 

IG0co)l is referred to as the gain of the system. 
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The phase difference r between the output phasor and the input 
phasor is given by tan ~b = b/a as: 

tan ~ = - 0)z 

The negative sign indicates that the output phasor lags behind the input 
phasor by this angle. Thus" 

The gain and phase o f  a system when subject to a sinusoidal input is 
obtained by putting the frequency response function in the form 
a + jb and then the gain is v/(a 2 + b 2) and the phase is tan -I (b/a). 

Example 

Determine the magnitude and phase of the output from a system 
when subject to a sinusoidal input of 2 sin 3t if it has a transfer 
function of G(s) = 2/(s + 1). 

The frequency-response function is obtained by replacing s by j0): 

2 
G(j0)) - j0) + 1 

Multiplying top and bottom of the equation by (-j0) + 1) gives: 

-j20) + 2 2 20) 
G(jco) = c~ 2 + 1 - co 2 + 1 - j 0)2 _1_ 1 

The magnitude is thus" 

22 22092 
Ia0co)l = (co2 + 1) 2 + (0) 2 + 1) 2 

2 
x/0)2 + 1 

and the phase angle is given by: 

tan ~ = -co 

For the specified input we have 09 = 3 rad/s. The magnitude is thus: 

I a(jco)l- 2 =0.63 
,/32+ 1 

and the phase is given by tan ~ = -3 as ~ = -72 ~ This is the phase 
angle between the input and the output. Thus, the output is the 
sinusoidal signal of the same frequency as the input signal and 
described by 1.26 sin (3 t -  72~ 
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5.3.3 Frequency response for second-order systems 

Consider a second-order system and the determination, from the 
frequency response function, of the magnitude and phase of the steady- 
state output when it is subject to a sinusoidal input. For example, we 
might have a system which can be represented as an inductor, a capacitor 
and a resistor all in series and consider the output p.d. across the 
capacitor when there is a sinusoidal voltage input. 

In general, a second-order system has a transfer function of the form: 

G(s) = s2 + 2(CO,s + CO~ 

where COn is the natural angular frequency and ( the damping ratio. The 
frequency-response function is obtained by replacing s by jCO. Thus: 

GCj o) = 
co.: 

-o92 + j2~'cocon + co~ - (co~ - co2) + j2~'co. 

Multiplying the top and bottom of the expression by: 

gives: 

2 

This is of the form a + jb and so, since G(jco) is the output phasor 
divided by the input phasor, we have the magnitude of the output phasor 
bigger than that of the input phasor, i.e. the gain, by a factor: 

IGOo))l = 

The phase ~ difference between the input and output is given by: 

t a n ~  = - 

The minus sign indicates that the output phasor lags the input phasor. 
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5.4 Bode plots 

System 1 System 2 System 3 

Figure 5.7 Systems in series 

The frequency response of a system is described by values of the gain and 
the phase angle which occur when the sinusoidal input signal is varied 
over a range of frequencies. The term Bode plot is used for the pair of 
graphs of the logarithm to base 10 of the gain plotted against the 
logarithm to base 10 of the frequency and the phase angle plotted against 
the logarithm to base 10 of the frequency. The reason for the graphs 
being in this form is that it enables plots for complex frequency response 
functions to be obtained by merely adding together the plots obtained for 
each constituent element. 

Suppose we have a sinusoidal input to a number of systems in series 
(Figure 5.7). The first produces a gain of IG~0co)l and a phase angle shift 
of ~bl, the second produces a gain of IG2Oco)l and a phase angle shift of ~b2, 
and the third produces a gain of IG3fjco)l and a phase angle shift of ~3. 
The overall gain of the system will be the products of the gains of each of 
the systems and thus be: 

IGfjco)l--IG,(,jco)IIG20co)IIG3(j~)I 

and the total phase shift will be: 

The total phase is thus the sum of the phases of the individual elements. 
If we take the logarithms of the gain equation we obtain: 

lg IGfjco)l- lg IG~fjco)l + lg IG2(j6o)l + lg IG30co)l 

Thus, when we use the logaritluns of the gains, we obtain the overall 
gain by just adding the logarithms of tile gains of the individual 
elements. This enables us to consider any frequency response function as 
being made up of a number of simple elements and so obtain the 
response by adding the logarithms of the gains of the simple elements. 
For example, we can think of the frequency response function 5/(2 + jco) 
as being two elements, one with frequency response function 5 and the 
other with frequency response function 1/(2 + jco). 

Because we can obtain the Bode plot for a system by considering the 
plots for the constituent elements of its frequency response function and 
adding, it is only necessary to know the form of the Bode plots for a 
small number of transfer function terms: 

1 Constants 
2 1/s 
3 s 
4 1/(rs + 1) 
5 (~s+ 1) 
4 co.2/(s 2 + 2(CONS + O.)n 2) 
5 (S 2 + 2(CONS + g0n2)/g0n 2 

The following sections show these Bode plots. 
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It is usual to express the gain in decibels (dB), with: 

gain in dB = 20 lg IG0co)l 

Thus, a gain of 3 is a gain in dB of 20 lg 3 = 9.5 dB; a gain of 10 is a 
gain in dB of 20 lg 10 = 20 dB. 

5.4.1 Transfer function a constant 

This has G(s) = K and so G(jco) = K. The gain is IGOco)l = K and in 
decibels this is 20 lg K dB. The phase = 0 ~ if K is positive and-180  ~ i fK  
is negative. The form of the Bode plot is shown in Figure 5.8. Thus, for 
K = 10 the gain is a constant line of 20 lg 10 = 20 dB and the phase a 
constant line of 0 ~ 

m 

"o 20 IgK 
t -  

t,..- 
. - - .  

(9 
o 

o.1 
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Figure 5.8 Bode plot for  constant transfer function 

5.4.2 Transfer  function l/s 

For G(s) = 1/s, i.e. on the s-plane (see Section 4.4) the pole is at the 
origin, we have tile frequency response function of G(jco) = 1/(jco) = 
-0/co). For such a system the gain is: 

IG0co)l = 20 lg(1/co) = -20 lg co dB 

and the phase-90  ~ The plots are thus straight lines. When co = 1 rad/s 
then the gain is 0. When 09 = 10 rad/s it is -20 dB. When o9 = 100 rad/s 
it is -40 dB. Thus the slope of the gain line for a transfer function of 1/s 
is -20 dB for each tenfold increase in frequency (this is termed a 
decade). 

For G(s) = 1/s ~ we have G(jco) = 1/(jco) ~ = -(j/co)". For such a system 
the gain is: 

[G(jco)l = 20 Ig(1/co)" = -20n lg co dB 

and the phase-n90 ~ When co = 1 rad/s then the magnitude is 0. When 09 
= 10 rad/s it i s -20n  dB. When co = 100 rad/s it is -40n dB. Thus the 
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slope of the gain line for a transfer function of 1/s ~ is -20n for each 
tenfold increase in frequency. Figure 5.9 shows the Bode plot. 
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Figure 5.9 Bode plot for transfer functions having 1/s terms 

5.4.3 Transfer function s 

For a transfer function G(s) = s (note that values of s which make the 
numerator of a transfer function zero are termed zeros, the values which 
make the denominator zero being termed poles, and so G(s) = s is for a 
zero at the origin) we have a frequency response function of GOco) = 
009). For such a system the gain is: 

IGfjco)l = 20 lg co = 20 lg co dB 

and the phase 90 ~ The Bode plots are thus straight lines. When co = 1 
rad/s then the gain is 0. When co = 10 rad/s it is 20 dB. When co = 100 
rad/s it is 40 dB. Thus the slope of the line is 20 dB for each tenfold 
increase in frequency. 

For a transfer function G(s) = s ~ and so a frequency response function 
G(jco) = (jco)=, the gain is: 

IG(jco)l = 20 lg (_/)m = 20m lg co dB 
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and the phase m90 ~ When co = 1 rad/s then the magnitude is 0; when co 
= 10 rad/s it is 20m dB. Thus the slope of the line is 20m dB for each 
tenfold increase in frequency. Figure 5.10 shows the Bode plot. 
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Figure 5.10 Bode plot for transfer functions s m 

5.4.4 Transfer function 1/(1 + ~s) 

For G(s) = 1/(1 + ~s), i.e. a pole at s = -1/3 where ~ is the time constant, 
the frequency response is: 

1 1 -jcoz 
G(jm) = 1 +jcoz = 1 +(,02l .2 

This means a gain in dB of: 

1 
gain = 201g ~/1 +co21~2 = - 10 lg(1 + (.02T 2) 

and a phase of tan -! -co l  
When co << 1/z then co2z 2 is negligible compared with 1 and so the 

gain is 0 dB. Thus, at low frequencies the Bode plot is a straight line 
with a constant value of 0 dB. For high frequencies when co >> 1/T then 
co2z 2 is much greater than 1 and so we can neglect the 1 and the 
magnitude is -20 lg mz. This is a straight line of slope -20 dB per 
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decade which intersects with the zero decibel line when coz = 1. Figure 
5.11 shows these lines for the low and high frequencies, their 
intersection being when 09 = 1/z; this intersection is termed the break 
point or corner frequency. The two lines are called the asymptotic 
approximation to the true plot. The true plot, when we do not make these 
approximations, differs slightly from the approximate plot and has a 
maximum error of 3 dB at the break point. Table 5.1 gives the errors in 
using the asymptotes. 

At low frequencies, when 09 is less than about 0.1/z, the phase angle is 
virtually 0 ~ At high frequencies, when 09 is more than about l O/z, it is 
v i r tua l ly-90  ~ . Between these frequencies the phase angle can be 
considered to give a reasonable straight line. The maximum error in 
assuming a straight line is 5�89 ~ When co = 1/z then the phase angle is 
45 ~ Table 5.1 gives the errors in using the asymptotes. 

Break point ~ rad/s 
.0lIT 0.1/-r l/-t 10/~r 

S l o p e - 2 0  dB per decade 
~20 True 

plot 
-40 Asymptotic 

approximation 

r 
(n 
m 0 o e -  

ta  

-90* 

-180* 

Break point oJ rad/s 
0.01/'r 0.1/-r 1/.r 10/~" 

" ~ ...... . . .  . . . .  . .r;~. . . . .  I I 

- 

p l o t  Asymptotic 
approximation 

Figure 5.11 Bode plot for transfer function 1/(1 + rs) 

Table 5.1 Asymptote errors for transfer function I/(1 + rs) 

09 Magnitude error dB Phase error 

O. 10/z -0 .04 -5 .7  ~ 
0.20/z -0.02 +2.3 ~ 
0.50/z -1.0 +4.9 ~ 
1.00/z -3.0 0 o 
2.00/z -1.0 -4.9 ~ 
5.00/z -0.2 -2.3 ~ 

10.0/z -0.04 +5.7 ~ 

Example 

Sketch the asymptotes of the Bode plots for a system having a 
transfer function of 100/(s + 100). 
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Example 

The transfer function can be put in the form 1/(1 + s/100) and so the 
Bode plot is of the form shown in Figure 5.11. Since the time 
constant (1/100) then the break point is at co = 100 rad/s. At higher 
frequencies the slope of the gain asymptote will be -20 dB/decade 
and thus the gain plot is as shown in Figure 5.12. The phase is tan -~ 
-(o9/100) and is thus 0 ~ at low frequencies, -45 ~ at the break point 
and 90 ~ at high frequencies; Figure 5.12 shows the plot. 

5.4 .5  T r a n s f e r  f u n c t i o n  (1 + zs) 

For G(s) = (1 + 3s), i.e. a zero at s = 1/3 where 3 is the t ime constant, the 

frequency response is: 

G(jco) = 1 + jco3 

This means a gain in dB of: 

gain = 20 lg ~/1 + (.0232 = 10 lg(1 + O)2T 2) 

and a phase of t a n  -1 ( .oz .  

When co << 1/z then co2~ 2 is negligible compared with 1 and so the 
gain is 0 dB. Thus at low frequencies the Bode plot is a straight line with 
a constant value of 0 dB. For high frequencies when 09 >> 1/~ then co2r 2 
is much greater than 1 and so we can neglect the 1 and the magnitude is 
20 lg coz. This is a straight line of slope +20 dB per decade which 
intersects with the zero decibel line when co3 = 1. Figure 5.13 shows 
these lines, the asymptotic approximation to the true plot, for the low 
and high frequencies, their intersection being the break point or corner 
frequency of 09 = 1/3. The true plot has a maximum error which is 3 dB 
at the break point. The errors are the same as in Table 5.1. 
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, . , - , -  . . . .  """ " " " ~ " ' ~ ' ~ ' " " "  i I 

0.01/T 0.1/z l/z 10/z 
Break point ~ rad/s 

| -90' u )  

. s  
n 

0 ~ 

Figure 5.13 Bode plot for transfer function 1/(1 + is) 

At low frequencies, when 09 is less than about 0.1/z, the phase angle is 
virtually 0 ~ At high frequencies, when 09 is more than about l O/z, it is 
virtually +90 ~ . Between these frequencies the phase angle can be 
considered to give a reasonable straight line. The maximum error in 
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assuming a straight line is 5�89 ~ When coz = 1 then the phase angle is 
45 ~ Table 5.1 gives the errors. 

5 .4 .6  T r a n s f e r  f u n c t i o n  co,Z/(s z + 2 ( t o . s  + co. z) 

For a system having a transfer function: 

G(s)  = s2 + 2 (co . s  + co 2 

i.e. a pair of complex poles, the frequency response function is: 

GOco) = 

CO n 
-09  2 +j2(cOnCO + co 2 

[ 1 - (O)/(.On) 2] + j[2((CO/COn)] 

[ 1 - ((.O/O)n) 21 -j[2((co/~,,)] 
[ 1 - (CO/(Dn)2] 2 + [2( ( ( .O/O)n)]  2 

Thus the gain in decibels is: 

gain = 20 lg [ 1 - (gO/COn)2] 2 + [2 ~ (O) /O)n ) ]  2 

= -10 lg{[1 - (O)/COn)2] 2 + [2~(( .O/O)n)]  2 } 

and 'the phase is: 

phase  = - t a n -  1 
2((CO/COn) 

1 - (colmn) 2 

For co/COn << 1 the magnitude approximates to 0 dB and thus at low 
frequencies the asymptotic approximation is a straight line of 0 dB. For 
co/COn >> 1 the magnitude approximates to -40 lg (m/con). Thus, at high 
frequencies the asymptotic approximation is a straight line of slope -40 
dB per decade. The intersection of these two lines is a break point of 
o~/co, = 1. The true value, however, depends on the damping ratio. Figure 
5.14 shows the asymptotes and some true plots at different damping 
factors. 

Table 5.2 gives the errors, for a number of damping ratios, between 
the asymptote lines and the true magnitude plot. 
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Figure 5.14 Bode plot for a transfer function ca.2/(s a + 2('co~ + ca. 2) 

Table 5.2 Asymptote errors for  gain in dB 

co/co. 
~" 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

1.0 -0.09 -0.34 -1.94 --6.0 -1.92 -0.34 -0.09 
0.7 0 -0.01 -0.26 -3.0 -0.26 -0.01 0 
0.5 +0.04 +0.17  +0.90 0 +0.90 +0 .17  +0.04 
0.3 +0.07 +0.29  +1.85 +4.4 +1.85 +0.29 +0.07 
0.2 +0.08 +0.33 +2.2 +8.0 +2.2 +0.33 +0.08 

The phase is approximately constant at 0 ~ for CO/COn < <  1 and for co/COn 
>> 1 approximately-180 ~ Usually an asymptote line is drawn through 
the points co/COn = 0.2 as 0 ~ and CO/COn = 5 as-180 ~ The discrepancy 
between this line and the true phase plots is shown in Table 5.3. 
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Table 5.3 Asymptote errors in degrees for phase 

Og/Ogn 

( 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

1.0 -11.4 - 4 . 6  - 9 . 8  0 + 9 . 8  +4 .6  +11.4 
0.7 -8.1 -10.7 -19.6 0 +19.6 +10.7 + 8.1 
0.5 -5.8 -15.3 -29.2 0 +29.2 +15.3 +5.8 
0.3 -3.5 -20.0 -4 1.1 0 +41.1 +20.0 +3.5 
0.2 -2.3 -22.3 -48.0 0 +48.0 +22.3 +2.3 

E x a m p l e  

Sketch the asymptotes of the Bode plots for a system having a 
transfer function of 100/(s 2 + 4s + 100) and indicate the size of the 
error from the true plot at the break point. 

The system has con = 10 rad/s and, since 2(o9n = 4, a damping factor 
( of 0.2. The break point is when co = COn = 10 rad/s. For lower 
frequencies the gain asymptote will be 0 and at the break point will 
become -40 dB/decade. Figure 5.15 shows the plot. The phase will 
be -90 ~ at the break point and effectively 0 ~ one decade down from 
the break point a n d - 1 8 0  ~ one decade up from the break point. 
Figure 5.15 shows the plot. 

