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Preface

Following the 70th oil crisis, the world realized for the first time what it would be
like if fuels would no longer be cheap or unavailable. In order to damp the fallouts
of such a situation, renewable energies have been the subject of an intensive regain
of interest. So many R&D programmes were launched so far, with emphasis on the
investigation of the power potential of conventional (wind, solar and biomass) and
emergent (marine, geothermal) earth’s natural energy reserves.

Moreover, until the 1960s, automotive manufacturers did not worry about the
cost of fuel. They had never heard of air pollution, and they never thought about life
cycle. Ease of operation with reduced maintenance costs meant everything back
then. In recent years, clean air policies are driving the market to embrace new
propulsion systems in an attempt to substitute or to assist efficiently the internal
combustion engine (ICE) by an electric drive unit, yielding respectively the
so-called electric and hybrid propulsion systems.

The above sustainable energy and mobility applications consider in most if not
all cases a key component that achieves the electro-mechanical conversion of
energy: the electric machine. It operates as a generator which converts directly
converts the wind and wave energies, and through a turbine the solar, biomass and
geothermal ones, into electricity. It operates as a propeller fed by a battery or a fuel
cell pack embedded on board of electric and hybrid vehicles.

This said, it should be underlined that the machine integration in the above-cited
and the overwhelming majority of current applications represents a symbiosis of
several engineering fields with a dominance of the electrical one. Of particular
interest are machine control strategies thanks to which variable speed drives and
generators are continuously reaching higher and higher degrees of performance.
This has been systematically initiated by the selection of appropriate and accurate
models of the machines to be controlled.

Within this trendy topic, the manuscript deals with the modelling of AC
machines, in so far as they are currently equipping the major part of the variable
speed drives and generator; the dc machines are doomed to disappear in a near
future. The manuscript is structured in two chapters:
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• The first one is aimed at modelling of the induction machine considering its
a-b-c and Park models. An analysis of the machine steady-state operation is then
carried out using its Park model. A case study dealing with the doubly fed
induction machine, a viable candidate for wind power generating systems, is
treated with emphasis on a typical topology in which the brush-ring system is
discarded, yielding the so-called brushless cascaded doubly fed machines.

• The second chapter is devoted to the modelling of the synchronous machines,
with emphasis on its a-b-c and Park models. A special attention is paid to the
formulation and analysis of the electromagnetic torque with an investigation
of the variations of its synchronizing and reluctant components in terms of the
torque angle. The chapter is achieved by a case study dealing with an investi-
gation of the main features of the electric drive unit of a hybrid propulsion
system and the possibility of extending the flux weakening range of the pro-
peller which is made up of the PM synchronous motor.

Sfax, Tunisia Prof. Ahmed Masmoudi
Head of the Renewable Energies and Electric Vehicles Lab
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Chapter 1
Induction Machine Modelling

Abstract The chapter deals with the modelling of the induction machine (IM).
Following the analysis of the principle of operation which is based on the induction
phenomenon, the a-b-c model is established assuming a sinusoidal spatial repartition
of the air gap flux density, a linear magnetic circuit, and constant phase resistors. The
a-b-c model makes possible the establishment of a state representation of the IM.
Then, the Park transform is introduced and applied to the IM a-b-c model, leading
to its Park one. An analysis of the IM steady-state operation is then carried out using
its Park model. The chapter is achieved by a case study dealing with the doubly fed
induction machine which is widely integrated in wind power generating systems.

Keywords Induction machine · Modelling · A-B-C model · State representation
Park Model

1.1 Introduction

Generally speaking, the modelling of a system is an approach to formulate its
behaviour by a set of equations. The model allows, for a given domain of valid-
ity and a given accuracy, the prediction of the system outputs in terms of its inputs.
The modelling of electric machines has been and remains a state-of-the-art topic.
It represents a crucial step to initiate any R&D project aimed at the design or the
control or both, of electric machines.
Concerning the machine design topic, the modelling is achieved by means of:

• Numerical approaches they are aimed at the resolution of theMaxwells’ equations
considering different numerical procedures. The most popular one is the finite
element method (FEM), also named finite element analysis (FEA). FEA-based
design of electric machines is reputed by its high accuracy. However, it is reserved
to specialists and is a great consumer of CPU time,

• Analytical approaches they consider different formulations involving the machine
geometry and materials, taking into consideration well-known electromagnetic
laws. Of particular interest is theHopkinson law on the basis of which is developed

© The Author(s) 2018
A. Masmoudi, Control Oriented Modelling of AC Electric Machines,
SpringerBriefs in Electrical and Computer Engineering,
https://doi.org/10.1007/978-981-10-9056-1_1
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2 1 Induction Machine Modelling

the most popular analytical modelling approach, that is the magnetic equivalent
circuit (MEC), also called lumped circuit. The MEC modelling is a powerful tool
for the machine preliminary design and sizing. It is rapid and leads to acceptable
accuracy,

• Combined analytical–numerical approaches In order to improve the accuracy of
the MEC models, some features whose analytical prediction is critical are offline
computed byFEAand are provided to theMEC-solver. These approaches represent
the best compromise rapidity/accuracy.

Regarding the machine control topic, the modelling is mostly done analytically.
However and accounting for the high nonlinearities involved in the machine mod-
els, their resolution is achieved numerically considering different algorithms, such
as the Runge-Kutta one. Most if not all machine models include (i) an electrical
equation, (ii) a magnetic equation, and (iii) a mechanical equation. These involve
the machine phase variables, leading to the so-called a-b-c models. In order to sim-
plify the synthesis of the control laws, mathematical transformations are commonly
applied. These enable to substitution of the a-b-c models by two-phase ones. The
most popular transformation is the one introduced by Park.

The chapter deals with the modelling of the induction machine (IM) considering
its a-b-c and Park models.

1.2 Principle of Operation: Induction Phenomenon

Let us consider the case of a wound rotor three-phase induction machine, with:

• its stator circuits fed by three-phase balanced currents with an angular frequency
ωs ,

• its rotor circuits are kept open.

Doing so, a rotating field takes place in the air gap that has the speeds:

• �s with respect to the stator, with �s = ωs
p where p is the IM pole pairs,

• �s/r with respect to the rotor.

Giving the fact that the rotor circuits are open, the torque production condition is not
fulfilled and the shaft remains stationary, leading to:

�s/r = �s = ωs

p
(1.1)

The rotating field induces three back-EMFs in the rotor circuits that have an
angular frequency ωr , with:

ωr = P�s/r = ωs (1.2)

The similarity of the angular frequencies of both stator and rotor circuits yields the
so-called transformer operation of the IM. The motor operation is accessed when the
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torque production condition ismet. For that, the rotor circuits have to be closed/short-
circuited, resulting in three-phase balanced currents with an angular frequency ωr .
Hence, a second rotating field takes place in the air gap that has the speeds:

• �r/s with respect to the stator,
• �r with respect to the rotor, with �r = ωr

p = ωs
p

As a summary, the air gap is traversed by two fields rotating synchronously at
the speed ωs

p with respect to the rotor. Consequently, an electromagnetic torque is
produced and the shaft starts rotating in the direction of the rotating field resulting
from the interference between the rotor and stator rotating fields. Following the
start-up, a steady state is reached, characterized by a rotor speed�m . Thus, the stator
rotating field speed �s/r turns to be:

�s/r = �s − �m (1.3)

The angular frequency of the back-EMFs induced in the rotor circuits is then:

ωr = p(�s − �m) = ωs − p�m (1.4)

The speed of the rotating field created by the rotor, with respect to the rotor, becomes:

�r = ωr

p
= �s − �m (1.5)

Thus, the synchronism between the two rotating fields is kept and the torque produc-
tion condition is met for all rotor speeds, except for�m = �s for which the induction
phenomenon disappears. Indeed, there are no back-EMFs induced in the rotor cir-
cuits, then no rotor currents and no rotating field created by the rotor circuits, and
consequently the torque production condition is no longer fulfilled.

In order to characterize the steady-state shift between the speed of the resultant
rotating field with respect to the stator�s and the rotor one�m , a slip s is commonly
considered, such that:

s = �s − �m

�s
= ωr

ωs
(1.6)

1.3 Model Simplification Hypothesis

AC machine models have been commonly simplified considering given hypothesis,
especially:

• The MMFs created within the air gap, by the different circuits (single or multi-
phase), are assumed to have sinusoidal spatial repartitions. Thus, the effects of the
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spatial harmonics on the developed electromagnetic torque or on the generated
back-EMFs are omitted,

• The magnetic circuit is supposed linear (unsaturated). That is to say that the fluxes
created by the different circuits remain proportional to the currents that generated
these fluxes. Consequently, the self and mutual inductances characterizing these
circuits turn to be independent of their currents,

• The resistances of the different circuits are assumed constant by neglecting the
heating and skin effects. It should be noted that the circuits installed inside the
machine are subject of heating due to Joules and iron losses, leading to an increase
of their resistances. The Joules losses increase with the load. The iron losses
increasewith the frequency, so does the skip effect. Indeed, under high frequencies,
the electrons tend to circulate at the skin of the conductors rather than in their whole
section at low frequency. Thus, the resistances increase with the skin effect,

• In smooth pole machines (induction and smooth pole synchronous machines),
the slotting effect is neglected assuming a constant air gap. Consequently, the
winding self and mutual (between its circuits) inductances are independent of the
rotor position.

1.4 IM A-B-C Model

The a-b-c model considers the electrical variables applied to and measured in the IM
circuits. These variables are depicted in Fig. 1.1 which gives a schematic represen-
tation of a three-phase IM.

1.4.1 Electrical Equation

Referring to Fig. 1.1, the application of the Ohm law gives the following equation:

V = RI + d

dt
� (1.7)

where V , I , et � are the voltage, current, and flux vectors, respectively. These could
be expressed as follows:

V =
⎡
⎣
Vs

Vr

⎤
⎦ I =

⎡
⎣
Is

Ir

⎤
⎦ � =

⎡
⎣

�s

�r

⎤
⎦ (1.8)
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Fig. 1.1 Schematic representation of the induction machine

with:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vs =

⎡
⎢⎢⎣

vas

vbs

vcs

⎤
⎥⎥⎦ Is =

⎡
⎢⎢⎣
ias

ibs

ics

⎤
⎥⎥⎦ �s =

⎡
⎢⎢⎣

φas

φbs

φcs

⎤
⎥⎥⎦

Vr =

⎡
⎢⎢⎣
0

0

0

⎤
⎥⎥⎦ Ir =

⎡
⎢⎢⎣
iar

ibr

icr

⎤
⎥⎥⎦ �r =

⎡
⎢⎢⎣

φar

φbr

φcr

⎤
⎥⎥⎦

(1.9)

and where R is the resistance matrix, such that:

R =
[
rsI3 O3

O3 rrI3

]
(1.10)

where:

• rs et rr are the stator and rotor phase resistances, respectively,
• I3 and O3 are the identity and the null matrices of rank 3, respectively.
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1.4.2 Magnetic Equation

In Eq. (1.7), the flux and current vectors are linked by the following expression:

� = L I (1.11)

where L is the inductance matrix, such that:

L =
[
Lss Lsr

Lrs Lrr

]
(1.12)

with:

Lss =

⎡
⎢⎢⎢⎣

Ls Ms Ms

Ms Ls Ms

Ms Ms Ls

⎤
⎥⎥⎥⎦ Lrr =

⎡
⎢⎢⎢⎣

Lr Mr Mr

Mr Lr Mr

Mr Mr Lr

⎤
⎥⎥⎥⎦ (1.13)

and:

Lsr = Lt
rs = Mrs

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ cos
(
θ + 2π

3

)
cos

(
θ − 2π

3

)

cos
(
θ − 2π

3

)
cos θ cos

(
θ + 2π

3

)

cos
(
θ + 2π

3

)
cos

(
θ − 2π

3

)
cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.14)

where:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ : the electrical angular displacement of the rotor with respect to the stator,
Ls : the stator phase self-inductance,
Lr : the rotor phase self-inductance,
Ms : the mutual inductance between two stator phases,

Mr : the mutual inductance between two rotor phases,

Mrs : the maximum value of the mutual inductance between a stator phase and
a rotor one which is reached when their magnetic axis are aligned.

Accounting for relation (1.11), the electrical Eq. (1.7) could be rewritten as fol-
lows:

⎡
⎣
Vs

Vr

⎤
⎦ =

[
rsI3 O3

O3 rrI3

][
Is

Ir

]
+ d

dt

{[
Lss Lsr

Lrs Lrr

][
Is

Ir

]}
(1.15)



1.4 IM A-B-C Model 7

1.4.3 Mechanical Equation

The mechanical equation is derived from the dynamic fundamental principle, as:

Tem − Tl = J
d�m

dt
(1.16)

where:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�m : the rotor mechanical speed,

Tem : the electromagnetic torque,

Tl : the load torque,

J : the moment of inertia.