With a damping factor of 0.2, the error at the break point for the 
asymptote gain plot is given by Table 5.2 as +8.0 dB and for the 
asymptote phase plot by Table 5.3 as zero. 

5.4.6 Transfer function (s z + 2(o9,s + co,2)/o9. 2 

For a system having a transfer function: 

s 2 + 2(o9nS + COn 2 
G(s) = o92 

i.e. a pair of complex zeros, the frequency response is: 

G(jo9) = 
-09 2 +j2(o9no9 + COn 2 

COn 2 

= [1 -(o9/o9n)21 + jI2((Og/O9n)] 

The gain in decibels is thus: 

gain = 20 lg ~/[ 1 - (o9/o9.)212 + [2((o9/o9.)]2 

= 10 lg{[1 -- (O9/O9n)2] 2 + [2((o91(.On)] 2 } 

and the phase is: 
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2C(cOkOr,) ] 
phase = tan - l  I - (co/con) 2 

The gain differs only from that in Section 5.4.5 in being positive rather 
than negative. Thus the magnitude plot is just the mirror image of Figure 
5.14 about the 0 dB line. The phase differs from that in Section 5.4.5 in 
being positive rather than negative. Thus the phase plot is just the mirror 
image of Figure 5.14 about the 0 ~ line. The differences of the true plots 
from the asymptote lines is the same as in Tables 5.2 and 5.3. 

Example 

Determine the asymptote Bode plot for the system having the 
transfer function: 

5O(s + 2) 
G(s) = s(s + 10) 

This can be considered to the multiplication of four elements: 

a(s) = 10 x (] + �89 x { x 1 +s/lO 

We can draw the Bode plots for each of these elements and then sum 
them to obtain the overall plot. Figure 5.16 shows the result. 
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1 For G~(s) = 10 we have a straight line of magnitude 20 lg 10 = 
20 dB and a constant phase of 0 ~ 

2 For G~(s) = 1 + 7~s we have a magnitude of 0 dB when coz <<1 
and a line of slope +20 lg cox = +20 dB per decade when co~: >> 
1. The break point is co = 1/7: = 2 rad/s. The phase is effectively 
0 ~ up to 0.1/~ = 0.2 rad/s and +90 ~ for frequencies greater than 
10/~ = 20 rad/s. 

3 For G3(s) = 1/s we have a straight line of slope -20 dB per 
decade passing through the 0 dB point at co = 1 rad/s. The phase 
is a constant-90 ~ 

4 For G4 = 1/(1 + s/10) we have a magnitude of 0 dB when coT: << 
1 and a line of slope -20 lg coT: = -20 dB/decade when coz >> 1. 
The break point is co = 1/z = 10 rad/s. The phase is effectively 
0 ~ up to 0.1/~ = 1 rad/s and -90 ~ for frequencies greater than 
10/7: = 100 rad/s. 

5.5 System identification In Chapter 2, methods were indicated by which models, i.e. differential 
equations describing the input--output relationship or transfer function, 
can be devised for systems by considering them to be made up of simple 
elements. An alternative way of developing a model for a real system is 
determine its response to some input and then find the model that fits the 
response; this process of determining a mathematical model is known as 
system identification. 

A particularly useful method of system identification is to use a 
sinusoidal input and determine the output over a range of frequencies. 
Bode plots are then plotted with this experimental data. We then find the 
Bode plot elements that fit the experimental plot by drawing asymptotes 
on the gain Bode plot and considering their gradients. 

1 If the gradient at low frequencies prior to the first comer frequency 
is zero then there is no s or 1/s element in the transfer function. The 
K element in the numerator of the transfer function can be obiained 
from value of the low frequency gain since the gain in dB = 20 lg K. 

2 If the initial gradient at low frequencies is -20 dB/decade then the 
transfer function has a 1/s element. 

3 If the gradient becomes more negative at a comer frequency by 20 
dB/decade, there is a (1 + s/cor term in the denominator of the 
transfer function, with cor being the comer frequency at which the 
change occurs. Such terms can occur for more than one comer 
frequency. 

4 If the gradient becomes more positive at a comer frequency by 20 
dB/decade, there is a (1 + s/coO term in the numerator of the transfer 
function, with cor being the frequency at which the change occurs. 
Such terms can occur for more than one comer frequency. 



Frequency response 117 

20 

110 

, - 1 0 -  
e-  

(.9 

o 
o.1 

Figure 5.17 

1 

1 10 100 

rad/s 

Example 

26 

20 

n n  
" 0  

| 6 " o  

�9 E 0 
c~ 0.1 1 

-213 

-4o 

--613 

Figure 5.18 Example 

I 

lOO 

14 
10 

~o 0 

"" -10 
t~ 

-20 

-,30 

' I I 

Figure 5.19 Example 

rad/s 

If the gradient at a comer frequency becomes more negative by 40 
dB/decade, there is a (s2/coc 2 + 2~s/coc + 1) term in the denominator 
of the transfer function. The damping ratio ~" can be found from 
considering the behaviour of the system to a unit step input. 

If the gradient at a comer frequency becomes more positive by 40 
dB/decade, there is a (s:/cor 2 + 2(s/cor + 1) term in the numerator of 
the transfer function. The damping ratio ( can be found from 
considering the detail of the Bode plot at a comer frequency. 

If the low-frequency gradient is not zero, the K term in the 
numerator of the transfer function can be determined by considering 
the value of the low-frequency asymptote. At low frequencies, many 
terms in transfer functions can be neglected and the gain in dB 
approximates to 20 lg (K/co2). Thus, at co = 1 the gain in dB 
approximates to 20 lg K. 

The phase angle curve is used to check the results obtained from the 
magnitude analysis. 

Example 

Determine the transfer function of the system giving the Bode 
magnitude plot shown in Figure 5.17. 

The initial gradient is 0 and so there is no 1/s or s term in the 
transfer function. The initial gain is 20 and thus 20 = 20 lg K and so 
we have K = 10. The gradient changes by -20 dB/decade at a 
frequency of 10 rad/s. Hence there is a (1 + s/10) term in the 
denominator. The transfer function is thus 10/(1 + 0. Is). 

Example 

Determine the transfer function of the system giving the Bode 
magnitude plot shown in Figure 5.18. 

There is an initial slope o f -20  dB/decade and so a 1/s tenn. At the 
comer frequency 1.0 rad/s there is a -20 dB/decade change in 
gradient and so a 1/(1 + s/1) term. At the comer frequency 10 rad/s 
there is a further-20 dB/decade change in gradient and so a 1/(1 + 
s/10) term. At co = 1 the magnitude is 6 dB and so 6 = 20 lg K and K 
= 106/20 = 2.0. The transfer function is thus 2.0/s(1 + s)(1 + 0.1s). 

Example 

Determine the transfer function of the system giving the Bode 
magnitude plot shown in Figure 5.19. This shows both the 
asymptotes and the departure of the true plot from them in the 
vicinity of the break point. 

The gain Bode plot has an initial zero gradient. Since the initial 
magnitude is 10 dB then 10 = 20 lg K and so K - 100.5 = 3.2. The 



118 Control Systems 

change of-40 dB/decade at 1 rad/s means there is a 1/(s 2 + 2~s + 1) 
term. The transfer function is thus 3.2/(s ~ + 2(s + 1). 

The damping factor ( can be obtained by considering the 
departure of the true Bode plot from the asymptotes at the break 
point. Since it rises by about 4 dB, Table 5.2 indicates that this 
corresponds to a damping factor of about 0.3. The transfer function 
is thus 3.2/(s 2 + 0.6s + 1). 

5.6  S t a b i l i t y  

Input Output 

H (s) 

Figure 5.20 Closed-loop system 

Consider the stability of a closed-loop control system (Figure 5.20) when 
we have a brief input of a pulse. We will regard the pulse as essentially 
half of a sinusoidal signal at a particular frequency (Figure 5.2 l(a)). This 
passes through G(s) to give an output which is then fed back through 
H(s). Suppose it arrives back with amplitude unchanged from that of the 
input but with a phase such that when it is subtracted from the now zero 
input signal we have a resulting error signal which just continues the 
initial half-rectified pulse (Figure 5.21(b)). This then continues round 
the feedback loop to once again arrive just in time to continue the signal. 
There is a self-sustaining oscillation. 

If the fed back signal has an amplitude which was smaller than the 
initial pulse amplitude then the signal would die away with time (Figure 
5.22). The system is stable. If the fed back signal had an amplitude 
which was just the same as that of the initial pulse amplitude then the 
oscillation would continue with constant amplitude and the system is 
said to be marginally stable (Figure 5.21). ff the fed back signal had a 
larger amplitude than that of the initial pulse amplitude (Figure 5.23) 
then the oscillation would continue with a n increasing amplitude and 
the system would be unstable. Thus the condition for instability is that 
the gain resulting from a signal fed though the series arrangement of 
G(s) and H(s) should be greater than 1 and the signal fed back into 
G(s)H(s) must have suffered a phase change of-180 ~ 

Initial 
input 0 

(a) 

Signal O! 

Error 
signal 0 

(b) 

Time 

Time 

f ~ j / /  Time 

Figure 5.21 Self sustaining 
signal: (a) input to system, 
(b) fed back signal (c) resulting 
error signal 
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Figure 5.22 Stable system: 
(a) input to system (b) fed back, 
signal (c) resulting error signal 

Time 
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from ~ Time 
feedback 

Error 
signal 0 

Time 

(b) 

Figure 5.23 Unstable system: 
(a) input to system (b) fed back, 
signal (c) resulting error signal 
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Figure 5.26 (a) Stable system, 
(b) unstable system 

The transfer function for G(s) in series with H(s) is called the 
open-loop transfer function. The stability criterion can thus be stated as: 

The critical point which separates stable from unstable systems is 
when the open-loop phase shift is-180 ~ and the open-loop gain is 1. 

A good stable control system usually has an open-loop gain 
significantly less than 1, typically about 0.4 to 0.5, when the phase shift 
is-180 ~ and an open-loop phase shift of between-115 ~ to-125 ~ when 
the gain is 1. Such values give a slightly under damped system which 
gives, with a step input, about a 20 to 30% overshoot. 

5.6.1 Stability measures 

Measures of the stability of systems that are used in the frequency 
domain are" 

1 Phase crossover frequency 
The phase crossover frequency is the frequency at which the phase 
angle first reaches-180 ~ 

2 Gain margin 
This is the factor by which the gain must be multiplied at the phase 
crossover to have the value 1. A good stable control system usually 
has an open-loop gain significantly less than 1, typically about 0.4 to 
0.5, when the phase shift is-1800 and so a gain margin of 1/0.5 to 
1/0.4, i.e. 2 to 2.5. 

3 Gain crossover 
This is the frequency at which the open-loop gain first reaches the 
value 1. 

4 Phase margin 
This is the number of degrees by which the phase angle is smaller 
than-180  ~ at the gain crossover. A good stable control system 
usually has typically an open-loop phase shift of between-115 ~ to 
-125 ~ when the gain is 1; thus, the phase margin is between 45 ~ and 
65 ~ 

The above parameters enable the questions of how much change in 
gain and phase of the G(s)H(s) product can be tolerated before a system 
becomes unstable. They are thus useful in the design of stable systems. 

The Bode plot for the open-loop transfer function, i.e. G(s)H(s), gives 
a convenient way to determine the above parameters and hence the 
stability of a system. An open-loop gain of 1 is, on the log scale of dB, a 
gain of 20 lg 1 = 0 dB. Figure 5.25 shows the parameters on a Bode plot. 
Note that on the Bode gain plot we are working with the log of the gain 
and so the gain margin is the additional dB that is necessary to make the 
gain of the signal unity at the phase crossover frequency. 

Figure 5.26(a) is an example of Bode plot for a stable system with 
Figure 5.26(b) being for an unstable system. In (a), the open-loop gain is 
less than 0 dB, i.e. a gain of 1, when the phase i s -180  ~ In (b), the 
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open-loop gain is greater than 0 dB, i.e. greater than 1, when the phase 
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Figure 5.27 Example 

Example 

Determine the gain margin and the phase margin for a system that 
gave the following open-loop experimental frequency response data: 
at frequency 0.005 Hz a gain of 1.00 and phase -120 ~ at 0.010 Hz a 
gain of 0.45 and phase-180 ~ 

The gain margin is the factor by which the gain must be multiplied 
at the phase crossover to have the value 1. The phase crossover 
occurs at 0.010 Hz and so the gain margin is 1.00/0.45 = 2.22. The 
phase margin is the number of degrees by which the phase angle is 
smaller than -180 ~ at the gain crossover. The gain crossover is the 
frequency at which the open-loop gain first reaches file value 1 and 
so is 0.005 Hz. Thus, the phase margin is 180 ~  120 ~ = 60 ~ 

Example 

For the Bode plot shown in Figure 5.27, determine (a) whether the 
system is stable, (b) the gain margin, (c) the phase margin. 

(a) The system is stable because it has an open-loop gain less than 1 
when the phase is-180 ~ 
(b) The gain margin is about 12 dB. 
(c) The phase margin is about 30 ~ 

5 .7  C o m p e n s a t i o n  

Compensator System 

Figure 5.28 Cascade 
compensation 

Gain System 

Figure 5.29 Adjusting the 
performance of a system by 
introducing gain 

The term compensation is used for the modification of the performance 
characteristics of a system so that the required characteristics are 
obtained. A compensator is thus an additional component which is added 
into a control system to modify the closed-loop performance and 
compensate for a deficient performance. A compensator placed in the 
forward path is called a cascade or series compensator (Figure 5.28). 

5.7.1 Changing the gain 

Consider the effects of adjusting the performance of a control system by 
changing the gain in the forward path (Figure 5.29). The effect of 
increasing the gain is to shift upwards the gain-frequency Bode plot by 
an equal amount over all the frequencies; this is because we are adding a 
constant gain element to the Bode plot. Figure 5.30 illustrates tiffs. There 
is no effect on the phase-frequency Bode plot. Increasing the gain thus 
shifts the 0 dB crossing point of the gain plot to the fight and so to a 
higher frequency. This decreases the stability of the system since it 
decreases the gain margin and the phase margin. Hence, if an increase in 
stability is required then the gain needs to be reduced. 
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Example 
For the control system giving the open-loop Bode plot of Figure 5.31 
we have a control system with a phase margin of 35 ~ By how much 
should the gain of the system be changed if a gain margin of 45 ~ is 
required? 
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Figure 5.31 Example 

The phase margin of 35 ~ means that the phase is 180 ~  35 ~ = 145 ~ 
when the gain is 0 dB. For a phase margin of 45 ~ the phase must be 
180 ~ - 45 ~ = 135 ~ when the gain is 0 dB. At present, when the 
phase is 135 ~ the gain is about +2 dB. If follows that if the gain is 
reduced by 2 dB that the gain-frequency line will be shifted 
downwards by 2 dB and give the required phase margin. Since the 
change in gain AK is given by 2 = 20 lg AK then AK = 1.3. This is 
the factor by which the gain has to be reduced. 

5.7.2 Phase-lead compensation 

The transfer function of a phase-lead compensator is of the form" 

G(s )  = 1 + a r s  
l+zs  

with a > 1. Such a compensator can be provided by the circuit shown in 
Figure 5.32 (a = (RI + R2)/R2 and T = RIR2C/(RI + R2)). Figure 5.33 
shows the Bode plot for a phase-lead compensator (it can be obtained by 
adding the Bode plots for the numerator term and the denominator 
term). The term phase-lead is used because the compensator has a 
positive phase and so is used to add phase to an uncompensated system. 
The maximum value of the phase occurs at a frequency corn ;which is 
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midway between the frequencies of 1/z and 1/az on the logarithmic scale 
and so: 

and hence: 

1 
( .Om--  

The value of this maximum phase angle ~m is given by: 

s i n  ~ m  a - 1 
- a + l  

With a cascade phase-lead compensator we add its Bode plot to that of 
the system being compensated in order to obtain the required 
specification. As a consequence we can increase the phase margin. The 
cascade phase-lead compensator is thus used to provide a satisfactory 
phase margin for a system. The procedure to determine the required 
values of a and ~ for the compensator is to: 

Determine the phase margin of the open-loop uncompensated system 
and so ascertain the addition amount of phase required to give the 
desired phase margin. 

The above equation is then used to determine the value of a to give 
this additional phase. 

The high frequency gain of the compensator is 20 lg a dB and the 
low frequency gain is 0 dB; hence, the gain at the maximum phase 
is �89 20 lg a = 10 lg a dB. From the value of a obtained in item 2 we 
can determine this gain. 

The compensator is used to give the new gain crossover at the 
frequency at which the phase is a maximum and thus we need to 
place this frequency where the gain of the uncompensated system is 
-10 lg a dB. In doing this we obtain the required value of ~m and so 
can determine the required value of r. 