The rotor speed �m is expressed in terms of θ , as follows:

�m = 1

p

dθ

dt
(1.17)

The electromagnetic torque has been formulated in [1], as follows:

Tem = 1

2
p I t

{
d

dθ
[L]

}
I (1.18)

which could be developed as:

Tem = 1

2
p

⎡
⎣
Is

Ir

⎤
⎦

t
⎡
⎢⎣
0 d

dθ
[Lsr ]

d
dθ

[Lrs] 0

⎤
⎥⎦

⎡
⎣
Is

Ir

⎤
⎦ (1.19)

Knowing that:

I ts

{
d

dθ
[Lsr ]

}
Ir = I tr

{
d

dθ
[Lrs]

}
Is (1.20)

the expression of the electromagnetic torque turns to be:

Cem = p I tr

{
d

dθ
[Lrs]

}
Is (1.21)

Assuming that the stator and rotor currents are balanced, the following relations
could be expressed:
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⎧⎨
⎩
ias + ibs + ics = 0

iar + ibr + icr = 0
(1.22)

The development of Eq. (1.21), taking into account the relations given in (1.22),
leads to the following expression [2]:

Tem = 3 P Mrs

(
iasibr sin(θ − 2π

3
) + ibsiar sin(θ + 2π

3
) − (iasiar + ibsibr ) sin θ

)

(1.23)

1.4.4 State Representation

The electrical Eq. (1.7) is rewritten taking into account the current-flux relation, as:

V = RL−1� + d

dt
� (1.24)

Hence, the association of Eqs. (1.24) and (1.16) leads to a state representation where
the flux, the electrical position, and its derivative with respect to time are the state
variables. The development of Eq. (1.24) requires the determination of the inverse of
the inductance matrix which will be carried out in what follows.

Assuming balanced fluxes in both stator and rotor phases, one can establish the
following:

{
φas + φbs + φcs = 0

φar + φbr + φcr = 0
(1.25)

Accounting for relations (1.22) et (1.25), the current-flux one (1.11) is reduced
to:

�1 = L1 I1 (1.26)

where:

�1 =
[

�1s

�1r

]
I1 =

[
I1s
I1r

]
(1.27)

with:

�1s =
[

φas

φbs

]
I1s =

[
ias
ibs

]
�1r =

[
φar

φbr

]
I1r =

[
iar
ibr

]
(1.28)
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and where:

L1 =
[
Lss1 Lsr1

Lrs1 Lrr1

]
(1.29)

with:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lss1 =
⎡
⎣
Ls − Ms 0

0 Ls − Ms

⎤
⎦

Lrr1 =
⎡
⎣
Lr − Mr 0

0 Lr − Mr

⎤
⎦

Lsr1 = Mrs

⎡
⎢⎢⎣
cos θ − cos(θ − 2π

3 ) cos(θ + 2π
3 ) − cos(θ − 2π

3 )

cos(θ − 2π
3 ) − cos(θ + 2π

3 ) cos θ − cos(θ + 2π
3 )

⎤
⎥⎥⎦

Lrs1 = Mrs

⎡
⎢⎢⎣
cos θ − cos(θ + 2π

3 ) cos(θ − 2π
3 ) − cos(θ + 2π

3 )

cos(θ + 2π
3 ) − cos(θ − 2π

3 ) cos θ − cos(θ − 2π
3 )

⎤
⎥⎥⎦

(1.30)

Let us call ls = Ls − Ms and lr = Lr − Mr . The development ofmatrix L1 gives:

L1 = √
3Mrs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ls√
3Mrs

0 sin(θ + 2π
3 ) − sin θ

0 ls√
3Mrs

sin θ − sin(θ − 2π
3 )

− sin(θ − 2π
3 ) sin θ

lr√
3Mrs

0

− sin θ sin(θ + 2π
3 ) 0 lr√

3Mrs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.31)

which could be rewritten as:

L1 =
⎡
⎣
lsI2

√
3Mrs A

√
3Mrs B lrI2

⎤
⎦ (1.32)



10 1 Induction Machine Modelling

where I2 is the identity matrix of rank 2 and where matrixes A and B are defined as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡
⎢⎢⎣
sin(θ + 2π

3 ) − sin θ

sin θ − sin(θ − 2π
3 )

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

− sin(θ − 2π
3 ) sin θ

− sin θ sin(θ + 2π
3 )

⎤
⎥⎥⎦

(1.33)

An interesting particularity of matrixes A and B has been noticed, such that:

AB = 3

4
I2 (1.34)

which leads to:

⎧⎨
⎩

A−1 = 4
3 B

B−1 = 4
3 A

(1.35)

The inversion of matrix L1 could be proceeded as follows:

⎧⎨
⎩

�1s = ls I1s + √
3Mrs A I1r

�1r = √
3Mrs B I1s + lr I1r

(1.36)

which gives:

⎧⎪⎪⎨
⎪⎪⎩

1√
3Mrs

A−1 �1s = ls√
3Mrs

A−1 I1s + I1r

1
lr

�1r =
√
3Mrs
lr

B I1s + I1r

(1.37)

By eliminating I1r and taking into account expressions (1.35), the stator current
vector I1s can expressed as:

I1s = 1

σ ls
�1s − 2√

3

M

σ lslr
A �1r (1.38)
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where:
⎧⎪⎨
⎪⎩

M = 3
2Mrs

σ = 1 − M2

lslr

(1.39)

Similarly, the rotor current vector I1r can expressed as:

I1r = − 2√
3

M

σ lslr
B �1s + 1

σ lr
�1r (1.40)

Accounting for Eqs. (1.38) and (1.40), one can establish the following:

⎡
⎢⎢⎣

I1s

I1r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
σ ls

I2 − 2√
3

M
σ lslr

A

− 2√
3

M
σ lslr

B 1
σ lr

I2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

�1s

�1r

⎤
⎥⎥⎦ (1.41)

The substitution of matrixes A and B by their expressions given in (1.33) leads
to L−1

1 , such that [2]:

L−1
1 = 2√

3

M

σ lslr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
3
2

lr
M 0 − sin(θ + 2π

3 ) sin θ

0
√
3
2

lr
M − sin θ sin(θ − 2π

3 )

sin(θ − 2π
3 ) − sin θ

√
3
2

ls
M 0

sin θ − sin(θ + 2π
3 ) 0

√
3
2

ls
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.42)

1.5 Park Transform

It consists in substituting the three stator phases and the three rotor ones by two
pairs of equivalent orthogonal circuits. These fictive circuits have therefore orthogo-
nal magnetic axis: the so-called: direct (noted “d”) and quadrature (noted “q”) axis.
Moreover, in order to account for possible unbalanced operation, a third axis orthog-
onal to the (d, q)-plane noted “o” could be included. The relative positions of the
magnetic axis of the stator and rotor phases with respect to those of the dqo-frame
are illustrated in Fig. 1.2.
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Fig. 1.2 Relative positions
of the magnetic axis of the
stator and rotor phases with
respect to those of the
dqo-frame

d

q

o

rotor a-phase

θr

sθ

θ

stator a-phase

The Park transform enables the expression of the a-b-c components of a vec-
tor X in terms of its equivalent components expressed in the dqo-frame, such that
[1, 3, 4]:

Xabc = P(β)Xdqo (1.43)

where:

P(β) =
√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎣

cosβ − sin β 1√
2

cos(β − 2π
3 ) − sin(β − 2π

3 ) 1√
2

cos(β + 2π
3 ) − sin(β + 2π

3 ) 1√
2

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.44)

with:

• β = θs in the case of a vector of stator variables,
• β = θr in the case of a vector of rotor variables.

Inversely, one can express the following relation:

Xdqo = P−1(β)Xabc (1.45)
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where:

P−1(β) =
√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cosβ cos(β − 2π
3 ) cos(β + 2π

3 )

− sin β − sin(β − 2π
3 ) − sin(β + 2π

3 )

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.46)

The choice of the dqo-frame could be arbitrary. However, and for the sake of
simplificationof themachineParkmodel, the following cases are commonly adopted:

• the dqo-frame is linked to the stator,
• the dqo-frame is linked to the rotor,
• the dqo-frame is linked to the rotating field.

1.5.1 Case of a dqo-Frame Linked to the Rotating Field

The dqo-frame is rotating at the synchronous speed �s , which leads to:

θs = ωs t (1.47)

Accounting for the synchronism condition illustrated in Fig. 1.2, one can deter-
mine angle θr required for the Park transform of the rotor variables, as:

θr = θs − θ (1.48)

Knowing:

θ = pθm = p�mt = ωmt (1.49)

Accounting for expressions (1.47) and (1.49), Eq. (1.50) gives:

θr = (ωs − p�m)t = (ωs − ωm)t = ωr t (1.50)

The case of a dqo-frame linked to the rotating field is systematically considered in
the synthesis of the IM field-oriented control (also named vector control) strategies.
Of particular interest is the dqo-frame linked to the rotating field with its d-axis
aligned on the rotor flux vector. Within such a dqo-frame, the IM model turns to be
similar to the one of a separately excited DC machine.
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Furthermore, the dqo-frame linked to the rotating field with the d-axis aligned
with the field one is exclusively used in the Park model of the synchronous machine.

1.5.2 Case of a dqo-Frame Linked to the Stator

In this case, the electric angles fulfil the following relations:

{
θs = 0

θr = −θ
(1.51)

Thus, the inverse matrix used to transform the a-b-c stator variables turns to be:

P−1
s (β = 0) =

√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.52)

Such a matrix is the inverse of the one introduced by Concordia. Furthermore, it

represents the inverse of the matrix proposed by Clarke within the factor
√
2
3 [1]. In

this case, the dqo-frame is commonly named αβo-frame.
The inversematrix used to transform the a-b-c rotor variables is expressed in terms

of the electrical position, as follows:

P−1(β) =
√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ cos(θ + 2π
3 ) cos(θ − 2π

3 )

sin θ sin(θ + 2π
3 ) sin(θ − 2π

3 )

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.53)

The case of a dqo-frame linked to the stator is commonly used in the synthesis
of the direct torque control (DTC) strategies dedicated to induction machines. In
these strategies, the adopted formulations are generally limited to the stator voltage
equations and the electromagnetic torque.
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1.5.3 Case of a dqo-Frame Linked to the Rotor

In this case, the electric angles fulfil the following relations:

{
θs = θ

θr = 0
(1.54)

Thus, the inverse matrix used to transform the a-b-c stator variables turns to be:

P−1
s (β = θ) =

√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ cos(θ − 2π
3 ) cos(θ + 2π

3 )

− sin θ − sin(θ − 2π
3 ) − sin(θ + 2π

3 )

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.55)

Such a matrix is systematically considered for the transformation of the armature
electrical variables of the synchronous machine. This later is characterized by a
synchronous rotation of the rotor and the rotating field. In such a case, the d-axis of
the dqo-frame is hold by the magnetic axis of the synchronous machine excitation
source (field or permanent magnets).

The inverse matrix used to transform the a-b-c rotor variables of an induction
machine is expressed as follows:

P−1
s (β = 0) =

√
2

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.56)

1.6 IM Park Model

The application of the Park transform to the IM a-b-c model yields its Park one.
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1.6.1 Magnetic Equation

The substitution of the a-b-c variables by their equivalent dqo ones in Eq. (1.11)
gives:

⎡
⎣
P(θs)φdqos

P(θr )φdqor

⎤
⎦ =

⎡
⎣
Lss Lsr

Lrs Lrr

⎤
⎦
⎡
⎣
P(θs)Idqos

P(θr )Idqor

⎤
⎦ (1.57)

which can be rewritten as:
⎡
⎣

φdqos

φdqor

⎤
⎦ =

⎡
⎣
P−1(θs) O3

O3 P−1(θr )

⎤
⎦
⎡
⎣
Lss P(θs) Lsr P(θr )

Lrs P(θs) Lrr P(θr )

⎤
⎦
⎡
⎣
Idqos

Idqor

⎤
⎦ (1.58)

which can be rewritten as:

{
φdqos = P−1(θs)Lss P(θs)Idqos + P−1(θs)Lsr P(θr )Idqor

φdqor = P−1(θr )Lrs P(θs)Idqos + P−1(θr )Lrr P(θr )Idqor
(1.59)

Omitting the homopolar components and regardless the dqo-frame, the development
of the different matrixes gives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P−1(θs)Lss P(θs) =
[
ls 0

0 ls

]

P−1(θs)Lsr P(θr ) =
[
M 0

0 M

]

P−1(θr )Lrs P(θs) =
[
M 0

0 M

]

P−1(θr )Lrr P(θr ) =
[
lr 0

0 lr

]

(1.60)

The development of Eq. (1.59) taking into account system (1.60) yields:

• Stator:

{
φds = ls ids + Midr

φqs = ls iqs + Miqr
(1.61)
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• Rotor:

{
φdr = lr idr + Mids

φqr = lr iqr + Miqs
(1.62)

Once again, it should be underlined that the above flux expressions are independent
of the dqo-frame.

1.6.2 Electrical Equation

The substitution of the a-b-c variables by their equivalent dqo ones in Eq. (1.15)
yields:

⎡
⎣

P(θs )Vdqos

P(θr )Vdqor

⎤
⎦=

⎡
⎣
rsI3 O3

O3 rrI3

⎤
⎦
⎡
⎣

P(θs )Idqos

P(θr )Idqor

⎤
⎦+ d

dt

⎧⎨
⎩

⎡
⎣
Lss Lsr

Lrs Lrr

⎤
⎦
⎡
⎣

P(θs )Idqos

P(θr )Idqor

⎤
⎦
⎫⎬
⎭ (1.63)

which can be rewritten as:
⎡
⎣
Vdqos

Vdqor

⎤
⎦ =

⎡
⎣
P−1(θs)rsI3P(θs) O3

O3 P−1(θr )rrI3P(θr )

⎤
⎦
⎡
⎣
Idqos

Idqor

⎤
⎦

+
⎡
⎣
P−1(θs) O3

O3 P−1(θr )

⎤
⎦ d

dt

⎧⎨
⎩

⎡
⎣
Lss P(θs) Lsr P(θr )

Lrs P(θs) Lrr P(θr )

⎤
⎦
⎡
⎣
Idqos

Idqor

⎤
⎦
⎫⎬
⎭

(1.64)

which can be rewritten as:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vdqos = P−1(θs)rsI3P(θs)Idqos + P−1(θs)
d
dt

{
Lss P(θs)Idqos + Lsr P(θr )Idqor

}

Vdqor = P−1(θr )rrI3P(θr )Idqor + P−1(θr )
d
dt

{
Lrs P(θs)Idqos + Lrr P(θr )Idqor

}
(1.65)

where:

{
P−1(θs)rsI3P(θs) = rsI3
P−1(θr )rrI3P(θr ) = rrI3

(1.66)
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However, the matrix expressions P−1(θs)
d
dt

{
Lss P(θs)Idqos + Lsr P(θr )Idqor

}
and

P−1(θr )
d
dt

{
Lrs P(θs)Idqos + Lrr P(θr )Idqor

}
depend on the selected dqo-frame.

Following their development, the electrical Eq. (1.65) gives:

• Stator:
⎧⎪⎪⎨
⎪⎪⎩

vds =
(
rs + ls

d
dt

)
ids − ls iqs

dθs
dt + M didr

dt − Miqr
dθs
dt

vqs = ls ids
dθs
dt +

(
rs + ls

d
dt

)
iqs + Midr

dθs
dt + M

diqr
dt

(1.67)

• Rotor:
⎧⎪⎪⎨
⎪⎪⎩

vdr = M dids
dt − Miqs

dθr
dt +

(
rr + lr

d
dt

)
idr − lr iqr

dθr
dt

vqr = Mids
dθr
dt + M

diqs
dt + lr idr

dθr
dt +

(
rr + lr

d
dt

)
iqr

(1.68)

where vdr and vqr are null in the case of short-circuited phases in the rotor.

1.6.2.1 Case of a dqo-Frame Linked to the Rotating Field

In this case, the following relations are fulfilled:

⎧⎨
⎩

dθs
dt = ωs

dθr
dt = ωr

(1.69)

The electrical Eqs. (1.67) and (1.68) turn to be:

• Stator:

⎧⎪⎨
⎪⎩

vds =
(
rs + ls

d
dt

)
ids − lsωs iqs + M didr

dt − Mωs iqr

vqs = lsωs ids +
(
rs + ls

d
dt

)
iqs + Mωs idr + M

diqr
dt

(1.70)

• Rotor:

⎧⎪⎨
⎪⎩

vdr = M dids
dt − Mωr iqs +

(
rr + lr

d
dt

)
idr − lrωr iqr

vqr = Mωr ids + M
diqs
dt + lrωr idr +

(
rr + lr

d
dt

)
iqr

(1.71)
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In the electrical Eqs. (1.160) and (1.150), the phase terminal voltages are totally
expressed in terms of the phase currents. They can be expressed in a mixture current-
fluxes taking into account relations (1.61) and (1.62), resulting in:

• Stator:
⎧⎨
⎩

vds = rsids + dφds
dt − ωsφqs

vqs = rsiqs + dφqs
dt + ωsφds

(1.72)

• Rotor:
⎧⎨
⎩

vdr = rr idr + dφdr
dt − ωrφqr

vqr = rr iqr + dφqr
dt + ωrφdr

(1.73)

Furthermore, relations (1.61) and (1.62) allow the expression of the currents in
terms of the fluxes as:

• Stator:
⎧⎪⎨
⎪⎩
ids = lrφds − Mφdr

lslr − M2 = 1
lsσ

φds − M
lslrσ

φdr

iqs = lrφqs − Mφqr

lslr − M2 = 1
lsσ

φqs − M
lslrσ

φqr

(1.74)

• Rotor
⎧⎪⎨
⎪⎩
idr = lsφdr − Mφds

lslr − M2 = 1
lrσ

φdr − M
lslrσ

φds

iqr = lsφqr − Mφqs

lslr − M2 = 1
lrσ

φqr − M
lslrσ

φqs

(1.75)

The substitution of the currents in Eqs. (1.72) and (1.73), by their expressions in terms
of the fluxes given by relations (1.74) and (1.75), enables a fully flux formulation of
the phase terminal voltages, as follows:

• Stator:

⎧⎪⎪⎨
⎪⎪⎩

vds =
(
rs
lsσ

+ d
dt

)
φds − ωsφqs − rsM

lslrσ
φdr

vqs = ωsφds +
(
rs
lsσ

+ d
dt

)
φqs − rsM

lslrσ
φqr

(1.76)
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• Rotor:

⎧⎪⎪⎨
⎪⎪⎩

vdr = − rr M
lslrσ

φds +
(
rr
lrσ

+ d
dt

)
φdr − ωrφqr

vqr = − rr M
lslrσ

φqs +
(
rr
lrσ

+ d
dt

)
φqr + ωrφdr

(1.77)

1.6.2.2 Case of a dqo-Frame Linked to the Stator

In this case, the following relations are fulfilled:

⎧⎪⎨
⎪⎩

dθs
dt = 0

dθr
dt = −ωm

(1.78)

The electrical Eqs. (1.67) and (1.68) turn to be:

• Stator:

⎧⎪⎪⎨
⎪⎪⎩

vds =
(
rs + ls

d
dt

)
ids + M didr

dt

vqs =
(
rs + ls

d
dt

)
iqs + M

diqr
dt

(1.79)

• Rotor:

⎧⎪⎪⎨
⎪⎪⎩

vdr = M dids
dt + Mωmiqs +

(
rr + lr

d
dt

)
idr + lrωmiqr

vqr = −Mωmids + M
diqs
dt − lrωmidr +

(
rr + lr

d
dt

)
iqr

(1.80)

Accounting for relations (1.61) and (1.62), Eqs. (1.79) and (1.80) are rewritten as
follows:

• Stator:
⎧⎪⎪⎨
⎪⎪⎩

vds = rsids + dφds
dt

vqs = rsiqs + dφqs
dt

(1.81)
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• Rotor:
⎧⎪⎪⎨
⎪⎪⎩

vdr = rr idr + dφdr
dt + ωmφqr

vqr = rr iqr − ωmφdr + dφqr
dt

(1.82)

1.6.2.3 Case of a dqo-Frame Linked to the Rotor

In this case, the following relations are fulfilled:

⎧⎪⎨
⎪⎩

dθs
dt = ωm

dθr
dt = 0

(1.83)

The electrical Eqs. (1.67) and (1.68) turn to be:

• Stator:
⎧⎪⎪⎨
⎪⎪⎩

vds =
(
rs + ls

d
dt

)
ids − lsωmiqs + M didr

dt − Mωmiqr

vqs = lsωmids +
(
rs + ls

d
dt

)
iqs + Mωmidr + M

diqr
dt

(1.84)

• Rotor:
⎧⎪⎪⎨
⎪⎪⎩

vdr = M dids
dt +

(
rr + lr

d
dt

)
idr

vqr = M
diqs
dt +

(
rr + lr

d
dt

)
iqr

(1.85)

Accounting for relations (1.61) and (1.62), Eqs. (1.84) and (1.85) are rewritten as:

• Stator:
⎧⎪⎨
⎪⎩

vds = rsids + dφds
dt − ωmφqs

vqs = rsiqs + ωmφds + dφqs
dt

(1.86)

• Rotor:
⎧⎪⎨
⎪⎩

vdr = rr idr + dφdr
dt

vqr = rr iqr + dφqr
dt

(1.87)
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1.6.3 Mechanical Equation

The electromagnetic torque is the only feature which is affected by the Park trans-
form. The expression of Tem is obtained by substituting the stator and rotor a-b-c
currents by their equivalent in the dqo-frame, in Eq. (1.21), as follows:

Tem = p
(
P(θr ) Idqor

)t {
d

dθ
[Lrs]

}
P(θs)Idqos (1.88)

which can be rewritten as:

Tem = p I tdqor Pt (θr )

{
d

dθ
[Lrs]

}
P(θs) Idqos (1.89)

Knowing that:

Pt (θr )

{
d

dθ
[Lrs]

}
P(θs) = M

⎡
⎢⎣

0 1 0

− 1 0 0

0 0 0

⎤
⎥⎦ (1.90)

the expression of the electromagnetic torque is then:

Tem = pM (idr iqs − iqr ids) (1.91)

In the case of mixed current-flux model, the electromagnetic torque expression
(1.92) can be rewritten, for instance, in terms of the d-q components of the stator
current and the rotor flux taking into consideration Eqs. (1.61) and (1.62), as follows:

Tem = pM

([
φdr − Mids

lr

]
iqs −

[
φqr − Miqs

lr

]
ids

)
(1.92)

which gives:

Tem = p Mlr
(φdr iqs − φqr ids) (1.93)

This expression is considered in the field-oriented control of the induction machine
with the d-axis aligned with the rotor flux vector. Hence, the quadrature components
φqr is null, and the electromagnetic torque expression is reduced to:

Tem = p Mlr
φdr iqs (1.94)

which is similar to the one of a DC machine.
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Similar developments have led to the following flux-current expressions of the
electromagnetic torque:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tem = p Mls
(φqsidr − φdsiqr )

Tem = p (φdsiqs − φqsids)

Tem = p (φqr idr − φdr iqr )

(1.95)

1.7 Park Model-Based Analysis of the IM Steady-State
Operation

Let us assume that the IM has reached a steady-state operation characterized by
sinusoidal stator and rotor variables, and therefore a given slip.

Let us define a phasor X , such that:

X = xd + j xq (1.96)

where xd and xq are the direct and quadrature components of a vector X of a-b-c
electric variables (voltage, current, or flux) corresponding to X , such that:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xa = √
2Xrms cosωt − φ)

xb = √
2Xrms cos(ωt − φ − 2π

3 )

xc = √
2Xrms cos(ωt − φ + 2π

3 )

(1.97)

where Xrms is the root mean square of X and where ω = ωs for the stator variables
and ω = ωr for the rotor ones.

The application of the Park transform whose dq-frame (instead of dqo-frame
because the hompolar component is null in the case of balanced a-b-c components)
is rotating at the angular frequency ω with a null initial phase leads to:

⎧⎨
⎩
xd = √

3Xrms cosφ

xq = −√
3Xrms sin φ

(1.98)

The magnitude (or modulus) of X is expressed as:

‖X‖ =
√
x2d + x2q = √

3Xrms (1.99)
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1.7.1 Steady-State Stator Current Formulation

Under steady-state operation, the rotor voltage equations could be regrouped in a
phasor form, regardless the considered dqo-frame. In the case of a full current dqo
model of the IM, the resulting rotor voltage equation is as follows:

V r = 0 = (rr + jlrωr ) I r + jMωr I s (1.100)

which leads to the expression of the rotor current phasor I r , such that:

I r = − jMωr

(rr + jlrωr )
I s (1.101)

Similarly, the stator flux phasor could be expressed as:

�s = ls I s + MIr (1.102)

that gives:

I r = 1

M

(
�s − ls I s

)
(1.103)

The equality of both rotor current phasors I r , given by Eqs. (1.103) and (1.100),
yields the stator current phasor I s , as follows:

I s = 1

ls

(
rr + jlrωr

rr + jσ lrωr

)
�s (1.104)

and then:

Is−rms = 1

ls

√√√√√√
1 +

(
lrωr
rr

)2

1 +
(
σ lrωr
rr

)2 �s−rms (1.105)

Equation (1.105) represents the basis on which are founded the scalar control
strategies of the IM fed by current source inverters. Figure1.3 shows the variations
of Is−rms with respect to the rotor frequency fr , assuming a constant �s−rms .

1.7.2 Steady-State Stator Voltage Formulation

Under steady-state operation, the stator voltage equations could be regrouped in a
phasor form, regardless the considered dqo-frame, as:
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Fig. 1.3 Is−rms versus fr ,
assuming a constant �s−rms

V s = (rs + jlsωs)I s + jMωs I r (1.106)

Accounting for Eqs. (1.101) et (1.106), the stator voltage phasor V s could be
expressed in terms of I s as follows:

V s =
(
rs + jlsωs + M2ωrωs

(rr + jlrωr )

)
I s (1.107)

The substitution of the stator current phasor I s , by its expression (1.104) in
Eq. (1.107), gives:

V s =
(
rs + jlsωs + M2ωrωs

(rr + jlrωr )

)
1

ls

(
rr + jlrωr

rr + jσ lrωr

)
�s (1.108)

The development of Eq. (1.108) enables a formulation of the stator voltage phasor
V s in terms of the stator flux phasor �s , the stator angular frequency ωs , and the
rotor one ωr , as follows:

V s = 1

ls

(
(rs + jlsωs)(rr + jlrωr ) + M2ωsωr

rr + jσ lrωr

)
�s (1.109)

then:

V s = rs
ls

(
1 − σ

lslr
rsrr ωsωr

)
+ j

(
ls
rs ωs + lr

rr ωr

)

1 + j σ lrωr
rr

�s (1.110)

which leads to:
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Fig. 1.4 Vs−rms versus fr ,
for fr = 0.1Hz then fr = 1
to 10Hz, step 1Hz (bottom
to top), assuming a constant
�s−rms

Vs−rms = rs
ls

√√√√√√

(
1 − σ

lslr
rsrr ωsωr

)2 +
(
ls
rs ωs + lr

rr ωr

)2

1 +
(
σ lrωr
rr

)2 �s−rms (1.111)

In themanner ofEqs. (1.105) and (1.111) represents the basis onwhich are founded
the scalar control strategies of the IM fed by voltage source inverters. Figure1.4
illustrates the variations of Vs−rms in terms of the stator frequency fs , for different
values of fr , assuming a constant �s−rms .