Example 

Determine the transfer function of the cascade lead-compensator 
that can be used with a system having an open-loop transfer function 
of 10/s 2 in order to give a phase margin of 45 ~ 

Figure 5.34 shows the Bode plot for the uncompensated system, the 
uncompensated phase being 0 ~ at all frequencies. Thus, the phase 
margin of the uncompensated system is 180 ~ To obtain a phase 
margin of 45 ~ we require: 
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sin 45 ~ - a - 1 
a + l  

0.71(a + 1) = a -  1 

0.29a = 1.71 

and thus a is 5.9. The gain of the compensator at the maximum 
compensator phase is 10 lg a = 7.7 dB. The uncompensated system 
has a gain of-7.7 dB at a frequency of about 5 rad/s and so corn = 5 = 
1/z~/a = 1/2.4z and thus z = 0.083. The required compensator has 
thus a transfer function of: 

1 +azs  1 + 0.49s 
G ( s )  = = 

1 + zs 1 + 0.083s 

5.7.3 Phase-lag compensation 

The phase-lag compensator has a negative phase angle and so is used to 
subtract phase from an uncompensated system. A phase-lag compensator 
has a transfer function of the form: 

1 +zs 
G(s) = 1 + azs 

where a is greater than 1. Figure 5.35 shows the type of circuit that can 
be used (a = (R~ + R2)/R2 and ~ = R2C). Figure 5.36 shows the Bode plot. 
Because the phase-lag compensator adds a negative phase angle to a 
system, the phase lag is not a useful effect of the compensation and does 
not provide a direct means of improving the phase margin. The 
phase-lag compensator does, however, reduce the gain and so can be 
used to lower the crossover frequency. A consequence of this is that, as 
usually the phase margin of the system is higher at the lower frequency, 
the stability can be improved. The procedure that can be adopted to 
design with a cascade phase-lag compensator is: 

Determine the frequency where the required phase margin would be 
obtained if the gain plot crossed the 0 dB line at this frequency. 
Allow for 5 ~ phase lag from the phase-lag compensator when 
determining the new crossover frequency. 

One decade below the new crossover frequency is taken to be 1/~. It 
is necessary to ensure that the phase minimum occurs at a frequency 
which is well below the crossover frequency of the uncompensated 
system so that the phase lag introduced by the compensator does not 
significantly destabilise the system. 

Determine the gain required at the new crossover frequency to 
ensure that the compensated system gain plot crosses at this 
frequency. Since the gain produced by the phase-lag compensator at 
this frequency is-20 lg a, we can calculate a. 
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E x a m p l e  

Determine the transfer function of the cascade phase-lag 
compensator that can be used with a system having an open-loop 
Bode plot of Figure 5.37 in order to give a phase margin of 40 ~ 

The uncompensated system has a phase margin of about 20 ~ The 
frequency where the phase margin is the required 40 ~ + 5 ~ is 2 rad/s 
and this is  to become the new crossover frequency. One decade 
below this is 0.2 rad/s. Thus 1/z = 0.2 and so z = 5. The gain of the 
uncompensated system at the new crossover frequency is 20 dB and 
so 20 lg a = 20 and hence a = 10. Thus, the required transfer 
function of the compensator is (1 + 5s)/(1 + 50s). 

P r o b l e m s  1 What are the magnitudes and phases of the signals represented by 
phasors described as (a) j2, (b) j22, (c) 2 + j 1? 

2 What are the frequency response functions for systems with transfer 
functions (a) 1/(s + 5), (b) 7/(s + 2), (c) 1/[(s + 10)(s + 2)]? 

3 Determine the magnitude and the phase of the response of a system 
with transfer function 3/(s + 2) to sinusoidal inputs of angular 
frequency (a) 1 rad/s, (b) 2 rad/s. 

4 Sketch the asymptotes for the Bode plots of systems with the transfer 
functions (a) 100, Co) 1000/(s + 1000), (c) 4/(s 2 + s + 4). 

5 Sketch the asymptotes for the Bode plots of systems with the transfer 
function (a) 10/s:, (b) ( s -  10)/(s + 10), (c) s/(s 2 + 20s + 100). 

6 Obtain the transfer functions of the systems giving the Bode gain 
plots in Figure 5.38. 
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7 The following are experimentally determined frequency response 
data for a system. By plotting the Bode gain diagram, determine the 
transfer function of the system. 

Freq. Hz 0.16 0.47 
GaindB 24.0 24.0 

1.3 2.5 4.8 10.0 16.0 20.0 24.0 
23.6 23.0 17.0 14.0 9.5 8.0 5.0 

8 Determine the gain margin and the phase margin for a system that 
gave the following open-loop experimental frequency response data: 
at frequency 0.01 Hz a gain of 1.00 and phase -130 ~ at 0.02 Hz a 
gain of 0.55 and phase -180 ~ . 

9 For the Bode plot shown in Figure 5.39, determine (a) whether the 
system is stable, Co) the gain margin, (c) the phase margin. 

10 A system has an open-loop transfer function of 1/[s(1 + s)(1 + 0.2s)]. 
By plotting the Bode diagrams, determine (a) whether the system is 
stable, (b) the gain margin, (c) the phase margin. 

11 A system has an open-loop transfer function of 1/[s(1 + 0/0.02s)(1 + 
0.2s)]. By plotting the Bode diagrams, determine (a) whether the 
system is stable, (b) the gain margin, (c) the phase margin. 

12 For the control system giving the open-loop Bode plot of Figure 5.40 
we have a control system with a phase margin of 10 ~ By how much 
should the gain of the system be changed if a gain margin of 40 ~ is 
required? 

13 The following are experimentally determined open-loop frequency 
response data for a system. Determine the phase margin when 
uncompensated and the change in the gain of the system that is 
necessary from a phase-lead compensator, when added in cascade, to 
increase the phase margin by 5 ~ . 

Frequency 0.6 0.8 1.0 2.0 4.0 6.0 
rad/s 
Gain dB 13.2 10.3 8.0 0.0 -10.7 -18.0 
Phase deg. -110 -116 -122 -146 -175 -192 

14 Determine the maximum phase lead introduced by a phase-lead 
compensator with a transfer function of (1 + 0.2s)/(1 + 0.02s). 

15 A system has an open-loop transfer function of 12/[s(s + 1)]. What 
will be the transfer function of a phase-lead compensator which, 
when added in cascade, will increase the uncompensated phase 
margin of 15 ~ to 40~ 

16 A system has an open-loop transfer function of 4/[s(2s + 1)]. What 
will be the transfer function of a phase-lag compensator which, 
when added in cascade, will give a phase margin of 40~ 
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6.1 In t roduct ion  tr'' 
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Figure 6.1 (a) Cartesian graph 
with points specified by x and y 
values, (b) polar graph with 
points specified by r and @ values 

6.2 The  polar  plot 
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Figure 6.2 Polar plot with the 
plot as the line traced out by the 
tips of the phasors as the 
frequency is changed from zero 
to inifnity 

This chapter follows on from Chapter 5 and presents another method of 
considering the frequency response of systems and their stability. The 
method uses Nyquist diagrams; in these diagrams the gain and the phase 
of the open-loop transfer function, i.e. the product of the forward path 
and the feedback path transfer functions, are plotted as polar graphs for 
various values of frequency. With Cartesian graphs the points are plotted 
according to their x and y coordinates from the origin; with polar graph 
the points are plotted from the origin according to their radial distance 
from it and their angle to the reference axis (Figure 6.1). 

The polar plot of the frequency response of a system is the line traced out 
as the frequency is changed from 0 to infinity by the tips of the phasors 
whose lengths represent the magnitude, i.e. amplitude gain, of the 
system and which are drawn at angles corresponding to their phase 
(Figure 6.2). 

Example 
Draw the polar diagram for the following frequency response data. 

Freq. rad/s 1.4 2.0 2.6 3.2 3.8 
Magnitude 1.6 1.0 0.6 0.4 0.2 
Phase deg. -150 -160 -170 -180 -190 

Note that the above data gives the phases with negative signs. This 
means they are lagging behind the 0 ~ line by the amounts given. 
Figure 6.3 shows the polar plot obtained. 

6.2.1 Nyquist diagrams 

The term Nyquist diagram is used for: 

The Nyquist diagram is the line joining the series of points plotted 
on a polar graph when each point represents the magnitude and 
phase of the open-loop frequency response corresponding to a 
particular frequency. 

To plot the Nyquist diagram from the open-loop transfer function of a 
system we need to determine the magnitude and the phase as functions of 
frequency. 
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Figure 6.4 Nyquist diagram for 
a first-order system 

E x a m p l e  

Determine the Nyquist diagram for a first-order system with an 
open-loop transfer function of 1/(1 + rs). 

The frequency response is: 

1 _ 1 1 -jcoT: 1 097: 
1 +jcoz - 1 +jcoz 1-jcoz = 1 +092172 - j  1 +6027:2 

The magnitude is thus: 

magnitude = 
~/1 + 0)27:2 

and the phase is: 

phase = - t an  -~ ~oz 

At zero frequency the magnitude is 1 and the phase 0 ~ At infinite 
frequency the magnitude is zero and the phase i s -90 ~ When co7: = 1 
the magnitude is 1/~/2 and the phase is -45 ~ Substitution of other 
values leads to the result shown in Figure 6.4 of a semicircular plot. 

E x a m p l e  

Determine the Nyquist plot for the system having the open-loop 
transfer function of 1/s(s + 1). 
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The frequency response is: 

1 1 1 _jco _ CO2 
G(jco) = jco(ico + l) = jco - 6 0  2 - jco - 0 )  2 -jco - co2 

--0) 2 (.0 
0) 2 + (0 4 --J (.02 + 09 4 

the magnitude and phase are thus: 

magnitude = 
CO ~/CO2 + 1 

phase = taw ~ -1/(-co)= 180 ~ + tan -~ 1/co 

When (.0 = o, then the magnitude is 0 and the phase is 0 ~ As (.0 tends 
to 0 then the magnitude tends to infinity and the phase to 270 ~ or 
-90 ~ . Figure 6.5 shows the polar plot. 

6.3 Stability As indicated in Section 5.6: the critical point which separates stable from 
unstable systems is when the open-loop phase shift is -180 ~ and the 
open-loop magnitude is 1. ff a Nyquist diagram of the open-loop 
frequency response is plotted then for the system to be stable there must 
not be any phasor with length greater than 1 and phase -180 ~ Thus the 
line traced by the tips of the phasors, the so-termed loci, must not enclose 
the-1  point. 

Closed-loop systems whose open-loop frequency response 
GO'co)HO'co) loci, as (.0 goes from 0 to oo, do not encircle the-1  point 
will be stable, those which encircle the -1  point are unstable and 
those which pass through t h e - 1  point are marginally stable. 
Encircling the point may be taken as passing to the left o f  the point. 

The above statement is known as the Nyquist stability criterion. 
Figure 6.6 illustrates the above with examples of stable, marginally 

stable and unstable systems. The Nyquist plots, not to scale, correspond 
to the open-loop frequency response of: 

K 
G(jco)HGco) = (1 +jco0.2)(1 +jco)(1 +jcol0) 

with K = 10 for the stable plot, K = 137 for the marginally stable plot 
and K = 500 for the unstable plot. 

The vertical axis of the Nyquist plot corresponds to the phase equal to 
90 ~ and so is the imaginary part of the open-loop frequency response. 
The horizontal axis corresponds to the phase equal to 0 ~ and so is the 
real part of the open-loop frequency response. 

Figures 6.7 to 6.10 shows examples of Nyquist plots for common 
forms of open-loop transfer functions and their conditions for stability. 
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Figure 6.6 Stability and the Nyquist plot 
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Figure 6.8 G(s)G(s) = K/s(s + a), stable for all values o f  K > 0 
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Figure 6.10 G(s)H(s) = K/s(s + a)(s + b); this is unstable with large K 
but can become stable i f  K is reduced, the point at which the plot crosses 
the axis being-K/(a + b) and so stability is when-K/(a + b) > -1 

Example 

Plot the Nyquist diagram for a system with the open-loop transfer 
function K/(s + 1)(s + 2)(s + 3) and consider the value of K needed 
for stability. 

The open-loop frequency response is: 

K 
009 + 1)(jco + 2)(jco + 3) 

The magnitude and phase are: 

magnitude = K 
~/(0) 2 + 1)(o3 2 + 4)(co 2 + 9) 

phase = tan-~ ( - ~ ) + t a n - ]  ( -~ )  +tan-~ ( -~ )  

When co = 0 then the magnitude is K/6 and the phase is 0 ~ When co 
= oo then the magnitude is 0 and the phase is 270 ~ We can use 
these, and other points to plot the polar graph. 
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Alternatively we can consider the frequency response in terms of 
real and imaginary parts. We can write the open-loop frequency 
function as: 

6K(1 _o92) 
(0) 2 + 1)(o92 + 4)(092 + 9) 

coK(O9 2 - 11) 
+ J (0) 2 + 1)(092 + 4)(092 + 9) 

When o9 = 0 then the imaginary part is zero and the real part is K/6. 
When o9 = oo then the imaginary part is zero and the real part is 0. 
The imaginary part will be zero when o9 =~/11. This is a real part, 
and hence magnitude, of-K/60 and is the point at which the plot 
crosses the real axis. Thus for a stable system we must have-K/60 
less than -1, i.e. K must be less than 60. Figure 6.11 shows the 
complete Nyquist plot (not to scale). 
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Figure 6.12 Phase crossover 
and gain margin 

The use of gain margin and phase margin was introduced in Section 
5.6.1 to discuss the relative stability of a system in the frequency domain 
when described by a Bode plot. With Nyquist plots: 

Gain margin 
The phase crossover frequency is the frequency at which the phase 
angle first reaches-180 ~ and thus is the point where the Nyquist 
plot crosses the real axis (Figure 6.12). On a Nyquist plot the 
(-1, j0) point is the point separating stability from instability. The 
gain margin is the amount by which the actual gain must be 
multiplied before the onset of instability. Thus if the plot cuts the 
negative real axis at -x (Figure 6.12), it has to be multiplied by 1/x 
to give the value -1 and so the gain margin, which is expressed in 
dB, is 20 lg(1/x). 

When the open-loop plot goes through the (-1, j0) point the gain 
margin is 0 dB, the system being on the margin of instability. When 
the open-loop plot goes to the left of (-1, j0) point the gain margin is 
negative in dB, the system being unstable. When the open-loop plot 
goes to the right of (-1, j0) point the gain margin is positive in dB, 
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the system being stable. When the open-loop plot does not intersect 
the negative real axis the gain margin is infinite in dB. 

Phase margin 
The phase margin is defined as the angle in degrees by which the 
phase angle is smaller than -180 ~ at the gain crossover, the gain 
crossover being the frequency at which the open-loop gain first 
reaches 1. Thus, with a Nyquist plot, ff we draw a circle of radius 1 
centred on the origin, then the point at which it intersects the 
Nyquist line gives the gain crossover. The phase margin is the angle 
through which this gain crossover line must be rotated about the 
origin to reach the real axis and pass through the (-1, j0) point 
(Figure 6.13). 

Example 
Determine the gain margin and the phase margin for a system with 
the open-loop transfer function K/(s + 1)(s + 2)(s + 3) with K = 20. 
This system was discussed earlier in this chapter (see Figure 6.11 for 
the Nyquist plot). 

The open-loop frequency response is: 

K 
(jco + 1)(jco + 2)009 + 3) 

and this can be rearranged to give: 

6/(( 1 - 0) 2) COK(CO 2 - 11) 
(0) 2 + 1)(o9 2 + 4)(09 2 + 9) + j (0) 2 + 1)(o) 2 + 4)(o92 + 9) 

The imaginary part will be zero when co =~11 and thus the real part 
is-K/60 and is the point at which the plot crosses the real axis. 
Hence, if we have K = 20 then the plot intersects the negative real 
axis at-20/60 = -1/3. The gain can thus be increased by a factor of 
3 in order to reach the-1 point. The gain margin is thus 20 lg 3 = 
9.5 dB. 

The magnitude is: 

magnitude = K 
~/(CO2 + 1)(O92 + 4)(022 + 9) 

Thus, for K = 20, the magnitude is 1 when co = 1.84 rad/s. The 
phase is given by: 

phase= tan-~ ( ~ )  + tan-~ ( -~)  +tan-~ ( ~  -) 

and so, at this frequency, the phase is -135.5 ~ . Thus the phase 
margin is 44.5 ~ 



Nyquist diagrams 133 

Problems 1 Sketch the Nyquist diagram for a system having an open-loop 
transfer function of 1/[s(s + 1)]. 

2 With a Nyquist diagram for the open-loop frequency response for a 
system, what is the condition for the system to be stable? 