1.7.3 Steady-State Electromagnetic Torque Formulation

The electromagnetic torque expression (1.88) could be rewritten in terms of the stator
and rotor current phasors, as follows [2]:

Tem = pM �m
(
I s I

∗
r

)
(1.112)

Accounting for expression (1.103), one of the electromagnetic torque (1.112) is
rewritten as follows:

Tem = p �m
(
I s
(
�

∗
s − ls I

∗
s

))
= p �m

(
I s�

∗
s − ls I s I

∗
s

)
(1.113)

Knowing that:

�m
(
I s I

∗
s

)
= 0 (1.114)
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expression (1.113) is reduced as follows:

Tem = p �m
(
I s�

∗
s

)
(1.115)

The substitution of the stator voltage phasor I s by its expression (1.104) in the
electromagnetic torque (1.115) gives:

Tem = = p

ls
�m

(
rr + jlrωr

rr + jσ lrωr

)
‖�‖2 (1.116)

then:

Tem = p

ls

(
rr lrωr (1 − σ)

r2r + (σ lrωr )2

)
‖�s‖2 (1.117)

Finally, under steady-state operation and for a sinusoidal power supply connected
in the stator terminals, the electromagnetic torque could be expressed as follows:

Tem = 3p
M2

rr l2s

ωr

1 +
(
σ lrωr
rr

)2 �2
s−rms (1.118)

Taking into account the synchronization condition:

ωr = ωs − p�m (1.119)

expression (1.118) turns to be:

Tem = 3p
M2

rr l2s

(ωs − p�m)

1 +
(
σ lr (ωs − p�m)

rr

)2 �2
s−rms (1.120)

Neglecting the voltage drop across the stator resistor, Eq. (1.106) is reduced to:

V s = jlsωs I s + jMωs I r = jωs�s (1.121)

then the electromagnetic torque expression (1.120) turns to be:

Tem = 3p
M2

rr (lsωs)2

(ωs − p�m)

1 +
(
σ lr (ωs − p�m)

rr

)2 V 2
s−rms (1.122)
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Fig. 1.5 IM mechanical
characteristics (Tem vs. �m )
for fs = 5–50Hz step 5Hz,
assuming a constant �s−rms
calculated according to
relation (1.123)

Fig. 1.6 IM mechanical
characteristics (Tem vs. �m )
for fs = 5–50Hz step 5Hz,
assuming a constant ratio
Vs−rms/ωs equal to the one
of the rated point

Figure1.5 shows the mechanical characteristics (Tem vs. �m) for different values
of fs assuming a constant stator flux rms value, such as:

�s−rms =
(
Vs−rms

ωs

)

(rated point)

(1.123)

Actually, the IM behaviour is different from what is shown in Fig. 1.5. Indeed,
feeding the stator terminals by voltages of variable Vs−rms according to ωs in such a
way that their ratio Vs−rms/ωs remains constant equal to the one of the rated point,
the mechanical characteristics turn to be as illustrated in Fig. 1.6.
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1.7.4 Steady-State Powers Formulation

Basically, it is well known that the active power P is the average value of the instan-
taneous one P(t). In polyphase circuits, and for sinusoidal voltages and currents, the
following relation is fulfilled:

P = P(t) (1.124)

In the case of three-phase circuits, the instantaneous active power P(t) is expressed
in terms of a-b-c components as follows:

P(t) = vaia + vbib + vcic = V t
abc Iabc (1.125)

The application of the Park transform to Eq. (1.125) gives:

P(t) = (
P(β)Vdqos

)t (
P(β)Idqos

) = (
V t
dqos P(β)t

) (
P(β)Idqos

)
(1.126)

Omitting the homopolar components, the matrix product P(β)t P(β) turns to be:

P(β)t P(β) = 2

3

⎡
⎢⎢⎢⎣

cosβ cos(β − 2π
3 ) cos(β + 2π

3 )

− sin β − sin(β − 2π
3 ) − sin(β + 2π

3 )

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cosβ − sin β

cos(β − 2π
3 ) − sin(β − 2π

3 )

cos(β + 2π
3 ) − sin(β + 2π

3 )

⎤
⎥⎥⎥⎥⎦

which is equal to I2.
Finally, the expression of the active power P is reduced to:

P = P(t) = vd id + vq iq (1.127)

The reactive power is expressed as follows:

Q = −→
V t

abc Iabc (1.128)

where
−→
V abc is made up of a-b-c voltages which are shifted by−π

2 with their respec-
tive of Vabc. That is to say:

⎧⎪⎨
⎪⎩

V t
abc = √

2Vrms

[
cosωt cos(ωt − 2π

3 ) cos(ωt + 2π
3 )

]

−→
V t

abc = √
2Vrms

[
sinωt sin(ωt − 2π

3 ) sin(ωt + 2π
3 )

] (1.129)

A formulation similar to the one of P , where the components of Vabc are substituted
by those of

−→
V abc, enabled the derivation of the reactive power Q and has led to the

following:
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Q = vq id − vd iq (1.130)

1.8 Case Study: Wind Energy Converters

1.8.1 Doubly Fed Operation of the IMs

From a topological point of view, the doubly fed inductionmachine (DFIM) is similar
to the wound rotor induction machine. However, the two machines differ by their
principle of operations. While the one of the wound rotor induction machine relays
on the induction phenomenon presented in Sect. 1.2, the principle of operation of the
DFIM is based on the synchronization of the stator and rotor rotating fields which
turn to be totally independent. Indeed, two scenarios are systematically distinguished,
such that:

• the stator and rotor rotating fields are turning in the same direction. In this case,
their synchronization is achieved by a mechanical speed lower than the one of the
stator rotating field, yielding the so-called hyposynchronism,

• the stator and rotor rotating fields are turning in opposite directions. In this case,
their synchronization is achieved by a mechanical speed higher than the one of the
stator rotating field, yielding the so-called hypersynchronism.

The principle of the synchronization of the stator and rotor rotating fields is illustrated
in Fig. 1.7, where�s ,�r , and�m are the stator rotating field speed, the rotor rotating
field speed, and the mechanical speed, respectively.

Referring to Fig. 1.7, the synchronization between the stator and rotor rotating
fields is expressed as follows:

�m =
{

�s − �r hyposynchronism

�s + �r hypersynchronism
(1.131)

Fig. 1.7 Principle of the
synchronization of the stator
and rotor rotating fields in a
DFIM. Legend: a
hyposynchronism, b
hypersynchronism ΩΩΩΩmΩΩΩΩ s

ΩΩΩΩ r

ΩΩΩΩ s

ΩΩΩΩm

ΩΩΩΩ r

(a) (b)
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To sum up, the DFIM has a topology identical to the wound rotor induction
machine and a principle of operation that represents a generalization of the syn-
chronous machine one. Indeed, synchronous machines, to be treated in the second
chapter, are considered as a particular case of the DFIM for which the speed of the
rotor rotating field �r is a null; a statement basically obvious in so far as the field is
fed by a DC current.

1.8.2 Integration of DFIMs in Wind Generating Systems

The DFIM has been and continues to be a viable candidate in wind power generation
systems. Themajor motivations behind the selection of DFIMs for such a sustainable
application are as follows:

• the possibility of converting the wind mechanical power into electricity at variable
speed which is in full harmony with the random behaviour of the wind energy,

• the stator circuits are directly connected to the grid while the rotor ones are fed
by a power electronic converter through which the DFIM is controlled. It enables:
(i) the synchronization of the DFIM to the grid and (ii) a flexible control of the
active and reactive powers thanks to the implementation of dedicated control strate-
gies (vector and direct power control strategies). Furthermore, it should be under-
lined that the power electronic converter in the rotor circuits is sized for a power
flow not exceed 30% of the machine rated power. This represents a crucial-cost
benefit,

• the rotor circuits are fed by the slip frequency which is limited to ±30% of the
grid one. This leads to a reduction of the commutation losses within the power
electronic converter in the rotor circuits, and therefore to an improved energy
efficiency.

In spite of the above-listed advantages, the integration of DFIMs in wind power
generating systems presents some limitations, such as:

1. the limited pole pair requires the integration of a multiplier between the shaft of
the turbine and the DFIM one,

2. the brush-ring system enabling the connection to the rotor circuits needs a sys-
tematic maintenance especially in offshore installations where the corrosion
affects the quality of the sliding contacts.

1.8.3 Brushless Cascaded Doubly Fed Machines

An approach to discard the second limitation of DFIMs has been proposed in [5]. It
consists in the association of two wind rotor induction machines which are back-to-
back connected through their rotor circuits and are mechanically coupled, yielding
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control 
converter 

infinite 
bus  

power machine control machine 

mechanical 
coupler 

Fig. 1.8 Electrical connections of the BCDFM

the so-called brushless cascaded doubly fed machines (BCDFM). Consequently, the
brush-ring system turns to be useless which improves the machine reliability.

Figure1.8 shows a BCDFM equipping a wind generating system where the rotor
circuits are interconnected with inverted phase sequences. The left-side machine is
called the power machine as far as it achieves the electromechanical conversion of
the wind power.While the right-side one is called the control machine.With its stator
fed by a static converter, the control machine is involved in the management of the
active and reactive powers between the BCDFM and the infinite bus.

1.8.3.1 Steady-State Operation

Let us call:

• �m the mechanical speed of both machines,
• ωp and ωc the stator angular frequencies of the power and control machines,
respectively,

• Pp and Pc the pole pair numbers of the power and control machines, respectively,
• sp and sc the slips of the power and control machines, respectively.

Question Establish the expression of �m in terms of:

• ωp, Pp, and sp.
• ωc, Pc, and sc.

Answer

�m = (
1 − sp

) ωp

Pp
(1.132)
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and

�m = (1 − sc)
ωc

Pc
(1.133)

Question Establish the expression of �m in terms of ωp, ωc, Pp, and Pc. Conclude
on the similitude of the BCDFM with one of the conventional AC machines to be
identified.

Answer Accounting for the inverted phase sequences of the rotor circuits of both
machines, the resulting rotating fields have opposite speeds which lead to:

spωp = −scωc (1.134)

From Eqs. (1.132) and (1.133), one can deduce:

⎧⎨
⎩
spωp = ωp − Pp�m

scωp = ωc − Pc�m

(1.135)

Accounting for Eqs. (1.134) and (1.135), one can write the following equality:

ωp − Pp�m = −(ωc − Pc�m) (1.136)

that leads to:

�m = ωp + ωc

Pp + Pc
(1.137)

Referring to expression (1.137), one can clearly deduce that the BCDFM with
inverted phase sequences of the rotor circuit interconnection is equivalent to a syn-
chronous machine that has a pole pair number equal to (Pp + Pc) and an angular
frequency of the armature current equal to (ωp + ωc).

1.8.3.2 Application of the Park Transform

Let us express the rotor phase voltages of the power machine, as follows:

⎧⎪⎪⎨
⎪⎪⎩

varp = √
2Vrp cos(spωpt)

vbrp = √
2Vrp cos(spωpt − 2π

3 )

vcrp = √
2Vrp cos(spωpt + 2π

3 )

(1.138)
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where Vrp is the rms value of the rotor phase voltages.
The resulting currents in the rotor phases of the power machine are:

⎧⎪⎪⎨
⎪⎪⎩

iarp = √
2Irp cos(spωpt − ϕr )

ibrp = √
2Irp cos(spωpt − ϕr − 2π

3 )

icrp = √
2Irp cos(spωpt − ϕr + 2π

3 )

(1.139)

where Irp is the rms value of the rotor phase currents.
Let us consider the Park transform whose dq-frame is rotating with the rotating

field created by the phase currents (iarp, ibrp, icrp), and whose d-axis is aligned with
the phasor V rp obtained following the Park transform of the rotor phase voltages
(varp, vbrp, vcrp).

Furthermore, let us define the phasors I rp and I rc as:

⎧⎨
⎩

I rp = idrp + j iqrp

I rc = idrc + j iqrc
(1.140)

where idrp and iqrp are the direct and quadrature components obtained following the
application of the Park transform to the rotor phase currents of the power machine,
and idrc and iqrc are the direct and quadrature components obtained following the
application of the Park transform to the rotor phase currents of the control machines.
Question Establish the expressions of I rp and I rc, and the relation linking these two
phasors.
Answer The Park inverse matrix is expressed as:

P−1(β) =
√
2

3

⎡
⎢⎣

cosβ cos(β − 2π
3 ) cos(β + 2π

3 )

− sin β − sin(β − 2π
3 ) − sin(β + 2π

3 )

⎤
⎥⎦ (1.141)

where β = spωpt
Its application to the rotor phase currents of the power machine is expressed as:

⎡
⎣
idrp

iqrp

⎤
⎦ = 2Irp√

3

⎡
⎢⎣
cos spωpt cos(spωpt − 2π

3 ) cos(spωpt + 2π
3 )

− sin spωpt − sin(spωpt − 2π
3 ) − sin(spωpt + 2π

3 )

⎤
⎥⎦

⎡
⎢⎢⎣

cos(spωpt − ϕr )

cos(spωpt − ϕr − 2π
3 )

cos(spωpt − ϕr + 2π
3 )

⎤
⎥⎥⎦

which gives:

⎧⎪⎨
⎪⎩
idrp = √

3Irp cosϕr

iqrp = −√
3Irp sin ϕr

(1.142)
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and then:

I rp = √
3Irms(cosϕr − j sin ϕr ) (1.143)

Now let us consider, for instance, that the inverted phase sequence interconnec-
tions within the rotor circuits concern phases “b” and “c”. This leads to a field
rotating in the air gap of the control machine in the clockwise direction. Thus, the
angle involved in the Park transform turns to be:

β = −spωpt = scωct (1.144)

Then, the application of the Park transform to the rotor phase currents of the
control machine is expressed as:

⎡
⎣
idrc

iqrc

⎤
⎦ = −2Irp√

3

⎡
⎢⎣
cos spωpt cos(spωpt + 2π

3 ) cos(spωpt − 2π
3 )

sin spωpt sin(spωpt + 2π
3 ) sin(spωpt − 2π

3 )

⎤
⎥⎦

⎡
⎢⎢⎣
cos(spωpt − ϕr )

cos(spωpt − ϕr + 2π
3 )

cos(spωpt − ϕr − 2π
3 )

⎤
⎥⎥⎦

which gives:

⎧⎪⎨
⎪⎩
idrc = −√

3Irp cosϕr

iqrc = −√
3Irp sin ϕr

(1.145)

and then:

I rc = − (
√
3Irms(cosϕr + j sin ϕr )) (1.146)

Finally, one can conclude that:

I rc = − I
∗
rp (1.147)

Considering the same approach, one can establish the relation between the voltage
phasors V rp and V rc, as:

V rc = V
∗
rp (1.148)

1.8.3.3 BCDFM Park Model

Let us consider the Park model with the dq-frame linked to the rotating field of the
power machine. Accounting for the following items:



36 1 Induction Machine Modelling

⇒ the induction machine full current Park,
⇒ adding subscript “p” to the power machine parameters and variables and sub-
script “c” to the control machine parameters and variables,
⇒ ωr the angular frequency of the power machine rotor variables.