3 Determine the gain margin and the phase margin for a system which 
gave the following open-loop frequency response: 

Freq. md/s 1.4 2.0 2.6 3.2 3.8 
Magnitude 1.6 1.0 0.6 0.4 0.2 
Phase deg. -150 -160 -170 -180 -190 

4 Determine the gain margin and the phase margin for a system which 
gave the following open-loop frequency response" 

Freq. rad/s 4 5 6 8 10 
Gain 3.2 2.3 1.7 1.0 0.6 
Phase in deg. -140 -150 -157 -170 -180 

5 Determine the gain margin and the phase margin for a system 
having an open-loop transfer function of: 

K 
s(s+ 1)(s + 2) 

when K = 4. 
6 Determine the gain margin and the phase margin for a system 

having an open-loop transfer function of: 

s(O.2s + 1)(O.05s + 1) 
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Figure 7.1 Bimetallic thermostat 

Process controllers are components which basically have an input of the 
error signal, i.e. tile difference between the required value signal and the 
feedback signal, and an output of a signal to modify the system output. 
The simplest form of controller is an on--off device which switches on 
some correcting device when there is an error and switches it off when 
the error ceases. However, such a method of control has limitations and 
often more sophisticated controllers are used. While there are many ways 
a controller could be designed to react to an error signal, a form of 
controller which can give satisfactory control in a wide number of 
situations is the three-term or PID controller. The term control mode is 
used for the type of response a controller gives to an error signal and the 
three basic modes that are used are proportional (P), integral (I) and 
derivative (D); the three-term controller is a combination of all three 
modes. 

The chapter is a discussion of process controllers and the modes of 
control law used, also including a brief consideration of programmable 
logic controllers and embedded microprocessor-based controllers. 

7.1.1 Compensation and controllers 

The term compensation is used for the modification or compensation of 
the performance characteristics of a system so that the required 
characteristics are obtained. Compensators are components which are 
added to a control system in order to modify closed-loop performance. 
They can be added anywhere in a control system. Controllers are 
components which basically have an input of the error signal and an 
output of a signal to modify the system output and give the required 
characteristics. They are thus used at a specific point in a control circuit. 
From the design point of view there is no real difference between 
compensators and controllers, the two terms reflecting differences in 
hardware. Traditionally a controller is a stand-alone component offering 
a range of control modes such as proportional gain and integral and 
derivative action and normally includes a summing element. 

7.2 On-o f f  control With on--off control, the controller is essentially a switch which is 
activated by the error signal and supplies just an on--off correcting 
signal. An example is the bimetallic thermostat (Figure 7.1) used with a 
simple temperature control system. If the actual temperature is above the 
required temperature, the bimetallic strip is in an off position and the 
heater is switched off; if the actual temperature is below the required 
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temperature, the bimetallic strip moves into the on position and the 
heater is switched on. The controller output can thus be just on or off 
and the correcting signal on or off (Figure 7.2). 

Because the control action is discontinuous and there are time lags in 
the system, oscillations of the controlled variable occur about the 
required condition. Thus, with temperature control using the bimetallic 
thermostat, when the room temperature drops below the required level 
there is a significant time before the heater begins to have an effect on 
the room temperature and, in the meantime, the temperature has fallen 
even more. When the temperature rises to the required temperature, 
since time elapses before the control system reacts and switches the 
heater off and it cools and stops heating the room, the room temperature 
goes beyond the required value. The result is that the room temperature 
oscillates above and below the required temperature (Figure 7.3). 

There is also a problem with the simple on--off system in that when 
the room temperature is hovering about the set value the thermostat 
might be reacting to very slight changes in temperature and almost 
continually switching on or off. Thus, when it is at its set value a slight 
draught might cause it to operate. This problem can be reduced if the 
heater is switched on at a lower temperature than the one at which it is 
switched off (Figure 7.4). The term dead band is used for the values 
between the on and off values. For example, if the set value on a 
thermostat is 20~ then a deadband might mean it switches on when the 
temperature falls to 19.5 ~ and off when it is 20.5 ~ . The temperature has 
thus to change by one degree for the controller to switch the heater on or 
off and thus smaller changes do not cause the thermostat to switch. A 
large dead band results in large fluctuations of the temperature about the 
set temperature; a small dead band will result in an increased frequency 
of switching. The bimetallic thermostat shown in Figure 7.1 has a 
permanent magnet on one switch contact and a small piece of soft iron 
on the other; this has the effect of producing a small dead band in that, 
when the switch is closed, a significant rise in temperature is needed for 
the bimetallic element to produce sufficient force to separate the 
contacts. 

On--off control is not too bad at maintaining a constant value of the 
variable when the capacitance of the system is very large, e.g. a central 
heating system heating a large air volume, and so the effect of changes 
in, say, a heater output results in slow changes in the variable. It also 
involves simple devices and so is fairly cheap. On-off control can be 
implemented by mechanical switches such as bimetallic strips or relays 
with more rapid switching being achieved with electronic circuits, e.g. 
thyristors or transistors used to control the speed of a motor. 

7.2.1 Electronic switching 

A junction diode has a low resistance to current flow in one direction and 
a high resistance for the reverse direction. The thyristor or silicon 
controlled rectifier (SCR) can be considered to be a diode which can be 
switched on to be conducting, i.e. switched from having a low resistance 
to a high resistance, at a particular forward direction voltage. The 
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thyristor passes negligible current when reverse biased and when forward 
biased the current is also negligible until the forward breakdown voltage, 
e.g. 300 V, is exceeded. Thus, if such a thyristor is used in a circuit in 
series with a resistance of 30 f2 (Figure 7.5), before breakdown we have 
a very high resistance in series with the 30 f2 and so virtually all the 
300 V is across the thyristor with its high resistance and there is 
negligible current. When forward breakdown occurs, the resistance of the 
thyristor drops to a low value and now, of the 300 V, only about 2 V 
might be dropped across the thyristor. There is now 300 - 2 = 298 V 
across the 30 f2 resistor and so the current rises from its negligible value 
to 298/30 = 9.9 A. When once switched on the thyristor remains on until 
the forward current is reduced to below a level of a few milliamps. The 
voltage at which forward breakdown occurs is controlled by a gate input 
current, the higher the current the lower the breakdown voltage. Thus, by 
controlling the gate current we can determine when the thyristor will 
switch from a high to low resistance. 

As an illustration of the use of a thyristor, Figure 7.6 shows how it can 
be used to control the power supplied to a resistive load by chopping a 
d.c. voltage I,'. An alternating current signal is applied to the gate so that 
periodically the voltage l,' becomes high enough to switch the thyristor 
off and so the voltage I/" off. The supply voltage can be chopped and an 
intermittent voltage produced with an average value which is varied and 
controlled by the alternating signal to the gate. 

Another example of control using a thyristor is that of a.c. for electric 
heaters, electric motors or lamp dimmers. Figure 7.7 shows a circuit that 
can be used. The alternating current is applied across the load, e.g. the 
lamp for a lamp dimming circuit, in series with a thyristor. R~ is a 
current-limiting resistor and R2 is a potentiometer which sets the level at 
which the thyristor is triggered. The diode in the gate input is to prevent 
the negative part of the alternating voltage cycle being applied to the 
gate. By moving the potentiometer slider the gate current can be varied 
and so the thyristor can be made to trigger at any point between 0 ~ and 
90 ~ in the positive half-cycle of the applied alternating voltage. When the 
thyristor is triggered near the beginning of the cycle it conducts for the 
entire positive half-cycle and the maximum power is delivered to the 
load. When triggering is delayed to later in the cycle it conducts for less 
time and so the power delivered to the load is reduced. Hence the 
position of the potentiometer slider controls the power delivered to the 
load; with the light dimming circuit the slider position controls the 
power delivered to the lamp and so its brightness. 

Another form of electronic switching is provided by the junction 
transistor. For the junction transistor in the circuit shown in Figure 
7.8(a), when the base current 1B is zero both the base-emitter and the 
base-collector junctions are reverse biased. When the base current 1B is 
increased to a high enough value the base-collector junction becomes 
forward biased. By switching the base current between 0 and such a 
value, bipolar transistors can be used as switches. When there is no input 
voltage F= then virtually the entire l,'cc voltage appears at the output as 
the resistance between the collector and emitter is high. When the input 
voltage is made sut~ciently high so that the resistance between the 
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collector and emitter drops to a low value, the transistor switches so that 
very little of the Vcc voltage appears at the output (Figure 7.8(b)). We 
thus have an electronic switch. 

Because the base current needed to drive a bipolar power transistor is 
fairly large, a second transistor is often needed to take the small current 
and produce a large enough current to the base of the transistor used for 
the switching and so enable switching to be obtained with the relatively 
small currents supplied, for example, by a microprocessor. Such a pair of 
transistors (Figure 7.9) is termed a Darlington pair and they are 
available as single-chip devices. Since such a circuit is often used with 
inductive loads and large transient voltages can occur when switching 
occurs, a protection diode is generally connected in parallel with the 
switching transistor to prevent damage to it when it is switched off. As 
an indication of what is available, the integrated circuit ULN2001N 
contains seven separate Darlington pairs, each pair being provided with 
a protection diode. 

Open-loop control of d.c. motor speed can be achieved by pulse-width 
modulation (PWM). This technique involves the switching on and off of 
a d.c. voltage to control its average value (Figure 7.10). The greater the 
fraction of a cycle that the d.c. voltage is switched on the closer its 
average value is to the input voltage. Figure 7.11 shows how pulse width 
modulation can be achieved by means of a basic transistor circuit. The 
transistor is switched on and off by means of a signal applied to its base, 
e.g. the signal from a microprocessor as a sequence of pulses. By varying 
the time for which the transistor is switched on so the average voltage 
applied to the motor can be varied and its speed controlled. Because the 
motor when rotating acts as a generator, the diode is used to provide a 
path for the current which arises when the transistor is off. 

Input J PWM 
d.c. voltage ~ system 

I Outp~ 
Chopped d.c. voltage 
with controlled average 
value 

~j 
0 .  
t -  ~  
r 

to ,=,., 
o > 

Time 

Q .  <.,,, 
::3 
0 

O)  

0 

o 

Average value 

i_ij_l_i_ 1 
Time 

Figure 7.10 Pulse-width modulation 

Such a basic circuit can only drive the motor in one direction. A 
circuit (Figure 7.12) involving four transistors, in what is termed an 
H-circuit, can be used to control both the direction of rotation of the 
motor and its speed. The motor direction is controlled by which input 
receives the PWM voltage. In the forward speed motor mode, transistors 
1 and 4 are on and current flow is then from left-to-right through the 
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motor. Thus input B is kept low and the PWM signal is applied to input 
A. For reverse speed, transistors 2 and 3 are on and the current flow is 
from fight-to-left through the motor. Thus input A is kept low and the 
PWM signal is applied to input B. 

+V 

Input A 

Input B 

Figure 7.12 H circuit 

w 

Figure 7.13 shows a better version of the H circuit in which logic 
gates are used to control inputs A and B to achieve the above conditions 
with now one input supplied with a signal to switch the motor into 
forward or reverse and the other input the PWM signal. Such a circuit is 
better suited to microprocessor control for d.c. motors. A high input to 
the forward/reverse input means that when there is a high PWM signal 
the AND gate 1 puts transistor 1 on because the two inputs to it are high 
and so its output is high. The inverter means that AND gate 2 receives a 
low pulse when the forward/reverse input is high. As a result, transistor 
3 is switched off. Because the AND gates 3 and 4 receive the same 
inputs, transistor 4 is on and transistor 2 is off. The situations arc 
reversed when the signal to the forward/reverse input goes low. 
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Figure 7.13 Circuit for microprocessor control of  a motor 
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The above methods of speed control using PWM have been open-loop 
systems with the speed being determined by the input to the system and 
no feedback to modify the input in view of changing load conditions. For 
a higher grade of speed control than is achieved by the open-loop system, 
feedback is required. This might be provided by coupling a tacho- 
generator to the drive shaft; a tachogenerator gives a voltage which is 
proportional to the rotational speed of the motor. This voltage can be 
compared with the input voltage used to set the required speed and, after 
amplification, the error signal used to control the speed of the motor. 
Figure 7.14 shows how such a closed-loop system might appear when a 
microprocessor is used as the controller. The analogue output from the 
tachogenerator is converted to a digital signal by an analogue-to-digital 
converter. The microprocessor is programmed to compare the digital 
feedback signal with the set value and give an output based on the error. 
This output can then be used to control a PWM circuit and so supply a 
d.c. signal to the motor to control its speed. 
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There are three basic modes of control: 

Proportional (P) 
The controller produces a control action that is proportional to the 
error e (Figure 7.15), i.e. controller output = Kpe with Kp being the 
proportional gain. 

Derivative (79) 
The controller produces a control action that is proportional to the 
rate at which the error is changing de/dt (Figure 7.16), i.e. controller 
output = Ka (de/d0 with Ka being the derivative gain. 

lntegral (1) 
The controller produces a control action that is proportional to the 
integral of the error e with time (Figure 7.17), i.e. controller output 
= K~ je dt with K, being the integral gain. The integral of the error 
with time is the total area under the error-time graph up to the time 
concerned and thus can have a value even when the error has 
changed back to zero. 
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Controllers tend to be operated using the above modes in the following 
ways: 

Proportional only (P) 
The addition of a gain element to a system can give a closed-loop 
system (Figure 7.18) which can often be represented by a second- 
order transfer function. When we have a step input to such a system, 
e.g. the input of a signal to set the value required, then if the system 
is underdamped there will be oscillations of the output before it 
settles down to the steady-state output value (Figure 7.19). The 
system thus gives overshoot and also takes a significant time to 
reach the steady state value. 

There is also another problem with just using proportional control. 
Suppose we have a water level control for a tank (Figure 7.20) in 
which we control the water entering the tank by means of a valve. If 
there is a change in the outflow from the tank then to maintain the 
water level at its set value requires the controller to change the 
signal to the valve to a new value. Because a proportional controller 
gives an output proportional to the error, there will be no controller 
output when there is no error. Thus, to maintain the new inflow rate 
requires the controller to have an error input. So the system will 
operate with the water level never quite reaching the required level 
in order to maintain the input flow. This is termed the offset or 
steady-state error (Figure 7.21). 

We can see the factors affecting the offset by considering the 
addition of gain Kp to a system (as in Figure 7.18) to give a closed- 
loop transfer function of: 

G(s)Kp 
1 + G(s)H(s)Kp 

Suppose we have a simple system where G(s) is just a gain K and 
H(s) is 1. The output of the system will then be: 

KKp 
output = 1 + KK-----~ x input 
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As long as KKp is much greater than 1, the output will become 
virtually the same as the input. The offset or steady-state error is the 
difference between the input and the output in the steady state, the 
presence of an offset meaning that the system can never give the 
required output as set by the input (Figure 7.21). Increasing K to 
minimise the offset will, however, result in an increase in the 
frequency of the oscillatory output signal and a reduction in the 
damping, hence an increase in the overshoot. There is thus a 
problem with just using the proportional mode of control in that to 
minimise the offset means increasing the overshoot and so a 
compromise has to be reached. 

Proportional plus derivative mode (PD) 
The addition of a derivative mode to a proportional controller 
modifies its response to inputs. Figure 7.22 shows the response to a 
ramp input. A PD controller provides an element to the response 
which is largest when the rate of change of the error is greatest and 
diminishes as it becomes smaller. Thus with a step input, the 
controller output rises faster when we apply the step input signal 
than with just proportional control. With PD control, the output rises 
more rapidly towards the steady-state value and the overshoot is 
reduced. Because the derivative mode reduces system oscillations, 
we can increase the proportional gain element to higher values than 
would be feasible with just the proportional mode without the 
oscillations becoming too great a problem and so reduce the offset. 
The derivative mode is never used alone because it is not capable of 
maintaining a control signal under steady error conditions. It is 
always used with the proportional mode and often additionally with 
the integral mode. 

Proportional plus integral (PI) 
The addition of an integral element to a proportional controller 
modifies the response (Figure 7.23) removing the offset and giving a 
steady-state value the same as the input set value. This elimination 
of offset is because the integral mode gives a controlling response 
which is proportional to the area under the error-time graph up to 
the current point and so can give a controller output signal even 
when the error has become zero.. There are many situations where 
we require a controller to continue giving an output signal even 
when the error is zero. For example, with the water level control 
system of Figure 7.20, if the outflow changes to a new rate then the 
controller has to receive an error signal to maintain the water level 
constant and still give the new flow rate. With a PI controller, we 
can still have a controller output with zero error and so there is no 
need for offset. PI control tends to be used with systems where load 
disturbances occur frequently. 