Question Establish the power machine full current Park model limited to the voltage
equations.
Answer The electrical equations of the power machine expressed in terms of the
Park variables are as follows:
• Stator:

⎧⎪⎪⎨
⎪⎪⎩

vdsp =
(
rsp + lsp

d
dt

)
idsp − lspωpiqsp + Mp

didrp
dt − Mpωpiqrp

vqsp = lspωpidsp +
(
rsp + lsp

d
dt

)
iqsp + Mpωpidrp + Mp

diqrp
dt

(1.149)

• Rotor:

⎧⎪⎪⎨
⎪⎪⎩

vdrp = Mp
didsp
dt − Mpωr iqsp +

(
rrp + lrp

d
dt

)
idrp − lrpωr iqrp

vqrp = Mpωr idsp + Mp
diqsp
dt + lrpωr idrp +

(
rrp + lrp

d
dt

)
iqr

(1.150)

Question Rewrite the established model in a phasor form. Deduce the one of the
control machine.
Answer Accounting for the previously established equations, one can express the
power machine full current Park model in terms of phasor variables as follows:

• Stator of the power machine:

V sp =
((

rsp + lsp
d
dt

)
+ jlspωp

)
I sp +

(
Mp

d
dt + jMpωp

)
I rp (1.151)

• Rotor of the power machine:

V rp =
(
Mp

d
dt + jMpωr

)
I sp +

((
rrp + lrp

d
dt

)
+ jlrpωr

)
I rp (1.152)

The Park model of the control machine expressed in terms of phasor variables
can be easily deduced from the power machine one, as follows:

• Stator of the control machine:

V sc =
((

rsc + lsc
d
dt

)
+ jlscωc

)
I sc +

(
Mc

d
dt + jMcωc

)
I rc (1.153)
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• Rotor of the control machine:

V rc =
(
Mc

d
dt − jMcωr

)
I sc +

((
rrc + lrc

d
dt

)
− jlrcωr

)
I rc (1.154)

Let us call V r and I r the power machine rotor phase voltage and current phasors,
respectively, with:

⎧⎨
⎩
V rp = V r

I rp = I r

(1.155)

Relations (1.147) and (1.148) give:

⎧⎪⎨
⎪⎩
V rc = V

∗
r

I rp = −I
∗
r

(1.156)

Accounting for relations (1.155) and (1.156), the Park models of the power and
control machines are rewritten as follows:

Power Machine Electrical Equations

• Stator:

V sp =
((

rsp + lsp
d
dt

)
+ jlspωp

)
I sp +

(
Mp

d
dt + jMpωp

)
I r (1.157)

• Rotor:

V r =
(
Mp

d
dt + jMpωr

)
I sp +

((
rrp + lrp

d
dt

)
+ jlrpωr

)
I r (1.158)

Control Machine Electrical Equations

• Stator:

V sc =
((

rsc + lsc
d
dt

)
+ jlscωc

)
I sc −

(
Mc

d
dt + jMcωc

)
I
∗
r (1.159)

• Rotor:

V
∗
r =

(
Mc

d
dt − jMcωr

)
I sc −

((
rrc + lrc

d
dt

)
− jlrcωr

)
I
∗
r (1.160)
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Chapter 2
Synchronous Machine Modelling

Abstract The chapter deals with themodelling of the synchronousmachines (SMs).
Following the introduction of the continuous development of the SMs, their a-b-c
model is established considering the case of salient pole machines. Then, the Park
transform is applied to the established a-b-c model, leading to the Park one. A special
attention is paid to the formulation and analysis of the electromagnetic torque with
an investigation of the variations of its synchronizing and reluctant components in
terms of the torque angle. Then, a characterization of the operation at (i) maximum
torque and (ii) unity power factor is carried out before focusing the flux-weakening
approaches that could be implemented in SMs considering both smooth and salient
pole topologies. The chapter is achieved by a case study dealing with an investigation
of the main features of the electric drive unit of a hybrid propulsion system and
the possibility of their improvement with emphasis on the extension of the flux-
weakening range.

Keywords Synchronous machines · Modelling · A-B-C model · Park model
Electromagnetic torque · Smooth/salient pole · Flux weakening

2.1 Introduction

Unlike induction machines (IMs) which have a family tree limited to two members:
(i) the squirrel cage IM and (ii) the wound rotor IM, the SMs have a very ramified
one. Indeed, in recent years, new concepts of SMs are more and more introduced to
equip a variety of applications, covering a wide range of power. Of particular interest
are permanent magnet (PM)-excited SMs, also called “brushless” SMs, which are
currently given an increasing attention due to their performance and the large number
of design freedom degrees.

Actually, there are different criteria based on which the SMs could be classified.
The classical ones are:
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• The smooth pole SMs in which the air gap is assumed to be constant with the slot-
ting effect neglected. These are characterized by the production of a synchronizing
torque,

• The salient pole SMs in which the air gap presents a variable reluctance that makes
the fluxmoving in this areawithin specific tubes corresponding to the “pole shoes”.
These SM topologies are characterized by the production of an electromagnetic
torque which is the superposition of a synchronizing and a reluctant torque.

An other classical classification criterion is related to the dc excitation which
could be achieved using:

• A brush-ring system,
• An exciter which enables the elimination of the brush-ring system and the associ-
ated systematic maintenance.

Finally, the most challenging classification criterion is the type of excitation:

• No excitation yielding the switched reluctance SMs which are characterized by
the production of a reluctant torque,

• Field excitation,
• PM excitation which enables three types of flux paths in the air gap, yielding:

– Radial flux machines,
– Axial flux machines,
– Transverse flux machines.

2.2 Synchronous Machine Modelling

2.2.1 A-B-C Model

In the manner of the IM, the a-b-c model of the SM considers the electrical variables
applied to and measured in the SM circuits. These variables are illustrated in Fig. 2.1
which shows a schematic representation of a three-phase salient pole DC-excited
SM.

2.2.1.1 Electrical Equation

The application of the Ohm law to the different circuits of the SM yields:

• Armature:

V = RI + d�

dt
(2.1)
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Fig. 2.1 Schematic representation of the salient pole SM

where V , I , and � are the armature voltage, current, and flux vectors which are
expressed as follows:

V =

⎡
⎢⎢⎣

va

vb

vc

⎤
⎥⎥⎦ I =

⎡
⎢⎢⎣
ia

ib

ic

⎤
⎥⎥⎦ � =

⎡
⎢⎢⎣

φa

φb

φc

⎤
⎥⎥⎦ (2.2)

and where R is the resistance matrix, with:

R =

⎡
⎢⎢⎣
r 0 0

0 r 0

0 0 r

⎤
⎥⎥⎦ (2.3)

where r is the resistance of an armature phase.
• Field:

v f = r f i f + dφ f

dt
(2.4)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v f the DCvoltage feeding the field,

i f the DC current circulating in the field,

φ f the field flux linkage,

r f the field resistance.

2.2.2 Magnetic Equation

Assuming that the magnetic circuit has a linear behaviour, the fluxes and the currents
in the different circuits are linked by the following linear expressions:

⎧⎨
⎩

� = Lss I + Msf i f

φ f = M f s I + L f i f

(2.5)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lss squarematrix of rank 3 including the armature self − and

mutual inductances,

Msf single − columnmatrix including themutual inductances between

the armature phases and the field,

M f s transpose of matrixMsf ,

L f field self − inductance.

The variable saliency of the rotor makes the field MMF waveform far from being
sinusoidal.Moreover, even though the armaturewinding is suitably arranged, itsmag-
netic reaction still includes some harmonics. Consequently, the harmonic contents
of the fluxes linking the windings (self and mutual) are rich in harmonics. Limiting
their Fourier expansion to the fundamental terms enables a simple formulation of
the inductance matrices.

Hence, Lss could be expressed as the sum of two matrices, such that:

• Lss0 including constant inductances,
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• Lss2 which includes inductances variables in terms of the electric angular position
θ of the rotor with respect to the stator, as:

Lss = Lss0 + Lss2 (2.6)

where:

Lss0 =

⎡
⎢⎢⎢⎢⎣

Ls0 Ms0 Mss0

Ms0 Ls0 Ms0

Ms0 Ms0 Ls0

⎤
⎥⎥⎥⎥⎦

(2.7)

with: {
Ls0 = L ps0 + ls

Ms0 = −1
2 L ps0 + ms

(2.8)

where

⎧⎪⎪⎨
⎪⎪⎩

L ps0 : armature phase inductance due to themain flux,

ls : armature phase inductance due to the leakage flux,

ms : armaturemutuelle inductance due to the leakage flux.

and where Lss2 is expressed in terms of θ as follows:

Lss2 = Ls2

⎡
⎢⎢⎢⎢⎢⎣

cos 2θ cos(2θ − 2π
3 ) cos(2θ + 2π

3 )

cos(2θ − 2π
3 ) cos(2θ + 2π

3 ) cos 2θ

cos(2θ + 2π
3 ) cos 2θ cos(2θ − 2π

3 )

⎤
⎥⎥⎥⎥⎥⎦

(2.9)

Matrix Msf is given by:

Msf = M0

⎡
⎢⎢⎢⎢⎢⎣

cos θ

cos(θ − 2π
3 )

cos(θ + 2π
3 )

⎤
⎥⎥⎥⎥⎥⎦

(2.10)

whereM0 is themaximumvalue of themutual inductance between an armature phase
and the field which is reached when their magnetic axis is aligned.
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2.2.3 SM Park Model

2.2.3.1 Electrical Equation

The Park transform is systematically applied to the SM a-b-c model considering a
dqo-frame linked to the rotor which is the same as the one linked to the rotating field
as far as this latter and the rotor are moving synchronously. Of particular interest is
the dqo-frame whose direct axis is aligned with the magnetic axis of the field which
is commonly adopted in the literature.

Let us recall the relations linking the electrical angles θ , θs , and θr in such a
dqo-frame:

{
θs = θ

θr = 0
(2.11)

with:
⎧⎪⎨
⎪⎩

dθs
dt = ωm

dθr
dt = 0

(2.12)

The application of the Park transform to the armature electrical Eq. (2.1) has led to:

⎧⎪⎨
⎪⎩

vd = rid − ωφq + dφd
dt

vq = riq + ωφd + dφq
dt

(2.13)

The application of the Park transform to the flux Eq. (2.5) has led to:

⎧⎪⎨
⎪⎩

φd = Ldid + Mi f
φq = Lqiq
φ f = Mid + L f i f

(2.14)

where Ld and Lq are the direct and quadrature inductances, respectively, with:

⎧⎨
⎩
Ld = Ls0 − Ms0 + 3

2 Ls2

Lq = Ls0 − Ms0 − 3
2 Ls2

(2.15)

and where:

M =
√
3

2
Ms0 (2.16)
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It is to be noted that, in smooth pole SM, the armature phase self- and mutual
inductances are independent of the electrical position θ of the rotor with respect to
the stator that yields:

Lss2 = O3 (2.17)

Consequently, the direct and quadrature inductances turn to be:

Ld = Lq = L = Ls0 − Ms0 (2.18)

2.2.3.2 Steady-State Phasor Representation

The qdo-frame is linked to the rotor. As far as the field is mounted on the rotor and
is fed by a DC current (null frequency), then the armature variables expressed in the
qdo-frame are continuous at steady state.

Under steady-state operation, Eq. (2.13) is reduced to:

{
vd0 = rid0 − ωφq0

vq0 = riq0 + ωφd0

(2.19)

where subscript “0” indicates steady-state variables.
The substitution ofφd andφq in Eq. (2.19), by their expressions given inEq. (2.14),

has led to: {
vd0 = rid0 − Lqωiq0

vq0 = riq0 + Ldωid0 + Mωi f 0
(2.20)

Let us call: ⎧⎨
⎩
V = vd0 + jvq0

I = id0 + j iq0
(2.21)

and let us define: ⎧⎨
⎩

� = Mi f 0

E = jω�
(2.22)

where:

• � is a vector aligned with the d-axis corresponding to the flux created by the field
at steady-state operation. It should be noted that � is different from φd introduced
in Eq. (2.14). The equality of � and φd is satisfied at no-load generator operation.
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• E is a vector corresponding to the steady-state back-EMF created by the field flux
represented by vector �.