Proportional plus integral plus derivative (PID) 
The term three-term controller is used for PID control. The addition 
to file proportional mode of the integral mode removes file offset and 
gives a steady-state value the same as the input set value; the 
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addition of the derivative mode enables a system to rise more rapidly 
to the steady-state value. PID control is used where rapid and large 
disturbances may occur, the derivative mode taking care of the rapid 
change and the integral mode the large offset resulting from the 
large disturbance. If a system has a small capacitance then 
derivative action may not be needed to speed up the response and so 
PI control might be adequate, a large capacitive system would need 
the derivative mode to speed up the response. 

What has to be determined, for the optimum running of a control 
system, is the balance to be achieved between the effects produced by the 
three mode elements. Tiffs is called tuning the system and is considered 
later in this chapter in Section 7.7. 

Example 

Sketch graphs showing how the controller output will vary with time 
for the error signal shown in Figure 7.24 when the controller is set 
initially at 50% and operates as (a) just proportional with Kp = 5, (b) 
proportional plus derivative with Kp - 5 and Kd = 2.0 s, (c) 
proportional plus integral with Kp = 5 and K~ = 2.0 s -~. 

(a) The controller output will be 50% plus the output element which 
is 5 times the error signal and so is as shown in Figure 7.25. 
(b) The controller output will be 50% plus the output element wlfich 
is 5 times the error signal and the element which is 2.0 times the 
slope of the error-time graph. During the time 0 to 1 s the derivative 
element is 2.0 x 1. During the time 1 to 3 s it is 0. The controller 
output is thus as shown in Figure 7.26. 
(c) The controller output will be 50% plus the output element which 
is 5 times the error signal and the element which is 2.0 times the 
area under the error-time graph. At 1.0 s the area has increased 
from 0 to 0.5. Between 1 and 2 s the area increases by 1 and between 
2 and 3 s it increases by 1. The controller output is thus as shown in 
Figure 7.27. 

7 . 4  T e r m i n o l o g y  The following are terms used in describing controllers: 

Set-point 
This is the input of the signal representing the required output. 

Range 
The range is the two extreme values between which file system 
operates, e.g. a temperature control system might operate between 
0~ and 30~ 

Spa/'/ 
The span is the difference between the two extreme values within 
which the system operates, e.g. a temperature control system might 
operate between 0~ and 30~ and so have a span of 30~ 
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Deviation 
The set-point is compared to the measured value to give file 
deviation or error signal. The term absolute deviation is used when 
the deviation is just quoted as the difference between the measured 
value and the set value, e.g. a temperature control system might 
operate between 0~ and 30~ with an absolute deviation of 3~ 
This deviation is often quoted as a fractional or percentage 
deviation, this being the absolute deviation as a fraction or 
percentage of the span. Thus, a temperature control system 
operating between 0~ and 30~ with an error of 3~ has a 
percentage deviation of (3/30) x 100 - 10%. When there is no 
deviation then the percentage deviation is 0% and when the 
deviation is the maximum permitted by the span it is 100%. 

In discussing process control systems it is customary to talk in terms 
of percentages. Thus percentage deviations are used and items such as 
valves are discussed in terms of being 50% open. 

Example 

For tile water level control system described in Figure 7.20, the 
water level is at the required height when the linear control valve 
has a flow rate of 5 m3/h and the outflow is 5 m3/h. The controller 
output is then 50% and operates as a proportional controller with a 
gain of 10. What will be the controller output and the offset when 
tile outflow changes to 6 m3/h? 

Since a controller output of 50% corresponds to 5 m3/h from the 
linear control valve, then 6 m3/h means that the controller output 
will need to be 60%. To give a change in output of 6 0 -  50 = 10% 
with a controller having a gain of 10 means that the error signal into 
the controller must be 1%. There is thus an offset of 1%. 

7.4.1 Proportional band 

Generally with process controllers, the proportional gain is described in 
terms of its proportional band (PB). The proportional band is the 
fractional or percentage deviation that will produce a 100% change in 
controller output (Figure 7.28): 

%PB = % deviation x 100 
% change in controller output 

A common controller output range is 4 to 20 mA. The 100% controller 
output might be a signal that fully opens a valve, the 0% being when it 
fully closes it. A 50% proportional band means that a 50% deviation will 
produce a 100% change in controller output; 100% proportional band 
means that a 100% deviation will produce a 100% change in controller 
output. 
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Since the percentage deviation is the error e as a percentage of the 
span and the percentage change in the controller output is the controller 
output yc as a percentage of the output span of the controller: 

controller output span 
%PB = e x x 100 measurement span yr 

Since the controller gain Kp is yde" 

1 controller output span 
~ = Kp measurement span x 100 

Example 

What is the controller gain of a temperature controller with a 60% 
PB if its input range is 0~ to 50 ~ and its output is 4 mA to 20 mA? 

1 controller output span 
%PB = Kp measurement span • 100 

and so: 

1 2 0 - 4  
K p -  60 5 0 - 0  x 100 = 0.53 m A / ~  

7.5 A process controller Figure 7.29 shows the basic elements that tend to figure on the front face 
of a typical three-term process controller. The controller can be operated 
in three modes by pressing the relevant key: 

Proces., 
variable 
display~ 
as a bal 
graph 

Set poir 
% displ 
as a ba 
graph 

I I T "  

Digital display 
of process variable 
or output 
if M, A or K 
hled down, 
or set point 

J if S P key 
held down 

Controller % 
output bar 

o o graph display 

( ~  ~ o  ~ ,  ~ Keys to raise 
f or lower output 

in manual mode 
/ ~  ( ~  ~ ~ )  or set point in 

auto mode 
with SP pressed 

-. Socket to plug 
Remote auto Set point key Manual Auto mode in hand-held 
mode key mode key key programming 

terminal 
Figure  7.29 Typical controller front panel 
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Manual mode 
The operator directly controls the operation and can increase or 
decrease the controller output signal by holding down the M key and 
pressing the up or down keys. A LED above the key shows when this 
mode has been selected. The output is shown on the digital display 
and on the bar graph display. 

Automatic mode 
The controller operates as a three-term controller with a set point 
specified by the operator. A LED above the key shows when this 
mode has been selected. The digital display shows the set point 
value when the SP key is depressed and the value changed by 
pressing the up or down keys. The digital display shows the set point 
value in units such as ~ the unit previously having been set up to 
give such values in the set up procedure. The set point is also 
displayed on the vertical bar graph as a percentage. 

Remote automatic mode 
The controller is operated in a similar manner to the automatic 
mode but with the set point established by an external signal. A LED 
above the key shows when this mode has been selected. 

When no key is depressed, the process variable is shown on the digital 
display and on the vertical bar graph. 

The procedure adopted when using the controller is to initially set the 
mode as manual. The set point is then set to the required value and the 
controller output manually adjusted until the deviation is zero and the 
plant thus operating at the required set point. Figure 7.30 shows the 
block diagram of the control system when it is being operated in manual 
mode and the operator adjusting the controller output by adding in a 
signal. The controller can then be switched to automatic control. When 
this happens, the manual input signal is held constant at the value that 
was set in manual mode. 

Control ii Actuator Plant 
law 

adjust ii 
controller output ii 

�9 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  '..' 

Controller 

Figure 7.30 Control system in manual mode 

Switching back to manual mode from automatic mode to make some 
adjustment and then back to automatic mode gain can present a problem. 
There can be a sudden change in controller output on the transition from 
manual to automatic modes, this being termed a 'bump' in the plant 
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operation. This arises because of the integral element in the controller 
which bases its error on the duration of the error signal input to the 
controller and does not take account of any manually introduced signals. 
Thus, changing the manually introduced signal can lead to the output 
from the controller in the automatic mode not being the same as that in 
the manual mode. To avoid this 'bump' and give a bumpless transfer, 
modem controllers automatically adjust the contribution to the control 
law from the integral element. 

Modem process controllers are likely to be microprocessor-based 
controllers, though operating as though they are conventional analogue 
controllers. They can be programmed by connecting a hand-held 
terminal to it so that the parameters of the PID controller can be set. 

7 . 6  C o n t r o l l e r  m a t h e m a t i c s  

Controller 

Error-~, KP ~iCController 
output 

Figure 7.31 Proportional 
controller 

Proportional 
. i K ! 

Errorl , ntroiler 
/ i . .  l ' output  
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Figure 7.32 PD controller 
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Figure 7.33 1)1 controller 

With proportional control (Figure 7.31), the controller produces a control 
action that is proportional to the error. There is a constant gain Kp acting 
on the error signal e and so: 

controller output = Kpe 

With derivative control, the controller produces a control action that is 
proportional to the rate at which the error is changing. Derivative control 
is not used alone but always in conjunction with proportional control 
and, often, integral control. Figure 7.32 shows the basic form of a 
proportional plus derivative controller. The proportional element has an 
input of the error e and an output of Kpe. The derivative element has an 
input of e and an output which is proportional to the derivative of the 
error with time, i.e. 

de Kd--~- 

where Kd is the derivative gain. Thus the controller output is: 

controller output = Kpe + Kd-~t 

In terms of the Laplace transform we have: 

controller output (s) = (Kp "k- KdS) E(s) 

This can be written as: 

controller output (s) = Kd (s + --~d ) E(s) 

where Td = KdKp and is called the derivative time constant. 
With PI control, the proportional element is augmented with an 

additional element (Figure 7.33) which gives an output proportional to 
the integral of the error with time. The proportional element has an input 
of the error e and an output of Kpe. The integral element has an input of 
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e and an output which is proportional to the integral of the error with 
time, i.e. 

Ki j edt 

where Ki is the integrating gain. Thus the controller output is: 

controller output = Kpe + Ki I e dt 

In terms of the Laplace transform" 

controller output (s)= (Kp+ -~--)E(s) 

This can be written as" 

controller output (s)= -~--(s +-~ )E(s) 

where 7] = Kr,/Ki and is called the integral time constant. 
Figure 7.34 shows the basic form of a PID, i.e. three-term controller. 

The controller output is: 

output = Kpe + Ki I e dt+ Ka-~t 

Taking Laplace transforms gives: 

output (s) = Kp I1 + ~Ki + _K_~ps) E ( ) K d  s 

=Kp(I + T-~ + Tds)E(s) 

Example 

Determine the open-loop transfer function of the system shown in 
Figure 7.35 if the controller to be used is PD and has a transfer 
function of Kp + KdS and G(s) = co,2/(s 2 + 2(COnS). 

The forward path gain, i.e. the open loop gain, is" 

co. 

7.6.1 Bode plots 

Figure 7.36 shows the basic forms of the Bode plots for P, PI and PD 
controllers. 
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Proportional control (Figure 7.36(a)) increases the overall system 
gain. 

2 P1 control (Figure 7.36(b)) decreases the high frequency gain of a 
system and thus decreases the phase margin. Because noise tends to 
be high frequency, PI control decreases the effect of noise on a 
system. 

3 PD control (Figure 7.36(c)) decreases the low-frequency gain and 
reduces the high frequency gain, thus increasing the phase margin. 
Because noise tends to be high frequency, PD control thus tends to 
increase the effect of noise on a system. 

There is no standard form of Bode plot for a PID controller since the 
shape depends on the relative values of 7q and Td. As indicated in the 
next section, generally the values are chosen to give 7q = 4Td. The result 
is then as shown in Figure 7.36(d). 

7.7 Tuning With a control system employing just a proportional controller, the value 
of Kp has to be selected in order to determine the response of the control 
system to inputs. With a PI controller, Kp and Ki have to be selected. 
With a PID controller, the values of Kp, Ki and Kd have to be selected. 
Such selections determine the response of the control system to inputs. 
The term tuning is used to describe the process of selecting the optimum 
controller settings in order to obtain the best performance from a PID 
controller. 

The most widely used empirical methods for tuning are those of 
Ziegler and Nichols. They assumed that the open-loop transfer function 
can be approximated by a first-order system with a time delay and 
developed two tuning procedures, one called the ultimate cycle method 
which is based on using results from a closed-loop test and the other, 
called the process reaction method, which is based on using the results 
from open-loop tests. Both are designed to give settings which result in 
under-damped transient responses with a decay ratio of ~A. 

7.7.1 Ultimate cycle method 

The procedure used is: 

1 Set the controller to manual operation and the plant near to its 
normal operating conditions. 

2 Turn off all control modes but proportional. 

3 Set Kp to a low value, i.e. the proportional band to a wide value. 

4 Switch the controller to automatic mode and then introduce a small 
set-point change, e.g. 5 to 10%. 

5 Observe the response. 

6 Set Kp to a slightly higher value, i.e. make the proportional band 
narrower. 
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7 Introduce a small set-point change, e.g. 5 to 10%. 

8 Observe the response. 

9 Keep on repeating 6, 7 and 8, until the response shows sustained 
oscillations which neither grow nor decay. Note the value of Kp 
giving this condition (Kpu) and the period (T,) of the oscillation. 

10 Using Table 7.1, determine the optimum controller settings. 

Table 7.1 Settings from the ultimate cycle method 

Type of Kp 7] Td 
controller 

P 0.5Kpu 
PI 0.45Kpu 
PID 0.6Kpu 

Tall.2 
Td2 T,/8 

7.7.2 Process reaction method 

The test procedure is: 

1 Open the control loop, generally between the controller and the 
correction elements, so that no control action occurs. 

2 Set the controller to manual mode and the plant to near its normal 
operating conditions. 

3 Apply a small step change to the correction element and record the 
system response. 

The graph of the system response plotted against time is called the 
process reaction curve (Figure 7.37). It shows how the system behaves to 
a step change in controller output. The test signal is expressed as a 
percentage change in the correction element and the output as a 
percentage of the full-scale range. A tangent is drawn to give the 
maximum gradient of the process reaction curve, the maximum gradient 
being measured as R = M/T. The time between when the test signal starts 
and tiffs tangent intersects the time axis is termed the lag L. Table 7.2 
shows the criteria given by Ziegler and Nichols to determine the 
controller settings. 

Table 7.2 Settings from the process reaction curve method 

Type of K v Ti Ta 
controller 

P P/RL 
PI 0.9P/RL 
PID 1.2P/RL 

3.3L 
2L 0.5L 
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7.8 Digital  sys tems  The term direct digital control is used to describe the use of digital 
computers in the control system to calculate the control signal that is 
applied to the actuators to control the plant. Such a system is of the form 
shown in Figure 7.38. At each sample instant the computer samples, via 
the analogue-to-digital converter (ADC), the plant output to produce the 
sampled output value. This, together with the discrete input value is then 
processed by the computer according to the required control law to give 
the required correction signal which is then sent via the digital-to- 
analogue converter (DAC) to provide the correcting action to the plant to 
give the required control. Direct digital control laws are computer 
programs that take the set value and feedback signals and operate on 
them to give the output signal to the actuator. The program might thus 
be designed to implement PID control. 

Computer 
............................................................................. ;! 

ADC H Measurement ~It 

Figure 7.38 Direct digital control 

The program involves the computer carrying out operations on the fed 
back measurement value occurring at the instant it is sampled and also 
using the values previously obtained. The program for proportional 
control thus takes the form of setting initial values to be used in the 
program and then a sequence of program instructions which are repeated 
every sampling period: 
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lnitialise 
Set the initial value of the error (this will be zero if the program is to 

start at the measurement value then occurring) 
Set the value of the proportional gain 
Loop 
Input the error at the instant concerned 
Calculate the output by multiplying the error by the set value of the 

proportional gain 
Output the value of the calculated output 
Wait for the end of the sampling period 
Go back to Loop and repeat the program 

For PD control the program is: 

lnitialise 
Set the initial value of the error (this will be zero if the program is to 

start at the measurement value then occurring) 
Set the initial value of the error that is assumed to have occurred in 

the previous sampling period 
Set the value of the proportional gain 
Set the value of the derivative gain 
Loop 
Input the error at the instant concerned 
Calculate the proportional part of the output by multiplying the error 

by the set value of the proportional gain 
Calculate the derivative part of the output by subtracting the value of 

the error at the previous sampling instant from the value at the 
current sampling instant (the difference is a measure of the rate 
of change of the error since the signals are sampled at regular 
intervals of time) and multiply it by the set value of the 
derivative gain. 

Calculate the output by adding the proportional and derivative 
output elements 

Output the value of the calculated output 
Wait for the end of the sampling period 
Go back to Loop and repeat the program 

For PI control the program is: 

Initialise 
Set the initial value of the error (this will be zero if the program is to 

start at the measurement value then occurring) 
Set the value of the output that is assumed to have occurred in the 

previous sampling period 
Set the value of the proportional gain 
Set the value of the integral gain 
Loop 
Input the error at the instant concerned 
Calculate the proportional part of the output by multiplying the error 

by the set value of the proportional gain 
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Calculate the integral part of the output by multiplying the value of 
the error at the current sampling instant by the sampling period 
and the set value of the integral gain (this assumes that the 
output has remained constant over the previous sampling period 
and so multiplying its value by the sampling period gives the 
area under the output-time graph) and add to it the previous 
value of the output. 