Let us define the armature current phasor as the following sum:

I = I d + I q (2.23)

where: ⎧⎨
⎩

I d = id0

I q = j iq0
(2.24)

Then, the electrical equations (2.20) could be rewritten taking into consideration
relations (2.22) and (2.24), which give the Blondel model of the SM, as:

V = r I + j Xd I d + j Xq I q + E (2.25)

where Xd and Xq are the direct and quadrature reactances, respectively, such that:

{
Xd = Ldω

Xq = Lqω
(2.26)

The phasor diagram of Eq. (2.25) in the dq-frame is illustrated in Fig. 2.2 in the
case where the armature magnetic reaction generates a direct flux which is opposite
to the field one. Such scenario is known as “the flux weakening” which characterizes
the high-speed operation of the SM. The phasor diagram, dealing with the case where
both fluxes are additive, is shown in Fig. 2.3.

In the case of a smooth pole machine, Xd = Xq = X = Lω is called the syn-
chronous reactance. Then, Eq. (2.25) is reduced to:

V = r I + j X I + E (2.27)

yielding the Behn-Eschenburg model whose phasor representation is shown in
Fig. 2.4.

2.2.3.3 Electromagnetic Torque Formulation

Let us consider, for instance, themotor operation of the salient pole SMunderwhich it
is fed by balanced three-phase voltages with an rms value Vrms , resulting in balanced
currents and back-EMFs with rms values Irms and Erms , respectively.

Let us call Tem1 the electromagnetic torque developed by a given phase:
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Fig. 2.2 Graphical representation in the case of the flux-weakening range (ψ < 0)

Fig. 2.3 Graphical
representation in the case of
the constant torque range
(ψ > 0)
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Fig. 2.4 Graphical
representation in the case of
a smooth pole SM operating
at ψ = 0

d•

ϕ

q

Φ

I

E

rI
jXI

V

Tem1 = Pem1

�m
(2.28)

where Pem1 is the electromagnetic power developed by the phase, with:

Pem1 = P1 − r I 2rms (2.29)

where P1 is the power absorbed by the phase, with:

P1 = Vrms Irms cosϕ (2.30)

Referring to Figs. 2.2 and 2.3, a relation between the angular shifts between pha-
sors V , I , and E could be established:

ϕ = δ + ψ (2.31)

which yields:

Vrms Irms cosϕ = Vrms Irms(cos δ cosψ − sin δ sinψ) (2.32)

The projection of Eq. (2.25) on the dqo-frame axis has led to the following rela-
tions:

⎧⎪⎨
⎪⎩

‖V ‖ sin δ = Xq‖I q‖ − r‖I‖ sinψ

‖V ‖ cos δ = −Xd‖I d‖ + r‖I‖ cosψ + ‖E‖
(2.33)
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Following the substitution I d and I q by their expressions in terms of I , Eq. (2.33)
turns to be:

⎧⎪⎨
⎪⎩

‖V ‖ sin δ = Xq‖I‖ cosψ − r‖I‖ sinψ

‖V ‖ cos δ = Xd‖I‖ sinψ + r‖I‖ cosψ + ‖E‖
(2.34)

Accounting for the relation between the direct and quadrature components and
the rms value of an electromagnetic variable x :

‖X‖ =
√
x2d + x2q = √

3Xrms (2.35)

and for relations (2.34), the equality (2.32) leads to:

Vrms Irms cosϕ = Irms cosψ(Xd Irms sinψ + r Irms cosψ + Erms)

− Irms sinψ(Xq Irms cosψ − r Irms sinψ)

(2.36)

The development of Eq. (2.36) yields:

Vrms Irms cosϕ = Erms Irms cosψ + (Xd − Xq)I
2
rms cosψ sinψ + r I 2rms (2.37)

Taking into consideration expressions (2.28), (2.29), and (2.37), one of the elec-
tromagnetic torques is established:

Tem = 3

(
Erms Irms cosψ + (Xd − Xq)I 2rms cosψ sinψ

�m

)
(2.38)

which, accounting for relations (2.22) and (2.26), turns to be:

Tem = 3p

(
�rms Irms cosψ + (Ld − Lq)

2
I 2rms sin 2ψ

)
(2.39)

Accounting for the following:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Erms = p �m �rms = p �m
‖�‖√

3
= p �m

φ√
3

Irms cosψ = ‖I‖√
3
cosψ = ‖Iq‖√

3
= iq√

3

Irms sinψ = ‖I‖√
3
sinψ = −‖Id‖√

3
= id√

3

(2.40)

the expression of the electromagnetic torque is finally reduced to:

Tem = p (φ iq + (Ld − Lq) id iq) (2.41)

Referring to expression (2.39), the electromagnetic torque could be decomposed
into two components, such that:

Tem = Ts + Tr (2.42)

where Ts and Tr are the synchronizing and reluctant torques, respectively, with:

⎧⎨
⎩
Ts = 3p �rms Irms cosψ

Tr = 3p
(Ld − Lq)

2 I 2rms sin 2ψ
(2.43)

Figures2.5 and 2.6 show the variations of Ts , Tr , and Tem with respect to ψ (the
so-called torque angle), in the cases of direct and reverse saliencies, respectively.

Referring to Fig. 2.5, it clearly appears that, in the case of a direct saliency
(Ld > Lq ), the reluctant torque contributes to the torque production capability of
the salient pole SM in the range of the positive values of ψ . While for negative
values of ψ , the reluctant torque behaves like a brake that affects the torque produc-
tion capability. Nevertheless, such a drawback turns to be a requirement in order to
achieve the flux weakening that enables the operation at high speeds.

From the analysis of expression (2.39), one can distinguish three values of the
torque angle ψ , such that:

• ψ = 0 for which Ts is maximum and Tr is null. The salient pole SM behaves like
a smooth pole one operating at maximum electromagnetic torque Tmax

em ,
• ψ = π

4 for which Tr is maximum. In the case of a reversed saliency characterized

by Ld < Lq , the torque angle yielding a maximum reluctant torque is ψ = −π
4 ,• ψ = ψM for which the electromagnetic torque is maximum.

In what follows, the analytical determination of ψM is carried out, considering
the derivative of the expression of electromagnetic torque (2.39) with respect to ψ ,
as:

dTem
dψ

= 3p Irms(−�rms sinψ + (Ld − Lq)Irms cos 2ψ) (2.44)
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Fig. 2.5 Electromagnetic, synchronizing, and reluctant torques of a salient pole SM versus ψ in
the case where Ld > Lq (the so-called direct saliency)

Fig. 2.6 Electromagnetic, synchronizing, and reluctant torques of a salient pole SM versus ψ in
the case where Ld < Lq (the so-called reverse saliency)
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Thus, ψM fulfils the following equality:

k sinψM = cos 2ψM (2.45)

where:

k = �rms

(Ld − Lq)Irms
(2.46)

The development of expression (2.45) leads to a second-order equation in terms of
sinψM , as:

2 sin2 ψM + k sinψM − 1 = 0 (2.47)

whose resolution yields:

• In the case of direct saliency k > 0 and ψM > 0 (as shown in Fig. 2.5):

ψM1 = arcsin

(
−k + √

k2 + 8

4

)
(2.48)

• In the case of inverse saliency k < 0 and ψM < 0 (as shown in Fig. 2.6):

ψM2 = arcsin

(
−k − √

k2 + 8

4

)
= −ψM1 (2.49)

2.2.4 Operation at Maximum Torque

2.2.4.1 Case of Smooth Pole SMs

These machines could be excited by current or by PMs and could be equipped
with distributed or concentrated windings in the armature. Referring to the previous
paragraph, these machines develop a synchronizing torque, such that:

Tem = Ts = 3p �rms Irms cosψ (2.50)

The operation at maximum torque consists in feeding the armature circuits by
currents with their initial phase equal to π

2 so that the armature current phasor,
resulting from the application of the Park transform, is aligned with the back-EMF
one. Doing so, the torque angle is kept null (ψ = 0), which gives:

T ψ=0
em = 3p �rms Irms (2.51)

Furthermore, and referring to Fig. 2.4, the power factor is expressed as follows:
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cosϕ = Erms + r Irms

Vrms
(2.52)

Assuming that r � X (condition commonly fulfilled except for low-speed oper-
ation), expression (2.52) turns to be:

cosϕ � Erms√
E2
rms + (X Irms)2

(2.53)

Giving the fact that Erms = ω�rms and that X = Lω, the power factor can be
formulated as follows:

cosϕ � 1√
1 +

(
L Irms
�rms

)2
(2.54)

Consequently, for a given no-load flux (case of PM-excited SMs or case of DC-
excited SMs operating at constant field current), the operation at maximum electro-
magnetic torque is characterized by a decrease in the power factor with the increase in
the load torque. This requires the oversizing of the associated power electronic con-
verter (the rating of the converter is higher than themachine one) which compromises
the cost-effectiveness of the electric machine drive.

2.2.4.2 Case of Salient Pole SMs

Referring to Sect. 2.2.3.3, the maximum torque operation is achieved for a torque
angle ψm , such that:

ψM = arcsin

(
−k ± √

k2 + 8

4

)
(2.55)

The substitution of k by its expression given in (2.46) in Eq. (2.55) gives:

ψM = arcsin

(
−�rms + √

�2
rms + 8(Ld − Lq)2 I 2rms

4(Ld − Lq)Irms

)
(2.56)

which is positive for a direct saliency (Ld > Lq ) and negative for a reverse saliency.
(Ld < Lq )

The corresponding synchronizing and reluctant torques are expressed as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
ψ=ψM
s = 3p �rms Irms cos arcsin

⎛
⎝−�rms +

√
�2
rms + 8(Ld − Lq )2 I 2rms

4(Ld − Lq )Irms

⎞
⎠

T
ψ=ψM
r = 3p

(Ld − Lq )

2 I 2rms sin 2 arcsin

⎛
⎝−�rms +

√
�2
rms + 8(Ld − Lq )2 I 2rms

4(Ld − Lq )Irms

⎞
⎠

(2.57)

giving the fact that sin(2ψM) = 2 cosψM sinψM , one can establish the relation
between T ψ=ψM

s and T ψ=ψM
r as follows:

T ψ=ψM
r =

⎛
⎜⎜⎜⎜⎝

√
1 + 8

(
(Ld − Lq)Irms

�rms

)2

− 1

4

⎞
⎟⎟⎟⎟⎠
T ψ=ψM
s (2.58)

To sum up, for a given load torque, that is, to say for a given armature current, the
operating point corresponding to the maximum electromagnetic torque is reached
for a torque angleψM > 0, yielding a lagging phasor I with respect to the back-EMF
phasor E in the case of a direct saliency (see Fig. 2.3). While in the case of a reverse
saliency, the operation at maximum electromagnetic torque is reached for a torque
angle ψM < 0 that gives a leading armature current phasor I with respect to the
back-EMF phasor E (see Fig. 2.2).

Giving the fact that the armature circuits are of R-L type, the current phasor I is
usually lagging with respect to the armature voltage phasor V . As far as this latter
is usually leading with respect to the back-EMF phasor E , one can conclude that
the reverse saliency is more favourable to operate at a maximum electromagnetic
torque with an improved power factor than the direct saliency [1, 2]. This statement
is confirmed by Figs. 2.2 and 2.3.

2.2.5 Operation at Unity Power Factor

The operation at a unity power factor is characterized by ϕ = 0, that is, to say by the
following relation:

δ = −ψ (2.59)

with a negative torque angle ψ .
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2.2.5.1 Case of Smooth Pole SMs

For the sake of simplicity, let us consider the case where r � X , and then:

cosψ = Vrms

Erms
(2.60)

where
Erms = ω�rms =

√
V 2
rms + (X Irms)2 (2.61)

Rewriting expression (2.60), taking into account relation (2.61), gives:

cosψ =
√
1 −

(
L Irms

�rms

)2

(2.62)

Hence, under a unity power factor operation, the electromagnetic torque expres-
sion turns to be:

T ϕ=0
em = 3p �rms Irms

√
1 −

(
L Irms

�rms

)2

(2.63)

Referring to expression (2.63), one can notice a parabolic variation of T ϕ=0
em with

respect to the rms value of the armature current Irms . Indeed, it is to be noted that,

beyond Irms = 0, the electromagnetic torque T ϕ=0
em turns to be null for Irms = �rms

L
which, accounting for expression (2.61), corresponds to a null armature voltage
(short-circuited armature).

The derivative of the electromagnetic torque T ϕ=0
em with respect to Irms has led to

an armature current I Temax
rms , such that:

I Temax
rms = �rms√

2 L
(2.64)

The corresponding electromagnetic torque T ϕ=0
emax is expressed as follows:

T ϕ=0
emax = 3

2
p

�2
rms

L
(2.65)

Referring to Sect. 2.2.4.1, it is to be noted that for a given armature current
different from 0, the electromagnetic torque developed under a unity power fac-
tor operation is systematically lower than the one under a maximum torque one.
Indeed, one can write the ratio:
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T ϕ=0
em

T ψ=0
em

=
√
1 −

(
L Irms

�rms

)2

< 1 (2.66)

Consequently, the usefulness of the armature current is better under a maximum
torque operation than under a unity power factor one.