Calculate the output by adding the proportional and integral output 
elements 

Output the value of the calculated output 
Wait for the end of the sampling period 
Go back to Loop and repeat the program 

7.8.1 Programmable logic controllers 

A programmable logic controller (PLC) is a special form of micro- 
processor-based controller that uses a programmable memory to store 
instructions and is designed to be operated by engineers with perhaps a 
limited knowledge of computers and computing languages. Thus, the 
designers of the PLC have pre-programmed it so that the control 
program can be entered using a simple pictorial form of language called 
ladder programs. The term logic is used because programming is mainly 
concerned with implementing logic and switching operations, e.g. if A or 
B occurs switch on C, if A and B occurs switch on D. For example, it 
might be used to control the level of water in a tank by a sensor giving 
an input signal when the tank is empty and another sensor giving a 
signal when the tank is full. Thus when the tank-empty sensor gives an 
on input the controller gives an on output signal to open a valve to allow 
water into the tank. This output remains on until the tank-fuU sensor 
gives an input signal, the controller then switches off the output signal to 
the valve. 

Input devices, e.g. sensors such as switches, and output devices in the 
system being controlled, e.g. motors, valves, etc., are connected to the 
PLC. The operator then enters a sequence of instructions, i.e. a program, 
into the memory of the PLC. The controller then monitors the inputs and 
outputs according to this program and carries out the control rules for 
which it has been programmed. Many PLCs also can be programmed to 
operate as PID controllers. 

Typically a PLC system has five basic components. These are the 
processor unit, memory, the power supply unit, input/output interface 
section and the programming device. Figure 7.39 shows the basic 
arrangement. 

The processor unit or central processing unit (CPU) is the unit 
containing the microprocessor and this interprets the input signals 
and carries out the control actions, according to the program stored 
in its memory, communicating the decisions as action signals to the 
outputs. 



Controllers 153 

Programming 
terminal 

The PLC 

'no  - ,  
inter- 
face 

Memory 

Processor 

t 
Power supply 

I Output ~ i~  inter- 
face 

Figure 7.39 The PLC system 

1 
creen @@@ 

~ ~ Labelled keys 
~ ~ for entering 
~ Q the program 

Figure 7.40 

programmer 

Hand-heM 

The power supply unit is needed to convert the mains a.c. voltage to 
the low d.c. voltage (5 V) necessary for the processor and the 
circuits in the input and output interface modules. 

The programming device is used to enter the required program into 
the memory of the processor. The program is developed in the 
device and then transferred to the memory unit of the PLC. 

The memory unit is where the program is stored that is to be used for 
the control actions to be exercised by the microprocessor. 

The input and output sections are where the processor receives 
information from external devices and communicates information to 
external devices. The inputs might be from switches, temperature 
sensors, or flow sensors, etc. combined with appropriate signal 
processing elements. The outputs might be to motor starter coils, 
solenoid valves, etc. 

Programs are entered into a PLC's memory using a program device 
which is usually not permanently connected to a particular PLC and can 
be moved from one controller to the next without disturbing operations. 
For the operation of the PLC it is not necessary for the programming 
device to be connected to the PLC since it transfers the program to the 
PLC memory. Programming devices can be a hand-held device, a 
desktop console or a computer. Hand-held systems incorporate a small 
keyboard and liquid crystal display, Figure 7.40 showing a typical form. 
Desktop devices are likely to have a visual display unit with a full 
keyboard and screen display. Personal computers are widely configured 
as program development workstations. Some PLCs only require the 
computer to have appropriate software, others special communication 
cards to interface with the PLC. A major advantage of using a computer 
is that the program can be stored on the hard disk or a floppy disk and 
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copies easily made. The disadvantage is that the programming often 
tends to be not so user-friendly. Hand-held programming consoles 
normally contain enough memory to allow the unit to retain programs 
while being carded from one place to another. Only when the program 
has been designed on the programming device is it transferred to the 
memory unit of the PLC. 

To give some indication of the ladder form of programming, consider 
the electrical circuit shown in Figure 7.41(a). The diagram shows the 
circuit for switching on or off an electric motor. We can redraw this 
diagram in a different way, using two vertical lines to represent the input 
power rails and stringing the rest of the circuit between them (Figure 
7.41(b)). Both circuits have the switch in series with the motor and 
supplied with electrical power when the switch is closed. The circuit 
shown in Figure 7.4 l(b) is termed a ladder diagram. The power lines are 
like the vertical sides of a ladder with the horizontal circuit lines like the 
rungs of the ladder. The horizontal rungs show only the control portion 
of the circuit, in the case of Figure 7.41 it is just the switch in series with 
the motor. Drawing ladder diagrams is a means of writing programs that 
is used with PLCs. 

Figure 7.42 shows the basic standard ladder program symbols that are 
used for input and output devices. Note that inputs are represented by 
just two symbols representing normally open or normally closed contacts. 
This applies whatever the form of the device connected to the input. The 
action of the input has to be designed to be equivalent to opening or 
closing a switch. Outputs are represented by just one symbol, regardless 
of the device connected to the output. To illustrate the drawing of the 
rung of a ladder diagram, consider a situation where the energising of an 
output device, e.g. a motor, depends on a sensor-signal processing 
arrangement being like a normally open start switch which on being 
activated is effectively closed, i.e. the input turns from a low signal to a 
high signal. Figure 7.43 shows the ladder diagram. Starting with the 
input, we have the normally open symbol II for the input contacts. There 
are no other input devices and the line terminates with the output, 
denoted by the symbol O. When the switch is closed, i.e. the input is 
high, the output of the motor is activated. 

As an illustration of the use of a PLC system, consider its use to 
control the temperature of a domestic central heating system (Figure 
7.44). The central heating boiler is to be thermostatically controlled and 
supply hot water to the radiator system in the house and also to a hot 
water tank to provide hot water from the taps in the house. Pump motors 
have to be switched on to direct the hot water from the boiler to either, or 
both, of the radiator and hot water systems according to whether the 
temperature sensors for the room temperature and the hot water tank 
indicate that the radiators or tank need heating. The entire system is to 
be controlled by a clock so that it only operates for certain hours of the 
day. Figure 7.45 shows a program that can be used. The boiler, output 
Y430, is switched on if X400 and X401 and either X402 or X403 are 
switched on. This means if the clock switched is on, the boiler 
temperature sensor gives an on input, and either the room temperature 
sensor or the water temperature sensors give on inputs. The motorised 
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valve M1, output Y431, is switched on if the boiler, Y430, is on and ff 
the room temperature sensor X402 gives an on input. The motorised 
valve M2, output Y432, is switched on if the boiler, Y430, is on and if 
the water temperature sensor gives an on input. 

C3 
Room temperature 

Motorised pump Radiators sensor 

Hot water 
Boiler tank 

Motorised pump 

0 
' /  Hot water tank temperature sensor Boiler temperature sensor 

Figure 7.44 Central heating system 
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Figure 7.45 Central heating system with PLC controller 
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7.8.2 Embedded systems 

The term embedded system is used for control systems involving a 
microprocessor being used as the controller and located as an integral 
element, i.e. embedded, in the system. Such a system is used with engine 
management control systems in modem cars, exposure and focus control 
in modem cameras, the controlling of the operation of modem washing 
machines and indeed is very widely used in modem consumer goods. 

Figure 7.46 illustrates how an embedded microprocessor is used to 
give focus control in a camera. When the switch is operated to activate 
the system and the camera pointed at an object, the microprocessor takes 
the input from the range sensor which gives a measure of the distance of 
the object from the camera, processes it and gives an output which is fed 
to file lens position drive to move the lens. The lens position is fed back 
to the microprocessor so that it can be compared with the required value 
and the lens moved until there is no error between the actual lens 
position and the required position to give a focused image. 

Interface circuitry 

Range sensor __~ 

Micro- 
processor 

Lens drive 

~--~--~Lens 
I position 

Figure 7.46 Automatic focusing system 

As another illustration, Figure 7.47 gives some idea of the basic 
elements involved in the embedded control system for a washing 
machine. The washing machine carries out a number of operations, each 
of which has to be controlled. For example, the water level in the 
washing drum has to be controlled, the temperature of the water in the 
drum has to be controlled and the sequence of a number of operations 
has to be controlled. The following is a typical form taken by the control 
program: 

The entire program can only start and will only continue when the 
door of tile drum is closed. This is just a door switch which supplies 
an on--off signal to the microprocessor. When the door is open, no 
operations will occur. 

When the program is started, for the pre-wash cycle the 
microprocessor supplies a signal to the electrically operated valve to 
open it and allow cold water into the drum. A sensor is used to give 
a signal when the water level has reached the preset level and the 
microprocessor gives the output to switch off the current to the 
valve. 

After a predetermined time, the microprocessor supplies a signal to 
a pump to empty the drum. 
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4 For the main wash cycle, the microprocessor gives an output signal 
which again opens the valve to allow cold water into the drum. This 
level is sensed and the water shut off when the required level is 
reached. 

5 The microprocessor then supplies a signal to switch on the current to 
an electric heater to heat the water. A temperature sensor sends a 
signal back to the microprocessor and it switches off the current 
when the water temperature reaches the preset value. 

6 The microprocessor then supplies a signal to switch on the drum 
motor to rotate the drum. This might be open-loop control and just 
continue for the time determined by the microprocessor. 

7 Then the microprocessor switches off the motor and supplies a 
signal to a discharge pump to empty the water from the drum. 

8 The rinse part of the operation is now switched as a sequence of 
signals to open valves which allow cold water into the machine to a 
predetermined level, switch it off, operate the motor to rotate the 
drum, operate a pump to empty the water from the drum, and repeat 
this sequence a number of times. 

9 The final part of the operation is when the microprocessor supplies a 
signal to switch on the motor, at a higher speed than for the rinsing, 
to spin the clothes. 
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P r o b l e m s  
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Figure 7.49 Problem 8 

1 A control system is designed to control temperatures between-10 ~ 
and +30~ What is (a) the range, (b) the span? 

2 A temperature control system has a set point of 20~ and the 
measured value is 18~ What is (a) the absolute deviation, (b) the 
percentage deviation? 

3 What is the controller gain of a temperature controller with a 80% 
PB if its input range is 40~ to 90 ~ and its output is 4 mA to 20 mA? 

4 A controller gives an output in the range 4 to 20 mA to control the 
speed of a motor in the range 140 to 600 rev/min. If the motor speed 
is proportional to the controller output, what will be the motor speed 
when the controller output is (a) 8 mA, (b) 40%? 

5 Figure 7.48 shows a control system designed to control the level of 
water in the container to a constant level. It uses a proportional 
controller with Kp equal to 10. The valve gives a flow rate of 10 m3/h 
per percent of controller output, its flow rate being proportional to 
the controller input. If the controller output is initially set to 50% 
what will be the outflow from the container? If the outflow increases 
to 600 m3/h, what will be the new controller output to maintain the 
water level constant? 

6 A control system uses a proportional controller to control a system 
with a transfer function of K and unity feedback. What will be the 
offset error if the proportional controller has a gain Kp of 10 and K = 
0.3 and a step input of 4 units is applied? 

7 A control system uses a proportional controller to control a system 
with a transfer function of K and unity feedback. What should the 
gain Kp of the controller be to give an offset error of 0.01 unit if K = 
0.1 and there is a step input of 4 units to the system? 

8 Sketch graphs showing how the controller output will vary with time 
for the error signal shown in Figure 7.49 when the controller is set 
initially at 50% and operates as (a) just proportional with Kp = 5, (lo) 
proportional plus derivative with Kp = 5 and Kd = 1.0 S, (C) 
proportional plus integral with Kp = 5 and K~ = 0.5 s -~. 

9 Using the Ziegler-Nichols ultimate cycle method for the 
determination of the optimum settings of a PID controller, 
oscillations began with a 30% proportional band and they had a 
period of 11 min. What would be the optimum settings for the PID 
controller? 

10 Using the Ziegler-Nichols ultimate cycle method for the 
determination of the optimum settings of a PID controller, 
oscillations began with a gain of 2.2 with a period of 12 min. What 
would be the optimum settings for the PID controller? 

11 Figure 7.50 shows the open-loop response of a system to a unit step 
in controller output. Using the Ziegler-Nichols data, determine the 
optimum settings of the PID controller. 

12 A closed loop control system has a PID controller with transfer 
function Kp + (KJs) + Kds and is cascaded with a process having a 
transfer function of 10/(s + 5)(s + 10). If the system has unity 
feedback, what is the transfer function of the closed-loop system? 
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13 A closed loop control system has unity feedback and a plant with 
transfer function lO0/[s(s + 0.1s)(1 + 0.2s)]. By drawing the Bode 
diagrams, determine the phase margin when the following 
controllers are used: (a) a proportional controller with transfer 
function 1, (b) a PD controller with transfer function 1 + 0.5s. 

14 Figure 7.51 shows a liquid level control system and its 
representation by a block diagram. Determine the way the output 
will vary with time if the controller is (a) proportional only with a 
proportional gain of 2, (b) integral only with an integral gain of 2. 



Appendix A 
Differential equations 

As will be evident from the models discussed in Chapter 2, many 
systems have input--output relationships which have to be described by 
differential equations. A differential equation is an equation involving 
derivatives of a function, i.e. terms such as dy/dt and d2y/dt 2. Thus: 

z--~ +y = 0 

is a differential equation. The term ordinary differential equation is used 
when there are only derivatives of one variable, e.g. we only have terms 
such as dy/dt and d2y/dt 2 and not additionally dx/dt or dx:/dt 2. The order 
of a differential equation is equal to the order of the highest derivative 
that appears in the equation. For example, 

dy 
z--~- + y = 0  

and 

dy 
z--~- +y=kx  

are first-order ordinary differential equations since the highest derivative 
is dy/dt and there are derivatives of only one variable. The first of the 
above two equations is said to be homogeneous since it only contains 
terms involving y. Such an equation is given by a system which has no 
forcing input; one with a forcing input gives a non-homogeneous 
equation. For example, an electrical circuit containing just a charged 
capacitor in series with a resistor will give a homogeneous differential 
equation describing how the potential difference across the capacitor 
changes with time as the charge leaks off the capacitor; there is no 
external source of voltage. However, if we have a voltage source which is 
switched into the circuit with the capacitor and resistor then the voltage 
source gives a forcing input and a non-homogeneous equation results. 

The equations: 

d2y dy 
m--~- T + c - ~  +ky=O 

and 
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dEy dy 
m - - ~  + C--d--/- + k y = F  

are examples of a second-order differential equation since the highest 
derivative is d2y/dt 2. The first of the two is homogeneous since there is no 
forcing input and the second is non-homogeneous with a forcing input F. 

Solving a first-order differential equation 

With a first-order differential equation, if the variables are separable, i.e. 
it is of the form: 

dy 
dt 

then we can solve such equations by integrating both sides of the 
equation with respect to x: 

j-dy 
d t :  ~j(t) dt 

This is equivalent to separating the variables and writing: 

Idt-I 0d' 
Consider the response of a first-order system to a step input, e.g. the 

response of a thermometer when inserted suddenly into a hot liquid. This 
sudden change is an example of a step input. In Chapter 2 the 
differential equation for such a change was determined as: 

RC-~t t + T = TL 

where T is the temperature indicated by the thermometer, TL the 
temperature of the hot liquid, R the thermal resistance and C the thermal 
capacitance. We can solve such an equation by the technique of 
'separation of variables'. Separating the variables gives: 

1 dT= ~ C  d t 
TL - T 

Integrating then gives: 

-In (TL- 7) = (1/RC)t + A 

where A is a constant. This equation can be written as: 

TL - T = C e -t/~ = B e -t/~ 

with B being a constant and z = RC. z is termed the time constant and 
can be considered to be the time that makes the exponential term e -~. If 
we consider the thermometer to have been inserted into the hot liquid at 
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time t = 0 and to have been indicating the temperature To at that time, 
then, since e ~ = 1, we have B = TL - T. Hence the equation can be 
written as: 

T = ( T o -  TL) e -t/~ + TL 

The exponential term will die away as t increases and so gives the 
transient part of the response. TL is the steady-state value that will be 
attained eventually. 

Complementary function and particular integral 

Suppose we have the first-order differential equation dy/dt + y = 0. Such 
an equation is homogeneous and, if we apply the technique of separation 
of the variables, has the solution y = C e-'. Now suppose we have the 
non-homogeneous equation dy/dt + y = 2. ff we now use the separation 
of variable technique we obtain the solution y = C e-' + 2. Thus, its 
solution is the sum of the solution for the homogeneous equation plus 
another term. The solution of the homogeneous differential equation is 
called the complementary funct ion and, when there is a forcing input 
with that differential equation, the term added to it for the 
non-homogeneous solution is called the part icular integral. We can, 
easily, obtain a particular integral by assuming it will be of the same 
form as the forcing input. Thus if this is a constant then we try y = A, if 
of the form a + bx + cx: + ... then y = A + Bx  + Cx 2 + ... is tried, if an 
exponential then y = A e k~ is tried, if a sine or cosine then y = A sin cox + 
B cos cox is tried. 

As an illustration, consider the system involving solved in the 
previous section of a thermometer being inserted into a hot liquid and 
the relationship being given by: 

R c d--~ + T = TL 

The homogeneous form of this equation is: 

R C ~ t  + T = 0 

We can solve this equation by the technique of the separation of variables 
to give the complementary function" 

1 dT=-R---~C dt T 

Integrating then gives: 

- ln T =-(1/RC)t + A 

where A is a constant. This equation can be written as: 

- T =  e a e -U~ = B e -U~ 



Appendix A: Differential equations 163 

T = -B e -u* 

Now consider the particular integral for the non-homogeneous equation 
and, because the forcing input is a constant, we try T = C. Since dT/d t  = 

0 then the substituting values in the differential equation gives: 

O + C = T ~ .  

Thus the particular solution is T = TL. Hence the full solution is the sum 
of the complementary solution and the particular integral and so: 

T = - B  e -t/* + TL 

ff we consider the thermometer to have been inserted into the hot liquid 
at time t = 0 and to have been indicating the temperature To at that time, 
then, since e ~ = 1, we have B = TL- T. Hence, as before, the equation 
can be written as: 

T =  ( T o -  TL ) e -t/~ +TL 

As a further illustration, consider the thermometer, in equilibrium in a 
liquid at temperature To, when the temperature of the liquid is increased 
at a constant rate a, i.e. a so-called ramp input. The temperature will 
vary with time so that after a time t it is at + To. This is then the forcing 
input to the system and so we have the differential equation: 

R c d-~ + T = at + TL 

The homogeneous form of this equation is: 

RC-~ t  t + T = 0 

and, as before, the complementary solution is: 

T = -B e -t/* 

For the particular integral we try a solution of the form T = D + Et.  Since 
dT/dt  = E, substituting in the non-homogeneous differential equation 
gives: 

R C E  + D + E t  = a T  + To 

Equating all the coefficients of the t terms gives E - a and equating all 
the non-t terms gives R C E  + D = To and so D = To - RCa.  Thus the 
particular integral is: 

T -  To - R C a  + at 

and so the full solution, with z = RC,  is: 
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T = - B  e -v~ + T o -  za + at 

When t = 0 we have T = To and so B = -za. Hence we have: 

T = za e -w + To - za + at 

Solving a second-order differential equation 

We can use the technique of finding the complementary function and the 
particular integral to obtain the solution of a second-order differential 
equation. Consider a spring-damper-mass system of the form shown in 
Figure 2.8. The differential equation for the displacement y of the mass 
when subject to step input at time t = 0 of a force F is: 

m---~T + c d~ + ky = F 

In the absence of damping and the force F we have the homogeneous 
differential equation: 

m---~T + ky = O 

This describes an oscillation which has an acceleration d2y/dt 2 which is 
proportional to -y  and is a description of simple harmonic motion; we 
have a mass on a spring allowed to freely oscillate without any damping. 
Simple harmonic motion has a displacement y = A sin cot. If we 
substitute this into the differential equation we obtain: 

-mAco 2 sin cot + kAco sin cot = 0 

and so co = ~l(k/m). This is termed the natural  angular f r equency  co.. I f  

we define a constant called the damping ratio of: 

~_ C 

then we can write the differential equation as: 

1 dEy 2 ( @  F 
092 dt 2 + -~-n -d-/ +Y = 

This differential equation can be solved by the method of determining 
the complementary function and the particular integral. For the 
homogeneous form of the differential equation, i.e. the equation with 
zero input, we have: 

1 d2y 2 ( d y  
co--~n dt - - T  + -~'n "-~" +Y = 0 

We can try a solution of the form y = A e". This, when substituted, gives: 
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2( 1 S2 + +1 0 co~ -~-;s = 

S 2 + 2cone'S + (.02 = 0 

This equation has the roots: 

S =  
- 2c o . (+  ~/4co2( 2 - 4co 2 

When we have: 

Damping ratio between 0 and I 
There are two complex roots: 

S = -?~'con + jcon / 1 - ~2 

If we let: 

co = con~/l _~'2 

we can write: 

s = --(o9. + jco 

Thus: 

y = A e (-(~ + B e -((~176 

= e-r176 e j~'t + B e -j~ 

Using Euler's equation, we can write this as: 

y = e -(~ cos cot + Q sin coo 

This can be written in an alternative form. If we consider a 
right-angled triangle with angle ~ with P and Q being opposite sides 
of the triangle (Figure ApA. 1) then sin ~ = P/~/(P~ + Q2) and cos ~ = 

p/.d(p2 + Q2). Hence, using the relationship sin (cot + ~) = sin cot cos 
+ cos cot sin ~, we can write" 

0 

Figure ApA.1 Angle q~ 

y = C e -r176 sin(cot + q~) 

where C is a constant and q~ a phase difference. This describes a 
damped sinusoidal oscillation. Such a motion is said to be under 
damped. 

2 Damping ratio equal to 1 
This gives two equal roots s~ = s2 = --09.. and the solution: 
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y =  (A t+B )  e -~ 

where A and B are constants. This describes an exponential decay 
with no oscillations. Such a motion is said to be critically damped. 

Damping ratio greater than 1 

This gives two real roots: 

S I -- --co n : "b COn ~ ~ 2 _ I 

S2 = --con~'- con ~/~'2 _ 1 

and hence: 

y = A e s~t + B e s2t 

where A and B are constants. This describes an exponential decay 
taking longer to reach the steady-state value than the critically 
damped case. It is said to be over damped. 

The above analysis has given the complementary functions for the 
second-order differential equation. For the particular integral, in this 
case where we have a step input of size F, we can try the particular 
integral x = A. Substituting this in the differential equation gives A = F/k 
and thus the particular integral is y = F/k. Thus the solutions to the 
differential equation are: 

1 Damping ratio between 0 and 1, i.e. under damped 

y = C e -r176 sin(cot + ~) + F/k 

2 Damping ratio equal to I, i.e. critically damped 

y = (A t + B) e -~ + F/k 

3 Damping ratio greater than 1, i.e. over damped 

y = A e sit + B e s:t + F/k 

In all cases, as t tends to infinite then y tends to the value F/k. Thus the 
steady-state value is F/k. 



Appendix B 
Laplace transform 

Control systems tend to have input--output relationships which are 
described by differential equations. The differential equations describe 
how the output varies with time for an input. We can determine the 
output for a system with some particular input by solving the differential 
equation. However, the Laplace transform is a way of transforming 
differential equations into more convenient forms for determining 
outputs. 

A quantity which is a function of time can be represented as fit) and is 
said to be in the time domain, e.g. if we have a voltage v which is a 
function of time we can write as v(t) to show that it is. In discussing 
control systems we are only concerned with values of time greater than 
or equal to 0, i.e. t > 0, and so to obtain the Laplace transform off(t) 
function we multiply it by e-" and then integrate with respect to time 
from zero to infinity; s is a constant with the unit of 1/time. The result is 
then said to be in the s-domain. The Laplace transform of the function of 
timeflt), which is written as ,d{flt)}, is thus: 

,d{~t) }: ~oe-S~t) d t 

A function of s is written as F(s). It is usual to use a capital letter F for 
the Laplace transform and a lower-case letter f for the time-varying 
function J(O. Thus: 

2{](0} = F(s) 

The procedure for using the Laplace transform is to: 

1 Transform functions of time into functions of s. 

Carry out algebraic manipulations in the s-domain. We can carry out 
algebraic manipulations on a quantity in the s-domain, i.e. adding, 
subtracting, dividing and multiplying in the way we do with any 
algebraic quantities. 

Transform the functions of s back into functions of time, i.e. the 
so-termed inverse operation. This involves finding the time domain 
function that could have given the s-domain expression obtained by 
the algebraic manipulations. 
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v(O 

Figure Ap.B. 1 
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Unit-step 

For the inverse operation, when the function of time is obtained from 
the Laplace transform, we can write 

f i0  = 2-'  {F(s) } 

Obtaining the Laplace transform 

The following examples illustrate how we can obtain, from first 
principles, the Laplace transform of functions of time. However, in 
practice, engineers use a table of Laplace transforms to avoid having to 
carry out such calculations; Table 3.1 shows some of the transformations 
commonly encountered. 

The unit step is the type of function encountered when we suddenly 
apply an input to a system (Figure Ap.B. 1). It describes an abrupt change 
in some quantity from zero to a steady value, e.g. the change in the 
voltage applied to a circuit when it is suddenly switched on. Thus, at 
time t = 0 it suddenly switches to the value 1 and has the constant value 
of 1 for all values of time greater than 0, i.e. J(0 = 1 for t >_ 0. The 
Laplace transform of the unit step function is: 

L { ~ t ) } = F ( s ) =  o l e-a dt = -  e-St] ~176 

For t = oo the value of the exponential term e -~ is 0 and with t = 0 the 
value of e -~ is -1. Hence: 

1 
F ( s ) -  s 

As a further illustration, consider the Laplace transform of the 
functionJ(t) = e ~ where a is a constant : 

F ( S  ) = oo at -s t  ~o e e dt 

= ~0 e-(s-a)t dt = - ~  
oo 1 [e_(,_~)t]o S - - a  

When t = oo the term in the brackets becomes 0 and when t = 0 it 
becomes-1. Thus: 

1 
F ( s ) -  s - a  

Properties of the Laplace transform 

To use the Laplace transforms of functions given in tables it is necessary 
to know the properties of such transforms. The following are basic 
properties: 

Linearity property 
The Laplace transform of the sum of two time functions, e.g. J(0 and 
g(t), can be obtained by adding the Laplace transforms of the two 
separate Laplace transforms, i.e. 
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�9 #0~0  + g(O) = .dAO + Lg(O 

Thus the Laplace transform of 1 + t is: 

.e{l + . e t =  

Multiplication by a constant 
As a consequence of the linearity property, suppose we want the 
Laplace transform of 2t. This can be considered to be t + t and so the 
Laplace transform of 2t is the sum of the transforms of t and t and so 
2 x the Laplace transform of t. Since the Laplace transform of t is 
1/s then the Laplace transform of 2t is 2/s. The Laplace transform 
4t 2 is given by 4 times the Laplace transform of t 2 and so, since the 
Laplace transform of t 2 is 2/s 2, is 8/s 2. In general: 

L{ a~t) } = a~/(t) 

The Laplace transform of 1 + 2t + 4t 2 is given by the sum of the 
transforms of the individual terms in the expression and so is: 

8 

Final-value theorem 
This theorem enables us to determine the value a function of time 
will end up with after a long period of time, i.e. the steady-state 
value. The final-value theorem can be stated as: if a function of time 
fit) has a Laplace transform F(s) then in the limit as the time tends 
to infinity the value of the function is given by 

lim J ( O  = lim sF(s) 
t--,~ s ~ 0  

For example, consider the final value of e -3' as t tends to infinity. 
Using Table 3.1, we have e -~' = 1/(s + a) and so e -3' = 1/(s + 3). The 
final-value theorem thus gives: 

l imf i t )=  lim sF(s)= lim s =0  
t-~oo s-.o s- .~ s + 3 

and so the steady-state value is 0. 

Derivatives 
The Laplace transform of a derivative of a function fit) is given by: 

where f(O) is the value of the function when t = O. For a second 
derivative: 
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.~{ d2 -d-~J'(t)} = s 2 F ( s )  - s f (O)  - d r ( o )  

where df(O)/dt is the value of the first derivative at t = 0. 
For example, if we have a function of time with an initial zero 

value, i.e. riO) = 2, then the Laplace transform of df(O/dt is sF(s), f f  
the function had j'(0) - 2 then the Laplace transform of dj(0/dt is 
sF(s)-f(O) = sF(s)-  2. 

As another illustration, if we have d~t) /dt  2 with )frO) = 0 and 
dJ(0)/dt = 0 then the Laplace transform of dff(t)/dt 2 is saF(s). If the 
function had J(0) = 2 and dj(0)/dt = 1 then the Laplace transform of 
d~t)/dt 2 is s2F(s) - 2 s -  1. 

Integrals 
The Laplace transform of the integral of a function flO which has a 
Laplace transform F(s) is given by: 

For example, the Laplace transform of the integral of the function e-' 
between the limits 0 and t is: 

1 L{~toe-tdt} :I'd{e-t}: s(s + 1) 

The inverse transform 

The inverse Laplace transformation is the conversion of a Laplace 
transform F(s) into a function of time fit). This operation is written as: 

2-'{F(s)} =J(O 

The linearity property of Laplace transforms means that if we have a 
transform as the sum of two separate terms then we can take the inverse 
of each separately and the sum of the two inverse transforms is the 
required inverse transform. 

.d -~ {aF(s) + bG(s) } = a~lF(s)  + b,d-'G(s) 

To illustrate how rearrangement of a function can often put it into the 
standard form shown in Table 3.1, the inverse transform of 3/(2s + 1) 
can be obtained by rearranging it as: 

3(1/2) 
s +(1/2) 

Table 3.1 contains the transform 1/(s + a) with the inverse of e -a'. Thus 
the inverse transformation is just this transform with a = �89 and 
multiplied by the constant (3/2) and so is (3/2) e -'/2. 

Expressions often have to be put into simpler standard forms of Table 
3.1 by the use of partial fractions. For example, the inverse Laplace 
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transform of ( 3 s -  1)/s(s- 1) is obtained by first simplifying it using 
partial fractions: 

3 s -  1 A B 
s(s 1) = - g + ~  - s - 1  

and so we must have 3 s -  1 = A ( s -  1) + Bs. Equating coefficients of s 
gives 3 = A + B and equating numerical terms gives-1 = -A. Hence: 

3 s -  1 1 2 
s(s 1) = T + ~  - s - 1  

The inverse transform of 1/s is 1 and the inverse of 1/(s- 1) is e'. Thus: 

3 s - ~  } = l + 2 e t  
z'-', s(s ) 

Solving differential equations using Laplace  transforms 

Laplace transforms offer a method of solving differential equations. The 
procedure adopted is: 

1 Replace each term in the differential equation by its Laplace 
transform, inserting the given initial conditions. 

2 Algebraically rearrange the equation to give the transform of the 
solution. 

3 Invert the resulting Laplace transform to obtain the answer as a 
function of time. 

As an illustration, the first-order differential equation: 

dx 
3-d-- { + 2 x = 4  

has the Laplace transform: 

3[sX(s)- x(O)l + 2X(s)= 4 

Given that x = 0 at t = 0: 

3sX(s) + 2X(s)=4 

Hence: 

4 
X(s)  = s(3s + 2) 

Simplifying by the use of partial fractions: 

4 A B 
s(3s + 2) = "T + 3s +-'--'-2 
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Hence A (3s + 2) + Bs = 4 and so A = 2 and B = -2/3.  Thus: 

2 2 2 2 
X(s) = T - 3(3s + 2) = T - 

and so: 

x(0 = 2 - 2 e -2a3 

As a further illustration, the second-order differential equation: 

d 2x _ .~  e - t  
dr - 5 + 6x = 2 

has the Laplace transform: 

d 2 S2X(S) - -  S X ( 0 )  - -  X(0) -- 5[sX(s) - x(0)] + 6X(s) - s + 1 

Given that x = 0 and dx/dt = 1 at t = 0" 

2 
s2X(s) - 1 - 5sX(s) + 6X(s) - s + 1 

Hence: 

2 
s + l  +1  2 1 

X(s) = s2 - 5s + 6 = (s + 1 ) ( s -  2 ) ( s -  3) + ( s -  2 ) ( s -  3) 

We can simplify the above expression by the use of partial fractions: 

2 _A__A_ sB C 
( s+  1 ) ( s - 2 ) ( s - 3 )  - s +  1 + - 2  + s--L-'3 

Hence A ( s -  2 ) ( s -  3) + B(s + 1 ) ( s -  3) + C(s + 1 ) ( s -  2) = 2 and so 

A = 1/6, B = -2/3 and C = %. For the other fraction: 

1 D E 
( s -  2 ) ( s -  3) - s -  2 + s ----L-ff 

Hence D ( s -  3) + E ( s -  2) = 1 and so D = -1  and E = 1. Thus: 

1 2 1 
u m  ~ m 1 

3 2 2 -- 1 
X ( s ) =  s + l  + s -  s - 3  + s  2 + s---'-Sff 

1 5 3 m m 

6 3 2 
s +  1 s - 2  + s-'--2-3 

The inverse transform is thus: 

1 e_ t 5 e2t 3 3t x(0 = -g - ~  + ~ e  



Answers 

C h a p t e r  1 1 (a) Pressure on keys, display of calculated value, (b) electrical 
signal, sound, (c) radio signals, sound 

2 Open-  no feedback, closed- feedback, see Section 1.3.1 and 1.3.2 
3 (a) Measurement- temperature sensor, control ler-  thermostat, 

correction- heater, process - water bath, Co) measurement- rotary 
speed sensor, controller- motor, process- shaft, (c) measurement- 
sensor of thickness, e.g. LVDT, controller- differential amplifier, 
correction- rollers, process - steel strip 

4 See Fig. A. 1 
5 Measurement -  thermistor with resistance-to-voltage converter, 

comparison - differential amplifier, correction - relay and heater, 
process- the enclosure being controlled; measurement- level probe, 
controller-  relay and solenoid valve, correct ion- flow control 
valve, process - water tank, measurement- level probe 

6 ( a ) x - y ,  (b)x+y, ( c ) x - y - z  
7 Eg. (a) resistance temperature detector, Co) limit switch, (c) LVDT, 

(d) tachogenerator 
8 (a) Push button activate, spring return: initially output 2 is at 

pressure, when button pressed output 2 is vented, (b) solenoid 
activated, spring return: initially output 2 is vented, when button 
pressed output 2 is pressurised, 

9 (a) Pressing causes piston to move to left, release gives return, (b) 
pressing causes piston to move to left, release gives movement to 
fight 

10 See Figure A.2 
11 (a) See Figure A.3(a), (b) see Figure A.3(b) 
12 Ball operates a lever which opens or shuts a valve, depending on the 

height to which the ball is floating. The comparison element is the 
position of the lever, the control element is the lever, the correction 
element the valve, the process the water in the cistern and the 
measurement is the floating ball. 