2.2.5.2 Case of Salient Pole SMs

Let us redraw Fig. 2.2 withψ = −δ, and let us neglect the voltage drop across r , and
then one can establish the following expression:

cosψ = Erms + Xd Irms sinψ

Vrms
(2.67)

Moreover, let us rewrite expression (2.37) accounting for ϕ = 0 and neglecting
the voltage drop across r , as:

Vrms = Erms cosψ + (Xd − Xq)Irms cosψ sinψ (2.68)

Rewriting expression (2.67) taking into account equation (2.68) and substituting
Erms by ω�rms have led to:

cosψ = �rms + Ld Irms sinψ

�rms cosψ + (Ld − Lq)Irms cosψ sinψ
(2.69)

whose development has given:

(1 − cos2 ψ)�rms + Ld Irms sinψ − (Ld − Lq)Irms cos
2 ψ sinψ = 0 (2.70)

and finally:
(Ld − Lq)Irms sinψ2 + �rms sinψ + Lq Irms = 0 (2.71)

The resolution of Eq. (2.71), taking into account the fact that ψ < 0 regardless of
the saliency, has led to [1, 2]:

ψϕ=0 = arcsin

(
−�rms + √

�2
rms − 4(Ld − Lq)Lq I 2rms

2(Ld − Lq)Irms

)
(2.72)
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2.3 Flux-Weakening Operation of SMs

2.3.1 Similarity with the DC Machine

The expression of the speed of a DC motor with compensated armature magnetic
reaction, regardless the type of excitation, could be expressed as follows:

�m = UA − RIA
p
a

N
2π �F

(2.73)

where:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UA : armature voltage,

IA : armture current,

�F : field flux,
R : total resistance through which the armature current is circulating,

N : armature total actif conductors,

p : pole pair,
a : pairs of armature parallel circuits.

The motor develops an electromagnetic torque whose expression is as follows:

Tem = p

a

N

2π
�F IA (2.74)

For a given field flux�F and for a given load torque, the armature current IA turns
to be constant. In order to vary the speed, the armature voltage UA is varied using
controlled rectifiers for average and high power drives and choppers for low power
ones, yielding the so-called constant torque operation. The speed variation within
this strategy is achieved when the armature maximum voltage is reached, leading to
the so-called basic speed �B , such that:

�B = UAmax − RIA
p
a

N
2π �F

(2.75)

In order to have access to speeds higher than �B , without exceeding the thermal
limit of the armature circuit, one can simply reduce the field flux �F at a constant
armature voltageUAmax , leading to the so-called flux-weakening operation. Keeping
the armature current IA constant, the flux weakening is characterized by an increase
in the speed and a decrease in the electromagnetic torque, and therefore by a constant
electromagnetic power Pem , as formulated in what follows:

Pem = Tem�m = (UAmax − RIA)IA (2.76)



58 2 Synchronous Machine Modelling

2.3.2 SM Flux Weakening

2.3.2.1 Principle

Both smooth and salient pole SMs turn to be equivalent to a DCmachine if the torque
angle is kept null (ψ = 0). This yields an electromagnetic torque expression similar
to the DC machine one, such that:

Tem = 3p �rms Irms (2.77)

In the manner of DC machines, SMs exhibit a capability to achieve a flux weak-
ening through a reduction of the field flux. If such a flux reduction is easily carried
out in DC-excited SMs with a decrease in the field current, it is not the case of the
PM-excited SMs.

In fact, in contrary to DC machines, the armature magnetic reaction of SMs is
never compensated. The flux-weakening operation of PM-excited SMs has been
made feasible thanks to the armature magnetic reaction.

The basic idea consists in selecting a negative torque angle. The armature current
phasor I is leading with respect to the back-EMF one E , yielding a negative direct
component of the armature current that produces a flux within the d-axis opposite to
the one created by the PMs. This leads to an increase in the speed according to the
formulation developed in the following paragraph [3].

2.3.2.2 Operation at Constant Torque

Let us consider a smooth pole PM-excited SM (for instance, the case of PMsmounted
on the surface of the rotor) operating at a null torque angle (ψ = 0).Under high-speed
operation, one can establish the following inequality:

X = Lω = Lp�m � r (2.78)

so that the voltage drop across r could be neglected.
Hence, the armature equation is reduced to:

V = E + j X I (2.79)

that gives:

Vrms = p�m

√
�2

rms + (L Irms)2 (2.80)

leading to:
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�m = Vrms

p
√

�2
rms + (L Irms)2

(2.81)

Referring to expression (2.81), the speed variation should take into account the
following limitations:

• The limitation dictated by the maximum armature current Imax that takes into
account the limit of the armature circuit tolerable heating,

• The limitation dictated by the DC bus voltage at the inverter input, in other words
the maximum armature voltage Vmax .

Hence, increasing the speed at a constant electromagnetic torque (i.e. at constant
armature current I ≤ Imax ) is feasible as long as the armature voltage fulfils the
condition V ≤ Vmax .

The speed corresponding to V = Vmax , the so-called base speed �b, is expressed
as follows:

�b = Vmax

p
√

�2
rms + (L Irms)2

(2.82)

Figure2.7 illustrates the principle of the speed variation by controlling the arma-
ture voltage, starting from a speed �1 until �b. It should be noted that the phasors
E = jω� and j X I = j LωI 1 are proportional to the speed. Consequently, the speed
increase from �1 to �b is achieved at constant angle δ.

Reaching the speed �b, a crucial question arises: How could higher speeds be
accessed?

To do so, two approaches could be consideredwhich are described in the following
paragraphs.

E(Ω  Ω ΩΩ )
jLω  ω ωω I

Vb
b

b

E(Ω  Ω ΩΩ )1

V2

jLω  ω ωω I2

Φ  Φ ΦΦ d

q

δ  δ δδ 

1

1

circle of maximum 
armature voltage 

b 1

jLω  ω ωω I1 11
V1

E(Ω  Ω ΩΩ )2

Fig. 2.7 Principle of the speed variation of an SM, operating at a null torque angle and a constant
armature current, based on the variation of the armature voltage, leading to a speed range varying
from 0 to �b
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2.3.2.3 Speed Variation at Null Torque Angle

The first approach consists in keeping the torque angle ψ equal to zero and the
armature voltage at its maximum value, as illustrated in Fig. 2.8.

Giving the fact that the operating points are located on the circle of maximum
armature voltage, these are characterized by speeds expressed as follows:

�m = Vmax

p
√

�2
rms + (L Irms)2

(2.83)

The high-speed operation of SMs is commonly characterized by the so-called flux
ratioRϕ , defined as:

Rϕ = L Irms

�rms
(2.84)

which depends on the machine design (�rms and L) on one hand and the operating
point (Irms) on the other hand. It is the ratio of the flux corresponding to the armature
magnetic reaction to the excitation flux.

Accounting for the expression of Rϕ , one of the speeds given in (2.83) turns to
be:

�m = Vmax

P�rms

√
1 + R2

ϕ

(2.85)

In order to reach speeds higher than �b, a significant decrease in the armature
current has to be carried out. Indeed, referring to Fig. 2.8, the modulus of phasor
j Lω2 I 2 is lower than one of the phasors j Lωb I 1. Moreover, ω2 > ωb, which leads
to a remarkable decrease in the armature current and consequently in the electromag-
netic torque. In spite of the speed increase, the electromagnetic power falls sharply
to zero at a maximum speed �max1, such that:

�max1 = Vmax

p �rms
(2.86)

To sumup, it comes out that an increase in the speed of PM-excited SMs according
to the above-described approach does not meet the similitude of the targeted constant
electromagnetic power operation of the DC machines.
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Fig. 2.8 Principle of the speed variation of an SM, operating at a null torque angle and maximum
armature voltage, based on the variation of the armature current, leading to a speed range varying
from �b to �max1
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Fig. 2.9 Principle of the speed variation of an SM operating at a constant armature current and
maximum armature voltage, based on the variation of the torque angle, leading to a speed range
varying from �b to �max2 if Rϕ > 1, or to �max3 if Rϕ < 1, or to an infinite speed if Rϕ = 1

2.3.2.4 Speed Variation at Constant Armature Current

The second approach consists in maintaining constant armature current Irms and
voltage Vrms = Vmax , while reducing the torque angle ψ (from 0 to negative values)
in such a way that I is constantly leading with respect to E , as shown in Fig. 2.9.
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The graphical representation considers, in a first step, that the armature voltage
could exceed its maximum value so that the graphical representation can be done in
a similar way as in the case of the constant torque operation. Then, the extremity
of the obtained phasor j X I is moved along a circle that has a radius X Irms and a
centre the extremity of the phasor E , until the interception of the circle of maximum
armature voltage. The resulting operating point is characterized by the following
armature voltage equation:

V 3 = E(�3) + j Lω3 I 3 (2.87)

Then, the application of the generalized form of the Pythagoras theorem is
expressed as follows:

‖V 3‖2 = ‖ j Lω3 I 3‖2 − 2‖E(�3)‖‖ j Lω3 I 3‖ cos γ + ‖E(�3)‖2 (2.88)

where:
γ = ̂(E(�3), j Lω3 I 3) (2.89)

Angles ψ and γ are linked by the following relation:

γ = ψ3 + π

2
with ψ3 < 0 (2.90)

Thus, Eq. (2.88) turns to be:

V 2
rms = (Lω3 Irms)

2 + 2Lω2
3 Irms�rsm sinψ3 + (ω3�rsm)2 (2.91)

which leads to:

�3 = Vmax

p
√

(L Irms)2 + 2L Irms�rms sinψ3 + �2
rms

(2.92)

which can be rewritten in terms of the flux ratio, as:

�3 = Vmax

p�rms

√
R2

ϕ + 2Rϕ sinψ3 + 1
(2.93)

Three scenarios could be distinguished, namely:

• Rϕ > 1, in this case, a reduction of the torque angle ψ from 0 to −π
2 leads to a

displacement of the operating point along the circle of maximum armature voltage
until reaching the point (0, −Vmax ) for the maximum speed:

�max2 = Vmax

p �rms(Rϕ − 1)
(2.94)
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• Rϕ < 1, in this case, a reduction of the torque angle ψ from 0 to −π
2 leads to a

displacement of the operating point along the circle of maximum armature voltage
until reaching the point (0, Vmax ) for the maximum speed:

�max3 = Vmax

p �rms(1 − Rϕ)
(2.95)

• Rϕ = 1, in this case, a reduction of ψ from 0 to −π
2 leads to an infinite speed

range.

2.3.2.5 Case of Low Power Drives

In the case of low power drives, the smooth pole surface-mounted PM synchronous
motor has an armature resistance r which could not be neglected in a wide speed
range.

Operation in the Constant Torque Range The phasor diagram characterizing the
steady-state operation of the synchronous motor in the constant torque region turns
to be the one shown in Fig. 2.4. The application of the Pythagoras theorem yields:

V 2
rms = (ω�rms + r Irms)

2 + (LωIrms)
2 (2.96)

that gives:(
�2

rms + (L Irms)
2
)
ω2 + 2r�rms Irmsω + (r Irms)

2 − V 2
rms = 0 (2.97)

Then, the expression of the base speed turns to be:

�B =
√

(r�rms Irms)2 + (
�2

rms + (L Irms)2
) (
V 2
max − (r Irms)

2
) − r�rms Irms

p
(
�2

rms + (L Irms)2
)

(2.98)
which can be expressed in terms of the flux ratio Rϕ as follows:

�B =
√

(r Irms)2 + (
1 + R2

ϕ

) (
V 2
max − (r Irms)

2
) − r Irms

p �rms
(
1 + R2

ϕ

) (2.99)

or as:

�B = r Irms

p �rms

⎛
⎜⎜⎜⎜⎝

√
1 + (

1 + R2
ϕ

) ((
Vmax
r Irms

)2 − 1

)
− 1

(
1 + R2

ϕ

)

⎞
⎟⎟⎟⎟⎠

(2.100)
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Fig. 2.10 Phasor diagram of the PM synchronous machine, with the armature phase resistance
accounted for, under maximum speed operation achieved by a maximum armature voltage and a
torque angle ψ = −π

2 . Legend: a case where Rϕ > 1 and b case where Rϕ < 1

Operation in the Flux-Weakening Range Adopting a speed variation technique
based on the same approach treated in Sect. 2.3.2.4 leads to the three following
scenarios:

• Rϕ > 1, in this case, a reduction of the torque angle ψ from 0 to −π
2 leads to a

displacement of the operating point along the circle of maximum armature voltage
until reaching the point shown in Fig. 2.10a, for which the speed takes a maximum
value �max2r , with:

�max2r =
√
V 2
max − (r Irms)2

p �rms(Rϕ − 1)
(2.101)

• Rϕ < 1, in this case, a reduction of the torque angle ψ from 0 to −π
2 leads to a

displacement of the operating point along the circle of maximum armature voltage
until reaching the point shown in Fig. 2.10b, for which the speed takes a maximum
value �max3r , with:

�max3 =
√
V 2
max − (r Irms)2

p �rms(1 − Rϕ)
(2.102)

• Rϕ = 1, in this case, a reduction of ψ from 0 to −π
2 leads to an infinite speed

range.
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2.3.2.6 Case of Salient Pole SMs

Let us consider, for instance, the case of a salient pole SM with a positive saliency.
Its steady-state operation is represented by the phasor diagram shown in Fig. 2.3.

Operation in theConstantTorqueRangeDifferent strategy could be adopted under
variable speed operation, such as:

• Operation at maximum synchronizing torque (ψ = 0),
• Operation at maximum torque (ψ = ψm).