Thermostat 
Set Solenoid valve 
value + 

Correction - - - -b  

Furnace 

Correction 

Rooms Output 
Temperature 

------b Process 

Feedback of actual value 

Figure A.1 Chapter 1, problem 4 
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Input+ t ~1~ ''' ~ t p u t  _ ~  Switch _.~ Lamp Room 
Required I I Light 

light iPhoto.! ' J level 
level ! cell I" 

Figure A.2 Chapter 1, problem 10 

Preset timer switcl' 
Input 

. . . .  

Time selection"] - - b  

Bread in toaster 
Toasted 
bread 

Heating element 
(a) 

Switch Heating element Bread in toaster 
--. !--'" 

Required _"-~ 
degree [ .  l 
of brown ' I 

(b) Colour measurement 

Output 
Toasted 
bread at 
required 
colour 

Figure A.3 Chapter 1, problem 11 

Chapter 2 

Chapter 3 

1 10V 
2 100 

d2y dy 
3 (a) klx = M--~- + c-d- [ + (kl + k2)y, 

I d20 - ~  
Co) T=_ dt 2 +C +kO, 

(c) v = L ~  + Ri, 

(d) P = c - ~  + cpqO, where 0 = 00 - 0i 

4 5/[s(s + 1)] 
5 1.7 
6 2/(s + 1.2) 
7 l / ( l+nCs)  
8 (a) GtG2G3, (b) GIG2/(1 + G~G2G3), (c) GIG2G3/(1 + GIG2G3), 

(d) G~G2/(1 + GIG2H~ + G2H2) 
9 (a) 1/[s(s + 2) + 2], (b) K/[s(s- 1) + K(s + 2) + Ks], 

(c) 2/(s a + 9s + 6) 
10 K~N/[s(sL + R) + K~K~V] 
11 75/[(s + 1)2(s + 2) + 7.51 
12 Y(s)= [2/(s a + 4)]Xl(S) + [S/(S 2 + 4)]X2(s) 
13 Y(s) = [4/(s 2 + 16s + 40]X,(s) + Is~& + 16s + 40]X2(s) 

1 3/s 
2 2 
3 5/s a 
4 e -5' V 
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Chapter  4 

Chapter  5 

m40 
"0  
t -  

O 

m 0 r 
n 

(a) 

Lg freq 

Lg freq 

Figure A.4 Chapter 5, problem 4 

5 (a) (5/3)(1 - e  -3,) V, (b) 5e-3' V 
6 (a) 6(1 - e  -t) V, (b) 6e -t V 
7 (a) 2 ( 1 -  e -2,) V, (b) � 89  � 8 9  e-2')] V 
8 (a) 5 / ( s -  1) - 4 / ( s -  2), (b) 4/(s + 1) - 3/(s + 2), 

(c) 2/(s + 1) - 3/(s + 1)2 
9 24 - 12e -2t- 4e -~t 

10 8e -2'-  8t e -2t 
11 (a) Critical, (b) overdamped, (c) underdamped 
12 -1.5 + 3.0t + 1.5e -2t 
13 0.5 - e -t + 0.5e -2' 
14 0 .5(e- ' -e  -3,) 
15 0.5(1 - e -~~ 
16 10, 0.05 
17 Underdamped 
18 Critically damped 
19 1/53 s 

1 (a) 9.2 s, 8.8 s, (b) 2.3 s, 2.2 s, (c) 0.77 s, 0.73 s 
2 69.1 s, 65.9 s 
3 8.7 s, 2Os, 19.1s 
4 (a) 10 rad/s, 0.2, 0.16 s, 53%, 2 s, (b) 7 rad/s, 0.29, 0.23 s, 39%, 

2.0s 
5 4 rad/s, 0.63, 0.51 s, 7.8%, 1.6 s 
6 2.6 
7 Stable (a) and (c); oscillatory (b) and (d) 
8 (a) Stable, (b) unstable, (c) unstable 
9 (a) Stable, Co) unstable, (c) stable 

10 (a) Stable, (b) unstable 

1 (a) 2, 90 ~ (b) 2, 180 ~ (c) 2.2, 26.6 ~ 
2 (a) 3/(5 + jco), (b) 7/(2 + jco), (c) 1/(10 + jco)(2 + jco) 
3 (a) 1.34,-26.6 ~ 0a) 1.06,-45 ~ 
4 See Figure A.4 
5 See Figure A.5 

-20 dB/decade Lg freq 

"~ 0 I 1 ' 
�9 ~ 2 0  "o 

0 - -20 
I I ~ -20 dB/decade 

0 100 1000 10 000 
Lg freq 

Lg freq Lg freq 
Oi 02  2 20 

-180*[ . 

| l loo ~ooo loooo 
0 ~ t r  

(b) 

(c) 
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Figure A.5 

Ii 0 Lg freq 
~ 0 , 

c o_ oc 
-601- \ 

Jo/ 
%~ t 
-180~ 

Lg freq 

(a) 

Chapter 5, problem 5 

Lg freq 

t ' 
-o 0 11 10 i00 
c -  m 

�9 ~ 20 "o 
O " / +20 dB/ -20 dB/ 

"~ -20 ~ e c  0 i I O 
1 10 100 -40 

Lg freq 

180  ~ 

e -  
IX. 

[1 10 100 
Lg freq 

(b) 

90o ~ , , .  Lg freq 
~- ! 1 ~ 10 100 

O| , ~ , 

(c) 

-1 .. 0 

Figure A.6 
problem 1 

imag. 

Real 

Chapter 6, 

Chapter 6 

Chapter 7 

6 (a) 1/s, Co) 3.2/(1 + s), (c) 2/(s a + 2(s + 1), 
(d) 3.2 x 100/(~ a + 2(s + 100), (c) 10/(s a + 0.8s + 4) 

7 16 x 15/(s + 15) 
8 1.82,50 ~ 
9 (a) Stable, Co) about 36 dB, (c) about 80 ~ 

10 (a) Stable, (1o) about 15 dB, (c) about 43 ~ 
11 (a) Stable, Co) about 15 dB, (c) about 32 ~ 
12 About 5.7 dB, reduced by factor of 1.9 
13 About 34 ~ 1.7 Db, reduced by factor of 1.2 
14 55 ~ 
15 (0.38s + l)/(0.13s + 1) 
16 (10s + 10)/(80s + 1) 

1 See Figure A.6 
2 (-1, j0) point not to be enclosed 
3 8.0 dB, 20 o 
4 4.4 riB, 10 o 
5 3.5 riB, 11 ~ 
6 28 riB, 76 ~ 

1 (a)-10~ to +30~ (b) 40~ 
2 (a) 2~ (b) 10% 
3 0.40 mAPC 
4 (a) 255 rev/min, Co) 324 rev/min 
5 50%, 6o% 
6 lun i t  
7 3990 
8 See Figure A.7 
9 Kv=2 ,  ~q=5.Smin,  Td = 1.4min 

10 Ko = 1.3, 7] = 6 rain, Td = 1.5 min 
11 Kp = 0.62, 7] = 3 min, Td = 0.75 min 
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~ 55 

500 1 2 3 4 

(a) Time s 

I 
6 5  

60 

45 

40 
(b) 0 1 2 3 4 

Figure A.7 Chapter 7, problem 8 

8 0  

75 

70 

65 

~ 60 
0 

55 

Time s 50 

(c) 

i i ! i 
0 1 2 3 4 

Time s 

10(Kds 2 + Kps + Ki) 
12 s(s = 5)(s + 10) + 10(Kds 2 + Kps + Ki) 

13 (a) --40 ~ (b) 15 ~ 
14 (a) 4 -  4 e -~ (b) 511 - 0 . 9 9 7  e -~176 sin (0 .63 t -  1.49)1 



Index 

ABS, 30 
Absolute encoder, 11 
Actuator, 8 
A D C ,  s e e  Analogue-to-digital 

conversion 
Amplifier, 

feedback, 40 
operational, s e e  Operational 

amplifier 
system, 2 
transfer function, 55 

Analogue signal, 17 
Analogue-to-digital conversion, 17 
Antilock brakes, 30 
Automation, 1 

Bimetallic strip, 14 
Bit, 17 
Block diagram, 

feedback path simplification, 
64 

feedforward path 
simplification, 64 

manipulation, 63 
series, 63 
summing point simplification, 

64 
system simplification, 3 
take-off point simplification, 

63 
Bode plots, 

asymptotic approximation, 
110, 11 

defined, 106 
for common transfer 

functions, 107 
for PID control, 147 
stability, 119 

Brakes, antilock, 30 
Break point, 110, 11 
Bumpless transfer, 146 

Central heating system, 4, 154 
Closed-loop control system, 5, 7 
Comparison element, 7 
Compensation, 

and controllers, 134 
cascade, 120 
gain adjustment, 120 
phase-lag, 123 
phase-lead, 121 
seres, 120 

Complex number, 100 
Controller, 

automatic mode, 145 
closed-loop system, 7 
manual mode, 145 
mathematics, 146 
microprocessor, 139 
modes, 139 
on-off, 134 
open-loop system, 7 
process, 144 
three-term, 141, 147, 150 
tuning, 148 

Control system, 
closed-loop, 5, 7 
defined, 3 
direct digital, 150 
elements, 3 
embedded systems, 156 
examples, 26 
feedback, s e e  Feedback 
gain, s e e  Gain 
open-loop, 5, 6 

Comer frequency, 110, 11 
Correction element, 7, 20 
Cylinder, 22 

DAC, s e e  Digital-to-analogue 
conversion 

Damping, 
critical, 50, 81, 96 
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Damping ( con t inued)  

factor, see  Damping ratio 
overdamped, 50, 81, 96 
ratio, 50, 80, 92, 164 
underdamped, 50, 81, 88, 96 

Darlington pair, 137 
Decrement, 90 
Delay time, 86 
Derivative, 

control, 8, 139, 141 
gain constant, 146 
time constant, 146 

Deviation, 143 
Diaphragm pressure sensors, 12 
Differential equation, 

complementary function, 162 
defined, 160 
first-order, 44, 47, 49, 78, 161 
homogeneous, 160 
ordinary, 160 
particular integral, 162 
second-order, 43, 50, 80, 164 
separation of variables, 161 

Digital signal, 17 
Digital-to-analogue conversion, 18 
Directional control valve, 

actuation, 21 
defined, 20 
examples, 21 
basic symbol, 20 
positions, 20 
with antilock brakes, 30 

Direct digital control, 150 
Discrete event control, 9 

Electrical system models, 43 
Embedded systems, 156 
Encoder, 10 
Engine management system, 29 
Error, 7 

Feedback, 5, 6, 8 
First-order system, 

differential equation, 44, 47, 
49, 78, 161 

frequency response, 103 
transfer function, 78, 85 

Fluid flow sensors, 13 
Forward path, 9 
Free-body diagram, 41 

Frequency, 
domain, 99 
natural, 50, 164 
response, 99 
response function, 101 

Fuel pressure control, 29 
Fuse, 16 

Gain, 
crossover, 119 
defined, 38 
feedback systems, 39 
margin, 119, 131 
series systems, 38 
steady-state, see  Steady-state 

gain 
Gears, 27, 55 

H-circuit, 138 
Hydraulic system models, 47 

Impulse input, 71 
Incremental encoder, 10 
Integral, 

control, 8, 139, 141 
gain constant, 147 
time constant, 147 

Kirchhoff's laws, 44 

Ladder programs, 152 
Laplace transform, 

inverse, 170 
principles, 167 
properties, 168 
table, 73 
using, 52, 71, 167 

Linear variable differential 
transformer, 10, 31 

Liquid level, 
control, 32 
sensor, 13 
system transfer function, 56 

LM35, 15 
LVDT, see  Linear variable 

differential transformer 

Machine tool control, 34, 35 
Magnitude, 100 
Measurement element, 8, 9 



180 Control Systems 

Mechanical system models, 40 
Microprocessor-controlled 

system, 35 
Motor, 

compound, 24 
d.c. 23 
separately excited, 24 
series-wound, 24 
shunt-wound, 24 
speed control, 27, 57, 137 
stepper, s e e  Stepper motor 
transfer function, 55 

MPX2100, 12 
Multiple inputs, 66 

Newton's second law, 41 
Nyquist 

diagrams, 126 
stability criterion, 128 

Offset, 140 
Open-loop control system, 5, 6 
Operational amplifier, 

described, 19 
differential, 19 
feedback, 40 
inverting, 19 

Optical encoder, 10 
Optoisolator, 16 
Orifice plate, 13 
Overshoot, 89 

Partial fractions, 74 
Peak time, 89 
Phase, 

angle, 99 
crossover frequency, 119 
margin, 119, 132 

Phasors, 99 
Piezoelectric sensor, 12 
Polar graphs, 126 
Pole, 94 
Position control, 28 
Potential divider, 16 
Potentiometer, 9, 28, 55 
Power steering, 28 
Pressure sensors, 12 
Process element, 8 
Process reaction tuning method, 

149 

Programmable logic controllers, 
152 

Proportional, 
band, 143 
control, 8, 13 9, 140 
gain constant, 146 

Protection, circuit, 16 
Pulse-width modulation, 137 

Ramp input, 71 
Range, 142 
Resistance temperature detector, 

14 
Resistance to voltage conversion, 

16 
Resolution, 18 
Rise time, 86, 88 
Robot gripper, 33 
Rotational system models, 42 

SAA1027, 26 
Sample and hold, 17 
Second-order system, 

differential equation, 43, 50, 
80, 164 

frequency response, 105 
transfer function, 80, 87 

Semiconductor temperature 
sensors, 15 

Sensitivity of systems, 60 
Sequential control, 9 
Set point, 142 
Settling time, 91 
Signal processing, 16 
Signal-to-noise ratio, 62 
Silicon controlled rectifier, 135 
Sinusoidal input, 101 
Span, 142 
s plane, 96 
Stability, 94, 118 
Steady-state, 

error, 140 
gain, 50 

Step input, 37, 72, 78 
Stepper motor, 

defined, 24 
driver, 26 
permanent magnet, 25 
phase, 25 
steps, 24 
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Stepper motor (con t inued)  

variable reluctance, 26 
Strain gauge, 9 
Subsidence ratio, 90 
Summing junction, 4, 64 
Superposition principle, 66 
Switches, 

electronic, 135 
mechanical, 11, 35 

System, 
block diagram, 3 
control, see  Control system 
defined, 2 
disturbances, 62 
elements, 3 
identification, 116 
models, 37 
multiple inputs, 66 
response, 71 
sensitivity, 60 
stability, 94 
transfer function, see  Transfer 

function 

Tachogenerator, 12, 27 
Take-off point, 4, 63 
Temperature sensors, 13 
Thermal system models, 45, 56 

Thermistors, 14 
Thennocouples, 14 
Thickness control, 31 
Thyristor, 134 
Time constant, 49, 78, 86 
Transfer function, 

common elements, 55 
defined, 54 
feedback system, 58 
series system, 58 

Transient response, 85 
Transistor, switch, 136 
Tuning, 148 
Turbine flow meter, 13 

Ultimate cycle tuning method, 148 

Valve, 
directional control see  

Directional control valve 
flow control, 22 
system transfer function, 56 

Venturi tube, 13 

Washing machine, 156 
Word, 17 

Ziegler and Nichols, 148 
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