Operation at Maximum Synchronizing Torque

The salient pole SM operation turns to be similar to a smooth pole one. Its phase
diagram turns to be similar to the one shown in Fig. 2.4 where the reactance X
should be replaced by the quadrature one Xq . Consequently, one can easily deduce
the expression of the base speed from the one given in Eq. (2.100), as:

�B = r Irms

p �rms

⎛
⎜⎜⎜⎜⎝

√
1 + (

1 + R2
ϕq

) ((
Vmax
r Irms

)2 − 1

)
− 1

(
1 + R2

ϕq

)

⎞
⎟⎟⎟⎟⎠

(2.103)

where:

Rϕq = Lq Irms

�rms
(2.104)

Neglecting the armature phase resistance, the expression of the base speed (2.103)
is reduced as:

�B = Vmax

p�rms

√(
1 + R2

ϕq

) (2.105)

Operation at Maximum Torque

The application of the Pythagoras theorem to the phasor diagram of Fig. 2.3 yields
the following equation:

(�rmsω + r Irms cosψm + LdωIrms sinψm)2 + (LqωIrms cosψm − r Irms sinψm)2 = V 2
rms

(2.106)
whose development leads to:

((�rms + Ld Irms sinψm)2 + (Lq Irms cosψm)2) ω2 +
2r Irms cosψm(�rms + Irms sinψm(Ld − Lq )) ω + (r Irms)

2 − V 2
rms = 0
(2.107)

The resolution of Eq. (2.107), considering the maximum value of the armature
voltage, leads to the following expression of the base speed:
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�B = r Irms cosψm
(
sinψm(Lq − Ld) − �rms

) + √
�

p
(
(�rms + Ld Irms sinψm)2 + (Lq Irms cosψm)2

) (2.108)

where:

� = (
r Irms cosψm

(
sinψm(Lq − Ld) − �rms

))2

+ ((�rms + Ld Irms sinψm)2 + (Lq Irms cosψm)2)(V 2
max − (r Irms)

2)

(2.109)

Neglecting the armature phase resistance, the expression of the base speed (2.108)
is reduced as:

�B = Vmax

p�rms

√
(1 + Rϕd sinψm)2 + (Rϕq cosψm)2

(2.110)

where:

Rϕd = Ld Irms

�rms
(2.111)

Operation in the Flux-Weakening Range Reaching �B , one can keep increasing
the speed considering an approach similar to the one treated in Sect. 2.3.2.4. This
leads to the three following scenarios:

• Rϕd > 1, in this case, a reduction of the torque angleψ from 0 orψm to−π
2 leads

to a displacement of the operating point along the circle of maximum armature
voltage until reaching a maximum speed �max2sp. This latter is characterized by
a phasor diagram similar to the one shown in Fig. 2.10a where L is substituted by
Ld and is expressed as follows:

�max2sp =
√
V 2
max − (r Irms)2

p �rms(Rϕd − 1)
(2.112)

• Rϕd < 1, in this case, a reduction of the torque angleψ from 0 orψm to−π
2 leads

to a displacement of the operating point along the circle of maximum armature
voltage until reaching a maximum speed �max3sp. This latter is characterized by
a phasor diagram similar to the one shown in Fig. 2.10b where L is substituted by
Ld and is expressed as follows:

�max3sp =
√
V 2
max − (r Irms)2

p �rms(1 − Rϕd)
(2.113)

• Rϕd = 1, in this case, a reduction of ψ from 0 to −π
2 leads to an infinite speed

range.
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2.4 Case Study

Figure2.11 illustrates the blockdiagramof a series/parallel hybrid propulsion system.
It includes an electric drive unit and a thermal power one. This latter is built around an
internal combustion engine (ICE).Made up of a planetary gear, the power split device
enables the control of the complementary ratios of the ICE-produced mechanical
power applied to the traction wheels through the gearbox and to the generator shaft.

The electric drive unit is built around a PM-excited synchronous motor. It is
equippedwith a three-phase distributedwinding in the armature and surface-mounted
PMs in the rotor, with a pole pair p = 2. Moreover, the voltage drop across the
armature resistance is supposed to be negligible in the whole speed range.

When the motor absorbs its rated current I rrms , it exhibits:

• A constant torque region of [0 1200] rpm, developing an electromagnetic torque
of 400Nm,• A flux-weakening range reaching 6000 rpm at a null electromagnetic power,
achieved following a reduction of the torque angle ψ ,• A flux ratioRr

ϕ , defined as:

Rr
ϕ = L I rrms

�rms
< 1 (2.114)

Themotor is fed by a battery pack through an IGBT inverter of 50kW. The battery
pack is composed of 168 NiMH-made storage cells providing a total of 201.6V DC.
A boost chopper enables the increase in such a voltage to reach a DC bus voltage
UDC = 500V at the inverter input.

Starting from the base speed, the armature voltage is kept at its maximum value

Vmax =
√
2

π UDC ; the voltage drops across the inverter switches as well as the dead

power-split 
device

generator

electric
moteur

electric drive unit

thermal power unit

gear box

internal 
combustion 

engine

fuel
reservoir

fuel supply

green  house 
gas emission

power 
electronic

unit

traction
wheels

battery
pack

Fig. 2.11 Block diagram of a series/parallel hybrid propulsion system
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times, considered in order to avoid the simultaneous conduction of the switches of
the same leg, are omitted.

2.4.1 Part 1: Current Motor

Question Find out the flux ratioRr
ϕ .

AnswerThe base speed�B is expressed in terms of the rated flux ratioRr
ϕ as follows:

�B = Vmax

p�rms

√
1 + (Rr

ϕ

)2 (2.115)

The maximum speed �max is expressed in terms of the rated flux ratio Rr
ϕ as

follows:

�max = Vmax

p �rms(1 − Rr
ϕ)

(2.116)

The expression
(
�max
�B

)2
gives:

(
�max

�B

)2

= 1 + (Rr
ϕ

)2
(
1 − Rr

ϕ

)2 (2.117)

whose development leads to:

((
�max

�B

)2

− 1

) (Rr
ϕ

)2 − 2

(
�max

�B

)2

Rr
ϕ +

(
�max

�B

)2

− 1 = 0 (2.118)

The numerical application yields:

24
(Rr

ϕ

)2 − 50Rr
ϕ + 24 = 0 (2.119)

Giving the fact that Rr
ϕ is lower than unity, the solution is then:

Rr
ϕ = 0.75

Question Find out the PM flux �rms .
Answer �rms is expressed in terms of the maximum speed as follows:

�rms = Vmax

p�max (1 − Rr
ϕ)

(2.120)
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which gives:

�rms � 716mWb

Question Find out the rated current I rrms .
Answer In the constant torque region and for the rated armature current, the electro-
magnetic torque T r

em is 400Nm. This later could be expressed as follows:

T r
em = 3p�rms I

r
rms (2.121)

Then:

I rrms � 93A

Question Find out the power factor at the operating point corresponding to the base
speed.
Answer Neglecting the armature resistance, the electromagnetic power Pem turns to
be equal to the absorbed one which yields, for the base speed, the following relation:

Pr
em = T r

em�B = 3Vmax I
r
rms cosϕB (2.122)

Then:

cosϕB = T r
em�B

3Vmax I rrms

(2.123)

which, accounting for the expression of electromagnetic torque given in Eq. (2.121),
leads to:

cosϕB = p�rms�B

Vmax
(2.124)

The numerical application gives:

cosϕB = 0.8

Question Find out the trajectories described by the extremities of the armature volt-

age phasor V and current one I in the dq-plane, considering the total speed range.
Answer see Fig. 2.12.

2.4.2 Projected Motor

For the sake of an extension of the flux-weakening range, one could investigate the
solution consisting in increasing the inductance L through the substitution of the
armature-distributed winding by a concentrated fractional-slot one.
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circle of maximum
armature voltage

constant torque 
range

flux weakening 
range 

circle of rated 
armature current

constant 
torque range

flux weakening 
range 

d

q

Fig. 2.12 Trajectories described by the extremities of the armature voltage phasor V (in blue) and
current one I (in red) in the dq-plane considering the total speed range

Question Assuming an infinite extension of the flux-weakening range, find out: the

inductance ratio L∞
L .

Answer The ratio
R∞

FRr
F
is expressed as follows:

R∞
F

Rr
F

=
⎛
⎜⎝

L∞ I rrms
�rms

L I rrms
�rms

⎞
⎟⎠ = 1

0.75
(2.125)

Thus:

L∞
L

� 133%

that is, to say a 33% increase in L which is feasible following the substitution of the
armature-distributed winding by a concentrated one.
Question Find out the base speed �B∞ (in rpm).
Answer Under a unity flux ratio, the expression of the base speed turns to be:
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�B∞ = Vmax

p�rms

√
2

(2.126)

which gives:

�B∞ � 1061 rpm

Question Find out the electromagnetic power Pem∞ in the flux-weakening range.
AnswerUnder a unity flux ratio, the flux-weakening range turns to be infinite and the
electromagnetic power Pem∞ turns to be almost constant and tends to its maximum
value:

Pem∞ = 3IrmsVmax (2.127)

which gives:

Pem∞ � 62.83kW

Question Find out the power factor at the operating point corresponding to the base
speed.
Answer In the manner of the current motor, the power factor of the projected one is
expressed as follows:

cosϕ∞ = p�rms�B∞
Vmax

(2.128)

which, accounting for the expression of �B∞ given by Eq. (2.126), leads to:

cosϕ∞ = 1√
2

(2.129)

and then:

cosϕ∞ = 0.707

To sum up, one can notice that an infinite flux-weakening range is achieved with:

• A decrease in the constant torque region with a base speed of 1061 rpm instead of
1200 rpm,

• A decrease in the power factor from 0.8 to 0.707, at the base speed.
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2.4.3 Comparative Study

Question Find out the characteristics giving Tem and Pem in terms of �m (in rpm)
assuming an infinite extension of the flux-weakening range. For the sake of compar-
ison, Tem(�m) and Pem(�m) in the case of the current motor should be also plotted.
Answer

• Constant Torque Range

Currentmotor
for Nm ∈ [0 1200]rpm {

T r
em = 400

Pr
em = 400�m

(2.130)

Projectedmotor
for Nm ∈ [0 1061]rpm {

T∞
em = 400

P∞
em = 400�m

(2.131)

• Flux-Weakening Range
The speed is expressed as:

�m = Vmax

p�rms

√
R2

ϕ + 2Rϕ sinψ + 1
(2.132)

which gives:

sinψ =
(

Vmax
p�rms�m

)2 − (R2
ϕ + 1

)

2Rϕ

(2.133)

The electromagnetic torque Tem is then expressed in terms of the speed and the
flux ratio as follows:

Tem = 3p�rms Irms cos

⎛
⎜⎝arcsin

⎛
⎜⎝

(
Vmax

p�rms�m

)2 − (R2
ϕ + 1

)

2Rϕ

⎞
⎟⎠

⎞
⎟⎠ (2.134)

so does the expression of the electromagnetic power Pem :

Pem = Tem�m = 3p�rms Irms cos

⎛
⎜⎝arcsin

⎛
⎜⎝

(
Vmax

p�rms�m

)2 −
(
R2

ϕ + 1
)

2Rϕ

⎞
⎟⎠

⎞
⎟⎠ �m

(2.135)
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Currentmotor

for Nm ∈ [1200 6000]rpm
The expressions of the electromagnetic torque T r

em and power Pr
em are deduced

from Eqs. (2.134) and (2.135), respectively, where Irms = I rrms and Rϕ = Rr
ϕ as

follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T r
em = 3p�rms I rrms cos

⎛
⎜⎝arcsin

⎛
⎜⎝

(
Vmax

p�rms�m

)2 −
((Rr

ϕ

)2 + 1
)

2Rr
ϕ

⎞
⎟⎠

⎞
⎟⎠

Pr
em = 3p�rms I rrms cos

⎛
⎜⎝arcsin

⎛
⎜⎝

(
Vmax

p�rms�m

)2 −
((Rr

ϕ

)2 + 1
)

2Rr
ϕ

⎞
⎟⎠

⎞
⎟⎠ �m

(2.136)

Projectedmotor

for Nm ∈ [1061 ∞]rpm
The expressions of the electromagnetic torque T∞

em and power P∞
em are deduced

from Eqs. (2.134) and (2.135), respectively, where Irms = I rrms and Rϕ = 1 as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∞
em = 3p�rms I rrms cos

⎛
⎜⎝arcsin

⎛
⎜⎝

(
Vmax

p�rms�m

)2 − 2

2

⎞
⎟⎠

⎞
⎟⎠

P∞
em = 3p�rms I rrms cos

⎛
⎜⎝arcsin

⎛
⎜⎝

(
Vmax

p�rms�m

)2 − 2

2

⎞
⎟⎠

⎞
⎟⎠ �m

(2.137)

The derived torque–speed Tem(�m) and power–speed Pem(�m) characteristics
have been plotted, for both current and projected motors. They are illustrated in
Fig. 2.13. One can clearly notice the great similarity of the characteristics of the
projected motor and the DC motor ones. Such a statement has been confirmed and
experimentally validated in [4]. In spite of this superiority, it should be underlined
that fractional-slot PM synchronous machines suffer from a dense harmonic content
of the air gap flux density which induces high eddy current loss in the PMs that could
lead to their demagnetization [5, 6]. Hopefully, this drawback has been eradicated
thanks to the PM segmentation [7].
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Fig. 2.13 Characteristics giving Tem (up) and Pem (down) versus the speed
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